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“Read in the Name of your Lord who created.”
�
�
�

�
Ê
�
«

�	áÓ�

�	
àA

�
�
�	
�B

�

�
@

��
�
�
Ê
�	
g

“Created human from a clot of blood.”
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“Read! For your Lord is the Most Generous.”

- Qur’an, Chapter 96, Verses 1-3
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vi



to build robots and program them to move from one place to another. But little did my

naive understanding of the topics convince me that these topics will be fundamental in my

graduate studies down the road. After studying under Dr. Swaroop I was finally able to

read some of the academic papers for the first time.

Dr. Khaled Harras: I graduated from my bachelor’s in May, 2014 and was looking

for robotics opportunities at the time in Qatar. A friend of mine, Sidra Alam, told me that a

professor at Carnegie Mellon University, Qatar is looking for an outreach tutor in computer

science where robotics workshops will be taught to school students. I was running my

own robotics institute at the time in Education City with a similar goal of sharing robotics

education in Qatar and helping people interested in the topic. So I make an appointment and
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SUMMARY

In recent years, the need for safety of autonomous and intelligent robots has increased.

Today, as robots are being increasingly deployed in closer proximity to humans, there is

an exigency for safety since human lives may be at risk, e.g., self-driving vehicles or sur-

gical robots. The objective of this thesis is to present a safety framework for dynamical

systems that leverages tools from control theory and machine learning. More formally, the

thesis presents a data-driven framework within a Bayesian optimization setting for design-

ing safety function candidates which ensure properties of forward invariance. The potential

benefits of the results presented in this thesis are expected to help applications such as safe

exploration, collision avoidance problems, manipulation tasks, and planning.

We utilize Gaussian processes (GP) to place a prior on the desired safety function candi-

date, which is to be utilized as a control barrier function (CBF). The resultant formulation

is called Gaussian CBFs and they reside in a reproducing kernel Hilbert space. A key

concept behind Gaussian CBFs is the incorporation of both safety belief as well as safety

uncertainty, which former barrier function formulations did not consider. This is achieved

by exploiting robust posterior estimates from a GP where the posterior mean and variance

serve as surrogates for the safety belief and uncertainty respectively. We synthesize safe

controllers by framing a convex optimization problem where the kernel-based representa-

tion of GPs allows computing the derivatives in closed-form analytically.

Finally, in addition to the theoretical and algorithmic frameworks in this thesis, we

rigorously test our methods in hardware on a quadrotor platform. The platform used is a

Crazyflie 2.1 which is a versatile palm-sized quadrotor. We provide our insights and present

detailed discussions on the hardware implementations which will be useful for large-scale

deployment of the techniques presented in this dissertation.
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CHAPTER 1

INTRODUCTION

With the rise of autonomous systems, assuring their safety is of paramount importance. For

instance, an autonomous drone should not crash during its mission, or a self-driving vehicle

should not collide with other vehicles. Safety-critical robotic systems are increasing rapidly

in today’s data-driven technology due to more domains seeking intelligent robots such as

medicine, agriculture, warehouse, disaster response, and defense [1, 2, 3, 4]. How does

one guarantee safety for such diverse set of operations and robotic systems? The primary

concern related to safety-critical systems, both intuitively and formally, is to do with the

consequences of failure. Then the next logical thing to ponder over is how can we specify

constraints so that failures can be avoided. And it is not clear always how to tackle this.

Formulating constraints for these applications to ensure safety is a challenging task and

requires no small consideration on the designer’s part. Accordingly, many safety-critical

robots need to be dependable, since failure to do so could endanger human life and lead

to substantial economic loss [5, 6]. Modern robotic systems are increasingly working in

uncertain environments, hence, robots need to sense and determine safe navigable zones in

real-time. The single greatest obstacle to widespread utilization of intelligent systems in

the world today is to do with the safety guarantees of these systems.

This dissertation focuses on addressing how sensed data can be effectively exploited

to ensure that the robot operates in a safe manner. Sensed data heres refers to data col-

lected from a myriad of sensors such as thermal, ground-positioning system (GPS), cam-

era, telemeters, or LiDARs. The goal is to model and formulate safety objectives for

robotic systems using data-driven techniques. We leverage key ideas from control theory

and Bayesian statistical inference to design safety objectives while computationally being

efficient in synthesizing safe controllers. To this end, we use Gaussian processes (GPs)
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to place priors with certain smoothness properties to construct control barrier functions

(CBFs), a Lyapunov based method, to enforce safety on the dynamical system of inter-

est. By coupling convex optimization with the synthesized function, the approach becomes

amenable to real-time implementation for practical systems. The tools developed in this

thesis are deployed on a hardware quadrotor platform over numerous experimental studies.

1.1 Background Review

A popular approach to ensuring safety of dynamical systems leverages set theoretic ideas.

To be more specific, the theory of controlled set invariance is employed where a system is

defined to be safe if (a subset of) its states remain within a prescribed set [7]. This forms

the basis of control barrier functions (CBFs) which have been successfully demonstrated

on many safety-critical applications [8, 9, 10, 11]. The two most common certificate based

methods for addressing system safety and stability are barrier certificates and Lyapunov

certificates respectively. In this thesis, since we are interested in the safety of dynamical

systems, we focus on CBFs. A comprehensive review for both methods can be found in

[12, 13].

1.1.1 Control Barrier Functions

The notion of ensuring forward invariance for a dynamical system goes as back as 1940’s

where Nagumo’s seminal work provided necessary and sufficient conditions for the system

to remain inside the desired (safe) set [14]. Decades later, in the early 2000’s, the topic

forward invariant safe sets were formulated as barrier certificates in the context of nonlinear

and hybrid systems [15, 16]. The authors presented barrier functions which ensured that

the dynamical system’s states never entered an unsafe set in the state space. Eventually,

these functions were elegantly composed as a convex optimization problem in the form of

quadratic programs (QPs) by [8]. This modern form of the barrier function is popularly

called control barrier functions (CBFs) today and forms the basis of the safety function in
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this thesis. CBFs are continuously differentiable functions where the function characterizes

a set, in which the dynamical system should remain forward invariant. To look at it from

another angle, the system’s safety is encoded using these safety barrier certificates (or safe

sets) with the aid of a continuously differentiable function.

The authors in [17] first demonstrated the convex optimization based synthesis for gen-

erating control actions on a driver-assist problem of adaptive cruise control. By virtue of a

quadratic cost and linear constraint, the QP optimization problem resulted in real-time com-

putational solution. Subsequently, the authors in [18] implemented CBFs on the adaptive

cruise control problem using the QP framework on scaled-down model cars. Subsequent

research with CBFs is spread over a wide range of applications, most notably bio-inspired

robotic systems, swarm coordination, manipulation tasks, and automotive applications.

To extend the reach of CBFs to systems with higher relative degree, exponential CBFs

were proposed in [19]. Exponential CBFs were then generalized into Higher-order CBFs

by [20]. Since many dynamical systems often require higher degrees of control authority,

exponential CBFs were critical in demonstrating safety performance for legged robotics

[11, 21, 22, 23]. CBFs were also successfully demonstrated on dynamic gait stepping for

both 2D and 3D settings in [24, 25]. For manipulation tasks, CBFs were also used for

ensuring that the end-effector does not collide with the environment as well as for ensur-

ing inter-link collisions [26, 27, 28]. Moving from single-agent systems to multi-agent

systems, CBFs have shown its effectiveness in the context of collision avoidance between

robots. The safety objective is to maintain a minimum safe distance between each agent

by computing the distance between each agent. Then a QP is set up with multiple linear

constraints with each constraint typically satisfying the safety inequality criteria between

any two given robots. Such a framework has been shown in [9, 29, 10, 30, 31, 32]. For

for the interested reader, we refer to [33] for the theoretical background of CBFs and its

applications to mainly robotic settings.

In all of the aforementioned works, CBFs are used in a constructive or parametric man-
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ner which means that they are typically hand-designed functions. Depending on the appli-

cation and problem statement, CBFs need to be carefully designed. This can have limita-

tions since it is not always practical to hand craft safety objective functions especially for

unstructured and environmentally unpredictable settings. We next look at the literature for

data-driven CBF design methods.

1.1.2 Learning based Barrier Functions

Data-driven techniques to generate CBFs are very actively pursued today given the huge

success of CBFs for ensuring safety of modern robotic systems. Expert demonstrations

involving state and control trajectories were used in [34, 35] to generate CBFs. However,

having access to expert demonstrations, especially when deploying a system online in an

unseen environment, can become a practical limitation. While the previous works empir-

ically verify their findings, they do not provide hardware experimental validation of their

methods. Safety certificates in the form of neural certificates, which use neural networks,

were constructed for achieving safe control [36, 37, 38, 39]. These neural certificates pro-

vide formal proofs of correctness to their learning-based controllers from data. However,

all these studies have been confined to simulation experiments and are limited to offline

training which limits their applicability in many practical online settings.

Episodic learning was used to update the controller for robotic systems while carrying

out safe constrained control using CBFs [40, 41]. Both the papers show hardware results,

however, the goal was to learn the system model uncertainty in an episodic fashion, as

opposed to constructing a CBF from data. A similar framework uses Gaussian processes

(GPs) for expanding an initial conservative safe set to a desired safe set through adaptive

sampling and learning the unmodeled dynamics of a quadrotor system in simulation [42].

More precisely, the data was used to learn the unmodeled dynamics and based on the confi-

dence region of the learned model, the parametric constructed CBF was altered to give rise

a more expansive safe set. A second-order cone program was formulated in [43], with GPs
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used for modeling the control input and dynamic model uncertainty learned in an episodic

manner. A particular type of kernel was developed to satisfy affineness properties in order

to appear as a linear constraint in the second-order cone program. However, the study was

limited to offline training which limits its applicability in many practical online settings.

Using a sums-of-squares (SoS) approach, permissive barrier certificates were proposed

in [44] to simultaneously guarantee the stability and safety of the dynamical system. An

iterative search algorithm is used to search for the maximum volume barrier region which

is proved to be strictly larger than safe regions using Lyapunov sublevel set based methods.

The research investigation was verified and shown as a simulation study. For systems

with polynomial dynamics, an optimization routine can be set up as a convex semi-definite

problem using sum-of-squares (SoS) technique to search for a valid safety certificate [45,

46]. However, SoS methods also scale poorly with high dimensions, and are limited to

polynomial system dynamics.

A supervised learning approach was shown in [47] using support vector machines

(SVMs) to characterize CBFs using sensor measurements both in an offline and online

manner. A dataset is first carefully constructed based on distance ranged measurements

from a sensor which is shown to be provably safe. Next, a hard margin classifier is then

used to synthesize the safety boundary. SVM classifiers are a very popular non-parametric

kernel based approach in the machine learning domain, however, weights for the SVM clas-

sifier need to be carefully determined to work. Additionally, the study was confined to 2D

simulation results. Another similar work to [47] was based on the idea of using signed dis-

tance fields (SDFs) with replay memory to construct CBFs fully from data [48]. SDFs are

implicit surface representations, indicating whether a given datapoint x in the metric space

for a set Ω ,characterizing the SDF, belongs to the set Ω or not. SDFs have been shown

to be advantageous as a natural representation for both navigation and planning [49]. The

authors in [48] used a multi-layer perceptron to train and characterize the CBF along with

a replay memory buffer for being more amenable to online learning. However, this study
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was also limited to 2D data sensing as well as conducted only in simulation.

Barrier functions were also combined with reinforcement learning (RL) strategies to

guide the exploration policy to be safe. Safe RL is a growing field of research investigation

primarily because exploration is a critical component for learning a meaningful policy.

Consequently, the policy may require the system to visit unsafe states, which is particularly

expensive since the cost of failure is high for safety-critical systems. As a result, in the

literature, there have been efforts to combine CBFs with existing RL strategies [50, 51,

52]. An end-to-end safe RL policy was obtained by utilizing CBFs to serve as safe guides

in [50] where knowledge of the CBF along a prior on the dynamics model is assumed.

Differentiable robust CBFs compatible with standard RL policy gradients is presented in

[52]. A practical limitation of RL based policies is their training time which in the majority

of safety-critical applications can be very limiting.

1.2 Thesis Outline

We provide an outline of the chapters in this thesis.

• In Chapter 2, given a parametric CBF, we augment uncertainty associated with sensed

objects around the robot to the given CBF. Since data from the sensors are used to

map or model the environment around the robot, quantification of uncertainty associ-

ated with the sensed objects aids in the construction of conservative and arbitrary safe

zones for the robot to navigate in. To this end, we use the Gaussian process posterior

variance to quantify the uncertainty in the synthesis of the safety uncertainty compo-

nent resulting from the sensed data. This uncertainty is then augmented to the given

CBF resulting in a variance-based CBF, also called the safety function candidate.

By adopting a kernel based approach, we are able to compute the Lie derivatives in

closed-form which act as constraints for a convex optimization problem to generate

safe control inputs. We showcase our approach in hardware on a quadrotor system

by expanding an initial conservative safe set to a final desired safe set online [53].
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• Chapter 3 constitutes the main contribution of this thesis. In the previous chapter,

we introduced safety uncertainty arising from sensed data to an existing parametric

CBF. We now place a Gaussian process prior on the desired safety function candidate

and draw a CBF from a Gaussian process. In other words, the CBF is a Gaussian

process. We term this non-parametric formulation as Gaussian control barrier func-

tions (Gaussian CBFs). We work with noisy safety samples (utilized as outputs or

observations to a GP) to derive our Gaussian CBF by exploiting the posterior mean

and variance from a Gaussian process. These safety samples represent the sensed

data. Additionally, we also investigate the case when the query input to the GP (test

point) is noisy. Since we use sensed data now to synthesize the CBF, the CBF can

take any arbitrary shape and is not limited to convex shapes only. Moreover, the pre-

sented approach is robust when it comes to noisy inputs and outputs to the GP. We

demonstrate our approach over three test cases in hardware. In the first test case, we

generate arbitrary safe sets randomly and perform constrained control for a quadro-

tor. In the second test case, we synthesize online the safe set and perform a collision

avoidance study. In the final test case, we juxtapose Gaussian CBF against standard

regular CBF in the presence of noisy position state for a quadrotor platform [54].

• In Chapter 4, we extend our previous methodology of Gaussian CBFs to not only

construct safe sets but also safe implicit surfaces. Inspired by the research work in

implicit surface representations, we provide a unified approach to constructing safe

implicit surfaces using Gaussian CBFs. The safety aspect here comes from Gaussian

CBFs enforcing safe control actions based on the Lie derivatives which are used to

satisfy the constraints in the convex optimization framework. Since Gaussian CBFs

are GPs, a key bottleneck with GPs is its cubic complexity. Hence, we derive sparse

Gaussian CBFs in this chapter we reduce the computational complexity. We first dis-

cuss a simulation study where a 7-DOF robotic manipulator is tasked with avoiding

the Stanford Bunny, a 3D volumetric object, whose boundary is characterized as a
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Gaussian CBF with and without sparsity. By using point cloud and surface normals,

the safety surface is constructed using Gaussian CBFs. In the second test case, we

perform safe teleoperation and safe autonomous navigation using a quadrotor in the

presence of a chair.

• In Chapter 5, we present a semi-parametric framework to learning-based control us-

ing Gaussian processes to learn the residual dynamics of a dynamical system. We

utilize multiple sparse models to divide the observed training inputs and outputs into

sparse regional models. By optimizing each model, we preserve the richness and

uniqueness of each regional sparse model. We term this formulation as Multi-sparse

Gaussian process and use it a learning-based control problem. We assume a para-

metric dynamical model for the system based on physics first principles, and learn

the residual unmodeled dynamics using multi-sparse GPs. The resultant formulation

is verified against regular GP, sparse GP, and local GP. We verify our approach both

in simulation and hardware [55].
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CHAPTER 2

SAFETY UNCERTAINTY IN CONTROL BARRIER FUNCTIONS

Today we are witnessing a high demand and increase in the deployment of many intelligent

systems. Some notable examples of such systems range from self-driving vehicular units,

whether it be cars or trucks, to smart consumer products such as indoor vacuuming or

mopping robots. Many more of these systems are increasingly deployed in search and

rescue, health care, transportation, and surveillance applications to name some [2, 3]. In

all these applications, ensuring safety of the operating system is imperative. A natural

question to ask is, “how does one ensure safety for such a system?”. It is easy to see that

this question is fairly broad and can be tackled from many angles based on the definition

of safety, criteria for safety satisfiability, and more. We look towards control theoretic

methods and adopt level-set based approaches to tackle this issue.

Control theoretic methods play a critical role and provide a rigorous mathematical

framework for addressing safety of a dynamical system. To this end, control barrier func-

tions (CBFs) are a class of functions, inspired from Lyapunov level-set methods, to address

the safety requirement of a dynamical system [8]. CBFs were successfully demonstrated on

safety-critical applications such as adaptive cruise control, quadrotors, and bipedal robots

[8, 56, 57, 11]. A dynamical system is defined to be safe if a subset of its states remains

within a prescribed set, also called the safe set or barrier certificates, for all future time.

Barrier certificates [15, 16] are characterized with the aid of a candidate scalar valued

smooth function which ultimately forms the CBF. To incorporate safety using CBFs, we

require two items: 1) a nominal model of the system dynamics and 2) a safety function

candidate characterizing the safe set. An inner product is taken between the nominal dy-

namics and the safety function candidate to serve as the constraint in a convex optimization

program resulting in the safety of the system. Traditionally, the primary focus has been
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on learning residual dynamics and accounting for uncertainties in the dynamical model.

Therefore, the effect on system safety comes from learning and modeling the residual dy-

namics. However, there has been limited effort into the synthesis of safety function can-

didates from sensed data while accounting for uncertainty in the safety function synthesis.

Traditionally, CBFs have always been designed as deterministic functions providing a nu-

merical scalar value. How sure are we of this numerical scalar quantity?

In this chapter, we introduce a notion of safety uncertainty to an existing CBF. Safety

uncertainty refers to the uncertainty in the estimation or design of a given CBF when

estimated from sensed data. For instance, consider a CBF that is designed for an ob-

stacle avoidance scenario. Here, state estimates and range measurements from the sen-

sors are used to update the value of the CBF. Both the state estimation and measure-

ment process will invariably have noise or uncertainty. Naturally, one would like to en-

code this uncertainty in the computation of the CBF especially for safety-critical applica-

tions where being conservative based on the uncertainty could be useful. By augment-

ing the Gaussian process (GP) posterior variance to a given CBF, we introduce safety

uncertainty to a given CBF. We demonstrate our approach on a problem of safe set ex-

pansion in a real robotic experiment using a quadrotor. The experiment video can be seen

at: https://youtu.be/9qvOf1UpRPw.

2.1 Background Preliminaries

Here, we introduce and present the mathematical preliminaries upon which our methodol-

ogy is based. We first review the CBF framework for achieving safety constrained control.

In this thesis, we limit our scope to affine dynamical systems only. CBFs used in the con-

text of non-affine systems, see [58]. We then go over positive semidefinite kernels and

discuss GP posterior variance which will be used for incorporating the uncertainty in the

CBF formulation.

10

https://youtu.be/9qvOf1UpRPw


Safe region

h(x) ≥ 0

Unsafe region

h(x) < 0

Figure 2.1: The safe set S is the superlevel set of h(x). The curves are the trajectory of the
dynamical system, while the diamonds represent the initial states. Inside the safe set, the
system moves freely and can even approach the boundary. Outside the safe region, it will
asymptotically converge to the safe set.

2.1.1 Control Barrier Function

Control Barrier Functions ensure that the system’s safety requirements are addressed through

the forward invariance property. Consider a general control affine system given by,

ẋ(t) = f(x(t)) + g(x(t))u(t), (2.1)

where x(t) ∈ Rn is the state and u(t) ∈ Rm is the control input. The drift vector field,

f : Rn → Rn, and the control matrix field, g : Rn → Rn×m, are assumed to be locally

Lipschitz continuous. Let the safety for (2.1) be encoded as the superlevel set S of a

continuously differentiable function h : X → R.

S = {x(t) ∈ Rn | h(x(t)) ≥ 0}. (2.2)

Definition 1 (Control Barrier Function [8]). The function h(x) : Rn → R is defined as a

control barrier function (CBF), if there exists an extended class-κ function alpha (α(0) = 0
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and strictly increasing) such that for any x ∈ S,

sup
u∈U

{
Lfh(x) + Lgh(x)u+ α(h(x))

}
≥ 0, (2.3)

where Lfh(x) = ∂h
∂x
f(x) and Lgh(x) = ∂h

∂x
g(x) are the Lie derivatives of h(x) along

f(x) and g(x) respectively. In Figure 2.1, we see a pictorial representation of a safe region

whose superlevel set is defined by a candidate smooth h(x). Inside the safe region, the

dynamical system state is allowed to freely move. It can even approach the boundary of

the safe region, but it will not go outside. If the system initially begins outside the safe

region, then it will asymptotically approach the boundary of the safe region. For proofs of

forward invariance inside the safe set and asymptotic convergence outside the safe set, see

[8]. The theorem below establishes the forward invariance for the (subset of) system states

for which the CBF is defined.

Theorem 1 (Safety Condition [8]). Given a system (2.1), with safe set S ⊂ Rn defined by

(2.2), and a continuously differentiable CBF h(x) : Rn → R given by (2.3), any Lipschitz

continuous controller u ∈ Rm, chosen from Kcbf = {u ∈ Rm | Lfh(x) + Lgh(x)u +

α(h(x)) ≥ 0} for any x ∈ Rn, renders the set S forward invariant for (2.1).

We can rewrite the set of valid control inputs, Kcbf as follows,

Kcbf = {u ∈ Rm | Lρ
fh(x) + LgL

ρ−1
f h(x)u+ α(h(x)) ≥ 0}, ρ = 1

As can be seen from the expression above, CBFs are limited to systems with relative

degree, ρ = 1, where ρ ∈ N. CBFs have been extended to deal with systems having higher

relative degree (ρ > 1), namely the Higher-Order CBFs [20], and a special case of Higher-

Order CBFs called the Exponential CBFs [19]. For the purposes of this thesis, Exponential

CBFs suffice to deal with higher relative degree systems.

Definition 2 (Exponential Control Barrier Function [19]). A ρ-times continuously differ-
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entiable function h(x) : Rn → R, is defined as an exponential control barrier function

(ECBF), with relative degree ρ ∈ N, if there exists K ∈ Rρ such that for any x ∈ Rn,

sup
u ∈ Rm

Lρ
fh(x) + LgL

ρ −1
f h(x)u+K⊤H ≥ 0,

where H = [h(x), Lfh(x), ..., L
ρ −1
f h(x)]⊤ ∈ Rρ is the Lie derivative vector for h(x), and

K = [k0, k1, ..., kρ−1]
⊤ ∈ Rρ is the coefficient gain vector for H. K can be determined

using linear control methods such as pole placement. We refer the reader to [19] for proofs

of ECBF forward invariance.

Remark 1. We see that CBFs do not account for any uncertainty. Assuming a CBF to be

deterministic in every instance can lead to safety failures, for instance, when sensor mea-

surements are noisy. This is one of the motivations behind purposing a notion of uncertainty

in the design of CBFs.

2.1.2 Positive Definite Kernels

Kernels furnish a notion of similarity between pairs of input points, xi,xj ∈ Rn. However,

any arbitrary function of input pairs will not constitute a valid kernel. To be a valid kernel,

it should satisfy positive semidefiniteness, see [59].

Definition 3 (Positive semidefinite kernel). Let X ⊆ Rn be a nonempty set. A symmetric

function k : X × X → R is a positive definite kernel [59], if the matrix K ∈ RN×N , with

entries, [K](i,j) = k(xi,xj), is positive semidefinite (x⊤Kx ≥ 0, ∀x ∈ Rn), for a finite set

xi ∈ X ⊆ Rn, i = {1, . . . , N}.

A stationary kernel is a function of |xi − xj| and is invariant to translations in the input

space. A popular choice of the kernel function is the squared exponential (SE) kernel, also

called the Gaussian kernel or radial basis kernel, which is given as follows,

k(xi,xj) = σ2
f exp

(
− (xi − xj)

⊤L−2(xi − xj)

2

)
+δijσ

2
ω, (2.4)
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where δij is the Kronecker delta, δij = 1 if i = j and 0 otherwise. The characteristic length

scale is, l ∈ Rn, with L = diag(l) ∈ Rn×n. The signal scale and measurement noise are

given by σ2
f ∈ R and σ2

ω ∈ R respectively. Together, these free parameters constitute the

SE kernel’s hyperparameters, Θ = [L, σ2
f , σ

2
ω] ∈ Rn×n × R× R.

For stationary kernels, checking its mean square continuity implies checking for conti-

nuity at k(0, 0). The mean-square differentiability (or smoothness property) of a stationary

kernel process is determined around x = 0 [59]. Note that different kernels have different

hyperparameters. Intuitively, choosing a kernel means that we are modeling the underlying

class of functions to be well represented by the kernel. Hence, the choice of the kernel is

very problem dependent.

The SE kernel (or Gaussian kernel) is infinitely differentiable, and hence, it is infinitely

mean-square differentiable. This allows for a flexible parameterization of safety uncertainty

into the function h(x). Although, not all kernels are differentiable, we highlight that there

are a broad class of kernels that are differentiable and exhibit good modeling characteristics

in many engineering domains, see [60].

2.2 Problem Statement

Consider a CBF h(x) which encodes safety given by an initial safe set So as in (2.2). Our

objective is to incorporate safety uncertainty in the synthesis of h(x) from online observa-

tions of the system states and ensure that (2.1) remains safe. This leads to the following

candidate function,

hs(x(t)) := h(x(t))︸ ︷︷ ︸
desired safety

− hu(x(t); Θ)︸ ︷︷ ︸
safety uncertainty

. (2.5)

Assumption 1. We assume observability of the states x ∈ X at time t for the system (2.1).

The system’s overall safety is given by hs(x) which incorporates a desired safety com-

ponent given by h(x) and an uncertainty component given by hu(x). Intuitively, if the
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safety uncertainty decreases, then the overall safety increases and approaches the desired

safety. Moreover, the uncertainty component has hyperparameters Θ that can alter the

relative notion of safety uncertainty, see Section 2.1.2.

Problem 1. Given N measurements of the system state x, a prior CBF h(x), synthesize

hs(x) with safety uncertainty using a positive semidefinite kernel k(xi,xj) by conditioning

on XN = {xi}, i ∈ {1, . . . , N}.

Problem 2. Given the synthesized hs(x) constructed from a CBF h(x) and a positive

semidefinite kernel k(xi,xj), synthesize a controller that ensures (2.1) remains safe.

Note that incorporating uncertainty in the formulation of a CBF is particularly challeng-

ing. This is because, time derivatives are computed on h(x) in order to satisfy the forward

invariance properties for CBFs. It is an ill-posed problem to compute the time derivative

of an unknown entity, i.e. the system’s safety uncertainty, without making prior assump-

tions. For alleviating such an issue, a kernel representation is used for capturing the safety

uncertainty.

2.3 Proposed Methodology

In this section, we present our proposed approach for incorporating a notion of safety un-

certainty into the formulation of CBFs. We are interested in determining the uncertainty of

the system safety by observing the system state, x ∈ X . Given N state data points, with in-

put vectors x ∈ Rn, we create the input matrix: XN = {xi}Ni=1. The Gaussian process (GP)

framework allows computing the posterior variance for an arbitrary query point x∗ ∈ Rn,

by conditioning on previous observations. The posterior predictive variance σ2 ∈ R is then

given by [59]:

σ2(x∗) = k(x∗,x∗)− k(x∗)
⊤ K

−1
k(x∗), (2.6)
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Figure 2.2: CBF augmented with safety uncertainty using the GP posterior variance based
on past measurement data.

where k(x∗) =
[
k(x1,x∗), . . . , k(xN ,x∗)

]⊤ ∈ RN is the covariance vector between xN

and x∗, K ∈ RN×N , with entries
[
K
]
(i,j)

= k(xi,xj), i, j ∈ {1, . . . , N}, is the covariance

matrix between pairs of input points, and k(x∗,x∗) ∈ R is the prior covariance. Given

a continuously differentiable function h(x), and a positive semidefinite kernel k(xi,xj),

i, j = {1, . . . , N}, where N is the number of data points, we propose the following

variance-based CBF hs(x) that incorporates safety uncertainty online using (3.2) condi-

tioned on past measurements,

hs(x) = h(x)− σ2(x)

= h(x)︸︷︷︸
desired safety

−
(
k(x,x)− k(x)⊤ K

−1
k(x)︸ ︷︷ ︸

safety uncertainty

)
. (2.7)

Note that the expression above is a candidate for a variance-based CBF. The main idea

is to use the posterior variance as a metric for the uncertainty in the safety estimation.

Remark 2. The variance based CBF construction above has an analytical form for the

safety uncertainty which allows computing the Lie derivatives of hs(x) in closed-form.

Additionally, a data-driven paradigm is formulated since past measurement data is incor-

porated to determine safety uncertainty. This allows the possibility of constructing conser-

vative safe sets due to the uncertainty quantified using the posterior variance.
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2.3.1 Lie Derivatives of Variance based CBFs

The proposed CBF framework includes the uncertainty in the state space for safety in ad-

dition to the desired safety function. Hence, we must also compute the Lie derivatives of

the uncertainty component. First, we take the partial derivative of hs(x) with respect to x

at a query point x∗,

∂hs(x)

∂x

∣∣∣∣
x∗

=
∂h(x)

∂x

∣∣∣∣
x∗

− ∂σ2(x)

∂x

∣∣∣∣
x∗

=
∂h(x)

∂x

∣∣∣∣
x∗

−
(
− 2k(x∗)

⊤K
−1∂k(x)

∂x

∣∣∣∣
x∗

)
=
∂h(x)

∂x

∣∣∣∣
x∗

+ 2k(x∗)
⊤K

−1∂k(x)

∂x

∣∣∣∣
x∗

. (2.8)

The kernel derivative in (2.8) is given by,

∂k(i)(x)

∂x

∣∣∣∣
x∗

= (x(i) − x∗)
⊤ k(x(i),x∗)L

−2, (2.9)

where k(i) is the ith element of k(x), and (2.9) is the ith row of ∂k(x)
∂x
∈ RN×n. Now, we

can compute the Lie derivatives of hs(x) by taking its time derivative as follows,

ḣs(x) =
∂hs(x)

∂x
f(x) +

∂hs(x)

∂x
g(x)u

= Lfhs(x) + Lghs(x)u, (2.10)

where (2.8) is used in the Lie derivatives, Lfhs(x) =
∂hs

∂x
f(x) and Lghs(x) =

∂hs

∂x
g(x). In

prior literature, the derivative predictions of GP posterior mean and variance are exploited

[61, 62]. Note that the derivative prediction of GP posterior variance represents the variance

on the derivative prediction of the GP posterior mean. Here, we take the partial derivative

of σ2(x) with respect to the state x which is different from the derivative prediction of

GP posterior variance. The GP posterior variance and its partial derivative are shown in
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Figure 2.3: The GP posterior variance (top) and its derivative (bottom) is plotted using 5
input samples. The posterior variance is small at sample location inputs, as expected. The
analytical form of variance derivative is compared with numerical differentiation.

Figure 2.3. At the sample location inputs, we see that the variance is small (or zero). This

makes sense since the variance will be high at the locations where we do not have data

samples. The posterior variance derivative derived above is verified with the numerical

differentiation using finite differences.
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2.3.2 Online Safety Control

We now synthesize the controller that will ensure the state of the system (2.1) will be

forward invariant in a prescribed safe set. CBFs can be used in conjunction with a convex

optimization program, in particular a quadratic program (QP), to derive a computationally

efficient method to enforce safety for the control-affine systems of the form (2.1).

Assumption 2. We assume the existence of a nominal control input unom that drives the

state x of system (2.1) to a desired state xdes.

The given nominal control input unom(t) ∈ Rm is designed as the feedback policy for

the system (2.1). However, this control policy may not confine the system inside the safe set

at all times. An online QP rectifies unom whose constraints are given by the Lie derivatives

in (2.10) [8].

Variance-based CBF-QP: Control Input Rectification

u∗ = argmin
u ∈ Rm

1

2

∥∥u− unom

∥∥2 s.t. (2.11)

Lfhs(x) + Lghs(x)u+ α(hs(x)) ≥ 0,

where u∗ is the rectified control input. By rectifying the control policy, the system is

guaranteed to remain forward invariant for the safe set S.

2.4 2D Safe Set Expansion using Exploratory Samples

Here, we extend the framework above to allow expansion of an initial safe set So to a

desired final set Sf . We denote the boundary of So as ∂So = {x ∈ Rn | hs(x) = 0}. Since

there can be uncountably infinite points in ∂So, we make the following assumption,

Assumption 3. Given hs(x) encoding superlevel safe set So with ∂So denoting its bound-

ary, there exists xb ∈ Rn such that hs(xb) = 0.
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Figure 2.4: Expansion of initial safe set So to expanded safe set Sf . Exploratory samples
are located within a proximal search space (black dashed).

It is reasonable to assume knowledge of xb. This is because a candidate CBF is designed

such that xb represents the state with the least safety. A query state x∗ ∈ Rn is sampled if,

∥∥x(i) − x∗
∥∥ ≥ τ, i = {1, . . . , N}, (2.12)

where τ ∈ R denotes the distance between any two samples. This avoids dense sampling

of the states resulting in computational tractability. Moreover, samples too close together

may result in an ill-conditioned covariance matrix [59].

We assume there is an external (safety) observer, such as a high-level vision or semantic

segmentation planner, detecting safety candidates outside the current safety limit. As the

system is moving, a local safety map is computed to determine safety candidates with min-

imal safety exceeding the initial safety limit xb, see Figure 2.4. As more data is collected,

the overall safety increases. Consequently, the safety margin increases. Hence, a solution

x∗ may exist for |hs(x∗)| < ϵ with x∗ exceeding xb as the system moves closer to xb. As

there can be multiple x∗ satisfying |hs(x∗)| < ϵ, we choose the x∗ furthest away from xb.
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We compose a set E of exploratory samples given by,

E = {x∗ ∈ Rn
∣∣ ∥∥x∗ − xo

∥∥− ∥∥xb − xo

∥∥ > 0 } such that, (2.13)

|hs(x∗)| < ϵ, x∗ ∈ [x∗ − δτ,x∗ + δτ ] (2.14)

where xo ∈ Rn is the origin, δ ∈ R is a scaling parameter for the domain search space,

and ϵ ∈ R is minimum safety requirement. If the cardinality of set E is greater than a

given number of required exploratory samples, i.e. |E| > nexplore, then the safe set can be

expanded by setting xb ← max [ E ], where max[ ] returns the exploratory sample furthest

away from the origin xo.

Note that a less conservative expansion could involve applying the max operator to E.

The cardinality of E will be non-zero only if exploration happens at the boundary of the

safe set. As more samples are collected, the safety uncertainty encoded by hu(x) decreases,

thereby increasing the overall safety of hs(x). Inclusion of safety uncertainty along with

safe expansion of the initial set is summarized in Algorithm 1.

Algorithm 1 Variance-based CBF Synthesis with Expansion in 2D

1: procedure EXPAND(So(xb),Sf (xdes), nexplore)
2: while ∥xb∥ ≤ ∥xdes∥ do ▷ Final safe set reached
3: SAMPLE input points XN ← x∗ using (3.6)
4: LOCATE safety candidate x∗ using (2.14)
5: COMPOSE exploratory set E using (2.13)
6: if |E| > nexplore then
7: xb ← max[ E ]

8: SYNTHESIZE hs(x;xb,XN) using (3.8)
9: RECTIFY unom using (2.8)-(2.11)

10: return xb

2.5 Application Test Case: Safe Set Expansion using 3D Quadrotor

In this section, we demonstrate the efficacy of our method on a quadrotor example in hard-

ware. This is an interesting and challenging problem due to the safety-critical nature of
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quadrotors. Quadrotors are dynamically unstable, hence if any uncertainty is not mitigated,

the system may become unstable or potentially crash. Our objective is to constrain the

quadrotor in the position space and allow safe expansion of the barrier certificates in po-

sition space. Through our approach, a safe data-driven paradigm can be employed on a

quadrotor for safe exploration.

First, we review the quadrotor dynamics followed by safety rectification on a quadrotor

using the variance augmented CBF discussed in Section 2.3. CBFs have been typically ap-

plied on a quadrotor platform without incorporating safety uncertainty in its design. Using

the variance based CBF and the incremental expansion of the set using Algorithm 1, the

quadrotor is able to safely explore and expand the initial conservative safe set.

2.5.1 Quadrotor Dynamics

We consider the position dynamics and attitude kinematics of a quadrotor model evolving

in a coordinate-free framework. This framework uses a geometric representation for its

attitude given by a rotation matrix R on SO(3) := {R ∈ R3×3 |R⊤R = I3, det(R) = 1}.

R represents the rotation from the body-frame to the inertial-frame. The origin of the

quadrotor’s body-frame is given by the quadrotor’s center of mass, denoted by r ∈ R3.

A quadrotor is an underactuated system since it has 6 DOF, due to its configuration space

being SE(3), but 4 control inputs; thrust F ∈ R and moments M ∈ R3. The equations of

motion are:

ṙ = v, (2.15)

mv̇ = −mge3 + FRe3, (2.16)

Ṙ = RΩ×, (2.17)

JΩ̇ = M− (Ω× JΩ), (2.18)
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where v ∈ R3 is the velocity in the inertial frame, m ∈ R>0 is the quadrotor mass, g ∈ R

is gravity, e3 = [0, 0, 1]⊤, Ω ∈ R3 is the body-frame angular velocity, J ∈ R3×3 is the

inertia matrix, and (·)× : R3 → so(3) is the skew-symmetric operator, such that ∀ x,y ∈

R3,x×y = x× y

2.5.2 Setpoint Generation for Quadrotor

For achieving safety constrained control of the quadrotor, we employ the strategy of de-

signing safe setpoints. We send setpoints to the quadrotor, a Crazyflie 2.1 platform, in the

form of desired thrust, Fdes, and desired roll, pitch, yaw angles, η = [ϕdes θdes ψdes]
⊤ ∈ R3.

Crazyflie is equipped with a fast response low-level onboard controller that can directly

track these setpoint commands. More details on the hardware experimental setup are cov-

ered in Section 2.6.1.

Given a desired trajectory, rdes ∈ R3, that is twice differentiable, a second-order inte-

grator model can be setup,

ṙ
r̈


︸︷︷︸

ẋ

=

0 I

0 0


r
ṙ


︸ ︷︷ ︸

f(x)

+

0
I


︸︷︷︸
g(x)

u, (2.19)

where r, ṙ, r̈ are the quadrotor’s position, velocity, and acceleration respectively, x =

[r⊤, ṙ⊤]⊤ ∈ R6, and u = r̈des ∈ R3. We assume the desired yaw to be zero and make small

angle approximations to invert the quadrotor’s nonlinear dynamics [63], [64]. The rela-

tion between the second-order integrator model control input and the quadrotor’s desired

setpoints are given by,

u1,nom = g(θdes cosψ + ϕdes sinψ), (2.20)

u2,nom = g(θdes sinψ − ϕdes cosψ), (2.21)

u3,nom =
Fdes

m
− g, (2.22)
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where the desired Euler angles, θdes, ϕdes, and desired thrust, Fdes, are coming from the

human teleoperator. The nominal control inputs unom = [u1,nom, u2,nom, u3,nom]
⊤ ∈ R3 are

then rectified with the synthesized Gaussian CBF to generate rectified control inputs urect.

These rectified control inputs are then inverted to get rectified setpoints for the quadrotor

using,

ϕrect =
(u1,rect sinψ − u2,rect cosψ)

g
(2.23)

θrect =
(u1,rect cosψ + u2,rect sinψ)

g
(2.24)

Frect = m(u3,rect + g). (2.25)

Next, we discuss the safety rectification of u to compute urect using the CBF in (2.5).

2.5.3 Quadrotor Online Control Rectification

Our objective is to constrain the quadrotor in the limited position space and allow safe

expansion by incorporating safety uncertainty in the formulation. Given a variance aug-

mented CBF expressed in the position space, then the relative degree for the system (2.19)

is ρ = 2. The associated Lie derivatives for the variance based CBF are given by,

Lfhs(x) = Lfh(x)−
(
∇σ2(x)

)⊤
f(x),

L2
fhs(x) = L2

fh(x)− f(x)⊤Hσ2(x)f(x)−
(
∇σ2(x)

)⊤ · ∇f(x) · f(x),
LgLfhs(x) = LgLfh(x)− f(x)⊤Hσ2(x)g(x)−

(
∇σ2(x)

)⊤ · ∇f(x) · g(x),
where ∇σ2(x) = ∂σ2(x)⊤

∂x
is the gradient of GP variance (as seen in (2.8)) and ∇f(x) =

∂f(x)
∂x

is the Jacobian of f(x). Hσ2(x) is the Hessian of GP variance given by,

Hσ2(x) = −2∇k(x)K −1∇k(x)⊤− 2
∂

∂x

( N∑
i

bi
∂ki(x)

∂x

)
,
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where∇k(x) = ∂k(x)
∂x

⊤
∈ Rn×N , bi is the ith element of k(x∗)

⊤K
−1 ∈ R1×N , and ∂k(i)(x)

∂x

is given by (2.9). Given the nominal control input unom ∈ R3 in (2.19), the QP below

rectifies unom into urect ∈ R3,

Variance based CBF-QP: Quadrotor Input Rectification

urect = argmin
u ∈ R3

1

2

∥∥u− unom

∥∥2 s.t. (2.26)

L2
fhs(x) + LgLfhs(x)u+K⊤H ≥ 0,

where K = [k1 k2]
⊤∈ R2, and H = [Lfhs(x) hs(x)]

⊤∈ R2. The QP solution urect is then

used to compute the rectified setpoints using (2.23)-(2.25). Finally, the rectified setpoints

are then sent to the Crazyflie 2.1.

2.6 Hardware Experimental Verification

In this section, we discuss the experimental setup and results on a hardware quadrotor. The

objective of the experiment is to expand an initial lateral safe set along x and y online

by collecting position and velocity state measurements of the quadrotor. Two individual

variance based CBFs are used as follows,

hs(x) =

hx(x)
hy(x)

 , (2.27)

where hs(x) = [hx(x) hy(x)]
⊤ ∈ R2 are two separate variance based CBFs. Each CBF is

designed to take the following form,

hx(x) = (ax − bx)
(
1− σ2(bx)

)
+ bx − x− σ2(x), (2.28)

hy(x) = (ay − by)
(
1− σ2(by)

)
+ by − y − σ2(x), (2.29)
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Figure 2.5: Experimental setup for expanding initial safe set independently along x and y.
State estimation is done using an external lighthouse system.

where the initial safety limit along x and y positions is given by b = [bx by]
⊤ ∈ R2,

a = [ax ay]
⊤ ∈ R2 is the final safety limit, x and y are the x, y components of r position

state, x = [ x y ẋ ẏ ]⊤ ∈ R4, and σ2(·) ∈ R.

The safety uncertainty captures the variance in lateral position, velocity, and at the ini-

tial safety limit. Since the CBF should constrain the quadrotor only in the lateral position

space, we use x, y components only and do not use the altitude position z. For the safety

uncertainty, both the position and velocity states are used. This is because the quadrotor

may visit previously sampled positions with differing velocities. This introduces uncer-

tainty in previously visited sites, thus changing the safe set. The experimental video link

is: https://youtu.be/9qvOf1UpRPw.

2.6.1 Experiment Setup

The Crazyflie 2.1 is used as the hardware quadrotor. State estimation is performed on-

board with the help of an external low-cost lighthouse positioning system [65]. Setpoint

commands are computed remotely on a ground station equipped with an Intel i7-9800X at

4.4GHz processor and 16 GB RAM. The crazyflie ros API is used to communicate

for interprocess communication, subscribing to pose information, and publishing setpoints

over the Crazyradio PA USB dongle [66]. Figure 2.5 illustrates the experimental setup.

Data measurements composed of (x, y) positions and velocities are collected at 100Hz
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with a data capacity set to 100 samples. The input rectification routine in (2.11))is run on

a parallel thread at 50Hz where solving the QP takes under 5ms. The barrier expansion

algorithm is run at 25Hz. Finding safe candidates using (2.14) takes under 5ms for each

dimension. Setpoint commands are sent to the Crazyflie at 100Hz.

The parameters used in the experiment are τ = 0.1m for the sampling distance, a scal-

ing parameter of δ = 2 for the safety domain search space, and (bx, by) = (0, 0) as the

initial safety limit, and (ax, ay) = (0.5, 0.5) as the final safety limits. The quadrotor’s

initial location is at (x0, y0, z0) = (−0.45,−0.45, 0). The minimum safety requirement

for detecting new safety candidates is ϵ = 0.01, while the number of exploratory sam-

ples nx
explore = ⌈by/(δτ)⌉ along x direction and ny

explore = ⌈bx/(δτ)⌉ along y direction.

As the barrier expands along one direction, more exploratory samples are required in the

other direction. The SE kernel’s hyperparameters are set as Θ = [diag(0.2, 0.2), 1, 0.01].

Since no hyperparameter tuning is required in our experimental test case, we preset the

hyperparameters.

2.6.2 Experimental Results

The quadrotor initially moves along the positive x direction. To expand the boundary along

x, exploration needs to take place in a vertical pattern. As seen in Figure 2.6, as samples

are collected along the trajectory, there is reduced uncertainty. From the two local safety

maps constructed online using (2.14), along each axis x and y, we see that the exploratory

samples are found only for x local map. This is expected since the quadrotor is near the

barrier limit for hx(x). Only after a minimum number of exploratory samples are found,

the barrier now expands to the furthest safety candidate’s location. The exploratory samples

are selected such that |hx(x∗)| < 0.01. Hence, the safe set expands to a value which is at

least minimally safe.

The system then is directed to expand along the positive y axis. Exploration now needs

to happen in a horizontal flight to expand the barrier limit by. In Figure 2.7, we notice that
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Figure 2.6: Uncertainty with initial safe set (black dashed), exploratory samples along
x axis (orange square), quadrotor’s location (white disk), and barrier expansion (white
dotted). Local safety maps are constructed online using (2.14) for both x and y axes.
Exploratory samples are found only for local hx(x) since the quadrotor is near the vertical
border.

the safe set is longer along the x direction. Therefore, the number of exploratory samples

required for expanding along y has increased since ny
explore = ⌈bx/(δτ)⌉. Although the two

safety maps are constructed, we see that solutions are found only for hy(x) as opposed to

hx(x), since the quadrotor is now near by. Analogous to the previous setting, the barrier

now expands at the furthest minimally safe location.

As the quadrotor continues to fly and collect more samples, uncertainty reduces and as

a result the overall safety increases. The framework continues until the desired safety set

is achieved. In Figure 2.8, the superlevel zero set is shown for both the Gaussian CBFs,

hx and hy. The system expanded the initial safe set to the desired final safe set using only

46 samples. Our algorithmic framework resynthesizes both hx and hy online ensuring that

expansion happens only if exploratory samples are found which are minimally safe.
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Figure 2.7: Uncertainty with initial safe set (black dashed), exploratory samples along y
axis (blue square), quadrotor’s location (white disk), and barrier expansion (white dotted).
In this instance, more exploratory samples are required to expand along y axis due to the
initial expansion along x axis.

2.7 Concluding Remarks

In this chapter we presented a framework for incorporating uncertainty in the synthesis of a

given CBF. This uncertainty is parameterized using the Gaussian process variance. By col-

lecting state measurements, safety uncertainty decreases and the overall safety increases,

thus approaching the final desired safety. To expand the safe set, local safety maps are com-

puted online at the present location to determine exploratory samples with minimal safety

exceeding the current safety limit. We assume an external safety observer can detect these

minimally safe candidates, e.g. high-level vision or semantic segmentation planner. Since

the new candidate locations are minimally safe, expansion of the safe set happens always

in a safe manner. This allows a safe exploratory process for the system. We successfully

demonstrated our approach in a robotic experiment by expanding an initial safe set along x

and y axes independently without risking any expensive system failures.
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Figure 2.8: Final safe sets for hx(x) (red contour) and hy(x) (blue contour) where only the
positions (x, y) are used to create the surface plot (using ẋ = 0, and ẏ = 0).
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CHAPTER 3

BAYESIAN APPROACH TO SAFETY USING GAUSSIAN CONTROL BARRIER

FUNCTIONS

This chapter presents the main contribution and focus of the thesis. Inspired by the suc-

cess of control barrier functions (CBFs) in addressing safety, and the rise of data-driven

techniques for modeling functions, we propose a non-parametric approach for the online

synthesis of CBFs using Gaussian Processes (GPs). As seen in Chapter 2, a dynamical

system is defined to be safe if a subset of its states remains within the prescribed set, also

called the safe set. CBFs achieve safety by designing a candidate function a priori. How-

ever, designing such a function can be challenging. Consider designing a CBF in a disaster

recovery scenario where safe and navigable regions need to be determined. The decision

boundary for safety here is unknown and cannot be designed a priori.

CBFs generally employ a parametric or constructive design approach, which means that

they are hand-designed functions. Moreover, based on the design choice of the CBFs, it is

not straight forward to handle arbitrary changes to the safe set in practice. In our approach,

we work with safety samples as opposed to a hand-designed candidate function to construct

the CBF online by assuming a flexible GP prior on these samples (see Figure 3.1). The

resulting formulation is called Gaussian Control Barrier Functions. We already witnessed

the augmentation of the GP posterior variance to a given candidate CBF in Chapter 2. Here,

we fully synthesize the CBF as a GP. Gaussian CBFs have favorable properties such as

analytical tractability and robust uncertainty estimation. This allows realizing the posterior

with high safety guarantees while also computing associated partial derivatives analytically

for safe control. Moreover, Gaussian CBFs can change the safe set arbitrarily based on

sampled data, thus allowing non-convex safe sets.

In this chapter, we consider a fully non-parametric formulation for synthesizing the
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Safe observation

Unsafe observation

Origin

System Trajectory

Figure 3.1: The Gaussian CBF uses a non-parametric design approach by relying on data
to produce the safe sets. The 0-level contour sets are shown for a traditional CBF (left)
and Gaussian CBF (right) with safe sets Scbf and Sgcbf respectively. As a new observation
is received (green upper triangle), the Gaussian CBF can change the safe set based on the
data in a non-convex fashion.

safety function without requiring any parametric CBF candidate function. We first present

the background preliminary on GP regression followed by the problem statement. We

then go over our proposed methodology for Gaussian CBFs in detail. We present a novel

approach for synthesizing CBFs in a data-driven non-parametric manner using GPs. This

is achieved using safety samples as opposed to the prevailing use of CBFs which requires

a function. We construct Gaussian CBFs to design safe sets based on the data. These sets

are not confined to convex safe sets. GPs provide favorable properties such as analytical

tractability and uncertainty estimation which are key enablers in finding closed-form safety

function and associated Lie derivatives with high guarantees. We formulate Gaussian CBFs

for safe control in the presence of noise for both the safety samples (observations to GPs)

and the system states (inputs to the GPs). Finally, we validate Gaussian CBFs in hardware

using a quadrotor for three case studies: (i) safe control for fixed but arbitrary safe sets, (ii)

online obstacle avoidance with an evolving safe set, and (iii) juxtaposing Gaussian CBFs

with regular CBFs for safe control in the presence of noisy system states. To the best of
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our knowledge, we believe this is the first work that fully synthesizes a CBF in a non-

parametric data-driven manner online using GPs and validate all findings in hardware. The

experiment video link is: https://youtu.be/HX6uokvCiGk.

3.1 Background Preliminary

Here, we briefly discuss the mathematical background behind GPs, in particular GP regres-

sion. GPs are a popular choice in machine learning for nonparametric regression which

rely on kernels. We take a function space viewpoint towards GPs where inference takes

place directly in the function space.

3.1.1 Bayesian Modeling

Consider a simple 1-d regression problem, where we want to map an input x to an output

h(x). In Bayesian inference, to learn the underlying latent function h(x), a prior is placed

on the class of functions. This prior represents the belief over the kinds of functions we ex-

pect to see before observing any data. The specification of the prior function is based on the

choice of the kernel or covariance function used satisfying certain properties, see Section

2.1.2. The kernel or covariance function induces the properties for the class of functions

we are interested in learning. Suppose we are given a kernel function, for instance, the SE

kernel (2.4), we can draw function priors using the following distribution,

hprior ∼ N (0,K(x∗, x∗)),

with each entry of K(x∗, x∗) given by [K](i,j) = k(xi, xj), where i, j = {1, . . . , 100}. Pri-

ors drawn from the Gaussian distribution with 0 mean and SE kernel are shown in Figures

3.2 - 3.4. As the number of priors increases, we see a band of functions approaching 0

mean in Figure 3.4.

Now, suppose we are given N = 6 datapoints, we can update our prior belief using the
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Figure 3.2: Drawing 5 functions using a GP prior using 100 equidistant test points.

Figure 3.3: Drawing 51 functions using a GP prior using 100 equidistant test points.
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Figure 3.4: Drawing 502 functions using a GP prior using 100 equidistant test points.

help of data. In Figure 3.5, the 6 sample inputs and corresponding observations are shown.

The combination of the data and the prior leads to the posterior distribution over functions.

The posterior is derived by conditioning the prior on the 6 noise free observations given,

which are shown in Figures 3.6 - 3.8. What is interesting to observe is that the posterior

distribution over the functions passes through the points. If more datapoints were provided,

the corresponding posterior mean would adjust itself to pass through the datapoints and the

posterior uncertainty would reduce as a result around the datapoints. However, while being

a perfectly valid way of doing inference, it is impractical due to computational limits. GPs

provide an alternative way of computing function inference while providing closed-form

analytical solutions.

3.1.2 Gaussian Process Regression

Definition 4 (Gaussian process (GP) [59]). A Gaussian process is a collection of random

variables, any finite number of which has a joint Gaussian distribution.
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Figure 3.5: Noise-free data samples shown along with the priors drawn formerly.

Figure 3.6: By conditioning the priors on the data, 5 posteriors are drawn.
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Figure 3.7: Updating the priors with the data, 51 posteriors are drawn.

Figure 3.8: By conditioning the priors on the data, 502 posteriors are drawn.
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A GP can be completely specified by its mean function µ(x) and covariance function

k(x,x′) of a real process hgp(x) as follows,

hgp(x) ∼ GP
(
µ(x), k(x,x′)

)
.

Given a set of N data points, with input vectors x ∈ Rn, and scalar targets y ∈ R, we

compose the dataset DN = {XN ,yN}, where XN = {xi}Ni=1 and yN = {yi}Ni=1. GPs

can compute the posterior mean and variance for an arbitrary deterministic query point

x∗ ∈ Rn, by conditioning on previous measurements. We will later investigate how to

handle the case when the query point x∗ is noisy. The posterior mean µ ∈ R and variance

σ2 ∈ R are given by [59],

µ(x∗) = k(x∗)
⊤ K

−1
yN , (3.1)

σ2(x∗) = k(x∗,x∗)− k(x∗)
⊤ K

−1
k(x∗), (3.2)

where k(x∗) =
[
k(x1,x∗), . . . , k(xN ,x∗)

]⊤ ∈ RN is the covariance vector between XN

and x∗, K ∈ RN×N , with entries [k̄](i,j) = k(xi,xj), i, j ∈ {1, . . . , N}, is the covariance

matrix between pairs of input points in XN , and k(x∗,x∗) ∈ R is the prior covariance.

Revisiting the problem above, where we are interested in doing inference in the function

space, GPs can be used to derive the posterior mean and variance in closed-form. Using

(3.1) and (3.2), the posterior mean and 95% confidence region is shown with pointwise

mean plus and minus two times the standard deviation for each input value in Figure 3.9.

Using GP regression, we are interested in constructing a safety function for which we

assume to have noisy scalar observations. These scalar observations will serve as the safety

samples for our problem setting. An advantage of using GPs to synthesize CBFs is the use

of kernel or covariance functions for function inference. A well chosen kernel function is

differentiable allowing a flexible parameterization of the safety function and its Lie deriva-
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Figure 3.9: The mean and variance can be derived for the posterior distribution using GPs.
The mean is shown in black dashed line with ± 2 standard deviation (bold maroon).

tives as we saw in Section 2.3.1. Although, there are different regression methods such as

splines regression, ordinary-least squares regression, or logistic regression [67, 68, 69, 70,

71, 72, 73, 74], GP regression benefits from several advantages. Firstly, GPs can incor-

porate interpretable priors giving us flexibility in learning the model of interest. When it

comes to splines, the order of the spline plays an important role in the regression. Addition-

ally, for standard regression techniques, cross-validation of the data is required to prevent

overfitting of the data and/or learning the hyperparameters of interest that accurately model

the underlying data. For GP regression, hyperparameters can be directly learned from the

data using automatic relevance determination [75, 76] or by maximizing the log-marginal

likelihood of the latent underlying function we want to model (see Sections 4.1.2 and 5.2.2).

Moreover, spline regression is a special case of GP regression as shown by the work in [77].

As we will see later in Section 4.3.2, we can also exploit sparsity with GPs to reduce data

complexity without compromising the interpretability of the data.
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3.2 Problem Statement

Consider a control affine system (2.1) is given, with access to its states x, and scalar noisy

observations y, that represents a metric for safety. The metric for safety cannot be gener-

alized and therefore is very problem dependent. A distance sensor’s readings for obstacle

avoidance can be used as a metric for safety or a temperature sensor’s readings for deter-

mining thermally acceptable regions to traverse. In a similar vein, a LiDAR scan creating

3D point cloud information can be used to detect environmental hazards or a computer

vision algorithm providing the decision boundary for safe regions of interest. In all these

examples, we can easily sample from the data based on domain knowledge to construct a

target metric for safety. This provides us with the means to construct a valid safety certifi-

cate using the data as opposed to hand-designing a safety function which could be limited

and requires manual effort along with good domain knowledge intuition.

Remark 3. We assume there is a high-level planner or observer, e.g., sensors or computer

vision algorithms, providing the necessary data observations. We acknowledge some fea-

ture engineering or data sampling may be involved which is very common in practice.

These observations represent the safety sample candidates in our problem setting.

Our objective is to synthesize a safety function hgp(x) in a non-parametric manner,

from measurements of the system states and safety samples or observations, online and

ensure that system (2.1) remains safe. Data-based methods are ultimately approximations

and hence, it is desirable to account for any uncertainty in the estimation of the safety

function. This leads to the following candidate function,

hgp(x(t))︸ ︷︷ ︸
overall safety

:= hb(x(t); Θ)︸ ︷︷ ︸
safety belief

− hu(x(t); Θ)︸ ︷︷ ︸
safety uncertainty

. (3.3)

The system’s overall safety is given by hgp(x) which has two components; a belief in

safety given by hb(x) and an associated uncertainty given by hu(x). Intuitively, the safety
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belief represents our best estimation of system safety and safety uncertainty represents the

uncertainty in the estimation. Ideally, if there is no uncertainty, then the safety belief will

perfectly match the overall final safety. Additionally, there are hyperparameters Θ that can

alter the relative notion of safety belief and uncertainty.

Problem 3. Given system (2.1) and online (noisy) measurements of the state x∗, synthe-

size hgp(x) with a safety belief and associated uncertainty, conditioned on past states

and observations in the dataset given by: DN = {XN ,yN}, where XN = {xi}Ni=1 and

yN = {yi}Ni=1, such that system (2.1) is safe.

To ensure the system remains safe, we need to rectify a given nominal control input

unom to its rectified form urect which is then applied to the system (2.1). This is done by

making sure that the Lie derivatives of the corresponding candidate safety function satisfies

the inequality described in (2.3).

Problem 4. Given system (2.1), synthesized hgp(x) with safe set S, and a nominal control

input unom, design the rectified control input urect such that system (2.1) is safe.

Note that designing the control objective for a data-driven based CBF construction is

particularly challenging. Unlike the variance based CBF discussed in Section 2.3, here a

complete non-parametric approach is adopted where the data is fully exploited to construct

the safe sets and the safety function hypothesis. Now, we additionally need to ensure that

the Lie derivatives are computed for the posterior mean of the GP along with the posterior

variance. Due to the use of kernels or covariance functions in GPs, we can tackle this

requirement in a similar manner as done in Section 2.3.1.

3.3 Proposed Methodology

In this section, we present our proposed approach, where GPs are used for synthesizing

the safety function. A key advantage of GPs over other models such as neural networks,

radial basis functions or polynomial chaos, lies in its Bayesian non-parametric design. By
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allowing a flexible prior over functions, GPs give a probabilistic work flow that gives robust

posterior estimates in analytical form. This enables a flexible realization for our safety

function as well as computing the associated Lie derivatives. The resulting architecture for

our framework is shown in Figure 3.10.

3.3.1 Gaussian Control Barrier Function

A GP prior is placed on the desired candidate safety function, hgp(x) ∼ GP(0, k(x,x′)).

Intuitively, this means that the CBF is a function drawn from a GP. By conditioning the

prior belief on observed data, a posterior CBF will be derived. In Section 2.3, only the GP

posterior variance was used to augment safety uncertainty for a given deterministic CBF.

Here, the CBF is a stochastic process drawn from a GP. Note that the new formulation is a

far more flexible realization since the data is used for informing both the safety belief and

associated uncertainty. We operate under the following standard assumptions for GPs.

Assumption 4. Each observation yi is corrupted with Gaussian noise, yi ∼ N (pi, σω),

where pi is the noise-free safety sample and σω is the observation noise variance.

The assumption above has practical implications since capturing the safety samples will

not always be noise-free. This is a very realistic assumption, since in practice these safety

samples can be captured from noisy sensory measurements.

Assumption 5. Training input states XN in the dataset DN are noise-free.

The input training data is considered to be noise-free, however, which is a common

practice in machine learning. We first consider the case where the query point xq is deter-

ministic, i.e., noise-free. Later, we look at the case when the input query point is also noisy,

see Section 3.3.4.

Assumption 6. The safe set is nonempty with at least one datapoint, the initial state x(t0)

where t0 is the initial time, with non-negative safety value hgp(x(t0)) ∈ R≥0, to synthesize

hgp(x).
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We assume that the system (2.1) begins in an initial compact safe set. Safety for hgp is

encoded as,

S = {x ∈ Rn | hgp(x) ≥ 0}, (3.4)

∂S = {x ∈ Rn | hgp(x) = 0}. (3.5)

We adopt a similar sampling strategy as done in Section 2.6.1, where a noise-free query

state x∗ ∈ Rn with a noisy safety sample y ∈ R is sampled if,

∥∥x(i) − x∗
∥∥ ≥ τ, i = {1, . . . , N}, (3.6)

where x(i) are training input points, and τ ∈ R is the sampling distance between any two

input states. Given assumptions 4, and 5, 6, we now formally define a Gaussian CBF.

Definition 5 (Gaussian Control Barrier Function). A function hgp(x) : Rn → R is defined

as a Gaussian CBF for (2.1), if hgp(x) ∼ GP(0, k(xi,xj)) is a Gaussian process, with a

smooth positive semidefinite kernel, k(xi,xj) : Rn×Rn → R, and if ∃ an extended class-κ

function α such that for any x ∈ Rn,

sup
u∈Rm

Lfhgp(x) + Lghgp(x)u+ α(hgp(x)) ≥ 0. (3.7)

Remark 4. The Gaussian CBF above has attractive properties. A GP prior is placed on the

safety candidate function, giving rise to a non-parametric functionality. Thus, the data is

used to fully realize the safety function a posteriori. As more data is collected, the overall

safety encoded by hgp(x) changes. Moreover, it has an analytical form for both the safety

belief and uncertainty. This enables computing Lie derivatives of hgp(x) in closed-form.

The Lie derivatives in (3.7) require taking partial derivatives of hgp with respect to x

which we will discuss later in Section 3.3.2. We propose the Gaussian CBF hgp(x) that

incorporates safety belief and uncertainty online using the GP posterior mean (3.1) and
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variance (3.2) as follows1,

hgp(x) := µ(x)− σ2(x)

= k(x)⊤K
−1
yN︸ ︷︷ ︸

safety belief

−
(
k(x,x)− k(x)⊤K

−1
k(x)︸ ︷︷ ︸

safety uncertainty

)
. (3.8)

The GP posterior mean represents the belief we have regarding safety whereas the GP

posterior variance accounts for safety uncertainty. We require the following theorem to

discuss forward invariance properties for the set S in (3.4)-(3.5).

Theorem 2 (Sample Path Differentiability [78]). A Gaussian process with an isotropic

correlation or kernel function that can be expressed in the Schoenberg representation [79],

has M th-order mean-square partial derivatives if M moments of the length-scale parame-

ter, l, are finite.

We first consider an unforced dynamical system given by ẋ = f(x), where u(t) =

0,∀ t ≥ 0. In this case, the Gaussian CBF will simply be considered as a Gaussian barrier

function, since the control input does not appear.

Proposition 1. Given a system ẋ = f(x) with a nonempty safe set S as defined by (3.4-3.5)

for a Gaussian process hgp, if hgp is a Gaussian barrier function defined on the set S , then

S is forward invariant.

Proof. First, we observe that hgp uses an infinitely differentiable kernel. Hence, hgp is

also infinitely differentiable with respect to x due to Theorem 2 since the length-scale has

infinitely many moments. Since hgp is a Gaussian CBF and infinitely differentiable, then

the inequality Lfhgp(x) ≥ −α(hgp(x)), is satisfied. Given Assumption (6), the set S is

nonempty, for any x ∈ ∂S, hgp(x) = 0 holds. As a result, α(hgp(x)) = 0 which gives

Lfhgp(x) ≥ 0 =⇒ ḣgp ≥ 0. By applying Nagumo’s theorem [7], which states that for

1We can employ weights, wµ and wσ2 , to the posterior mean and variance respectively in order to adjust
safety based on the application. For the sake of simplicity, we consider the weights to be unity in the problem
statement.
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Figure 3.10: Gaussian CBF incorporates safety belief and uncertainty based on past mea-
surement data.

any C1 function hgp, the condition ḣgp ≥ 0 on ∂S is necessary and sufficient for the set S

to be forward invariant, completes the proof.

Remark 5. For the case when the kernel is only M times differentiable, and not infinitely

differentiable, we require that M > 2ρ, where ρ ∈ N is the relative degree of the system.

The proof above holds trivially for an M times differentiable kernel using Theorem 2.

We are interested in ensuring forward invariance of S characterized by hgp for the

system defined by (2.1). The admissible control space for the Gaussian CBF is given by,

Kgcbf = {u ∈ Rm
∣∣Lfhgp(x) + Lghgp(x)u+ α(hgp(x)) ≥ 0}. (3.9)

Proposition 2. Given a Gaussian CBF hgp(x) : S → R defined by (3.7), where S is

nonempty (3.4), any Lipschitz continuous controller u ∈ Rm, that satisfies (3.9) for any

x ∈ Rn, renders S forward invariant for the system (2.1).

Proof. hgp is a Gaussian process with an infinitely differentiable kernel. Using Theorem 2,

hgp is also infinitely differentiable and is, therefore, smooth. Since hgp satisfies (3.9), we

have Lfhgp(x) +Lghgp(x)u ≥ −α(hgp(x)). Using Theorem 1, the proof is complete.

3.3.2 Lie Derivatives of Gaussian CBF

The Gaussian CBF uses kernels for determining the safety belief and associated uncertainty

in the state space. As stated earlier, we use the SE kernel (2.4) which is an infinitely dif-
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ferentiable function. Later, we will see an example of using kernels from the Matérn class.

Computing its Lie derivatives is necessary for rectifying the control input and ensuring for-

ward invariance for the system in the safe set. First, we take the partial derivative of (3.8)

with respect to x at a query point x∗,

∂hgp(x)

∂x

∣∣∣∣
x∗

=
∂µ(x)

∂x

∣∣∣∣
x∗

− ∂σ2(x)

∂x

∣∣∣∣
x∗

= y⊤
NK

−1∂k(x)

∂x

∣∣∣∣
x∗

+ 2k(x∗)
⊤K

−1∂k(x)

∂x

∣∣∣∣
x∗

. (3.10)

The kernel derivative in (3.10) is given by (2.9). Now, we can compute the Lie derivatives

of hgp(x) by taking its time derivative as follows,

ḣgp(x) =
∂hgp(x)

∂x
f(x) +

∂hgp(x)

∂x
g(x)u

= Lfhgp(x) + Lghgp(x)u, (3.11)

where (3.10) is used in the Lie derivatives, Lfhgp(x) and Lghgp(x).

3.3.3 Online Safety Control

Based on assumption 2, we are given a nominal control input unom ∈ Rm designed as

the feedback policy for system (2.1). This control policy may not restrict the solution of

system (2.1) inside the safe set. An online quadratic program (QP) rectifies unom whose

constraints are given by the Lie derivatives in (3.11) [8]. The QP optimization routine is

set up as follows:

Gaussian CBF-QP: Control Input modification

urect = argmin
u ∈ Rm

1

2

∥∥u− unom

∥∥2 s.t. (3.12)

Lfhgp(x) + Lghgp(x)u+ α(hgp(x)) ≥ 0,

where urect is the rectified control input, and (3.8), (3.10), (3.11) are used in the QP con-
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Algorithm 2 Gaussian CBF Synthesis & Safe Control
Input: GP PRIOR hgp(x) ∼ GP(0, k(x,x′))

SYSTEM (2.1)
NOMINAL INPUT unom

Output: RECTIFIED INPUT urect

1: procedure SAFECONTROL

2: SAMPLE XN ← x∗ & yN ← y using (3.6)
3: SYNTHESIZE hgp(XN ,yN) using (3.8)
4: COMPUTE

∂hgp(x)

∂x
using (3.10)

5: SETUP QP constraint using (3.11)
6: RECTIFY unom using (3.19)
7: return urect

straint. The QP constraint above ensures that the nominal control is followed as long as

the safety condition is not violated, i.e., hgp(x) ≥ 0. When approaching the boundary

of the safe set, i.e., hgp → 0, the QP rectifies unom minimally to urect. By rectifying the

control policy, the system is guaranteed to remain forward invariant for the safe set S due

to Proposition 2. When solving for the QP, every term in the constraint is simply a numer-

ical value except for the decision variable, the control input, which is rectified. Therefore,

hgp(x) being highly non-linear and non-convex does not affect finding the rectified control

input. The algorithm for computing safe control input from the synthesized Gaussian CBF

is shown in Algorithm 2.

Remark 6. Note that due to the non-parametric nature of the Gaussian CBF, the algorithm

above can be treated as a blackbox routine. This is a beneficial property since, if a tradi-

tional CBF is altered, then the corresponding Lie derivatives also change explicitly in their

form. However, in the Gaussian CBF, the structure of the Lie derivatives remains the same,

i.e, the partial derivatives are explicitly agnostic to the underlying CBF. It is characterized

only by the data and the dynamical system.

3.3.4 Gaussian CBF with Noisy Query State

Here, we extend Gaussian CBFs to handle the case when the query state, x∗, is stochastic

and therefore a random variable.
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Assumption 7. The query state x∗ is Gaussian distributed, x∗ ∼ N (µx∗ ,Σx∗), where µx∗

is the mean and Σx∗ is its noise covariance matrix.

This has practical significance because accurate estimates of these states are required to

generate safe control actions. In practice, however, measurement uncertainty is pervasive

leading to error in the state estimates, thus degrading the safety behavior. As a result, we

need to modify the posterior predictions of the GP in order to account for this noise. We

are now operating under assumption 7 along with assumptions 4 and 5.

The predictive equations for a Gaussian test input have been looked at before [80, 81].

Generally, if a Gaussian input is multiplied with the nonlinear GP predictive distribution,

the resulting distribution is non-Gaussian,

p(hgp(x∗)) =

∫
p(hgp(x∗)|x∗)p(x∗|µx∗ ,Σx∗)dx∗. (3.13)

In (3.13), the first probability p(hgp(x∗)|x∗) is the distribution of hgp for a given query

point x∗, and the second probability is the noisy input distribution x∗ ∼ N (µx∗ ,Σx∗). By

utilizing the respective density functions in (3.13), we get,

p(hgp(x∗)) =

∫
1√

(2π)n det
(
K∗
) exp

(
−
(
hgp(x∗)− µ(x∗)

)⊤(
hgp(x∗)− µ(x∗)

)
2σ2(x∗)

)
1√

(2π)n det
(
Σx∗

) exp(− 1

2

(
x∗ − µx∗

)⊤
Σ−1

x∗

(
x∗ − µx∗

))
dx∗,

where K∗ ∈ Rntest×ntest is the posterior covariance matrix for all input points. The integral

above involves integrating an exponential term with an inverse matrix operation. Further-

more, the matrix nonlinearly depends on the integration parameter x∗, thereby making it

very difficult to solve this integral analytically. To see a pictorial representation of this phe-

nomenon, see Figure 3.11. The input has a Gaussian distribution given by x∗ ∼ N (0, 0.42).

We arbitrarily select 6 training samples. The resultant GP distribution is non-Gaussian as

indicated in the bottom plot of Figure 3.11. This poses an issue since we want the posterior
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Figure 3.11: Example of 1-d GP where the input test point is noisy, x∗ ∼ N (0, 0.42). The
GP output and the input distributions are both shown in the top figure. The GP output pdf
is plotted (bottom) using (3.13) which is non-Gaussian due to the stochastic input point.

distribution to be Gaussian. As a result, moment matching is used to derive the posterior

predictions.

To determine the moments of the predictive function value, both the query distribution

and the distribution of the function given by the GP are averaged over. For the SE kernel,

the posterior mean and variance can be computed for the predictive distribution in (3.13)
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in closed-form2 [81]. By using the law of iterated expectations, the posterior mean with a

noisy query point x∗ is given as follows [81],

µ(x∗) = q(x∗)
⊤ K

−1
yN , (3.14)

where q = [qi, . . . , qN ]
⊤ ∈ RN with each qi representing the expected covariance between

hgp(x∗) and hgp(xi),

qi(xi,x∗) :=

∫
k(xi,x∗)N (x∗|µx∗ ,Σx∗)dx∗

where R = Σx∗ + L2 ∈ Rn×n. It is interesting to note the case for a deterministic query

point x∗, where Σx∗ = 0 and µx∗ = x∗. On comparing (3.14) with (3.1), the posterior

mean for the noisy input results in the same posterior mean for the noise-free input, since

qi(xi,x∗) collapses to ki(xi,x∗) in (2.4). Effectively, the noise-free input point is a special

case of the noisy posterior prediction with Σx∗ = 0 and µx∗ = x∗.

For details on the derivation of the predictive variance for the noisy test point, see [81].

Here, we simply state the posterior predictive variance which is as follows,

σ2(x∗) = σ2
f − tr

(
K

−1
V
)
+ β⊤(Vβ − q

)
, (3.15)

with β = K
−1
yN ∈ RN , and the entries of V ∈ RN×N are given by,

vij =
k(xi,µx∗)k(xj,µx∗)

|2Σx∗L
−2 + In|

1
2

exp
(
(zij − µx∗)

⊤T(zij − µx∗)
)
,

where T := (Σx∗ +
1
2
L2)−1Σx∗L

−2 ∈ Rn×n and each entry in zij := 1
2
(xi + xj) ∈ Rn.

As seen in (3.14) and (3.15), both the predictive mean and variance explicitly depend on

2This statement holds true for all kernels, in particular the SE, polynomial, and trigonometric kernels, if
the integral of the kernel multiplied with a Gaussian distribution can be solved analytically.
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Figure 3.12: Through moment-matching, the posterior mean (3.14) and posterior variance
(3.15) are derived for noisy test input x∗. The resulting moment-matched distribution is
Gaussian as desired.

the mean µx∗ and the covariance matrix Σx∗ of the Gaussian distributed query state x∗.

Using (3.14) and (3.15), we get the moment-matched Gaussian distribution as shown in

Figure 3.12. In the example, x∗ has a large variance of 0.42, resulting in a non-Gaussian

distribution for the GP output. In practice, the noise variance could be smaller, therefore

resulting in a distribution which is closer to being a Gaussian.

After deriving analytically the posterior mean and variance for a noisy input, we are

now ready to construct the Gaussian CBF. The Gaussian CBF for a noisy query point x∗ is

then given by,

hgp(x∗) := µ(x∗)− σ2(x∗). (3.16)

In order to compute the Lie derivatives, the partial derivative of (3.16) with respect to µx∗
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is then derived as follows,

∂µ(x∗)

∂x∗

∣∣∣∣
µx∗

= y⊤
N K

−1 ∂q(x)

∂x

∣∣∣∣
µx∗

(3.17)[
∂σ2(x∗)

∂x∗

∣∣∣∣
µk

]
=

N∑
i,j=1

(−1
k̄ij

+ βiβj

)∂vij
∂xk

∣∣∣∣
µk

−
N∑
i=1

βi
∂qi
∂xk

∣∣∣∣
µk

, (3.18)

where k = {1, . . . , n}, xk and µk are the kth entries of x∗ and µx∗ respectively. βi and

βj are the ith and jth entries of β, with i, j = {1, . . . , N}, and k̄ij = k(xi,xj) ∈ R. We

emphasize that V is a symmetric matrix which allows combining the summation with the

choice of indices in (3.18). The Lie derivatives can then be computed using the equations

above, similar to (3.11), to achieve safe constrained control by setting up a QP,

Gaussian CBF-QP with noisy input state: Control Input modification

urect = argmin
u ∈ Rm

1

2

∥∥u− unom

∥∥2 s.t. (3.19)

Lfhgp(x∗) + Lghgp(x∗)u+ α(hgp(x∗)) ≥ 0.

3.4 Application Test Case: Safe Control on 3D Quadrotor

To demonstrate the efficacy of our method, we implement our proposed technique on a

quadrotor system using a Crazyflie 2.1. Previously, we demonstrated safe expansion on the

Crazyflie quadrotor using variance-based CBFs. Now, we utilize Gaussian CBFs where the

safe sets are constructed using data fully. We run 3 separate experiments using Gaussian

CBF on the quadrotor Crazyflie: (a) safety constrained control for arbitrary safe sets (b) ex-

ploring the state space safely and synthesizing the safe set online, and (c) safety constrained

control in the presence of noisy states and comparing the performance with regular CBFs.
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3.4.1 Online Control Rectification

We use the same quadrotor dynamics and setpoints as discussed in 2.5.1 and 2.5.2. Since

Gaussian CBFs also use the posterior mean in addition to the posterior variance, we present

the necessary Lie derivatives here for the system (2.19) with relative degree ρ = 2.

Lfhgp(x) =
(
∇µ(x)−∇σ2(x)

)⊤
f(x),

L2
fhgp(x) = f(x)⊤

(
Hµ(x)−Hσ2

)
f(x) +

(
∇µ(x)−∇σ2(x)

)⊤
· ∇f(x) · f(x),

LgLfhgp(x) = f(x)⊤
(
Hµ(x)−Hσ2(x)

)
g(x) +

(
∇µ(x)−∇σ2(x)

)⊤
· ∇f(x) · g(x),

where ∇µ(x) = ∂µ(x)
∂x

⊤
and ∇σ2(x) = ∂σ2(x)

∂x

⊤
are the gradients of GP mean and variance

in (3.10) and ∇f(x) = ∂f(x)
∂x

is the Jacobian of f(x). Hµ(x) and Hσ2(x) are the Hessians

of GP mean and variance given by,

Hµ(x) =

( N∑
i

ai
∂2k(i)(x)

∂x2

)
,

Hσ2(x) = −2∇k(x)K −1∇k(x)⊤ − 2

( N∑
i

bi
∂2k(i)(x)

∂x2

)
,

where ai is the ith entry of y⊤
NK

−1 ∈ R1×N , bi is the ith entry of k(x∗)
⊤K

−1 ∈ R1×N ,

∇k(x) = ∂k(x)
∂x

⊤
∈ Rn×N , and ∂2k(i)(x)

∂x2 is the partial derivative of (2.9) with respect to x.

For the case when the query state is noisy, x∗, we use the predictive mean and variance

(3.16) as described in Section 3.3.4. Similarly, the corresponding partial derivatives are

used to derive the Jacobians and Hessians from (3.17)-(3.18) to compute the Lie derivatives

for the noisy query state. Given the nominal control input unom ∈ R3 in (2.19), the QP

below rectifies unom into urect ∈ R3,

where K = [k1 k2]
⊤∈ R2 is the coefficient gain vector, and H = [Lfhgp(x) hgp(x)]

⊤∈ R2

is the Gaussian Lie derivative vector. The rectified input urect is used to compute the recti-

fied setpoints using (2.23), (2.24), (2.25) which are then ultimately sent to the quadrotor.
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Gaussian CBF-QP: Quadrotor Input modification

urect = argmin
u ∈ R3

1

2

∥∥u− unom

∥∥2 s.t. (3.20)

L2
fhgp(x) + LgLfhgp(x)u+K⊤H ≥ 0,

3.5 Hardware Experimental Verification

In this section, we discuss the implementation of our method on a hardware quadrotor. We

test our proposed formulation in three different scenarios. In the first setting, we demon-

strate safe constrained control, where the Gaussian CBF is used to formulate the candidate

function. These safe sets are arbitrarily designed and are not limited to taking any convex

shape. For the second demonstration, we synthesize the safety function online by explor-

ing the state space while avoiding static collisions. The quadrotor performs safe control

within the constructed Gaussian CBF. And for the final scenario, we revisit the constrained

control problem for a given candidate function, but in the presence of noisy position states.

We compare the safe controlled behavior with a regular CBF. All experiments can be seen

here: https://youtu.be/HX6uokvCiGk.

3.5.1 Experiment Setup

We use the Crazyflie 2.1 as the hardware quadrotor. State estimation is performed onboard

with the help of an external low-cost lighthouse positioning system [65]. All computa-

tions are done remotely on a ground station equipped with an Intel i7-9800X at 4.4GHz

processor and 16 GB RAM. The crazyflie ros API is used to communicate for in-

terprocess communication, subscribing to pose information, and publishing setpoints over

the Crazyradio PA USB dongle [66]. Positions and velocities are collected at 100Hz with

a data capacity set to 300 samples. Gaussian CBF synthesis and rectification routine (4.31)

are run on a parallel thread at 50Hz where solving the QP takes under 5ms. Nominal set-

point commands are sent to the Crazyflie at 100Hz with the help of a Logitech joystick
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controller, which acts as the nominal controller in the QP formulation.

3.5.2 Scenario A : Safe Control for Arbitrary Safe Sets

The objective in this scenario is to demonstrate safe constrained control for any given ar-

bitrary safe set using the Gaussian CBF formulation. We assume a high-level observer or

planner provides a map from which we can sample (un)safe locations. For instance, take

the example of a satellite view for a street or the indoor map of a warehouse unit, where

the goal is to navigate an autonomous agent safely and provide safety specifications at the

planning phase. The configuration space for position safety in such settings cannot be de-

signed by hand effectively. By using the data driven design of Gaussian CBFs, we can

construct safe sets based on the dataset allowing flexible realizations of safe sets based on

information from a high-level planner or observer.

In this scenario, we construct a safety map in 2D, where the domain is chosen to be

[−0.35, 0.35] along each lateral axis, x and y. We uniformly sample, N = 200, (x, y) input

points. The safety sample for each input coordinate is drawn from a uniform distribution,

y ∼ U(a, b), where a = −1.0 and b = 2.0 are the lowest and highest values respectively

of the distribution. This gives a discrete 2D safety map, where for each of the 200 (x, y)

coordinates, we have an associated target safety sample. The safety maps are synthesized

once and do not change during the experiment, so the sampling distance is set to τ = 0.

The hyperparameters are arbitrarily chosen to generate arbitrary safety maps: σf = 1, σω =

0.01,L = diag(0.1, 0.1). The Gaussian CBF characterizes the posterior safety map as

follows,

hgp(x) := µ(x)− 4σ2(x). (3.21)

We generate 3 arbitrary safe sets and run 3 separate experiments with the quadrotor

always starting in the safe set as shown in Figure 3.15. For each experiment, we plot the
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Figure 3.13: Experiment 1 uses an arbitrary safe set generated using the Gaussian CBF
hgp for the Crazyflie to navigate in. The initial (■), mid-flight (◦), and final (•) quadrotor
positions are shown. The 0-level contour line is marked (bold gray).

flight trajectory of the quadrotor, its initial and final positions, and the 0-level set of hgp.

The plot of hgp(t) is also shown for each experimental run. First, we point out that the data

generates arbitrary non-convex safe sets. The posterior mean represents the safety belief

in hgp, whereas the posterior variance quantifies the notion of safety for regions in the

state space where we have few or no samples. We can thus generate very safe realizations

of candidate CBFs with high probabilistic bounds. The flight trajectory of the quadrotor

always remains inside the safe set based on the QP formulation in (4.31). This can be

verified by looking at the hgp(t) for each experiment, which is always non-negative.
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Figure 3.14: Experiment 2 uses another arbitrary safe set generated using the Gaussian
CBF hgp for safe control. The temporal plot of hgp for both the experiments show that the
quadrotor always remains inside the safe set.

3.5.3 Scenario B : Online Synthesis of Safe Set with Obstacle Avoidance

The objective is to synthesize the safety function online by exploring the state space and

avoiding collisions. This has great practical significance in safe navigation since onboard

sensors are limited in collecting data only within their local proximity. Therefore, we

cannot know a priori the complete safety map. Moreover, the sensed data will also need

to alter the safety decision boundary online. With the help of Gaussian CBFs, we can

incrementally change the safe set as more data is collected. This allows expansion of the

safe set in a non-convex manner, which is required in many practical scenarios involving

unstructured environments.

In this scenario, hgp(x) denotes the distance between the quadrotor and the obstacle.
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Figure 3.15: Experiment 3 run once again for quadrotor navigation using the Gaussian
CBF hgp. In all 3 experiments, the temporal plots of hgp are non-negative, implying that
the quadrotor is always safe.

Here, we use two obstacles and therefore have two separate distance measurements,

da = (rxy − pa)
⊤(rxy − pa)−R2

a,

db = (rxy − pb)
⊤(rxy − pb)−R2

b ,

where rxy is the quadrotor’s lateral position, similarly p(·) ∈ R2 is the obstacle’s lateral

position and R(·) ∈ R is the obstacle radius. The overall safety sample is taken as the noisy

estimate by combining the two distance measurements,

y := da · db + w, w ∼ N (0, σ2
ω),

58



Figure 3.16: As more samples are collected, the safe set can expand arbitrarily and is not
confined to a convex expansion. The contour plots are shown for the two data sample sets.
The 0-level set for 15 samples is shown with bold white line and for 31 samples with black
dashed line.

where σ2
ω ∈ R is the noise variance. We take noisy sample observations to make the

experiment more realistic. Moreover, we also wanted to highlight experimentally that,

despite using noisy safety samples, our approach is robust enough to design non-convex

safe sets online and ensure the system remains safe. If the quadrotor is closer to one of

the obstacles, the product decreases, as a result reducing the safety metric. Note that, even

though the obstacles are assumed to be convex, the final safe set constructed need not be

convex. This is due to the noisy distance measurements observed and the posteriors being

constructed online. The sampling distance is set to τ = 0.1 and the hyperparameters are

optimized by maximizing the log marginal likelihood using gradient methods [59]. We use

the same Gaussian CBF as (3.21) in scenario A to generate the posterior safe set online.
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Figure 3.17: The contour plot for the Gaussian CBF with over 300 samples collected is
shown. After exploring the state space, we see that the obstacles are located in the 0-
sublevel sets. For the collected data set, the 0-level set is depicted with black dashed line.

The quadrotor starts in an initial safe set containing only the initial position, see Figure

3.16. The quadrotor collects safety samples y with the corresponding state x along its

trajectory. With the data being collected, the safety function hgp(x) and its associated safe

set is constructed online using (3.21). In regions where we have data, the safety belief

is high and safety uncertainty is low. As more data is collected, the associated safe set

expands. For unexplored regions in the state space, the safety uncertainty is high due to the

high posterior variance. This aligns with the intuition that safety is not known with high

confidence in unexplored spaces.

As seen in Figure 3.16, we see two sets of data samples during the quadrotor’s flight.

Initially, the quadrotor explored a small region in the state space containing 15 samples.

The 0-level set is shown in bold white. Then the quadrotor continues exploring the state
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Figure 3.18: Final safe set of hgp(x) for the hardware experiment with over 300 samples
collected during the exploration process.

space further, thus expanding the safe set. Notice that the expansion of the safe set is not

limited to any convex expansion. The 0-level set for the larger safe set of all 31 samples

collected thus far is marked with dashed black line in Figure 3.16. The exploration process

continues, and the quadrotor is able to detect regions in the state space which are unsafe,

particularly, when it gets closer to the obstacles. The safe set constructed after collecting

more than 200 samples is shown in Figure 3.17. As seen in the figure, the obstacles are

located in the 0-sublevel sets which are also the unsafe regions. The final safety map for

the Gaussian CBF using (3.8) is shown in Figure 3.18.

3.5.4 Scenario C : Safe Control in presence of Noisy Position State

For the final experiment, we consider the problem of safe constrained control in the pres-

ence of noisy position states. In many practical applications, measurement noise is a com-

mon occurrence which can degrade system performance and lead to unsafe consequences.
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This is a particularly hard problem because we consider noise for both the input and obser-

vations to the GPs. In our current scenario, this would be noise for the safety samples and

the system query state, in particular, the position state of the quadrotor. The query state is

given by x∗ := [r⊤ ṙ⊤]⊤, where r ∼ N (r,Σr∗) is the Gaussian distributed noisy position

state. We have observability of the noisy query state x∗ and assume knowledge of the noise

covariance matrix Σr∗ for the position states.

The safety objective is to keep the quadrotor inside a circle of radius D. We first con-

struct a standard CBF using the following candidate function,

hcbf := D2 − x2 − y2,

where D = 0.35 is the safety boundary radius. Next, 100 samples are sampled randomly

with Gaussian noise from this candidate CBF, y = N (hcbf , 0.03). The posterior GP is then

computed, along with hyperparameter optimization, using (3.21) from this dataset which

forms the Gaussian CBF. Both the CBFs as well as safety samples are shown in Figure

3.19. In this scenario we choose τ = 0, since the safe sets are fixed and require no online

sampling.

We perform 3 separate experiments on the quadrotor for the standard CBF using dif-

ferent values for the noisy position states. The different noise covariance values in the

experiments are Σ = [0.015, 0.025, 0.04]I3 ∈ R3×3. For each experiment in Figures

3.20, 3.21, and 3.22, the quadrotor starts inside the safe set and then violates safety at

the boundary when subjected to noisy position states. As the value of the noise increases,

the quadrotor exhibits more violation of the safety constraint by going outside the safety

boundary radius. Since CBFs rectify the control input pointwise and do not account for any

measurement noise in its formulation, measurement noise in the position states degrades

the safety performance. For each experiment, the temporal behavior of hcbf(t) verifies that

the safety constraint is violated due to the negative values.
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We next look at the experiments using Gaussian CBFs for the same values of noise

covariance used above. In Figures 3.23, 3.24, and 3.25, we see that for every experiment,

the quadrotor remains confined within a more conservative safe set, which is inside the

primary safety boundary radius. This occurs because in the presence of noisy input (query)

to the GPs, the posterior mean uses a more conservative weighted kernel q in (3.16), whose

entries qi have coefficients lesser than the coefficients of the SE kernel.

The coefficient of an entry qi given by σ2
f | ΣL−2 + In |

1
2 is always lesser than σ2

f since

the eigenvalues of ΣL−2 + In are always greater than 1 (ΣL−2 is a positive definite matrix

Figure 3.19: Safe sets of CBF hcbf(x) (top) and Gaussian CBF hgp(x) (bottom) computed
by taking 100 samples (•) from hcbf .
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Figure 3.20: The quadrotor goes outside the boundary of the safe set R = 0.35 using CBF
in presence of noisy position state with noise covariance of Σr∗ = 0.015I3.

Figure 3.21: The experiment is repeated using a noise profile of Σr∗ = 0.025I3. With
regular CBF, the quadrotor violates the safety constraint of being inside the safety radius.
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Figure 3.22: With a higher noise profile of Σr∗ = 0.04I3, the quadrotor goes outside the
boundary of the safe set R = 0.35 further as confirmed by the ground truth position data.

Figure 3.23: Using the same noise covariance in 3.20, the quadrotor does not go outside
the circular boundary of R = 0.35 for the Gaussian CBF.
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Figure 3.24: Once again, repeating the experiment with Σr∗ = 0.025I3 as done in 3.21,
Gaussian CBF constrains the quadrotor inside the safety radius.

added to the identity matrix). Therefore, the determinant is always positive and greater than

unity. Intuitively, this makes sense since the GP posterior distribution is not overfitting to

the noisy input query states, thus leading to a more conservative posterior estimation. We

also plot hcbf as a function of time using the trajectory of the quadrotor rectified under

hgp. The quadrotor does not get close to the circular boundary, since it is constrained

conservatively by hgp, thus ensuring that the original safety requirement is met. Indeed, if

the noise becomes very large, then the safe set may not exist under hgp. Determining the

bounds on the measurement noise is currently outside the scope of this study and is left

for future investigation. Here, we are primarily interested in achieving safe control in the

presence of noisy query states with nonempty compact safe sets.

3.5.5 Note on Complexity

GPs are known to scale cubically with data i.e., O(N3), where N is the number of data-

points. This complexity arises due to the inverse operation in (3.8) for the covariance matrix
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Figure 3.25: Using a higher noise covariance of Σr∗ = 0.04I3, the quadrotor flies further
away from the boundary of the safety radius because a very conservative safe set is modeled
by hgp. The plots of hgp(t) and hcbf(t) on the ground truth position confirms that the
quadrotor is always inside the safe set.

K. As the number of data points increases, this could potentially cause a computational

bottleneck. We address this with the help of rank-1 inverse method. For example, given 500

samples, it only takes 25ms to synthesize the Gaussian CBF. Thereafter, we handle more

datapoints through rank-1 updates giving tremendous boost in computational speed. For

every new data point included, it only takes 4ms to compute the inverse covariance matrix.

3.5.6 Gaussian CBF Limitations

Apart from the complexity of GPs discussed above, Gaussian CBFs have certain limitations

which can restrict its applicability. The approaches discussed in Chapters 2 and 3 have only

considered system dynamics in nominal operation. We do not consider any unmodeled dy-

namics in the system dynamical modeling. Although, we looked at noisy state (query)

uncertainty for Gaussian CBFs in Section 3.3.4, there was no dynamical uncertainty. This
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remains an open area for research investigation using Gaussian CBFs and could leverage

methods such as stochastic CBFs [82] to account for stochastic or unmodeled dynamical

components. Another limitation with Gaussian CBFs currently is the chain rule of differ-

entiation required for dynamical systems with high relative degree. In this thesis, systems

with relative degree up to 2 is only studied. Consequently, the Hessians were derived for

the kernels which were needed in the Lie derivative calculations. As the relative degree

goes higher, higher-order tensors will be needed which needs to be carefully derived.

3.6 Concluding Remarks

In this chapter, we proposed a framework for the synthesis of a safety function in a data-

driven manner using GPs. The formulation utilizes safety samples as opposed to the tradi-

tional requirement of a smooth function. The newly formulated CBF called the Gaussian

CBF was constructed by using a flexible GP prior. GPs provide the posterior mean and

variance which serve as analogues for safety belief and uncertainty in our methodology.

By exploiting the kernel properties in the posterior mean and variance, we were able to an-

alytically compute the associated Lie derivatives. The Lie derivatives served as constraints

in formulating a QP for rectifying the given nominal control input. We empirically verified

our framework on a hardware quadrotor platform without risking any expensive system

failures. We verify our approach on three different scenarios. The objective in each ex-

periment was to synthesize a candidate safety function using GPs. We successfully show

safe control for arbitrary safe sets synthesized using Gaussian CBFs, online synthesis of a

Gaussian CBF as more data is collected in a collision avoidance problem, and juxtapose a

Gaussian CBF with a regular CBF for constrained control in the presence of noisy position

states. The quadrotor always remained inside the safe sets associated with the synthesized

Gaussian CBFs.
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CHAPTER 4

SAFE IMPLICIT SURFACES USING GAUSSIAN CONTROL BARRIER

FUNCTIONS WITH SPARSITY

On the one hand, level set methods form the foundation of modern safety techniques such as

CBFs. On the other hand, these level set methods have been successfully applied to geomet-

ric shape and surface representations as implicit surfaces using distance fields. Inspired by

the success of CBFs for safety, and implicit surfaces for shape/surface estimation, we pro-

pose a unified approach where the implicit surfaces itself behave as the barrier certificates.

To this end, we use GPs based implicit surface (GPIS) potentials as CBF representations

while exploiting sparsity. Data in the form of safety samples from sensory measurements

condition the GP such that the posterior mean can define an implicit surface, which forms

the basis of safety belief for the CBF. GPs also provide an uncertainty estimate, quantified

by the posterior variance, which can be used as a robust margin for safety. In the previous

chapter 3, we did not specify the particular kind of safety samples we worked with. They

were either synthetically generated or produced ad-hoc in random. In this chapter, we focus

on 3D LiDAR point cloud data as the basis for our safety samples.

Although, GPs have favorable properties such as uncertainty estimation and analytical

tractability, they scale cubically with data. To alleviate this issue, we focus on developing

and presenting a sparse solution called sparse Gaussian CBFs. We validate our approach on

a collision avoidance problem with two test cases: a 7DOF robot manipulator in simulation,

and a 3D quadrotor in hardware. We study the test cases using Gaussian CBFs and sparse

Gaussian CBFs both as an offline and online problem.

Previously, even though the quadrotor system evolved in 3D, CBFs represented using

GPs were confined to 2D settings, i.e., the safe sets were in 2D. We now expand our pre-

vious work by fully characterizing a CBF using GPs in 3D. Since our approach can handle
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CBF construction using data in 3D, the computational complexity is much higher com-

pared to a standard 2D problem. To this end, we propose sparse Gaussian CBFs to account

for the complexity of the data. In order to construct CBFs in 3D using data, we look at

signed distance functions (SDFs) to generate implicit surfaces. SDFs are implicit surface

representations, indicating whether a given datapoint x in the metric space for a set Ω ,char-

acterizing the SDF, belongs to the set Ω or not. SDFs have been shown to be advantageous

as a natural representation for both navigation and planning [49].

To summarize, in this chapter we propose a single unified approach for implicit sur-

face representation and CBF with the help of GPIS. This is achieved by generating a GP

based implicit surface, which serves as the candidate CBF. To the best of our knowledge,

GPIS have not been used previously for demonstrating safe control. We formulate Sparse

Gaussian CBFs by establishing sparse solution to our previous work on Gaussian CBFs in

Chapter 3. In addition to sparse Gaussian CBFs retaining the attractive properties of Gaus-

sian CBFs such as uncertainty estimation and analytical tractability, it also has lower com-

plexity. We juxtapose Gaussian CBFs with sparse Gaussian CBFs in two test cases. First in

simulation using a robot manipulator, and the second in hardware using the same Crazyflie

quadrotor as done in the previous chapters. We believe this to be the first work where CBFs

were synthesized completely using data in 3D as well as deployed on hardware. We per-

form collision avoidance using a quadrotor in hardware based on the synthesized Gaussian

CBF and sparse Gaussian CBF as both offline and online problems.

4.1 Background Preliminaries

4.1.1 Implicit Surfaces

An implicit surface describes the shape of a volumetric object in an n−dimensional Eu-

clidean space by means of a function. This function helps identify if each location in the

space belongs to the object or not. More formally, we define the implicit surface, with-

out loss of generality, as the 0-level set (or isosurface) of a real-valued implicit function
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fis : Rn → R for a point x ∈ Rn as,

fis(x)


> 0, x outside the surface

= 0, x on the surface .

< 0, x inside the surface

(4.1)

The 0-level set f−1
is (0) of an implicit function fis can represent a surface S in Rn. In

our context, this surface S represents the surface of safety or safety decision boundary.

Conversely, given the surface S in Rn, there exists a function fis : Rn → R with S as

its 0−level set such that f−1
is (0) = S (Prop. 2 in [83]). As a result, given samples on

the surface S, one can construct the implicit function fis. We will use a GP regressor for

approximating the implicit surface of a volumetric object in d = 3, where d ≤ n, which is

identified as Gaussian Process Implicit Surface (GPIS) in the literature.

4.1.2 Sparse Gaussian Process Regression

Despite GPs being very powerful regressors, as the dataset grows larger, they become com-

putationally intractable. GP prediction complexity has a cost of O(N3). Even if one stores

the covariance matrix to save costs, the complexity per test case is O(N) for predictive

mean andO(N2) for predictive variance. Hence, many sparse approximations of GPs have

been developed to bring down the complexity cost while retaining accuracy [84, 85, 86, 87,

88]. Broadly stated, sparse approximations of GPs fall into two major categories: approx-

imate generative model with exact inference and exact generative model with approximate

inference. Unifying theories for these various frameworks are discussed in [89, 90]. We

use the the Sparse Pseudo-Input Gaussian Process (SPGP) [87] for our work.

The starting point to any GP approximation method is through a set of so-called induc-

ing or pseudo-points giving rise to sparsity. Consider a pseudo-dataset DM =
[
XM ,yM

]
,

M ≪ N , where the pseudo-inputs are XM = {xi}Mi=1 and pseudo-targets are yM =
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{yi}Mi=1. The objective is to find the posterior distribution over the pseudo-targets, and then

integrate out the likelihood with the help of this posterior to find the predictive distribution.

The complete data likelihood is given by [87]:

p(y|X,X,y) = N (y |KNMK
−1

M y,ΛN + σ2
ωIN), (4.2)

where ΛN = diag(KN − KNMK
−1

M KMN),
[
KNM

]
(i,j)

= k(xN ,xM). By placing a

Gaussian prior on the pseudo-targets, one can derive the posterior distribution using Bayes

rule:

p(y|X,X,y) = N (y |KNMK
−1

M y,ΛN + σ2
ωIN), (4.3)

For a complete mathematical treatment for the derivation of the predictive distribution of

SPGP, see [87]. Here, we simply present the predictive mean and variance of SPGP:

µ(x∗) = k⊤
M(x∗) Q

−1
M KMN

(
ΛN + σ2

ωIN
)−1

yN (4.4)

σ(x∗)
2 = k(x∗,x∗)− k⊤

M(x∗)
(
K −1

M −Q −1
M

)
kM(x∗) + σ2

ω, (4.5)

where kM(x∗) =
[
k(x1,x∗), . . . , k(xM ,x∗)

]⊤ ∈ RM is the covariance vector between

XM and x∗, QM = KM + K⊤
NM

(
ΛN + σ2

ωIN
)−1

KNM ∈ RM×M , ΛN = diag
[
KN −

KNM K −1
M KMN

]
∈ RN×N is a diagonal matrix, KM ∈ RM×M is the covariance between

pairs of pseudo-inputs XM , and
[
KNM

]
(i,j)

= k(xi,xj), i ∈ {1, ..., N}, j ∈ {1, ...,M} is

the covariance matrix between XN and XM . Computation cost for QM is dominated by the

inversion operation which is O(M2N) [87]. By precomputing the inverse, the cost per test

case is O(M) and O(M2) for predictive mean and variance respectively. We can jointly

optimize for the kernel hyperparameters, Θ, and pseudo-inputs, XM , by maximizing the
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log marginal likelihood using quasi-Newton gradient methods:

log p(y |X,X,y) = −1

2

(
N log(2π)− log |KN | − yNK

−1

N yN

)
. (4.6)

4.2 Problem Statement

Given a dynamical system (2.1) and a volumetric object, we are interested in determining

the surface of the object using GPs such that the system remains safe around the object.

Consider that system (2.1) is given with access to its states x ∈ Rn and samples of a vol-

umetric object which represent points on the surface of the object. To accurately construct

the safety surface (GPIS) of the object, we need instances of on-surface and off-surface

sample points. The off-surface points consist of external and internal points to the surface.

We rely on surface normals from sensor measurements to characterize points external to the

surface and, conversely, taking the opposite direction of the surface normal to characterize

internal points. We define the set of samples used, both on-surface and off-surface samples

collectively, as safety samples for approximating the implicit surface. The resulting GPIS

is the Gaussian CBF of interest, see Figure 4.1.

Assumption 8. We assume access to sensor measurements that provide samples on the

object’s surface and surface normals, constituting the safety samples expressed in the world

frame for our setting.

This is a mild assumption since many sensors are equipped to provide point cloud and

surface normal direction vectors, e.g. laser, haptic, or camera sensors [91]. The sensor

measurements provide us the data in order to construct a valid safety certificate, i.e. the

safe surface, which can then be used for ensuring dynamical system safety through forward

invariance properties.

Remark 7. Since d ≤ n, where the safety surface is modeled in d = 3, the 3D Euclidean

space for instance, whereas the system state x ∈ Rn, the (n − d) free dimensions can be
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Volumetric Object Safety Samples Sparse Gaussian CBFSparse Samples

Figure 4.1: The safety surface of a volumetric object of interest is modeled as a sparse
Gaussian CBF with the help of sparse safety samples.

truncated for GP training.

Our primary objective is to synthesize a safety function hsgp non-parametrically using

measurements of the system states and safety samples online, while exploiting data sparsity,

and ensure (2.1) remains safe. The safety function hsgp is the sparse variant of a Gaussian

CBF [53] representing the implicit surface of the object we are modeling,

fis(x)︸ ︷︷ ︸
Implicit Surface

= hsgp(x)︸ ︷︷ ︸
Sparse Gaussian CBF

:= hb(x)︸ ︷︷ ︸
Safety Belief

+ hu(x)︸ ︷︷ ︸
Safety Margin/Uncertainty

. (4.7)

The sparse Gaussian CBF is the implicit surface approximation of a volumetric object.

Since we use data to model this surface, it is desirable to account for a margin of safety in

the estimation of the safety function. It becomes particularly more important, since we are

exploiting sparsity, to account for any uncertainty in the estimation. Intuitively, the safety

belief represents the best estimation of system safety (or implicit surface representation),

while the safety margin represents any uncertainty. The safety margin will be higher in

the state space where sufficient data is not available. In the absence of any uncertainty, the

safety belief will be the final overall desired safety.

Problem 5. Given system (2.1) and online measurements of the system state x∗, synthesize

hsgp(x) to model an implicit surface with a safety belief and associated safety margin or

uncertainty, conditioned on past safety samples and observations while exploiting sparsity,

for a volumetric object in the dataset, DN = {XN ,yN}, where XN = {xi}Ni=1 and yN =
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{yi}Ni=1, such that system (2.1) remains safe.

We are also interested in synthesizing safe controllers similar to the Problems 2 and 4.

The rectified control input urect is finally applied to the dynamical system (2.1), which in

principle should ensure the system remains safe, i.e., does not collide with the obstacle (or

volumetric object).

4.3 Proposed Methodology

Here, we present our approach to approximate the GPIS fis as a sparse Gaussian CBF

hsgp(x). GPs can provide uncertainty estimate in the form of posterior variance, unlike

traditional neural networks which require careful design considerations for quantifying un-

certainty estimation [92].

4.3.1 Data Processing

Given Ns sensor measurements in an n−dimensional Euclidean space, P ∈ RNs×n ×

RNs×n, where P is the set of point cloud data and surface normal directions, we first com-

pose the training input points and targets/labels. The training inputs to the GP comprises of

on-surface and off-surface points. The point cloud data in P is used as on-surface points.

The off-surface points, which represent both external and internal points to the surface, are

computed using the surface normal information. Let the on-surface and off-surface sets be

given as follows,

Ωext := { x+ | fis(x+) > 0}

Ω0 := { x0 | fis(x0) = 0} .

Ωint := { x− | fis(x−) < 0}

Since we assume having access only to the point cloud coordinates for the surface of the

object and corresponding surface normals, i.e., the set P only, we need to form the sets Ω0,
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Ωext, and Ωint.

• The set Ω0 is formed by taking N0 point cloud coordinates randomly from P , where

N0 ≤ Ns, and for each coordinate assigning the target value (or label) of 0, i.e.,

yN0 = {0}N0
i=1.

• The set Ωext is formed by synthetically creating N+ coordinates randomly, where

N+ < N0, in the direction of the surface normal vectors with a certain offset. Simi-

larly, the set Ωint is formed by synthetically creatingN− coordinates randomly, where

N− ≤ N+, in the opposite direction of the surface normal vectors.

• The corresponding targets (or labels) for Ωext and Ωint are assigned +1 and −1, i.e,

yN+ = {+1}N+

i=1, and yN− = {−1}N−
i=1 respectively.

• The training inputs are XN = [x⊤
0 ,x

⊤
+,x

⊤
−]

⊤ ∈ RN×n and training observations/la-

bels are yN = [yN0 ,yN+ ,yN− ]
⊤, with N = N0+N++N−, thus forming the dataset

DN = {XN ,yN}.

4.3.2 Sparse Gaussian Control Barrier Function

We propose the following sparse Gaussian CBF hsgp(x) which models both the safety belief

and associated margin using the sparse predictive mean (4.4) and variance (4.5),

hsgp(x) := µ(x) + σ2(x)

= k⊤
M(x)QMN yN︸ ︷︷ ︸

safety belief

+ k(x,x)− k⊤
M(x) PM kM(x) + σ2

ω︸ ︷︷ ︸
safety margin

, (4.8)

where QMN = Q−1
M KMN

(
ΛN +σ2

ωIN
)−1 ∈ RM×N and PM =

(
K −1

M −Q −1
M

)
∈ RM×M .

The sparse GP posterior mean represents the belief regarding our notion of safety while the

sparse GP posterior variance quantifies the safety margin.
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The admissible control space for the CBF above is given by,

Ksparse
gcbf = {u ∈ Rm

∣∣ Lfhsgp(x) + Lghsgp(x)u+ α(hsgp(x)) ≥ 0}, (4.9)

which ensures that the dynamical system (2.1) is forward invariant in the safe set given

by hsgp (Proposition 2). In Section 4.3.4, we elaborate how safe control is achieved using

sparse Gaussian CBFs.

Remark 8. Sparse Gaussian CBFs used for modeling the implicit surface while addressing

safety can be done using sensor measurements to design the safety function, i.e., the implicit

surface of the volumetric object. This allows designing safe surfaces based on data, instead

of hand designing a candidate function which has been the traditional practice.

4.3.3 Lie Derivatives of Sparse Gaussian CBF

We now derive the Lie derivatives for the sparse Gaussian CBF present in (4.8) for ensuring

forward invariance in the safe set. As done previously in Sections 2.3.1 and 3.3.2, first, we

take the partial derivative of (4.8) with respect to x at a query point x∗,

∂hsgp(x)

∂x

∣∣∣∣
x∗

=
∂µ(x)

∂x

∣∣∣∣
x∗

+
∂σ2(x)

∂x

∣∣∣∣
x∗

(4.10)

= y⊤
NQNM

∂kM(x)

∂x

∣∣∣∣
x∗

− 2k⊤
M(x∗)PM

∂kM(x)

∂x

∣∣∣∣
x∗

, (4.11)

where QMN and PM are defined in (4.8). Using (2.9), we can compute the Lie derivatives

of hsgp(x) by taking its time derivative as follows,

ḣsgp(x) =
∂hsgp(x)

∂x
ẋ

=
∂hsgp(x)

∂x
f(x) +

∂hsgp(x)

∂x
g(x)u

= Lfhsgp(x) + Lghsgp(x)u, (4.12)
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where (4.11) is used in the Lie derivatives, Lfhsgp(x) and Lghsgp(x). Here, we used the SE

kernel but later we will use the Matérn kernel and compute its partial derivatives as well.

4.3.4 Safe Control using Sparse Gaussian CBF

Given the nominal control input unom and a desired state xdes outside the safe set S , the

system state will go outside S, thus violating the safety requirement. The nominal control

input must be rectified in order to ensure forward invariance of the system inside the safe

set. We can form an online quadratic program (QP) to rectify unom subject to constraints

derived using the Lie derivatives in (4.12) [8]. The QP optimization routine is given by,

Sparse Gaussian CBF-QP: Control Input modification

urect = argmin
u ∈ Rm

1

2

∥∥u− unom

∥∥2 s. t.

Lfhsgp(x) + Lghsgp(x)u+ α(hsgp(x)) ≥ 0, (4.13)

where urect is the rectified control input. By rectifying the control policy, the system is

guaranteed to remain forward invariant for the safe set S. The algorithm for generating the

safe control input from the synthesized sparse Gaussian CBF is shown in Algorithm 3.

Algorithm 3 Sparse Gaussian CBF Synthesis & Safe Control
Input: SYSTEM (2.1)

GP PRIOR hsgp(x) ∼ GP(0, k(x,x′))
NOMINAL INPUT unom

DATASET DN & number of pseudo-points M
Output: RECTIFIED INPUT urect

1: procedure SAFECONTROL

2: INITIALIZE DM = {XM ,yM} randomly from DN

3: OPTIMIZE hsgp(XN ,yN ;XM ,yM) using (4.6)
4: SYNTHESIZE hsgp(XN ,yN) using (4.8)
5: COMPUTE

∂hsgp(x)

∂x
using (4.11) & (2.9)

6: SETUP QP constraint using (2.1) & (4.12)
7: RECTIFY unom using (4.13)

return urect

First, a subset of the training dataset DN is randomly selected to initialize the pseudo-
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dataset DM . Hyperparameter and pseudo-input locations are optimized in step 3, followed

by the synthesis of the sparse Gaussian CBF in step 4. The CBF represents the safety

surface upon which we desire to perform safe control. The corresponding derivatives are

computed in steps 5 − 6 to set up the QP constraint. Finally, rectification is done on the

nominal control input in step 7.

4.3.5 Illustrative 3D Example

Here, we discuss our proposed approach in achieving safe control by modeling a volumetric

object using sparse Gaussian CBFs. We apply our method on two different objects - a

convex object (sphere) and a non-convex object (solid blob). We wanted to highlight the

efficacy of our method for synthesizing a safety function given any arbitrary sample points,

and perform safe control.

Data Preprocessing: We synthetically generate the data for modeling the implicit sur-

faces of these two objects. We will later look at more concrete test cases where existing

datasets with point cloud information and surface normals are used.

For the sphere, we generate vertices on the surface of a sphere in a 3−dimensional

Euclidean space for a certain radius and center. We select some samples in the interior and

exterior of the sphere (by changing the radii) and label the on-surface points with 0 and

off-surface points with +1 and −1 as described in Section 4.3.1.

For the blob, we generate the samples by using two different centers and radii of a

sphere. The centers and radii are chosen such that the points are in close proximity to each

other, thus generating a non-convex shaped object. The point cloud points and associated

labels form the dataset DN where N = 300 for the sphere and N = 400 for the blob.

Dynamical System: We take a fully actuated control affine system in R3 given by,

ẋ = 03︸︷︷︸
f(x)

+ I3︸︷︷︸
g(x)

u = u. (4.14)
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Based on 1, we have complete observability of the system state x ∈ R3.

Sparse Gaussian CBF: Using the dataset DN for the sphere and the blob, we train a

sparse GP which uses one-fifth of the samples as pseudo-inputs and targets. This synthe-

sizes the hsgp for each object where the safe set is characterized by,

S = {x | hsgp(x) ≥ 0 }.

The training time for modeling the sphere and the blob takes 120ms and 165ms respectively.

The sparse Gaussian CBF used is,

hsgp = µ+ σ2.

where the posterior variance provides a safety margin.

Safe Control Synthesis: A proportional controller is selected as the nominal controller,

unom = Kp(x − xdes), where Kp ∈ R3×3 is the gain matrix. With hsgp and system (4.14),

the Lie derivatives are computed using (4.11) and (4.12),

Lfhsgp = 0

Lghsgp =
∂hsgp(x)

∂x
.

The Lie derivatives are then used as the safety constraints in the QP formulation (4.13),

Lfhsgp + Lghsgpu+ α(hsgp) ≥ 0

∂hsgp(x)

∂x
u ≥ −k0hsgp.

Even if hsgp models arbitrary complex shapes or surfaces, the decision variable u ap-

pears linearly in the constraint. Consequently, this enables performing real-time convex

optimization as a QP. We use the sparse Gaussian CBF with a proportional constant, k0, as
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the class-κ function. The solution to the QP in (4.13) provides the rectified control input

urect, which is then used on (4.14) to ensure forward invariance. The illustrations are shown

in Figure 4.2.

Nominal vs. Safe Control: As seen in Figure 4.2, each surface is modeled as the

boundary of the safe set using hsgp. The rectified control input ensures that the system does

not collide with the object. It follows the reference trajectory in the absence of any safety

violates, but relaxes trajectory tracking for upholding safety by remaining away from the

object’s modeled surface. However, the nominal control input violates the safety require-

ment and follows the reference trajectory.

Figure 4.2: Safe control in the presence of convex and non-convex volumetric objects.
(Left) The samples used for modeling the 0-isosurface of a sphere (top) and a solid blob
(bottom) using sparse Gaussian CBF. (Middle) A reference trajectory is selected such that
it goes through each object. (Right) The sparse Gaussian CBF rectified control prevents the
system from colliding with the objects, unlike the nominal controller.
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4.4 Test Case I : 7-DOF Robot Manipulator Simulation

Now, we look at using Gaussian CBFs with and without sparsity for controlling a 7 de-

gree of freedom (DOF) robot manipulator in simulation. A robot manipulator has many

interesting applications such as logistics, warehouse, surgery etc. We are interested in tra-

jectory tracking for a manipulator while remaining safe in the presence of an obstacle. A

traditional CBF is limited because majority of the volumetric objects cannot be modeled

using hand-designed functions. However, using Gaussian CBFs, we can model complex

geometric objects with high safety guarantees giving our approach a huge advantage over

traditional approaches of hand designing CBFs.

4.4.1 Stanford Bunny Implicit Surface Modeling

As a test case, we model the surface of the Stanford bunny as the boundary of our safe

set using both regular and sparse GPs. The bunny is a well known 3D test model used in

computer graphics, rendering, and geometry. The bunny has sufficiently complex geometry

to represent a non-convex safety boundary. The bunny model has 34817 datapoints which

we down sample to N = 2178 datapoints randomly. We also down scale its dimensions to

be within 0.45m× 0.45m× 0.55m.

Offline Training: We synthesize the safety function as the implicit surface modeling

the shape of the bunny. The particular form of the Gaussian CBFs is discussed in Section

4.4.3. We use the gpml toolbox [93] for training the GPs on an Intel i7-9800X CPU with 16

GB RAM and 4.4 GHz. One-half of the 2178 datapoints were initialized as pseudo-points

and targets for sparse GPs. The training time took 14.15s on average for regular GP using

50 iterative steps to maximize the log marginal likelihood for hyperparameter optimization

using (4.6), whereas, sparse GPs took 9.46s for training. The implicit surfaces for the 0-

isosurface of the bunny using both Gaussian and sparse CBFs are shown in Figure 4.3.

The Gaussian CBF models the bunny more accurately than the sparse Gaussian CBF. The
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sparse based Gaussian CBF captures the overall shape of the bunny but does not model

precisely the details on the face or torso. This is expected using the sparse Gaussian CBF

since there is a trade-off between modeling accuracy and computational speed.

Evaluation Metric: To quantify the modeling performance, we use the Chamfer dis-

tance which is a symmetric metric used to measure distance between two surfaces. More

precisely, it computes the distance between the two point clouds (P1 and P2) sampled from

a pair of surfaces.

dch(P1,P2) =
∑
x∈P1

argmin
y∈P2

∥∥x− y
∥∥+ ∑

y∈P2

argmin
x∈P1

∥∥y − x
∥∥. (4.15)

We are interested in computing the Chamfer distance between the point clouds P1 =

Pbunny and P2 = Pgp/Psgp. The point clouds Pgp and Psgp are formed by selecting the

vertices from the 0-isosurfaces of hgp and hsgp respectively. Between the point clouds

Pbunny andPgp, we get a chamfer distance of dch(Pbunny,Pgp) = 0.011m, whereas between

the point clouds Pbunny and Psgp, the chamfer distance is dch(Pbunny,Psgp) = 0.042m.

The results are promising since the chamfer distances are very small and also support the

understanding that the GP model expresses the surface more accurately and with more

detail than its sparse counterpart.

4.4.2 Robot Manipulator Kinematics

We are interested in controlling a robot manipulator’s end-effector while ensuring safety

around a complex geometric volumetric object such as the bunny. First, we consider the

kinematics of 7-DOF robot manipulators with the state given by the joint position q. The

kinematics is given by,

q̇ = u, (4.16)
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Figure 4.3: The Stanford bunny is modeled as the boundary of the safe set using Gaussian
CBFs. (Left) The point cloud and surface normals are shown used for generating the train-
ing set. The bunny’s implicit surface is modeled using Gaussian CBF (middle) and sparse
Gaussian CBF (right).

where q ∈ R7 is the joint position of the robot, and u ∈ R7 is the control input. We assume

to have direct control over the joint velocities, q̇, of the manipulator and perform kinematic

based control. Hence, the nominal control input is the reference joint velocity trajectory,

unom = q̇ref .

Design of the reference joint velocity is done by interpolating the homogeneous trans-

formation matrix of the end-effector given the initial and desired poses. We simulate the

Kinova Gen3 7-DOF manipulator and run our simulation experiment using MATLAB’s

Robotic Systems Toolbox. We generate reference trajectories such that it goes through the

body of the bunny. The synthesized Gaussian CBFs with and without sparsity along with

the reference trajectories are shown in Figure 4.5.

4.4.3 Safe Kinematic Control Synthesis for Manipulator

Given the nominal controller and reference trajectory, we want to rectify the nominal con-

trol subject to certain safety conditions. The safety objective is for the end-effector of the

manipulator to track a reference trajectory without colliding with the bunny in the task

space. We use the Gaussian CBF which has been trained to model the bunny’s implicit
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Figure 4.4: The reference trajectory passes through the bunny’s back and ear lobes for both
the synthesized CBFs.

surface with and without sparsity. Each candidate Gaussian CBF is given as follows,

h(·)(x) = µ+ 2σ2. (4.17)

The 0-isosurface of h(·)(x) characterizes the bunny with (·) denoting either the GP

model or sparse model. It is desirable to use a high safety margin, quantified using the

posterior variance, in order to avoid coming too close to the bunny. The time derivative of

the CBF is computed as follows,

ḣ(·)(x) =
∂h(·)(x)

∂q
q̇

=
∂h(·)(x)

∂x

∂x

∂q
q̇

=
∂h(·)(x)

∂x
J(q) q̇,

where J(q) : R7 → R3×7 is the geometric Jacobian relating the joint velocity of the robot,

q̇ ∈ R7, to the linear velocity of the end-effector and ∂h(·)(x)

∂x
uses (4.11) for sparse GP and
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the partial derivative of (3.1)-(3.2) for regular GP. The QP constraint is given by,

Lgh(·)(x)u+ k0h(·)(x) ≥ 0 (4.18)

∂h(·)(x)

∂x
J(q)︸ ︷︷ ︸

Lgh(·)(x)

q̇︸︷︷︸
u

≥ −k0h(·)(x). (4.19)

With the Lie derivatives, and the decision variable, u = q̇, appearing linearly in the in-

equality (4.19), we can rectify the nominal control, unom = q̇ref , using the QP formulation

in (4.13).

4.4.4 Simulation Scenario A : Knowledge of Bunny a priori

The purpose of this simulation experiment is to do trajectory tracking while upholding

safety, i.e., not colliding with the bunny. However, if the reference trajectory collides with

the bunny, then trajectory tracking is relaxed in order to ensure safety. The control input is

rectified as discussed earlier to ensure that the system remains within the safe set. The 0-

isosurface of h(·)(x) represents the boundary surface of the bunny, i.e., the safety boundary.

Assumption 9. We have knowledge of the point cloud and surface normals of the bunny a

priori.

Offline Training: This means we have access to the complete data describing the bunny

a priori. The advantage of having the complete information allows us to model and train

the (sparse) GP offline. As stated in Section 4.4.1, with N = 2178 training points, the

training time for computing the bunny’s implicit surface took approximately 14s for the GP

model with O(N3) complexity. For the sparse model, it took 9s to train, with a complexity

of O(M2N), where half the training points were used as M pseudo-input points.

Online Rectification: The rectified control law is used on the manipulator for both the

synthesized Gaussian CBFs as seen in Figure 4.5. The manipulator tracks the reference

trajectory when there are no safety violations, i.e., collision with the bunny. When the ma-
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nipulator gets too close to the bunny, the rectified control input relaxes reference trajectory

tracking. In the bottom left and right of Figure 4.5, we see the plots of hgp(t) and hsgp(t)

which are always non-negative demonstrating that the manipulator is always inside the safe

set. The functions, hgp(t) and hsgp(t), both get close to 0 when the manipulator gets very

close to the bunny on three occasions - bunny’s back and the two ears. It took on average

8ms to compute the Gaussian CBFs at a query point where the query point is taken as the

end-effector’s location in 3-dimension. Rectifying the control input using QP on average

took under 3ms using MATLAB’s quadprog solver. The total computation time from

calculating the CBFs at a query point and rectifying the input took on average 12ms.

0 1 2 3 4 5 6 7 8
-1

0

1

2

0 1 2 3 4 5 6 7 8
-1

0

1

2

Figure 4.5: The manipulator avoids collision with the bunny but follows the reference
trajectory otherwise using Gaussian CBF (top-left) and sparse Gaussian CBF (top-right).
The temporal plot of hgp(t) (bottom-left) and hsgp(t) (bottom-right) shows that the CBFs
are always non-negative.
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Figure 4.6: A spherical cone model is used as a proximal 3D LiDAR sensor on the robot.
The samples detected within the FOV and scanning range are shown (white discs) along
with the sensing rays (green lines).

4.4.5 Simulation Scenario B : Proximal Sensing of the Bunny

Now, we relax our previous assumption of having full knowledge of the point cloud a priori.

In many applications, having complete knowledge of the obstacles is not always feasible.

It is desirable to locally sense for the obstacles and determine the acceptable regions of

safety. Moreover, in the previous setting, the implicit surfaces were trained offline which

can be a limiting factor. This precludes the possibility of using Gaussian CBFs to model

complex volumetric objects online. Here, we perform proximal sensing and train for safe

implicit surfaces using local data online.

Assumption 10. The proximal sensor can sense samples within its FOV and scanning

range, and provide the point cloud locations and surface normals in the world frame.

Proximal Sensing: We introduce a sensing modality to the manipulator in the form of

depth scan. We use a spherical cone model to represent the proximal sensor as a 3D LiDAR

sensor on the robot. The field-of-view (FOV) of the sensor is taken as 110◦ with a scanning

range of 0.8m. The sensor is mounted on the end-effector. In Figure 4.6, two examples of

the spherical cone model is shown to detect samples. A sample is detected if it lies within

the FOV and scanning range of the sensor.

Online Training & Rectification: The simulation experiment is repeated for the same
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Figure 4.7: The training times per local dataset is shown for Gaussian CBF and sparse
Gaussian CBF (top). The time plots of both the CBFs (bottom) are always non-negative,
denoting that no safety violations occurred.

reference trajectory in Figure 4.5. Local training datasets are formed by detecting samples

using the sensor. A local dataset is formed if a minimum of 200 samples are detected.

Sparse Gaussian CBF uses one-half of the local training dataset as pseudo-inputs and tar-

gets. With Gaussian CBF, 48 local datasets were formed with an average training time of

124ms per dataset. For the sparse variant, 53 local datasets were formed with an average

training time of 52ms per dataset. The training times for both the CBFs are shown in Fig-

ure 4.7. Gaussian CBF has O(N3) complexity, where N is the number of training points

per local dataset. Whereas, sparse Gaussian CBF has O(M2N) complexity, where M is

the number of pseudo-inputs per dataset. We compute the covariance matrix and store in

memory until the next dataset is formed. This gives a prediction complexity of O(N) and

O(N2) for the GP mean and variance respectively. Similarly, for the sparse model, the

complexities are O(M) and O(M2) for the predictive mean and variance respectively.
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Figure 4.8: (Left) Gaussian CBFs are trained online with local training datasets. A local
dataset is formed by detecting point cloud samples (white discs) using the proximal sensor.
(Right) Sparse Gaussian CBFs are trained with the help of pseudo-inputs (black discs)
and local point cloud data. For both the CBFs, corresponding 0-isosurfaces are shown to
illustrate their modeling capability.

Figure 4.7 also shows the time plots of the CBFs, which are always non-negative, thus

indicating that no safety constraint was violated. The average inference time on a query

point, which was chosen to be the end-effector’s position, was approximately 5ms for both
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the CBFs.

Discussion: Three instances of the simulation are shown in Figure 4.8 for each data-

driven CBF. Gaussian CBF generates isosurfaces with a higher granularity as opposed to

sparse Gaussian CBFs as expected. For instance, when the sensor detects the neck and left

ear of the bunny, the sparse Gaussian CBF models the surface with lesser precision than the

Gaussian CBF. However, sparse Gaussian CBF still models the safety surface and ensures

that the manipulator does not collide with the bunny. Notice that the data-driven generation

of the CBFs is not limited to convex or connected surfaces. As can be seen in the figure,

disconnected isosurfaces can be modeled also using GPs.

4.5 Test Case II : 3D Quadrotor Hardware

We now validate our proposed methodology for generating safe surfaces from data and

performing safe control using Gaussian CBFs on a Crazyflie 2.1 hardware quadrotor. The

safety objective is avoid collision with a static chair while teleoperating the quadrotor in-

doors. This is done by constructing the Gaussian CBF modeling a chair and achieving safe

constrained control.

4.5.1 Experimental Setup

We use the Crazyflie 2.1 as the hardware quadrotor which is a versatile open-source plat-

form weighing only 27g [65]. State estimation is performed onboard via an external low-

cost lighthouse positioning system [65]. The Crazyflie has a maximum payload capacity

of 15g. Consequently, it will not be possible to equip the quadrotor with an external depth

scanner or 3D LiDAR sensor to perform online sensing with a hardware sensor. Therefore,

we use a virtual range sensor modeled as a spherical cone, as done in Section 4.4.5, for

sensing the obstacle in Section 4.5.6.

We use an IKEA ADDE chair as the testing apparatus in our collision avoidance sce-

nario. The point cloud data and surface normals are extracted from the chair’s OBJ file
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freely available online [94]. The chair comes with a large gap in its backrest along with

numerous holes in the seat and backrest. These holes allow accurate state estimation for

Crazyflie while flying beneath or behind the chair. The lighthouse system uses infrared rays

for position state estimation, and as a result, requires having line-of-sight for the quadrotor.

We use a remote ground station for GP training, Gaussian CBF synthesis, sensor mod-

eling, and control rectification. The ground station has an Intel i7-9800X at 4.4GHz pro-

cessor and 16 GB RAM. Communication with Crazyflie happens using a bluetooth dongle

where state estimates are received at 100Hz and rectified setpoint commands are sent at

100Hz with zero-order hold. Control rectification is performed at 50Hz, virtual sensing at

100Hz, and GP training at 20Hz for the online case. Nominal setpoint commands are sent

to the Crazyflie at 100Hz with the help of a Logitech joystick controller. These nominal

setpoints act as the nominal controller in the QP formulation (see Section 2.5.2).

4.5.2 Chair Implicit Surface Modeling

First, we discuss the modeling of the static chair for the hardware experiment. Since we

are unable to use a physical depth scanner on the Crazyflie, we rely on virtual point cloud

data. We first download the chair’s OBJ file [94] and load it onto an open source 3D mesh

processing software system such as MeshLab. Using MeshLab, we extract 10000 point

cloud and surface normal datapoints for the chair. We use the Matérn kernel, which is a

generalization of the SE kernel, to model the chair.

k(xi,xj) = σ2
f

(
1 +

√
3 ∥ xi − xj∥

l

)
exp

(
−
√
3 ∥ xi − xj∥

l

)
+ δijσ

2
ω. (4.20)

In practice, the SE kernel has very strong smoothness assumptions, and it may not be ideal

for many physical phenomena [60]. The Matérn kernel is often recommended in practice

since it characterizing physical processes better [60]. The class of Matérn kernels can

control the smoothness properties unlike the SE kernel which is infinitely smooth.
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Figure 4.9: The chair is modeled as the boundary of the safe set using Gaussian CBFs.
(Left) The point cloud and surface normals are shown used for generating the training set.
The chair’s implicit surface is modeled using Gaussian CBF (middle) and sparse Gaussian
CBF (right).

We downsample the point cloud to 2201 datapoints randomly from the original 10000

datapoints and treat one-third of the datapoints as pseudo inputs and targets. The average

training times were 4.8s for regular GP and 2.72s for sparse GP with 15 iterative steps to

maximize the log marginal likelihood during hyperparameter optimization using (4.6). We

use the following CBF,

h(·)(x) = µ+ 4σ2. (4.21)

The point cloud with surface normals and corresponding GP based implicit surfaces

used as Gaussian CBFs are shown in Figure 4.9. We do not attempt to mimic the gaps

and holes smaller than 0.05m in the point cloud data since the quadrotor cannot fly through

those regions. The corresponding chamfer distances betweenPchair andPgp/Psgp are 0.078m

and 0.0952m respectively using (4.15). Although the chamfer distances are still small, the

reason for their relatively larger values compared to the bunny is due to a much higher

variance margin used.
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4.5.3 Matérn Kernel and Partial Derivatives

Here, we provide the equations of Matérn kernel’s Jacobian and Hessian for parameter

ν = 3/2 with respect to x ∈ Rn. The kernel is expressed for ν = 3/2 as follows [59],

kν=3/2(xi,xj) = σ2
f

(
1 +

√
3

l
∥xi − xj∥

)
exp

(
−
√
3

l
∥xi − xj∥

)
,

for xi,xj ∈ Rn, i, j ∈ {1, . . . , N}, N being the number of samples, and σf ∈ R and l ∈ R

being the signal variance and characteristic length scale hyperparameters respectively for

the kernel. We rewrite the equation above as follows,

kν=3/2(t) = σ2
f

(
1 + t

)
exp

(
− t
)
, (4.22)

where t(xi,xj) =
√
3
l
∥xi − xj∥ ∈ R. We now derive the first and second order partial

derivatives of t with respect to x at a query point x∗,

∂t(x)

∂x

∣∣∣∣
x∗

= −
√
3

l

(x− x∗)
⊤

∥x− x∗∥
(4.23)

∂2t(x)

∂x2

∣∣∣∣
x∗

=

√
3

l

diag(1)

∥x− x∗∥
+

√
3

l

(x− x∗)(x− x∗)
⊤

∥x− x∗∥3
, (4.24)

where ∂t(x)
∂x
∈ R1×n, ∂2t(x)

∂x2 ∈ Rn×n, and diag(1) ∈ Rn×n is a diagonal matrix of ones. The

Matérn kernel’s Jacobian and Hessian in (4.22) with respect to x at a query point x∗ are

then computed by,

∂k(x)

∂x

∣∣∣∣
x∗

= −σ2
f t exp(−t)

∂t(x)

∂x

∣∣∣∣
x∗

, (4.25)

∂2k(x)

∂x2

∣∣∣∣
x∗

= −σ2
f t exp(−t)

∂2t(x)

∂x2

∣∣∣∣
x∗

+ σ2
f (t− 1) exp(−t)∂t(x)

∂x

⊤∣∣∣∣
x∗

∂t(x)

∂x

∣∣∣∣
x∗

, (4.26)

where (4.23) and (4.24) are used.
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4.5.4 Safe Control Synthesis for Quadrotor with Sparsity

The associated Lie derivatives for the Gaussian CBF (with and without sparsity) in (4.21)

are,

Lfh(·)(x) =
(
∇µ(x)−∇σ2(x)

)⊤
f(x), (4.27)

L2
fh(·)(x) = f(x)⊤

(
Hµ(x)−Hσ2(x)

)
f(x) +

(
∇µ(x)−∇σ2(x)

)⊤
∇f(x)f(x),

(4.28)

LgLfh(·)(x) = f(x)⊤
(
Hµ(x)−Hσ2(x)

)
g(x) +

(
∇µ(x)−∇σ2(x)

)⊤
∇f(x)g(x),

(4.29)

where∇µ(x) = ∂µ(x)
∂x

⊤
and∇σ2(x) = ∂σ2(x)

∂x

⊤
are the gradients of the respective GP mean

and variance with and without sparsity, and∇f(x) = ∂f(x)
∂x

is the Jacobian of f(x). Hµ(x)

and Hσ2(x) are the Hessians of the respective Gaussian CBFs. For the Gaussian CBF, the

Hessians are as follows.

GP Hessian


Hµgp(x) =

(∑N
i a

i
gp

∂2k(i)(x)

∂x2

)
,

Hσ2
gp
(x) = −2∇k(x)K −1∇k(x)⊤ − 2

(∑N
i b

i
gp(x)

∂2k(i)(x)

∂x2

)
,

where aigp is the ith entry of y⊤
NK

−1 ∈ R1×N , bigp(x) is the ith entry of k(x)⊤K
−1 ∈ R1×N ,

and ∇k(x) = ∂k(x)
∂x

⊤
∈ Rn×N is the kernel Jacobian using (4.25). For the sparse Gaussian

CBF, the Hessians are given by,

Sparse GP Hessian


Hµsgp(x) =

(∑M
i aisgp

∂2k(i)(x)

∂x2

)
,

Hσ2
sgp
(x) = −2∇kM(x)

(
K −1

M −Q −1
M

)
∇kM(x)⊤

−2
(∑M

i bisgp(x)
∂2k(i)(x)

∂x2

)
,
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where aisgp is the ith entry of y⊤
N

(
Q−1

M KMN

(
ΛN + σ2

ωIN
)−1)⊤ ∈ R1×M , bisgp(x) is the

ith entry of kM(x)⊤
(
K −1

M − Q −1
M

)
∈ R1×M , ∇kM(x) = ∂k(x)

∂x

⊤
∈ Rn×M is the kernel

Jacobian using (4.25), and ∂2k(i)(x)

∂x2 is the kernel Hessian using (4.26). Given the nominal

control input unom ∈ R3 in (2.20)-(2.22), the QP below rectifies unom into urect ∈ R3,

(Sparse) Gaussian CBF-QP: Quadrotor Input modification

urect = argmin
u ∈ R3

1

2

∥∥u− unom

∥∥2 s. t.

L2
fh(·)(x) + LgLfh(·)(x)u+K⊤H ≥ 0, (4.30)

where K = [k1 k0]
⊤ ∈ R2 is the coefficient gain vector, and H = [Lfh(·)(x) h(·)(x)]

⊤ ∈

R2 is the Lie derivative vector. The rectified input urect is used to compute the rectified

setpoints using (2.23)-(2.25) which are then sent to Crazyflie 2.1.

4.5.5 Scenario A: Safe Teleoperation with Knowledge of Chair

In this scenario, we conduct safe teleoperation where the safety objective is for the Crazyflie

2.1 to fly through and around the chair without colliding with it. A human operator controls

the Crazyflie 2.1 using a Logitech Joystick providing nominal control inputs. The control

input is then rectified using the scheme discussed in Section 4.5.4. We operate under the

following assumption for this scenario.

Assumption 11. We have knowledge of the point cloud and surface normals of the chair a

priori.

Offline Training: We train the GP model with and without sparsity to generate the

0-isosurface of the chair. We used 2201 datapoints to train the GP model, and one-third

of the datapoints were initialized as pseudo inputs and targets to train the sparse model.

After training, the 0-isosurface serves as the (sparse) Gaussian CBF in our experiment.

For the complete GP model, the training time was 4.8sec with a complexity of O(N3)

for N = 2201 training points, whereas for the sparse GP model, it was 2.72sec, with a
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complexity of O(M2N), for M = 734 pseudo inputs. Hyperparameter optimization was

performed using 15 iterative steps to maximize the log marginal likelihood. We did not

witness a noticeable performance improvement in the chamfer distance of the chair by

increasing the number of iterations during hyperparameter selection.

Online Rectification: We conduct separate experiments using (4.21) for Gaussian CBF

and sparse Gaussian CBF. The quadrotor trajectories with rectification for each experiment

are shown in Figure 4.11. For each flight experiment, as seen in the figure, the trajectory

of the quadrotor does not collide with the chair. This can be verified by looking at the

temporal plot of hgp(t) and hsgp(t) for each flight trajectory, where both the Gaussian CBFs

are always non-negative. The average computation time for the Gaussian CBF, which also

includes Jacobian and Hessian calculations, along with QP rectification is also shown in

Figure 4.11. Sparse Gaussian CBFs have an average computation time of 12.3ms, whereas

regular Gaussian CBF takes 24.27ms. This is because the complexity of sparse GPs is

Figure 4.10: Safe control on Crazyflie 2.1 using Gaussian CBF (left) and sparse Gaussian
CBF (right) on two separate experiments. The CBFs ensure that Crazyflie does not collide
with the chair, as seen by hgp(t) and hsgp(t) being non-negative at all times (top). Sparse
Gaussian CBF exploits sparsity and has a faster average computation time compared to
Gaussian CBF (bottom).
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O(M) and O(M2) for predictive mean and variance, where M is the pseudo inputs, after

inverse pre-computations and storage. For regular GPs the complexity isO(N) andO(N2)

for the predictive mean and variance, where N is the number of training points.

Discussion: As the human operator would bring the quadrotor close to the 0-isosurface

of the chair, the rectification routine would drive the quadrotor away. Since the human

operator is not an expert in maneuvering the quadrotor, using Gaussian CBFs as a safety

layer for collision avoidance has practical significance. Repeated flight experiments can be

done in a safe manner without incurring any expensive hardware failures. Gaussian CBFs

provide a way to characterize complex geometrical shapes using data, thus alleviating the

need to hand-design candidate CBFs. In the bottom plot of Figure 4.11, we see spikes in

computation times. This could be attributed to the use of a general purpose Linux operat-

ing system as opposed to a real-time operating system (RTOS). With RTOS, there would

be finer precision control on routine executions, multi-processing threads, and clock cy-

cles which we deem fit for future work. On comparing the two flight experiments, sparse

Gaussian CBFs are computationally faster at the expense of reduced modeling accuracy.

However, both the CBFs ensured that the Crazyflie does not collide with the chair.

4.5.6 Scenario B: Safe Teleoperation with Promixal Sensing of Chair

Next, we look at the same study but perform proximal sensing of the chair. In order to

achieve real time safe control with at least 20Hz, the GP training cannot exceed 50ms. This

limits the number of samples used only to a few hundred datapoints. Consequently, we

conduct this experiment only using Gaussian CBF due to the poor scalability of sparse GPs

at few datapoints.

Relying on Assumption 10, we use a virtual sensor to proximally sense the virtual point

cloud and surface normals of the physical chair in the world frame. The sensor is repre-

sented using a spherical cone model with its cone axis aligned with Crazyflie’s body-frame

x-axis. Similar to the previous experiment, a human operator teleoperates the Crazyflie pro-
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viding the nominal control input which is then rectified using locally synthesized Gaussian

CBF.

Online Training & Rectification: As the quadrotor flies, the virtual sensor detects

point cloud and surface normal datapoints. These datapoints are used to construct local

datasets. During our hardware experiments, we found that a minimum of 100 samples were

needed to get good implicit surface estimation using GP. On another thread, we perform

Gaussian CBF synthesis and control rectification at 50Hz. We limit the local dataset to

a 100 datapoints, and randomly sample 100 datapoints whenever the sensor detects large

numbers of point cloud samples. In Fig. 4.12, we plot the Gaussian CBF as a function

of time along with computation times for synthesizing the Gaussian CBF and training the

GP. The temporal plot of Gaussian CBF is always non-negative as seen in the figure. The

average time for synthesizing the CBF and rectify the control input was under 6.5ms, while

the average training time for the GP was 48ms.

Two instances of the experiment’s online training and rectification are visualized in

Fig. 4.13. Data recorded using rosbag is visualized to show Crazyflie’s body-frame axis

Figure 4.11: Safe teleoperated flight done on the Crazyflie 2.1 using Gaussian CBF (left)
and sparse Gaussian CBF (right). The experimental hardware trajectories are shown along
with the chair’s 0-isosurface.
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(RGB triad), flight trajectory, samples detected, and local implicit surface estimates. The

virtual point cloud information and samples detected with the virtual proximal sensor are

highlighted. The sensor locally detects, from which local datasets are formed and trained

online to get the 0-isosurface. Control rectification done using the Gaussian CBFs allows

the quadrotor to perform safe control and avoid colliding with the chair during runtime.

Figure 4.12: (Top) The Gaussian CBF is non-negative verifying that the quadrotor does
not collide with the chair during runtime. (Middle) The average time for synthesis and QP
rectification was 6.3ms, while training the GP for implicit surface estimation was under
48ms per dataset.
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Figure 4.13: Gaussian CBF is trained online with local dataset. Local datasets are capped
to 100 samples to achieve online training. The body-frame axes of Crazyflie 2.1 is shown
with RGB triad.

4.5.7 Scenario A: Safe Autonomous Navigation

In this scenario, the Crazyflie is subjected to unsafe reference trajectories which go through

the chair. The objective is to track the reference trajectory while considering the safety

objective of not colliding with the chair. We design velocity setpoints using a proportional-

integral (PI) controller. The nominal control input is given by unom = ṙdes ∈ R3, with the

dynamics given by a single integrator, i.e, ṙ = u. Since the relative degree is ρ = 1, we use

the following QP setup,

(Sparse) Gaussian CBF-QP: Quadrotor Velocity Input modification

urect = argmin
u ∈ R3

1

2

∥∥u− unom

∥∥2 s. t.

Lfh(·)(x) + Lgh(·)(x)u+ αh(·)(x) ≥ 0. (4.31)

We use Gaussian CBFs and sparse Gaussian CBFs on 3 separate runs. Each run uses a

different unsafe reference trajectory. The reference trajectory is designed by giving a final

desired position and then the PI controller calculates the desired setpoint for every sampling

time. Gaussian CBF rectification is performed at 50Hz.

The first experimental run is to fly the Crazyflie diagonally through the legs of the
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chair. The flight behavior is shown in Figure 4.14. Given a desired final position of rdes =

[0.5, 0.5, 0.25]⊤m, with an initial position of rinit = [−0.5,−0.5, 0]⊤, the Crazyflie relaxes

trajectory tracking in order to avoid collision. The temporal plots of hgp(t) and hsgp(t)

shown in Figure 4.14 verifies that the CBF is non-negative throughout the motion, thus

verifying the safety performance of the Gaussian CBFs. The computation time is only

10ms for Gaussian CBF, and almost half of that for the sparse Gaussian CBF at 6ms.

Figure 4.14: Experiment run 1 where the Crazyflie flies diagonally through the front-right
and rear-left legs of the chair. Both the reference and actual trajectories are shown (top).
The time plots of hgp and hsgp show that the CBFs are always non-negative (middle), and
the computation time per iteration is plotted (bottom).
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The second experimental run is shown in Figure 4.15 where the reference trajectory

goes straight through the front-left and rear-left legs of the chair. We give a desired final

position of rdes = [0.5, 0.2, 0.25]⊤m with an initial position of rinit = [−0.75, 0.2, 0.25]⊤.

For both the Gaussian CBF formulations, the Crazyflie successfully avoids colliding with

the chair. The average computation times are similarly 10ms and 6.5ms for the Gaussian

CBFs with and without sparsity respectively.

Figure 4.15: Experiment run 2 where the Crazyflie flies straight through the front-left and
rear-left legs of the chair. Both the reference and actual trajectories are shown (top). The
time plots of hgp and hsgp show that the CBFs are always non-negative (middle), and the
computation time per iteration is plotted (bottom).
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In the final experimental run, the Crazyflie’s reference trajectory is made to go through

the headrest of the chair. The initial hovering position is set as rinit = [−0.75, 0, 0.65]⊤

with a final desired hovering position of rdes = [0.5, 0, 0.65]⊤. In Figure 4.16, the flight

behavior is shown along with the CBFs temporal plots and average computation times for

each CBF per iteration. Crazyflie executes a motion where it goes below the headrest by

relaxing reference tracking. The corresponding hgp and hsgp plots show that the safety

value gets close to 0 but does not become negative.

Figure 4.16: Experiment run 3 where the Crazyflie flies straight through the headrest of
the chair. The reference and actual trajectories are plotted (top). The time plots of hgp and
hsgp show that the CBFs are always non-negative (middle), and the computation time per
iteration is also plotted (bottom).
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4.6 Concluding Remarks

In summary, we use Gaussian CBFs to construct safe implicit surfaces. The implicit surface

for a volumetric object is designed as the boundary of the safe set. We additionally derive

sparse Gaussian CBFs to reduce the computational complexity from O(N3) to O(M2N),

where N are the total number of training points and M are the number of pseudo training

points. We present several robotic test cases, firstly, in simulation for a 7-DOF manipulator,

and secondly, for a 3D hardware quadrotor. For the manipulator problem, we estimate the

safety boundary for the Stanford bunny as Gaussian CBFs with and without sparsity. Data

for the Stanford bunny is represented as 3D point cloud and surface normals. The safe im-

plicit surface here is the surface of the bunny. We first assume having complete knowledge

of the point cloud to train the model offline and then demonstrate safe constrained control

with rectification done online. Next, we perform proximal sensing of the point cloud to

achieve online training. In both the cases, the manipulator did not collide with the bunny.

For the next test case, we conduct safe navigation in 3D using the Crazyflie. We use a

physical IKEA ADDE chair for which we use an OBJ file to extract point cloud and surface

normal data. First, we conduct safe teleoperation as both offline and online studies. For

the offline problem, both the Gaussian CBFs (with and without sparsity) ensured that the

Crazyflie did not collide with the chair. However, when conducting proximal sensing using

a virtual sensor, only Gaussian CBF was able to model locally. Sparse Gaussian CBFs did

not scale well for few datapoints. Second, we demonstrate safe autonomous navigation

using both the Gaussian CBFs where unsafe reference trajectories would collide the drone

with the chair. We perform numerous experimental runs using Gaussian CBFs and sparse

Gaussian CBFs. For all the experimental runs, Crazyflie did not collide with the chair.
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CHAPTER 5

MULTI-SPARSE GAUSSIAN PROCESS FOR LEARNING-BASED

SEMI-PARAMETRIC CONTROL

A key challenge with controlling complex dynamical systems is to accurately model them.

However, this requirement is very hard to satisfy in practice. Data-driven approaches such

as Gaussian processes (GPs) have proven quite effective by employing regression based

methods to capture the unmodeled or residual dynamical effects. However, GPs scale cu-

bically with the number of data points N , and it is often a challenge to perform real-time

regression. In this chapter, we propose a semi-parametric framework exploiting sparsity

for learning-based control of a dynamical system. We combine the parametric model of

the system with weighted sparse GP models to capture any unmodeled dynamics. We term

this formulation as Multi-Sparse Gaussian Process (MSGP). MSGP uses multiple sparse

models with unique hyperparameters for each, thereby, preserving the richness and unique-

ness of each sparse model. For a query point, a weighted sparse posterior prediction is

performed based on W neighboring sparse models. Hence, the prediction complexity is

significantly reduced from O(N3) to O(WU2P ), where P and U are the number of local

inputs and pseudo-inputs respectively per sparse model.

In this chapter, we present a semi-parametric framework using sparsity of GPs to es-

timate the residual dynamics of the dynamical system. To this end, multiple sparse GPs

are used to divide the space of inputs and observations into sparse regional models. Semi-

parametric methods have been applied for inverse dynamics [95], [96], system identifica-

tion [97], and forward dynamics [98]; all using standard GPs. To the best of our knowl-

edge, no prior work has merged semi-parametric modeling using sparse approximations of

GPs. We create multiple sparse approximations of the original GP clustered into regionally

sparse models without making any global assumptions. Local models hinder prediction
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accuracy at the benefit of reduced complexity. To overcome this, each sparse model is opti-

mized for its own hyperparameters and a weighted sparse posterior prediction is performed.

We validate the learning performance of MSGP both in simulation and hardware for

the quadrotor case. We address sparse based learning on a quadrotor while considering

the complete 3D dynamics in simulation. Comparison with GP, sparse GP, and local GP

in simulation shows that MSGP has a higher prediction accuracy than sparse GP and local

GP, and marginally better or similar performance compared to full GP, with significantly

lower time complexity than all three. Learning-based control especially using sparsity for

a safety-critical system such as a quadrotor has not been demonstrated before to the best of

our knowledge in hardware. We validate MSGP on a real quadrotor setup for unmodeled

mass, inertia, and disturbances (video link: https://youtu.be/zUk1ISux6ao).

5.1 Problem Statement

We consider a nonlinear, continuous-time system,

ẋ = f(x(t),u(t))︸ ︷︷ ︸
parametric

+ d(x(t),u(t))︸ ︷︷ ︸
non-parametric

, (5.1)

where x(t) ∈ Rn is the state and u(t) ∈ Rm is the control input at time t. The system

dynamics is divided into a known parametric model f(x,u) and an unknown residual or

non-parametric model d(x,u). The latter contains the unmodeled dynamics. Often times

in practice, we use physics based first principles to derive the equations for the parametric

component. However, it is not always possible to perfectly model the system resulting in

unmodeled or residual dynamics, which we label as the non-parametric component.

The objective is to estimate and learn the unmodeled/residual nonlinearities in (5.1) in a

semi-parametric manner through the use of GP priors. More specifically, we want to do this

by placing multiple GP priors on the non-parametric component and exploit the sparsity of

GPs. The mean function for these sparse GPs account for the physical knowledge of the
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system, i.e., the parametric component. This is equivalent to a semi-parametric model,

ẋ ∼ f(x,u) +
L∑
i

SGP
(
0, k(x,x′)

)
, (5.2)

∼
L∑
i

SGP
(
f(x,u) , k(x,x′)

)
, (5.3)

Comparing the resulting dynamics in (5.3) with (5.1) and (5.2) makes it clear that the objec-

tive of MSGP is to model the residual dynamics using multiple sparse GPs. This problem

has been addressed before using standard GPs. We differ in our motivation to achieve the

same using multiple sparse approximations to GPs, without comprising speed and accuracy

for growing datasets. We assume that we can measure, d̂(x,u) = ẋ− f(x,u) +N (0, σ2
n),

which are corrupted by zero-mean, independent, and bounded noise. In practice, measuring

or observing d̂ can be quite difficult especially if higher-order derivatives are considered for

(5.1). In this chapter, we work with acceleration dynamics and assume to have observabil-

ity of acceleration data, albeit noisy. We also assume a nominal controller unom(t) exists

that drives the parametric model f(·) to the zero equilibrium point.

5.2 Multi-Sparse Gaussian Process Regression

We discuss our proposed methodology inspired from the theoretical developments of SPGP

and architecture of LGP. At the onset, MSGP can be seen simply as the combination of

SPGP and LGP, however, it outperforms both SPGP and LGP which is very counter in-

tuitive. MSGP at its core is different from LGP by using multiple sparse models (instead

of full GP models) and unique hyperparameters in each model. Note that, although we

choose SPGP as the sparse representative, the architectural nature of MSGP is agnostic to

the underlying sparse approximation.
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5.2.1 Multi-Sparse Model Clustering

The entire dataset of N training points is divided into L local models (randomly or deter-

ministically), each with P ≈ N/L data points, such that L · P ≈ N , P ≪ N . Every

ith local model is formed with a corresponding data matrix D
(i)
P = [X

(i)
P ,y

(i)
P ] and a corre-

sponding centroid. The centroid is taken to be the mean of the input points in the local data

matrix, c = 1
2

∑P
j=1 xj , for each model.

Next, sparsity is introduced in each local model by selecting a set of pseudo-inputs X̄(i)
U ,

where U ≪ P . These pseudo-inputs are selected arbitrarily at first for each sparse model;

to be optimized later in the hyperparameter tuning phase in Section 5.2.2. Thus, each sparse

model in MSGP (see Figure 5.1) is specified as {XP ,yP , c, X̄U}(i) with a unique kernel.

We use the SE kernel for this study.

..

.

Lp
(1)

Lu
(1)Dn

Lp
(M)

Lu
(M)

c ( 1)

c ( 2)

c ( M)

Figure 5.1: The original dataset DN (purple) is divided into L local models (yellow) with
approximately P data points each and a corresponding center c. Each local model is further
approximated into its sparse representation (blue), with U ≪ P local pseudo-inputs.
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5.2.2 Localized Hyperparameter Tuning

Each sparse model is parameterized by Θ̄(i) that best fits its own dataset since we perform

an optimization procedure on each model. The marginal likelihood for each model is,

p
(
yP |XP , X̄U , Θ̄

)
= N

(
yp | 0 , LP +Λp + σ2

nIp
)

= N
(
yp | 0 , K̄P

)
, (5.4)

where LP := KPUK
−1

U KUP ,
[
KPU

]
(i,j)

= k(xi, x̄j), i ∈ {1, . . . , P}, j ∈ {1, . . . , U}

is the covariance between local inputs Xp and pseudo-inputs X̄U , KU ∈ RU×U is the

covariance between pairs of local pseudo-inputs. ΛP = diag
[
KP − LP

]
is a diagonal

matrix, and K̄P := LP +ΛP + σ2
nIP .

By maximizing the log marginal likelihood of (5.4), we can jointly optimize for the

hyperparameters, Θ̄(i), and pseudo-inputs, X̄(i)
U , for each sparse model using quasi-Newton

gradient methods. The log marginal likelihood of each locally sparse model is given by,

log p(·) = −1

2

(
p log(2π)− log |KP | − yPK

−1

P yp

)
. (5.5)

The training complexity in MSGP has been significantly reduced to O(U2P ) from GP’s

O(N3), where U ≪ P ≈ N/L, for a large number of L models. Whereas in LGP, the

training complexity only reduces to the complexity results in O(N3
sub). Moreover, we op-

timize the hyperparameters along with the pseudo-inputs for each model unlike LGP. This

preserves the richness and uniqueness of each sparse model. This completes the creation

of multiple sparse models which are uniquely optimized during the training phase. Next,

we look at sparse posterior predictions for a query point x∗.
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5.2.3 Multi-Sparse GP Posterior Prediction

Optimizing hyperparameters for each sparse model may give rise to overfitting during the

prediction phase. To remedy this, the posterior prediction in MSGP uses a weighted aver-

aging over W neighboring sparse predictions µ̂ for a query point x∗. The idea of weighted

averaging for predictors was first introduced in LWPR; also used by LGP for its predictions.

Akin to LWPR, we also perform weighted averaging, but using weighted sparse posterior

predictions instead. The W nearest sparse models can be determined quickly using the SE

kernel:

wj(x∗, c
(j)) = exp

(
− 1

2
(x∗ − c(j))⊤L−2

(j)(x∗ − c(j))
)
, (5.6)

where c(j) is the centroid of jth local model and L(j) is the characteristic length scale

diagonal matrix from the jth local model respectively, with j ∈ {1, . . . , N}. Finally, the

mean posterior prediction of MSGP is,

µ̂(x∗) =

∑N
j=1wjµj(x∗)∑N

j=1wj

, (5.7)

µj(x∗) = k⊤
U∗ Q

−1
U KUP

(
ΛP + (j)σ2

nIP
)−1

yP , (5.8)

where kU∗ =
[
k(x1,x∗), . . . , k(xU ,x∗)

]⊤ ∈ RU gives the covariance between the local

pseudo-inputs in X̄P and query point x∗, and (j)σ2
n is the local noise variance. Hence,

the predictive mean complexity in MSGP is O(WU2P ) compared to LGP’s complexity of

O(WP 3). Note that the same approach can be taken to compute the weighted posterior

variance σ̂2(x∗) using (4.5) in place of µj(x∗) in (5.7). Here, we only use the weighted

posterior mean to approximate the residual dynamics d̂ in (5.1).
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5.3 Application Test Case: Quadrotor Learning & Control

Here, we demonstrate the applicability of MSGP on a safety-critical quadrotor system.

Most modern controllers require accurate knowledge of the model for improved trajectory

tracking. By learning the unmodeled component using MSGP, we demonstrate improved

trajectory tracking for a quadrotor in SE(3). We use the geometric dynamical model for

the quadrotor discussed in 2.5.1. We use a geometric tracking controller in SE(3) for the

quadrotor. We then discuss the augmentation of MSGP with the geometric controller for

improved tracking in the presence of unmodeled dynamics and uncertainties.

5.3.1 Geometric Controller Tracking in SE(3)

The geometric controller used for trajectory tracking presented in [99] has almost global

exponential stability. This implies the quadrotor can reach any desired state in the state-

space from any initial configuration. For a complete mathematical treatment for the nom-

inal controller, see [99]. Here, we just present the equations for nominal Fnom ∈ R and

τnom ∈ R3:

Fnom = (−krer − kvev)Re3︸ ︷︷ ︸
Feedback

+mge3 +mr̈des)
⊤Re3︸ ︷︷ ︸

Feedforward

(5.9)

= FFeedback + FFeedforward

τnom = −kReR − kΩeΩ︸ ︷︷ ︸
Feedback

+Ω× JΩ− J(Ω×R⊤RdesΩdes −R⊤RdesΩ̇des)︸ ︷︷ ︸
Feedforward

(5.10)

= τFeedback + τFeedforward, (5.11)

where k(·) ∈ R>0 are positive constants, the error terms are er = r − rdes, ev = ṙ − ṙdes,

eR = 1
2
(R⊤

desR−R⊤Rdes)
∨, and eΩ = Ω−R⊤RdesΩdes. The desired position, velocity,

attitude, and angular acceleration are rdes, ṙdes,Rdes, and Ω̇des respectively. (·)∨ is the

inverse of (·)×, i.e. (a×)∨ = a, ∀a ∈ Rn.
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5.3.2 Learning based Control using MSGP

The dynamical model in (2.15) - (2.18) and the controller presented in (5.9) deal with a

precise model of the quadrotor. However, it is often difficult to accurately parameterize a

dynamical system using physics first principles. Moreover, the model (2.15) - (2.18) does

not consider aerodynamic drag, damping, wind effects, or time-varying changes to mass

and inertia. We rewrite the geometric dynamics model with residual dynamics as follows,

ṙ = v, (5.12)

mv̇ = −mge3 + FnomRe3 + d1, (5.13)

Ṙ = RΩ×, (5.14)

JΩ̇ = τnom − (Ω× JΩ) + d2, (5.15)

where d· ∈ R3 are the residual unmodeled components in linear and rotational accelera-

tions. Here, we will use MSGP to capture and learn any unmodeled effects in the dynamics

expressed as (5.13) and (5.15). Since unmodeled nonlinearities appear in the dynamics

(5.13,5.15) for each component, we use a total of six MSGPs, placing a prior on each

dimension of the unmodeled state-space as shown below,

m ˙̂v = mge3 − FnomRe3 +


MSGP1

(
0, k(q,q′)

)
MSGP2

(
0, k(q,q′)

)
MSGP3

(
0, k(q,q′)

)
 (5.16)

J
˙̂
Ω = τnom − (Ω̂× JΩ̂) +


MSGP4

(
0, k(q,q′)

)
MSGP5

(
0, k(q,q′)

)
MSGP6

(
0, k(q,q′)

)
 . (5.17)

The input to MSGPs are q = [r⊤, ṙ⊤,Ω⊤]⊤ and the target observations are given by the

difference between (2.16, 2.18) and (5.13, 5.15), i.e., ŷ = [m( ˙̂v − v̇)⊤,J(
˙̂
Ω − Ω̇)⊤]⊤ +
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N (0, σ2
n). Given the input samples and noisy observations, this constitutes a proper re-

gression problem. Note that ŷ ∈ R6, and we consider each element of ŷ as a supervised

learning problem. In other words, we assume independence in the targets or observations.

After learning the residual dynamics using MSGPs, we can perform prediction at a new

query point q∗, where the sparse predictive mean of the unmodeled dynamics is calcu-

lated using (5.7). This predictive mean is then used to modify the controller (5.9) with the

learned dynamics as shown below,

Finput = FFeedback + FFeedforward +
(
−m [ µ̂1(q∗), µ̂2(q∗), µ̂3(q∗) ]

⊤Re3

)
︸ ︷︷ ︸

MSGP

(5.18)

= FFeedback + FFeedforward + FMSGP

τinput = τ +
(
− J [ µ̂4(q∗), µ̂5(q∗), µ̂6(q∗) ]

⊤
)

︸ ︷︷ ︸
MSGP

(5.19)

= τFeedback + τFeedforward + τMSGP

The controller design consideration above is that of feedback linearization. By plugging

Finput and τinput into (5.13)-(5.15), the idea is to cancel out the nonlinearities or residual

dynamics as much as possible with the augmented MSGP input terms in (5.18) and (5.19).

5.4 Simulation Results

We validate the MSGP semi-parametric learning framework by modifying the nominal con-

troller’s feedforward component on several test cases. We compare the MSGP’s learning

performance against the nominal, standard GP, SPGP, and LGP based controllers empir-

ically. The GPML library in MATLAB is used for hyperparameter tuning and covariance

calculations [93].

Desired trajectories are sinusoids where position reference is rdes(t) = [xd, yd, zd]
⊤ =

[4 sin(0.8t), 5 sin(0.4t), 2 sin(0.4t)]⊤ and desired yaw is ψd(t) = atan2(yd, xd), for t ∈
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[t0, tf ]. Nominal parameters are m = 1.25kg, J = diag[1.1, 1.1, 2.2]kgm2. Controller

gains are kr = 5, kv = diag[0.5, 0.5, 2.0], kΩ = diag[5, 10, 20], kR = 30. In simulation,

the quadrotor is subjected to these trajectories under model uncertainties using a low-gain

nominal controller (5.9). As a result, the learned controller has a stronger effect to com-

pensate for unmodeled dynamics by adjusting controller’s feedforward component.

The unmodeled dynamics are broadly classified into three categories for investigation:

parametric, non-parametric, and combined parametric and non-parametric. For each cat-

egory, we collect over 15500 samples for training and over 6000 samples for testing. One-

tenth of the samples are chosen as pseudo-inputs for SPGP. Localization of data samples,

into local models for LGP and MSGP are done in the same state space as inputs to the

respective GPs, i.e. q = [r⊤, ṙ⊤,Ω⊤]⊤. Each local model consists of a maximum of 750

samples resulting in over 20 regional models. Each regional model is further sparsed us-

ing one-fifth of the local samples as local pseudo-inputs to perform MSGP training and

prediction.

5.4.1 Parametric Unmodeled Dynamics

Parametric unmodeled dynamics deal with changes or perturbations made to the quadrotor

parameters, such as mass or inertia. Parameters are changed to the extent that the nominal

controller can still achieve stable flight, although with performance degradation in trajec-

tory tracking. Tracking error is determined in the position space of the quadrotor. The

trajectory tracking error of the quadrotor when subjected to changes in the parameters is

shown in Figure 5.2. In the training phase, the quadrotor is trained for each GP by intro-

ducing step changes to the mass and inertia at different time instances.

In Table 5.1, m and J are the nominal mass and inertia, m̂ and Ĵ are the perturbed mass

and inertia, t0 = 0 and tf = 16 seconds. In the testing phase, the controllers are compared

by changing the magnitude of m̂, Ĵ , and time intervals. From the normalized mean squared

error (NMSE) plot in Figure 5.2, it is clear that the nominal controller has a higher NMSE
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Table 5.1: Parametric step changes made to mass and inertia over different time instances.

Initial time (t0) Final time (≤ tf ) Mass (m̂) Inertia (Ĵ)

0 2 1.00 ·m J+ diag[0.75 0.75 0.75]
2 6 1.15 ·m J+ diag[0.02 0.02 0.02]
6 9 0.85 ·m J+ diag[1.31 1.31 1.61]
9 12 1.13 ·m J+ diag[0.31 0.01 0.03]
12 16 1.05 ·m J+ diag[0.55 0.55 0.82]

along z. This is expected since changing the mass has more pronounced effect on the

altitude. The GP controller performs better than the nominal and SPGP controllers, while

LGP outperforms all three controllers. MSGP on the other hand demonstrates superior

tracking performance with the lowest NMSE among all the controllers. MSGP achieves

better tracking performance compared to the other learning based controllers due to unique

hyperparameters and weighted sparse posterior prediction. Moreover, changing dynamical

effects at different time instances are better captured with different hyperparameters as

opposed to a global set of hyperparameters as in the case of GP, SPGP, and LGP.
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Figure 5.2: Parametric effects: Tracking error between nominal and learning-based controllers (GP, SPGP, LGP, MSGP) for varying
mass and inertia.
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5.4.2 Non-Parametric Unmodeled Dynamics

Here we look at non-parametric effects introduced in the dynamics such as unmodeled

aerodynamics. The quadrotor is subjected to the same unknown wind effects for training

each GP: W = [0.17 0.18 0.16]⊤g. During testing, a similar wind is introduced hav-

ing different magnitudes along each dimension for comparing the tracking performance.

Figure 5.3 shows the tracking performance of the quadrotor in presence of non-parametric

aerodynamic disturbances.

The nominal controller incurs the highest NMSE along each dimension. This is ex-

pected since the unmodeled dynamics cannot be handled by the nominal controller that

relies on model knowledge for feedforward compensation. GP performs significantly bet-

ter than the nominal controller in presence of such effects. SPGP performs better than

the nominal case, but it does not compensate as effectively as GP. LGP on the other hand

outperforms both the nominal and SPGP controllers, but underperforms compared to GP.

Finally, MSGP incurs the lowest NMSE, outperforming all the controllers including GP.

From the error versus time plots in Figure 5.3, it can be seen that each learning based

controller eventually fails to compensate for the wind effects with the exception of MSGP,

which holds out the longest among all the controllers. GP is able to compensate for the wind

longer than both SPGP and LGP. SPGP gives in first to the unmodeled dynamical effects

since it is only a sparse approximation of GP, while LGP, being a locally clustered approx-

imation of GP, holds out longer than SPGP. Despite MSGP having multiple sparse approx-

imations of GP, it is consistently able to compensate since each sparse model’s uniqueness

is preserved as described in Section 5.2.2.

5.4.3 Parametric & Non-Parametric Effects

Next, we study the combined effects of unmodeled dynamics in both parametric and non-

parametric form. Note that the mass, inertia, and wind effects introduced here are different

from the previous experiments to show performance against varied conditions. The para-
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Table 5.2: Both parametric changes to mass and inertia and non-parametric changes in the
form of external wind are introduced.

Initial time (t0) Final time (≤ tf ) Mass (m̂) Inertia (Ĵ) Wind (W)

0 6 1.00 ·m J+ diag[0.75 0.75 0.75] [0.31 0.32 0.15]⊤g
6 10 1.23 ·m J+ diag[0.02 0.02 0.02] [0.31 0.32 0.15]⊤g
10 16 0.81 ·m J+ diag[1.31 1.31 1.61] [0.31 0.32 0.15]⊤g

metric and non-parametric changes for the training phase are shown below.

In Table 5.2, m̂ and Ĵ are the affected mass and inertia parameters respectively,W is the

unmodeled wind, t0 = 0 and tf = 16 seconds. Since it is a combination of multiple unmod-

eled effects, the simulation setup is very challenging because the learning based quadrotor

controller needs to deal with a highly inaccurate model. During training, each GP algo-

rithm is trained on the above combinations. During testing, the magnitudes and respective

time intervals are altered to test the generalizability of the learning based controllers.

The tracking error performance is shown in Figure 5.4. Among all the controllers,

SPGP performs the worst in terms of tracking error followed by the nominal controller.

The sparse approximation tends to over compensate for the introduced nonlinearities in

the dynamics, thus exaggerating its effects in the feedforward controller. Both GP and

LGP demonstrate comparable performance and perform better than the nominal controller.

MSGP has the lowest NMSE among all the controllers with comparable performance to GP

and LGP along the x and y dimension. In the altitude domain however, there is a significant

reduction in NMSE for MSGP compared to any other controller.

5.4.4 Training and Prediction Time Comparison

We now analyze the average time taken by different GP algorithms for posterior predic-

tions. Since GP is a global regressor and is trained using a portion or the complete dataset,

the total number of data points used by GP will typically be higher than its sparse (SPGP) or

local (LGP/MSGP) approximations. SPGP takes a sampled subset of GP and approximates

the original GP likelihood. Whereas, LGP and MSGP divides the original dataset into re-
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gional models. For different training sizes (3000, 5807, 8613, 11419, 14225), we train each

GP individually subjected to non-parametric wind disturbances. In the case of SPGP, we

take one-tenth of each training dataset as pseudo-inputs. For LGP and MSGP, we assume

the number of local data points to be linearly proportional to each training dataset. We take

one-fifth of each training set to form local models, forming 5 regional models. Although

in practice, the regional models need only have 250 − 500 data points each. However,

we let each regional model hold a fairly high number of local data points for compari-

son. Subsequently, for MSGP, we further take one-fifth of each local model’s dataset as

local pseudo-inputs. For LGP and MSGP, all the neighboring models are considered for

computing the weighted posterior prediction, i.e., N = 5.

LGP and MSGP take the least time to train due to the reduced order model compared

to GP. LGP takes over 25s to train each cluster in CPU time (i7-9800HQ). MSGP on the

other hand takes under 6s for each cluster in CPU time. We also benchmark GPU training

time using the GPyTorch library on a RTX 2080 Ti [100]. MSGP takes roughly 1s for 12

dimensional input and 6 dimensional output for each cluster.

The CPU prediction time comparison, including matrix inversion, is shown in Figure

5.5. GP’s time complexity drastically grows with increasing training points as expected;

since it cubically scales with the number of training points. SPGP scales very well com-

pared to GP. For over 14000 points, SPGP computes under 5s. LGP has the least compu-

tational cost with fewer training points (under 5000) and marginally grows with increasing

size. It is faster than SPGP and takes under 2s with over 14000 points. MSGP is similar to

LGP but performs better as the number of training inputs increase due to sparsity in each

model. MSGP takes approximately 1s for predictions with over 14000 training points. Note

that precomputations can be made to improve the speed for all the methods. In practice,

one can save, α := (K + σ2I)−1y, where K denotes the covariance matrix for observed

inputs and y is the set of target observations. Rank-1 approximations are then made for

computing inverses. This results in tremendous boost in computational speed, thus achiev-
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Figure 5.5: Posterior prediction time in milliseconds against different training sizes. The
prediction time is computed on a query point for GP, SPGP, LGP, and MSGP. The dashed
black line marks 1000 milliseconds.

Table 5.3: Space and time complexity comparison for GP, SPGP, LGP, and MSGP, ignoring
the time taken to create M clusters for local methods. The last column assumes saving
necessary matrices for each method.

Method Storage Training Mean Mean (w/ saving)

GP O(N2) O(N3) O(N3) O(N)
SPGP O(NM) O(M2N) O(M2N) O(M)
LGP O(NP ) O(N3) O(WP 3) O(WP )
MSGP O(NU) O(U2P ) O(WU2P ) O(WU)

ing faster predictions. Doing so results in a prediction time of only 0.8ms for MSGP in

CPU time. The space and time complexity for the various GPs are tabulated in Table 5.3.

5.5 Hardware Experimental Verification

5.5.1 Experimental Setup

We use the same experimental setup as discussed in 2.6.1, 3.5.1, and 4.5.1. We use a

position controller to generate the commanded thrust using a feedforward hovering thrust

and a feedback PD controller. Desired attitude is maintained through an attitude controller
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generating commanded roll, pitch, and yaw-rates. The gains selected are, kr = 50, kv =

100, under which stable flight is maintained within nominal conditions. Control inputs are

sent at 100Hz while states are recorded at 100Hz. The experiment video can be seen at:

https://youtu.be/zUk1ISux6ao.

The objective is to maintain stable flight particularly outside nominal conditions. Train-

ing data is collected by adding a payload of approximately 3g to the 32g Crazyflie. MSGP

input is q = [r⊤, ṙ⊤, r̈⊤, ϕ, θ, ψ, F ] ∈ R13, where r, ṙ, r̈, ϕ, θ, ψ, F are positions, velocities,

accelerations, roll, pitch, yaw, and commanded thrust. The observations are computed by

subtracting the measured system accelerations from the nominal system (2.16,2.18). Over

5000 training points were collected, with each sparse model randomly assigned 250 points.

Each model is further sparsed using one-fourth of the points as pseudo-inputs. Training

each cluster takes less than 0.16s in CPU time. For weighted sparse prediction, N = 5

neighboring models are used.

5.5.2 Experiment 1 : Altitude Hover

We first test the nominal and MSGP based controller for a simple task of stable hovering

in the presence of an additional payload. The reference altitude is set at 0.8m. Figure

5.6 shows the tracking comparison for MSGP based controller and nominal controller.

Since these are two separate experiments, the transition point for adding the payload is

synchronized for visualizing the plot better. When there is no added mass, both MSGP and

nominal controller exert similar hovering thrust demonstrating they operate well within

nominal conditions. Once the payload is added, MSGP immediately exerts a compensating

feedforward thrust as seen in Figure 5.7. If the quadrotor goes above the desired altitude,

compensation is relaxed. Due to this relaxation, the quadrotor then descends below the

desired altitude. Then a larger compensating thrust is computed taking the drone closer to

the desired altitude. The nominal controller, however, begins exerting maximal feedback

thrust due to the altitude drop experienced. For the nominal controller to eliminate steady
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Figure 5.7: Commanded thrust for altitude hold with a payload of 3g

state error, the gains need to be adapted or tuned accordingly. This issue is alleviated in the

case of the MSGP based controller. We also note that better design of PD gains will reduce

the oscillations experienced by MSGP; however, proper design of optimal gains is outside

the scope of this work.

5.5.3 Experiment 2 : External Disturbances

In this experiment, we aggressively disturb the system to test the robustness and generaliz-

ability of the MSGP learning algorithm. The system is disturbed in three ways: 1) hitting

the payload inducing unmodeled inertial moments, 2) hitting the quadrotor physically off

the reference, 3) pulling the quadrotor down with the mass. The disturbances are meant to

induce thrust and attitude compensation by MSGP.

The altitude tracking performance in presence of the disturbances is shown in Figure
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Figure 5.9: Commanded thrust of the system in presence of aggressive unmodeled distur-
bances and a payload of 3g using MSGP controller

5.8. Note that MSGP has not been trained a priori for these disturbances. MSGP performs

good tracking when there is no payload and also compensates well when the mass is added.

The transient behavior can be seen in Figure 5.9 for the feedforward thrust. Thereafter, the

system is severely disturbed by first hitting the mass which induces an off-axis inertial

moment which MSGP needs to address. Additionally, the Crazyflie is then hit twice to go

off its current trajectory. Finally, the Crazyflie is pulled down along with the mass. For

all these unmodeled disturbances, MSGP generates the necessary thrust and commanded

attitudes to hold stable flight and steady altitude.
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5.6 Concluding Remarks

In this chapter, we proposed a semi-parametric based control with sparsity by exploiting

multiple GP sparse models. The sparse models are separately optimized for their hyperpa-

rameters, thereby, retaining their own uniqueness. A weighted sparse posterior predictor is

adopted for a query point to avoid overfitting and any discontinuities. The proposed frame-

work is tested on a geometric quadrotor controller in simulation with complete 3D dynam-

ics. Simulations are performed extensively for unmodeled parametric, non-parametric, and

combined dynamical effects. We empirically demonstrated the efficacy of our proposed ap-

proach to generalize to step changes despite being a locally sparse approximator. We also

rigorously tested our proposed framework against standard GP, sparse GP, and local GP on

both prediction quality and time complexity. MSGP demonstrated better prediction accu-

racy in the form of improved trajectory tracking with reduced prediction time compared to

other GPs. Lastly, we experimentally performed sparsity based control on a quadrotor plat-

form. We validated MSGP’s effectiveness on the quadrotor when dealing with unknown

mass and disturbances.
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CHAPTER 6

CONCLUSION

With more and more tasks being outsourced to intelligent robots, the need for safety in-

creases simultaneously. In order to fully realize the potential of these robots, we need an

efficient and reliable manner of quantifying safety designs both algorithmically and prac-

tically. In conclusion, this thesis aimed at providing a non-parametric paradigm to safety

which leverages Bayesian inference in its formulation. In order to bring safety-critical

systems in the real world, we need to develop methods that can be adaptive. The design

of Gaussian control barrier functions (Gaussian CBFs) use Gaussian processes to place a

prior on the desired safety function candidate. To synthesize the candidate function, we

rely on the use of safety samples where these samples may come from sensors, such as dis-

tance sensors, LiDAR, or data from computer aided design software. This allows a flexible

parametrization of the barrier function since the data fully informs the level set characteris-

tics. Furthermore, we implemented and showcased the tools developed in this dissertation

on a hardware quadrotor system. We presented several numerical test cases where the

quadrotor always remained inside the safe sets designated by the Gaussian CBFs.

We first presented the literature background in Section 1.1 of the first chapter. The sec-

ond chapter presents a concept of uncertainty in the safety design by leveraging Gaussian

process posterior variance. The core contribution of this thesis is presented in Chapter 3

where we present the theoretical, algorithmic, and practical realization of Gaussian CBFs.

Our proposed barrier functions can also have sparse posterior realizations which can be-

come a key enabler for practical computations under limited budget. We present this in

Chapter 4 along with the synthesis of safe implicit surfaces. Implicit surfaces allow us to

synthesize safety functions in 3-dimensional Euclidean space representing very complex

volumetric objects. We also discuss a semi-parametric learning based framework in the
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final chapter of this thesis in Chapter 5.

This dissertation has many possible future research directions. We elaborate on some

of the possible directions below:

• The work presented here for Gaussian CBFs did not consider dynamical uncertainty

in the system dynamics. Although, the theory presented is general enough to incor-

porate dynamical system uncertainty, this still remains to be addressed. One possible

direction is to inform the barrier function synthesis by including uncertainty mea-

surement data or observations in the training set.

• We only studied single agent cases in this dissertation. The Gaussian CBFs can be in-

formed based on the data collected from multiple sources and the field of multi-agent

systems is a viable future direction. This also allows the possibility of designing a

decentralized or distributed class of Gaussian CBFs.

• Gaussian CBFs are ultimately Gaussian processes which themselves are stochastic

realizations. This thesis did not delve in the stochasticity of Gaussian CBFs and this

is an interesting avenue for future research. One may consider taking the barrier

function realizations drawn from the GP and perform Fourier analysis on them in-

stead of simply using the posterior mean and variance. Stochastic CBFs [82] deal

with stochastic dynamical systems. It would be interesting to see a fully stochastic

formulation where both the dynamics and barrier functions are stochastic in nature.

• The theory of Gaussian CBFs can be further explored especially in relation to re-

producing kernel Hilbert spaces [59, 101]. The Gaussian CBF resides in an RKHS

while the canonical version of CBFs live in a sufficient continuously differentiable

function space. This means that Gaussian CBFs are contained inside the function

space of CBFs. It would be interesting to consider a deeper functional analysis of the

barrier functions.
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• For checking forward invariance of the quadrotor or the robot manipulator, we only

addressed the case where the state is a point mass, e.g., the center of mass of the

quadrotor or the end-effector of the manipulator. A potential direction is to consider

a volumetric representation for the system whereby the entire body of the quadrotor

or manipulator remains inside the safe set. Extent compatible barrier functions [102]

merged with Gaussian CBFs is another interesting avenue for future research.

• Since GPs suffer from a computational bottleneck of cubic complexity, we presented

sparse realizations in this thesis. However, this can be further improved by perform-

ing online sparse approximations as discussed in [103, 104]. This would greatly im-

prove the odds of performing large-scale real-time deployment of performing barrier

function synthesis in a non-parametric manner using GPs.
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