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SUMMARY 

The main objective of this thesis is to optimize computing-in-memory (CIM) 

design for accelerating Deep Neural Network (DNN) algorithms. As compute peripheries 

such as analog-to-digital converters (ADCs) introduce significant overhead in CIM 

inference design, the first part of the research focuses on circuit optimizations for in-

memory computing. In the first work, we comprehensively explore the tradeoffs involving 

different types of ADCs and investigate a new ADC design especially suited for the CIM, 

which performs the analog shift-add for multiple weight significance bits, improving the 

throughput and energy efficiency under similar area constraints. In the second work, we 

propose a resistive random access memory (RRAM) based ADC-free in-memory compute 

scheme validated with a prototype chip in TSMC 40nm process, which can significantly 

improve the hardware performance over the conventional CIM designs while achieving 

near-software classification accuracy on ImageNet and CIFAR-10/-100 dataset.  

In the second part of the thesis, the research focuses on hardware support for CIM 

on-chip training. To maximize hardware reuse of CIM weight stationary dataflow, we 

propose the CIM training architectures with the transpose weight mapping strategy. The 

cell design and periphery circuitry are modified to support bi-directional computing 

efficiently. A novel solution of signed number multiplication is also proposed to handle the 

negative inputs in backpropagation. Based on the silicon measurement data on a two-way 

SRAM-based prototype chip in TSMC 28nm process, we comprehensively explore the 

hardware performance for the entire SRAM-based architecture for DNN on-chip training. 
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CHAPTER 1  INTRODUCTION 

1.1 Motivations 

In the recent decade, deep neural network (DNN) based machine learning (ML) 

algorithms have made remarkable achievements in artificial intelligence (AI) applications 

such as image/speech recognition and autonomous driving. The rapid growth of those AI 

applications is greatly facilitated by the continuing development of ever more powerful 

hardware. Traditionally, AI-related computations are handled by central processing units 

(CPUs) or graphic processing units (GPUs). However, those DNN-based algorithms are 

computationally expensive on conventional computing platforms as intensive vector-

matrix multiplications (VMM) are involved. The traditional von Neumann architecture 

inherently limits the parallelism of DNN algorithms since massive data movement happens 

between the computing and storage units, resulting in low energy efficiency and speed.  

Therefore, the success of DNN algorithms, in turn, boosted the development of 

hardware accelerators to be deployed from cloud to edge. A variety of application-specific 

integrated circuit (ASIC) designs based on silicon complementary metal-oxide-

semiconductor (CMOS) technology (e.g., TPU [1], Eyeriss [2]) have been proposed to 

accelerate AI workloads. However, while showing superior performance compared to 

traditional general-purpose processors, the memory wall problem remains in such near-

memory designs where the weights and intermediate data still require inefficient on-chip 

or off-chip memory access. To this end, compute-in-memory (CIM), where information 

can be processed and stored at the same locations, is emerging as an efficient paradigm to 

address the memory wall bottleneck. The crossbar-like memory array is usually employed 



 2 

in CIM to store the values of the weight matrix, where the weights are mapped as the 

conductance of the memory cells [3]. The multiply-and-accumulate (MAC) operations can 

be performed in parallel: the input activates multiple rows, and the products between the 

inputs and the weights are summed up along the columns as MAC output.  

Though in-memory computing is promising with enhanced parallelism, grand 

challenges exist in designing CIM accelerators. Firstly, the performance of CIM 

accelerators is still limited by the data conversion procedure. Analog-to-digital converters 

(ADCs) are typically employed in CIM to convert the partial sums to the digital signals for 

further processing steps such as activation function/pooling. If one implements enough 

ADCs to guarantee high throughput, the system's total power tends to be dominated by the 

ADCs rather than the memory array itself. On the contrary, if multiple columns share ADC 

in one array, the computing throughput will be restricted as a penalty. Consequently, ADCs 

have been identified as the primary bottleneck for power dissipation and area overhead in 

the CIM accelerators. Besides, ADC quantization loss may hamper the computational 

accuracy performance. Hence, at the circuit level, more economical peripheral circuits are 

preferred to unleash the benefits of CIM. Secondly, most of the CIM architectures or 

macros proposed so far could support the inference only. However, exploiting training 

functionality has become desired and essential. For edge devices, supporting on-chip 

training means adaptiveness to the local environment and fast response to new scenes. 

Besides, the privacy concerns of sharing personal data to the cloud could be eliminated 

with local training. Therefore, an adaptive and continuous learning mode is preferred for 

the edge device. 
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1.2 Thesis Overview 

In this research, we analytically investigate different ADC designs for CIM arrays 

[4]. The experiment results show that 6-bit ADC precision is sufficient to guarantee no loss 

of accuracy for a large array (512×512). Compared to traditional ADC typologies such as 

Flash-ADC and SAR-ADC, the analog shift-add ADC achieves higher throughput and 

energy efficiency with less area overhead. To further reduce ADC overhead, we propose 

an Efficient Neural Network Accelerator, namely ENNA, which eliminates ADCs at the 

array level, implementing inter-array data processing in an analog manner [5]. An ADC-

free prototype chip is taped-out with TSMC's 40nm RRAM process [6]. The ADC-free 

chip features 1-8bit configurable precision. The impact of temporal/spatial variations is 

comprehensively evaluated to ensure accuracy performance. The simulation and 

measurement results show significant improvement in hardware performance both at 

macro and system levels. 

This research comprehensively explores the hardware implementations of CIM on-

chip training. We propose a transpose SRAM-based CIM Architecture for multi-bit 

precision DNN Training, namely CIMAT, with two different bit-cell designs, and explore 

the corresponding weight mapping strategies, dataflow and pipeline design [7]. The 

experiment results reveal that CIM is a promising solution to implement on-chip DNN 

training, which can reduce off-chip talk significantly. To enable the use of compact-rule 

SRAM cells, we propose a two-way SRAM-array-based accelerator for DNN on-chip 

training [8]. A new signed number multiplication approach is proposed to perform 

backpropagation efficiently. The proposed two-way SRAM array macro is fabricated and 
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validated in TSMC 28nm process [9] (as a collaboration work with NTHU Dr. Meng-fan 

Chang’s group). Based on the silicon measurement data on CIM macro, we 

comprehensively explore the hardware performance for the entire SRAM-based 

architecture, achieving ~3.2 TOPS/W on ImageNet dataset training. 

The rest of the thesis is organized as follows: Chapter 2 introduces the principle of 

Compute-in-Memory and a comprehensive survey of the recent progress in the CIM design 

for DNN acceleration, focusing on macro-level and architecture-level demonstrations. 

Chapter 3 presents ADC design exploration for the CIM array. Chapter 4 presents the 

"ADC-free" CIM accelerator design for inference application, including an RRAM-based 

prototype chip and system-level evaluation. Chapter 5 presents the architecture-/circuit-

level hardware implementations to support on-chip training in CIM. Chapter 6 presents a 

two-way SRAM-based accelerator design for DNN training. Finally, Chapter 7 

summarizes the research presented in this dissertation and provides the potential directions 

for the future. 
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CHAPTER 2 BACKGROUND 

2.1 CIM Basics 

The idea of embedding computations into memory is not new. Compute-in-Memory 

(or Process-in-Memory) was initially proposed in the 1970s. The following works [10] [11] 

explored various methods to implement in-memory logic operations on standalone 

dynamic random access memory (DRAM). However, the incompatibility of the DRAM 

and logic manufacturing techniques made the concept of integrating logic with memory 

banks impracticable. In recent years, thanks to the CMOS technology scaling and 

innovations on emerging non-volatile memories (eNVMs), on-chip memory capacity is 

increasing rapidly (e.g., 256Mb SRAM [12], 8Mb RRAM [13]). Accordingly, researchers 

are developing CIM architectures with on-chip embedded memories.  

In-memory computing has two potential advantages: 1) increasing the computing 

efficiency of a variety of functions, including Boolean logic operations (e.g., OR, AND), 

basic arithmetic operations (e.g., addition, multiplication), and linear algebra operations 

(e.g., dot products, matrix multiplication); 2) reducing the amount of data transfer to save 

both time and energy. CIM solutions have been demonstrated in various applications, 

ranging from scientific computing, image processing, hardware security, and spiking 

neural network (SNN) to deep learning inference/training. Among all, CIM's most 

representative application scenario is deep learning (DL) acceleration. The state-of-the-art 

DL algorithms require a large number of computational resources and memory storage as 

the size of deep neural networks (DNNs) increases dramatically (e.g., ResNet-152 for 

ImageNet has 60M parameters [14]). The most important operation of DNN processing is 
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the vector-matrix multiplication (VMM) between the input vector and the weight matrix, 

which could be executed as multiply-and-accumulate (MAC) operations. To this end, CIM 

designs for DL could benefit from both reduced memory access and the efficiency of 

parallel computing. This research mainly discusses CIM implementations for accelerating 

DNNs. 

 

Figure 1: Generic CIM crossbar array structure 

A generic structure of CIM crossbar array is shown in Figure 1, performing the 

multiply-and-accumulate (MAC) operation with perpendicular input rows and output 

columns. The memory cell is represented by the orange box, which could store binary or 

multi-bit weight according to device characteristics. The input vector is loaded in parallel 

to the rows and multiplied by weight to generate products. The current summation along 

columns represents the final MAC output in analog. Analog-to-digital conversion is 

normally required to quantize the analog MAC outputs to binary bits, providing scalability 

and flexibility for the mixed-signal communication between the sub-arrays and the upper 
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level. Digital shift-adds are usually equipped for high-precision operations. In practice, 

only a part of rows/columns could be synchronously turned on due to limited ADC 

resolution, device non-ideal effects, or the layout mismatch between the column pitch and 

the peripheries. 

Table 1: Survey of recent chip-level demonstrations of SRAM-/RRAM-based CIM 

 

2.2 Compute-in-memory Macro Designs 

Compared to Von Neumann architecture, the development of CIM design demands 

more cross-layer optimizations from circuit- and device-level to architecture-level. This 

section mainly introduces state-of-art CIM circuit and device techniques. CIM architectural 

implementations will be discussed in the next section. 

Table 1 surveys the recent macro-/chip-level demonstrations based on CIM. 

Theoretically, CIM could be implemented by any memory device technology, which can 

be roughly sorted into two categories: SRAM-based and eNVM-based. SRAM is 

considered as a mature candidate from the technology availability perspective. In 2016, as 
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a pioneering work of SRAM-based CIM, J. Zhang et al. [15] modified the standard 6T 

SRAM array to perform in-memory classification. In compute mode, the bitline pair 

(BL/BLB) is pre-charged first. The analog voltages on wordlines (WLs) are generated by 

DACs, representing the input vector. When multiple rows are turned on, currents from one 

column are summed together on BL/BLB. Finally, BL and BLB will decay from VDD with 

different rates, and a comparator is enabled, providing sign thresholding. In 2018, a split-

6T cell design [16] was proposed to support XNOR-Net [17], which splits the wordline 

into two control signals: WL and WLB. As the inputs to WL and WLB are always 

complimentary, only one side of the SRAM column will be turned on, achieving 50% 

energy saving with nominal overhead for additional WL routing, compared to the 

conventional 6T cell design. However, 6T-based cell design suffers read disturbance when 

multiple rows are activated simultaneously since stored data could be flipped by large 

discharge current. Thus, the subsequent CIM designs try to decouple compute and write 

operations by modifying the cell design such as 8T cell [18] and 12T [19] cell. X. Si et al. 

[20] proposed an advanced 8T cell design, which combines two read-decoupled 8T cells 

(M8T, L8T) into a twin-cell.  Such twin-8T cell could represent 2-bit since the transistor 

width of the read path in M8T is twice that in L8T, delivering 2× cell current. Furthermore, 

WL voltage is programmed with a 3-level magnitude to represent the 2-bit input. 

Consequently, this Twin-8T design enables multi-bit MAC operation in one compute cycle. 

A recent design implemented efficient training by designing a transposable SRAM array, 

which could support bidirectional MAC operations [9]. Each processing unit includes one 

transpose-multiply-cell (TMC) and 16 regular 6T SRAM cells. Each TMC consists of 10 

transistors including two pass-gate transistors and two multiply branches. TMC has two 
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read modes to support bi-directional bitwise multiplication so that forward and backward 

propagation calculations can be implemented in the same array. Recently, TSMC 

implemented a CIM macro based on 8T cell design in 7nm tech node [21], showing the 

technology scalability of SRAM-based CIM. Instead of tuning the WL voltage, they 

encoded the number of pulses as the multi-bit input and hired capacitors to perform binary-

weighted computation by charge sharing. In this design, a 4-bit Flash-ADC is shared by 

multiple columns for quantizing the outputs. An all-digital CIM design was recently 

presented in [22]. Other than the mixed-signal manner necessitating an ADC for 

digitization, this digital CIM design performs the accumulation in digital with extra digital 

accumulation circuitry inside the SRAM macro. Such a digital in-memory computing 

scheme eliminates ADCs while benefiting from CMOS scaling and lower Vdd operation. 

Compared to SRAM, eNVMs, such as RRAM [23], PCM [24], and FeFET [25],  are 

preferred for power-constrained edge devices due to their non-volatility, enabling instant-

on computation. Among eNVMs, RRAM is widely used in many prototype chips due to 

its relatively large on/off ratio, small power consumption, and more foundry availability. 

In 2018, W. H. Chen et al. [26] fabricated a binary-input/ternary-weight RRAM-based CIM 

design in 65nm. Positive weights and negative weights are stored in separate macros. 

Digital quantization is implemented by 3-bit distance-racing current-mode sense amplifiers 

(CSAs), which could improve sensing margin and reduce input offset. To reduce the errors 

caused by ADC references, a reference array is hired to generate the input-aware references 

dynamically. As a continuing work, an advanced RRAM-based CIM design [27] was 

proposed in 2019, which could further suppress input offset by a novel triple-margin CSA 

design. In 2020, C. X. Xue et al. [28] further optimized the CSA design, which could yield 
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2b MAC output simultaneously. Besides, rather than a WL-in computing scheme, they 

clamped BL current to implement multi-bit input, shortening access time. One limitation 

of such current sensing is that only limited rows could be activated simultaneously due to 

large BL current. Instead, XNOR-RRAM [29] first converted the current output to voltage 

and then quantized it by voltage-mode Flash-ADC, which allows 64 rows to be opened 

simultaneously. Besides, this design hired two adjacent 1-transistor-1-resistor (1T1R) cells 

to represent a ternary weight rather than employing two macros to store negative and 

positive weight separately. To eliminate the sensing errors caused by the limited on/off 

ratio, J. H. Yoon et al. [30] proposed an active-feedback-based voltage-sensing approach 

to linearize readout BL voltage. In this design, an on-chip write verification approach is 

also proposed to tighten the RRAM resistance distribution.   

Table 2: Survey of recent CIM Architectures and their characteristics 

 

2.3 Compute-in-memory Architecture Designs 

This section presents an overview of the state-of-the-art research into DL-oriented 

CIM architecture designs, summarized in Table 2. Since DNN training process is more 
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complicated than inference, most early-stage CIM designs focus on supporting inference 

only.  ISAAC [31] mapped the weights into crossbar arrays as the conductance of each 

memory cell, while the activations will be fed into each row as analog voltages encoded by 

the digital-to-analog converter (DAC). Weights are represented in 2's complement for both 

positive and negative values. Products in the form of current from each cell will be summed 

up along columns, and digitized by ADCs for the following processing. Given the nature 

of the crossbar array, the authors directly flatten each 3D kernel into a long column. 

Accordingly, all the kernels in one convolutional layer are converted to a large weight 

matrix. In this way, products along the same column will be summed up, representing the 

final output. Array partitioning is necessary considering the large size of the convolutional 

layers, thus ISAAC architecture is organized with multiple tiles assigned for different 

layers. Besides, an inter-layer pipeline is proposed to reduce the buffering requirement and 

improve system throughput. Compared with the prior near-memory-processing solutions, 

ISAAC achieved significant improvement of throughput, energy saving and computational 

density. Similar to the ISAAC, PRIME [32] is also a CIM architecture focusing on DNN 

inference. In PRIME design, RRAM is chosen as on-chip memory, and three types of 

memory array design are presented for different purposes: computing, storage and 

buffering. Instead of hiring traditional DACs and ADCs, periphery circuits such as sense 

amplifiers and write drivers are modified to serve storage and computing functions, 

reducing the area overhead. Unlike ISAAC, separate crossbars are dedicated to positive 

and negative weights in PRIME architecture. C. Eckert et al. [33] proposed an SRAM-

based CIM engine, Neural Cache, for DNN inference. It can implement bitwise AND/NOR 

operations inside cache memory by simultaneously activating the operand rows. The 
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compute SRAM array is capable of bit-serial addition and multiplication. A transpose 8T 

SRAM bit-cell design enables data reorganization in bit-serial format. TIME [34] is a 

modified RRAM-based CIM architecture based on PRIME, supporting the training 

process. To fine-tune RRAM states efficiently, authors also presented several methods, 

including one-direction write scheme, smart refresh strategy, and variability tuning 

scheme, which could reduce RRAM non-ideal effects. TIME improved the energy 

efficiency by a factor of 126 compared to the GPU platform. Another RRAM-based design 

named PipeLayer [35] was presented for training support, in which the RRAM memory is 

separated into two types: morphable subarrays and memory arrays. The results of the 

feedforward process are stored in a memory array for future backward computation and a 

morphable array is used as both compute unit and storage. Their design exploits both intra- 

and inter-layer parallelism to implement pipelined training. Compared to GPU, their design 

could achieve 42.45× and 7.17× improvement in speed and energy efficiency, respectively. 

X. Peng et al. [36] proposed a novel weight mapping strategy to maximize the input data 

reuse in CIM architectures, which could be treated as kernel-splitting mapping. Unlike the 

kernel-flatten mapping method, the weights at different dimensional locations of each 

kernel are mapped into different processing units (PEs). Based on this kernel-splitting 

mapping method, which allocates the input data into different PEs, CIM architecture could 

efficiently reuse the input and weight data, yielding 2.1× speed-up and 17% energy saving 

compared with the prior mapping method. S. Angizi et al. [37] proposed a hardware-

oriented CIM accelerator CMP-CIM that performs comparator-based DNN inference. Here 

the computationally-intensive convolution operations in Convolutional Neural Network 

(CNN) algorithm are replaced by a combination of comparison and addition operations. 
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CMP-CIM could achieve ∼ 94× and 3× better energy efficiency than CNN and Local 

Binary CNN (LBCNN) tested on the SVHN dataset. It should be noted that the evaluation 

results of prior architectural CIM works are obtained mostly from simulations.  
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CHAPTER 3 ADC DESIGN EXPLORATION FOR CIM 

ACCELERATOR 

3.1 Introduction 

As aforementioned, in most of today's CIM designs, the memory array is equipped 

with an analog-to-digital converter (ADC) to convert analog MAC values to digital outputs. 

These outputs will be passed on to the peripheral circuitry for further processing steps such 

as activation function/pooling in the digital domain, and then sent to the next array as the 

input. This mixed-signal computing scheme offers scalability toward multiple-array 

designs via interconnect buses or network-on-chip, while introducing significant power 

dissipation and area overhead in the necessary data conversion at the array outputs. For 

illustration, the ISAAC architecture [31] reports that 58% of the total power is consumed 

by ADCs, occupying 31% of the total area. As reported in PUMA accelerator [38], high-

precision ADCs consume ~ 60% of the total system energy and occupy ~80% of the chip 

area. W. He et al. [39] also indicated that ADC dominates the crossbar area and energy. To 

reduce the overhead of ADCs, there are two straightforward approaches. One is to limit the 

number of ADCs employed in one array, which means multiple columns share one ADC. 

As a penalty, the parallel computing throughput is reduced. This method could reduce the 

area overhead of ADCs while the total energy consumption will not be reduced. The other 

solution is to lower the ADC precision, which could benefit both energy and area overhead. 

However, the quantization loss of partial sum may hamper the inference accuracy 

performance. The acceptable precision reduction could differ from one design to another 

and must be explored accordingly. Furthermore, different ADC topologies differ in 
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hardware overhead under the same precision settings. Therefore, the choice of ADC 

topologies and configurations is critical to designing the CIM architecture under hardware 

constraints. 

Figure 2 (a) demonstrates mapping a weight matrix to a conceptual resistor-based 

crossbar array for MAC operations. For the computation, the weight 𝑊𝑖𝑗 is encoded to the 

memory cell conductance 𝐺𝑖𝑗 with the neuron activations 𝑋𝑖 converted to voltages 𝑉𝑥𝑖 and 

applied to the crossbar rows in parallel. The current from different rows will be summed 

through the column (𝐼𝑖) and could be further converted to an analog voltage by a resistor 

divider or transimpedance amplifier (TIA). In this way, ADCs can quantize the analog 

outputs in voltage mode. Figure 2 (b) shows the conventional dataflow of multi-bit MAC 

operations in CIM. Binary input vectors with different significance are fed into the CIM 

array cycle by cycle. Multiple columns are combined to represent a fixed-point weight with 

different significant bits grouped into different columns separately. Therefore, the CIM 

array uses two shift-add processes to finish the MAC with multi-bit inputs and weights: 

one is to weigh and sum up partial sums across different significant input bits, while the 

other is across different significant weight bits. This work will not further discuss the input 

shift-add process since it is identical for different ADC topologies. On the contrary, we 

focus on improving the shift-add process for weight through ADC techniques. As shown 

in the diagram, we divide the shift-add process for weight into two phases: analog MAC 

and ADC in a single column (phase I) and digital shift-add between columns (phase II). In 

other words, Phase II accumulates the weighted sum from the least significant bit (LSB) 

and the most significant bit (MSB). This phase is usually realized by employing a digital 

shift-add module in the CIM periphery. 
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The rest of this chapter is organized as follows: Section 3.2 explores different types 

of ADCs and investigates a new ADC design especially suited for the CIM context. Section 

3.3 presents the impact of quantization loss and comprehensive hardware evaluations for 

different ADC topologies. Section 3.4 summarizes the chapter.  

 

Figure 2: (a) Weight matrix mapping in a crossbar array. (b) Generic dataflow of multi-bit 

MAC operations. 

3.2 ADC Topology Design Exploration 

3.2.1 Conventional ADC choices for CIM application 
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It is important to have a compact ADC design in the CIM array considering the 

area/energy efficiency. Two ADC topologies are popular in prior CIM works, which are 

Flash-ADC [40] and successive-approximation-register (SAR)-ADC [26], because of their 

simplicity and suitability for low-to-medium precision (i.e., < 8 bit). Figure 3 presents the 

principle of Flash-ADC and SAR-ADC. For an N-bit converter, the Flash-ADC employs 

2𝑁 − 1  cascading comparators to generate a thermometer from the analog signal. A 

encoder is needed to convert this thermometer code to the digital binary output. Due to the 

parallel sensing, Flash-ADC is the fastest ADC design in principle. However, its power 

consumption and area are exponentially proportional to its precision. Generally, Flash-

ADC outperforms SAR-ADC for lower precision (3-bit or below), while SAR-ADC is 

preferred under higher precision. Flash-ADC of 3-bit precision has been demonstrated in 

the recent CIM macros [18] with small-scale arrays (64–128 rows). However, its scalability 

toward large-scale arrays remains unexplored. 

 

Figure 3: Principle of Flash-ADC and SAR-ADC. 

On the contrary, only one comparator is employed in SAR-ADC to perform a one-

bit comparison in each internal clock. Several comparisons will be made in serial based on 

the binary search algorithm. In other words, the output will be compared to a reference that 
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will be adjusted by the SAR logic (implemented with multistage shift registers) 

dynamically in a bit-by-bit fashion. After comparisons are made all the way from MSB to 

LSB, an N-bit digital output is available in the register. Typically, the voltage-mode SAR-

ADC is adopted in the CIM design, which generates the analog reference voltage exploiting 

charge redistribution in a capacitive digital-to-analog converter (DAC) array. It is widely 

used in CIM [31] [38] [26] and reports lower area/energy overhead than Flash-ADC due 

to its simple structure.  

In theory, the ideal ADC precision for VMM computation in a 𝑁 ×𝑁 CIM array 

with 𝑖 input precision per compute cycle and 𝑗 weight precision per cell is (log2 𝑁) + 𝑖 +

𝑗 . However, thanks to data sparsity in DNNs, the CIM array can adopt lower-than-ideal 

ADC precision to lower ADC overhead and improve performance [29] [41]. 

3.2.2 Analog Shift-add ADC 

As discussed, multiple columns have to share one ADC due to the tight area 

constraint for ADC in the CIM array. This time-multiplexing will reduce the throughput of 

the array consequently. Besides, it will also introduce additional multiplexer (MUX) and 

digital shift-add circuits. Alternatively, an analog shift-add approach was demonstrated in 

[20] to reduce the ADC overhead. Figure 4 (a) shows the principle of analog shift-add 

ADC, which modifies the shift-add process across weight bits. Here, phase II of the process 

is moved to the analog domain prior to the ADC. The analog MAC outputs from each 

column will be weighed and summed in multiple internal clock cycles. The preshifted and 

added MAC value, which already contains the weight significance, will be converted to the 

final digital output by a regular SAR-ADC. This way, the MUXs across columns and 
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digital shift-add module for multi-bit weight computation are eliminated. Therefore, 

throughput and energy efficiency will be improved under the same area constraint. On the 

other side, this pre-ADC accumulation will increase the full precision of the analog signal 

and thus has a potential precision impact on the following ADC. Both aspects will be 

discussed in more detail in the following section.  

 

Figure 4: (a) Alternative CIM dataflow which performs weighted sum before ADC. (b) 

Schematic of analog shift-add block. (c) Schematic of latched-based sense amplifier. (d) 

Top-level structures of analog shift-add ADC. 

The circuit schematic of the analog shift-add block is shown in Figure 4 (b). A 

capacitor array is adopted to perform the weighted accumulation in the analog domain, 
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exploiting its charge redistribution nature. This block is connected to multiple columns of 

weight bits with different significance from one fixed-point weight column. The 2's 

complement representation is adopted to encode the signed weights in DNN, where the 

significance is scaled by two, with the most significant bit being the sign bit. In the 

capacitor array, the capacitance of the capacitors in the block is increased exponentially 

from top to bottom, representing from LSB to MSB of the weight column. The switches 

are synchronously switched to enable the corresponding capacitor to be coupled to the 

power supply or the analog output from the corresponding column. Once the charge 

redistribution is stabilized, the analog shifted and added MAC value can be directly read 

out from the SUM port for the regular SAR-ADC process. A simple latch-based SA (Figure 

4 (c)) is used as the comparator in SAR-ADC because of its low-power and high-speed 

advantages. In the illustrated SA, M4–M7 transistors form a strong positive feedback 

amplifier and M8–M9 transistors are used to pre-charge the output. M2–M3 takes the inputs 

to the SA and can be treated as a common source differential amplifier. The sensing process 

will be enabled through the tail transistor M1. The top-level diagram of the analog shift-

add ADC is shown in Figure 4 (d). To our best knowledge, while demonstrated in prior 

works, such analog shift-add ADC design was not thoroughly evaluated. Especially the 

impact on software accuracy performance and hardware overhead compared to 

conventional ADCs at the array level are not evaluated. Different ADC topologies may 

cause diversities on other periphery circuits and, thus, make the array-level hardware 

performance quite different from the ADC-only result where the rest of the array is ignored. 

This work comprehensively explores the ADC designs above for the CIM application, 

which will be shown in the next section. 
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3.3 Evaluation  

3.3.1 ADC Quantization Impact 

We first investigate the impact of ADC quantization loss on inference accuracy to 

decide the minimum ADC precision under acceptable software performance degradation. 

The ADC quantization is explored on a VGG-8 network on the CIFAR-10 classification. 

Generally, two algorithmic techniques can effectively reduce the ADC precision for partial 

sum quantization in the CIM operation: one is to cut the MSBs of the partial sum. Since 

the partial sum distribution is typically zero concentrated  [18], appropriately reducing the 

range in the two tails, which could be done by cutting the MSBs, will not introduce 

significant accuracy loss. The other is the nonlinear quantization which adjusts the ADC 

references according to the partial sum’s distribution. The first scheme is adopted in this 

work. Figure 5 shows the accuracy performance versus ADC precision for the conventional 

ADC designs (representing both flash and SAR) and the proposed analog shift-add ADC. 

Here, Flash-ADC and SAR-ADC make no difference in the conventional two-phase shift-

add process for weight, as mentioned in section 3.1, so we group them together. Oppositely, 

the analog shift-add ADCs first weigh and sum up the 1-bit input with multi-bit weight 

MAC outputs in the analog domain. Then the final output containing the weight 

significance is quantized by a SAR-ADC. These two different quantization approaches are 

embedded in software simulation to evaluate the impact of ADC quantization loss on 

inference accuracy performance. The VGG8 network under investigation is trained with 4-

bit weight, 8-bit activation, 8-bit gradient, and 8-bit error, following the WAGE (a 

framework that constrains weights (W), activations (A), gradients (G) and errors (E) of the 
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network to low-precision integers in both training and inference) method [42]. The 

software baseline accuracy for CIFAR-10 classification is 89%.  

 

Figure 5: Accuracy performance vs. precision for different ADC designs. 

A 512 × 512 memory array is assumed in this work, indicating a 9-bit full-precision 

partial sum will be generated from each column. From Figure 5, 6-bit precision is required 

to obtain the same accuracy as the baseline for the conventional weight shift-add process. 

In other words, 3-bit quantization loss is tolerable for the conventional case. Considering 

the analog shift-add ADC, the analog partial sum’s full precision is increased to 13-bit (9-

bit from column partial-sum and 4-bit from shift-add for weight precision). The results 

show that the accuracy degradation is negligible down to 6-bit analog shift-add ADC, 

tolerating 7-bit quantization loss. For the conventional process, partial sums from different 

significance are quantized first and then shift-added in the digital domain. Each partial sum 

suffers from quantization loss, and these quantization losses will be further accumulated. 

Oppositely, no quantization error will be introduced in partial sums during the shift-add in 
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the analog domain. The quantization loss happens in the final stage of the process. Thus 

the analog shift-add ADC could tolerate more ADC precision loss. In conclusion, the shift-

add in analog could preserve more information and, thus, could bear higher ADC precision 

loss. In contrast, the digital shift-add after the ADC introduces residual information loss. 

As a result, it has a higher requirement in ADC precision to avoid big accumulated errors 

in the final output.  

3.3.2 Hardware Evaluation 

From our evaluation results, using ADCs with more than 6-bit resolution for both 

cases is an overkill, introducing hardware penalties for nothing. Meanwhile, the accuracy 

loss from 3-5 bits ADC is non-trivial under our configuration. However, 3-5 bits ADC is 

still viable by reducing the sub-array sizes (e.g., 128×128) or utilizing more aggressively 

quantized low-precision networks (e.g., XNOR-Net [17]). Thus, this work compared the 

ADC from 3-bit to 6-bit in our evaluation. The hardware performance of the three ADC 

topologies is evaluated based on a simulation program with integrated circuit emphasis 

(SPICE) simulation. As a case study, ferroelectric field-effect transistor (FeFET) arrays are 

adopted for CIM operations. FeFET is selected considering its elevated channel resistance 

(~500 kΩ) to potentially support the large array size (512 × 512) set in the evaluation. The 

FeFET bit cell size is assumed to be 4F by 4F, considering a relaxed channel length under 

high programming voltage. The simulation is done with a 40-nm low-power technode from 

a foundry process design kit (PDK). However, the presented ADC designs and evaluation 

results could be extended to other charge-based CIM schemes in other technology nodes 

and memory devices. 
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Figure 6: (a) Periphery configuration for different ADC designs. (b) ADC performance 

comparison. 

First, the hardware performance of a single ADC is evaluated for different ADC 

topologies. For the one analog shift-add ADC, the multi-bit MAC results will be converted 

in one process step. On the contrary, in traditional dataflow, one ADC in CIM could only 

convert 1-bit input × 1-bit weight MAC. As a result, multiple ADCs are needed to work 

simultaneously to convert multi-bit MAC results in a single step. However, as discussed 

before, the ADC is shared among columns due to the area constraints. As a result, a MUX 

(Figure 6 (a)) is needed to switch from different significant weight bits, and the multi-bit 
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MAC results are generated in a multi-time ADC conversion process. Therefore, for a fair 

comparison, the hardware performance for the conventional process (Flash-ADC and 

SAR-ADC) should be evaluated with 4× single ADC conversion time (as 4-bit weight is 

used as case study). Figure 6 (b) shows the hardware performance comparison, including 

power, latency, energy, and energy-delay product (EDP) among the three ADC designs. 

Considering the power consumption, since the Flash-ADC has several SAs working in 

parallel, it consumes the most power. As the number of SAs increases exponentially with 

the ADC precision, so does the power consumption. On the contrary, since the number of 

SA works per cycle is always one, the power dissipation of SAR-ADC and analog shift-

add ADC is nearly irrespective to ADC precision. As the ADC precision increases, the 

SAR-ADC and analog shift-add ADC need more cycles to complete the conversion, while 

Flash-ADC always adopts one cycle. Flash-ADC is obviously faster than SAR-ADC, and 

the difference increases with the ADC precision. While the analog shift-add ADC also 

adopts SAR-ADC for final conversion, one interesting observation is that its processing 

speed is comparable to Flash-ADC since it could complete multi-bit MAC in one 

conversion. The latency of this analog shift-add ADC will still linearly increase with ADC 

precision but with a much smaller slope, as shown in the latency plot. From the energy 

consumption plot, we can see that the growth of Flash-ADC is exponential, while the 

growth of SAR-ADC and analog shift-add ADC is linear. As Flash-ADC shows better 

throughput performance at the expense of energy consumption and the other two are 

opposite, a fair comparison among them is made with EDP, a well-defined metric that 

reflects the balance between energy consumption and throughput performance. In 

conclusion, the analog shift-add ADC has the best performance across 3–6 bits in this 
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module-level benchmarking for ADC comparison without considering CIM array-level 

constraints. 

Table 3: ADC configuration under area constraints. 

 

We further introduce area constraints at the array level to systematically compare 

ADC performance for CIM applications fairly. We optimize the number of columns 

sharing one ADC under a similar area constraint (i.e., 2× of memory array area, ~13,422 

µm2 in our case study). The cost of digital shift-add is also included for multi-bit MAC 

operations for the traditional weight shift-add process. Table 3 shows the array-level ADC 

configuration under area constraint. The number of columns shared for 3-bit to 6-bit SAR-

ADC and analog shift-add ADC maintains 16 since the area of a single ADC changes 

slightly as its precision increases. For Flash-ADC, we have to reduce the number of ADCs 

as ADC precision increases to satisfy the area constraint with exponentially increased unit 

ADC area. In other words, the column-sharing factor increases with ADC precision. Due 
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to the big area overhead of Flash-ADC, the total area of Flash-ADC is still much larger 

than that of SAR- and analog shift-add ADC, even with the less number of units employed.   

 

Figure 7: Array-level performance comparisons with possible ADC designs. 

Figure 7 shows the array-level performance with ADC-related periphery included. 

As shown in the plot in Figure 7 (a), the analog shift-add ADC is always the fastest among 

the three topologies from 3-bit to 6-bit ADC precision. It outperforms Flash-ADC under 

high ADC precision since the multi-bit MAC operation is done in one cycle and the 

column-sharing factor is maintained. Unlike the ADC-only result, as the ADC precision 

goes high, the throughput difference between SAR-ADC and Flash-ADC decreases 

because of the reduced column parallelism of Flash-ADC under area constraint. Figure 7 

(b) shows the flattened area overhead of Flash-ADC due to the increased column-sharing 

factor. The total area of the other two ADCs only slightly increases with ADC precision 
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with the constant column-sharing factor. Even at 6-bit, they consume a much smaller area 

than the Flash-ADC. The analog shift-add ADC still reports the lowest energy and EDP 

across the targeted precision range from 3-bit to 6-bit (Figure 7 (c) and (d)) at array-level 

under the area constraint. In conclusion, analog shift-add ADC is a promising solution for 

CIM applications thanks to the improved dataflow that performs multi-bit MAC operations 

before ADC. 

3.4 Summary 

This chapter explores different ADC typologies and investigated analog shift-add 

ADC design for CIM arrays. We first explores the effect of quantization loss on inference 

accuracy for different ADC designs and find that moving shift-add into the analog domain 

prior to ADC could improve the tolerance of ADC precision reduction. Then, the array-

level performance with different ADC schemes is systematically evaluated, aiming to 

provide an understanding of the tradeoffs between hardware performance and area 

overhead. The VGG8 network for CIFAR-10 classification is evaluated for ADC 

quantization loss. According to the simulated results, 6-bit ADC precision is required for 

no accuracy degradation for a large array (512 × 512) for all ADC topologies. Under this 

6-bit ADC precision, the analog shift-add ADC scheme achieves 37× and 4.9× higher EDP, 

compared to Flash-ADC, and SAR-ADC, respectively. The area footprint of analog shift-

add ADC is comparable to that of SAR-ADC and only 0.77× that of Flash-ADC. 
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CHAPTER 4 ADC-FREE RRAM-BASED CIM ACCELERATOR 

DESIGN 

4.1 Introduction 

Due to the discrepancy between large DNN model sizes and the limited physical size 

of CIM sub-arrays, Input vectors and MAC outputs at the array level need to be encoded 

and processed through CIM-array peripheral circuits for communications. As shown in 

Figure 8, CIM array peripheries mainly comprise two parts: 1) input encoding; and 2) 

output processing. 
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Figure 8: Hardware challenges in conventional CIM peripheries 
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The inputs of neural networks are usually mapped as voltage pulses in the CIM 

system. The popular input encoding methods in CIM designs are amplitude-based encoding 

and binary encoding. For amplitude encoding, digital-to-analog converters (DACs) are 

employed to encode the digital inputs as a voltage pulse of different amplitudes. Typical 

DAC designs, including capacitive circuits and resistive ladders, will introduce additional 

area overhead and power consumption. Besides, multi-level input voltage could also be 

implemented with multiple power supply sources to perform the multi-bit operation while 

increasing the load of the on-chip power unit. Although amplitude-based encoding 

theoretically could implement multi-bit operation in one cycle, the shortcoming is that the 

number of voltage levels is limited by the narrow voltage swing, which means the 

supported precision is low in practice. Besides, the current-to-voltage nonlinearity of the 

eNVM during input encoding could introduce errors in MAC operations, resulting in 

accuracy loss. For binary encoding, multi-bit inputs are sent sequentially to the CIM array 

and processed in a bit-serial parallel fashion. Additional circuits, such as registers and shift-

adders, are required to combine the sequential data. Input DACs could be eliminated in 

binary encoding by hiring less-expensive digital circuits.  Compared to amplitude-based 

encoding, binary encoding is more viable but offers lower throughput. 

For output sensing, as illustrated in Chapter 2, the memory array is usually equipped 

with ADCs to convert analog MAC values to digital outputs for communicating with other 

units in the system. Hence, grand challenges are introduced by the mixed-signal compute 

scheme in CIM, including non-idealities from devices/circuits, hardware overhead by 

expensive DACs/ADCs, and limited performance while scaling to a large-scale system, as 

shown in Figure 8. 
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In this work, we propose an Efficient Neural Network Accelerator, namely ENNA, 

based on "ADC-free" CIM subarray design. We develop a chip architecture that employs 

high-precision ADCs at higher level of hierarchy, which minimizes the data conversion 

energy and makes ADC no longer the bottleneck of the entire system. We evaluate the 

system-level hardware performance based on several large DNN models with silicon data 

measured from the macro chip implemented with TSMC 40nm RRAM process. To explore 

the potential of the proposed design, we project our design with advanced heterogeneous 

3D (H3D) technology to unleash the parallelism of the computation. 

4.2 Hardware Implementation 

4.2.1 Design of ADC-free RRAM Subarray 

Figure 9 presents the circuit diagram of the ADC-free CIM array. One single array 

involves a 256×256 1T1R RRAM memory array, capacitive digital-to-analog converters 

(DACs), comparators for input PWM-based encoding, multiplexing for row/column 

selection, current subtractors based on current-mirror structure, and edge capacitors. The 

conventional 1T1R design, where wordlines (WLs) are horizontal while both bitlines (BLs) 

and sourcelines (SLs) are vertical, is employed. Each 1T1R cell stores a binary value. We 

stored different significant bits in different subarrays to represent multi-bit weight. Many 

eNVMs, including RRAM, suffer from a limited on/off ratio. As shown in Figure 9, as a 

countermeasure, one dummy column is programmed to all off-states to neutralize the off-

state current. The input is applied to WL with SL grounded. Rather than using amplitude-

based or binary encoding, we employ a pulse-width-modulation (PWM)-based DAC to 

encode multi-bit inputs as varying pulse-widths. Compared to amplitude-based encoding, 



 32 

PWM-based encoding is much less affected by the current-voltage nonlinearity, making it 

appealing to achieve more accurate results. Compared to binary encoding, PWM-based 

encoding could feed in multi-bit input in one cycle, significantly improving the throughput. 

The charge-based current-to-voltage stacking conversion is implemented to perform 

analog MAC operation. 
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Figure 9: The ADC-free RRAM subarray design:  The diagram of capacitive DAC;  

PWM input encoding method based on comparator;  the current-domain subtraction 

circuitry;  Edge capacitors with control signals 

The operational waveform of intra-array analog computing is presented in Figure 10. 

the multi-bit digital input is first converted to an analog voltage signal by a capacitive DAC 

(see Figure 9 ) in the first phase (PH1), and is then transformed to a PWM signal by a 

comparison operation in the second phase (PH2). The two inputs to the comparator are the 

analog voltage input and a uniform ramp signal (see Figure 9 ). As shown in the 

waveform of PH2, while the ramp signal (V-) passes over the analog voltage (V+), the 

comparator produces a PWM output whose pulse duration is proportional to the amplitude 

of the analog voltage. Simultaneously, PWM input pulses that reach access transistors' 

gates sink current from BLs to grounded SLs. I_dummy from the dummy column is copied 

from transistor T1 to transistor T2 and subtracted from I_sum of the weight columns, 
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eliminating the contribution from non-ideal off-state (see Figure 9 ). Another pair of the 

current mirror (T3-T4 pair) scales down the subtracted current. The scale-down current 

(I_charge) is immediately converted to an analog voltage by charging the edge capacitor 

(see Figure 9 ) rather than digitizing the partial sum using an ADC-like conventional 

approach. The charged analog voltage on the edge capacitor represents the MAC outputs. 

Through the third phase (PH3), the capacitor will temporarily retain the voltage until the 

computation of the entire column completes. Due to hardware constraints, only limited 

rows (i.e., 8 rows) are activated simultaneously, but the actual compute of one column 

(@100 MHz with edge capacitors ~500fF) is executed within several hundreds of 

nanoseconds. Thus, there is no concern about the voltage decay on the capacitor since the 

typical retention time is on the order of microseconds, similar to eDRAM. Then PH1 to 

PH3 will repeat, and the analog MAC outputs are stacked on the edge capacitor until all 

rows are computed. 
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Figure 10: Operational waveform of the proposed array-level ADC-free compute scheme. 
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4.2.2 Hierarchical Architecture 

Figure 11 exhibits the tile-level architecture and the inter-array dataflow. Given the 

limited sub-array size and the large filter size of one layer in DNNs, which can range from 

several hundred up to thousands, array partitioning is necessary. One tile is formed by nine 

subarrays (corresponding to 3×3 filters). The tile-level design also includes input/output 

buffers, a shared ramp generator, and high-precision. Despite the fact that we eliminate 

ADC at array-level, we still need to digitize the analog outputs at tile-level, offering 

scalability for a hierarchical large-scale system design. As the dataflow shows in Figure 

11, activations are firstly fed into local buffers for each RRAM subarray through tile-level 

interconnects. Local buffers could reduce expensive data transfer through interconnect 

since array-level input vectors could be reused across columns as multiple columns share 

one output sensing block. In our design, 16 columns share one current subtractor. Secondly, 

CIM arrays perform MAC operation as Figure 10 illustrates, and then the final array-level 

outputs are stored on edge capacitors of nine subarrays. Thirdly, for tile-level analog 

accumulation, all switches (SWs) are turned on, and nine edge capacitors with sampled 

charge are connected to average the voltage by charge redistribution. Finally, the 

accumulated MAC results (𝑉𝑎𝑐) are sent to the tile-level SAR-ADC for 7bit digital output, 

which are then sent to the output buffer for further data conveying and processing. To 

summarize, local analog communication is conducted in the PWM format within the tile, 

and ADC quantization occurs only between tiles which is at a higher level of the hierarchy 

for global digital communication. However, due to limited space on the prototype chip, we 

only fabricate a two-array macro to demonstrate the proposed PWM-based input encoding 

design and charge-based ADC-free voltage sensing scheme. In this case, we build the CIM 
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system with NeuroSim simulator [43] and integrate the array-level performance (measured 

from the chip) into the hierarchy above the subarray level. The system setup and evaluation 

results will be presented in next section. 
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Figure 11: Tile-level architecture and dataflow between subarrays 

As discussed in Chapter 3, compared to Flash-ADC, SAR-ADC shows benefits at 

higher precision (e.g., > 4-bit) due to their linearly increased area/energy cost. Due to the 

tile-level outputs being acquired by summing up all kernels, which demands more precision 

than the array-level MAC results, we choose SAR-ADC for our proposed design. More 

crucially, different ADC precision will directly affect the accuracy performance and the 

hardware cost in the CIM-based design. As shown in Figure 12, we demonstrate the impact 

of ADC quantization loss on accuracy performance to verify the required tile-level ADC 

precision. Ideally, a high-resolution ADC can be employed to avoid any quantization loss. 

However, ADC's area/power or even latency cost will increase radically as ADC precision 

increases. Our ADC-free CIM array fetches 4-bit inputs and sums up 256 rows in total, 
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which means the ideal full precision of each column MAC is 12-bit. Then this analog partial 

sum for subarray needs to be accumulated across nine subarrays, which means the final 

theoretical full precision before tile-level ADC is 16-bit. By incorporating the proposed 

compute scheme and real-traced input/weight data into software simulation, we explore the 

impact of ADC resolution from 4-bit to 9-bit on different networks. The plots in Figure 12 

demonstrate that the 7-bit ADC could maintain the same accuracy as the baseline, which 

means the 9-bit quantization loss is bearable. Compared to prior CIM designs with array-

level ADCs tolerating limited quantization loss, our proposed scheme could tolerate more 

quantization loss because quantization loss only happens at the tile-level stage. On the other 

hand, quantization loss happens on each column's partial sum from array-level ADCs. Then, 

as these quantized partial sums are accumulated at the upper level, errors will also be 

accumulated, causing a bigger loss in accuracy. 

 

Figure 12: Accuracy performance versus tile-level ADC precision. 

Figure 13 (a) presents the key components of our ENNA accelerator at the chip level: 

multiple tiles assigned for different layers, digital computational units, neural functional 
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units such as pooling/activation, and global buffer. H-tree routing is employed to estimate 

the overhead of interconnection. The H-tree is built up by multiple stages from wide to 

narrow ones, corresponding to the main bus to subarray/tile connection. The actual size of 

the filters determines the number of tiles assigned for each layer. The sub-array size 

determines the local buffer size, while the global buffer size depends on the model's input 

feature map for pipelining. Accordingly, we allocate 1.8Mb, 2.4Mb, and 24Mb global 

buffers for VGG-8, CIFAR-100, and ImageNet, respectively.   
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Figure 13: (a) The top-level ENNA architecture. (b) Dataflow diagram of layer-wise 

pipeline 

The multi-bit weights are deposited in different tiles across the layer, and shift-adders 

are used to accumulate the tile outputs. The accumulated results are then further processed 

by neural functional units to generate the activations for the next layer, which are sent to 

the global buffer for storage. Figure 13 (b) illustrates the layer-wise pipeline according to 

the proposed top-level architecture. Each pipeline stage is assigned for one single layer, 
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and forward propagation is executed stage-by-stage. Each stage could perform different 

tasks (i.e., images) in parallel to improve the system throughput. The speed of the slowest 

stage, which is usually the 1st or 2nd layer in neural networks, determines the pipelining 

efficiency. 

4.2.3 Heterogeneous 3D Integration 

Except for the hardware overhead caused by ADCs, there are still other remaining 

limitations, such as CMOS technology scaling challenges and chip area constraints, to be 

faced. In this case, heterogeneous 3D (H3D) integration enabled by through silicon via 

(TSV) technology and hybrid bonding become a competitive solution. Some advanced 

TSV technologies, such as nano-TSV, which could reach sub-micron pitches [44], have 

been proposed to reduce the die-to-die interconnection overhead. For CIM design, by 

partitioning the circuit modules in hybrid technology nodes across different tiers (e.g., the 

memory tiers at legacy node and logic tiers at leading edge node), the challenges of 

ADC/DAC overhead and scaling limitations caused by high write voltage in eNVM could 

be addressed [45]. 3D CIM accelerator could achieve higher throughput and larger capacity 

at the array level to unleash the system's performance. 

We redesign the ENNA architecture as a 2-tier design to investigate the potential of 

CIM design with 3D stacking technology. To embrace logic scaling, the digital blocks, 

buffer, and low-voltage peripherals are relocated to the bottom tier at 7 nm, while the 

RRAM array and high-voltage peripherals remain on the top tier at 40 nm as TSMC is 

currently offering. Figure 14 shows the schematic of the proposed 2-tier partition. It should 

be noted that the level shifters and switch matrixes have to stay on the top tier as RRAM 
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cells require high write voltage (>3V) for programming, which is not applicable at 7 nm. 

The nano-TSV technology pioneered by IMEC [44], which could achieve sub-500 nm pitch 

interconnects, is chosen in our 3D design due to its trivial area cost. Additionally, with such 

a small size, TSVs’ parasitic capacitance and resistance become insignificant. Thanks to 

the decreased size of ADCs/DACs at 7 nm, this 3D-ENNA architecture can support in-

memory computing in a highly parallel read-out manner: 128 rows are activated 

simultaneously with PWM inputs, and the ADC-free analog sensing simultaneously reads 

out 128 columns of MAC outputs. To match the array-level bandwidth, the same number 

of SAR-ADCs and corresponding digital compute blocks are employed. In this case, the 

area-hungry CIM periphery is no longer the bottleneck of parallelism. The next section will 

present the evaluation of the 3D-ENNA architecture. 

RRAM 
array

Switch Matrix

Local buffer

DACs+COM

ADC-free
Sensing

Digital control

Top Tier@40nm
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Figure 14: Floorplan of H3D 2-tier ENNA accelerator 

4.3 Evaluation 

4.3.1 ADC-free RRAM Prototype Chip 

RRAM is a two-terminal device with a metal-oxide-metal structure that could be 

integrated at the drain via a silicon transistor. The data is stored as a high resistance state 
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(off-state) or low resistance state (on-state) for binary operations, and multilevel operations 

are also possible by varying the resistance. Among eNVM-based CIM, RRAM is a 

promising candidate due to its silicon CMOS fabrication compatibility and low integration 

cost [46]. Compared to PCM, RRAM has lower write energy. The industry has invested in 

RRAM technology in the past decade, and 16Gb [47] to 32Gb [48] RRAM prototype chips 

have been demonstrated. Recently, TSMC has offered the embedded RRAM process in the 

40 nm process [49], and Intel offered the embedded RRAM process in 22nm FinFET 

platform [50].  

A 128 kb ADC-free CIM macro is prototyped in TSMC RRAM 40nm process. 

Figure 15 (a) shows the overall chip architecture, highlighting the intra-/inter-array 

compute dataflow. This macro includes two identical RRAM CIM arrays, digital control 

for CIM computing, and essential peripheries for device programming (e.g., write MUXs 

and level-shifters). During in-memory computing, the input vector is encoded as a group 

of word line pulses to the rows of the memory array, where the pulse-width represents the 

analog input value. As opposed to digitizing the partial sum using an ADC-like 

conventional approach, the accumulated current is directly transformed to an analog 

voltage, which is temporally stored onto the edge capacitor. When the computation of the 

next array commences, the analog voltage is compared to a ramp signal to generate PWM 

signals representing the inputs of the second array. Then the second array will perform the 

MAC operations in the same computing manner as the first array. Figure 15 (b) presents a 

die photo with labels indicating the sub-blocks. A summary of chip measurement results is 

shown in Figure 15 (c). We measure analog MAC operating at 100 MHz with 0.9 V supply 

voltage. Here one operation is regarded as 1-bit weight × analog input. With eight rows 
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operating simultaneously, this ADC-free RRAM CIM macro could achieve 13.93 GOPS 

throughput and 26.97 TOPS/W energy efficiency.  
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Figure 15: (a) Two-array macro architecture of prototype chip. (b) Die photo of ADC-free 

RRAM macro. (c) Chip summary of silicon measurement data 

Figure 16 (a) presents the demonstration setup, which combines the proposed ADC-

free RRAM-CIM test chip with an NI-PXIe system to deliver control signals/inputs and 

measure the outputs. Correct CIM operations are measured as shown in Figure 16 (b). The 
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activation inputs and code for setting the hardware configuration are first scanned into the 

chip. Following receipt of the start signal, the CIM array performs in-memory computing. 

Varying PWM outputs with different pulse-width correspond to different MAC results. 

From left to right, the waveform shows that the pulse-width gets narrow, corresponding to 

decreasing MAC output. 

Propposed ADC-
free CIM Macro

Power supply

NI PXI Express Chassis 
control system

NI-system analog 
output connector 

Digital I/O

CLK

Compute Start

PWM Outputs

SCAN

Data 
scan

Config. 
data scan Compute

MAC value decreases

(a)

(b)  

Figure 16: (a) The experimental platform based on NI-PXIe Chassis. (b) Measurement 

results on demonstrated transient response. 

4.3.2 Accuracy Performance 

Undeniably, CIM analog computing suffers more from process variations/noises than 

traditional digital computing. Furthermore, even when the off-state current is cancelled out 

for more accurate MAC outputs, other non-idealities of RRAM devices might still affect 

the accuracy. The impact of process variations or noises on accuracy performance needs to 

be verified. We first extracted weights and input vectors from software simulations that 
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match the proposed in-memory compute scheme (i.e., open eight rows simultaneously with 

pulse-modulated inputs). Then the acquired weights are programmed to RRAM arrays, and 

the proposed PWM-based method encodes the corresponding input vectors.  

 

Figure 17: (a) Real MAC outputs versus ideal MAC values. (b) Results of 

simulated/measured variations. Standard deviation (σ) is measured in terms of percentage. 

(c) Accuracy performance with process variations tested on various DNN models. 

Figure 17 (a) illustrates real-traced MAC outputs versus ideal MAC values based on 

200 samples of different values and multiple reads, showing a linear-like relationship. As 

shown in Figure 17 (b), the simulated standard deviation (σ) of the temporal variation 

(related to various input & weight patterns) on PWM outputs is 2.9%, while the measured 

value is 3.8% in terms of percentage. After including spatial variation (read-out across 

different columns), the measured total standard deviation is 4.1%. Here we take 4-bit input 

& 2-bit weight configuration as a case study. By integrating the measured output variation 

in the software simulations, we evaluate the inference accuracy on the VGG-8 and ResNet-
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18 networks trained for the CIFAR-10, CIFAR-100, and ImageNet-partial datasets. As 

shown in Figure 17 (c), our ADC-free CIM design achieves 91% accuracy for CIFAR-10 

classification (software baseline: 92%), 68% accuracy for CIFAR-100 classification 

(software baseline: 70.4%), and 84% accuracy for ImageNet-partial classification 

(software baseline: 87.4%).  

Table 4: Performance comparison across various weight configurations 

 

4.3.3 Benchmark Results 

The system-level hardware and accuracy performance across eight input-weight 

configurations for inference are summarized in Table 4. On the VGG-8 model for CIFAR-

10 classifications, the 2D ENNA accelerator achieves 1.6~10.8 TOPS/W and 273.8~282.3 

GOPS while maintaining 89~91% accuracy. As observed in Table 4, increasing weight 

precision could slightly improve accuracy but degrade the hardware performance. 

1) Comparison among 2D-/3D-ENNA and baseline design 

To have an apple-to-apple comparison, we build a baseline accelerator with explicit 

ADCs based on a fabricated CIM prototype chip that was fabricated with the same RRAM 

process [51]. The hierarchy architecture of the baseline accelerator is shown in Figure 18. 
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3-bit ADCs are hired next to the memory array for MAC output quantization at the sub-

array level, which enables traditional in-memory computing. The macro-level parameters 

for baseline are obtained from the experiment results as well. The baseline CIM 

accelerators have three primary hierarchies: chip level, tile level, and sub-array level. 

Peripheries such as buffers, neural function units, and digital computational blocks (e.g., 

adder trees and shift-adds) are included inside different levels.  

 

Figure 18: Top-level architecture of baseline design (with subarray level ADCs) for one 

convolution layer 

Figure 19 shows the system-level performance comparison between the proposed 

ENNA accelerator (2D + 3D) and the baseline for various networks. As illustrated in Figure 

19 (a), since expensive ADCs are moved from the sub-array level to the upper tile level 

with significantly fewer workloads, 2D-ENNA could reduce chip area by 30%~40% 

(observable across various networks). 3D integration could further reduce the chip area by 

~50% compared to the 2D ENNA accelerator by re-organizing the design into two tiers. 

Compared to the binary encoding method in baseline design, the proposed multi-bit PWM 
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encoding improves the throughput by 2×~2.8×, and pipelined execution further improves 

the throughput by 2.3×~8.9× for different tasks. In total, as shown in Figure 19 (b), our 

proposed 2D-ENNA accelerator could perform computations 4.7×~25.7× faster than 

conventional CIM designs, mainly benefitted from the multi-bit PWM-based input 

encoding scheme and pipelined datapath. ResNet-18 has a higher speed-up as pipelining 

shows more advantages on deeper networks.  

 

Figure 19: Performance benchmark on different DNN models (2-bit weight/4-bit input 

configuration): (a) Area cost comparison. (b) Throughput comparison. (c) Energy 

efficiency comparison. 

Considering the area cost, 2D-ENNA only opens 8 rows simultaneously. If 128 rows 

are activated at the same time, the chip area will increase by 5×, which will be over 1000 

𝑚𝑚2. On the contrary, by applying 3D integration and advanced technode on the bottom 

tier, such a large area overhead for more opening rows could be hidden. Thus, by fully 

using CIM parallelism (i.e., activating more rows/columns in H3D architecture), 3D-

ENNA could further improve the throughput by 3×~37× with even lower area cost. 

Compared to VGG-8 with the 2nd-layer's channel size of 128×128 (determining pipelining 

speed), ResNet-18 for CIFAR-100 shows less improvement on throughput as 3D's high-

parallelism benefit (opening 128 rows/columns simultaneously) is limited by the smaller 

channel size (i.e., 64×64) of ResNet's first several layers (determining pipelining speed). 
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Besides, since the input image size (i.e., 224×224) from ImageNet dataset is much larger 

than that (i.e., 32×32) from CIFAR dataset and speed-up from 3D stacking is limited on 

layer 1, processing the 1st layer in ResNet-18 for ImageNet takes the most portion of total 

latency. As a result, throughput improvement by 3D stacking on ImageNet classification 

is less. To summarize, the throughput benefit of 3D stacking on CIM system varies 

according to network structures and the complexity of the tasks. The results of energy 

efficiency are compared in Figure 19 (c). Our 2D-ENNA accelerator achieves 9.2~10.8 

TOPS/W demonstrated on different networks, on average ~2.5× of the baseline design. 

There is a slight improvement in energy efficiency (~1.2×) from 3D integration mainly 

because the energy consumption of the in-memory computing from the top-tier stays at 

legacy 40 nm node, thus not benefiting from the technology scaling.  

Figure 20 shows the breakdown reports for the inference task of the proposed 2D-

ENNA design. Figure 20 (a) displays the energy breakdown of CIM ADC-free subarrays, 

tile-level cost (including ADCs, digital units, buffer, and interconnect), and chip-level 

components (including global buffer, interconnect, and digital computational blocks). We 

can see that CIM subarrays contribute most of the total energy consumption at the system 

level, demonstrating the scalability of CIM-based systems. Tile-level peripheries 

contribute a small portion of total energy cost, and tile-level ADCs are even negligible, 

proving the efficacy of our ADC-free subarray design. The latency breakdown of key 

components is shown in Figure 20 (b), indicating that data transfer above the tile level 

through interconnect and the global buffer is not time-consuming. In 2D ENNA 

architecture, the time consumption of in-memory computing stands out, diminishing the 

system throughput.  
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Figure 20: (a) Energy and (b) Latency breakdown of 2D-ENNA design by main 

components (tested on VGG-8 for CIFAR-10). 

Figure 21 shows the energy and latency breakdowns of the proposed design with 3D 

integration. While comparing the energy breakdown results between Figure 20 (a) and 

Figure 21 (a), we find that CIM subarrays take more portion (from 80% to 90%) in 3D 

design since the energy cost from other parts is reduced by technology scaling. The 

majority of the total energy cost in both 2D and 3D architectures is contributed by CIM 

subarrays. This observation also offers support for the limited improvement in energy 

efficiency by 3D integration. While comparing the latency breakdown shown in Figure 20 

(b) and Figure 21 (b), we could observe that data transfer inside the tile through 

interconnect, and local buffer becomes dominant in 3D architecture. The reason is that 

interconnects will get more complex, leading to a larger overhead accompanied by wider 

bandwidth of CIM subarrays in 3D architecture.  

In summary, thanks to the PWM input encoding and reduced ADC workloads, our 

ENNA design could greatly outperform the traditional CIM approach in terms of hardware 

performance. In addition, the 3D integration of CIM design has the potential to release 

parallel processing expressively. 
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Figure 21: (a) Energy and (b) Latency breakdown of 3D-ENNA design by main 

components (tested on VGG-8 for CIFAR-10). 

Table 5: Comparison table with state-of-the-art CIM macro designs using SRAM and 

RRAM technologies 

 

2) Comparison with Prior Works 

To have a fair comparison, we benchmark our design with macro-only CIM works 

and system-level accelerator design, respectively. Table 5 compares the proposed ADC-

free RRAM-CIM with state-of-the-art CIM macro designs at similar tech nodes [52] [53]. 
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different designs. Our ADC-free macro achieves the highest normalized energy efficiency 

(~431.52 TOPS/W) and compute efficiency (360 GOPS/mm2) compared with other RRAM 

macro-only designs.  

Table 6: Comparison table with recent CIM accelerators at system-level 

 

Table 6 summarizes and compares the ENNA accelerator with state-of-the-art CIM 

accelerator designs at scale [54] [55] [56]. The proposed ENNA accelerator supports 

operations with programmable 1-8 bit inputs/weights. Thanks to the improved hierarchy 

architecture and ADC-free data computation between sub-arrays, this ENNA accelerator 

achieves improvements in normalized energy efficiency by 1.56× and 1.14× compared to 

an RRAM CIM design [54] and an SRAM CIM design [53] at comparable technology 

node, respectively. The more advanced 16 nm SRAM CIM design [55] shows benefits 

introduced by the technology scaling. If we normalize the performance to the same 
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technology node, our proposed design could potentially show more energy efficiency and 

throughput benefits. In addition, 3D integration dramatically improves ENNA's system 

throughput from 0.3~0.9 TOPS to 2.6~13.4 TOPS, signifying the promises of CIM design 

with 3D technologies. 

4.4 Summary 

In this work, we proposed a novel CIM subarray without explicit ADCs. A high-

throughput input encoding scheme based on pulse-width modulation (PWM) is proposed 

to perform MAC operation for multi-bit input in one cycle. The MAC outputs could be 

temporally stored on edge capacitors through the charge-based compute, improving the 

area and energy efficiency over the prior CIM subarray design that equips with expensive 

ADCs. We develop a chip architecture that employs explicit ADCs at a higher level of the 

hierarchy, which minimizes the data conversion energy and makes ADC no longer the 

bottleneck of the entire system. The impact of tile-level ADC resolution on accuracy 

performance is explored. At the chip level, a lay-wise pipeline dataflow is applied to speed 

up the computation. To explore the potential of the proposed design, we project our design 

with advanced heterogeneous 3D technology to unleash the parallelism of the computation. 

The proposed ADC-free RRAM array macro is fabricated in 40 nm TSMC process. The 

impact of temporal/spatial variations is comprehensively evaluated to ensure accuracy 

performance. According to experimental results, our accelerator could achieve 9.2~10.8 

TOPS/W and 282~880 GOPS for inference tasks with 4-bit input and 2-bit weight. 

Compared to 2D architecture, 3D stacking, which halves the area cost, could further 

improve the system throughput by 3×~37×.  
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CHAPTER 5 HARDWARE SUPPORT FOR CIM TRAINING  

5.1 Introduction 

In the most common application scenario, edge devices are assumed to support the 

inference of DNN only with well-trained networks from the cloud. While this scenario is 

friendly to edge devices, considering the limited hardware resources and power budget, 

some limitations are introduced to its applications. On one side, the networks on the cloud 

are usually pre-trained with global datasets. Downloading it to edge devices for local use 

may suffer from performance degradation due to poor adaptation. On the other side, the 

pre-trained model could not deal with the new scenes captured in the field that are not 

included in the global datasets. In the inference-only-on-edge scenario, the naïve solution 

to overcome these limitations is to send the local data back to the cloud for model adaption. 

However, data communications (e.g., over the wireless network) will introduce additional 

power consumption and response time. Besides, uploading personal data will cause privacy 

and security concerns both in transmission and on the cloud. Therefore, it is not only 

desired but also essential to exploit on-device learning (or on-chip training). Most prior 

works are focused on inference for the in-memory architecture, leaving the dataflow and 

mapping strategy for training largely unexplored. Moreover, although low-precision MAC 

is necessary for CIM, the scalability of most low-precision techniques training is bad. Only 

moderate-sized networks could maintain similar training accuracy with the quantized 

parameters, while more advanced networks like ResNet [14] and DenseNet [50] suffer 

significant performance degradation. In this research, we propose a transpose SRAM-based 

CIM Architecture for multi-bit precision DNN Training, namely CIMAT, with essential 
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circuit implementations and explore the corresponding weight mapping strategies, data 

flow, and pipeline design. 

The rest of this chapter is organized as follows: Section 5.2 introduces the principles 

of DNN training process. Section 5.3 presents the transpose weight mapping strategy.  

Section 5.4 presents the circuit implementation for on-chip training. Section 5.5 presents 

the evaluation results.  Section 5.6 summarizes the chapter.   

 

Figure 22: Generic diagram of DNN training. 

5.2 DNN Training Basics 

DNNs are networks of interconnected nodes (neurons), inspired by the principle of 

the human brain. A neuron in one layer is connected to neurons in another layer. The 

strength of these connections between neurons is generally weighed by learnable 

parameters called weights in DNNs. The process of adjusting weights to achieve a certain 

purpose from data is called training of the network. There are a lot of different training 
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methods proposed by the software community. This work focuses on stochastic gradient 

descent (SGD), one of the most widely used training methods for DNN today.  

A simplified workflow of the SGD training process is shown in Figure 22. We divide 

the process into four steps when it is mapped to CIM architecture: 1) feed-forward (FF), 2) 

error calculation (EC), 3) gradient (ΔW) calculation (GC) and 4) weight update (WU). As 

the SGD is batch based, each input in the batch will go through steps 1) to 3) to get the 

corresponding gradient. Then, step 4) occurs at the end of the batch to update the weight 

with accumulated gradient. This batch process will be repeated for iterations/epochs with 

resampled inputs to obtain a well-trained model.  

The FF process is exactly the same as the inference. Input data is fed into the network 

and processed layer by layer from the 1st to the last layer. In detail, the CONV/FC layer 

will take the input or activations from the previous layer (or layers) and perform VMM on 

the weight matrix. Some other functions (e.g., ReLU, BN) may process the outputs of 

VMM before they are fed into the next layer. For inference, these intermediate activations 

could be discarded after calculation. However, in training, they must be stored for later 

usage in step 3). Eq. 1 shows the FF operation for a given layer i. 

𝑎𝑖 = 𝑓(𝑤𝑖 ∙ 𝑎𝑖−1 + 𝑏𝑖)                                                          (1) 

In this equation, 𝑎𝑖−1 denotes the activations from the previous layer. It is (matrix) 

multiplied with 𝑤𝑖, which is the weight of the current layer and then shifted by a bias 𝑏𝑛.  

𝑓(∙) denotes the combination of all the other functions, including activation functions, 

pooling, BN and so on.  
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After the FF process is done, the gradient of inputs will be calculated with respect to 

the loss (𝛿𝐿 𝛿𝑎𝑖⁄ ). Here, the loss is a metric used to measure the difference between the 

target and the network’s output, which should be minimized for good performance. The 

input gradient is also called the error (𝑒𝑖). Thus, this process is called EC in this work. 

Based on the chain rule, the 𝑒𝑖 of each layer is calculated from the last layer to the 1st. In 

other words, 𝑒𝑖 of a given layer i is calculated from the the error 𝑒𝑖+1 and weight matrix 

𝑤𝑖+1 from the layer after it. As shown in Eq. 2, the main operation of EC is the VMM 

between the error 𝑒𝑖+1 and the “transposed” weight matrix 𝑤𝑖+1
𝑇 . As a result, the same 

weight matrix will be used for both FF and EC but are transposed in the VMM.  

𝑒𝑖 =
𝛿𝐿

𝛿𝑎𝑖
=

𝛿𝐿

𝛿𝑎𝑖+1
∙
𝛿𝑎𝑖+1

𝛿𝑎𝑖
= 𝑒𝑖+1 ∙ 𝑤𝑖+1

𝑇                     (2) 

For each layer 𝑖 , once the error 𝑒𝑖  is obtained, its weight gradient 𝑔𝑖  could be 

obtained through the VMM between 𝑒𝑖 and the activation 𝑎𝑖−1 (Eq. 3). Finally, the weights 

of the network are updated by this value scaled with the learning rate, as shown in Eq. 4. 

In the batch mode, the 𝛥𝑊𝑖 will be the accumulation of 𝛥𝑤𝑖 from different inputs. 

𝛥𝑤𝑖 = 𝑔𝑖 =
𝜕𝐿

𝜕𝑤𝑖
=

𝜕𝐿

𝜕𝑎𝑖
∙
𝜕𝑎𝑖

𝜕𝑤𝑖
= 𝑒𝑖 ∙ 𝑎𝑖−1                             (3) 

𝑊𝑖
𝑡 = 𝑊𝑖

𝑡−1 − η × 𝛥𝑊𝑖                                                      (4) 

5.3 Transpose Mapping Strategy 

Figure 23 (a) shows the mapping of the FF process of the CONV layer to the CIM. 

Assuming the weight size of the CONV layer is 𝐾1 × 𝐾2 × 𝐶 ×𝑀, it could be viewed as 

M filters of size 𝐾1 × 𝐾2 × 𝐶. Each filter will generated a channel of output feature map of 
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size E × F, which consists of an output feature map (OFM) of depth equal to M. C is 

decided by the depth of the input feature map (IFM), whose plane height/width is denoted 

by H/W. The mapping of the CONV layer to the CIM array is a process to unroll the 4D 

weight matrix to 2D and partition it to the proper size to store it in the memory array. In 

this work, the 𝐾1 × 𝐾2 × 𝐶 ×𝑀 kernel is first divded to 𝐾1 × 𝐾2 of 2D matrix with size 

𝐶 × 𝑀. In this case, a vector of size 1× 𝐶 from the IFM could be applied to the row in 

parallel, and the accumulated result from different columns will consist an OFM vector of 

size 1×𝑀 . This kernel-split mapping weight mapping strategy [51] is proposed to 

maximize the input data reuse. Each 2D matrix out of the 𝐾1 × 𝐾2 ones is assumed to be 

processed in a processing unit (PE) consisting of CIM arrays. The partial sums from all the 

PEs need to be further accumulated by the digital circuits outside PEs. Figure 23 (a) 

illustrates that only one PE is demonstrated for calculating the first IFM vector (a0 

element). If a CONV layer has a filter size of 3×3, 9 PEs must work in parallel to process 

different input vectors (a0~a2, b0~b2, c0~c2). 

Figure 23 (b) shows how the VMM of the transposed weights in the EC process is 

mapped to transposed CIM operation. As illustrated by a 3×3 filter, the PE corresponding 

to the first channel group (a0 element) will hold the weight 𝑊𝑖+1 for forward calculation. 

For backward calculation, the same PE will be used for error calculation but transposed 

𝑊𝑖+1
𝑇  is used for calcualtion. In other words, for the FF process, a input sliding window of 

size 3 × 3 × 𝐶  will be multiplied with M number of 3 × 3 × 𝐶  filters and summed to 

generate one output independently. Inside each PE, the accumulation has a depth of 𝐶, 

which means all the dot products in the same column of the PE are summed up. For the EC 

process, the transposed weight can be viewed as 𝐶 number of 3 × 3 ×𝑀 filters with the 



 57 

re-group process demonstrated in Figure 23 (b). In this case, multiplication and 

accumulation in side PE are done on the same row. Thus, we process the transposed version 

of the weight matrix at the PE level in the EC. In summary, the dataflow of EC (Eq. 2 ) for 

one PE (a0 element) is shown in Figure 23 (c). With such a weight mapping strategy and a 

transposable array, the FF and EC can be performed within the same CIM array. In this 

way, no additional memory access (reloading the weight for transpotion version) or extra 

hardware (a copy of CIM arrays with transposed weight) is needed in EC, improving the 

area and energy efficiency. 

 

Figure 23: Weight mapping scheme for convolution operations in CIM training. 

After FF and EC processes are done, the weight gradient matrix 𝛥𝑊𝑖 could also be 

calculated with CIM arrays as its operation is essentially VMM (Eq. (3)). This work 
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proposes to perform the outer dot product multiplication between error matrix 

(𝜕𝐿 𝜕𝑎𝑖)⁄  and related input activation matrix (𝑎𝑖−1) using additional 6T non-transpose 

CIM SRAM arrays.  
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Figure 24: Weight mapping of CIM approach for weight gradient calculation 

Figure 24 shows the mapping method and dataflow for this GC process implemented 

in CIM. In detail, the previously calculated error matrix 𝜕𝐿 𝜕𝑎𝑖⁄   from EC is viewed as 

weight and written in 6T CIM SRAM array. As the error matrix is 3D, it needs to be 

stretched to 2D for CIM mapping. Each plain of 𝜕𝐿 𝜕𝑎𝑖⁄  is stretched into a 1 × (𝐸 × 𝐹) 

vector and mapped into a long column of the array. Then, the error matrix will become a 

2D array with a size (𝐸 × 𝐹) ×𝑀, which means M columns are needed in total. Then, the 

activation  is loaded (from off-chip DRAM to on-chip buffer) as inputs for VMM 

calculation. The outer product is done in a sliding window with a window size equal to 

𝐸 × 𝐹. In this case, each slding window of 𝐸 × 𝐹 × 𝐶 on the input, 𝑎𝑖−1, is also stretched 

into 𝐶 number of 1 × (𝐸 × 𝐹) vectors. These activation vectors, with the same length as 

the weight matrix height, are fed into the array in different cycles for VMM operations. 

The number of sliding windows will be 𝐾1 × 𝐾2. One column on each cycle will generate 
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one point of the weight gradient matrix, and outputs from different columns belong to 

different filters defined in FF process. After 𝐶 × 𝐾1 × 𝐾2 cycles, the entire gradient matrix 

𝛥𝑤𝑖 of one layer’s filter will be generated. In the batch training mode of SGD, 𝛥𝑤𝑖 of each 

image need to be stored to off-chip DRAM and loaded back for accumulation at the end of 

each batch to get the final value for weight update 𝛥𝑊𝑖.  

5.4 Hardware Implementation for In-memory Training 

5.4.1 SRAM Cell Modification 

To support the bi-directional CIM operation for FF and EC processes, a 7T transpose 

SRAM bit-cell is proposed, as shown in Figure 25 (a). The viability of this 7T transpose 

SRAM array on silicon chips has been validated for another purpose [58]. The area 

overhead of such 7T design is small while providing disturb-free bi-directional read access. 

It consists of a regular 6T SRAM cell, which stores the weight data, and an additional 

transistor (in blue color) for bi-directional read access. This 7T transpose SRAM design 

has one write mode and two read modes to support the transposable CIM operations. The 

write mode is the same as the traditional 6T SRAM controlled by the WWL. The two read 

modes are designed to support the forward and backward process separately, as shown in 

Figure 25 (b). In forward mode, the neuron input is applied on C_RWL, and the current is 

summed through C_RBL. These two lines work oppositely for backward mode: input is 

applied on R_RWL while output is read out from R_RBL. C_RBL/R_RWL wire and 

C_RWL/R_RBL wire are connected to two sets of WL writers and ADCs separately. Based 

on the read mode, the current along C_RBL or R_RBL will be proportional to the MAC 

results and will be converted to the digital signal by the ADCs at the end of the wire. 
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Column Read Wordline(C_RWL)/

Row Read Bitline(R_RBL)

Forward

Backward

Activation input Readout by Column

Readout by Row Error input

`

(a)

 

Figure 25: (a) 7T transpose SRAM bit cell. (b) Operation modes of 7T SRAM bit cell 

The inference engine usually applies pipelines for acceleration, which can also be 

applied to the FF and EC processes. Although the EC of a single image could be started 

right after its FF is done, the FF of other images occupies the array because of the pipeline. 

While this 7T transpose SRAM design could perform bi-direction read access, both FF and 

EC calculations are conducted through the additional transistor. Thus, the FF and EC can 

not be performed simultaneously. As a result, this 7T SRAM-based CIM has to finish the 

FF of all the images in a batch before entering the EC process. Considering the limited data 

dependence of FF and EC, the processing efficiency could be improved by executing the 

FF and EC of a batch in parallel. For this purpose, this work further proposes an 8T T-

SRAM bit-cell structure, as shown in Figure 26 (a). Compared with 7T, an additional 

PMOS transistor is added to the other side of the storage node. Similar to the additional 

NMOS, this newly added PMOS could also support read access from two sides of bit-cell 

while its gate is connected to QB. This 8T SRAM design uses different ports to support the 

two read modes for forward and backward processes (Figure 26 (b)). The additional NMOS 
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transistor (blue) is activated in the forward process. C_RWL and C_RBL work the same 

way as the FF process in the 7T bit-cell. Instead, the backward mode utilized the additional 

PMOS transistor (red) for CIM operation. In other words, the error is applied on the vertical 

R_RWL with the  R_RBL partial sum current read out from the horizontal R_RBL. Thanks 

to these separate read transistors and WLs/BLs, this 8T cell could perform bi-direction 

simultaneously. Thus, FF and EC could be executed and pipelined in parallel in this 8T 

design to speed up the training process.  

WWL

8T T-SRAM Bit-Cell

WBLWBLB

QB Q

C_RBL

R_RBL

C_RWL

R_RWL

Mode Column Read Bitline(C_RBL)Column Read Wordline(C_RWL)

Forward

Backward

Activation input Readout by Column

Readout by RowError input

Mode Row Read Wordline(R_RWL) Row Read Bitline(R_RBL)

(a)

(b)
 

Figure 26: (a) 8T transpose SRAM bit cell; (b) Operation mode of 8T SRAM bit cell 

The storage part of 7T/8T design is exactly the conventional 6T SRAM cell. Normal 

read/write to the cell could be applied through the WWL and WBL/WBLB. Thus, its design 

could follow the compact foundry design rule for SRAM without any modification. The 

additional transistors for bi-directional in-memory computation can use the logic design 

rule, considering they are not part of a standard memory cell and usually no optimized 

design rule is provided. 
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5.4.2 Overall Architecture 

The periphery circuits and their connection to the transpose 7T/8T SRAM array are 

presented in Figure 27 (a). The WL decoder and pre-charge circuit are connected to the 6T 

storage cell for weight writing. The word line (WL) writers are adopted for both column 

and row access in the CIM mode. In addition, Flash-ADCs (i.e., multilevel sense amplifiers 

with different references) are employed on both ends of columns and rows to convert the 

analog partial sum. After the digitalization, the bit-wise partial sums are accumulated to 

shift-adders to generate multi-bit input activation with multiple input cycles from the least 

significant bit (LSB) to the most significant bit (MSB) of input. An extra row of 6T SRAM 

is added to transpose SRAM CIM array for the weights update. This row shares the 

BL/BLB with the main array, which could support in memory addition of two rows for 

weight update as inspired by [58].  

 

Figure 27: (a) Block diagram of transpose SRAM sub-array and periphery circuity. (b) The 

structure of weight update modules. 
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The detailed structure of the weight update module is also shown in Figure 27 (b). 

During the FF, BP and GC processes, the additional 6T SRAM row is idle. In the WU 

mode, the weights in the storage nodes of the CIM array need to be updated with the scaled 

accumulated weight gradients from one batch. By limiting the learning rate (LR) to a power 

of 2, the multiplication between gradients and LR could be realized by shift. Then, the 

weight could be updated (Eq. 4) row-by-row in a read-modify-write scheme. First of all, 

when updating a certain row of weights 𝑊𝑛, the corresponding 𝛥𝑊𝑛 is written into the 

additional 6T row. Then, the to-be-updated row and the 6T row are activated 

simultaneously to generate the AND output of two rows. This output will be further used 

to calculate the sum of 𝛥𝑊𝑛 and 𝑊𝑛 with the carry in (Cin) from lower significance in the 

weight update module. The sum will be the new 𝑊𝑛  that could be written back to the 

storage row while the carry-out (Cout) of the module will be forwarded to the higher 

significant bit as Cin. This row-by-row update in one PE could be accelerated by pipelining. 

The same significant bits from different weights could be updated in parallel, while the 

different significant bits of the same weights need to be updated from LSB to MSB 

considering the Cin. 

For the on-chip training, all the weight, activation, gradient and error are assumed to 

be 8-bit fixed-point values in this work according to the recent progress in algorithms. 

Considering the bi-directional CIM operations, weight bits with the same significance are 

grouped into a tile. Thus, 8 tiles are needed for  8-bit weight, and the output of each tile 

will be the CONV result of 1-bit weight and 8-bit input. These outputs will be further 

combined to full precision-weight and 1-bit input results with digital shift-add modules. 

We evaluate our CIMAT architecture with training on the ResNet-18 network for 
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ImageNet dataset classification. The subarray size is assumed to be 128×128 as a practical 

SRAM array. Thus, some network filters need to be partitioned into subarrays. To ensure 

the largest CONV layer could fit into a signle tile, 16 subarrays are assumed to form one 

PE with 9 PEs (corresponding to 3×3 filters) on one tile. 

A top-level CIMAT architecture is shown in Figure 28. A tile contains multiple PEs 

connected with adder trees and an L1 buffer for activations/errors buffering. Every eight 

tiles are grouped for one CONV layer for 8-bit weights and connected with shift-add units 

for full precision VMM results. The full-precision digital outputs will go through activation 

function units for further processing. An L2 buffer is assumed for each tile group for one 

layer and connected to the global buffer.  
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Figure 28: Top-level CIMAT architecture for one convolution layer. 

The dataflow on the top level is like this: eight cycles in subarray are needed in both 

FF and EC processes to accomplish the CIM operation of multi-bit inputs with 1-bit 

weights inside the PE. The outputs are held and accumulated by the shift-add module at 

the edge of the subarray. Then the outputs from different subarrays will be added together 
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through adder trees based on the filter size of the layer. Results from different PEs will be 

further added together through adder trees to finish MAC for the entire filter with 1-bit 

weight and 8-bit input. Finally, the shift-add among tiles will generate the eventual full-

precision OFM. 

5.4.3 Pipeline Design 

As mentioned before, this work utilizes pipeline dataflow to accelerate the FF and 

processes EC of training. As shown in Figure 29 (a), with 7T SRAM bit-cell, the FF and 

EC are pipelined independently. For the example of ResNet-18, both the FF and EC 

processes are divided into seven stages. Generally, in the DNN, as the CONV/FC layer 

goes deeper, the 𝑊 ×𝐻 of the feature map becomes smaller while its channel depth goes 

bigger. Based on the mapping methods assumed in this work, 𝑊 ×𝐻 input verctors will 

be applied to the VMM operation in CIM. In this case,  𝑊 ×𝐻 cycles is needed to finish 

the certain layer if no duplication or folding of the weight is applied. According to the tile 

architecture assumed in this work, even the biggest filter of the CONV layer could fit into 

a tile group, which means no folding is applied to any layer. On the contrary, weight is 

duplicated in the PE for the shallow layers with smaller filter sizes so that one PE is 

occupied by one layer. As a result, the 1st to 5th layers’ latency is similar, equaling two 

times of the latency of the 6th to 17th convolution. Therefore, each of the first five layers 

is treated as a pipeline stage. The 6th to 17th layers are grouped as one stage (stage 6).  The 

final stage 7 contains the FC layer and other activation function circuits.  
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Figure 29: (a) Intra-pipeline design inside FF and EC. (b) The training process in timeline 

of 7T-based architecture.  

The timeline of the 4-stage training process of the 7T design is illustrated in Figure 

29. In the first stage (T1), a batch of images is fed into the network for the FF process. 

After the FF of the whole batch is done, the EC calculation is stated as the second stage 

(T2). The intermediate feature maps generated in the first two stages must be saved off-

chip for later use. After the EC is done for all images from the batch, the feature maps will 

be loaded back for GC (T3). As each image will generate a group of weight gradients, 

batch-size groups of gradients will be generated in total. Finally, these groups of weight 

gradients are accumulated and used to update the weights in the WU stage (T4). 

The data flow will be different if the CIM accelerator is implemented with the 8T 

SRAM bit-cell, as described in section 5.4.1. Since the 8T-based subarray can support 

parallel bi-directional VMM calculation, the pipeline of FF and EC could be further 

optimized, as shown in Figure 30 (a). The pipeline stage configurations of the FF and EC  
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Figure 30: (a) Pipeline structure of 8T SRAM-based CIM training. (b) The state of each 

stage as a function of time. 15 super clock cycles are illustrated. 

are the same as the 7T design. However, these two processes are interleaved together, 

increasing the throughput significantly. In addition, since a certain layer’s GC could be 

stated as long as its activations and errors are ready, the T3 could also be folded with T1/T2 

to improve the calculation efficiency. The GC process could be pipelined with FF/BP 

processes if they have comparable latency. In this way, the off-chip error movement is 

avoided. The latency of the GC process of each layer could be simply adjusted by 

duplicating CIM arrays to satisfy the pipeline requirement. An example of the pipelined 
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timeline is shown in Figure 30 (b). At the 15th cycle, all the pipeline stages are filled. FF/BP 

stage 1 performs the FF of image 15 and the EC of image 2 at the same time. Meanwhile, 

the weight gradient of image 1 is calculated in the WGC stage 7 because its activations and 

errors are both ready after 14th cycle. 

In summary, in the 7T-based architecture, the pipeline is adopted only inside each 

stage. Each stage is executed one by one. The 8T design introduces an inter-pipeline 

between different training processes in addition to the intra-pipeline of the 7T-based 

architecture, further improving the training throughput. Besides, the optimized pipeline 

also improves energy efficiency by reducing off-chip memory. However, the improved 

parallelism of 8T-based training architecture requires a larger buffer to hold increased on-

chip data brought by the inter-pipeline. 

5.5 Evaluation Results  

For the baseline, we store weights and do near-memory computation with the regular 

6T SRAM arrays (i.e., row-by-row read-out with digital adders at the edge of the array to 

accumulate the partial sum). As non-transpose SRAM is utilized in the baseline, for EC 

process, we obtain all the elements for one transpose filter each time we read out a row. 

The products of the filter elements and the inputs are then obtained using a set of 8-bit 

multipliers.  To get the final sum of errors (illustrated in Eq. 2), these products are then 

accumulated by adders. For weight gradient calculation (illustrated in Eq. 3), the FF 

activations of each layer are first acquired from off-chip DRAM and then fed into 

multipliers and adder trees together with the errors, performing bitwise matrix-to-matrix 

multiplication and accumulation. To perform weight update, all the calculated gradients 
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will be stored off-chip first. In the end, 𝛥𝑊𝑖 for batch inputs are accumulated by adders to 

update the weights by digital circuits. The new weights are then written back to memory 

arrays. This near-memory computation solution is treated as a baseline to evaluate the 

advantages of the proposed CIM approaches for on-chip training.   

Table 7: 7T CIMAT parameters 

 

5.5.1 Circuit-level Parameter 

We build the CIMAT architecture using a modified version of NeuroSim, taking into 

account the on-chip buffer and off-chip DRAM access, and simulate the CIMAT design 

using the most recent 7 nm high performance (HP) CMOS library. Table 7 lists the  
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Table 8: 8T CIMAT parameters 

 

hardware configuration, accuracy, size, and energy consumption for significant circuit 

modules along with other circuit-level metrics based on the 7T SRAM architecture. The 

energy is provided in terms of energy per operation (or bit). For instance, the total energy 

of a single sub-array for performing a single vector-matrix multiplication is 25.75 pJ/op, 

while the energy of a single L1 buffer for writing a single bit of data is 0.006 pJ/bit.. The 

estimated energy cost of off-chip DRAM access is 4.2pJ/bit from prior work [59], assuming 

3D high-bandwidth memory is used. According to section 4.4.2, eight cycles are used to 

send the multi-bit activations to the weight arrays from LSB to MSB, and shift-add is used 

to sum up the outputs. The calculated MAC value of 4-bit LSBs after ADC is first stored 
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in the register. Then, the MAC value of 4-bit MSBs will be shifted and added with the 

stored value in the register. The adder is designed to be 11-bit, which allows for the storage 

of carry-bit information for each 8-bit shift-add operation. 

8MB global buffer is assigned for 7T-SRAM cell based CIMAT design. However, 

the massive intermediate data generated during the training process is hard to fully store in 

the on-chip SRAM buffer. To store massive intermediate data for training purposes, 

activation outputs of each layer 𝑎𝑖 (generated in FF) and calculated errors (generated in 

EC) of each layer for batch input are both sent to off-chip DRAM for reuse in weight 

gradient calculation. During the GC process, the weight gradient 𝛥𝑊𝑛 for each image is 

also stored off-chip DRAM for weight update. The energy efficiency of CIMAT 

architecture could reach ~20 TOPS/W if the energy cost of off-chip data transfer is 

excluded. As indicated in Table 7, energy efficiency drops to just 6 TOPS/W when DRAM 

access is considered. Thus, we propose 8T-SRAM cell based CIMAT design to implement 

inter-/intra-pipeline, further improving energy efficiency and throughput. Table 8 displays 

the circuit-level parameters of 8T transpose SRAM-based architecture. Due to the area 

overhead of additional transistors, the 8T memory array is larger than 7T. Since FF and EC 

calculation can perform simultaneously in 8T-based CIMAT architecture, the L1, L2 and 

output buffer in each tile are expanded to support concurrent bi-directional computing. 

Additionally, in order to handle inter-pipeline among FF, error calculation and gradient 

calculation, the global buffer size needs to be enlarged in the 8T design, which is 20MB 

compared to 8MB of 7T design. The pipeline processing in the 8T-based CIMAT is able 

to reduce DRAM access during feedforward and error calculation, but off-chip data transfer 

is still necessary during weight gradient calculation. The results of our analysis, as 
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displayed in Table 9, can support this statement. Compared to the 7T design, 8T could 

improve energy efficiency by 1.6× (~10 TOPS/W). It is also observable that total energy 

efficiency is still constrained by significant off-chip memory access, while ~55 TOPS/W 

can be achieved without considering DRAM access. 

Table 9: Benchmark results 

 

5.5.2 Benchmark Evaluation 

As described, the baseline architecture is a near-memory computation solution that 

digital computation units are located at the memory’s edge, while the SRAM memory array 

only serves as weight storage unit. Table 9 compares the performance of the baseline and 

7T/8T SRAM-based CIMAT architecture. The batch input for training contains 128 

ImageNet images. The energy efficiency (in terms of TOPS/W), the throughput (in terms 
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of FPS), and the chip area are evaluated for FF , BP and  WU processes,  respectively. 

Here, Both error and gradient calculations are included in this BP performance. 

As shown in Table 9, the energy efficiency of CIMAT for both FF and EC process 

is much better than the baseline, supporting our hypothesis that CIM architecture can 

reduce memory access for convolution computation. Besides, the hardware cost for the BP 

process is significantly less with the transpose SRAM architecture than with the baseline 

due to the shared CIM arrays and the removal of extra digital circuits for error calculations. 

For the EC process, the hardware of gradient calculation of 8T CIMAT has an 8× area size 

increase over the 7T design, which speeds up gradient calculation by duplicating CIM 

arrays to implement inter-pipeline in training. In summary, compared to the near-memory 

computation baseline, 7T SRAM-based CIMAT training architecture can achieve an 

overall ~4.34× speedup and ~3.38× improvement in energy efficiency with ~0.5× chip 

area. Meanwhile, the 8T SRAM-based CIMAT can boost energy efficiency and throughput 

by ~6.06× and ~52.14×, respectively, with 0.74× chip area. 

Figure 31 shows the performance comparison among the proposed CIMAT 

architecture, the GPU-based implementation, the near-memory computation (baseline 

design), and Neural Cache [33], which is state-of-the-art hardware accelerating DNN 

inference using SRAM-based in-memory computing architecture. For the GPU platform, 

the performance are measure using Pytorch running on NVidia Titan RTX, with the 

NVidia-SMI tool for GPU power measurement. As stated in the reference paper [33] we 

use 28 TOPS and 52.92 W average power at 22nm technology to evaluate Neural Cache’s 

performance. While comparing to the GPU-based solution, Our evaluation results indicates 

that CIMAT 7T design can achieve an average 7.4× speedup and 100× energy efficiency 
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for training tasks. While Comparing to Neural Cache, CIMAT not only could support 

training instead of inference only, but also provides 78.7× speedup and 53× higher energy 

efficiency for inference tasks. The performance of CIMAT training over inference with 7T 

and 8T structures is also presented. As shown in Figure 31 (a), 8T CIMAT design could 

provide almost the same speed for both inference and training, while the speed of training 

on 7T CIMAT architecture is limited to only 1/10 of inference. The higher throughput of 

8T design comes from the inter-pipeline between training processes, as illustrated in 

section 5.4.3. As shown in Figure 31 (b), for both 7T and 8T CIMAT designs, training’s 

energy efficiency is only 0.25× of the inference. The reason is that massive off-chip 

intermediate data access for GC calculation exists during training.   
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Figure 31: Performance benchmark: (a) Throughput comparison. (b) Energy efficiency 

comparison 
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5.6 Summary 

In this research, we propose CIMAT, a CIM Architecture for Training. At the bit-

cell level, we design two 7T- and 8T-based transpose SRAM cell structures to implement 

bi-directional computing that is needed for FF and EC processes. Additionally, we design 

the periphery circuitry, mapping strategy, data flow for backpropagation, and weight 

update to support the on-chip training based on CIM. To further improve training 

performance, we explore the pipeline optimization of the proposed architecture. We focus 

on ResNet-18 implementation, but the methodologies we proposed could be applied to 

other DNN models. The experimental results demonstrate that 7T-based design can achieve 

3.38× higher energy efficiency (6.02 TOPS/W), 4.34× frame rate (4,020 fps) and only 50% 

chip size compared to the baseline architecture. With a more advanced 8T bit cell and 

optimized pipeline design, 8T SRAM-based CIMAT can further achieve more energy 

saving (~10.79 TOPS/W) and aggressively more than 10× throughput (48,335 FPS) with 

tolerable area overhead compared to 7T-based CIMAT architecture. Our results reveal that 

CIM is a promising solution to implement on-chip DNN training, which can reduce off-

chip talk significantly. Limited on-chip buffer will be a constraint for pipeline 

implementation of training deeper neural networks on chip.  
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CHAPTER 6 TWO-WAY SRAM-BASED CIM ACCELERATOR 

FOR ON-CHIP TRAINING 

6.1 Introduction 

Despite there have been some efforts to implement on-device learning on CIM 

systems, several challenges exist in designing a practical accelerator that supports both 

training and inference. First, One critical problem is how to implement signed number 

multiplication during backpropagation as negative inputs are involved. This issue deserves 

to be deeply explored since CIM performs mixed-signal computation instead of pure digital. 

Second, most of the CIM training solutions are still based on architecture-level design 

without chip-level validation. The feasibility of the CIM system for training needs to be 

proven in silicon. Furthermore, the impact of analog-to-digital converter (ADC) resolution 

for CIM is rarely studied on training performance. For training tasks, drawbacks of 

eNVMs, including asymmetric conductance tuning, low endurance and large write 

energy/latency, limit the on-chip training accuracy. On the other hand, SRAM is mature in 

manufacturing and faster/less energy in write operations (than eNVMs), which benefits the 

write-intensive on-chip training. In this research, we propose an SRAM-based CIM 

accelerator for DNN training and evaluate the hardware performance based on several large 

DNN models with experimental data. 

The rest of this chapter is organized as follows: Section 6.2 proposed a signed number 

multiplication based on 2’s complement for CIM. Section 6.3 presents the design of the 

two-way SRAM CIM array.  Section 6.4 presents the overall architecture design based on 

the proposed SRAM-CIM array. Section 6.5 presents the hardware configurations for the 
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two-way SRAM-based CIM accelerator. Section 6.6 presents the prototype chip and the 

comprehensive evaluation results at the system level.  Section 6.7 summarizes the chapter. 

 

Figure 32: Signed number multiplication (a) Signed extension method (b) Proposed new 

method 

6.2 Signed Number Multiplication 

Data is typically represented by 2’s complement code for digital calculation for the 

mathematical calculation in traditional computer systems. However, In CIM systems, dot 

products are summed up in analog current (which is always a positive value from power 

supply to ground). Thus, only when input and weight are both positive can the 

multiplication be claimed to be true. Given that the FF usually only involves positive input 

data (as ReLU is often used for activations), signed number multiplication may not be a 

concern for inference engine design. However, for the typical training process, the errors 

in the backpropagation could be either positive or negative. When a positive value is 

multiplied by a negative value, the trouble with 2’s complement multiplication is that both 

the multiplicand and the multiplier have to be sign-extended. As illustrated in Figure 32 
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(a), sign extension is essential to obtain the correct result of the signed number 

multiplication to calculate 0.25×−0.75=−0.1875 in the binary fashion. For convolution 

computations, more input cycles could realize sign extension of input with a penalty of 

latency. Meanwhile, sign extension of weights requires extra arrays, introducing additional 

area costs. For instance, PRIME [32] stores negative and positive weights separately on 

different arrays, which thus doubles the memory size. 
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Figure 33:  In-memory dataflow of signed VMM 

As shown in Figure 32 (b), we instead condcut the unsigned VMM in a single 

memory array and then get use of the periphery to shift-add or invert the partial sums 

according to the scale. This method converts a 2’s complement value back to decimal. 

Despite the fact that the 2’s complement value contains sign information by itself, we 

ignore the sign information at first in the weighted sum operation. In the same example as 
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shown in Figure 32, 001×101 will generate two 1’s (in the red circle), the first “1” has a 

scale of 0.25×0.25, thus we need to shift it by four times to obtain 0.0001; the second “1” 

has a scale of -0.25, thus we need to shift it by twice and then perform 2’s complement 

conversion (i.e., invert and add 1) to obtain 1.1100. Finally, we add these two values 

together 0.0001 + 1.1100 = 1.1101 , which is the correct 2’s complement code for -

0.1875. 

There is no need to worry about sign information as they are all positive in our 

approach. The binary input/weight sequence is treated as the unsigned weighted sum in the 

crossbar array. The scale and sign of the partial sums are then multiplied back to obtain the 

2's complement representation. The architecture and corresponding dataflow is presented 

in Figure 33. different rows are used to store different significances of the multi-bit weight, 

e.g., W[0], W[1], and W[2], and multiple cycles are employed to represent the multi-bit 

input data. For the same significant bit of weights in the same column, the MAC outputs 

of each cycle are multiplied by the input scales and summed up by shift-add. For example, 

if input precision is 3-bit, the output of Cycle 1 will be shifted first. The output of Cycle 2 

will be shifted and then added together with the output of Cycle 1. Next, the MAC output 

of Cycle 3 will be inverted and added 1 (to represent the negative sign) and then added with 

the first two cycles’ partial sum.  

Partial sums are further weighted and summed by the weight scales according to the 

weight significance. For example, W[0]’s partial sum will be first shifted, and W[1]’s 

partial sum will be shifted and added together with W[0]’s. Next, W[2]’s partial sum will 

be inverted and added 1 and then added with the other two bits’ partial sums, resulting in 

the final sum. In general, the range of weights and inputs is between [-1,1], and the 
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quantization scales will always be -20, 2-1 to 2-(n-1). Therefore, we can operate the scaling 

back using a shift-adder, except for the highest bit. For the highest bit corresponding to -

20(-1 sign), we directly invert all the bits and add 1 to obtain the 2’s complement value. 
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Figure 34: (a) Overall structure of two-way SRAM array design. (b) Truth table and 

operation mode for TMC. 

6.3 Design of Two-way SRAM Array 

In practice, there is room to modify the bit-cell structure and reroute the in-array 

interconnection in old technology nodes (e.g., 65nm), while foundries typically do not 

allow any customizations on memory design in advanced technology nodes (e.g., 28nm or 

beyond). Another approach to implement in-memory computing is grouping the normal 
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SRAM cells into memory sub-banks and embedding compute cells between sub-banks. 

The circuit diagram of the two-way CIM SRAM arrays is presented in Figure 34 (a). One 

single array comprises 16×32 transpose-multiply-units (TMUs), 16 multibit-readout-units 

(MRUs) for FF process, 32 MRUs for EC process, input drivers for FF and EC, and other 

peripheral circuits. Each TMU contains 8 bitwise-multiply-units (BMUs) across 8 

columns, in which two 8-bit weights are stored in the 16 SRAM cells on the same column. 

In total, 16 standard 6T SRAM cells as well as 1 transpose-multiply cell (TMC) are present 

in each BMU. Each TMC unit comprises 10 transistors, including 2 pass-gate transistors 

(N1, N2) and 2 multiply branches (N3-N5 and N6-N8). In standby mode, all N1/N2 are on 

and the global BLs charge local BLs/BLBs to a precharge voltage. For computation, TMC 

has two modes, forward mode and backward mode, to support bi-directional bitwise 

multiplication, as shown in Figure 34 (a). In forward mode, row-read bitlines (R_RBLs) 

are grounded. A 2-bit input is applied to the gates of N3 (FWLM) and N7 (FWLL), 

corresponding to 𝐼𝑁𝑖[𝑗 + 1] and 𝐼𝑁𝑖[𝑗], respectively, in each input cycle,. When a wordline 

(WL) is activated, the weight stored in the selected 6T SRAM is read out, multiplying 2-

bit input through 2 multiply branches at local BL. The more-significant-bit (MSB) 

multiplication and less-significant-bit (LSB) multiplication of input are calculated through 

the N3-N5 pair and N6-N8 pair, respectively. The transistor width of N3-N5 is designed to 

be twice that of N6-N8, enabling the N3-N5 pair to produce twice as much discharge current 

as the N6-N8 branch. When the two currents of both N3-N5 and N6-N7 pairs are summed 

up, the voltage swing (ΔV) contributed by the TMC cell to column-read-bitline (C_RBL) 

is proportional to the result of multiplying 2-bit input and 1-bit weight. In backward mode, 

different significant inputs,  𝐼𝑁𝑛[𝑚 + 1] and 𝐼𝑁𝑛[𝑚], are fetched into BWLM and BWLL 
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and C_RBL is set at 0V. The N4-N5 pair in TMC performs the bitwise multiplication of 

𝐼𝑁𝑛[𝑚 + 1] × W, while the N6-N8 pair performs 𝐼𝑁𝑛[𝑚] × W. Then the two discharge 

currents from N4-N5 and N6-N8 branches are combined, the voltage swing produced by 

TWC cell to R_RBL is proportional to the multiplication result of column input and stored 

weight. All the TMUs in the same column share the same C_RBL while all the TMUs in 

the same row share the same R_RBL.  

The truth table in Figure 34 (b) lists possible combination patterns of 2-bit input×1-

bit weight and the corresponding multiplication results. The difference of ΔV value on 

R_RBL/C_RBL reflects the product of 2-bit input and binary weight effectively. The 

forward mode is activated for FF calculation: 16 selected vertical TMCs from the same 

column are grouped, and all the discharge currents from the same group are totaled, 

performing a MAC operation. The partial sum of 2-bit input multiplication with 1-bit 

weight is presented by the generated analog voltage 𝑉𝐶_𝑅𝐵𝐿 ,which is then quantized to 

digital output by MRU. The final sum of multi-bit input multiplication with multibit weight 

can be obtained by shift-adding the partial sum of different significant bits of weight and 

input successively. For EC process, 16 horizontal TMCs from the same row are chosen in 

backward mode. Each R_RBL accumulates products from TMUs in the same row and 

generates an analog sum voltage 𝑉𝑅_𝑅𝐵𝐿 , which is then read out by MRU. Figure 34 

illustrates the MRU basic structure built with a low-offset sense amplifier (SA), control 

block, and capacitor-sharing unit. MRUs repeatedly perform SA operations with five 

reference voltages through 5 cycles to generate a 5-bit digitalized output, effectively acting 

as 5-bit ADC. 
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6.4 Overall Architecture 

Figure 35 presents the overall architecture of our two-way SRAM-based CIM 

accelerator. The accelerator is hierarchically composed of subarrays, tiles, digital blocks, 

and on-chip buffers from the bottom to the top level. One tile consists of 32 proposed 

subarrays and digital blocks, including accumulators and adder trees. Each tile has a weight 

capacity of 256kB. Figure 35 also depicts the training dataflow according to the proposed 

mapping strategy [7]. Performing the perpendicular MAC operations, our bi-directional 

SRAM array design could eliminate the additional hardware for error calculation. 

First, the green line and arrow indicate that activations are fed into two-way SRAM 

arrays to perform forward MAC, resulting in partial sums. By accumulating these partial 

sums, the final activation output of each layer is acquired, which will be then sent to the 

off-chip buffer for further reuse. Second, after FF, as shown in the red lines and arrows, 

subarrays perform backward MAC to implement error backpropagation. For GC 

computation, prior works usually need additional hardware to compute the gradient. 

Inspired by our earlier work [7], we execute gradient computation inside the SRAM 

memory: we reuse the same hardware for FF and EC process to calculate the gradient, 

which can reduce both chip area and total SRAM leakage. The blue line and arrows 

illustrate that calculated errors will be first loaded into SRAM array during GC, and then 

each layer's activations are fed in as the array’s inputs to perform VMM calculation to 

obtain weight gradient. The to-be-updated weights are calculated inside the digital blocks. 

Finally, as shown in the purple line, new weights will be sent back to each subarray to 

update existing weights via standard SRAM’s write operation. 
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Figure 35: The overall architecture and DNN training dataflow on two-way SRAM design.  

6.5 Hardware Configuration 

Different configurations of the SRAM array will directly affect the accuracy 

performance and the hardware cost in the CIM accelerator design. The array size and ADC 

precision are the two primary design parameters of CIM. First, we need to consider the 

neural network’s precision while the array size. Traditional processors, such as GPUs and 

TPUs widely used in servers for DNN online training, usually support 64-bit floating-point 

or 16-bit fixed-point operations. However, area overhead and energy costs will be 

significant for edge devices if such high precision is used. Therefore, there are many efforts 

to lower the computational cost by quantizing the parameter precision. Several approaches 

have been proposed to realize low-bit precision training. The effectiveness of training with 

1-bit weight in FF has been demonstrated by BNN [60] and XNOR-Net [17], but all other 

parameters are still floating-point. DoReFa-Net [61] further lowers the gradient precision 

to reduce the high-precision copy needed for gradient, showing that 1b-weight, 2b-

activation, and 6b-gradient is adequate for training. Although low precision gradient is 

claimed in DoReFa-Net, its errors are still floating-point. Moreover, WAGE [42] 
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introduced quantization in all parameters, including errors, to realize low-precision training 

with 2b-weight, 8b-activation, 8b-gradient, and 8b-error. While these methods perform 

excellently on small to medium-sized networks for MNIST and CIFAR-10 datasets, they 

all show a visible accuracy drop when applied to large networks for ImageNet dataset. 

Most of the results reported so far are for the simple AlexNet and VGG-16, which are large 

in terms of parameters but relatively low in accuracy. R. Banner et al. [62] present that 

16b-gradient could maintain high accuracy on ResNet networks. Recently, an advanced 

version of WAGE, namely WAGEBU [63], also indicates that a high-precision setting for 

the gradient is essential for scalability. Consequently, based on these studies, we select a 

low-precision quanzitzation with 8b-weight, 8b-activation, 8b-error, and 16b-gradient as a 

safety option in our training accelerator design.  

To support different applications, as presented in section 6.3, we assign 16 SRAM 

cells to share one TMC, which means we can theoretically support 1-bit to 16-bit weight 

precision. The array size influences the ideal precision of partial sum as well as hardware 

performance. Theoretically, larger array sizes lead to higher throughput while ADC offset 

becomes worse than smaller array sizes. Besides, the most efficient size also depends on 

different network filter sizes. Combining all the above considerations, we choose 512×128 

as our SRAM array size, which can store 64×128 8-bit weights. This array size is 

appropriate for a variety of moderate networks, ranging from VGG-8 to large networks 

such as ResNet-18/34 and DenseNet-121/169 with 7 ~ 22 million parameters. 

To determine ADC resolution, we need to examine the impact of ADC quantization 

on accuracy performance. However, prior studies only explored the ADC impact on 

inference. Ideally, the easiest way is to hire a high-resolution ADC to prevent any 
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quantization loss. However, when ADC precision goes higher, the area and power of ADC 

will increase dramatically. Our two-way SRAM array fetches 2-bit input and accumulates 

16 rows at once, which means the ideal no-loss precision of each MAC operation is 6-bit. 

Accordingly, we build the simulation testbench on PyTorch platform to explore the impact 

of ADC resolution (from 4-bit to 6-bit) on the training performance. We test our design 

with VGG-8 network on CIFAR-10 dataset. The curves in Figure 36 present that 5-bit ADC 

design could maintain the same accuracy as 6-bit full precision, which means 1-bit 

quantization loss is tolerable. Meanwhile, 4-bit ADC causes ~1% accuracy drop compared 

to the baseline accuracy. Based on our experiments, we decide to use 5-bit ADC in our 

SRAM array, which could achieve the same accuracy but with a smaller area cost than the 

full precision design (i.e., 6-bit). 

 

Figure 36: The impact of ADC resolution on training performance 

6.6 Evaluation 

In this section, the fabricated two-way SRAM CIM macro is presented. The proposed 

architecture designs are systematically evaluated. Finally, we build the benchmarks for 

comparison across various DNN models. In our benchmarks for ImageNet, we employ four 

DNN models: ResNet-18. ResNet-34, DenseNet-121 and DenseNet-169. The system 
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performance is evaluated in a hybrid approach: the parameters of SRAM-based CIM macro 

are obtained from silicon measurements; the tile-level peripheral digital blocks and chip-

level modules are estimated with NeuroSim framework. 

(b)(a) Technology TSMC 28nm

Supply voltage(V) 0.85 – 1

SRAM array size 8KB (512 row × 128 column)

Mode Forward Backward

Input precision
(bit)

8 8

Weight precision
(bit)

4 8 4 8

Output precision
(bit)

16 20 16 20

Process time (ns)
15.2-
17.2

30.4-
34.4

18.5-
21.0

37.0-
42.0

Energy (pJ)
67.48-
73.10

67.51-
73.20

136.02-
142.02

136.25-
142.23

memory area
(no periphery)

1.68×

Array area
(total)

1.49× 2.98× 1.49× 2.98×

 

Figure 37: (a) Die photo of Two-way SRAM macro. (b) Summary table of silicon 

measurement data. 

6.6.1 Prototype Chip 

The die photo and measurement results of the fabricated prototype chip are presented 

in Figure 37. The 64kb SRAM array has 512 rows and 128 columns. The subarray’s partial 

sum precision is 20-bit for 8-bit input and weight. Compared to regular SRAM cells, 

BMU’s area overhead is only 1.68×. As shown in Figure 37 (b), EC's energy cost is about 

twice that of the FF process since forward MAC is processed in 16 columns simultaneously 

while backward MAC is processed in 32 rows in parallel. Compared to the conventional 

SRAM array for cache with the same array size, the area overhead of the proposed two-

way SRAM array is 2.98× owing to transpose-multiplication-cells and ADCs.  



 88 

 Area

 Throughput

 Energy Efficiency

Two-way SRAM vs  Normal SRAM

A
re

a
 (

n
o

rm
a
li

z
e
d

)

T
h

ro
u

g
h

p
u

t 
(F

P
S

)

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

T
O

P
S

/W
)

400

600

800

1000

1200

1400

0.787x

0.774x

0.76x

0.754x

0

1

2

3

4

5

 Area

 Throughput
 Energy Efficiency

200

400

600

800

1000

1200

1400

A
re

a
 (

n
o

rm
a
li
z
e
d

)

T
h

ro
u

g
h

p
u

t 
(F

P
S

)

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

T
O

P
S

/W
)

New Signed Multi. method vs  Sign Extention

0.62x
0.6x 0.58x

0.59x

0

1

2

3

4

5

(a) (b)

 Area

 Energy Efficiency

 Throughput

A
re

a
 (

n
o

rm
a

li
z
e

d
)

T
h

ro
u

g
h

p
u

t 
(F

P
S

)

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

 (
T

O
P

S
/W

)

Weight Duplication vs  Performance

1x 1.11x

1.67x

4.05x

DenseNet-121

0

1

2

3

4

5

100

200

300

400

500

Note: we take DenseNet-121 as a example to analyze weight 

duplication vs performance. From case 1 to case 4, weight duplication 

increases for more efficient pipeline.(c)

 

 Area

 Throughput

 Energy Efficiency

Two-way SRAM vs  Normal SRAM

A
re

a
 (

n
o

rm
a
li

z
e
d

)

T
h

ro
u

g
h

p
u

t 
(F

P
S

)

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

T
O

P
S

/W
)

400

600

800

1000

1200

1400

0.787x

0.774x

0.76x

0.754x

0

1

2

3

4

5

 Area

 Throughput
 Energy Efficiency

200

400

600

800

1000

1200

1400

A
re

a
 (

n
o

rm
a
li
z
e
d

)

T
h

ro
u

g
h

p
u

t 
(F

P
S

)

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

T
O

P
S

/W
)

New Signed Multi. method vs  Sign Extention

0.62x
0.6x 0.58x

0.59x

0

1

2

3

4

5

(a) (b)

 Area

 Energy Efficiency

 Throughput

A
re

a
 (

n
o

rm
a

li
z
e

d
)

T
h

ro
u

g
h

p
u

t 
(F

P
S

)

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

 (
T

O
P

S
/W

)

Weight Duplication vs  Performance

1x 1.11x

1.67x

4.05x

DenseNet-121

0

1

2

3

4

5

100

200

300

400

500

Note: we take DenseNet-121 as a example to analyze weight 

duplication vs performance. From case 1 to case 4, weight duplication 

increases for more efficient pipeline.(c)  

Figure 38: (a) Performance improvement with two-way SRAM design. (b) Performance 

improvement with proposed signed number multiplication. (c) Performance comparison 

when increasing the weight duplication on DenseNet-121 

6.6.2 Benchmark Results and Discussion 

Figure 38 (a) illustrates the system-level performance comparison between our two-

way SRAM-based CIM design and conventional SRAM-CIM architecture. Across 

different networks, it is observable that the proposed two-way SRAM design could reduce 

chip area by ~25% while maintaining the throughput or energy efficiency. Figure 38 (b) 

shows the evaluation of the proposed signed number multiplication compared to the 
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traditional approach, which directly performs sign extension multiplication. The new 

multiplication method dramatically boosts hardware performance in terms of space, 

throughput, and energy efficiency. As an illustration, our proposed design could achieve 

2× throughput and 1.6× energy efficiency with only 0.6× area cost tested on ResNet-18. 

While comparing the performance of ResNet and DenseNet, we can find that our design 

shows larger throughput on ResNet than DenseNet. The reason is that the ResNet model 

needs fewer computations with fewer layers. Meanwhile, weight duplication for slow 

layers in a pipeline design allows further speed-up. Taking DenseNet-121 as an example, 

we explore the trade-off between weight duplication and performance presented in Figure 

38 (c). We can see that the throughput and hardware area cost is inversely correlated. 

Figure 39 (a) shows the energy breakdown among training steps. Gradient 

calculation takes more energy than FF and EC due to less reuse of the error matrix and 

frequent write to reload error matrix. Figure 39 (b) shows the energy breakdown of CIM 

computing, SRAM leakage, and off-chip DRAM access. SRAM leakage is almost 

eliminated since we keep reusing the SRAM array during the entire training process to 

shorten standby time. DRAM access is still a significant part of the total energy since GC 

and WU process needs to access DRAM frequently due to limited on-chip buffer.  Table 

10 compares this work to state-of-the-art accelerator designs from digital ASIC to CIM 

approaches. It is seen that our proposed design achieves the highest energy efficiency and 

throughput, which could support multi-bit training on large datasets, while most prior 

works only support low-bit inference on small to moderate datasets. Our SRAM-based 

CIM accelerator also holds advantages (~3.2 TOPS/W) compared to GPU (~0.1 TOPS/W) 

or TPU (~0.45 TOPS/W for the training version).  
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Figure 39: Two-way SRAM architecture-level benchmark result: (a) Energy breakdown of 

training steps (b) Energy breakdown of operations 

Table 10: Comparison with recent ASIC and CIM designs 

 

6.7 Summary 

This work proposes an efficient SRAM-based CIM accelerator aimed at DNN 

training. Compared to prior works, we make the following contributions. Firstly, we 

propose an efficient solution to implement in-memory signed multiplication, which 

performs unsigned in-memory VMM and then multiple rounds of shift-add or invert 

operations in the periphery. Secondly, we design a two-way SRAM array to support both 
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row-wise and column-wise computation. With bi-directional access, forward and backward 

propagation calculations can be implemented in the same array, improving the area 

efficiency over the prior design. Thirdly, we build our accelerator and optimize the 

workflow for DNN in-memory training, which can perform feed-forward calculation, error 

calculation, and gradient calculation within the same proposed SRAM array design. The 

impact of ADC quantization loss is also explored for DNN training. Finally, Based on the 

silicon measurement data on the prototype chip, the hardware performance for the entire 

architecture for DNN on-chip training is systematically explored. The experimental data 

shows that the proposed accelerator can achieve energy efficiency of ~3.2 TOPS/W, >1000 

FPS, and >300 FPS for ResNet and DenseNet training on ImageNet, respectively. 
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CHAPTER 7 CONCLUSION AND OUTLOOK 

7.1 Summary of Presented Works 

This dissertation investigates the prospects and challenges of the CIM accelerators 

for both DNN inference and training, and explores the architecture/circuit design 

optimization for CIM accelerators. This thesis presents four major works, of which the 

conclusions and contributions are summarized as follows: 

We comprehensively explore conventional ADC designs (Flash vs. SAR) for CIM 

array. Then we investigate a new data conversion scheme that performs the analog shift-

add for multiple weight significance bits, namely analog shift-add ADC. The impact of the 

ADC precision on inference accuracy performance is thoroughly analyzed and illustrated 

for the representative CIFAR-10 dataset based on a multi-bit VGG-8 network. We 

benchmark the hardware performance of CIM arrays with various ADC designs at given 

similar area constraints. The analog shift-add ADC achieves 37× and 4.9× higher EDP 

performance, compared to Flash-ADC, and SAR-ADC, respectively. Meanwhile, the area 

cost of analog shift-add ADC for CIM design is only 77% of Flash-ADC. 

After that, we propose ENNA, a novel CIM architecture based on an ADC-free sub-

array design, implementing inter-array data processing in an analog manner. A lightweight 

input encoding scheme based on pulse-width modulation (PWM) is proposed to improve 

the throughput. We tape out a prototype macro and validate the proposed ADC-free RRAM 

array design in TSMC 40nm process. Based on the measured silicon data, we explore the 

system-level performance with a partition between analog and digital processing at a level 

higher than the sub-array. The evaluation results show that the proposed accelerator can 
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achieve 73.6∼86.4 TOPS/W energy efficiency and 2.3∼7 TOPS throughput (normalized 

to binary operation) tested on various DNN models. Furthermore, we project the proposed 

design with heterogeneous 3D integration technology to explore the potential of CIM 

design with 3D stacking technology, showing a 3×∼37× throughput improvement 

depending on different tasks and ∼50% reduced area overhead compared to 2D 

architecture. 

For on-chip training exploration, we first present CIMAT, a CIM Architecture for 

Training. We propose a novel transpose weight mapping strategy. We design the periphery 

circuitry and the dataflow for the BP process and weight update to support the on-chip 

training based on CIM. To further improve training performance, we explore the pipeline 

optimization of the proposed architecture. We utilize the mature and advanced CMOS 

technology at 7 nm to design the CIMAT architecture with 7T-/8T-based transpose SRAM 

array that supports a bi-directional parallel read. We explore the 8-bit training performance 

of ImageNet on ResNet-18, showing that 7T-based design can achieve 3.38× higher energy 

efficiency (6.02 TOPS/W), 4.34× speedup and only 50% chip size compared to the baseline 

architecture with a conventional 6T SRAM array that supports row-by-row read only. The 

even better performance is obtained with 8T-based architecture, which can reach 10.79 

TOPS/W and more than 40× speedup with 74% chip area compared to the baseline. 

Lastly, A two-way SRAM-based CIM accelerator that could perform bi-directional 

in-memory VMM with minimum hardware overhead is proposed for on-chip training 

support. A novel solution of signed number multiplication is proposed to handle the 

negative input in backpropagation. Moreover, we explore ADC quantization's impact on 

training performance. The proposed two-way SRAM array design is validated with a tape-
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out in TSMC 28 nm process. The architecture-level performance for DNN on-chip training 

is evaluated from the measured silicon data of CIM macro, which shows ~3.2 TOPS/W 

energy efficiency, with over 1000 FPS on ResNet-18/34 and over 300 FPS on DenseNet-

121/169. 

7.2 Future Works 

Firstly, more economical peripheral circuits are always preferred at the circuit level.  

Regarding the ADC challenge, more efforts should be made to alleviate or remove the 

ADCs (and DACs) in CIM designs. ADCs/DACs are vital in conventional CIMs because 

we perform analog computing inside the CIM arrays while requiring digital data storage 

and transfer beyond CIM arrays. Hence, there are two future directions we can think about: 

1) Performing inter-/intra-array computing all in the digital domain. As CMOS technology 

scales down with more non-idealities and less design space, digital-based CIM tends to 

show more advantages with higher reconfigurability, robustness, and scalability than 

mixed-signal CIM. Besides, scaling supply voltage to lower the energy cost should be more 

friendly for all-digital approaches. 2) Performing all operations in the analog domain 

without any data conversion. Charge-/Pulsewidth-based analog computing will be a good 

try. Meanwhile, potential challenges, such as PVT variations and analog data storage, must 

be faced.    

Secondly, for training complex datasets such as ImageNet, the system performance 

of CIM architectures is still bounded by off-chip data transfer due to limited on-chip 

capacity. 3D integration could be a promising approach to stack massive amount of 

embedded memories that are required in state-of-the-art AI accelerators. Besides, in CIM 
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designs, by partitioning the circuit modules in hybrid technology nodes across different 

tiers, the challenges of ADC/DAC overhead and scaling limitations caused by high write 

voltage in eNVM could be addressed. 3D CIM accelerator could potentially achieve higher 

bandwidth and larger capacity, which enables the on-chip training ability for edge devices.  
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