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Abstract 

Clustering is common technique used to 

demonstrate relationships between data and 

information. Of recent interest is topological data 

analysis (TDA), which can represent and cluster data 

through persistent homology. The TDA algorithms used 

include the Topological Mode Analysis Tool (ToMATo) 

algorithm, Garin and Tauzin’s TDA Pipeline, and the 

Mapper algorithm. First, TDA is compared to ten other 

clustering algorithms on artificial 2D data where it 

ranked third overall. TDA had the second-highest 

performance in terms of average accuracy (97.9%); 

however, its computation-time performance ranked in 

the middle of the algorithms. TDA ranked fourth on the 

qualitative “visual trustworthiness” metric. On real-

world data, TDA showed promising classification 

results (accuracy between 80-95%). Overall, this paper 

shows TDA is a competitive algorithm performance-

wise, though computationally expensive. When TDA is 

used for visualization, the Mapper algorithm allows for 

unique alternative views especially effective for 

visualizing highly dimensional data. 

1. Introduction  

Essential to turning data into useful information is 

the ability to cluster, classify, and/or predict (Rokach & 

Maimon, 2005). There are many types of 

clustering/classification algorithms, but one algorithm 

that has risen in popularity recently is topological data 

analysis (TDA). Unique to TDA is the consideration of 

the “shape” of the data typically through persistent 

homology; this allows for the input data to be visualized 

differently and more effectively as the data 

dimensionality increases (Chazal & Michel, 2021). 

However, when TDA is employed, it is often without a 

comparison to a baseline clustering method (Singh, 

Mémoli, & Carlsson, 2007) (Garin & Tauzin, 2019).  

The motivation to explore TDA is predominantly due to 

the lack of comparative research on clustering and the 

need to handle highly dimensional “big data.” Of 

interest herein is how TDA compares to other clustering 

algorithms and the advantages/disadvantages of its 

application. Typical comparison metrics includes 

quantitative measures (e.g., accuracy); however, 

previous literature suggests the promise of heuristic 

evaluation for ease of interpreting visual diagrams (see 

(Combs, et al., 2020)).   

This paper focuses on three research questions to 

contribute to the literature on TDA and its usage in 

clustering: 

RQ1: How can clustering algorithms be compared? 

RQ2: How does TDA compare to traditional methods? 

RQ3: How can TDA results be interpreted and best 

utilized for clustering? 

To answer these questions, this paper explores three 

dimensions of utility for clustering: accuracy of 

predicted clusters to known clusters, computation time, 

and a qualitative comparison based on the newly 

proposed and defined “visual trustworthiness.” After 

discussing several popular clustering methods and 

background TDA, TDA’s performance is compared to 

10 other clustering algorithms in terms of accuracy, 

completion time, and visual trustworthiness on six 

artificial data sets. Next, TDA is used for classification 

of the real-world Palmer Penguins data set using the 

Topological Mode Analysis Tool (ToMATo) algorithm 

and the MNIST digits data set through Garin and 

Tauzin’s TDA pipeline. The Palmer Penguins and 

MNIST digits data set are visualized and interpreted 

through Mapper, as implemented in the KeplerMapper 

Python library. Finally, this paper ends with conclusions 

and future work directions.  

2. Background 

The tasks of clustering and classification have a 

long history between their techniques, methods, and 

metrics; clustering is popular because it can be 

conducted in supervised or unsupervised approaches 

(Rokach & Maimon, 2005). Some well-known cluster 

methods are discussed in terms of how they work as well 

as their advantages and disadvantages. The topological 

data analysis (TDA) algorithm will then be compared to 

these well-known methods. 
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2.1. Common Clustering Algorithms 

The clustering methods discussed in this section 

include k-means, affinity propagation, mean shift, 

spectral clustering, ward hierarchical, agglomerative 

clustering, density-based spatial cluster of applications 

with noise (DBSCAN), ordering points to identify 

cluster structure (OPTICS), balanced iterative reducing 

and clustering using hierarchies (BIRCH), and Gaussian 

mixture. These methods were based on those 

implemented by sci-kit learn (see (Pedregosa, et al., 

2011)). 

 

2.1.1. Mini-batch K-means. Arguably the most famous 

and common clustering method is k-means, which was 

first described in (Lloyd, 1957). The algorithm works by 

minimizing the distance between each point and its 

cluster across k total clusters (where k is determined by 

the user) until a stopping point is reached (specific 

value, number of iterations, etc.) (Ghosh & Liu, 2009). 

There are many variations to the k-means algorithm; 

however, mini-batch (see (Sculley, 2010)) is one of the 

more popular versions due to its ability to decrease 

computation time without sacrificing the quality of 

requests compared to the original algorithm (Scikit-

learn, 2022).  

 

2.1.2. Affinity Propagation. A more recent algorithm 

developed in (Frey & Dueck, 2007) is affinity 

propagation, which uses the most representative points 

within the data set, dubbed “exemplars,” based on 

sending messages between points. Unlike k-means, the 

number of clusters is determined by the algorithm rather 

than the user (Scikit-learn, 2022). Affinity 

propagation’s only two inputs are preference (which 

directly affects the number of exemplars) and damping 

factor (which affects the message rate); one of its major 

drawbacks is the computation time required. 

 

2.1.3. Mean Shift. Initially developed in (Fukunaga & 

Hostetler, 1975), mean shift is commonly used for 

computer vision problems. The number of clusters is 

identified by the algorithm but influenced by the 

bandwidth parameter, which can be directly set by the 

user or estimated by a separate function; similar to 

affinity propagation, the mean shift algorithm will 

converge when it has reached a minimum or the change 

in centroid placement is insignificant (Scikit-learn, 

2022). 

 

2.1.4. Spectral Clustering. Instead of compactness of 

data, spectral clustering performs best on connected data 

(Singh A. , 2010). Spectral clustering utilizes matrices’ 

eigenvectors to cluster the points using another 

clustering method such as k-means or k-nearest 

neighbor (KNN) (Von Luxburg, 2007). The number of 

clusters is pre-determined by the user and spectral 

clustering is best applied to data with few clusters 

(Scikit-learn, 2022). 

 

2.1.5. Hierarchical Clustering. There are several types 

of hierarchical/agglomerative clustering, which all 

attempt to split and merge data into a tree-like structure 

(Nielsen, 2016). Important parameters include the 

district metric used and the linkage function (Nielsen, 

2016). Single linkage “minimizes the distances between 

the closest observations of pairs of clusters.” 

Maximum/complete linkage “minimizes the maximum 

distance between observations of pairs of clusters.” 

Ward linkage (see (Ward Jr., 1963)) minimizes the sum 

of squared differences within the clusters (Scikit-learn, 

2022). Average linkage is often used alternatively to 

Ward when non-Euclidean district metrics are used. 

 

2.1.6. Density-based Spatial Cluster of Applications 

with Noise (DBSCAN). First published in 1996, 

DBSCAN uniquely considers density as its name 

suggests (Ester et al., 1996). DBSCAN requires two 

parameters: a minimum number of points per “core 

sample” (dubbed “minPts”) and epsilon (abbreviated to 

“eps” or ε), the distance the minimum points must lie to 

be a part of the “core sample.” A “core sample” is a 

point/sample that is in a highly-dense region that is to 

become a cluster (Scikit-learn, 2022).  

 

2.1.7. Ordering Points to Identify Cluster Structure 

(OPTICS). Sharing some of its creators with DBSCAN, 

OPTICS is another density-based algorithm (Ankerst et 

al., 1999). OPTICS has the same inputs as DBSCAN, 

but allows ε to be a range of values (Rhys, 2020). The 

smallest value of ε is called the core distance (ε’), where 

the minPts is within the radius of the selected “core 

sample.” The “reachability distance” is considered the 

distance between a core sample and another core sample 

within ε-distance. This allows for the creation of a 

“reachability plot” that plots values of ε on the y-axis 

and the points on the x-axis, which segments’ 

steepness(es) determines whether it is clustered as a core 

point or noise (Scikit-learn, 2022).  

 

2.1.8. Balanced Iterative Reducing and Clustering 

using Hierarchies (BIRCH). BIRCH is not distance-

based but uses tree structures to cluster data (Zhang et 

al., 1996). Specifically, a Clustering Feature Tree (CFT) 

is created, (optionally) condensed into a smaller CFT, 

and then, used for global clustering. The data is divided 

into Clustering Feature nodes, which consist of 

Clustering Feature subclusters (Scikit-learn, 2022). 

Scikit-learn’s implementation has two parameters: 

branching factor (“limits the number of subclusters 
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within a node”) and threshold (“limits the distance 

between the entering sample and the existing 

subclusters").  

 

2.1.9. Gaussian Mixture. The Gaussian mixture 

algorithm is probabilistic, which allows uncertainty to 

be associated with each data point (Kan, 2017). 

Dempster et al. (1977)’s expectation-maximization 

algorithm is used to adjust various unknown parameters 

associated with a “mixture” of normal distributions the 

input data follows. (Scikit-learn, 2022). During 

clustering, the covariance can be spherical, diagonal, 

tied, or full in scikit-learn’s implementation.  

2.2. Topological Data Analysis (TDA) 

Topological data analysis (TDA) is a relatively new 

clustering approach with most of its history beginning 

in the early 2000s (Chazal & Michel, 2021). At the heart 

of TDA is identifying structure often through persistent 

homology, which is a particularly useful way to 

visualize multi-dimensional data (Wasserman, 2018). 

There are several iterations of algorithms that utilize 

TDA, which are primarily based around three aspects 

algebraic topology: simplicial complexes, persistence 

barcodes/diagrams, and/or Betti numbers/curves.   

Before the application of persistent homology, data 

is converted into simplicial complexes commonly 

visualized through a Czech or (Vietoris-)Rips diagram 

(Ghrist, 2008). Figure 1 shows a point cloud of 6 points 

on the left (orange oval-like figures) and a multi-colored 

Rips diagram on the right below each sub-figure’s label, 

(a)-(d). Looking at the point clouds, each individual 

point (which are classified as a 0-simplex) within has a 

diameter, symbolized ε, shown in the orange area 

around it, which increases with each Figure 1(a)-1(d). In 

the case two data point’s radius touch or overlap, they 

are “adjoined” and considered to be a 1-simplex. This 

relationship is shown in the multi-colored figures where 

a line connects two points (best shown in on the left of 

Figure 1(b)). When three points radius’ touch it becomes 

a 2-simplex (yellow triangle), four connected points 

become a 3-simplex (green quadrilateral), five  

 

 
Figure 1. Rips diagram creation 

connected points become a 4-simplex (blue irregular 

pentagon), and so on. As the radius increases the shape 

will become more interconnected and produce more 

simplexes of higher degrees until all points are 

connected. 

After the simplicial diagram (the Rips diagram(s) 

shown in Figure 1) has been used to re-visualize the 

data, of next consideration is the point cloud’s 

persistence which is described through its “homology 

dimensions,” often symbolized as 𝐻𝑘  (where k is 

replaced by the numerical dimension) (Munch, 2017). A 

persistence barcode/diagram has the ability to describe 

point cloud “features” and the aforementioned 

dimensions are not equivalent to a Rips diagram’s 

simplexes. In persistence homology, “features” refer 

individual points, connected parts, or loops found within 

a given simplicial complex. The 0th dimension 

represents the number of “connected parts” which are 

individual points or set of points “connected” to one 

another in the given simplicial complex. (Munch, 2017). 

The 1st dimensions represent loops (also sometimes 

called holes) A persistence barcode/diagram is able to 

visualize when these features are initially formed (called 

their “birth”) and the loops cease to exist because they 

are “filled in” (called their “death”) (Amezquita, 

Quigley, Ophelders, Munch, & Chitwood, 2020).  

 

 
Figure 2. Persistence Barcode and Diagram 

Presented with three chronological-consecutive 

point clouds, their corresponding persistence barcodes, 
𝐻0 persistence diagram,  𝐻1 persistence diagram, and 

dimensions values are presented in Figure 2. Assuming 

Figure 2(a) is the starting figure, 𝐻0= 6, for each of its 6 

points; however, this is usually not reflected in the 

persistence barcode or diagram. Moving to Figure 2(b), 

the simplicial complex is color coded to represent its 

two connected parts (hence, 𝐻0 = 2). These connected 

parts as well as any previously created connected parts 

are shown in the persistence barcode and 𝐻0 diagram. 

The 𝐻1 diagram is still blank because no loops are 

currently present. Finally, in Figure 2(c), we have a loop 

(thus 𝐻1 = 1), which is reflected in the blue elements of 

the persistence barcode and diagrams. A point cloud’s 

𝐻0 dimension will always be at least 1 because there 
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must be at least 1 “connected part” even if said 

connected part also forms a loop as in Figure 2(c). A 

more in-depth example of a simplicial complex with 

higher dimensions is shown in (Ghrist, 2008). 

Though persistence barcodes and diagrams provide 

another way to summarize information in a point cloud, 

they still produce significant amount of information. 

Many TDA algorithms, and other mathematical 

methods, further utilize the Betti number. A Betti 

number for a given surface (or shape) is the maximum 

number of cuts that can be made to the surface without 

it splitting into two separate pieces (Gardner, 1984). A 

Betti number is symbolized, βk, where k represents a 

homology dimension (Munch, 2017). The homology 

dimension values described earlier are equivalent to 

Betti numbers as β0 represents the number of connected 

parts, β1 represents the number of loops, and β2 

represents the number of voids/holes. Higher 

dimensions of Betti numbers exist, but also become 

increasingly difficult to describe. The Betti number(s) 

are shown for a point, circle, sphere, torus, and Klein 

bottle in Figure 3, to better understand what is meant by 

each homology dimension.  

 
Figure 3. Common Shapes and Their Betti 

Number(s), taken from (Munch, 2017) 

Most TDA methods use the information found in a 

Rips diagram, persistence barcode, persistence diagram, 

the Betti numbers, or some combination to alternatively 

represent and cluster data. There are many libraries 

dedicated to the application of TDA including Dionysus 

1 & 2 (Morozov, 2020), Gudhi (Clement, et al., 2014), 

giotto-tda (Tauzin, et al., 2021). Of specific interest to 

this paper is the TDA implementation in the Topological 

Mode Analysis Tool (ToMATo) algorithm (Chazal, et 

al., 2013), Garin & Tauzin’s TDA pipeline (2019), and 

Mapper (Singh, et al., 2007). 

 

2.2.1. Topological Mode Analysis Tool (ToMATo) 

Algorithm. ToMATo is a TDA clustering algorithm 

that uses persistence barcodes, to allow clusters to 

“merge” together into their final form (Chazal, et al., 

2013). The version of the algorithm used in this study is 

TDAToolbox (Dindin, 2019), which requires one input, 

an estimated number of clusters. However, ToMATo 

treats this as a maximum and may reduce the number of 

final clusters depending on its results. 

 

2.2.2. Garin & Tauzin’s TDA Pipeline. In a different 

implementation, Garin and Tauzin created a generic 

pipeline that uses giotto-tda (see (Tauzin, et al., 2021)) 

to classify and cluster data in point cloud form (Chazal, 

et al., 2013). Rather than relying on persistence barcodes 

as ToMATo does, this pipeline uses filtrations to derive 

the persistent homology, which was originally applied 

to the MNIST digits data set (Chazal, et al., 2013). To 

classify data, the training and fitting of the pipeline are 

followed by Scikit-learn’s random forest classifier 

ensemble method (Chazal, et al., 2013). 

 

2.2.3. Mapper. The Mapper algorithm has three main 

steps: (1) the placement of input data in one or more 

bins, (2) inter- and intra-clustering within and between 

bins, and (3) finally, the creation of a new graphical 

network where clusters act as vertices and interactions 

between clusters act as edges (Bihl, et al., 2020). 

Mapper's most popular Python implement is 

KeplerMapper, which is a part of the larger suite of 

libraries, scikit-tda (see (Saul & Tralie, 2019)) (van 

Veen, et al., 2019).  

3. Clustering Comparison Framework  

Prior works compared clustering methods based on: 

accuracy, Rand and Jaccard Indexes, and/or accuracy 

gain (Islambekov & Gel, 2019) (Akcora, et al., 2020) 

(Lyu, 2022).  To answer one of the research questions, 

this work proposes that the quality of a clustering 

method can be evaluated across three dimensions: 

accuracy, computational time, and visual 

trustworthiness. When used for unsupervised 

classification, true accuracy is of course unknown; 

however, the other two dimensions would be available.   

The two quantitative metrics are accuracy and 

computation time, standard algorithm comparison 

metrics. Accuracy is considered as the number of data 

points correctly classified (as determined by the original 

data labels) divided by the total number of data points. 

Accuracy is represented by a percent and a higher 

accuracy means better results. Computation time is 

defined as how long it took for the algorithm itself to run 

in seconds. Any time used for data preprocessing and/or 

graphing is not included in this metric. Ideally 

computational time should be low meaning the 

algorithm runs quickly.  

This analysis presents “visual trustworthiness” as a 

qualitative assessment of the clustering results. Visual 

trustworthiness is based on the heuristic principal of 
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“trustworthiness” formulated in (Combs, et al., 2020). 

This metric category is subjective and presents the 

human subject is presented with the question in Figure 

4 for each data plot shown in Figure 5. The subject is 

reliant only on the visual cues shown in the data plots 

and not presented with any other statistical aspects such 

as accuracy or computation time. The question aims to 

understand how the human interprets the quality of the 

predicted clusters and whether the results seem 

trustworthy given the predicted: 

• number of clusters (Does the predicted number 

of clusters seem appropriate for the data 

visually?), 

• cluster size (Does the number of data points in 

each cluster seem unbalanced or not properly 

distributed given the data?), 

• cluster shape (Do the clusters have 

odd/inappropriate boundaries given the data?), 

and 

• cluster locations (Are the clusters located 

where you think they should be?). 

 

 
Figure 4. Visual Trustworthiness Evaluation 

Equating “strongly disagree” to a 1 and “strongly agree” 

to a 5 on a 5-point Likert scale, the human subject’s 

responses for each data plot were recorded. These values 

were averaged for each algorithm across all 6 data sets 

in Figure 5. Since clustering is largely visual in nature, 

human perception is important and not measurable in 

typical quantitative metrics. A higher visual 

trustworthiness score is ideal in this study. 

Finally, a ranking from 1-11 was assigned to all the 

algorithms for each metric, accuracy, computation time, 

and visual trustworthiness. All three metrics are 

described by an average for each algorithm looking at 

its performance across all the data sets; therefore, the 

ranks were determined based on these averages. For 

accuracy and visual trustworthiness, a rank of 1 was 

assigned to the highest value and a rank of 11 was 

assigned to the lowest value for each algorithm. For 

computation time, where a lower value is best, a rank of 

1 was given to the smallest time and a rank of 11 was 

given to the algorithm with the largest time. An average 

of these ranks for accuracy, computation time, and 

visual trustworthiness were taken and then, ranked as 

well to give the overall algorithm ranking. 

4. Simple Comparison of Methods 

Inspired by (Scikit-learn, 2022)’s comparison on 

novel 2D data, ten clustering algorithms plus TDA were 

compared on six novel data sets: circles, moons, blobs 

with different variances, anisotropic, blobs with the 

same variances, and random. Each data set consisted of 

1500 instances and a random state of 10 was used except 

for the anisotropic data, which used 11. For the non-

TDA algorithms, the default   parameters used by scikit-

learn was used. The TDA algorithm used throughout is 

ToMATo. 

The results of the 11 clustering algorithms are 

shown graphically (with computation time shown in the 

bottom right corners) in Figure 5. The accuracy, 

computational time, and visual trustworthiness scores 

for each model on all six data sets is presented in Table 

1. In the visual trustworthiness section, the number of 

clusters metric wherein the evaluator answered “Yes” is 

totaled for each algorithm given its performance on the 

data sets, which allows for a maximum score of 6. The 

cluster quality scores were averaged across all 6 data 

sets for each algorithm. The first author served as the 

evaluator, so n=1 for this study. 

The circles' data set had the second-lowest average 

accuracy (71.6%) and the longest average 

computational time (1.98s). The results were relatively 

bipolar with 5 algorithms displaying perfect 

performance (including TDA); however, the remaining 

algorithms ranged from 21.8% to 74.4% accuracy. Most 

algorithms correct estimated two clusters; however, 

many split the data into unideal half-circle-like clusters. 

The moons data set at a 91.2% average accuracy 

and the longest average computation time of 1.6s. 

Similar to the circles' data set, the same 5 algorithms 

showed perfect performance with most of the others in 

the 80-90% range (except for affinity propagation’s 

68.4% accuracy). Again, two clusters were identified by 

most algorithms; however, several misclassified inner 

edges of the two “moons.” 

The blobs with variance data set showed an average 

of 92.4% accuracy and an average computation time of 

0.88s, which is approximately middle-of-the-road 

compared to the other data sets. Performance across the 

board was fairly high with 8 algorithms in the 90-100% 

range with the lowest performance being BIRCH at 

60%. This is one of two data sets that DBSCAN and 

OPTICS performed less than 100% on, due to their 

built-in ability to detect outliers (which are effectively a 

fourth class) shown in black in Figure 5. Most 

algorithms identified correctly three clusters, but some 

of the edges proved to be difficult to cluster. Since this 

analysis treats the outliers identified by DBSCAN and 

OPTICS as a fourth class, they were penalized for it in 

the visual trustworthiness metric. 
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Figure 5. Artificial Data Scatter Plots 

Table 1. Accuracy, Computation Time, and Visual Trustworthiness 

Algorithm 
K-

means 
AP MS SC Ward AC DBSCAN OPTICS BIRCH GM TDA 

Accuracy (%) 

Circles 51.2 21.8 38.5 100 74.4 100 100 100 51.3 50.1 100 

Moons 84.2 68.5 87.3 100 90.3 100 100 100 87.3 85.4 100 

Blobs w/ Vari. 97.2 84.7 97.9 100 100 100 95.9 80.7 60 100 99.9 

Anisotropic 83.9 83.6 65.7 91.2 69.3 88.9 66.3 66.7 83.4 99.2 93.3 

Blobs w/o Vari. 100 100 100 100 100 100 100 100 100 100 100 

Random 35.6 26.7 50.1 40.1 40 99.6 100 100 42.2 35.7 94.3 

Average 75.6 64.2 73.3 88.6 79 98.1 93.7 91.2 70.7 78.4 97.9 

Computation Time (s) 

Total 1.35 33.6 2.22 11.9 5.08 3.91 0.14 16.9 0.4 0.42 2.79 

Average 0.39 9.6 0.63 3.4 1.45 1.12 0.04 4.83 0.11 0.12 0.78 

Visual Trustworthiness (n=1) 

Average 3.33 2.17 3.17 4.17 3.5 4.67 4.83 4.67 2.83 4 4.5 

Overall Algorithm Ranking 

Rank 7 11 10 6 8 2 1 5 9 4 3 

The anisotropic data was a struggle for some of the 

algorithms, with even the high-achieving ones unable to 

obtain 100% accuracy. This is one of two data sets with 

touching clusters (the other being blobs with variance), 

which most of the algorithms have a difficult time 

clustering. Impressively, Gaussian mixture, TDA, and 

spectral clustering all had an accuracy above 90%. 

However, as shown in Figure 5, many of the algorithms 

divided up the data such that the clusters ran 

horizontally rather than at the slight angle the true 

clusters are. Yet again, the number of clusters did not 

prove to be too challenging; however, excluding 

Gaussian Mixture, all the algorithms struggled with the 

quality of the clusters with most combing the right-most 

two to some degree. 

The blobs with no variance were so clearly 

dispersed and dense, that all 11 algorithms perfectly 

predicted the three original clusters. Despite having 

three clusters, this data set had the second-lowest 

average computation time of 0.71s. As this was arguably 

the easiest data set, all eleven algorithms received full 

credit for both visual trustworthiness metrics. 

The final row of the accuracy section, showing the 

results of the uniform random distribution was unique in 

the sense that there was only one cluster. This was by 

far the most difficult data set given its average accuracy 

of 60.3%. Due to the nature of the data set, algorithm 

performance is better accessed through the number of 

clusters identified rather than overall accuracy.  

DBSCAN and OPTICS correctly assumed one cluster, 

followed by agglomerate clustering and mean shift 
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assuming two clusters. Five algorithms assumed three 

clusters and two algorithms (affinity propagation and 

TDA) assumed four clusters. It is worth noting that 

despite TDA guessing four clusters, 94.3% of the 

instances all fell within one large cluster in contrast with 

many of the other algorithms attempting to have 

equally-distributed clusters.  Yet again, this was a 

struggle with most algorithms identifying more clusters 

than what existed. For the cluster quality metric, scores 

were largely based on the number of clusters identified 

since the data set was uniformly distributed. 

In comparison with the other algorithms, TDA has 

the second-highest accuracy of 97.9% and the sixth-

lowest total computational time at a total runtime of 

2.79s for all six data sets. Despite TDA’s high accuracy, 

both agglomerative clustering and DBSCAN obtained a 

higher accuracy with lower computation times of 2.26s 

and an impressive 0.13s, respectively. For the visual 

trustworthiness metrics, TDA was in an 8-way tie for 2nd 

place for the number of clusters, and ranked 4th in 

regards to cluster quality. However, real-world data is 

quite different, which is the next way TDA is evaluated. 

5. Topological Data Analysis Application 

on Real-world Data  

In a different assessment of TDA, it is applied to 

two frequently-used real-world data sets, the Palmer 

Penguins and the Modified National Institute of 

Standards and Technology (MNIST) digits data sets. 

The Palmer Penguins data set has been dubbed the 

“new” Iris data and details characteristics of three types 

of penguins (Horst & Hill, 2020). The MNIST data set 

is a classic data set consisting of handwritten numbers 

between 0 to 9 (LeCun, et al., 1998). 

5.1. Palmer Penguins 

Named for the Palmer Archipelago in Antarctica 

area, the Palmer Penguins size data set consists of the 

target variable, species, and six other variables: island 

(nominal; 3 levels), culmen (bill) length (continuous), 

culmen (bill) depth (continuous), flipper length 

(continuous), body mass (discrete), and sex (nominal; 2 

levels) (Horst & Hill, 2020). There are 344 total 

instances; however, 11 had missing data and were 

removed from the data for this study. 

Since ToMATo can only be applied to 2D 

numerical scatter data; three plots comparing the 

culmen length (on the x-axis) to the remaining, culmen 

depth (left column of Figure 6), flipper length (middle 

column), and body mass (right column) were 

constructed to see how TDA performs. The true clusters 

represented by the species target variable are shown in 

the top row of graphs in Figure 6, with the TDA-

predicted clusters in the bottom row. TDA produces 

fairly high accuracies given the clusters: culmen length 

vs. depth had an 80.2% accuracy, culmen length vs. 

flipper length had a 95.6% accuracy, and culmen length 

vs. body mass had an 88.9% accuracy.  

 

 
Figure 6. True and TDA-predicted Palmer Penguin 

Clusters 

5.2. MNIST Digits 

The MNIST Digits data set consists of 70,000 

handwritten single digits split 60,000 for training and 

10,000 for testing (LeCun, et al., 1998). Due to limited 

computational resources, only 10,000 examples were 

used for training, but all 10,000 examples were used for 

testing. Despite the small training size, the TDA 

pipeline performed quite well with an accuracy of 

94.82% on the test data. The highest performing 

individual class was 0, with 97.8% accuracy, with the 

lowest-performing being 4, with an accuracy of 92.3%. 

Regarding the latter’s sub-par performance (in 

comparison), 3.7% of 4’s was mistaken as 9’s, and in 

vice versa, mistaking a 9 for a 4, was the second most 

common error with 2.3% occurrence. As discussed in 

Section 2.2, persistent diagrams and barcodes are based 

on the number of connected components, loops, and 

holes in a given figure. Given a “closed” number 4, such 

as displayed by this font, its format simplifies to one 

loop and one component, just as a 9 is. Therefore, it is 

reasonable for the TDA pipeline to mix the two numbers 

up. Other spots of trouble include confusing 2’s and 7’s 

and interestingly, 8's and 9's.  

Though TDA’s performance based on accuracy 

was satisfactory, the required computation time is 

exceptionally long. It took over 14 minutes to train the 

TDA pipeline (and random forest classifier) and then, 

and an additional 13 minutes for running the test data. 

Considering TDA’s accuracy is good, but not great (as 

many models have performed much higher), it is hard to 

justify the use of this TDA pipeline, given the settings 

used, for the MNIST data set in terms of practicality.  
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6. KeplerMapper Visualization & 

Implementation  

The last TDA algorithm of interest is Mapper (see 

(Singh, et al., 2007)), which is implemented in Python 

via the KeplerMapper library (van Veen, et al., 2019). 

KeplerMapper has several hyperparameters (with many 

different settings) that can drastically change the 

resulting diagram, which is typically used for data 

visualization. 

6.1. Hyperparameters & Settings 

In the KeplerMapper implementation, there are 

three main hyperparameters: the projection (also called 

a lens), the distance matrix, the scaler, and the number 

of cubes (van Veen, et al., 2019). The first three are 

inputs to KeplerMapper’s project/fit_transform 

functions, with the latter an input to the Cover class. It 

also uses a clustering algorithm, which by default was 

DBSCAN, which uses the parameters, eps and 

min_samples described in section 2.1.6. 

The projection affects the input data and how it is 

“projected” to the Mapper algorithm. Unlike ToMATo 

which needs 2D scatter data and the TDA pipelines 

which require many filtrations of 2D images, 

KeplerMapper can “summarize” data with many 

variables through different projections. These 

projections can be a Scikit-learn class with the 

fit_transform function in addition to other measures 

(sum, mean, etc.). Projections can also turn 3D data into 

2D data by only considering two variables. For both 

examples in this section, the t-distributed Stochastic 

Neighbor Embedding (t-SNE) method was used. 

The distance matrix determines how the distances 

between data instances are calculated. By default, 

Euclidean distance is used, but this may be any string 

corresponding to a pairwise distance metric. This is 

applied before the projection. 

The scaler by default is Min-max; however, this 

field may be left blank if the user wishes for no post-

map scaling. Scaling takes place after the data is 

projected using the districted distance matrix. For our 

purposes, only the Min-max scaler is used. 

The number of cubes, symbolized as num_cubes, is 

the number of hypercubes to be created along each 

dimension. Data points within the hypercubes are 

clustered and these clusters become nodes on the final 

KeplerMapper diagram. These clusters/nodes are 

connected by lines, called edges when one point appears 

in multiple clusters/nodes. Optionally, the Cover class 

can be assigned a value for perc_overlap, which is the 

“amount of overlap between adjavent cubes along one 

dimension.” The settings used to generate Figures 8 and 

9 are shown in Table 2. 

Table 2. KeplerMapper Settings 

Figure Eps Min_ 

samples 

Num_ 

cubes 

Perc_overlap 

7 0.3 4 20 0.3 

8(a) 0.3 15 35 0.4 

8(b) 0.3 5 15 0.52 

 

6.2. Palmer Penguins 

Rather than using only the numerical variables as 

done in Section 4.2, all variables were used in this 

analysis. However, the nominal variables were 

represented with numerical labels. The resulting figure 

is shown in Figure 7. The node size represents how large 

that node/cluster is and the color represents the 

“average” true label of the node. It is an “average” 

because if the node consisted of heterogeneous data 

(from two or more species), the color would adapt such 

that the color reflects all of the true labels represented. 

Ideally, alike items would be clustered together in 

“chains” or “superclusters,” meaning nodes that are 

further connected by edges. However, in this case TDA 

identified three “superclusters” which correlate to three 

classes; however, they do not align well with the data 

point’s true clusters as shown in in the coloring. The 

Adelie penguins are purple, the Chinstrap penguins are 

teal, and the Gentoo penguins are yellow; however, if a 

cluster consists of multiple types the colors 

correspondingly blend. To address one of the research 

questions, TDA identifies three “superclusters;” 

however, they do not accurate correspond with the three 

classes in this particular view of the data. 

 

 
Figure 7. Palmer Penguins KepplerMapper Diagram 

6.3. MNIST Handwritten Digits 

The creators of KeplerMapper already provided the 

Python code for exploring the MNIST data set. The 

resulting figure is shown in Figure 8(a). Except for a 

few, most of the data has accurately been chained 

together into “superclusters” even if in different 

individual clusters (remember the nodes of the graphs 
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are the clusters identified by KeplerMapper). Four 

numbers, 1, 7, 8, and 9, had multiple “superclusters” but 

they were all relatively homogenous in terms of 

representing the desired number. There are a few 

instances of heterogeneous clusters, such as the stand-

alone 7 cluster, which has some 9’s in addition to being 

primarily 7’s. Overall, KeplerMapper does a good job 

of identifying clusters and “superclusters” concerning 

the data’s true labels. 

 

  

(a) (b) 
Figure 8. KeplerMapper Diagram of MNIST  

Alternatively, by changing KeplerMapper’s 

settings, Figure 8(b) can be constructed from the same 

data. Figure 8(b) provides a more equivocal diagram. 

There is one main “supercluster” that connects all the 

digits with the exception of 0 and 6’s superclusters. 

Clusters are represented by the colored nodes and 

considering each data point can belong to multiple 

clusters, this allows for connections to be between 

nodes, identified by lines. Even within the primary 

“supercluster” one can see how alike nodes tend to 

cluster together as best exemplified by the 7 and 2. 

However, other data points, such as those in the “1” 

class are often misclassified as 2, 3, and 8.  

To address the final research question, TDA allows 

for many different representations of the same data 

through its clusters (nodes) and superclusters 

(connected nodes). These views are facilitated by the 

adjustment of various clustering, scaling, and 

projections which is particularly valuable for multi-

dimensional data (as such with the MNIST data set) 

where accurate and complete visual representation can 

be difficult. 

7. Conclusions 

This paper presents the use of topological data 

analysis (TDA) for data classification and visualization. 

First, background information on clustering and 

different algorithms were presented. Then, the 

Topological Mode Analysis Tool (ToMATo) algorithm 

(Dindin, 2019), Garin & Tauzin’s TDA pipeline (2019), 

and Mapper algorithm (Singh, Mémoli, & Carlsson, 

2007) was applied to 2D scatter data (novel and Palmer 

Penguins (Horst & Hill, 2020) data sets) and/or the 

MNIST handwritten digits data set (LeCun, Cortes, & 

Burges, 1998). Lastly, the Mapper algorithm was 

explored as implemented in the Python library, 

KeplerMapper. 

First, the cluster algorithms were compared through 

the creation of three metrics: accuracy (was each data 

point correctly classified?), computational time (how 

long did classification take?), and visual trustworthiness 

(how well does classification meet a human’s visual 

expectation?) which all measure different aspects of the 

selected clustering methods. Wherein, TDA ranked 

second (out of eleven) in accuracy, sixth in 

computational time, and fourth in visual 

trustworthiness. Overall, TDA was third after DBSCAN 

and agglomerative clustering, respectively, on the 

artificial simple data comparison study. Then, two real-

world data sets, Palmer Penguins and MNIST, were 

explored through the application of the Mapper 

algorithm. Mapper’s implementation of TDA produces 

clusters (colorful nodes in Figure 7 and Figure 8) and 

what’s dubbed “superclusters” in this paper. 

“Superclusters” are essentially clusters of clusters 

connected by lines to one another. Ideally these 

“superclusters” correspond to the original class; 

however, depending on the hyperparameters, this is not 

always the case. Therefore, TDA results may be directly 

interpreted in terms of the clusters (as the results for 

ToMATo and the TDA Pipeline) or need more abstract 

extraction (as shown with Mapper). Shown throughout 

the paper, the best TDA algorithm is likely dependent 

on the data used and the intended end goal. 

Classification is best done through ToMATo and TDA 

Pipeline; however, if open to more fuzzy clustering, 

Mapper is better. Regardless of the specific algorithm, 

TDA is appropriate for a variety of data sets especially 

those with high dimensionality.  

One clear line of future work would be to compare 

other popular clustering algorithms to TDA on different 

data sets, 2D data, images, point clouds, etc. Other areas 

of interest would be to dive deeper into Mapper’s 

visualization results and see how they can be better 

optimized for classification. 
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