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Abstract 
As software-intensive systems continue to grow in 

scale and complexity the techniques that we have used 
to design and analyze them in the past no longer 
suffice. In this paper we look at examples of existing 
ultra-large-scale systems—systems of enormous size 
and complexity.  We examine instances of such systems 
that have arisen spontaneously in nature and those 
that have been human-constructed. We distill from 
these example systems the design primitives that 
underlie them. We capture these design primitives as 
a set of tactics— fundamental architectural building-
blocks—and argue that to efficiently build and analyze 
such systems in the future we should strongly consider 
employing such building-blocks.  

 
Keywords: software architecture; architecture design; 
ultra-large-scale systems; design tactics; wicked 
systems. 

1. Introduction  

In 1962 Herbert Simon wrote about 
properties of “complex systems”.  He believed that 
such properties would be relevant to “complex 
systems that are observed in the social, biological, and 
physical sciences” [28].  The central theme of his work 
was that “complexity frequently takes the form of 
hierarchy” with stable sub-assemblies and this 
structure is critical for managing complexity. To 
control complexity, these sub-systems are “nearly-
decomposable” which means that there is more 
interaction within a sub-system than between sub-
systems, and there are few types of sub-systems.  
Biological systems are inherently hierarchical, as 
Simon argued: cells are organized into tissues, tissues 
into organs, organs into individuals. Social systems are 

also hierarchical: people are grouped into families 
which are part of tribes, which are part of cultures, and 
so forth.    

In the five decades since Simon’s paper, we 
have seen “ultra-large-scale” (ULS) systems [24] arise 
in society: power grids, telephone systems, and the 
internet, for example. While such systems are 
undoubtedly hierarchical and nearly-decomposable, 
they possess other very important properties, and these 
properties do not arise from hierarchy and near-
decomposability alone.  

Ultra-large-scale systems are: “Ultra-large-
scale systems are interdependent webs of software, 
people, policies, and economics” [16].  ULS systems 
are characterized by extreme size along multiple 
dimensions: data volumes, amount of hardware and 
software components, number of lines of code, and 
numbers of users. There are seven important 
characteristics that have been determined to 
distinguish ULS systems from the majority of 
software-intensive systems today [24]: 1) 
decentralization, 2) inherently conflicting, 
unknowable, and diverse requirements, 3) continuous 
evolution and deployment, 4) heterogeneous, 
inconsistent, and changing elements, 5) erosion of the 
people/system boundary, 6) normal failures, and 7) 
new paradigms for acquisition and policy.  The ULS 
report explains and justifies each of these 
characteristics and goes on to explain that: “These 
characteristics are beginning to emerge in today’s 
DoD systems of systems; in ULS systems they will 
dominate” [24]. The dominance of these 
characteristics is why we must reason about and 
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design ULS systems differently than the vast majority 
of existing systems.  

Consider, for example, the ramifications of 
the characteristic of “normal failures”. If a CPU fails, 
on average, once every three years and you have 
100,000 CPUs in your server farm (which is not 
particularly large) then, on average, 300 of these will 
fail on any given day.  Failure is not a crisis; failure 
becomes a normal, predictable occurrence that you can 
and should plan for. As emphasized by the ULS report, 
“scale changes everything" [24].  

Such characteristics mean that ULS systems 
of the future cannot be designed in ways that have 
hitherto sufficed for systems of precedented scale. 
While it is true that some ULS systems exist today—
e.g. the internet and our telephone system—such 
systems have evolved over decades.  As architects, we 
would like to be able to design future ULS systems 
efficiently and effectively, rather than by trial-and-
error over decades.  And we are beginning to see 
systems emerge that possess ULS characteristics: 
social networks, peer-to-peer (P2P) systems, vehicle 
systems, the Smart Grid, and large networks of IoT 
and edge devices.  The successful instances of these 
kinds of systems of the future will need to be designed 
in ways that are fundamentally different from the way 
that the majority of software systems are designed 
today. 

If ULS systems are our future, and if they are 
qualitatively and quantitatively different from almost 
all existing systems, what are the fundamental 
primitives that we can employ to design, and reason 
about and analyze, their architectures?  Given that 
most existing systems lack  the characteristics of ULS 
systems and yet these systems already do not scale 
well and have rampant technical debt [12], it is evident 
that existing design techniques and practices are not 
entirely suitable for ULS systems. ULS systems must 
be designed differently.  In what follows we describe 
the ways that ULS architectures differ from 
“traditional” system architectures, and we will present 
a set of primitives for thinking about and designing 
such systems.   

 

2. Background 

ULS systems are generally viewed as being 
“wicked” problems [26].  Wicked  problems have been 
studied for decades. They possess several unique 

characteristics that make them wicked; that is difficult 
to design, manage, and evolved:  

• stakeholders do not all agree on the problem 
to be solved—requirements are vague and 
unstable  

• solutions are not right or wrong, they are 
better or worse 

• enormous complexity, both among the 
subcomponents and between the “problem” 
and the world; and any solution may change 
the problem 

• they have no single objective measure of 
success 

 
For example the internet is arguably the largest 

man-made system ever created, and its design can 
been viewed as a wicked problem: there is no single 
objective measure of success, the internet and its 
requirements are always changing, and its 
stakeholders are constantly pulling it in diverse 
directions.   

 
Being wicked problems, ULS systems undermine 

our existing assumptions surrounding software, 
particularly how to create and maintain it. For 
example, it is not possible to resolve all requirements 
conflicts. And ULS systems cannot be developed 
using lifecycle models and design primitives that have 
sufficed in the past [18]. 

  

3. Architectural Tactics 

Architectural tactics are design primitives.  A 
tactic is a design decision that influences the 
achievement of a desired quality attribute response; 
that is, tactics directly affect the system’s response to 
some stimulus. When an architect makes design 
decisions they are, knowingly or not, making decisions 
about tactics. For example, consider the tactics 
hierarchy for availability, shown in Figure 1 ([3], 
[27]). 

 An architect who wants to design a system to 
meet high availability requirements needs to consider 
and make decisions about how to detect faults, how to 
recover from faults, how to reintroduce recovered or 
replacement components, and how to prevent faults 
from occurring in the first place. These are the 
categories of architectural design decisions that need 
to be made. Within each category are the specific 
tactics that an architect can choose. These tactics are, 
in turn, realized by patterns or tools or frameworks, or 
directly in code.    
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 We do not “invent” tactics. We merely attempt 
to distill and catalog the design techniques that have 
proven themselves to be most effective, across 
systems and over time. 
 

 

To discover the architectural primitives—the 
tactics—that underlie ULS systems we needed to 
examine the broadest possible range of systems that 
exhibit ULS properties—P2P systems (such as Skype 
and its predecessor KaZaA and, more recently, 
blockchain-based systems), the internet, and the public 
switched telephone network (PSTN), as well as a 
number of biological systems—and attempt to 
determine whether they have anything in common.  If 
so then our goal is to distill their common design 
approaches.  This research approach may seem 
somewhat unorthodox because the final example—
biological systems—is neither human nor it is 
computational.  But such systems—ant colonies, 
termite colonies, slime molds—are ultra-large-scale 
systems and exhibit many desirable properties such as 
self-organization, emergent behavior, and 
adaptability, despite being without centralized control, 
continuously changing, and suffering normal failures. 
And natural systems, such as the brain and ant 

colonies, have been the inspiration for the designs of 
many artificial systems in the past.  

All ultra-complex systems—human societies, ant 
colonies, the internet, the power grid, slime molds—
consist of a set of peers: people, ants, power stations, 
nodes, servers, etc.   Each peer controls, to some 
extent, its own resources and its destiny. These peers 
contain subsystems that may be composed into more 
complex structures. So each peer is itself a hierarchical 
structure [28]. 

From these example systems we infer that 
architectures for ULS embody three basic design 
approaches:  

• peer to peer structure: to achieve ultra-large 
scale, dependence upon centralized resources 
must be avoided.  This restriction implies 
some form of P2P structure, where peers 
provide their own resources and exert control 
over their destiny.  Peers may organize 
themselves into more complex units, leading 
to the next design approach.  Communities of 
humans and ecosystems are examples of P2P 
systems in nature.  Systems of systems, 
agent-based systems [13] and the internet are 
examples in computational domains. 

• local assemblies of components: complex 
systems contain local assemblies of a “small” 
number of components. These local 
assemblies may be temporary or permanent 
but there are typically many of them in 
existence at any given time. Assemblies are 
independent from, or interact weakly with, 
other assemblies. 

• hierarchical structure: Simon argued for 
hierarchical structure as an organizing 
principle of complex systems.  Systems of 
systems (which contain systems which 
contain sub-systems), internet domains, and 
layered systems (which contain modules) are 
familiar examples of hierarchical structure in 
the computational domain. 

 
These design approaches have a number of 

important ramifications for the creation of ULS 
architectures, as we will show.   

3.1. The Architecture of KaZaA 

KaZaA, and its successor, Skype, are both 
distributed systems that largely rely on resources 
“donated” by participants.  They achieved enormous 
scalability and high performance despite having few 
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centralized, controllable resources.  In a study of 
KaZaA [23] the authors describe a set of architectural 
principles: 
 

1. Distributed Design: all computation runs on 
servers provided by the peers, so no 
infrastructure servers. This ensures no 
centralization, resilience to faults and attacks, 
built-in scalability. 

2. Exploiting Heterogeneity: peers have 
different availability, bandwidth, CPU 
power, etc.   This makes it possible to have 
different classes of servers providing 
different services. 

3. Load Balancing: by keeping the "degree" of 
each node approximately the same (i.e. 
coordination with the same number of 
neighbors) load can be approximately 
balanced. 

4. Locality in Neighbor Selection: a neighbor is 
close in terms of network topology and 
latency; a node should be able to coordinate 
with neighbors quickly. 

5. Connection shuffling: although the size of the 
neighbor group remains fairly stable over 
time and across the network, the actual 
content of the neighbor group for any node is 
dynamic. 

6. Efficient gossiping algorithms: to promote 
connection shuffling and find new peers as 
they enter the network, nodes must "gossip" 
with each other frequently, learning about 
their environment. 

 
The design of these systems has been highly 

successful.  KaZaA in its heyday had over 3 million 
active users. Skype reportedly hosted 40 million or 
more users a day, on average, in 2020, according to 
Microsoft.1 

3.2. Biological Systems 

Biological systems—termite colonies,  ant 
colonies, slime molds—are arguably ULS systems and 
all exhibit desirable characteristics ([4], [5], [6], [10], 
[11], [14]): without any central control, they manage 
to react in purposeful ways.  They learn, adapt and 
evolve, and operate in a robust manner in the face of 
uncertain and incomplete information. The success of 
biological systems should be studied, to understand 
their organizational principles and success factors.  

 
1 https://www.microsoft.com/en-us/microsoft-
365/blog/2020/03/30/introducing-new-microsoft-365-
personal-family-subscriptions/ 

 
Flake [14] outlines three attributes that 

distinguish agents in complex systems: 
 

1. Collections, Multiplicity, and Parallelism: 
complex systems are made up of large 
collections of agents working in parallel.  
These agents contain small amounts of 
variation that allow them to seek different 
solutions to the same problem, or react to 
different environmental stimuli. 

2. Iteration, Recursion, and Feedback: agents 
iterate, perhaps by reproducing, so that they 
persist over time. Complex systems contain 
substantial amounts of self-similar structure 
owing to recursion. And agents not only react 
to changes in their environment, but often 
change their environment. 

3. Adaptation, Learning, and Evolution: the 
inevitable finiteness of resources, in 
combination with parallelism and iteration, 
cause agents to need to adapt.  Successful 
adaptations further iterate while unsuccessful 
ones wither.   

  
Holland, in his book on complex adaptive systems 

(CASs) [17] analyzes how complexity arises from 
adaptation. He defined a set of seven properties that 
characterize CASs. These are: 

 
1. Aggregation: collections of agents have their 

own properties and behaviors 
2. Tagging: tags support aggregation and 

boundary formation  
3. Non-linearity: the behavior of aggregates is 

more complex than the sum of its parts. 
4. Flows: information and, in the real world, 

goods, flow between agents 
5. Diversity: agents are diverse, filling different 

roles in their environment and often adapting 
to fill new roles 

6. Internal models: agents contain models of 
their environment and constantly update 
those models to reflect observations 

7. Building blocks: an agent’s internal model 
can be decomposed by a small set of building 
blocks that can be flexibly combined  

 
Holland divides these properties into 

characteristics (Aggregation; Nonlinearity; Flows; 
Diversity) and mechanisms (Tagging; Internal 
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Models; Building blocks). The mechanisms have 
particular importance as classes of architectural 
primitives, as we will see. 
 

Ant Colony Optimization (ACO) [11] is a 
computational technique for searching—finding paths 
through graphs—inspired by the behavior of ant 
colonies. Ants do this by laying down pheromone 
trails as they explore, where other ants follow those 
paths.  Paths that are useful—e.g. leading to food—are 
reinforced by many ants and become highly traveled. 
Ones that are not useful are not reinforced; as the 
pheromones evaporate such paths are abandoned. 
ACO simulates this behavior, by not only following 
existing paths but also randomly trying new paths and 
leaving computational “pheromones” that decay over 
time.  Using this technique, ACO has been found near-
optimal solutions to the traveling salesman problem, 
for example. And ACO is robust in the face of 
unexpected changes. For example, in a routing 
problem if new destinations are introduced or old ones 
are removed, the algorithm will quickly adapt, just as 
an ant colony reacts to a new source of food or source 
of danger.  

3.3. The Architecture of the Internet  

      The internet is arguably the largest, most 
successful man-made ULS system ever. In 1996 the 
IETF [25] articulated the design foundations of the 
internet, as they had evolved. The architectural 
principles they distilled are: 
 

1. One and only one protocol: this supports 
uniform and relatively seamless operations in 
a competitive, multi-vendor public network.  

2. End-to-end functions realized by end-to-end 
protocols:  "The network's job is to transmit 
datagrams as efficiently and flexibly as 
possible.  Everything else should be done at 
the fringes."  This means that the system 
maintains little state; just enough to keep the 
core smoothly working, e.g. routing info, 
QoS guarantees, etc. 

3. Heterogeneity: is inevitable and must be 
supported by design. (Peers will be 
constructed differently, but must nonetheless 
interoperate.) 

4. Scale-free design: all design decisions must 
support scaling to many nodes per site and 
many millions of nodes.  

5. Modularity: keep design decisions and 
implementations modular whenever possible 
(for example internet nodes are largely 
autonomous). 

6. Send/receive asymmetry: Be strict when 
sending and tolerant when receiving.  

7. Self-description: Objects should be self-
describing. 

  
Many of these properties evolved over the years to 

become the stable and highly effective infrastructure 
we know today. 

3.4. The Public Switched Telephone Network 

The Public Switched Telephone Network (PSTN) 
is one of the longest-lived, largest, most scalable, and 
most robust systems ever created ([15], [29]). The 
PSTN successfully handles hundreds of millions of 
concurrent customers with switches that experience no 
more than 2 hours of failure over 40 year lifespans.  An 
analysis of PSTN failures [21] characterized a number 
of properties that led to its robustness, despite its size 
and complexity: 

1. Reliable software: the underlying software 
seldom fails, and up to half of the code is 
devoted to error detection and correction 

2. Dynamic rerouting: because network failures 
are typically localized, the system 
dynamically routes around failures.  Small 
outages in the system’s functioning are 
typically not catastrophic. 

3. Loose coupling: components are loosely 
coupled, knowing little about each other and 
each other’s internal state  

4. Human intervention: when all else fails, the 
PSTN system has operators who can 
intervene. 

In the PSTN these principles have also evolved 
over decades, via the engineering efforts and trial-and-
error of many organizations. 

3.5. Distilling ULS Architectural Tactics  

       From these examples we now attempt to examine 
their commonalities, to distill a set of generic 
architectural mechanisms that can be used when 
designing systems of ultra-large-scale. These are 
primitives that an architect can use when designing a 
system that is anticipated to grow without bounds, and 
whose architectures may evolve in unanticipated 
ways.  
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       As mentioned above, a tactic is a design decision 
that is influential in controlling a quality attribute 
response, such as latency, or mean time to failure, or 
ease of modification. Tactics have previously been 
described for the quality attributes of availability, 
deployability, energy efficiency, integrability, 
modifiability, performance, safety, security, 
testability, and usability [3].  In prior work we have 
employed these tactics as an intellectual foundation for 
designing and analyzing software architectures, and 
they have been adopted in software engineering 
curricula and in industrial software design ([7], [22]).  
 
        But tactics are not just design primitives for 
computer-based systems: they apply to complex 
systems of any kind.  The forces and principles of 
architecture do not change based on the scale or 
materials of the architecture being created. In fact, the 
variety of systems considered above, and the small 
number of organizational principles and design 
primitives found, is striking evidence for the existence 
of ULS tactics, as we now describe. 
 

4. Tactics for ULS Systems 

         A set of tactics for designing scalable (ULS) 
systems is presented in Figure 2.  These tactics are 
divided into three categories: Building Blocks, 
Aggregation, and Interaction.  This categorization 
roughly follows Holland’s “mechanisms” for CASs 
[17]: building blocks, tagging (which allows for 
interaction), and internal models (which support 
aggregation). Building blocks are the foundational 
structures for creating the peers that comprise a ULS 
system. Aggregation allows a designer to create 
collections of peers, at arbitrary scale, and Interaction 
allows the assemblies to interact with each other and 
their environment. Any architect, when making design 
decisions for a ULS system, needs to consider all three 
of these categories. 

4.1. Building Blocks 

Building Blocks are the techniques for creating 
the lowest-level system elements, the raw materials 
from which all ULS systems are constructed. There are 
three tactics in this category: Modularity, Self-
description, and Environment Models. 

 
Modularity: is arguably the most powerful design 

principle in software engineering and its importance in 
a ULS system cannot be overemphasized.  Modularity 
has been argued to support super-linear growth in 
software, for example [20].  Modularity is a core 

property in the architecture of the internet [25] and it 
is what supports the loose coupling of the PSTN [21]. 
Biological systems ([14], [17]) are composed of 
autonomous agents: each is a module of sorts, 
interacting via some “public interface”, with its 
internal state unavailable to the external world. 
Systems of systems contain systems—independent 
black boxes—each operating and evolving 
independently [13]. 

 
Self-description: is a core property of the internet: 

“objects should be self-describing” [25]. This allows 
them to operate relatively autonomously but still 
interact with their environments. Self-description 
supports adaptation, learning, and evolution [17] all of 
which are an agents’ updates to their internal models. 
These models allow independent agents to interact 
with their environment, and to modify this interaction 
over time as conditions change.  

 
Environment models: similar to self-

description—which are models that agents maintain of 
themselves—are environment models, which are 
models that agents maintain of their environment.  
CASs explicitly model their environment and these 
models are constantly updated to reflect observed 
phenomena .  For example, P2P systems [23] use such 
models in their gossiping algorithms to maintain a 
description of their environment. 

4.2. Aggregation 

There are four tactics within Aggregation: Self-
similar structure, Heterogeneity, Concurrency, and 
Abstract Connections.   
  

Self-similar structure: to grow without bound, 
systems must treat collections of entities similar to 
individual agents. This property—sometimes called 
“scale invariance”—makes it easy for the system to be 
self-configuring and self-adapting, dynamically 
responding to changes in availability, opportunity, and 
processing power. This is a realization of the 
“collections” property of biological systems [14] and 
is crucial in the architecture P2P networks, where 
super nodes are often simply “promoted” versions of 
ordinary nodes [18].  In fact, in the internet there is no 
distinction between a connection to an important 
node—a hub—and a small, unimportant “dead-end” 
node; it has a fractal structure. 

 
Fisher [13] makes it clear that emergent 

systems must treat each other homogenously, 
irrespective of their scale: “For each node, a node-
centric perspective captures the current structure of 
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interconnection and interaction with its immediate 
neighbors and as much information about its neighbors 
as is useful and obtainable”. 
 

Heterogeneity: in a ULS system the peers will 
have different properties (availability, bandwidth, 
CPU, etc.) which must be supported by the design. 
This is a principle in the internet [25] in the design of 
KaZaA [23] in CASs (where it is termed “diversity”) 
[17] and in systems of systems [13].  The design must 
support heterogeneity by abstracting characteristics of 
peers that are important for interaction. In this way the 
system and its components become insensitive to 
heterogeneity. 
 

Concurrency: means that all peers run 
independently, at the same time, without any 
centralized control. This property, along with 
heterogeneity, ensures that there is no single point or 
mode of failure, and it allows a system to scale without 
bounds as each peer, running in parallel, brings its own 
resources. This is clearly a core property of biological 
systems [14], the internet [25], systems of systems 
[13], and P2P systems [23].  
 

Abstract Connections: for aggregates to be able 
to grow without bounds, connections must be abstract, 

and realized at run-time.  This means that nodes must 
avoid hard-wiring anything: neighbors, buffer sizes, 
connection pool sizes, etc.  This is related to the notion 
of “scale-free design” [25], and this is why systems of 
systems treat each other simply as “nodes” annotated 
with properties [13]. In biological systems, 
connections are all realized at run-time—nothing is 
hard-coded. Slime molds, for example, connect via the 
release of cyclic adenosine monophosphate—an intra-
cell messenger [5]. 

4.3. Interaction 

There are four tactics within Interaction: 
Connection shuffling, Load balancing, Gossiping, and 
Tagging.   

Connection shuffling: for interaction to remain 
robust over time, it is important to not only avoid hard-
wiring connections, but to continuously seek out new 
connections. In this way the system remains robust 
with respect to failures of individual peers or 
connections, and can optimize its behavior with 
respect to the availability and topology of resources. 
This is a core feature of the PSTN (called “dynamic 
rerouting” [21]), of P2P systems [23], and of the 
internet [25].  Ant colonies employ randomness in the 
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actions of individual ants, so that a small portion of 
them get “lost” regularly, and discover new 
(potentially better) routes to food [10]. 

Load balancing: for a ULS system to work 
efficiently, work needs to be appropriately balanced 
among peers.  This is a basic design approach found in  
P2P networks [23], and has been much researched by 
the P2P community. In some ULS systems this 
allocation follows a power law [2], where most nodes 
have only a few neighbors and hence have only a small 
amount of work, but a few nodes have enormous 
numbers of neighbors.  For example, the major 
internet exchange points (IXPs) have many hundreds 
or even thousands of neighbors.   

Gossiping: nodes need to interact to adapt to 
their ever-changing states and environments. 
Neighboring nodes constantly “gossip”, exchanging 
topological and task-specific information. In the 
internet this information is primarily routing tables. In 
P2P systems this includes information about the data 
or services a node provides. Biological systems 
achieve information exchange—albeit indirectly—via 
“stigmergy”: an ant’s pheromone trails allow 
coordination amongst the independent agents in the 
colony [5].  Gossiping allows a node to update its 
internal or external model and from this to adapt to its 
environment. 

Tagging: to allow groups to form, and to create 
boundaries among groups, tagging is required. 
Tagging supports the creation of “collections” as 
meaningful named entities [17].  In the internet, DNS 
servers are named (tagged) entities that support a 
hierarchical naming system (where name servers pass 
requests for sub-domains to sub-servers).  Super-nodes 
in P2P systems are ordinary nodes that are promoted, 
and then they are tagged as such. In ant colonies, nest-
mates recognize each other via a set of biological tags 
[6]. 

4.4. Consequences  

Not only are each of these tactics characteristic of 
complex systems but they are necessary 
characteristics: it is unimaginable that a system could 
grow without bound without all of these tactics. 
Different tactics may be present to different degrees in 
the PSTN, or the internet, or biological systems, but 
they are all present. 

 
Such a claim cannot be proven, but we can cite 

evidence from systems that we did not initially 
consider to justify that these tactics are indeed 

foundational. Next we discuss two examples—slime 
molds (natural) and Mobile Ad Hoc Networks 
(artificial)—to argue the claim that these tactics are 
necessary building blocks for ULS systems. 

 
Consider the remarkable adaptability of slime 

molds [4].  Each slime mold cell is a peer and hence 
modular, with its own state, hiding its internals. These 
cells operate in parallel. They clearly exist as 
individuals, but slime mold cells can also aggregate 
into groups of up to 105 organisms to create “slugs” 
that can travel, or into spore-bearing fruiting 
structures—called sporangiophore—for reproduction.  
These cells have internal models, as they are capable 
of fully independent lives—feeding and reproducing 
in parallel. Slime mold cells have environmental 
models—for example, they shy away from light, and 
they change state under stressful conditions (such as a 
lack of food, or a change in pH). Also slime mold cells 
exhibit heterogeneity: some cells form the stalk of the 
sporangiophore and others specialize to become 
spores; and these cells become cysts when conditions 
turn unfavorable.   

 
In the artificial domain, consider MANETs 

(Mobile Ad hoc NETworks).  MANETs are defined as 
“a collection of mobile nodes, communicating among 
themselves over wireless links and thereby forming a 
dynamic, arbitrary graph” [8].  Each node is a distinct 
wireless device, and therefore modular. Because each 
node is independent, they can operate in parallel.  Such 
nodes are typically heterogeneous, sharing perhaps no 
more than a common (dynamic) communication 
protocol, which acts as an abstract connection 
mechanism. Nodes do not expose internals; they 
interact via well-defined interfaces.  To participate in 
a network, a MANET node must be self-describing, 
representing itself to neighbors, including the set of 
other nodes reachable through it. MANET nodes 
exhibit self-similar structure: “a mobile router may 
attach to any router, including another mobile router, 
forming networks of mobile routers to an arbitrary 
depth … Commonly the terms ‘nested mobile 
network’ or ‘nested NEMO’ are used for this 
situation”.  Because these networks are mobile, nodes 
are constantly moving into and out of range, and so 
nodes are continually connection shuffling and 
gossiping.   

 
In short, MANETs and slime molds have 

achieved their remarkable properties of scale because 
they instantiate, in their own unique ways, the set of 
scalability tactics presented in Figure 2. 
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5. Conclusions  

ULS systems are becoming more common as 
the world becomes more digitized and more 
interconnected. This trend shows no sign of slowing. 
Since the original ULS report was published in 2006, 
ultra-large systems have been built and deployed in 
increasing numbers. But they remain a challenge for 
architects because few software and systems design 
professionals have a deep well of experience building 
systems of ultra-large scale.  The purpose of this paper, 
as with the purpose of all research into architectural 
tactics and patterns, is to codify the knowledge 
contained in the heads of the very best architects so 
that others with less skills or experience can more 
confidently create architectures with predictable 
properties, predictable risk and cost.   

 
Architectural tactics are a kind of “periodic 

table” of design—elemental design operations.  
Tactics are not novel research artifacts; tactics, like 
design patterns, arise repeatedly in practice.  Every 
architectural tactic exists to serve an objective in the 
process of design, to enable or to control a systemic 
response. The tactics presented here primarily exist to 
enable and manage scalability concerns for a broad 
range of ULS systems and each of them comes with a 
pedigree, having been used over and over again in 
successful natural and artificial systems of ultra-large 
scale.    

 
Tactics are not, however, a panacea. An 

architect still needs to understand them, and reason 
about their pros, cons, and tradeoffs. For example, the 
tactic of Heterogeneity increases the potential size of 
the pool of available resources, which is good. It also 
limits the effects of common-mode failures, which is 
good. But this comes at a cost of having to deal with 
this heterogeneity, which might increase maintenance 
or deployment costs.  Environment models allow each 
node to respond independently to changes, avoiding 
the need to centralized monitoring and control, which 
is good. But such models, if not designed with 
scalability in mind, can be a bottleneck or single 
source of failure. Connection shuffling ensures that a 
ULS system does not get “stuck” in rigid forms of 
behavior, which will, over time, inevitably become 
sub-optimal; the system continuously adapts by 
inserting randomness into its behavior. But this benefit 
comes at the cost of a small reduction in run-time 
performance.  
 

Taken together, these ULS tactics form an 
ontology of design for ULS systems of the future.  The 
ontology was created by triangulating from examples 

in a diverse set of domains—natural and artificial—
that exhibit ultra-large-scale. While it is likely that 
these tactics are incomplete, as any set of design 
primitives will evolve over time—they do concisely 
capture a wide range of scalability phenomena 
relevant to the “wicked” problems that we face in 
developing complex systems today, and that we will 
increasingly face in the future.   

 
Why should you care? There are two obvious 

practical uses for this set of tactics (and, in fact, for all 
tactics categorizations):  

 
1. If you are the architect of a system that may 

experience explosive growth then you can 
use a set of tactics as a guide for making 
design choices.   

 
2. If you are analyzing such a system, you can 

use these tactics as a questionnaire, to focus 
and guide your analysis efforts. 

 
 These tactics, we claim, can help to make the 
incredibly risky process of design in a ULS system—
which is, by its very nature, a wicked system—a bit 
more systematic and a bit less risky.  
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