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Abstract

Building the Internet of Behaviors (IOB) obviously
requires capturing human behavior. Sensor input from
eye tracking has been widely used for profiling in market
research, adaptive user interfaces, and other smart sys-
tems, but requires dedicated hardware. The wide spread
of webcams in consumer devices like phones, notebooks,
and smart TVs has fostered eye tracking with commodity
cameras. In this paper, we present a systematic review
across the IEEE and ACM databases – complemented by
snowballing and input from eye tracking experts at CHI
2021 – to list and characterize publicly available soft-
ware for webcam eye tracking that estimate the point-of-
regard with no additional hardware. Information from
articles was supplemented by searching author websites
and code repositories, and contacting authors. 16 eye
trackers were found that can be used. The restrictions
regarding license terms and technical performance are
presented, enabling developers to choose an appropri-
ate software for their IoB application.

Keywords: gaze estimation, webcam eye tracking, ac-
curacy, sampling rate, systematic review

1. Introduction

Intelligent applications such as personalized
YouTube playlists and product recommendations on
Amazon that respond to the users’ behavior enhance
digital services by connecting to the users on a personal
level. Eye tracking has been proven to be useful for
determining users’ attitude and attention, and has there-
fore been used in market research, adaptive information
systems, and, recently, entertainment. Although prices
for dedicated eye tracking devices have dropped, they
are still not widespread. On the other hand, webcams

have been integrated into many devices such as mobile
phones, tablets, and notebooks.

As a result, researchers have developed solutions that
use images from a webcam or the front-facing camera of
a mobile device and coined them webcam eye tracking.
The idea of webcam eye tracking is not new, but the ac-
curacy and sampling rate of available solutions has so
far not been competitive with even entry-level commer-
cial eye trackers like the Tobii Pro Nano1. A reasonable
sampling rate is necessary to distinguish between fixa-
tions at a specific point on the display and the saccade
transitions between them.

In a previous literature, Hansen and Ji (2010) cate-
gorized eye and gaze detection methods and identified
research trends. However, the article does not describe
or report the performance of particular working solu-
tions. Ferhat and Vilariño (2016) identified more than 60
gaze estimation solutions and critically noted that only a
small fraction of the source codes have been made pub-
licly available. The authors list seven open source eye
trackers, though some are no longer supported. The re-
tention of the source code not only slows down the de-
velopment of better eye trackers, but also makes them
inaccessible to researcher and practitioners not wanting
to engineer their own, but who instead are looking for
a working solution as an enabling tool for another ap-
plication. More recent reviews make clear how much
research has since progressed. The systematic review
by Shehu et al. (2021) lists 17 open-source eye trackers
– though multiple are deprecated or not operational with
conventional cameras. Cheng et al. (2021) observed an
almost exponentially increasing number of articles pre-
senting new gaze estimation techniques between 2015
and 2021. This resulted in a myriad of feature extrac-
tion methods, neural network architectures, and calibra-

1Tobii Pro Nano: https://www.tobiipro.com/product-listing/nano/.
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tion approaches. Since the source code of most reviewed
systems is not public, the authors implemented a selec-
tion and compared their accuracy on different datasets.
To the best of our knowledge, their article is the only ex-
isting work that compares the performance of multiple
non-commercial eye tracking software and thus gives
a benchmark to third-party developers. It focuses on
appearance-based gaze estimation with deep learning,
which is only a subset of the available techniques. Yet,
already within this narrow field, the design options are
so numerous and complex that non-experts are unlikely
to succeed in implementing the systems based only on
the specifications from the research articles.

The goal of this systematic review is thus to iden-
tify eye tracking software that can be readily used by
others. It targets developers and researchers who are
not necessarily eye tracking experts. Unlike previous re-
views, it is not our objective to compare gaze estimation
methods and theories. Instead, we create a catalog of
16 working software solutions from which developers
and researchers can select the most appropriate option
depending on the requirements of their projects.

In behavioral research, a high sampling rate and ac-
curacy are essential for behavioral research to correctly
classify eye movement (Gibaldi et al., 2017). The latter
is typically conditional on an often lengthy eye tracker
calibration. Yet a lengthy calibration limits the usabil-
ity of eye tracking for HCI applications (Drewes et al.,
2019). We thus formulate three research questions:

• RQ1: For what runtime environments and terms
of use are webcam eye trackers available?

• RQ2: How does the model initialization and per-
sonal calibration affect usability?

• RQ3: What accuracy and sampling rate can ap-
plication developers expect?

To answer these questions, we conducted a sys-
tematic review according to the PRISMA guidelines
(Liberati et al., 2009) with a qualitative result analysis.

2. Method

2.1. Search procedure

Information sources: Articles were identified by
searching electronic databases and scanning reference
lists of included articles. The search was applied to the
ACM Guide to Computing Literature (1951 – present)
and IEEE Xplore (1929 – present) databases, which we
identified as artifact oriented libraries. The following
search string was used: ("eye tracking" OR "gaze track-
ing" OR "gaze estimation") AND ("device camera" OR
"built-in camera" OR "webcam" OR "web cam*"). No
restrictions on language, publication date, or publica-

tion type were set. The last search was run on May 3,
2022. The set of identified eye trackers was extended by
consulting with eye tracking experts during the EMICS
workshop (Wang et al., 2021) held on May 14, 2021 at
the ACM CHI conference. The search strategy was dis-
cussed with 15 independent reviewers. Agreement was
reached that the relevant keywords were included and
most systems that were not found through the database
search were unpublished or not listed in the databases.
Thus, no modification to the initial search strategy was
made.

Selection of relevant systems: Stand-alone imple-
mentations (excluding extensions or wrappers for other
systems) of software for estimating the point-of-regard
(PoR) – i.e., the position on the computer display at
which that the gaze is directed – were considered. Soft-
ware of any release date and status, including published
and unpublished solutions, were included if the follow-
ing criteria were met:

• The PoR is estimated as coordinates of the looked
at screen position. Excludes software that esti-
mates the gaze direction or broader gaze region.

• The code or interface for integration into an arbi-
trary application is publicly available. Excludes
methods without published code or API for inte-
gration into an arbitrary application.

• Runs on desktop (laptop, PC with monitor) or mo-
bile devices (phone, tablet) without external HW.
Excludes head-mounted devices (HMDs) and sys-
tems using multiple cameras or special HW.

• Targets healthy adults. Excludes eye trackers
for children or users with motor impairments, as
those are typically fine-tuned to the disparate ocu-
lomotor properties of children (e.g., Cui et al.,
2017), prioritize robustness over accuracy (e.g.,
Karamchandani et al., 2015), or use external HW
to provide robustness (e.g., Hughes et al., 2017).

Eligibility of the articles from electronic databases
was assessed by two independent reviewers. Disagree-
ments were resolved by collectively scanning and dis-
cussing articles in dispute until a consensus was reached.
The search provided 1808 articles. The steps taken to
identify the final set of eye trackers can be retraced via
the replication package2. After adjusting for duplicates,
1785 articles remained. Of these, 1669 articles were dis-
carded after reviewing the title and abstract because it
appeared that they did not meet the criteria.

The full text of the remaining 116 articles was exam-
ined. If no link to the source code was provided, author
websites and code repositories related to the authors,
system, or article were searched to obtain a comprehen-

2Replication package: https://www.ipvs.uni-stuttgart.de/institute/
team/Heck-00002/
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sive collection of publicly available solutions. 106 arti-
cles did not meet the inclusion criteria. Of those, 13 re-
quired external hardware to be integrated into HMDs or
used multiple cameras, depth sensors, or external light
sources. 6 articles proposed functionalities for existing
eye trackers that can not be used as stand-alone solu-
tions. In 26 cases, the PoR was not calculated. Instead,
the objective was to detect and track the eye, estimate
the gaze direction, or measure attention to a broad screen
area. For 61 articles, no source code was found, either
because the system had not yet been implemented, or be-
cause the authors described the implementation without
sharing the source code. By comparing author names
and source code references, two of the remaining 10 ar-
ticles were identified as publications of the same system.
Since they report complementary performance indica-
tors, both were included in the systematic review.

By checking the references of included articles, 4
more eye trackers were found in unpublished sources
and articles not indexed by the searched databases or not
containing any of the search terms related to camera.

Additionally, 3 eye trackers that met the criteria for
inclusion were suggested at the EMICS workshop 2021
and were added to the systematic review.

2.2. Data extraction

Outcome measures: Key characteristics of the sys-
tems and their evaluation were extracted from articles
and online sources into a standardized documentation
form3. Nine authors were contacted for additional in-
formation. Six responded and five supplemented details
about the evaluation. Two authors were contacted for
download credentials of a source code4 and database5.
Based on the extracted information, the systems were
clustered across the target device (mobile vs. desktop
vs. browser) and categorized based on the gaze estima-
tion method as proposed by Ferhat and Vilariño (2016):

1. Appearance-based: Uses deep learning to infer
the PoR from a vector of image pixel intensities.

2. Feature-based: Extracts high-level features (e.g.,
facial feature points) from the image and feeds
them into the gaze estimation model.

3. Model-based: Creates a geometric model of the
eye and infers the PoR from its parameters.

Deployment options were extracted with regard to
the runtime environment and license terms (RQ1). If
not specified, it was assumed that the eye tracker was

3Documentation form: https://www.ipvs.uni-stuttgart.de/institute/
team/Heck-00002/

4The password for the NNET source code can be obtained form the
author: https://userweb.cs.txstate.edu/~ok11/index.html.

5Download of the GazeCapture dataset is made available after reg-
istration: https://gazecapture.csail.mit.edu/download.php.

designed for the operating system for which deploy-
ment instructions were provided. The documentation
form was piloted on three systems and, as several on-
line repositories appeared to be no longer maintained,
was complemented by the date of the last code update.

To assess whether disruptive online data acquisition
limits usability (RQ2), information was extracted about
model initialization and personal calibration.

The primary outcome measures were the reported
sampling rate in frames per second (fps) and accuracy
(RQ3). In settings where the exact distance between
the user’s eyes and the display are unknown, it is not
possible to accurately predict the gaze angle – which
is typically used to measure gaze accuracy (Huang et
al., 2017). We thus report accuracy as the Euclidean
distance in centimeters between the estimated and true
PoR. If an article reported only the gaze angle, it was
converted into its metric equivalent if the available in-
formation allowed it6. The results were organized by de-
vice type. This distinction was needed because the same
metric accuracy on a desktop implies a much higher rel-
ative error on the smaller screen of mobile devices. Sam-
pling rates on mobile devices were expected to be lower
due to their limited processing power. Since some sys-
tems are under continuous development, only the results
of their most recent evaluation are reported.

Risk of bias assessment: To ascertain the validity of
generalizing the reported performance to other users and
contexts, we extracted the number of test subjects and
constraints on light, head motion and glasses. Accuracy
was considered valid when calculated across all sub-
jects. If technical failures led to the exclusion of sam-
ples, we noted their frequency and cause. Validity of the
sampling rate was confirmed if the gaze was estimated in
real time on the target device. If computation was done
offline on another (more powerful) device, we extracted
the specifications of the processing component.

3. Software integration (RQ1)

The solutions aim to support multiple devices, but
most have been tested on only one (n = 8) or few (n = 1)
systems, or on eye tracking databases without ever run-
ning on the actual target device (n = 3)7. Only software
solutions running in the browser (n = 4) have been tested
on diverse end user devices. Table 1 lists the eye trackers
according to the target devices, with information about
supported operating systems.

6Errors in cm were calculated from the visual angle α as ϵ = 2 ∗
D ∗ tan(α/2), where D = distance between the eyes and the display.

7The accuracy of three additional systems was evaluated on eye
tracking databases. However, feasibility tests were performed on the
target devices.
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Table 1. Summary & terms of use of included eye trackers

Runtime Environment Gaze Estimation Model Release Details

Software & Author(s) Device Software Method Model Training Data1 License Source Code Updated
OpenGaze
(Zhang et al., 2019)

desktop Ubuntu appearance AlexNet face images
& videos

proprietary
research

www.opengaze.org 04-Jun-20

FAZE
(S. Park et al., 2019)

desktop Ubuntu appearance MAML face images Nvidia https://github.com/
NVlabs/few_shot_gaze

22-Sep-20

GazeRefineNet
(S. Park et al., 2020)

desktop Ubuntu appearance ResNet
+ LSTM

face videos MIT https://github.com/
swook/EVE

24-May-21

ODABE
(Klein Salvalaio &
Ramos, 2019)

desktop all appearance VGG11 face images CC0-1.0 https://github.com/
brunoklein99/
eye-tracking-otl

16-Jul-19

CVC ET
(Ferhat et al., 2014)2

desktop Ubuntu,
macOS

feature GP Iris segmentation
histogram*

GPLv2 https://github.com/
tiendan/OpenGazer

10-May-16

Optimeyes
(Allen & Jensen, 2014)

desktop Linux,
Windows

feature LR Pupil-center-
keypoint vector*

MIT https://github.com/
LukeAllen/optimeyes

25-Mar-21

iTracker
(Krafka et al., 2016)

phone/
tablet

incompatible appearance AlexNet face images proprietary
research

https://github.com/
CSAILVision/
GazeCapture

09-Jun-21

GazeEstimator
(Jigang et al., 2019)

phone/
tablet

incompatible appearance ResNet face images CC0-1.0 https://github.
com/liujigang82/
gazeEstimator

26-Feb-19

iMon
(Huynh et al., 2022)

phone/
tablet

iOS appearance Efficient-
NetB3

face images CC0-1.0 https://github.com/
imonimwut/imon

14-Aug-21

GAZEL
(J. Park et al., 2021)

phone Android appearance AlexNet
+ LR

face images CC0-1.0 https://github.com/
joonb14/GAZEL

08-Nov-21

NNET
(Holland et al. 2012,
Sewell et al. 2010)

tablet iOS feature ANN Facial feature
points*

GPLv3,
commercial

https://userweb.cs.
txstate.edu/~ok11/
nnet.html

outdated

EyeTab
(Wood & Bulling, 2014)

tablet Windows model Iris
contour

– MIT https://github.com/
errollw/EyeTab/

07-Apr-14

TurkerGaze
(Xu et al., 2015)

all browser feature RR
+ SVR

Eye appearance
feature vector*

MIT https://github.com/
PrincetonVision/
TurkerGaze

07-Apr-16

WebGazer
(Papoutsaki et al., 2016)

desktop browser feature RR Pupil location &
eye features*

GPLv3 https://webgazer.cs.
brown.edu/

25-Mar-22

RealEye
(Lewandowska, 2019)3

all browser feature RR Pupil location &
eye features*

commercial https://www.realeye.io/ continuous
support

GazeRecorder
(Deja, 2013)

all browser n/d n/d n/d CC BY-NC,
commercial

https://github.com/
szydej/GazeRecorder

26-Jun-19

RR: ridge regression; LR: linear regression; GP: Gaussian Process
1 Models trained on data marked with asterisk (*) are user-dependent (i.e., they are trained on user data collected at the start of each new session).
2 The outcome measures reported in this review are based on the more recent evaluation by (Ferhat et al., 2015).
3 The outcome measures reported in this review are based on the latest software version and evaluation described by (Wisiecka et al., in press).

3.1. Desktop computers

All 6 desktop eye trackers run on Linux, and 3 pro-
vide additional support for Windows, macOS, or both.

OpenGaze (Zhang et al., 2019) implements a pro-
gramming interface for the appearance-based gaze es-
timation pipeline MPIIFaceGaze (Zhang et al., 2017)
with an AlexNet pre-trained on face images. FAZE (S.
Park et al., 2019) uses a Model-Agnostic Meta Learn-
ing (MAML) approach to adapt a pre-trained model to
the individual user based on very few calibration points.
GazeRefineNet (S. Park et al., 2020) combines a ResNet
with a LSTM trained on video data to take into account
temporal patterns. ODABE (Klein Salvalaio & Ramos,
2019) is a platform agnostic solution that uses online
transfer learning to personalize a pre-trained VGG11
model with calibration data collected on mouse clicks.

The CVC Eye Tracker (CVC ET) (Ferhat et al.,

2015) builds on the deprecated Opengazer (Zieliński,
2009). Its current version transforms the initially ap-
pearance (Ferhat et al., 2014) into a feature-based solu-
tion. It trains a Gaussian Process with histogram fea-
tures of segmented iris pixels collected at calibration.
Optimeyes (Allen & Jensen, 2014) applies linear regres-
sion to a pupil-center keypoint vector, where the key-
point is the center of the eye bounding boxes.

3.2. Mobile devices

On mobile devices, screen dimensions and distance
vary substantially. The three systems supporting both
tablets and phones thus train models with images from
both devices. The appearance-based iTracker (Krafka
et al., 2016) and GazeEstimator (Jigang et al., 2019)
implement a pre-trained AlexNet and ResNet, respec-
tively. Yet running such large models on mobile devices

Page 6823

www.opengaze.org
https://github.com/NVlabs/few_shot_gaze
https://github.com/NVlabs/few_shot_gaze
https://github.com/swook/EVE
https://github.com/swook/EVE
https://github.com/brunoklein99/eye-tracking-otl
https://github.com/brunoklein99/eye-tracking-otl
https://github.com/brunoklein99/eye-tracking-otl
https://github.com/tiendan/OpenGazer
https://github.com/tiendan/OpenGazer
https://github.com/LukeAllen/optimeyes
https://github.com/LukeAllen/optimeyes
https://github.com/CSAILVision/GazeCapture
https://github.com/CSAILVision/GazeCapture
https://github.com/CSAILVision/GazeCapture
https://github.com/liujigang82/gazeEstimator
https://github.com/liujigang82/gazeEstimator
https://github.com/liujigang82/gazeEstimator
https://github.com/imonimwut/imon
https://github.com/imonimwut/imon
https://github.com/joonb14/GAZEL
https://github.com/joonb14/GAZEL
https://userweb.cs.txstate.edu/~ok11/nnet.html
https://userweb.cs.txstate.edu/~ok11/nnet.html
https://userweb.cs.txstate.edu/~ok11/nnet.html
https://github.com/errollw/EyeTab/
https://github.com/errollw/EyeTab/
https://github.com/PrincetonVision/TurkerGaze
https://github.com/PrincetonVision/TurkerGaze
https://github.com/PrincetonVision/TurkerGaze
https://webgazer.cs.brown.edu/
https://webgazer.cs.brown.edu/
https://www.realeye.io/
https://github.com/szydej/GazeRecorder
https://github.com/szydej/GazeRecorder


would require substantial modifications. Accuracy eval-
uations are therefore performed on desktop computers
with pre-recorded images. In contrast, iMon (Huynh
et al., 2022) leverages Apple’s CoreML framework to
run a pre-trained EfficientNetB3 on iPhone and iPad.
Based on the observation that models initialized with
tablet data are more accurate due to being trained on data
from larger screens, GAZEL initializes an AlexNet with
tablet data. In the online phase, a linear regression uses
calibration samples to transfer the model to phones.

NNET (Holland & Komogortsev, 2012; Sewell &
Komogortsev, 2010) is a feature-based approach for
iPads that trains an Artificial Neural Network (ANN)
on iris patches extracted from calibration samples. The
software is – as declared by the authors – outdated.

EyeTab (Wood & Bulling, 2014) is the only model-
based among the reviewed systems. It creates a model
of the iris contours to estimate the PoR on tablets.

3.3. Browser integration

Four systems run in the browser. The feature-based
TurkerGaze (Xu et al., 2015) trains a ridge regression
model at the start of each session with eye appearance
features from calibration samples. While this provides
real-time gaze estimation, accurate results require a sub-
sequent offline phase to train a refined Support Vec-
tor Regression (SVR). According to the developers, the
desktop tested software also runs on mobile devices, but
with a presumably lower accuracy due to, e.g., more
variable head poses and smaller screens. WebGazer (Pa-
poutsaki et al., 2016) uses more refined pupil location
and eye features to train a ridge regression. It only
supports desktop computers. RealEye (Lewandowska,
2019) is a commercial solution based on WebGazer. Us-
ing a customized face landmark model, it supports both
mobile and desktop devices. GazeRecorder (Deja, 2013)
is another device-agnostic commercial solution. While
usage is free for research purposes, the provider does not
disclose any details about the gaze estimation method.

3.4. Terms of use (licenses)

Any software published on GitHub – unless accom-
panied by a separate license – falls under the permis-
sive Creative Commons Zero License CC0-1.0 (Creative
Commons, 2017). It can be copied, modified, and dis-
tributed even for commercial purposes (n = 1). The
MIT license (Open Source Initative, n.d.) allows to copy,
modify, and distribute the software, as long as copies of
the source code are accompanied by the license state-
ment (n = 4). Systems under the copyleft GNU Gen-
eral Public License GPLv2 / GPLv3 (FSF, 2007) can be
copied, modified, and distributed if derivatives are re-

leased under the same license (n = 3).
Research licenses restrict usage to non-commercial

purposes (n = 4). Under the Creative Commons Attri-
bution Non-Commercial License CC BY-NC 2.0 (Cre-
ative Commons, 2017), GazeRecorder may be copied,
modified, and distributed for non-commercial purposes
if derivatives reference the source code. Proprietary li-
censes customize the terms of use. The Nvidia Source
Code License permits to use, modify, and distribute the
source code, but restricts the release of derivatives to
non-commercial purposes under the same license (S.
Park et al., 2019). OpenGaze may be used and modi-
fied for internal research only and does not permit the
distribution of derivatives (Zhang et al., 2019). ITracker
additionally requests to be cited if results obtained with
the software are published (Krafka et al., 2016).

For more permissive use, two systems additionally
offer commercial licenses. Only RealEye has no free
version, but requires a commercial license with monthly
subscriptions starting at $189 (Lewandowska, 2019).

4. Initialization and calibration of the
gaze estimation models (RQ2)

Appearance- and feature-based methods train ma-
chine learning models on the pixel intensities of face im-
ages or on extracted features, respectively (cf. Table 2).

Table 2. O�ine training & personal calibration data

Software Offline Training Personal Calibration

ap
pe

ar
an

ce

GazeEstimator GazeCapture –
iTracker GazeCapture 13 points
iMon GazeCapture 20 points
FAZE GazeCapture 9 points
GAZEL 10 tablet users interaction-based
ODABE MPIIGaze interaction-based
OpenGaze MPIIGaze, EYEDIAP 60 points
GazeRefineNet EVE saliency-based

fe
at

ur
e

NNET – 16 points
Optimeyes – interaction-based
TurkerGaze – 9 points
CVC ET – 15 points
RealEye – 40 points
GazeRecorder* n/d 10-30 points
WebGazer – interaction-based

m
od

el EyeTab – –

* Since no information about offline training has been disclosed,
GazeRecorder is subsumed under feature-based methods.

Appearance-based methods: Most models (n = 7)
are pre-trained on large eye tracking datasets covering
diverse ambient conditions and user appearance. Gaze-
Capture8 contains images from 1249 iPhone and 225
iPad users. Three models were initialized with the
dataset’s 1271 training samples (Huynh et al., 2022; Ji-
gang et al., 2019; Krafka et al., 2016). FAZE, although

8GazeCapture: https://gazecapture.csail.mit.edu/
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being designed for desktops, is also trained on Gaze-
Capture (S. Park et al., 2019). For robustness to within-
subject variability, only uses samples with more than
400 frames. J. Park et al. (2021) argue that many Gaze-
Capture images represent nontypical use cases (e.g.,
arms being raised above the head). They therefore train
GAZEL with data collected from ten tablet users under
professedly more typical usage scenarios.

Datasets with laptop images include MPIIGaze9

whose 15 samples were used to train ODABE (Klein
Salvalaio & Ramos, 2019) and OpenGaze (Zhang et al.,
2019). OpenGaze was additionally trained on the 16
videos from EYEDIAP10. GazeRefineNet was released
with the EVE dataset11 consisting of 54 videos (S. Park
et al., 2020). The sequential video data of EYEDIAP
and EVE can be used to train temporal models.

Feature-based methods: Typically, personalized
models are created through online calibration where the
users look at a set of points – whose number varies
across the eye trackers – on the display (n = 9). By
knowing the estimation error at the collected points, a
calibration model is trained and applied to all subse-
quent gaze estimates. In OpenGaze, calibration with 60
points is optional, but its omission increases the error by
factor 2.56 (Zhang et al., 2019). Yet, as increasing the
number of calibration points beyond four leads to only
marginal improvements, a reasonable accuracy may be
possible with less samples. Similarly, FAZE benefits
the strongest from calibration when performed with nine
points (S. Park et al., 2019).

As this time-consuming procedure compromises us-
ability, four eye trackers implement implicit techniques:

• Interaction correlation: The model is continu-
ously re-calibrated using click data as calibration
points (Allen & Jensen, 2014; Klein Salvalaio &
Ramos, 2019; Papoutsaki et al., 2016; J. Park et
al., 2021). WebGazer starts gaze estimation only
after training with 2-3 calibration points. Opti-
meyes produces accurate results with 10-20 sam-
ples, and GAZEL with 3 points, while achieving
only marginally better results with more samples.

• Saliency correlation: Assuming that users look
at visually striking areas, GazeRefineNet corre-
lates gaze points with visual saliency maps of the
screen content (S. Park et al., 2020).

Seven appearance-based methods also calibrate the
pre-trained models to fit them to each user and context.
While the model-based EyeTab is not calibrated, Wood
and Bulling (2014) ascribe its high error to the omission.

9MPIIGaze: https://www.mpi-inf.mpg.de/mpiigaze
10EYEDIAP: https://www.idiap.ch/en/dataset/eyediap
11EVE: https://ait.ethz.ch/projects/2020/EVE/

5. Performance outcomes (RQ3)

The primary objective of all included eye trackers
was to maximize accuracy. Sampling rate was fre-
quently reported (n = 11), but never the primary goal.
Because the experimental conditions, subjects, and HW
varied substantially, we describe the evaluations on a
qualitative level, rather than performing a meta-analysis.

5.1. Accuracy

Accuracy is typically assessed by asking test sub-
jects to look at points on the display and calculating the
Euclidean distance between the estimated PoR and the
visual stimulus. Six eye trackers were evaluated on eye
tracking datasets. In all other cases, data from a user
study was processed offline. The study details – includ-
ing constraints on the setup that may bias the general-
ization of the outcome – are presented in Table 3.

We should note that all performance outcomes are
reported by the authors and may not be obtained in dif-
ferent settings. For example, when tested with GAZEL’s
setup, GazeEstimator had an error of 3.86 cm (over three
times higher than in the original study) and the 1.9 cm
error achieved with iTracker was almost 1.5 times higher
(Jigang et al., 2019). In two evaluations, some samples
were excluded due to unsuccessful eye tracking (Wood
& Bulling, 2014) or technical issues (Papoutsaki et al.,
2016). As accuracy was calculated without these sam-
ples, we suspect a positive bias in the reported results.

Desktop trackers: On average, feature-based – in-
cluding software running in the browser, which were
all evaluated on desktop computers – outperformed
appearance-based methods. With an error of 4.06 cm,
WebGazer is a notable outlier (Papoutsaki et al., 2016).
However, the value was obtained with the original sys-
tem which has since been substantially modified. The
current version may perform significantly better, but,
according to the authors, has not been systematically
tested. The other feature-based solutions for which
metric accuracy is available predict the PoR within
1.04-2.93 cm of its true coordinates, which beats most
appearance-based methods with 2.75-3.77 cm accuracy.

All feature-based eye trackers were evaluated with
fixed head position and, exempting CVC ET (Ferhat et
al., 2015), require controlled light. While no effect mea-
sures for ambient conditions are reported, the develop-
ers of RealEye and WebGazer agree that head motion
and poor light substantially lower accuracy. Optimeyes
even requires retraining if users move their head (Allen
& Jensen, 2014). Ferhat et al. (2015) mention the option
to make the CVC ET resilient to head motion by im-
plementing a head movement correction. But since no
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Table 3. Reported accuracy & evaluation settings

Software Accuracy Hardware Setup Comment

in degrees
(pixels)

in cm1 Screen
Distance2

Screen
Size

# Test
Users

Constraints
H L G

Desktop trackers

ap
pe

ar
an

ce

OpenGaze 3.2◦ (–) 3.5 cm 62.5 cm 14” n=20 n=4 - Good light improves accuracy to 2.8◦

- Glasses reduce accuracy to 4.5◦

FAZE 3.14◦ (–) 3.29 cm 60 cm 13.3”-15.4” n=15 n=5 - Evaluated on MPIIGaze
- Issues with glasses and East Asians

GazeRefineNet 2.49◦ (95 px) 2.75 cm 65 cm 25” n=10 ✘ n=7 - Evaluated on EVE test set
ODABE – (–) 3.77 cm n/d 14” n=1 n=0 - Accuracy reported as normalized value

(0.15 on a
√
2 diagonal screen)

fe
at

ur
e

CVC Eye Tracker 2.23◦ (–) 2.33 cm 60 cm 13” n=6 ✘ n/d
Optimeyes 2.8◦ (79 px) (2.93 cm)3 n/d n/d n=1 ✘ ✘ ✘
Browser trackers
WebGazer - Accuracy with 50 calibration points

- Exclusion of 7 samples (6 online,
1 on-site): technical issues

online study – (175 px) n/d n/d n/d n=82 ✘ ✘ n=25
on-site study 4.17◦ (130 px) 4.06 cm 59 cm 24” n=5 ✘ ✘ n=0

TurkerGaze 1.06◦ (–) 1.04 cm 56 cm 18” n=3 ✘ ✘ ✘ - Accuracy computed as median error
after offline SVR model refinement

RealEye – (45 px) n/d n/d 27” n=83 ✘ ✘ n/d - Robust to glasses if pupils stay visible
GazeRecorder 1.43◦ (–) 1.75cm 70 cm 22” n=30 ✘ n=0 - Chin rest improves accuracy to 1.3◦

- Robust to glasses (except anti glare)
Mobile trackers
NNET 4.42◦ (204 px) 4.49 cm 58.42 cm 9.1” n=9 ✘ n=6

m
od

el EyeTab 6.88◦ (–) 2.58 cm 20 cm 11” n=8 n/d - Exclusion of 3 samples:
2 unsuccessful gaze estimations,
1 unsuccessful eye detection

ap
pe

ar
an

ce

iTracker (phone) – (–) 1.34 cm varying4 3.5”-5.5” n=121 n=25 - Evaluated on GazeCapture test set
iTracker (tablet) – (–) 2.12 cm varying4 7.9”-12.9” n=29 n=5

GazeEstimator (phone) – (–) 1.14 cm varying4 3.5”-5.5’ n=121 n=25 - Evaluated on GazeCapture test set
GazeEstimator (tablet) – (–) 1.92 cm varying4 7.9”-12.9” n=29 n=5

iMon (phone) – (–) 1.11 cm varying4 3.5”-5.5” n=121 n=25 - Evaluated on GazeCapture test set
iMon (tablet) – (–) 1.59 cm varying4 7.9”-12.9” n=29 n=5 - Significant negative effect of glasses

GAZEL – (–) 1.49 cm 40-50 cm 6.2” n=10 n=1 - Issues with glasses and female users

H: fixed head position; L: controlled ambient light; G: glasses (numbers, if given, indicate the number of study subjects wearing glasses)
1 Values printed in italics were converted from angular degrees based on the formula in Section 2.2.
2 Distance values are reported by the authors and are either fixed (if using a head rest) or averaged values across all subjects.
3 As screen distance is not reported, conversion is performed with D = 60 cm (based on the most frequent distance in other desktop settings).
4 A Neural Network layer infers the distance from the location and size of the head in each frame.

such extension has yet been integrated in any feature-
based tracker, it is difficult to estimate its complexity
and success. In contrast, most appearance-based track-
ers were evaluated with diverse head positions and light-
ing. Only GazeRefineNet was tested while blocking di-
rect and bright light (S. Park et al., 2020). The reported
accuracy can thus be expected to be obtained under chal-
lenging ambient conditions. Yet OpenGaze achieves a
12.5% higher accuracy under controlled light (Zhang
et al., 2019), suggesting that appearance-based methods
are indeed affected by light. GazeRecorder (of unknown
gaze estimation method) permits free head motion, but
a chin rest improves its accuracy by 9% (Deja, 2013).

Mobile trackers: Eye trackers for mobile environ-
ments are typically designed for robustness to ambient
conditions and user appearance. With the exception
of NNET (Holland & Komogortsev, 2012), they were
evaluated in perfectly unconstrained settings. The only

feature-based – and outdated (cf. Section3.2) – mobile
tracker NNET retains an estimation error of 4.49 cm on
tablets even in controlled light. With an accuracy of
1.11 - 1.49 cm on phones and 1.59 - 2.12 cm on tablets,
appearance-based solutions outperform the model-based
EyeTab (accuracy = 2.58 cm on tablets). While the abso-
lute error of most mobile trackers is lower than on desk-
tops, their performance in relation to the screen size is
in fact worse. With an error of 9.5% of the diagonal
screen extension, GAZEL reports the best performance
on phones (J. Park et al., 2021). On desktops, the error
of TurkerGaze gets as low as 2.3% (Xu et al., 2015).

While the evaluations, excepting TurkerGaze and
Optimeyes, did not exclude subjects with glasses, four
authors report a negative effect (Huynh et al., 2022; J.
Park et al., 2021; S. Park et al., 2019; Zhang et al.,
2019). According to the developers, GazeRecorder and
RealEye work with glasses if the eyes remain clearly
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visible. TurkerGaze, in contrast, cannot cope with the
light reflections and altered eye appearance caused by
glasses. Outcomes from evaluations on a random sam-
ple including subjects with glasses thus reflect the aver-
age expected accuracy, though individual performance
may differ (Holland & Komogortsev, 2012; Huynh et
al., 2022; Jigang et al., 2019; Krafka et al., 2016; Pa-
poutsaki et al., 2016; J. Park et al., 2021; S. Park et al.,
2020; S. Park et al., 2019; Zhang et al., 2019). Sys-
tems evaluated on a small sample with no subject wear-
ing glasses may perform worse on a population scope
(Deja, 2013; Klein Salvalaio & Ramos, 2019).

5.2. Sampling rate

Since the Neural Networks of appearance-based eye
trackers are computationally expensive, the limiting
component is typically the device’s processing power.
Reported sampling rates range from 8 fps on a Pixel 3
XL phone (GAZEL, J. Park et al., 2021) to 60 fps on an
iPhone 12 Pro (iMon, Huynh et al., 2022). Since iMon
leverages Apple’s Neural Engine, older devices with no
Bionic graphics card may incur much higher latencies.

The sampling rate of lightweight eye trackers such
as RealEye is conditional on the frame rate of the cam-
era. Still, for optimal performance at 30-60 fps, the com-
pany’s website specifies minimal HW requirements.

TurkerGaze and GazeRefineNet were evaluated of-
fline and report a sampling rate equal to the frame rate
of the camera. If computation times are high, the real-
time sampling rate may thus be lower.

Given the diversity of the evaluation HW, an objec-
tive comparison is not possible. Table 4 thus presents
the reported sampling rates on the specified HW.

Table 4. Reported sampling rates

Software Frequency Processing Component

ap
pe

ar
an

ce Desktop trackers
OpenGaze 13 fps PC (3.5 GHz CPU, GeForce GTX

TITAN Black GPU, 6GB RAM)
FAZE 15 fps mobile GTX 1080 TI GPU
GazeRefineNet (10 fps) (offline)1

fe
at

ur
e

CVC ET 30 fps n/d
Browser trackers
TurkerGaze (30 fps) (offline)1
RealEye 30 fps n/d
Mobile trackers
NNET 0.7 fps iPad 2 (1 GHz dual-core CPU)

m
od

el EyeTab 12 fps Microsoft Surface Pro 2 (quad-
core 2 GHz CPU, 8 GB RAM)

ap
pe

ar
an

ce iTracker (10-15 fps) (iPhone 6)2
iMon 60 fps iPhone 12 Pro (Apple GPU)
GAZEL 8 fps /

12 fps /
18 fps

Pixel 3 XL /
Galaxy S9 Plus /
Galaxy S20 Plus

1 Gaze estimation is not performed on the target device.
2 Expected (not yet implemented) on iPhone 6 with modified model.

6. Discussion and conclusion

We identified 16 eye tracking software solutions for
mobile and desktop devices. Research licenses restrict
the use of four systems to non-commercial purposes, and
one is charged on a monthly subscription (RQ1).

We extracted the expected performance of the eye
trackers as reported by the authors (RQ3). Some re-
ported an accuracy that would be sufficient for most ap-
plications (Duchowski, 2002), but evaluations on differ-
ent devices and with different users tended to produce
substantially less optimistic results (e.g., Jigang et al.,
2019). Sampling rates – if reported at all – could not
match the performance of commercial eye tracking HW.
With a frequency of 30 fps – which can be obtained
from both feature- and appearance-based eye trackers as
long as the client hardware is sufficiently powerful – it
is possible to extract fixations and saccades. In contrast,
the detection of microsaccades, which play an important
role in emotional and cognitive state prediction, require
a minimum sampling rate of 300 Hz (Duchowski, 2018).

One major challenge is to collect appropriate user
data for model initialization and personal calibration
(RQ2). Appearance-based eye trackers trained on a di-
verse dataset are generally most capable of coping with
challenging light and head motion. However, two sys-
tems performed poorly for users that are underrepre-
sented in the training datasets. FAZE was less accurate
for Asians (S. Park et al., 2019), and GAZEL for fe-
males (J. Park et al., 2021). Glasses remain a challenge
for most systems. Training the models – i.e., Neural
Networks of appearance-based or eye detection engines
of feature-based systems – with a large number of eye-
glass wearers can partly alleviate the issue, but only if
the eye is not (partly) occluded by the glasses or light
reflections. Yet accurate gaze estimation still requires
online refinement through personal calibration.

6.1. Limitations

Study and outcome level: The reviewed articles re-
port performance selectively in inconsistent units, and
the multiplicity of evaluation setups make an objective
comparison unfeasible. We were only partly able to re-
solve the issue of selective reporting, because not all au-
thors provided the missing information. Our synthesis
is therefore of pure qualitative nature. For a quantitative
comparison, all eye trackers should be evaluated with
the same devices, users, and ambient conditions. Cheng
et al. (2021) have started to implement a small sample
of appearance-based eye trackers to compare their accu-
racy on multiple eye tracking datasets. For the evalua-
tion of the sampling rate, the software additionally has
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to run on the actual target device. Since the eye track-
ers were designed for different runtime environments, a
comprehensive evaluation is not a trivial undertaking.

Review level: We found a high number of papers de-
scribing a gaze estimation method that made no mention
of the source code being publicly available. In some
cases, we found the code by searching the authors’ web-
sites and online repositories. But since multiple authors
have left their research institutions, it is possible that we
missed a system that is in fact publicly available.

6.2. Implications for practice

We developed a catalog of publicly available eye
tracking software to help third party application devel-
opers identify working solutions that meets their run-
time environment and performance requirements and is
licensed for the intended purpose. In the process of our
review, we examined the source codes and consulted
authors whenever we suspected that a software was no
longer supported. We could thus filter out open source
eye trackers listed in previous reviews (e.g., Cheng et
al., 2021; Ferhat & Vilariño, 2016; Shehu et al., 2021)
that are no longer supported, or require external hard-
ware or third-party software. We further observed that
some of the mobile trackers (i.e., iTracker and GazeEs-
timator) have never actually been implemented on the
target system. Rather, they have been designed antici-
pating the advent of even more powerful HW. Exclud-
ing these two solutions, iMon promises the best accu-
racy performance for iOS, and GAZEL for Android de-
vices. The browser based solutions TurkerGaze, Real-
Eye, and GazeRecorder may also be an option, but accu-
racy is only reported for desktop environments. All three
software solutions outperform desktop trackers in terms
of accuracy, and achieve a comparable or better sam-
pling rate. If no online analysis is required, TurkerGaze
promises highly accurate gaze estimates. Projects that
require real-time evaluations may instead revert to Gaz-
eRecorder which promises comparable real-time results.
In terms of usability, the interaction-based calibration
in GAZEL, ODABE, Optimeyes, and WebGazer, or the
saliency-based approach in GazeRefineNet have a clear
advantage over point-calibration. The latter becomes
more user-friendly as the number of calibration points
is reduced, but at the cost of less accurate predictions.
Developers are thus typically faced with a trade-off be-
tween accuracy and usability, which should be evaluated
carefully with regard to the requirements of the use case.

6.3. Implications for research

Webcam eye tracking facilitates behavioral research
that uses eye tracking to analyze user intentions and

states outside of research labs. The global Covid-19
pandemic, which made it virtually impossible to invite
human subjects to the lab, has demonstrated just how
essential it is for researchers to be able to collect data
without using expensive or complicated hardware.

Previous reviews have shown that a plethora of eye
tracking methods have been developed in research labs,
but only a small fraction has been made publicly avail-
able. It would be a tremendous gain for the community
if researchers who have already implemented a system
released the source code so that others can more easily
build on their advances. We hope that the evidence from
this literature review will motivate a more open sharing
of research artifacts to accelerate the design of better eye
trackers and the diffusion of eye tracking applications.
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