
Clustering and Topological Data Analysis: Comparison and Application

Kara Combs

Applied Research Solutions

Kcombs@appliedres.com

 Trevor J. Bihl

Air Force Research Laboratory

Trevor.Bihl.2@us.af.mil

Abstract

Clustering is common technique used to

demonstrate relationships between data and

information. Of recent interest is topological data

analysis (TDA), which can represent and cluster data

through persistent homology. The TDA algorithms used

include the Topological Mode Analysis Tool (ToMATo)

algorithm, Garin and Tauzin’s TDA Pipeline, and the

Mapper algorithm. First, TDA is compared to ten other

clustering algorithms on artificial 2D data where it

ranked third overall. TDA had the second-highest

performance in terms of average accuracy (97.9%);

however, its computation-time performance ranked in

the middle of the algorithms. TDA ranked fourth on the

qualitative “visual trustworthiness” metric. On real-

world data, TDA showed promising classification

results (accuracy between 80-95%). Overall, this paper

shows TDA is a competitive algorithm performance-

wise, though computationally expensive. When TDA is

used for visualization, the Mapper algorithm allows for

unique alternative views especially effective for

visualizing highly dimensional data.

1. Introduction

Essential to turning data into useful information is

the ability to cluster, classify, and/or predict (Rokach &

Maimon, 2005). There are many types of

clustering/classification algorithms, but one algorithm

that has risen in popularity recently is topological data

analysis (TDA). Unique to TDA is the consideration of

the “shape” of the data typically through persistent

homology; this allows for the input data to be visualized

differently and more effectively as the data

dimensionality increases (Chazal & Michel, 2021).

However, when TDA is employed, it is often without a

comparison to a baseline clustering method (Singh,

Mémoli, & Carlsson, 2007) (Garin & Tauzin, 2019).

The motivation to explore TDA is predominantly due to

the lack of comparative research on clustering and the

need to handle highly dimensional “big data.” Of

interest herein is how TDA compares to other clustering

algorithms and the advantages/disadvantages of its

application. Typical comparison metrics includes

quantitative measures (e.g., accuracy); however,

previous literature suggests the promise of heuristic

evaluation for ease of interpreting visual diagrams (see

(Combs, et al., 2020)).

This paper focuses on three research questions to

contribute to the literature on TDA and its usage in

clustering:

RQ1: How can clustering algorithms be compared?

RQ2: How does TDA compare to traditional methods?

RQ3: How can TDA results be interpreted and best

utilized for clustering?

To answer these questions, this paper explores three

dimensions of utility for clustering: accuracy of

predicted clusters to known clusters, computation time,

and a qualitative comparison based on the newly

proposed and defined “visual trustworthiness.” After

discussing several popular clustering methods and

background TDA, TDA’s performance is compared to

10 other clustering algorithms in terms of accuracy,

completion time, and visual trustworthiness on six

artificial data sets. Next, TDA is used for classification

of the real-world Palmer Penguins data set using the

Topological Mode Analysis Tool (ToMATo) algorithm

and the MNIST digits data set through Garin and

Tauzin’s TDA pipeline. The Palmer Penguins and

MNIST digits data set are visualized and interpreted

through Mapper, as implemented in the KeplerMapper

Python library. Finally, this paper ends with conclusions

and future work directions.

2. Background

The tasks of clustering and classification have a

long history between their techniques, methods, and

metrics; clustering is popular because it can be

conducted in supervised or unsupervised approaches

(Rokach & Maimon, 2005). Some well-known cluster

methods are discussed in terms of how they work as well

as their advantages and disadvantages. The topological

data analysis (TDA) algorithm will then be compared to

these well-known methods.

Proceedings of the 56th Hawaii International Conference on System Sciences | 2023

Page 815
URI: https://hdl.handle.net/10125/102731
978-0-9981331-6-4
(CC BY-NC-ND 4.0)

2.1. Common Clustering Algorithms

The clustering methods discussed in this section

include k-means, affinity propagation, mean shift,

spectral clustering, ward hierarchical, agglomerative

clustering, density-based spatial cluster of applications

with noise (DBSCAN), ordering points to identify

cluster structure (OPTICS), balanced iterative reducing

and clustering using hierarchies (BIRCH), and Gaussian

mixture. These methods were based on those

implemented by sci-kit learn (see (Pedregosa, et al.,

2011)).

2.1.1. Mini-batch K-means. Arguably the most famous

and common clustering method is k-means, which was

first described in (Lloyd, 1957). The algorithm works by

minimizing the distance between each point and its

cluster across k total clusters (where k is determined by

the user) until a stopping point is reached (specific

value, number of iterations, etc.) (Ghosh & Liu, 2009).

There are many variations to the k-means algorithm;

however, mini-batch (see (Sculley, 2010)) is one of the

more popular versions due to its ability to decrease

computation time without sacrificing the quality of

requests compared to the original algorithm (Scikit-

learn, 2022).

2.1.2. Affinity Propagation. A more recent algorithm

developed in (Frey & Dueck, 2007) is affinity

propagation, which uses the most representative points

within the data set, dubbed “exemplars,” based on

sending messages between points. Unlike k-means, the

number of clusters is determined by the algorithm rather

than the user (Scikit-learn, 2022). Affinity

propagation’s only two inputs are preference (which

directly affects the number of exemplars) and damping

factor (which affects the message rate); one of its major

drawbacks is the computation time required.

2.1.3. Mean Shift. Initially developed in (Fukunaga &

Hostetler, 1975), mean shift is commonly used for

computer vision problems. The number of clusters is

identified by the algorithm but influenced by the

bandwidth parameter, which can be directly set by the

user or estimated by a separate function; similar to

affinity propagation, the mean shift algorithm will

converge when it has reached a minimum or the change

in centroid placement is insignificant (Scikit-learn,

2022).

2.1.4. Spectral Clustering. Instead of compactness of

data, spectral clustering performs best on connected data

(Singh A. , 2010). Spectral clustering utilizes matrices’

eigenvectors to cluster the points using another

clustering method such as k-means or k-nearest

neighbor (KNN) (Von Luxburg, 2007). The number of

clusters is pre-determined by the user and spectral

clustering is best applied to data with few clusters

(Scikit-learn, 2022).

2.1.5. Hierarchical Clustering. There are several types

of hierarchical/agglomerative clustering, which all

attempt to split and merge data into a tree-like structure

(Nielsen, 2016). Important parameters include the

district metric used and the linkage function (Nielsen,

2016). Single linkage “minimizes the distances between

the closest observations of pairs of clusters.”

Maximum/complete linkage “minimizes the maximum

distance between observations of pairs of clusters.”

Ward linkage (see (Ward Jr., 1963)) minimizes the sum

of squared differences within the clusters (Scikit-learn,

2022). Average linkage is often used alternatively to

Ward when non-Euclidean district metrics are used.

2.1.6. Density-based Spatial Cluster of Applications

with Noise (DBSCAN). First published in 1996,

DBSCAN uniquely considers density as its name

suggests (Ester et al., 1996). DBSCAN requires two

parameters: a minimum number of points per “core

sample” (dubbed “minPts”) and epsilon (abbreviated to

“eps” or ε), the distance the minimum points must lie to

be a part of the “core sample.” A “core sample” is a

point/sample that is in a highly-dense region that is to

become a cluster (Scikit-learn, 2022).

2.1.7. Ordering Points to Identify Cluster Structure

(OPTICS). Sharing some of its creators with DBSCAN,

OPTICS is another density-based algorithm (Ankerst et

al., 1999). OPTICS has the same inputs as DBSCAN,

but allows ε to be a range of values (Rhys, 2020). The

smallest value of ε is called the core distance (ε’), where

the minPts is within the radius of the selected “core

sample.” The “reachability distance” is considered the

distance between a core sample and another core sample

within ε-distance. This allows for the creation of a

“reachability plot” that plots values of ε on the y-axis

and the points on the x-axis, which segments’

steepness(es) determines whether it is clustered as a core

point or noise (Scikit-learn, 2022).

2.1.8. Balanced Iterative Reducing and Clustering

using Hierarchies (BIRCH). BIRCH is not distance-

based but uses tree structures to cluster data (Zhang et

al., 1996). Specifically, a Clustering Feature Tree (CFT)

is created, (optionally) condensed into a smaller CFT,

and then, used for global clustering. The data is divided

into Clustering Feature nodes, which consist of

Clustering Feature subclusters (Scikit-learn, 2022).

Scikit-learn’s implementation has two parameters:

branching factor (“limits the number of subclusters

Page 816

within a node”) and threshold (“limits the distance

between the entering sample and the existing

subclusters").

2.1.9. Gaussian Mixture. The Gaussian mixture

algorithm is probabilistic, which allows uncertainty to

be associated with each data point (Kan, 2017).

Dempster et al. (1977)’s expectation-maximization

algorithm is used to adjust various unknown parameters

associated with a “mixture” of normal distributions the

input data follows. (Scikit-learn, 2022). During

clustering, the covariance can be spherical, diagonal,

tied, or full in scikit-learn’s implementation.

2.2. Topological Data Analysis (TDA)

Topological data analysis (TDA) is a relatively new

clustering approach with most of its history beginning

in the early 2000s (Chazal & Michel, 2021). At the heart

of TDA is identifying structure often through persistent

homology, which is a particularly useful way to

visualize multi-dimensional data (Wasserman, 2018).

There are several iterations of algorithms that utilize

TDA, which are primarily based around three aspects

algebraic topology: simplicial complexes, persistence

barcodes/diagrams, and/or Betti numbers/curves.

Before the application of persistent homology, data

is converted into simplicial complexes commonly

visualized through a Czech or (Vietoris-)Rips diagram

(Ghrist, 2008). Figure 1 shows a point cloud of 6 points

on the left (orange oval-like figures) and a multi-colored

Rips diagram on the right below each sub-figure’s label,

(a)-(d). Looking at the point clouds, each individual

point (which are classified as a 0-simplex) within has a

diameter, symbolized ε, shown in the orange area

around it, which increases with each Figure 1(a)-1(d). In

the case two data point’s radius touch or overlap, they

are “adjoined” and considered to be a 1-simplex. This

relationship is shown in the multi-colored figures where

a line connects two points (best shown in on the left of

Figure 1(b)). When three points radius’ touch it becomes

a 2-simplex (yellow triangle), four connected points

become a 3-simplex (green quadrilateral), five

Figure 1. Rips diagram creation

connected points become a 4-simplex (blue irregular

pentagon), and so on. As the radius increases the shape

will become more interconnected and produce more

simplexes of higher degrees until all points are

connected.

After the simplicial diagram (the Rips diagram(s)

shown in Figure 1) has been used to re-visualize the

data, of next consideration is the point cloud’s

persistence which is described through its “homology

dimensions,” often symbolized as 𝐻𝑘 (where k is

replaced by the numerical dimension) (Munch, 2017). A

persistence barcode/diagram has the ability to describe

point cloud “features” and the aforementioned

dimensions are not equivalent to a Rips diagram’s

simplexes. In persistence homology, “features” refer

individual points, connected parts, or loops found within

a given simplicial complex. The 0th dimension

represents the number of “connected parts” which are

individual points or set of points “connected” to one

another in the given simplicial complex. (Munch, 2017).

The 1st dimensions represent loops (also sometimes

called holes) A persistence barcode/diagram is able to

visualize when these features are initially formed (called

their “birth”) and the loops cease to exist because they

are “filled in” (called their “death”) (Amezquita,

Quigley, Ophelders, Munch, & Chitwood, 2020).

Figure 2. Persistence Barcode and Diagram

Presented with three chronological-consecutive

point clouds, their corresponding persistence barcodes,
𝐻0 persistence diagram, 𝐻1 persistence diagram, and

dimensions values are presented in Figure 2. Assuming

Figure 2(a) is the starting figure, 𝐻0= 6, for each of its 6

points; however, this is usually not reflected in the

persistence barcode or diagram. Moving to Figure 2(b),

the simplicial complex is color coded to represent its

two connected parts (hence, 𝐻0 = 2). These connected

parts as well as any previously created connected parts

are shown in the persistence barcode and 𝐻0 diagram.

The 𝐻1 diagram is still blank because no loops are

currently present. Finally, in Figure 2(c), we have a loop

(thus 𝐻1 = 1), which is reflected in the blue elements of

the persistence barcode and diagrams. A point cloud’s

𝐻0 dimension will always be at least 1 because there

Page 817

must be at least 1 “connected part” even if said

connected part also forms a loop as in Figure 2(c). A

more in-depth example of a simplicial complex with

higher dimensions is shown in (Ghrist, 2008).

Though persistence barcodes and diagrams provide

another way to summarize information in a point cloud,

they still produce significant amount of information.

Many TDA algorithms, and other mathematical

methods, further utilize the Betti number. A Betti

number for a given surface (or shape) is the maximum

number of cuts that can be made to the surface without

it splitting into two separate pieces (Gardner, 1984). A

Betti number is symbolized, βk, where k represents a

homology dimension (Munch, 2017). The homology

dimension values described earlier are equivalent to

Betti numbers as β0 represents the number of connected

parts, β1 represents the number of loops, and β2

represents the number of voids/holes. Higher

dimensions of Betti numbers exist, but also become

increasingly difficult to describe. The Betti number(s)

are shown for a point, circle, sphere, torus, and Klein

bottle in Figure 3, to better understand what is meant by

each homology dimension.

Figure 3. Common Shapes and Their Betti

Number(s), taken from (Munch, 2017)

Most TDA methods use the information found in a

Rips diagram, persistence barcode, persistence diagram,

the Betti numbers, or some combination to alternatively

represent and cluster data. There are many libraries

dedicated to the application of TDA including Dionysus

1 & 2 (Morozov, 2020), Gudhi (Clement, et al., 2014),

giotto-tda (Tauzin, et al., 2021). Of specific interest to

this paper is the TDA implementation in the Topological

Mode Analysis Tool (ToMATo) algorithm (Chazal, et

al., 2013), Garin & Tauzin’s TDA pipeline (2019), and

Mapper (Singh, et al., 2007).

2.2.1. Topological Mode Analysis Tool (ToMATo)

Algorithm. ToMATo is a TDA clustering algorithm

that uses persistence barcodes, to allow clusters to

“merge” together into their final form (Chazal, et al.,

2013). The version of the algorithm used in this study is

TDAToolbox (Dindin, 2019), which requires one input,

an estimated number of clusters. However, ToMATo

treats this as a maximum and may reduce the number of

final clusters depending on its results.

2.2.2. Garin & Tauzin’s TDA Pipeline. In a different

implementation, Garin and Tauzin created a generic

pipeline that uses giotto-tda (see (Tauzin, et al., 2021))

to classify and cluster data in point cloud form (Chazal,

et al., 2013). Rather than relying on persistence barcodes

as ToMATo does, this pipeline uses filtrations to derive

the persistent homology, which was originally applied

to the MNIST digits data set (Chazal, et al., 2013). To

classify data, the training and fitting of the pipeline are

followed by Scikit-learn’s random forest classifier

ensemble method (Chazal, et al., 2013).

2.2.3. Mapper. The Mapper algorithm has three main

steps: (1) the placement of input data in one or more

bins, (2) inter- and intra-clustering within and between

bins, and (3) finally, the creation of a new graphical

network where clusters act as vertices and interactions

between clusters act as edges (Bihl, et al., 2020).

Mapper's most popular Python implement is

KeplerMapper, which is a part of the larger suite of

libraries, scikit-tda (see (Saul & Tralie, 2019)) (van

Veen, et al., 2019).

3. Clustering Comparison Framework

Prior works compared clustering methods based on:

accuracy, Rand and Jaccard Indexes, and/or accuracy

gain (Islambekov & Gel, 2019) (Akcora, et al., 2020)

(Lyu, 2022). To answer one of the research questions,

this work proposes that the quality of a clustering

method can be evaluated across three dimensions:

accuracy, computational time, and visual

trustworthiness. When used for unsupervised

classification, true accuracy is of course unknown;

however, the other two dimensions would be available.

The two quantitative metrics are accuracy and

computation time, standard algorithm comparison

metrics. Accuracy is considered as the number of data

points correctly classified (as determined by the original

data labels) divided by the total number of data points.

Accuracy is represented by a percent and a higher

accuracy means better results. Computation time is

defined as how long it took for the algorithm itself to run

in seconds. Any time used for data preprocessing and/or

graphing is not included in this metric. Ideally

computational time should be low meaning the

algorithm runs quickly.

This analysis presents “visual trustworthiness” as a

qualitative assessment of the clustering results. Visual

trustworthiness is based on the heuristic principal of

Page 818

“trustworthiness” formulated in (Combs, et al., 2020).

This metric category is subjective and presents the

human subject is presented with the question in Figure

4 for each data plot shown in Figure 5. The subject is

reliant only on the visual cues shown in the data plots

and not presented with any other statistical aspects such

as accuracy or computation time. The question aims to

understand how the human interprets the quality of the

predicted clusters and whether the results seem

trustworthy given the predicted:

• number of clusters (Does the predicted number

of clusters seem appropriate for the data

visually?),

• cluster size (Does the number of data points in

each cluster seem unbalanced or not properly

distributed given the data?),

• cluster shape (Do the clusters have

odd/inappropriate boundaries given the data?),

and

• cluster locations (Are the clusters located

where you think they should be?).

Figure 4. Visual Trustworthiness Evaluation

Equating “strongly disagree” to a 1 and “strongly agree”

to a 5 on a 5-point Likert scale, the human subject’s

responses for each data plot were recorded. These values

were averaged for each algorithm across all 6 data sets

in Figure 5. Since clustering is largely visual in nature,

human perception is important and not measurable in

typical quantitative metrics. A higher visual

trustworthiness score is ideal in this study.

Finally, a ranking from 1-11 was assigned to all the

algorithms for each metric, accuracy, computation time,

and visual trustworthiness. All three metrics are

described by an average for each algorithm looking at

its performance across all the data sets; therefore, the

ranks were determined based on these averages. For

accuracy and visual trustworthiness, a rank of 1 was

assigned to the highest value and a rank of 11 was

assigned to the lowest value for each algorithm. For

computation time, where a lower value is best, a rank of

1 was given to the smallest time and a rank of 11 was

given to the algorithm with the largest time. An average

of these ranks for accuracy, computation time, and

visual trustworthiness were taken and then, ranked as

well to give the overall algorithm ranking.

4. Simple Comparison of Methods

Inspired by (Scikit-learn, 2022)’s comparison on

novel 2D data, ten clustering algorithms plus TDA were

compared on six novel data sets: circles, moons, blobs

with different variances, anisotropic, blobs with the

same variances, and random. Each data set consisted of

1500 instances and a random state of 10 was used except

for the anisotropic data, which used 11. For the non-

TDA algorithms, the default parameters used by scikit-

learn was used. The TDA algorithm used throughout is

ToMATo.

The results of the 11 clustering algorithms are

shown graphically (with computation time shown in the

bottom right corners) in Figure 5. The accuracy,

computational time, and visual trustworthiness scores

for each model on all six data sets is presented in Table

1. In the visual trustworthiness section, the number of

clusters metric wherein the evaluator answered “Yes” is

totaled for each algorithm given its performance on the

data sets, which allows for a maximum score of 6. The

cluster quality scores were averaged across all 6 data

sets for each algorithm. The first author served as the

evaluator, so n=1 for this study.

The circles' data set had the second-lowest average

accuracy (71.6%) and the longest average

computational time (1.98s). The results were relatively

bipolar with 5 algorithms displaying perfect

performance (including TDA); however, the remaining

algorithms ranged from 21.8% to 74.4% accuracy. Most

algorithms correct estimated two clusters; however,

many split the data into unideal half-circle-like clusters.

The moons data set at a 91.2% average accuracy

and the longest average computation time of 1.6s.

Similar to the circles' data set, the same 5 algorithms

showed perfect performance with most of the others in

the 80-90% range (except for affinity propagation’s

68.4% accuracy). Again, two clusters were identified by

most algorithms; however, several misclassified inner

edges of the two “moons.”

The blobs with variance data set showed an average

of 92.4% accuracy and an average computation time of

0.88s, which is approximately middle-of-the-road

compared to the other data sets. Performance across the

board was fairly high with 8 algorithms in the 90-100%

range with the lowest performance being BIRCH at

60%. This is one of two data sets that DBSCAN and

OPTICS performed less than 100% on, due to their

built-in ability to detect outliers (which are effectively a

fourth class) shown in black in Figure 5. Most

algorithms identified correctly three clusters, but some

of the edges proved to be difficult to cluster. Since this

analysis treats the outliers identified by DBSCAN and

OPTICS as a fourth class, they were penalized for it in

the visual trustworthiness metric.

Page 819

Figure 5. Artificial Data Scatter Plots

Table 1. Accuracy, Computation Time, and Visual Trustworthiness

Algorithm
K-

means
AP MS SC Ward AC DBSCAN OPTICS BIRCH GM TDA

Accuracy (%)

Circles 51.2 21.8 38.5 100 74.4 100 100 100 51.3 50.1 100

Moons 84.2 68.5 87.3 100 90.3 100 100 100 87.3 85.4 100

Blobs w/ Vari. 97.2 84.7 97.9 100 100 100 95.9 80.7 60 100 99.9

Anisotropic 83.9 83.6 65.7 91.2 69.3 88.9 66.3 66.7 83.4 99.2 93.3

Blobs w/o Vari. 100 100 100 100 100 100 100 100 100 100 100

Random 35.6 26.7 50.1 40.1 40 99.6 100 100 42.2 35.7 94.3

Average 75.6 64.2 73.3 88.6 79 98.1 93.7 91.2 70.7 78.4 97.9

Computation Time (s)

Total 1.35 33.6 2.22 11.9 5.08 3.91 0.14 16.9 0.4 0.42 2.79

Average 0.39 9.6 0.63 3.4 1.45 1.12 0.04 4.83 0.11 0.12 0.78

Visual Trustworthiness (n=1)

Average 3.33 2.17 3.17 4.17 3.5 4.67 4.83 4.67 2.83 4 4.5

Overall Algorithm Ranking

Rank 7 11 10 6 8 2 1 5 9 4 3

The anisotropic data was a struggle for some of the

algorithms, with even the high-achieving ones unable to

obtain 100% accuracy. This is one of two data sets with

touching clusters (the other being blobs with variance),

which most of the algorithms have a difficult time

clustering. Impressively, Gaussian mixture, TDA, and

spectral clustering all had an accuracy above 90%.

However, as shown in Figure 5, many of the algorithms

divided up the data such that the clusters ran

horizontally rather than at the slight angle the true

clusters are. Yet again, the number of clusters did not

prove to be too challenging; however, excluding

Gaussian Mixture, all the algorithms struggled with the

quality of the clusters with most combing the right-most

two to some degree.

The blobs with no variance were so clearly

dispersed and dense, that all 11 algorithms perfectly

predicted the three original clusters. Despite having

three clusters, this data set had the second-lowest

average computation time of 0.71s. As this was arguably

the easiest data set, all eleven algorithms received full

credit for both visual trustworthiness metrics.

The final row of the accuracy section, showing the

results of the uniform random distribution was unique in

the sense that there was only one cluster. This was by

far the most difficult data set given its average accuracy

of 60.3%. Due to the nature of the data set, algorithm

performance is better accessed through the number of

clusters identified rather than overall accuracy.

DBSCAN and OPTICS correctly assumed one cluster,

followed by agglomerate clustering and mean shift

Page 820

assuming two clusters. Five algorithms assumed three

clusters and two algorithms (affinity propagation and

TDA) assumed four clusters. It is worth noting that

despite TDA guessing four clusters, 94.3% of the

instances all fell within one large cluster in contrast with

many of the other algorithms attempting to have

equally-distributed clusters. Yet again, this was a

struggle with most algorithms identifying more clusters

than what existed. For the cluster quality metric, scores

were largely based on the number of clusters identified

since the data set was uniformly distributed.

In comparison with the other algorithms, TDA has

the second-highest accuracy of 97.9% and the sixth-

lowest total computational time at a total runtime of

2.79s for all six data sets. Despite TDA’s high accuracy,

both agglomerative clustering and DBSCAN obtained a

higher accuracy with lower computation times of 2.26s

and an impressive 0.13s, respectively. For the visual

trustworthiness metrics, TDA was in an 8-way tie for 2nd

place for the number of clusters, and ranked 4th in

regards to cluster quality. However, real-world data is

quite different, which is the next way TDA is evaluated.

5. Topological Data Analysis Application

on Real-world Data

In a different assessment of TDA, it is applied to

two frequently-used real-world data sets, the Palmer

Penguins and the Modified National Institute of

Standards and Technology (MNIST) digits data sets.

The Palmer Penguins data set has been dubbed the

“new” Iris data and details characteristics of three types

of penguins (Horst & Hill, 2020). The MNIST data set

is a classic data set consisting of handwritten numbers

between 0 to 9 (LeCun, et al., 1998).

5.1. Palmer Penguins

Named for the Palmer Archipelago in Antarctica

area, the Palmer Penguins size data set consists of the

target variable, species, and six other variables: island

(nominal; 3 levels), culmen (bill) length (continuous),

culmen (bill) depth (continuous), flipper length

(continuous), body mass (discrete), and sex (nominal; 2

levels) (Horst & Hill, 2020). There are 344 total

instances; however, 11 had missing data and were

removed from the data for this study.

Since ToMATo can only be applied to 2D

numerical scatter data; three plots comparing the

culmen length (on the x-axis) to the remaining, culmen

depth (left column of Figure 6), flipper length (middle

column), and body mass (right column) were

constructed to see how TDA performs. The true clusters

represented by the species target variable are shown in

the top row of graphs in Figure 6, with the TDA-

predicted clusters in the bottom row. TDA produces

fairly high accuracies given the clusters: culmen length

vs. depth had an 80.2% accuracy, culmen length vs.

flipper length had a 95.6% accuracy, and culmen length

vs. body mass had an 88.9% accuracy.

Figure 6. True and TDA-predicted Palmer Penguin

Clusters

5.2. MNIST Digits

The MNIST Digits data set consists of 70,000

handwritten single digits split 60,000 for training and

10,000 for testing (LeCun, et al., 1998). Due to limited

computational resources, only 10,000 examples were

used for training, but all 10,000 examples were used for

testing. Despite the small training size, the TDA

pipeline performed quite well with an accuracy of

94.82% on the test data. The highest performing

individual class was 0, with 97.8% accuracy, with the

lowest-performing being 4, with an accuracy of 92.3%.

Regarding the latter’s sub-par performance (in

comparison), 3.7% of 4’s was mistaken as 9’s, and in

vice versa, mistaking a 9 for a 4, was the second most

common error with 2.3% occurrence. As discussed in

Section 2.2, persistent diagrams and barcodes are based

on the number of connected components, loops, and

holes in a given figure. Given a “closed” number 4, such

as displayed by this font, its format simplifies to one

loop and one component, just as a 9 is. Therefore, it is

reasonable for the TDA pipeline to mix the two numbers

up. Other spots of trouble include confusing 2’s and 7’s

and interestingly, 8's and 9's.

Though TDA’s performance based on accuracy

was satisfactory, the required computation time is

exceptionally long. It took over 14 minutes to train the

TDA pipeline (and random forest classifier) and then,

and an additional 13 minutes for running the test data.

Considering TDA’s accuracy is good, but not great (as

many models have performed much higher), it is hard to

justify the use of this TDA pipeline, given the settings

used, for the MNIST data set in terms of practicality.

Page 821

6. KeplerMapper Visualization &

Implementation

The last TDA algorithm of interest is Mapper (see

(Singh, et al., 2007)), which is implemented in Python

via the KeplerMapper library (van Veen, et al., 2019).

KeplerMapper has several hyperparameters (with many

different settings) that can drastically change the

resulting diagram, which is typically used for data

visualization.

6.1. Hyperparameters & Settings

In the KeplerMapper implementation, there are

three main hyperparameters: the projection (also called

a lens), the distance matrix, the scaler, and the number

of cubes (van Veen, et al., 2019). The first three are

inputs to KeplerMapper’s project/fit_transform

functions, with the latter an input to the Cover class. It

also uses a clustering algorithm, which by default was

DBSCAN, which uses the parameters, eps and

min_samples described in section 2.1.6.

The projection affects the input data and how it is

“projected” to the Mapper algorithm. Unlike ToMATo

which needs 2D scatter data and the TDA pipelines

which require many filtrations of 2D images,

KeplerMapper can “summarize” data with many

variables through different projections. These

projections can be a Scikit-learn class with the

fit_transform function in addition to other measures

(sum, mean, etc.). Projections can also turn 3D data into

2D data by only considering two variables. For both

examples in this section, the t-distributed Stochastic

Neighbor Embedding (t-SNE) method was used.

The distance matrix determines how the distances

between data instances are calculated. By default,

Euclidean distance is used, but this may be any string

corresponding to a pairwise distance metric. This is

applied before the projection.

The scaler by default is Min-max; however, this

field may be left blank if the user wishes for no post-

map scaling. Scaling takes place after the data is

projected using the districted distance matrix. For our

purposes, only the Min-max scaler is used.

The number of cubes, symbolized as num_cubes, is

the number of hypercubes to be created along each

dimension. Data points within the hypercubes are

clustered and these clusters become nodes on the final

KeplerMapper diagram. These clusters/nodes are

connected by lines, called edges when one point appears

in multiple clusters/nodes. Optionally, the Cover class

can be assigned a value for perc_overlap, which is the

“amount of overlap between adjavent cubes along one

dimension.” The settings used to generate Figures 8 and

9 are shown in Table 2.

Table 2. KeplerMapper Settings

Figure Eps Min_

samples

Num_

cubes

Perc_overlap

7 0.3 4 20 0.3

8(a) 0.3 15 35 0.4

8(b) 0.3 5 15 0.52

6.2. Palmer Penguins

Rather than using only the numerical variables as

done in Section 4.2, all variables were used in this

analysis. However, the nominal variables were

represented with numerical labels. The resulting figure

is shown in Figure 7. The node size represents how large

that node/cluster is and the color represents the

“average” true label of the node. It is an “average”

because if the node consisted of heterogeneous data

(from two or more species), the color would adapt such

that the color reflects all of the true labels represented.

Ideally, alike items would be clustered together in

“chains” or “superclusters,” meaning nodes that are

further connected by edges. However, in this case TDA

identified three “superclusters” which correlate to three

classes; however, they do not align well with the data

point’s true clusters as shown in in the coloring. The

Adelie penguins are purple, the Chinstrap penguins are

teal, and the Gentoo penguins are yellow; however, if a

cluster consists of multiple types the colors

correspondingly blend. To address one of the research

questions, TDA identifies three “superclusters;”

however, they do not accurate correspond with the three

classes in this particular view of the data.

Figure 7. Palmer Penguins KepplerMapper Diagram

6.3. MNIST Handwritten Digits

The creators of KeplerMapper already provided the

Python code for exploring the MNIST data set. The

resulting figure is shown in Figure 8(a). Except for a

few, most of the data has accurately been chained

together into “superclusters” even if in different

individual clusters (remember the nodes of the graphs

Page 822

are the clusters identified by KeplerMapper). Four

numbers, 1, 7, 8, and 9, had multiple “superclusters” but

they were all relatively homogenous in terms of

representing the desired number. There are a few

instances of heterogeneous clusters, such as the stand-

alone 7 cluster, which has some 9’s in addition to being

primarily 7’s. Overall, KeplerMapper does a good job

of identifying clusters and “superclusters” concerning

the data’s true labels.

(a) (b)
Figure 8. KeplerMapper Diagram of MNIST

Alternatively, by changing KeplerMapper’s

settings, Figure 8(b) can be constructed from the same

data. Figure 8(b) provides a more equivocal diagram.

There is one main “supercluster” that connects all the

digits with the exception of 0 and 6’s superclusters.

Clusters are represented by the colored nodes and

considering each data point can belong to multiple

clusters, this allows for connections to be between

nodes, identified by lines. Even within the primary

“supercluster” one can see how alike nodes tend to

cluster together as best exemplified by the 7 and 2.

However, other data points, such as those in the “1”

class are often misclassified as 2, 3, and 8.

To address the final research question, TDA allows

for many different representations of the same data

through its clusters (nodes) and superclusters

(connected nodes). These views are facilitated by the

adjustment of various clustering, scaling, and

projections which is particularly valuable for multi-

dimensional data (as such with the MNIST data set)

where accurate and complete visual representation can

be difficult.

7. Conclusions

This paper presents the use of topological data

analysis (TDA) for data classification and visualization.

First, background information on clustering and

different algorithms were presented. Then, the

Topological Mode Analysis Tool (ToMATo) algorithm

(Dindin, 2019), Garin & Tauzin’s TDA pipeline (2019),

and Mapper algorithm (Singh, Mémoli, & Carlsson,

2007) was applied to 2D scatter data (novel and Palmer

Penguins (Horst & Hill, 2020) data sets) and/or the

MNIST handwritten digits data set (LeCun, Cortes, &

Burges, 1998). Lastly, the Mapper algorithm was

explored as implemented in the Python library,

KeplerMapper.

First, the cluster algorithms were compared through

the creation of three metrics: accuracy (was each data

point correctly classified?), computational time (how

long did classification take?), and visual trustworthiness

(how well does classification meet a human’s visual

expectation?) which all measure different aspects of the

selected clustering methods. Wherein, TDA ranked

second (out of eleven) in accuracy, sixth in

computational time, and fourth in visual

trustworthiness. Overall, TDA was third after DBSCAN

and agglomerative clustering, respectively, on the

artificial simple data comparison study. Then, two real-

world data sets, Palmer Penguins and MNIST, were

explored through the application of the Mapper

algorithm. Mapper’s implementation of TDA produces

clusters (colorful nodes in Figure 7 and Figure 8) and

what’s dubbed “superclusters” in this paper.

“Superclusters” are essentially clusters of clusters

connected by lines to one another. Ideally these

“superclusters” correspond to the original class;

however, depending on the hyperparameters, this is not

always the case. Therefore, TDA results may be directly

interpreted in terms of the clusters (as the results for

ToMATo and the TDA Pipeline) or need more abstract

extraction (as shown with Mapper). Shown throughout

the paper, the best TDA algorithm is likely dependent

on the data used and the intended end goal.

Classification is best done through ToMATo and TDA

Pipeline; however, if open to more fuzzy clustering,

Mapper is better. Regardless of the specific algorithm,

TDA is appropriate for a variety of data sets especially

those with high dimensionality.

One clear line of future work would be to compare

other popular clustering algorithms to TDA on different

data sets, 2D data, images, point clouds, etc. Other areas

of interest would be to dive deeper into Mapper’s

visualization results and see how they can be better

optimized for classification.

8. Acknowledgements

The views expressed in this paper are those of the

author and do not represent the views of any part of the

US Government. This work was cleared for unlimited

release under: AFRL-2022-4453.

 9. References

Akcora, C. G., Li, Y., Gel, Y. R., & Kantarcioglu, M. (2020).
BitcoinHeist: Topological data analysis for ransomware

prediction on the Bitcoin blockchain. 29th International

Page 823

Joint Conference on Artificial Intelligence, (pp. 4439-
4445). Yokohama.

Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J.

(1999). OPTICS: Ordering points to identify the

clustering structure. ACM Sigmod Record, 2(49-60), 28.
Bihl, T. J., Gutierrez, R. J., Bauer, K. W., Boehmke, B. C., &

Saie, C. (2020). Topological data analysis for enchancing

embedded analytics for entireprise cyber log analysis and

forensics. 53rd Hawaii International Conference on
System Sciences. Grand Wailea.

Chazal, F., & Michel, B. (2021). Introduction to topological

data analysis: Fundamental and practical aspects for data

scientists. Frontiers in Artificial Intelligence, 4, 1-28.
Chazal, F., Guibas, L. J., Oudot, S. Y., & Skraba, P. (2013).

Persistence-based clustering in Riemannian manifolds.

Journal of the ACM, 60(6), 1-38.

Clement, M., Boissonnat, J.-D., Glisse, M., & Mariette, Y.
(2014). The Gudhi library: Simplicial complexes and

persistent homology. 4th International Congress on

Mathematical Software. Seoul.

Combs, K., Fendley, M., & Bihl, T. (2020). A preliminary
look at heuristic analysis for assessing artificial

intelligence explainability. WSEAS Transactions on

Computer Research, 8, 61-72.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the EM

algorithm. Journal of the Royal Statistical Society: Series

B (Methodological), 39(1), 1-22.

Dindin, M. (2019). TdaToolbox. Github.
Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A

density-based algorithm for discovering clusters in large

spatial databases with noise. 2nd International

Conference on Knowledge Discovery and Data Mining,
96, pp. 226-231. Menlo Park.

Frey, B. J., & Dueck, D. (2007). Clustering by passing

messages between data points. Science, 315, 972-976.

Fukunaga, K., & Hostetler, L. (1975). The estimation of the
gradient of a density function, with applications in pattern

recognition. IEEE Transactions on Information Theory,

21(1), 32-40.

Garin, A., & Tauzin, G. (2019). A topological "reading"
lesson: Classification of MNIST using TDA. 18th IEEE

International Conference On Machine Learning and

Applications. Boca Raton.

Ghosh, J., & Liu, A. (2009). K-means. In X. Wu, & V. Kumar
(Eds.), The top ten algorithms in data mining (pp. 21-36).

Boca Raton: Taylor & Francis Group.

Ghrist, R. (2008). Barcodes: The persistent topology of data.

Bulletin of the American Mathematical Society, 45(1),
61-75.

Horst, A. M., & Hill, A. P. (2020). palmerpenguins: Palmer

archipeglago (Antarctica) penguin data.

doi:10.5281/zenodo.3960218
Islambekov, U., & Gel, Y. (2019). Unsupervised space-time

clustering using persistent homology.

arXiv:1910.11525v1, 1-9.
Kan, A. (2017). Clustering. Gaussian Mixture Model.

https://trevorcohn.github.io/comp90051-

2017/slides/13_clustering_gmm.pdf

LeCun, Y., Cortes, C., & Burges, C. J. (1998). The MNIST
database of handwritten digits. New York City: Courant

Institute.

Lloyd, S. P. (1957). Least squares quantization in PCM.

Atlantic City: Bell Laboratory Tech. Note.
Lyu, M. (2022). Optimal base station network based on

topological data analysis. International Journal of

Modeling and Optimization, 12(1), 8-15.

Morozov, D. (2020, November 24). Dionysus 2. (MRZV)
Retrieved March 30, 2022, from

https://www.mrzv.org/software/dionysus2/

Munch, E. (2017). A user's guide to topological data analysis.

Journal of Learning Analytics, 4(2), 47-61.
Nielsen, F. (2016). Hierarchical clustering. In Introduction to

HPC with MPI for Data Science (pp. 221-239). Springer.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., . . . Duchesnay, E. (2011). Scikit-
learn: Machine learning in Python. Jourmal of Machine

Learning Research, 12, 2825-2830.

Rhys, H. I. (2020). Clustering based on density: DBSCAN and

OPTICS. In Machine learning with R, the tidyverse, and
MLR. Shelter Island: Manning Publications Co.

Rokach, L., & Maimon, O. (2005). Clustering methods. In

Data mining and knowledge discovery handbook (pp.

321-352). Boston: Springer.
Saul, N., & Tralie, C. (2019). Scikit-TDA: Topological data

analysis for Python. Zenodo.

Scikit-learn. (2022). Clustering. (Scikit-learn) Retrieved

March 24, 2022, from https://scikit-
learn.org/stable/modules/clustering.html#overview-of-

clustering-methods

Scikit-learn. (2022). Gaussian mixture models. https://scikit-

learn.org/stable/modules/mixture.html#mixture
Sculley, D. (2010). Web-scale k-means clustering. 19th

international conference on world wide web. New York.

Singh, A. (2010, November 22). Spectral Clustering.

https://www.cs.cmu.edu/~aarti/Class/10701/slides/Lectu
re21_2.pdf

Singh, G., Mémoli, F., & Carlsson, G. (2007). Topological

methods for the analysis of high dimensional data sets

and 3D object recognition. Eurographics Symposium on
Point-based Graphics, 2. Prague.

Tauzin, G., Lupo, U., Tunstall, L., Burella Pérez, J., Caorsi,

M., Medina-Mardones, A. M., . . . Hess, K. (2021).

giotto-tda: A topological data analysis toolkit for
machine learning and data exploration. Journal of

Machine Learning Research, 22, 39-46.

van Veen, H. J., Saul, N., Eargle, D., & Mangham, S. W.

(2019). Kepler Mapper: A flexible Python
implementation of the Mapper algorithm. Journal of

Open Source Software, 4(42), 1315.

Von Luxburg, U. (2007). A tutorial on spectral clustering.

Statistics and Computing, 17(4), 395-416.
Ward Jr., J. H. (1963). Hierarchical grouping to optimize an

objective function. Journal of the American Statistical

Association, 58(301), 236-244.
Wasserman, L. (2018). Topological data analysis. Annual

Review of Statistics and its Application, 5, 501-532.

Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH:

An efficient data clustering method for very large
databases. ACM Sigmod Record, 25(2), 103-114.

Page 824

