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SUMMARY

This project explores the ability to use vehicle-locating data to assess the state of the road
network, including identifying road blockages along different segments of the transportation
system. Compared to prior work using stationary data sources, such as loop detectors, traffic
cameras, or traffic monitoring stations, or individual human-collected data collected either
directly or through third-party sources, this project utilizes the mobile sources of Georgia
Department of Transportation (GDOT) vehicles and their associated vehicle-tracking
information to infer the state of the road network and perform transportation network assessment.
These data are already currently being collected, demonstrating the utility of these data in
performing road network assessment without the need to invest in new technologies, dedicate

additional resources, or implement new instrumentation or infrastructure.

The raw dataset of vehicle-locating data is large and, in many cases, messy. In this project, we
develop and implement multiple data trimming and processing methods using ArcGIS-specific
Python algorithms to transform this initially large dataset into a usable format for network
assessment. To utilize the vehicle-locating data in particular, we create a workflow to enable
comparison of the vehicle routes with optimal routes to detect suboptimal routing decisions that
may be indicative of blockages in the road network. This workflow includes the creation of
vehicle route segments based on the individual vehicle-locating data points, the linking of
segments into routes, the identification of optimal routes between these points, and the
comparison of distances between the actual taken routes and the optimal routes to detect the
degree of suboptimal routing and its association with the likelihood of the presence of a road

blockage.

Vi



We use the resulting datasets as inputs and create machine learning models with multiple
variables to detect the presence of a road blockage. We explore both regression-based and
classification-based models, and find that the classification model performs particularly well for
this task. In this project, through the use of multiple data processing and data analysis methods
combined with machine learning approaches, we show how the vehicle-locating data can be used

to perform network assessment and accurate detection of blockages in the road network.

Vii



CHAPTER 1
INTRODUCTION

Road infrastructure makes up a crucial component of Georgia’s asset network. Throughout the
state, connections link different areas to each other, providing access to employment, social, and
health services, thereby supporting state activities and stimulating economic development. These
services are interrupted, however, by the presence of road blockages, including those due to
vehicular accidents, debris, and flooding, among other factors, which limit and can prohibit
travel along certain routes. Providing real-time information on the state of the transportation
network is a way for state agencies to understand the state of the network at any point in time,
deploy resources as needed to resolve any road blockages, and prioritize specific areas of the

road network for recovery.

An increasing number of data sources are available to potentially provide such information on
the state of the road network. However, these often require significant resources to implement,
including to install certain infrastructure or hardware to collect data, or in changing specific
practices by the public or individual workers to ensure reliable data collection. These challenges
potentially limit the utility of these data sources for road network assessment, both by the amount

of data that can be collected, and in how accurate or reliable these data turn out to be.

In this project, rather than using these types of data sources (such as data collected from fixed
infrastructure installations, or individual human-collected data) with their accompanying
challenges and limitations, we (research team) use data that are already currently being collected
by the Georgia Department of Transportation (GDOT). Specifically, we use data that are already

implemented through hardware on GDOT vehicles that track GDOT vehicle locations as they
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travel over the network to infer the state of the road network and perform continuous network
assessment and updating. The idea is that as GDOT vehicles travel over the network, they are
continuously collecting data on the state of the network in the road segments they are traveling
over. For example, if a GDOT vehicle travels over a certain route, it can be inferred from the
vehicle-locating information that the particular route that the vehicle traveled over is unblocked,
and open for passage. In contrast, if a vehicle makes an unexpected detour around a certain part
of the network, there is some likelihood that the vehicle was avoiding a blocked part of the

network, indicating a potential road blockage in the area avoided.

Thus, the GDOT vehicles provide valuable information on the real-time network state. The
benefit of using these vehicle-locating data for the network assessment is that these data are
already being collected by GDOT assets, so no additional investment in assets or infrastructure
needs to be implemented to perform the network assessment. In addition, the GDOT equipment
that collects the vehicle-locating data is implemented passively rather than actively, meaning that
it will collect these data without the need for operators to turn on certain instruments or
capabilities. The result is that there is less risk that something will occur to disrupt data
collection and that there is increased reliability that the data will be continuously collected. The
GDOT vehicle-locating data are also being collected continuously, enabling the network
assessments that are made based on the data to be continuously updated as new information is
recorded and received about the locations and routes of GDOT vehicles across the network.
Finally, because the data are being collected by GDOT rather than by a third party or by the
public, and they are being used for GDOT purposes, there are no issues regarding data security

or privacy in order to collect or use the data. Also, GDOT has control over how the data are



collected moving forward, rather than relying on potential changing data collection strategies,

rules, and regulations from third-party owners.

The objective of this project is to create a system and investigate the feasibility of such a system
that is able to utilize currently collected GDOT vehicle-locating data to provide real-time
assessment and updating of the state of the transportation network assessment. Doing so will
provide GDOT with important information to support increased situational awareness of the state
of the network, as well as support resource allocation, hazard mitigation, and network recovery

operations to resolve any road blockages across the transportation network.

To accomplish this, in this project, we utilize data sources provided by GDOT as inputs into the
system. The main data inputs are vehicle routing information and traffic incident data
representing road blockage information. Next, we perform a series of preprocessing, data-
modification, and data-processing operations in order to make the data usable and consistent for
the full data-processing system. It is noted that the datasets investigated are large, and require
several transformations to enable operational viability and provision of use as geographic
information system (GIS) intelligence. A workflow has been developed to efficiently create and
utilize the vehicle-locating points (VLPs). This includes the processing of the large vehicle-
locating datasets using data trimming and buffering methods, as well as the identification and
connection of specific vehicle-locating data points into individual vehicle route segments. These

operations refine and process the datasets.

Next, the goal is to create a model that is able to use the vehicle-locating data as inputs to detect
road blockages in the transportation network. We utilize machine learning methods, which

involve building of the models and both training and testing of the datasets with the models. The



training step—training a dataset using machine learning models—enables us to understand how
traffic conditions and vehicle-routing information interact with each other to be able to infer the
presence of a road blockage based on the vehicle-locating information. The goal is then to use
the trained dataset to apply to a real-time detection system with the presence of processing
capabilities. The specific machine learning methods investigated include ordinary least squares
(OLS) linear regression and decision tree classification, both of which are explored to learn the
trends of traffic across the network based on the vehicle-locating information to accurately
predict the likelihoods of road blockages. The resulting model provides intelligence and learning
about how two large datasets, containing VLPs and georeferenced traffic incident data, interact

with one another over the time scope of the study.

The results of this study demonstrate the novelty and utility of a mobile detection system across a
broad network utilizing currently collected GDOT vehicle-locating data to provide information

about the state of the transportation network as it changes over time.



CHAPTER 2
LITERATURE REVIEW

Previous research includes work in the area of using new technologies to facilitate evacuation
decisions after a disaster (Iliopoulou et al. 2020); however, this project focuses on transportation
network assessment rather than evacuation routing. While many previous studies focus on traffic
estimation and prediction (e.g., Mena-Yedra et al. 2018), this project focuses on real-time
network assessments with outcomes facilitating resource allocation and network recovery
through identification and detection of road blockages. In terms of specific technologies,
previous research often utilizes fixed data-collection sources, such as loop detectors and traffic
monitoring stations providing traffic count information (Singh et al. 2018). Compared to that
work on utilizing stationary data sources (i.e., loop detectors, traffic cameras, traffic monitoring
stations) for transportation network analysis, this study focuses on the mobile sources of GDOT
vehicles and their associated vehicle-tracking information, which is wider-reaching with lower

operational costs, and the other benefits previously described.

Recently, movement has been toward the use of increased mobile data sources (e.g., Meng et al.
2017). However, that work focuses on traffic flow modeling rather than actual network
assessment, which is the focus of this project. Finally, regarding the use of mobile data for post-
disaster network assessment, much of the recent work uses crowdsourced information for
infrastructure assessment (Basu et al. 2016, Astarita et al. 2020). Compared to crowdsourced
data, the mobile vehicle-locating data utilized in this project represents a more trustworthy,

detailed, and accurate geolocated data source for transportation network assessment.



This effort contributes to the previous studies that have explored utilizing vehicle-locating data
to perform real-time transportation network assessment. The anticipated benefit is that data that
are currently collected by agencies, such as GDOT, can be used and leveraged for use in
transportation network assessment and updating as vehicles, routes, and network conditions

change.



CHAPTER 3
METHODOLOGY

3.1. Data Input Sources

Georgia Road Network Shapefile

To assess the geospatial relations of all the utilized datasets related to the transportation network,
it is necessary to have a base file of the road network. The first data input is the shapefile of the
State of Georgia’s road network. This shapefile consists of a series of interconnected polylines
representing the midpoint of Georgia roads. The shapefile includes the identification code,

geolocation, and width of 205,351 road segments.
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Figure 1. Map. The LRSN_GDOT feature is representative of the provided Georgia Road
Network Shapefile. Shown in cyan is Ferst Drive on the Georgia Tech campus in Atlanta, GA.
Selected feature displaying information on the polyline shape length, county, road identification
code, and direction (increasing/decreasing).



WebEOC Executive Report

To match the vehicle-locating data with identified incidents on the road network leading to
potential road blockages, it is necessary to know where and when the road incidents occurred.
This information is attained through the WebEOC Executive Report, which is exported as a
spreadsheet. The report includes state route location, incident description, direction, and the
number of lanes passable. For this study, there are approximately 4,000 incidents reported within

the Fulton County boundaries, spanning between January 2016 and September 2021.

A B c D E F 6 H
1 Incident District Incident Area County GDOT Incident Name State Route Number Interstate Begin Mile Post  End Mile Post
2 District Three- Thomaston  Area 5 - LaGrange Coweta ACCIDENT 5R 16 E AT ORCHARD HILLS RD 00001600 0.00 T
3 District Seven- Chamblee  Area 1-Chamblee  DeKalp 1-285 S EXITTO US 78 00040700 .00 9633
4 District Seven- Chamblee  Area 1-Chamblee  DeKalb 1-285 SBEXTO US 78 00040700 0.00 %633
5 District Six- Cartersville  Area3-Buchanan  Carroll ACCIDENT WITH FATALITY 00040200 0.0 1590
6 District Three- Thomaston  Area2-Columbus  Muscogee SR 520 W AT MARATHON DR 00052000 00.00 .73
7 District Three- Thomaston  Area2-Columbus  Muscogee |-185 N ATMACON RD 00041100 0.00 "14.60
8 District Two- Tennille Area 4 - Augusta Columbia WB 120 MM 178 00040200 108 o108
9 District Three- Thomaston  Area5-LaGrange  Meriwether SR 100 E/W PAST COUSINS RD 0010000 ‘0.0 GERE]
10 District Three- Thomaston  Arez 1-Thomaston  Spalding ACCIDENT SR 155 N AT ETHRIDGE MILL RD 00015500 0.00 1299
11 District Three- Thomaston  Area 1-Thomaston  Spalding 175 SB AT MM 207 00040100 0.00 o188
12 District Three- Thomaston  Area 1-Thomaston  Henry 1-75 5B AT SR 155 00040100 0.0 062
13 District Three- Thomaston  Area 1-Thomaston  Spalding ACCIDENT SR 362 AT CARVER RD 00036200 215 62
14 District Two- Tennille Area 4 - Augusta Warren ACCIDENT; I-20 WB AT MM 163.5 00008000 0.0 483
15 District Two- Tennille Area 4 - Augusta Columbia ACCIDENT; 1-20 WB AT MM 187 00040200 00.00 "6.94
18 District Three- Thomaston  Area 5 - LaGrange Meriwether ROAD FLOODING SR 74 AT IMLAC RD 00007400 0.00 "9.99
17 District Three- Thomaston  Area 1-Thomaston  Henry TREE DOWN SR 81NEAR STEELE DR 00008100 0.0 2.0
18 District Three- Thomaston  Area 5-LaGrange  Coweta ACCIDENT SR 34 BYPASS AT HOSPITAL RD 0.00 0.00
19 Distict Two-Tennille  Area5-Madison  Newton ACCIDENT; E8 120 AT MP 93 0040200 (TFE) 509
20 District Three- Thomaston  Area 1-Thomaston  Spalding 175 SB AT MM 207 0040100 0.00 188
21 District Six- Cartersville  Area 3-Buchanan  Carroll ACCIDENT; CARROLL; 1-20 E AT MM 22 00040200 00.00 1590
22 District Seven- Chamblee  Area 2 - Marietta Fulton SR 141 N AT RIVERCLUB PKWY f0.00 fo0.00
23 District Five- lesup Area5-Savannah  Liberty ACCIDENT; 1-95 NB PAST SR 38 00040500 0.00 319
24 District Three- Thomaston  Area 2-Columbus  Talbot ACCIDENT AND DEBRIS (TREE) NB/SB SR 85 AT OWENS CIR 00008500 0.0 548
25 District Four- Tifton Areal-Valdosta  Lowndes SR 3158 BEFORE CARROLL DR (MILE POST 9) 0040100 0.0 3136
2 District Three- Thomaston  Area 4 - Macon Monroe 75 5B EXIT 185 00001800 0.00 "848
27 District Seven- Chamblee  Area 1-Chamblee  Fulton ACCIDENT 00040200 .00 158
28 District Seven- Chamblee  Area 3 - College Park  Clayton ACCIDENT W/ OVERTURNED VEH 00013800 0.0 1056
29 District Seven- Chamblee  Area 1-Chamblee  Fulton FULTON CO NB 75 PAST 17TH ST 0001300 0.0 378
30 District Seven- Chamblee  Area 1 - Chamblee Fulton SR 166 W BEFORE DELOWE DR 00015400 "16.10 36.28
31 District Four- Tifton Area 5 - Albany Clay ACCIDENT; OVERTURNED TT SR 1 AT SR 37 00003700 0.0 1387
32 District One- Gainesville  Area 3-Camesville  Stephens SR 17 WB PAST BLACK MOUNTAIN RD 000017AL 0.0 f9.19
33 District Four- Tifton Area 3 - Donalsonville  Seminale SR 38 W AT THREE NOTCH RD 00003500 0.0 380
34 District Three- Thomaston  Area 3 - Pery Macon PENDING MAINTENANCE SR 43 NB/SB AT MORSE AVE 00004900 0.00 2694
35 District Five- Jesup Area3-Brunswick  Camden DEBRIS 00002500 0.00 3165

Figure 2. WebEOC Spreadsheet Data. Important features include Incident Type, Time of
Occurrence, and Geolocation (latitude/longitude).



Verizon Network Fleet Geodatabase

The vehicle-locating data utilized in the project as tracking information for the GDOT-owned
vehicles as they travel over the road network is from the Verizon Network Fleet system installed
and operational on the vehicles. These data are output as a Verizon Network Fleet Attribute
Table displaying vehicle locating point identifying information. An example of the converted
Excel spreadsheet of the GDOT vehicle-tracking information from the Verizon Network Fleet
geodatabase, located in the appendices, includes vehicle ID, location, time, and ignition status of
the vehicle (On/Off). The location and time information are used to create the vehicle tracks over
the network. The “Ignition” column provides the information about the state of the vehicle being
turned on or off. These data are used to cut the large dataset into individual vehicle route
segments, indicating when to cease a vehicle route segment in the created function Valid.py.
Vehicles are grouped and identified using the data in the “VIN” column, representing the vehicle
identification number. This enables us to identify and locate individual vehicles over the
network. Vehicles are tracked with a frequency of 2 minutes until the ignition of the car is turned

off.

Vehicle-locating points are restricted to Fulton County and subdivided into 19 separate ArcGIS
feature classes. The Verizon Network Fleet data are subdivided to improve the processing time
of our user developed Valid.py function, which creates the vehicle route segments. For the study,
approximately 44,000 vehicle locating points were randomly selected across the 19 ArcGIS
feature classes. These points, spanning between April and May of 2021, were then merged for

processing.



As the Verizon Network Fleet data span across Georgia, our data need to be extracted from

Fulton County, which is chosen for its centrality of vehicle traffic in the state. To initiate this

process, a feature class is used named Counties.gdb containing the shapes of all 159 counties in

the state of Georgia. To extract the Fulton County shape, the attribute is selected in the Feature

Class Attribute Table, and scrolling over to the layers in the ArcGIS project, we create a layer

via the “Make Layer From Selected Features” function. The Selected Feature Class is then

named “Fulton County”. The ArcGIS function Clip is then used to create new feature classes

containing only the vehicle-locating points from Fulton County. The input is the Vehicle

Locating Point Feature Class and Fulton County selection feature class, with the output being of

the name VLP_FC[number of data subdivision]. Here, VLP stands for vehicle-locating points,

and FC stands for Fulton County.

1FTTW2AB4AFEBDT 186
1FTEX1C53KFB50134
1FTEX1C51UFC16758
1FDOXSHYXKEC92406
1FTEW1ES9JFC16734
2FTPFITZ64CABRT19
1FTBF2B6IHEE49969
1FDOXSHYXKECG2406
3FABPOGT2LR199751
1FDOX5HY3GEB&8350
1GBM7H1C3XJ103491
1FTYR2YGTKKB31472
1GBM7H1C3X)103491
3FAGPOGT2LR199751
1FTEX1C58LFB37901
1HSWYSBR96)209595
1FDOXSHYOHEC34622
1FDOXSHYTHEC24617
1HSWYSBRO6)209595

3FAGPOGT2LR199751

FLEETID

7 | 335916993

335916993
335916993
335916993
335916993
335916993
335916993
335916993

MSGID

139121989433
139122091482
139122278182
139115945673
139122264878
139115960508
139122291728

139122381154

93 130116175488

139116145170

93 139116258748

335916993
335916993
335916993

139116258565
139122323250

139116269850

93 139116302848

335916993

335916993 | 1391316094

335916993
335016993
335916993
335016993

for)
©

o
)
=)

139131820228
139131852330
139174445976

MESSAGETIME

5/5/2021

5/5/2021 1

5/5/2021

5/5/2021 1
5/5/2021 1

5/5/2021
5/5/2021

5/5/2021 1
5/5/2021 1
5/5/2021 1

5/5/2021
5/5/2021
5/5/2021
5/5/2021
5/5/2021
5/5/2021
5/5/2021
5/5/2021
5/5/2021
5/5/2021
5/5/2021

1:14:19.000001
18:58.00000i
1:25:33.000001
23:18.00000(
24:24,000000
1:24:39.000001
1:26:42.000001
31:25.000000
34:04.000001
32:09.00000(
1:37:01.000001
1:37:00.000001
1:26:15.000001
1:37:59.00000i
1:37:16.000001
7:45:15.000000
7:40:18.000001
7:42:30.00000(
7:51:48.000001
7:55:11.00000(

8:18:04.000000

MESSAGETIMEUTF
1620220459
1620220738
1620221133
1620220998
1620221064
1620221079
1620221202
1620221485
1620221644
1620221529
1620221821
1620221820
1620221175
1620221879
1620221836
1620243915
1620243618
1620243750
1620244308
1620244511

1620245854

DELIVERYSTATUS
Curre
Curre
Curre

Curre|

Curre
Curre
Curre
Curre
Curre
Curre
Curre

GPSFIXES

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

FIXTIMEUTF
1620220456
1620220737
1620221132
1620220995
1620221060
1620221078
1620221201
1620221483
1620221640
1620221527
1620221818
1620221815
1620221169
1620221876
1620221832
1620243914
1620243615
1620243749
1620244304
1620244511

1620245884

LATITUDE LONGITUDE IGNITION
33.80807  -84.37852 On
3406087  -8431296 On
33.82364 -B4.3525 O
33.61173 -84.5221 On
33.79399 -84.39388 Or
33.936 -84.35776 On
33.81305 -84.42027 On
3382414  -8435236 On
337637 -84.383 Or
33.75915 -84.37888 On
3374578 -8436331 On
3370226  -84.39808 On
34.05063 -84.10162 On
3370219  -84.39808 On
3381916 -8436117 On
33.75972  -8437916 On
3382343 -84.35207 Or
33.7659 -84.50617 On
3376796 -8439012 On
33.82336 -84.352 On
3378183 -84.39125 On

HEADING
<Mull>
<Mull>
<MNull>

ODOMETER
82824.523
106481.266
1384215
37452.51
40980.829
16677.215

39 133729873

76937.50
40984247

438340
91774309
42620857
13354.075
42620857

4388745

9479.701
92303.199
123785.83
58916.769
92303.199

4563.661

Figure 3. Spreadsheet data. Verizon Network Fleet Attribute Table displaying vehicle locating
point identifying information. The “Ignition” column shows the state of the vehicle being turned
on or off. This will indicate when to cease a vehicle route segment for Valid.py. Vehicles are

grouped and identified using the data in the “VIN” column, representing the vehicle
identification number.
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3.2. Data Pre-Processing

With the set of data inputs, certain preprocessing and data-modification operations need to be
conducted to properly prepare the data for processing. The purpose in this preprocessing stage is

to prepare the workspace within ArcGIS for the later route segmentation and analysis stages.

The first step in the data preprocessing is to convert the Verizon Network Fleet Excel files into
ArcGIS geopoints. This is done through the function XY Table To Point, where the X field

specifies longitude, and the Y field specifies latitude. This latitude and longitude information is
included in the Network Fleet .csv table. All other columned information is transferred into and
associated with each VLP. The output of this function is a feature class of georeferenced points

corresponding with the vehicle-locating data points.

Next, a network analysis layer that identifies the Georgia road network must also be set up. This
is completed through the creation of a “New Network Database” (ND), which inputs the
LRSN_GDOT (i.e., the Georgia Road Network Shapefile). This input is composed of all the

center points of the Georgia road network strung together as separate polylines.

Additionally, in working with the datasets, given the large size of the datasets, the data points are
trimmed to reduce the processing time and remove any redundant information in the datasets.
Looking closely at the data, the data in this preprocessing time are trimmed based on the location
of the points relative to the locations of the road segments. Here, we trim the data based on
proximity to the road network using the ArcGIS Buffer analysis function. Vehicle-locating data
points sufficiently far from the road network indicate that the vehicle is not actually on the road

or traveling along a road segment.

11



A buffer of 30 ft (which covers large highways) is chosen from the center of the road network
layer to cover all data points within the road network. Parking lot areas and driveways are
examples of data points that occur outside of the buffer and are trimmed and not included in the
analysis. These cases can be neglected in our objective for vehicle routing and vehicle tracking
along road segments. Once points are converted into vehicle routes, additional trimming will be
conducted. The redundant data points are removed as they do not represent information about
vehicles traveling on the road network, and therefore, are not of use in the vehicle route-tracking

analysis process to detect blockages along the road network for this project.
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Figure 4. Diagram. Demonstration of vehicle-locating points removed by the ArcGIS Buffer
function in the data-trimming step. Redundant data points (outlined in red) most likely represent
stationary vehicles due to their proximity to each other and distance from the buffered route
segment (shown in green).
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3.3. Data Processing

With the data preprocessed, this chapter describes the many functions developed as part of this
project to process the data in the created data analysis and processing pipeline. These functions
are written in Python to facilitate the interoperability of datasets and use with ArcGIS for the
geolocated data. There are two main processing steps, each with an associated Python function
written. The first is to obtain the desired vehicle routing and incident segments such that they can
be overlaid for analysis; this function is called GetSegments.py. The second is to ensure that the
vehicle-locating data points are valid and to connect consecutive valid points as nodes to create

individual vehicle routing segments; this function is called Valid.py.

Our first step of processing involves coding a function to retrieve the vehicle routing and
WebEOC incident segments for further analysis. The first function, GetSegments.py, is enabled
by the ArcPy function Segment Along Line and utilizes ArcPy. GetSegments inputs the WebEOC
dataset and the Road Network layer to output incident segments. Therefore, the WebEOC points
with length of segment blockage (Begin mile of segment to End mile of segment) are converted

to line segments.

o
.
East Point (=1 % East Point

Figure 5. Screenshot. GetSegments.py output.
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The second function, Valid.py, utilizes the ArcGIS Network Analyst feature and ArcPy to find
connected vehicle-locating points by similar Vehicle ID (VIN) and FixTime to create vehicle
segments across the Georgia road network. The function ensures that the VLPs used in the
analysis are all valid points as part of individual GDOT vehicle routes. Valid.py also utilizes a
function file named mxFindRoutes that finds the VLPs to be connected and linked together
through the Valid.py function. The VLPs are sequential points for a single vehicle as it travels
over the network. Each point is separated by a 2-minute time interval. As such, a certain number

of points in sequence are of interest to construct the full detailed routes of the vehicles.

The objective here is to use the individual VLPs to construct a continuous route of the vehicle as
it travels over the network. In doing so, there is a tradeoff between the number of consecutive
points used (to construct a continuous route), and the computational cost of storing all the points
in an increasingly large dataset for processing. Therefore, from an investigation of the data, and
the typical distance covered between points, up to six points are connected at a time to create a
vehicle route segment. mxFindRoutes links these points, up to six in number, to input into Solve

and create a vehicle segment of as many nodes.

Given the breadth and number of vehicle tracks that are collected as part of the datasets, Valid.py
unintentionally creates certain extraneous segments, including multiple route segments on the
same path, some routes contained within others, and segments with no length. These attributes
are often found when working with field-collected datasets and need to be addressed to ensure
the resulting data points used for analysis are all representative of the data that are desired to be

collected, and are accurate and reliable in reflecting vehicle routing actions in the field.
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To detect and filter out the data, and in particular remove the extraneous routing segments, a
custom program is developed in MATLAB to identify such segments (specifically those where
multiple route segments are identified on the same path and the segments that are of zero length).
Once identified, the rows containing extraneous segments are selected with the Select By
Attributes tool and deleted to eliminate their effect on the subsequent machine learning model

developed.

Finally, given the density and amount of data collected as part of the vehicle-locating equipment,
significant computational times are required to process the datasets. An initial processing and

analysis were conducted through the Valid.py function.

Therefore, to reduce computational times, we created an additional step in the data processing
and analysis, which is to iterate by vehicle numbers to match the correct vehicle segments and
complete the code. A list of VINs are compiled, and the input in Valid Track Points are single-
vehicle selections (using ArcGIS Make Layer From Selected Features), repeated for each
vehicle. Because the code is iterative through each VIN, a queue of Valid.py codes is made for
each vehicle, which significantly improves the data processing times. To iterate through the
necessary data points for processing, the computer was left on over night and took multiple days

to run.
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CHAPTER 4
RESULTS

4.1. Model Variables

Average Annual Daily Traffic (Ind. Variable)

The first independent variable included is the average annual daily traffic (AADT) on specific
road segments. The amount of traffic on a given road segment will affect the likelihood of a
potential incident on that segment. GDOT provided road and traffic data that are publicly
available to be used in this project, such as a shapefile of traffic counts along the Georgia road
network (GDOT 2021). Included in these data are geolocated AADT for given road segments.
The most recent numbers from 2019 are used, as 2021-2022 data have yet to be published.
Under the Traffic Data Type, the Spatial Geodatabase is used for this project. Attribute traffic
information is later linked based on the Feature ID (FID) closest to a vehicle route segment

(representing the road the vehicle is on) using the ArcGIS Merge function.
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Reports, Guides, & Data

Traffic Reports | Road Mileage Reports (400 Series) | Guides & FAQs

The files below represent the most current data available. All data and products are provided “as is” and represent the highest quality of information available in
the Department at the date of issue. Every effort is made to provide accurate and reliable information, but it is still possible that errors exist. Please review the
metadata for each file that you download.

DATA DESCRIPTION ERETFE
« Spatial:
Geodatabase
Download available traffic data in different formats. The Georgia Department of Transportation's (GDOT) Office of « Tabular: Excel
Transportation Data (OTD) collects traffic data to meet the needs of Georgia's federally required traffic monitoring + Document:
Traffic program. Traffic data is collected using continuous counters, short-term counters, or portable and continuous Rounding Rules
weigh-in-motion counters. + Historical: 2010-
2019
Download road inventory data in different formats for more than 125,000 centerline miles of public roads in « Spatial:Geodatabase
Road Georgia. OTD utilizes remote sensing, Local Road Activity (LRA) reports, construction design plans, and data + Tabular: Excel

Inventory mining to collect road data. The road inventory data includes state routes, county roads, and city streets.

Data

Dictionary: ~ The Data Dictionary describes the codes and methodology used for the collection of road inventory data. This file ~ Document: Data
Road should be downloaded in conjuction with the road inventory files (in either tabular or geospatial formats). Dictionary
Inventory

Figure 6. Screenshot. GDOT Road and Traffic Data. The most recent numbers from 2019 are
used, as 2021 data have yet to be published. Under the Traffic Data Type, the Spatial
Geodatabase is used for this project.

The ArcGIS Near function is used to link the VLPs with this geolocated traffic information.
Inputs are a feature class and target feature class to find the closest feature of the target feature
class. The output is the FID of the closest feature in the Traffic Data into the VLP Attribute
Table. A search radius of 100 ft is set, which is intended to avoid incorrect closest features from

being linked to the data.
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Figure 7. Screenshot. Visualization of Traffic Location Data (left) with georeferenced
information (pop-up on right). AADT is used for this study. For our example here,

4,530 vehicles is the AADT for 2019. Attribute information is later linked based on the FID
closest to a vehicle route segment (representing the road the vehicle is on)

using the ArcGIS Merge function.

Optimal Route Length Difference (Ind. Variable)

Key to the investigations performed in this project is the detailed analysis of the vehicle routes
that are identified based on the vehicle-locating data collected from the GDOT vehicles traveling
over the road network. We consider the difference between the actual routes taken by the GDOT
vehicles (identified by the vehicle-locating data) and the determined optimal routes in traveling
between points in the network, where optimality is measured by the shortest route length, where
we analyze these differences by identified vehicle route segments. In order to compare the taken
routes and optimal routes, we first need to determine the optimal routes; then, we look at the

difference between these two routes by length.
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To identify and create the optimal route segments, the start and end points are taken for each

vehicle segment and input into the Network Database Analyst as “Stops” using the Import Stops
function. We then use the function Solve to create the optimal vehicle segments. As the ArcGIS
Feature Compare cannot be utilized for polylines but rather points, we use the length difference

between the optimal route and the taken route as the model variable.

N¢

Langford-Pkwy ;'

Figure 8. Screenshot. ArcGIS Solve function output. Each purple line, with one highlighted in
cyan as a demonstration, represents an optimal path. 1’s represent the starting point and 2’s
represent the ending point of a vehicle route segment.

As identification and comparison with the optimal route is key to the analysis of the vehicle route
segments and use of the vehicle-locating data, the optimal route workflow is now described in
more detail. To explain the workflow of creating the Optimal Route from the Valid.py vehicle-
locating points layer, we must first make a separate layer of the start and end points for each route
segment. With this separate layer, we can then run Solve similar to that of Valid.py, except we use
the ArcGIS code rather than our developed code as in Valid.py to find the output. Once this step

is completed, we compare the actual taken route and the optimal route by using the taken route
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segments and the optimal segments (from Solve) to create an Optimal Route Length Difference
field. The output is the length difference between the taken route and the optimal route.

Daily Precipitation (Ind. Variable)

The website Weather Underground provides historical daily weather condition values, including
precipitation, humidity, temperature, and wind speed. Precipitation is utilized for our model,
pairing the daily precipitation total (in inches) to the vehicle routes. Wind speed is also said to
have a significant impact on road conditions, but wind speed never reached critical values to
become hazardous for the road network. The thought with adding a precipitation variable is that
the chance of vehicle hydroplaning combined with a lack of driver visibility with increased
precipitation would intuitively increase likelihood of vehicle collisions, a major contributor to road
blockages.

2020 GDOT Traffic Factors (Ind. Variable)

The Georgia Department of Transportation publishes traffic factors every year that correspond to
daily and monthly impact on traffic. The most recent published copy comes from 2020, and our
values focus on Fulton County and on Minor/Major Arterials and Freeways. From the data, we
see, for example, that Weekends (daily) and the Spring months of March to May (monthly) have
the highest (on average) traffic factor contributions into the model.

Historical Route Danger (Ind. Variable)

Considering that certain parts of the road network are more likely to experience blockages, we
define a new variable called the Historical Route Danger that evaluates along the sum of historical
blockages/incidents that have occurred along the route in recent years. Using the same method for
collecting the model input, two separate danger indexes are collected from the WebEOC Executive

Report and from the Numetric Crash Data website. WebEOC Executive Report represents the
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GDOT-reported road blockages along the Georgia road network before the first point of our
vehicle geolocated points, spanning January 2016 to March 2021. Numetric data spans January
2013 to the present day, and includes privately collected vehicle crashes, but in much higher
quantity than that of the WebEOC Report data. Note that Numetric data does not represent all road
blockages along the road network, just vehicle collisions.

The procedure for collecting the historical blockages is first that each of the routes is given a
distance buffer, hence creating a polygon which contains the route segment. Next, the ArcGIS
Spatial Join feature is used, which allows the route layer to be contrasted with the WebEOC Report
and Numetric Crash Data. The “Match Option = Contains Within” parameter within ArcGIS is
used to find all instances of the Join Feature (WebEOC/Numetric layer) contained within each of
the polygons (representing each route with a buffer). With these collected values along each
vehicle route, we characterize the danger (or likelihood of blockage) of roads traveled along the
route.

WebEOC Incident Presence (Dep. Variable)

Finally, the objective is to use the independent variables described above in order to predict road
blockages in the network, in this case measured by road incidents as recorded by WebEOC. Thus,
we use the WebEOC data as our model output, with the presence of an incident being the binary
dependent variable for prediction. We run classification models for the datasets, split on the binary
dependent variable between ten different time buffers: 0 hours, 1 hour, 3 hours, 6 hours, 12 hours,
1 day, 2 days, 1 week, 2 weeks, and 1 month, where the buffers are subtracted from each vehicle
point’s start time to allow for greater time in a route between the (Start Time — Buffer) and End
Time. These time frames are selected to ensure sufficient data (i.e., sufficient numbers of

individual data points) for the training and testing of the models. If a vehicle route segment is
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within 100 ft of a WebEOC incident within the time frames, a “1” is given for the presence of the
traffic incident. A “0” represents the vehicle route segment not being in the presence of a traffic
incident with the same constraints. Note that with an increase in data and processing capabilities,
the model should be trained on the incident being within an hour or less of the vehicle driving by,
to be able to pinpoint when a traffic incident has occurred and the application of a real-time
monitoring system. This study focuses on a particular subset of the data, with the scope focused
on Fulton County and the longer time frames to demonstrate the model’s feasibility and

applicability.

4.2. Classification Model Evaluation

We chose machine learning as a method of detecting road blockages because of the ability of the
models to learn indicators/trends. Additionally, the model, through training sets has the ability to
improve itself. Specifically, decision tree-based classification was the method selected, as the
nature of binary prediction was well-suited for our project. Decision Trees are a supervised
machine learning algorithm that use strings of rules to make classifications. To run the
classification model, the shapefile was exported to MATLAB, where a script was written to handle
and transform the ArcGIS feature classes to usable double formatted matrices.

We analyze the accuracy of our classification results using a confusion matrix, which displays the
true result (blockage or no blockage) and the model-predicted result (blockage or no blockage) on
a 2x2 matrix. If we take the presence of a route blockage as the “positive” class, and no route
blockage present as the “negative” class, then True Class = 1 and Predicted Class = 1 indicates a
true negative (TN), upper left in the confusion matrix; True Class = 1 and Predicted Class = 2

indicates a false positive (FP), upper right in the confusion matrix; True Class = 2 and Predicted
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Class = 2 indicates a true positive (TP), lower right in the confusion matrix; and True Class = 2

and Predicted Class = 1 indicates a false negative (FN), lower left in the confusion matrix.
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Figure 9. Screenshot. Classification decision tree visualized in MATLAB for 3-hour buffer.
Each node represents a predictive decision made by the model to arrive at an estimate for
whether or not a route blockage is present. End nodes (leaves) represent these binary predictions.
In this model, x1 = Precipitation, x2 = Daily Traffic Factor, x3 = Monthly Traffic Factor, x4 =
Average Annual Daily Traffic, x5 = Optimal Length Difference, x6 = Historical Route Danger —
WebEOC, x7 = Historical Route Danger — Numetric.

From these values, we can calculate the accuracy and performance of the classification model. In

particular, we are interested in the recall and precision of the models. Recall indicates the ability

TP
TP+FN’

of a classification model to identify the data points in a relevant class and is calculated as

Precision, on the other hand, indicates the ability of a classification model to return only the data

TP
TP+FP’

points in a class and is calculated as

In this case, we will look at the 2-day and 1-month buffers for a comparison of the classification
models. For the 2-day model, Recall = 9.9 percent and Precision = 16.7 percent. The 1-month

yields stronger results, with Recall = 68.3 percent and Precision = 64 percent. Out of the 44,143
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segments, there were 1,746 (3.96%) blockages for the 2-day buffer (3.96% of the route segments
had an incident occur on the route between their start and end times, or to a month before) and
there were 16,337 (37.01%) blockages for the 1-month buffer. It can be concluded that the 1-
month classification model has more information about blockages so it can develop more
specifications/decisions to develop a classification. As the 2-day buffer model only has ~ 4%
true classification result (blockage present), it has less information about what produces a

blockage from the explanatory variables.

3 hour Confusion Matrix 2 day Confusion Matrix

1 8804
2

10
15
99.8% 97.6% 16.7%
0.2% 100.0% 2.4%
1 2

1 2
Predicted Class Predicted Class

1 8481 115

IN)

210 23

True Class
True Class

Figure 10. Screenshots. Confusion matrices for 3-hour and 2-day classification models, with row
summaries (right of each matrix) also shown. With less WebEOC intersections in the 3-hour
classification model, the tree-based algorithm predicts far fewer road blockages than that of the
1-month, with a higher percentage of WebEOC intersections.
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Precision and Recall Values in VLP Classification
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Figure 11. Screenshot. Calculated Precision and Recall values in the Classification model for
each time buffer, derived from confusion matrices. 1-month time buffer shows the best results
for both precision and recall results.

Recall and Precision can be compiled as well into an F1 score, which is equal to

P ision X R 1 .
2 x —=RZ T The score is scaled between 0 and 1, where 1 represents a perfect

Precision+Recall

classification. Similar to the recall/precision results, and intuitively, the F1 scores increase the
larger the buffer is. The smallest F1 score is that of the 2-day model, which produced a 0.12,
where the 1-month classification model performed quite well at a 0.66 value. It should be noted
that the 0-hour through 1-day models did not have a true positive, so therefore cannot have a real
F1 score. As these models have the goal of being implemented real-time, this was highly
discouraging, but with more factors identified and more data input into the model, we could see

more positive results.
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F1 Scores of Classification Results for Buffers 2d - 1m
' 0.66065

0.7 .

0.6

051 0.46804

03
0.26078

0.2

0.12399
0.1

2d 7d 14d Tm
Buffer

Figure 12. Screenshot. F1 scores in the Classification Model for each time buffer, derived from
confusion matrices. Scores are based on a scale between 0-1, where 1 shows a perfectly fit
classification model that made no false guesses in class. The model was unable to guess a true
positive for the buffers 0-hour to 1-day, which have been omitted on the chart for that reason.

Upsampling Classification Method with Imbalanced Data

We see poor F1 results with our model due to the data containing a high number of vehicle
locating routes without WebEOC incident overlap. With this large imbalance in the dataset, the
model is hindered from the ability to learn trends about the data, favoring erring on the side of
guessing no WebEOC overlap for the classification. This leads us to explore ways that the model

is able to detect these trends even with the imbalanced dataset.
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Upsampling is a method which generalizes the classification boundary of the minority class to

help improve the predictive performance of the model (Tran et al 2022). Looking at the 3-hour

buffer, we see 102/44 147 (or ~0.23 percent) of the routes containing a WebEOC blockage

within the time frame. With such an imbalance and the previously stated low F1 scores,

upsampling is deemed to be an important method to implement to reform the training dataset.

We are able to customize our model further, including defining the concentration of upsampling

in the training set, the time buffer to lengthen vehicle routes, and adjusting the misclassification

cost (where the model can assign varying weights to false results to potentially increase accuracy

in the predictive results). Each of these factors were tested under statistically significant trialing

to maximize predictive capability in our model.
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Figure 13. Upsampling approach with development of balanced training set for higher predictive

capability [based on methodology of Tran 2022].
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In an effort to generate meaningful results, we choose the 3-hour time buffer, meaning that a
blockage spatially detected along the route between 3 hours before the route and at the end of the
route is counted as a “true” outcome (WebEOC 3h = 1). Within this time buffer, we choose a
training set consisting of 50 percent true outcomes (blockage detected) and 50 percent false
outcomes (no blockage detected). True and false outcomes for this training set are both randomly
selected. For the misclassification cost, after testing a variety of cost ratios, we choose the cost
for a false negative (FN) result as being 5 times higher than that of a false positive (FP). False
negative, in the scope of our model, means that the model predicts that there is no blockage, but
there actually is a blockage along the route. False positives, on the other hand, represent the
model predicting there is a blockage along the route, but not being correct in doing so. The goal
is to have the model be able to learn the trends of when blockages occur. A strong recall value is
indicative that the model is properly applying data trends towards accurate positive class

prediction, and is the selected measure of importance for this study.

Across 50 classification trials, the model outputs 97.13 percent recall and 0.53 percent precision.
From these results, the recall is high, and it can be said that the model is at least grouping the
common characteristics of the data behind a road blockage where it is not missing many “true”
outcomes. To address the precision, we find in our trials that the higher the ratio of true
outcomes to false outcomes in our training set, the more the model will predict true outcomes.
With 50 percent of our training set being true outcomes, the model ends up predicting 15.41
percent of all routes as having a WebEOC blockage along the route on average, which is much
less than the 50 percent of routes having a WebEOC blockage as contained within the training
set. The model is able to sort the characteristics of a possible road blockage, at a rate that is very

much not random. Applied to the larger dataset, it is difficult to predict the few true outcomes
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among all the total outcomes. We see that the model is predicting true cases very well and
compared with the overall data composition, at a much lower rate than what is presented in the
training set. We would anticipate that with an expanded dataset and an increase in predictive

variables that these results would only increase.
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CHAPTER 5
CONCLUSIONS

This project explores the ability to use GDOT vehicle-locating data to assess the state of the road
network in Georgia, including identifying road blockages along different segments of the
transportation system. The goal is to determine if we are able to utilize data that are currently
being collected to perform this network assessment. This novelty is in using a different data
source than has been used or explored in the past, specifically mobile vehicle-locating data
collected from GDOT-owned vehicles, rather than using stationary data sources such as loop
detectors, traffic cameras, or traffic monitoring stations; or public crowdsourced data sources that

rely on third parties for data collection and curation.

Through the course of the project, we made several discoveries. First, the data are crucial to the
ability to create such a system. The raw dataset of vehicle-locating data is large and, in many
cases, messy, with cases of missing data, zero-length data segments, and redundant route
segments. Through multiple data trimming and processing methods developed and implemented
using ArcGIS-specific Python algorithms, this initially large dataset is made into a usable format
to run machine learning models to see the importance of multiple variables, including the
vehicle-locating data and associated routing decisions, on the likelihood of road blockage
detection. The steps for transforming the data that have been established as part of this project
are described in detail and are reliable and repeatable methods that can be implemented with new

datasets.

Second, to utilize the vehicle-locating data, we create a workflow to enable comparison of the

vehicle routes with optimal routes to detect suboptimal routing decisions that may be indicative
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of blockages in the road network. This requires multiple steps in the workflow, including the
creation of vehicle route segments based on the individual vehicle-locating data points, the
linking of segments into routes, the identification of optimal routes between these points, and
then the comparison of distances between the actual taken routes (processed from the vehicle-
locating data points) and the optimal routes to detect the degree of suboptimal routing and its

association with the likelihood of the presence of a road blockage.

Finally, to use this vehicle routing information to assess the state of the road network, we create
machine learning models with multiple variables as input to detect the presence of a road
blockage. The classification model is quite simple with the set of input variables and a binary
output. The inputs, daily traffic on a given road, the difference between the taken route and the
optimal route, precipitation, traffic factors, and historical route danger are clear indicators of
whether or not a road blockage can be detected, but it is also clear that there are additional
variables at play in leading to road blockages, and this set of variables cannot be relied upon to
produce a tell-all classification model, capable of being run continuously with real-time data
sources. For this model to run in real-time, it must be complemented with other variables, such
as data from live traffic feeds. Therefore, the results from this work are an indication of the
potential use of this specific new data source and application, but this is not the end result. At the
very minimum, with Upsampling, the 3-hour model outputted significant recall results at

97.13%.

As different transportation-related data sources emerge, there is the opportunity to leverage these
data sources for monitoring of the conditions of a transportation network. Rather than relying on
external third-party data, this project explores the use of GDOT-collected data for this purpose.

In addition, it focuses on the use of data that are already currently being collected, demonstrating
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the utility of these data in performing road network assessment without the need to invest in new
technologies, dedicate additional resources, or implement new instrumentation or infrastructure.
Through the use of multiple data processing methods combined machine learning approaches,
we show how the vehicle-locating data can be used to perform network assessment and detection

of blockages in the road network.
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CHAPTER 6
FUTURE WORK

There are a variety of factors that, if and when applied, are sure to increase the model’s
predictive capability. Increased power of processing would result in more data, stemming from
more Georgia counties included, more GDOT vehicles on record, a broader range of dates
analyzed (resulting in more fluctuation in variables such as precipitation and traffic factors), and
an increased road network analyzed. The project, due to processing limitations, was constrained
to a randomly sampled subset of Fulton County specifically (a small subset of the overall data
from WebEOC and Verizon Network Fleet). Once the model receives inputs beyond Fulton
County and for a broader range of times, more WebEOC and historical Numetric blockages will
enable broader assessment and characterization of the Georgia road network. It is then that we
will be able to see true effect of the supervised model, although the run model does show

positive outlooks.

Including more variables would also likely increase the model’s performance, and could be
customizable to the use of what factors are deemed important in a road network, entirely at the
discretion of the operator. An expanded analytical approach to the way road infrastructure (and
specifically, vehicular traffic) is managed will lead to data-driven solutions. For example,
incorporating live data feeds from a service such as Waze (via public-use API) may give a new
edge to our model’s predictive capability, pairing live traffic feeds with historically trained

predictions. Worth looking into as well are unsupervised learning techniques, such as anomaly
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detection, k-means clustering, and other methods. Unsupervised learning is focused on

determining data patterns, which may be a better fit for the datasets analyzed.
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APPENDIX A
ARCPY GLOSSARY

Below are the definitions of varying functions used in ArcGIS and ArcPy as part of the ArcGIS

and Python functions and codes that have been developed in this project.

a)

b)

d)

9)

h)

Add Join
arcpy.management.AddJoin(in_layer_or_view, in_field, join_table, join_field, {join_type},
{index_join_fields})

Buffer
arcpy.analysis.Buffer(in_features, out_feature_class, buffer_distance_or_field, {line_side},
{line_end_type}, {dissolve_option}, {dissolve_field}, {method})

Calculate Field
arcpy.management.CalculateField(in_table, field, expression, {expression_type}, {code_block},
{field_type}, {enforce_domains})

Clip
arcpy.analysis.Clip(in_features, clip_features, out_feature_class, {cluster_tolerance})

Convert Time Field
arcpy.management.ConvertTimeField(in_table, input_time_field, {input_time_format},
output_time_field, {output_time_type}, {output_time_format})

Delete Selection
arcpy.management.DeleteFeatures(in_features)

Feature Compare
arcpy.management.FeatureCompare(in_base_features, in_test_features, sort_field,
{compare_type}, {ignore_options}, {xy_tolerance}, {m_tolerance}, {z_tolerance},
{attribute_tolerances}, {omit_field}, {continue_compare}, {out_compare_file})

Feature Class To Feature Class
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arcpy.conversion.FeatureClassToFeatureClass(in_features, out_path, out_name, {where_clause},
{field_mapping}, {config_keyword})

i) Feature To Point
arcpy.management.FeatureToPoint(in_features, out_feature_class, {point_location})

j) Feature Class To Shapefile
arcpy.conversion.FeatureClassToShapefile(Input_Features, Output_Folder)

k) Generalized Linear Regression (GLR)
arcpy.stats.GeneralizedLinearRegression(in_features, dependent_variable, model_type,
output_features, explanatory_variables, {distance_features}, {prediction_locations},
{explanatory_variables_to_match}, {explanatory_distance_matching},
{output_predicted_features})

I) Make Route Analysis Layer (Import Stops, Run, Routes)
arcpy.na.MakeRouteAnalysisLayer(network_data_source, {layer_name}, {travel_mode},
{sequence}, {time_of day}, {time_zone}, {line_shape}, {accumulate_attributes},

{generate_directions_on_solve}, {time_zone_for_time_fields}, {ignore_invalid_locations})
m) Merge

arcpy.management.Merge(inputs, output, {field_mappings}, {add_source})
n) Segment Along Line

arcpy.segmentAlongLine (start_measure, end_measure, {use_percentage})
0) Select By Attributes

arcpy.management.SelectLayerByAttribute(in_layer_or_view, {selection_type}, {where_clause},

{invert_where_clause})
p) Solve

arcpy.na.Solve(in_network_analysis_layer, {ignore_invalids}, {terminate_on_solve_error},

{simplification_tolerance}, {overrides})

g) Spatial Join
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arcpy.analysis.SpatialJoin(target_features, join_features, out_feature_class, {join_operation},
{join_type}, {field_mapping}, {match_option}, {search_radius}, {distance_field_name})

r) Summary Statistics
arcpy.analysis.Statistics(in_table, out_table, {statistics_fields}, {case_field})

s) XY Table To Point

arcpy.management.XYTableToPoint(in_table, out_feature_class, x_field, y_field, {z_field},

{coordinate_system})
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APPENDIX B
USER CODES

The below functions and descriptions apply to the user-generated processing code:

38



import arcpy
import pandas as pd

# get parameters from the toolbox interface
tbl_Segments = arcpy.GetParameterAsText(0)
field_route_name_tbl = arcpy.GetParameterAsText(1)
field_start_position = arcpy.GetParameterAsText(2)
field_end_position = arcpy.GetParameterAsText(3)
field_last_updated = arcpy.GetParameterAsText(4)

lyr_route = arcpy.GetParameterAsText(5)
field_route_name_lyr = arcpy.GetParameterAsText(6)

workspace_output = arcpy.GetParameterAsText(7)
result_route_name = arcpy.GetParameterAsText(8)

# read segment table from the csv file
df_segment_position = pd.read_csv(tbl_Segments)

# detect the workspace type
dec_workspace = arcpy.Describe(workspace_output)

type_workspace = dec_workspace.workspaceType

# if workspace is a folder, export a shapefile (.shp)
if type_workspace == "FileSystem":
result_route_name = result_route_name + ".shp"

result_route_layer_path = workspace_output + "\\" + result_route_name

# get spatial reference of the route layer
spRf = arcpy.Describe(lyr_route).spatialReference

# create segments feature class

arcpy.management.CreateFeatureclass(workspace_output, result_route_name,
geometry_type="POLYLINE", spatial_reference=spRf)
arcpy.management.AddField(result_route layer_path, "Route_name", "TEXT", None, None,
100)

arcpy.management.AddField(result_route_layer path, "S_Position", "DOUBLE")
arcpy.management.AddField(result_route_layer_path, "E_Position”, "DOUBLE")
arcpy.management.AddField(result_route layer path, "LastUpdated"”, "Date")

# insert segments into segments feature class

in_Cur = arcpy.da.InsertCursor(result_route_layer_path, ['SHAPE@", "Route_name",
"S_Position", "E_Position", "LastUpdated"])

39



# no. of routes for counting and defining progressor
n_route = df_segment_position.count()[0]

arcpy.SetProgressor("'Step"”, "processing....", 0, n_route, 1)
i=0

# loop segments’ row in segments table, get the segment from road network.
for index, row in df_segment_position.iterrows():

route_name = row[field_route_name_tbl]
start_position = row([field_start_position]
end_position = row[field_end_position]
last_updated = row([field_last_updated]

=i+l

arcpy.SetProgressorPosition()
arcpy.SetProgressorLabel("processing " + route_name + "...... " + "{}/{}, {:.1f}%" .format(i,
n_route, i * 100.0 / (n_route)))

s_cur_route = arcpy.da.SearchCursor(lyr_route, ["Shape@", field_route_name_lyr], "{0}
='{1}" format(field_route_name_lyr, route_name))

try:
S_C_route =s_cur_route.next()

segments_shp =s_c_route[0].segmentAlongLine(start_position, end_position)

in_Cur.insertRow((segments_shp, route_name, start_position, end_position,
last_updated))

arcpy.AddMessage("{}: start from {3}, end at{}, last updated {}, OK".format(route_name,
start_position, end_position, last_updated))

# if the route in the csv file does not have corresponding name in the route network layer,
return a ""NotOK™
except Stoplteration:
arcpy.AddMessage("{}: start from {}, end at{}, last updated {},
NotOK".format(route_name, start_position, end_position, last_updated))
continue

del in_Cur

arcpy.ResetProgressor()
GetSegments Code
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import arcpy
import os

# to export direction information using ""AddLocation method", xml format should be

used

import xml.dom.minidom as xmld

class

FindRoutes():

def __init__ (self, track_points, track_points_name, order_field, ignition_field,
network NAlyr, output_db_path, output_routes _name, output_statistical _tbl_name):

self.track_points = track_points

self.track_points_name = track_points_name

self.order_field = order_field

self.ignition_field = ignition_field

self.network_NAIlyr = network_NAlyr

self.output_db_path = output_db_path
self.output_routes_name = output_routes_name
self.output_statistical tbl name = output_statistical tbl_name

self.lyr_tem = arcpy.MakeFeatureLayer _management(self.track_points, "layer_tem")

self.dic_points_name = {}

self.dic_points_ignition = {}
self.dic_points_counter = {}
self.dic_points_fixtime = {}

self.result_routes = os.path.join(output_db_path, output_routes_name)
self.result_statistical_table = os.path.join(output_db_path, output_routes_name)

# add counter field to layer
# counter is defined to account for individual travels (judging from Ignition status)
arcpy.AddField_management(track_points, "Counter”, "SHORT")

# assign counters
i=1
up_cur = arcpy.da.UpdateCursor(track_points, [order_field, ignition_field, "Counter"],

sgl_clause=(None, "ORDER BY " + order_field))

for up_c in up_cur:
up_c[2] =i
if up_c[1] == "Off":
i=0
i=i+1
up_cur.updateRow(up_c)
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# create the statistical table
self.result_table = arcpy.CreateTable_management(output_db_path,
output_statistical_tbl_name)
self.statis_tbl_fields = ["Track_Point_Name",
"Before2p”,
"Before2p_dif",
"Before3p”,
"Before3p_dif",
"Beforedp”,
"Beforedp_dif",
"Before5p”,
"Before5p_dif",
"Ignition”,
"Counter",
"FixTime"]

# define the format of the cell using AddField function
for add_f in self.statis_tbl_fields:
if add_f == "Track_Point_Name" or add_f == "Ignition":
arcpy.AddField_management(self.result_table, add_f, "TEXT")
elif add_f == "FixTime":
arcpy.AddField_management(self.result_table, add_f, "Date")
else:
arcpy.AddField_management(self.result_table, add_f, "DOUBLE")

# scan the track points
s_cur = arcpy.da.SearchCursor(track_points, ["shape@", track_points_name, order_field,
ignition_field, "Counter"], sql_clause=(None, "ORDER BY " + order_field))

n=0

fors_cins_cur:
n=n+1
self.dic_points_name[n] =s_c[1]
self.dic_points_fixtime[n] =s_c[2]
self.dic_points_ignition[n] =s_c[3]
self.dic_points_counter[n] = s_c[4]

RouteSubLayer = arcpy.na.GetNAClassNames(network _NAlyr)

self.routeSlyr_stops = RouteSubLayer["Stops"]
self.routeSlyr_route = RouteSubLayer["Routes"]

arcpy.na.AddFieldToAnalysisLayer(network _NAlyr, self.routeSlyr_route, "Direction”,
"TEXT", field_length=100000)

arcpy.na.AddFieldToAnalysisLayer(network NAlyr, self.routeSlyr_route,
"FixTime_Start", "Date", field_length=1000)

42



arcpy.na.AddFieldToAnalysisLayer(network NAlyr, self.routeSlyr_route,
"FixTime_Current", "Date", field_length=1000)

# function for insert data into statistial table

def insert_statis_table(self,
Track_point_name,
Before2p=None,
Before2p_dif=None,
Before3p=None,
Before3p_dif=None,
Before4p=None,
Before4p_dif=None,
Before5p=None,
Before5p_dif=None,
Ignition=None,
Counter=None,
FixTime=None):

inst_val = [Track_point_name,

Before2p,
Before2p_dif,
Before3p,
Before3p_dif,
Beforedp,
Beforedp_dif,
Before5p,
Before5p_dif,
Ignition,
Counter,
FixTime]

inst_statis_tbl = arcpy.da.InsertCursor(self.result_table, self.statis_tbl_fields)
inst_statis_tbl.insertRow(inst_val)
del inst_statis_tbl

# function for setup stops for ""AddLocation' and "'Solve™; set up messages
def stopsSetup(self, current_point=3, checkBack=2):

stopsl = None
stops2 = None
messagel = None
message2 = None

if current_point >= 3 and checkBack == 2:
stopsl = [self.dic_points_name[current_point - 2],
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self.dic_points_name[current_point]]
messagel = "{0}<--{1}, ignition:{2},
counter:{3}".format(self.dic_points_name[current_point],
self.dic_points_name[current_point - 2],
self.dic_points_ignition[current_point],
self.dic_points_counter[current_point])

stops2 = [self.dic_points_name[current_point - 2],
self.dic_points_name[current_point - 1],
self.dic_points_name[current_point]]

message2 = "{0}<--{1}<--{2}, ignition:{3},

counter:{4}".format(self.dic_points_name[current_point],
self.dic_points_name[current_point - 1],
self.dic_points_name[current_point - 2],
self.dic_points_ignition[current_point],
self.dic_points_counter[current_point])

if current_point >= 4 and checkBack == 3:
stopsl = [self.dic_points_name[current_point - 3],
self.dic_points_name[current_point]]
messagel = "{0}<--{1}, ignition:{2},
counter:{3}".format(self.dic_points_name[current_point],

self.dic_points_name[current_point - 3],
self.dic_points_ignition[current_point],
self.dic_points_counter[current_point])

stops2 = [self.dic_points_name[current_point - 3],
self.dic_points_name[current_point - 2],
self.dic_points_name[current_point - 1],
self.dic_points_name[current_point]]
message2 = "{0}<--{1}<--{2}<--{3}, ignition:{4},
counter:{5}".format(self.dic_points_name[current_point],
self.dic_points_name[current_point - 1],
self.dic_points_name[current_point - 2],
self.dic_points_name[current_point - 3],
self.dic_points_ignition[current_point],
self.dic_points_counter[current_point])
if current_point >= 5 and checkBack == 4:
stopsl = [self.dic_points_name[current_point - 4],
self.dic_points_name[current_point]]
messagel = "{0}<--{1}, ignition:{2},
counter:{3}".format(self.dic_points_name[current_point],
self.dic_points_name[current_point - 4],
self.dic_points_ignition[current_point],
self.dic_points_counter[current_point])
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stops2 = [self.dic_points_name[current_point - 4],
self.dic_points_name[current_point - 3],
self.dic_points_name[current_point - 2],
self.dic_points_name[current_point - 1],
self.dic_points_name[current_point]]
message2 = "{0}<--{1}<--{2}<--{3}<--{4}, ignition:{5},
counter:{6}".format(self.dic_points_name[current_point],
self.dic_points_name[current_point - 1],
self.dic_points_name[current_point - 2],
self.dic_points_name[current_point - 3],
self.dic_points_name[current_point - 4],
self.dic_points_ignition[current_point],
self.dic_points_counter[current_point])
if current_point >= 6 and checkBack == 5:
stopsl = [self.dic_points_name[current_point - 5],
self.dic_points_name[current_point]]
messagel = "{0}<--{1}, ignition:{2},
counter:{3}".format(self.dic_points_name[current_point],
self.dic_points_name[current_point - 5],
self.dic_points_ignition[current_point],
self.dic_points_counter[current_point])

stops2 = [self.dic_points_name[current_point - 5],
self.dic_points_name[current_point - 4],
self.dic_points_name[current_point - 3],
self.dic_points_name[current_point - 2],
self.dic_points_name[current_point - 1],
self.dic_points_name[current_point]]
message2 = "{0}<--{1}<--{2}<--{3}<--{4}<--{5}, ignition:{6},
counter:{7}".format(self.dic_points_name[current_point],
self.dic_points_name[current_point

A self.dic_points_name[current_point
2 self.dic_points_name[current_point
3 self.dic_points_name[current_point
- :1 self.dic_points_name[current_point

self.dic_points_ignition[current_point],

self.dic_points_counter[current_point])
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return stopsi, stops2, messagel, message2

# xml format is adopted to extract the direction information
def getDirection(self):
dr = arcpy.na.Directions(self.network_NAlyr, "XML").getOutput(0)
dr_list=]
dom = xmld.parse(dr)
root = dom.documentElement
rs = root.getElementsByTagName("STRING")

forrinrs:
if r.getAttribute(*'style™) in ["depart”, "normal”, "arrive"]:
dr_list.append(r.getAttribute(*text™))

dr_str0 =" --> " join(dr_list)
return dr_strO

# function for finding routes from point 1-2
def findRoutesBack1p(self, current_point=2):
stops = [self.dic_points_name[current_point - 1],
self.dic_points_name[current_point]]

# In ArcGIS Pro, the FindRoutes function can only be completed by online routing
service, for which the result is not extractable. Therefore, we now use Addlocation and
Solve to solve for the routes between points

sgl = str(stops).replace("[", "").replace("]", "").replace("u™, ")

arcpy.management.SelectLayerByAttribute(self.lyr_tem, "NEW_SELECTION", "{}
in({})".format(self.track_points_name, sql))

arcpy.na.AddLocations(self.network _NAlyr,

self.routeSlyr_stops,

self.lyr_tem,

"Name {} #".format(self.track_points_name),

sort_field=self.order_field,

append="CLEAR")
arcpy.na.Solve(self.network_NAIlyr)

result_route = self.routeSlyr_route
dr_str = self.getDirection()
message = "{0}<--{1}, ignition:{2},

counter:{3}".format(self.dic_points_name[current_point],
self.dic_points_name[current_point - 1],
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self.dic_points_ignition[current_point],
self.dic_points_counter[current_point])

up_cur = arcpy.da.UpdateCursor(result_route, ["shape@", "Name", "Direction",
"FixTime_Start", "FixTime_Current™])

route_shp = None

for up_c in up_cur:
up_c[1] = message
up_c[2] =dr_str
up_c[3] = self.dic_points_fixtime[current_point - 1]
up_c[4] = self.dic_points_fixtime[current_point]
route_shp = up_c[0]
up_cur.updateRow(up_c)

del dr_str

if not arcpy.Exists(self.result_routes):
arcpy.CopyFeatures_management(result_route, self.result_routes)
else:
arcpy.Append_management(result_route, self.result_routes)

return route_shp, message

# function for finding routes from point >= 3

def findRoutesBack2p(self, current_point, backward, checkindex):
stops = None
message = None

stopsl, stops2, messagel, message2 = self.stopsSetup(current_point, backward)

if checkIndex == 1.:
stops = stops1
message = messagel

elif checkIndex == 2:
stops = stops2
message = message2

sql = str(stops).replace("[", "").replace("]", "").replace("u”, ")
arcpy.management.SelectLayerByAttribute(self.lyr_tem, "NEW_SELECTION", "{}
in({})".format(self.track_points_name, sqgl))
arcpy.na.AddLocations(self.network NAlyr,
self.routeSlyr_stops,
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self.lyr_tem,
"Name {} #".format(self.track_points_name),
sort_field=self.order_field,
append="CLEAR")
arcpy.na.Solve(self.network_NAIyr) # route solving algorithm, arcgis function

result_route = self.routeSlyr_route

dr_str = self.getDirection()

up_cur = arcpy.da.UpdateCursor(result_route, ["shape@", "Name", "Direction",
"FixTime_Start", "FixTime_Current"])

route_shp = None
for up_c in up_cur: # just recording
up_c[1] = message
up_c[2] =dr_str
up_c[3] = self.dic_points_fixtime[current_point - backward]
up_c[4] = self.dic_points_fixtime[current_point]
route_shp = up_c[0]
up_cur.updateRow(up_c)

del dr_str
arcpy.Append_management(result_route, self.result_routes)

return route_shp, message

mxFindRoutes Code (Valid.py Function File)
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import arcpy
import mxFindRoutes_pro

# get parameters from tool

track_points = arcpy.GetParameterAsText(0)
track_points_name = arcpy.GetParameterAsText(1)
order_field = arcpy.GetParameterAsText(2)
ignition_field = arcpy.GetParameterAsText(3)

NDS = arcpy.GetParameterAsText(4)

output_db = arcpy.GetParameterAsText(5)
result_routes_name = arcpy.GetParameterAsText(6)
result_table_name = arcpy.GetParameterAsText(7)

# setup the workspace can be overwrote
overw = arcpy.env.overwriteOutput

arcpy.env.overwriteOutput = True
# beginning of the tool
myFindRoute = mxFindRoutes_pro.FindRoutes(track_points, track_points_name, order_field,

ignition_field, NDS, output_db, result_routes_name, result_table_name)

# get the numbers of the track points, to set up the progressor
n = len(myFindRoute.dic_points_name)

arcpy.SetProgressor(“step”, "calculating route...", 0, n - 1, 1)
foriinrange(l, n +1):
point_name = myFindRoute.dic_points_name]i]

arcpy.SetProgressorPosition()
arcpy.SetProgressorLabel("calculating route of point " + point_name + "......")

bf2p = bf2p_dif = bf3p = bf3p_dif = bf4p = bf4p_dif = bf5Sp = bf5p_dif = None
ignition = myFindRoute.dic_points_ignition[i]

counter = myFindRoute.dic_points_counter([i]

fixtime = myFindRoute.dic_points_fixtime[i]

# 1st point of the travel

if counter == 1:
arcpy.AddMessage("p{0}:ignition:{1}, counter:{2}".format(str(i), ignition, counter))
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# 2nd point of the travel

if counter == 2:
r_shp, msg = myFindRoute.findRoutesBack1p(i)
arcpy.AddMessage("'p" + str(i) + ":" + msg)

# 3rd point of the travel
if counter >=3:

r_shpl_1, msg = myFindRoute.findRoutesBack2p(i, 2, 1)
arcpy.AddMessage("p™ + str(i) + ":" + msg)

shp_routel 1=r shpl 1

r_shpl 2, msg = myFindRoute.findRoutesBack2p(i, 2, 2)
arcpy.AddMessage("'p" + str(i) + ":" + msg)

shp_routel 2 =r_shpl 2

bf2p =1
bf2p_dif=0

# Sometimes the recorded points are too close to produce a route and if not
specified, it will cause errors and the termination of the program. Basically, the error is
from the result; when the result is none (no routes were returned), it will be impossible
for comparison.

# To solve for this problem, the following codes were added (same for below):

if shp_routel 2 is None and shp_routel 1 is not None:

bf2p=0
bf2p_dif = 0 - shp_routel 1.length

elif shp_routel 2 is not None and shp_routel 1 is None:
bf2p=0
bf2p_dif = 0 - shp_routel_2.length

elif shp_routel 2 is None and shp_routel 1 is None:
bf2p=1
bf2p_dif =0

elif not shp_routel 2.equals(shp_routel 1):
bf2p =0
bf2p_dif = shp_routel 2.length - shp_routel 1.length

if counter >=4:
# check 4-1-->2o0or 3
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# --route 4-1
r_shp2_1, msg = myFindRoute.findRoutesBack2p(i, 3, 1)
arcpy.AddMessage("p™ + str(i) + ":" + msg)

shp_route2_1=r_shp2_1

r_shp2_2, msg = myFindRoute.findRoutesBack2p(i, 3, 2)
arcpy.AddMessage("p™ + str(i) + ":" + msg)

shp_route2_2 =r_shp2_2

bf3p=1
bf3p_dif=0

if shp_route2_2 is None and shp_route2_1 is not None:
bf3p=0
bf3p_dif =0 - shp_route2_1.length

elif shp_route2_2 is not None and shp_route2_1 is None:
bf3p=0
bf3p_dif =0 - shp_route2_2.length

elif shp_route2_2 is None and shp_route2_1 is None:
bf3p=1
bf3p_dif =0

elif not shp_route2_2.equals(shp_route2_1):
bf3p=0
bf3p_dif = shp_route2_2.length - shp_route2_1.length

if counter >=5:
# check 5-1-->2 or 3 or 4
# --route 5-1
r_shp3_1, msg = myFindRoute.findRoutesBack2p(i, 4, 1)
arcpy.AddMessage("p™ + str(i) + ":" + msg)

shp_route3_1=r_shp3_1

r_shp3_2, msg = myFindRoute.findRoutesBack2p(i, 4, 2)
arcpy.AddMessage("p™ + str(i) + ":" + msg)

shp_route3_2 =r_shp3_2
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bf4p=1
bfdp_dif =0

if shp_route3 2 is None and shp_route3 1 is not None:
bf4p=0
bf4p_dif =0 - shp_route3_1.length

elif shp_route3_2 is not None and shp_route3 1 is None:
bf4p=0
bf4p_dif =0 - shp_route3_2.length

elif shp_route3_2 is None and shp_route3_1 is None:
bfdp =1
bfdp_dif =0

elif not shp_route3_2.equals(shp_route3_1):
bf4p=0
bf4p_dif = shp_route3_2.length - shp_route3_1.length

if counter >=6:
# check 6-1-->2or3or4or5
# --route 6-1
r_shp4_1, msg = myFindRoute.findRoutesBack2p(i, 5, 1)
arcpy.AddMessage("'p" + str(i) + ":" + msg)

shp_route4 1 =r_shp4 1

r_shp4_2, msg = myFindRoute.findRoutesBack2p(i, 5, 2)
arcpy.AddMessage("'p" + str(i) + ":" + msg)
shp_route4 2 =r_shp4 2

bf5p =1
bf5p_dif =0

if shp_route4 2 is None and shp_route4 1 is not None:
bf5p=0
bf5p_dif =0 - shp_route4_1.length

elif shp_route4 2 is not None and shp_route4 1 is None:

bf5p=0
bf5p_dif =0 - shp_route4_2.length
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elif shp_route4_2 is None and shp_route4_1 is None:
bf5p =1
bf5p_dif =0

elif not shp_route4_2.equals(shp_route4 1):
bf5p =0
bf5p_dif = shp_route4_2.length - shp_route4_1.length

myFindRoute.insert_statis_table(point_name,
bf2p, bf2p_dif,
bf3p, bf3p_dif,
bfadp, bfdp_dif,
bf5p, bf5p_dif,
ignition, counter, fixtime)

arcpy.env.overwriteOutput = overw
arcpy.ResetProgressor()

arcpy.SelectLayerByAttribute_management(track_points, "CLEAR_SELECTION")

#arcpy.RefreshActiveView()
Valid Code
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