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Abstract

In the context of Industry 4.0 the concept of
the Digital Twin has gained significant momentum
in industry as well as academia. Researchers have
hypothesized a great number of potential benefits
of the concept’s usage. However, few real-world
implementations have been recorded. This paper
addresses the most pressing challenges inhibiting the
concept’s industrial application. It describes the
process of the concept’s hybridization to achieve a
practical implementation strategy: the Hybrid Digital
Twin. Subsequently, a prototype is implemented using a
presently operational real-world manufacturing system
to substantiate the viability of the methodology. Finally,
the benefits, remaining issues and future developments
of the concept are discussed.

Keywords: Digital Twin, hybridization, case study,
manufacturing

1. Introduction

Increasing market complexities such as growing
customer demands, unrelenting global competition
and shortening time frames necessitate the use of
innovative technologies in order for manufacturers to
stay competitive (Ward et al., 2021). Especially the
linkage of the physical and the digital world is an
ubiquitous approach to meet these challenges. (Liu et al.,
2021) Thus, an industrial paradigm change is occurring;
Industry 4.0 is focusing on digital methods to address
issues in modern manufacturing. In that context, the
Digital Twin (DT) is one of its principal concepts (Fuller
et al., 2020; Melesse et al., 2020).

A meta-review conducted by Kuehner et al. in
2021 investigated the maturity and terminology of

the DT, a concept which has received considerable
attention in recent years. It found that most reviewers
put the concept in its infancy or at most in its
growth phase. However, the terminology of the
DT remains diffuse. Indeed, when using the term
of the DT, different researchers seem to refer to
different concepts altogether. It has been hypothesized
that this is due to the “appealing metaphorical
strength” (Uhlenkamp et al., 2019) of the terminology.
The meta-review (Kuehner et al., 2021) also found 22
other terms that were used somewhat synonymously
with the DT, contributing to the terminological
indistinctness. Consequently, no universal definition has
been established so far. However, based on the majority
opinion of the reviewers, Kuehner et al. (2021) proposed
a four point definition, which shall also define the DT for
the remainder of this paper:

• DTs are virtual representations of their physical
counterpart

• DTs provide the basis for simulations or are
simulation models themselves

• DTs have an automated bidirectional connection
with the represented physical counterpart

• this connection may span across several life
phases of the physical system

The specific research gap that shall be addressed in this
paper is the lack of a viable implementation strategy
for DTs of manufacturing systems with real-world
complexity. Therefore, the following question shall be
answered: How can one efficiently retrofit a modern
manufacturing system with a Digital Twin?

Methodically this paper can be understood as a case
study that establishes a strategy for the implementation
of a DT and presents an early-development prototype to
show how a practical implementation could be achieved.
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It is preceded by a short narrative-style literature review
that illustrates the gap in current research.

The paper will begin by elucidating typical
challenges that need to be overcome in the
implementation of a DT. It will then present the
results of a short narrative-style literature review of
DT implementations in the manufacturing domain to
highlight the lack of implementation strategies for
systems with real-world complexity. Afterwards, the
paper will propose the process of hybridization to
address most of the indicated challenges and gaps.
The resulting concept will describe the fundamental
ideas and strategies to establish the Hybrid Digital
Twin (HDT). It will then introduce aspects of an
early-development prototype of an operational,
real-world production line to underline the adequacy of
the proposed methodology. Finally, it will conclude by
evaluating the progress made, the projected benefits of
the HDT, the remaining issues and limitations as well
as providing prospects for the future. The methodology
presented in this paper will focus specifically on DTs of
manufacturing systems that are already in operation.

2. Typical implementation challenges

The implementation of the DT in a real-world setting
faces a number of challenges. Kuehner et al. (2021)
have identified several of these challenges in their
meta-review.

The most prevalent challenge was identified as
shortcomings in Data Infrastructure (Kuehner et al.,
2021). Especially for small- to medium-sized
companies, real-time data acquisition might pose a
problem (Melesse et al., 2020). Investments in adequate
data transmission and storage technology are also
crucial success factors for the implementation of a
DT. Lastly, data processing capabilities need to be
able to keep up with large data volumes, possibly
through hardware-as-a-service infrastructures (Fuller
et al., 2020).

The second most pressing challenge concerning
the DT was identified as Modelling and
Simulation (Kuehner et al., 2021). The creation of
adequate models that represent the physical system
in its current condition is a significant challenge in
implementing a DT. A model has to mirror its physical
counterpart as accurately and robustly as the intended
usage of the DT requires. At the same time, models
need to be able to synchronize with the physical system
(see Melesse et al. (2020)) to counteract any divergence
between the physical system, that will inevitably occur
when both advance in time. Consequently, a model
should also be able to resolve inconsistencies between

the comparatively simple model and the significantly
more complex physical systems (Liu et al., 2021).
Additionally, inefficient simulations require more
computing power, leading to higher costs. Generally,
the creation of simulation models for the DT is a
highly complex process. The simulation engineers need
extensive domain as well as technological knowledge
to build models that accurately represent the physical
system. This domain knowledge may well need to span
across several disciplines and technologies. Ideally,
simulation models for the DT could be derived from
models created in preceding life cycle phases of the
system, such as 3D models, process models or even
simulation models from the planning phase of the
manufacturing system. In practice, such data is often
not available for existing manufacturing systems.

Another pressing issue is the general lack of a
universal Concept Standardization (Kuehner et al.,
2021). As elucidated by the lack of common
understanding of the terminology, the field of DTs
is extremely broad and diverse. Hence, the required
aspects of standardization are manifold. Principally,
there is no generally accepted reference architecture for
implementing the DT (Semeraro et al., 2021). However,
standard data interfaces are required to supply the DT
with usable data (Liu et al., 2021). Thus, standards
for connecting digital and physical realms are pivotal
for the development of the DT (Lim et al., 2020).
Modelling guidelines spanning from initial models to
the simulation design could establish domain and user
understanding (Fuller et al., 2020). In the end, it
is likely that the lack of standardization is inhibiting
the implementation of DT concepts in an industrial
context (Melesse et al., 2020).

Further issues of the DT concept identified by the
meta-review (see Kuehner et al. (2021)) were a shortage
of implementation examples, the inadequately clarified
DT benefits, the lack of concepts concerning Human-DT
interaction as well as possible privacy, security and
legal issues.

All these challenges need to be addressed and
eventually overcome to facilitate the advent of the DT
in industry.

3. Existing implementations

This chapter presents the results of a short
narrative-style review (see Ferrari (2015)) that was
conducted among a selection of recent literature
(published within the last five years) that self-identifies
as DT implementations and has a tangible link to the
domain of manufacturing. Seven publications have
been evaluated on whether they were implemented
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in a real-world setting, were compliant with the
previously established DT definition and considered
systems consisting of multiple components. These
points have been chosen to evaluate whether the
described implementation might be transferable to
real-world scenarios, which often present as complex,
multi-faceted manufacturing systems. The Venn
diagram in Figure 1 summarizes how these publications
(S1-S7) arrange themselves among these three criteria.
The publications are summarized in the following and
are labelled corresponding to the diagram.

real-world
setting

DT compliant 
with definition

multi-component 
system

real-world
setting

DT compliant 
with definition

multi-component 
system

S1

S2S3

S5
S6 S7

S4

Figure 1. Venn diagram of selected case studies

Ward et al. (2021, S1) have built a DT of a 
multi-component manufacturing system in a laboratory 
at the University of Sheffield. It represents a production 
system consisting of machines, conveyors and robots. 
They employed dedicated vision and RFID sensors to 
attain the position of movable entities within the system 
and transmitted the data via standard programmable 
logic controllers. They could show the viability of their 
approach to feed data to a simulation model. However, 
feedback to the physical system has not been achieved.

An example for a DT of a friction stir welding 
machine has been developed by Roy et al. (2020, S2) 
in a laboratory environment. They used dedicated as 
well as integrated sensors to establish parameters such 
as oil levels, machine power, temperature and flow rates. 
This data was then fed into a model consisting of signal 
processing and machine learning elements. The model 
would afterwards establish maintenance operations.

An industrial implementation of a DT was 
performed by Aivaliotis et al. (2019, S3). They 
created a DT of a robot that performed welding task 
in a production line to assess its remaining useful 
life. For this purpose, they combined data from the 
robot’s control unit with dedicated sensors assessing the 
acceleration of each of the robot’s joints. Together with 
constructive data they created a simulation model to 
simulate the robot’s components. Using this approach 
they were able to predict the remaining useful life of the

robot’s gearboxes.
Another real-world case study was performed by

Biesinger et al. (2018, S4). They created a DT of
a body-in-white workshop from different data sources
such as planning data, simulations and dedicated
3D-scans of the physical system. Its purpose was
to create an up-to-date representation of the physical
system to be able to efficiently adapt it for new products.
However, no operative feedback to the real system has
been performed.

Researchers of the universities in Hong Kong and
Shenzhen have created a DT of a multi-component
manufacturing system of several assembly islands in
a laboratory environment (Guo et al., 2020, S5). Its
purpose was to organize the production and improve
task scheduling. Data was generated via retrofitted
sensors on tools, machines and other production
equipment. Smart wearable equipment such as glasses,
wrist-computers and belts have also been proposed. A
cloud-based model organized the production sequence
and instructed workers via mobile devices.

While examples for real-world implementations of
a DT spanning across a whole production system
are rare, Zhuang et al. (2018, S6) have achieved
such an implementation in the context of a satellite
assembly shopfloor. They have used RFID technology
and information collected by machines or entered by
operators to supply data to a digital model of the
shopfloor. It then automatically supported resource
management, path optimization and scheduling as well
as process control and optimization.

Another example for such a system has been
described by Zhang et al. (2019, S7). In a machining
workshop for airplane engine parts they have created
a DT which worked with the sensory data of several
CNC machines to improve scheduling. Additional
dedicated sensors have also been recommended.
Higher production efficiencies and increased procedural
transparency could be achieved.

While there clearly are several examples for DT
concepts, most have yet to be transferred into real-world
applications or are very limited in their scope. Even
if complete production systems have been enhanced
with a DT (see Zhuang et al. (2018) or Zhang et al.
(2019)), they still required significant implementation
efforts. Most of the seven implementations relied on
additional data gathering with dedicated sensors. They
also have not shown a potential to standardize their
methodology to make it suitable for other applications.
Consequently, this represents a gap in the research
concerning DTs. It is necessary to establish a strategy
that reduces the implementation effort of DTs for
real-world, multi-component manufacturing systems.
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4. Hybridization of the DT

As illustrated in the previous section, there is no
commonly agreed upon strategy for implementing a
DT for a complex real-world system. It shall be the
contribution of this paper to established such a strategy:
the HDT. This chapter will elucidate its derivation
and introduce key components, concepts and ideas that
constitute this strategy.

When investigating the definition given in section 1,
it becomes clear that implementing the DT has a
data side (data from the physical system must be
fed into the DT) and a behavioral side (a simulation
component of the DT must be able to mimic the
behavior of the physical system). Further items that
may be considered for implementing a DT depend on
its intended usage and may include e.g. an experiment
manager, a controller component for the physical
system, a visualization component or a data analytics
component. By combining these different concepts in
the implementation of the DT, we are hybridizing it.
A HDT is more than just a simulation model or just
a database collecting data from the physical system.
Following the definition of hybrid systems modelling
(see Mustafee and Powell (2018)) we even suggest that
a HDT could include multiple simulation, modelling,
and analysis paradigms. In analogy to a system
model becoming a hybrid system model when multiple
techniques and disciplines are used, we argue that the
DT becomes a HDT in the same way. Additionally,
since the HDT is not merely coordinating infrastructures
of different disciplines but creating new knowledge
by systematically integrating them, the HDT is a step
toward transdisciplinary research as described by Tolk
et al. (2021).

Within the context of this paper, we discuss
two approaches for finding inspiration and identifying
technologies for building a HDT:

The first approach is to analyze precursor
technologies. This means, reviewing technologies
that connect physical and digital systems. Since the DT
is part of the Industry 4.0 paradigm, it is fashionable and
promotionally prudent to use its terminology. However,
as an analysis performed by Scheer et al. (2021) has
shown, there are several concepts for digital-physical
connections which partly predate the DT.

Two concepts are especially relevant for the purposes
of extracting valuable information for developing a
DT concept. The online-simulation, a concept for a
simulation which is mono-directionally connected to a
physical system, is first mentioned in 1998. It could
be seen as a predecessor of the DT, since it already
represents a system virtually, has simulation capabilities

and is connected to the physical system at least one-way,
meaning in this case data flows from the physical to
digital elements (Scheer et al., 2021).

The symbiotic simulation, a system of
bidirectionally connected simulation and physical
system, dates back to 2002. The symbiotic simulation
follows the definition of the DT very closely: it
represents the physical system virtually, has simulation
capabilities and has a two-way data connection with
the physical system, even if in some constellations
a human element is required for reviewing machine
decisions (Aydt et al., 2008). One could argue that
most symbiotic simulations are DTs and vice versa.
Therefore, it is paramount to assess and build upon
research that has already been done on this subject.

The second approach to learn from previous
research is to identify existing data-related and
simulation-related methodologies.

The use of data-related technologies has a simple
goal. Little to no additional infrastructure should be
required to efficiently construct a DT. This directly
addresses the data infrastructure challenge. Most
modern manufacturing systems already collect and use
data of the production systems. Consequently, data
management systems as well as analysis methods are
already in use. Concepts like relational or non-relational
databases, real-time data streaming, data analytics, data
or process mining and more sophisticated concepts such
as machine learning are commonly available.

Methods based on simulation are commonly used
in the context of manufacturing systems (Bergmann
& Strassburger, 2010). Paradigms such as discrete
event simulation (DES), agent-based modeling and
System Dynamics are utilized to plan and dimension
production systems. These methods are applied
regularly and are commercially available in the form of
specialized software (see Swain (2021) and Bergmann
and Strassburger (2010)).

The goal of the hybridization of the DT is now
to substitute case-specific, academically unexplored
DT elements with comparatively known methods and
technologies. In the end, this shall reduce the
implementation effort of a DT to an economically
feasible level.

Another aspect that has been part of the discussion
around the DT is its comprehensiveness. However,
digitally representing a physical system in great detail
requires extensive effort. Therefore, the concept of the
HDT focuses only on relevant aspects of a system to
reduce its implementation effort. Consequently, only
those facets of the physical system which are crucial
for the purpose and function of the DT are represented
digitally. All others are approximated or simply ignored.
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4.1. Establishing DES as principal modelling
paradigm

There is no universal modelling approach for
creating the simulation component of the DT. The
subject of a DT (e.g. a production system) has several
facets and often requires multiple modeling paradigms.
However, having a central paradigm and model is
beneficial to later be able to integrate subordinate
models. In the following we will convey our thoughts
and reasoning about why DES is a suitable simulation
paradigm for a DT:

DES is tried and tested for material flow simulation.
Simulation is a common method in the planning process
of manufacturing systems (Bergmann & Strassburger,
2010). Additionally, there are a significant number
of academic resources to provide the methodological
backbone of any such application (Robinson, 2005).

It is the essence of DES to be event-driven. This
means that incoming information from the physical
system, which is likely to be in the form of discrete
information packages, can be integrated easily.

DES is also versatile. The scope of the simulation
can be very diverse. Considering the manufacturing
domain as an example, the scope of a DES might
encompass a supply network, a supply chain, a plant,
a production line, a single machine or even a single
component of a machine. With the exception of
computational limitations, it is possible to integrate
models of a different scope almost seamlessly.

Therefore, we suggest the simulation component
of a HDT to be a DES model at its core. In the
implementation phase of such a model, certain design
choices have to be made. On the one hand, there is
the possibility of manually building up and specifying
all details of a simulation model. On the other
hand, it is also possible to automatically generate an
up-to-date simulation model on-demand. However, this
incurs significant challenges (Bergmann & Strassburger,
2010) and adds complexity to the already complex
implementation procedure of a DT.

For the HDT, the most efficient path needs to be
chosen to keep implementation as well as maintenance
efforts to an acceptable level. We have focused on four
elements of the manufacturing system to find such a
path:

Firstly, there are structural elements or fixed entities.
They encompass all elements of a system which are
stationary e.g. production machines or conveyors.
Since these elements are unlikely to change with a
high frequency, it is sensible to manually insert this
information into the simulation component of the HDT.
While this will result in slightly higher maintenance cost

(e.g. manually updating the model in case of change),
it is likely more efficient than devising a strategy to
automatically establish these elements. Automation of
this process would require additional data, which in turn
would have to be kept up-to-date.

Secondly, there is the general system behaviour.
This refers to process sequences or special processes.
In this instance, it is not possible to unambiguously
choose automated or manual implementation. Instead,
a case-by-case decision needs to be taken. If a system
behaviour is likely to change frequently, an automated
approach might be best. If the required process mining
which establishes the information or the integration of
the generated information is too complex, a manual
approach might be favourable. In the end, the decision
is based on the competences of the DT engineers and the
manufacturing system itself.

Thirdly, system parameters need to be established.
Parameters of a system quantify the behaviour of a
system. This could refer e.g. to processing times
or transfer times. These parameters do change over
the lifetime of a process and sometimes have periodic
elements (e.g. morning vs. night shift). Therefore, it
is prudent to establish current parameters automatically.
Historical data provides the empirical basis for these
parameters.

Lastly, the current appearance of the system needs
to be established. This refers to positioning of movable
entities or the status of fixed entities. In any case,
this process needs to be automated. Data needs to be
gathered, supplied and integrated in real-time. Manual
input is not possible due to this time constraint.

Using DES to create the simulation component
of the DT in this way alleviates a part of the
implementation challenge of Modelling and Simulation.
A clear simulation paradigm as well as a classification
for manual, semi-automatic and automatic model
generation supports the implementation of the HDT.

4.2. Substituting the physical system with its
digital shadow

A central question during the implementation of a
DT is how the digital model can know how the physical
system is currently behaving. Even if some parts of a
system are fixed or at least predictable, some elements
are not. In the example of a production system, the
placement of equipment (e.g. machines) would be
fixed, the production sequence or process parameters
(e.g. process or transfer times) would be predictable to
some extent. However, the placement of any movable
entity (e.g. work piece carriers, automated guided
vehicles, parts-in-progress) is unknown. Furthermore,
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the continuous manual assessment and input of such
data in any sensible time frame is both impractical as
well as prohibitively expensive. In the following we will
elucidate our rationale of how to deal with this issue:

One way to establish this information would be to
use dedicated sensors for collecting the data needed
by the DT. They could be installed at relevant
positions to track all moving entities and report
their progress. However, there are a number of
issues with this approach. Firstly, this involves
the establishment of additional hardware and data
infrastructure. The data has to be generated, stored
as well as processed and needs to be available in a
suitable form. Secondly, adequately establishing new
hardware requires experience to avoid interference with
productive systems and ensure correct function. DT
engineers are likely to be software engineers and will
probably lack the competence for these installations.
Thus, an expensive interdisciplinary team would be
required. Thirdly, deep domain knowledge is needed to
capture all relevant data from a manufacturing system,
furthering the need for an interdisciplinary team.

Another way would be to reuse the data that
is already being collected. Modern manufacturing
systems are typically controlled by a manufacturing
execution system. These systems require exactly the
same information as a DT, namely times and places
of any changes within the system. If one were to
access this data in near real-time, one could forego the
establishment of a dedicated sensor system. However,
such data collection has limitations, since information
in a production system is only collected where it is
needed for the execution of the manufacturing process.
Consequently, in between such measurements, the status
of the physical system is unknown.

In the concept of the HDT, the approach of reusing
data is chosen. That means, that as long as the
provided data represents the physical system accurately,
DT engineers no longer need to refer to the physical
system itself. All the data that has been gathered
about a system in the past and is presently still being
gathered constitutes its digital shadow (DS). Hence,
during the development of the HDT, the physical system
is substituted with its DS, since it contains the requisite
details to function as the physical component of a DT.
Figure 2 outlines the steps to achieve this substitution.

In practice this means that three types of data need
to be either explicitly available or inferable from other
data: position of all movable entities, status of all fixed
entities and process parameters per interaction between
fixed and movable entities. A standard information
package, destined for processing in the manufacturing
execution system typically contains this data, explicitly

telegram
timestamp
fixed entities
   ID
   status
movable entities
   ID
process data

telegram
timestamp
fixed entities
   ID
   status
movable entities
   ID
process data

telegram
timestamp
fixed entities
   ID
   status
movable entities
   ID
process data

physical 

system

physical 

system

generates 

continuously

digital shadow as ‘‘physical system‘‘

position of all movable entities

status of all fixed entities

process data per interaction 

between fixed and movable entities

Hybrid Digital Twin

produces

...

Figure 2. Physical system substituted with its DS

or implicitly. This has been visualized in Figure 2. One 
such information package, in remainder of this paper 
called telegram, should contain a timestamp, identifier 
of the fixed entity, the identifier of the involved movable 
entity, process data (if applicable) and status of the 
fixed e ntity. A  s ystem t hat f unctions t his w ay, as 
most manufacturing execution systems do, enables the 
implementation of the HDT.

The position of all movable entities refers to 
the specific l ocalization o f a ny m ovable e ntity (e.g. 
part-in-progress). If the position of all fixed entities as 
well as the production sequence is known, the position 
of the movable entity can be inferred.

The status of all fixed entities can either be directly 
extracted from a telegram (e.g. start/end of failures) or 
be inferred (e.g. working normally).

The process data per interaction between fixed and 
movable entity can usually be directly extracted from 
a telegram. This might be the most precarious point, 
since a manufacturing execution system does not strictly 
need this information for its function and thus there 
is no guarantee it will be provided with it. However, 
a modern manufacturing system does collect data to 
drive process improvement, provide documentation in 
case of quality issues or reclamation protection as well 
as anomaly detection. If telegrams do not contain this 
data, they need to be sourced from other systems and be 
integrated into the HDT environment.

Real-time ingesting and processing of all telegrams 
with the help of data about production sequence and 
fixed e ntity p ositioning p rovides a n e xtensive v iew of
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3
process parameter storage
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2
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movable entities

1 status of fixed entities

multiple instances 
of DES model

multiple instances 
of DES model

feedback

physical
system

Figure 3. Schematic of the implemented HDT

the production system. Although this only provides
information at certain points in time, the remaining
information can be established through interpolation
(e.g. analytic, simulation-based), if necessary.

Using the DS this way addresses the Data
Infrastructure implementation challenge. Since data is
already gathered, providing the DT with information
is now merely a data processing issue. Additional
infrastructure or data gathering instruments are no
longer necessary.

4.3. Connecting DS and simulation
component

At this point, the two components of the HDT have
been established separately: a DES model (representing
the structural and behavioural parts of the system) and
the DS (containing a quantitative view of the physical
system in real-time). In the following we will describe
our approach to connect them:

Within the concept of the HDT a loose coupling
strategy is preferred. This means that the operation
of the DES model and the data ingestion into the DS
are independent from each other. The use of modern
databases facilitates this without the need for significant
additional development. Instead, data from the physical
system is continuously being ingested into databases,
while simulation models can retrieve data from these
databases on-demand. The database system should be
able to handle issues of concurrency.

The only additional effort is to create the DES model
in such a way that it can initialize itself using the data
from the DS. Since a large part of the DES model has
already been manually created (e.g. fixed entities and
system behaviour) only system parameters and positions
of movable entities have to be retrieved from the DS.

In the end, all the constituent parts of the HDT
have been successfully implemented in other contexts.
In many cases, commercial or mature open-source
solutions are available (see Swain (2021)). This has the
potential to reduce the implementation cost of the HDT
sufficiently to become economically viable.

5. Prototype implementation

The test case for implementing the HDT concept
is a modern manufacturing line that is assembling
rotors for electric motors which are intended for use in
battery electric vehicles. The manufacturing line has
been in operation since 2022 in Germany. During the
line’s planning, engineering, construction or ramp-up
phases no specific measures were taken to facilitate the
integration of a DT at a later date. However, it does
feature a manufacturing execution system that controls
operations and also collects process data to establish
traceability and to support improvement processes. In
the end, its standard data collection infrastructure is
compliant with the requirements of the HDT concept.
It should be noted that the prototype is in early
development. This means its implementation is not
complete and methodical experiments have not yet been
performed.

5.1. Concluded developments

The general schematic of the HDT is depicted in
Figure 3. Data, which is sent to the manufacturing
execution system is also supplied to Apache Kafka,
an open-source event-based streaming platform.
Consequently, this platform can provide a data
stream which is then ingested and preprocessed by a
Python-based microservice. This microservice analyzes
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each telegram, puts it into context with past telegrams
and inserts it into the databases which constitute the DS.
Two databases, in their prototypical form implemented
with SQLite, represent the current status of all fixed
entities and the the positioning and status of all movable
entities. A third database, also implemented with
SQLite, functions as a short-term memory system for
all parameters concerning specific rotors-in-progress.
It overflows into another database for longer-term
parameter storage.

The simulation component of the HDT is a DES
simulation model. The skeleton of the model, meaning
representations of production hardware, production
sequences and special processes, is engineered
manually. The Python-based model is designed as a
microservice using the open-source DES simulation
package SimPy. Interfaces within the model permit the
retrieval of real-time data from the databases of the DS.

In operation, a continuous synchronization between
physical system and simulation model would be
very demanding, since every individual physical
change would immediately have to be represented in
the simulation component. Consequently, potential
simulations would have to be updated mid-execution
to avoid working with outdated information. As
the DS already provides an up-to-date view of
the physical system, we argue that a periodical
re-instantiating is sufficient and chose this strategy for
our implementation. Additionally, the re-instantiating
may also serves as part of the simulation initialization.

Long-term parameter storage provides basic system
parameters such as processing times or transfer times,
while short-term parameter storage shows current
trends. The other two databases of the DS enable an
instantiation of the model with the current status of
the system. In the end, a simulation model is created
that accurately represents the production line, including
all parts which are in progress. Multiple instances of
the model can now be simulated in parallel, providing
statistically reliable results.

At this time, the implemented HDT has a range of
projected applications in the production environment.
Firstly, it could be used as a near real-time information
system to recognize production status, anomalies and
parameter drift. Secondly, the simulations from the
HDT could provide a short-term prognosis of the
production to identify possible issues. This way
corrective measures can be implemented before any
problems occur. Thirdly, the HDT could provide a
testing environment for other prognostic algorithms
such as machine learning, since it contains all relevant
production information but has no potentially hazardous
autonomous influence on the production system.

5.2. Remaining issues and proposed
advancements

Since the prototype is still in early development,
there are still open issues and features to be added.
Further development of the HDT prototype is separated
into four phases.

Firstly, methodical experimentation is required
to validate results and adjust operational parameters,
especially instantiation frequency, number of parallel
simulations and simulated timespan. There are
considerations to be made between these parameters.
Figure 4 elucidates the relationship between
initialization (in the prototype instantiation) frequency
and simulated timespan. An extended simulation
timespan will gradually lead to accumulated simulation
inaccuracies due to the imperfectness of the simulation
model. Reinitializing the simulation can reset these
inaccuracies. However, frequent initializations lead
to shortened simulation timespan, which diminishes
the information gained through simulation. A suitable
balance between these antagonistic parameters needs to
be established on a case-by-case basis.
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Figure 4. Principle of online-simulation, see Boh
ács and Semrau (2012) and Scheer et al. (2021)

Secondly, the HDT is supposed to function as a 
monitoring and information system. The production 
line’s stakeholders will be supplied with information 
about the current status of the system in real-time such 
as basic performance indicators, machine parameters 
and suspected anomalies (e.g. parameter drift). The 
development of a simple user interface and the migration 
of the HDT to a public cloud service will facilitate 
this functionality. Providing such a functionality can 
supply an intermediate return of expenditures toward the 
implementation of the HDT.

Thirdly, proactive feedback from HDT’s simulations 
to the physical system will be established. At 
first, h uman a gents w ill b e n otified of  is sues within 
the production line and will receive countermeasure 
recommendations. This way, all machine-made 
instructions have human oversight to avoid the legal 
and security issues of autonomous systems. At this 
stage, the HDT will resemble the previously researched 
symbiotic simulation decision support system (see Aydt

Page 1445



et al. (2008)). In the future it is conceivable to
remove operational human oversight to fully automate
the system to eventually fulfil the established definition
of the DT (as developed by Kuehner et al. (2021)) and
of the symbiotic simulation control system (as described
by Aydt et al. (2008)).

The fourth phase will encompass the extended usage
of the real-time data contained within the DS and
the HDT’s ability to accommodate further constituent
models. The HDT can be a platform to deploy
simulations and algorithms (e.g. machine learning)
independently from other productive systems. Since
most IT systems concerning manufacturing systems
are somewhat self-contained to provide security and
stability, a parallel system can provide a lower-threshold
alternative to develop and deploy innovative measures.

6. Summary and future work

This paper has introduced the HDT as an answer to
the research question initially stated and how its main
elements were derived. An early-development prototype
could illustrate the feasibility of the methodology.
Further, the paper could demonstrate how the most
prominent DT implementation challenges can be
addressed by using the concept of the HDT.

6.1. Benefits

In conclusion, the HDT is a valuable approach
to introduce the concept of the DT to previously
inaccessible environments due to lower implementation
efforts by reducing its implementation challenges.

The main reason behind these decreased costs is
the usage of well known methods. In the planning
phase of a manufacturing system, decision makers and
experts can efficiently gauge the cost of implementing
a HDT due to its established components. There
already is ample access to hardware, software as
well as capable personnel to execute implementations.
Consequently, the cost for this infrastructure is
reasonable. Additionally, risk assessments are easier,
since these known methods have equally known risks
and shortcomings.

Another benefit are possible synergies that arise
during the implementation of the HDT. Its individual
components have independent uses. A simulation model
can provide insights during planning phases even in an
offline work mode. The DS can supply more systems
than just the HDT with data, resulting in little to no
additional cost. Data analytics and machine learning can
use the exact same infrastructure. It could be argued that
the connection of DS and simulation model is the only
effort specific to the HDT.

6.2. Limitations

The prototype which has been described in this
paper is still in early-development. Consequently, no
observations, data points or testing protocols can be
presented to validate the concept at this time. It is
paramount to conclude the prototype’s development
to methodically evaluate the validity of the HDT.
Furthermore, it is necessary to create additional case
studies to assess the applicability of the concept to
different manufacturing systems.

Even if the requirements for the HDT are
comparatively low, they still limit its practicability.
A manufacturing system must work with a modern
manufacturing execution system. It also needs to be
operational, meaning it is both currently functioning
and has been functioning at least for a short while
to generate data that contains information about its
behaviour. It also requires at least a rudimentary data
infrastructure for transmission, processing and storage
of data. However, further research is unlikely to reduce
these requirements.

A disadvantage of the proposed HDT concept
compared to DTs which are tightly coupled to the
physical system could be the potential loss of real-time
control. Introducing the DS incurs certain delays
which means that the HDT may no longer be able to
control processes directly. However, the resulting loose
coupling requires much less implementation effort and
might make the implementation economically feasible.
Nonetheless, the proposed setup should still prove
advantageous for operative decision making.

6.3. Future development

Future developments will involve the specification
and extension of the mentioned benefits as well as the
continued minimization of the remaining issues. The
stated goal of the HDT development is to provide a
concept that is able to introduce the DT into industrial
practice.

Furthermore, a dissertation will put the development
and usage of the HDT in its academic context as
well as provide a reference for future implementations.
Thereafter, further industrial prototypes will translate
the academic concept into a viable industrial strategy.
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