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Abstract 
Explainable artificial intelligence (XAI) is a new 

field within artificial intelligence (AI) and machine 

learning (ML). XAI offers transparency of AI and ML 

that can bridge the gap in information that has been 

absent from “black-box” models. Given its nascency, 

there are several taxonomies of XAI in the literature. 

The current paper incorporates the taxonomies in the 

literature into one unifying framework, which defines 

the types of explanations, types of transparency, and 

model methods that together inform the user’s processes 

towards developing trust in AI and ML systems.  

 

Keywords: Artificial intelligence, machine learning, 

XAI, trust, trustworthiness. 

1. Introduction  

The field of machine learning (ML) has grown 

exponentially in the last few decades as a subdiscipline 

of artificial intelligence (AI). The fast growth of both 

fields is due, in part, to increases in the availability of 

extremely large datasets, otherwise known as “big data” 

(Medeiros et al., 2021). ML has demonstrated its 

usefulness in domains including healthcare, 

autonomous driving, finance, and the criminal justice 

system (see Arrieta, 2022), to name a few. The 

implementation of AI/ML in various contexts has 

proven to be beneficial in many ways including 

increasing productivity (Sharma et al., 2020), improving 

accuracy and performance in certain types of tasks (e.g., 

facial recognition; Medeiros et al., 2021), and providing 

the capability of completing tasks that humans perform 

poorly or can’t perform at all (e.g., text mining from big 

data, language translation, etc.; Suman et al., 2020). 

However, many of these systems have historically 

lacked transparency in their decision-making process, 

which has limited the user’s acceptance and willingness 

to trust and use them (Miller, 2019).   

A particular subset of the AI/ML fields is 

explainable artificial intelligence (XAI), which seeks to 

increase the understandability of models that are 

traditionally opaque (Zhou et al., 2021). The rapid 

development of XAI in the last decade has been driven 

by demand from the industries mentioned above. 

Ultimately, XAI seeks to provide more information 

about how the AI/ML system made its decision (e.g., 

prediction, classification) so that operators will use the 

algorithms appropriately. However, due to the nascency 

of XAI methods, there are several explanations and 

theoretical frameworks that attempt to demarcate the 

XAI field, but few share a common language or focus, 

and most importantly, there lacks a comprehensive 

architecture to unite them. This has led to many different 

delineations of factors that XAI encompasses, which fail 

to contribute to building theories that effectively 

advance the field. Importantly, much of the previous 

research has overlooked the psychological processes 

inherent in user perceptions of AI/ML models and 

systems (Miller, 2019). The current paper seeks to 

clarify the current state of the literature by combining 

the theoretical taxonomies into one cohesive framework 

and highlight how XAI relates to the psychological 

perceptions of system trustworthiness.  

2. Artificial intelligence/machine learning 

Artificial intelligence (AI) and machine learning 

(ML) algorithms have been utilized for handling many 

different types of data, including images, text, audio, 

and video. AI utilizes different learning algorithms (e.g., 

logistic regression, k-nearest neighbor, neural networks, 

etc.) to help develop the underlying model. ML grew out 

of the AI domain when the field began changing its goal 

from attaining AI to the practical use of applying 

algorithms to sort through large data sets. Although 

there is still debate over whether AI and ML are separate 

fields, as some advocate ML is a subfield of AI (Gareth 

et al., 2013), and others have advocated only intelligent 

subsets of ML (e.g., neural networks) are a subfield of 

AI (Alpaydin, 2010); we refer to AI and ML as a joint 

construct in the current paper as AI/ML, since the 

principles we are discussing are relevant to both.    

Given the vast application of AI/ML to so many 

aspects of human life, there has been an increase in the 

desire to understand how AI/ML models make their 
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decisions. Increasing the transparency of the models can 

ensure impartiality, increase the robustness of the 

system by highlighting potential adversarial 

vulnerabilities, and can help to guarantee that only 

relevant variables influence the output of the model 

(Arrieta et al., 2020). For example, traditional AI/ML 

models have led to biased outcomes such as racial 

(Rudin, 2019) or gender discrimination (Dastin, 2018), 

which can be noncompliant with current legal 

requirements (Bibal et al., 2021). Additionally, AI/ML 

systems can seriously impact safety, particularly for 

those affected by these systems’ decisions (Rudin, 

2019), such as when the AI/ML is applied in high-risk 

contexts (e.g., autonomous vehicles). Developing a 

model of the factors and external variables that affect 

transparency of AI/ML systems will provide developers 

with the necessary principles to be incorporated into the 

AI/ML’s design. The objective of developing such a 

model would be a resulting increase in the information 

that is pertinent to the user’s understanding of the 

system’s capabilities and limitations. Further, the 

implications of these decisions need to be considered, 

particularly in high-risk contexts. 

One issue that has been problematic for utilizing 

AI/ML models is that the decision-making process of 

the most reliable models are opaque (i.e., “black-box” 

models). Researchers have delineated ML models into 

black-box models, in which the decision-making 

process is intrinsically obscure, and white-box models, 

in which a human can readily understand what variables 

were considered in the system’s decision-making 

process. Many AI/ML systems rely on statistical models 

for their decision processes (e.g., logistic regression), 

which are inherently understandable, as the variables 

and their associated weights in the formula are known 

or available to the user. In contrast, with black-box 

models (e.g., neural networks), the underlying variables 

and processes used by the algorithm to make the 

decision are unknown to the user or too complex to 

interpret (Marcus, 2018; Medeiros et al., 2021).  

Despite the limitations in their interpretability, 

researchers often opt to use black-box models over 

white-box models for a variety of reasons. For instance, 

neural network models can be used for processing 

extremely complex data (e.g., natural language 

processors or models with hundreds or thousands of 

predictors; Sheu, 2020). Proprietary models, as another 

example, can provide added security to the system at the 

expense of interpretability (Papernot et al., 2017). 

Importantly, the performance of black-box models are 

contended to be unmatched (Zhou et al., 2021). 

3. Explainable artificial intelligence 

The past decade has seen an advancement in AI/ML 

that has focused on understanding the decision-making 

processes of black-box models, particularly through the 

developing field known as explainable artificial 

intelligence (XAI; Zhou et al., 2021). As noted above, 

researchers have called for the development of more 

explainable models because of the importance of the 

decisions being made by the models without 

compromising the performance capabilities of these 

systems. High-risk scenarios, such as medical diagnosis, 

self-driving cars, and military operations, have 

particularly increased the demand for AI/ML models 

that can be easily interpreted (Adadi & Berrada, 2018).  

The advent of XAI has increased the transparency 

of previously obfuscated models, and several theoretical 

frameworks have been developed for organizing the 

variety of XAI methods and creating taxonomies of such 

methods (e.g., Arrieta et al., 2020). Although these 

frameworks have several different monikers, we classify 

the primary dimensions into types of explanation 

methods, types of transparency, and model methods 

based on previous taxonomies. We discuss each in turn. 

3.1 Model methods 

Model methods are the application of the 

transparency principles described above to actual XAI. 

The XAI models in the current literature can be 

classified into one of three methods: model-agnostic, 

model-specific, and example-based methods (Molnar, 

2019).  

 

3.1.1 Model-agnostic methods. Model-agnostic 

methods of XAI are separate models or algorithms that 

can be applied to any existing black-box model. In other 

words, these methods are not built into the AI/ML 

algorithm but rather applied post-hoc (or after the model 

has been developed) to uncover meaningful information 

about how the outcome decision was reached (Arrieta et 

al., 2020). For example, if a researcher wanted to 

understand how a neural network weighs variables in a 

model, a Shapley Additive Explanation (SHAP; 

Lundberg & Lee, 2017) could be provided. SHAP 

removes one variable at a time to determine its impact 

on the model, both directly and through other variables. 

The top portion of Figure 1 illustrates a scenario where 

four variables are included in a model prediction; the 

bottom portion illustrates one iteration of the SHAP 

algorithm, in which one variable (Cholesterol) was 

removed from the ML model. The results help 

researchers to understand the variable in the context of 

the model through main effects, interactions, and 
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possible suppression effects by examining how changes 

in the model affect the outcome variable.  

 

 
Figure 1. SHAP illustration. Top picture is original 

model, bottom picture is model without cholesterol. 

 

3.1.2 Model-specific methods. Model-specific 

methods are XAI methods built into the AI/ML 

algorithms themselves to help understand the processes 

driving decisions and can only be applied to certain 

types of AI/ML models to aid in their interpretation 

(Molnar, 2019). That is, there is not another algorithm 

to apply when running the model (although there are a 

few exceptions), and one type of model-specific method 

cannot be applied to another type of model without some 

type of adaptation (Carvalho et al., 2019). For example, 

gradient saliency algorithms use highlighting in a neural 

network to illustrate what features of the image are 

compelling the decision processes. Figure 2 illustrates 

the results of a neural network that has been trained to 

classify cats and dogs. On the left-hand side of the 

figure, we see the image of the dog being classified. On 

the right-hand side of the figure, we see the pixels the 

algorithm used to classify the image. These methods are 

considered model-specific because they are built into 

the algorithm and cannot be applied to others (e.g., 

regression-based models).  

 
Figure 2. Gradient saliency example, data is on left 

and gradient saliency is on right. 

 
3.1.3 Example-based methods. Lastly, example-

based methods use individual dataset examples to 

illustrate how the model can be deceived (Szegedy et al., 

2013). Example-based methods are different from the 

two previous methods in that they explain a model by 

selecting specific instances of the dataset, whereas the 

former two create summaries of the data, based on either 

data or rationale explanations (Molnar, 2019). Figure 3 

illustrates a common adversarial attack for binning 

traffic signs. On the left-hand side of Figure 3 is a 

picture of a stop sign that is correctly classified. 

However, adding a few rectangular white and black 

boxes to the image, as illustrated on the right-hand side 

of Figure 3, can result in the model incorrectly 

classifying the image as 45-mile-per-hour sign.  

 

 
Figure 3. Example of adversarial attack on stop 

sign. 

3.2 Explanation Types 

Zhou and colleagues (2021) describe six main 

AI/ML explanation types, each with a different 

objective, that exist for XAI methods, outlined as 

follows: rationale explanations, data explanations, 

responsibility explanations, impact explanations, 

fairness explanations, and safety and performance 

explanations (ICO & Turing, 2019, as cited by Zhou et 

al., 2021). Rationale explanations focus on increasing 

the understanding of why a model made a certain 

decision. In other words, they describe what the 

underlying processes were that led to the decision or 

output of the model. Data explanations focus on what 

data were used and how the data were used to influence 

the decision. This type of explanation helps users 

understand the influence different data types have on the 

decision or output. Responsibility explanations are 

explanations that focus on who developed, managed, 

and implemented the AI/ML model. That is, this type of 

explanation is concerned with who is accountable for 

the decision of the AI/ML system and what their reason 

was for designing the system. Impact explanations are 

based on the broader implications of the use of AI/ML 

decisions on society in general. This type of explanation 

aids the user in understanding the consequences of the 

AI/ML model’s output and helps the user decide if they 
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want to use the system (e.g., to mitigate negative 

outcomes or increase positive outcomes). Fairness 

explanations are a subset of impact explanations, in that 

they are specifically concerned with AI/ML decisions 

being unbiased. For example, the use of AI/ML in the 

legal system or for hiring practices can have adverse 

impact on minorities (Guidotti et al., 2018). Safety and 

performance explanations focus on what steps were 

taken to strengthen the accuracy, robustness, security, 

and reliability of the model’s decision or output. 

Importantly, the model methods provide the different 

types of explanations through the output of the model. 

3.3 Types of transparency 

Transparency, or the ability to understand AI/ML 

models and algorithms, is key to XAI models. Many 

different theoretical models of the design of XAI 

advocate transparency as a factor in their models 

(Arrieta et al., 2020; Miller, 2019; Muir, 1994). The 

term transparency has been used to express 

interpretability (specifically, intrinsic understandability 

of models, or white-box models) as well as in a more 

common usage manner to refer to the access of 

information related to explainability of AI/ML models 

(Meske & Bunde, 2020). We take the latter approach in 

this paper in order to bridge the concept of explainability 

within the XAI literature with the broader use of the 

transparency term in automation and human-machine 

interaction fields (e.g., Lyons, 2013). As such, we refer 

to transparency as a larger factor with many different 

sub-types that facilitate explanations.  

Arrieta (2022) notes several different levels of 

transparency in their theoretical review of XAI. 

However, rather than viewing transparency as levels, we 

view them as factors that can influence the larger order 

constructs of explanations, which we reviewed above. 

Specifically, Arrieta observes the constructs of 

understandability, comprehensibility, interpretability, 

and explainability. Muir (1994) explains the key aspects 

of understanding machines are the dependability, 

reliability, competence, and helpfulness of the system. 

We note that Arrieta’s terminology focuses on the user’s 

perceptions of the procedures of the XAI (i.e., how the 

XAI arrives at its decision), with understandability, 

comprehensibility, and interpretability relaying 

rationale and data explanation types to the user. In 

contrast, Muir’s factors of dependability, reliability, and 

competence relay safety and performance explanations. 

Lastly, Muir’s helpfulness factor relays reasonability 

and impact explanations. Thus, the transparency factors 

mentioned above are conduits for the type of 

explanation posited by Zhou and colleagues (2021). 
 

4. Trust in machines 

In their influential article on human-machine 

interactions, Lee and See (2004) demarcate the trust 

process into individual differences, trustworthiness 

perceptions, trust, and risk-taking behaviors. Individual 

difference variables are any variable subsumed in the 

human operator that influences trust perceptions. These 

can be variables such as a general trust in automation, 

experience with a type of system, or a schema to view 

automation as perfectly reliable. Trustworthiness 

perceptions are the state perceptions of the system, 

which are comprised of performance, purpose, and 

process factors. The performance construct is the 

operator’s understanding of how well the system 

achieves the goals of its task. The purpose construct is 

the operator’s understanding of why the system was 

developed and for what reason. The process construct is 

the operator’s understanding of how the system 

operates.  

Transparency of the system is another key aspect of 

trust in machines in Lee and See’s (2004) theory (per 

Lyons, 2013). Transparency is how the aspects of 

performance, purpose, and process are conveyed to the 

user (Lyons, 2013). Thus far, research in the area of 

automation may have conflicting findings with those in 

AI/ML. For example, Lee and See note that illustrating 

the process of the system, possibly by intermediate 

results, can increase trust in machines. However, in an 

AI/ML context, if the system’s underlying process is 

explained to the user (e.g., XAI systems), but the 

reasoning lacks face validity or otherwise indicates a 

faulty process to the operator, this could potentially 

decrease the user’s trust in the model (Chen & Barnes, 

2014). Indeed, one issue that can arise in AI/ML systems 

analyzing data is that they could overfit the data by 

including spurious correlations between variables 

(Obermeyer & Emanuel, 2016). Ultimately, increasing 

transparency may not increase trust in the system, but it 

should help calibrate trust more appropriately to the 

system’s true reliability (Chen & Barnes, 2014).  

The trustworthiness constructs influence the 

operator’s level of trust in the system, described as “the 

attitude that an agent [automation] will help achieve an 

individual’s goals in a situation characterized by 

uncertainty and vulnerability,” and thus comprises a 

willingness to rely on the system (Lee & See, 2004, p. 

54). Importantly, trust is an attitude not the actual 

behaviors of the operator. Risk-taking behaviors are the 

actual behaviors the operator takes to rely on the system, 

such as using an autopilot mode or accepting the 

outcomes of an AI/ML algorithm for decision making. 

Importantly, this creates a feedback loop, such that the 

operator continuously updates their perceptions of the 

system, and possibly their overall automation schema. 
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A defining feature of AI/ML systems that differs from 

other types of automation is that their decision-making 

process can iteratively update as new data is acquired 

(El Naqa & Murphy, 2015). Such changes can affect the 

feedback loop and the operator’s trust in the system over 

time. Further, the operator may or may not have an 

influence on how the algorithms are changed over time 

(e.g., reinforcement learning versus unsupervised 

learning), which may affect trustworthiness perceptions 

in different ways (Dietvorst et al., 2018), thus 

necessitating transparency.

 
Figure 4. Proposed hierarchical framework of Explainable Artificial Intelligence methods  

and their relation to psychological perceptions of system trustworthiness. 
 

5. Theoretical Integration of XAI Models 

In this section, we integrate the theoretical 

taxonomies described above into one model. We 

postulate the theoretical structure outlined in Figure 4. 

The theoretical framework in Figure 4 illustrates the 

three subjective factors theorized by Lee and See 

(2004), with the various types of explanation and types 

of transparency subsumed under the factors. We created 

this model to reflect the spectrum of psychological 

perspectives from objective factors (model methods) to 

subjective factors (psychological perceptions). We note 

that the bottom of the figure represents the most 

objective taxonomies, namely the actual methods of 

XAI. The top of the figure represents the most 

subjective aspects of XAI, which are psychological 

perceptions. The explainability of a model is 

fundamentally a human perception that can vary 

between individuals. As such, we categorize the 

explanations and transparency factors into their 

respective trustworthiness categories. Importantly, we 

do not categorize the model methods into the 

trustworthiness categories because it depends on what 

data type is being relayed to the user and how they are 

interpreting it. We note, transparency is not a factor in 

the framework but rather a degree to which the 

performance, purpose, and process factors are salient to 

the human. In traditional black-box models, the purpose 

and process factors are largely obfuscated from the user, 

as the user does not have knowledge of how the AI/ML 

formed its decision. Applying various XAI methods 

increases the transparency of the purpose, process, 

and/or performance perceptions, which is the ultimate 

goal of XAI. 

We begin at the bottom of Figure 4 with the most 

objective classification. The model methods outlined in 

the section above describe the broad aspects of the 

methods used to instantiate explainability into an AI/ML 

model. Importantly, we can classify explanation types 

and model methods as objective factors, whereas the 

type of transparency is more subjective. Model methods 

provide different types of explanations depending on 

how they are structured and what information they 

provide. This information is objective because it 

displays some aspect of the AI/ML that is not influenced 

by the user’s perceptions but rather a description of the 

method being used. Similarly, the type of explanation is 

also objective because the factors focus on the 
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information being provided. In other words, the XAI is 

providing information about what it is interpreting from 

the data (data explanation) or how it processed the data 

(rationale explanation), or both. It is in the transparency 

factors that the human perceives and interprets the 

information. This is highly subjective because there are 

many individual differences between people that 

influence how transparency factors will be recognized 

and perceived. These differences are illustrated in 

Figure 4 with the black arrow demonstrating the 

continuum of objectivity and subjectivity. For example, 

a logistic regression model that provides a rational 

explanation through a SHAP algorithm may result in 

different beta weights for each predictor, given the 

weight of the other predictors when they are not present. 

However, this interpretation of the resultant beta 

weights is reliant on the user’s experience with logistic 

regression. A user who has little-to-no knowledge of 

logistic regression may not perceive the differences in 

beta weights as revealing much about the model, but a 

user experienced with logistic regression may find the 

resulting SHAP output helps to clarify the underlying 

methods of the model. As such, the subjectivity of the 

transparency factors necessitates a psychological 

theory, as they are ultimately subjective perceptions. To 

further elucidate the theoretical underpinnings of each 

subjective psychological perception we outline the 

perception, its types of transparency, and the data types 

they are built on. 

5.1 Performance 

The first trustworthiness perception we discuss, 

performance, may be the most relevant and salient 

aspect of trustworthiness. Although researchers do not 

traditionally think of performance as an XAI construct, 

it is a key aspect of XAI. The performance construct of 

trustworthiness is informed by the safety and 

performance explanations provided by the system. The 

safety and performance explanations communicate the 

system’s dependability, reliability, and competence. 

Interestingly, performance can also be a double-edged 

sword. An AI/ML algorithm that has a high reliability 

rate can lead to complacency and overreliance on the 

system (Parasuraman & Manzey, 2010). Research has 

demonstrated that lowering the reliability can reduce the 

complacency of the user on the system (Banks et al., 

2018; Parasuraman & Manzey, 2010).  

 
Figure 5. Left picture is traditional ML. Right Picture 

is adversarial distance confidence intervals. 

One problem with traditional AI/ML systems is that 

even when they are incorrect, they have high confidence 

in their decisions. Recent research advances have 

harnessed adversarial distances to create more accurate 

confidence intervals of the AI/ML model’s decisions 

(Bennette et al., 2020; Tomsett et al., 2020). These 

AI/ML models are trained to understand that there may 

be images outside of the classifications it was trained on, 

leading to more accurate confidence intervals when the 

AI/ML algorithm encounters datapoints outside of its 

training dataset. For example, Figure 5 illustrates the 

results of an AI/ML algorithm that has been trained to 

classify cats and dogs. As illustrated on the left-hand 

side of Figure 5, the traditional AI/ML classifies the 

image as a dog and has high confidence that the image 

is a dog. The newer adversarial distance algorithm, 

shown on the right-hand side, still classifies the image 

as a dog, but the confidence is much lower given that it 

does not meet all the criteria of a dog image.  

Importantly, these new AI/ML systems that apply 

the adversarial distance algorithms may be able to solve 

the reliability issue mentioned above. In other words, an 

AI/ML algorithm may be able to correctly classify cats 

and dogs, but any other image that it has not been trained 

on, such as a rabbit, can lead to low confidence in the 

machine’s decision, alerting the operator that the system 

does not know how to handle a datapoint and decision 

authority should transition over to the operator. These 

more accurate performance metrics may increase the 

transparency of the reliability and competence of an 

AI/ML system. These increases in transparency metrics 

will, in turn or by extension, facilitate a more accurate 

perception of the AI/ML’s performance. 

5.2 Purpose 

Second, we discuss the purpose dimension of 

trustworthiness. As noted above, the purpose dimension 

is concerned with the user’s understanding of the 

applicability of the system. This purpose dimension is 

informed by both the responsibility and impact 

explanations. The responsibility explanations concern 

who developed the system and who is accountable for 

the implementation and the decisions of the system. The 

impact explanations can help to elucidate the broader 
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implications of using the AI/ML in a larger contextual 

manner. These two explanations facilitate the perceived 

helpfulness transparency factor. If the AI/ML is viewed 

as helpful, the system will be used and widely applied 

in the context, but if it acts as a hinderance to the user, 

it may be removed from the model. For example, the 

AI/ML model used in Figure 5 that is trained to classify 

images of cats and dogs but is shown images outside of 

its training set, such as the rabbit shown, will incorrectly 

classify the new images. Users may perceive the AI/ML 

as being improperly utilized, decreasing purpose 

perceptions and overall trust (Lee & See, 2004). 

Although this may not seem problematic for an animal 

image binning task, as the risk of using the system’s 

output increases, the appropriateness of the AI/ML and 

the need for accuracy may increase, such as in military 

contexts.   

5.3 Process 

Third, XAI provides insight into how AI/ML 

algorithms make decisions, which represents the 

process aspect of system trustworthiness. The majority 

of the XAI literature is focused on providing increased 

rationale and data explanations, which are inherently 

process perceptions. These types of explanations rely on 

the transparency methods of understandability, 

comprehensibility, and interpretability. These 

transparency methods elucidate a perception of how the 

system functions, which is inherently a user perception. 

Giving the operator an understanding of how the AI/ML 

functions can facilitate trust in the system, particularly 

because the user may be aware of situations when the 

AI/ML may fail. For example, understanding what 

information the model uses from a gradient saliency 

map can inform the user if the model is using aspects of 

an image that are not relevant (e.g., if a model focuses 

on the background of an image such as grass, instead of 

the animal it is supposed to categorize; see Figure 2). 

The rationale and data explanations facilitate an 

understanding of the aspects of the data the AI/ML is 

using. However, the link between process and trust may 

not be a direct linear relationship. Increased 

transparency about the model’s process may not always 

facilitate increased trust or greater explainability of the 

system. For instance, as more transparency about the 

model’s process is provided, it can increase the 

operator’s cognitive workload (Bainbridge, 1983). As 

such, the process construct may serve as a curvilinear 

relationship with trust, such that increases in the 

transparency of the process can lead to increased trust in 

the system to a certain point. After that point, there may 

be too much cognitive workload, such that either over- 

or under-reliance may occur because of the distracting 

nature of the underlying process information (ICO & 

Turing, 2019). Therefore, it is important to determine 

whether and when process information should be 

conveyed to the user.  

5.4 Relationship of trustworthiness factors 

We note that the performance, purpose, and process 

factors are not necessarily orthogonal in nature. 

Although the factors inform different aspects of trust 

and explainability, they are predicated on the actual 

information the model is providing. The complexity of 

the information can lead to several different 

trustworthiness factors. For example, the AI/ML model 

that classifies animal images, which we mentioned 

above, may facilitate performance and purpose factors. 

If the model was trained on images of cats and dogs, but 

during the use of the system it encounters images that 

are outside of its training data set, such as the rabbit 

shown in Figure 5, the user may be informed about two 

trustworthiness aspects of the model, performance and 

purpose. The purpose of the model was to classify cats 

and dogs, but it is now being used outside of its 

appropriate or intended application which results in 

lower performance. The user can ascertain the model is 

not appropriate for the data set it is being used on, 

thereby causing lowered performance. All of this can be 

determined from the simple knowledge acquisition of 

how the model was trained. 

5.5 Differential and temporal effects 

Although Lee and See (2004) delineate much of the 

human-machine trust process, we expand on their 

interpretation by discussing varying degrees and extents 

to which the constructs are relevant in XAI situations 

(i.e., performance, purpose, and process). We postulate 

the trustworthiness constructs are all related but have 

differential relevance depending on the situation. First, 

we view transparency of performance as a necessary 

condition for understanding and trust in AI/ML (and 

also machines in general). It is hard to imagine a 

scenario in which an operator does not care about the 

performance of the algorithm or machine. Indeed, the 

performance of the system provides the necessary 

information about the system to update the feedback 

loop of the operator that Lee and See mention. 

Conversely, the constructs of purpose and process may 

not always be necessary components for trust in a 

system. A good example of this can be found in 

predictive modeling in health care. A hospital started 

using predictive modeling to identify patients with a 

high probability of being readmitted (Health Care 

Innovations Exchange, 2009). Despite using the system 

for several years, the only aspect known to the users was 

the performance. Banerjee et al (2018) later developed 
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a deep learning predictive model of short-term life 

expectancy in hospital care by examining medical 

records which added additional explainabilty through an 

interactive graphical tool that helped physicians 

understand the predictions. As such, the performance of 

the system was always present to the user, but the basis 

for the decisions (i.e., the process) was lacking until the 

graphical tool was developed.   

The case of the hospital predictive model raises 

important questions about if and when purpose and 

process information is important to the operator. We 

contend that it is typically only when an AI/ML 

algorithm performs an incorrect or unanticipated 

behavior that purpose and process information is 

important. As illustrated with the complacency in 

machines literature, if the machine performs too well the 

user will over rely on the machine (Parasuraman & 

Manzey, 2010). We note the difference between the two 

outcomes. An incorrect behavior is a decision in which 

the AI/ML makes a mistake or error. For example, the 

classification of the rabbit as a dog in Figure 5 is a 

mistake. Additionally, the operator may also inquire into 

the purpose of the AI/ML upon receiving an error. The 

operator may explore the dataset on which the AI/ML 

was trained and realize the model is only useful for 

classifying images of cats and dogs, given its training. 

The operator may want to then either expand the training 

data to include more variance in data types (i.e., a 

greater variety of animals) or continue processing while 

monitoring for images that fall outside of the system’s 

trained purpose. An unanticipated behavior, on the other 

hand, is a decision given by the AI/ML model the 

operator was not expecting but may not be incorrect. For 

example, an AI/ML algorithm employed by Target 

Corporation correctly identified a teenager as being 

pregnant and began sending her coupons for baby 

supplies. The teen’s father confronted Target but soon 

after found out that his daughter was indeed pregnant. 

Although the algorithm’s purpose was to identify 

customers that may be pregnant based on their buying 

habits, the identification of a teenager who was pregnant 

was an unanticipated but correct result (Hill, 2012).   

Operators of a system that performs reliably may 

not be interested in the process factors that lead to the 

reliable performance. It is after the algorithm makes a 

mistake or has an unintended consequence that 

operators will want to delve into the processes of the 

algorithm. Indeed, this follows much of the history of 

the development of AI/ML (McCoy et al., 2022). It is 

only recently that researchers have begun to explore the 

process functions of the AI/ML algorithms to gain a 

better understanding of how the algorithms err, so as to 

ultimately improve performance and trust in the system. 

Of particular interest to AI/ML errors/mistakes are 

newly developed adversarial distance algorithms 

(Bennette et al., 2020) described in Section 5.1 

Example-based methods. AI/ML systems that can 

reliably alert the operator to issues with classification 

that may have a differential effect on performance than 

previous reliability research would suggest. Researchers 

have found that decreasing the reliability of the system 

actually improves performance in a task when paired 

with a human operator. This is due to the operator’s 

willingness to exert more effort monitoring the machine, 

for the operator knows the machine is not 100% reliable. 

The adversarial distance algorithms may provide 

information to the user about the confidence of the 

AI/ML model’s decision. If the AI/ML system is 

reliable in this context (i.e., the AI/ML correctly 

classifies data it has been trained on and alerts the 

operator to data that falls outside of its training 

classifications), it may be a good compromise between 

too-high and too-low reliability, avoiding complacency 

and underuse, respectively (Hill, 2012).  

5.6 Risk as a moderator 

There are also differences in the risk associated 

with the use of an AI/ML model. The amount of risk 

associated with the system’s decision is one important 

consideration when evaluating the level of transparency 

that should be provided with an AI/ML’s decision. 

When considering performance, purpose, and process 

aspects of transparency, the decision or output’s impact 

(e.g., safety considerations) will largely determine the 

information provided to the user. Using an AI/ML 

model for medical diagnoses, for example, will require 

a higher level of performance and a more accurate 

representation of true system performance to the user 

than an AI/ML model being used to predict a suggested 

friend on a networking website (Arrieta, 2022). 

Additionally, declining an applicant’s loan request 

based on the decisions of an AI/ML model would 

require the financial institution to disclose each of the 

factors that affected the decision, as one example (Bibal 

et al., 2021).  

6. Future Research 

First, we note the current paper focused on 

relatively simple applications of the model to AI/ML 

contexts, specifically image classification. We utilized 

these examples to clarify the concepts across different 

psychological processes. As such, future research 

should apply these psychological principles to a variety 

of XAI methods. Second, we note the relative dearth of 

literature on the psychological perceptions of XAI 

models that are currently being developed. Research 

would do well to test the efficacy of XAI in relating 

information to the user. Specifically, psychological 
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research with users that assess perceptions through a 

variety of metrics such as Likert scales, open-ended 

questions, and possibly physiological metrics could help 

researchers understand the benefits of XAI, if any. 

Research in this area can also influence the development 

of XAI, such that model methods that do not provide any 

useful information to user perceptions may be 

abandoned for more fruitful endeavors that increase 

transparency and trust in the systems. Third, future 

research should explore when the user wants 

clarification of the underlying processes from the 

AI/ML. We theorized above that transparency of 

performance is the most salient aspect of the interaction 

and only after a mistake or failure will the user want 

more information. Research should explore the 

temporal effects theorized in the paper. Lastly, future 

research should employ the proper terminology to help 

understand the impact of the XAI on the relevant 

construct. In other words, if research is exploring XAI, 

care should be taken to discuss the data explanation, 

transparency type, and possibly the underlying 

psychological process the XAI is created to facilitate. 

7. Conclusion 

The current paper sought to create an overarching 

framework of XAI. In this paper we categorized the 

previous taxonomies according to the information they 

provided about the AI/ML model they were designed to 

explain. Specifically, we categorized the previous 

taxonomies based on their degree of subjectivity, how 

they relate to each other, and how they inform different 

levels of AI/ML transparency. The model from this 

paper can help researchers more accurately define what 

aspects of the XAI are influential in human perception 

and through which mechanism(s) the XAI model is 

hypothesized to influence perceptions. The formation of 

a unifying theoretical model (shown in Figure 4) allows 

researchers from various fields to better understand how 

XAI methods inform the user from a psychological 

perspective. This viewpoint is vital to the advancement 

of the AI/ML and XAI fields because the notion of 

explainability within these domains is intrinsically 

psychological. XAI model developers can use this 

framework to better ascertain whether the model they 

are creating provides the information that it is intended 

to. From this point, researchers can empirically study 

how this information impacts the user and their 

perceptions of the AI/ML system, for example the 

system’s trustworthiness. Lastly, we note the lack of 

research in trust and reliance on AI/ML. Little research 

has been conducted on the trustworthiness perceptions 

of AI/ML or XAI models. Researchers in the computer 

science field have recommended utilizing XAI to 

increase transparency in the models (Rajabiyazdi & 

Jamieson, 2020). However, no research to date has 

explored whether the XAI models actually increase 

operator perceptions of transparency. Research would 

do well to examine the psychological impact of the 

model methods currently being developed to ensure they 

do add to the understanding of the users. 
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