
How to organize DevOps’ teams in customer firms? A comparative case

analysis

Abstract
The issue of DevOps’ team structures has been seldom

addressed in prior literature. Some scholars underlined

certain teams' characteristics and proposed structure

taxonomies. However, they hardly considered the effect of the

firm's context on a structure choice, by only focusing on

project-level influences in few studies. To cover this gap, we

propose an organizational model for DevOps’ implementation

within a consulting configuration. This setting is frequent in

the current digital era and is particular as the partners differ

in terms of digital maturity, cognition, and goals. We explored

three cases in the public administration, telecommunications,

and banking sectors. Data was collected through participant

observation and semi-structured interviews and thematically

analyzed with Nvivo. As results, we identify the key

components of DevOps’ teams and highlight their synergies.

We also contribute to academic literature and managerial

practice by raising customer firms’ awareness on the

contextual factors inducing variability on DevOps’ team

structure.

Keywords: DevOps; Agile methods; Software development;

Team structure; Multiple case studies

1. Introduction

The increasing demand of customized IT solutions and the

need of supplying software fast into the market becomes

crucial to maintain competitive advantages (Sarah & Fakieh,

2020). IT teams must hence adapt new technologies and enroll

a customer centric perspective. Currently, DevOps is the

cutting-edge approach for software development emphasizing

operational aspects and agile notions (Perera et al., 2017). It is

an organizational and cultural transformation that aims for

collaboration among all stakeholders involved in the

development, deployment, and operation of software to deliver

a high-quality product or service in the shortest possible time

(Lopez-Fernandez et al., 2021). DevOps emerged from

continuous deployment as an evolution of agile software

development, informed by lean principles (Lwakatare et al.,

2016). This background of DevOps suggests that small and

frequent changes are performed with focused value to the end

customer (Cook et al., 2012; Ebert et al., 2016). Thus, the

software is always in a releasable state throughout its lifecycle,

and is delivered in a cheaper and faster way (Zhu et al., 2016).

DevOps has been examined in literature from different

angles. Several scholars underlined its benefits for instance

reducing the development and deployment time and cost,

enhancing the deployment rates and the stability of the project,

and optimizing the Mean Time to Recover (Hüttermann,

2012). Other researchers explored the enablers of DevOps

usually conveying culture, automation, measurement and

sharing (Humble & Farley, 2010), while some studies

addressed the barriers including the cognitive distance

between the Dev and Ops’ teams (Rütz, 2019) and the

technical ineffectiveness of rollback methods used for

automation (Kamuto & Langerman, 2017). Finally, very few

studies examined the organization of DevOps’ teams. On the

one hand, some authors underlined certain characteristics of

the DevOps’ team such as platform teams (Bahadori &

Vardanega, 2018), or the absence of a formal leader (Spiegel

et al., 2021). On the other hand, others proposed some

taxonomies of the team structure (e.g. Lopez-Fernandez et al.,

2021; Shahin et al., 2017).

However, none of these studies efficiently guide

organizations towards the appropriate DevOps’ team structure

as they hardly consider the contextual peculiarities of DevOps’

implementation. The few existing research only took account

of project-level properties such as individuals’ roles and the

project size and aim (Leite et al.,2020a; Shahin et al., 2017).

Considering the effects of DevOps’ context is crucial when

organizing DevOps’ teams in order to fit best to the

organization’s goals and to enable high cooperation and a

shared responsibility between all functional areas. DevOps’

context goes beyond project-level and incorporates the product

set of an organization and its maturity to take the right lead on

operational concerns (Skelton & Pais, 2019). In the present

study, we cover this gap by proposing an organizational model

for DevOps’ implementation, linking the perspectives of client

organizations and the consultant entity supporting DevOps’

deployment.

Accordingly, we raise the following research question:

How should DevOps’ teams be organized in customer firms?

Indeed, in today’s increasingly turbulent environment,

organizations aim to focus on their core expertise and therefore

tend to outsource IT projects to consultancy teams who will

accompany the induced change (Henningsson et al., 2016).

However, the customer and consulting firms may have

different strategic and cognitive goals (Lwakatare et al. 2019),

as well as disparate levels of maturity with respect to the

DevOps’ framework (De Bayser et al., 2015). Also, DevOps

requires an increased level of trust (Stray et al., 2018), which

takes more time to establish between partnering organizations

with different orientations than within the same organization

(Bonfim et al., 2017).

To answer our research question, we explored three cases

Lamiae Benhayoun

Rabat Business School, International University of Rabat

lamiae.benhayoun@uir.ac.ma

Charmaine Carda

Institut Mines Télécom Business School

 charmaine.carda@imt-bs.eu

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 6516
URI: https://hdl.handle.net/10125/103422
978-0-9981331-6-4
(CC BY-NC-ND 4.0)

in the public administration, telecommunications, and banking

sectors. Data was collected through participant observation

and semi-structured interviews and thematically analyzed with

Nvivo. We contribute to academic literature and managerial

practice by guiding customer companies towards the key

components to include in their teams and raising their

awareness of the contextual circumstances that affect the

components’ roles.

2. Theoretical background

2.1. The DevOps’ concept

DevOps is a set of practices and cultural values that has

emerged in the software development industry. It emphasizes

automation, virtualization, and new tools for collaboration

between software development and operations (Humble &

Farley, 2010). It uses specific principles of collaboration and

automation to manage deployment environments and their

configurations (Lwakatare et al., 2015). Collaboration in

DevOps seeks to bridge the silos of software development and

operations’ functions, which exist as separate functions in

most companies. Their split is mostly due to different goals

and incentives that are owned by the two separate

organizational units. Developers want to push changes into

production as fast as possible, whereas operations’ personnel

want to keep production environment stable (Humble &

Farley, 2010).

Throughout the development process, DevOps focuses on

the communication holes between development and

operations. Accordingly, information about usage of features

in production and the performance of the system are

communicated early to the development team. This helps to

facilitate the establishment of continuous improvements to

existing or to new products, not only in the web domain but

also in the embedded systems’ domain (Olsson & Bosch, 2013;

Pérez et al., 2015).

Prior studies underlined several benefits of DevOps. First,

it improves the collaboration between the development and

operation teams, which reduces miscommunication (Diaz et

al., 2019), enables the frequent integration of both teams'

activities (Luz et al., 2019; Toh et al., 2019), and even

enhances the team morale (Senapathi et al., 2018). Then,

DevOps can improve software deployment speed from months

to days (Lwakatare et al., 2019). It reduces the software

process cycle time (Toh et al., 2019) and enables fast time to

market (Diaz et al., 2019; 2021). Furthermore, it leads to better

software quality thanks to the use of automation methods that

support fast feedback loop, and continuous delivery

(Lwakatare et al., 2019). In addition, DevOps can help reduce

software downtime (Toh et al., 2019) by increasing the

software ability to recover rapidly (Diaz et al., 2019; Erich et

al., 2017). Finally, DevOps can decrease development cost,

because of shorter development cycle and more frequent

deployments (Diaz et al., 2021).

2.2. Factors affecting DevOps’ implementation

Several researchers focused on the factors affecting the

implementation of DevOps, either its enablers or barriers.

Regarding the enablers, the CAMS model (culture,

automation, measurement and sharing) usually represents the

fundamental examined factors (Humble & Farley, 2010).

Collaborative culture is an important building block as it

supports social interactions necessary for software

development, especially within flatten hierarchies (Banica et

al., 2017). Automation focuses on the technical use of specific

tools to automate the process from development to operation

(Ebert et al., 2016). The measurement enabler means that all

actions and processes must be mirrored in KPIs to measure the

delivery capability and the implementation of a continuous

improvement framework (Humble & Molesky, 2011). The

sharing factor conveys that openness and transparency allow

an effective cooperation between development and operation

teams. It relies on suitable tools, culture, ideas, problems

learned, and data (Humble & Farley, 2010).

As for the barriers to DevOps, literature emphasizes the

human aspect, especially the divergence of views between the

Dev and Ops’ teams. The operation team relies on stability and

reliability, whereby the development team looks for change

and new innovative tools. Also, DevOps’ adoption needs the

right people in the right position (Rütz, 2019). We then note a

technical barrier associated with the ineffectiveness of rollback

methods used for automation and frequent deployments within

a day (Kamuto & Langerman, 2017).

2.3. DevOps’ team structure

The intricate and challenging nature of DevOps entails

changes in the structure of teams, people mindset, and the sets

of skills to capitalize optimally on this framework (Claps et al.,

2015; Leppänen et al., 2015). In this respect, very few papers

underlined some characteristics of the DevOps’ teams. First,

the latter is horizontal and can be formed by people exclusively

dedicated to platforms or by people from each product team

specialists in DevOps. This horizontal configuration helps

decrease the cognitive load of the product teams and improve

their productivity (Lopez Fernandez et al., 2021). Then,

Bahadori and Vardanega (2018) stressed the role and

importance of platform teams. Specifically, they discussed

why product teams require infrastructure agility and how

dynamic orchestration of infrastructure delivery may

accelerate software delivery. In addition, a key characteristic

of the structure is the high cooperation between the Dev and

Ops’ teams (Nybom et al., 2016). In this vein, Stray et al.

(2018) underlined that mature DevOps’ team structures are

characterized by the absence of silos, the sharing of goals and

of the ownership of the product they are building, internal trust,

and limited dependency on external teams. Also, highly

efficient team structures have a single formal leader. As the

team evolves, it becomes self-organized, and the leadership is

progressively transferred from the formal leader to the team

(Spiegel et al., 2021).

Some of these studies focused on identifying the different

organizational structures adopted to arrange development and

infrastructure professionals (Lopez-Fernandez et al., 2021;

Macarthy & Bass, 2020; Mann et al., 2019; Nybom et al.,

2016; Shahin et al., 2017; Skelton & Pais, 2019). A pioneering

work is that of Shahin et al. (2017) who identified four types

Page 6517

of structures: separate Dev and Ops’ teams with higher

collaboration, separate Dev and Ops’ teams with facilitator(s)

in the middle, small Ops’ team with more responsibilities for

Dev team, and no visible Ops’ team. Leite et al. (2020a; 2020b;

2021) collected data from 27 IT professionals and identified

four organizational structures: siloed departments, classical

DevOps, cross-functional teams, and platform teams.

However, none of these studies provide organizations with

guidance to implement DevOps considering their contextual

peculiarities. Indeed, DevOps’ scenarios can have sources of

uncertainty which should be identified and addressed (Shahin

et al., 2017). Proposing an organizational model of DevOps

and ways to adjust according to the organization's

characteristics would help to overcome uncertainties and better

manage resources. The DevOps' context largely determines

how businesspeople, developers, and operators should be

organized and how DevOps' culture is adopted across the

organization (Lopez-Fernandez et al., 2021).

In the present research, our ambition is to cover this gap

by proposing an organizational model for DevOps’

implementation, linking the perspectives of client

organizations and the consultant supporting DevOps’

deployment. In today’s increasingly turbulent environment,

organizations aim to focus on their core expertise and therefore

tend to outsource IT projects to consultancy teams who will

accompany the induced change (Henningsson et al., 2016).

Firms seek to benefit from consultants’ renowned strength in

creating software applications and steering the subsequent

organizational transformation (Tomo et al., 2021). The

customer and the consultant teams need to work closely to

enable fast and frequent delivery and deployment of new and

changing features while ensuring quality and non-disruption of

the production and deployment environments (Diaz et al.,

2019). However, they may have different strategic and

cognitive goals (Lwakatare et al. 2019), as well as disparate

levels of maturity with respect to the DevOps’ framework (De

Bayser et al., 2015). Also, DevOps requires an increased level

of trust (Stray et al., 2018), which takes more time to establish

between partnering organizations with different orientations

than within the same organization (Bonfim et al., 2017). The

issue is magnified as the consulting and client firms rely on

different tools and reward structures (McCarthy et al., 2015).

3. Research methodology

3.1. Data collection

3.1.1. Participant observation

We relied on multiple sources of qualitative data to reach the

research purposes. First, one of the researchers held a position

of an IT consultant for three firms in the public administration,

telecommunications, and banking sectors. Therefore, it was

appropriate to implement a participant observation approach

within these case companies to gather relevant data. This

method has long been used in Information Systems’ studies

and enables the researcher to act both an observer and a

participant in some activity over time (Nandhakumar & Jones;

2002). We employed participant observation in the present

research because, thanks to the consulting missions, “the

researcher shares as intimately as possible in the life and

activities of the people in the observed setting” (Genzuk, 2003,

p.2).

We used fictitious names (FinGov, TelCo, BigBank) to

preserve the anonymity of these organizations. The consulting

missions were contracted with ‘Consul’, an international firm

specializing in IT and organizational transformation. The

participant observation focused among others on analytical

workshops, planning meetings, release test sessions, sprint

reviews, etc. The three observed cases were selected to cover

a wide range of DevOps’ implementation contexts. First, the

companies belong to three industries that depicts diverse

peculiarities likely to induce variance in DevOps’

implementation. The sectors are characterized by disparate

industry sizes as well as different intensities of technological

evolution and competition (Bower & Christensen, 1995).

Second, the cases differ in terms of their maturity with respect

to the DevOps’ framework and their governance mode of IT

projects, which would result in variations regarding their

DevOps’ adoption perspectives (Lindner et al., 2016). These

elements are detailed in the following paragraphs.

The mission in FinGov lasted for 18 months. FinGov is a

public finance administration and was not previously familiar

with Agile or DevOps practices. The structure was very

hierarchical and vertical. The IT Department is made up of a

central decision-making body in charge of steering, and of

several regional bodies acting as internal outsourcers. These

bodies are responsible for development, workstation support,

system operation, user assistance, and include development

teams, system operators, etc. With the help of a global

mapping of its resources on the national territory, FinGov

makes sure to distribute the activities between the different

regions. The teams manage these activities in a V cycle project

logic.

TelCo is a virtual operator, subsidiary of a historical

operator and an insurer. The organization wants to quickly

develop its IT services and eliminate the break between the

‘Build’ and the ‘Run’ induced by the management of the Run

by the historical host of the insurer. The mission focused on

this issue and lasted for 12 months. The Build defines

operations to propose new solutions, while the Run specifies

the production practices to deliver a good or service with a goal

of quality and continuous improvement. The Build works in

agile with current technologies, while the Run is very

traditional with infrastructures that are not cloudy. The

application team is limited to an application development

perimeter, and the internal operators are solely limited to the

technical integration perimeter.

BigBank is one of the world leaders in the banking sector.

This company has been accelerating its transformation, in

particular with a move to the Cloud, which is now managed

internally. Consul has been implementing DevOps’ practices

in BigBank for four years incrementally through various

missions. In order to push the DevOps’ logic to its climax, the

researcher-consultant was involved for 6 months in the setting

up of site reliability engineering profiles, i.e. development

engineers at the service of operations and infrastructure. The

Page 6518

application teams include developers, Product Owners, and

Scrum Masters organized according to the SAFe method. All

the tools and procedures of the chain are automated at the scale

of a service.

3.1.2. Semi-structured interviews

Participant observation has the distinctive power of describing

complex social interactions and cognitive and cultural aspects

over time, but has some limitations: it represents a single

perspective, requires subjective introspection (Pronin, 2007),

and may suffer from the effect of observer-expectancy, where

the observer’s presence affects the attitude of other participants

(Ko, 2017). To mitigate these limitations, we triangulated the

data resulting from the observation with other data sources

(Aktinson & Hammersley, 1998). In this respect, we

performed semi-structured interviews with key actors of the

customers’ teams as explained in Table 1. Evidence was also

gathered through informal conversations with the Dev and Ops

teams’ participants on how they perceived the project

unfolding and its outcomes. In addition, we collected valuable

complementary documents such as training guides, meeting

minutes, annual reports, performance dashboards,

organizational frameworks, formal procedures, and

information notices.

Table 1. Characteristics of the interviews

Case Number

and

duration

Types of interviewees Mode

FinGov 7
interview

s

≈130
minutes

• IT manager

• Project manager

• Software developer

• 2 System developers

• Operational manager

• Network administrator

Face-
to-face

TelCo 5

interview

s
≈100

minutes

• Software developer

• DevOps' engineer

• Network engineer

• Chief Technology

Officer

• Cloud architect

Face-

to-face,

Skype
&

phone

BigBank 5

interview

s
≈75

minutes

• Quality assurance expert

• Software developer

• System developer

• DevOps’ expert

• Cloud architect

MS

Teams

and
phone

To prepare for data collection through interviews, we

performed an in-depth literature review of the extant DevOps'

team structures in prior research and accordingly devised an

interview guide. The guide was composed of three distinct

parts. The first part was dedicated to understanding the

interviewee's role in the firm as well as his educational and

professional background. The second part addressed the initial

organization of the customer team before the transformation

induced by DevOps. Finally, the third part focused on the

characteristics of the new organization following DevOps’

implementation during the consultant’s missions. This

interview guide was tested with three researchers and four

practitioners before its deployment within the cases.

17 interviews were performed within the three cases and

generated 300 minutes (5 hours) of recordings, which were

transcribed and grammatically sub-divided to enable their

thematic analysis with NVivo. After an interview, we used the

emerging results to enrich those of the participant observation

as described in the next section. Saturation was reached by the

14th interview.

3.2. Data analysis

We relied on NVivo to analyze the data collected within the

case companies. This approach combined established

methodologies for grounded theory building (Gioia et al.,

2013) and multiple case analysis (Miles et al., 2013). It

involved travelling back and forth between the data and the

emerging structure of theoretical arguments (Locke, 2007) as

explained below:

On the one hand, we followed the recommendations of

Gioia et al. (2013) to identify in our corpus the components of

the DevOps’ team structure to include in our model. We first

proceeded to a 1st-order inductive coding using informant-

centric terms, to identify distinctive concepts from the cases.

These concepts refer to the team components and roles, as

reported by the interviewees or as observed by the researcher.

As the research progressed, we started seeking similarities and

differences among the many emergent concepts by using axial

coding, which enabled gathering similar concepts, that we

labeled using the informant terms.

Then, based on the identified concepts, we performed a

2nd-order analysis using researcher-centric terms (Gioia et al.,

2013) to explore whether the relationships among the

emerging concepts suggest higher order themes to describe

and explain the phenomena we are observing. These 2nd-

order themes represent more robust theoretical descriptions

of the team components derived from the 1st-order concepts.

Once a workable set of concepts and themes was in hand, we

analyzed their underlying nature to investigate if it was

possible to distill the emergent 2nd-order themes even

further into 2nd-order aggregate dimensions as recommended

by Gioia et al. (2013).

On the other hand, NVivo enabled us to conduct a

comparative analysis of the three cases. This analysis

highlighted regularities and differences between the cases

throughout the entire corpus (Eisenhardt, 1989). We identified

the recurrent team components and uncovered several

contextual factors that induce variance regarding the presence

of the model’s components within the DevOps’ team structure.

To ensure intercoder reliability and comfort the

robustness of our findings, the empirical corpus was coded

twice by two of the authors. This double analysis resulted in

an 85% agreement between both coders, considered sufficient

for intercoder reliability (Krippendorff 2004).

4. Results
Appendix 1 (https://bit.ly/3VddR5w) recalls the contextual

differences between the three cases and synthesizes the

key findings regarding the DevOps’ team structures and the

change process in each firm. The results are detailed in the

next paragraphs and illustrated with verbatim based on the

Page 6519

participants’ feedback. The consultant was involved in the

three DevOps’ teams but possessed a temporary position.

He provided a supportive role since he accompanied the

teams in the design of software applications and was

responsible for monitoring the ensuing organizational

transformation and the transition to full DevOps.

4.1. FinGov case

4.1.1. Description of the resulting model

Consul led an acculturation and implementation of Agile and

DevOps’ practices simultaneously. The main objective of

agility was to configure the application teams into Squads

made up of 5 to 12 members. "We wanted to have multi-skilled

teams responsible for the life cycle of all or part of an

application product including design, implementation and

integration" (FinGov).

Consul brought out two configurations of application

teams following discussions with the client: a minimum base

and a complementary team. FinGov was looking for a

configuration allowing the integration of Ops within the

application teams. "This responds to a desire to mature the

application teams regarding application run issues." (FinGov).

For the creation of these pilot teams, "we have selected, with

the help of Consul, different roles in the regional IT bodies in

order to make them experiment within application teams of the

central body" (FinGov).

The minimum base is a team including the skills deemed

essential to the creation of a squad with the three key roles of

a Scrum team: The Product Owner is the main point of contact

for the business lines within the Squad and is responsible for

creating and managing the Backlog and for delivering the final

product. The Scrum Master is the facilitator, the team

coordinator, and the supporter of the Agile method within the

Squad. The development team carries the complete realization

of the product (analysis, design, documentation, coding,

technical tests, etc.) and ensures quality.

The complementary team enables to enrich the minimum base

with three other roles: The Business Analyst supports the

Product Owner, is involved in the functional design of the

product, and oversees functional testing. The architect is

responsible for the technical and functional architectural

choices. He analyzes the impact of product changes. He

ensures the quality, security, and consistency of the code and

the implementation of efficient development practices. He

supports the squad in carrying out technical tests and feeds the

work of the Ops. The System Operator guarantees the

availability and maintenance of environments for the squad,

from development to production. He supports integration

activities, usability testing, and commissioning and is

responsible for setting up a continuous deployment chain.

As for the DevOps’ part, Consul aimed to prepare the

teams for managing applications in the internal cloud. The

consultant accompanied the pilot projects for the definition of

the architecture, the deployment of the infrastructure as Code,

the configuration of the environments, and the

implementation of the automated deployment and delivery

chain. "The precepts of agile implemented alongside DevOps

have facilitated the

management of applications. The Squad is responsible for

creating and maintaining the environments it needs thanks to the

Ops that have been integrated into it. These same actors intervene

in the Build and Run." (FinGov).

The teams tended increasingly towards the logic of

'product' squad. This logic implies that the squad has an end-

to-end responsibility, from design to production. Development

rates are incremental, with the delivery of an MVP (Minimum

Viable Product) to the user.

4.1.2. Circumstances of the transformation

FinGov aimed at accelerating its digital transformation with

the integration of the cloud. This was an opportunity to

experiment with a new organization inspired by DevOps in

order to create and exploit its IT applications. "Using an

Agile/DevOps framework common to all application teams seems

relevant to us insofar as there is a real need to standardize

practices between teams and within them" (FinGov).

The experimentation took place within 8 projects, that

volunteered to put new approaches into practices. At the start

of the initiative, “Consul helped each project manager to think

about what resources we need, how to divide the activities, etc.”

(FinGov).

Following this DevOps’ experimentation within FinGov, no

development project has resulted in the complete construction

of an automated delivery chain. Also, no construction of

production environments or of any technical production has

been triggered.

Even though this initiative was supported by volunteer

pilot teams, Consul encountered specific resistance regarding

the resulting organizational change.

On the one hand, some members expressed the fear that the

integration of new practices and a new organization could call

into question the existence of their work. "In the initial

organization, the production pilots are in charge of studying the

production release files to make 'go' and 'no go’ decisions. If

DevOps’ practices were to be generalized, they would induce

automated production releases every day. Production pilots could

therefore see their profession disappear or being transformed."

(FinGov).

On the other hand, a DevOps’ acculturation across all IT

bodies was highly challenging. Particularly, "we suffer from a

tense social climate, due to approximately 1,000 job cuts per year.

It is therefore not easy to propose big bang reorganizations and

acculturations within the entire structure". (FinGov).

The client, hence, chose to specialize only four of its IT

regional bodies in DevOps. The ambition, by the end of 2022,

is to have 15% of projects in Agile DevOps.

4.2. TelCo case

4.2.1. Description of the resulting model

Consul supported TelCo in its transformation initiative, more

particularly in the definition of its Cloud and Delivery strategy,

in the structuring of its new Cloud and DevOps’ platform, in

the management of its Cloud migration and transformation,

and in the definition of a TOM (Target Operating Model). It

was agreed to implement a TOM composed of several entities.

Page 6520

The teams are organized according to a SAFe mode. A

Program Increment Planning is organized every two months

and the Sprints last for two weeks. During these plannings, the

application teams, the platform team, and the business

representatives were necessarily present to prioritize the tasks

at the right level. The executive committee could also attend.

We hereby explain the components of the TOM, which

enabled to make the most of the Cloud.

The delivery layer is the higher organizational entity in

the model and includes:

•Feature Teams: They oversee software delivery and reduce

inter-team dependencies. Indeed, "thanks to the

multidisciplinary of the team, the members can develop a large

number of features almost independently" (TelCo).

These teams are responsible for the technical and functional

specifications, as well as the design, development, and

deployment of the applications.

•Transverse team: Responsible for agile methods, its role is to

carry out coaching and support as needed. It thus manages

continuity in case of agile implementation in a unit and steers,

as well, the communities of practice.

Below the delivery layer, we find the cloud platform

management layer composed of:

•Platform Team: This is the essential element of the

transformation. Its role is to manage the infrastructure services

offered by the cloud, for instance IaaS and PaaS, and to make

them available to the application development teams. "The

Cloud and its management add a layer of complexity to the IS

architecture by introducing new concepts such as containers or

container orchestrators. This greatly affects traditional

administration practices". (TelCo).

For its internal management, "the team is in a 'you build it, you

run it' mode, i.e. it manages the design, the Build and the Run of

everything it implements on the platform." (TelCo).

Regarding the management of DevOps’ tools, the Platform

Team provides infrastructure services in API mode that can be

used on a turnkey basis and is responsible for provisioning the

Infrastructure as Code. "If a feature team wishes to use IaC

services, the Platform Team makes them available in API format.

Sometimes the service can be provided turnkey" (TelCo).

The Platform team configures models, creates monitoring tools

for the application teams and is in charge of security activities

on the Run. "It provides a Kubernetes cluster allowing

application teams, in the continuous delivery chain, to provision

a specific container with its application." (TelCo).

•Operational Security Center: Responsible for responding to

security incidents in an end-to-end basis. It performs audit

procedures to anticipate incidents.

Right beneath, the service offerings’ layer includes:

•Cloud services: They incorporate the infrastructure models

available with AWS (IaaS, PaaS, CaaS, SaaS) and access

management and certification.

•Service workplace: It brings together the services in charge of

the employees’ work environments.

•Legacy entity: It relates to the historical information system

and includes the residual infrastructures still operational after

each transformation increment.

Next to these operational units, the model includes two

structural bodies:

•Design Authority: It ensures technological consistency across

the entire IT department. "It's a cross-functional governance

team, a kind of community of architects making global decisions.

Some members of the application teams can simultaneously be

part of it" (TelCo).

This entity defines the enterprise architecture strategy and

models and manages the aspects of governance and

compliance risk.

•Transversal functions: They support the activity of the IT

administration at the financial level, innovation, etc. These

functions include, among others, the management of costs and

suppliers, and the Helpdesk.

4.2.2. Circumstances of the transformation

The client wished to quickly develop its IT services and

eliminate the break between the Build and the Run induced by

the management of the Run by the insurer's historical host. To

put an end to this rupture, "we have decided to move to internal

management of the AWS Cloud and strengthen DevOps’ practices

within the teams". (TelCo).

As explained in the TOM introduced in the previous

paragraph, the platform team was the central element of the

transformation carried out within TelCo. It brings a new

paradigm, consisting of the transfer of the application Run to

the features teams. "The creation of this Platform Team was quite

ambitious insofar as we had to mature on the subject" (TelCo).

Accordingly, the change occurred gradually. "The

transformation of the teams as well as the transition to

responsibility on the Run took place in two stages, since the entire

DevOps’ transformation was correlated with the migration to the

cloud, and thus to the newly created AWS platform. The

transformation was implicitly linked to a sort of transfer of certain

activities which were historically managed by the insurer’s host

and taken over by TelCo." (TelCo).

•A first post-migration phase during the first half year, with the

effective transition to the Cloud: This phase was characterized

by the establishment of a Platform Team but also an AppOps’

team. The latter is in charge of recuperating in Run the

migrated applications on the AWS cloud. "The AppOps’ Team

takes over application outsourcing activities that were

traditionally operated by the insurer’s host and thus takes over

part of the integration activities." (TelCo).

•A second phase at the end of the second half year with only

the feature teams: This is the transition phase to full DevOps.

It is characterized by the integration of AppOps’ profiles

within the feature teams, which are each in charge of their

application products. The AppOps’ activities absorbed by the

feature teams concern integration, operation, application

supervision, and monitoring to drive the performance of

applications under development. Indeed, for the resulting

feature teams, "what they were designing, they were also

overseeing it at the Run level from end-to-end." (TelCo).

The members of the final feature teams are: Product Owner,

Scrum Master, Tech Lead, AppOps whose role is to infuse

good operating practices in the teams, developers, and a

Security Champion.

Thanks to this two-step transformation, "the AppOps have

participated in the acculturation of the developers to the

Page 6521

applicative exploitation. By absorbing the members of the

AppOps’ team, the features teams have been able to increase their

skills in activities traditionally of an Ops’ nature. The AppOps

who integrate these teams no longer do traditional Ops’ activities

but rather operate in a DevOps’ ecosystem, with the use of the

continuous delivery chain and Infrastructure as Code." (TelCo).

Each feature team has complete autonomy over the

automation and industrialization it wishes to implement.
"However, there are good development and management

practices that these teams must respect to guarantee the usability

of the applications. There are structuring choices that must be

made on the tools and the selection of a solution according to the

needs." (TelCo).

In short, for this project, the shaping of AppOps and Platform

teams was the most significant element of transformation. "It

took the longest time because it was not trivial to develop the right

reflexes within the feature teams which are now in charge of the

Application Run." (TelCo).

4.3. BigBank case

4.3.1. Description of the resulting model

BigBank has been accelerating its transformation with a move

towards the Cloud. Consul carried out the implementation of

DevOps and agile practices incrementally over four years

through various missions. The DevOps’ model already

deployed at BigBank consists of three layers:

•The upper layer concerns professional services and support

for the transformation of business applications. It is structured

into sub-departments, each focused on an element of activity

of BigBank (investment banking, retail banking, etc.). Each

sub-department has its own feature team responsible for the

design, development, and delivery of applications.

•The second layer focuses on managing the cloud platform and

its applications. It includes two units, one specializing in the

cloud platform and the other in operations management.

•The last layer aims to design, maintain, and evolve service

offerings. This layer groups the cloud infrastructure models

and a workplace service.

BigBank decides to set up SRE (Site Reliability

Engineering) profiles within the cloud platform management

entity as well as in the application teams, i.e. development

engineers at the service of operations. "The challenge of SREs

is to allow BigBank to position itself on complex products and to

take charge of some of the Run incidents to improve the reliability

of services". (BigBank).

Consul, after consultation with BigBank, decided to

disseminate SRE practices as follows:

•For the feature teams, transition their Ops to an SRE logic, by

strengthening their DevOps’ practices with the peculiarities of

an SRE profile. This ultimately strengthens the accountability

of Feature Teams on reliability issues.

•For the platform management entity, set up a new team whose

role is to centrally manage reliability on public and private

cloud platforms. The SREs deployed in the application teams

would relay this team within the business departments.

These SRE profiles must know how to develop, design,

and should have good knowledge of security and system

administration. They act in several ways:

•In general, within organizations, when there is an incident,

whether at the level of the customer who reports the incident

or a monitoring tool, it arrives on a frontline. “Within BigBank,

there is no frontline on Cloud services. The interest is then to

position in the management entity of the cloud platform an SRE

team which serves as an entry point for incidents. For any

incoming incident, the responders industrialize to solve the

problem and prevent it from happening again. This enables

moving to a higher level of reliability.". (BigBank).

•Beyond incident handling, the SRE profiles are responsible

for defining product operability standards.

•They automate Run tasks with Infrastructure as Code.

4.3.2. Circumstances of the transformation

The nerve center of the transformation in this case is the

management of incidents and complex products, with the

desire to move to a higher level of reliability. "BigBank, due to

its activity, has to process a large volume of operations and

therefore incidents. It is hence relevant to want to move to the

highest levels of reliability." (BigBank).

The SRE is not to be considered as a replacement for a

DevOps’ operating mode characterized with a strong

collaboration of Dev and Ops. "The SRE for us is rather an

extension of DevOps, even a crystallization on operational

management subjects requiring greater expertise." (BigBank).

The SRE appears as an embodiment of the DevOps’

philosophy within a job description. These profiles support the

application teams in their respect for the reliability of the

developments, by achieving an increase in the skills of the Ops

on this subject. "This proposed tandem organization then makes

it possible to strengthen the anchoring and dissemination of

DevOps’ practices within the information systems department."

(BigBank).

5. Discussion

This empirical study uncovered how DevOps’ teams are

organized in customer firms. Our answer to the research

question provides a double contribution to literature. We first

propose a model highlighting the components of DevOps’

team structure for client firms. Second, we identify the

determinants of DevOps’s implementation in customer teams

and describe their effects. These points are summarized in the

DevOps’ operating model in Appendix 2 (https://
bit.ly/3VddR5w) and are discussed in the following

paragraphs.

5.1. A model for DevOps’ implementation in

customer organizations

This study describes the components of DevOps’ teams in

customer firms. As such, we add to the extant scarce literature

that shed light on some elements within DevOps’ teams (e.g.,

Bahadori & Vardanega, 2018; Lopez Fernandez et al., 2021)

and proposed structure taxonomies (e.g., Macarthy & Bass,

2020; Shahin et al., 2017; Leite et al., 2021). Our

research stands out by underlining the fundamental

components that must exist within any team and the

complementary elements that are adapted to the DevOps’

Page 6522

implementation context. The two types of bodies

characterize a delivery layer, a platform layer, and a service

offerings’ layer:

For delivery, in line with prior studies (Ebert et al., 2016;

Marnewick & Langerman, 2020), our results demonstrate that

the key entity is the feature teams responsible for the

technical and functional specifications, as well as

the design, development, and deployment of the

applications. Each team is organized in a Squad with

multi-skilled members who oversee the life cycle of all or

part of an application product. To allow such functioning,

the feature teams must include Ops’ profiles in charge of

creating and maintaining production environments, hence

enabling the team to take full responsibility of Build

and of Run issues as well. These AppOps’ profiles

participate in the acculturation of the developers to

the applicative exploitation. Our results additionally

highlight complementary roles of SRE (Site Reliability

Engineering) profiles within the feature teams that were

hardly underlined in previous studies. These

development engineers are at the service of operations

(Bertolino et al., 2020). They define product operability

standards and automate Run operations. Finally, for the

delivery layer, our study unveils three entities extending the

roles of the feature teams. These are a complementary Scrum

team composed of a business analyst, architect, and system

operator, an agile transverse team guarantor of agile methods,

and a temporary AppOps’ team in charge of recuperating in

Run the migrated applications during the initial phase of

DevOps’ implementation in a client firm.

For the platform management layer, the vital entity as

stressed out in several literature works is the platform team

made up of specialists whose role is to decrease the cognitive

load of product teams (Lopez Fernandez et al., 2021). To

efficiently manage the infrastructure and makes it available to

the feature development teams, the present research revealed

that the platform team manages the design, the Build, and the

Run of everything it implements on the platform. It provides

infrastructure services in API mode that might be used on a

turnkey basis and is responsible for provisioning the

Infrastructure as Code. Our findings also shed light on the

complementary role of SRE in this platform team, whose

responsibility is to process incoming incidents and improve

the levels of service reliability. Finally, for this layer, the

only element supplemental to the platform team is the

operations’ management center that handles security services.

For the service offerings’ layer, it necessarily includes

Cloud services that administer the infrastructure models

available within the cloud and the access management

(Breiter et al., 2014). It might, alternatively, involve a

service workplace and a legacy entity relating to the

historical information system. Next to these operational units

composing the three layers, the resulting model includes a

transversal unit supporting the activity of the IT

administration for example in terms of cost and vendor

management (Hering, 2018), and a design authority, which

has barely been evoked in prior studies. It is a cross-

functional governance team made up of architects who

decide on the enterprise architecture strategy and models.

5.2. Factors affecting the DevOps’ model

We provide an important extension to literature on DevOps

that examined the factors affecting the team structure but

focused either on deployment enablers or barriers. Indeed, we

identify the determinants of DevOps’s implementation in

customer teams and describe their effects. Determinants are

contingency factors whose variations are followed

systematically by variations in an outcome of interest. They

represent contextual elements not controlled by an

organization (Bauman et al., 2002). Considering these

determinants is crucial to guide firms toward a team structure

that fits their contexts. However, the very few typologies of

DevOps’ teams proposed in prior studies were not based on

contextual factors and their authors did not explain how the

firm’s context would affect the suitability of a structure over

another. For example, Shahin et al. (2017) proposed four types

of structures, but the authors’ categorization was based on the

level of collaboration between Dev and Ops and their

corresponding degrees of responsibilities. Both factors relate

rather to controlled behavioral aspects than to contextual traits

of the firm. We detail hereafter the determinants that emerged

from our qualitative analysis and explain their potential effects

on the model.

The first factor is related to the level of maturity regarding

Agile. A lack of maturity requires the establishment of a Scrum

configuration parallel to DevOp's implementation. This result

provides support to the study of Lwakatare et al. (2016) who

stated that agile is a prerequisite of DevOps. The second factor

concerns the level of the customer firm's maturity with respect

to DevOps, which impacts the deployment duration and

complexity. The existence of an efficient DevOps' framework

in the firm makes the change more at the margin through the

implementation of supporting SRE profiles. In the opposite

case, it is necessary to implement not only the key components

proposed within our model (Feature teams, platform team,

cloud services), but also additional entities to help the vital

model bodies operate efficiently. We noted, for example, that

the firms with a low DevOps’ maturity needed to put in place

temporary AppOps' teams to assist the feature teams for

delivery, and an operations' management center to support the

platform team through the handling of security issues. These

findings are aligned with Adriano (2021) who emphasized that

prior knowledge of DevOps can affect the course of the

implementation. We add to this study by showing that not only

prior knowledge, but also prior implementation of DevOps

even partially in the organization is likely to induce such

variance.

The third factor is associated with the perimeter of

DevOps' implementation. When the transformation is

experimental and focuses on a limited number of feature

teams, it does not imply the compulsory establishment of

complementary entities. If the change is definitive and

concerns a much larger perimeter, not only the key model’s

components are deployed, but also supplementary even

temporary entities such as AppOps’ teams for delivery that

would help the feature teams mature incrementally and then

disappear. Through these results, we support previous studies

Page 6523

on IT development stream that emphasized the determining

impact of the project perimeter on the deployment plan

(Guérineau et al., 2018). We particularly unveil this effect for

DevOps’ implementation within customer teams.

The last divergence factor among the three deployed

models was the social climate in the client company. When the

climate is tense, for example due to substantial job cuts,

DevOps’ deployment depicts some peculiarities: To foster the

success of the transformation, DevOps’ implementation in the

case of an insecure social climate only focuses on the vital

model’s elements and concerns a limited part in the firm at the

beginning of the transformation. Also, involving a consulting

entity is particularly helpful to infuse best practices and

monitor the change in a neutral manner. To the best of our

knowledge, no prior study underlined the determining effect of

the social climate regarding DevOps’ team structure.

6. Conclusion

Despite its contributions, the present research has some

limitations that pave the path to future empirical studies. First,

we focused on three cases through interviews and participant

observation. Even if the cases presented elements of diversity,

they could limit the generalization of our results to contexts

different from those addressed in the research. Further

empirical studies could evaluate the extent to which our model

is applicable or could be amended or enriched in other types of

contexts. The second limitation concerns the effective

measurement of the transformation impact. Indeed, the

evaluation of the benefits was based on the interpretations and

opinions of certain key members of the teams. A quantitative

study with KPIs deployed on a larger scale in the organizations

would help accurately measure the effect on performance of

DevOps’ implementation. This measurement could be carried

out at several spaced moments to effectively pilot the DevOps’

model and adjust it if necessary.

7. References

Adriano, D. M. (2021). DevOps and information technology service

management: A problem management case study (Doctoral

dissertation).

Aktinson, P., & Hammersley, M. (1998). Ethnography and participant

observation. Strategies of Qualitative Inquiry. Thousand Oaks: Sage,

248-261.

Bahadori, K., & Vardanega, T. (2018). DevOps meets dynamic

orchestration. In International Workshop on Software Engineering

Aspects of Continuous Development and New Paradigms of Software

Production and Deployment (pp. 142-154). Springer, Cham.

Banica, L., Radulescu, M., Rosca, D., & Hagiu, A. (2017). Is DevOps

another project management methodology?. Informatica Economica,

21(3), 39.

Bauman, A. E., Sallis, J. F., Dzewaltowski, D. A., & Owen, N. (2002).

Toward a better understanding of the influences on physical activity:

the role of determinants, correlates, causal variables, mediators,

moderators, and confounders. American journal of preventive

medicine, 23(2), 5-14.

Bertolino, A., Angelis, G. D., Guerriero, A., Miranda, B.,

Pietrantuono, R., & Russo, S. (2020). DevOpRET: Continuous

reliability testing in DevOps. Journal of Software: Evolution and

Process, e2298.

Bonfim, L. R., Segatto, A. P., & Takahashi, A. R. W. (2017). The

structural, relational and cognitive dimensions of social capital on

innovation and technology in interorganizational and

intraorganizational settings.

Bower, J. L., & Christensen, C. M. (1995). Disruptive technologies:

catching the wave. Harvard Business Review.

Breiter, G., Behrendt, M., Gupta, M., Moser, S. D., Schulze, R., Sippli,

I., & Spatzier, T. (2014). Software defined environments based on

TOSCA in IBM cloud implementations. IBM Journal of Research and

Development, 58(2/3), 9-1.

Claps, G. G., Svensson, R. B., & Aurum, A. (2015). On the journey to

continuous deployment: Technical and social challenges along the

way. Information and Software technology, 57, 21-31.

Cook, N., Milojicic, D., & Talwar, V. (2012). Cloud management.

Journal of Internet Services and Applications, 3(1), 67-75.

De Bayser, M., Azevedo, L. G., & Cerqueira, R. (2015, May).

ResearchOps: The case for DevOps in scientific applications. In 2015

IFIP/IEEE International Symposium on Integrated Network

Management (IM) (pp. 1398-1404). IEEE.

Diaz, J., Almaraz, R., Pérez, J., & Garbajosa, J. (2019). DevOps in

practice. In Proceedings of the 19th International Conference on Agile

Software Development Companion-XP (Vol. 18).

Diaz, J., López-Fernández, D., Pérez, J., & González-Prieto, Á.

(2021). Why are many businesses instilling a DevOps culture into

their organization?. Empirical Software Engineering, 26(2), 1-50.

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps.

IEEE Software, 33(3), 94-100.

Eisenhardt, K. M. (1989). Building theories from case study research.

Academy of management review, 14(4), 532-550.

Erich, F. M., Amrit, C., & Daneva, M. (2017). A qualitative study of

DevOps usage in practice. Journal of Software: Evolution and

Process, 29(6), e1885.

Genzuk, M. (2003). A synthesis of ethnographic research. Occasional

Papers Series. Center for Multilingual, Multicultural Research (Eds.).

Center for Multilingual, Multicultural Research, Rossier School of

Education, University of Southern California. Los Angeles, 1-10.

Gioia, D. A., Corley, K. G., & Hamilton, A. L. (2013). Seeking

qualitative rigor in inductive research: Notes on the Gioia

methodology. Organizational research methods, 16(1), 15-31.

Guérineau, B., Rivest, L., Bricogne, M., Durupt, A., & Eynard, B.

(2018). Towards a design-method selection framework for

multidisciplinary product development. In 15th International Design

Conference (pp. 2879-2890).

Henningsson, S., & Øhrgaard, C. (2016). IT Consultants in

Acquisition IT integration. Business & Information Systems

Engineering, 58(3), 193-212.

Hering, M. (2018). DevOps for the Modern Enterprise: Winning

Practices to Transform Legacy IT Organizations. IT Revolution.

Humble, J., & Farley, D. (2010). Continuous delivery: reliable

software releases through build, test, and deployment automation.

Pearson Education.

Humble, J., & Molesky, J. (2011). Why enterprises must adopt devops

to enable continuous delivery. Cutter IT Journal, 24(8), 6.

Hüttermann, M. (2012). Building blocks of devops. In DevOps for

Developers (pp. 33-47). Apress, Berkeley, CA.

Kamuto, M. B., & Langerman, J. J. (2017). Factors inhibiting the

adoption of DevOps in large organisations: South African context. In

2017 2nd IEEE International Conference on Recent Trends in

Electronics, Information & Communication Technology (RTEICT)

(pp. 48-51). IEEE.

Ko, A. J. (2017). A three-year participant observation of software

startup software evolution. In 2017 IEEE/ACM 39th International

Conference on Software Engineering: Software Engineering in

Practice Track (ICSE-SEIP) (pp. 3-12). IEEE.

Page 6524

Krippendorff, K. H. (2004). Content analysis: an introduction to its

methodology. 2nd edition. Sage Publications, Thousand Oaks,

California.

Leite, L., Kon, F., Pinto, G., & Meirelles, P. (2020a). Platform teams:

An organizational structure for continuous delivery. In Proceedings of

the IEEE/ACM 42nd International Conference on Software

Engineering Workshops (pp. 505-511).

Leite, L., Kon, F., Pinto, G., & Meirelles, P. (2020b). Building a

theory of software teams organization in a continuous delivery

context. In 2020 IEEE/ACM 42nd International Conference on

Software Engineering: Companion Proceedings (ICSE-Companion)

(pp. 296-297). IEEE.

Leite, L., Pinto, G., Kon, F., & Meirelles, P. (2021). The organization

of software teams in the quest for continuous delivery: A grounded

theory approach. Information and Software Technology, 139, 106672.

Leppänen, M., Mäkinen, S., Pagels, M., Eloranta, V. P., Itkonen, J.,

Mäntylä, M. V., & Männistö, T. (2015). The highways and country

roads to continuous deployment. IEEE software, 32(2), 64-72.

Lindner, R., Daimer, S., Beckert, B., Heyen, N., Koehler, J., Teufel,

B., ... & Wydra, S. (2016). Addressing directionality: Orientation

failure and the systems of innovation heuristic. Towards reflexive

governance (No. 52). Fraunhofer ISI Discussion Papers-Innovation

Systems and Policy Analysis.

Locke, K. (2007). Rational control and irrational free-play: Dual-

thinking modes as necessary tension in grounded theorizing. The

SAGE handbook of grounded theory, 565-579.

López-Fernández, D., Diaz, J., Garcia-Martin, J., Pérez, J., &

Gonzalez-Prieto, A. (2021). DevOps Team Structures:

Characterization and Implications. IEEE Transactions on Software

Engineering.

Luz, W. P., Pinto, G., & Bonifácio, R. (2019). Adopting DevOps in

the real world: A theory, a model, and a case study. Journal of Systems

and Software, 157, 110384.

Lwakatare, L. E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkilä, V.,

Itkonen, J., ... & Lassenius, C. (2019). DevOps in practice: A multiple

case study of five companies. Information and Software Technology,

114, 217-230.

Lwakatare, L. E., Kuvaja, P., & Oivo, M. (2015). Dimensions of

devops. In International conference on agile software development

(pp. 212-217). Springer, Cham.

Lwakatare, L. E., Kuvaja, P., & Oivo, M. (2016). Relationship of

DevOps to agile, lean and continuous deployment. In International

conference on product-focused software process improvement (pp.

399-415). Springer, Cham.

Macarthy, R. W., & Bass, J. M. (2020). An empirical taxonomy of

DevOps in practice. In 2020 46th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA) (pp. 221-228).

IEEE.

Mann, A., Stahnke, M., Brown, A., & Kersten, N. (2019). State of

DevOps Report. Puppet & Splunk.

Marnewick, C., & Langerman, J. (2020). DevOps and Organizational

Performance: The Fallacy of Chasing Maturity. IEEE Software, 38(5),

48-55.

McCarthy, M. A., Herger, L. M., Khan, S. M., & Belgodere, B. M.

(2015, June). Composable DevOps: automated ontology based

DevOps maturity analysis. In 2015 IEEE international conference on

services computing (pp. 600-607). IEEE.

Miles, M.B., Huberman, A.M. and Saldana, J (2013). Qualitative data

analysis. Sage.

Nandhakumar, J., & Jones, M. (2002). Development gain? Participant

observation in interpretive management information systems research.

Qualitative Research, 2(3), 323-341.

Nybom, K., Smeds, J., & Porres, I. (2016). On the impact of mixing

responsibilities between devs and ops. In International Conference on

Agile Software Development (pp. 131-143). Springer, Cham.

Olsson, H, H., & Bosch, J. (2013,). Towards data-driven product

development: A multiple case study on post-deployment data usage in

software-intensive embedded systems. In International Conference on

Lean Enterprise Software and Systems (pp. 152-164). Springer,

Berlin, Heidelberg.

Perera, P., Silva, R., & Perera, I. (2017). Improve software quality

through practicing DevOps. In 2017 Seventeenth International

Conference on Advances in ICT for Emerging Regions (ICTer) (pp.

1-6). IEEE.

Pérez, J. F., Wang, W., & Casale, G. (2015). Towards a devops

approach for software quality engineering. In Proceedings of the 2015

Workshop on Challenges in Performance Methods for Software

Development (pp. 5-10).

Pronin, E. (2007). Perception and misperception of bias in human

judgment. Trends in cognitive sciences, 11(1), 37-43.

Rütz, M. (2019). Devops: A systematic literature review. no. August,

23, 25.

Sarah, A. L., & Fakieh, B. (2020). How DevOps Practices Support

Digital Transformation. International Journal of Advanced Trends in

Computer Science and Engineering, 9(3), May – June 2020, 27, 9(3).

Senapathi, M., Buchan, J., & Osman, H. (2018). DevOps capabilities,

practices, and challenges: Insights from a case study. In Proceedings

of the 22nd International Conference on Evaluation and Assessment

in Software Engineering 2018 (pp. 57-67).

Shahin, M., Zahedi, M., Babar, M. A., & Zhu, L. (2017). Adopting

continuous delivery and deployment: Impacts on team structures,

collaboration and responsibilities. In Proceedings of the 21st

international conference on evaluation and assessment in software

engineering (pp. 384-393).

Skelton, M., & Pais, M. (2019). Team topologies: organizing business

and technology teams for fast flow. It Revolution.

Spiegler, S. V., Heinecke, C., & Wagner, S. (2021). An empirical

study on changing leadership in agile teams. Empirical Software

Engineering, 26(3), 1-35.

Stray, V., Moe, N. B., & Hoda, R. (2018). Autonomous agile teams:

challenges and future directions for research. In Proceedings of the

19th international conference on agile software development:

companion (pp. 1-5).

Toh, M. Z., Sahibuddin, S., & Mahrin, M. N. R. (2019). Adoption

issues in DevOps from the perspective of continuous delivery

pipeline. In Proceedings of the 2019 8th International Conference on

Software and Computer Applications (pp. 173-177).

Tomo, A., Mangia, G., & Canonico, P. (2021). Innovating processes

and processing innovation: strategic approach to innovation in

accounting firms. Journal of Economic and Administrative Sciences.

Treitlier, I. (2014). Backyard ethnography: Defamiliarize the familiar

to transform business. International Journal of Business

Anthropology, 5(1), 93-105.

Zhu, L., Bass, L., & Champlin-Scharff, G. (2016). DevOps and its

practices. IEEE Software, 33(3), 32-34.

Page 6525

8. Appendices

Appendix 1: Comparative summary of the research findings

Case Firm properties Project aim Team structure Change process

FinGov

Sector: Public

financial

administration

Size: Around

100000

Maturity: No prior

knowledge of

DevOps and Agile

Experiment a new

organization in the

construction and the

exploitation of its computer

applications

• Minimum base: Product Owner, Scrum Master, Development

team

• Complementary team: Business Analyst, Architect, System

Operator

Implementation of Agile then of DevOps

Experimentation within 8 volunteer projects

Resistance to change due to fear of DevOps' impact

on the existence of job positions.

Challenging implementation due to a tense social

climate resulting from an important jobs' cut.

Only four regional bodies transformed

TelCo

Sector: Virtual

Telecom operator

Size: 800

Maturity: Low

familiarity. The

Build works in Agile

Eliminate the break between

the Build and the Run induced

by the management of the Run

by the historical host of the

insurer.

Teams organized according to SAFe and including three

operational layers:

• A delivery layer composed of Feature teams responsible for

software delivery (including a Product owner, a Scrum Master, a

Tech lead, a Security champion, and AppOps' profiles) and of

Transverse teams responsible for the Agile method

• A cloud management layer composed of a platform team

managing the infrastructure services and of an Operational

security center responsible for responding to security incidents

• A service offerings' layer including Cloud services, Service

Workplace, and a Legacy entity

Two structural bodies in parallel to operations:

• A design authority ensuring technological consistency across all

IT functions

• Transversal functions (Costs, helpdesk, supplier management,

etc.)

The change occurred gradually over two stages:

• A first post-migration stage: Establishment of the

central platform team, and of an AppOps' teams

responsible for recuperating in Run the migrated

applications on the cloud.

• A second transition phase to full DevOps:

Integration of AppOps into the feature teams in

charge of application products

BigBank

Sector: Banking

Size: >120000

Maturity: Highly

familiar with

DevOps. Used over

4 years

Define and set up SRE (Site

Reliability Engineering)

profiles i.e., development

engineers at the service of

operations

A DevOps' operating model composed of:

• An upper layer associated with professional services, structured

into sub-departments each one related to an element of BigBank

activity and possessing its own feature team that includes SRE

profiles.

• A platform layer for cloud and operations management including

a centralized SRE profile.

• An offering layer including infrastructure models and a

workplace service.

First, set up of SRE profiles in the feature teams to

make them accountable of reliability issues.

Then, implementation of central SRE profiles in the

platform team to manage reliability of private and

public clouds, handle incidents end-to-end, and

define product operability standards.

Page 6526

Appendix 2: DevOps’ team components and the determinants of structure variation

DevOps’ team components of customer firms

Delivery layer

Squad feature teams
• Component base (Scrum Master,

Product Owner, Development Team)

• Ops / AppOps’ profiles

• Tech lead

• Security champion

• SRE profiles

Extending entities

• Complementary team (Business

Analyst, Architect, System Operator)

• Agile transverse team

• Temporary AppOps' teams

Cloud Platform management layer

Platform team
• Platform experts (Architecture,

security and transformation,

continuous delivery, Ops and security

tools)

• SRE team

Operations’ management center

• Operations’ tools

• Security services

Service offerings’ layer

Cloud services
• IaaS/PaaS/CaaS/etc.

• Access management and certification

Additional entities
• Legacy

• Service workplace

Supporting bodies

Design authority
• Enterprise architecture

strategy and frameworks

• Governance risk

• Compliance issues

Transversal functions
• Cost management

• Sourcing

• Vendor management

• Helpdesk

• Level of maturity regarding

Agile

• Level of maturity regarding

DevOps

• Perimeter of the

implementation project

• Social climate in the client

firm

Contextual elements

affecting the transformation

Complementary role in a key component

Key component

Complementary component

Consultant

A temporary role:
• Steer the transition to full

DevOps

• Accompany the creation

of software applications

• Manage the

organizational change

and its challenges

Page 6527

