
The Architecture of Complexity Revisited:
Design Primitives for Ultra-Large-Scale Systems

Rick Kazman, Hong-Mei Chen
Department of Information Technology Management

University of Hawaii, Honolulu, HI
{kazman, hmchen}@hawaii.edu

Abstract
As software-intensive systems continue to grow in

scale and complexity the techniques that we have used
to design and analyze them in the past no longer
suffice. In this paper we look at examples of existing
ultra-large-scale systems—systems of enormous size
and complexity. We examine instances of such systems
that have arisen spontaneously in nature and those
that have been human-constructed. We distill from
these example systems the design primitives that
underlie them. We capture these design primitives as
a set of tactics— fundamental architectural building-
blocks—and argue that to efficiently build and analyze
such systems in the future we should strongly consider
employing such building-blocks.

Keywords: software architecture; architecture design;
ultra-large-scale systems; design tactics; wicked
systems.

1. Introduction

In 1962 Herbert Simon wrote about
properties of “complex systems”. He believed that
such properties would be relevant to “complex
systems that are observed in the social, biological, and
physical sciences” [28]. The central theme of his work
was that “complexity frequently takes the form of
hierarchy” with stable sub-assemblies and this
structure is critical for managing complexity. To
control complexity, these sub-systems are “nearly-
decomposable” which means that there is more
interaction within a sub-system than between sub-
systems, and there are few types of sub-systems.
Biological systems are inherently hierarchical, as
Simon argued: cells are organized into tissues, tissues
into organs, organs into individuals. Social systems are

also hierarchical: people are grouped into families
which are part of tribes, which are part of cultures, and
so forth.

In the five decades since Simon’s paper, we
have seen “ultra-large-scale” (ULS) systems [24] arise
in society: power grids, telephone systems, and the
internet, for example. While such systems are
undoubtedly hierarchical and nearly-decomposable,
they possess other very important properties, and these
properties do not arise from hierarchy and near-
decomposability alone.

Ultra-large-scale systems are: “Ultra-large-
scale systems are interdependent webs of software,
people, policies, and economics” [16]. ULS systems
are characterized by extreme size along multiple
dimensions: data volumes, amount of hardware and
software components, number of lines of code, and
numbers of users. There are seven important
characteristics that have been determined to
distinguish ULS systems from the majority of
software-intensive systems today [24]: 1)
decentralization, 2) inherently conflicting,
unknowable, and diverse requirements, 3) continuous
evolution and deployment, 4) heterogeneous,
inconsistent, and changing elements, 5) erosion of the
people/system boundary, 6) normal failures, and 7)
new paradigms for acquisition and policy. The ULS
report explains and justifies each of these
characteristics and goes on to explain that: “These
characteristics are beginning to emerge in today’s
DoD systems of systems; in ULS systems they will
dominate” [24]. The dominance of these
characteristics is why we must reason about and

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 6956
URI: https://hdl.handle.net/10125/103477
978-0-9981331-6-4
(CC BY-NC-ND 4.0)

design ULS systems differently than the vast majority
of existing systems.

Consider, for example, the ramifications of
the characteristic of “normal failures”. If a CPU fails,
on average, once every three years and you have
100,000 CPUs in your server farm (which is not
particularly large) then, on average, 300 of these will
fail on any given day. Failure is not a crisis; failure
becomes a normal, predictable occurrence that you can
and should plan for. As emphasized by the ULS report,
“scale changes everything" [24].

Such characteristics mean that ULS systems
of the future cannot be designed in ways that have
hitherto sufficed for systems of precedented scale.
While it is true that some ULS systems exist today—
e.g. the internet and our telephone system—such
systems have evolved over decades. As architects, we
would like to be able to design future ULS systems
efficiently and effectively, rather than by trial-and-
error over decades. And we are beginning to see
systems emerge that possess ULS characteristics:
social networks, peer-to-peer (P2P) systems, vehicle
systems, the Smart Grid, and large networks of IoT
and edge devices. The successful instances of these
kinds of systems of the future will need to be designed
in ways that are fundamentally different from the way
that the majority of software systems are designed
today.

If ULS systems are our future, and if they are
qualitatively and quantitatively different from almost
all existing systems, what are the fundamental
primitives that we can employ to design, and reason
about and analyze, their architectures? Given that
most existing systems lack the characteristics of ULS
systems and yet these systems already do not scale
well and have rampant technical debt [12], it is evident
that existing design techniques and practices are not
entirely suitable for ULS systems. ULS systems must
be designed differently. In what follows we describe
the ways that ULS architectures differ from
“traditional” system architectures, and we will present
a set of primitives for thinking about and designing
such systems.

2. Background

ULS systems are generally viewed as being
“wicked” problems [26]. Wicked problems have been
studied for decades. They possess several unique

characteristics that make them wicked; that is difficult
to design, manage, and evolved:

• stakeholders do not all agree on the problem
to be solved—requirements are vague and
unstable

• solutions are not right or wrong, they are
better or worse

• enormous complexity, both among the
subcomponents and between the “problem”
and the world; and any solution may change
the problem

• they have no single objective measure of
success

For example the internet is arguably the largest

man-made system ever created, and its design can
been viewed as a wicked problem: there is no single
objective measure of success, the internet and its
requirements are always changing, and its
stakeholders are constantly pulling it in diverse
directions.

Being wicked problems, ULS systems undermine

our existing assumptions surrounding software,
particularly how to create and maintain it. For
example, it is not possible to resolve all requirements
conflicts. And ULS systems cannot be developed
using lifecycle models and design primitives that have
sufficed in the past [18].

3. Architectural Tactics

Architectural tactics are design primitives. A
tactic is a design decision that influences the
achievement of a desired quality attribute response;
that is, tactics directly affect the system’s response to
some stimulus. When an architect makes design
decisions they are, knowingly or not, making decisions
about tactics. For example, consider the tactics
hierarchy for availability, shown in Figure 1 ([3],
[27]).

 An architect who wants to design a system to
meet high availability requirements needs to consider
and make decisions about how to detect faults, how to
recover from faults, how to reintroduce recovered or
replacement components, and how to prevent faults
from occurring in the first place. These are the
categories of architectural design decisions that need
to be made. Within each category are the specific
tactics that an architect can choose. These tactics are,
in turn, realized by patterns or tools or frameworks, or
directly in code.

Page 6957

 We do not “invent” tactics. We merely attempt
to distill and catalog the design techniques that have
proven themselves to be most effective, across
systems and over time.

To discover the architectural primitives—the
tactics—that underlie ULS systems we needed to
examine the broadest possible range of systems that
exhibit ULS properties—P2P systems (such as Skype
and its predecessor KaZaA and, more recently,
blockchain-based systems), the internet, and the public
switched telephone network (PSTN), as well as a
number of biological systems—and attempt to
determine whether they have anything in common. If
so then our goal is to distill their common design
approaches. This research approach may seem
somewhat unorthodox because the final example—
biological systems—is neither human nor it is
computational. But such systems—ant colonies,
termite colonies, slime molds—are ultra-large-scale
systems and exhibit many desirable properties such as
self-organization, emergent behavior, and
adaptability, despite being without centralized control,
continuously changing, and suffering normal failures.
And natural systems, such as the brain and ant

colonies, have been the inspiration for the designs of
many artificial systems in the past.

All ultra-complex systems—human societies, ant
colonies, the internet, the power grid, slime molds—
consist of a set of peers: people, ants, power stations,
nodes, servers, etc. Each peer controls, to some
extent, its own resources and its destiny. These peers
contain subsystems that may be composed into more
complex structures. So each peer is itself a hierarchical
structure [28].

From these example systems we infer that
architectures for ULS embody three basic design
approaches:

• peer to peer structure: to achieve ultra-large
scale, dependence upon centralized resources
must be avoided. This restriction implies
some form of P2P structure, where peers
provide their own resources and exert control
over their destiny. Peers may organize
themselves into more complex units, leading
to the next design approach. Communities of
humans and ecosystems are examples of P2P
systems in nature. Systems of systems,
agent-based systems [13] and the internet are
examples in computational domains.

• local assemblies of components: complex
systems contain local assemblies of a “small”
number of components. These local
assemblies may be temporary or permanent
but there are typically many of them in
existence at any given time. Assemblies are
independent from, or interact weakly with,
other assemblies.

• hierarchical structure: Simon argued for
hierarchical structure as an organizing
principle of complex systems. Systems of
systems (which contain systems which
contain sub-systems), internet domains, and
layered systems (which contain modules) are
familiar examples of hierarchical structure in
the computational domain.

These design approaches have a number of

important ramifications for the creation of ULS
architectures, as we will show.

3.1. The Architecture of KaZaA

KaZaA, and its successor, Skype, are both
distributed systems that largely rely on resources
“donated” by participants. They achieved enormous
scalability and high performance despite having few

Page 6958

centralized, controllable resources. In a study of
KaZaA [23] the authors describe a set of architectural
principles:

1. Distributed Design: all computation runs on
servers provided by the peers, so no
infrastructure servers. This ensures no
centralization, resilience to faults and attacks,
built-in scalability.

2. Exploiting Heterogeneity: peers have
different availability, bandwidth, CPU
power, etc. This makes it possible to have
different classes of servers providing
different services.

3. Load Balancing: by keeping the "degree" of
each node approximately the same (i.e.
coordination with the same number of
neighbors) load can be approximately
balanced.

4. Locality in Neighbor Selection: a neighbor is
close in terms of network topology and
latency; a node should be able to coordinate
with neighbors quickly.

5. Connection shuffling: although the size of the
neighbor group remains fairly stable over
time and across the network, the actual
content of the neighbor group for any node is
dynamic.

6. Efficient gossiping algorithms: to promote
connection shuffling and find new peers as
they enter the network, nodes must "gossip"
with each other frequently, learning about
their environment.

The design of these systems has been highly

successful. KaZaA in its heyday had over 3 million
active users. Skype reportedly hosted 40 million or
more users a day, on average, in 2020, according to
Microsoft.1

3.2. Biological Systems

Biological systems—termite colonies, ant
colonies, slime molds—are arguably ULS systems and
all exhibit desirable characteristics ([4], [5], [6], [10],
[11], [14]): without any central control, they manage
to react in purposeful ways. They learn, adapt and
evolve, and operate in a robust manner in the face of
uncertain and incomplete information. The success of
biological systems should be studied, to understand
their organizational principles and success factors.

1 https://www.microsoft.com/en-us/microsoft-
365/blog/2020/03/30/introducing-new-microsoft-365-
personal-family-subscriptions/

Flake [14] outlines three attributes that

distinguish agents in complex systems:

1. Collections, Multiplicity, and Parallelism:
complex systems are made up of large
collections of agents working in parallel.
These agents contain small amounts of
variation that allow them to seek different
solutions to the same problem, or react to
different environmental stimuli.

2. Iteration, Recursion, and Feedback: agents
iterate, perhaps by reproducing, so that they
persist over time. Complex systems contain
substantial amounts of self-similar structure
owing to recursion. And agents not only react
to changes in their environment, but often
change their environment.

3. Adaptation, Learning, and Evolution: the
inevitable finiteness of resources, in
combination with parallelism and iteration,
cause agents to need to adapt. Successful
adaptations further iterate while unsuccessful
ones wither.

Holland, in his book on complex adaptive systems

(CASs) [17] analyzes how complexity arises from
adaptation. He defined a set of seven properties that
characterize CASs. These are:

1. Aggregation: collections of agents have their

own properties and behaviors
2. Tagging: tags support aggregation and

boundary formation
3. Non-linearity: the behavior of aggregates is

more complex than the sum of its parts.
4. Flows: information and, in the real world,

goods, flow between agents
5. Diversity: agents are diverse, filling different

roles in their environment and often adapting
to fill new roles

6. Internal models: agents contain models of
their environment and constantly update
those models to reflect observations

7. Building blocks: an agent’s internal model
can be decomposed by a small set of building
blocks that can be flexibly combined

Holland divides these properties into

characteristics (Aggregation; Nonlinearity; Flows;
Diversity) and mechanisms (Tagging; Internal

Page 6959

Models; Building blocks). The mechanisms have
particular importance as classes of architectural
primitives, as we will see.

Ant Colony Optimization (ACO) [11] is a
computational technique for searching—finding paths
through graphs—inspired by the behavior of ant
colonies. Ants do this by laying down pheromone
trails as they explore, where other ants follow those
paths. Paths that are useful—e.g. leading to food—are
reinforced by many ants and become highly traveled.
Ones that are not useful are not reinforced; as the
pheromones evaporate such paths are abandoned.
ACO simulates this behavior, by not only following
existing paths but also randomly trying new paths and
leaving computational “pheromones” that decay over
time. Using this technique, ACO has been found near-
optimal solutions to the traveling salesman problem,
for example. And ACO is robust in the face of
unexpected changes. For example, in a routing
problem if new destinations are introduced or old ones
are removed, the algorithm will quickly adapt, just as
an ant colony reacts to a new source of food or source
of danger.

3.3. The Architecture of the Internet

 The internet is arguably the largest, most
successful man-made ULS system ever. In 1996 the
IETF [25] articulated the design foundations of the
internet, as they had evolved. The architectural
principles they distilled are:

1. One and only one protocol: this supports
uniform and relatively seamless operations in
a competitive, multi-vendor public network.

2. End-to-end functions realized by end-to-end
protocols: "The network's job is to transmit
datagrams as efficiently and flexibly as
possible. Everything else should be done at
the fringes." This means that the system
maintains little state; just enough to keep the
core smoothly working, e.g. routing info,
QoS guarantees, etc.

3. Heterogeneity: is inevitable and must be
supported by design. (Peers will be
constructed differently, but must nonetheless
interoperate.)

4. Scale-free design: all design decisions must
support scaling to many nodes per site and
many millions of nodes.

5. Modularity: keep design decisions and
implementations modular whenever possible
(for example internet nodes are largely
autonomous).

6. Send/receive asymmetry: Be strict when
sending and tolerant when receiving.

7. Self-description: Objects should be self-
describing.

Many of these properties evolved over the years to

become the stable and highly effective infrastructure
we know today.

3.4. The Public Switched Telephone Network

The Public Switched Telephone Network (PSTN)
is one of the longest-lived, largest, most scalable, and
most robust systems ever created ([15], [29]). The
PSTN successfully handles hundreds of millions of
concurrent customers with switches that experience no
more than 2 hours of failure over 40 year lifespans. An
analysis of PSTN failures [21] characterized a number
of properties that led to its robustness, despite its size
and complexity:

1. Reliable software: the underlying software
seldom fails, and up to half of the code is
devoted to error detection and correction

2. Dynamic rerouting: because network failures
are typically localized, the system
dynamically routes around failures. Small
outages in the system’s functioning are
typically not catastrophic.

3. Loose coupling: components are loosely
coupled, knowing little about each other and
each other’s internal state

4. Human intervention: when all else fails, the
PSTN system has operators who can
intervene.

In the PSTN these principles have also evolved
over decades, via the engineering efforts and trial-and-
error of many organizations.

3.5. Distilling ULS Architectural Tactics

 From these examples we now attempt to examine
their commonalities, to distill a set of generic
architectural mechanisms that can be used when
designing systems of ultra-large-scale. These are
primitives that an architect can use when designing a
system that is anticipated to grow without bounds, and
whose architectures may evolve in unanticipated
ways.

Page 6960

 As mentioned above, a tactic is a design decision
that is influential in controlling a quality attribute
response, such as latency, or mean time to failure, or
ease of modification. Tactics have previously been
described for the quality attributes of availability,
deployability, energy efficiency, integrability,
modifiability, performance, safety, security,
testability, and usability [3]. In prior work we have
employed these tactics as an intellectual foundation for
designing and analyzing software architectures, and
they have been adopted in software engineering
curricula and in industrial software design ([7], [22]).

 But tactics are not just design primitives for
computer-based systems: they apply to complex
systems of any kind. The forces and principles of
architecture do not change based on the scale or
materials of the architecture being created. In fact, the
variety of systems considered above, and the small
number of organizational principles and design
primitives found, is striking evidence for the existence
of ULS tactics, as we now describe.

4. Tactics for ULS Systems

 A set of tactics for designing scalable (ULS)
systems is presented in Figure 2. These tactics are
divided into three categories: Building Blocks,
Aggregation, and Interaction. This categorization
roughly follows Holland’s “mechanisms” for CASs
[17]: building blocks, tagging (which allows for
interaction), and internal models (which support
aggregation). Building blocks are the foundational
structures for creating the peers that comprise a ULS
system. Aggregation allows a designer to create
collections of peers, at arbitrary scale, and Interaction
allows the assemblies to interact with each other and
their environment. Any architect, when making design
decisions for a ULS system, needs to consider all three
of these categories.

4.1. Building Blocks

Building Blocks are the techniques for creating
the lowest-level system elements, the raw materials
from which all ULS systems are constructed. There are
three tactics in this category: Modularity, Self-
description, and Environment Models.

Modularity: is arguably the most powerful design

principle in software engineering and its importance in
a ULS system cannot be overemphasized. Modularity
has been argued to support super-linear growth in
software, for example [20]. Modularity is a core

property in the architecture of the internet [25] and it
is what supports the loose coupling of the PSTN [21].
Biological systems ([14], [17]) are composed of
autonomous agents: each is a module of sorts,
interacting via some “public interface”, with its
internal state unavailable to the external world.
Systems of systems contain systems—independent
black boxes—each operating and evolving
independently [13].

Self-description: is a core property of the internet:

“objects should be self-describing” [25]. This allows
them to operate relatively autonomously but still
interact with their environments. Self-description
supports adaptation, learning, and evolution [17] all of
which are an agents’ updates to their internal models.
These models allow independent agents to interact
with their environment, and to modify this interaction
over time as conditions change.

Environment models: similar to self-

description—which are models that agents maintain of
themselves—are environment models, which are
models that agents maintain of their environment.
CASs explicitly model their environment and these
models are constantly updated to reflect observed
phenomena . For example, P2P systems [23] use such
models in their gossiping algorithms to maintain a
description of their environment.

4.2. Aggregation

There are four tactics within Aggregation: Self-
similar structure, Heterogeneity, Concurrency, and
Abstract Connections.

Self-similar structure: to grow without bound,
systems must treat collections of entities similar to
individual agents. This property—sometimes called
“scale invariance”—makes it easy for the system to be
self-configuring and self-adapting, dynamically
responding to changes in availability, opportunity, and
processing power. This is a realization of the
“collections” property of biological systems [14] and
is crucial in the architecture P2P networks, where
super nodes are often simply “promoted” versions of
ordinary nodes [18]. In fact, in the internet there is no
distinction between a connection to an important
node—a hub—and a small, unimportant “dead-end”
node; it has a fractal structure.

Fisher [13] makes it clear that emergent

systems must treat each other homogenously,
irrespective of their scale: “For each node, a node-
centric perspective captures the current structure of

Page 6961

interconnection and interaction with its immediate
neighbors and as much information about its neighbors
as is useful and obtainable”.

Heterogeneity: in a ULS system the peers will
have different properties (availability, bandwidth,
CPU, etc.) which must be supported by the design.
This is a principle in the internet [25] in the design of
KaZaA [23] in CASs (where it is termed “diversity”)
[17] and in systems of systems [13]. The design must
support heterogeneity by abstracting characteristics of
peers that are important for interaction. In this way the
system and its components become insensitive to
heterogeneity.

Concurrency: means that all peers run
independently, at the same time, without any
centralized control. This property, along with
heterogeneity, ensures that there is no single point or
mode of failure, and it allows a system to scale without
bounds as each peer, running in parallel, brings its own
resources. This is clearly a core property of biological
systems [14], the internet [25], systems of systems
[13], and P2P systems [23].

Abstract Connections: for aggregates to be able
to grow without bounds, connections must be abstract,

and realized at run-time. This means that nodes must
avoid hard-wiring anything: neighbors, buffer sizes,
connection pool sizes, etc. This is related to the notion
of “scale-free design” [25], and this is why systems of
systems treat each other simply as “nodes” annotated
with properties [13]. In biological systems,
connections are all realized at run-time—nothing is
hard-coded. Slime molds, for example, connect via the
release of cyclic adenosine monophosphate—an intra-
cell messenger [5].

4.3. Interaction

There are four tactics within Interaction:
Connection shuffling, Load balancing, Gossiping, and
Tagging.

Connection shuffling: for interaction to remain
robust over time, it is important to not only avoid hard-
wiring connections, but to continuously seek out new
connections. In this way the system remains robust
with respect to failures of individual peers or
connections, and can optimize its behavior with
respect to the availability and topology of resources.
This is a core feature of the PSTN (called “dynamic
rerouting” [21]), of P2P systems [23], and of the
internet [25]. Ant colonies employ randomness in the

Page 6962

actions of individual ants, so that a small portion of
them get “lost” regularly, and discover new
(potentially better) routes to food [10].

Load balancing: for a ULS system to work
efficiently, work needs to be appropriately balanced
among peers. This is a basic design approach found in
P2P networks [23], and has been much researched by
the P2P community. In some ULS systems this
allocation follows a power law [2], where most nodes
have only a few neighbors and hence have only a small
amount of work, but a few nodes have enormous
numbers of neighbors. For example, the major
internet exchange points (IXPs) have many hundreds
or even thousands of neighbors.

Gossiping: nodes need to interact to adapt to
their ever-changing states and environments.
Neighboring nodes constantly “gossip”, exchanging
topological and task-specific information. In the
internet this information is primarily routing tables. In
P2P systems this includes information about the data
or services a node provides. Biological systems
achieve information exchange—albeit indirectly—via
“stigmergy”: an ant’s pheromone trails allow
coordination amongst the independent agents in the
colony [5]. Gossiping allows a node to update its
internal or external model and from this to adapt to its
environment.

Tagging: to allow groups to form, and to create
boundaries among groups, tagging is required.
Tagging supports the creation of “collections” as
meaningful named entities [17]. In the internet, DNS
servers are named (tagged) entities that support a
hierarchical naming system (where name servers pass
requests for sub-domains to sub-servers). Super-nodes
in P2P systems are ordinary nodes that are promoted,
and then they are tagged as such. In ant colonies, nest-
mates recognize each other via a set of biological tags
[6].

4.4. Consequences

Not only are each of these tactics characteristic of
complex systems but they are necessary
characteristics: it is unimaginable that a system could
grow without bound without all of these tactics.
Different tactics may be present to different degrees in
the PSTN, or the internet, or biological systems, but
they are all present.

Such a claim cannot be proven, but we can cite

evidence from systems that we did not initially
consider to justify that these tactics are indeed

foundational. Next we discuss two examples—slime
molds (natural) and Mobile Ad Hoc Networks
(artificial)—to argue the claim that these tactics are
necessary building blocks for ULS systems.

Consider the remarkable adaptability of slime

molds [4]. Each slime mold cell is a peer and hence
modular, with its own state, hiding its internals. These
cells operate in parallel. They clearly exist as
individuals, but slime mold cells can also aggregate
into groups of up to 105 organisms to create “slugs”
that can travel, or into spore-bearing fruiting
structures—called sporangiophore—for reproduction.
These cells have internal models, as they are capable
of fully independent lives—feeding and reproducing
in parallel. Slime mold cells have environmental
models—for example, they shy away from light, and
they change state under stressful conditions (such as a
lack of food, or a change in pH). Also slime mold cells
exhibit heterogeneity: some cells form the stalk of the
sporangiophore and others specialize to become
spores; and these cells become cysts when conditions
turn unfavorable.

In the artificial domain, consider MANETs

(Mobile Ad hoc NETworks). MANETs are defined as
“a collection of mobile nodes, communicating among
themselves over wireless links and thereby forming a
dynamic, arbitrary graph” [8]. Each node is a distinct
wireless device, and therefore modular. Because each
node is independent, they can operate in parallel. Such
nodes are typically heterogeneous, sharing perhaps no
more than a common (dynamic) communication
protocol, which acts as an abstract connection
mechanism. Nodes do not expose internals; they
interact via well-defined interfaces. To participate in
a network, a MANET node must be self-describing,
representing itself to neighbors, including the set of
other nodes reachable through it. MANET nodes
exhibit self-similar structure: “a mobile router may
attach to any router, including another mobile router,
forming networks of mobile routers to an arbitrary
depth … Commonly the terms ‘nested mobile
network’ or ‘nested NEMO’ are used for this
situation”. Because these networks are mobile, nodes
are constantly moving into and out of range, and so
nodes are continually connection shuffling and
gossiping.

In short, MANETs and slime molds have

achieved their remarkable properties of scale because
they instantiate, in their own unique ways, the set of
scalability tactics presented in Figure 2.

Page 6963

5. Conclusions

ULS systems are becoming more common as
the world becomes more digitized and more
interconnected. This trend shows no sign of slowing.
Since the original ULS report was published in 2006,
ultra-large systems have been built and deployed in
increasing numbers. But they remain a challenge for
architects because few software and systems design
professionals have a deep well of experience building
systems of ultra-large scale. The purpose of this paper,
as with the purpose of all research into architectural
tactics and patterns, is to codify the knowledge
contained in the heads of the very best architects so
that others with less skills or experience can more
confidently create architectures with predictable
properties, predictable risk and cost.

Architectural tactics are a kind of “periodic

table” of design—elemental design operations.
Tactics are not novel research artifacts; tactics, like
design patterns, arise repeatedly in practice. Every
architectural tactic exists to serve an objective in the
process of design, to enable or to control a systemic
response. The tactics presented here primarily exist to
enable and manage scalability concerns for a broad
range of ULS systems and each of them comes with a
pedigree, having been used over and over again in
successful natural and artificial systems of ultra-large
scale.

Tactics are not, however, a panacea. An

architect still needs to understand them, and reason
about their pros, cons, and tradeoffs. For example, the
tactic of Heterogeneity increases the potential size of
the pool of available resources, which is good. It also
limits the effects of common-mode failures, which is
good. But this comes at a cost of having to deal with
this heterogeneity, which might increase maintenance
or deployment costs. Environment models allow each
node to respond independently to changes, avoiding
the need to centralized monitoring and control, which
is good. But such models, if not designed with
scalability in mind, can be a bottleneck or single
source of failure. Connection shuffling ensures that a
ULS system does not get “stuck” in rigid forms of
behavior, which will, over time, inevitably become
sub-optimal; the system continuously adapts by
inserting randomness into its behavior. But this benefit
comes at the cost of a small reduction in run-time
performance.

Taken together, these ULS tactics form an
ontology of design for ULS systems of the future. The
ontology was created by triangulating from examples

in a diverse set of domains—natural and artificial—
that exhibit ultra-large-scale. While it is likely that
these tactics are incomplete, as any set of design
primitives will evolve over time—they do concisely
capture a wide range of scalability phenomena
relevant to the “wicked” problems that we face in
developing complex systems today, and that we will
increasingly face in the future.

Why should you care? There are two obvious

practical uses for this set of tactics (and, in fact, for all
tactics categorizations):

1. If you are the architect of a system that may

experience explosive growth then you can
use a set of tactics as a guide for making
design choices.

2. If you are analyzing such a system, you can

use these tactics as a questionnaire, to focus
and guide your analysis efforts.

 These tactics, we claim, can help to make the
incredibly risky process of design in a ULS system—
which is, by its very nature, a wicked system—a bit
more systematic and a bit less risky.

6. References

[1] Ahmadjee, S., Mera-Gomez, C. Bahsoon, R.
Kazman, R. (2022) "A Study on Blockchain
Architecture Design Decisions and their Security
Attacks and Threats", ACM Transactions on
Software Engineering and Methodology, 31:2,
April, 2022.

[2] Barabasi, A-L. (2003) Linked: How Everything Is
Connected to Everything Else and What It Means
for Business, Science, and Everyday Life, Basic
Books.

[3] Bass, L., Clements, P., Kazman, R. (2021)
Software Architecture in Practice, 4th ed.,
Addison-Wesley.

[4] Bryden, J. (2005) "Slime Mould and the
Transition to Multicellularity: The Role of the
Macrocyst Stage", Advances in Artificial Life,
Springer, 551-561.

[5] Camazine, S., Deneubourg, J-L, Franks, N. R.,
Sneyd, J., Theraula, G., Bonabeau, E. (2001) Self-
Organization in Biological Systems, Princeton
University Press.

[6] Carlin, N., and Hölldobler, B. (1986) “The Kin
Recognition System of Carpenter Ants”,
Behavioral Ecology and Sociobiology, (19:2),
123-134.

Page 6964

[7] Chen, H., Kazman, R, Haziyev, S. (2016) "Agile
Big Data Analytics for Web-based Systems: An
Architecture-centric Approach", IEEE
Transactions on Big Data, 2:3, Sept. 2016, 234-
248.

[8] Clausen, T. A MANET Architecture Model,
INRIA Research Report No. 6145, January 2007.

[9] Cervantes, H. and Kazman, R. (2016) Designing
Software Architectures: A Practical Approach,
Addison-Wesley.

[10] Detrain, C., and Deneubourg, J-L. (2006) “Self-
organized structures in a superorganism: Do ants
“behave” like molecules?”, Physics of Life
Reviews 3, 162–187.

[11] Dorigo, M., and Stützle, T. (2004) Ant Colony
Optimization, MIT Press.

[12] Ernst, N, Delange, J, and Kazman, R. (2021)
Technical Debt in Practice—How to Find It and
Fix It, MIT Press.

[13] Fisher, D. (2006) “An Emergent Perspective on
Interoperation in Systems of Systems”, Software
Engineering Institute Technical Report
CMU/SEI-2006-TR-003.

[14] Flake, G. (1998) The Computational Beauty of
Nature, MIT Press.

[15] Hanmer, R. (2007) Patterns of Fault-Tolerant
Software, Wiley.

[16] Hissam, S., Klein, M., Moreno, G., Northrop, L.,
Wrage, L. (2016), “Ultra-Large-Scale Systems:
Socio-adaptive Systems”, Software Engineering
Institute White Paper,
https://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=493859.

[17] Holland, J. (1996) Hidden Order: How
Adaptation Builds Complexity, Basic Books.

[18] Kazman, R., and Chen, H-M. (2009) “The
Metropolis Model: A New Logic for the
Development of Crowdsourced Systems”,
Communications of the ACM, July 2009.

[19] Kazman, R., Haziyev, S., Yakuba, A., Tamburri,
D. (2018) “Managing Energy Consumption as an
Architectural Quality Attribute”, IEEE Software,
35:5, September/October 2018.

[20] Koch, S. (2007) “Software evolution in open
source projects - A large-scale investigation”,
Journal of Software Maintenance and Evolution,
(19:6), 361-382.

[21] Kuhn, D. R. (1997) "Sources of Failure in the
Public Switched Telephone Network", IEEE
Computer, (30:4), April, 1997.

[22] Lattanze, A. (2008) Architecting Software
Intensive Systems: A Practitioners Guide, CRC
Press.

[23] Liang, J., Kumar, R., and Ross, K. (2005) “The
KaZaA Overlay: A Measurement Study”,
Computer Networks.

[24] Northrop, L., Feiler, P., Gabriel, R., Goodenough,
J., Linger, R., Longstaff, T., Kazman, R., Klein,
M., Schmidt, D., Sullivan, K., Wallnau, K. (2006)
Ultra-Large-Scale Systems: The Software
Challenge of the Future. SEI/CMU,.

[25] RFC 1958, (1996) Architectural Principles of the
Internet, Internet Engineering Task Force (IETF).

[26] Rittel, H., and Webber, M. (1973) “Dilemmas in
a General Theory of Planning”, Policy Sciences,
(4), 155-169.

[27] Scott, J., and Kazman, R. (2009) Realizing and
Refining Architectural Tactics: Availability,
Software Engineering Institute Technical Report
CMU/SEI-2009-TR-006.

[28] Simon, H. (1962) “The Architecture of
Complexity”, Proceedings of the American
Philosophical Society, (106:6), 467-482.

[29] Utas, G. (2005) Robust Communications
Software: Extreme Availability, Reliability and
Scalability for Carrier-Grade Systems, Wiley.

Page 6965

