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Abstract 
Location data rapidly grow with fast-changing 

logistics and business rules. Due to fast-growing 

business ventures and their diverse operations locally 

and globally, location-based information systems are in 

demand in resource industries. Data sources in these 

industries are spatial-temporal, with petabytes in size. 

Managing volumes and various data in periodic and 

geographic dimensions using the existing modelling 

methods is challenging. The current relational database 

models have implementation challenges, including the 

interpretation of data views. Multidimensional models 

are articulated to integrate resource databases with 

spatial-temporal attribute dimensions. Location and 

periodic attribute dimensions are incorporated into 

various schemas to minimise ambiguity during database 

operations, ensuring resource data's uniqueness and 

monotonic characteristics. We develop an integrated 

framework compatible with the multidimensional 

repository and implement its metadata in resource 

industries. The resources’ metadata with spatial-

temporal attributes enables business research analysts 

a scope for data views’ interpretation in new geospatial 

knowledge domains for financial decision support. 

Keywords: Resources Industry, Heterogeneity and 

Multidimensionality, Data Warehousing and Mining, 

Big Data. 

1. Introduction 

Resources data need interaction and analysis with 

location-based information systems [6, 9, 15]. The 

business research explores spatial-temporal resource 

data's heterogeneity and multidimensionality challenges 

and presents a business case through modelling and 

management. The existence of hundreds of years of 

volumes and varieties of data in these industries 

motivates us to undertake the current research [12, 18]. 

From exploration to marketing through production 

stages, industries generate enormous volume and 

variety of data with information flow among various 

operational units of exploration businesses [1, 12]. We 

characterize the resources' data as associated with oil  

 

and gas and mineral and mining entities, often periodic 

and geographic. The periodic dimension consists of 

composite attributes such as day, month, quarter or year 

in different hierarchies. Accessing and managing 

accurate information from geographically located 

operational units is challenging for making timely trade 

decisions.  Considering the issues associated with 

existing tools and technologies of the resources’ 

businesses [2, 5], IS based artefacts and location 

analytics are investigated.  From data management and 

science perspectives, logical storage is needed to 

support the integration process, besides managing 

hardware and software platforms. These tools have the 

flexibility to accommodate multiple dimensions and 

their attribute instances in a variety of business entities 

[2, 4, 6].  The importance of location analytics research 

has implications regarding business intelligence, data 

warehousing, scalable data lakes, and operational 

analytics. We can fuse these topics in a single integrated 

framework. This framework can work in any application 

domain, whether business, healthcare, or environmental 

ecosystem. The present investigation presents Big Data 

characteristics in an Australian resources industry and 

how the heterogeneous and multidimensional data 

sources are articulated with spatial dimensions and their 

collaborations through mapping and modelling 

methodologies [1, 5].  The research objectives, the need 

and significance of Big Data in the resources industry 

with attainable goals by robust methods are described in 

various sections. Data mining, visualisation, and 

interpretation of resources metadata are discussed, 

focusing on spatial-temporal data analytics done in a 

repository environment. 

2. Issues, Challenges and Motivation 

The best practice of data warehouse development 

can increase the value of businesses and their 

stakeholders. The research lays the groundwork for a 

data warehouse or repository to grow and adapt to 

business needs and requirements. As discussed by [15], 

Design Science theory has motivated us to draw 

multidimensional constructs or conceptual models and 

logical models, based on which more dimensions are 

manageable, making it easy to view or compare the 
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fused data through data cubes. However, the approach 

discussed in [9] is still valid because the business data 

and information are stored and managed in a single 

location. Security of sensitive information and 

restricting its usage in relevant industries are valuable to 

managers. However, for accessing the data through 

queries, relational databases pose limitations.  

Managing complex SQL queries through joins of 

multidimensional tables, including handling the data 

views by visualisations and interpretation of Big Data, 

are other challenges. Depositing data in a single location 

and enhancing their security are advantages of relational 

databases. Grouping similar information, speedy access, 

easy maintenance and better performance are positive 

features of multidimensional construct designs and 

models. The integrated frameworks can cater multiple 

digital ecosystems and business applications. For 

example, logistics and supply chains and their affected 

digital ecosystems can be added to the frameworks.  
Resources data are broadly spatial-temporal. 

Location attributes are referred to as spatial attribute 

dimensions. The accumulation and existence of spatial-

temporal heterogeneous and multidimensional data 

sources in several resource business organizations have 

motivated us to carry out the current research work [16]. 

Dimensional data stored in the resources companies are 

in bits and pieces, which may not be compatible with the 

data integration process, besides constraining the access 

protocols on various software and hardware platforms 

[14, 16]. From a Big Data perspective, previous studies 

indicate that data warehousing and data mining 

technologies appear promising for developing effective 

data storage solutions in resources industries, especially 

when the industry is going through turbulent business 

situations [17, 2]. The early research on Big Data, data 

warehousing, and mining methods, which are 

implementable in various industry applications, have 

guided us to examine the existing tools. We propose to 

redesign the data constructs and models in resource 

business contexts. A classic example of the airline 

industry's data warehouse design and implementation is 

discussed in [9]. Underlying ontologies are described in 

a case study in the petroleum industries in [14]. 

Operationally, accessing and integrating the specific 

data and information required for exploration and field 

development activities are in high demand, 

incorporating the spatially varying drilling and 

production entities and dimensions. Earlier data 

structures in these business systems are obsolete, with 

poor data qualities [16, 17]. Besides, the data retrieval 

from volumes of data sources in such operational 

contexts is complicated [16]. Structuring business data 

is intricate in large size repositories, where periodic and 

geographic dimensions may need more joins to bring the 

query results into one table [14]. Data mining is a critical 

motivating task especially assessing multidimensional 

exploration and production data that exhibit schematic, 

syntactic and semantic heterogeneities. Adding the 

spatial-temporal dimensions in every resource-based 

data model has significance but needs attention in 

relating the structuring and integration process with 

other associated attribute models. The process can 

establish the connectivity between exploration and 

production entities of associated oil and gas-bearing 

sedimentary basins [12]. Spatial scientists and resource 

explorers may be interested in real-time data processing 

and monitoring through innovative logical and physical 

structures with new business rules. For example, it may 

be necessary to record or document the current 

petroleum permit status or its location history in a 

repository system. Business managers propose 

documenting the current prices of all petroleum 

products or exploration costs and their periodic 

fluctuations, including their spatial business variations 

[7]. A centralized repository can share processed data 

and information with working centres, individuals and 

operational teams functioning locally and globally, so 

multiple users can make timely decisions [10]. The 

approach has a broader scope, but the present study is 

limited to the design and development of data models, 

addressing their implementations in spatial-temporal 

dimensions, including roles in refining the data 

structuring process in the application framework.    

3. Research Questions and Objectives 

We focus on the performance of databases, easing 

data access, including using and reusing stored data 

structures in multiple domains. In this context, we take 

the guidance and advantage of the Big Data paradigm 

[1, 16] to design the research objectives: 

1 Develop data constructs and models, distinguishing 

the instantaneous and historical data associated with 

volumes and various Big resources data. Analyse 

changes occurred in the business rules affecting Big 

Data modelling. The manner spatial-temporal 

characteristics affect the cardinality of relationships 

in Big Data is investigated. 

2 Present the spatial-temporal Big Data in cubes. 

Analyse how Big Data characteristics influence data 

modelling and facilitate resolving the complexity of 

spatial modelling in resources’ business contexts. 

Based on the research purpose and objectives, the 

following research questions (RQ) are designed: 

1 How do we structure the spatial-temporal resource 

data, considering their heterogeneity and 

multidimensionality? 

2 How do we interconnect business information 

systems, implement them in upstream industries, 
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and explore metadata views to interpret in new 

knowledge domains for locating oil and gas 

prospects and managing them through Big Data? 

Business activities and functions of resources industries 

are diverse in Australian resources industries. We 

design the current research objectives, keeping in view 

the Big Data, especially the petabyte size of data 

volumes involved with the spatial-temporal attributes 

and their instances. The research objectives can resolve 

the challenges of a competitive and distributed business 

environment locally and globally.  

4. Significance of Location Big Data 

Australia's economic growth depends on exploring 

and exploiting Western Australia’s (WA) natural 

resources [12, 7, 5, 17]. We focus on modelling the 

location-based data sources of WA's resources 

businesses to assess the viability of exploration and use 

of new technology tools in the resources industries. 

They are typically spatial-temporal, and their spatial 

analytics is crucial for geographically establishing the 

growth of exploration and production [3, 12]. The 

information needed for current and future resources’ 

predictions, including the speed at which the warehouse 

repository can deliver user query results, are different 

tasks of the present research. For example, geologists 

can display formation tops (geological attributes) for 

immediate use by reservoir engineers, calibrating their 

models and ensuring that spatial-temporal information 

is current with updates of exploration and production 

entities. Managers can investigate drillable-well 

locations, exploring at different spatial dimensions.  

The current models and insights of previous 

researchers’ perspectives can be incorporable into the 

proposed integrated framework. By adding growing 

insights of location analytics into the integration 

process, we can increase robustness of the framework 

by fusing new exploration and production entities. 
Location-based seismic and other geophysical attribute 

instances have a bearing on the current mapping and 

modelling approach. We have acquired volumes and 

varieties of geophysical data as a part of exploratory 

drilling campaigns in the study areas. Each volume 

consists of several gigabytes of data with different G & 

G contexts and their variabilities. Seismic is one of the 

G & G methods of prospecting and exploration of oil 

and gas deposits [2, 12]. Exploration staff optimize their 

analysis by knowing which seismic profiles in the field 

have the most appropriate acquisition and processing 

abilities to deliver quality interpretation results. They 

use these results to plan for additional surveys when 

they are found inappropriate to use and interpret for 

prospect analysis [7]. Geological and geophysical (G & 

G) exploration scientists may need to access the drilled-

well data acquired in different locations and periods to 

facilitate the extraction of new geological knowledge 

relevant to production histories and other geophysical 

entities. In the entire energy production and marketing 

cycle, Exploration and Production (E&P) is a primary 

phase of the Oil and Gas business that involves 

searching for and extracting oil and gas deposits. In 

other words, the exploration task involves deploying 

exploration and prospecting methods to help locate 

promising sweet spots for oil and gas drilling and 

extraction. The drilling staff may interpret the 

exploration data to cognize the geological formation 

qualities and their depths in a total field area. We 

analyze forecasting of similar production profiles from 

historical exploration data, where active location 

permits exist. As per RQ 1, the authors examine the data 

issues and resolve the concerns using mapping and 

modelling methods. Exploration data acquired in 

different field seasons and locations are shown in Figure 

1, three exploration areas (I, II, and III) corroborating 

the attributes of several surveys, the number of wells 

drilled, and many oil and gas wells. Each number 

describes several surveys, drilled wells and permit 

licenses to do exploration work. Bubble plots of yearly-

accumulated data volumes are referred to number of 

surveys, drilled wells and permit attributes acquired by 

companies. Big size of bubble indicates magnitude of 

the attribute instance (Figure 1). 

 

 
Figure 1: Exploration business data acquisition 

Data quality is the critical measure of data condition, 

such as accuracy, completeness, consistency, and 

reliability, ensuring the dataset is current in the prospect 

analysis. In the present research, we interpret data 

sparsity, heterogeneity, multidimensionality and 

granularity in bubble plots from Big Data sources (as 

envisaged in Figure 2). In a 2D bubble plot, each 

bubble's diameter varies in size, providing a way to 

represent additional dimensions in the data. The Big 

I

II
III
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Data characteristics are evaluated in periodic and 

geographic dimensions by interpreting increasing 

bubble size, with periodic growth of attribute strengths 

and change of data characteristics.  

For acquiring the location-based geophysical data, 

we lay out different profiles or grids that are significant 

in the investigating areas. Despite the data qualities and 

characteristic properties that deliver quality exploratory 

drilling operations and prospective locales, Big Data is 

a leading-edge technology in précising exploratory 

drilling locations [2, 12, 16, 17]. 

 

 

Figure 2: Data quality representing characteristics  

Similarly, the bubble plot views are schematised in 

Figures 2 and 3 with yearly-accumulated Big Data 

volumes that referred to number of surveys, drilled wells 

and permit attributes in Figure 1.   

 

 
 

Figure 3: Periodically varying data 
characteristics 

We describe the Big Data characteristics in 

multidimensional logical star-schemas to connect and 

integrate with related logical schemas of E & P business 

metadata [16]. Areal extents of Big Data, value addition 

and anomalies construed from Big Data volumes and 

varieties are graphically presented in Figure 3.  The 

queries generated from these repositories can facilitate 

present and exchange the information among regional, 

project managers and unit-level operations of resource 

businesses. Models generated using statistical 

correlation, regression analysis, and other mining 

schemes can go with predictive models that can provide 

knowledge of future forecasts of resources [11, 16]. As 

described in Figure 4, a knowledge base system is 

designed to combine multiple roles and activities of 

exploration, drilling, production and technical entities of 

the oil and gas business through ER constructs with 

several rules imposed on them [12, 14, 15]. Similarly, 

new perceptions of exploration and production data are 

updated in the framework with new investigating areas. 

 

 
Figure 4: Systems connectivity – repository-

building process 

The repository is a data library for data mining for 

reporting and analysis (Figure 4). For storing E & P data 

and information, the storage is a vital site that can 

centralise information with ease of access by 

programmers, coding professionals, testing, and 

debugging support staff. The operational database 

system covers the present-day activities significantly 

and functions of exploration, drilling and production 

entities. For real-time business data manipulations, 

petroleum information system analysts engross the Big 

Data for better managerial decisions and resolving 

complex company queries construed by outside parties 

[16, 17]. Initially, a conceptual model is described 

before envisaging a logical model for connectivity 

among exploration, drilling and production entities and 

their attributes in the existing resource business 

databases (Figure 4).  

The resource data grow with spatial dimensions into 

Big Data. Big Data moves faster among various 

hardware and software modules in an integrated project 

environment based on the size of data volumes and 

varieties of resource businesses [5]. We monitor the 

accuracy and validity of data in these modules such that 

I

II
III
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the legality of systems and their connectivity are well 

understood based on location attribute dimensions. The 

connectivity, as demonstrated in Figure 4 among 

various entities, is further explored, integrating with 

other dimensional models that represent the spatial-

temporal dimensions. For example, regarding the cost of 

exploration and discoveries made at various periods in 

different geographic regions of Australia and basin 

settings, plot views can investigate patterns and trends 

in the data through visualisation and interpretation [7]. 

5. Data Modelling Methodologies 

Regarding theoretical foundations, the current 

research drives the constructs and models based on 

theoretical design science approaches. We identify key 

concepts to evaluate and explain relevant systems as 

part of theoretical foundations. The way the design 

science theory best fits location-based business contexts 

and their constructs and models, is enlightened. As per 

RQ 1, various modelling methods are analysed. 

Volumes of exploration and production are assets of the 

resources business organisation. Prospect analysis must 

document and maintain assets geographically and 

periodically, ensuring knowledge is current, even by 

integrating the old datasets with the existing ones. 
 

 
Figure 5: Building spatially varying ontologies 

As conceptualised in Figure 5, we have built spatial 

ontologies to support and establish the Design Science 

Research (DSR) theory and associated concepts and 

contexts of spatial entities and dimensions, including 

objects. The associations among interconnected space-

grids, grid orientations, grid densities, including spatial 

attributes are also considered. Location management, 

spatial event organisers, and location monitors (GPS) 

are interconnectable through ontology descriptions to 

exploration entities. These entities have spatial or 

location bearing that makes up the geospatial 

relationships in Petroleum System domains. 

5.1 Storing the Resources Big Data 

For location modelling and management, schematic 

and semantic-based tools are usable, collaborating 

information, including implementable and interoperable 

navigational data structures at multiple locations. 

Ontology guided spatial information system uses 

several data relationships across various domains, and 

their integration can facilitate collaborating knowledge-

based decision-making process. We have initially built 

conceptual models and entity-relationship (ER) logical 

models that can connect different entities associated 

with business activities and functions of oil and gas 

entities [14]. It is a graphical representation of an entity-

relationship diagram and a detailed logical depiction of 

various entities in an exploration business scenario, as 

presented in Figure 6. Similarly, multiple data entities 

and attributes identified for petroleum exploration and 

production are conceptually represented in graphical 

forms to understand cardinalities explicitly [14, 16, 17]. 

 

Figure 6: Conceptual modelling of exploration 
business with navigation (location) dimension 

From the information system design perspective, 

conceptual models describe the pathways of knowledge-

based interaction between multiple entities, dimensions 

and their attributes (Figure 6). Several objects, such as 

point, line (profile) and region, are interpretable and 

connectable to several core entities of the exploration 

dealings. The business objectives could be functional 

and purposeful, interpreting various contextualized 

entities of the exploration businesses. In dimensional 

modelling, navigation, seismic, and Vertical Seismic 

Profiling (VSP), including well logging and reservoir 

entities and their associated attributes, are applicable. 

For building fine-grained multi-dimensional logical 

data structures, ER models are connectable with 

attribute dimensions and their instances of associated 

domains of exploration businesses [14, 17]. The next 

stage is building a repository with data acquisition, data 

structuring, storage and data mining components [4, 16]. 

Visualisation and interpretation are other value-added 

has spatial 
orientations
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artefacts of the integrated knowledge management 

system. Sequences of events are planned, firstly, the 

data acquisition from several data sources and then 

importing and or exporting data into repository systems 

[5, 16]. Secondly, the design of relational, hierarchical 

and multidimensional data structures is meant to 

accommodate them in the large-size storage system.  

Thirdly, several business rules are designed to integrate 

with various conceptual and logical data structures. We 

illustrate two simple examples that demonstrate the 

spatial-temporal aspects of the current research 

problem. An upstream oil and gas business entity 

requires documenting and storing periodic and 

geographic attribute instances with deliverable surveys 

[12, 16]. For example, the business rules are: (1) Each 

exploration holds at least one production license; (2) 

Each exploration license may hold a navigational entity. 

The upstream business desires to store petroleum permit 

information, including licenses. The business rules are: 

1. The relationship changes one–to–many to into many-

to-many since the exploration over time varies 

significantly. An associative entity must hold the dates 

when location records need connections to survey 

profiles (Figure 6). 

2. The data relationships can change in spatial-temporal 

dimensions. One contractor holds one license, with 

many surveys and operations. In the 

exploration/survey example, the association is said to 

be transferable. A survey held by an exploration entity 

can be transferred to another type of exploration to 

integrate with the space domain. In other words, when 

a prospect is explored by one variety of exploration 

techniques, the prospect can now be validated by 

another variety of exploration methods. 

3. Survey permits belong to one and only contractor. A 

new permit order is placed if the contractor with 

existing licenses wants to add other nearby permits. A 

simple criterion is to regulate when deciding if one-to-

one or one-to-many relationships develop into many-

to-many relationships in spatial dimensions. 

When referring to the conceptual model in Figure 7, the 

question may arise: how can one distinguish between the 

current and past survey data sources in spatial-temporal 

dimensions in unstructured Big Data situations? The 

detailed conceptual model does not separate their survey 

records. A conceptual model is designed to understand 

how the navigation, geophysical profiles, and linked line, 

points and regions are connected through shot point 

locations (Figure 7). Various location-survey attributes 

have affected the data relationships modelling and its 

structuring cardinalities. 

Navigational attribute dimensions are connectable to 

the multiple areas through survey lines and shot point 

locations (where G & G data are acquired in the field). 

 

Figure 7: A conceptual model for location-survey 
problem in an exploration entity 

The same contractor may have several leases or permits 

in the same field. The contractor may possess multiple 

fields or basins with detached location attributes. We 

incorporate updated business rule attributes in the 

modelling process. 

5.2. Using a dependent entity for location-

based exploration business data 

Several dependent entities are created to simplify 

data models in many-to-many relationship situations. 

For example, many surveys have many profiles and 

many shot points, but each point describes the shot 

location. Each unique survey profile can be in a survey 

of the region under investigation. Business rules play 

key roles in modelling the data relationships among 

spatial-temporal data. Surveys depend on the 

navigational entity's existence, and thereby, the 

existence is dependent if it has a mandatory foreign key 

from the location dimension. In this case, we interpret 

one or more business rules: One-to-one relationships 

become one-to-many or many-to-many. The data to be 

stored in the repositories include the instances 

associated with the exploration locations, exploration 

details, and petroleum production data, including their 

periodic attributes. More precisely, varieties of G & G 

data are acquired, such as well-data from drill sites, 

well-site installations and drilled-well expenditure in 

different locations and periods. The conceptual models 

drawn with an exploration entity or dimension describe 

attribute keys (Figures 6 and 7), such as exploration ID, 

Navg ID, details of surveys, exploration name and start 

date of exploration. This model cannot deliver the 

required data views for interpretation without 

incorporating relevant location data attributes; the 

present model must be adaptable to meet the new 

requirements. The changes are shown in Figures 6-7. 

The new entity or dimension, described from 

exploration histories, has a dependent entity that keeps 

track of different navigations and surveys over time. 

One needs to make decisions or choices at this stage 
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about the recording of survey location, the number of 

surveys, exploration costs, production rates, and drilled-

well pressure attributes. There may be two possibilities: 

(1) Spatial-temporal changes in exploratory drilling or 

(2) Changes in geological entities or dimensions based 

on geography or location dimensions. The choice 

depends on the frequency of change and the importance 

of recording every change occurring in the data 

relationships, irrespective of any attribute dimensions.  

5.3. Changes in data relationship cardinality 

In the data modelling process, one-to-one and one-

to-many relationships can turn into many-to-many data 

relationships based on conceptualisation and 

contextualisation features [12, 14]. The 

contextualisation aspect describes the location 

dimension hierarchy.  It is always not right rules 

imposed on business situations, in which cardinality 

plays a key role in the modelling process [4]. Two 

reasons can cause the cardinality change (1) change of 

business rules (2) repositories ensure constant updates 

based on location hierarchies. 

5.4. Changes in business rules 

Business rules meant to govern businesses are 

captured along with their relationships with the systems 

or organisations' entities and/or dimensions [17]. 

Resources data in upstream businesses swiftly grow as 

per business rules. The changes in business rules often 

affect the data models. For example, one or more 

contractors hold surveys or licenses associated with data 

acquisitions. In this context, the company stores a list of 

survey business rules and the location data details that 

depict data acquisition, including prospect analysis of 

the upstream exploration industry. Awarding licenses or 

permits to different contractors is an ongoing business 

process. Two weeks after successfully implementing the 

tables in the relational databases, another contractor, 

with the approval of the management of the resources 

company, decided to acquire more surveys in the nearby 

investigation areas (composite spatial dimension) and 

add them to the existing databases for building 

additional exploration knowledge. Such business 

situations are unpredictable and unavoidable in the 

resources businesses, implying that the relationships 

grow based on spatial-temporal dimensions [16, 8]. 

Additional data attributes need to be stored, such as 

contexts when a contractor acquires a survey, suggesting 

that complex data relationships are resolved with 

associative entities.  

Changing business rules by many contractors or 

employees associated with employers for that survey is 

a simple change to the problem. Still, it results in the 

review of the entire database structure. We investigate 

the business rules periodically and cognitively in space 

dimensions to assess the probability of exploration 

changes in the short or medium term.  

5.5. Modelling Multiple Spatial-Temporal 

Dimensions 

In addition to entities and dimensions, we can use 

objects for aligning the operational database designs. 

We convert the conceptual ER models into various 

logical dimensional and object-oriented schemas that 

narrate the structural description of different objects 

created by the user, such as tables, queries, forms, 

reports, views and constraints [14]. For constructing 

databases, ontology modelling is still a modern 

approach through ER representations of entities and 

their relationships. However, for compatibility and 

flexibility, dimensional schemas are updated to generate 

a warehouse repository that accommodates current 

multidimensional data. Scalability and efficient use of 

storage and analytical processing are added advantages. 

  

 

Figure 8: Multidimensional star schema, articulating 
survey facts, involving spatial-temporal attributes 

In addition to dimensional models, we need an 

organized data structure to optimize and use business 

intelligence through numerical factual data relating to 

the surveys separate from descriptive or dimensional 

data [16]. One star schema uses a single large fact table 

to store the survey data with one or more dimensional 

tables surrounding the factual survey data.  The location 

and period are dimensional tables surrounding these 

survey facts tables (Figure 8). The star schema interprets 

the structure of the dimensions of resources’ data. The 

most common database models that define the data 

relations have one-to-many or many-to-many 

relationships. Cross-reference key attributes to connect 

the tables that represent the relationships between 

entities.  Primary and foreign keys provide easy access 

to the databases. Database contents vary with both 

location and time attribute dimensions [10]. We describe 

a multidimensional diagram involving the spatial 

Snowflake schema is similar to the star 
schema, but the main difference is that 
snowflake schemas are split into further 
smaller dimensional tables or look up 
tables.  A snowflake schemas can have any 
number of dimensions, and each 
dimension can have any number of levels.

As shown in Figure, a logical model is 
drawn, involving representations of 
entities and attributes, relationships, 
unique identifiers, subtypes and 
supertypes, and constraints between 
relationships. The model depicts 
visualization of relationships between 
surveys, spatial-temporal dimensions . A 
logical model can also contain domain 
model objects, or reference one or more 
domain or glossary models.

The purpose of adding location dimension 
to surveys to model and map survey facts 
and thus to accommodate in repository 
systems. This process facilitates explorers 

Modelling location 
based survey facts

The snowflake schema with denormalized dimension of spatial-
temporal dimensions

One to many Many to many
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dimensions drawn for an upstream business (Figure 8). 

Further, for accommodating complex G & G domains 

and petroleum systems, fact constellation schemas are 

considered for articulating data tables logically [14, 15]. 

The fact constellation schemas can be adaptable or 

functional in multiple domains of the resources business 

information systems for building repository systems. 

 

 
Figure 9: A constellation schema connecting G & G 

and petroleum ecosystem domains 

The schematic view of constellation schema depicts 

a compilation of multiple fact tables with common 

dimension tables, implying that location and periodic 

dimensions are closely relatable to G & G domains, 

including elements and processes of the petroleum 

information systems (Figure 9). 

 
Figure 10: Implementation workflow 

The resources companies doing business at several 

geographic locations in Australia and overseas do 

transactions in different periodic instances. The periodic 

dimension is made relevant to both location-based 

exploration data and oil and gas discovery data facts, 

implying that the period dimension is linked to different 

operations and activities of the resources industry. As 

shown in an implementation workflow in Figure 10, Big 

Data of Westralian Super Basin has volumes and various 

attribute dimensions and facts, enabling us to apply and 

place all the data in a single repository. The process 

allows data mining and visualization done at different 

locations to make swift financial decisions [12]. 

Several resources’ data tables are documented with 

location attributes and their instances. The common 

attribute dimensions for connecting all the fact tables in 

each volume are (1) Number of surveys (2) Number of 

drilled wells (3) Number of Permits (4) Exploration 

Type (5) Number of Basins (5) Number of Companies 

and Contractors. Some of them are presented in Figures 

1-3. The data structures involving the location explore 

these volumes for connections among multiple 

attributes of the resources data warehouse. The data 

volumes acquired on resource businesses and their 

documented data instances need continuous periodic 

updates revising the data schemas. The data 

relationships are denormalized for fine-grain schemas to 

yield finer data views at par with user queries. As per 

RQ 2, data volumes and their cubes are implemented. 

One way to view fine-grain data models is through a 

multidimensional cube (Figure 11). Each cell contains 

one or more attributes, or in dimensional modelling, 

attributes are categorized from the raw data [13, 16]. 

Attribute dimensions such as locations, periods, surveys 

conducted, contractors, and wells-drilled are 

represented in aggregated data views (Figure 11). 

 

 
Figure 11: Data views from Big Data cubes showing 

slices as aggregate data views B – G 

In a dimensional cuboid structure, each cell holds 

data relevant to the intersection of all its dimension 

values. For example, a cell might contain several drilled 

wells in a particular location, period and basin with a 

specific number of oil and gas producing horizons [12]. 

Such spatial-temporal data are typically aggregated 

(Figure 11) with appropriate time intervals, yielding a 

large volume of equally spaced time-series data in 

different investigating areas. Such data are analysed 

using mining schemes developed in modern time-series 

analysis and other statistical tools [11]. Several 

aggregates ((B) - (H)), as shown in Figure 11, facilitate 

the users’ perception of visualisation and interpretation. 
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values to the existing interpretation, replacing it with 

new knowledge of exploration and production data. If 

all survey-drilled-wells-permits are fused, we can arrive 

at cumulative ten volumes in the framework (Figures 10 

and 11), with a total Cube Metadata Size that could have 

been 10x1100x350x300x360 bytes. After adjustment in 

complete transactions, the total database size could be 

415 GB if considered in a particular period dimension. 

We dig the schedules, and each day drilling a borehole 

if completed ahead of warehouse construction. In 

addition, we document the operations of each truck or 

rig used in the drilling carried out at different locations. 

Each lease is given a unique permit number. For 

efficient operations, the movement of drilling rigs is 

documented between adjoining concessions and 

proposed borehole plans [7]. Access to the databases is 

requested from corporate metadata to create data views 

from working groups of exploration, drilling, 

production and marketing entities in remote sites. 

Location-based resources data analytics: We build 

location-based queries and data views from repositories. 

Certain drilled wells and or seismic profiles are chosen 

that are currently focused on interpreting seismic data 

for exploring geological structures, isopachs and 

reservoir engineering models [2, 12]. We have presented 

the map views in Figures 12-13 to interpret oil and gas 

prospects. We present data views from metadata cubes 

for new knowledge interpretation through visualisation. 

Certain locations and periods with high production rates 

are interpreted as having a specific geographic bearing, 

where seismic and drill-well campaigns are active in 

such locations and periods. The seismic, drilled-well 

and permit license information are needed for a 

particular location to accommodate the plot and high-

quality map views, as described in multiple graphical 

windows [8]. In this context, the use and reuse of the 

data structures are evaluable through systems’ approach 

and the knowledge of connectivity that led us to 

interpret unexplored resources in location attributes [16, 

17]. We have computed G & G data structures, which 

are relevant to exploratory drilling campaigns and 

compute metadata usable for data mining and 

visualisation (Figure 12). We computed volumes or 

cubes of attributes to present their structural variations 

based on location attributes. Structural mapping is 

identifying and characterising geological structural 

footprint or expression and exploring oil and gas traps. 

These are basic attribute maps required by resources 

analysts, explorers and production managers to manage 

oil and gas prospects. Geological structure, formation 

thickness (isopachs) and reservoir thickness maps are 

presented with location-based coordinates “northing” 

and “easting” attributes. Drilled wells are posted on the 

flanks of the geological structure, as shown in Figures 

12 a and 12 b. Drilled well locations are plotted in the 

geological structure map visualisation, in addition to 

northerly direction (N) and color scale attributes. 

Location-based map view implies attribute mapping and 

modelling, done with northing and easting coordinate 

information. In addition to structure attribute maps, we 

need isopach maps that visualise stratigraphic 

thicknesses between upper and lower horizons that 

reflect the thickness of deposited bed in the study area. 

We have built location-based geological formation 

thickness map views (Figure 12b), ascertaining the 

structure and drainage pattern attributes. 

 

 
Figure 12: (a) Location-based geological data 

structure (b) Location-based formation thickness 

These maps are often used by drilling campaigners 

and oil and gas explorers to make financial assessments 

and investments. As per RQ 2, G & G metadata are 

analysed to assess the models and location-based map 

views and how the geological formation thicknesses can 

be presentable to discern the thickness variations, the 

direction of sedimentary inputs, and drainage patterns in 

the investigation areas [2].  

 

 
Figure 13: Location based reservoir modelling 

RQ1 and RQ2 are addressed using geospatial 

mapping and modelling, including implementation 

methods. We present the location-based reservoir 

thicknesses and potential areas of prospective locales for 

reservoir modelling and field development (Figure 13). 

The bubbles located in the map views indicate drilled 
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wells with proven oil and gas fields. Interpretation of 

map views indicates the promising existence of oil and 

gas reservoirs and estimates the extents of reserves in 

different thicknesses in a proven field (Figure 13). 

6. Conclusions and Recommendations 

The oil and gas business data comprise composite 

dimensions, such as geographic location and period 

features, with detailed periodic attributes and their 

instances. Both spatial-temporal data structures are 

complex and require more joins to bring the query 

results into one table. We demonstrate the use of these 

attributes in the Big resources Data modelling and their 

integration in a multidimensional dimensional 

repository environment. The performance and ease of 

access of repositories, as per user queries, are assessable 

using mapping and modelling methodologies. Big Data 

analysis provides interesting knowledge-based location 

data trends and patterns from multi-dimensional 

metadata cubes. These trends are represented in various 

knowledge-based map visualisations for oil and gas 

prospect interpretations. The spatial-temporal attributes 

are advantageous in the warehouse structuring of the 

resources data, despite geographic dimensions do affect 

the cardinality of the data relationships. Business rules 

described in resources’ data structures are flexible 

enough to ensure the ease of use and reuse of structures. 

In the current application domain research, Big Data 

demonstrates the impacts of the resources industry, 

keeping in view the multidimensionality and granularity 

of the exploration data. The movement and integrity of 

data are contented with multiple resources’ projects. 

Spatial dimensions of Big Data have a significant 

impact on visualization and interpretation of new 

knowledge that adds value to the existing resource 

projects. Prospect analysis is successful using location-

based models and their map views. Recommendations 

include building a case study based on research findings 

and expanding theory and workflows. The IS constructs 

and models and their scopes are extendable in associated 

domain applications for new opportunities of location 

analytics in many other basins.  
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