
Copyright © 2022 by Zachary T. Roberts

 Real-Time Network Assessment and Updating Using Vehicle-Locating Data

A Thesis

Presented to

The Academic Faculty

by

Zachary T. Roberts

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in the

School of Civil and Environmental Engineering

Georgia Institute of Technology

December 2022

Real-Time Network Assessment and Updating Using Vehicle-Locating Data

Approved by:

Dr. Iris Tien, Advisor

School of Civil & Environmental

Engineering

Georgia Institute of Technology

Dr. John Taylor, Committee Member

School of Civil & Environmental

Engineering

Georgia Institute of Technology

Dr. Michael Hunter, Committee

Member

School of Civil & Environmental

Engineering

Georgia Institute of Technology

Date Approved: December 11, 2022

iii

ACKNOWLEDGMENTS

Support for this project from the Georgia Department of Transportation (GDOT) through Award

No. RP 20-01 is acknowledged.

Discussions with GDOT staff, including John Hibbard, Larry Barnes, and Emily Fish, regarding

project scope is acknowledged.

Data provided by GDOT staff, including Teague Buchanan, Hong Liang, and their respective

team members, is also acknowledged.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS…………………………………………...…………..iii

LIST OF FIGURES………………………………………………………….….….v

SUMMARY…………………………………………………………………...…..vi

CHAPTER 1: INTRODUCTION…………………………………………………..1

CHAPTER 2: LITERATURE REVIEW………………………………………..….5

CHAPTER 3: METHODOLOGY……………………………………………..…...7
3.1. Data Input Sources…………………………………………………………………....7

3.2. Data Pre-Processing…………………………………………………………………11

3.3. Data Processing………………………………………………………………….......13

CHAPTER 4: RESULTS………………………………………………………….16
4.1. Model Variables……………………………………………………………………..16

4.2. Classification Model Evaluation…………………………………………………….22

CHAPTER 5: CONCLUSIONS…………………………………………………..30

CHAPTER 6: FUTURE WORK………………………………………………….33

APPENDIX A: ARCPY GLOSSARY……………………………………………35

APPENDIX B: USER CODES………………………………………………...…38

REFERENCES……………………………………………………………………54

v

LIST OF FIGURES

Figure 1 Georgia Road Network Shapefile, ArcGIS………………………………......7

Figure 2 WebEOC Spreadsheet Data, Historical Incidents…………………………....8

Figure 3 Verizon Network Fleet Data, Geospatial Vehicle Locating Points…………10

Figure 4 ArcGIS Buffer Trimming……………………………………………..…….12

Figure 5 GetSegments.py Output, Transformation of Vehicle Locating Points to Usable

Vehicle Route Polylines…………………………………………………….13

Figure 6 GDOT Road & Traffic Data, Source of Average Annual Daily Traffic……17

Figure 7 GDOT Road & Traffic Data, Visualized…………………………………....18

Figure 8 Optimal Vehicle Routing, Using ArcGIS Solve. Optimal Routing to be Paired

with Vehicle Routing to Find Degree of Optimal Route Aversion…………19

Figure 9 Classification Decision Tree Visualization……………………………….....23

Figure 10 Classification Confusion Matrices. Used for Calculation of Precision and

Recall for Classification Model Interpretation……….……………….….…24

Figure 11 Classification Precision and Recall Values Over Time Buffers………….....25

Figure 12 Classification F1 Scores Over Time Buffers…………………………..……26

Figure 13 Upsampling Method for Higher Predictive Capability…………………...…27

vi

SUMMARY

This project explores the ability to use vehicle-locating data to assess the state of the road

network, including identifying road blockages along different segments of the transportation

system. Compared to prior work using stationary data sources, such as loop detectors, traffic

cameras, or traffic monitoring stations, or individual human-collected data collected either

directly or through third-party sources, this project utilizes the mobile sources of Georgia

Department of Transportation (GDOT) vehicles and their associated vehicle-tracking

information to infer the state of the road network and perform transportation network assessment.

These data are already currently being collected, demonstrating the utility of these data in

performing road network assessment without the need to invest in new technologies, dedicate

additional resources, or implement new instrumentation or infrastructure.

The raw dataset of vehicle-locating data is large and, in many cases, messy. In this project, we

develop and implement multiple data trimming and processing methods using ArcGIS-specific

Python algorithms to transform this initially large dataset into a usable format for network

assessment. To utilize the vehicle-locating data in particular, we create a workflow to enable

comparison of the vehicle routes with optimal routes to detect suboptimal routing decisions that

may be indicative of blockages in the road network. This workflow includes the creation of

vehicle route segments based on the individual vehicle-locating data points, the linking of

segments into routes, the identification of optimal routes between these points, and the

comparison of distances between the actual taken routes and the optimal routes to detect the

degree of suboptimal routing and its association with the likelihood of the presence of a road

blockage.

vii

We use the resulting datasets as inputs and create machine learning models with multiple

variables to detect the presence of a road blockage. We explore both regression-based and

classification-based models, and find that the classification model performs particularly well for

this task. In this project, through the use of multiple data processing and data analysis methods

combined with machine learning approaches, we show how the vehicle-locating data can be used

to perform network assessment and accurate detection of blockages in the road network.

1

CHAPTER 1

INTRODUCTION

Road infrastructure makes up a crucial component of Georgia’s asset network. Throughout the

state, connections link different areas to each other, providing access to employment, social, and

health services, thereby supporting state activities and stimulating economic development. These

services are interrupted, however, by the presence of road blockages, including those due to

vehicular accidents, debris, and flooding, among other factors, which limit and can prohibit

travel along certain routes. Providing real-time information on the state of the transportation

network is a way for state agencies to understand the state of the network at any point in time,

deploy resources as needed to resolve any road blockages, and prioritize specific areas of the

road network for recovery.

An increasing number of data sources are available to potentially provide such information on

the state of the road network. However, these often require significant resources to implement,

including to install certain infrastructure or hardware to collect data, or in changing specific

practices by the public or individual workers to ensure reliable data collection. These challenges

potentially limit the utility of these data sources for road network assessment, both by the amount

of data that can be collected, and in how accurate or reliable these data turn out to be.

In this project, rather than using these types of data sources (such as data collected from fixed

infrastructure installations, or individual human-collected data) with their accompanying

challenges and limitations, we (research team) use data that are already currently being collected

by the Georgia Department of Transportation (GDOT). Specifically, we use data that are already

implemented through hardware on GDOT vehicles that track GDOT vehicle locations as they

2

travel over the network to infer the state of the road network and perform continuous network

assessment and updating. The idea is that as GDOT vehicles travel over the network, they are

continuously collecting data on the state of the network in the road segments they are traveling

over. For example, if a GDOT vehicle travels over a certain route, it can be inferred from the

vehicle-locating information that the particular route that the vehicle traveled over is unblocked,

and open for passage. In contrast, if a vehicle makes an unexpected detour around a certain part

of the network, there is some likelihood that the vehicle was avoiding a blocked part of the

network, indicating a potential road blockage in the area avoided.

Thus, the GDOT vehicles provide valuable information on the real-time network state. The

benefit of using these vehicle-locating data for the network assessment is that these data are

already being collected by GDOT assets, so no additional investment in assets or infrastructure

needs to be implemented to perform the network assessment. In addition, the GDOT equipment

that collects the vehicle-locating data is implemented passively rather than actively, meaning that

it will collect these data without the need for operators to turn on certain instruments or

capabilities. The result is that there is less risk that something will occur to disrupt data

collection and that there is increased reliability that the data will be continuously collected. The

GDOT vehicle-locating data are also being collected continuously, enabling the network

assessments that are made based on the data to be continuously updated as new information is

recorded and received about the locations and routes of GDOT vehicles across the network.

Finally, because the data are being collected by GDOT rather than by a third party or by the

public, and they are being used for GDOT purposes, there are no issues regarding data security

or privacy in order to collect or use the data. Also, GDOT has control over how the data are

3

collected moving forward, rather than relying on potential changing data collection strategies,

rules, and regulations from third-party owners.

The objective of this project is to create a system and investigate the feasibility of such a system

that is able to utilize currently collected GDOT vehicle-locating data to provide real-time

assessment and updating of the state of the transportation network assessment. Doing so will

provide GDOT with important information to support increased situational awareness of the state

of the network, as well as support resource allocation, hazard mitigation, and network recovery

operations to resolve any road blockages across the transportation network.

To accomplish this, in this project, we utilize data sources provided by GDOT as inputs into the

system. The main data inputs are vehicle routing information and traffic incident data

representing road blockage information. Next, we perform a series of preprocessing, data-

modification, and data-processing operations in order to make the data usable and consistent for

the full data-processing system. It is noted that the datasets investigated are large, and require

several transformations to enable operational viability and provision of use as geographic

information system (GIS) intelligence. A workflow has been developed to efficiently create and

utilize the vehicle-locating points (VLPs). This includes the processing of the large vehicle-

locating datasets using data trimming and buffering methods, as well as the identification and

connection of specific vehicle-locating data points into individual vehicle route segments. These

operations refine and process the datasets.

Next, the goal is to create a model that is able to use the vehicle-locating data as inputs to detect

road blockages in the transportation network. We utilize machine learning methods, which

involve building of the models and both training and testing of the datasets with the models. The

4

training step—training a dataset using machine learning models—enables us to understand how

traffic conditions and vehicle-routing information interact with each other to be able to infer the

presence of a road blockage based on the vehicle-locating information. The goal is then to use

the trained dataset to apply to a real-time detection system with the presence of processing

capabilities. The specific machine learning methods investigated include ordinary least squares

(OLS) linear regression and decision tree classification, both of which are explored to learn the

trends of traffic across the network based on the vehicle-locating information to accurately

predict the likelihoods of road blockages. The resulting model provides intelligence and learning

about how two large datasets, containing VLPs and georeferenced traffic incident data, interact

with one another over the time scope of the study.

The results of this study demonstrate the novelty and utility of a mobile detection system across a

broad network utilizing currently collected GDOT vehicle-locating data to provide information

about the state of the transportation network as it changes over time.

5

CHAPTER 2

LITERATURE REVIEW

Previous research includes work in the area of using new technologies to facilitate evacuation

decisions after a disaster (Iliopoulou et al. 2020); however, this project focuses on transportation

network assessment rather than evacuation routing. While many previous studies focus on traffic

estimation and prediction (e.g., Mena-Yedra et al. 2018), this project focuses on real-time

network assessments with outcomes facilitating resource allocation and network recovery

through identification and detection of road blockages. In terms of specific technologies,

previous research often utilizes fixed data-collection sources, such as loop detectors and traffic

monitoring stations providing traffic count information (Singh et al. 2018). Compared to that

work on utilizing stationary data sources (i.e., loop detectors, traffic cameras, traffic monitoring

stations) for transportation network analysis, this study focuses on the mobile sources of GDOT

vehicles and their associated vehicle-tracking information, which is wider-reaching with lower

operational costs, and the other benefits previously described.

Recently, movement has been toward the use of increased mobile data sources (e.g., Meng et al.

2017). However, that work focuses on traffic flow modeling rather than actual network

assessment, which is the focus of this project. Finally, regarding the use of mobile data for post-

disaster network assessment, much of the recent work uses crowdsourced information for

infrastructure assessment (Basu et al. 2016, Astarita et al. 2020). Compared to crowdsourced

data, the mobile vehicle-locating data utilized in this project represents a more trustworthy,

detailed, and accurate geolocated data source for transportation network assessment.

6

This effort contributes to the previous studies that have explored utilizing vehicle-locating data

to perform real-time transportation network assessment. The anticipated benefit is that data that

are currently collected by agencies, such as GDOT, can be used and leveraged for use in

transportation network assessment and updating as vehicles, routes, and network conditions

change.

7

CHAPTER 3

METHODOLOGY

3.1. Data Input Sources

Georgia Road Network Shapefile

To assess the geospatial relations of all the utilized datasets related to the transportation network,

it is necessary to have a base file of the road network. The first data input is the shapefile of the

State of Georgia’s road network. This shapefile consists of a series of interconnected polylines

representing the midpoint of Georgia roads. The shapefile includes the identification code,

geolocation, and width of 205,351 road segments.

Figure 1. Map. The LRSN_GDOT feature is representative of the provided Georgia Road

Network Shapefile. Shown in cyan is Ferst Drive on the Georgia Tech campus in Atlanta, GA.

Selected feature displaying information on the polyline shape length, county, road identification

code, and direction (increasing/decreasing).

8

WebEOC Executive Report

To match the vehicle-locating data with identified incidents on the road network leading to

potential road blockages, it is necessary to know where and when the road incidents occurred.

This information is attained through the WebEOC Executive Report, which is exported as a

spreadsheet. The report includes state route location, incident description, direction, and the

number of lanes passable. For this study, there are approximately 4,000 incidents reported within

the Fulton County boundaries, spanning between January 2016 and September 2021.

Figure 2. WebEOC Spreadsheet Data. Important features include Incident Type, Time of

Occurrence, and Geolocation (latitude/longitude).

9

Verizon Network Fleet Geodatabase

The vehicle-locating data utilized in the project as tracking information for the GDOT-owned

vehicles as they travel over the road network is from the Verizon Network Fleet system installed

and operational on the vehicles. These data are output as a Verizon Network Fleet Attribute

Table displaying vehicle locating point identifying information. An example of the converted

Excel spreadsheet of the GDOT vehicle-tracking information from the Verizon Network Fleet

geodatabase, located in the appendices, includes vehicle ID, location, time, and ignition status of

the vehicle (On/Off). The location and time information are used to create the vehicle tracks over

the network. The “Ignition” column provides the information about the state of the vehicle being

turned on or off. These data are used to cut the large dataset into individual vehicle route

segments, indicating when to cease a vehicle route segment in the created function Valid.py.

Vehicles are grouped and identified using the data in the “VIN” column, representing the vehicle

identification number. This enables us to identify and locate individual vehicles over the

network. Vehicles are tracked with a frequency of 2 minutes until the ignition of the car is turned

off.

Vehicle-locating points are restricted to Fulton County and subdivided into 19 separate ArcGIS

feature classes. The Verizon Network Fleet data are subdivided to improve the processing time

of our user developed Valid.py function, which creates the vehicle route segments. For the study,

approximately 44,000 vehicle locating points were randomly selected across the 19 ArcGIS

feature classes. These points, spanning between April and May of 2021, were then merged for

processing.

10

As the Verizon Network Fleet data span across Georgia, our data need to be extracted from

Fulton County, which is chosen for its centrality of vehicle traffic in the state. To initiate this

process, a feature class is used named Counties.gdb containing the shapes of all 159 counties in

the state of Georgia. To extract the Fulton County shape, the attribute is selected in the Feature

Class Attribute Table, and scrolling over to the layers in the ArcGIS project, we create a layer

via the “Make Layer From Selected Features” function. The Selected Feature Class is then

named “Fulton County”. The ArcGIS function Clip is then used to create new feature classes

containing only the vehicle-locating points from Fulton County. The input is the Vehicle

Locating Point Feature Class and Fulton County selection feature class, with the output being of

the name VLP_FC[number of data subdivision]. Here, VLP stands for vehicle-locating points,

and FC stands for Fulton County.

Figure 3. Spreadsheet data. Verizon Network Fleet Attribute Table displaying vehicle locating

point identifying information. The “Ignition” column shows the state of the vehicle being turned

on or off. This will indicate when to cease a vehicle route segment for Valid.py. Vehicles are

grouped and identified using the data in the “VIN” column, representing the vehicle

identification number.

11

3.2. Data Pre-Processing

With the set of data inputs, certain preprocessing and data-modification operations need to be

conducted to properly prepare the data for processing. The purpose in this preprocessing stage is

to prepare the workspace within ArcGIS for the later route segmentation and analysis stages.

The first step in the data preprocessing is to convert the Verizon Network Fleet Excel files into

ArcGIS geopoints. This is done through the function XY Table To Point, where the X field

specifies longitude, and the Y field specifies latitude. This latitude and longitude information is

included in the Network Fleet .csv table. All other columned information is transferred into and

associated with each VLP. The output of this function is a feature class of georeferenced points

corresponding with the vehicle-locating data points.

Next, a network analysis layer that identifies the Georgia road network must also be set up. This

is completed through the creation of a “New Network Database” (ND), which inputs the

LRSN_GDOT (i.e., the Georgia Road Network Shapefile). This input is composed of all the

center points of the Georgia road network strung together as separate polylines.

Additionally, in working with the datasets, given the large size of the datasets, the data points are

trimmed to reduce the processing time and remove any redundant information in the datasets.

Looking closely at the data, the data in this preprocessing time are trimmed based on the location

of the points relative to the locations of the road segments. Here, we trim the data based on

proximity to the road network using the ArcGIS Buffer analysis function. Vehicle-locating data

points sufficiently far from the road network indicate that the vehicle is not actually on the road

or traveling along a road segment.

12

A buffer of 30 ft (which covers large highways) is chosen from the center of the road network

layer to cover all data points within the road network. Parking lot areas and driveways are

examples of data points that occur outside of the buffer and are trimmed and not included in the

analysis. These cases can be neglected in our objective for vehicle routing and vehicle tracking

along road segments. Once points are converted into vehicle routes, additional trimming will be

conducted. The redundant data points are removed as they do not represent information about

vehicles traveling on the road network, and therefore, are not of use in the vehicle route-tracking

analysis process to detect blockages along the road network for this project.

Figure 4. Diagram. Demonstration of vehicle-locating points removed by the ArcGIS Buffer

function in the data-trimming step. Redundant data points (outlined in red) most likely represent

stationary vehicles due to their proximity to each other and distance from the buffered route

segment (shown in green).

13

3.3. Data Processing

With the data preprocessed, this chapter describes the many functions developed as part of this

project to process the data in the created data analysis and processing pipeline. These functions

are written in Python to facilitate the interoperability of datasets and use with ArcGIS for the

geolocated data. There are two main processing steps, each with an associated Python function

written. The first is to obtain the desired vehicle routing and incident segments such that they can

be overlaid for analysis; this function is called GetSegments.py. The second is to ensure that the

vehicle-locating data points are valid and to connect consecutive valid points as nodes to create

individual vehicle routing segments; this function is called Valid.py.

 Our first step of processing involves coding a function to retrieve the vehicle routing and

WebEOC incident segments for further analysis. The first function, GetSegments.py, is enabled

by the ArcPy function Segment Along Line and utilizes ArcPy. GetSegments inputs the WebEOC

dataset and the Road Network layer to output incident segments. Therefore, the WebEOC points

with length of segment blockage (Begin mile of segment to End mile of segment) are converted

to line segments.

Figure 5. Screenshot. GetSegments.py output.

14

The second function, Valid.py, utilizes the ArcGIS Network Analyst feature and ArcPy to find

connected vehicle-locating points by similar Vehicle ID (VIN) and FixTime to create vehicle

segments across the Georgia road network. The function ensures that the VLPs used in the

analysis are all valid points as part of individual GDOT vehicle routes. Valid.py also utilizes a

function file named mxFindRoutes that finds the VLPs to be connected and linked together

through the Valid.py function. The VLPs are sequential points for a single vehicle as it travels

over the network. Each point is separated by a 2-minute time interval. As such, a certain number

of points in sequence are of interest to construct the full detailed routes of the vehicles.

The objective here is to use the individual VLPs to construct a continuous route of the vehicle as

it travels over the network. In doing so, there is a tradeoff between the number of consecutive

points used (to construct a continuous route), and the computational cost of storing all the points

in an increasingly large dataset for processing. Therefore, from an investigation of the data, and

the typical distance covered between points, up to six points are connected at a time to create a

vehicle route segment. mxFindRoutes links these points, up to six in number, to input into Solve

and create a vehicle segment of as many nodes.

Given the breadth and number of vehicle tracks that are collected as part of the datasets, Valid.py

unintentionally creates certain extraneous segments, including multiple route segments on the

same path, some routes contained within others, and segments with no length. These attributes

are often found when working with field-collected datasets and need to be addressed to ensure

the resulting data points used for analysis are all representative of the data that are desired to be

collected, and are accurate and reliable in reflecting vehicle routing actions in the field.

15

To detect and filter out the data, and in particular remove the extraneous routing segments, a

custom program is developed in MATLAB to identify such segments (specifically those where

multiple route segments are identified on the same path and the segments that are of zero length).

Once identified, the rows containing extraneous segments are selected with the Select By

Attributes tool and deleted to eliminate their effect on the subsequent machine learning model

developed.

Finally, given the density and amount of data collected as part of the vehicle-locating equipment,

significant computational times are required to process the datasets. An initial processing and

analysis were conducted through the Valid.py function.

Therefore, to reduce computational times, we created an additional step in the data processing

and analysis, which is to iterate by vehicle numbers to match the correct vehicle segments and

complete the code. A list of VINs are compiled, and the input in Valid Track Points are single-

vehicle selections (using ArcGIS Make Layer From Selected Features), repeated for each

vehicle. Because the code is iterative through each VIN, a queue of Valid.py codes is made for

each vehicle, which significantly improves the data processing times. To iterate through the

necessary data points for processing, the computer was left on over night and took multiple days

to run.

16

CHAPTER 4

RESULTS

4.1. Model Variables

Average Annual Daily Traffic (Ind. Variable)

The first independent variable included is the average annual daily traffic (AADT) on specific

road segments. The amount of traffic on a given road segment will affect the likelihood of a

potential incident on that segment. GDOT provided road and traffic data that are publicly

available to be used in this project, such as a shapefile of traffic counts along the Georgia road

network (GDOT 2021). Included in these data are geolocated AADT for given road segments.

The most recent numbers from 2019 are used, as 2021–2022 data have yet to be published.

Under the Traffic Data Type, the Spatial Geodatabase is used for this project. Attribute traffic

information is later linked based on the Feature ID (FID) closest to a vehicle route segment

(representing the road the vehicle is on) using the ArcGIS Merge function.

17

Figure 6. Screenshot. GDOT Road and Traffic Data. The most recent numbers from 2019 are

used, as 2021 data have yet to be published. Under the Traffic Data Type, the Spatial

Geodatabase is used for this project.

The ArcGIS Near function is used to link the VLPs with this geolocated traffic information.

Inputs are a feature class and target feature class to find the closest feature of the target feature

class. The output is the FID of the closest feature in the Traffic Data into the VLP Attribute

Table. A search radius of 100 ft is set, which is intended to avoid incorrect closest features from

being linked to the data.

18

Figure 7. Screenshot. Visualization of Traffic Location Data (left) with georeferenced

information (pop-up on right). AADT is used for this study. For our example here,

4,530 vehicles is the AADT for 2019. Attribute information is later linked based on the FID

closest to a vehicle route segment (representing the road the vehicle is on)

using the ArcGIS Merge function.

Optimal Route Length Difference (Ind. Variable)

Key to the investigations performed in this project is the detailed analysis of the vehicle routes

that are identified based on the vehicle-locating data collected from the GDOT vehicles traveling

over the road network. We consider the difference between the actual routes taken by the GDOT

vehicles (identified by the vehicle-locating data) and the determined optimal routes in traveling

between points in the network, where optimality is measured by the shortest route length, where

we analyze these differences by identified vehicle route segments. In order to compare the taken

routes and optimal routes, we first need to determine the optimal routes; then, we look at the

difference between these two routes by length.

19

To identify and create the optimal route segments, the start and end points are taken for each

vehicle segment and input into the Network Database Analyst as “Stops” using the Import Stops

function. We then use the function Solve to create the optimal vehicle segments. As the ArcGIS

Feature Compare cannot be utilized for polylines but rather points, we use the length difference

between the optimal route and the taken route as the model variable.

Figure 8. Screenshot. ArcGIS Solve function output. Each purple line, with one highlighted in

cyan as a demonstration, represents an optimal path. 1’s represent the starting point and 2’s

represent the ending point of a vehicle route segment.

As identification and comparison with the optimal route is key to the analysis of the vehicle route

segments and use of the vehicle-locating data, the optimal route workflow is now described in

more detail. To explain the workflow of creating the Optimal Route from the Valid.py vehicle-

locating points layer, we must first make a separate layer of the start and end points for each route

segment. With this separate layer, we can then run Solve similar to that of Valid.py, except we use

the ArcGIS code rather than our developed code as in Valid.py to find the output. Once this step

is completed, we compare the actual taken route and the optimal route by using the taken route

20

segments and the optimal segments (from Solve) to create an Optimal Route Length Difference

field. The output is the length difference between the taken route and the optimal route.

Daily Precipitation (Ind. Variable)

The website Weather Underground provides historical daily weather condition values, including

precipitation, humidity, temperature, and wind speed. Precipitation is utilized for our model,

pairing the daily precipitation total (in inches) to the vehicle routes. Wind speed is also said to

have a significant impact on road conditions, but wind speed never reached critical values to

become hazardous for the road network. The thought with adding a precipitation variable is that

the chance of vehicle hydroplaning combined with a lack of driver visibility with increased

precipitation would intuitively increase likelihood of vehicle collisions, a major contributor to road

blockages.

2020 GDOT Traffic Factors (Ind. Variable)

The Georgia Department of Transportation publishes traffic factors every year that correspond to

daily and monthly impact on traffic. The most recent published copy comes from 2020, and our

values focus on Fulton County and on Minor/Major Arterials and Freeways. From the data, we

see, for example, that Weekends (daily) and the Spring months of March to May (monthly) have

the highest (on average) traffic factor contributions into the model.

Historical Route Danger (Ind. Variable)

Considering that certain parts of the road network are more likely to experience blockages, we

define a new variable called the Historical Route Danger that evaluates along the sum of historical

blockages/incidents that have occurred along the route in recent years. Using the same method for

collecting the model input, two separate danger indexes are collected from the WebEOC Executive

Report and from the Numetric Crash Data website. WebEOC Executive Report represents the

21

GDOT-reported road blockages along the Georgia road network before the first point of our

vehicle geolocated points, spanning January 2016 to March 2021. Numetric data spans January

2013 to the present day, and includes privately collected vehicle crashes, but in much higher

quantity than that of the WebEOC Report data. Note that Numetric data does not represent all road

blockages along the road network, just vehicle collisions.

The procedure for collecting the historical blockages is first that each of the routes is given a

distance buffer, hence creating a polygon which contains the route segment. Next, the ArcGIS

Spatial Join feature is used, which allows the route layer to be contrasted with the WebEOC Report

and Numetric Crash Data. The “Match Option = Contains Within” parameter within ArcGIS is

used to find all instances of the Join Feature (WebEOC/Numetric layer) contained within each of

the polygons (representing each route with a buffer). With these collected values along each

vehicle route, we characterize the danger (or likelihood of blockage) of roads traveled along the

route.

WebEOC Incident Presence (Dep. Variable)

Finally, the objective is to use the independent variables described above in order to predict road

blockages in the network, in this case measured by road incidents as recorded by WebEOC. Thus,

we use the WebEOC data as our model output, with the presence of an incident being the binary

dependent variable for prediction. We run classification models for the datasets, split on the binary

dependent variable between ten different time buffers: 0 hours, 1 hour, 3 hours, 6 hours, 12 hours,

1 day, 2 days, 1 week, 2 weeks, and 1 month, where the buffers are subtracted from each vehicle

point’s start time to allow for greater time in a route between the (Start Time – Buffer) and End

Time. These time frames are selected to ensure sufficient data (i.e., sufficient numbers of

individual data points) for the training and testing of the models. If a vehicle route segment is

22

within 100 ft of a WebEOC incident within the time frames, a “1” is given for the presence of the

traffic incident. A “0” represents the vehicle route segment not being in the presence of a traffic

incident with the same constraints. Note that with an increase in data and processing capabilities,

the model should be trained on the incident being within an hour or less of the vehicle driving by,

to be able to pinpoint when a traffic incident has occurred and the application of a real-time

monitoring system. This study focuses on a particular subset of the data, with the scope focused

on Fulton County and the longer time frames to demonstrate the model’s feasibility and

applicability.

4.2. Classification Model Evaluation

We chose machine learning as a method of detecting road blockages because of the ability of the

models to learn indicators/trends. Additionally, the model, through training sets has the ability to

improve itself. Specifically, decision tree-based classification was the method selected, as the

nature of binary prediction was well-suited for our project. Decision Trees are a supervised

machine learning algorithm that use strings of rules to make classifications. To run the

classification model, the shapefile was exported to MATLAB, where a script was written to handle

and transform the ArcGIS feature classes to usable double formatted matrices.

We analyze the accuracy of our classification results using a confusion matrix, which displays the

true result (blockage or no blockage) and the model-predicted result (blockage or no blockage) on

a 2x2 matrix. If we take the presence of a route blockage as the “positive” class, and no route

blockage present as the “negative” class, then True Class = 1 and Predicted Class = 1 indicates a

true negative (TN), upper left in the confusion matrix; True Class = 1 and Predicted Class = 2

indicates a false positive (FP), upper right in the confusion matrix; True Class = 2 and Predicted

23

Class = 2 indicates a true positive (TP), lower right in the confusion matrix; and True Class = 2

and Predicted Class = 1 indicates a false negative (FN), lower left in the confusion matrix.

Figure 9. Screenshot. Classification decision tree visualized in MATLAB for 3-hour buffer.

Each node represents a predictive decision made by the model to arrive at an estimate for

whether or not a route blockage is present. End nodes (leaves) represent these binary predictions.

In this model, x1 = Precipitation, x2 = Daily Traffic Factor, x3 = Monthly Traffic Factor, x4 =

Average Annual Daily Traffic, x5 = Optimal Length Difference, x6 = Historical Route Danger –

WebEOC, x7 = Historical Route Danger – Numetric.

From these values, we can calculate the accuracy and performance of the classification model. In

particular, we are interested in the recall and precision of the models. Recall indicates the ability

of a classification model to identify the data points in a relevant class and is calculated as
𝑇𝑃

𝑇𝑃+𝐹𝑁
.

Precision, on the other hand, indicates the ability of a classification model to return only the data

points in a class and is calculated as
𝑇𝑃

𝑇𝑃+𝐹𝑃
.

In this case, we will look at the 2-day and 1-month buffers for a comparison of the classification

models. For the 2-day model, Recall = 9.9 percent and Precision = 16.7 percent. The 1-month

yields stronger results, with Recall = 68.3 percent and Precision = 64 percent. Out of the 44,143

24

segments, there were 1,746 (3.96%) blockages for the 2-day buffer (3.96% of the route segments

had an incident occur on the route between their start and end times, or to a month before) and

there were 16,337 (37.01%) blockages for the 1-month buffer. It can be concluded that the 1-

month classification model has more information about blockages so it can develop more

specifications/decisions to develop a classification. As the 2-day buffer model only has ~ 4%

true classification result (blockage present), it has less information about what produces a

blockage from the explanatory variables.

Figure 10. Screenshots. Confusion matrices for 3-hour and 2-day classification models, with row

summaries (right of each matrix) also shown. With less WebEOC intersections in the 3-hour

classification model, the tree-based algorithm predicts far fewer road blockages than that of the

1-month, with a higher percentage of WebEOC intersections.

25

Figure 11. Screenshot. Calculated Precision and Recall values in the Classification model for

each time buffer, derived from confusion matrices. 1-month time buffer shows the best results

for both precision and recall results.

Recall and Precision can be compiled as well into an F1 score, which is equal to

2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 . The score is scaled between 0 and 1, where 1 represents a perfect

classification. Similar to the recall/precision results, and intuitively, the F1 scores increase the

larger the buffer is. The smallest F1 score is that of the 2-day model, which produced a 0.12,

where the 1-month classification model performed quite well at a 0.66 value. It should be noted

that the 0-hour through 1-day models did not have a true positive, so therefore cannot have a real

F1 score. As these models have the goal of being implemented real-time, this was highly

discouraging, but with more factors identified and more data input into the model, we could see

more positive results.

26

Figure 12. Screenshot. F1 scores in the Classification Model for each time buffer, derived from

confusion matrices. Scores are based on a scale between 0-1, where 1 shows a perfectly fit

classification model that made no false guesses in class. The model was unable to guess a true

positive for the buffers 0-hour to 1-day, which have been omitted on the chart for that reason.

Upsampling Classification Method with Imbalanced Data

We see poor F1 results with our model due to the data containing a high number of vehicle

locating routes without WebEOC incident overlap. With this large imbalance in the dataset, the

model is hindered from the ability to learn trends about the data, favoring erring on the side of

guessing no WebEOC overlap for the classification. This leads us to explore ways that the model

is able to detect these trends even with the imbalanced dataset.

27

Upsampling is a method which generalizes the classification boundary of the minority class to

help improve the predictive performance of the model (Tran et al 2022). Looking at the 3-hour

buffer, we see 102
44,142⁄ (or ~ 0.23 percent) of the routes containing a WebEOC blockage

within the time frame. With such an imbalance and the previously stated low F1 scores,

upsampling is deemed to be an important method to implement to reform the training dataset.

We are able to customize our model further, including defining the concentration of upsampling

in the training set, the time buffer to lengthen vehicle routes, and adjusting the misclassification

cost (where the model can assign varying weights to false results to potentially increase accuracy

in the predictive results). Each of these factors were tested under statistically significant trialing

to maximize predictive capability in our model.

Figure 13. Upsampling approach with development of balanced training set for higher predictive

capability [based on methodology of Tran 2022].

28

In an effort to generate meaningful results, we choose the 3-hour time buffer, meaning that a

blockage spatially detected along the route between 3 hours before the route and at the end of the

route is counted as a “true” outcome (WebEOC_3h = 1). Within this time buffer, we choose a

training set consisting of 50 percent true outcomes (blockage detected) and 50 percent false

outcomes (no blockage detected). True and false outcomes for this training set are both randomly

selected. For the misclassification cost, after testing a variety of cost ratios, we choose the cost

for a false negative (FN) result as being 5 times higher than that of a false positive (FP). False

negative, in the scope of our model, means that the model predicts that there is no blockage, but

there actually is a blockage along the route. False positives, on the other hand, represent the

model predicting there is a blockage along the route, but not being correct in doing so. The goal

is to have the model be able to learn the trends of when blockages occur. A strong recall value is

indicative that the model is properly applying data trends towards accurate positive class

prediction, and is the selected measure of importance for this study.

Across 50 classification trials, the model outputs 97.13 percent recall and 0.53 percent precision.

From these results, the recall is high, and it can be said that the model is at least grouping the

common characteristics of the data behind a road blockage where it is not missing many “true”

outcomes. To address the precision, we find in our trials that the higher the ratio of true

outcomes to false outcomes in our training set, the more the model will predict true outcomes.

With 50 percent of our training set being true outcomes, the model ends up predicting 15.41

percent of all routes as having a WebEOC blockage along the route on average, which is much

less than the 50 percent of routes having a WebEOC blockage as contained within the training

set. The model is able to sort the characteristics of a possible road blockage, at a rate that is very

much not random. Applied to the larger dataset, it is difficult to predict the few true outcomes

29

among all the total outcomes. We see that the model is predicting true cases very well and

compared with the overall data composition, at a much lower rate than what is presented in the

training set. We would anticipate that with an expanded dataset and an increase in predictive

variables that these results would only increase.

30

CHAPTER 5

CONCLUSIONS

This project explores the ability to use GDOT vehicle-locating data to assess the state of the road

network in Georgia, including identifying road blockages along different segments of the

transportation system. The goal is to determine if we are able to utilize data that are currently

being collected to perform this network assessment. This novelty is in using a different data

source than has been used or explored in the past, specifically mobile vehicle-locating data

collected from GDOT-owned vehicles, rather than using stationary data sources such as loop

detectors, traffic cameras, or traffic monitoring stations; or public crowdsourced data sources that

rely on third parties for data collection and curation.

Through the course of the project, we made several discoveries. First, the data are crucial to the

ability to create such a system. The raw dataset of vehicle-locating data is large and, in many

cases, messy, with cases of missing data, zero-length data segments, and redundant route

segments. Through multiple data trimming and processing methods developed and implemented

using ArcGIS-specific Python algorithms, this initially large dataset is made into a usable format

to run machine learning models to see the importance of multiple variables, including the

vehicle-locating data and associated routing decisions, on the likelihood of road blockage

detection. The steps for transforming the data that have been established as part of this project

are described in detail and are reliable and repeatable methods that can be implemented with new

datasets.

Second, to utilize the vehicle-locating data, we create a workflow to enable comparison of the

vehicle routes with optimal routes to detect suboptimal routing decisions that may be indicative

31

of blockages in the road network. This requires multiple steps in the workflow, including the

creation of vehicle route segments based on the individual vehicle-locating data points, the

linking of segments into routes, the identification of optimal routes between these points, and

then the comparison of distances between the actual taken routes (processed from the vehicle-

locating data points) and the optimal routes to detect the degree of suboptimal routing and its

association with the likelihood of the presence of a road blockage.

Finally, to use this vehicle routing information to assess the state of the road network, we create

machine learning models with multiple variables as input to detect the presence of a road

blockage. The classification model is quite simple with the set of input variables and a binary

output. The inputs, daily traffic on a given road, the difference between the taken route and the

optimal route, precipitation, traffic factors, and historical route danger are clear indicators of

whether or not a road blockage can be detected, but it is also clear that there are additional

variables at play in leading to road blockages, and this set of variables cannot be relied upon to

produce a tell-all classification model, capable of being run continuously with real-time data

sources. For this model to run in real-time, it must be complemented with other variables, such

as data from live traffic feeds. Therefore, the results from this work are an indication of the

potential use of this specific new data source and application, but this is not the end result. At the

very minimum, with Upsampling, the 3-hour model outputted significant recall results at

97.13%.

As different transportation-related data sources emerge, there is the opportunity to leverage these

data sources for monitoring of the conditions of a transportation network. Rather than relying on

external third-party data, this project explores the use of GDOT-collected data for this purpose.

In addition, it focuses on the use of data that are already currently being collected, demonstrating

32

the utility of these data in performing road network assessment without the need to invest in new

technologies, dedicate additional resources, or implement new instrumentation or infrastructure.

Through the use of multiple data processing methods combined machine learning approaches,

we show how the vehicle-locating data can be used to perform network assessment and detection

of blockages in the road network.

33

CHAPTER 6

FUTURE WORK

There are a variety of factors that, if and when applied, are sure to increase the model’s

predictive capability. Increased power of processing would result in more data, stemming from

more Georgia counties included, more GDOT vehicles on record, a broader range of dates

analyzed (resulting in more fluctuation in variables such as precipitation and traffic factors), and

an increased road network analyzed. The project, due to processing limitations, was constrained

to a randomly sampled subset of Fulton County specifically (a small subset of the overall data

from WebEOC and Verizon Network Fleet). Once the model receives inputs beyond Fulton

County and for a broader range of times, more WebEOC and historical Numetric blockages will

enable broader assessment and characterization of the Georgia road network. It is then that we

will be able to see true effect of the supervised model, although the run model does show

positive outlooks.

Including more variables would also likely increase the model’s performance, and could be

customizable to the use of what factors are deemed important in a road network, entirely at the

discretion of the operator. An expanded analytical approach to the way road infrastructure (and

specifically, vehicular traffic) is managed will lead to data-driven solutions. For example,

incorporating live data feeds from a service such as Waze (via public-use API) may give a new

edge to our model’s predictive capability, pairing live traffic feeds with historically trained

predictions. Worth looking into as well are unsupervised learning techniques, such as anomaly

34

detection, k-means clustering, and other methods. Unsupervised learning is focused on

determining data patterns, which may be a better fit for the datasets analyzed.

35

APPENDIX A

ARCPY GLOSSARY

Below are the definitions of varying functions used in ArcGIS and ArcPy as part of the ArcGIS

and Python functions and codes that have been developed in this project.

a) Add Join

arcpy.management.AddJoin(in_layer_or_view, in_field, join_table, join_field, {join_type},

{index_join_fields})

b) Buffer

arcpy.analysis.Buffer(in_features, out_feature_class, buffer_distance_or_field, {line_side},

{line_end_type}, {dissolve_option}, {dissolve_field}, {method})

c) Calculate Field

arcpy.management.CalculateField(in_table, field, expression, {expression_type}, {code_block},

{field_type}, {enforce_domains})

d) Clip

arcpy.analysis.Clip(in_features, clip_features, out_feature_class, {cluster_tolerance})

e) Convert Time Field

arcpy.management.ConvertTimeField(in_table, input_time_field, {input_time_format},

output_time_field, {output_time_type}, {output_time_format})

f) Delete Selection

arcpy.management.DeleteFeatures(in_features)

g) Feature Compare

arcpy.management.FeatureCompare(in_base_features, in_test_features, sort_field,

{compare_type}, {ignore_options}, {xy_tolerance}, {m_tolerance}, {z_tolerance},

{attribute_tolerances}, {omit_field}, {continue_compare}, {out_compare_file})

h) Feature Class To Feature Class

36

arcpy.conversion.FeatureClassToFeatureClass(in_features, out_path, out_name, {where_clause},

{field_mapping}, {config_keyword})

i) Feature To Point

arcpy.management.FeatureToPoint(in_features, out_feature_class, {point_location})

j) Feature Class To Shapefile

arcpy.conversion.FeatureClassToShapefile(Input_Features, Output_Folder)

k) Generalized Linear Regression (GLR)

arcpy.stats.GeneralizedLinearRegression(in_features, dependent_variable, model_type,

output_features, explanatory_variables, {distance_features}, {prediction_locations},

{explanatory_variables_to_match}, {explanatory_distance_matching},

{output_predicted_features})

l) Make Route Analysis Layer (Import Stops, Run, Routes)

arcpy.na.MakeRouteAnalysisLayer(network_data_source, {layer_name}, {travel_mode},

{sequence}, {time_of_day}, {time_zone}, {line_shape}, {accumulate_attributes},

{generate_directions_on_solve}, {time_zone_for_time_fields}, {ignore_invalid_locations})

m) Merge

arcpy.management.Merge(inputs, output, {field_mappings}, {add_source})

n) Segment Along Line

arcpy.segmentAlongLine (start_measure, end_measure, {use_percentage})

o) Select By Attributes

arcpy.management.SelectLayerByAttribute(in_layer_or_view, {selection_type}, {where_clause},

{invert_where_clause})

p) Solve

arcpy.na.Solve(in_network_analysis_layer, {ignore_invalids}, {terminate_on_solve_error},

{simplification_tolerance}, {overrides})

q) Spatial Join

37

arcpy.analysis.SpatialJoin(target_features, join_features, out_feature_class, {join_operation},

{join_type}, {field_mapping}, {match_option}, {search_radius}, {distance_field_name})

r) Summary Statistics

arcpy.analysis.Statistics(in_table, out_table, {statistics_fields}, {case_field})

s) XY Table To Point

arcpy.management.XYTableToPoint(in_table, out_feature_class, x_field, y_field, {z_field},

{coordinate_system})

38

APPENDIX B

USER CODES

The below functions and descriptions apply to the user-generated processing code:

39

import arcpy

import pandas as pd

get parameters from the toolbox interface

tbl_Segments = arcpy.GetParameterAsText(0)

field_route_name_tbl = arcpy.GetParameterAsText(1)

field_start_position = arcpy.GetParameterAsText(2)

field_end_position = arcpy.GetParameterAsText(3)

field_last_updated = arcpy.GetParameterAsText(4)

lyr_route = arcpy.GetParameterAsText(5)

field_route_name_lyr = arcpy.GetParameterAsText(6)

workspace_output = arcpy.GetParameterAsText(7)

result_route_name = arcpy.GetParameterAsText(8)

read segment table from the csv file

df_segment_position = pd.read_csv(tbl_Segments)

detect the workspace type

dec_workspace = arcpy.Describe(workspace_output)

type_workspace = dec_workspace.workspaceType

if workspace is a folder, export a shapefile (.shp)

if type_workspace == "FileSystem":

 result_route_name = result_route_name + ".shp"

result_route_layer_path = workspace_output + "\\" + result_route_name

get spatial reference of the route layer

spRf = arcpy.Describe(lyr_route).spatialReference

create segments feature class

arcpy.management.CreateFeatureclass(workspace_output, result_route_name,

geometry_type="POLYLINE", spatial_reference=spRf)

arcpy.management.AddField(result_route_layer_path, "Route_name", "TEXT", None, None,

100)

arcpy.management.AddField(result_route_layer_path, "S_Position", "DOUBLE")

arcpy.management.AddField(result_route_layer_path, "E_Position", "DOUBLE")

arcpy.management.AddField(result_route_layer_path, "LastUpdated", "Date")

insert segments into segments feature class

in_Cur = arcpy.da.InsertCursor(result_route_layer_path, ["SHAPE@", "Route_name",

"S_Position", "E_Position", "LastUpdated"])

40

no. of routes for counting and defining progressor

n_route = df_segment_position.count()[0]

arcpy.SetProgressor("Step", "processing....", 0, n_route, 1)

i = 0

loop segments' row in segments table, get the segment from road network.

for index, row in df_segment_position.iterrows():

 route_name = row[field_route_name_tbl]

 start_position = row[field_start_position]

 end_position = row[field_end_position]

 last_updated = row[field_last_updated]

 i = i + 1

 arcpy.SetProgressorPosition()

 arcpy.SetProgressorLabel("processing " + route_name + "...... " + "{}/{}, {:.1f}%".format(i,

n_route, i * 100.0 / (n_route)))

 s_cur_route = arcpy.da.SearchCursor(lyr_route, ["Shape@", field_route_name_lyr], "{0}

='{1}'".format(field_route_name_lyr, route_name))

 try:

 s_c_route = s_cur_route.next()

 segments_shp = s_c_route[0].segmentAlongLine(start_position, end_position)

 in_Cur.insertRow((segments_shp, route_name, start_position, end_position,

last_updated))

 arcpy.AddMessage("{}: start from {}, end at{}, last updated {}, OK".format(route_name,

start_position, end_position, last_updated))

if the route in the csv file does not have corresponding name in the route network layer,

return a "NotOK"

 except StopIteration:

 arcpy.AddMessage("{}: start from {}, end at{}, last updated {},

NotOK".format(route_name, start_position, end_position, last_updated))

 continue

del in_Cur

arcpy.ResetProgressor()
GetSegments Code

41

import arcpy

import os

to export direction information using "AddLocation method", xml format should be

used

import xml.dom.minidom as xmld

class FindRoutes():

 def __init__(self, track_points, track_points_name, order_field, ignition_field,

network_NAlyr, output_db_path, output_routes_name, output_statistical_tbl_name):

 self.track_points = track_points

 self.track_points_name = track_points_name

 self.order_field = order_field

 self.ignition_field = ignition_field

 self.network_NAlyr = network_NAlyr

 self.output_db_path = output_db_path

 self.output_routes_name = output_routes_name

 self.output_statistical_tbl_name = output_statistical_tbl_name

 self.lyr_tem = arcpy.MakeFeatureLayer_management(self.track_points, "layer_tem")

 self.dic_points_name = {}

 self.dic_points_ignition = {}

 self.dic_points_counter = {}

 self.dic_points_fixtime = {}

 self.result_routes = os.path.join(output_db_path, output_routes_name)

 self.result_statistical_table = os.path.join(output_db_path, output_routes_name)

 # add counter field to layer

 # counter is defined to account for individual travels (judging from Ignition status)

 arcpy.AddField_management(track_points, "Counter", "SHORT")

 # assign counters

 i = 1

 up_cur = arcpy.da.UpdateCursor(track_points, [order_field, ignition_field, "Counter"],

sql_clause=(None, "ORDER BY " + order_field))

 for up_c in up_cur:

 up_c[2] = i

 if up_c[1] == "Off":

 i = 0

 i = i + 1

 up_cur.updateRow(up_c)

42

 # create the statistical table

 self.result_table = arcpy.CreateTable_management(output_db_path,

output_statistical_tbl_name)

 self.statis_tbl_fields = ["Track_Point_Name",

 "Before2p",

 "Before2p_dif",

 "Before3p",

 "Before3p_dif",

 "Before4p",

 "Before4p_dif",

 "Before5p",

 "Before5p_dif",

 "Ignition",

 "Counter",

 "FixTime"]

 # define the format of the cell using AddField function

 for add_f in self.statis_tbl_fields:

 if add_f == "Track_Point_Name" or add_f == "Ignition":

 arcpy.AddField_management(self.result_table, add_f, "TEXT")

 elif add_f == "FixTime":

 arcpy.AddField_management(self.result_table, add_f, "Date")

 else:

 arcpy.AddField_management(self.result_table, add_f, "DOUBLE")

 # scan the track points

 s_cur = arcpy.da.SearchCursor(track_points, ["shape@", track_points_name, order_field,

ignition_field, "Counter"], sql_clause=(None, "ORDER BY " + order_field))

 n = 0

 for s_c in s_cur:

 n = n + 1

 self.dic_points_name[n] = s_c[1]

 self.dic_points_fixtime[n] = s_c[2]

 self.dic_points_ignition[n] = s_c[3]

 self.dic_points_counter[n] = s_c[4]

 RouteSubLayer = arcpy.na.GetNAClassNames(network_NAlyr)

 self.routeSlyr_stops = RouteSubLayer["Stops"]

 self.routeSlyr_route = RouteSubLayer["Routes"]

 arcpy.na.AddFieldToAnalysisLayer(network_NAlyr, self.routeSlyr_route, "Direction",

"TEXT", field_length=100000)

 arcpy.na.AddFieldToAnalysisLayer(network_NAlyr, self.routeSlyr_route,

"FixTime_Start", "Date", field_length=1000)

43

 arcpy.na.AddFieldToAnalysisLayer(network_NAlyr, self.routeSlyr_route,

"FixTime_Current", "Date", field_length=1000)

 # function for insert data into statistial table

 def insert_statis_table(self,

 Track_point_name,

 Before2p=None,

 Before2p_dif=None,

 Before3p=None,

 Before3p_dif=None,

 Before4p=None,

 Before4p_dif=None,

 Before5p=None,

 Before5p_dif=None,

 Ignition=None,

 Counter=None,

 FixTime=None):

 inst_val = [Track_point_name,

 Before2p,

 Before2p_dif,

 Before3p,

 Before3p_dif,

 Before4p,

 Before4p_dif,

 Before5p,

 Before5p_dif,

 Ignition,

 Counter,

 FixTime]

 inst_statis_tbl = arcpy.da.InsertCursor(self.result_table, self.statis_tbl_fields)

 inst_statis_tbl.insertRow(inst_val)

 del inst_statis_tbl

 # function for setup stops for "AddLocation" and "Solve"; set up messages

 def stopsSetup(self, current_point=3, checkBack=2):

 stops1 = None

 stops2 = None

 message1 = None

 message2 = None

 if current_point >= 3 and checkBack == 2:

 stops1 = [self.dic_points_name[current_point - 2],

44

 self.dic_points_name[current_point]]

 message1 = "{0}<--{1}, ignition:{2},

counter:{3}".format(self.dic_points_name[current_point],

 self.dic_points_name[current_point - 2],

 self.dic_points_ignition[current_point],

 self.dic_points_counter[current_point])

 stops2 = [self.dic_points_name[current_point - 2],

 self.dic_points_name[current_point - 1],

 self.dic_points_name[current_point]]

 message2 = "{0}<--{1}<--{2}, ignition:{3},

counter:{4}".format(self.dic_points_name[current_point],

 self.dic_points_name[current_point - 1],

 self.dic_points_name[current_point - 2],

 self.dic_points_ignition[current_point],

 self.dic_points_counter[current_point])

 if current_point >= 4 and checkBack == 3:

 stops1 = [self.dic_points_name[current_point - 3],

 self.dic_points_name[current_point]]

 message1 = "{0}<--{1}, ignition:{2},

counter:{3}".format(self.dic_points_name[current_point],

 self.dic_points_name[current_point - 3],

 self.dic_points_ignition[current_point],

 self.dic_points_counter[current_point])

 stops2 = [self.dic_points_name[current_point - 3],

 self.dic_points_name[current_point - 2],

 self.dic_points_name[current_point - 1],

 self.dic_points_name[current_point]]

 message2 = "{0}<--{1}<--{2}<--{3}, ignition:{4},

counter:{5}".format(self.dic_points_name[current_point],

 self.dic_points_name[current_point - 1],

 self.dic_points_name[current_point - 2],

 self.dic_points_name[current_point - 3],

 self.dic_points_ignition[current_point],

 self.dic_points_counter[current_point])

 if current_point >= 5 and checkBack == 4:

 stops1 = [self.dic_points_name[current_point - 4],

 self.dic_points_name[current_point]]

 message1 = "{0}<--{1}, ignition:{2},

counter:{3}".format(self.dic_points_name[current_point],

 self.dic_points_name[current_point - 4],

 self.dic_points_ignition[current_point],

 self.dic_points_counter[current_point])

45

 stops2 = [self.dic_points_name[current_point - 4],

 self.dic_points_name[current_point - 3],

 self.dic_points_name[current_point - 2],

 self.dic_points_name[current_point - 1],

 self.dic_points_name[current_point]]

 message2 = "{0}<--{1}<--{2}<--{3}<--{4}, ignition:{5},

counter:{6}".format(self.dic_points_name[current_point],

 self.dic_points_name[current_point - 1],

 self.dic_points_name[current_point - 2],

 self.dic_points_name[current_point - 3],

 self.dic_points_name[current_point - 4],

 self.dic_points_ignition[current_point],

 self.dic_points_counter[current_point])

 if current_point >= 6 and checkBack == 5:

 stops1 = [self.dic_points_name[current_point - 5],

 self.dic_points_name[current_point]]

 message1 = "{0}<--{1}, ignition:{2},

counter:{3}".format(self.dic_points_name[current_point],

 self.dic_points_name[current_point - 5],

 self.dic_points_ignition[current_point],

 self.dic_points_counter[current_point])

 stops2 = [self.dic_points_name[current_point - 5],

 self.dic_points_name[current_point - 4],

 self.dic_points_name[current_point - 3],

 self.dic_points_name[current_point - 2],

 self.dic_points_name[current_point - 1],

 self.dic_points_name[current_point]]

 message2 = "{0}<--{1}<--{2}<--{3}<--{4}<--{5}, ignition:{6},

counter:{7}".format(self.dic_points_name[current_point],

 self.dic_points_name[current_point

- 1],

 self.dic_points_name[current_point

- 2],

 self.dic_points_name[current_point

- 3],

 self.dic_points_name[current_point

- 4],

 self.dic_points_name[current_point

- 5],

self.dic_points_ignition[current_point],

self.dic_points_counter[current_point])

46

 return stops1, stops2, message1, message2

 # xml format is adopted to extract the direction information

 def getDirection(self):

 dr = arcpy.na.Directions(self.network_NAlyr, "XML").getOutput(0)

 dr_list = []

 dom = xmld.parse(dr)

 root = dom.documentElement

 rs = root.getElementsByTagName("STRING")

 for r in rs:

 if r.getAttribute("style") in ["depart", "normal", "arrive"]:

 dr_list.append(r.getAttribute("text"))

 dr_str0 = " --> ".join(dr_list)

 return dr_str0

 # function for finding routes from point 1-2

 def findRoutesBack1p(self, current_point=2):

 stops = [self.dic_points_name[current_point - 1],

 self.dic_points_name[current_point]]

 # In ArcGIS Pro, the FindRoutes function can only be completed by online routing

service, for which the result is not extractable. Therefore, we now use Addlocation and

Solve to solve for the routes between points

 sql = str(stops).replace("[", "").replace("]", "").replace("u", "")

 arcpy.management.SelectLayerByAttribute(self.lyr_tem, "NEW_SELECTION", "{}

in({})".format(self.track_points_name, sql))

 arcpy.na.AddLocations(self.network_NAlyr,

 self.routeSlyr_stops,

 self.lyr_tem,

 "Name {} #".format(self.track_points_name),

 sort_field=self.order_field,

 append="CLEAR")

 arcpy.na.Solve(self.network_NAlyr)

 result_route = self.routeSlyr_route

 dr_str = self.getDirection()

 message = "{0}<--{1}, ignition:{2},

counter:{3}".format(self.dic_points_name[current_point],

 self.dic_points_name[current_point - 1],

47

 self.dic_points_ignition[current_point],

 self.dic_points_counter[current_point])

 up_cur = arcpy.da.UpdateCursor(result_route, ["shape@", "Name", "Direction",

"FixTime_Start", "FixTime_Current"])

 route_shp = None

 for up_c in up_cur:

 up_c[1] = message

 up_c[2] = dr_str

 up_c[3] = self.dic_points_fixtime[current_point - 1]

 up_c[4] = self.dic_points_fixtime[current_point]

 route_shp = up_c[0]

 up_cur.updateRow(up_c)

 del dr_str

 if not arcpy.Exists(self.result_routes):

 arcpy.CopyFeatures_management(result_route, self.result_routes)

 else:

 arcpy.Append_management(result_route, self.result_routes)

 return route_shp, message

 # function for finding routes from point >= 3

 def findRoutesBack2p(self, current_point, backward, checkIndex):

 stops = None

 message = None

 stops1, stops2, message1, message2 = self.stopsSetup(current_point, backward)

 if checkIndex == 1:

 stops = stops1

 message = message1

 elif checkIndex == 2:

 stops = stops2

 message = message2

 sql = str(stops).replace("[", "").replace("]", "").replace("u", "")

 arcpy.management.SelectLayerByAttribute(self.lyr_tem, "NEW_SELECTION", "{}

in({})".format(self.track_points_name, sql))

 arcpy.na.AddLocations(self.network_NAlyr,

 self.routeSlyr_stops,

48

 self.lyr_tem,

 "Name {} #".format(self.track_points_name),

 sort_field=self.order_field,

 append="CLEAR")

 arcpy.na.Solve(self.network_NAlyr) # route solving algorithm, arcgis function

 result_route = self.routeSlyr_route

 dr_str = self.getDirection()

 up_cur = arcpy.da.UpdateCursor(result_route, ["shape@", "Name", "Direction",

"FixTime_Start", "FixTime_Current"])

 route_shp = None

 for up_c in up_cur: # just recording

 up_c[1] = message

 up_c[2] = dr_str

 up_c[3] = self.dic_points_fixtime[current_point - backward]

 up_c[4] = self.dic_points_fixtime[current_point]

 route_shp = up_c[0]

 up_cur.updateRow(up_c)

 del dr_str

 arcpy.Append_management(result_route, self.result_routes)

 return route_shp, message

mxFindRoutes Code (Valid.py Function File)

49

import arcpy

import mxFindRoutes_pro

get parameters from tool

track_points = arcpy.GetParameterAsText(0)

track_points_name = arcpy.GetParameterAsText(1)

order_field = arcpy.GetParameterAsText(2)

ignition_field = arcpy.GetParameterAsText(3)

NDS = arcpy.GetParameterAsText(4)

output_db = arcpy.GetParameterAsText(5)

result_routes_name = arcpy.GetParameterAsText(6)

result_table_name = arcpy.GetParameterAsText(7)

setup the workspace can be overwrote

overw = arcpy.env.overwriteOutput

arcpy.env.overwriteOutput = True

beginning of the tool

myFindRoute = mxFindRoutes_pro.FindRoutes(track_points, track_points_name, order_field,

ignition_field, NDS, output_db, result_routes_name, result_table_name)

get the numbers of the track points, to set up the progressor

n = len(myFindRoute.dic_points_name)

arcpy.SetProgressor("step", "calculating route...", 0, n - 1, 1)

for i in range(1, n + 1):

 point_name = myFindRoute.dic_points_name[i]

 arcpy.SetProgressorPosition()

 arcpy.SetProgressorLabel("calculating route of point " + point_name + "......")

 bf2p = bf2p_dif = bf3p = bf3p_dif = bf4p = bf4p_dif = bf5p = bf5p_dif = None

 ignition = myFindRoute.dic_points_ignition[i]

 counter = myFindRoute.dic_points_counter[i]

 fixtime = myFindRoute.dic_points_fixtime[i]

 # 1st point of the travel

 if counter == 1:

 arcpy.AddMessage("p{0}:ignition:{1}, counter:{2}".format(str(i), ignition, counter))

50

 # 2nd point of the travel

 if counter == 2:

 r_shp, msg = myFindRoute.findRoutesBack1p(i)

 arcpy.AddMessage("p" + str(i) + ":" + msg)

 # 3rd point of the travel

 if counter >= 3:

 r_shp1_1, msg = myFindRoute.findRoutesBack2p(i, 2, 1)

 arcpy.AddMessage("p" + str(i) + ":" + msg)

 shp_route1_1 = r_shp1_1

 r_shp1_2, msg = myFindRoute.findRoutesBack2p(i, 2, 2)

 arcpy.AddMessage("p" + str(i) + ":" + msg)

 shp_route1_2 = r_shp1_2

 bf2p = 1

 bf2p_dif = 0

 # Sometimes the recorded points are too close to produce a route and if not

specified, it will cause errors and the termination of the program. Basically, the error is

from the result; when the result is none (no routes were returned), it will be impossible

for comparison.

 # To solve for this problem, the following codes were added (same for below):

 if shp_route1_2 is None and shp_route1_1 is not None:

 bf2p = 0

 bf2p_dif = 0 - shp_route1_1.length

 elif shp_route1_2 is not None and shp_route1_1 is None:

 bf2p = 0

 bf2p_dif = 0 - shp_route1_2.length

 elif shp_route1_2 is None and shp_route1_1 is None:

 bf2p = 1

 bf2p_dif = 0

 elif not shp_route1_2.equals(shp_route1_1):

 bf2p = 0

 bf2p_dif = shp_route1_2.length - shp_route1_1.length

 if counter >= 4:

 # check 4-1--> 2 or 3

51

 # --route 4-1

 r_shp2_1, msg = myFindRoute.findRoutesBack2p(i, 3, 1)

 arcpy.AddMessage("p" + str(i) + ":" + msg)

 shp_route2_1 = r_shp2_1

 r_shp2_2, msg = myFindRoute.findRoutesBack2p(i, 3, 2)

 arcpy.AddMessage("p" + str(i) + ":" + msg)

 shp_route2_2 = r_shp2_2

 bf3p = 1

 bf3p_dif = 0

 if shp_route2_2 is None and shp_route2_1 is not None:

 bf3p = 0

 bf3p_dif = 0 - shp_route2_1.length

 elif shp_route2_2 is not None and shp_route2_1 is None:

 bf3p = 0

 bf3p_dif = 0 - shp_route2_2.length

 elif shp_route2_2 is None and shp_route2_1 is None:

 bf3p = 1

 bf3p_dif = 0

 elif not shp_route2_2.equals(shp_route2_1):

 bf3p = 0

 bf3p_dif = shp_route2_2.length - shp_route2_1.length

 if counter >= 5:

 # check 5-1--> 2 or 3 or 4

 # --route 5-1

 r_shp3_1, msg = myFindRoute.findRoutesBack2p(i, 4, 1)

 arcpy.AddMessage("p" + str(i) + ":" + msg)

 shp_route3_1 = r_shp3_1

 r_shp3_2, msg = myFindRoute.findRoutesBack2p(i, 4, 2)

 arcpy.AddMessage("p" + str(i) + ":" + msg)

 shp_route3_2 = r_shp3_2

52

 bf4p = 1

 bf4p_dif = 0

 if shp_route3_2 is None and shp_route3_1 is not None:

 bf4p = 0

 bf4p_dif = 0 - shp_route3_1.length

 elif shp_route3_2 is not None and shp_route3_1 is None:

 bf4p = 0

 bf4p_dif = 0 - shp_route3_2.length

 elif shp_route3_2 is None and shp_route3_1 is None:

 bf4p = 1

 bf4p_dif = 0

 elif not shp_route3_2.equals(shp_route3_1):

 bf4p = 0

 bf4p_dif = shp_route3_2.length - shp_route3_1.length

 if counter >= 6:

 # check 6-1--> 2 or 3 or 4 or 5

 # --route 6-1

 r_shp4_1, msg = myFindRoute.findRoutesBack2p(i, 5, 1)

 arcpy.AddMessage("p" + str(i) + ":" + msg)

 shp_route4_1 = r_shp4_1

 r_shp4_2, msg = myFindRoute.findRoutesBack2p(i, 5, 2)

 arcpy.AddMessage("p" + str(i) + ":" + msg)

 shp_route4_2 = r_shp4_2

 bf5p = 1

 bf5p_dif = 0

 if shp_route4_2 is None and shp_route4_1 is not None:

 bf5p = 0

 bf5p_dif = 0 - shp_route4_1.length

 elif shp_route4_2 is not None and shp_route4_1 is None:

 bf5p = 0

 bf5p_dif = 0 - shp_route4_2.length

53

 elif shp_route4_2 is None and shp_route4_1 is None:

 bf5p = 1

 bf5p_dif = 0

 elif not shp_route4_2.equals(shp_route4_1):

 bf5p = 0

 bf5p_dif = shp_route4_2.length - shp_route4_1.length

 myFindRoute.insert_statis_table(point_name,

 bf2p, bf2p_dif,

 bf3p, bf3p_dif,

 bf4p, bf4p_dif,

 bf5p, bf5p_dif,

 ignition, counter, fixtime)

arcpy.env.overwriteOutput = overw

arcpy.ResetProgressor()

arcpy.SelectLayerByAttribute_management(track_points, "CLEAR_SELECTION")

#arcpy.RefreshActiveView()
Valid Code

54

REFERENCES

Astarita, V., Giofrè, V.P., Guido, G., Stefano, G., and Vitale, A. (2020). “Mobile Computing for

Disaster Emergency Management: Empirical Requirements Analysis for a Cooperative

Crowdsourced System for Emergency Management Operation.” Smart Cities, 3(1), pp.31–47.

Available online: https://doi.org/10.3390/smartcities3010003.

Bailey, K.D. (2005). “Typology Construction, Methods and Issues.” In Kempf-Leonard, K.

(Ed.), Encyclopedia of Social Measurement, Elsevier, London, 3, pp. 889–898.

Basu, M., Bandyopadhyay, S., and Ghosh, S. (2016). “Post Disaster Situation Awareness and

Decision Support Through Interactive Crowdsourcing.” Procedia Engineering, 159(2016),

pp.167–173. Available online: http://dx.doi.org/10.1016/j.proeng.2016.08.151.

ESRI. (2021). GIS Dictionary. (website) Available online:

http://webhelp.esri.com/arcgisserver/9.3/java/geodatabases/definition_frame.htm, last accessed

May 1, 2021.

Georgia Department of Transportation (GDOT). (2021). “Road and Traffic Data.” (website)

Atlanta, GA. Available online: http://www.dot.ga.gov/ds/data#tab-4, last accessed September 1,

2021.

Iliopoulou, C., Konstantinidou, M.A., Kepaptsoglou, K.L., and Stathopoulos, A. (2020). “ITS

Technologies for Decision Making During Evacuation Operations: A Review.” Journal of

Transportation Engineering, Part A: Systems, 146(4), 04020010. Available online:

https://doi.org/10.1061/JTEPBS.0000329.

https://doi.org/10.3390/smartcities3010003
http://dx.doi.org/10.1016/j.proeng.2016.08.151
http://webhelp.esri.com/arcgisserver/9.3/java/geodatabases/definition_frame.htm
http://www.dot.ga.gov/ds/data#tab-4
https://doi.org/10.1061/JTEPBS.0000329

55

Mena-Yedra, R., Casas, J., and Gavaldà, R. (2018). “Assessing Spatiotemporal Correlations from

Data for Short-term Traffic Prediction Using Multi-task Learning.” Transportation Research

Procedia, 34, pp.155–162. Available online: http://dx.doi.org/10.1016/j.trpro.2018.11.027.

Meng, F., Wong, S.C., Wong, W., and Li, Y.C. (2017). “Estimation of Scaling Factors for

Traffic Counts Based on Stationary and Mobile Sources of Data.” International Journal of

Intelligent Transportation Systems Research, 15(3), pp.180–191. Available online:

http://dx.doi.org/10.1007/s13177-016-0131-1.

Tran T, Le U, Shi Y. (2022). An effective up-sampling approach for breast cancer prediction

with imbalanced data: A machine learning model-based comparative analysis. PLoS ONE 17(5):

e0269135. https://doi.org/10.1371/journal.pone.0269135.

Singh, N.K., Vanajakashi, L., and Tangirala, A.K. (2018). “Segmentation of Vehicle Signatures

from Inductive Loop Detector (ILD) Data for Real-time Traffic Monitoring.” 2018 10th

International Conference on Communication Systems & Networks (COMSNETS), January, pp.

601–606. Available online: https://doi.org/10.1109/COMSNETS.2018.8328281.

Weather Underground. (2021). “Atlanta, GA Weather History.” TWC Product and Technology,

Brookhaven, GA. Available online:

https://www.wunderground.com/history/monthly/us/ga/atlanta/KATL/date/2021-6, last accessed

September 1, 2021.

Yale University. (2021). “Linear Regression.” (website) Available online:

http://www.stat.yale.edu/Courses/1997-98/101/linreg.htm, last accessed September 1, 2021.

http://dx.doi.org/10.1016/j.trpro.2018.11.027
http://dx.doi.org/10.1007/s13177-016-0131-1
https://doi.org/10.1371/journal.pone.0269135
https://doi.org/10.1109/COMSNETS.2018.8328281
https://www.wunderground.com/history/monthly/us/ga/atlanta/KATL/date/2021-6
http://www.stat.yale.edu/Courses/1997-98/101/linreg.htm

