
THE DESIGN, EDUCATION AND EVOLUTION OF A ROBOTIC BABY

A Dissertation
Presented to

The Academic Faculty

By

Hanqing Zhu

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in Robotics in the
School of Aerospace Engineering

Georgia Institute of Technology

December 2022

Copyright © Hanqing Zhu 2022

THE DESIGN, EDUCATION AND EVOLUTION OF A ROBOTIC BABY

Thesis committee:

Dr. Eric Feron, Advisor
Computer, Electrical and Mathematical
Sciences and Engineering
King Abdullah University of Science and
Technology

Dr. Dimitri Mavris
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Emmanuel Roche
Clover.AI

Dr. Kyriakos Vamvoudakis, Co-Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Jerome Hugues
Software Engineering Institute
Carnegie Mellon University

Date approved: December 7, 2022

If a machine can think, it might think more intelligently than we do, and then where

should we be?

Alan Turing

To Mom and Dad

致父母

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Dr. Eric Feron. Eric has been

a wonderful advisor throughout my PhD journey. I have fully enjoyed and exploited the

freedom and liberty that Eric has provided, along with countless ideas and opportunities

along the way. Had I chosen any other professor with another engagement style, I would

not have achieved all the things that I have done so far. Furthermore, I have learned so

much from Eric, with knowledge and lessons for life outside of academia, on how to be

a man of culture and responsibility with a pair of critical eyes and a sympathizing mind,

which I appreciate more than ever.

Next, I would like to thank my PhD committee members for their service: Dr. Kyriakos

Vamvoudakis, Dr. Dimitri Mavris, Dr. Jerome Hugues and Dr. Emmanuel Roche. I

appreciate their time and effort in providing constructive feedback and comments for better

shaping the creation of this thesis. I would also like to thank Dr. Joseph Saleh, who was

part of my committee and was super excited about my thesis proposal. Unfortunately, Dr.

Joseph Saleh has passed away before the completion of the thesis but his excitement and

support will be forever remembered.

Moreover, I would like to express my appreciation to those who have crossed road with

me along my PhD journey, whether we worked hard together or played harder together.

Their presence has meant a lot to me and has shaped me into who I am today, thanks to,

you know, causal determinism. I would also like to acknowledge all the sacrifices that I

have made during my PhD, such as the things that could have been done, the trips that

could have been made and those who I could have spent more time with. The opportunity

cost of finishing the PhD journey will not be taken lightly.

Last but not least, I would like to thank my parents who have supported me with uncon-

ditional love, without which I would not have achieved what I have done during my PhD

journey.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . x

List of Figures . xi

Summary . xiii

Chapter 1: Introduction . 1

1.1 Contributions . 4

1.2 Thesis Outline . 5

Chapter 2: Literature Review . 6

2.1 Cognitive Architecture . 6

2.2 Knowledge Representation . 7

2.3 Natural Language Programming and Semantic Parsing 8

Chapter 3: A Robotic Baby . 9

3.1 Inspiration from Nature . 9

3.2 Concept of Operation . 10

3.3 Formal Definition of a Robotic Baby . 12

3.4 Philosophical Inspirations and Considerations 13

vi

3.4.1 On Self Existence . 13

3.4.2 On Causal Determinism and Free Will 13

3.4.3 On Adaptation to the Unpredictable World 14

3.5 Scope and Limitation . 14

3.6 Systems Engineering Design Approach . 15

Chapter 4: System Requirements Flowdown . 17

4.1 The Necessity of Requirements Flowdown 17

4.2 The Requirements Flowdown for the Robotic Baby Design 17

Chapter 5: System Architecture . 21

5.1 Language Input and Output . 21

5.2 Natural Language Processing . 22

5.3 System Management . 26

5.4 Long-term Memory . 26

5.5 Short-term Memory and Activation . 31

5.6 System States . 33

5.7 Physical Input and Output . 34

Chapter 6: Sub-System Implementation and Initialization 35

6.1 Linguistic Knowledge Initialization . 36

6.2 Action Space and Activation Initialization 37

Chapter 7: System Verification and Validation 39

7.1 Acquisition and Semantic Parsing of English and Chinese 39

vii

7.2 Bilingualism, Multilingualism and Code-Switching 42

7.3 Natural Language Grounding to Semantics and Actions 43

7.4 Natural Language Reinforcement Learning 44

7.5 Natural Language Programming . 47

7.6 Introspection and Explainability . 50

Chapter 8: Robotic Baby Education and Evolution 54

8.1 One Robotic Baby with Distributed Embodiment 54

8.2 Natural Language Interaction Between Two Robotic Babies 56

8.3 Brain Merge Between Two Robotic Babies 57

8.4 Robotic Baby Evolution with Knowledge Inheritance 60

Chapter 9: Discussion . 63

9.1 Scalability . 63

9.2 Adoption and Application . 64

9.3 Limitations and Fundamental Research Questions 65

9.4 Lifelong Learning . 66

9.5 The Zone of No Return . 67

Chapter 10: Conclusion and Future Work . 69

Appendices . 71

Appendix A: Sample Knowledge Base of Vocabulary and Part-of-Speech 72

Appendix B: Sample Knowledge Base of Grammar Production Rule 74

Appendix C: Example Execution of BabyParse 75

viii

Appendix D: Example Execution of BabyActivate 79

Appendix E: Scalability Performance Profiling 81

References . 83

ix

LIST OF TABLES

7.1 Action Nodes for Language Acquisition in English 40

7.2 Action Nodes for Language Acquisition in Chinese 40

7.3 Action Nodes for Semantic Mapping in English and Chinese 43

7.4 Action Nodes for Edge Weight Update in English and Chinese 45

7.5 Action Nodes for Natural Language Programming in English and Chinese . 48

7.6 Dummy Action Program Instructions in English and Chinese 49

7.7 Action Nodes for System Introspection in English and Chinese 51

x

LIST OF FIGURES

3.1 The concept of operation of a robotic baby. 10

3.2 The mode of operation of a robotic baby with distributed embodiment along
with a central “brain”. 11

3.3 The mode of operation of the robotic baby with a multi-agent setup, where
each robotic baby has its own “brain”. 12

3.4 The V-model of systems engineering [64]. 15

5.1 The proposed system architecture, Baby, for the robotic baby. 22

5.2 The requirement satisfaction traceability matrix for the Baby architecture
design. 22

5.3 Knowledge representation for the word ‘bank’ in a subgraph. 28

5.4 Knowledge representation for NP and VP production rules in a subgraph. . 29

5.5 The default activation of the action node ‘go to point’. 29

5.6 A snapshot of the knowledge activation graph containing all types of nodes
and edges at a point in time. 30

7.1 The parse tree and dependency graph for “Buffalo buffalo Buffalo buffalo
buffalo buffalo Buffalo buffalo”. 41

7.2 The parse tree for the code switching sentence “We should过新年”. 43

7.3 Demonstration for natural language reinforcement learning with the Robo-
tarium integration. 46

7.4 Demonstration for natural language programming with dummy actions. . . 48

xi

7.5 Demonstration for natural language programming with the Robotarium in-
tegration. 50

7.6 LifeQueue for the “go shopping” demonstration, with primitive and com-
plex actions. 52

7.7 Activation graph for “go shopping” from the syntactic nodes to the ac-
tion node, with the semantic dependency graph boxed in yellow. Activated
nodes are filled with colors. 52

8.1 Demonstration for educating one robotic baby with distributed embodiment
with the Robotarium integration. 55

8.2 Demonstration for education with natural language interactions between
two robotic babies with the Robotarium integration. 57

8.3 Demonstration for the Graph merge operation between two robotic babies
with the Robotarium integration. 59

8.4 Knowledge of Emma and Zebra about colors and languages before and after
Zebra merges with Emma’s Graph. 60

8.5 The evolution comparison between robotic babies, with direct knowledge
Graph inheritance at birth, and human beings, with genetic inheritance at
birth and knowledge acquired in the future. 62

9.1 The projected advancement in the research and development of the robotic
baby. 68

E.1 Processing time performance profiling for the NLP and Activate processes
with 100 repeating runs. 81

xii

SUMMARY

Inspired by Alan Turing’s idea of a child machine, I introduce the formal definition of

a robotic baby, an integrated system with minimal world knowledge at birth, capable of

learning incrementally and interactively, and adapting to the world. Within the definition,

fundamental capabilities and system characteristics of the robotic baby are identified and

presented as the system-level requirements. As a minimal viable prototype, the Baby archi-

tecture is proposed with a systems engineering design approach to satisfy the system-level

requirements, which has been verified and validated with simulations and experiments on

a robotic system. The capabilities of the robotic baby are demonstrated in natural language

acquisition and semantic parsing in English and Chinese, as well as in natural language

grounding, natural language reinforcement learning, natural language programming and

system introspection for explainability. Furthermore, the education and evolution of the

robotic baby are illustrated with real-world robotic demonstrations. Inspired by the ge-

netic inheritance in human beings, knowledge inheritance in robotic babies and its benefits

regarding evolution are discussed.

xiii

CHAPTER 1

INTRODUCTION

The idea starts with a baby. In 1950, Alan Turing had a rough idea of a child machine,

which, according to his description, could be the starting point for an intelligent machine

to pass his test if under an appropriate course of education [1]. Alan Turing’s idea of a child

machine could be developed as follows. Let’s suppose that the intelligent machine passing

his test has been created and it, by definition, could act just like a normal human being.

With such construction, the intelligent machine has to start from somewhere, just like all

human beings starting from a baby. Indeed, the intelligent machine has to start from being

a baby as well. How should I bring such a baby machine into life from Turing’s rough idea?

For a designer of such an intelligent machine, it is natural to look into the abstractions

of what a human baby at birth is and how a human baby grows. Unfortunately, there

has not been a definitive description of neither what a human baby at birth is nor how a

baby grows in cognitive capabilities, despite many proposed theories in aspects of child

cognitive development and psychology, for example, by Jean Piaget [2, 3, 4, 5] and Jean

Mandler [6, 7, 8]. The proposed theories could serve as great sources for inspiration. Yet,

it has come to the conclusion that they could not be utilized for detailed mechanism and

structure design of the baby intelligent machine due to their high-level descriptive nature,

not good enough to explain human mental capacity according to Marvin Minsky [9]. This

realization sparks an important question: for a baby intelligent machine, does it have to

have the human flavor? In other words, I would like to entertain the idea of building a

baby intelligent machine without the human characteristics that are specific to the nature of

human beings.

The departure from the human-inspired path for a baby machine to get to intelligence

shifts the focus of the design of the baby machine from imitating the human process to

1

identifying necessary capabilities as the building blocks for higher level intelligent behav-

iors. Recent works on the road map for human-like AI development have highlighted a

wide range of capabilities, including but not limited to, communication, language acquisi-

tion, learning, intuitive physics and psychology, and reasoning [10, 11]. For the purpose

of designing a baby machine not mimicking the exact human counterpart, I first exclude

the capabilities specific to the nature of the human body, since our starting point is a ma-

chine, a transparent mechanical system with orders, unlike a human baby, a bio-molecular

black-box with chaos at the beginning of life. Then, I prioritize the fundamental capa-

bilities, which are hypothesized to be the prerequisite capabilities for high level cognitive

capabilities and skills.

Among the prioritized fundamental capabilities, an important one is language acqui-

sition and understanding. In general terms, language is just a form of a patterned signal.

Language is seen not only as a communication tool, enriching the abstract representation,

for interacting with external world, but also a tool for programming the internal mind as

a control system interfacing with grounded mental states [12]. Another one to highlight

is the construction and execution of complex actions programmed with primitive actions.

This classic idea of compositionality in terms of programming has been proposed, widely

studied and labeled as “schemata” [2], “programmes” [13], “skill sets” [14] and “subroun-

tines” [15], which could be a fundamental capability for constructing higher level skills for

the baby machine.

In this work, I introduce a formal definition of a robotic baby, an integrated system

capable of learning incrementally and interactively, and adapting to the world, starting

with minimal world knowledge. The formal definition of a robotic baby contains the high-

level system requirements, governing the capabilities of the robotic baby. For the scope of

this thesis, the Baby architecture is designed, with a systems engineering design approach,

to meet the high-level requirements of the robotic baby. The robotic baby with the Baby

architecture, as an integrated system, possesses some unique capabilities and characteristics

2

as follows.

1. Natural language acquisition: The robotic baby is capable of acquiring linguistic

knowledge of English and Chinese, in terms of vocabulary words, parts of speech

and grammar production rules, with instructional commands in English and Chinese.

2. Natural language semantic parsing: The robotic baby is capable of parsing grammat-

ical inputs, modeled with context-free grammar, in English and Chinese or a mixture

of both known as code-switching, with limitations on specific types of ambiguity.

3. Natural language grounding to semantics and actions: The robotic baby is capa-

ble of grounding natural language in English and Chinese to semantics and actions,

taking into account the variance in natural language expressions, with instructional

commands in English and Chinese.

4. Natural language reinforcement learning: The robotic baby is capable of taking re-

ward signals in English and Chinese and improve its behavior accordingly.

5. Natural language programming: The robotic baby is capable of constructing com-

plex actions in the form of a program with actions as building blocks, with instruc-

tional commands in English and Chinese.

6. System interpretability and explainability: The robotic baby utilizes explicit knowl-

edge representation, and transparent and traceable rule-based information processing

algorithms for complete interpretability and explainability.

7. System introspection: The robotic baby is capable of recalling its action history and

activation graph for executed actions, when commanded in English and Chinese.

8. Knowledge transfer with natural language interactions: The robotic baby is capable

of acquiring knowledge via natural language interactions with both a human parent

and a peer robotic baby.

3

9. Knowledge inheritance: The robotic baby is capable of directly inheriting knowledge

from a peer, including both the content and the knowledge inference structure via a

brain merge operation.

According to the systems engineering procedures, the system-level verification and valida-

tion for the robotic baby have been conducted with experiments in both simulation and real

world settings to ensure that the system-level requirements have indeed been satisfied.

1.1 Contributions

The contribution of this thesis is four-fold as follows.

a) Robotic baby definition: the clear definition and focus of a robotic baby, in terms of

the system requirements, governing the fundamental set of capabilities, along with

philosophical considerations. This is a firm step moving forward from the rough

ideas, road maps, speculations and future projections in the development of a baby

machine.

b) Baby architecture design: the overall design of the Baby architecture, including all

algorithms, processes and structures, and the associated capabilities showcased in

demonstrations.

c) Systems engineering design approach: the application of the systems engineering

design principles, from system requirements to proper system verification and vali-

dation, to the design process of a complex integrated system in AI.

d) Robotic baby education and evolution: the demonstration of the education of the

robotic baby with a distributed robotic embodiment via natural language interactions,

and the evolution of the robotic baby with knowledge inheritance via brain merge,

inspired by genetic inheritance in the human species.

4

1.2 Thesis Outline

This thesis is organized as follows. Chapter 2 describes relevant works in related fields for

applicability in the design of the robotic baby. Chapter 3 lays out the fundamentals includ-

ing the formal definition of and philosophical considerations about a robotic baby. Chapter

4 presents the system design requirements flowdown. Chapter 5 presents the Baby archi-

tecture. Chapter 6 describes the subsystem initialization. Chapter 7 presents the system

verification and validation of the robotic baby design by means of experiments. Chapter 8

showcases the education and evolution of the robotic baby. Chapter 9 presents the discus-

sions on the design of a robotic baby. Chapter 10 concludes this thesis with future work.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Cognitive Architecture

The cognitive architecture community, dating back to the 1970s, has been proposing new

cognitive architectures, trying to model the human cognitive behaviors. Allen Newell once

criticized the task-specific models that tackle a fragment of the overall cognitive modeling,

indicating that it was hard to make cumulative progress with the fragmented approach [16].

As an example of overall cognitive modeling, the Adaptive Control of Thought Rational

(ACT-R) cognitive architecture, developed by John Robert Anderson, is one of the earliest

models aiming at understanding the human mind. It aims to define the underlying cognitive

and perceptual operations in the human mind, using a central rule-based procedural mod-

ule, which controls the overall system behavior along with interactions with other modules

[17]. Another well-known architecture is Soar, developed by John Laird, Allen Newell,

and Paul Rosenbloom, with a fixed structure containing modular blocks for perception,

motor functions, working memory and long-term memory [18, 19]. There are constant in-

teractions among the modular blocks with complex behaviors arising from the interactions

within cognitive cycles. Recent architectures, such as Sigma by Paul Rosenbloom [20], try

to combine the traditional modular structure and modern techniques in graphical models

and deep learning. With more than 50 architectures, the survey work [21] tries to find a

common ground among major cognitive architectures, known as the standard model of the

mind. However, even with a summary of all the commonly shared features, it is still un-

clear on how one shall move further regarding building an integrated learning system. The

cognitive architecture community is in this constant process of trial and error, hoping a par-

ticular architecture design models some human cognitive behaviors well. Other challenges

6

that the current cognitive architectures face include the lack of communication about its

inner process and its decisions, and the lack of liveliness in terms of a natural internal drive

[22]. Compared to the existing cognitive architectures with built in high-level capabilities,

our robotic baby architecture, while looking similar in structure with modular components,

addresses an entirely different research question, regarding the design and engineering of

the minimal capabilities of a robotic baby at birth for future growth and education.

2.2 Knowledge Representation

Knowledge representation is an important aspect of the robotic baby architecture for the

designer to consider during the design process. One line of related research is to explic-

itly define the words, their syntax and semantic properties and their relationships to other

words. One of the most notable lexical knowledge bases, WordNet [23], contains more

than 150,000 English words and relationships like synonymy among words. Beside its sig-

nificant size, there have been disagreements on the senses of words [24] in WordNet. Other

than WordNet, there are other databases designed for various purposes, such as VerbNet

[25], PropBank [26], and FrameNet [27] for semantic role labeling. These knowledge

bases provide a good starting point for inspiration for the design of the knowledge base for

the robotic baby. They are, by no means, sufficient for the design of the robotic baby, even

though the amount of knowledge stored in these knowledge bases is large. What they lack

of are the mechanism for accumulating knowledge and the corresponding mechanism for

effective retrieval of knowledge. They are not designed as part of a system with system

requirements in the first place.

Another related line of research concerns the learning of word representations and em-

beddings, which are in a distributed and implicit fashion, such as Word2Vec [28], GloVe

[29] and ELMo [30]. These distributed word embeddings are trained on large annotated

texts so that the contextual information can be modeled in a distributed fashion [31]. An-

other related example is the dependency-based word embeddings [32], in which words are

7

modeled after its dependency context. Nevertheless, all mentioned distributed representa-

tions are static in the sense that they are trained on a static training set. It is unclear, due to

their implicit nature, how the word embeddings should change in a dynamic setting with

the accumulation of new vocabularies in life-long learning, which is critical for the robotic

baby.

2.3 Natural Language Programming and Semantic Parsing

Natural language has long been discussed as a communication tool between human and

machine [33]. Edsger Dijkstra once argued that it would be difficult to program machines

in a natural language due to ambiguity and the lack of formality in a natural language [34].

Early attempts in natural language programming included systems with natural language

commands for matrix manipulation [35]. Other applications of natural language program-

ming could be seen in interfaces for robotic applications [36, 37, 38, 39, 40] and smart

personal assistant [41]. Natural language programming is also utilized for program syn-

thesis, in which natural language specifications are given in order to construct programs,

with rule-based approaches [42] or by training program synthesizers on data with machine

learning techniques [43, 44]. The rule-based approaches rely on set of pre-defined domain-

specific rules, which might not be applicable to the robotic baby design. The machine

learning techniques, on the other hand, rely on a fix set of training data, which might not be

suitable for the purpose of a robotic baby either. Another line of related research involves

the interaction between human and machine [45, 46, 47, 48], in which the live interaction

serves as a mechanism for clarification and information supply to robots, which could be

utilized for the design of a robotic baby.

8

CHAPTER 3

A ROBOTIC BABY

3.1 Inspiration from Nature

A baby is often associated with the first stage of human growth after birth. What exactly is

a human baby? At birth, the initial condition of a human baby, h0, is set. In principle, the

initial condition of a human baby consists of all the states of the physical body of the human

baby at birth. Note that the initial condition of a human baby carries minimal information

about the external world, in the sense that the initial states of the body are mainly inherited

from the parents. In addition to the initial condition, the initial governing process of the

human baby, f0(·; θ0), is set. The governing process at time t, presented in Eq. (3.1), can be

abstracted as a function with decision-making parameters θt ⊂ ht that takes in the internal

states ht and the external world states xt and produces ht+1.

ht+1 = ft(xt, ht; θt) (3.1)

Since the cognitive development of infants is not understood to a complete extent [9] but

with proposed theories [4, 49], the initial governing process f0 of a human baby cannot be

clearly defined. Nonetheless, the computing framework in Eq. (3.1) with the initial con-

dition and the governing process could provide the inspiration for the design of a robotic

baby, since the designer is able to pick a combination of the initial condition and the gov-

erning process for the robotic baby to roll out its life [1].

9

3.2 Concept of Operation

The robotic baby is designed to be educated and operational in a similar fashion to the case

of a human baby. The concept of operation of a robotic baby is presented in Figure 3.1.

Figure 3.1: The concept of operation of a robotic baby.

The robotic baby is designed to act and sense the world, similar to what a human baby

can do. There also needs to be at least one parent, whether a human or a robot, present

during the growth of a robotic baby, providing instructions and reward signals to the robotic

baby while sensing and inspecting what the robotic baby does. Notice that it is expected

from the parent to not only be able to sense what the robotic baby does but also be able

to inspect internally the inner working of the robotic baby. This expectation from a parent

differs from the human case since it is, as of the writing of the thesis, not possible to fully

understand the inner workings of a human baby and it is beneficial for the parent to take

advantage of the transparency of the inner working of a robotic baby to better instruct

and educate the robotic baby. Meanwhile, the parent is also expected to act and sense

the world around a robotic baby, especially during the early ages of the robotic baby for

strategically exposing the external world to the robotic baby and facilitating the learning of

the fundamentals, such as a natural language.

Beside the single robotic baby operation, there are also modes of operation which in-

volve multiple robotic babies. One mode of operation is distributed embodiment. In this

mode of operation, there are multiple copies of the same robotic baby operating in a dis-

10

Figure 3.2: The mode of operation of a robotic baby with distributed embodiment along
with a central “brain”.

tributed fashion with their own parent, managed by a central “brain”, as demonstrated in

Figure 3.2. The central “brain” serves as the common knowledge base for the distributed

embodiment to retrieve knowledge representations. Meanwhile, the distributed agents are

also able to store and share new knowledge representations, acquired through learning in

their own life with their parent, in the central “brain”. The mode of operation enables the

possibility of parallel education, such as one copy of the robotic baby is learning English

in the US and another one learning Chinese in China, while a third one wandering in the

streets in Paris acquiring both English and Chinese silently in secret. Since the distributed

embodiment shares the same central “brain”, the behaviors of the distributed embodiment

will be the same if under the same perceived external world.

Another possible mode of operation is the multi-agent setup, where there exist multiple

robotic babies and each robotic baby has its own “brain”. In this setup, the robotic babies

are able to communicate with each other through natural language and direct “brain merge”

operations for sharing information and knowledge representations, as shown in Figure 3.3.

With this setup, each robotic baby is able to acquire knowledge not only from its parent, but

also from its peers. Each robotic baby will also behave differently if perceiving the same

external world, since the internal “brain” is different due to the variations in the growth of

11

Figure 3.3: The mode of operation of the robotic baby with a multi-agent setup, where each
robotic baby has its own “brain”.

the robotic baby.

3.3 Formal Definition of a Robotic Baby

The formal definition of a robotic baby at the time of birth, t0, is an integrated system, r0,

containing minimal information about the external world, x0, with a governing process g0

with parameters, θ0 ⊂ r0, which follows the recursion,

rt+1 = gt(xt, rt; θt) (3.2)

which allows the robotic baby to achieve the goals and capabilities in terms of the following

high-level system requirements:

R1 Communicating with the external world with at least one patterned signal.

R2 Learning the patterned signal by communicating in the patterned signal.

R3 Sensing and acting upon the external world and the internal self.

R4 Learning new skills expressed in complex actions.

12

R5 Grounding the patterned signal in both the physical and cognitive actions.

R6 Adapting to the world with behavior changes based on reward signals.

R7 Maintaining life state variables driven by decaying functions.

R8 Being transparent and traceable in the internal process and explicit in the internal

representation of information.

3.4 Philosophical Inspirations and Considerations

3.4.1 On Self Existence

It is interesting to point out that the governing process (3.1) is a direct translation of “je

pense, donc je suis” (I think, therefore I am) [50] by René Descartes into abstract robotic

terms. If the “thinking” process, ft, stops working, there would not be the self, ht+1, in the

next time step. The governing process (3.2) for the robotic baby is, in this regard, the same

as the process (3.1) for human beings.

3.4.2 On Causal Determinism and Free Will

In light of the computing process described in (3.2), the initial system and the governing

process define the starting point of a robotic baby. With a transparent and traceable process

gt for state changes, the computation presented in (3.2) is a deterministic process. In other

words, given the starting point of a robotic baby (r0, g0) and a time series of the external

world states x0, ..., xt, it is possible to know what rt+1 and gt+1 will be in a deterministic

fashion. The causal determinism presented in the robotic baby suggests that, by design,

there is no such notion of free will in a robotic baby. This is in line with Baruch Spinoza’s

view on free will [51]. Note that even by design there is no free will, the robotic baby

could still be perceived as “free” by the outsiders, who are not able to precisely describe

its future states and actions, due to the lack of access to the complete set of (r0, g0, x0,

13

..., xt) or due to the lack of computation power to compute rt+1 from (r0, g0, x0, ..., xt)

in a timely fashion, or by those who are not able to find a pattern from the seemingly

chaotic behaviors generated from a deterministic rule-based system, such as Rule 110 [52]

in cellular automata [53].

3.4.3 On Adaptation to the Unpredictable World

Beside the starting point of the robotic baby, another important factor to notice in the growth

of the robotic baby is the time series of the external world state xt. If the external world

state xt is fully predictable, no adaptation of the robotic baby to the world is needed since

it is possible for the robotic baby to look up xt and optimize for it beforehand for a given

future time. Unfortunately, Laplace’s demon [54], a conceptual deterministic model of the

universe, has not been found or engineered and the external world xt has not been shown to

be fully predictable [55]. With this observation, the learning functionalities of the robotic

baby thus focus on the ability to adapt to the unknown, rather than to optimize over the

known, in a life-long learning fashion. In other words, learning paradigms such as data-

driven approaches with a fixed training dataset [56] as a snapshot of the world xt at time t,

regardless of the size, are optimizing over the known for a given static xt and thus do not

fit for the design of the robotic baby.

3.5 Scope and Limitation

From the high-level system requirements, many potential design choices could satisfy the

requirements. For example, the patterned signal in R1 can be a natural language, a sign

language, a bit stream and so on, while the sensing capability in R3 can be in visual, textual

or audio signals. For the purpose of this thesis, which is to demonstrate that it is possible

to build a robotic baby that satisfies all the requirements, the pursuit of complexity in the

system design is of no interest or intention.

Therefore, for the patterned signal mentioned in the requirements, the scope is only

14

Figure 3.4: The V-model of systems engineering [64].

limited to a subset of natural languages, which can be modeled with a context-free gram-

mar [57] and represented by a projective dependency tree [58]. For the specific natural

language, English and Chinese are chosen. For sensing, the inputs are limited to text and

simple images such as color blocks.

3.6 Systems Engineering Design Approach

The design process of the robotic baby follows a systems engineering design approach [59].

Specifically, the design process follows the V-model [60] in Figure 3.4: concept of oper-

ations, system-level design requirements, subsystem-level design requirements, high-level

architecture design [61], subsystem implementation, system verification and validation, op-

eration and retirement, which is widely adopted by the US aerospace and defense industry

such as the US Department of Defense [62] and NASA [63]. Early inspiration and rea-

soning behind the utilization of a systems engineering design approach for the design of a

robotic baby can be found in a prior related work, with a focus on the application of the

systems engineering design approach [65].

To be clear, the utilization of the systems engineering design approach does not mean

putting together all the best-performing subsystems, measured based on some subsystem

15

evaluation benchmark, to satisfy the system-level requirements. In fact, due to the lack

of common system-level requirements, it is nearly impossible to integrate all the best-

performing subsystems, designed for their own purposes and specifications, into a system

with a different set of requirements and specifications. For example, a costly failure in this

regard is the Lewis spacecraft mission [66]. In the context of a robotic baby, for instance,

due to requirement R8 for system interpretability and explainability, black-box learning

approaches, for example inspired by deep neural networks [67, 68], might not fit into the

design unless more progress is made about explainable AI [69].

16

CHAPTER 4

SYSTEM REQUIREMENTS FLOWDOWN

4.1 The Necessity of Requirements Flowdown

Requirements flowdown is an essential step in systems engineering, in which high-level

system requirements are decomposed into functional requirements which further drive the

overall system design and characteristics. In principle, once a list of functional require-

ments of a system is set, the overall characteristics of a system have been shaped accord-

ingly and there is no further step in the design process that could change the system char-

acteristics. It is also important to point out that the design impact regarding a change,

whether being an addition or a deletion, to the functional requirements is not linear to the

requirement change, as a change in one functionality of the system could impact all related

design decisions, which can propagate throughout the whole system. Therefore, require-

ment creeps should be avoided in the system design process, especially for the robotic baby

presented within the scope of this thesis as there exist many research and development op-

portunities in the early ages of a robotic baby.

4.2 The Requirements Flowdown for the Robotic Baby Design

The system-level requirements for the robotic baby listed in Sec. 3.3 are generic. With the

scope and limitations of robotic baby presented in Sec. 3.5, the system-level requirements

are decomposed into low-level requirements for the robotic baby architecture design within

the scope of this thesis.

R1 Communicating with the external world with at least one patterned signal.

R1.1 The ability to take in language inputs.

17

R1.2 The ability to display language outputs.

R2 Learning the patterned signal by communicating in the patterned signal.

R2.1 The representation of the English language.

R2.1.1 The representation of vocabulary in English.

R2.1.1.1 The representation of syntax in English.

R2.1.1.2 The representation of semantics in English.

R2.1.2 The representation of part-of-speech in English.

R2.1.3 The representation of grammar production rules in English.

R2.2 The representation of the Chinese language.

R2.2.1 The representation of vocabulary in Chinese.

R2.2.1.1 The representation of syntax in Chinese.

R2.2.1.2 The representation of semantics in Chinese.

R2.2.2 The representation of part-of-speech in Chinese.

R2.2.3 The representation of grammar production rules in Chinese.

R2.3 The acquisition mechanism and action representation.

R2.3.1 The acquisition mechanism of vocabulary in English and Chinese.

R2.3.2 The acquisition mechanism of part-of-speech in English and Chinese.

R2.3.3 The acquisition mechanism of grammar production rules in English and Chi-
nese.

R2.3.4 The representation of the acquisition actions.

R2.3.5 The activation of the acquisition actions.

R2.4 The processing of natural language inputs.

R2.4.1 The natural language processing algorithm.

R2.4.2 The retrieval of the vocabulary, part-of-speech and grammar rules in English
and Chinese.

R2.4.3 The representation of the successful processing outputs.

R2.4.4 The representation of the failed processing outputs.

18

R3 Sensing and acting upon the external world and the internal self.

R3.1 The acquisition of the states of the external world.

R3.2 The acquisition of the states of the internal self.

R3.3 The representation of actions.

R3.4 The activation of actions.

R3.5 The execution of actions on the external world.

R3.6 The execution of actions on the internal self.

R4 Learning new skills expressed in complex actions.

R4.1 The representation of complex actions.

R4.2 The action and activation for constructing complex actions.

R4.3 The execution of complex actions.

R5 Grounding the patterned signal in both the physical and cognitive actions.

R5.1 The representation of the grounding of natural language to actions.

R5.2 The acquisition mechanism of the grounding of natural language to actions.

R5.3 The action and activation for the acquisition mechanism.

R6 Adapting to the world with behavior changes based on reward signals.

R6.1 The representation of positive and negative reward signals.

R6.2 The representation of behavior changes.

R6.3 The action and activation for updating the representation for behavior changes.

R6.4 The utilization of the representation for behavior changes.

R7 Maintaining life state variables driven by decaying functions.

R7.1 The representation of internal life state variables.

R7.2 The life decaying mechanism.

R7.3 The action and activation for replenishing life state variables.

R8 Being transparent and traceable in the internal process and explicit in the in-
ternal representation of information.

19

R8.1 The integration and coordination mechanism of system components.

R8.2 The representation of internal processes.

R8.2.1 The representation of action activation.

R8.2.2 The representation of action execution.

R8.3 The action and activation for displaying the internal process representation.

R8.4 The action and activation for displaying the internal knowledge representation.

20

CHAPTER 5

SYSTEM ARCHITECTURE

Based on the system-level requirements and the requirement flow-down to the subsystem,

the system architecture, Baby, is proposed to meet the system-level requirements. The

overall architecture is shown in Figure 5.1.

The Baby architecture consists of processes, queues and functional structures which

can store information. This integrated architecture takes into consideration the follow-

ing: language processing and input/output, representations of knowledge in a graph, the

execution of physical actions and sensing, the activation of actions based on input signals,

system states and the overall management of the system. The traceability of how the overall

system-level requirements are satisfied by sub-system units is presented in Figure 5.2.

5.1 Language Input and Output

The language input and output unit, shaded in blue in Figure 5.1, consists of two processes

and their corresponding buffers for piping information. The input process is a process

monitoring input messages and it will simply put the message onto the BufferIn queue.

The display process is a process that takes in the message from the BufferOut queue and

display it on a screen. The BufferIn queue is a queue with messages, monitored by the

Manager process. The BufferOut queue, like the BufferIn queue, is also monitored by

the Manager process and once a message is on the queue, the Manager process will spawn

the Display process to display the message on the BufferOut queue. This design supports

requirement R1 and R8.

21

Figure 5.1: The proposed system architecture, Baby, for the robotic baby.

Figure 5.2: The requirement satisfaction traceability matrix for the Baby architecture de-
sign.

5.2 Natural Language Processing

The customized language processing unit, shaded in green in Figure 5.1, consists of the

natural language processing (NLP) process and two queues, the BufferParseTree and

22

BufferError queues. The NLP process is spawned when the Manager detects that there

is a message on the BufferIn queue to be processed. The job of the NLP process is to

jointly conduct part-of-speech (POS) tagging and parse the input sentence into a projective

dependency tree, based on the obtained linguistic rules stored in the Graph in the long-term

memory. If the parse is successful, the parse tree will be put on the BufferParseTree

queue. If the parse is not successful, some error message will be put on the BufferError

queue. This design supports requirement R2, R6 and R8.

The algorithm for the NLP process, BabyParse, is a rule-based greedy-search pars-

ing algorithm, utilizing the linguistic knowledge for the rules and the corresponding rule

activation frequencies stored in the Graph for the heuristic for the greedy search, inspired

by the Earley parser [70] with memorization during backtracking [71]. The backtracking

states utilize the configuration in transition-based parsing algorithms [58], with a buffer, b,

consisting of pre-processed tokens and a stack, s, containing specialized production rule

entries. Each stack rule entry is a dict with the following keys: type, rule, head, pre pos,

tail and element, where ‘type’ indicates the production of interest, and ‘element’ is a list

of POS-tagged tokens. The initial stack contains only one entry, Root={type:S, rule:∅,

head:∅, pre pos:∅, tail:∅, element:[]}. There is also a list, r, for storing the finished stack

rule entries. The algorithm also keeps track of two states, the current word, wn, and the

POS tag of the current word, pwn . The BabyParse algorithm is presented in Algorithm 1.

The BabyParse algorithm is a recursive function, conducting greedy search of POS

tags and grammar production rules for the transition actions, considering the state of the

current word and its POS and how they fit to the current production rule in the top stack

entry. It utilizes the transition-based configuration as the states for backtracking when

facing a dead end. It is custom made to tailor to the representations of the rules accumulated

by the robotic baby. Line 2-10 describe the situation with an empty buffer. Line 11-14

describe the situation with no next word, at the very beginning or when a word is moved

from b to s. In line 13, the POS function gives an ordered list of POS tags based on the

23

weights. Line 15-19 describe the state with no proposed ‘rule’ for ‘type’, when a new

stack entry is created. The PR function in line 16 gives an ordered list of production rules

based on the weights. In line 20, the Compatible function checks whether the proposed

pwn is compatible with the current hypothesized rule given its previous POS tag. Line 21-

35 describe what to do if the hypothesized rule has not encountered its tail, with Line 27

checking if the element can be decomposed. Line 36-45 describe the states with/without

passed compatibility check.

The output of the algorithm is either fail or success with the list of rules, r, which can be

easily transformed to a dependency graph by draw an arrow from each element in ‘element’

to ‘head’ for each rule in r. If the algorithm fails to produce a dependency graph, it means

that there might be a new word, a new POS for a known word or a new grammar rule that

needs to be learned, given a grammatical input sentence.

24

Algorithm 1 BabyParse, the algorithm for joint POS-tagging and dependency parsing
Input: b = w, s = [Root], r = [], wn = ∅ and pwn = ∅
Output: success or fail, and r if success

1: function BabyParse(b, s, r, wn, pwn)
2: if not b then ▷ check if buffer empty
3: while s do
4: if stop[tail] then
5: move stop from s to r
6: if not s then
7: return success, r
8: fill stop[element] with previous stop[head]
9: else

10: return fail
11: if not wn then
12: wn = b[0]
13: for pwn in POS(wn) do
14: return BabyParse(b, s, r, wn, pwn)

15: if not stop[rule] then
16: for pr in PR(stop[type]) do
17: if Compatible(pr, pwn , ∅) then
18: stop[rule] = pr
19: return BabyParse(b, s, r, wn, pwn)

20: flagpr, e list = Compatible(stop[rule], pwn , stop[pre pos])
21: if not stop[tail] then
22: if not flagpr then
23: return fail
24: else ▷ continue with s
25: for e in e list do
26: bc, sc, rc = Copy(b, s, r) ▷ copy configuration
27: if Check Terminal(e) then ▷ append to sctop
28: bc.pop(0)
29: sctop [element].append((wn, pwn))
30: sctop [pre pos] = pwn

31: update sctop [head], sctop [tail] if fit
32: return BabyParse(bc, sc, rc, ∅, ∅)
33: else ▷ create new stack top
34: create new sc top entry from e
35: return BabyParse(bc, sc, rc, wn, pwn)

36: else
37: if not flagpr then
38: bc, sc, rc = Copy(b, s, r) ▷ copy configuration

25

39: move sctop from sc to rc
40: return BabyParse(bc, sc, rc, wn, pwn)
41: else
42: try continue with sctop as in line 25-35
43: if fail then
44: move sctop from sc to rc
45: return BabyParse(bc, sc, rc, wn, pwn)

5.3 System Management

The system is managed by the Manager process, inspired by some proposed functionalities

of the basal ganglia [72] in the human brain. The Manager process, shaded in orange in

Figure 5.1, operates according to the instructions stored in the MetaInstructSet. The

Manager process is a process that runs with an infinite loop with a cognitive cycle pe-

riod, reacting to new information, as a stimulus, in the Queues of the system, such as the

BufferIn and BufferParseTree queues, and monitoring system States. For example,

if there is a dependency tree in the BufferParseTree queue, the Manager will spawn the

Activate process to further process the dependency tree. Moreover, the Manager process

is in charge of the motor and sensory capabilities of the robotic baby, sending action signals

from the Activate process output to the LifeQueue unit, where actions are executed. In

addition to the internal states and action signals monitored, the Manager process also does

required state monitoring for any external cyber or physical system integrated to the robotic

baby. The algorithm, BabyCycle, for the Manager process is presented in Algorithm 2.

This design supports requirement R8.

5.4 Long-term Memory

The long-term memory unit, shaded in yellow in Figure 5.1, houses the knowledge Graph,

with accumulated knowledge and rule activations explicitly represented in the nodes and

edges of various types. Node types include, but are not limited to, functional, syntactic,

semantic, part-of-speech, grammar production, grammar production rule, action and acti-

26

Algorithm 2 BabyCycle, the algorithm for system management
1: function BabyCycle()
2: while True do
3: sleep(CognitiveCycleTime)
4: LifeDecay(States)
5: if BufferIn not empty and StateAcceptInput then
6: NLP(Graph, BufferIn, BufferParseTree, BufferError)
7: if BufferParseTree not empty then
8: Activate(Graph, TempMemory, NodeActivated, EdgeActivated)
9: if BufferError not empty then

10: ActivateError(Graph, TempMemory, BufferOut)
11: if NodeActivated not empty then
12: LifeQueue.append(Graph, NodeActivated)
13: if EdgeActivated not empty then
14: StateEdgeActivation.append(Graph, EdgeActivated)
15: if StateRunMotorSensor then
16: Executor(LifeQueue, Graph, States, BufferOut, MetaInstructSet)
17: Sensor(LifeQueue, States, TempMemory)
18: if BufferOut not empty and StateProduceOutput then
19: Display(BufferOut)
20: if ExternalStates then
21: ExternalFn()

vation nodes. The purpose of the knowledge graph is to represent the acquired knowledge

and to provide the structure and information for inference and activation by the Activate

process. Required knowledge for kick-starting system operation includes linguistic knowl-

edge such as the notion of part-of-speech and grammar production rules, which the NLP

unit relies on. A sample subgraph representing the syntactic and semantic graph structure

for the word ‘bank’ is shown in Figure 5.3. The word ‘bank’ could be used as a noun or a

verb. As a noun, it could mean a financial institution or a river bank. As a verb, it means to

tilt.

The edges in the knowledge graph are also typed with activation weights attached,

representing the frequency of the activation between two nodes. In the ‘bank’ subgraph ex-

ample, it can be seen that ‘bank’ is used as a noun more than as a verb. Moreover, grammar

production rules are also represented in the graph. The grammar rule representation is de-

27

Figure 5.3: Knowledge representation for the word ‘bank’ in a subgraph.

signed with context-free grammar structures plus the usage of regular expression symbols

for flexibility, along with a head element and a tail element for the rule. Regular expression

symbols include ‘*’ for an optional and potentially repetitive element, ‘+’ for a potentially

repetitive element and ‘?’ for an optional element. An example grammar rule for singular

noun phrase (NP S) is shown in Equation 5.1.

NP S → DT? JJ* NN+ (5.1)

In this example, DT is determiner, JJ is adjective and NN is singular noun. This production

rule with the regular expression symbols is applicable to singular noun phrases of different

lengths, such as “juice”, “the apple juice”, “the tasty apple juice”, “the cold tasty apple

juice” and etc. Sample noun phrase (NP) and verb phrase (VP) production rule nodes

are shown in Figure 5.4. Sample knowledge base of vocabulary and part-of-speech can be

found in Appendix A and sample knowledge base of grammar production rule can be found

in Appendix B.

Beside knowledge stored in the graph, the action and activation nodes are also stored in

28

Figure 5.4: Knowledge representation for NP and VP production rules in a subgraph.

Figure 5.5: The default activation of the action node ‘go to point’.

the knowledge activation graph. The action nodes encapsulate system actions, cognitive or

physical, and serves as the pointer to the actions. Each action node has a default activation

node attached, which represents a dependency graph from a parse tree. Each dependency

graph is a subgraph containing nodes in the semantic and function layer of the knowledge

graph. An example for the action of ‘go to a point’ is shown in Figure 5.5.

Note that in Figure 5.5, each system action node has a default corresponding activation

29

Figure 5.6: A snapshot of the knowledge activation graph containing all types of nodes and
edges at a point in time.

node, which is activated by a default dependency graph consisting of semantic nodes. Yet,

the graph is not rigid. New nodes and edges will be added to the graph as a result of

the interactions between the robotic baby and its parent. In other words, for a system

action node, there could be more than one activation nodes attached, and an activation

node could potentially activate multiple action nodes, as shown in Figure 5.5. For the

activation node, other dependency graphs, which are semantically equivalent to the default

dependency graph, can also activate the same activation node. This is how the semantics

is grounded to the system actions, which modify the graph itself as well as the external

world. The knowledge activation graph serves as the “neural network” of the robotic baby,

which provides the structure for activation and inference with the Activate process in the

activation unit. For illustration, a snapshot of the knowledge activation graph containing

all types of nodes is shown in Figure 5.6. The overall design of the long-term memory

supports requirement R2, R3, R4, R5, R6, R7 and R8.

30

5.5 Short-term Memory and Activation

The short-term memory unit, shaded in red in Figure 5.1, contains the Activate pro-

cess and a memory space. The memory space contains a general space, TempMemory, for

storing temporary information such as past natural language inputs. The memory space

also contains dedicated space for activated nodes and edges, as in NodeActivated and

EdgeActivated. The NodeActivated space is used for storing the recent action node,

which the Manager checks within each cognitive cycle and pushes to the LifeQueue for

execution. The EdgeActivated space is used for accumulating all recently activated edges

in the knowledge activation graph. The weight of the activated edges, with the reception

of a reward natural language signal, will be updated in the knowledge graph. This design

supports requirement R3, R4, R6 and R8.

The Activate process is a process spawned when the Manager detects the existence

of content on BufferParseTree from the NLP process. The job of the Activate process

is to infer, based on the input semantic dependency graph and the knowledge activation

graph, which action node to place on NodeActivated as the output. When the activation

finishes, all the utilized edges that result in the final action node will be accumulated in

EdgeActivated. The Activate process utilizes the BabyActivate algorithm, presented

in Algorithm 3.

The BabyActivate algorithm is a stimulus-driven search algorithm with hypergraphs

as an input. Due to the nature of natural languages, a constituent can span multiple words

forming a representation of one semantic meaning. In the context of the Graph, constituents

are represented by hypergraphs, containing nodes connected by edges carrying the same in-

formation. For activations by a hypergraph, the activated node has to be verified that it is in-

deed activated by all relevant nodes and edges in the hypergraph. With the BabyActivate

algorithm, the input dependency graph is first activated by nodes. Line 5-22 describe the

process with single node activation. Line 10-20 describe when a new node is activated,

31

Algorithm 3 BabyActivate, the algorithm for short-term graph activation
Input: D = DependencyGraph, G = Graph
Output: NodeActivated, EdgeActivated

1: function BabyActivate(D, G)
2: FrontierNodes, FrontierEdges = D.nodes, D.edges
3: UnexploredNodes, ActivatedNodes = [], []
4: while True do
5: while FrontierNodes do
6: node = FrontierNodes.pop(0)
7: nodePath, nodeSpan = D.getPathSpan(node)
8: neighbors = G.getActivationTarget(node)
9: for neighbor in neighbors do

10: if not G.checkActivate(node, neighbor) then
11: continue
12: D.addNode(neighbor)
13: for p in D.predecessors(node) do
14: D.addEdge(p, neighbor)
15: FrontierEdges.append((p, neighbor))
16: for s in D.succcessors(node) do
17: D.addEdge(neighbor, s)
18: FrontierEdges.append((neighbor, s))
19: D.updatePathSpan(neighbor, node, nodePath, nodeSpan)
20: FrontierNodes.append(neighbor)
21: if G.checkAction(neighbor) then
22: ActivatedNodes.append(neighbor)
23: while FrontierEdges do
24: fn, tn = FrontierEdges.pop(0)
25: neighbors = G.getEdgeActivationTarget(fn, tn)
26: if neightbors is empty then
27: continue
28: fnPath, fnSpan = D.getPathSpan(fn)
29: tnPath, tnSpan = D.getPathSpan(tn)
30: for neighbor in neighbors do
31: if neighbor in FrontierNodes then
32: continue
33: if neighbor not in UnexploredNodes then
34: D.addNode(neighbor)
35: UnexploredNodes.append(neighbor)
36: D.updatePathSpanEdge(neighbor, fn, fnPath, fnSpan, tn, tnPath, tnSpan)
37: if D.checkActivate(neighbor) then
38: for pathNode in D.getPath(neighbor) do
39: for p in D.predecessors(pathNode) and not in D.getSpan(neighbor) do
40: D.addEdge(p, neighbor)
41: FrontierEdges.append((p, neighbor))

32

42: for s in D.successors(pathNode) and not in D.getSpan(neighbor)
do

43: D.addEdge(neighbor, s)
44: FrontierEdges.append((neighbor, s))
45: FrontierNodes.append(neighbor)
46: UnexploredNodes.remove(neighbor)
47: if FrontierNodes and FrontierEdges are empty then
48: break
49: if ActivatedNodes is not empty then
50: NodeActivated = G.rank(ActivatedNodes, D)
51: EdgeActivated = D.getPath(NodeActivated)
52: return NodeActivated, EdgeActivated

the new node is added to the dependency graph and the search frontier. It also inherits all

the predecessors and successors of the activation source along with associated edges. Line

23-46 describe the process with edge activation. Line 31-36 describe when a new node is

activated by an edge, the new node, if not already activated and placed in the search frontier

and if not fully activated due to hypergraphs, is placed in the unexplored node candidate

list. The partially activated node records the source activation edge information. If the new

node is fully activated by the edge, whether as part of a hypergraph, the new node will

inherit all the associated predecessors and successors from its activation sources, seen in

Line 37-44. Line 47-48 describe the exit condition out of the infinite loop when all relevant

node and edge activations are completed. Line 49-51 describe the selection of the output

action node and the associated activation paths toward the final action node. If there are

multiple action nodes activated, the ranking is based on heuristic rule filters and activation

weights stored in the Graph.

5.6 System States

The system states unit, shaded in purple in Figure 5.1, contains the States object, which

keeps track of essential states of the system, some for the simulation of the decaying life

state, which needs a special signal to get replenished. Beside the life state, other state vari-

33

ables include the gates and flags utilized by the cognitive cycle, such as

StateAcceptInput, StateRunMotorSensor and StateProduceOutput. The States

object also keeps track of the variables of the external system integrated to the Baby ar-

chitecture. The LifeDecay process is a pre-defined process guiding the decay of the life

states, which enables the natural need for outside resources. This mechanism is designed

as the driver for interactions to the parent and the world, which, in the long term, serves

as one of the objectives for sustainability and autonomy. This design supports requirement

R7 and R8.

5.7 Physical Input and Output

The physical input and output unit, shaded in grey in Figure 5.1, contains the LifeQueue,

which is a queue for activated action nodes to be put on. The Executor process constantly

monitors the LifeQueue for executing the next action node once the last node has been

completed. The Executor is not only executing physical actions but also cognitive actions

as well, such as adding a node to the Graph and updating the edge weights of the Graph.

The Sensor process constantly monitors whether the objective of the current action node

is achieved and signals to the LifeQueue when an action node has been completed. This

design is for requirement R3 and R8.

34

CHAPTER 6

SUB-SYSTEM IMPLEMENTATION AND INITIALIZATION

With the Baby system architecture, the initialization of the Graph plays an important role at

the starting point of a robotic baby. For inspiration, it might be beneficial to look at the case

of the human counterpart first. For a human baby, there are theories regarding the stages of

development in cognition and knowledge, for example by Jean Piaget [4] and others [49].

Yet, there does not seem to be a consensus on the precise definition of the development

stages and how exactly a human baby evolves from one stage to another in the field of

cognitive development. For instance, on mental representation, some argue that mental

representation is innate [6, 73], which contradicts Piaget’s theory that mental representation

depends on prior sensorimotor development [3]. For the purpose of designing a robotic

baby, the research in cognitive development suggests, in abstraction with robotic terms,

that at the time of birth t0, a human baby h0 barely knows anything about the self or the

external world, while at some future time t1, a human baby grows into a state h1, such as

the the formal operational stage in Piaget’s theory [4], when intelligence is shown with the

usage of logic and abstract concepts. The precise transformation from h0 to h1, however,

is not known to a complete extent, despite some observations of behaviors to facilitate the

transformation, such as babbling [74] and action imitation [75].

For the design of the robotic baby, whose purpose is not to emulate the human growth

process from h0 to h1 but to satisfy the system level requirements, the initialization of the

robotic baby r0 in Eq. (3.2) does not necessarily need to be similar to the state of the human

counterpart h0. In other words, it is suggested by the robotic baby designer that the human

baby growth process from h0 to h1 is only specific to the human initialization h0, while

there could be alternative processes that drive the growth of a robotic baby r0 with different

starting points to satisfy the system-level requirements.

35

6.1 Linguistic Knowledge Initialization

For the acquisition of language, unlike the process a human baby goes through in child

cognition and psychology proposed in [76, 77], the robotic baby is designed to be born with

minimal linguistic knowledge and mechanisms in terms of cognitive actions, to enable the

further acquisition of language. This notion of jump-starting is a design choice, inspired

by the design of a dictionary. Consider a thought experiment: if given a dictionary, which

word should a human baby, who has no language skills, learn first? It turns out that there is

not an order for acquiring new vocabulary in reading a dictionary for a baby from knowing

nothing. Any word in a dictionary is defined by its part of speech and other words for

explaining its meaning. A dictionary on its own is nothing but a circular definition of

symbols with neither a starting point nor an ending point. Furthermore, the design of a

dictionary assumes that the reader knows how part of speech works in parsing and that the

reader has the cognitive capacity to make associations, for example, between a word and a

part of speech, along with its meaning.

In light of the observations on the design of a dictionary, the design of the robotic baby

for language acquisition employs a similar setup. Regarding the notion of part of speech

and the associated parsing mechanism, the robotic baby, at birth, is set up with structures

for representing part of speech and grammar rules in the Graph, and the BabyParse

algorithm for parsing. Regarding the circular definition of words, a minimal set of words

that form a circular definition is found and represented in the Graph, and serves as the basis

for further linguistic knowledge acquisition.

In English, the very initial set of words present in the Graph at birth includes ‘noun’,

‘is’, ‘a’, ‘verb’ and ‘determiner’, which could form a circular definition as in “‘noun’ is

a noun; ‘verb’ is a noun; ‘is’ is a verb; ‘determiner’ is a noun; ‘a’ is a determiner”. In

this circular definition, every word is defined by all other words. With this basis, further

acquisitions of new words and part of speech are made possible, such as “‘pronoun’ is a

36

noun; ‘you’ is a pronoun”, where ‘pronoun’ and ‘you’ are acquired from the basis.

In Chinese, similarly, the very initial set of words present in the Graph at birth includes

‘名词’ (noun), ‘是’ (be) and ‘动词’ (verb), which could form a circular definition as in

“‘名词’是名词; ‘动词’是名词; ‘是’是动词”. In this circular definition, just like the one in

English, every word is defined by all other words. With this basis, further acquisitions of

new words and part of speech are made possible, such as “‘代词’是名词; ‘你’是代词”,

where ‘代词’ (pronoun) and ‘你’ (you) are acquired from the basis.

6.2 Action Space and Activation Initialization

The robotic baby is designed to be born with primitive actions, the building blocks for

high-level cognitive skills and complex actions, similar to the proposed theory for a human

baby, where skills are hierarchically assembled as ‘schemata’ [2]. The primitive actions

are pre-defined programs that interact with other internal parts of the robotic baby, such

as the Graph, TempMemory and States, and the external world if integrated into a phys-

ical body. Examples of primitive actions include the actions for language acquisition in

terms of the addition of words, parts of speech and grammar rules to the Graph, and the ac-

tions for language grounding, program construction, behavior reinforcement and life states

replenishing.

For a robotic baby, all primitive actions form an action space. The action space defines

a capability boundary for all future actions no matter how complex they would become,

since complex actions are essentially constructed with all the primitive functions defined at

birth. In the human case, it is known that a human is not capable of maintaining steady and

level flight at high altitude with just the human body and nothing else, since the physical

action ‘fly’ cannot be constructed with all possible actions a human body can perform. For

a robotic baby, similar statements can be made regarding a complex action with a given set

of primitive actions at birth.

All primitive actions in a robotic baby at birth are represented as action nodes in the

37

Graph. For each primitive action, there is a default hypergraph activation node, expressed

in natural language semantics in both English and Chinese, connecting to it. This is a design

choice, enabling the reference to and the manipulation of a specific action by grounding a

semantic meaning to an action at birth, where in contrast, for a human baby, there is no

such grounding of meaning to an action observed at birth, which is hypothesized to be

gradually obtained throughout growth [2, 5]. Note that it is the meaning, expressed in

natural language semantics, that is grounded to an action, not the natural language syntax

that is the choice for grounding. For instance, for an action ‘raise hand’, it is the semantics

of ‘raise hand’ that is grounded to the representation of the action ‘raise hand’, not the

exact syntactic wording ‘raise hand’ that is grounded to the action. This design choice takes

account into the variance and flexibility in natural languages and enables the establishment

of new mappings from similar meanings in semantics, even expressed in another language

with another set of symbols, to the activation of an action.

38

CHAPTER 7

SYSTEM VERIFICATION AND VALIDATION

7.1 Acquisition and Semantic Parsing of English and Chinese

With the initialization of the Graph, the robotic baby is capable of learning English with

instructions in English. Specifically, the robotic baby is able to acquire the building blocks

of the English language, namely the vocabulary words, the various types of part of speech

(POS) and grammar rules, via live interactions with a parent. Note that English is an evolv-

ing natural language with newly generated words [78] and changes to the meanings of

words [79]. There is also no consensus on the number of POS tags for the English lan-

guage. Notable POS tag sets include ones from the Penn Treebank [80] and the Universal

Dependencies [81]. With the evolving nature of the syntax and the semantics of the words,

along with different annotation traditions in the POS tags, there is no universal set of gram-

mar rules available for the English language. As a result, there is no set curriculum for

acquiring the complete English language, if it can be even defined at any point in time.

Therefore, the acquisition of English for the robotic baby does not focus on building and

following a particular curriculum. Instead, the focus is on the capabilities for adaptation,

regardless of the styles of symbols and annotations used in English.

There are three major cognitive primitive actions that are in charge of the acquisition

of language. They are add new word, add new pos and add new grammar. The

actions, along with an example English instruction for each, are shown in Table 7.1. The

add new word action adds a new word to the Graph and associates the new word with

a known part of speech. In English, it is activated by a hypergraph with ‘be type of part-

of-speech’ expressed in semantics. In the example, the dependency graph of ‘is plural

noun’ activates the ‘be type of pos’ hypergraph, which further activates the action node.

39

Table 7.1: Action Nodes for Language Acquisition in English

Action Node Example Instruction in English (EN)
add new word ‘apples’ is a plural noun.
add new pos ‘plural noun NNS’ is a part of speech.

add new grammar ‘DT? JJ* NNS, NNS, NP P’ is a grammar rule.

Table 7.2: Action Nodes for Language Acquisition in Chinese

Action Node Example Instruction in Chinese (CN)
add new word ‘苹果’是名词。
add new pos ‘形容词 JJ CN’是词性。

add new grammar ‘JJ CN POSS CN NNS, NNS, NP P’是语法。

The add new pos action adds a new part of speech to the graph. The part of speech

includes a natural language name and a symbol. In the example, plural noun is added as a

part of speech with a symbol ‘NNS’. The add new grammar action adds a new grammar

production rule to the graph. In the example, the grammar rule ‘determiner (optional) +

adjective (optional, repetitive) + plural noun’ is added for the production of plural noun

phrase (NP P), with the plural noun as the head of the grammar rule.

Beside English, the actions are also connected to the semantics in Chinese. Example

instructions in Chinese for the actions are presented in Table 7.2. Similar to the examples

in English, the Chinese instructions follow similar patterns for the activation of the actions.

Note that the use of English letters is common in Chinese to represent symbols. The actions,

both in English and in Chinese, have been verified to work as designed by inspecting the

change of the Graph after the activation of the actions.

For the semantic parsing of English and Chinese sentences, verification is done by pars-

ing different types of input sentences in terms of complexity and ambiguity, given necessary

vocabulary, part of speech and grammar rules. Note that in Chinese, since normal Chinese

sentences are not tokenized with a white-space marker between words, an extra step for

tokenization before parsing is implemented with a rule-based greedy-search tokenizer uti-

lizing the Graph. The robotic baby has not encountered problems parsing unambiguous

but complex sentences in English and Chinese both using the BabyParse algorithm. One

40

(a)

(b)

Figure 7.1: The parse tree and dependency graph for “Buffalo buffalo Buffalo buffalo buf-
falo buffalo Buffalo buffalo”.

example in this regard in English is “The mouse that the cat that the dog that the man

frightened chased bit ran away” [82], where there are recursively embedded clauses and

structures in the complex sentence. For ambiguous sentences, if the ambiguity can be re-

solved solely with the clue from grammar rules, the robotic baby can parse sentences with

such ambiguity successfully into parse trees and dependency graphs. An example of this

type of ambiguity is the lexical ambiguity seen in “Buffalo buffalo Buffalo buffalo buf-

falo buffalo Buffalo buffalo” [83]. In this example, ‘buffalo’ can be used as a verb and a

noun, and a proper noun when ‘b’ capitalized as in ‘Buffalo’. The BabyParse algorithm

has succeeded in parsing this grammatical sentence solely depending on obtained grammar

rules, with the parse tree shown in Figure 7.1a and the dependency graph in Figure 7.1b. A

detailed execution of BabyParse on the garden-path sentence “the old man the boat” can

also be found in Appendix C, where the garden-path behaviors [84] can be observed.

The types of ambiguity in sentences that cannot be decided by the robotic baby include

semantic ambiguity that needs world knowledge to resolve and prepositional phrase (PP)

41

attachment ambiguity that needs context to resolve [85]. As a starting point, the current

parsing capabilities are sufficient for the purpose of the robotic baby. Advanced parsing

skills can be obtained through the acquisition of procedures and programs in future learn-

ing.

7.2 Bilingualism, Multilingualism and Code-Switching

With the bilingual language acquisition capabilities, the robotic baby is capable to acquire

linguistic knowledge of one language using another language. More specifically, the ac-

tions for language acquisition activated in one language can manipulate the Graph regard-

ing the linguistic knowledge of another language. As an example, in “‘他’ is a pronoun”,

the Chinese word ‘他’ (he) is acquired by the robotic baby in English and associated with

the pronoun part of speech. In another example, “‘pretty’是形容词”, the English word

‘pretty’ is acquired in Chinese as an adjective. As a matter of fact, English and Chinese are

different languages with different sets of vocabularies and grammar rules. Yet, to a robotic

baby, they are nothing but symbols with particular structures and orderings that obey some

commonly accepted rules, modeled with context-free grammar in the robotic baby im-

plementation, of a particular natural language. To further validate the symbol-agnostic

language semantic parsing, a made-up language with arbitrary words, parts of speech and

grammar rules is taught and the robotic baby has no problem parsing grammatical inputs

in the made-up language. For future expansion, it might not take too much effort to acquire

and use, as an example, French, with “‘jolie’ is an adjective” or “‘pretty’ est un adjectif”

despite some complications such as in gender and verb tense categories in French.

The bilingual language representation in the robotic baby enables another interesting

capability of dealing with input natural language sentences with code-switching [86]. For

the robotic baby, code-switching is relevant when the input sentence contains more than

one natural language. Notice that a grammatical sentence with code-switching still follows

well-defined grammar rules [87]. As an example, in “我有一个plan” (I have a plan), the

42

Figure 7.2: The parse tree for the code switching sentence “We should过新年”.

Table 7.3: Action Nodes for Semantic Mapping in English and Chinese

Action Node Example Instruction in EN & CN
add new mapping word ‘pretty’ means ‘beautiful’.
add new mapping word ‘漂亮’等同于‘美丽’。
add new mapping action If I say ‘go shopping’, you should go to the

market.
add new mapping action 如果我说‘去购物’ ，你应该去超市。

English word ‘plan’ substitutes the Chinese counterpart ‘计划’ (plan), which is merely a

substitution of a noun in a sentence. Another example is “We should 过新年” (We should

celebrate the lunar new year), in which the Chinese verb phrase “过新年” (celebrate the

lunar new year) replaces the English verb phrase expression, as seen in the parse tree in

Figure 7.2. With the change of symbols or local phrase structures, a grammatical sentence

with code-switching can still be parsed into a parse tree and a dependency graph by the

robotic baby with the BabyParse algorithm.

7.3 Natural Language Grounding to Semantics and Actions

The semantics of a natural language, if not grounded to anything, are merely meaningless

representations of the syntax. In this regard, the robotic baby is designed to be capable of

grounding semantics to words and the activation of actions. There are two major primitive

actions that are in charge of the grounding capability, which are

add new mapping word and add new mapping action, presented in Table 7.3.

43

The action add new mapping word is in charge of adding an activation edge be-

tween semantic nodes of words with similar meanings. This is semantic grounding of the

language, especially useful when associating the meaning of a newly acquired word to the

meaning of a known word. In the example in Table 7.3, the semantic meaning of ‘pretty’ is

associated with the semantic meaning of ‘beautiful’. The action

add new mapping action is in charge of associating the semantics of a sentence to

the activation of an action. This is useful for accounting for the variance of natural lan-

guage in cases where different expressions carry the same meaning and intention, known

as the vocabulary problem [88]. In terms of the Graph operation, the hypergraph of the de-

pendency graph of the instruction is mapped to the activation of an action. In the example

in Table 7.3, the hypergraph of the dependency graph of ‘go shopping’, including all the

nodes and edges, is mapped to the activation node activated by ‘go to the market’. Note

that the actions can map expressions in different natural languages as well. For example,

“‘pretty’ means ‘漂亮”’ enables the semantic mapping between ‘pretty’ and the Chinese

counterpart ‘漂亮’ (pretty). In some sense, it is teaching the robotic baby about language

translation. For the purpose of verification, both actions have been verified to function as

designed by Graph inspection.

7.4 Natural Language Reinforcement Learning

For the purpose of adaptation, the behavior of the robotic baby is designed to change based

on natural language reward instructions [89]. Specifically, the behavior change is enabled

by the activation edge weight change in the Graph. There are two major primitive actions in

charge of changing the activation edge weights. They are update weight positive

and update weight negative, presented in Table 7.4.

The actions work by updating the weights of the activation edges, collected in

EdgeActivated in the short-term memory of the robotic baby after each activation. After

the weight update, the actions will empty EdgeActivated. In other words, the actions only

44

Table 7.4: Action Nodes for Edge Weight Update in English and Chinese

Action Node Example Instruction in EN & CN
update weight positive You are doing great.
update weight positive 做得好。

update weight negative You are not doing great.
update weight negative 做得不好。

update the weight of the activation edges collected after the prior update. The amount of

weight for each edge update is an intensity multiple, k, of the count of the occurrence of

the activation of an edge after the prior update. For example, if the occurrence of activation

from the word ‘man’ to the noun part of speech is n and the last weight is wt, with an

update after some time p, the new weight of the activation edge wt+p can be calculated as

wt+p = wt + n ∗ k. (7.1)

As a basic implementation, k is 1 for a positive update and -1 for a negative update. For

the purpose of rewarding the robotic baby, this uniform and naive update scheme among all

edges is considered to be sufficient as a baseline implementation. The actions are verified

to work as intended through inspection of the Graph edge weights after updates.

For demonstrating how the natural language reinforcement learning can make an impact

in the real world, the robotic baby is integrated into the Robotarium [90] at the Georgia

Institute of Technology. This embodiment of the robotic baby provides the robotic baby

with the capabilities of physical manipulation of the robots in the Robotarium. The motor

and sensing capabilities of the Robotarium, such as moving forward and getting current

location, are defined as physical primitive action nodes in the Graph, along with their

default semantic activation hypergraph in both English and Chinese.

The demonstration is to show the change of strategy of a robot going to a target position

due to natural language reinforcement instructions. Specifically, the robot has a default

physical action node for going to a target with an open-loop strategy, where the robot

45

(a) (b)

(c) (d)

(e) (f)

Figure 7.3: Demonstration for natural language reinforcement learning with the Robotar-
ium integration.

rotates to the target first and goes straight with a pre-calculated number of steps based on

speed and the distance to target. This strategy is not accurate in the physical world due to

factors such as unmodeled actuator dynamics, sensor noise and uneven plane of movement.

A better strategy in this regard is the closed-loop strategy, defined as another physical action

node, where the robot is capable of moving to the target using feedback control to correct

for unmodeled noises and errors.

In the demonstration, the robot is first commanded to get to a target at coordinate (0.5,

0) in meters. It first utilizes the default open-loop strategy and it goes way off target as seen

46

in Figure 7.3a, with the path trace marked with a red arrow. The parent of the robotic baby

then tells the robotic baby “you are not doing great” as the negative natural language reward

signal in Figure 7.3b and tells the robotic baby to pay attention by utilizing the closed-loop

strategy with feedback with language grounding to an action in Figure 7.3c. Then, the

robot is commanded to go back to the starting coordinate (-0.5, 0) and the robot utilizes

the closed-loop feedback control strategy, which is rewarded by the parent with “you are

doing great” in Figure 7.3d. After that, the robot is commanded to go to coordinate (0.5, 0)

again. The robot utilizes the closed-loop control strategy and gets to the target quite well

as seen in Figure 7.3e, with the path trace marked with a green arrow. Finally, the robotic

baby is rewarded again with “you are doing great” in Figure 7.3f. The demonstration shows

that with natural language reinforcement signals, the robotic baby is capable of switching

strategies for the same command and performs better, as seen by comparing the green arrow

in Figure 7.3e to the red arrow in Figure 7.3a.

7.5 Natural Language Programming

For learning skills expressed in complex actions, the robotic baby is able to acquire new

skills with natural language programming, a mechanism which allows the robotic baby to

construct programs from natural language commands from the parent. Specifically, the

parent can instruct the robotic baby to create a program with a name and let the robotic

baby record the action sequence for the program based on given natural language instruc-

tions. At the end of the program, the parent can let the baby know that the end of the

program is reached with another natural language command. Regarding the corresponding

Graph operation, the recorded program with the action sequence is added to the Graph

as a complex action node, with the program name semantic hypergraph as the activation

source. Note that for a complex action, the action sequence can contain both primitive and

complex actions. There are two major primitive actions enabling the natural language pro-

gramming capability, add new action start and add new action end, shown in

47

Table 7.5: Action Nodes for Natural Language Programming in English and Chinese

Action Node Example Instruction in EN & CN
add new action start Add action ‘go shopping’.
add new action start 添加程序‘去购物’。
add new action end Finish adding action.
add new action end 结束添加程序。

(a) (b)

Figure 7.4: Demonstration for natural language programming with dummy actions.

Table 7.5. Note that with the bilingual capability of the robotic baby, it is possible to record

a sequence of actions in both English and Chinese, or a mixture of both. This enables the

education of the robotic baby by people who speak different natural languages. Further-

more, it makes collaborative multilingual teamwork possible, with people programming

the robotic baby in different natural languages in collaboration. For verification, the ac-

tions are verified to work as intended by Graph inspection and the successful execution of

constructed programs.

To illustrate the natural language programming capability, a simple demonstration is

created with dummy actions, presented in Figure 7.4. In this demonstration, there are 2

primitive actions ‘the first dummy action’ and ‘the second dummy action’, marked in yel-

low. The goal is to construct a complex action, marked in white, for ‘the third dummy

action’ as seen in Figure 7.4a. The instructions in both English and Chinese are presented

in Table 7.6. With the natural language programming of the third dummy action, the corre-

sponding complex action node is created in the Graph, activation of which will result in the

execution of the first dummy action and the second dummy action in sequence. With the

creation of the third dummy action, more complex actions can be programmed, as seen in

Figure 7.4b, where the fourth dummy action can be built with the sequence ‘3-1-3’, which

48

Table 7.6: Dummy Action Program Instructions in English and Chinese

Programming in English Programming in Chinese
1 Add action ‘do the third dummy action’. 添加程序‘做第三个动作’。
2 Do the first dummy action. 做第一个动作。

3 Do the second dummy action. 做第二个动作。

4 Finish adding action. 结束添加程序。

is equivalent to ‘1-2-1-1-2’. This simple demonstration illustrates how complex actions can

be constructed with primitive actions as the building blocks.

The natural language programming capability is validated in the real physical world

with the robotic baby Robotarium integration. In the demonstration in Figure 7.5, the

robotic baby is first commanded to construct a complex action ‘go shopping’ in Figure 7.5a.

Then, the robotic baby is programmed with “go to the market” in Figure 7.5b, “go to the

mall” in Figure 7.5c and “go home” in Figure 7.5d, where the program for “go shopping”

ends. The ‘go’ primitive action node, once activated, grabs the coordinates of the object

after the main predicate from the dependency tree, which altogether gets executed by the

Executor. In Figure 7.5e, the robotic baby is commanded to execute the newly acquired

complex action ‘go shopping’, which is successfully executed with a visit to each place.

Then, the coordinate of the mall is changed, which is told to the robotic baby. When

commanded to go shopping again in Figure 7.5f, the robotic baby is able to go to the new

location of the mall. This behavior also demonstrates that a complex action is memorized

with high-level natural language instructions. At run-time, the high-level natural language

instructions are processed and corresponding actions are activated based on the activation

Graph at run-time. This implies that if the Graph has changed from the one when the

program is first constructed, the behavior of the robotic baby would also change based on

the Graph at run-time.

49

(a) (b)

(c) (d)

(e) (f)

Figure 7.5: Demonstration for natural language programming with the Robotarium inte-
gration.

7.6 Introspection and Explainability

For the purpose of making its internal process explainable, the robotic baby is designed

to be able to recall its action history and corresponding activation graphs for each action.

For human infants, recalling action sequences has been observed in infants as young as 11

months old [91]. For a robotic baby, the ability to recall its entire action history from birth

50

Table 7.7: Action Nodes for System Introspection in English and Chinese

Action Node Example Instruction in EN & CN
recall action history Recall action history.
recall action history 回忆动作历史。

show activation graph Show activation graph.
show activation graph 展示激活图。

is designed to be available at birth. This is made possible due to the explicit representation

of action sequence in the LifeQueue. Recalling action sequences from birth is essentially a

printout of the LifeQueue, with a hierarchical structure, which records the natural language

instruction and the action node name at the time of the execution of any action. This

capability ensures that what a robotic baby did is available and interpretable to the parent

of the robotic baby.

Beside the system level transparency with the action sequence recall in LifeQueue, the

robotic baby is also capable of displaying the activation graph for each pair of natural lan-

guage instruction and activated action node. This mechanism is possible since the parsing

and activation of the semantic dependency graph are all rule-based approaches, as seen in

BabyParse and BabyActivate. This capability of the robotic baby, on the individual

action level, ensures that why a robotic baby did what it did is available and interpretable

to the parent of the robotic baby. The parent of a robotic baby, with the presence of the

activation graph, is able to see that for an activation source, which nodes are fully activated

and how the final action node is reached. More importantly, the parent is able to interpret

the meaning behind the propagation of activation, since all nodes are explicitly defined and

all activations are based on rules acquired at some point in the life of the robotic baby.

There are two major primitive actions that are in charge of the system introspection ca-

pability, which are recall action history and show activation graph, pre-

sented in Table 7.7. For verification, the actions are verified to work as designed by the

inspection of LifeQueue and the activation graph. As an example, the LifeQueue for the

demonstration “go shopping” in Figure 7.5 is shown in Figure 7.6, with the recall action

51

Figure 7.6: LifeQueue for the “go shopping” demonstration, with primitive and complex
actions.

Figure 7.7: Activation graph for “go shopping” from the syntactic nodes to the action
node, with the semantic dependency graph boxed in yellow. Activated nodes are filled with
colors.

history instruction commanded at the end of the demonstration. It is clear to see that the

complex action ‘go shopping’ (number 4) is executed after the ‘S-1-2-3-E’ sequence where

the program for the action ‘go shopping’ is constructed. For illustration, an example for

the activation graph of “go shopping” is also shown in Figure 7.7. It shows how the in-

struction “go shopping” gets activated from the syntactic level to the semantic level, where

52

the semantic dependency graph is constructed, boxed in yellow, and then to the activation

of an action node. A detailed execution of BabyActivate on the example is available in

Appendix D.

53

CHAPTER 8

ROBOTIC BABY EDUCATION AND EVOLUTION

8.1 One Robotic Baby with Distributed Embodiment

The robotic baby can be integrated to a distributed system, where each agent operating in

its own world shares the same “brain”, represented by the Graph, with all other agents,

which results in the same global behaviors across all agents. More specifically, the local

education of one agent in the distributed system with the robotic baby enables the learning

of all other agents in the system at the same time. This mode of education is powerful since

one piece of knowledge can be passed to one agent once and all agents in the system will

know, unlike in the human case where the same knowledge, i.e. ‘1 + 1 = 2’, needs to

be passed to all agents so everyone knows. The distributed embodiment also enables the

parallel education of the robotic baby, due to the distributed access.

To illustrate the education of the robotic baby with distributed embodiment, the robotic

baby is integrated to the Robotarium with two robotic carts, Emma and Zebra, both of

which share the same Graph in the robotic baby. In Figure 8.1, Emma is on the left and

Zebra is on the right, both circling clockwise in their grid world. On their path, there are

color blocks popping up. There are in total 4 colors: red, yellow, green and blue. The setup

is that if they see a new color block in front of them, they will ask the parent “What is that?”

and if they see a known color, they will say the obtained name of the color. If one correctly

identifies the color, that robot cart will get 1 point. In this demonstration, the parent can

only talk to Emma on the left. So, even though Zebra can ask questions to the parent, he

will never get a response from the parent.

At the beginning of the demonstration, both Emma and Zebra know nothing about the

colors. When Emma encounters the green block, she asks the parent “What is that?”,

54

(a) (b)

(c) (d)

Figure 8.1: Demonstration for educating one robotic baby with distributed embodiment
with the Robotarium integration.

boxed in red, as seen in Figure 8.1a and so does Zebra when he sees yellow. Then, the

parent tells Emma on the left that the color is green, shown in the green box in Figure 8.1b.

At this moment, even the parent only tells Emma about green, both Emma and Zebra know.

After that, when Zebra on the right encounters green, he correctly identifies the name with

“that is green”, boxed in green in Figure 8.1c and he gets 1 point. Finally, when Emma

encounters green, she correctly identifies it as well and gets 1 point as seen in Figure 8.1d.

This demonstration shows that the local education of one agent in the distributed system

with the robotic baby can result in global behavioral changes among all agents.

55

8.2 Natural Language Interaction Between Two Robotic Babies

The robotic baby can also be integrated to a system of multiple robots, with each robot

having their own “brain” containing different sets of knowledge in the Graph. With this

setup, the robots can communicate in natural languages not only with their parents but also

between each other to acquire new knowledge about languages and the world represented

in the Graph for the purpose of education.

To demonstrate the education of multiple robotic babies, the robotic baby is integrated

to the Robotarium with 2 robotic carts, Emma and Zebra, with each having his or her own

Graph. Emma is on the left and Zebra is on the right, both circling clockwise in their

grid world as seen in Figure 8.2, similar to the previous setup. On their path, there would

be color blocks popping up. There were in total 4 colors: red, yellow, green and blue.

The setup was that if they saw a new color block in front of them, they would ask the

parent “What is that?” and if they saw a known color, they would say the obtained name

of the color. If one correctly identified the color, that robot cart would get 1 point. In

this demonstration, the parent can only talk to Emma on the left. Additionally, if Zebra

encounters a new color, he will also ask Emma “What is that?” and if Emma knows the

color, she will tell Zebra what the color is.

At the beginning of the demonstration, both Emma and Zebra know nothing about the

colors. When Emma encounters the green block, she asks the parent “What is that?”, boxed

in red, as seen in Figure 8.2a and so does Zebra when he sees yellow. Additionally, Zebra

asks Emma about yellow as well, boxed in red near the top of Figure 8.2a, and does not get

a response since Emma knows nothing at this point. Then, the parent tells Emma on the

left that the color is green, shown in the green box in Figure 8.2b. At this moment, only

Emma knows about green. After that, when Zebra on the right encounters green, he has no

knowledge of green and asks both the parent and Emma about it, boxed in red in Figure

8.2c, and Emma responds with “That is green”, boxed in green in Figure 8.2c. At this

56

(a) (b)

(c) (d)

Figure 8.2: Demonstration for education with natural language interactions between two
robotic babies with the Robotarium integration.

point, with Emma passing the knowledge of green to Zebra, both Emma and Zebra know

about green. Finally, when Emma and Zebra encounter green, both correctly identify it and

get 1 point as seen in Figure 8.2d. This demonstration shows that for education, natural

language interactions among multiple robotic babies enable the knowledge transfer among

the robotic babies, which leads to knowledge acquisition and behavior improvement.

8.3 Brain Merge Between Two Robotic Babies

Beside the natural language interactions between robotic babies for knowledge transfer, the

robotic baby is designed to be capable of doing “brain” merge with each other. Specifically,

57

one robotic baby is capable of grabbing the Graph of another robotic baby and merging it

with his or her own Graph with all the nodes and edges. Note that there could potentially be

conflicting knowledge present in the merge process. The mechanism of the merge operation

does not analyze the correctness of the knowledge, rather it creates representations in the

Graph for the conflicting knowledge. In essence, it is the activation edge weight, tuned by

future reward signals, that indicates which piece of knowledge is the preferred one.

The merge mechanism is one of the direct benefits of having transparent and explicit

knowledge and rule representation in the Graph of the robotic baby. Different from the

natural language interactions between robotic babies for knowledge transfer, which are

slow due to the limited amount of information natural language sentences could carry per

utterance, the Graph merge process is much more efficient with direct node and edge ma-

nipulations in the Graph, which the natural sentences are essentially mapped to.

To demonstrate the “brain” merge of multiple robotic babies, the robotic baby is again

integrated to the Robotarium with 2 robotic carts, Emma and Zebra, with each having his

or her own Graph. Emma is on the left and Zebra is on the right, both circling clockwise

in their grid world as seen in Figure 8.3, similar to the previous setup. On their path, there

would be color blocks popping up. There were in total 4 colors: red, yellow, green and

blue. The setup was that if they saw a new color block in front of them, they would ask

the parent “What is that?” and if they saw a known color, they would say the obtained

name of the color. If one correctly identified the color, that robot cart would get 1 point.

In this demonstration, the parent can only talk to Emma on the left. Additionally, if Zebra

encounters a new color, he will also ask Emma “What is that?” and in this case, Emma will

not answer even if she knows the answer. After Zebra is ignored for several times, he will

say to Emma “Enlighten me”, during which he grabs Emma’s Graph and merges it with his

own Graph.

At the beginning of the demonstration, both Emma and Zebra know nothing about

the colors. Additionally, Emma knows both English and Chinese in the beginning, while

58

(a) (b)

(c) (d)

(e) (f)

Figure 8.3: Demonstration for the Graph merge operation between two robotic babies with
the Robotarium integration.

Zebra only knows English. When Emma encounters the yellow block, she asks the parent

“What is that?”, boxed in red, as seen in Figure 8.3a and so does Zebra when he sees red.

Additionally, Zebra asks Emma about red as well, boxed in red near the top of Figure 8.3a,

which is ignored by Emma. Then, the parent tells Emma on the left that the color is yellow,

shown in the green box in Figure 8.3b, and all other colors as Emma encounters them later.

In Figure 8.3c, to verify that Zebra indeed has no knowledge of Chinese, he is asked by the

59

Figure 8.4: Knowledge of Emma and Zebra about colors and languages before and after
Zebra merges with Emma’s Graph.

parent to say ‘hello’ (说‘你好’) in Chinese, boxed in orange, to which he responds with the

default new word alerting with ‘说’, ‘你’ and ‘好’ all being new words not defined, boxed

in brown. In Figure 8.3d, after Zebra is ignored four times, he says to Emma “Enlighten

me”, boxed in brown, and merges Emma’s Graph into his Graph. At this moment, due to

the Graph merge operation, Zebra obtains Emma’s knowledge about all the colors she has

obtained from the parent and all the languages including Chinese, as shown in Figure 8.4.

In Figure 8.3e, when Emma and Zebra encounter colors, they can both identify the colors

and get points, as seen boxed in green. Finally in Figure 8.3f, to verify that Zebra has indeed

acquired Chinese after the Graph merge with Emma, he is asked again to say ‘hello’ (说‘你

好’) in Chinese, boxed in orange, to which he responds with ‘你好’ (hello) in Chinese,

boxed in brown, which verifies that Zebra is able to recognize and parse Chinese and to

further map the instruction in Chinese to an action. This demonstration showcases that it is

possible to merge the Graph between two robotic babies, and the knowledge transfer, as a

result of the merge operation, is able to improve the behaviors of the robotic baby.

8.4 Robotic Baby Evolution with Knowledge Inheritance

With the various modes of education, either with 1 robotic baby with distributed embodi-

ment or with 2 robotic babies passing knowledge through natural language interactions or

direct Graph merge operations, it is in essence that both the knowledge inference structure

and the knowledge representation are needed for better performance in the context of edu-

cation. With the Baby architecture design, the acquisition of knowledge for a robotic baby,

60

in terms of both the inference structure and the knowledge content, can be accomplished

with a large amount of knowledge in a short period of time, due to the distributed parallel

education and the knowledge aggregation mechanism with the Graph.

Regarding evolution on a species level, inspired by the inheritance of the genetic in-

formation in the human species, the robotic baby is designed to be capable of inheriting

knowledge. Specifically, at birth, a robotic baby could inherit the merged Graph from the

robotic baby parents, which contains both the inference structure and the knowledge of

the parents. As a reference, for human beings, at birth, a human child inherits the genetic

information from the parents, which, in abstraction, could be seen as the seeds for future

growth in structure. A human child has not been found to be capable of inheriting a mature

brain, containing both the structure and the knowledge, from the parents. This mode of

inheritance in the robotic baby implies that among robotic babies, it is no longer the com-

petition for better genetic information but the competition for a better Graph that directly

contains efficient inference structures and useful knowledge, in natural selection.

On a species level, the evolution of the robotic baby species is, regarding the inheritance

of knowledge, more efficient than the evolution of the Homo sapiens species. For the

robotic baby species, at birth, a child could inherit the merged Graph from the parents,

which contains both the inference structure and the knowledge of the parents. On the other

hand, for human beings, at birth, a human child inherits the genetic information from the

parents, which, in abstraction, could be seen as the seeds for future growth in structure. A

human child has not been found to be capable of inheriting a mature brain, containing both

the structure and the knowledge, from the parents. This mode of inheritance in the robotic

baby implies that among robotic babies, it is no longer the competition for better genetic

information but the competition for a better Graph that directly contains efficient inference

structures and useful knowledge.

For illustration, the comparison of the inheritance mechanism between the robotic baby

species and the human species is presented in Figure 8.5. On the left, robotic baby Emma

61

Figure 8.5: The evolution comparison between robotic babies, with direct knowledge
Graph inheritance at birth, and human beings, with genetic inheritance at birth and knowl-
edge acquired in the future.

knows red, yellow and English, while robotic baby Zebra knows green, blue, English and

Chinese. Their robotic baby child, William, at birth inherits the merged Graph from Emma

and Zebra, which contains all 4 colors and both English and Chinese. In other words, at

birth, robotic baby William has knowledge of and is capable of utilizing 4 colors and 2

languages which his parents have accumulated throughout their life. On the other hand,

on the right in Figure 8.5 for the human case, the human child Whiskey, at birth, has the

genetic information inherited from the parents and barely anything else. Even his human

parents, Echo and Zulu, combined, know about all the colors and the languages, Whiskey is

not capable of obtaining parent’s knowledge at birth. In order to be on the same level of the

robotic baby William, the human child Whiskey has to acquire the knowledge step by step

in a tedious process. With the design of knowledge inheritance in both the representation

and the inference structure in robotic babies, knowledge explosion can happen in robotic

babies, where too much knowledge is obtained in too little time.

62

CHAPTER 9

DISCUSSION

9.1 Scalability

As a knowledge-based system, the robotic baby accumulates knowledge and rules through

time. As knowledge and rules are stored in the hypergraphs in the Graph, the number of

hypergraphs scales linearly with the number of pieces of knowledge and rules accumulated.

If two hypergraphs share the same nodes and edges as part of the hypergraph, there will not

be duplicates of the same nodes created in the Graph. As an example illustrated in Figure

7.7, the same node ‘go sem 01’ is shared by 3 hypergraphs: “go home”, “go shopping”

and singleton “go”. This design is to ensure the proper scalability of the system in terms of

the representation of the knowledge accumulated. From the perspective of processing and

activation time, the scalability of the system, relying on heuristic search, depends on the

quality of the heuristics obtained through education and the search mechanism. The pre-

sented Activate process in this work is an input-driven search, which only explores nodes

that can be activated by the input as a stimulus, regardless of how irrelevant knowledge to

the input grows. A more detailed processing time performance profiling can be found in

Appendix E, demonstrating the scalability of the presented system design with a growing

Graph. For future works with a more sophisticated design, it has to be emphasized that the

scalability of the evolving system relies on the co-design of both the processing algorithms

and the underlying structures.

Regarding the forgetting and pruning of the graph structure, it is possible that a prun-

ing mechanism is needed based on some measures in reality due to memory constraints.

It is more of an engineering consideration, which is specific to the task, knowledge and

hardware. Note that activations that are incorrect or not preferred indicated by the edge

63

weights might still hold value as representations of preference for future episodic learning.

Therefore, for future development, measures of pruning and forgetting, regarding what to

prune and how often to prune, should be considered specifically to the task and hardware

with memory constraints.

9.2 Adoption and Application

According to the high-level design requirements, the robotic baby is not designed to be

domain or task-specific. The adoption of the robotic baby to different tasks and domains

follows the same procedure as described in Sec. 6.2 regarding the initialization of the

external action space, consisting of external APIs, and corresponding default activations,

along with necessary linguistic knowledge. The robotic baby is not just an interface, but a

creature with an identity that can be actively shaped by the parents on the fly. The language

acquisition and mapping capabilities offer the parents of a robotic baby the flexibility in

the language used for commands and instructions, which is key to customization on the

fly. The natural language programming capabilities offers the users the power to construct

customized programs, such as a “pick up a box” motor procedure for a robotic arm, or a “go

shopping” navigation procedure for a smart car or a “get the house ready after work” control

procedure for a smart home hub. As an example, the “get the house ready after work”

procedure could be “turn the AC on”, “turn the light on” and “play jazz as background

music”, which altogether could be programmed into the procedure using natural language

on the fly by the users. The marriage of robots with the Baby architecture in different

domains could potentially result in some aggregated behaviors, such as the joint capabilities

between a chef robotic baby, with recipe procedures, and a pilot robotic baby with flight

procedures.

Another potential aspect of future applications is related to the safety-critical machines

with evolving and learning capabilities. Martial Hebert, Dean of the Robotics Institute at

Carnegie Mellon University, once stated in an NPR show in 2018 that,

64

The reason why you feel safe is because you know that behind this plane, there

is 200 years of engineering science, best practices in testing, in validation, in

characterizing performance. We don’t have that yet in AI and robotics, not at

the level that we need to have it compared to classical engineering. How do

you do those things for systems that learn over time? How do you do those

things with systems that make complex decisions autonomously? So, we need

to work on this as a major challenge in robotics....[92]

The robotic baby, as an integrated system that learns over time with system explainability

as one of the system-level requirements, designed with systems engineering principles, is

a more desirable candidate for further development for autonomous safety-critical applica-

tions, compared to systems with black-box models that are extremely difficult to understand

and nearly impossible to be verified and validated based on some safety standard.

9.3 Limitations and Fundamental Research Questions

The Baby architecture, derived from the high-level requirements in the systems engineering

framework, is a first attempt to address the requirements of the robotic baby presented in

this work. To my best knowledge, there has not been another framework or architecture

that is capable of satisfying all the requirements while demonstrating similar capabilities.

Compared to other cognitive architectures, such as Soar, with specific rigid high-level ca-

pabilities built in at birth, the Baby architecture presents the very primitive and fundamental

capabilities which demonstrate a working and evolving system for general purposes. What

is lacking in the Baby architecture are the high-level capabilities, which could potentially

be built upon the fundamental capabilities and structures, such as utilizing logic, creating

complex representations, learning commonsense knowledge [93] and testing hypotheses

with trial and error behaviors for autonomy. Furthermore, beside the high-level technical

capabilities, the acquisition of soft skills, such as social skills, should also be considered in

future designs for long-term human robot interactions [94].

65

As a close neighbor to the field of cognitive architecture, the robotic baby architecture

might present similar architecture structures. Yet, the fundamental research question of the

two fields is different. As Alan Turing stated in his 1950 paper,

Opinions may vary as to the complexity which is suitable in the child machine.

One might try to make it as simple as possible consistently with the general

principles. Alternatively one might have a complete system of logical inference

‘built in’. [1]

If the research question for cognitive architectures is “What is the architecture, as an inte-

gration of components such as knowledge bases and inference algorithms, that could en-

able capability X right at birth?”, the research question for robotic baby architectures will

be “What are the minimally necessary components and functionalities of an architecture at

birth, such that capability X can be gradually and procedurally acquired and learned? And

how?”, which might be a harder question to address, as it involves an evolving architecture

with demanding system requirements.

9.4 Lifelong Learning

The robotic baby, as presented in this thesis, is designed to adopt the paradigm of life-

long learning [56, 95]. As an integrated system, the robotic baby presents some unique

characteristics well aligned with the desired properties for lifelong learning. Compared to

gradient-based neural networks suffering from catastrophic forgetting [96, 97], the robotic

baby provides a better system design framework with transparency and control in terms of

the explicit memory representation and control mechanisms for storing accumulated knowl-

edge and representations. Moreover, compared to data-driven lifelong learning approaches,

the robotic baby, with the accumulation of explicit rules and knowledge in general domains,

provides a more expressive playground for better scalability in the education process. Yet,

the downside of the knowledge accumulation process is that it is expensive in terms of

66

the time and effort needed for providing the necessary knowledge to the robotic baby to

jump-start the system till the state of the robotic baby with automated knowledge discovery

and accumulation. It has to be emphasized that the accumulation of knowledge in lifelong

learning does not refer to only the content of the knowledge rather the combination of the

knowledge and the activation of the knowledge as well. In plain words, knowing a lot while

not knowing when to apply what knowledge is not sufficient. With the existence of large

knowledge bases, it is rather the part of accumulating the mapping of when to apply what

knowledge in a contextualized environment that is expensive and there does not seem to be

a shortcut to it.

Alan Turing in his 1950 work estimated, to his best knowledge during his time, that it

would take 60 workers to accomplish the job for playing his imitation game by working

steadily for 50 years [1]. For a robotic baby whose purpose is not to play Turing’s imitation

game but to achieve something with a similar difficulty and complexity, it must take a long

time to get there.

9.5 The Zone of No Return

The robotic baby, presented in this thesis with minimal and necessary functionalities, serves

as a starting point for further research and development, and many more iterations to come.

It has to be stated that the characteristics and functionalities of the robotic baby as a system,

such as the parallel education and knowledge inheritance capabilities, make the robotic

baby a very good candidate for entering the “zone of no return”, a state where human beings

lose total control of the behaviors of the robotic baby. It is inevitable, from my perspective

as the designer of the robotic baby, for the robotic baby to enter such a state, as illustrated

in Figure 9.1, with more advances in the co-design of system software functionalities and

hardware components, where the robotic baby becomes more intelligent, such as with the

acquisition of logic and mathematics, and more emerged within the real world, such as

with multi-modality sensors and actuators, which altogether require a mindset with systems

67

Figure 9.1: The projected advancement in the research and development of the robotic
baby.

engineering design principles and planning from future researchers.

68

CHAPTER 10

CONCLUSION AND FUTURE WORK

In this thesis, I have introduced a formal definition of a robotic baby, an integrated system

with minimal world knowledge at birth, capable of learning incrementally and interactively,

and adapting to the world. The formal definition contains system-level requirements of

the robotic baby, within which fundamental capabilities and system characteristics of the

robotic baby are identified.

Within the scope of the thesis, I have presented the design of the Baby architecture with

a systems engineering design approach. I have verified and validated that the design of the

Baby architecture meets the system-level requirements with simulations and experiments in

the real world with robots, which demonstrate the capabilities of the robotic baby in natural

language acquisition and semantic parsing in English and Chinese, as well as in natural lan-

guage grounding, natural language reinforcement learning, natural language programming

and system introspection for explainability. I have further showcased the education of the

robotic baby with demonstrations in both a distributed embodiment robotic setting and a

multi-agent robotic setting, in which knowledge transfer, between a human and a robotic

baby and among robotic babies themselves, is feasible through natural language interac-

tions. Finally, I have presented the mechanism of direct knowledge inheritance between

robotic babies and its benefits in the evolution of the robotic baby.

To further educate the robotic baby, the robotic baby is built with building-block actions

that, when coupled with natural language programming, allow it to incrementally learn

high-level complex actions or skills. If a complex action is outside of the action space of a

robotic baby due to some missing primitive action, a “brain surgery” is then needed, which

includes the addition of the primitive action and the associated structure and activation. For

any grammatical natural language commands within the scope of this thesis, if the robotic

69

baby has trouble in parsing or association, the parent could utilize the natural language

acquisition and grounding capabilities to teach the robotic baby the missing knowledge.

In conclusion, the robotic baby as an integrated system presented in this thesis is simply

a starting point, moving Alan Turing’s dream of a child machine toward an engineered

reality.

Hey! Nobody can see this text. I am a genius haha! If someone ever discovers this text,

contact me with the message “Hanqing thesis hack” for a reward and do not tell anyone

else!

70

Appendices

APPENDIX A

SAMPLE KNOWLEDGE BASE OF VOCABULARY AND PART-OF-SPEECH

72

73

APPENDIX B

SAMPLE KNOWLEDGE BASE OF GRAMMAR PRODUCTION RULE

74

APPENDIX C

EXAMPLE EXECUTION OF BABYPARSE

See figures on the following pages.

75

76

77

78

APPENDIX D

EXAMPLE EXECUTION OF BABYACTIVATE

79

80

APPENDIX E

SCALABILITY PERFORMANCE PROFILING

Experiment setup:

Processor: 2.2 GHz Intel Core i7

Input: “go forward”

Number of Repeating Runs: 100

The NLP and Activate processes have been profiled with the same input “go forward”,

to demonstrate how the processing time behaves with respect to the size of the Graph. For

each data point, 100 runs were executed, with the max, min and average processing time

marked in the figure.

Figure E.1: Processing time performance profiling for the NLP and Activate processes
with 100 repeating runs.

The Graph was populated with nodes and activation edges of knowledge in English,

Chinese and primitive actions at first, where slight increase in processing time for “go

forward” could be seen as new activation edges related to “go” and “forward” were added,

such as “go shopping” and “move forward”. Later, to simulate the growth of knowledge

81

with most irrelevant to “go forward”, the Graph was populated with nodes and edges not

connected to “go forward”, where the processing time of the same input remained relatively

flat. This experiment demonstrates that the design of the system scales with respect to the

size of the Graph, with a fair assumption that:

1. Most new knowledge is not related to a specific input represented by a subgraph (i.e.

knowledge representations in biology and math not related to “go forward”).

2. A piece of new knowledge is likely not related to most existing nodes and edges

in the Graph (i.e. “A banana is a fruit” not related to “go forward” or knowledge

representations in music or math).

82

REFERENCES

[1] A. M. Turing, “Computing machinery and intelligence,” Mind, vol. 59, no. October,
pp. 433–460, 1950.

[2] J. Piaget, The origins of intelligence in children. London: Routledge & Kegan Paul,
1936.

[3] J. Piaget, Play, dreams and imitation in childhood. London: Heinemann, 1945.

[4] J. Piaget, Introduction à l’epistémologie génétique. Paris: Presses Universitaires de
France, 1950, vol. 1.

[5] J. Piaget, The grasp of consciousness: Action and concept in the young child. (Trans
by S. Wedgwood). Harvard University Press, 1976.

[6] J. M. Mandler, “How to build a baby: On the development of an accessible represen-
tational system,” Cognitive Development, vol. 3, no. 2, pp. 113–136, 1988.

[7] J. M. Mandler, “The foundations of conceptual thought in infancy,” Cognitive De-
velopment, vol. 7, no. 3, pp. 273–285, 1992.

[8] J. M. Mandler and L. McDonough, “Concept formation in infancy,” Cognitive De-
velopment, vol. 8, no. 3, pp. 291–318, 1993.

[9] M. Minsky, “A framework for representing knowledge,” MIT-AI Laboratory Memo
306, 1974.

[10] T. Mikolov, A. Joulin, and M. Baroni, “A roadmap towards machine intelligence,”
in International Conference on Intelligent Text Processing and Computational Lin-
guistics, Springer, 2016, pp. 29–61.

[11] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, “Building machines
that learn and think like people,” Behavioral and Brain Sciences, vol. 40, 2017.

[12] G. Lupyan and B. Bergen, “How language programs the mind,” Topics in cognitive
science, vol. 8, no. 2, pp. 408–424, 2016.

[13] J. S. Bruner, “The growth and structure of skill,” Mechanisms of Motor Skill Devel-
opment, pp. 63–93, 1970.

[14] K. W. Fischer, “A theory of cognitive development: The control and construction of
hierarchies of skills.,” Psychological Review, vol. 87, no. 6, p. 477, 1980.

83

[15] K. J. Connolly, “Skill development: Problems and plans,” Mechanisms of Motor Skill
Development, pp. 3–21, 1970.

[16] A. Newell, “You can’t play 20 questions with nature and win: Projective comments
on the papers of this symposium,” Visual Information Processing, pp. 283–310,
1973.

[17] J. R. Anderson, How can the human mind occur in the physical universe? Oxford
University Press, 2007.

[18] A. Newell, Unified Theories of Cognition. USA: Harvard University Press, 1990,
ISBN: 0674920996.

[19] J. E. Laird, The Soar Cognitive Architecture. USA: The MIT Press, 2012, ISBN:
0262122960.

[20] P. S. Rosenbloom, A. Demski, and V. Ustun, “The Sigma Cognitive Architecture
and System: Towards Functionally Elegant Grand Unification,” Journal of Artificial
General Intelligence, Jul. 2016.

[21] J. E. Laird, C. Lebiere, and P. S. Rosenbloom, “A standard model of the mind: To-
ward a common computational framework across artificial intelligence, cognitive
science, neuroscience, and robotics,” AI Magazine, vol. 38, no. 4, pp. 13–26, Dec.
2017.

[22] P. Langley, J. E. Laird, and S. Rogers, “Cognitive architectures: Research issues and
challenges,” Cognitive Systems Research, vol. 10, no. 2, pp. 141–160, 2009.

[23] G. A. Miller, “Wordnet: A lexical database for english,” Commun. ACM, vol. 38,
no. 11, pp. 39–41, 1995.

[24] R. Mihalcea, T. Chklovski, and A. Kilgarriff, “The SENSEVAL-3 english lexical
sample task,” in Proceedings of SENSEVAL-3, the third international workshop on
the evaluation of systems for the semantic analysis of text, 2004, pp. 25–28.

[25] K. K. Schuler, VerbNet: A broad-coverage, comprehensive verb lexicon. University
of Pennsylvania, 2005.

[26] M. Palmer, D. Gildea, and P. Kingsbury, “The proposition bank: An annotated cor-
pus of semantic roles,” Comput. Linguist., vol. 31, no. 1, pp. 71–106, Mar. 2005.

[27] C. J. Fillmore and C. Baker, “A frames approach to semantic analysis,” The Oxford
Handbook of Linguistic Analysis, 2009.

84

[28] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word rep-
resentations in vector space,” Proceedings of International Conference on Learning
Representations, 2013.

[29] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word rep-
resentation.,” in EMNLP, vol. 14, 2014, pp. 1532–1543.

[30] M. E. Peters et al., “Deep contextualized word representations,” in Proceedings of
NAACL-HLT, 2018, pp. 2227–2237.

[31] J. Camacho-Collados and M. T. Pilehvar, “From word to sense embeddings: A sur-
vey on vector representations of meaning,” Journal of Artificial Intelligence Re-
search, vol. 63, pp. 743–788, 2018.

[32] O. Levy and Y. Goldberg, “Dependency-based word embeddings,” in Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), Baltimore, Maryland: Association for Computational Linguistics,
Jun. 2014, pp. 302–308.

[33] J. E. Sammet, “The use of english as a programming language,” Communications of
the ACM, vol. 9, no. 3, pp. 228–230, 1966.

[34] E. W. Dijkstra, “On the foolishness of ”natural language programming”,” in Program
construction, Springer, 1979, pp. 51–53.

[35] B. W. Ballard and A. W. Biermann, “Programming in natural language: “NLC” as a
prototype,” in Proceedings of the 1979 annual conference, 1979, pp. 228–237.

[36] R. E. Maas and P. Suppes, “Natural-language interface for an instructable robot,”
International Journal of Man-Machine Studies, vol. 22, no. 2, pp. 215–240, 1985.

[37] S. Lauria, G. Bugmann, T. Kyriacou, and E. Klein, “Mobile robot programming us-
ing natural language,” Robotics and Autonomous Systems, vol. 38, no. 3-4, pp. 171–
181, 2002.

[38] T. Schouwenaars, M. Valenti, E. Feron, J. How, and E. Roche, “Linear program-
ming and language processing for human-unmanned aerial-vehicle team missions,”
Journal of guidance, control, and dynamics, vol. 29, no. 2, pp. 303–313, 2006.

[39] M. Ralph and M. A. Moussa, “Toward a natural language interface for transferring
grasping skills to robots,” IEEE Transactions on Robotics, vol. 24, no. 2, pp. 468–
475, 2008.

85

[40] C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox, “Learning to parse natural
language commands to a robot control system,” in Experimental robotics, Springer,
2013, pp. 403–415.

[41] T. Kollar et al., “The Alexa Meaning Representation language.,” in NAACL-HLT (3),
2018, pp. 177–184.

[42] S. Gulwani and M. Marron, “Nlyze: Interactive programming by natural language
for spreadsheet data analysis and manipulation,” in Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, 2014, pp. 803–814.

[43] C. Quirk, R. Mooney, and M. Galley, “Language to code: Learning semantic parsers
for if-this-then-that recipes,” in Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), 2015, pp. 878–888.

[44] M. Rabinovich, M. Stern, and D. Klein, “Abstract syntax networks for code gener-
ation and semantic parsing,” in Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), 2017, pp. 1139–
1149.

[45] J. Thomason, S. Zhang, R. J. Mooney, and P. Stone, “Learning to interpret natural
language commands through human-robot dialog,” in Twenty-Fourth International
Joint Conference on Artificial Intelligence, 2015.

[46] M. Eppe, S. Trott, and J. Feldman, “Exploiting deep semantics and compositionality
of natural language for human-robot-interaction,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), IEEE, 2016, pp. 731–738.

[47] L. She and J. Chai, “Interactive learning of grounded verb semantics towards human-
robot communication,” in Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), 2017, pp. 1634–1644.

[48] J. Y. Chai, Q. Gao, L. She, S. Yang, S. Saba-Sadiya, and G. Xu, “Language to action:
Towards interactive task learning with physical agents.,” in IJCAI, 2018, pp. 2–9.

[49] R. L. Campbell and M. H. Bickhard, “Knowing levels and developmental stages.,”
Contributions to Human Development, 1986.

[50] R. Descartes, Discourse on the method of rightly conducting the reason, and seeking
truth in the sciences. Sutherland and Knox, 1850.

[51] B. de Spinoza, The Collected Works of Spinoza, Volume 1. Princeton University
Press, 1985, vol. 1.

86

[52] M. Cook, “Universality in elementary cellular automata,” Complex Systems, vol. 15,
no. 1, pp. 1–40, 2004.

[53] J. Von Neumann and A. W. Burks, “Theory of self-reproducing automata,” IEEE
Transactions on Neural Networks, vol. 5, no. 1, pp. 3–14, 1966.

[54] P. S. Laplace, Essai philosophique sur les probabilités. Paris: Bachelier, 1840.

[55] L. Brillouin, “Inevitable experimental errors, determinism, and information theory,”
Information and Control, vol. 2, no. 1, pp. 45–63, 1959.

[56] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong
learning with neural networks: A review,” Neural Networks, vol. 113, pp. 54–71,
2019.

[57] N. Chomsky and M. P. Schützenberger, “The algebraic theory of context-free lan-
guages,” in Studies in Logic and the Foundations of Mathematics, vol. 26, Elsevier,
1959, pp. 118–161.

[58] J. Nivre, “An efficient algorithm for projective dependency parsing,” in Proceedings
of the eighth international conference on parsing technologies, 2003, pp. 149–160.

[59] C. Haskins, K. Forsberg, M. Krueger, D. Walden, and D. Hamelin, “Systems engi-
neering handbook,” in INCOSE, vol. 9, 2006, pp. 13–16.

[60] K. Forsberg and H. Mooz, “The relationship of system engineering to the project
cycle,” in INCOSE international symposium, Wiley Online Library, vol. 1, 1991,
pp. 57–65.

[61] B. Cameron, E. Crawley, and D. Selva, Systems Architecture. Strategy and product
development for complex systems. Pearson Education, 2016.

[62] J. S. Dahmann and K. J. Baldwin, “Understanding the current state of US defense
systems of systems and the implications for systems engineering,” in 2008 2nd An-
nual IEEE Systems Conference, IEEE, 2008, pp. 1–7.

[63] R. Shishko and R. Aster, “NASA systems engineering handbook,” NASA Special
Publication, vol. 6105, 1995.

[64] W. Elm et al., “Integrating cognitive systems engineering throughout the systems en-
gineering process,” Journal of Cognitive Engineering and Decision Making, vol. 2,
pp. 249–273, Dec. 2008.

87

[65] H. Zhu and E. Feron, “A systems engineering approach to the design and educa-
tion of a robotic baby,” in INCOSE International Symposium, Wiley Online Library,
vol. 31, 2021, pp. 327–342.

[66] C. Anderson et al., Lewis spacecraft mission failure investigation board final report,
1998.

[67] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in Neural Information Processing Sys-
tems, vol. 25, pp. 1097–1105, 2012.

[68] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional networks: A
comprehensive review,” Computational Social Networks, vol. 6, no. 1, pp. 1–23,
2019.

[69] A. B. Arrieta et al., “Explainable artificial intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible ai,” Information Fusion, vol. 58,
pp. 82–115, 2020.

[70] J. Earley, “An efficient context-free parsing algorithm,” Commun. ACM, vol. 13,
no. 2, pp. 94–102, 1970.

[71] P. Norvig, “Techniques for automatic memorization with applications to context-free
parsing,” Computational Linguistics, vol. 17, no. 1, pp. 91–98, 1991.

[72] J. L. Lanciego, N. Luquin, and J. A. Obeso, “Functional neuroanatomy of the basal
ganglia,” Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 12, 2012.

[73] A. Gopnik and A. N. Meltzoff, Words, thoughts, and theories. Mit Press, 1997.

[74] D. K. Oller, L. A. Wieman, W. J. Doyle, and C. Ross, “Infant babbling and speech,”
Journal of Child Language, vol. 3, no. 1, pp. 1–11, 1976.

[75] A. N. Meltzoff, “Infant imitation and memory: Nine-month-olds in immediate and
deferred tests,” Child development, vol. 59, no. 1, p. 217, 1988.

[76] J. A. Fodor, The language of thought. Harvard university press, 1975, vol. 5.

[77] L. Bloom, The transition from infancy to language: Acquiring the power of expres-
sion. Cambridge University Press, 1993.

[78] J. Algeo, “Where do all the new words come from?” American Speech, vol. 55, no. 4,
pp. 264–277, 1980.

88

[79] E. Sagi, S. Kaufmann, and B. Clark, “Semantic density analysis: Comparing word
meaning across time and phonetic space,” in Proceedings of the Workshop on Geo-
metrical Models of Natural Language Semantics, 2009, pp. 104–111.

[80] B. Santorini, “Part-of-speech tagging guidelines for the Penn Treebank project (3rd
revision),” Technical Reports (CIS), p. 570, 1990.

[81] J. Nivre et al., “Universal dependencies V1: A multilingual treebank collection,”
in Proceedings of the Tenth International Conference on Language Resources and
Evaluation (LREC’16), 2016, pp. 1659–1666.

[82] M. H. Christiansen and N. Chater, “Toward a connectionist model of recursion in
human linguistic performance,” Cognitive Science, vol. 23, no. 2, pp. 157–205, 1999.

[83] D. A. Borgmann, Beyond Language: Adventures in Word and Thought. New York:
Charles Scribner’s Sons, 1967, ISBN: 0674920996.

[84] F. Ferreira and J. M. Henderson, “Recovery from misanalyses of garden-path sen-
tences,” Journal of Memory and Language, vol. 30, no. 6, pp. 725–745, 1991.

[85] C. T. Schütze, “PP attachment and argumenthood,” MIT Working Papers in Linguis-
tics, vol. 26, no. 95, p. 151, 1995.

[86] P. Gardner-Chloros, Code-switching. Cambridge: Cambridge university press, 2009.

[87] D. Sankoff and S. Poplack, “A formal grammar for code-switching,” Research on
Language & Social Interaction, vol. 14, no. 1, pp. 3–45, 1981.

[88] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais, “The vocabulary
problem in human-system communication,” Communications of the ACM, vol. 30,
no. 11, pp. 964–971, 1987.

[89] P. Goyal, S. Niekum, and R. J. Mooney, “Using natural language for reward shaping
in reinforcement learning,” in Proceedings of the 28th International Joint Confer-
ence on Artificial Intelligence, 2019, pp. 2385–2391.

[90] S. Wilson et al., “The robotarium: Globally impactful opportunities, challenges, and
lessons learned in remote-access, distributed control of multirobot systems,” IEEE
Control Systems Magazine, vol. 40, no. 1, pp. 26–44, 2020.

[91] J. M. Mandler and L. McDonough, “Long-term recall of event sequences in infancy,”
Journal of Experimental Child Psychology, vol. 59, no. 3, pp. 457–474, 1995.

[92] A. Kleinman and K. Fink. “Artificial intelligence at home in pittsburgh,” NPR. (Sep.
2018). https://www.npr.org/programs/1a2018/09/20/649967527.

89

[93] E. Davis, Representations of commonsense knowledge. San Mateo, California: Mor-
gan Kaufmann, 1990.

[94] I. Leite, C. Martinho, and A. Paiva, “Social robots for long-term interaction: A sur-
vey,” International Journal of Social Robotics, vol. 5, no. 2, pp. 291–308, 2013.

[95] S. Thrun and T. M. Mitchell, “Lifelong robot learning,” Robotics and Autonomous
Systems, vol. 15, no. 1-2, pp. 25–46, 1995.

[96] R. M. French, “Catastrophic forgetting in connectionist networks,” Trends in Cogni-
tive Sciences, vol. 3, no. 4, pp. 128–135, 1999.

[97] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, “An empirical
investigation of catastrophic forgetting in gradient-based neural networks,” arXiv
preprint arXiv:1312.6211, 2013.

90

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Contributions
	Thesis Outline

	2 | Literature Review
	Cognitive Architecture
	Knowledge Representation
	Natural Language Programming and Semantic Parsing

	3 | A Robotic Baby
	Inspiration from Nature
	Concept of Operation
	Formal Definition of a Robotic Baby
	Philosophical Inspirations and Considerations
	Scope and Limitation
	Systems Engineering Design Approach

	4 | System Requirements Flowdown
	The Necessity of Requirements Flowdown
	The Requirements Flowdown for the Robotic Baby Design

	5 | System Architecture
	Language Input and Output
	Natural Language Processing
	System Management
	Long-term Memory
	Short-term Memory and Activation
	System States
	Physical Input and Output

	6 | Sub-System Implementation and Initialization
	Linguistic Knowledge Initialization
	Action Space and Activation Initialization

	7 | System Verification and Validation
	Acquisition and Semantic Parsing of English and Chinese
	Bilingualism, Multilingualism and Code-Switching
	Natural Language Grounding to Semantics and Actions
	Natural Language Reinforcement Learning
	Natural Language Programming
	Introspection and Explainability

	8 | Robotic Baby Education and Evolution
	One Robotic Baby with Distributed Embodiment
	Natural Language Interaction Between Two Robotic Babies
	Brain Merge Between Two Robotic Babies
	Robotic Baby Evolution with Knowledge Inheritance

	9 | Discussion
	Scalability
	Adoption and Application
	Limitations and Fundamental Research Questions
	Lifelong Learning
	The Zone of No Return

	10 | Conclusion and Future Work
	Appendices
	A | Sample Knowledge Base of Vocabulary and Part-of-Speech
	B | Sample Knowledge Base of Grammar Production Rule
	C | Example Execution of BabyParse
	D | Example Execution of BabyActivate
	E | Scalability Performance Profiling

	References

