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Abstract

Telemedicine has long been of interest to the U.S.
general public. Yet, despite the advent of high-speed
internet and mobile device technology, telemedicine did
not reach its full potential until the COVID-19 pandemic
spurred its unparalleled adoption. This sudden shift
in the setting of healthcare delivery raises questions
regarding possible changes in clinical decision-making.
Using a unique set of patient-provider encounter data
from the U.S. in 2020 and 2021, we examine the
effect of telemedicine on antibiotic prescription errors
for urinary tract infections. After accounting for
potential endogeneity issues using provider fixed effects
and an instrumental variable approach, we find a
significantly lower likelihood of prescription errors with
telemedicine relative to in-person encounters. We also
find heterogeneous effects by a provider’s patient volume
and the patient-provider relationship.

Keywords: antibiotics, COVID-19 research database,
health IT, prescription error, telemedicine

1. Introduction

Telemedicine has long been of interest to the general
public in the U.S. As early as 1994, the Department
of Health and Human Services disbursed more than
$7 million to fund research and pilot programs for
telemedicine, with a focus on improving access to
healthcare (Field et al., 1996). The advent and
widespread uptake of high-speed internet and mobile
device technology were expected to lead to rapid
utilization of telemedicine, because the technological
barrier was less of an issue. It was believed that mobile
devices equipped with high-speed internet connectivity
and a high-resolution camera could easily support

telemedicine apps and facilitate seamless interactions
between patients and providers. However, due to
regulatory, financial, and cultural barriers, telemedicine
did not reach its full potential (Rogove et al., 2012).

This landscape changed dramatically with the
onset of the COVID-19 pandemic. The spread of
the highly infectious respiratory virus forced many
states to order lockdowns and suspend non-essential
in-person healthcare visits. These policy changes
led to as much as a 60% reduction in visits to
ambulatory care practices early in the pandemic in the
U.S.1 The unprecedented global pandemic, combined
with the existing technological foundation, spurred an
unparalleled adoption of telemedicine. Patients were
motivated to use telemedicine to fill prescriptions and
consult with providers for non-life-threatening health
issues in the safe environment of their homes. Providers
saw telemedicine as an additional revenue source at a
time when a large portion of revenue from in-person
visits had disappeared almost overnight. As a result
of these changes, the proportion of telemedicine visits
among primary care visits increased from 1.1% in Q2
of total 2018-2019 visits to 35.3% in Q2 of 2020
(Alexander et al., 2020).

This sudden shift in the setting of healthcare delivery
raises questions regarding possible changes in clinical
decision-making across various parts of the healthcare
systems. For instance, one of the ongoing concerns
related to telemedicine is whether providers’ prescribing
decisions have remained consistent. To explore this
issue, our paper focuses on the specific topic of
prescription errors, which have been a major concern
in the U.S. healthcare system. Each year, prescription
errors lead to 7,000 – 9,000 deaths, affect over 7

1More details are available at https://www.commonwealthfund.
org/publications/2020/apr/impact-covid-19-outpatient-visits.
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million patients, and cost the economy more than
$40 billion (Tariq et al., 2021). Our paper aims to
examine a vital healthcare management question: What
is the impact of telemedicine on providers’ prescribing
decisions? More specifically, does telemedicine affect
the likelihood of antibiotic prescription errors relative
to in-person settings?

We assembled urinary tract infection (UTI) patient
records between January 2020 and September 2021
from a national proprietary electronic health record
(EHR) data source. The data contain diagnosis,
procedure, and medication information, allowing us
to compare prescriptions associated with telemedicine
visits and in-person visits. To address potential
endogeneity issues, we employ an instrumental variable
(IV)—the proportion of telemedicine visits within the
same zip code as a focal patient—after controlling
for time, provider, and patient-specific factors.2 The
IV estimate shows a significant reduction in the
likelihood of prescription errors (45.3%). Our study
also investigates heterogeneous effects of telemedicine
by a provider’s patient volume and the patient-provider
relationship. We find a larger reduction in the likelihood
of prescription errors among providers with higher past
UTI-patient volume and new patients who have no prior
encounters with providers.

The rest of the paper is organized as follows. We
first provide an overview of related literature. We
then discuss the clinical setting and describe the data,
empirical strategy, and main results. After that, we
explore heterogeneous effects to gain further insights.
Finally, we conclude with a general discussion and
implications for the healthcare industry and policy
makers.

2. Literature Review

This section presents relevant literature on
telemedicine and prescription errors.

2.1. Telemedicine and Its Application

Telemedicine generally refers to the delivery of
care at a distance, where a provider in one location
uses a telecommunications infrastructure to deliver
care to a patient at a distant site.3 Because of the
slow telemedicine adoption before the pandemic, the
literature has often focused on identifying barriers to
adoption. For example, Lin et al. (2018) point out that
rural location, operational factors, patient demographic

2Other studies such as Lu et al. (2018) and Sun et al. (2020) use
similar IVs in their healthcare research.

3More details are available at https://www.aafp.org/news/
media-center/kits/telemedicine-and-telehealth.html.

characteristics, and reimbursement policies are the
major barriers to telemedicine among federally funded
health centers in the U.S. Kruse et al. (2018)
conduct a systematic review of studies worldwide
and identify barriers such as technically challenged
staff, resistance to change, cost and reimbursement,
and patient demographics. Hwang et al. (2021) find
that social and information frictions, such as cultural
and linguistic differences and limited media coverage,
suppress the supposedly free flow of teleconsultations
across different regions in China. Many of these barriers
came down in a matter of weeks during the pandemic
(such as the lift of restrictions on reimbursement), and
one may wonder if any barriers remain. McCullough
et al. (2021) further use data from Michigan during the
pandemic and find that the accelerated adoption may
have depended on broadband access and technology
skills, exacerbating disparities in healthcare.

Another stream of research investigates the impact
of telemedicine adoption on healthcare utilization and
workload. Ayabakan et al. (2020) study the impact
of telehealth use on utilization and find a substitution
effect of telehealth for chronic patients and a gateway
effect for non-chronic patients. Rajan et al. (2019) find
that with the introduction of telemedicine, the specialists
become more productive and the overall social welfare
increases, although some patients, unexpectedly, will be
worse off. Saghafian et al. (2018) develop a partially
observable Markov process to study the effectiveness of
telemedical physician triage in workload management,
and then conduct analytic and numerical analyses to
derive insights into the management of the telemedical
physician triage system. Sun et al. (2020) focus on the
emergency room setting and find that telemedicine can
improve provider productivity and reduce emergency
room congestion. Bavafa et al. (2018) and Bavafa
and Terwiesch (2019) find the e-visit channel (i.e.,
secure messaging in their context) increases patient
visits and provider workload. Delana et al. (2019) find
telemedicine reduces hospital visit rates but increases
overall network visit rates.

As Royce et al. (2020) point out, one of the foremost
concerns during the rapid adoption of telemedicine is
maintaining safety and quality of care. However, limited
research has connected telemedicine and physician
practice, partly due to the low telemedicine adoption
rate before the pandemic. Therefore, our study aims
to investigate the effect of telemedicine on physician
prescription errors and patient health outcomes, which
we believe is critical before its broader application and
extension.
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2.2. Antibiotic Prescription Errors

A small number of papers in the medical literature
have examined the relationship between telemedicine
and antibiotic prescription errors, but the evidence
thus far is equivocal, with prior research reporting
positive, negative, and nonexistent effects. Some
studies find that telemedicine visits, relative to office
visits, are associated with more inappropriate antibiotic
prescriptions and more broad-spectrum antibiotic use
among adults and children (Mehrotra et al., 2013; Ray
et al., 2019; Uscher-Pines et al., 2016). By contrast, Shi
et al. (2018) and Yao et al. (2020) do not find statistical
differences in antibiotic prescriptions between the
two settings, whereas Hersh et al. (2019) find fewer
antibiotic prescriptions among telemedicine visits for
children under 18 years of age.

Although the varying conclusions may be
attributable to differences in the data sample and
time period, the most critical issue in these studies is the
lack of consideration for potential endogeneity issues
related to telemedicine adoption and usage. Besides,
these studies are typically based on individual hospitals
that are early adopters that pioneer in health information
technology (IT) initiatives. Thus their systems tend to
be customized and optimized for the clinical setting.
However, in practice, patients’ unobserved health
conditions may sway providers’ decisions to choose
telemedicine over office visits, and different policies
may hinder some providers from adopting it. Hence, a
more general sample of physicians and causal inference
is critical to properly justify the impact of telemedicine
on physician clinical decisions.

Given the lack of clear evidence and the ethical
concerns of conducting large-scale randomized
experiments in healthcare settings, causal inference
from observational data is critical for academia and
healthcare practitioners. As such, our paper aims
to address the endogeneity issues associated with
telemedicine visits and draw a causal link between
telemedicine use and antibiotic prescription errors.
Besides accounting for provider heterogeneity, patient
characteristics, and time-fixed effects, we apply the
IV estimation. Similar IV approaches have been
employed to address endogeneity concerns related to
technology adoption in the healthcare market. Dranove
et al. (2014) show that an organization’s adoption of
healthcare technology depends on the local market’s
adoption, because local users share the adoption costs.
This finding led Lu et al. (2018) to construct an IV
based on the local hospitals’ technology adoption rate.
Sun et al. (2020) also use a similar IV to address
endogeneity issues related to telemedicine use in

emergency rooms. Unlike these studies in which the
technology use is examined at the institution level,
we observe telemedicine use at the encounter level.
Therefore, we construct an IV based on telemedicine
use among neighboring individuals in the vicinity.
Details on IV construction and IV validity are discussed
in section 4.2.

3. Clinical Setting and Data

In this section, we provide details on the clinical
setting, data preparation, and summary statistics.

3.1. Clinical Setting: UTIs and Prescription
Errors

We use UTIs as our research context for several
reasons. First, UTI is one of the common reasons to
seek care in the U.S., resulting in more than eight million
outpatient visits and one million emergency department
visits annually, with associated costs estimated to be
over $2 billion per year (Rastogi et al., 2020). Second,
after conducting several interviews with providers,
we find that UTI is a condition that can be easily
diagnosed and treated regardless of the care setting.
For example, the initial treatment of UTIs would be
prescribing antibiotics in both virtual and in-person
settings. Therefore, channel selection would be less
of a concern than for other conditions that require a
physical examination, such as ear infections. This
assumption is confirmed by the Infectious Diseases
Society of America (IDSA) guidelines that recommend
presumptive antibiotics to treat suspected UTI cases
(Gupta et al., 2011). Third, because our data come
from the pandemic period, we rule out conditions
related to COVID-19 symptoms. For instance, even
though acute respiratory infection is often treated via
telemedicine, patients with such symptoms may be
asymmetrically directed to either telemedicine or the
emergency department, depending on the patient’s
condition, the state of the pandemic, and the availability
of hospital beds. Comparatively, UTIs are less likely
to suffer from the pandemic-related selection. Finally,
because we study the quality of care in terms of
prescription errors, we need clear guidelines that we can
compare against observed prescriptions. Fortunately,
clinical guidelines of antibiotic prescriptions are readily
available. A recent publication by Chua et al.
(2019) provides a comprehensive classification scheme
to determine whether each of more than 91,000
International Classification of Diseases, 10th Revision,
Clinical Modification (ICD-10-CM) diagnosis codes
“always,” “sometimes,” or “never” justifies an antibiotic
prescription. Based on patients’ diagnosis codes and
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the medication administered by providers, we follow
Chua et al. (2019) to determine whether an antibiotic
prescription is appropriate.

Antibiotic prescriptions have long been scrutinized
by healthcare officials because of the possibility of
antibiotic resistance. CDC calls it “one of the biggest
public health challenges of our time” with more than 2.8
million people getting an antibiotic-resistant infection,
and over 35,000 people dying annually.4 Antibiotic
prescription errors can increase antibiotic resistance
among the population, and CDC has been encouraging
providers to follow clinical and treatment guidelines by
launching antibiotic stewardship programs for various
care settings. Although prescribing antibiotics when
not recommended can lead to long-term antibiotic
resistance, not prescribing them when recommended
is also concerning because patients are at the risk of
undertreatment, which can lead to revisits or potentially
serious complications that could have been mitigated
with appropriate prescriptions.5

3.2. Data Description and Preparation

We obtain proprietary encounter-level EHR
data including diagnosis, procedures, labs, vitals,
medications and histories sourced from participating
members of the Healthjump network in the U.S.6

Our data have several unique features. First, they
include modifiers appended to the Current Procedural
Terminology (CPT) or the Healthcare Common
Procedure Coding System (HCPCS) codes for each
encounter, which allows us to distinguish telemedicine
from in-person visits. More specifically, our data record
encounters conducted via telemedicine with one or
more of the following modifiers: (1) 95–synchronous
telemedicine (two-way live audiovisual), (2)
GT–interactive audio and video telecommunications,
(3) GQ–asynchronous telecommunication system, and
(4) G0–telemedicine services for diagnosis, evaluation,
or treatment of symptoms of an acute stroke.7

Second, our data contain detailed information
about diagnoses and medications for each visit. The
diagnosis codes help us identify UTI-related encounters
(ICD-10-CM: O23, O86.2, O03.38, O03.88, O04.88,
O07.38, O08.83, N30.0, N30.8, N30.9, N34.1, N34.2,
or N39.0). Each included UTI encounter has the

4More details are available at https://www.cdc.gov/drugresistance/
index.html.

5More details are available at https://www.wsj.com/articles/
SB10001424052702303678404579536284129494564.

6The data, technology, and services used in the generation of
these research findings were generously supplied pro bono by the
COVID-19 Research Database partners, who are acknowledged at
https://covid19researchdatabase.org/.

7More details are available at https://www.cms.gov/.

prescribing provider’s identification information and
medication codes. The medication codes allow us to
identify whether a prescription error exists and if so,
what type of error it is, given the diagnoses.

The main outcome variable is denoted as
PrescriptionError, a binary variable indicating
whether the prescribed medication meets the guideline
for an encounter. More specifically, for each encounter,
we compile a complete list of diagnoses pertaining to
the visit. For each diagnosis, we refer to outpatient
antibiotic prescription guidelines (Chua et al., 2019)
and define an antibiotic prescription as “appropriate”
or “inappropriate.” At the encounter level, we then
aggregate the guideline recommendations across
all diagnoses and define antibiotic prescription
as not recommended, if at least one diagnosis is
inappropriate for an antibiotic prescription. Finally,
we compare this guideline recommendation with the
actual antibiotic administered to the patient and define
PrescriptionError = 1 if the actual prescription
does not match the guideline recommendation, and
PrescriptionError = 0 otherwise.

Third, our data contain various patient
characteristics, including patient demographics and
health conditions (e.g., patient age, gender, and
diagnoses). We also observe whether the patient is
pregnant or not. This is relevant because pregnant
patients require a different antibiotic regimen (Ailes
et al., 2018). We also collect information on patient
comorbidity. The extant literature has widely used
the Elixhauser comorbidity index to control for the
severity of patient health status (see, e.g., Bartel et al.,
2020; Berry Jaeker and Tucker, 2017; Elixhauser
et al., 1998). We follow these studies to calculate
the Elixhauser comorbidity index by first identifying
relevant comorbidities using the list of diagnosis codes
of an encounter and then calculating the weighted sum
of these comorbidities.

Finally, our data include unique patient and provider
identifiers, which allows us to quantify the familiarity
between a patient and a provider. We follow the CPT
definition8 and construct EstablishedPatienti as 1 if
a patient has seen the same provider within three years
prior to encounter i, and 0 otherwise. Distinguishing
established from new patients is critical, because a
provider has different levels of prior information about
different patients, which can also affect the likelihood of
prescription errors.

8CPT defines an established patient as “one who has
received a professional service from the physician/qualified
healthcare professional or another physician/qualified healthcare
professional of the exact same specialty and subspecialty
who belongs to the same group practice, within the past three
years.” More details are available at https://www.aapc.com/blog/
37138-how-to-determine-new-vs-established-patient-status/.
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Provider and patient identifiers are also useful in
conducting empirical analyses. Provider identifiers
allow us to include provider fixed effects and account for
time-invariant provider heterogeneity when we analyze
the effect of telemedicine on prescription errors. In
the sample construction, we focus on providers who
have prescription records for at least two encounters
during the sample period. The availability of patient
identifiers enables us to track patients over time and
analyze the effect of telemedicine on health outcomes
such as readmission and complication.

3.3. Summary Statistics

Table 1 provides summary statistics of our data
sample, containing 14,305 in-person encounters and
1,769 telemedicine counters between January 2020
and September 2021. Our main outcome variable,
PrescriptionError, has a mean of 0.668 and a
standard deviation of 0.471 for all encounters. This
summary statistic of prescription errors is consistent
with existing studies. For example, Chua et al. (2019)
study antibiotic prescriptions for outpatients and find
53.7% – 89.2% of the prescriptions are inappropriate
or potentially inappropriate. The lower part of Table 1
summarizes the key independent variables about patient
characteristics. Non-pregnant female patients account
for the majority of UTI visits. Around one third of
patients have at least one comorbidity. Finally, 28.4% of
patients have seen a provider for UTI treatment within
three years prior to the current visit.

Table 1. Summary Statistics

Variable Mean Std. Dev.

Prescription Error 0.668 0.471
Patient Age 45.869 21.168
Patient Female 0.899 0.302
Patient Pregnant 0.015 0.121
Patient with Comorbidity 0.337 0.473
Established Patient 0.284 0.451
Number of Observations 16,074

Note: This table reports the summary statistics of the data
utilized in this study.

4. Empirical Strategy

In this section, we first discuss the empirical model
that can be used to check the relationship between
prescription error and telemedicine. We then illustrate
our approach to addressing potential endogeneity issues.

4.1. Empirical Model

Our dependent variable is PrescriptionErrori, a
binary variable that is equal to 1 if the prescribed
medication does not meet the guideline for encounter i,
and is equal to 0 otherwise. Note an encounter may have
multiple diagnoses. In the main analysis, we consider an
encounter as having a prescription error if a mismatch
exists between the actual prescription and the guideline
recommendation based on any diagnosis of a visit.

The independent variable of primary interest is
Telemedicinei, which is equal to 1 if encounter i
is conducted via telemedicine, and 0 if conducted in
person. As discussed in section 3.2, we are able
to separate the two modalities because our data have
CPT codes that allow us to determine whether an
encounter is conducted via telemedicine. Note the
use of telemedicine varies widely across providers and
patients and over time. The same provider may see
some patients via telemedicine and others in person. We
also include a broad range of patient demographics and
health conditions (i.e., patient age, gender, pregnancy
status, and Elixhauser comorbidity index) as well as
a proxy for the familiarity between a patient and a
provider (EstablishedPatienti) as covariates.

Finally, we include a set of provider fixed effects
(denoted by Provideri) to control for systematic
differences across providers. Provider fixed effects
control for all time-invariant characteristics, including
provider demographics and other unobserved factors
that might correlate with their predispositions to use
telemedicine or prescription decisions. We include a
set of year-month fixed effects (denoted by Timei) to
control for the time trends of prescription errors. This
approach is motivated by the existing studies (see, e.g.,
Cliff, 2014) that find more medical errors in July when
medical school graduates begin residencies.9

In the main analysis, we use a linear probability
model for two reasons. First, as Angrist and Pischke
(2008) note, linear probability models are easy to
interpret and produce results similar to those obtained
using nonlinear models such as probit. Second, as
Goldfarb and Tucker (2011) point out, estimating a
probit model with a large set of provider fixed effects
is computationally limiting.

The relation between the dependent and independent

9Using alternative time fixed effects does not change the main
conclusion of this study.
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variables can be described using equation (1):

PrescriptionErrori = α0 + α1Telemedicinei
+α2Xi + α3Provideri
+α4Timei + ϵi,

(1)
where the sample is constructed at the encounter level
i. Xi denotes a set of patient characteristics and the
familiarity between the provider and the patient for
encounter i, and ϵi denotes the error term.

4.2. Identification

Estimating equation (1) using the ordinary
least squares (OLS) regression poses challenges to
interpreting α1 as a causal effect, because unobserved
factors may affect both the decision to use telemedicine
and the likelihood of prescription errors.

From the provider side, systematic differences across
providers can bias our estimates. Although provider
fixed effects will account for unobserved time-invariant
provider heterogeneity, and the year-month fixed effects
will capture the common telemedicine-use trends as the
pandemic progresses and government policy changes,
unobserved time-varying provider characteristics may
still exist, leaving potential endogeneity issues.

Moreover, patients with high-risk factors (who are
often more difficult to diagnose) may be less likely to
be scheduled for telemedicine, because providers prefer
to examine these patients in person to gather more
information and build a better clinical rapport with the
patients. In that case, the OLS estimate will bias the true
effect of telemedicine. On the other hand, patients with
high-risk factors may be more likely to be scheduled for
telemedicine, due to the lack of mobility or concerns
about COVID-19 infection, which again biases the true
effect of telemedicine.

To address these potential endogeneity issues, we
use the neighboring telemedicine use in the vicinity
as an IV. More specifically, for encounter i, we first
identify all encounters in the past two weeks within a
focal patient’s zip code. We then calculate the fraction
of encounters conducted via telemedicine (denoted by
NeighborTelemedicinei) and use it as an IV.10 Similar
IVs have been employed to study technology adoption
in the healthcare market. For example, Lu et al. (2018)
and Sun et al. (2020) use the neighboring technology
adoption rate as an IV for a focal institution’s adoption.

A valid IV needs to satisfy two conditions: (1)
It must be correlated with the endogenous variable

10Our estimation remains robust when using alternative periods
(e.g., 1 or 3 weeks) or an alternative definition (e.g., excluding the
focal provider’s encounters) to construct IV. Results are available upon
request.

(i.e., the relevance condition) and (2) it must be
uncorrelated with the error term conditional on
covariates (i.e., the exclusion restriction). Our IV
is likely to satisfy the relevance condition because a
focal patient’s use of telemedicine is likely to correlate
with neighboring patients’ telemedicine adoption, due
to similar local service provision from neighboring
providers, government initiatives, or IT infrastructure.
We formally show the positive relationship between
the two in the first-stage regression. Note that our
model includes patient characteristics, provider fixed
effects, and time fixed effects. Therefore, the exclusion
restriction is that the IV is not correlated with the
likelihood of antibiotic prescription errors for UTI
encounters after controlling for these covariates.

We use two-stage least squares regression to
estimate the effect of telemedicine on prescription
errors. In the first stage, we regress the
endogenous variable, Telemedicinei, over the IV,
NeighborTelemedicinei, and other independent
variables. That is,

Telemedicinei =β0 + β1NeighborTelemedicinei

+ β2Xi + β3Provideri

+ β4Timei + ξi,

(2)

where ξi denotes the error term. The coefficient
β1 indicates the relation between the IV and the
endogenous variable. A positive and statistically
significant coefficient would suggest that our IV
has sufficient explanatory power for the endogenous
variable. We use the first-stage regression to predict the

endogenous variable (denoted by ̂Telemedicinei).
In the second stage, we regress the dependent

variable, PrescriptionErrori over the predicted

endogenous variable, ̂Telemedicinei, and other
independent variables. That is

PrescriptionErrori = γ0 + γ1 ̂Telemedicinei
+γ2Xi + γ3Provideri
+γ4Timei + ζi,

(3)
where ζi denotes the error term. We are particularly
interested in the coefficient γ1. A positive coefficient
would suggest that telemedicine increases the likelihood
of prescription errors, whereas a negative coefficient
would suggest the opposite. Comparing α1 in equation
(1) and γ1 in equation (3) allows us to better understand
the direction of the potential bias due to endogeneity
issues.
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5. Results

In this section, we first show the results from our
main analysis. We then show the results from the
heterogeneity analysis.

5.1. Main Results

Before presenting the main results, we check the
relevance condition of the IV. Table 2 summarizes the
results from the first-stage regression. The coefficient
of the IV, NeighborTelemedicine, is significantly
different from zero at the 1% significance level. The
resulting first-stage F-statistic is 99.20, suggesting that
our IV has sufficient explanatory power. The positive
coefficient implies that the likelihood of telemedicine
usage by an individual and her/his neighbors goes in the
same direction. We find that patients with comorbidity
are less likely to be seen via telemedicine, perhaps
because providers prefer to see them in person to gather
more information about other health conditions and
complications that these patients may have.

Table 2. Results from the First-stage IV Regression

Variable Coefficient

Neighbor Telemedicine 0.648***
(0.065)

Patient Characteristics Included
Provider Fixed Effects Included
Month Fixed Effects Included
Number of Observations 16,074
R-Squared 0.052
F-Test of Excluded Instruments 99.20***

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This
table summarizes the results from the first-stage of IV
regression. The dependent variable is a binary indicator
for telemedicine. Independent variables are the IV, patient
characteristics, provider fixed effects, and time fixed effects.
Robust standard errors are clustered by provider.

The results from the second-stage IV regression
are summarized in Table 3. The coefficient of
Telemedicine is negative and significantly different
from zero at the 1% significance level, which suggests
that the use of telemedicine reduces the probability of
prescription errors. A coefficient of −0.453 suggests
that the use of telemedicine reduces the likelihood of
prescription errors by 45.3%. The improved prescription
decision via telemedicine may be driven by factors such
as better information provided by patients on existing
medication, improved provider workflow, and better
patient-provider communication in virtual settings as
opposed to in-person settings.

As a comparison, Table 4 summarizes the results
from the OLS regression. We see that the coefficient
of Telemedicine is negative and significantly different

Table 3. Results from the IV Regression

Variable Coefficient

Telemedicine -0.453***
(0.136)

Patient Characteristics Included
Provider Fixed Effects Included
Year-month Fixed Effects Included
Number of Observations 16,074

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This
table summarizes the results from the second-stage of IV
regression. The dependent variable is a binary indicator for
prescription error. Independent variables are telemedicine,
patient characteristics, provider fixed effects, and time fixed
effects. Robust standard errors are clustered by provider.

from zero at the 1% significance level. However,
we note that the coefficient from the OLS regression
(i.e., −0.207) is smaller in magnitude than that from
the IV regression, implying that unobserved patient or
provider factors that potentially increase the likelihood
of prescription errors are positively correlated with
telemedicine. For instance, patients with high-risk
factors are more likely to use telemedicine due to
mobility issues or concerns about COVID-19 infections,
and these patients are more prone to prescription
errors because of their complex cases. Therefore, one
will underestimate the effect of telemedicine without
accounting for potential endogeneity issues in the data.

Table 4. Results from the OLS Regression

Variable Coefficient

Telemedicine -0.207***
(0.021)

Patient Characteristics Included
Provider Fixed Effects Included
Year-month Fixed Effects Included
Number of Observations 16,074
Adjusted R-Squared 0.210

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This
table summarizes the results from the OLS regression. The
dependent variable is a binary indicator for prescription
error. Independent variables are telemedicine, patient
characteristics, provider fixed effects, and time fixed effects.
Robust standard errors are clustered by provider.

5.2. Heterogeneous Effects

In this section, we explore evidence of
heterogeneous effects. We conduct the heterogeneity
analysis by including the full interaction terms of
Telemedicine and our variables of interest, and the
results are reported in Table 5.

From the provider side, we measure providers’
patient volume using the periodic volume of UTI
patients one year before our sample period. We
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then construct a binary measure HighPatientV olume,
which equals one if a provider’s UTI patient volume
is above the median. From model 1, we observe
that the treatment effect is greater for providers who
practice at a larger scale than those at a smaller scale
(Telemedicine × HighPatientV olume = −0.341,
p < 0.01). As discussed earlier, providers who are
used to seeing high-volume UTI patients may be able to
reap the benefits of telemedicine despite limited sensory
and tactile information in a virtual setting, because they
benefit from economy of scale and are less affected by
communication and technical frictions via the virtual
channel.

Table 5. Heterogeneous Effects

Variable Model 1 Model 2

Telemedicine -0.252** -0.505***
(0.115) (0.104)

Telemedicine×HighPatientVolume -0.341***
(0.124)

Telemedicine×EstablishedPatient 0.199**
(0.084)

Patient Characteristics Included
Provider Fixed Effects Included
Year-month Fixed Effects Included
Number of Observations 16,074
Adjusted R-Squared 0.210

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. This
table summarizes the heterogeneous effects by patients’ and
providers’ characteristics. The dependent variable is a binary
indicator for prescription error. The key independent variables
are telemedicine and the interaction terms of telemedicine with
our variables of interests. HighPatientV olume is a binary
indicator of whether a provider’s past year UTI patient volume
is above the median, and EstablishedPatient is a binary
indicator of whether a patient has seen a provider for UTI
treatment within three years prior to the current visit. We
also include the complete list of patient characteristics, provider
fixed effects, and time fixed effects. Robust standard errors are
clustered by provider.

In model 2, we investigate whether an established
patient-provider relationship moderates the treatment
effect. The results suggest telemedicine has a
smaller effect on established patients (Telemedicine×
EstablishedPatient = 0.199, p < 0.05). As
discussed earlier, providers are more familiar with
established patients. Comparatively, providers lack
prior information about new patients. Therefore, the
additional information provided by established patients
is less informative than that provided by new patients,
and the marginal benefit of telemedicine to established
patients is smaller than that to new patients. This result
suggests that telemedicine helps facilitate providers’
access to medication information, and thus providers
can make better prescription decisions via telemedicine
than the offline channel.

6. Discussion and Conclusion

Until the COVID-19 crisis, regulatory, financial,
and cultural barriers were preventing telemedicine from
living up to its potential to increase access to healthcare.
The COVID-19 pandemic brought down many of these
barriers at once, thus introducing new questions for
the academics and the industry that had been exploring
the factors contributing to adoption and ways to spur
adoption. In this paper, we study the following
questions: How does telemedicine affect prescription
errors?

Using the case of antibiotic prescription errors for
UTIs and an OLS regression, we find a significant
reduction (20.7%) in the likelihood of prescription
errors when the clinical setting is virtual as opposed
to in-person. To address endogeneity issues related to
the adoption of telemedicine, we employ various fixed
effects as well as an IV approach that reveals an even
greater reduction (45.3%).

The effect of telemedicine is not uniform across
providers and patients. We find that providers with high
patient volume (i.e., have more experience in treating
UTIs) have a larger reduction in prescription errors via
telemedicine. On the patient side, patients who have an
established relationship with their provider experience a
smaller reduction in antibiotic prescription errors.

These results provide valuable insights for the
insurance industry and policymakers, as they need to
consider prescription errors in their efforts to expand
telemedicine use among particular segments of patients
and providers.

One concern in interpreting our results is that
the introduction of the telehealth system may be
accompanied by upgrades in other health IT systems
(such as EHR). If this is the case, providers might
be able to access better information via the upgraded
system. The reduction in prescription errors could then
be due to those confounding IT infrastructural changes.
Note that we include provider fixed effects throughout
our analyses, which already factors in time-invariant
IT capabilities at the provider level. Conversations
with providers in several healthcare institutions that
adopted telehealth revealed that during telemedicine
consultations, they could access the same patients’
information as in-person settings. Although this
evidence significantly alleviates our concern, we cannot
completely rule out the possibility that the improved
prescription decisions might come from time-varying
confounding IT adoptions, unless detailed information
on the telemedicine interface and IT adoptions for each
provider become available to researchers.

Our findings have several broader implications for
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a variety of stakeholders. First, for patients who are
hesitant to try telemedicine, our results demonstrate
a major potential benefit—a lower likelihood of
prescription errors. Given that more accurate
prescribing can contribute to a potential reduction in
drug resistance in the long run, our results can provide
useful information to patients who are contemplating the
use of telemedicine.

Second, our results imply that providers and hospital
managers should consider prescription errors as a
performance metric in deploying telemedicine. This is
because reducing prescription errors can benefit patient
outcomes while reducing drug costs by stemming
unnecessary prescriptions. Our findings are also relevant
to insurers because such cost savings can improve their
bottom line as well.

Third, our findings also point to public policy
implications. With antibiotic overprescription being
a major public health concern, our findings suggest
an additional benefit of telemedicine when the federal
and state governments consider policy changes to spur
further expansion of virtual clinical settings. Therefore,
policy makers may safely extend temporary incentives
for telemedicine beyond the pandemic.

Finally, although the effect of telemedicine
on prescription errors may apply primarily to
non-COVID-19 related conditions, policy makers
need to continue monitoring the use of telemedicine,
the number of prescription errors for different medical
conditions and drugs, and corresponding patient
outcomes as well as costs to decide whether to further
incentivize telemedicine use.
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