
INTERLEAVING ALLOCATION, PLANNING, AND SCHEDULING FOR
HETEROGENEOUS MULTI-ROBOT COORDINATION THROUGH SHARED

CONSTRAINTS

A Dissertation
Presented to

The Academic Faculty

By

Andrew Messing

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Robotics
from the

School of Interactive Computing

Georgia Institute of Technology

December 2022

© Andrew Messing 2022



INTERLEAVING ALLOCATION, PLANNING, AND SCHEDULING FOR
HETEROGENEOUS MULTI-ROBOT COORDINATION THROUGH SHARED

CONSTRAINTS

Thesis committee:

Dr. Seth Hutchinson, Advisor
School of Interactive Computing
Georgia Institute of Technology

Dr. Sonia Chernova
School of Interactive Computing
Georgia Institute of Technology

Dr. Harish Ravichandar
School of Interactive Computing
Georgia Institute of Technology

Dr. Nicholas Roy
Department of Aeronautics and Astronau-
tics
Massachusetts Institute of Technology

Dr. Aleksandra Faust
Senior Staff Research Scientist
Google Brain Research

Date approved: Nov. 29, 2022



ACKNOWLEDGMENTS

I would like to begin by thanking my advisor – Dr. Seth Hutchinson. His guidance on

everything from connecting with collaborators to presentation of research was instrumental

in the success of my Ph.D. journey. He continually challenged me to consider more of the

reasons behind the success of various algorithms and frameworks, and I think the result

is much improved and more accessible because of it. His vast knowledge of the field of

robotics and its current state have been extremely helpful during my exploration process

that led to this dissertation.

Next, I would like to thank the rest of my committee – Dr. Sonia Chernova, Dr. Harish

Ravichadar, Dr. Nicholas Roy, and Dr. Aleksandra Faust. Through many discussions and

helpful feedback, I learned much from each of you that has aided me through this journey

and in developing the research, and its presentation, that is contained in this dissertation.

Additionally, I would like to thank my collaborators. Glen Neville and I had numerous

(almost daily) conversations over the years coming up with, developing, and nitpicking the

details of what would turn into the framework that is the central part of this dissertation in

GRSTAPS and its extensions. Jacopo Banfi, Martina Stadler, and I had many discussions,

where they provided new perspectives, approaches, and algorithms. From all of this, I have

learned a great deal and our works were much better because of it.

Also, I would like to thank my cohort. Before I started my Ph.D. journey, a coworker

recommended that I be careful about my work/life balance due the stereotype surrounding

Ph.D. students. Thanks to this group, this was never a concern. Between going to sporting

events, traveling, hosting social events, and playing intramurals, I think we balanced pro-

gressing the state-of-the-art and enjoying life extremely well – even through the unknowns

of Covid. Furthermore, the always available support and advice is very appreciated. Going

through the process in parallel with friends, from start to finish, makes everything more

enjoyable and helps to keep one’s sanity.

iii



Finally, I would like to thank my family. I first told them that I planned to get a Ph.D.

in robotics twelve years ago and they have constantly supported and encouraged me every

step of the way. Furthermore, they taught me the importance of hard-work, persistence,

patience, and so many more skills that have allowed me to be successful and get to where I

am today.

iv



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xviii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Relevant Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2: Interleaving Task Planning and Scheduling . . . . . . . . . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Task Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Temporal Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 16

v



2.2.4 Hierarchical Planning . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.5 Multi-Agent Planning . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Forward Chaining Partial-Order Planner . . . . . . . . . . . . . . . . . . . 19

2.5 Forward Chaining Hierarchical Partial-Order Planner . . . . . . . . . . . . 23

2.6 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 Forward Chaining Partial-Order Planner . . . . . . . . . . . . . . . 26

2.6.2 Forward Chaining Hierarchical Partial-Order Planner . . . . . . . . 29

2.7 Discussion & Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 3: Interleaving Task Allocation, Scheduling, and Motion Planning . . . 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Problem Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Solution Specification . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Communication Between Sub-Problems . . . . . . . . . . . . . . . . . . . 40

3.5 Incremental Task Allocation Graph Search . . . . . . . . . . . . . . . . . . 41

3.5.1 Task Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.2 Scheduling and Motion Planning . . . . . . . . . . . . . . . . . . . 46

3.6 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6.1 Relative Influence of APR and NSQ on Performance . . . . . . . . 50

3.6.2 Effects of Interleaving on Performance . . . . . . . . . . . . . . . . 51

vi



3.6.3 Comparison against CFLA2 and CCF . . . . . . . . . . . . . . . . 52

3.6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Discussion & Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 4: Interleaving Allocation, Planning, and Scheduling . . . . . . . . . . 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Multi-Agent Planning . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Simultaneous Task Allocation and Planning . . . . . . . . . . . . . 62

4.2.3 Task and Motion Planning . . . . . . . . . . . . . . . . . . . . . . 64

4.2.4 Multi-Vehicle Routing . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Temporal Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Trait-based Time-extended Task Allocation . . . . . . . . . . . . . 69

4.3.3 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.4 Motion Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.5 Simultaneous Task Allocation and Planning with Spatiotemporal
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Communication Between Sub-Problems . . . . . . . . . . . . . . . . . . . 74

4.5 Graphically Recursive Simultaneous Task Allocation, Planning, and Schedul-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.1 Algorithmic Assumptions . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.2 Task Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.3 Task Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

vii



4.5.4 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.5 Motion Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6.2 Comparisons with Sequential Baselines . . . . . . . . . . . . . . . 93

4.6.3 Comparisons with Temporal Planner Baselines . . . . . . . . . . . 100

4.6.4 Testing the limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7 Discussion & Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Chapter 5: Heterogeneous Coalition Scheduling with Temporal Uncertainty . . 109

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.1 Coalition Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.2 Scheduling with Temporal Uncertainty . . . . . . . . . . . . . . . . 112

5.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Heterogeneous Coalition Scheduling Problem . . . . . . . . . . . . 114

5.3.2 Heterogeneous Coalition Scheduling with Temporal Uncertainty
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.1 Sample Average Approximation . . . . . . . . . . . . . . . . . . . 118

5.4.2 Coalition Scheduling with Heuristic Sample Selection and Risk
Guarantee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4.3 SPRT for α-robustness guarantee . . . . . . . . . . . . . . . . . . . 123

5.5 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

viii



5.5.1 Impact of the risk tolerance . . . . . . . . . . . . . . . . . . . . . . 127

5.5.2 Comparison with other Scheduling Approaches . . . . . . . . . . . 128

5.5.3 Usage within the GRSTAPS Framework . . . . . . . . . . . . . . . 131

5.5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.6 Discussion & Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.7 Appendix: Sequential Probability Ratio Test . . . . . . . . . . . . . . . . . 135

Chapter 6: Learning to Set Task Orderings for Heterogeneous Coalition Schedul-
ing with Deadlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2.1 Multi-Robot Scheduling . . . . . . . . . . . . . . . . . . . . . . . 140

6.2.2 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.4 Building a Heterogeneous Graph . . . . . . . . . . . . . . . . . . . . . . . 145

6.5 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.6 Heterogeneous Temporal Graph Scheduler . . . . . . . . . . . . . . . . . . 151

6.6.1 Greedy Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.6.2 Beam Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.7 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.7.1 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.7.2 Comparison with other Scheduling Approaches . . . . . . . . . . . 155

6.7.3 Usage within the GRSTAPS framework . . . . . . . . . . . . . . . 159

6.8 Discussion & Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

ix



Chapter 7: Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . 163

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.1.1 Interleaving Task Planning and Scheduling . . . . . . . . . . . . . 163

7.1.2 Interleaving Task Allocation, Scheduling, and Motion Planning . . . 164

7.1.3 Interleaving Allocation, Planning, and Scheduling . . . . . . . . . . 164

7.1.4 Heterogeneous Coalition Scheduling with Temporal Uncertainty . . 165

7.1.5 Learning to Set Task Orderings for Heterogeneous Coalition Schedul-
ing with Deadlines . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.2 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.2.1 Reducing Motion Planning Assumptions . . . . . . . . . . . . . . . 166

7.2.2 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.2.3 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

x



LIST OF TABLES

2.1 Number of problems solved for each domains. Red denotes the best value
for a row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Results for different risk levels . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 Summary of comparison results (α = 0.1). Red indicates the best result for
the row. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3 Results for p̄(C, ρ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.1 Ablation Study of the F1 score for different variants of the HG-GCN archi-
tecture. Red: The best model. Violet: The second best model. . . . . . . . . 155

6.2 Summary of benchmarking results for HCSD Problems. Red: The best
value for each metric. Violet: The second best value for each metric. . . . . 156

6.3 Summary of benchmarking results for STAP-STC Problems. Red: The best
value for each metric. Violet: The second best value for each metric. . . . . 160

xi



LIST OF FIGURES

2.1 Caricature of a partial-order plan. . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Diagram of the components that each of the task planning layer and schedul-
ing layer contribute to in FCPOP. . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 y = 0 corresponds to the makespan of plans created by FCPOP and points
above y = 0 are plans created by TFLAP or OPTIC with longer makespans
and below are plans they created with shorter makespans. . . . . . . . . . . 27

2.4 y = 0 corresponds to the planning time of FCPOP and points above y =
0 are problems in which TFLAP or OPTIC were slower and below are
problems in which they were faster. . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Comparison of FCPOP and FCHPOP in terms of plan makespan . . . . . . 30

2.6 Comparision of FCPOP and FCHPOP in terms of planning time . . . . . . 31

2.7 Comparison of FCPOP and FCHPOP in terms of number of nodes visited
and explored . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 High-level architecture of the hierarchical framework. . . . . . . . . . . . . 42

3.2 An example incremental task allocation graph. . . . . . . . . . . . . . . . . 43

3.3 The results of ITAGS with various α values normalized with respect to
ITAGSα=0.5. y = 0 corresponds to ITAGSα=0.5. Anything above y = 0 is
worse than ITAGSα=0.5 and conversely anything below is better. ‘*’ denotes
statistical significance with a p-value < 0.05. . . . . . . . . . . . . . . . . . 50

3.4 The results of the sequential version of ITAGS (ITAGSS) normalized with
respect to ITAGSα=0.5. y = 0 represents ITAGSα=0.5. Anything above
y = 0 is worse than ITAGSα=0.5 and conversely anything below is better. . . 52

3.5 Benchmark against CFLA2 and CCF . . . . . . . . . . . . . . . . . . . . . 54

xii



4.1 Example Task Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 An example of AQ compared to the desired traits matrix YT . As AQ is
element-wise greater than or equal to the desired traits matrix, it satisfies
the requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 An example of the task planning search. The search starts from a plan with
a single dummy task and searches to through a plan space to find a solution
plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 The associated incremental task allocation graph for plan πi from Figure 4.3 83

4.5 An example of the scheduling layer’s process. Within each box solid lines
represent precedence constraints, dashed lines represent mutex constraints,
and dotted lines represent the duration of a task. . . . . . . . . . . . . . . . 88

4.6 Example survivor domain map used for the experiments. . . . . . . . . . . 92

4.7 High-level architecture of STPA/STAA. . . . . . . . . . . . . . . . . . . . 94

4.8 Experiment 1: A comparison of GRSTAPS to both sequential baselines
(STPA and STAA) when scaling the number of robots. All problems have
20 goals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.9 Experiment 2: A comparison of GRSTAPS to both sequential baselines
(STPA and STAA) when scaling the number of goals. All problems have
15 agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.10 Experiment 3: A comparison of GRSTAPS to three temporal planners
(FCPOP, TFLAP, and OPTIC) when scaling the number of robots. All
problems have 15 goals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.11 Experiment 4: A comparison of GRSTAPS to three temporal planners
(FCPOP, TFLAP, and OPTIC) when scaling the number of goal. All prob-
lems have 15 agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.12 Experiment 5: Testing the limits of GRSTAPS using 30 goals and an in-
creasing number of agents. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1 The blue (red) markers are problem instances where GRSTAPSTU did bet-
ter (worse) than GRSTAPSDET . Each successive dashed colored line is the
result from GRSTAPSDET being 10% worse than the result from GRSTAPSTU

(i.e. the first line represents 10% worse, the second 20% worse, etc). . . . . 131

xiii



6.1 The proposed Heterogeneous Temporal Graph Scheduler approach for solv-
ing the Heterogeneous Coalition Scheduling with Deadlines Problem. The
Heterogeneous G-GCN block is based on an image from [152] . . . . . . . 139

6.2 Example input heterogeneous graph . . . . . . . . . . . . . . . . . . . . . 148

xiv



LIST OF ACRONYMS

APR Allocation Percentage Remaining

APSP All-Pairs Shortest Path

BACCHUS Benders Accelerated Cut Creation for Handling Uncertainty in Scheduling

C-Var Conditional Value-At-Risk

CFSTP Coalition Formation with Spatial and Temporal Constraints Problem

CS-HSSRG Coalition Scheduling with Heuristic Sample Selection and Risk Guarantee

CTP Canadian Traveler Problem

DTG Domain Transition Graph

DTP Disjunctive Temporal Problem

EHC Enhanced Hill Climbing

FCHPOP Forward Chaining Hierarchical Partial-Order Planner

FCPOP Forward Chaining Partial-Order Planner

FD Fast Downward

FF Fast Forward

FMAP Forward Multi-Agent Planning

GRSTAPS Graphically Recursive Simultaneous Task Allocation, Planning, and Schedul-
ing

HCS Heterogeneous Coalition Scheduling

HCSD Heterogeneous Coalition Scheduling with Deadlines

HCSTU Heterogeneous Coalition Scheduling with Temporal Uncertainty

HG-GCN Heterogeneous Gated Graph Convolution Network

HTGS Heterogeneous Temporal Graph Scheduler

xv



HTNs Hierarchical Task Networks

IPC International Planning Competition

ITAGS Incremental Task Allocation Graph Search

LTL Linear Temporal Logic

MADLA Multi-Agent Distributed and Local Asynchronous

MAFS Multi-Agent Forward Search

MAMP Multi-Agent Motion Planning

MAP Multi-Agent Planning

MAPF Multi-Agent Pathfinding

MAPJA Multi-Agent Planning with Joint Actions

MDP Markov Decision Process

MILP Mixed-Integer Linear Programming

MITL Metric Interval Temporal Logic

MLP Multi-Layer Perceptron

MMMP Multi-Modal Motion Planning

MRC Multi-Robot Coordination

MRSs Multi-Robot Systems

MVR Multi-Vehicle Routing

MVRP-TW Multi-Vehicle Routing Problem with Time Windows

NSQ Normalized Schedule Quality

OMPL Open Motion Planning Library

OPTIC Optimizing Preferences and TIme-dependent Costs

PANDA Planning and Acting in a Network Decomposition Architecture

PARIS Polynomial-time Algorithm for RIsk-aware Scheduling

PDDL Planning Domain Description Language

POCL Partial-Order Causal Linking

POMP Partial-Order Multi-agent Planning

xvi



POP Partial-Order Plan

PSM Planning State Machine

PSTP Probabilistic Simple Temporal Problem

PSTPU Probabilistic Simple Temporal Problem with Uncertainty

RCPSP Resource Constrained Project Scheduling Problem

RCPSPU Resource Constrained Project Scheduling Problem with Uncertainty

rrt Rapidly-Exploring Random Trees

SAA Sample Average Approximation

SMT Satisfiability Modulo Theorem

SORU SAA Optimization for solving RCPSP under Uncertainty

SPA Single-agent Planning Approach

SPRT Sequential Probability Ratio Test

STAA Sequential Task Allocation Anytime

STAP Simultaneous Task Allocation and Planning

STAP-STC Simultaneous Task Allocation and Planning with Spatiotemporal Constraints

STN Simple Temporal Network

STP Simple Temporal Problem

STPA Sequential Task Planning Anytime

STPU Simple Temporal Problem with Uncertainty

TAMP Task and Motion Planning

TETAQ Time-Extended Task Allocation Quality

TFLAP Temporal FLAP

TRPG Temporal Relaxed Planning Graph

VHPOP Versatile Heuristic Partial-Order Planning

xvii



SUMMARY

In a wide variety of domains, such as warehouse automation, agriculture, defense, and

assembly, effective coordination of heterogeneous multi-robot teams is needed to solve

complex problems. Effective coordination is predicated on the ability to solve the four

fundamentally intertwined questions of coordination: what (task planning), who (task allo-

cation), when (scheduling), and how (motion planning). Owing to the complexity of these

four questions and their interactions, existing approaches to multi-robot coordination have

resorted to defining and solving problems that focus on a subset of the four questions. No-

table examples include Task and Motion Planning (what and how), Multi-Agent Planning

(what and who), and Multi-Agent Path Finding (who and how). In fact, a holistic problem

formulation that fully integrates the four questions lies beyond the scope of prior literature.

This dissertation focuses on examining the use of shared constraints on tasks and

robots to interleave algorithms for task planning, task allocation, scheduling, and

motion planning and investigating the hypothesis that a framework that interleaves

algorithms to these four sub-problems will lead to solutions with lower makespans,

greater computational efficiency, and the ability to solve larger problems. To support

this claim, this dissertation contributes: (i) a novel temporal planner that interleaves task

planning and scheduling layers, (ii) a trait-based time-extended task allocation framework

that interleaves task allocation, scheduling, and motion planning, (iii) the formulation of

holistic heterogeneous multi-robot coordination problem that simultaneously considers all

four questions, (iv) a framework that interleaves layers for all four questions to solve this

holistic heterogeneous multi-robot coordination problem, (v) a scheduling algorithm that

reasons about temporal uncertainty, provides a theoretical guarantee on risk, and can be

utilized within our framework, and (vi) a learning-based scheduling algorithm that reasons

about deadlines and can be utilized within our framework.

xviii



CHAPTER 1

INTRODUCTION

Recent advancements in robotics technology has led to the increased deployment of robotic

teams in various domains including agriculture [1], hospitals [2], military [3], warehouses [4],

and disaster recovery [5]. This increased deployment is caused by a number of reasons in-

cluding (i) the inherent distribution in space, time, or functionality of many applications,

(ii) the desire for improved efficiency created by distributing the work load to robots op-

erating in parallel, and (iii) the desire for improved robustness and reliability of execution

through the redundancy created by the duplication of capabilities across the robot team. Ad-

ditionally, researchers have begun to focus on coordinating heterogeneous teams of robots

because it is cheaper and more practical in many applications to build a number of less

capable specialist robots that can work together on a mission, rather than trying to build

one generalist robot that can perform the entire mission on its own.

Effective coordination of a robot team is predicated on the ability to solve interacting

problems at varying levels of abstraction. Particularly challenging are the four fundamen-

tally intertwined questions of coordination: what (task planning), who (task allocation),

when (scheduling), and how (motion planning).

While these four questions of coordination have been studied extensively within the

context of homogeneous robots (e.g., [6, 7, 8, 9]), these questions require further investi-

gation within the context of heterogeneous robot teams. Recently researchers have started

defining and solving problems that focus on some subset of the four questions. Notable

examples include Task and Motion Planning (TAMP) [10] (what and how), Multi-Agent

Planning (MAP) [6] (what and who), and Multi-Vehicle Routing (MVR) [11] (who and

how). However, perhaps due to the complexity of the individual questions and their inter-

actions, existing approaches have not formulated a problem that covers all four questions.

1



Such a holistic Multi-Robot Coordination (MRC) problem can be quite challenging due to

a variety of factors including

• the number of discrete states in the symbolic state space, which grows exponentially as

the number of symbolic state variables increases,

• interdependent tasks that can be executed concurrently and require a diverse set of

capabilities,

• heterogeneous robots that can form coalitions to execute individual tasks, where the

number of possible coalitions grows exponentially as the number of robots and tasks

increase,

• long-horizons both in terms of the durations of individual robot paths as well as the

overall number of tasks in a solution,

• the dimensionality of the continuous configuration sub-spaces,

• and the interplay of discrete and continuous decisions.

The most straightforward approach for attempting to solve one of these holistic MRC

problems is to reduce it to a constrained mathematical program and solve for values for all

of the free parameters at once. Although there is a vast literature on mathematical program-

ming and highly efficient commercial numerical solvers exist, this ends up being infeasible

in practice for all but the smallest of problems due to the large number of combinatoric

factors (e.g., number of tasks, number of robots, number of objects in the environment,

size of the environment, etc).

An alternative approach would be to chain together a series of existing state-of-the-art

algorithms for each of the sub-problems. However, when exploring subsets of the prob-

lem, previous research has found that this approach is unable to solve the general class

of problems [12]. This is because the interdependence of the sub-problems is an essen-

tial component of the overall problem. A common example from the TAMP literature that

demonstrates this concept is a robot that wants to stack two cups on a shelf. If it only con-

siders the task planning portion of the problem, it may create a symbolic plan where it puts

2



the first cup on the shelf and then attempts to put the second cup on top of the first. It is

possible that the robot cannot reach high enough to put the second cup on top of the first,

but if it had considered the geometric information, it would have stacked the cups and then

moved the entire stack to the shelf.

This dissertation examines the formulation of a class of holistic heterogeneous multi-

robot coordination problems which we have named Simultaneous Task Allocation and

Planning with Spatiotemporal Constraints (STAP-STC). Additionally, it explores the con-

cept that while algorithms for each of the four sub-problems utilize different properties of

the shared components, namely tasks and robots, they can benefit from a shared collection

of constraints to interleave information that each algorithm discovers while solving its sub-

problem. We posit that utilizing these shared constraints allow for interleaved frameworks

with improved computation efficiency that can scale to larger problems1. As part of this

examination, we first develop interleaved frameworks that exploit this concept for two sub-

sets of the STAP-STC problem in Temporal Planning (what and when) and Time-Extended

Task Allocation (who, when, and how). We then develop a unified and interleaved frame-

work that passes shared constraints between four modules, one for each sub-problem, to

solve the STAP-STC problem. We evaluate the performance of interleaving algorithms

for each of these frameworks through ablation studies against sequential variants of the

frameworks and comparisons against state-of-the-art algorithms. In these evaluations, we

consider solution makespan, computation time, and success rate relative to problem size.

1.1 Thesis Statement

This thesis examines the use of shared constraints on tasks and robots to interleave

algorithms for task planning, task allocation, scheduling, and motion planning and

investigates the hypothesis that a framework that interleaves algorithms to these four

sub-problems will lead to solutions with lower makespans, greater computational ef-
1For this dissertation, we measure the scale of a problem in terms of number of robots, number of tasks,

or number of symbolic goals.

3



ficiency, and the ability to solve larger problems.

1.2 Contributions

To support this claim, this dissertation makes the following contributions to the field of

heterogeneous multi-robot coordination:

• Interleaving Task Planning and Scheduling: (Chapter 2) We introduce a novel tem-

poral planner, Forward Chaining Partial-Order Planner (FCPOP), which interleaves al-

gorithms for task planning and scheduling. FCPOP utilizes techniques from both state-

space-based forward chaining and plan-space-based partial-order planning. We also

build upon FCPOP to introduce a novel hierarchical temporal planner, Forward Chain-

ing Hierarchical Partial-Order Planner (FCHPOP). FCHPOP integrates techniques from

Hierarchical Task Networks through hierarchical abstraction on tasks. We evaluate

FCPOP through comparisons against state-of-the-art temporal planners from the last

International Planning Competition’s Temporal Track. Through these experiments we

demonstrate that FCPOP improves the efficiency of solving temporal planning prob-

lems while on average producing higher quality solutions over state-of-the-art temporal

planners. Last, we perform an ablation study to demonstrate the advantages of utiliz-

ing abstract tasks through a comparison of FCHPOP and FCPOP. We demonstrate that

on average FCHPOP explores fewer nodes which leads to a reduced computation time

and it utilizes the domain knowledge provided in the abstract tasks to produce higher

quality solutions.

• Interleaving Task Allocation, Scheduling, and Motion Planning: (Chapter 3) We

develop a novel hierarchical framework that interleaves task allocation, scheduling,

and motion planning to simultaneously address coalition formation and scheduling

for heterogeneous multi-robot systems. Additionally, we introduce a search-based

approach for trait-based task allocation, named Incremental Task Allocation Graph

Search (ITAGS). ITAGS leverages two complementary heuristics in Allocation Per-

4



centage Remaining (APR) and Normalized Schedule Quality (NSQ) and a convex

combination of the two heuristics in Time-Extended Task Allocation Quality (TETAQ).

We evaluate the relative influence of each of the two heuristics on the performance of

ITAGS. We then perform an ablation study where we study the benefits of interleaving

the information through shared constraints between sub-problem modules. Finally, we

demonstrate the efficacy and solution quality of ITAGS through a comparison against

two state-of-the-art Task Allocation algorithms.

• Interleaving Allocation, Planning, and Scheduling: (Chapter 4) We formulate a

holistic heterogeneous multi-robot coordination problem, named Simultaneous Task

Allocation and Planning with Spatiotemporal Constraints (STAP-STC), that simulta-

neously considers the four questions of coordination: what (task planning), who (task

allocation), when (scheduling), how (motion planning). We introduce an extension to

our previous hierarchical framework, ITAGS, through the addition of a task planning

layer based on FCPOP. The new hierarchical framework, named Graphically Recursive

Simultaneous Task Allocation, Planning, and Scheduling (GRSTAPS), is our initial so-

lution to the STAP-STC problem. We perform an ablation study where we study the

benefits of interleaving the information through shared constraints from all four sub-

problem modules on several problems that scale in terms of number of symbolic goals

and number of robots. We then compare the performance of GRSTAPS against three

state-of-the-art temporal planners on more problems that scale in terms of number of

symbolic goals and number of robots. Finally, we test the limits of how large of a

problem can GRSTAPS solve within a specified time limit.

• Heterogeneous Coalition Scheduling with Temporal Uncertainty: (Chapter 5) We

introduce a novel class of uncertainty-aware scheduling problem, the Heterogeneous

Coalition Scheduling with Temporal Uncertainty (HCSTU) problem, which explic-

itly considers the uncertainties in the time needed to execute a task and to transi-

tion between two tasks. To solve the HCSTU, we present a sampling-based risk-

5



aware algorithm named Coalition Scheduling with Heuristic Sample Selection and

Risk Guarantee (CS-HSSRG). CS-HSSRG provides theoretical guarantees on a user

provided acceptable amount of risk through utilization of the Sequential Probability

Ratio Test [13] and is demonstrated to be extremely efficient when compared to state-

of-the-art approaches, while not being overly conservative. Additionally, we test CS-

HSSRG as the scheduling component of GRSTAPS and show that utilizing CS-HSSRG

aids GRSTAPS in making robust decisions about what tasks to include in the task plan

and what robots to allocate to those tasks.

• Learning to Set Task Orderings for Heterogeneous Coalition Scheduling with

Deadlines: (Chapter 6) We introduce a Heterogeneous Gated Graph Convolution Net-

work (HG-GCN) model that learns the probability that pairs of tasks are ordered in

a specific way in an optimal schedule. This model takes as input a heterogeneous

graph that represents the relationships between time points and can encode all 13 of

Allen’s temporal relationships [14]. Furthermore, we present a search-based approach

named Heterogeneous Temporal Graph Scheduler (HTGS) with two search strategies

that utilizes the output of the HG-GCN model to approximately solve the Heteroge-

neous Coalition Scheduling with Deadlines problem. We evaluate the performance of

this approach through a comparison against state-of-the-art heterogeneous multi-robot

scheduling algorithms and an optimal Mixed-Integer Linear Programming baseline.

Additionally, we integrate the approach into GRSTAPS and evaluate the improvement

in performance of the overall framework. The results of these evaluations demonstrate

the efficacy of the new approach.

1.3 Relevant Publications

A. Messing and S. Hutchinson, “Learning to Set Task Orderings for Heterogeneous Coali-

tion Scheduling with Deadlines,” IEEE Transactions on Robotics, 2023.

A. Messing*, J. Banfi*, M. Stadler, E. Stump, H. Ravichandar, N. Roy, and S. Hutchinson,

6



“Heterogeneous Coalition Scheduling with Temporal Uncertainty,” IEEE Transactions on

Robotics, 2023.

J. Banfi*, A. Messing*, C. Kroninger, E. Stump, S. Hutchinson, and N. Roy, “Hierarchical

Planning for Heterogeneous Multi-Robot Routing Problems via Learned Subteam Perfor-

mance,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4464-4471, 2022.

A. Messing*, G. Neville*, S. Chernova, S. Hutchinson, and H. Ravichandar, “Graphically

Recursive Simultaneous Task Allocation, Planning, and Scheduling,” The International

Journal of Robotics Research, vol. 41, no. 2, pp. 232-256, 2022.

G. Neville*, A. Messing*, H. Ravichandar, S. Hutchinson, and S. Chernova, “An Inter-

leaved Approach to Trait-based Task Allocation and Scheduling,” International Conference

on Intelligent Robots and Systems, 2021.

A. Messing and S. Hutchinson, “Forward Chaining Hierarchical Partial-Order Planning,”

International Workshop on the Algorithmic Foundations of Robotics, vol. 14, pp. 364-380,

2020.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 introduces temporal plan-

ning as a mixture of task planning and scheduling and focuses on the Forward Chaining

Partial-Order Planner and the Forward Chaining Hierarchical Partial-Order Planner. Chap-

ter 3 transitions to focus on time-extended task allocation by interleaving task allocation,

scheduling, and motion planning through the Incremental Task Allocation Graph Search.

Chapter 4 then formalizes a holistic heterogeneous multi-robot coordination problem in

Simultaneous Task Allocation and Planning with Spatiotemporal Constraints (STAP-STC)

and presents an initial approach to solve the STAP-STC Problem in Graphically Recursive

Simultaneous Task Allocation, Planning, and Scheduling. Chapter 5 introduces the Hetero-

geneous Coalition Scheduling with Temporal Uncertainty problem and presents Coalition

*Co-First Authors

7



Scheduling with Heuristic Sample Selection and Risk Guarantee as an efficient risk-aware

approach with theoretical guarantees. Chapter 6 discusses a Heterogeneous Gated Graph

Convolution Network (HG-GCN) model that learns the probability that pairs of tasks are

ordered a specific way in the optimal solution and Heterogeneous Temporal Graph Sched-

uler as a search-based approach that utilizes the output of the HG-GCN model to solve

the Heterogeneous Coalition Scheduling with Deadlines problem. Finally, we provide con-

cluding remarks and discuss open questions in Chapter 7.

8



CHAPTER 2

INTERLEAVING TASK PLANNING AND SCHEDULING

2.1 Introduction

Prior to focusing on the full Simultaneous Task Allocation and Planning with Spatiotem-

poral Constraints (STAP-STC) problem that we mentioned in Chapter 1, in this chapter, we

first focus on interleaving Task Planning and Scheduling for a problem known as Temporal

Planning1. Temporal planning provides the tools to enable intelligent behaviors in robotic

systems operating in the real world while considering temporal constraints and concurrent

tasks. The need for efficient algorithms that allow for these intelligent behaviors has led to

a resurgence of Temporal Planning research in the robotics community.

Partial-order planning (POP) was the most popular method for classical task planning

until the late 90s. With its least-commitment philosophy, POP has several important ad-

vantages, such as being more flexible in execution [15], easy to extend for temporal plan-

ning [16], very suitable for multi-agent planning systems [17], and similar structure to

temporal networks [18]. The flexibility of these plans makes them easier to execute and to

repair for real-world systems, as small delays in a robot’s tasks can be dealt with without

modifying the plan. Also, the partial-ordering creates a useful model for concurrent ex-

ecution, which is useful for a single robot with multiple sub-systems and for multi-robot

systems. However, POP is known to be slower than other modern planning methods that

use improved solvers, more informed state-based heuristics, and lighter-weight search ma-

chinery that allows for much faster backtracking across alternative search states. The speed

deficiency led to it becoming unfashionable in the task planning community [18].

1The material in this chapter is based on:
A. Messing and S. Hutchinson, “Forward Chaining Hierarchical Partial-Order Planning,” International Work-
shop on the Algorithmic Foundations of Robotics, vol. 14, pp. 364-380, 2020.

9



The desire for a temporal planning algorithm that has the flexibility of POP and the

speed of modern day planning algorithms has led to recent investigation into combining

POP with other planning techniques. One example of this is combining POP with grounded

forward chaining to gain the speed of better state-based heuristics and backtracking mecha-

nisms [18]. This requires a relaxation of the least-commitment philosophy that POP is built

on. Another approach that has been explored is combining hierarchical information, simi-

lar to what is used in a Hierarchical Task Networks (HTNs), with POP in what is known as

hybrid planning [19].

This chapter introduces the Forward Chaining Partial-Order Planner (FCPOP), a tem-

poral planner that interleaves shared constraints between causality-based task planning and

temporal network-based scheduling. Furthermore, FCPOP combines partial-order plan

construction with a grounded forward chaining search, however, unlike other approaches

that combine the two techniques, FCPOP utilizes the full delayed task ordering to cre-

ate more flexible, higher quality plans with shorter makespans and that are suitable for

multi-robot systems. The utilization of delayed task ordering also reduces and sometimes

eliminates the need for backtracking which causes our planner to be more efficient than

many state-of-the-art temporal planners. In addition, through grounded forward chaining

FCPOP can use a temporal state-based heuristic for a more informed search through the

plan space and avoids deadends that might arise due to temporal constraints. Despite the

extra computation cost from the more informed heuristic and the full delayed task ordering,

we empirically demonstrate that FCPOP outperforms state-of-the-art temporal planners on

several benchmarks from the most recent temporal track of the International Planning Com-

petition [20].

Additionally, this chapter introduces the Forward Chaining Hierarchical Partial-Order

Planner (FCHPOP), which builds upon FCPOP. FCHPOP includes hierarchical informa-

tion in the form of abstract tasks that can be recursively refined. The hierarchical structure

of tasks allows expert knowledge about a domain (e.g, a predefined procedure) to be in-

10



cluded with relative ease to guide the search process an speed up planning overall [21].

The task hierarchy can be built so the planning algorithm can plan for teams instead of

individual robots. This allows for solutions where robots on the same team can shared the

same high-level goal and act together as much as possible without the need to plan each

task for each individual robot separately [19]. As such, planning with these abstract tasks

and refining them reduces the number of nodes that need to visited and explored during

search which speeds up the process while still creating a quality plan with a low makespan.

This is empirically demonstrated through an ablation study against FCPOP on multiple

benchmark problems.

2.2 Background

In this section, we give an overview of the background information for the relevant task

planning problems. Before we go into the details for each of these select task planning

problems, we look at the common components. Most task planning approaches view the

world as a state transition system and the role of the task planner is to select and orga-

nize tasks2, which work as transition functions, to change the state of the system. The

description of features of the state and the tasks that can change the state are given by a

task planning domain model, which typically consists of a formal language and operator

descriptions. For this thesis, we use Planning Domain Description Language (PDDL) [22]

as it is the current standard language for the International Planning Competition [23, 20].

An operator is a parameterized task schema that represents the preconditions and effects

through logical formulas. When the parameters of an operator become grounded, then it

becomes a task. A plan in this context is a set of tasks and a set of constraints on the

precedence/ordering of these tasks, however, there are more sophisticated representations.

A task planning problem is typically specified by a domain model, an initial state, and

2We use the term task because that is the term used in the multi-robot literature and here to maintain
consistency throughout this document. A task is synonymous with the term action as used in the AI planning
literature.

11



a set of conditions that must be satisfied to reach the goal. A plan is considered to be a

solution to a task planning problem if it is constructed from instances of operators from the

given domain model, executable from the initial state, and its execution results in a state

that satisfies the conditions of the goal.

Implementations of this paradigm have been employed successfully in many applica-

tion areas and most importantly for our use case, in many robotic application areas such as

assembly [24], warehouse automation [25], hospitals [26] and in the home [27].

2.2.1 Task Planning

In task planning, an agent/planner chooses a set of tasks such that when these tasks are

executed in order from an initial state the world is transformed into a state that satisfies

the conditions of the goal. Typically, the world is described by a set of state variables

V = {v0, . . . , vk} that depict high-level properties of physical objects (e.g. that a robot

is holding a box, rather than the actual coordinates of the robot and the box) or relations

between objects (e.g. whether a cup is on top of a table). Each state variable, v, is associated

to a finite domain, Dv, of mutually exclusive values that refer to objects of the world.

Each task τ , which represents a state transition function, contains a set of simple con-

ditions and a set of simple effects. A simple condition c ≡ [v = x] is an assertion that a

state variable v has the value x ∈ Dv. A partial state s̀ = {c0, . . . , cm} is a set of simple

conditions. If the number of simple conditions in the partial state is not the same as the

total number of state variables (|s̀| ̸= |V |) then the partial state represents multiple possi-

ble states. A state s is a set of simple conditions where the number of simple conditions

is equal to the number of state variables (|s| = |V |). A simple effect e ≡ v ← x is an

assignment of the value x ∈ Dv to the state variable v.

The task planning problem can be represented as a tuple ⟨V, T , sinit, G⟩ where

• V is a set of state variables,

• T is a set of tasks,

12



• sinit is the initial state,

• G is a set of simple conditions.

Modern task planners usually attempt to minimize the number of tasks in the plan or

associate costs to tasks and attempt to find a solution with the minimum total cost. There

are two main approaches to solve the task planning problem: total-order planning and

partial-order planning.

Total-Order Planning

In total-order planning, also known as linear planning, an agent/planner chooses a sequence

of tasks such that when these tasks are executed one at a time in order from an initial

state the world is transformed into a state that satisfies the conditions of the goal This

sequence of tasks is known as totally-ordered plan. The fastest task planners today are

linear planners that conduct a forward search through a space of states, commonly known

as forward chaining or forward state-progression, and utilize relaxed problem specifications

as a heuristic function for search control [28].

Partial-Order Planning

Partial-order planning, also known as non-linear planning or Partial-Order Causal Linking

(POCL), started out as an alternative to linear/total-order planning approaches. This was

mainly motivated by the desire to find solutions for problems with interacting sub-goals,

such as the Sussman Anomaly [29]. For task planning problems, the community has since

gone back to linear planning approaches due to improvements in search speed and more

informed heuristics, however, partial-order planning has recently seen a resurgence in the

temporal and multi-agent planning community due to its flexibility and ability to model

task concurrency (discussed more in detail down below).

Traditional partial-order planning is a planning approach that uses a least-commitment

philosophy where it postpones decisions about the order of task and parameter bindings

13



until a decision is forced. In postponing the decision about task orderings, only the es-

sential ordering decisions are stored and plans are represented as a partially-ordered set of

tasks instead of committing prematurely to a totally-ordered sequence of tasks. Parameter

binding decisions are also delayed so that task parameters are only grounded as required

for causal links [30].

A partial-order plan is represented as a tuple π = {T,L,P} where T ⊆ T is a set of

tasks, L is the set of causal links, and P is the set of precedence constraints (≺) on T. A

causal link is a relationship between two tasks, τi and τj , meaning that a simple condition

cvk ≡ [vk = x] of τj is supported by a simple effect evk ≡ vk ← x of τi. The causal link is

represented by τi
vk−→ τj and creates the constraint that τi must complete before τj can start.

A precedence constraint τi ≺ τj is a temporal relationship between two tasks, τi and τj ,

that enforces that τi must complete before τj starts. When considering the ordering of tasks,

a causal link is specific type of precedence constraint. Each partial-order plan represents a

set of one or more total-order plans.

Partial-order planners search through a space of plans, where each node in the search

represents a partial-order plan and each edge represents plan refinement operations such as

adding a task [30]. The planner starts by creating a fictitious task τG whose conditions are

the conditions of G and then creates a root node where the partial-order plan it represents

contains only τG (π0 = {{τG}, ∅, ∅}). The planner also creates a fictitious task τinit whose

effects are the simple effects needed to create the initial state sinit.

At each stage of planning, a partial-order planner chooses a node in the search tree and

determines what flaws that node has. A flaw is something that prevents a partial-order plan

from being a solution to the planning problem.

The first type of flaw is an open link where one of the simple conditions cvk from a task

τj in the partial-order plan does not have a causal link to support it. This can be resolved

by creating a causal link from a task τi to τj over the state variable vk (τi
vk−→ τj). The task

τi can either already be in the plan (τi ∈ T) or be a new task that is added (τi /∈ T; τi ∈ T ).

14



The second type of flaw is a threat, which is a conflict between a task τk added to the

plan and a causal link (τi
vy−→ τj). This conflict is created when a simple effect of the task

τk modifies a state variable away from the value needed for the causal link and there is

no temporal relationship between τk and either τi or τj that would prevent it from doing

so. A threat from task τk on causal link τi
vy−→ τj can be resolved through either adding a

precedence constraint τk ≺ τi known as a promotion or τj ≺ τk known as a demotion.

Figure 2.1: Caricature of a partial-order plan.

We show a caricature of an example partial-order plan in Figure 2.1. In this exam-

ple partial-order plan, four tasks have been added through four causal links, however τ2

changes vp as one of its effects. As the causal link between τsinit and τ1 is over vp this

creates a threat on that causal link. As such, τ2 was promoted through the precedence

constraint τ1 ≺ τ2 which resolves the threat and creates a flaw free partial-order plan.

Partial-order planners search by heuristically determining which node in the search tree

to expand, which flaw to resolve for that node, and then how to resolve the selected flaw.

The result of the resolution creates a new node in the tree. A solution is found a partial-

order plan is created that contains τinit and there are no remaining flaws. This is, all tasks’

conditions have been satisfied through causal links and there are no remaining threats. As

such, partial-order planning performs a plan-based, backward search, refining partial-order

plans through the addition of tasks, causal links, and precedence constraints.

15



2.2.2 Scheduling

Scheduling is the process of reasoning about how a given set of tasks with temporal con-

straints can be executed in a limited or minimized amount of time. As such, the objective

of a scheduler is generate a schedule as an assignment of start and completion time points

for each task while taking into account any deadlines or predefined orderings of tasks. The

main conceptual difference between planning and scheduling is that for scheduling the set

of tasks are known in advance whereas planning determines what tasks should be executed

based on the causality of conditions and effects.

2.2.3 Temporal Planning

Temporal planning integrates task planning with scheduling. The temporal planning prob-

lem utilizes the same problem input as task planning with the exception that tasks also

contain a predefined duration and are known as durative tasks. Additionally, temporal plan-

ning introduces added complexity as durative tasks can be executed concurrently as long as

there are no causality-based ordering between them. The solution to a temporal planning

problem is a plan as a set of tasks and a schedule. This naturally lends itself to partial-order

planning and led to a number of temporal planners that integrate a partial-order planner

with a scheduler.

2.2.4 Hierarchical Planning

The two primary issues of the approaches to the planning problems discussed so far are

scalability and the lack of ability to incorporate domain expert procedural knowledge. Plan-

ning problems are NP-Hard and quickly escalate in difficulty as more tasks and state prop-

erties are defined. On the other hand, while domain expertise can be used in heuristics for

selecting single tasks or orderings under the previous problems there is no way to utilize

domain expertise to include multiple tasks with previously known causality and temporal

relationships (i.e. a known procedure). These observations motivated the use of abstrac-

16



tion mechanisms in planning, which is usually divided into two categories: approaches that

utilize abstraction for the representation and reasoning about states, and approaches that

utilize abstract hierarchies on tasks [28]. We will focus on the problem when abstractions

are utilized for hierarchies on tasks. More details about approaches that utilize abstraction

with states can be found in [28] and [31].

The idea behind utilizing hierarchical abstraction tasks comes from a simple question:

why synthesize the tasks to be used within a plan one at a time if there is available knowl-

edge (e.g., recorded domain expertise) on how to achieve one or more of the conditions in

the goal. This leads to the concepts of abstract tasks and primitive tasks. A primitive task

is the same as the tasks that we have been discussing up until now. An abstract task τ in

addition to the features of a primitive task (e.g., conditions, effects, duration) also has a set

of methods. A method contains either a totally-ordered or partially-ordered plan that must

be supported by the conditions of τ and when executed achieves the effects of τ . A method

can contain both abstract tasks and primitive tasks. Converting an abstract task to one of its

methods is called decomposition.

Instead of starting with an initial state and trying to find a sequence/set of tasks that

when executed satisfy the conditions of a goal like the previous planning problems, hier-

archical planning starts with an initial plan with one or more abstract tasks. The job of a

hierarchical planner is to recursively decompose the abstract tasks in the plan by selecting

which method to use for each until there are only primitive tasks in the plan. This approach

to planning has been subsumed under the name Hierarchical Task Networks (HTNs) plan-

ning.

2.2.5 Multi-Agent Planning

While task planning usually considers just a singular agent, multi-agent planning focuses

on synthesizing a plan when there are multiple agents that can participate in the plan. As

such, multi-agent planning integrates elements from task planning, task allocation, and

17



scheduling. For our purposes, it should be noted that a multi-agent planning problem can

be cast as a temporal planning problem by including features of the agents as state variables.

Further information about multi-agent planning can be found in [6].

2.3 Related Work

Due to better modeling of real-world problems which typically involve both task planning

and scheduling, in recent years temporal planning has become a more central interest of

the planning community.

Younes and Simmons [32] developed Versatile Heuristic Partial-Order Planning (VH-

POP) which is able to utilize durative tasks within partial-order planning and utilizes a

Simple Temporal Network (STN) [33] to reason about temporal information. However,

VHPOP suffers from some of the problems encountered in earlier partial-order planners

and its performance scales poorly in many domains.

Schattenberg et al. [28] present Planning and Acting in a Network Decomposition Ar-

chitecture (PANDA) as an architecture for planning and scheduling. Panda utilizes a lifted

hierarchical planner while reasoning in plan space. Panda only supports limited qualitative

time and has been demonstrated to have limited scalability [34].

Eyerich et al. [35] extended the popular classical planner Fast Downward [36] to search

through a space of time-stamped states and splits tasks into instantaneous start tasks and

instantaneous compressed tasks which are sequenced.

Coles et al. developed POPF [18] as a temporal planner that uses a partial-order plan

construction within a forward-chaining framework, working with time, numbers, and con-

tinuous effects. POPF creates a frontier state at each step of the plan to determine the appli-

cable tasks and relaxes the least-commitment of task order decisions to a late-commitment

approach where newly applied tasks cannot come before the frontier state. They ensure

completeness as the search backtracks to find an alternative plan when necessary.

Benton et al. developed Optimizing Preferences and TIme-dependent Costs (OPTIC) [16]

18



as an extension of POPF that handles soft constraints and preferences. OPTIC has been

demonstrated to be one of the most effective planners in many domains due to its speed

at generating successor states during search and the use of effective temporal domain-

independent heuristics [37]. It was used as the baseline approach for the most recent tem-

poral track of the International Planning Competition (IPC) [20].

Sapena et al. developed TFLAP [37, 15] as temporal planner that similarly uses a

partial-order plan construction within a forward-chaining framework, but unlike POPF/OP-

TIC TFLAP does not require the frontier state to determine the tasks that can be applied to

a plan. This fully utilizes the least-commitment approach for ordering tasks and reduces the

need for backtracking when building a solution. TFLAP uses a combination of a Domain

Transition Graph (DTG) [36], the traditional Fast Forward (FF) heuristic hFF [38], and a

landmark graph-based heuristic for guiding its search, however it doesn’t use any temporal

information in any of its heuristics.

2.4 Forward Chaining Partial-Order Planner

As temporal planning has become a more central interest of the planning community, in-

vestigation began into ways to improve the speed of POP due to its abilities to create plans

that are more temporally flexible and to better handle concurrent tasks than state-based

planners. Combining POP with grounded forward chaining has shown to maintain some

of the benefits of POP while exploiting the speed and informed state heuristics of forward

chaining.

Forward Chaining Partial-Order Planner (FCPOP) is our variant of combing forward

chaining with partial-order planning. FCPOP removes the delayed parameter binding of

POP by grounding the operator descriptions into parameterized instances known as tasks

before search, but fully utilizes the delayed task ordering commitment from POP and does

not create a frontier state for determining which tasks can be added to a plan. This allows

tasks to be added to any point of the plan and reduces the amount of backtracking needed

19



during search. As such, the forward search can be viewed as a commitment to a set of

tasks and not to the order of their application [15]. Furthermore, it interleaves algorithms

for task planning and scheduling with each affecting different aspects of the search (See

Figure 2.2).

Figure 2.2: Diagram of the components that each of the task planning layer and scheduling
layer contribute to in FCPOP.

FCPOP implements an A∗ search through plan space where each node of the tree is a

partial-order plan. For each timed-initial-literal, a fictitious task τtil is created. This task

starts at time 0 and lasts until the time at which the timed-initial-literal would happen.

The task has no preconditions and a single effect for setting the specific fluent from the

timed-initial-literal. FCPOP also creates fictitious tasks for the initial state (τinit) and the

goal conditions (τG). The search starts at a the root node which contains a partial-order

plan π0 = ⟨{τinit}, ∅, ∅⟩ with the fictitious task τinit and no causal links or precedence

constraints. The processes of expanding a node for FCPOP is shown in Algorithm 1.

During the expansion of a node π, the fictitious task τG is checked for whether it can

be added to the partial-order plan from the expanding node. If causal links can be created

from the tasks currently in π to support the preconditions of τG then a new partial-order

plan is created for each possible combination of causal links that supports τG. Each of

20



Algorithm 1: FCPOP Node Expansion
Input: π, The node to expand; T , The set of grounded tasks

1 if causal links can be created from the actions in π to support task τG then
2 P ← list of partial-order plans from adding τG to π using Algorithm 2
3 if |P | > 0 then
4 πbest ← NULL
5 Cbest ←∞
6 foreach partial-order plan π′ ∈ P do
7 if a temporally consistent STN can be computed from π′ then
8 σ′ ← the consistent STN computed from π′

9 C ′ ← the time taken to execute the plan as computed by σ′

10 if C ′ < Cbest then
11 πbest ← π′

12 Cbest ← C ′

13 if πbest ̸= NULL then
14 πbest is the solution to the planning problem

15 for task τ ∈ T do
16 P ← a list of partial-order plans from adding τ to π through Algorithm 2
17 foreach partial-order plan π′ ∈ P do
18 add π′ as child node of π′

the partial-order plans is converted to a Simple Temporal Network (STN) [33] which will

be explained below. From the STN, the fastest schedule that can be created from the new

partial-order plan is calculated. The partial-order plan that can create the fastest schedule

and now contains τG is the solution.

If τG cannot be added to the partial-order plan of π then FCPOP determines which

tasks can be added. a task is only feasible to add if causal links can be created from the

tasks currently in π to support the new task’s preconditions. It is possible there are more

than one combination of causal links that support adding the new task. For each of these

combinations, the planner determines what threats are created by adding the task, and then

if all of the threats are resolvable through precedence constraints. For each combination

where all threats are resolvable, a new child node is created with the addition of the new

task, the specific combination of causal links, and the precedence constraints needed to

21



Algorithm 2: FCPOP Adding a Task to a Partial-Order Plan
Input: π, A partial-order plan; τ , A durative task
Output: P , A list of partial-order plans

1 P ← []
2 if causal links can be created from the tasks in π to support τ then
3 L← a list of the causal link combinations for adding τ to π
4 foreach causal link combination l ∈ L do
5 T ←a list of the threats from adding τ and l to π
6 P ← []
7 foreach threat t ∈ T do
8 if t can be resolved through an ordering constraint then
9 add the precedence constraint that resolves t to P

10 else
11 break

12 if All threats were resolvable then
13 π′ ← copy of π
14 add τ, l,P to π′

15 add π′ to P ;

16 return P

resolve the resulting threats3.

The process of adding a task to a partial-order plan is shown in Algorithm 2. This pro-

cess uses elements of POP in adding causal links and resolving threats through precedence

constraints; however, it performs forward chaining instead of backwards reasoning. Also,

each node in the search tree, unlike traditional POP, is a flaw-free partial-order plan.

For each new node a Simple Temporal Network (STN) [33], as a labeled directed graph,

is created. In creating this STN, each durative task from the current partial-order plan is

split into two instantaneous tasks representing the start and end of the task. A vertex is

created for each of these instantaneous tasks. Edges are added between the start and end

instantaneous tasks from the same durative task for the lower and upper bounds on the task’s

duration. Edges are also added between an end instantaneous task and a start instantaneous

task if there is an precedence constraint or causal link between them. As such, the partial-
3Empirically, for most planning problems there are not a lot of different causal link combination for

adding a single task, however for problems where the number of combination reduces efficiency, FCPOP can
be set to only add the X best causal link combinations with X being a user defined parameter.

22



order plan and the STN shared the constraints between tasks.

Computing a shortest path from the vertex representing τinit identifies the earliest pos-

sible time at which the instantaneous task could occur. This can be used to determine a

timestamp for each of the instantaneous tasks and to create a schedule. If a negative cycle

is found in the STN then the plan is temporally inconsistent, meaning that a task would

have be executed before itself. In this case, the cost of the node is set to infinite and a

heuristic is not calculate, so that the node is never expanded. If the plan is consistent then

the path cost of the node is the total time taken by executing the schedule. Simulating the

effects of the tasks in the schedule creates a frontier state which can be used for heuristic

evaluation.

The frontier state is used as the initial state for a temporal state-based heuristic. FCPOP

uses a modified variant of the Temporal Relaxed Planning Graph (TRPG) from [16] in

which layers can have fluents that contain values from finite domains of mutually exclusive

values. For these fluents, the label contains timestamps of the transitions between values

and each fact is assumed to simultaneously be all achieved values. This still relaxes the

planning and the heuristic results in a relaxed plan. The amount of time need to execute the

relaxed plan is computed and is used as the heuristic value for the current node.

During the search process it is possible for a node to be generated that has the same

plan as a node already in the tree which is a common problem in most forward-search

planners [15]. FCPOP uses a memoization technique to avoid this issue. As all the suc-

cessors are generated for each expanded node, FCPOP’s planning algorithm is sound and

complete.

2.5 Forward Chaining Hierarchical Partial-Order Planner

While task and temporal planner focus on achieving a goal, hierarchical planners focus on

taking an initial plan of abstract tasks or tasks and decomposing them into less abstract

tasks until create a plan of tasks that can no longer be decomposed. As part of the plan-

23



Algorithm 3: FCHPOP Node Expansion
Input: π, The node to expand; Tp, The set of grounded primitive tasks; Ta, The set

of grounded abstract tasks
1 Add primitive tasks using Algorithm 1
2 Add abstract tasks as if they were primitive tasks using Algorithm 1
3 Tπ ← the abstract tasks in π
4 for abstract task τa ∈ Tπ do
5 M← the methods of τa
6 foreach method m ∈M do
7 P ← a list of partial-order plans by adding m to π using Algorithm 4
8 foreach partial-order plan π′ ∈ P do
9 add π′ as a child node of π

ning process the planners are provided with plan fragments, also known as methods, that

are intended to implement a specific abstract task. These methods usually also contain

further abstract tasks, so substitutions of methods for abstract tasks has to be performed

recursively. This substitution step is called a decomposition of the abstract task and creates

a corresponding hierarchy on the tasks such that tasks in the method are considered less

abstract than the substituted abstrtask task. When a task cannot be decomposed any further

it is called a primitive task, which corresponds to the task from task or temporal planning.

Generally there are more than one possible methods for an abstract task. Over time, this

form of planning has been subsumed under the label Hierarchical Task Networks (HTNs)

planning [28].

Forward Chaining Hierarchical Partial-Order Planner (FCHPOP) extends FCPOP to use

hierarchical information. Previously described durative tasks will be known as primitive

tasks for FCHPOP. FCHPOP also uses higher-level tasks known as abstract tasks which

can refined into a partial-order plan of tasks (both primitive and abstract).

FCHPOP, as with FCPOP, builds a tree of nodes that contain partial-order plans. The

main difference is when FCHPOP expands a node, in addition to adding primitive tasks

to the partial-order plan as in FCPOP, it can add the highest-level abstract tasks to partial-

order plans, and decompose already included abstract tasks as shown in Algorithm 3. FCH-

24



Algorithm 4: FCHPOP Adding the Method from an Abstract Task to a Partial-
Order Plan

Input: π, A partial-order plan; m, A method from an abstract task
Output: P , A list of partial-order plans

1 πm ← the partial-order plan from m
2 Tm ← the list of tasks (both abstract and primitive) from πm
3 Lm ← the list of causal links from πm
4 Pm ← the list of precedence constraints from πm
5 π′ ← copy of π
6 add Lm and Pm to π′

7 sort Tm based on Pm and Lm
8 P ← [π′]
9 for task τ ∈ Tm do

10 Lτ ← a list of combinations of causal links to support the unsupported
preconditions of τ

11 Pτ ← []
12 foreach partial-order plan π′ ∈ P do
13 foreach causal link combination l ∈ La do
14 Tl ← a list of the threats from adding τ and l to π′

15 Pl ← []
16 foreach threat t ∈ Tl do
17 if t can be resolved through a precedence constraint then
18 add the precedence constraint that resolves t to Pl
19 else
20 break

21 if All threats were resolvable then
22 πl ← copy of π′

23 add τ, l,Pl to πl
24 add πl to Pa;

25 P ← Pτ

POP still adds the primitive tasks as part of the expansion in order to maintain the ability to

solve problems that cannot be solved solely with the highest level abstract task and maintain

completeness.

An abstract task can have multiple methods. The abstract task can be refined into each

of these methods. Adding a specific method to a partial-order plan is shown in Algo-

rithm 4. Each method m contains a partial-order plan πm containing tasks (both abstract

and primitive), causal links, and precedence constraints. When a method m is added to

25



a partial-order plan π, the causal links and precedence constraints from πm are added to

π. The list of tasks from πm are topologically sorted based on the causal links and prece-

dence constraints. Each task is added to π in a similar manner to Algorithm 2. The main

difference is a task originally from πm may have preconditions that are supported by the

causal links from πm and so new causal links to support these preconditions are not cre-

ated. Adding these tasks may still cause threats upon the causal links that were originally

from π and so new precedence constraints may need to be added. Each of the partial-order

plans generated from this process is added as a child node to π. The path cost and heuristic

for these nodes are calculated in the same way as for FCPOP using the STN and modified

TRPG.

2.6 Experimental Evaluations

2.6.1 Forward Chaining Partial-Order Planner

In order to evaluate the performance of FCPOP, we use eight of the nine benchmarks from

the 2018 International Planning Competition’s (IPC) temporal track [20] and compare the

results of FCPOP against state-of-the-art temporal planners in OPTIC [16] and TFLAP [15,

39], the version of FLAP used for 2018 IPC’s temporal track. The road traffic accident

domain was removed as neither OPTIC nor TFLAP completed any of the problems for it

in the competitions. Each domain has 10 problems, so there are 80 benchmark problems

in all. As with the 2018 IPC competition, each planner was given 30 minutes and 8 GB of

available memory to utilize for each experiment.

Table 2.1 shows how many problems each of the three planners (FCPOP, TFLAP, and

OPTIC) solved for each domain as well as the total number of problems that each planner

solved. Figure 2.3 shows how the plans created by TFLAP and OPTIC compared to the

plans created by FCPOP in terms of makespan. In order to make the data easier to under-

stand, the difference in the makespan of the plan created by either OPTIC or TFLAP and

the makespan of the plan created by FCPOP is displayed. As such, y = 0 corresponds

26



Table 2.1: Number of problems solved for each domains. Red denotes the best value for a
row.

Domain FCPOP TFLAP OPTIC
Airport 9 9 3
Cushing 7 3 10
Floortile 6 3 0
Mapanalyser 9 8 0
Parking 10 10 8
Quantum Circuit 9 8 8
Sokoban 5 4 3
Trucks 10 10 10
Total (80) 65 55 42
Coverage 79.2% 68.75% 52.5%

to the makespan of plans created by FCPOP and points above y = 0 are plans created by

TFLAP or OPTIC with longer makespans and below are plans they created with shorter

makespans. Figure 2.4 shows the planning speed of TFLAP and OPTIC compared to the

planning speed of FCPOP. The difference in the time taken to plan by TFLAP or OPTIC

and the time taken to plan by FCPOP is shown. y = 0 corresponds to the planning time of

FCPOP and points above y = 0 are problems in which TFLAP or OPTIC were slower and

below are problems in which they were faster. For both figures, only problems that FCPOP

and at least one other planner solved are shown.

Figure 2.3: y = 0 corresponds to the makespan of plans created by FCPOP and points
above y = 0 are plans created by TFLAP or OPTIC with longer makespans and below are
plans they created with shorter makespans.

As can be observed in Table 2.1, OPTIC solved more problems in the cushing domain

27



Figure 2.4: y = 0 corresponds to the planning time of FCPOP and points above y = 0 are
problems in which TFLAP or OPTIC were slower and below are problems in which they
were faster.

than FCPOP; however, FCPOP solved the same number or more problems in all other

domains and solved more problems overall. Also on problems that both FCPOP and OPTIC

solved, FCPOP created plans with a better makespan on 66.5% of them and made plans

that on average had 83.6% of the makespan of the ones that OPTIC created. These results

are likely due in part to FCPOP using a non-relaxed delayed task ordering which makes

FCPOP more flexible in how it constructs plans. As it can add a task anywhere in the plan,

as opposed to only after the frontier state, this allows for less backtracking and plans with

shorter makespans.

OPTIC uses Enhanced Hill Climbing (EHC) as its primary search algorithm, which

lets it create a fast, but often lower quality first plan [15]. If EHC cannot find a solution

then it switches to a best first search, which unlike FCPOP’s A∗ search, does not take the

cost of a node into account when deciding if it should be expanded. This results in nodes

that are heuristically close to the goal to be expanded even if the cost of the corresponding

partial-order plan is large.

While FCPOP created better plans more than half of the time, OPTIC was faster for

69.2% of the problems that both planners solved. This is likely due to extra computation

time being needed by FCPOP in expanding a node. First, OPTIC can check whether the

precondition of a task holds in the frontier much quicker than FCPOP can determine if the

28



task can be placed anywhere in the plan. Second, OPTIC does not need to check for and

resolve threats when adding a new task, as the new task is placed after any other tasks that

it could have conflicts with. Third, the number of tasks that can be supported by a frontier

state is fewer than the number of tasks that be supported throughout a partial-order plan

and so OPTIC’s branching facter is smaller. These all lead to FCPOP taking about 2.5x the

amount of time OPTIC took to plan on average.

In all domains, FCPOP solved the same number or more problems than TFLAP result-

ing in FCPOP solving more problem overall. Also, FCPOP created a plan for 94.5% of

the problems that TFLAP solved. While TFLAP similarly does not relax the delay task

ordering, it does not use a temporal heuristic and uses a different algorithm for scheduling.

TFLAP uses heuristics and path costs that are based on the number of tasks in the plan.

This can lead to TFLAP creating a plan with fewer tasks, but a longer makespan. Also,

due to a lack of temporal information in its search guidance, domains with dead-ends cause

TFLAP to encounter plateaus and get stuck in areas of the plan space. FCPOP was also

faster than TFLAP on 70.9% of the problems that both solved. FCPOP took on average

86.4% of the time that TFLAP took to solve a problem. This also is likely due to FCPOP

having a temporal heuristic that allows it a more guided search and lets it search less of the

space before finding a solution.

2.6.2 Forward Chaining Hierarchical Partial-Order Planner

FCHPOP was tested on the satellite domain first introduced in the 2002 IPC [28], the

survivors domain presented in [19], and the turn and open domain which was in the 2011

IPC [23]. For each of the three domains a random generator was used to create a non-

hierarchical version and a hierarchical version of the domain and problem.

The satellite domain involves gathering data from a number of scientific imaging instru-

ments on a number of satellites and sending the data to earth. The random generator varies

the number of satellites, instruments, stars, planets, interesting phenomena and imaging

29



modes. The hierarchical tasks allow for domain knowledge to be given to the planner and

for it to use premade procedures for sets of tasks that would be repeated.

The survivors domain involves sending teams of robots to rescue survivors of a natural

disaster and bring them to hospitals. In this domain, the hierarchical tasks allow for plan-

ning for the teams as opposed to planning for the individual robots and for zones instead

of individual locations. The random generator varies the numbers of teams, hospitals, and

survivors as well as the positions of the hospitals and the survivors.

The turn and open domain has a number of robots with two gripper hands, multiple

rooms with balls that need to be transported, and doors that must be opened between the

rooms. The random generator varies the number of robots, balls, and rooms, which adjacent

rooms have doors connecting them, and whether doors are open or closed in the initial state.

For each domain, 20 problems were randomly generated. For each problem FCHPOP

planned for the hierarchical version of the problem and FCPOP planned for the problem

with just the primitive tasks. These experiments were all given 30 minutes to plan and 8

GB of memory.

Figure 2.5: Comparison of FCPOP and FCHPOP in terms of plan makespan

FCHPOP on average took 28.1% of the time that FCPOP did for the same problem.

FCHPOP also explored 20.8% of the number of nodes and visited 9.2% of the number of

nodes that FCPOP did. Using the abstract tasks significantly reduces the number of nodes

the FCHPOP needs to visit and explore to solve the problem, which in turn reduces the

amount of time need to solve the problem.

30



Figure 2.6: Comparision of FCPOP and FCHPOP in terms of planning time

Figure 2.7: Comparison of FCPOP and FCHPOP in terms of number of nodes visited and
explored

One of the reasons for this is that abstract tasks provide domain specific information

about how a procedure could be done. In a two level hierarchy such as in the satellite do-

main, adding and refining an abstract task involves two node expansions, whereas creating

the same effect on the plan without abstract task would require an expansion per task to be

added. This effect compounds if an abstract task is added multiple times. In the satellite

domain for instance many of the plans repeatedly turn a satellite towards a target, calibrate

an image instrument, collect an image, point towards Earth, and then send the data to Earth.

For each time this is done, FCPOP has to expand four nodes whereas FCHPOP only needs

to expand two. With different combinations of hierarchical levels and number of tasks in

a method, the ratio of nodes FCHPOP to nodes FCPOP need to expand to solve the same

subproblem changes, but generally FCHPOP needs fewer expansions. This is an advantage

31



of providing expert domain knowledge. The drawback to this is that if there is a better way

to solve a subproblem than the methods in FCHPOP’s abstract task then FCHPOP may

ignore the better way to solve it and use the precomputed methods of an abstract task. This

led to FCPOP creating plans with better makespans in some of the problems.

Another reason that FCHPOP was generally faster than FCPOP in the survivors domain

was using the hierarchy of the abstract tasks to plan for teams of robots instead of individual

robots and for zones instead of individual locations. By creating the hierarchy in this way

teams of robots could share a common goal and move together without needed to compute

each individual robot’s tasks separately. This combined with the previously mentioned

procedure led to significant speed up in the speed of planning as well as reducing the

number of nodes visited and explored.

2.7 Discussion & Conclusion

We presented two new planning algorithms in FCPOP and FCHPOP, which generate time

flexible plans with concurrent tasks. FCPOP combines grounded forward chaining with

partial-order planning, fully utilizes the delayed task ordering component of the least-

commitment philosophy, and uses a temporal state-based heuristic in a modified version

of the Temporal Relaxed Planning Graph. This results in our planner being able to cre-

ate plans with shorter makespans while still being fast. FCPOP is shown empirically to

make plans with equal or shorter makespan than state-of-the-art temporal planners most

of the time. FCHPOP builds upon FCPOP by adding hierarchical information in the form

of abstract tasks that can be recursively refined. This is shown to speed up the planning

process and reduce the number of nodes that need to be visited and explored, all while still

generating high quality plans.

However, FCPOP and FCHPOP do have their limitations and there are open questions

left to explore. First, while multi-agent planning problems can be cast as temporal plan-

ning problems, which allows both planners to solve multi-agent planning problems, FCPOP

32



and FCHPOP cannot handle allocating arbitrary teams of robots to tasks. This means that

FCPOP and FCHPOP create a grounded task for each combination of robots that can par-

ticipate in a task and as a result FCPOP and FCHPOP do not scale well for coalition-based

multi-agent planning. Second, while FCPOP and FCHPOP can utilize finite-domained

state variables, they cannot handle numerical state variables, which are fairly prevalent in

robotics domains. OPTIC handles linear continuous equations and some simple numerical

operations on state variables by utilizing a numerical solver as part of their scheduling al-

gorithm, so a similar approach can be utilized to gain this capability. Third, FCPOP and

FCHPOP assume a fully-observable closed-world deterministic environment. By produc-

ing a partial-order plan that can be easily converted to an STN, there is some flexibility

in the solution for the starting and completion time points. However, real world robotics

domains tend to have uncertainty caused by numerous sources.

33



CHAPTER 3

INTERLEAVING TASK ALLOCATION, SCHEDULING, AND MOTION

PLANNING

3.1 Introduction

Whereas in the previous chapter, we focused on interleaving task planning and scheduling

for temporal planning, we now transition to another subset of our holistic multi-robot coor-

dination problem. In this chapter, we focus on interleaving task allocation, scheduling, and

motion planning for a problem known as trait-based time-extended task allocation1. As

part of this focus, we introduce a novel framework consisting of three interconnected mod-

ules - task allocation, scheduling, and motion planning. A key attribute of our framework

is effective information exchange among the different modules through shared constraints

(see Figure 3.1). In contrast to solving these problems in sequence, our interleaved ap-

proach enables efficient generation of allocations, schedules, and motion plans that do not

conflict with each other. We demonstrate that our interleaved approach improves allocation

quality, scheduling efficiency, and overall computational efficiency.

In addition, we make specific contributions to task allocation for heterogeneous multi-

robot teams. Specifically, we introduce a search-based approach to task allocation, named

Incremental Task Allocation Graph Search (ITAGS). ITAGS computes an allocation of

robots to tasks while simultaneously optimizing the satisfaction of task requirements and

the makespan (i.e. execution time) of the associated schedule.

We leverage recent advances in instantaneous task allocation [40, 41], and model our

1The material in this chapter is based on:
G. Neville*, A. Messing*, H. Ravichandar, S. Hutchinson, and S. Chernova, “An Interleaved Approach to
Trait-based Task Allocation and Scheduling,” International Conference on Intelligent Robots and Systems,
2021.

*Co-First Authors

34



task requirements in terms of the traits (i.e. capabilities) required for each task. Such trait-

based specifications do not require the user to explicitly specify the relationships between

each task and robot, allowing for generalization to different types of robots and to different

types of tasks.

We enable effective interleaving of task allocation, scheduling, and motion planning by

introducing a convex combination of two heuristics in our iterative search algorithm. The

first heuristic measures how well the current allocation satisfies the specified trait require-

ments. The second heuristic measures the efficiency of the schedule associated with the

current allocation. We note that our second heuristic accounts for both the feasibility and

duration of all motion plans when evaluating a schedule.

Combined, our two heuristics allow ITAGS to prune branches of the incremental task al-

location graph that are infeasible to execute due to constraint violations either in scheduling

or motion planning. Such pruning allows ITAGS to prefer satisficing incremental alloca-

tions, resulting in significant improvements in overall computational efficiency and solution

quality. Further, we provide practical insights into the relative influence of each of the two

heuristics on ITAG’s performance.

To illustrate the impact of our contributions to the robotics community, we evaluate

our framework using experiments in a simulated emergency response domain. Firstly, our

experiments systematically investigate both individual and combined effects of the two

heuristics in terms of convergence, computational cost, makespan, and search efficiency.

Secondly, we compare the proposed framework against a baseline approach that does not

interleave allocation, scheduling, and motion planning. Thirdly, we compare the proposed

framework against two recent state-of-the-art task allocation algorithms. The results of

these evaluations conclusively demonstrate the efficacy and necessity of our framework.

35



3.2 Related Work

A rich body of work has addressed the multi-robot task allocation (MRTA) problem [42,

43] and the closely-related scheduling problem [44]. Our work addresses a variant of the

MRTA problem that involves single-task (ST) robots, multi-robot (MR) tasks, and time-

extended allocation (TA). As such, we limit our discussion of related work to methods that

address the ST-MR-TA variant of MRTA.

A popular approach to solve the ST-MR-TA problem has been the use of auction-based

methods in which robots and tasks are matched using a bidding process based on models

of how well each robot can perform each task [45, 46, 47, 48]. However, these methods

require that each multi-robot task be decomposed into multiple single-robot tasks or that

the user specifies the distribution of robots for each task. Additionally, they either sched-

ule tasks then allocate them or vise versa. ITAGS, on the other hand, does not require

decomposition of tasks nor a specification on the number of robots needed for each task,

and it interleaves task allocation and scheduling, which allows it to create more efficient

schedules than possible when operating sequentially.

Optimization methods, while primarily used for solving scheduling and ST-SR-TA vari-

ant of the MRTA problem (see [42] for more information on the ST-SR-TA problem), have

also been utilized to solve the ST-MR-TA problem [49, 50, 51]. Optimization-based ap-

proaches typically cast task allocation as a mixed-integer linear program. However, each

of these approaches either does not require all tasks to be completed or requires decompo-

sition of multi-robot tasks. In comparison, ITAGS requires that all tasks be accomplished

and does not require the decomposition of tasks.

Recent efforts have formulated the ST-MR-TA problem as tree and graph-search prob-

lems [52, 53]. Both of the approaches in [52] and [53] first schedule tasks into a sequence

of temporal windows and then allocate robots to these tasks. ITAGS also conducts a tree

search, however, does not use temporal windows, which allows for a higher amount of

36



concurrency between tasks, and simultaneously considers both scheduling and allocation

through its heuristics.

Some authors have proposed using processor scheduling techniques to solve the ST-

MR-TA problem [54, 55]. Recently, Capezzuto et al. [55] proposed Coalition Formation

with Improved Look-Ahead (CFLA2) and Cluster-based Coalition Formation (CCF), two

algorithms based on processor scheduling techniques, to solve what they call the Coalition

Formation with Spatial and Temporal Constraints Problem (CFSTP). These approaches do

not require all tasks to be completed when they allocate. On the other hand, ITAGS ensures

that all tasks are executed.

While the methods discussed thus far have numerous advantages, a common limitation

is that they assume that the desired behavior is specified in terms of an optimal robot dis-

tribution or a utility function describing how well each robot can perform each task. In

contrast, recent advances have enabled modeling of task requirements in terms of desired

trait distributions [56, 40, 41]. These trait-based models are more robust to changes in the

number of robots. However, the existing approaches presented in [56, 40] are limited to

binary traits. These binary traits are less expressive than continuous traits and lead to less

robust models of the agents in a multi-agent team. In addition, the approaches presented

in [40, 41] are limited to the ST-MR-IA (instantaneous allocation) problem. They do not

consider scheduling, making these solutions unable to handle the time-extended domain of

our problems. We take inspiration from these methods and propose an approach for con-

tinuous trait-based ST-MR-TA that simultaneously solves task allocation, scheduling, and

motion planning.

3.3 Problem Description

Assigning tasks to the different robots and coalitions requires reasoning about their comple-

mentary traits and the team’s limited resources. These assignments must also respect robot

motion planning and scheduling. In this section, we discuss the formulation of a trait-based

37



time-extended task allocation problem in two parts. First, we present the elements of the

problem domain. Second, we describe the format of a solution in this domain.

3.3.1 Problem Domain

Consider a heterogeneous team of K robots, where each robot is defined by its abilities or

traits, which are modeled as continuous variables. Each robot’s traits are defined as

q(i) =
[
q(i)
1 , q(i)

2 , · · · ,q
(i)
U

]

where q(i)
u ∈ R+ corresponds to the uth trait for the ith robot. If the ith robot does not have

the uth trait (e.g. firetrucks have a water capacity, but other robots may not) then q(i)
u = 0,

otherwise it is a positive value. The traits of the entire team are defined by the robot trait

matrix

Q =
[
q(1)⊺ , · · · , q(K)⊺

]⊺ ∈ RK×U
+

with each row corresponding to one robot and each column corresponding to one trait.

A Task Network is a directed graph G = (V,E). The vertices V represent a set of

tasks. The edges E connect tasks such that an edge e = τi → τj τi, τj ∈ V represents a

precedence constraint (τi ≺ τj), or a relationship that ensures that τi concludes before τj

starts [30].

Given the robot trait matrix Q, the team is required to accomplish N tasks from a

task network T . Each task in T is defined by the traits required to accomplish it, a static

duration, and its initial and terminal configuration (e.g., to move a box, one or more robots

need to be at the box’s location to start the task and will be at the terminal location of the

move upon finishing it). Robots can either complete tasks individually or collaborate on

tasks as part of a coalition, depending on their traits. The desired traits for a task are defined

as follows:

y(i) =
[
y(i)
1 , y

(i)
2 , · · · , y

(i)
U

]
38



where y(i)
u ∈ R+ is the uth trait requirement for the ith task. If the uth trait is not required

by the ith task then y(i)
u = 0, otherwise it is a positive value. The tasks required by the

entire task network is defined by the desired trait matrix

Y∗ =
[
y(1)⊺ , · · · , y(N)⊺

]⊺ ∈ RN×U
+

with each row corresponding to one task and each column corresponding to one trait.

For a robot to participate in completing a task, it needs a collision-free path through its

configuration space C [57] from its current configuration to the initial configuration of the

task, and then it needs a collision-free path to the terminal configuration of the task. Each

species of robot can have a different free configuration space (e.g. a quadcopter can fly

over obstacles that a ground vehicle cannot).

We define the domain for this problem as the tupleD = ⟨T, Q, Y∗, CT , Ic, W ⟩where

• T is a task network,

• Q is the robot trait matrix,

• Y∗ is the desired trait matrix,

• CT = {
〈
Cinitτ1

, Ctermτ1

〉
, . . . ,

〈
CinitτN

, CtermτN

〉
} is the set of initial and terminal configura-

tion spaces for each task in T ,

• Ic = {c1, . . . , cK} is the set of the initial robot configurations, with one for each robot

• W is the world describing the static geometric information about the environment

3.3.2 Solution Specification

Given the above problem domain, we now introduce the various parts of the solution.

An allocation A for K robots and N tasks is a N ×K matrix where

An
m =


1 if the nth robot is assigned to the kth task.

0 otherwise.

39



Given the problem domain D, we wish to compute a solution S =
〈
Â, X̂, σ̂

〉
where

• Â is an allocation that satisfies the desired traits of T

• X̂ is a set of discrete trajectories, one for each robot; as part of these trajectories,

each robot moves to the tasks it was allocated in the order they were scheduled while

avoiding collisions with other robots and the environment; the other trajectories in the

set represent the movements needed to execute the tasks in T

• σ̂ is a schedule with the minimum makespan C. This schedule includes the time to

execute the motion plans in X and is temporally consistent

3.4 Communication Between Sub-Problems

Our approach involves solving multiple sub-problems and to reduce computation, we ex-

ploit the fact that as each sub-problem is solved constraints are generated on and between

the same shared components (i.e., tasks and robots) and these constraints can be shared

between the layers working on each sub-problem. This approach utilizes both positive con-

straints, which are constraints based on what can be satisfied, and negative constraints,

which are constraints based on what cannot be satisfied. Methods that create positive con-

straints usually have a a database of constraints paired with their satisfying assignment.

This is sometimes known as memoization. Alternatively, methods that create negative con-

straints usually focus on identifying counterexamples.

Additionally, for our approach we expand constraints to their most general context. For

example, if we determine that a specific robot cannot contribute to the execution of a task

because its traits cannot contribute, it is possible that that constraint of “robot r cannot

contribute to task τy” can be generalized to “species s cannot contribute to task τy” or if

we find a motion plan between two configurations for a specific robot it can be utilized by

other robots of the same specifies. Furthermore, if we have 3 species and independently

we determine that all 3 species cannot contribute to a task, we can conclude that the task

cannot be accomplished at all and so the problem is unsolvable. More constraints and

40



generalizations will be discussed in the next section.

3.5 Incremental Task Allocation Graph Search

This section outlines the high-level algorithmic architecture that we use for trait-based time-

extended task allocation for groups of heterogeneous robots. After introducing the high-

level architecture, the following subsections will explain individual layers of the hierarchy.

It is assumed that the task network (T ), desired trait matrix (Y∗), the robot trait matrix

(Q), a set of initial and terminal configurations spaces for the tasks in T (CT ), a set of the

initial robot configurations (Ic), and the world describing the static geometric information

about the environment (W ) are provided as presented in Section 3.3.

The task allocation layer conducts a heuristic graph search through an incremental task

allocation space to find an allocation that satisfies the desired trait requirements of the

task network. During the search, it provides allocations to the scheduling layer, which

informs the heuristic that guides its search and allows it to prune areas of the incremental

task allocation space that are not feasible to schedule. The scheduling layer computes

the schedule with the minimum makespan for each allocation. The motion planning layer

uses a generic motion planner to determine if there is a feasible motion plan between two

configurations for a robot or coalition based on provided configuration spaces as well as

the execution time for the motion plan.

This hierarchical method iterates between the layers until it finds an allocation that sat-

isfies the trait requirements of the task network and is feasible to schedule while respecting

the execution times for the motion plans (see Figure 3.1). It then outputs the task alloca-

tion A, the associated schedule σ, and required motion plans X needed for the schedule.

Algorithm 5 contains the pseudo-code for ITAGS.

41



Figure 3.1: High-level architecture of the hierarchical framework.

3.5.1 Task Allocation

The task allocation layer performs a greedy best-first search through the incremental task

allocation space. In this space, each node represents an allocation of robots to tasks. Each

node is connected to other nodes that differ only by the assignment of a single robot (see

Figure 3.2). This graphical representation allows our search to start from an initial node

with no allocated robots and to incrementally add robots until an allocation that satisfies

the desired trait requirements of the task network is found.

To guide the search, we have developed two heuristics: Allocation Percentage Remain-

ing, which guides the search based on the quality of the allocation, and Normalized Sched-

ule Quality, which guides the search based on the quality of the makespan of the schedule

associated with the allocation. We use a convex combination of the two heuristics, which

we call Time-Extended Task Allocation Quality.

42



Figure 3.2: An example incremental task allocation graph.

Algorithm 5: ITAGS
Input: T , Q, Y∗, CT , Ic, W , α
Output: Â, X̂ , σ̂

1 root← empty allocation
2 pq← PriorityQueue({root})
3 while pq is not empty do

// Identify the node with lowest TETAQ value
4 node← pq.pop()

// Check if the node is a solution
5 if node.apr == 0 and node.nsq <∞ then
6 return node.A, node.X node.σ

// Compute heuristics for each successor
7 for child ∈ generateSuccessors(node) do

// Compute using Equation 3.1
8 child.apr← allocationPercentageRemaining(child, Q, Y∗)

// Compute schedule and motion plan
9 σ, σLB, σUB, X ← schedule(child, T )

// Compute using Equation 3.2
10 child.nsq← normalizedScheduleQuality(σ, σLB, σUB)

// Compute using Equation 3.3
11 child.tetaq = α ∗ child.apr + (1 − α) ∗ child.nsq
12 pq.push(child)

13 return null

43



Allocation Percentage Remaining

Allocation Percentage Remaining (APR) is defined as the percentage trait mismatch error.

Specifically, APR is calculated as

fAPR(À) =
||max(E(À), 0)||1,1

||Y∗||1,1
(3.1)

where À is the allocation that the heuristic is evaluating, E(À) = Y∗ − À Q, and || · ||1,1

is the element-wise l1 norm. In this equation, (ÀQ)i,j is the summation of the jth trait from

each of the robots assigned to the ith task. By taking the difference between the desired trait

matrix Y∗ and ÀQ, we get the trait mismatch matrix E. When Ei,j < 0 then the coalition

assigned to the ith task exceeds the required trait value for the jth trait. An element-wise

max operation is performed between E and the zero matrix. This removes all the values

in E which represent that an allocated coalition exceeds a required trait value and leaves

the values that represent that a required trait value has not yet been met. An element-wise

summation is then performed on the resulting matrix to compute the trait mismatch error.

This error is then normalized by the element-wise summation of the desired trait matrix Y∗

to compute the percentage trait mismatch error. When the error is zero, then the allocation

satisfies the desired traits matrix.

Before search, we can quickly calculate the APR when all robots are assigned to all

tasks. If the value is not zero, then the problem has no solution. Furthermore, upon the first

expansion from the root node, we can quickly determine which species of robots cannot

contribute to each task. These constraints decrease the branching factor for the remainder

of the search, increasing efficiency.

44



Normalized Schedule Quality

Normalized Schedule Quality (NSQ) is a measure of how much an allocation minimizes

the makespan of its accompanying schedule. Specifically, NSQ is calculated as

fNSQ(Cσ̀) =
Cσ̀ − CσLB
CσUB − CσLB

(3.2)

where Cσ is the makespan, or completion time, of the schedule σ, σ̀ is the schedule based

on T and À, σLB is the schedule without any constraints placed on the schedule from the

allocation and motion planning, and σUB is the schedule where the task network is totally-

ordered and all motion plans are assumed to be the longest possible length.

The three variables σ̀, σLB, and σUB are all computed by the scheduling layer. As

NSQ only considers the schedule and not the allocation, it tends to favor a broader search.

This is caused by nodes closer to the root having fewer constraints and, therefore, lower

makespans. This leads to NSQ finding an allocation that satisfies the desired trait require-

ments with the minimum makespan at the expense of searching a much larger area of the

graph.

Time-Extended Task Allocation Quality

Using a convex combination of APR and NSQ, we create a heuristic that considers both

the quality of the allocation as well as the quality of the schedule generated from it. Time-

Extended Task Allocation Quality (TETAQ) is calculated as

fTETAQ(À, Cσ̀) = αfNSQ(Cσ̀) + (1− α)fAPR(À) (3.3)

where α ∈ [0, 1] is a user-specified parameter that controls each heuristic’s relative influ-

ence. If α = 0 then this heuristic is APR, and if α = 1 then the heuristic is NSQ. TETAQ

takes qualities from both to perform a search, which allows it to balance finding an alloca-

45



tion that satisfies the desired traits quickly with finding one that minimizes the makespan

of the assigned robots’ schedule.

3.5.2 Scheduling and Motion Planning

The scheduling layer determines if it is feasible to find a schedule for a task network and an

allocation and provides the makespan used by the heuristics. This layer builds the schedule

based on three temporal components: the static duration of each task, the time needed for

each robot to transition between two successive tasks, and the time needed for the assigned

coalition of robots to execute the movements required to complete the task. To this end, the

scheduling layer provides pairs of configurations to the motion planning layer.

The motion planning layer uses the information received from the scheduling layer

to determine if there is a feasible motion plan between the two configurations. If it can

construct a motion plan, then the motion plan is sent back to the scheduling layer. To

reduce computational costs and reuse motion plans, this layer memoizes the path for each

specific pair of configurations and specific robot or coalition.

As mentioned in the previous section, the memoization creates a positive constraint

containing both the query with the two configurations and the motion plan found. The

motion plan can be utilized by other robots of the same species. Additionally, the motion

planning layer can generate negative constraints if it cannot construct a motion plan (if in-

feasibility can be determined by the motion planning algorithm chosen) or if the motion

planning layer times out. If the motion planning query that failed was for the initial tran-

sition between a robot ri’s initial configuration and its first task τj , then this solely creates

the constraint that robot ri cannot participate in task τj . During the first expansion of the

root node, we can quickly check which specific robots can reach the initial configuration

for a task and determine which robots cannot participate in each task. This reduces the

branching factor for the remainder of the search and increases efficiency. If the motion

planning query was for part of the execution of a task τj , then a constraints can created that

46



states that robot ri’s species cannot participate in task τj . If the motion planning query was

for a transition between tasks τj and τk, then the constraint created states that robot ri’s

species cannot participate in both tasks τj and τk, however the are no constraints place on

the robot ri’s species participating in each task individually. This is because its possible the

robot’s ability to reach either of τj or τk depends on its previous location (e.g., the robot

could be good at pushing doors open, but struggle to pull doors open making motion plans

irreversible).

If a motion plan is successfully calculated, the scheduling layer then uses the coalition’s

speed to determine the time needed to execute the motion plan. If a feasible schedule can

be found then it calculates σ̀, σLB, and σUB.

For a time-extended task allocation, a schedule has two different types of temporal con-

straints: precedence constraints and mutex constraints. The precedence constraints come

from the task network. A mutex constraint is a temporal relationship between two tasks,

τi and τj , that ensures that either τi must finish before τj starts or τj must finish before τi

starts. A mutex constraint is created when a robot is assigned to a task τi making it unable

to perform another task τj at the same time as τi.

To find a schedule that adheres to both of these types of constraints, the scheduling

layer uses a three-part scheduling approach. The first part converts the task network into

a Simple Temporal Network (STN) [33], which provides a graphical representation of the

start and end times for each task, where tasks are separated by precedence constraints.

STNs are commonly used for scheduling due to their ability to be updated and checked for

consistency in polynomial time [58]. We use a variant of the single-source shortest path

algorithm [33] to compute the minimum makespan schedule from this STN. This schedule

does not yet include the durations of any motion plans nor considers the mutex constraints

imposed by the allocation, and so this schedule is σLB as used by NSQ.

The second part of this approach adds in the mutex constraints from the allocation.

In order to create a schedule, the mutex constraints need to be converted into precedence

47



constraints by selecting one of their two orderings (i.e. for a mutex constraint between two

tasks τi and τj selecting that either τi must finish before τj starts (τi ≺ τj) or vise versa).

We perform a tabu search [59] over the possible orderings for each mutex constraint while

minimizing the makespan of the schedule. Each node in this search is the STN for σLB with

additional edges added for the precedence constraints created from the ordering selection

of the mutex constraints. The resulting STN from this part of the approach is called STNd.

The third part of this approach adds in the execution durations of the motion plans to

the STN. During this step, the motion planning layer determines if every required motion

plan is feasible. If feasible, the length of each motion plan is used by the scheduling layer

to determine the execution duration of the motion plan.

If it is not feasible to find a schedule for an allocation, then the task allocation layer is

alerted, and the allocation is pruned from the search. Finding a schedule is infeasible if:

• the STN for σLB is temporally inconsistent

• no temporally consistent STN can be found during the tabu search

• the motion planner cannot find a solution (if infeasibility can be determined)

• the motion planner times times out

Constraints generated by the motion planning layer were discussed earlier, however, if the

STN for σLB is temporally inconsistent then a solution cannot be found as the original task

network is not a directed acyclic graph and if no temporally consistent STN can be found

during the tabu search then the allocation node is pruned from the tree.

Finally, we compute the makespan of σUB. For computational efficiency, we approx-

imate an over-estimation of the makespan of the worst possible schedule without having

any robots slow down or wait,

CσUB =
2Mz

w
+

M∑
m=1

dur(τm)

where N is the number of tasks in T , dur(τm) is the static duration of task τm, z is the

48



length of the longest possible path in W , and w is the speed of the slowest robot.

3.6 Experimental Evaluations

We evaluated ITAGS using three sets of experiments in a simulated emergency response

domain [60, 19, 61, 62, 63]. In this domain, a diverse set of robots with different traits need

to work together to rescue wounded survivors, deliver medicine to hospitals, put out fires,

and rebuild damaged infrastructure.

For the first two experiments, we generated a set of 105 problems from this domain

by randomly sampling the number of robots, survivors, fires, and damaged buildings. Each

problem had between 6-12 robots and 12-45 tasks. We also randomized the locations of the

survivors, fires, damaged buildings, hospitals, and the robots’ initial location. In the first set

of experiments, we evaluated the effectiveness and the relative influence of our heuristics.

In the second set of experiments, we evaluated the effectiveness of ITAGS’s interleaved

allocation and scheduling by comparing it to a baseline that uses a sequential version of

ITAGS. For both experiments, we report computation time, the number of nodes expanded

and visited, and the makespan of the generated schedule as metrics.

For the third experiment, we generated a set of 50 problems from this domain. Each

problem had 20 robots and 40 tasks. The problems were randomized similarly to the prob-

lems for the first two experiments. For this experiment, we compared ITAGS against two

state-of-the-art ST-MR-TA task allocation algorithms: CFLA2 and CCF [55]. These algo-

rithms represent the most recent efforts in solving the ST-MR-TA task allocation problem.

For all of the experiments, maps from the Robocup Rescue Competition [60] were used.

For the motion planning layer, we used a Lazy PRM [64] implementation from the Open

Motion Planning Library [65]. We ran all experiments on an i7-8565 CPU with 16GB of

RAM.

49



3.6.1 Relative Influence of APR and NSQ on Performance

The first experiment involved ablation studies to investigate the relative influence of APR

and NSQ on performance. To this end, we generated five variants of ITAGS, each with

different values for α (0, 0.25, 0.5, 0.75, and 1) from Equation 3.3. Note that these values

for α indicate different relative weightings of NSQ and APR. The results of these tests can

be seen in Figure 3.3.

Figure 3.3: The results of ITAGS with various α values normalized with respect to
ITAGSα=0.5. y = 0 corresponds to ITAGSα=0.5. Anything above y = 0 is worse than
ITAGSα=0.5 and conversely anything below is better. ‘*’ denotes statistical significance
with a p-value < 0.05.

To make the relationship between the weighting of the heuristics and the performance

clear, Figure 3.3 displays the results normalized to an equal weighting of both heuristics

(α = 0.5). As such, the horizontal line for y = 0 represents the results of α = 0.5.

Anything above y = 0 represents a result that was larger than the α = 0.5 baseline (e.g.

took more time to compute or expanded more nodes), and anything below y = 0 represents

a result that was smaller than the α = 0.5 baseline (e.g. took less time to compute or

expanded fewer nodes).

All α values were capable of solving all 105 problems except α = 1.0, which only

solved 7.5% of the problems. As α → 1, it causes the search to focus more on minimiz-

ing the makespan, thereby mimicking a breadth-first search. This is because adding more

robots increases the number of constraints and, subsequently, the makespan. As a result of

these broader searches, ITAGSα=1 is more likely to run out of memory and fail to solve the

50



problem.

We performed a Kruskal-Wallis test followed by a post-hoc Dunn’s test to show the

statistical significance of each of the tested α values. These tests’ results are shown in

Figure 3.3 with ‘*’ denoting p-values < 0.5. These results indicate that α changes have

a statistically significant effect on the computation time, makespan, the number of nodes

expanded, and the number of nodes explored.

We find that as α increased, computation time increased, and makespan decreased.

Specifically, as α→ 1, the search tends to produce solutions with lower makespans. How-

ever, it also tends to require higher computation times as a result of visiting and exploring

more nodes. Conversely, as α→ 0, the search tends to visit and explore fewer nodes, lead-

ing to lower computation times. However, this comes at the expense of a longer makespan.

These experiments show that there is a balance between minimizing makespan and mini-

mizing computation time. Our combined heuristic TETAQ merges the effects of the two

heuristics to balance both computational efficiency and solution quality.

3.6.2 Effects of Interleaving on Performance

In this experiment, we created a sequential version of ITAGS, known as ITAGSS . Instead

of using scheduling and motion planning to guide the search for task allocation, ITAGSS

completes each operation in sequence. It searches the allocation graph until an allocation

that satisfies the trait requirements is found. If possible, ITAGSS schedules the found al-

location and updates the schedule with the execution times of motion plans. If either a

schedule cannot be created because the allocation is temporally inconsistent or one of the

motion planning queries is infeasible, then ITAGSS continues the search until a satisficing

allocation is found.

The results of the comparison can be found in Figure 3.4. Similar to the first experi-

ment, we normalized the metrics with respect to ITAGSα=0.5. As can be seen, ITAGSα=0.5

consistently outperformed the sequential version ITAGSS in terms of all of the metrics.

51



Figure 3.4: The results of the sequential version of ITAGS (ITAGSS) normalized with
respect to ITAGSα=0.5. y = 0 represents ITAGSα=0.5. Anything above y = 0 is worse than
ITAGSα=0.5 and conversely anything below is better.

On average, ITAGSS generated an output with a 168% longer makespan while taking 17%

longer to compute a valid result. It also visited 99% more nodes and explored 97% more

nodes on average.

There are two notable reasons for ITAG’s superior performance. First, ITAGS uses

shared constraints to decrease branching factor and to prune portions of the search tree. In

contrast, ITAGSS is likely to end up exploring branches in the allocation graph that violate

scheduling or motion planning constraints. Second, ITAGS also minimizes the makespan

of the schedule. However, ITAGSS does not consider the schedule while searching for an

allocation. This leads ITAGSS to prefer allocating most tasks to robots with higher trait

values. As such, ITAGSS results in a reduced number of concurrent tasks.

3.6.3 Comparison against CFLA2 and CCF

In the third experiment, we compared ITAGS against two state-of-the-art ST-MR-TA task

allocation algorithms in CFLA2 and CCF [55]. Both of these algorithms operate on a more-

52



restricted problem structure that does not involve trait-based agent/task modeling, ordering

constraints, or non-graph-based motion planning. Thus in order to benchmark against these

algorithms a preprocessing stage was added.

For each problem, the preprocessing stage first generates a fully connected graph where

each node is a location (i.e. the hospital, survivor 1’s initial location, etc.) and each edge

is labeled with the time required to traverse for each robot/coalition. In order to calcu-

late the traversal times, the motion planning module from ITAGS is queried for motion

plans between each pair of nodes. The length of each motion plan and the speed of each

robot/coalition is then used to compute the traversal times for each edge.

Next, the preprocessing stage accommodates for the fact that the baselines cannot han-

dle trait-based models. The baselines model each task t as having a certain amount of work

that needs to be accomplished (wt). They also have a utility function u(t, c) which com-

putes how fast a specific coalition c can work on a specific task t. The duration of a task t

can be computed as dur(t, c) = wt/u(t, c). The preprocessing stage sets wt to a constant

value for all tasks. It then creates the utility function u(t, c) such that the dur(t, c) is the

same as in the problem description for all tasks. If a coalition’s collective traits do not

satisfy the task’s requirements then the utility function returns zero.

As shown in Figure 3.5a, ITAGS is able to allocate and schedule all tasks for each of the

problems. This observation is explained by the fact that, unlike CFLA2 and CCF, ITAGS

requires allocating and scheduling of all tasks. Indeed, both baselines fail to fully allocate

and schedule any of the problems, with CFLA2 and CCF averaging 32.4% and 56.4%

of tasks allocated and scheduled, respectively. We observe that the baselines sometimes

allocate agents to a task without accounting for the task’s trait requirements. This leads to

incomplete tasks as robots can get stuck on certain tasks without contributing to the tasks’

completion. Additionally, without deadlines, CFLA2’s look-ahead phase effectively results

in a random choice and impedes its ability to allocate robots to tasks. CCF assumes that

every assignment improves task progress irrespective of the current set of robots assigned

53



(a) The percentage of tasks that each algorithm was able to allocate for each problem.

(b) The amount of time spent by each algorithm on everything except motion planning for each
problem.

Figure 3.5: Benchmark against CFLA2 and CCF

to the task. However, this assumption does not hold for tasks in which robots cannot make

progress without crossing a minimum threshold in terms of aggregated traits. For instance,

consider a task that involves moving a 10 kg object. Assigning a single robot with a 5 kg

payload will not contribute to 50% task completion.

Figure 3.5b shows the total computation time excluding the time needed to generate the

fully connected graph for CFLA2 and CCF and the time spent motion planning for ITAGS.

This ensures that we are comparing only the task allocation and scheduling capabilities of

the algorithms. As seen, ITAGS allocates and schedules all tasks while taking less time to

compute a solution. On average, ITAGS spends 11.54s on task allocation and scheduling

54



when computing a solution, while CFLA2 and CCF spend 153.61s and 34.27s, respec-

tively. There are a few reasons that ITAGS performs better than both CFLA2 and CFF.

First, ITAGS only considers the start and end time-points for each task when scheduling,

whereas both CFLA2 and CCF step through time with discrete timesteps and greedily allo-

cate robots to tasks. Second, ITAGS focuses on simultaneously minimizing the makespan

and trait mismatch error. Being able to consider the traits allows ITAGS to model the re-

lationship between agents and task better, leading to more efficient searching of possible

allocations. On the other hand, CFLA2 and CCF focus on allocating as many tasks at a

time as possible without considering whether the robot’s traits contribute to satisfying the

trait requirements of a task. CCF specifically also prioritizes allocating a robot to tasks

such that travel time is minimized. Third, ITAGS considers the entire schedule as it solves

the problem. This allows ITAGS to consider actions throughout the schedule and how they

affect the overall makespan. CCF only considers a single timestep at a time, and as a result

some of its allocations inadvertently create a bottleneck for future allocations. CFLA2 does

have a look-ahead process, but with no deadlines, it effectively results in a random choice.

Furthermore, it creates considerable computational burden for this result. The look-ahead

process and making allocations for only a single timestep have a detrimental impact on

computation time.

3.6.4 Summary

The first experiment empirically demonstrates the trade-offs involved in prioritizing ei-

ther Allocation Percentage Remaining or Normalized Schedule Quality. Results from the

second experiment indicate that the hierarchical interleaved approach of ITAGS consis-

tently outperforms a baseline approach that sequentially performs allocation, scheduling,

and motion planning. In the third experiment, ITAGS is shown to empirically outperform

state-of-the-art ST-MR-TA task allocation algorithms CFLA2 and CCF [55].

55



3.7 Discussion & Conclusion

In this chapter, we introduced a unified framework that interleaves task allocation, schedul-

ing, and motion planning for heterogeneous multi-robot systems. We also presented the

iterative search method for solving the trait-based time-extend task allocation problem.

To guide the search and enable interleaving, we developed two heuristics, one based on

the quality of allocation and another based on the time needed to execute the associated

schedule and motion plans. Further, we empirically demonstrated the trade-offs involved

in choosing the relative weighting of the two heuristics. Our experiments in a simulated

emergency response domain conclusively demonstrate the effectiveness and the relative

advantages of our interleaved approach over a sequential baseline and two state-of-the-art

approaches.

However, ITAGS does have its limitations and there are open questions left to explore.

First, the completeness of ITAGS depends on the completeness of the motion planning

algorithm selected to utilized by the motion planning layer. If the motion planning algo-

rithm is complete then ITAGS is complete. However, if a sampling-based motion planning

algorithm is used that is probablistically complete, then ITAGS is not complete as the infea-

sibility of a motion plan cannot be determined. Recent and ongoing research is exploring

general approaches for constructing proofs of motion planning infeasibility [66, 67, 68].

These approaches could be incorporated to make ITAGS a complete algorithm regardless

of motion planning algorithm. Second, ITAGS assumes that traits are static, however, in

real world scenarios traits can change over time or based on external factors such as battery

drain. How to integrate and reason about dynamic traits remains an open question for future

research. Third, ITAGS assumes deterministic traits and trait requirements, however, in the

real world, robots of the same species could have different traits from one another due o

different conditions (e.g., wear and tear, battery life, sensor failure, etc). Also, knowing the

exact traits required to execute a task is not always viable. How to reason about uncertain

56



robot traits and task trait requirements for more robust solutions remains an open questions

for future research.

57



CHAPTER 4

INTERLEAVING ALLOCATION, PLANNING, AND SCHEDULING

4.1 Introduction

In this chapter, we move our focus to the full holistic heterogeneous multi-robot coordi-

nation problem that we discussed in Chapter 11. This problem interleaves all four sub-

problems (task planning, task allocation, scheduling, and motion planning) for a prob-

lem known as Simultaneous Task Allocation and Planning with Spatiotemporal Constraints

(STAP-STC) (explained in more detail down below).

We merge elements from Forward Chaining Partial-Order Planner (FCPOP) and Incre-

mental Task Allocation Graph Search (ITAGS) described in the previous two chapters to

develop a unified and interleaved framework named Graphically Recursive Simultaneous

Task Allocation, Planning, and Scheduling (GRSTAPS) as an initial approach to the STAP-

STC problem. GRSTAPS tackles the STAP-STC problem by effectively interleaving the

execution of its four modules – task planning, task allocation, scheduling, and motion plan-

ning. As in previous chapters, an alternative approach would be to combine state-of-the-art

solutions to the individual problems such that they operate in sequence. However, such a

sequential approach is incomplete and would be forced to backtrack and recompute solu-

tions at all preceding levels when a particular level fails to find a solution. For example,

the sequential approach could create a symbolic plan and allocate appropriate robots, only

to discover that it is impossible to compute a schedule for the given allocation such that all

required constraints are satisfied.

1The material in this chapter is based on:
A. Messing*, G. Neville*, S. Chernova, S. Hutchinson, and H. Ravichandar, “Graphically Recursive Simulta-
neous Task Allocation, Planning, and Scheduling,” The International Journal of Robotics Research, vol. 41,
no. 2, pp. 232-256, 2022.

*Co-First Authors

58



To avoid frequent backtracking, our interleaved approach incentivizes compatibility

among solutions generated at different levels as well as shares constraints on and between

tasks and robots. Employing rigorous quantitative analysis, we demonstrate that our inter-

leaved approach significantly improves the overall framework’s computational efficiency

compared to its sequential counterpart.

In addition to serving as a unified framework to solve STAP-STC problems, GRSTAPS

includes innovations at both the task planning and the task allocation levels. At the task

planning level, we present an approach for agent-agnostic partially-ordered planning. Our

planning approach is agent-agnostic in that it determines the tasks necessary to reach the

goal state without committing any agents. As such, our plans only include a set of tasks

along with necessary ordering constraints. This reduced commitment allows for increased

flexibility in downstream operations, and as a result, reduces the chance of backtracking.

Our task planning module receives periodic feedback from the task allocation layer to en-

sure that the generated plans are compatible with the modules downstream.

At the task allocation level, GRSTAPS assigns agents to tasks based on agent-agnostic

partial-order plans from the task planning module. To this end, we contribute a search-

based approach that iteratively assigns agents to tasks until the task requirements are sat-

isfied. Notably, our approach to task allocation can simultaneously satisfy task planning

constraints and task requirements while optimizing the associated schedule. In order to

guide the search, we design two heuristic functions: one that incentivizes allocations that

satisfy task requirements, and another that prefers a shorter makespan. Further, our ap-

proach to allocation indirectly improves the efficiency of motion plans by accounting for

the fact that the feasibility and efficiency of motion plans impact the schedule’s makespan.

To evaluate the effectiveness of GRSTAPS and its components, we carry out detailed

ablative and comparative experiments on a set of simulated disaster-response problems,

generated by varying the number of goal conditions, the number of robots, and the maps

associated with the problems. In our ablation studies, we compare GRSTAPS with two se-

59



quential variants of itself that do not interleave the four modules. In our comparative exper-

iments, we compare our approach with three state-of-the-art temporal planners. Across all

our experiments, we find that GRSTAPS outperforms all other approaches in terms of com-

putational efficiency, and scalability with both team size and problem size. Further, when

dealing with more than 5 robots, GRSTAPS outperforms all other approaches in terms of

solution quality (as measured by requirement satisfaction and schedule makespan).

4.2 Related Work

Reasoning about how a team of heterogeneous robots should individually and collectively

interact with the environment is a complex problem that draws elements from several dif-

ferent research fields, including task planning (“what”), task allocation (“who”), schedul-

ing (“when”), and motion planning (“how”). While there are numerous works on each

individually, the various intersections of the four areas have been attracting increased at-

tention. Solutions to problems that lie at these intersections, although more challenging

to solve, provide computational benefits resulting from integrated modeling and reasoning

capabilities. In this section, we discuss prior work dedicated to solving problems that lie at

intersections of the above listed research areas. We refer readers to comprehensive surveys

and taxonomies for more through treatments of these problems and their variants [69, 42,

43, 6, 70, 11, 71, 72].

4.2.1 Multi-Agent Planning

The Multi-Agent Planning (MAP) problem addresses the questions of “who” should per-

form “what” tasks “when.” MAP combines technologies developed by the task planning

and multi-agent systems communities. While planning has been generally treated as a

single-agent problem, MAP expands upon planning by considering multiple agents that

collectively develop a course of tasks to satisfy the goals of the entire group [6]. It also

draws elements from task allocation, such as constraints on how many robots can collabo-

60



rate to execute each task or how many tasks each robot can execute simultaneously.

The MAP problem domain extends the traditional task planning domain with the addi-

tion of a finite set of K agents or robots. In this problem, tasks can be executed concur-

rently, have different durations depending on which robot or coalition of robots is assigned

to them, and have complex interdependencies with other tasks based both on time and the

agents performing them.

The solution to a MAP problem can be formulated as

• a set with a sequence of tasks for each robot, or

• a partially-ordered plan, which contains a set of tasks and a set of precedence con-

straints (≺) between tasks in the plan.

There exist a number of state-of-the-art MAP planners that can solve tightly-coupled

problems (i.e. planning where agents need to work together to reach goals), such as the

Multi-Agent Distributed and Local Asynchronous (MADLA) Planner [73], the Planning

State Machine (PSM) [74], and Forward Multi-Agent Planning (FMAP) [75]. In this work,

we are particularly interested in a complex variant of the tightly-coupled MAP problem

in which agents have to cooperate on individual tasks, or joint tasks, such as multiple

robots carrying a heavy box. Fewer techniques have the ability to plan for joint tasks

in which agents can cooperate on individual tasks [76]. The Partial-Order Multi-agent

Planning (POMP) algorithm [77] uses a centralized partial-order planning algorithm based

on UCPOP [78] that can handle joint tasks. Multi-Agent Forward Search (MAFS) [79]

uses a distributed forward search across a state-space in which individual planning agents

exchange information used to determine the heuristic value of each state. Both of these

approaches assume that the number of agents and the type of those agents (e.g., two quad-

copters) needed to perform each joint task is known a priori.

While most of the approaches to solve the tightly-coupled MAP problem with joint

tasks require a priori knowledge about the exact number and type of agents for each joint

task, there are a few approaches that instead solve this problem by placing constraints on the

61



minimum and maximum number of agents for each joint task. The Single-agent Planning

Approach (SPA) for MAP [80] transforms a MAP problem into a single-agent planning

problem by splitting tasks, solving the single-agent planning problem with a classical plan-

ner, and then merging tasks in their single-agent solution to create joint tasks. Shekhar

and Brafman [81] adapt SPA through collaborative tasks or single tasks that involve the

minimum number of agents necessary to perform a given task. A separate collaborative-

task is required for each combination of agents that can execute the task (i.e., for each task

that requires two robots, there is a separate instance of the task for each pair of robots).

Multi-Agent Planning with Joint Actions (MAPJA) [76] partitions the problem into the

loosely-coupled and tightly-coupled components and then solves each separately. It uses

an off-the-shelf multi-agent planner to solve the loosely-coupled portion of the problem,

and then solves the tightly-coupled portion through calls to a classical planner and incre-

mentally increases the number of agents that can work together to collaborate on each joint

task.

The above approaches either require a priori knowledge about the exact number and

type of agents on each joint task or require constraints on the minimum and maximum

number of agents for each joint task. In contrast our framework models tasks with the

traits required (e.g., carrying a 10 kg box requires a 10 kg payload). Such trait-based

specifications do not require the user to explicitly specify the relationships between each

task and robot or coalition, allowing for generalization to different types of agents and

various distributions of agent types in coalitions.

4.2.2 Simultaneous Task Allocation and Planning

The Simultaneous Task Allocation and Planning (STAP) problem is a sub-problem under

the MAP banner. STAP algorithms aim to solve multi-agent planning problems by con-

structing a model of the agents and decomposing the plan into parts such that tasks can be

allocated to different robots. We specifically highlight this variant of the MAP problem to

62



illustrate the similarities and differences between STAP and the STAP-STC problem we

formulate below in Section 4.3.5.

Multiple prior techniques have proposed the use of Linear Temporal Logic (LTL) to

solve the STAP problem. Schillinger et al. [82] present and then extend [83] a solution to

the STAP problem that works by decomposing the planning problem into sub-tasks while

simultaneously allocating these sub-tasks. This decomposition approach means that the

algorithm is not forced to search a combinatoric number of allocations when allocating the

plan. Chen et al. [84] present LTL-based solutions that use trace-closed languages to solve

the MAP problem. These trace-based solutions identify individual tasks by projecting the

solution onto the agents. Ulusoy et al. [85] use a similar approach to [84] but account

for infinite horizon task and use a methodology that accounts for the cost of the teams

trajectories allowing them to find optimal solutions. Nikou et al. [86] offer a Metric Interval

Temporal Logic (MITL) approach to solve this problem. This MITL approach allowed

agents to have both agent-specific goals and global goals that need to be satisfied by all the

team’s agents. Faruq et al. [87] building on [82] present a algorithm that uses an LTL and

MDP-based approach to solve the MAP problem in uncertain environments.

In addition to the LTL-based solutions presented above, others have proposed solutions

to the STAP problem that use AI planning techniques and optimization methods. For exam-

ple, [88] presents distributed heuristic forward search algorithm using a distributed search.

Ma and Koenig [89] offer an integer linear programming and conflict-based min-cost-flow

algorithm to solve the tamp problem.

These solutions do not allow for coalitions of agents, are unable to plan for tightly-

coupled domains, and formulate multi-agent planning differently than GRSTAPS. In con-

trast to existing STAP algorithms, our framework’s trait-based modeling allows for joint

tasks (e.g., two robots carrying a 5 kg carry a box that weighs 10 kg). Such trait-based

specifications allow for generalization to different types of agents and various distributions

of agent types in coalitions.

63



4.2.3 Task and Motion Planning

The Task and Motion Planning (TAMP) problem combines task planning, which focuses on

the high-level discrete decisions about how agents will interact with objects in the environ-

ment and what tasks agents will take, with motion planning, which focuses on continuous

decisions about paths and the motions of agents [70]. As such, the TAMP problem ad-

dresses the questions of “what” tasks should be performed “when” and “how” they should

be done. A strictly chained approach in which a task planner chooses a set of tasks then a

motion planner finds valid motions for each task is incomplete. There is no guarantee that

the tasks selected by the task planner will be geometrically feasible [90]. This causes the

key challenge of TAMP to be integrating task planning and motion planning such that it

does not break properties or cause practical infeasibility or inefficiencies.

Traditionally, approaches to the TAMP problem solve a single robot variant where the

world is fully observable and all tasks are deterministic. In recent years, several approaches

have been designed to integrate discrete task planning and continuous motion planning that

fall into one of a handful of high-level strategies as we describe below.

Several solutions to the TAMP problem have stemmed from motion planning, includ-

ing Multi-Modal Motion Planning (MMMP), optimization-based methods, and constraint

satisfaction-based methods. Hauser et al. [91] introduce MMMP for a system with multi-

ple modes representing different constraint sub-manifolds of the configuration space. They

also provide an algorithmic framework for multi-modal planning that utilizes a sampler for

transitioning between modes. Barry et al. [92] use a bidirectional rrt-style search combined

with a hierarchical strategy to suggest tasks on simplified versions of the planning problem.

Vega-Brown and Roy [93] extends these ideas to optimal planning with differential con-

straints. Toussaint et al. [94, 95] present a non-linear constrained optimization approach

that uses a three-layer logic geometric programming strategy to solve the TAMP problem.

Lozano-Perez and Kaelbling [96] present a constraint satisfaction approach to TAMP that

uses a symbolic task planner to impose constraints on a geometric motion planner.

64



Another set of approaches extend symbolic task planning by having the task planner

repeatedly query a motion planner. Dornhege et al. [97] introduce semantic attachments as

a way to extend classical planning. Semantic attachments are predicates whose truth values

are not established by assertion but by calling an external program utilizing a geometric

representation of the state. Similarly, Erdem et al. [98] augment a causal reasoning planner

to check for the existence of paths for a robot. Kaelbling and Lozano-Perez [99] introduce

Hierarchical Planning in the Now (HPN), which is a goal regression-based planner that

uses generators to perform fast approximate motion planning. Garrett et al. [90] present

FFRob, a probabilistic complete task and motion planner that utilizes the Fast Forward

task planning heuristic and model task conditions as predicates involving geometric and

kinematic constraints. Lo et al. [100] introduce PETLON, a TAMP algorithm for robot

navigation that is optimal at the task level while maintaining manageable computational

efficiency.

The third set of approaches interleave task planning and motion planning. Lagriffoul

et al. [101, 102] focus on limiting the amount of geometric backtracking. A set of ap-

proximate linear constraints are imposed by grasp and placement choices, and then linear

programming is utilized to compute valid assignments or determine that one does not exist.

Srivastava et al. [103] interface an off-the-shelf task planner with an optimization-based

motion planner. They use a heuristic to remove potentially-interfering objects. Dantam

et al. [104] formulate TAMP as a Satisfiability Modulo Theorem (SMT) problem. An in-

cremental solver adds motion level constraints to the task level logical formula when a

candidate task plan is found. Akbari et al. [105] use an ontological knowledge-based task

planner based on FF [38] combined with a physics-based motion planner to solve a problem

with movable obstacles.

While utilizing different methods for integrating task and motion planning, each of the

above approaches is designed for a single robot. More recently, a limited number of tech-

niques to solve the multi-robot variant of the TAMP problem have been proposed. These

65



multi-robot TAMP approaches extend the work from single robot TAMP approaches pre-

sented above. Toussaint et al. [106] extend their logic geometric programming framework

to solve multi-agent manipulation problems with high-dimensional kinematics. This work,

however, is only demonstrated with a single robot and a single human. Shome et al. [8]

develop a framework for TAMP with multiple arms and anytime behavior. The framework

is designed specifically for pick-handoff-place tasks and is not generalizable to other types

of tasks or types of robots. Similarly, Umay et al. [107] present a two-layer framework

for task and motion planning of multiple arms. They use a shared space graph to check

whether two arms are sharing certain parts of the workspace. Akbari et al. [108] extend

their prior work from [105] to multiple robots and allows robots to collaborate on moving

certain obstacles. However, in their approach, robots cannot concurrently perform separate

tasks, so many of the robots are often waiting idle and the approach only allows homoge-

neous teams. Motes et al. [109] present a conflict based search to task and motion planning

for plans with decomposable tasks. This method was capable of planning with 12 robots

and 12 tasks; however, this method assumes homogeneous robots.

Prior techniques that address multi-agent TAMP problems are limited in multiple areas.

First, all prior work is either limited to a specific problem domain [106, 109] or a particular

type of robot [8, 107, 108]. Additionally, none of these approaches can handle tightly-

coupled problems with joint tasks. In contrast, our framework is domain-independent, can

handle heterogeneous teams of robots, and can solve tightly-coupled problems with joint-

tasks.

4.2.4 Multi-Vehicle Routing

The Multi-Vehicle Routing (MVR) problem requires selecting a set of vehicles and their

routes to visit a set of locations [7]. This problem addresses the questions of “who” should

visit each location and “how” these locations should be reached. MVR is a sub-problem

under the larger banner of Multi-Agent Motion Planning (MAMP) which involves finding

66



collision-free trajectories connecting each agent’s initial location to its goal location [110,

111, 112]. We limit our coverage of related work specifically to MVR as it is our most

closely-related variant of MAMP and shares many of the assumptions made by our pro-

posed solution.

There exists a large number of solutions to the different variants of this problem. In this

work, we are particularly interested in the subset that also deals with temporal constraints.

Bredstrom et al. [9] add synchronization constraints to the Multi-Vehicle Routing Prob-

lem with Time Windows (MVRP-TW) and then solves the problem using an optimization-

based heuristic. Ramchurn et al. [54] use a Mixed-Integer Linear Programming (MILP)

formulation to solve a problem they call the Coalition Formation with Spatial and Tempo-

ral Constraints Problem (CFSTP). Jones et al. [46] present two methods to solve an MVR

problem with intra-path and temporal constraints. The first uses a tiered auction with two

heuristics to conduct a bounded search of possible schedules, allocations, and routes. The

second uses a centralized genetic algorithm for better quality solutions but at the cost of

significantly more computation. Korsah et al. [50] solve a variant of the MVR problem with

cross-schedule temporal constraints using a custom branch-and-price algorithm. Flushing

et al. [113] use a MILP formulation in conjunction with a two-layered meta-heuristic com-

prised of a genetic algorithm and an iterative local search.

In the presented MVR solutions, agents are modeled in terms of the tasks they can be as-

sign to and the cost of transitioning nodes on the graph. Furthermore, in each approach, the

number and type of agents assigned to each task are known a priori. In contrast, GRSTAPS

uses a trait-based framework that allows for a more robust model of agent capabilities than

existing approaches. This more robust modeling allows for GRSTAPS to better represent

the heterogeneity of agents and allows for a more thorough description of task requirements

when compared to existing approaches.

67



4.3 Problem Formulation

In this section, we formalize a class of problems that we refer to as Simultaneous Task

Allocation and Planning with Spatiotemporal Constraints (STAP-STC). STAP-STC takes

a holistic view of heterogeneous multi-robot coordination by simultaneously considering

task planning, allocation, scheduling, and motion planning. We begin by describing the

formulation of each of the sub-problems that STAP-STC encompasses and finish by de-

scribing aspects that are specific to the STAP-STC problem.

4.3.1 Temporal Planning

In temporal planning, the state of the world is represented by a set of first-order liter-

als (e.g., Damaged(Building1), OnFire(Building1)), and fluents (e.g., LocationOf(Box1)),

each of which describes some condition that holds in the world. Most temporal planners,

GRSTAPS included, operate under a closed-world assumption. Goals are defined similarly

to states, and a goal is said to be satisfied by a world state if each of its literals explicitly

appears in the state description, and each of its fluents is assigned the specified value.

PutOutFire(b - building):
dur:30
cond:

OnFire(b)
eff:

¬ OnFire(b))

RepairBuilding(b - building):
dur:600
cond:

¬ OnFire(b)
¬ UnderRubble(b)
Damaged(b)

eff:
¬ Damaged(b))

Figure 4.1: Example Task Schemas

Tasks, also known as actions in some of the temporal planning literature, are represented

as a tuple that contains the duration of the task as a continuous value, a set of conditions that

must hold for the task to be applicable, and a set of effects that transform the world state by

asserting or retracting certain literals. These are collected together in a Task Schema, such

68



as shown in Figure 4.1, which is defined in terms of parameters that are instantiated during

the planning process. For example, the PutOutFire task shown in Figure 4.1 can only be

applied to the entity b if b is a building and is on fire, and has the effect of retracting the

literal OnFire(b) from the world state.

A specific temporal planning problem is defined by an initial world state sinit, a goal G,

and finite set of tasks T . The planner’s objective is to find a plan that transitions the initial

state sinit to a state in which the conditions of the goal G are satisfied. A partial-order plan

π = ⟨T, P , L⟩ is a tuple where T ⊆ T is a set of tasks; P is a set of precedence constraints

(≺) between tasks in T; and L is a set of causal links between tasks in T. A precedence

constraint τi ≺ τj is a temporal relationship between two tasks, τi and τj , that ensures

that the execution of τi concludes before τj starts [30]. A causal link, denoted by τi
p−→ τj ,

indicates that precondition p of τj is supported by one of the effects of τi. A partially-

ordered plan can be represented by a directed graph in which each vertex represents a task

and each edge, e = τi → τj , represents an ordering constraint (τi ≺ τj). A task network is

a graph where each vertex represents a task and each edge represents a temporal constraint.

Therefore, a partial-order plan is a specific type of task network that only has precedence

constraints as edges.

4.3.2 Trait-based Time-extended Task Allocation

We consider a heterogeneous team ofK robots that must collectively execute a set of tasks.

Each robot is defined by its abilities or traits [5, 114, 40], which are modeled as continuous

variables, encoded by the trait vector

q(n) =
[
q(n)
1 , q(n)

2 , · · · , q(n)
U

]
(4.1)

in which q(n)
i ∈ R≥0 corresponds to the ith trait for the nth robot (e.g. a robot with a

payload capacity of 10 kg and a speed of 5 m/s might have trait vector q = [10, 5, 0, 0] if

69



there are four relevant traits for the problem domain, the first two being payload capacity

and speed). The traits of the entire team are defined by the robot trait matrix

Q =


q(1)

...

q(K)

 ∈ RK×U
≥0 (4.2)

with each row corresponding to one robot and each column corresponding to one trait. This

trait-based modeling of agents allows for a robust description of each agent and makes the

heterogeneity of agents easily interpretable.

Each task in the task network T may be executed individually or collectively as part of

a coalition, depending on its trait requirements (e.g., picking up a given box may require

one robot or multiple robots depending on payload capabilities). The traits required for an

individual task τi are defined by a task trait requirements vector

y(i) =
[
y(i)
1 , y(i)

2 , · · · , y(i)
U

]
(4.3)

in which y(i)
u ∈ R≥0 is the uth trait requirement (e.g. if moving a survivor to a hospital re-

quires a coalition with a 1 kg payload capacity and a speed of 2 m/s and does not require any

water or construction ability would have a task trait requirements vector y = [1, 2, 0, 0]).

The traits required by the entire task network T are defined by the desired trait matrix

YT where:

YT =


y(1)

...

y(|T |)

 ∈ R|T |×U
≥0 (4.4)

in which yi is the task trait requirements vector for the ith task in T and |T | represents the

number of tasks in T .

70



A trait-based time extended task allocation problem is defined by a task network T , a

robot trait matrix Q, and a desired trait matrix, YT , for the given task network.

The assignment of agents to tasks can be represented by an allocation A where:

A =


a1,1 · · · a1,k

... . . . ...

an,1 · · · an,k


where

an,k =


1 if the kth robot is assigned to the nth task

0 otherwise

The solution to a trait-based task allocation problem is an assignment of robots to tasks

in the task network. An allocation A satisfies YT when AQ is element-wise greater than

or equal to YT (See Figure 4.2).

Figure 4.2: An example of AQ compared to the desired traits matrix YT . As AQ is
element-wise greater than or equal to the desired traits matrix, it satisfies the requirements.

4.3.3 Scheduling

The scheduling problem involves the determination of when tasks begin and end. A sched-

ule σ is an assignment of start and end times to each task in a task network. Additionally,

a valid schedule must respect all temporal constraints imposed by the task network (e.g.,

71



precedence constraints or deadlines), all temporal constraints imposed by the allocation

(e.g., mutex constraints), and all temporal constraints imposed by the durations of motion

plans (e.g. transition constraints). A mutex constraint is a relationship between two tasks,

τi and τj , that ensures that either τj must finish before τi starts or τi must finish before

τj starts [14]. These mutex constraints are created when a robot is assigned to a task τi,

making it unable to perform another task τj at the same time as τi. A transition constraint

is a relationship between two tasks, τi and τj , that ensures that τj does not start until after a

certain time after τi finishes. If a robot is supposed to execute τi and then τj , it must travel

from the location where it finished τi to the location where it is supposed to execute τj . As

such, transition constraints help ensure that there is sufficient time for inter-task travel.

4.3.4 Motion Planning

The motion planning problem (see, e.g., [57]) is to find collision-free paths for the robots

as they perform the tasks in Task Network T under the Allocation A and the Schedule σ.

The world W describes all of the static geometric information about the environment that

the robots will need to navigate including obstacles.

For an individual robot, the collision-free path can be represented as a continuous map

γ : [0, 1] → C, through the configuration space such that the robot does not collide with

the obstacles in W , dynamic obstacles, other robots, or movable objects. A configuration

is a point in the configuration space and the configuration of a robot at any given time,

represents its geometric state at that time. For example, configuration can include the (x, y,

z) coordinates, orientation, steering angle, velocity, or other features that characterize the

robot. Note that the individual configuration spaces for different robots can be qualitatively

different, e.g., a quadcopter can fly over obstacles, while a ground vehicle cannot.

For Task τi, we define Cinitτi
and Ctermτi

as the joint initial and terminal configuration

spaces of the robots assigned to τi. For these robots to successfully preform Task τi, they

must first find collision-free paths from their current configurations to a configuration in

72



Cinitτi
and then after starting the task they must find collision-free paths to a configuration

in Ctermτi
. As such, Cinitτi

and Ctermτi
can be viewed as specifying geometry-based pre- and

postconditions of Task τi.

The Multi-Agent Motion Planning problem is defined by the initial configurations of

all robots Ic, the set of initial and terminal configurations for all tasks CT , and a world W

which describes all of the static geometric information about the environment. For a given

task network T under the allocation A, a solution to the motion planning problem is given

by a set of motion plans X , that allows each robot to complete each of its assigned tasks,

including paths that transition between sequential tasks.

The problem becomes slightly more complex for the case of multi-agent robot teams

executing tasks in a task network. First, the free configuration space for an individual

robot may not be static during the execution of a task. Thus, a motion planner should take

into account the possibility of inter-robot collision as well as the possibility of collision

with static obstacles. Second, because objects in the world can change location during

task execution, a robot’s free configuration space while executing task τi may depend on

the order in which tasks are executed. This particular problem gives rise to much of the

complexity of the TAMP problem.

4.3.5 Simultaneous Task Allocation and Planning with Spatiotemporal Constraints

We now formalize the Simultaneous Task Allocation and Planning with Spatiotemporal

Constraints (STAP-STC) domain. STAP-STC problems take a holistic view of hetero-

geneous multi-robot coordination by simultaneously considering all of the problems dis-

cussed in the previous sections. This merging of task planning, motion planning, schedul-

ing, and trait-based Time-Extended task allocation creates a more complete view of all

aspects of the multi-robot coordination problem.

A STAP-STC problem is defined by

• sinit, the symbolic initial state for the task planner;

73



• G, the symbolic goal for the task planner;

• T , the finite set of all tasks;

• Q, the robot trait matrix;

• Ic, the set of initial robot configurations, with one for each robot;

• CT , the set of initial and terminal configuration spaces for each task in T ;

• and W , the world describing all of the static geometric information about the environ-

ment.

For a specific problem, we wish to compute the solution
〈
π̂, Â, σ̂, X̂

〉
where:

• π̂ is a partially-ordered plan that transitions the world to a symbolic state the satisfies

the set of goal conditions G,

• Â is an allocation that satisfies the desired trait matrix of π̂ (Yπ̂),

• σ̂ is a schedule that satisfies the temporal constraints created by π̂ and Â,

• and X̂ is a set of discrete trajectories, one for each robot. As part of these trajectories,

each robot moves to the tasks it was allocated in the order they were scheduled while

avoiding collisions with other robots and the environment. The other trajectories in this

set represent the movements needed to execute the tasks.

4.4 Communication Between Sub-Problems

Our approach involves solving multiple sub-problems and to reduce computation, we ex-

ploit the fact that as each sub-problem is solved constraints are generated on and between

the same shared components (i.e., tasks and robots) and these constraints can be shared

between the layers working on each sub-problem. This approach utilizes both positive con-

straints, which are constraints based on what can be satisfied, and negative constraints,

which are constraints based on what cannot be satisfied. Methods that create positive con-

straints usually have a a database of constraints paired with their satisfying assignment.

This is sometimes known as memoization. Alternatively, methods that create negative con-

74



straints usually focus on identifying counterexamples.

Additionally, for our approach we expand constraints to their most general context. For

example, if we determine that a specific robot cannot contribute to the execution of a task

because its traits cannot contribute, it is possible that that constraint of “robot x cannot

contribute to task τy” can be generalized to “species s cannot contribute to task τy” or if

we find a motion plan between two configurations for a specific robot it can be utilized by

other robots of the same specifies. Furthermore, if we independently we determine that

none of the species for a given problem can contribute to a task, we can conclude that the

task cannot be accomplished at all and task planning can utilize this constraint to reduce

its branching factor. More constraints and generalizations will be discussed in the next

section.

4.5 Graphically Recursive Simultaneous Task Allocation, Planning, and Scheduling

This section outlines the high-level algorithmic architecture used for Graphically Recursive

Simultaneous Task Allocation, Planning, and Scheduling (GRSTAPS). First, we introduce

each of the layers of the framework at a high level, provide a running example, discuss the

specific assumptions made by our approach, and then explain each layer in more detail.

The top layer of the GRSTAPS framework is the task planning layer. This layer incre-

mentally builds a plan π̂ that transitions the world to a state that satisfies the set of goal

conditions G. The layer builds π̂ by starting with an empty plan π0 and adding a single task

at a time. During the addition of each task, the planning layer ensures that constraints, such

as preconditions and postconditions, continue to be satisfied. Thus, each addition of a task

and ordering constraints creates a new plan π.

When the task planning layer creates a new plan π̀, it passes π̀ to the task allocation

layer. The task allocation layer attempts to build an allocation of robots for each task

τ ∈ T in π̀. In order to build Â, the task allocation layer conducts a graph search through

a space of task allocations.

75



When the task allocation layer creates an allocation À for a plan π̀, it passes both À

and π̀ to the scheduling layer. The scheduling layer determines if a temporally consistent

schedule σ̀ can be created from À and π̀. While building the schedule, the scheduling

layer queries the motion planner for any required motion plans. The scheduling layer uses

information from the motion plans to adjust the start and endpoints for each task in π̀ to

account for the traversal time of agents.

Our framework iterates between the layers until it finds a solution that satisfies all of the

problem’s constraints. This hierarchy of nested algorithms solve the problem with varying

abstractions for effective and efficient planning, allocation, and scheduling.

We will utilize a running example based on a disaster recovery scenario to illustrate how

the GRSTAPS framework solves the STAP-STC problem. In this example, two wounded

survivors need to be taken to a hospital for treatment and a burning building. The goal for

this problem is that both survivors have been brought to a hospital, the fire has been extin-

guished, and the building has been repaired. A team of robots, including two construction

bots, a firefighting robot, and a paramedic robot, will be used to solve the problem. We

demonstrate how GRSTAPS selects a set of appropriate tasks, assigns these tasks to coali-

tions of robots, schedules the tasks, and provides motion plans for all robots so they can

execute the plan. We will revisit this example throughout the remainder of this section,

including Figures 4.3-4.5.

4.5.1 Algorithmic Assumptions

Given the complexities of the general STAP-STC problem, GRSTAPS makes several as-

sumptions regarding the structure of the STAP-STC formulation. In the interest of clarity

and completeness, we list the specific assumptions below:

• All tasks and goal conditions are agent-agnostic (i.e., all task preconditions and effects

are specified in the context of the symbolic environment and not the context of the

robots).

76



• The environment is deterministic and is only changed as a function of the robots exe-

cuting tasks.

• All tasks are grounded by the task planning layer of GRSTAPS.

• Robot capabilities can be modeled by a vector of continuous traits that do not change

throughout execution.

• Each grounded task is associated with a vector of continuous trait requirements that do

not change throughout execution.

• The set of initial and terminal configuration spaces for each task in T , CT , is known a

priori.

• The free configuration space of each robot is static and does not change when robots

move objects in the environment. It is assumed that modern motion controllers can

handle avoiding collisions with moved objects [82, 87, 100].

• Motion planning only considers collisions with the environment when planning paths

for robots and collisions. It does not consider robot on robot collisions. It is assumed

that modern motion controllers can handle avoiding collisions with other robots [82,

87, 100].

In Section 7.2, we discuss some of the limitations of these assumptions and how future

work can address them.

4.5.2 Task Planning

The task planning layer requires an incremental partial-order planner. For an explanation

on the specifics of how a traditional partial-order planner solves a task planning problem

and some specific partial-order planning terminology, we refer the reader to Section 2.2.

This task planner starts with an empty plan π0. It then incrementally adds a single task

τi and constrains the ordering (≺) of the new task with respect to the tasks already in the

plan. Each task is agent-agnostic, and so the task planner does not consider which robot or

coalition is supposed to execute it. This addition of a task and ordering constraints creates a

77



new plan π̀. The plan π̀ is a valid partial-order plan with no threats or open conditions (see

Section 2.2 for definitions); however, it does not necessarily transition the world to a state

that satisfies the set of goal conditions G. A plan that transitions the world to a state that

satisfiesG will be denoted as π̂ for simplicity; however, one should note that multiple plans

may transition the world to a state that satisfies G and its possible that there are multiple

world states that satisfies G.

Then, a desired traits matrix Yπ̀ is created for π̀ by concatenating the task traits re-

quirements vectors associated with each task in π̀ (see Equations 4.3 and 4.4).

The plan π̀ and its associated desired traits matrix Yπ̀ are passed to the task allocation

layer. In conjunction with the scheduling and motion planning layers, the task allocation

layer determines if a feasible allocation, schedule, and set of motion plans can be found

for π̀ that satisfies the various constraints of the problem. If they cannot be found, then π̀

is pruned, and other plans are considered. If is possible that collectively task allocation,

scheduling, and motion planning discover constraints that conjunctively general to a spe-

cific task cannot be executed by the robots available. The task planning layer can utilize

these constraints to reduce its branching factor as it continues the search.

If an allocation Â, a schedule σ̂, and a set of motion plans X̂ can be found for a plan π̂,

then
〈
π̂, Â, σ̂, X̂

〉
is a solution to the problem.

FCPOP

In this work, the task planning layer uses a modified version of the Forward Chaining

Partial-Order Planner (FCPOP) planner [63] described in Chapter 2. FCPOP combines tra-

ditional partial-order planning with grounded forward chaining for robust and fast domain-

independent temporal planning. FCPOP removes the delayed parameter binding of partial-

order planning by grounding the tasks before the search but fully utilizes the delayed task

ordering commitment from traditional partial-order planning. This allows tasks to be added

to any point in the plan. As such, the forward search can be viewed as a commitment to a

78



set of tasks and not to the order of their application [37]. Furthermore, FCPOP interleaves

information between task planning and scheduling layers. For GRSTAPS we utilize the

task planning portion of the original FCPOP on agent-agnostic tasks, but instead of the

previous scheduling layer described in Chapter 2, we use the scheduling layer described

below.

Figure 4.3: An example of the task planning search. The search starts from a plan with a
single dummy task and searches to through a plan space to find a solution plan

As with the traditional FCPOP, the temporal planner in GRSTAPS performs an A∗

search through plan space in which each node of the tree represents a partially-ordered

plan (see Algorithm 6). Figure 4.3 illustrates this search through plan space. Prior to the

search, the planner creates fictitious tasks τsinit , whose effects assign the values needed

to satisfy the conditions in the initial state sinit, and τG, whose conditions are the set of

goal conditions G. The search starts at the root node which contains a partial-order plan

π0 = ⟨{τsinit}, ∅, ∅⟩with the fictitious task τsinit and no causal links or ordering constraints.

Then when the planner expands a node π̀, it determines which tasks can be added to π̀. A

task is only feasible to add if, for each condition in the new task, a causal link can be created

from an effect of one of the tasks currently in π̀ to support the condition. It is possible that

the addition of the new task τk creates a threat to a causal link between two tasks, τi and τj ,

that are already in the plan over τj’s precondition p (τi
p−→ τj). A threat is created when one

of the effects of the new task τk modifies the value of a precondition away from the value

79



Algorithm 6: Task Planning Layer
Input: ⟨sinit, G, T ⟩
Output:

〈
π̂, Â, σ̂, X̂

〉
1 τsinit ← fictitious action for the initial state
2 root← ⟨{τsinit}, ∅, ∅⟩
3 pq ← PriorityQueue({root})
4 while pq is not empty do

// Pop off the current best plan node
5 n← pq.pop()

// Check if the node is a solution
6 if n contains a solution then
7 return n.π, n.A, n.X, n.σ
8 for task τ ∈ T do
9 if τ is applicable in n.π then

10 n′ ← create new node
11 n′.π ← apply τ to n.π
12 Yn′.π ← create desired traits matrix from n′.π

13 n′.A, n′.σ, n′.X ← TaskAllocationLayer(n′.π, Yn′.π)
// Generate the frontier state by simulating the effects of n.σ

14 sfr ← generate frontier state from n.σ
// The path cost for a node is the makespan of the generated schedule

15 n′.g ← Cn′.σ

// The heuristic value is generated by FCPOP’s variant of the TRPG
16 n′.h← TRPG(sfr, G, T )
17 pq.push(n′)

18 return null

needed for the causal link, and there is no temporal relationship between τk and either τi or

τj that would prevent it from doing so. If adding the new task τk creates a threat then the

planner determines whether that threat can be resolved through either promotion (τk ≺ τi)

or demotion (τj ≺ τk). If the task can be added and any threats can be resolved, this creates

a new plan. An example of this can be found in Figure 4.3, in which the root node π0 is

expanded and its child node π1 has the task τ1 added.

If the temporal planner in GRSTAPS were to use the traditional heuristic process of

creating a Simple Temporal Network (STN) [30] from FCPOP’s original scheduling layer,

computing the frontier state, and then generating its variant of the Temporal Relaxed Plan-

80



ning Graph (TRPG), then the solution plan would be inaccurate for all but the trivial prob-

lem where none of the robots move as it does not consider the travel times for the robots or

any other temporal constraints from the assignment of the robots to tasks. Instead, it uses

an STN to check for temporal consistency of a task plan π̀. If π̀ is temporally consistent,

then the task planning layer passes π̀ and the desired traits matrix Yπ̀ to the task allocation

layer. We describe the specifics of the task allocation, scheduling, and motion planning

layers below, but at a high level, one of the things that they produce is a schedule σ̀ for the

tasks in π̀ based on temporal constraints fromπ̀, temporal constraints from an allocation À

of robots to the tasks in π̀, the travel times for robots to execute each task they are assigned,

and the time for each robot to travel to the initial configuration for each task it is assigned.

The makespan of this schedule is then used as the path cost for π̀, and the schedule is sim-

ulated to create a frontier state used by the TRPG variant. The task planner then continues

its search.

For our example, the task planner passes πi from Figure 4.3 to the task allocation layer.

4.5.3 Task Allocation

In this work, the task allocation layer uses the Incremental Task Allocation Graph Search

(ITAGS) algorithm [5] as described in Chapter 3 due to its demonstrated efficiency. It

should be noted, however, that the GRSTAPS framework can use any algorithm designed

to solve the time-extended trait-based task allocation problem as presented in Section 4.3.2.

The task allocation layer makes an allocation A of robots for each of the tasks in a plan

π that satisfies the desired traits matrix Yπ. An allocation A satisfies Yπ when AQ is

element-wise greater than or equal to Yπ (See Figure 4.2).

It receives from the task planner the plan π̀ and the desired traits matrix Yπ. The task

allocator performs a greedy best-first search through the incremental task allocation space

(See Algorithm 7). In this space, a node represents an allocation of robots to tasks. Nodes

are connected to other nodes that differ only by the assignment of a single robot. This

81



Algorithm 7: Task Allocation Layer
Input:

〈
T, YT

〉
Output: ⟨A, X, σ⟩

1 Q← from problem description
2 Ic ← from problem description
3 CT ← from problem description
4 α← user defined parameter
5 root← empty allocation
6 pq ← PriorityQueue({root})
7 while pq is not empty do

// Identify the node with lowest heuristic value
8 n← pq.pop()

// Check if the node is a solution
9 if n.apr == 0 and n.nsq <∞ then

10 return n.A, n.X, n.σ
// Compute heuristics for each successor

11 for n′ ∈ generateSuccessors(n) do
// Compute using Equation 4.5

12 n′.apr ← APR(child, Q, Y∗)
// Compute schedule and motion plan

13 σ, σLB, σUB, X ← schedule(n′, T )
// Compute using Equation 4.6

14 n′.nsq ← NSQ(σ, σLB, σUB)
// Compute using Equation 4.7

15 n′.tetaq = α ∗ n′.apr + (1 − α) ∗ n′.nsq
16 pq.push(n′)

17 return null

graphical representation allows our search to start from an initial node with no allocated

robots and incrementally add robots until an allocation satisfies the desired traits matrix for

a plan.

Figure 4.4 illustrates the search of the incremental task allocation graph for πi from our

example. For Ak in Figure 4.4, the paramedic robot is assigned to independently move

both survivors A and B to the hospital, construction robot 2 and the firefighting robot are

assigned to collaboratively put out a fire, and construction robot 1 is assigned to repair a

building.

To guide the search, we use two heuristics: Allocation Percentage Remaining, which

82



Figure 4.4: The associated incremental task allocation graph for plan πi from Figure 4.3

guides the search based on the quality of the allocation, and Normalized Schedule Quality,

which guides the search based on the quality of the makespan of the schedule associated

with the allocation. We use a convex combination of the two heuristics, which we call Time-

Extended Task Allocation Quality. The following sections will discuss these heuristics in

detail, and Algorithm 7 contains the pseudo-code for the task allocation layer.

Allocation Percentage Remaining

Allocation Percentage Remaining (APR) is defined as the percentage trait mismatch error.

Specifically, APR is calculated as

fapr(À) =
||max(Yπ̀ − À Q, 0)||1,1

||Yπ̀||1,1
(4.5)

in which À is the current allocation that the heuristic is evaluating. This equation sums the

error between the desired traits for each task (Yπ̀) and the traits provided by the coalition

that is assigned to execute that task. The error is then normalized by the element-wise

summation of the desired traits matrix Yπ̀.

83



APR does not use any information from the scheduling layer and, as such, tends to

search the graph deeply. This behavior is caused by nodes deeper in the graph having more

robots assigned and a smaller desired trait mismatch error. This deep search leads APR to

find an allocation that quickly satisfies the desired traits matrix at the expense of ignoring

schedules with considerably shorter makespans.

Before each task allocation search, we can quickly calculate the APR when all robots

are assigned to all tasks. If the value is not zero, then the most recently added task cannot be

allocated and the task planning layer can utilize this information to not only prune this spe-

cific task plan, but reduce its branching factor going forward as it can remove the task from

the full set of grounded tasks. Additionally, upon the first expansion from the root node,

we can quickly determine which species of robots cannot contribute to each task. These

constraints decrease the branching factor for the remainder of the current task allocation

search and for all future task allocation searches conducted for other partial-order plans as

part of solving the entire problem, increasing efficiency. Furthermore, it is possible that a

conjunction of constraints created by the task allocation, scheduling, and motion planning

layers generalize to “there are no combination of robots that can execute the most recently

added task.” This information is passed up to the task planning layer, where once again it

can be utilized to prune the current partial-order plan and reduce the set of all grounded

tasks which in turn reduces the branching factor of the task planning search. This conjunc-

tive reasoning would occur on the expansion of the root node of the task allocation search

causing the task planning layer to efficiently move on to another partial-order plan.

Normalized Schedule Quality

The second heuristic, Normalized Schedule Quality (NSQ) is a measure of how much an

allocation minimizes the makespan of its accompanying schedule. Specifically, NSQ is

calculated as

fnsq(Cσ̀) =
Cσ̀ − CσLB
CσUB − CσLB

(4.6)

84



in which Cσ is the makespan, or completion time, of the schedule σ, σ̀ is the schedule

based on π̀ and À, σLB is the schedule without any constraints placed on the schedule from

the allocation and motion planning, and σUB is the schedule in which the plan fragment

is totally-ordered and all motion plans are assumed to be the longest possible length. The

longest possible length path was calculated as the sum of the perimeter of every obstacle in

the environment as well as the perimeter of the environment’s bounding box.

The three variables σ̀, σLB, and σUB are all computed by the scheduling layer. As NSQ

only considers the schedule and not the allocation, it tends to favor a broader search. This

broad search is caused by nodes closer to the root having fewer temporal constraints, more

concurrency, and lower makespans. This broad search leads to NSQ finding an alloca-

tion that satisfies the desired traits matrix with the minimum makespan at the expense of

searching a much larger area of the graph.

Time-Extended Task Allocation Quality

To balance the shortcomings of these heuristics we use a convex combination of APR

and NSQ which we call Time-Extended Task Allocation Quality (TETAQ), this heuristic

considers both the quality of the allocation as well as the quality of the schedule. The

equation for TETAQ is as follows

ftetaq(À, Cσ̀) = αfnsq(Cσ̀) + (1− α)fapr(À) (4.7)

In this equation, α ∈ [0, 1] represents a user-specified parameter that weights the rel-

ative influence of APR and NSQ. If α = 0 then this heuristic simplifies to APR, and if

α = 1 then this heuristic simplifies to NSQ. TETAQ uses α to take qualities from both to

perform the search, which allows it to balance finding an allocation that satisfies the de-

sired traits quickly with finding an allocation that minimizes the makespan of the assigned

robots’ schedule.

85



For our example, the task allocation layer passes πi and Ak to the scheduling layer.

4.5.4 Scheduling

In this work, the scheduling layer uses the the scheduling layer from our ITAGS algo-

rithm [5] as described in Chapter 3 due to the demonstrated efficiency of ITAGS. It should

be noted, however, that the GRSTAPS framework can use any algorithm designed to solve

the scheduling problem as presented in Section 4.3.3.

The scheduling layer determines if it is feasible to create a schedule for the tasks in

a plan while ensuring that all temporal constraints imposed by the task planner and task

allocator are satisfied. This layer receives a plan π̀ and an allocation À from the task

allocation layer.

The scheduler finds a schedule σ associated with π̀ and À, which is then used as part

of the NSQ heuristic for the task allocation layer. Also, the makespan of the schedule Cσ̀

is used as the path cost of the task planning node for π̀. When building a schedule, the

scheduler must consider three temporal components:

• The static duration of each task.

• The time needed for each robot to travel to the task’s initial configuration.

• The time needed for the assigned coalition of robots to execute the movements required

by the task.

To this end, the scheduler provides each task’s initial and terminal configurations to

the motion planning layer to determine if there is a feasible motion plan between the two

configurations. The scheduler then uses either the robot or the coalition’s speed to deter-

mine the time needed to execute the motion plan. Using this information the schedule then

calculates σ̀, σLB, and σUB.

To find a schedule for a plan and an allocation, the scheduler must handle three different

types of temporal constraints:

86



• precedence constraints imposed by the task planner,

• mutex constraints imposed by task allocation,

• and transition constraints imposed by the motion planner and that account for the time

required for robots to move between assigned task.

A mutex constraint is a relationship between two tasks, τi and τj , that ensures that

either τj must finish before τi starts or τi must finish before τj starts [14]. These mutex

constraints are created when a robot is assigned to a task τi making it unable to perform

another task τj at the same time as τi.

To find a schedule that satisfies these constraints, the scheduler uses a three-part schedul-

ing approach. The first part converts the plan into a Simple Temporal Network (STN) [33],

which provides a graphical representation of the start and end times for each task, where

precedence constraints separate tasks. STNs are commonly used for scheduling due to their

ability to be updated and checked for consistency in polynomial time [58].

Each vertex in the STN represents a time point, and each weighted directed edge rep-

resents inequality constraints between two time-points. When converting the plan to the

STN, two vertices are created for each task, with one representing the start of the task and

the other representing the end of the task. For each task, an edge is added from the vertex

representing its start time point to the vertex representing its end time point with the dura-

tion of the task as its weight. Additionally, each precedence constraint, τi ≺ τj , is added as

an edge between the vertex representing the end time point of τi to the vertex representing

the start time point of τj .

To compute a minimum makespan schedule for an STN, we use a variant of the single-

source shortest path algorithm [33]. The schedule calculated at this point does not include

the duration of any motion plans, nor does this schedule consider the mutex constraints

imposed by the allocation. We use this schedule as the σLB used by NSQ. This is displayed

as σLB in Figure 4.5.

The second part of this approach adds in the mutex constraints from the allocation. This

87



Figure 4.5: An example of the scheduling layer’s process. Within each box solid lines
represent precedence constraints, dashed lines represent mutex constraints, and dotted lines
represent the duration of a task.

can be seen in σinit in Figure 4.5. Because the task allocation layer assigned the paramedic

robot to task 1 and 2, these two tasks cannot happen simultaneously; however, there is

no constraint that orders one with respect to the other. The scheduler needs to convert

mutex constraints into precedence constraints by selecting an ordering. A mutex constraint

between two tasks τi and τj can be converted to a precedence constraint by selecting that

either τi must finish before τj starts (τi ≺ τj) or vise versa. The two options for converting

the mutex constraints in σinit to precedence constraints are shown as σ1 and σ2 in Figure 4.5.

To choose which set of precedence constraints the mutex constraints should be converted

to, the scheduler performs a Tabu search [59] over the possible orderings while minimizing

the schedule’s makespan. This Tabu search does a local search over a space of possible

orderings and allows us to find a conversion of mutex constraints that reduces the overall

makespan of the plan.

In the third part of this approach, the scheduler adjusts the schedule to account for the

execution of motion plans through the addition of transition constraints. This is represented

by σ1m in Figure 4.5. In this step, the motion planner determines whether every required

motion plan is feasible. If feasible, a set of motion plans X̀ is returned to the schedul-

ing layer. The scheduler uses the length of each motion plan to determine the execution

duration of the motion plan. The execution duration for each motion plan is then added

to the schedule as a transition constraint. These transition constraints ensure that there is

sufficient time for inter-task travel for every robot in a coalition. Furthermore, if a task

88



requires a robot or coalition to move then the time needed to move must be added to the

static duration of the task.

Using this three-part approach, the scheduler seeks to find a valid schedule for each

plan and allocation. If the scheduler cannot find a feasible schedule for a given plan and

allocation, the task allocation layer is alerted. If alerted, the allocation layer prunes this

allocation from its search tree. A schedule can be infeasible if:

• the STN for σLB is temporally inconsistent,

• no temporally consistent STN can be found during the Tabu search,

• no motion plan can be found for one of the queries (if infeasibility can be determined)

• no motion plan can be found within a user-defined timeout for one of the queries,

• or the addition of the transition constraints causes the STN to become temporally in-

consistent.

Constraints generated by the motion planning layer will be discussed down below, however,

if the STN for σLB is temporally inconsistent then the most current partial-order plan is

pruned from the task planning search because the task would have to occur before itself

and if no temporally consistent STN can be found during the tabu search then the allocation

node is pruned from the tree.

If the scheduling layer can find a feasible schedule σ̀, the makespan of this schedule Cσ̀

is returned to the task allocation layer and is used in NSQ.

Finally, the scheduler also computes the makespan of σUB. For computational effi-

ciency, we approximate an over-estimation of the makespan of the worst possible schedule

without having any robots slow down or wait,

CσUB =
2Mz

w
+

|π|∑
m=1

dur(τm)

in which |π| is the number of tasks in π, dur(τm) is the static duration of a task τm, z is

the length of the longest possible path in C, and w is the speed of the slowest robot. The

89



longest possible length path was calculated as the sum of the perimeter of every obstacle in

the environment as well as the perimeter of the environment’s bounding box.

4.5.5 Motion Planning

The motion planning layer uses the world W and the set of initial and terminal configura-

tion spaces for all tasks in T , CT , to compute a path between two configurations for a robot

or coalition while respecting obstacles that the robot or coalition must avoid. The specific

algorithm used to compute a path is generic and can be substituted with any suitable motion

planner. This layer memoizes the path for each specific pair of configurations and specific

robot or coalition to reduce the computational cost of generating motion plans, which the

motion planning layer can then use in subsequent queries. Additionally, by only computing

the paths when queried by the scheduling layer, the motion planning layer performs a lazy

evaluation and further reduces the computation cost. As mentioned in the previous section,

the memoization creates a positive constraint containing both the query with the two con-

figurations and the motion plan found. The motion plan can be utilized by other robots of

the same species.

If the motion planning algorithm can determine infeasibility or the motion planning

algorithm cannot find a motion plan within a user-defined timeout, then the motion planning

layer generates a negative constraint. If the motion planning query that failed was for the

initial transition between a robot ri’s initial configuration and its first task τj , then this

solely creates the constraint that robot ri cannot participate in task τj . During the first

expansion of the root node, we can quickly check which specific robots can reach the

initial configuration for a task and determine which robots cannot participate in each task.

This reduces the branching factor for the remainder of the search and increases efficiency.

If the motion planning query was for part of the execution of a task τj , then a constraints

can created that states that robot ri’s species cannot participate in task τj . If the motion

planning query was for a transition between tasks τj and τk, then the constraint created

90



states that robot ri’s species cannot participate in both tasks τj and τk, however the are no

constraints place on the robot ri’s species participating in each task individually. This is

because its possible the robot’s ability to reach either of τj or τk depends on its previous

location (e.g., the robot could be good at pushing doors open, but struggle to pull doors

open making motion plans irreversible).

Due to the fact the motion planning computes each motion plan independent of the other

motion plans, this layer cannot compute robot-on-robot collisions. Additionally, objects in

the world change location as robots manipulate them. As such, a robot’s free configuration

space while executing a task τi may depend on the order in which tasks are executed. We

assume that modern motion controllers used by the robots during execution will prevent

robots from colliding with one another and with objects that have been moved in most

domains [82, 87, 100]. In future work, we hope to improve this portion of the framework

to consider these types of constraints.

4.6 Experimental Evaluations

We evaluated GRSTAPS through five experiments in a simulated emergency response do-

main widely used in other works [19, 61, 62, 63]. In this domain, a heterogeneous team of

robots must work together to rescue wounded survivors, deliver medicine and supplies to

hospitals, put out fires, and repair damaged structures. Achieving each of the above goals

requires the execution of several tasks. For example, to effectively rescue a survivor in this

domain, an appropriate subset of robots need to travel to each survivor, carry them to a

hospital, and deliver medicine to the hospital to heal the survivor. We generate different

simulated problem instances by varying the number of survivors, fires, and buildings.

We compared the performance of GRSTAPS against two types of baselines. First,

against two sequential versions of GRSTAPS that do not interleave information across com-

putational layers (Section 4.6.2). Second, against three state-of-the-art temporal planners

(Section 4.6.3). In addition to our comparative experiments, we also tested the limits of

91



GRSTAPS in terms of its ability to scale with the number of robots (Section 4.6.4).

In all experiments, we used maps from the Robocup Rescue Competition [60]. Each

map contained buildings, composed of various polygonal shapes, and roads. An example

map is shown in Figure 4.6. For each problem instance, we randomly assigned a hospital,

fire station, and construction company to buildings. Similarly, survivors, fires, and rubble

were randomly assigned locations on the map. Note that these locations could overlap (e.g.,

a survivor can be in a building that needs to be repaired).

Figure 4.6: Example survivor domain map used for the experiments.

For all experiments, we used a Lazy PRM [64] motion planning implementation from

the Open Motion Planning Library (OMPL) [65] as part of the motion planning layer for

GRSTAPS. For our implementation of GRSTAPS, a configuration represents a 2-dimensional

pose of a robot and does not consider the dynamics of the robot. However, it should be

noted that higher dimensional configurations and dynamics can be used within the theoret-

ical framework with a different choice of motion planning implementation.

We ran all experiments on an i7-8565 CPU with 8GB of RAM. The complete source

code for GRSTAPS and scripts used for experiments can be found at https://github.com/

amessing/grstaps.git.

92

https://github.com/amessing/grstaps.git
https://github.com/amessing/grstaps.git


4.6.1 Metrics

We evaluated the performance of GRSTAPS and the various baselines using the following

metrics:

• Computation Time: the total time needed for an algorithm to solve a specific STAP-

STC problem.

• Coverage Percentage: the percentage of the problems that a specific algorithm success-

fully solved.

• Makespan: the total time from the start of the first task in a schedule to the completion

of the last task in the schedule.

• Travel time: the total time that each agent spends traveling between tasks that it is

assigned.

• Task Planning Nodes Expanded: the number of nodes that are expanded during the

search in the task planning layer.

• Task Planning Nodes Visited: the number of nodes that are visited during the search in

the task planning layer.

• Task Allocation Nodes Expanded: the number of nodes that are expanded during the

search in the task allocation layer.

• Task Allocation Nodes Visited: the number of nodes that are visited during the search

in the task allocation layer.

• Average Number of Concurrent Tasks: the average number of tasks that occur simulta-

neously throughout the schedule.

4.6.2 Comparisons with Sequential Baselines

For the first two experiments, we compared GRSTAPS against two baselines. Both base-

lines are sequential anytime variants of the GRSTAPS framework and do not interleave

information between layers. As such, the two baselines simulate chaining individual solu-

93



tions to each of the four separate sub-problems. Note that the sequential operation of the

baselines differs significantly from GRSTAPS’ recursive hierarchical approach that inter-

leaves information from the lower layers to guide the search in higher layers. We designed

these comparisons to evaluate the benefits of interleaving modules within GRSTAPS. We

call these two anytime algorithms Sequential Task Planning Anytime (STPA) and Sequen-

tial Task Allocation Anytime (STAA).

(a) STPA (b) STAA

Figure 4.7: High-level architecture of STPA/STAA.

As anytime algorithms, STPA and STAA first find an initial solution to the STAP-STC

problem and then iteratively refine that solution. Both STPA and STAA use the same

process to find an initial solution: they search the plan space for π̂. Instead of using the in-

formation from the shared constraints to prune the plan space, reduce the branching factor,

and to compute costs, STPA and STAA solely use information from the task planning layer

to construct π̂. Upon finding π̂, the task planning layer creates a desired trait matrix Yπ̂.

After receiving π̂ and Yπ̂, task allocation searches the incremental task allocation space for

94



Â using only APR and without considering any associated schedules. Upon finding Â, Â

and π̂ are passed to scheduling. Scheduling then builds the schedule using the same pro-

cess as GRSTAPS. When finding the initial solution, both baselines move back up a layer

only if they cannot find the solution after searching the entire space for the current layer.

Finally, motion planning is called to calculate the motion plans required by the scheduling

layer. For example, after finding the first π̂ the baselines will not come back to the task

planning layer unless the entire incremental task allocation space is searched and no solu-

tion is found. When compared to GRSTAPS, these two baselines give an understanding of

how the interleaving of GRSTAPS through shared constraints improves performance.

The difference between these two baselines arises in how they refine after finding an

initial solution (see Figure 4.7). After finding an initial solution, STPA continues to use

FCPOP in an attempt to find another π̂ that has a lower associated makespan. Upon finding

another π̂, it then passes this plan through the rest of the process is used to find an initial

solution, including task allocation, scheduling, and motion planning. If it finds another

solution, it returns to the task planning layer and continues the search. This refinement

process continues until a timeout occurs.

In contrast, after finding an initial solution, STAA continues the search in the incremen-

tal task allocation space. It attempts to find another allocation Â with a lower associated

makespan. It only returns to the task planning layer upon searching the entire incremental

task allocation space and similarly runs until a timeout occurs.

We ran all three algorithms – GRSTAPS, STPA, and STAA – for the same amount of

time in order to provide each algorithm an equal opportunity to find a good solution. The

time was selected as the amount of time that it took GRSTAPS to find a solution. This time

was always greater than the time needed by STPA and STAA to identify an initial solution,

meaning both baselines had time to refine their solutions.

95



(a) Solution makespan. (b) Total travel time of all the robots.

(c) Number of task planning nodes visited. (d) Number of task planning nodes expanded.

(e) Number of task allocation nodes visited. (f) Number of task allocation nodes expanded.

Figure 4.8: Experiment 1: A comparison of GRSTAPS to both sequential baselines (STPA
and STAA) when scaling the number of robots. All problems have 20 goals.

Scalability with increasing team size against sequential approaches

The first experiment tested the ability of GRSTAPS to scale with an increasing number

of robots in comparison to the sequential baselines. For this experiment, we tested five

different team sizes: 5, 10, 15, 20, and 25 robots. For each team size, we randomly gen-

erated 20 problem instances. All problem instances had 20 goals (10 survivors, 5 fires,

and 5 damaged buildings to repair). The results of these experiments are summarized in

Figure 4.8.

As shown in Figure 4.8a, GRSTAPS created solutions with lower makespans than both

of the sequential baselines. On average, the makespan of STPA and STAA solutions was

268% and 274% larger than those of GRSTAPS, respectively.

While each approach searched the same plan space for all 100 problems, the infor-

96



mation utilized by each approach to search the plan space greatly contributes to why

GRSTAPS created solutions with lower makespans. STPA and STAA only consider the

agent-agnostic tasks when building the task plan, so they do not consider the proximity of

tasks to one another or any constraints placed upon the ordering of tasks by the assign-

ment of robots and their tasks proximities. GRSTAPS, on the other hand, evaluates plan

nodes based on a schedule that includes the travel times of robots. This implicitly considers

the proximity of tasks to each other and the proximity of the robots to their assigned tasks.

GRSTAPS is thus able to conduct a more informed search through the plan space and select

a task plan that minimizes the overall makespan when the other constraints are considered.

At the allocation level, STPA and STAA conduct a search through the incremental task

allocation space without considering the resulting schedule. As both STPA and STAA use

APR to guide their search, they aim to find an allocation that satisfies Yπ̀ by assigning

as few robots as possible. This causes them to prefer robots with larger trait values re-

gardless of the robots’ other assignments. As a result, robots with larger trait values get

assigned multiple tasks while other robots remain under-utilized. As no robot can perform

more than one task at any given time, this reduces concurrency and can lead to a longer

makespan. Additionally, when STPA and STAA assign robots to tasks, they do not con-

sider the robot’s proximity to the task. This can lead to a robot needing to travel a far

distance to reach its assigned task, which delays the start of that task and leads to a longer

makespan. As GRSTAPS considers both the schedule and the motion plans, it can conduct

a more informed search through the incremental task allocation space and selects an allo-

cation that minimizes makespan. In Figure 4.8b, one can see that the solutions generated

by GRSTAPS required the robots to travel less to reach each assigned task than both STPA

and STAA.

Figures 4.8c and 4.8d show the number of task planning nodes visited and expanded.

As all three approaches use agent-agnostic tasks, the change in the number of robots had a

smaller impact on the task planning search, which resulted in a small variation in the num-

97



ber of task planning nodes visited and expanded. As can be seen, GRSTAPS both visited

and expanded fewer task planning nodes than STPA and STAA. This is likely due to its

more informed search and because it prunes part of the plan space based on the shared con-

straints from the task allocation, scheduling, and motion planning layers. Because STPA

and STAA do not use this interleaved process, they can find a task plan π̂ that satisfies

G, but which cannot be allocated or one for which motion plans cannot be created. Upon

finding such a task plan, they start searching locally in the plan space as the nodes close

to π̂ have better heuristic values. This can cause them to get stuck in the local minimum

of plan space surrounding the π̂. Furthermore, STPA runs an anytime approach at the task

planning level, so after it finds an initial solution, it continues to search the plan space for

a task plan that is part of a better solution. This causes it to visit and expand significantly

more task planning nodes than either GRSTAPS or STAA.

Figures 4.8e and 4.8f show the number of task allocation nodes that each approach

visited and expanded. As the number of robots increases, the number of task allocation

nodes visited and expanded increases exponentially. However, GRSTAPS both visited and

expanded fewer task allocation nodes than STPA and STAA. Similar to the search through

the plan space, GRSTAPS conducts a more informed search of the incremental task al-

location space and uses information from the shared constraints to prune portions of this

space. Also, since these baselines allocate without considering the schedule or required

motion plans, they can find an Â that cannot be scheduled or one for which motion plans

cannot be created. Upon finding such an allocation, they will start searching locally in the

incremental task allocation space as the nodes close to Â will have better heuristic values.

This can cause them to get stuck in the local minimum of incremental task allocation space

surrounding the Â. Furthermore, STAA runs an anytime approach at the task allocation

level, so after it finds an initial solution, it continues to search the incremental task allo-

cation space for an allocation that is part of a better solution. This causes it to visit and

expand significantly more task allocation nodes than either GRSTAPS or STPA.

98



(a) Solution makespan. (b) Total travel time of all the robots.

(c) Number of task planning nodes visited. (d) Number of task planning nodes expanded.

(e) Number of task allocation nodes visited. (f) Number of task allocation nodes expanded.

Figure 4.9: Experiment 2: A comparison of GRSTAPS to both sequential baselines (STPA
and STAA) when scaling the number of goals. All problems have 15 agents.

Scalability with increasing number of goals against sequential approaches

The second experiment tested the ability of GRSTAPS to scale with an increasing number

of goal conditions compared to the sequential baselines. This comparison allowed us to

gain insights into how the GRSTAPS scales as a function of the planning problem’s size.

For this experiment, the number of goals was varied from 15 to 30 in increments of 5. We

ran 20 problem instances for each set of goals. All problem instances used 15 robots. The

results of this experiment can be seen in Figure 4.9.

As shown in Figure 4.9a, when compared to STPA and STAA, GRSTAPS creates so-

lutions with lower makespans than both of the sequential baselines. On average, STPA

generated a solution with a makespan that was 285% of the one GRSTAPS generated.

STAA generated a solution with a makespan that was 289% of the one GRSTAPS gener-

99



ated. This is caused by the same reasons as in Section 4.6.2. Once again, GRSTAPS uses

a more informed search through both task planning and task allocation spaces. This more

informed search leads to less total travel time by the robots as seen in Figure 4.9b and a

lower overall makespan.

Figures 4.9c and 4.9d show the number of task planning nodes visited and expanded.

As the number of goals increases, the overall plan space and the length of the task plan

needed to achieve these goals become longer. This leads to an increase in the number of

task planning nodes visited and explored. As can be seen, GRSTAPS visits and explores

fewer task planning nodes than either STPA and STAA.

Figures 4.9e and 4.9f show the number of task allocation nodes that each approach

visited and expanded. As mentioned in the previous paragraph, as the number of goals in-

creases, the number of task planning nodes visited increases. This propagates and increases

the number of task allocation nodes visited and expanded. As can be seen, GRSTAPS visits

and explores fewer task allocation nodes than either STPA and STAA.

4.6.3 Comparisons with Temporal Planner Baselines

For the third and fourth experiments, we compared GRSTAPS against three state-of-the-

art temporal task planners: FCPOP [63], OPTIC [16, 115], and TFLAP [15, 39]. These

planners have been shown to be highly effective and efficient at temporal planning when

compared to prior state-of-the-art temporal planners. TFLAP was the highest performing

non-portfolio planner at the 2018 International Planning Competition’s temporal track [20].

OPTIC was the baseline used for this competition. FCPOP is from our prior work and has

been demonstrated to be competitive against these other temporal planners.

However, none of the temporal planners can compute motion plans or allocate coali-

tions based on traits. To resolve this and ensure fair comparison, we used a preprocessing

step to formulate the problem in a way that was compatible with their planning formula-

tion. For each problem, the preprocessing stage first generated a fully connected graph

100



where each node is a location (e.g., the hospital, survivor 1’s initial location, etc.), and

each edge is labeled with the traversal time for each robot/coalition. In order to calculate

the traversal times, the algorithm queried the motion planning module from GRSTAPS for

motion plans between each pair of nodes. The length of each motion plan and the speed of

each robot/coalition was then used to compute the traversal times for each edge.

Next, the preprocessing stage accommodated for the fact that these temporal planners

cannot handle trait-based models. We converted each agent-agnostic task into a set of non-

agent-agnostic tasks. These tasks each consider which robots were assigned to execute

them. This was done by computing a set of all possible coalitions. For each agent-agnostic

task τ , the preprocessing step checked each possible coalition coal to determine if the

coalition’s combined traits satisfied the task traits requirements vector yτ for τ . If the

coalition’s combined traits satisfied yτ , then a non-agent-agnostic task τ coal was created,

and the duration of the non-agent-agnostic task was updated based on the time the coalition

needed to complete it. Additionally, move tasks were added for each individual robot to

travel from one location to another. The temporal planners used the non-agent-agnostic and

move tasks to solve the problem.

By adding these tasks via the preprocessing steps, the temporal planners are effectively

searching through a discretized version of the entire problem space.

Scalability with increasing team size against temporal planners

For this experiment, we used five different team sizes. For each team size, we randomly

generated 20 problem instances. All problem instances had 15 goals (7 survivors, 4 fires,

and 4 damaged buildings to repair). For each problem instance, we ran each algorithm until

it either solved the problem instance, ran out of memory, or exceeded a 10-minute timeout.

We reduced the number of goals from experiment 1 due to the time required for each of

the temporal planners to solve larger problem instances. Since we could not measure the

number of grounded tasks and average branching factor for TFLAP and OPTIC without

101



(a) Comparison of GRSTAPS to FCPOP,
TFLAP, and OPTIC in terms of problem cover-
age.

(b) Comparison of GRSTAPS to FCPOP,
TFLAP, and OPTIC in terms of total number of
grounded tasks.

(c) Comparison of GRSTAPS to FCPOP,
TFLAP, and OPTIC in terms of average branch-
ing factor of planning search.

(d) Comparison of GRSTAPS to FCPOP,
TFLAP, and OPTIC in terms of computation
time.

(e) Comparison of GRSTAPS to FCPOP,
TFLAP, and OPTIC in terms of solution
makespan.

(f) Comparison of GRSTAPS to FCPOP,
TFLAP, and OPTIC in terms of the average num-
ber of tasks that happen concurrently.

Figure 4.10: Experiment 3: A comparison of GRSTAPS to three temporal planners
(FCPOP, TFLAP, and OPTIC) when scaling the number of robots. All problems have
15 goals.

modifying their source code, we only report those metrics for FCPOP in Figures 4.10b

and 4.10c. We believe that TFLAP and OPTIC would have generated the same number of

grounded tasks as the total number of grounded tasks is problem instance-specific.

Figure 4.10a shows each approach’s problem coverage for each team size. As can be

seen, as the number of robots increased, FCPOP, OPTIC, and TFLAP struggled to find

solutions to the planning problems. While GRSTAPS solved all 100 problems, FCPOP,

TFLAP, and OPTIC solved only 44, 36, and 14 problems, respectively. In fact, OPTIC

could not solve any problem with more than 5 robots, and FCPOP and TFLAP could not

102



solve any with more than 15 robots. This is likely due to the fact that, as the number of

agents increases, for the temporal planners, the number of grounded tasks (allocated tasks

and move tasks) increases combinatorically (see Figure 4.10b). As the team size increases,

GRSTAPS maintains the same number of grounded tasks due to agent-agnostic planning.

Additionally, the temporal planners have a grounded task for each possible coalition, task

schema, and parameter combination as they are searching the entire problem space on

one layer. The larger number of grounded tasks also leads to a much higher branching

factor. As shown in Figure 4.10c, GRSTAPS has a fairly consistent average branching

factor even when the team size increases. However, the temporal planners have a larger

average branching factor, and the average branching factor grows as the team size grows.

The larger number of grounded tasks and higher average branching factor increased

the computation time for the temporal planners. However, as can be seen in Figure 4.10d,

even for the problems that the temporal planners can solve, GRSTAPS solved them faster.

While all of the approaches took longer to solve the problem as the team size increased,

the increase in team size had a much more substantial impact on the temporal planners’

computation times.

Finally, we measured the makespan of the solution for each problem. As can be seen

in Figure 4.10e, FCPOP, OPTIC, and TFLAP generated better solutions for teams of 5

robots. However, they created worse solutions (i.e., longer makespan) or no solutions for

larger team sizes. Part of the reason GRSTAPS creates plans with lower makespans is that

it creates plans with higher concurrency, as seen in Figure 4.10f. As a result, GRSTAPS’

solutions accomplish more simultaneously and thus are more compact. The increase in

average branching factor and number of grounded tasks are also contributing factors to

the temporal planners’ lower concurrency. Each of their searches implicitly (and explicitly

in the case of TFLAP) minimizes the number of tasks in the plan in addition to trying to

minimize the overall makespan.

103



Scalability with increasing number of goals against temporal planners

For the fourth experiment, we varied the number of goals from 15 to 30. For each number of

goals, we randomly generated 20 problem instances. All problem instances had 15 robots

each. For each problem instance, we ran each algorithm until it either solved the problem

instance, ran out of memory, or exceeded a 10-minute timeout. OPTIC was unable to solve

any of the problem instances and so is excluded from the results below.

Similarly to experiment 3, measuring the number of grounded tasks and average branch-

ing factor for TFLAP would require changing its code and so it is excluded from Figures

4.11b and 4.11c. Also, similarly to experiment 3, TFLAP should have the same number

of grounded tasks as FCPOP as the total number of grounded tasks is problem instance-

specific.

For this experiment, FCPOP and TFLAP were able to solve some of the problem in-

stances up to 21 goals, while OPTIC was unable to solve any of the problems. As the num-

ber of goals increased, the percentage of problems that FCPOP and TFLAP could solve

decreased. In total GRSTAPS solved all 120 problems, while FCPOP and TFLAP solved

46 and 40 respectively (see Figure 4.11a). This is largely due to the significantly higher

number of grounded tasks (see Figure 4.11b) and the higher average branching factor (see

Figure 4.11c).

While GRSTAPS has a more computationally expensive heuristic at the task planning

layer due to its task allocation and motion planning layers, the significantly larger num-

ber of branches that each of the temporal planners has to consider at each iteration of the

search causes them to be slower. As can be seen in Figure 4.11d, as the number of goals in-

creased, the separation in the amount of time needed to solve a problem between GRSTAPS

and each of the temporal planner increased until they cannot solve the problem within the

timeout. This limits temporal planners from being able to solve a problem with more than

21 goals.

Finally, we measured the makespan of each of the generated solutions. Similar to ex-

104



(a) Comparison of GRSTAPS to FCPOP in terms
of problem coverage.

(b) Comparison of GRSTAPS to FCPOP in terms
of total number of grounded tasks.

(c) Comparison of GRSTAPS to FCPOP in terms
of average branching factor of planning search.

(d) Comparison of GRSTAPS to FCPOP in terms
of computation time.

(e) Comparison of GRSTAPS to FCPOP in terms
of solution makespan.

(f) Comparison of GRSTAPS to FCPOP in terms
of the average number of tasks that happen con-
currently.

Figure 4.11: Experiment 4: A comparison of GRSTAPS to three temporal planners
(FCPOP, TFLAP, and OPTIC) when scaling the number of goal. All problems have 15
agents.

periment 3, GRSTAPS creates solutions with better makespan than the temporal planners

(see Figure 4.11e). This is partially due to GRSTAPS’ ability to create compact plans with

higher average concurrency (see Figure 4.11f).

4.6.4 Testing the limits

In the final experiment, we tested the limits of GRSTAPS in terms of its scalability with

team size when tasked with 30 goals. For each team size, there were ten problem instances

randomly generated. For each problem instance, GRSTAPS was run until it either solved

the problem instance or exceeded a 10-minute timeout. We continued increasing the team

105



(a) Computation time results for testing the lim-
its of GRSTAPS with 30 goals and an increasing
number of agents.

(b) Coverage results for testing the limits of
GRSTAPS with 30 goals and an increasing num-
ber of agents.

Figure 4.12: Experiment 5: Testing the limits of GRSTAPS using 30 goals and an increas-
ing number of agents.

size until GRSTAPS was incapable of solving any of the ten problems within the 10-minute

limit. The results from these experiments can be seen in Figure 4.12.

As shown in Figure 4.12a, with 30 goals, GRSTAPS solved STAP-STC problems with

up to 45 agents within the 10-minute limit. However, for team sizes of 40 and 45, it was

not able to solve all of the problem instances.

The increased number of goals compared to prior experiments required GRSTAPS to

handle larger task planning spaces and longer plans. This increases both the number of

times the task planning layer calls the task allocation layer and the size of the task allo-

cation space for each call. Additionally, as the number of robots increases, the size of the

task allocation space further increases. This leads to more time spent to allocate the tasks.

In turn, the increase in the number of allocations leads to more calls to the motion plan-

ner. While the memoization and lazy-evaluation mechanisms in the motion planning layer

improves computational efficiency, creating a new motion plan is time-consuming. All of

these factors together influence the largest problem size that GRSTAPS can handle when

operating under a certain time limit.

4.7 Discussion & Conclusion

In this chapter, we have formalized a new class of heterogeneous multi-robot problems

named Simultaneous Task Allocation and Planning with Spatiotemporal Constraints (STAP-

106



STC). To our knowledge, our formalization represents the first attempt to fully integrate

four interconnected problems: task planning, allocation, scheduling, and motion planning.

In addition, we introduced an interleaved framework named Graphically Recursive Simul-

taneous Task Allocation, Planning, and Scheduling (GRSTAPS) that performs a multi-layer

search to solve STAP-STC problems.

Through detailed ablation studies, we were able to show that the interleaved approach

used by GRSTAPS delivers improved performance in terms of solution quality over two

sequential anytime baselines that do not interleave the execution of the individual modules;

in particular GRSTAPS was able to find plans with lower makespan more quickly than all

baselines.We also demonstrated that GRSTAPS consistently outperforms state-of-the-art

temporal planners both in terms of solution quality and efficiency. Finally, we demonstrated

that GRSTAPS can solve STAP-STC problems with up to 30 goals and 45 robots within 10

minutes.

However, GRSTAPS does have its limitations and there are open questions left to ex-

plore. First, as GRSTAPS builds on top of ITAGS it shares the limitations about complete-

ness, assuming static traits, and a deterministic fully-observable problem as discussed in

Chapter 3.

Additionally, the current implementation utilizes some simple motion planning algo-

rithms that while fast cannot consider collisions between robots. For the examples consid-

ered in this paper, tight coupling of robot motion was not required (there were no instances

of cooperative manipulation, and no narrow passageways that could lead to deadlock), so

this limitation has not been problematic. For applications in which more intricate robot-

to-robot interaction is required (e.g., multiple mobile manipulators cooperating to perform

household tasks), it will be essential to include robot interaction when planning collision-

free paths. With regard to mobility, more advanced motion planners, such as those in [25,

116], may be more suitable for teams of heterogeneous robots, while for shared manipula-

tion, some combination of sampling-based planning in composite configuration spaces and

107



low-level cooperative control (during execution) may prove effective. Another limitation is

the interface between symbolic tasks and their geometric counterparts.

There is a significant amount of research from the Task and Motion Planning commu-

nity that focuses on the interaction between symbolic task descriptions and their corre-

sponding geometric motions, and in particular to the potential for unanticipated conflict at

the geometric level once a symbolic task plan has been determined. In our current imple-

mentation, we have addressed these difficulties by making two simplifying assumptions.

First, we rely on a simplistic static representation of the environment that does not update

robots’ free configuration spaces when robots rearrange objects in the work space. Again,

because the examples considered in this paper did not require close interaction between

robots and objects in the environment, this limitation was not problematic. Second, at the

motion planning level, we ignore geometric details for goal positions of objects that are

manipulated.For example, when a robot moves a patient to the hospital, we consider the

geometry of the transport path, but we do not explicitly consider the geometric description

of the patient’s goal location (e.g., we leave the details of placing the patient on a particular

bed to the online controller). Going forward, there are opportunities to eliminate both of

these simplifications, incorporating ideas from the TAMP community, such as [104, 90].

Finally, GRSTAPS considers an offline problem where it assumes a solution can be

executed perfectly, however, in real problems there are lots of opportunities for execution

to fail. An easy solution would be to resolve from the new initial state, however this would

be time consuming when a lot of information in the previous solution, the previous search,

and the previous shared constraints could still be utilized. It is possible that the solution

may only need a small repair or that a new solution can be based on part of the previous

solution. How to best utilize a framework such as GRSTAPS to aid in solution repair opens

several questions such as how to repair various types of execution failures, how to select

what parts of the solution to continue to use, and how to select what parts of the solution to

repair?

108



CHAPTER 5

HETEROGENEOUS COALITION SCHEDULING WITH TEMPORAL

UNCERTAINTY

5.1 Introduction

In this chapter, we relax the scheduling sub-problem of the Simultaneous Task Allocation

and Planning with Spatiotemporal Constraints (STAP-STC) problem we formalized in the

previous chapter1. We focus this chapter on exploring temporal uncertainty with the context

of this scheduling sub-problem and finish by exploring it with the context of the entire

STAP-STC problem.

In real-world environments, there are numerous factors that can cause both durations of

tasks and durations of task transitions to be uncertain (e.g., stale map information, battery

levels causing variance in individual robots’ speeds, variance in individual robots’ ability

to execute tasks, and unexpected delays). Without reasoning about possible temporal un-

certainty, these factors can compound through the entire execution of a plan and result in

the entire plan taking longer to execute than expected.

Furthermore, many Multi-Robot Coordination (MRC) algorithms use an estimate of

the makespan (i.e., the time needed to execute a plan) to determine what tasks should

be included in the plan and what robots should participate in executing the tasks [117].

Reasoning about uncertainty and the potential risk of delays can aid these Multi-Robot

Systems in making better decisions about what tasks should be executed and who should

execute the tasks.

In this chapter, we introduce a novel uncertainty-aware scheduling problem, the Het-

1The material in this chapter is based on:
A. Messing*, J. Banfi*, M. Stadler, E. Stump, H. Ravichandar, N. Roy, and S. Hutchinson, “Heterogeneous
Coalition Scheduling with Temporal Uncertainty,” IEEE Transactions on Robotics, 2023.

*Co-First Authors

109



erogeneous Coalition Scheduling with Temporal Uncertainty (HCSTU) problem, which

explicitly considers the uncertainties in the time needed to execute a task and to transition

between tasks. Existing approaches that deal with uncertainty either solve a determinized

version of the problem or reformulate the problem into a more general form. However,

such reformulations tend to be limited to small teams (less than 5 robots) and unimodal

uncertainty [118], or can often lead to overly conservative or optimistic solutions [33]. In

contrast, our approach provides guarantees on risk levels and can handle larger teams (up

to 15 robots) and arbitrary distributions of uncertainty.

To solve the HCSTU problem, we present a novel sampling-based risk-aware algo-

rithm named Coalition Scheduling with Heuristic Sample Selection and Risk Guarantee

(CS-HSSRG). Unlike approaches that either do not provide guarantees on meeting risk

tolerances [119] or empirically determine a risk tolerance offset to use internally to their

algorithm [120, 121], our approach allows the user to specify the desired level of risk and

ensures the desired level of risk is not exceeded through a theoretical guarantee.

Our approach is agnostic to the specific underlying cause of the temporal uncertainty

and the specific duration distributions. Instead, we assume access to either a model of

uncertainty or a generator that can generate samples of possible task and task transition

durations. The CS-HSSRG algorithm uses a small number of these samples to construct

a compact (and thus typically very efficient to solve) Mixed-Integer Linear Programming

formulation which considers a user-defined risk threshold for the computation of the plan,

which takes the form of a partial ordering of the tasks. Due to the small number of sam-

ples used, CS-HSSRG does not immediately guarantee that the tentative duration of the

plan, computed by solving the MILP formulation, meets the user-defined risk threshold.

Instead, it solves a Sequential Probability Ratio Test (SPRT) that checks whether the dura-

tion associated with the computed plan respects the user-defined risk threshold. If the test

is positive, CS-HSSRG directly outputs the computed schedule and associated duration;

otherwise, the duration is increased, and the SPRT is repeated with the same plan. This

110



process is repeated until a plan respecting the user-defined risk is found.

Using extensive experimental evaluations, we demonstrate that while CS-HSSRG pro-

vides a theoretical guarantee on the tolerated risk, it does not generate overly conservative

solutions and is extremely efficient at computing robust plans when compared to state-of-

the-art approaches. Additionally, we test CS-HSSRG as a component of our GRSTAPS

framework that we described in the previous chapter and use this variant of the frame-

work to solve a STAP-STC problem. We show that the use of CS-HSSRG for dealing with

the scheduling part of the problem results in making robust decisions about what tasks to

include in the plan and what robots to allocate to those tasks.

5.2 Related Work

The problem introduced in this paper can be framed as an intersection of the more general

contexts of coalition scheduling and scheduling with temporal uncertainty.

5.2.1 Coalition Scheduling

A rich body of work has addressed the multi-robot scheduling problem [44] and the closely

related multi-robot task allocation (MRTA) problem [42, 43]. Our work focuses on a vari-

ant of the multi-robot scheduling problem where robots can only participate in a single

task at a time, but multiple robot can form coalitions and collectively executable a single

task. As such, our problem falls under the single-task (ST) robots and multi-robot (MR)

tasks categorization from Gerkey and Mataric’s widely used taxonomy [42] and under the

Synchronization and Precedence Constraints (SP) categorization from Nunes’s extension

to the taxonomy [44]. We focus this section on works that fall under that same banner.

Zhang and Parker [122] develop four heuristics to address the multi-robot task schedul-

ing problem at the coalition level. These heuristics take inspiration from processor schedul-

ing algorithms and have provable solution bounds. Bischoff et al. [123] build upon the

MinStepSum algorithm introduced by Zhang and Parker [122], but augment the method to

111



directly consider precedence constraints. They then improve the schedule through a local

search with a custom neighborhood operator. Neville et al. [5] present Normalized Sched-

ule Quality (NSQ) as a coalition scheduling-based heuristic for their ST-MR-TA task allo-

cation algorithm Incremental Task Allocation Graph Search (ITAGS). Matos et al. [124]

propose an approach that utilizes Simulated Annealing to minimize the time and distance

cost of executing a task set while taking into account possible pathing conflicts. While

each of these approaches has several advantages when solving a deterministic scheduling

problem involving heterogeneous coalitions, none of them can reason about temporal un-

certainty.

5.2.2 Scheduling with Temporal Uncertainty

In robotics, scheduling with temporal uncertainty is often formulated more generally [42,

122, 44] as either an uncertainty-based variant of a Simple Temporal Problem (STP) [33]

or a Resource Constrained Project Scheduling Problem (RCPSP) [118].

A Simple Temporal Problem (STP) [33] is usually represented as a directed acyclic

graph where each node represents a timepoint variable and each edge represents a prece-

dence constraint. There are two common extensions to the STP for temporal uncertainty in

the Simple Temporal Problem with Uncertainty (STPU) [125] and the Probabilistic Simple

Temporal Problem (PSTP) [126]. For the interested reader, a detailed description of the

STP and its two uncertain variation can be found in [127].

Fang et al. [128] applied STPU strong controllability reductions from [129] to pro-

pose Picard, a change-constrained strong scheduler for PSTP’s capable of optimizing any

schedule-related objective function. The approach is evaluated only using normal dis-

tributions, but may generate overly conservative bounds for more complex distributions

as they equally distribute allowable risk to create upper and lower bounds. Brooks et

al. [130] present a novel robustness metric for temporal networks and two sampling-based

approaches for approximating the robustness of a temporal network. Santana et al. [131]

112



merge STPU and PSTP to create the Probabilistic Simple Temporal Problem with Uncer-

tainty (PSTPU) and then present the Polynomial-time Algorithm for RIsk-aware Schedul-

ing (PARIS), a provably polynomial time algorithm for strong scheduling of PSTPU’s.

However, in order to solve a scheduling problem in polynomial time, PARIS requires sev-

eral assumptions that limit the complexity of the problem including the assumption that

each timepoint cannot be preceded by more than one contingent link. Additionally, none

of these approaches can handle the disjunctions created when a robot is assigned multiple

tasks and can only execute one at a time.

The Resource Constrained Project Scheduling Problem (RCPSP) is another general

scheduling problem [118]. Commonly, problems involving scheduling for heterogeneous

coalitions can be generalized to the RCPSP by considering each robot as a single unique

resource as described in [122]. The Resource Constrained Project Scheduling Problem

with Uncertainty (RCPSPU) is an extension to RCPSP that incorporates two types of un-

certainty: resource uncertainty and temporal uncertainty. We focus only on the works that

consider temporal uncertainty as we assume that the set of robots (i.e., our resources) is

known. A detailed description of the RCPSP and its uncertain variants can be found in

[132].

Lamas and Demeulemeester [119] developed a branch-and-cut method for solving the

Sample Average Approximation (SAA) [133] of the RCPSPU and a new robustness mea-

sure that determines the probability that the executed schedule will be identical to the gen-

erated baseline schedule. Fu et al. [120] develop Benders Accelerated Cut Creation for

Handling Uncertainty in Scheduling (BACCHUS), an approach based on Bender’s Decom-

position [134] and optimality/feasibility cuts, for generating a scheduling with an α-robust

makespan. Varakantham et al. [121] present two SAA-based approaches for generating

a scheduling with an α-robust makespan in SAA Optimization for solving RCPSP under

Uncertainty (SORU) and SORU Heuristic (SORU-H). Song et al. [135] use Conditional

Value-At-Risk (C-Var) [136] as part of a branch-and-bound framework to solve the same

113



problem. While these methods discussed thus far have several advantages, some common

limitations are none of them provide a theoretical guarantee, none of them are demonstrated

with more than 5 resources (robots), and all of them are demonstrated only with uni-modal

distributions for durations. In contrast, our presented approach provides a theoretical guar-

antee on its risk tolerance, is demonstrated to be more efficient even when solving problems

with up to 15 robots, and is agnostic to the underlying duration distribution.

5.3 Problem Description

Scheduling precedence constrained tasks that are assigned to heterogeneous coalitions of

robots requires reasoning about the effects specific task orderings and the durations from

executing robot motion plans have on the resulting makespan. In this section, we first

present a deterministic Heterogeneous Coalition Scheduling (HCS) problem. We then de-

fine the Heterogeneous Coalition Scheduling with Temporal Uncertainty (HCSTU) prob-

lem as an extension of the HCS problem.

5.3.1 Heterogeneous Coalition Scheduling Problem

Consider a heterogeneous team of K robots that must collectively execute N tasks. Each

task must be executed by one or more robots (i.e. a coalition), but each robot can only

participate in a single task at a time (ST-MR-TA).

A task τi is defined by a duration di as the amount of time needed to execute τi for

the robots that are assigned to it and an initial transition ϕi as the minimum amount of

time needed for all of the robots assigned to τi to reach it from their individual initial

configurations. Tasks are temporally constrained by a set of precedence constraints P and

a set of mutex constraintsM.

A precedence constraint (τi ≺ τj) is a temporal relationship between two tasks τi and τj

that requires that the execution of τi concludes before τj starts. Each precedence constraint

τi ≺ τj has a transition duration ϕij that defines the minimum amount of time needed for

114



all robots assigned to both τi and τj to travel from the terminal configuration of τi to the

initial configuration of τj . If there are no robots that are assigned to both τi and τj then

ϕij = 0.

If a robot is assigned to multiple tasks, a mutex constraint is created between each pair

of tasks that the robot is assigned to participate in. A mutex constraint (τi ↔ τj) between

two tasks, τi and τj , represents the disjunction that either τi must conclude before τj starts

(τi ≺ τj) or τj must conclude before τi starts (τj ≺ τi). If a robot is assigned to two

tasks τi and τj where there already exists a precedence constraint (e.g. τi ≺ τj) then the

precedence constraint supersedes the mutex constraint as there is no decision to be made

on the ordering of the two tasks. As such, P ∩M = ∅. Each mutex constraint τi ↔ τj has

a pair of transition durations ϕij and ϕji that define the minimum amount of time needed

for all robots assigned to both τi and τj to travel from the terminal configuration of τi to the

initial configuration of τj and to travel from the terminal configuration of τj to the initial

configuration of τj respectively.

The Heterogeneous Coalition Scheduling (HCS) problem is defined by

• a set of task durations D = {di | i ∈ I} where I = {1, . . . , N},

• a set of initial task transitions Xinit = {ϕi | i ∈ I}

• a set of precedence constraints P ⊆ I2,

• a set of mutex constraintsM⊆ I2,

• and a set of task transition durations X = {ϕij | (i, j) ∈ P} ∪ {ϕij | (i, j) ∈ M} ∪

{ϕji | (i, j) ∈M}

The goal of the HCS problem is to select a set of task orderings ρ with one for each

mutex constraint that minimizes the makespan C or total time needed to execute all of the

tasks while considering the task durations and task transition durations.

We provide a formal definition of this problem as the following Mixed-Integer Linear

115



Programming (MILP) model:

min C (5.1a)

s.t. C ≥ ci ∀i ∈ I (5.1b)

sj ≥ ci + ϕij ∀(i, j) ∈ P (5.1c)

sj ≥ ci + ϕij −M(1− δij) ∀(i, j) ∈M (5.1d)

si ≥ cj + ϕji −Mδij ∀(i, j) ∈M (5.1e)

si ≥ ϕi ∀i ∈ I (5.1f)

δij ∈ {0, 1} ∀(i, j) ∈M (5.1g)

where si is the start time for the ith task, ci is the completion time for the ith task (ci =

si + di), δij is a boolean indicator that is 1 when the mutex constraint between the ith and

jth tasks (τi ↔ τj) has been reduced to the precedence constraint from the ith task to the

jth task (τi ≺ τj) and 0 when the mutex constraint has been reduced to the precedence

constraint from the jth task to the ith task (τj ≺ τi).

In the above MILP model, the objective function 5.1a and Constraint 5.1b enforce the

minimization of the makespan. Constraint 5.1c applies the precedence constraints and

includes the time each of the robot assigned to tasks τi and τj need to transition from τi to

τj . Constraints 5.1d and 5.1e apply the disjunction of the mutex constraints. Depending on

the value of the mutex indicator variable δij only one of the two constraints is used by the

optimization for each mutex constraint. This disjunction makes this a Disjunctive Temporal

Problem which is an NP-Hard problem [137]. Once each of the δij’s is set then the problem

becomes a Linear Problem and can be solved in polynomial time. Constraints 5.1f act to

ensure that all robots assigned to a task can reach it from their individual initial positions

before the task is scheduled to start.

The solution to the HCS problem is the set of task orderings ρ = {δij | (i, j) ∈ M}

116



and the minimized makespan C. The Heterogeneous Coalition Scheduling problem is a

subset of the Simultaneous Task Allocation and Planning with Spatiotemporal Constraints

Problem from our prior work [117].

5.3.2 Heterogeneous Coalition Scheduling with Temporal Uncertainty Problem

Building upon the Heterogeneous Coalition Scheduling Problem, we now describe the Het-

erogeneous Coalition Scheduling with Temporal Uncertainty (HCSTU) Problem. Unlike

the deterministic version of the problem, each of the task durations di, task transitions ϕij ,

and initial task transition ϕi are represented as random variables instead of constants. Fur-

thermore, whereas the makespan can be used to evaluate the quality of a schedule in the

deterministic version of the problem, when temporal uncertainty is involved, the makespan

itself becomes a random variable.

Similar to existing work in more general scheduling with temporal uncertainty prob-

lems [138, 139, 120, 121], we formulate the problem as a chance-constrained optimization

with the goal of finding a task ordering ρ that minimizes the α-robust makespan Cα such

that

P (Cq
ρ > Cα) ≤ α, ∀q ∈ S (5.2)

where S is the space of all possible scenarios that can sampled from the underlying stochas-

tic scheduling problem, Cq
ρ is the minimum makespan for scenario q as determined by

Equation 5.1 when the task ordering ρ is used (i.e. all δij are constants which reduces the

model to a Linear Program), and α is a risk tolerance parameter provided by the user. An

individual scenario q = ⟨Dq, Φq
init, Φ

q⟩ contains a set of task durationsDq = {dqi | i ∈ I},

a set of initial task transition durations Φq
init = {ϕ

q
i | i ∈ I}, and a set of task transition

durations Φq = {ϕqij | (i, j) ∈ P} ∪ {ϕ
q
ij | (i, j) ∈M} ∪ {ϕ

q
ji | (i, j) ∈M}. Equation 5.2

states that the probability that the minimum makespan Cq
ρ for any possible scenario q ∈ S

when using the task ordering ρ is greater than the α-robust makespan Cα generated to solve

117



the problem is less than the risk tolerance α.

5.4 Approach

Directly solving Heterogeneous Coalition Scheduling with Temporal Uncertainty Problems

without sampling would require solving a chance-constrainted problem with probabilistic

task durations and probabilistic task transition durations that create joint probabilistic con-

straints on the start and end timepoints of tasks and joint probabilistic constraints on the

solution makespan. There are two main difficulties [140, 130] that make directly solving a

chance-constrained problem that contains a joint probabilistic constraint impractical:

1. The probabilistic constraint is hard to compute as it requires multi-dimensional inte-

gration that adjusts the domain of integration based on time intervals [140, 130].

Solving a problem with these joint probabilistic constraints quickly becomes in-

tractable as the number of tasks and the complexity of interdependencies grow.

2. The feasible region defined by the probabilistic constraint is not convex making even

checking feasibility difficult [140, 130].

For this reason, we focus our attention on sampling-based methods, where one sample

represents one of the many possible “true” scenarios. We first present the Sample Av-

erage Approximation (SAA) representation of the HCSTU problem along with with its

limitations, and discuss why it cannot be used as part of our holistic multi-robot coordina-

tion framework GRSTAPS for the more general STAP-STC problem. We then present our

approach Coalition Scheduling with Heuristic Sample Selection and Risk Guarantee (CS-

HSSRG) which builds on elements from SAA but makes improvements for both efficiency

and a theoretical guarantee on the risk tolerance.

5.4.1 Sample Average Approximation

The SAA MILP representation of the HCSTU problem is as follows:

118



min Cα (5.3a)

s.t. Cq ≥ cqi ∀ i ∈ I, q ∈ Q (5.3b)

sqj ≥ cqi + ϕqij ∀ (i, j) ∈ P, q ∈ Q (5.3c)

sqj ≥ cqi + ϕqij −M(1− δij) ∀ (i, j) ∈M, q ∈ Q (5.3d)

sqi ≥ cqj + ϕqji −Mδij ∀ (i, j) ∈M, q ∈ Q (5.3e)

sqi ≥ ϕqi ∀ i ∈ I, q ∈ Q (5.3f)

δij ∈ {0, 1} ∀ (i, j) ∈M (5.3g)

Cα ≥ Cq −Myq ∀ q ∈ Q (5.3h)

αQ ≥
Q∑
q=1

yq (5.3i)

yq ∈ {0, 1} ∀ q ∈ Q (5.3j)

For SAA, a scenario generator creates Q scenarios by randomly sampling from the

various probability distributions in the problem. TheseQ scenarios are used to approximate

the overall probability distribution of the problem. This parameter is domain dependent:

larger Q increases the quality of the solution and the likelihood that the risk tolerance

is respected, however, it also adds more boolean decision variables which increases the

time needed to solve the problem. As such, when selecting Q there is a trade-off between

solution quality and solving efficiency.

Constraints 5.3a-5.3g look very similar to those in the Deterministic MILP (See Equa-

tion 5.1), but there is a set of these equations for each of theQ scenarios where a superscript

of q represents that variable for the qth scenario. In addition, Q = {1, . . . , Q} and yq is

a boolean indicator variable that denotes whether or not the qth scenario is used when

computing the α-robust makespan Cα. Constraints 5.3h-5.3j ensure the risk tolerance by

119



ignoring the scenarios that are outside the α-quantile.

An advantage of this approach is that it is not dependent on the specific distributions

employed for a specific problem instance. In fact, as long as scenarios can be sampled

this method is applicable. However, Constraints 5.3h-5.3j add another combinatoric factor

when compared with the Deterministic MILP as each of
(

Q
(1−α)Q

)
combinations of scenarios

have to be considered when determining what scenarios can be ignored. This makes the

approach inefficient for solving complex problems when larger numbers of scenarios are

needed to approximate the distributions in the problem.

Also, as mentioned in Section 5.1, when a scheduling algorithm is used as part of a

higher level framework it is typically run numerous times. This means the inefficiency

of using SAA would be exaggerated and significantly reduce the size of problems that

GRSTAPS or similar higher level frameworks could solve. Furthermore, there is not a

guarantee that just because the α-robust makespan Cα produced by SAA was respected

by the sampled scenarios used in the SAA MILP model that the risk of a real scenario

requiring more time to execute than Cα is less than the risk tolerance α.

5.4.2 Coalition Scheduling with Heuristic Sample Selection and Risk Guarantee

In order to efficiently solve the Heterogeneous Coalition Scheduling with Temporal Un-

certainty Problem, we present a sampling-based risk-aware approach named Coalition

Scheduling with Heuristic Sample Selection and Risk Guarantee (CS-HSSRG). This ap-

proach decomposes the SAA formulation into a heuristic for selecting representative sam-

ples and a simplified MILP formulation that we call S-SAA (See Equation 5.5). By utilizing

a heuristic to efficiently select samples, we can remove one of the combinatoric factors and

a set of boolean decision variables from the MILP formulation that our approach needs to

solve. As a result, this simplified MILP formulation has the same complexity as the De-

terministic MILP (Equation 5.1) and is more efficient to solve than the SAA formulation.

After solving the simplified MILP formulation, our approach uses the Sequential Probabil-

120



ity Ratio Test (SPRT) to enforce a theoretical guarantee that the risk tolerance is respected

and that the solution includes a truly α-robust makespan.

Algorithm 8: Coalition Scheduling with Heuristic Sample Selection and Risk
Guarantee

Input: risk tolerance α, # of scenarios to be used in S-SAA MILP
(Equation 5.5) η, percentage to increment the makespan δ

Output: α-robust makespan Cα, a set of task orderings ρ
1 F ← {A large number of scenario samples}

// Each scenario in F is labeled with a heuristic value
2 L←{label(q) for q ∈ F}
3 H ← The α-quantile subset of F based on the labels from L
4 U ← {η − 1 random scenarios taken from H and the scenario in H with the

largest label}
5 Cα, ρ← Solve S-SAA MILP (Equation 5.5) with the scenarios in U
6 while true do

// Run the Sequential Probability Ratio Test
7 if sprt(Cα, ρ, α) = success then
8 return Cα, ρ
9 else

10 Cα ← Cα ∗ (1 + δ)

The high-level pseudocode for this approach is shown in Algorithm 8. We first generate

a large number of scenarios F (Line 1). The number of scenarios in F should be greater

than Q. For our experiments, we chose to make F an order of magnitude greater than Q.

We then label each scenario in F with a heuristic value that is representative of the average

makespan for that specific scenario across the difference possible mutex reductions (Line

2). We use a domain independent heuristic where we compute a weighted summation of

the time needed to execute each of the tasks and transitions for that specific scenario as

shown in Equation 5.4 below, where ψ1-ψ4 are weights:

label(q) = ψ1

∑
i∈I

dqi + ψ2

∑
i∈I

ϕqi

+ ψ3

∑
(i,j)∈P

ϕij + ψ4

∑
(i,j)∈M

(ϕqij + ϕqji).
(5.4)

121



We then use the labels to take the α-quantile subset of F which we will call H (Line 3).

We select η scenarios from H (Line 4), where η− 1 of the scenarios are randomly selected

and the final scenario selected is the scenario with the largest heuristic value in H . Lines

2 - 4 approximate what Constraints 5.3h-5.3j do in the Sample Average Approximation

MILP. This allows us to use the η scenarios in a simplified version of the Sample Average

Approximation MILP (S-SAA MILP) shown below. Unlike SAA, where increasing Q

increases the number of boolean decision variables, in S-SAA η only adds more constants

and linear constraints. This causes it to have less of an impact on the efficiency of solving

the S-SAA formulation.

min Cα (5.5a)

s.t. Cα ≥ cqi ∀ i ∈ I, q ∈ Q (5.5b)

sqj ≥ cqi + ϕqij ∀ (i, j) ∈ P, q ∈ Q (5.5c)

sqj ≥ cqi + ϕqij −M(1− δij) ∀ (i, j) ∈M, q ∈ Q (5.5d)

sqi ≥ cqj + ϕqji −Mδij ∀ (i, j) ∈M, q ∈ Q (5.5e)

sqi ≥ ϕqi ∀ i ∈ I, q ∈ Q (5.5f)

δij ∈ {0, 1} ∀ (i, j) ∈M (5.5g)

The S-SAA MILP attempts to select a set of task orderings ρ that minimizes the makespan

Cα for all η scenarios. At this point, there is no theoretical guarantee that the risk of a real

scenario taking longer to execute than Cα is less than the risk tolerance α. As such, it is not

known if the produced makespan is truely α-robust yet.

We use the Sequential Probability Ratio Test to test for a guarantee that the produced

makespan is actually α-robust. If the test passes, then the makespan produced is α-robust

and the solution is returned by the algorithm (Lines 7 and 8). If the test fails, then the

122



makespan is increased (Line 10) and the test is tried again until we have a makespan that is

guaranteed to be α-robust.

5.4.3 SPRT for α-robustness guarantee

When a task ordering ρ and a makespan Cα are produced by the S-SAA, we do not im-

mediately know whether Cα is truly α-robust. We utilize the Sequential Probability Ratio

Test (SPRT) [13] to test the hypothesis that the risk of the execution of the task ordering ρ

taking longer than Cα is less than or equal to α, i.e., p(Cq
ρ > Cα) ≤ α, ∀q ∈ S. We choose

to use the SPRT over other possible hypothesis testing algorithms because, as a sequential

hypothesis test, the samples needed to confirm or reject the hypothesis do not need to be

drawn in advance; instead, they are drawn on-demand until enough evidence to confirm

or reject the hypothesis is collected. This makes the SPRT an efficient hypothesis test that

only draws the minimum number of needed samples. A tutorial of the binomial variant

of the SPRT can be found in the Appendix and an even more complete explanation of the

SPRT can be found in the original paper by Wald [13].

For our approach, the SPRT is given a risk tolerance parameter α, a reference makespan

Cα that we are testing, and a set of task orderings ρ. We want to decide whether the risk

that the time needed to execute the task ordering ρ in a random scenario exceeding Cα is

less than α. Let C(q, ρ) denote the makespan for scenario q when using task ordering ρ.

As mentioned earlier in Section 5.3.1 because we have ρ, C(q, ρ) can be solved quickly

in polynomial time as a Linear Program. Also, let p(Cα, ρ) denote the probability that

executing the task ordering ρ in a random scenario will need take longer than Cα.

Define the Bernoulli random variable XCα,ρ as follows:

ZCα,ρ ∼ Bernoulli(p(Cα, ρ)). (5.6)

We cannot draw samples from XCα,ρ directly because the probability p(Cα, ρ) is unknown.

Instead they are drawn from the nondeterministic function f :

123



f(Cα, ρ, q) =


1, C(q, ρ) > Cα;

0, otherwise.

(5.7)

The nondeterminism comes from the task and transition durations being random variables

themselves. Function f is our generative probabilistic model for the random variableXCα,ρ.

Drawing samples from this probabilistic model requires drawing sample scenarios from the

underlying probabilistic distribution describing the world through the previously mentioned

scenario generator and then processing each one by computing C(q, ρ). Separate scenarios

can be processed asynchronously and in parallel to increase the speed of running the test

using a batch version of the function f :

f(Cα, ρ) = Z,
∑

z∈{1,...,Z}

f(Cα, ρ, z), (5.8)

where Z can either be set by the user or arbitrarily be chosen by the implementation. Fur-

thermore, when Cα is increased and the SPRT is run again (Algorithm 8 Line 10) then

previously computed C(q, ρ) can be memoized and used again without the need for recom-

putation.

Algorithm 9 shows the pseudocode of the hypothesis test described above. Typically,

the SPRT implementation either runs indefinitely before reaching a conclusion or returns

a default value when all sampling resources have been used up. For our implementation,

the user provides a maximum number of scenarios Qmax to be pre-generated and used by

the test. As the guarantee on type-II error rates is desired, the algorithm terminates early

if there would not be enough evidence to support accepting H0 even when all remaining

scenarios had a makespan ≤ Cα.

Remark 1. The log-likelihood ratio thresholds (Equations 5.13-5.14) are approximations

primarily designed for situations where θ and β are small [13]. This approximation ensures

that the “true” type-I and type-II errors θ′ and β′ are bounded as θ′ ≤ θ
1−β and β′ = β

1−θ .

124



Algorithm 9: Testing hypothesis p(Cα, ρ) ≤ α

Input: reference makespan Cα, a set of task orderings ρ, risk tolerance α, type-I
error rate θ, type-II error rate β, maximum number of scenarios Qmax

Output:
1 λ, ζ, γ, l0, l1 ← compute using Equations 5.10-5.14

// Compute the maximum number of scenarios with Cq > Cα for H0 to be
accepted with Qmax

2 aQmax ← l0
λ
+Qmaxγ // Total number of scenarios processed

Z ← 0
// Number of scenarios whose makespan is > Cα

3 Z⊤ ← 0
4 while true do

// # of scenarios and # of scenarios whose makespan is > Cα since last check
5 z, z⊤ ← f(Cα, ρ)
6 if z = 0 then

// No more scenarios. Increase Cα and run test again.
7 return false

8 Z ← Z + z
9 Z⊤ ← Z⊤ + z⊤

10 a0 ← compute using Equation 5.15 for Z scenarios
11 if Z⊤ ≤ a0 then

// Accept H0 (Accept Cα)
12 return true

13 a1 ← compute using Equation 5.16 for Z scenarios
14 if Z⊤ ≥ a1 then

// Accept H1 (Reject Cα))
15 return false

16 if Z⊤ ≥ aQmax then
// Unable to accept H0 even if all remaining scenarios have a makespan
≤ Cα

17 return false

It can also be shown that at least one of the inequalities θ′ ≤ θ or β′ ≤ β must hold.

5.5 Experimental Evaluations

We empirically evaluated our approach using three sets of experiments in a simulated emer-

gency response domain used in prior work [60, 19, 61, 62, 117]. In this domain, a diverse

set of robots with different speeds need to work together to rescue wounded survivors, de-

125



liver medicine to hospitals, put out fires, and rebuild damaged infrastructure. For all of

the experiments, a graph representation of an urban environment named Polypixel (as seen

in [141]) was used. CS-HSSRG was set to use ϵ = 0.01, θ = 0.05, and β = 0.05 for all

experiments and we ran all approaches on a desktop with an AMD 3970X CPU, an A6000

GPU, and 16 GB of RAM.

For the first two experiments, we generated a set of 100 HCSTU problems from this do-

main by randomly sampling the number of robots, survivors, fires, and damaged buildings.

Each problem had between 5-15 robots, and 10-30 tasks. We also randomized the locations

of the survivors, fires, damaged buildings, hospitals, and the robots’ initial location. The

specific set of tasks and the allocation of robots to tasks were predetermined for each of

these problems.

The first 50 problem instances simulated the possibilities of delays which directly

caused temporal uncertainty and we denote this domain as DELAYS. The duration for

each task was modeled as di = d̂i + U[0,300) where d̂i was the deterministic task duration

for τi. The durations for transitions were computed from the length of the map edges the

robot/coalition must traverse and the speed of the robot/coalition (the speed of a coali-

tion is the speed of the slowest robot in the coalition). When traversing a map edge each

robot/coalition had a 5% chance of having a U[0,60) delay. Note that the task and transition

durations were multi-modal since we applied delays to both the task durations and the edge

traversal durations.

The second 50 problem instances simulated the possibility of map edges being blocked

in the polypixel environment (e.g from debris) which made the traversibility of the envi-

ronment uncertain. This in turn indirectly created temporal uncertainty as it was unknown

what was the best route between two locations on the map which made the transition dura-

tions uncertain. For each problem, each map edge had a 10% chance of being blocked. As

such the map represented a variant of the Canadian Traveler Problem and we denote this

domain as CTP [142]. For these problems, CS-HSSRG used the optimistic rollout policy

126



from [143] to compute C(q, ρ) for each scenario q in the SPRT. Simliarly to the first 50

problem instances, the distributions for task and transition durations were multi-modal.

For the third experiment, we generated a set of 50 problems STAP-STC problems from

the simulated emergency response domain. The problems were randomized similarly to the

problems for the first two experiments, however the specific set of tasks and allocation of

robots to tasks were not predetermined for these problem instances. The first 25 problem

instances used the same model for unexpected delays as described above for the DELAYS

domain. The second 25 problem instances used the same model for the possibility of edge

blockages as described above for the CTP domain.

5.5.1 Impact of the risk tolerance

The first experiment involved an ablation study to investigate the influence of the risk tol-

erance α on our approach. For this experiment, we examine our algorithm with different

risk tolerance levels (α ∈ {0.1, 0.15, 0.2, 0.25}) on the 100 problem instances described

previously. In Table 5.1, we present the max proportion of failure max(p̄(Cα, ρ)) and av-

erage α-robust makespan Cα. For the proportion of failure p̄(Cα, ρ), we generated 10,000

random scenarios and then computed the makespan for each scenario when executed with

the solution task order ρ. The proportion of failure is the proportion of those scenarios

whose makespan is larger than the solution Cα and approximates the true risk p(Cα, ρ).

The max proportion of failure max(p̄(Cα, ρ)) is the maximum p̄(Cα, ρ) over the 100 prob-

lem instances.

Table 5.1: Results for different risk levels

DELAYS CTP
α max(p̄(Cα, ρ)) Cα max(p̄(Cα, ρ)) Cα

0.1 0.091 3643.33 0.098 4023.63
0.15 0.136 3528.84 0.122 3881.42
0.2 0.154 3303.83 0.188 3710.10
0.25 0.224 3122.35 0.238 3510.83

127



In Table 5.1, we observe that as the risk tolerance α increases, the average α-robust

makespan tends to decrease. This makes sense as the looser risk tolerance allows CS-

HSSRG to ignore more of the slower executing scenarios at the expense of the higher

risk of not providing an upperbound. We also observe that the max proportion of failure

max(p̄(Cα, ρ)) tends to be close to α which demonstrates that while CS-HSSRG has the

theoretical guarantee for its α-robust makespan, it is not just creating overly conserve α-

robust makespans to achieve the risk tolerance. Additionally, we observe that CS-HSSRG

demonstrates reasonable risk control.

5.5.2 Comparison with other Scheduling Approaches

For our second experiment, we fixed α = 0.1 and benchmarked our approach, on the

100 problems described previously, against two state-of-the-art RCPSPU approaches in

SORU [121] and the Conditional Value-At-Risk Branch-and-Bound framework from [135]

which we will call CVAR-BNB, as well as the solving the Sample Average Approximation

(SAA) formulation from Equation 5.3 directly. To generalize the problem to the RCPSPU

for SORU and CVAR-BNB, we represented the individual robots as resources and each

task or transition duration is represented as an activity. Each approach was given a 60s

timeout for each problem instance. If an approach hit the timeout then the best feasible

approach it generated was used.

We compared all four approaches on several metrics including the percentage of solu-

tions where a temporal constraint was violated, the percentage of solutions where p̄(Cα, ρ) >

α, the percentage of successful solutions (p̄(Cα, ρ) ≤ α), the average computation time, the

percentage of the problems where the approach hit the 60s timeout, the average p̄(Cα, ρ),

and the average Cα. The average Cα was only computed over problems in which all four

approaches computed solutions with p̄(Cα, ρ) ≤ α.

128



Table 5.2: Summary of comparison results (α = 0.1). Red indicates the best result for the
row.

DELAYS CTP
Ours SAA SORU [121] CVAR-BNB [135] Ours SAA SORU CVAR-BNB

TC Failure (%) 0 0 8a 0 0 0 121 0
p̄(Cα, ρ) > α (%) 0 40 0 28 0 68 0 50
Success (%) 100 60 92 72 100 32 88 50
Avg. p̄(Cα, ρ) 0.079 ± 0.020 0.097 ± 0.053 0.003 ± 0.009 0.088 ± 0.043 0.071 ± 0.016 0.112 ± 0.029 0.011 ± 0.010 0.096 ± 0.045
Avg. Cα b 3794.71 ± 1305.60 3376.19 ± 1953.00 4554.90 ± 1436.70 3679.04 ± 2390.73 4365.24 ± 1620.32 4268.57 ± 1800.43 5813.46 ± 2132.32 4316.96 ± 2532.38
Avg Comp. Time (s) 0.822 ± 0.426 34.057 ± 24.288 49.760 ± 17.154 8.313 ± 1.913 1.014 ± 0.34 42.02 ± 19.88 57.64 ± 9.41 10.93 ± 8.31
Timeout (%) c 0 10 64 2 0 16 82 2

aSORU uses hard resource constraints and soft temporal constraints, which sometimes allow it to violate
the temporal constraints.

bComputed using trials for which all four approaches’ p̄(Cα, ρ) ≤ α
cUpon hitting the 60s timeout, a feasible solution was retrieved if one had been found by the approach.

SAA

As can be seen in Table 5.2, SAA did not violate any temporal constraints, but generated

solutions that violated the risk tolerance 40% of the time for the DELAYS problems and

68% of the time for the CTP problems. It also had an average proportion of failure p̄(Cα, ρ)

of 0.097 and 0.112 respectively, which were either close or over the desired risk tolerance.

These risk tolerance violations were likely because SAA considers the α-quantile samples

but does not get to choose representative samples like CS-HSSRG and additionally does

not use statistical testing to guarantee its “α-robust makespan” is actually α-robust. On the

other hand, CS-HSSRG used its heuristic sample selection and the SPRT to successfully

generate risk tolerant solutions on 100% of the problems for both domains. SAA did on

average compute a smaller Cα than any of the other approaches including CS-HSSRG.

On average for these problems, its Cα was 90% of the Cα generated by CS-HSSRG. As

SAA frequently violated the risk tolerance, it is likely that when it doesn’t violate the risk

tolerance the Cα generated has a less conservative risk resulting in the lower average Cα.

When computing a solution, SAA on average took 41.4x the time to compute solution as

CS-HSSRG did. Additionally, it hit the timeout on 13% of problems in total.

129



SORU

SORU was the only approach that generated solutions which violated temporal constraints.

This is caused by SORU using soft temporal constraints. It did not have any risk tolerance

violations, which is caused by its extremely conservative solutions with an average risk of

0.003 and 0.011 respectively for the two domains. This extremely conservative risk resulted

in it having the highest average Cα. The average Cα generated by SORU was 120% of the

Cα generated by CS-HSSRG. SORU also took the longest of the four approaches on aver-

age and took on average 60.5x as long to compute a solution as CS-HSSRG. Additionally,

it hit the 60s timeout on 73% of all the problems.

CVAR-BNB

Similar to SAA, CVAR-BNB did not violate any temporal constraints, but violated the

risk tolerance on some of the problems (28% and 50% respectively). The risk tolerance

violations are likely because CVAR-BNB does not get to choose representative samples

like CS-HSSRG and additionally does not use statistical testing to guarantee its “α-robust

makespan” is actually α-robust. CVAR-BNB on average generated Cα that was 97% of

the Cα generated by CS-HSSRG, however on average it took 10.1x as long to compute its

solution. Also, while it was quicker than both SAA and SORU on average, it did hit the

60s timeout on 2% of the total problems.

Ours

In comparison to the other three approaches, CS-HSSRG was the only approach to never

have a temporal constraint violation or a risk tolerance violation and was the only approach

to never hit the 60s timeout. Additionally, it on average generated Cα that were within 10%

of SAA, 3% of CVAR-BNB, and were 20% faster than SORU.

Furthermore, CS-HSSRG was an order of magnitude faster than all other approaches

(on average 41.4x faster than SAA, 60.5x faster than SORU, and 10.1x faster than CVAR-

130



BNB). This demonstrates an efficient approach that produces solutions with similar quality

to state-of-the-art and a risk tolerance guarantee.

5.5.3 Usage within the GRSTAPS Framework

For our third experiment, we demonstrated how CS-HSSRG’s ability to reason about un-

certainty and risk aids the ability of our heterogeneous multi-robot coordination framework

GRSTAPS to make decisions about what tasks to select and who to allocate to those tasks.

We used CS-HSSRG as the scheduling layer of GRSTAPS by using the α-robust makespan

to replace the normal makespan in the Normalized Schedule Quality (NSQ) heuristic and as

the path cost for the task planning layer. We compared this variant of GRSTAPS which we

will called GRSTAPSTU against the original GRSTAPS which we called GRSTAPSDET .

For each problem, GRSTAPSDET was provided a determinized version of the problem

where di = E[di], ϕij = E[ϕij], and ϕi = E[ϕi].

(a) Average makespan when using the solu-
tion task ordering ρ.

(b) Sum of Cρ and computation time, where
Cρ is the average makespan when using the
solution task ordering ρ.

Figure 5.1: The blue (red) markers are problem instances where GRSTAPSTU did bet-
ter (worse) than GRSTAPSDET . Each successive dashed colored line is the result from
GRSTAPSDET being 10% worse than the result from GRSTAPSTU (i.e. the first line rep-
resents 10% worse, the second 20% worse, etc).

We measured the quality of the solution task orderings ρ produced by each approach.

131



For each problem instance, we generated 10,000 random scenarios and then computed the

makespan for each scenario when executed with the solution task ordering. We then took

the average makespan over the 10,000 scenarios. The average makespans can be seen in

Figure 5.1a. In Figure 5.1b, we show the sum of the average makespans and the time

needed to compute the solution. For both figures, the blue markers are problem instances

where GRSTAPSTU did better than GRSTAPSDET . The red markers are the opposite.

The black dashed line shows where both approaches had equal results. Each successive

dashed colored line is the result from GRSTAPSDET being 10% worse than the result

from GRSTAPSTU (i.e. the first line represents 10% worse, the second 20% worse, etc).

Additionally, we use the makespans computed for these 10,000 realizations to compute

p̄(C, ρ) which is shown in Table 5.3.

Table 5.3: Results for p̄(C, ρ)

DELAYS CTP

DET 0.5275 ± 0.3271 0.7805 ± 0.2175
TU 0.0858 ± 0.0061 0.0864 ± 0.0063

As can be seen, by reasoning about uncertainty, GRSTAPSTU was able to create better

task orderings that on average result in better makespans. GRSTAPSDET uses the ex-

pected values of individual distributions while attempting to create a solution that mini-

mizes makespan, however, it does not consider anything more about the distribution such

as variance or modality. This can cause it to select tasks, allocations, and task orderings

that have low expected values for duration, but have a high risk of having large durations.

Due to the large number of decisions it has to make (which tasks, which robots, which task

orderings), there are a lot of possibilities for the individual risks of a task or transition tak-

ing longer than expected to be realized in a scenario and can result in high overall risk. This

can be seen in Table 5.3 where GRSTAPSDET has high average and standard deviation for

the estimate of overall risk p̄(C, ρ). On the other hand while CS-HSSRG does not directly

consider the distributions, it indirectly considers the distributions through the sampling and

132



sample selection method and then it directly considers the risk through the SPRT. As both

approaches generated and expanded similar numbers of nodes for both task planning and

task allocation layers (less than 0.1% difference on average), it is likely that the improve-

ment in solution quality is a result of CS-HSSRG providing better search guidance to both

the task planning and task allocation layers of GRSTAPS. This better guidance results in

higher quality, low risk solutions.

5.5.4 Limitations

Although CS-HSSRG provides significant performance gains for HCSTU problems rela-

tive to existing methods, there are some limitations. The user must determine an acceptable

risk tolerance α, the number of scenarios to be used in the S-SAA MILP η, and the number

of scenarios in F . As mentioned earlier, increasing η and the size of F increases the quality

of the solution and the likelihood that the risk tolerance is respected when running the first

instance of the SPRT, however, they also increase the computation time needed to solve the

problem. As such, when selecting these parameters there is a trade-off between solution

quality and efficiency. For the experiments, we empirically determined these η and the size

of F through some preliminary experiments and measuring the number of SPRT failures;

however, future work may determine a faster method to automatically select them.

Furthermore, there is extra reasoning required to consider uncertainty and risk which

comes at the cost of lower efficiency and higher computation times as GRSTAPSTU on

average took an order of magnitude longer to compute a solution than GRSTAPSDET for

the same problem instance. As both approaches generated and expanded similar numbers

of nodes for both task planning and task allocation, this is almost entirely caused by CS-

HSSRG being slower to compute than solving the Deterministic MILP from Equation 5.1

as GRSTAPSDET does. This is expected as Equation 5.5 has roughly η× as many variables

and constraints as Equation 5.1 and the addition of the sample selector heuristic and the

SPRT. However, even with this increase in computation time, on average the total time

133



needed to both compute a solution and execute the resulting solution is less when using

GRSTAPSTU than GRSTAPSDET for 90% of the problem instances.

5.6 Discussion & Conclusion

We introduced a novel sampling-based risk-aware approach named Coalition Scheduling

with Heuristic Sample Selection and Risk Guarantee (CS-HSSRG) to solve the Hetero-

geneous Coalition Scheduling with Temporal Uncertainty (HCSTU) Problem. This ap-

proaches includes a heuristic method for selecting representative scenarios and utilizes the

Sequential Probability Ratio Test to guarantee the solution it generates is actually α-robust.

We first demonstrate that CS-HSSRG has reasonable risk control and does not just gener-

ate overly conservative solutions while respecting the risk tolerance. Then we demonstrate

that CS-HSSRG is more efficient than a Sample Average Approximation baseline and two

state-of-the-art approaches while generating comparable or better quality solutions. Fur-

thermore, it was the only one of the approaches to not have a single temporal constraint

violation or risk tolerance violation. Finally, we demonstrate how reasoning about uncer-

tainty and risk tolerance aid in guiding a higher-level multi-robot coordination framework

in GRSTAPS to higher quality, low risk solution.

However, CS-HSSRG does have its limitations and there are open questions left to

explore. First, it assumes access to either a model of uncertainty or a generator that can

generate samples of possible task and task transition durations. While this is generally

accepted as a reasonable assumption in literature [121, 135], there may be environments

for which this assumption does not hold. Those type of environments may need some

combination of pre-operative and intra-operative methods. Second, a user must decide

on the number of samples to be utilized by CS-HSSRG. As mentioned previously, using

more samples increases the quality of the solution at the expense of decreasing the com-

putational efficiency of the algorithm. For our experiments, we decided on the number

of samples through preliminary experiments, but in future work it is possible to develop

134



a method to automatically select the number of samples needed perhaps through analysis

on the temporal graph or through learning. Third, we currently utilize a simple domain-

independent heuristic to label the samples to select what samples CS-HSSRG will utilize

in the S-SAA MILP. It is possible that a more sophisticated heuristic that either performs

more analysis on the temporal graph or is learned could result in higher quality solutions

with lower α-robust makespans while still satisfying the desired risk tolerance. Finally,

CS-HSSRG is a pre-operative method for handling temporal uncertainty. As such, it does

not benefit from information that is discovered during the execution of the solution. Pairing

CS-HSSRG with an intra-operative method that can utilize information discovered during

execution to improve the schedule will likely result in higher quality execution that takes

less time.

5.7 Appendix: Sequential Probability Ratio Test

The Sequential Probability Ratio Test (SPRT) [13] is a sequential hypothesis test. As such,

computations needed to confirm or reject the hypothesis can be lazily applied to samples

as needed instead of drawing them all in advance. In this section, we give a brief overview

of the application of the SPRT to the binomial distribution, which is the one we leverage in

our work as shown in Section 5.4.3, and refer the reader to the original paper by Wald [13]

for a more complete treatment.

In the binomial case, a sample can be classified into two categories: 0 and 1. Let p be

the probability that a sample belongs to category 0. We deal with the problem of testing

the hypothesis that p does not exceed a given value p′ against the alternative hypothesis

that p > p′. A SPRT for the binomial case can be defined by specifying a null hypothesis

H0
def
= p = p0, with p0 < p′, and an alternative hypothesis H1

def
= p = p1, with p1 > p′.

The small interval (p0, p1) is called the indifference region — the SPRT requires that we are

okay with accepting either hypothesis when the true value of p is in the indifference region.

Define the function f(q):

135



f(q) =


1, the sample q belongs to category 1;

0, otherwise.

(5.9)

Given the desired type-I and type-II error rates θ2 and β, prior to the test the following

values can be calculated:

λ = log
p1
p0
− log

1− p1
1− p0

(5.10)

ζ = log
1− p0
1− p1

(5.11)

γ =
ζ

λ
(5.12)

l0 = log
β

1− θ
(5.13)

l1 = log
1− β
θ

(5.14)

The test is given as follows. At the zth observation, calculate the two quantities

a0 =
l0
λ
+ zγ (5.15)

and

a1 =
l1
λ
+ zγ. (5.16)

Let z⊤ denote the number of observations where f(·) = 1 in the first z samples inspected.

For each time a0 and a1 are calculated, there are three possible outcomes:

1. accept H0 if z⊤ ≤ a0,

2. accept H1 if z⊤ ≥ a1,

3. or more observations are needed if a0 < z⊤ < a1.
2In Wald’s paper [13] he uses α as the type-I error rate. We use θ to represent the type-I error rate here

due to α being used for the α-robust makespan.

136



The third outcome means that the samples drawn so far do not provide enough evidence

either for accept or rejecting the null hypothesis H0. More samples need to be drawn, a0

and a1 need to be recomputed, and the conditions need to be checked again. The SPRT does

not guarantee an upper-bound on the number of samples needed to reach a conclusion; in

order to retain the guarantees on error rates, the above process must be repeated until a

conclusion can be reached.

137



CHAPTER 6

LEARNING TO SET TASK ORDERINGS FOR HETEROGENEOUS COALITION

SCHEDULING WITH DEADLINES

6.1 Introduction

In this chapter, we transition away from exploring temporal uncertainty and explore a dif-

ferent type of temporal constraint within the context of the scheduling sub-problem of the

Simultaneous Task Allocation and Planning with Spatiotemporal Constraints (STAP-STC)

problem we formalized in Chapter 41. We focus this chapter on exploring deadlines as

an additional temporal constraint. Furthermore, we explore the use of a learning-based

approach to solve this new problem.

Significant effort has been invested into finding analytical solutions to multi-robot schedul-

ing problems that balance optimality, completeness, and computational efficiency [144,

145, 146]. However, these problems are generally NP-hard [137] and have several combi-

natoric factors (i.e., number of tasks, number of robots, etc). As such, solving the problem

exactly is computationally expensive and does not scale to large problems [147]. On the

other hand, hand-crafted heuristic approaches are difficult to design and require domain-

specific knowledge that does not generalize to other domains [148, 147].

Data-driven approaches have been presented for a number of multi-robot coordination

sub-problems (e.g. Multi-Vehicle Routing, Task Allocation, Communication Networks,

etc) and have demonstrated the ability to find near-optimal solutions to NP-Hard prob-

lems [146]. In particular, Graph Neural Networks (GNNs) have demonstrated notable per-

formance and generalize well from small-scale problems to large-scale problems for these

1The material in this chapter is based on:
A. Messing and S. Hutchinson, “Learning to Set Task Orderings for Heterogeneous Coalition Scheduling
with Deadlines,” IEEE Transactions on Robotics, 2023.

138



multi-robot coordination sub-problems [149, 146, 150, 147, 151]. Recently, GNNs have

been applied to heterogeneous graphs increasing the expressiveness of the model and the

complexity of the problem that can be solved [147].

In this chapter, we introduce a Heterogeneous Gated Graph Convolution Network (HG-

GCN) model that learns the probability that pairs of tasks are ordered in a specific way in an

optimal schedule. This model takes as input a heterogeneous graph that represents the rela-

tionships between time points and can encode all 13 of Allen’s temporal relationships [14].

Furthermore, we introduce a search-based approach, named Heterogeneous Temporal

Graph Scheduler (HTGS), with two search strategies that utilize the output of the heteroge-

neous gated graph convolution network model to approximately solve the Heterogeneous

Coalition Scheduling with Deadlines Problem. HTGS uses the probabilities from the HG-

GCN model to incrementally construct a Simple Temporal Network (STN) [33] by setting

task orderings until a solution schedule that respects the temporal constraints is generated.

Figure 6.1 illustrates the proposed scheduling algorithm.

Figure 6.1: The proposed Heterogeneous Temporal Graph Scheduler approach for solving
the Heterogeneous Coalition Scheduling with Deadlines Problem. The Heterogeneous G-
GCN block is based on an image from [152]

.

To illustrate the impact of our contributions, we evaluate the performance of this ap-

proach in a simulated emergency response domain. First, we use an ablation study to select

the best-performing model to use in our approach. Second, we compare the HTGS to state-

139



of-the-art heterogeneous multi-robot scheduling algorithms and an optimal Mixed-Integer

Linear Programming (MILP) baseline. Third, we integrate the approach into our heteroge-

neous multi-robot coordination framework Graphically Recursive Simultaneous Task Al-

location, Planning, and Scheduling (GRSTAPS) [117] and evaluate the improvement in the

performance of the overall framework on the Simultaneous Task Allocation and Planning

with Spatiotemporal Constraints (STAP-STC) Problem. The results of these evaluations

demonstrate the efficacy of our new approach.

6.2 Related Work

This paper lies at the intersection of a traditional robotics research avenue in Multi-Robot

Scheduling and a more recent machine learning one in Graph Neural Networks. They are

briefly discussed below relative to the concepts that appear in this paper.

6.2.1 Multi-Robot Scheduling

A rich body of work has addressed the Multi-Robot Scheduling Problem [44] and the

closely related Multi-Robot Task Allocation (MRTA) Problem [42, 43]. Recent survey

papers [42, 43, 44] have summarized MRTA techniques and solutions based on optimiza-

tion approaches (e.g., exact, heuristic, metaheuristics), AI approaches (e.g., constraint pro-

gramming, multi-robot consensus, market-based, game-theoretic models, machine learn-

ing), and combinations of these approaches. Based on the common taxonomies from these

survey papers, our work falls under the XD[ST-MR-TA-SP] categorization where an indi-

vidual robot can only participate in a single task at a time (ST), but multiple robots can

form coalitions and collectively executable a single task (MR). The XD[ST-MR-TA-SP]

problem considers cross-schedule dependencies (XD), where the effective utility of a robot

for a task depends not only on its own schedule but also on the schedules of other robots in

the system, and represents temporal relationships between tasks through Synchronization

and Precedence Constraints (SP). Furthermore, we consider a variant of this problem with

140



multiple species of robots and temporal deadlines.

Koes et al. [56] present Constraint Optimization Coordination Architecture, an anytime

algorithm that utilizes a commercial Mixed-Integer Linear Programming (MILP) Solver

on a novel declarative formulation, however, this approach was only demonstrated with 5

robots and 15 goals. Zhang et al. [122] introduce four heuristics to solve the heteroge-

neous coalition scheduling problem, however, they do not consider precedence constraints.

Bischoff et al. [123] propose a two-step approach that utilizes a construction heuristic and

an improvement heuristic based upon the relocate neighborhood operator commonly used

in vehicle routing; however, they only demonstrate results with 3 robots and do not include

deadlines. Neville et al. [5], as a subset of their Trait-Based Time-Extended Task Alloca-

tion Problem, study a similar scheduling problem to ours and discuss a Simple Temporal

Network (STN) [33]-based scheduling approach that utilizes a Tabu Search [59] through

a space of task orderings; however, their problem does not include deadlines. In their

later work in [153], they introduce a MILP-based scheduling algorithm. While each of

these approaches has their own respective advantages, prior research does not address

the need to efficiently solve large-scale problems with heterogeneous robots, coalitions,

tightly-coupled tasks, and deadlines.

6.2.2 Graph Neural Networks

Graph Neural Networks (GNNs) are a class of neural network architectures that are specifi-

cally designed to learn from the structure and properties of graph data [154]. For a complete

overview of this rapidly expanding subfield of machine learning, we refer the interested

reader to Wu et al. [155] for a survey, and to Dwivedi et al. [156] for a recent GNN bench-

marking paper.

Recently, a number of works have used GNNs to learn policies for various components

of solving task allocation and scheduling problems (e.g., Traveling Salesman Problem, Ve-

hicle Routing Problem, Communication and Teaming, etc). Banfi et al. [141] present a

141



hierarchical planner that utilizes a GNN to produce a heuristic to estimate subteam per-

formance for specific coalitions on specific routing tasks. Blumenkamp et al. [146] de-

velop a system for decentralized execution of GNN-based communication policies. Wang

et al. [147] propose a novel Heterogeneous Graph Attention Network model that learns a

policy to append an unscheduled task to the end of the partial schedule of a robot. This ap-

proach shares some similarities with ours as they also encode a heterogeneous multi-robot

scheduling problem as a heterogeneous graph; however, our problem includes multi-robot

tasks, includes task duration and transition times based on the time needed to execute mo-

tion plans, and assumes that an allocation has already been assigned. Additionally, the two

approaches utilize the GNNs in different ways - they are incrementally constructing indi-

vidual fully-ordered schedules for each robot and we use a GNN to generate probabilities

that each task ordering is set in a partially-ordered plan/schedule.

6.3 Problem Description

Consider a heterogeneous team of K robots that must collectively execute N tasks. Each

task must be executed by one or more robots (i.e. a coalition), but each robot can only

participate in a single task at a time (ST-MR-TA).

In our problem, a task τi is defined by a duration di as the amount of time needed

to executeτi by the robots that are assigned to it, an initial transition ϕi as the minimum

amount of time needed for all of the robots assigned to τi to reach the initial configuration

of τi from their individual initial configurations, the time point for which the task starts

(si), and the time point for which the task is completed (ci = si+ di). Tasks are temporally

constrained by a set of precedence constraints P , a set of mutex constraints M, a set of

relative deadlines Trel, and a set of absolute deadlines Tabs.

A precedence constraint (τi ≺ τj) is a temporal relationship between two tasks τi and τj

that requires that the execution of τi concludes before τj starts. Each precedence constraint

τi ≺ τj has a transition duration ϕij that defines the minimum amount of time needed for

142



all robots assigned to both τi and τj to travel from the terminal configuration of τi to the

initial configuration of τj . If there are no robots that are assigned to both τi and τj then

ϕij = 0.

If a robot is assigned to multiple tasks, a mutex constraint is created between each pair

of tasks that the robot is assigned to participate in. A mutex constraint (τi ↔ τj) between

two tasks, τi and τj , represents the disjunction that either τi must conclude before τj starts

(τi ≺ τj) or τj must conclude before τi starts (τj ≺ τi). If a robot is assigned to two

tasks τi and τj where there already exists a precedence constraint (e.g. τi ≺ τj) then the

precedence constraint supersedes the mutex constraint as there is no decision to be made

on the ordering of the two tasks. As such, P ∩M = ∅. Each mutex constraint τi ↔ τj has

a pair of transition durations ϕij and ϕji that define the minimum amount of time needed

for all robots assigned to both τi and τj to travel from the terminal configuration of τi to the

initial configuration of τj and to travel from the terminal configuration of τj to the initial

configuration of τi respectively.

There are two types of deadlines represented in this problem: absolute deadlines and

relative deadlines. An absolute deadline constrains the upper bound between a time point

and when time is zero. An absolute deadline is represented by the tuple (pi, t) where

pi is equal to either si if the deadline is on the start of task τi or ci if the deadline is one

completion of task τi and t is the upper bound on the time point that pi is equal to. A relative

deadline is a temporal constraint on the upper bound of the temporal difference between

two time points. A relative deadline is represented by the tuple (pi pj, t). Similarly to the

absolute deadline, pi (pj) is equal to either si (sj) if the deadline is on the start of task τi

(τj) or ci (cj) if the deadline is on the completion of task τi (τj). t is the upper bound of the

temporal difference between the two time points pi and pj (t ≥ pj − pi).

The Heterogeneous Coalition Scheduling with Deadlines (HCSD) problem is defined

by

• a set of task durations D = {di | i ∈ I},

143



• a set of initial task transitions Φinit = {ϕi | i ∈ I}

• a set of precedence constraints P ⊆ I2,

• a set of mutex constraintsM⊆ I2,

• a set of relative deadlines Trel ⊆ {spred, cpred} × {ssuc, csuc} × I2 × R+,

• a set of absolute deadlines Tabs ⊆ {s, c} × I × R+,

• and a set of task transition durations Φ = {ϕij | (i, j) ∈ P} ∪ {ϕij | (i, j) ∈ M} ∪

{ϕji | (i, j) ∈M}

where I is the index set from 1 to N , spred/cpred signifies whether the deadline is relative

to the start or completion time point of the predecessor task, and ssuc/csuc signifies whether

the deadline is relative to the start or completion time point of the successor task.

We provide a formal definition of this problem as the following Mixed-Integer Linear

Programming (MILP) model:

min C (6.1a)

s.t. C ≥ ci ∀i ∈ I (6.1b)

sj ≥ ci + ϕij ∀(i, j) ∈ P (6.1c)

sj ≥ ci + ϕij −M(1− δij) ∀(i, j) ∈M (6.1d)

si ≥ cj + ϕji −Mδij ∀(i, j) ∈M (6.1e)

si ≥ ϕi ∀i ∈ I (6.1f)

t ≥ pi ∀(pi, t) ∈ Tabs (6.1g)

t ≥ pj − pi ∀(pi, pj, t) ∈ Trel (6.1h)

δij ∈ {0, 1} ∀(i, j) ∈M (6.1i)

where δij is a boolean indicator that is 1 when the mutex constraint between the ith and

jth tasks (τi ↔ τj) has been reduced to the precedence constraint from the ith task to the

144



jth task (τi ≺ τj) and 0 when the mutex constraint has been reduced to the precedence

constraint from the jth task to the ith task (τj ≺ τi) and M is a large constant used to

enforce conditional constraints.

Constraint 6.1a is the optimization objective of minimizing the makespan. Constraint

6.1b ensures that the makespan represents the time that the last task is finIshed. Constraint

6.1c applies the precedence constraints and includes the time the robots assigned to tasks τi

and τj need to transition from τi to τj . Constraints 6.1d and 6.1e apply the disjunction of the

mutex constraints. Depending on the value of the mutex indicator variable (δij) only one of

the two equations is used by the optimization for each mutex constraint. This disjunction is

what makes this an NP-Hard problem [137]. Once each of the mutex indicator variables is

set then the problem becomes a Linear Problem and can be solved in polynomial time [33].

Constraint 6.1f constrains each task so that all robots assigned to the task can reach the

initial configuration of the task from their individual initial configurations before the task

starts. Constraint 6.1g applies the absolute deadlines ensuring that a task cannot complete

(start) before a specified time. Constraint 6.1h applies the relative deadlines ensuring that

the temporal difference between two specified time points is not more than a specified time.

Finally, Constraint 6.1i constrains the mutex indicator variables to be boolean variables.

The solution to the HCSD problem is the set of task orderings ρ = {δij | (i, j) ∈ M}

that minimizes the makespan C (i.e., the total time needed to execute all of the tasks while

considering the task durations, transition durations, and various temporal constraints). The

Heterogeneous Coalition Scheduling with Deadlines problem is a subset of the Simultane-

ous Task Allocation and Planning with Spatiotemporal Constraints (STAP-STC) Problem

from our prior work [117].

6.4 Building a Heterogeneous Graph

To utilize a Graph Neural Network model as part of our approach, we need to encode

the constraints from the problem as a heterogeneous graph. A heterogeneous graph G =

145



{V = {V1, . . . ,Vn}, E = {E1, . . . , Em}} is a graph with n different types of vertices

and m different types of edges where n + m > 2. In our heterogeneous graph, there is

a singular vertex type where all vertices represent a time point and there are four edge

types representing four different types of temporal differences: lower bound, upper bound,

exact, and mutex. The mutex edges also represent a lower bound on the temporal difference

between two time points; however, for each mutex constraint there are two edges and the

goal of the network is to determine which of the two edges is better for minimizing the

makespan of the overall schedule. As such, they are considered a different edge type.

The algorithm for constructing the heterogeneous graph used as input to our model is

shown in Algorithm 10. In line 1, we initialize the vertex set and each of the four edge

sets. Then in lines 2 and 3, we create a vertex for the initial state (vI) and a vertex for

the makespan (vC). In lines 5 and 6, we create two vertices for each task τi with one

representing the start time point for the task (vsi) and one representing the completion time

point for the task (vci). In line 7, we connect start and completion time points for each task

with an exact edge that is weighted by the duration of the task. In line 8, we then connect

the initial state vertex (vI) with each of the task start vertices (vsi) with a lower bound edge

weighted by the initial transition duration ϕi for the task τi. In line 9, we connect each of

the task completion vertices with the makespan vertex with a lower bound edge weighted

with 0. At this point, for each task τi there is a path from the initial state vertex vI to the

start time point vertex vsi to the completion time point vertex vci to the makespan vertex vC .

Next, we add edges representing the relationships between tasks. In lines 10 and 11, we

add lower bound edges representing the precedence constraints which are weighted by their

respective transition durations. In lines 12-14, for each mutex constraint (τi ↔ τj) we add

two mutex edges each weighted by its respective transition duration. One connects vci to

vsj and the other connects vcj to vsi Lines 15 and 16 add upper bound edges representing the

absolute deadlines weighted by the value of the deadline. These edges connect vI to each

bounded time point vertex. Finally, lines 17 and 18 add upper bound edges representing the

146



Algorithm 10: Building a heterogeneous graph input
Input: I, D, P ,M, Tabs, Trel
Output: G
// Initialize vertex and edge sets

1 V = {}; Elb = {}; Eex = {}; Eub = {}; Emux = {}
// Create vertex representing the initial state

2 V ← vI
// Create vertex representing the makespan

3 V ← vC
4 for i ∈ I do

// Create vertex for the start of τi
5 V ← vsi

// Create vertex for the finish of τi
6 V ← vci

// Add edge representing the duration
7 Eex ← {vsi , vci , di}

// Add edge representing the initial transition
8 Elb ← {vI , vsi , ϕi}

// Add edge connecting task completion to the makespan
9 Elb ← {vci , vC , 0}

// Add edges representing the precedence constraints
10 for {i, j, ϕij} ∈ P do
11 Elb ← {vci , vsj , ϕij}

// Add edges representing the mutex constraints
12 for {i, j, ϕij, ϕji} ∈ M do
13 Emux ← {vci , vsj , ϕij}
14 Emux ← {vcj , vsi , ϕji}

// Add edges representing the absolute deadlines
15 for {pi, t} ∈ Tabs do
16 Eub ← {vI , vpi , t}

// Add edges representing the relative deadlines
17 for {pi, pj, t} ∈ Trel do
18 Eub ← {vpi , vpj , t}
19 G = {{V}, E = {Elb, Eex, Eub, Emux}}
20 return G

relative deadlines weighted by the value of the deadline. An example of this heterogeneous

graph is shown in Figure 6.2.

147



Figure 6.2: Example input heterogeneous graph

6.5 Model

In this section, we describe the components of the GNN model utilized by our approach

(See Figure 6.1). This model, given the heterogeneous graph that we built in the previous

section, outputs the probability for each task ordering δij to be either 1 or 0 in the opti-

mal solution. The model consists of an embedding layer, a series of Heterogeneous Gated

Graph Convolution Layers (HG-GCLs) followed by a Multi-Layer Perceptron (MLP) Clas-

sifier.

Input Embedding Layer

To embed the input node features to h-dimensional features, we use a linear layer:

x′i = W x
0 xi + bx0

Similarly, we embed each of the different input edge-type features to h-dimensional

features through edge-type specific linear layers where ψ represents the edge-type:

148



eψ′ij = Wψ
0 e

ψ
ij + bψ0

Heterogeneous Gated Graph Convolution Layer

For this layer, we leverage the Gated Graph Convolution Network (G-GCN) architecture

introduced by Bresson and Laurent in [152] with the additional edge feature representation

and the dense attention map added in [157]. This network was chosen as the basic building

block for our architecture because it was recently shown by Dwivedi et al. [156] to outper-

form several other architectures at both graph regression and Traveling Salesman Problem

solution generation. Furthermore, unlike other anisotropic GNN architectures, it explicitly

maintains edge features at each layer [156]. However, this network is only able to incorpo-

rate undirected homogeneous graphs. As such, we modify the vertex feature update process

to utilize per-edge-type per-direction message passing before the vertex feature reduction.

The edge feature update process remains as it was in [157].

For each edge type ψ, we define two dense attention maps: γψij which indicates the

importance of vertex vj’s features to vertex vi when vj is an outward neighbor of vi over

an edge of type ψ and ζψij which indicates the importance of vertex vi’s features to vertex

vj when vi is an inward neighbor of vj over an edge of type ψ. These two dense attention

maps are formulated as

γψij =
σ(eψij)∑

vk∈Oψ(vi) σ(e
ψ
ik) + ϵ

(6.2)

ζψij =
σ(eψij)∑

vk∈Iψ(vj) σ(e
ψ
kj) + ϵ

(6.3)

where eij denotes the edge feature vector input into the current layer associated with the

edge from vertex vi to vertex vj , Oψ(vi) is the set of outward neighbors of vertex vi over

edges of type ψ, Iψ(vi) is the set of inward neighbors of vertex vi over edges of type ψ, σ

is the sigmoid function, and ϵ is a small fixed constant for numerical stability.

149



Utilizing these dense attention maps, we define our vertex feature update formula that

as

x′i = xi +ReLU(BN(W1xi +
∑
Eψ∈E

(αψ(vi) + βψ(vi))) (6.4)

αψ(vi) =
∑

vj∈Ok(vi)

γψij ⊙W
ψ
2 hj (6.5)

βψ(vi) =
∑

vj∈Ik(vi)

ζψji ⊙W
ψ
3 hi (6.6)

where hi denotes the vertex feature vector input into the current layer associated with ver-

tex vi, h′i denotes the vertex feature vector associated with vertex vi output by the current

layer, ⊙ is the Hadamard product, ReLU is the rectified linear unit, and BN is batch nor-

malization.

The edge feature update formula is computed as

eψ′ij = eψij +ReLU(BN(Wψ
4 e

ψ
ij +W5xi +W6xj)) (6.7)

as in [157].

Multi-Layer Perceptron

The mutex edge feature vectors output by the last layer of the G-GCN are used to compute

the probability (pij) of each task ordering (δij) having a value of 1 or 0 in the optimal set of

task orderings ρ∗. Each pij ∈ [0, 1] is given by a Multi-Layer Perceptron (MLP):

pij =MLP (emuxvcivsj
||emuxvcj vsi

), ∀(i, j) ∈M (6.8)

where || is the concatenation operator.

150



Loss Function

For training the model, we assume the availability of a set of training data labeled with

the optimal solution. Given the optimal set of task orderings ρ∗, we minimize the binary

cross-entropy loss

L = − 1

|M|
∑

(i,j)∈M

δ∗ijlog(pij) + (1− δ∗ij)log(1− pij) (6.9)

averaged over mini-batches.

6.6 Heterogeneous Temporal Graph Scheduler

The Heterogeneous Temporal Graph Scheduler (HTGS) assumes a trained model and con-

ducts a three-step process to solve the HCSD Problem. It first encodes the problem as a

heterogeneous graph as described in Section 6.4. It then passes the heterogeneous graph to

the trained model which outputs a set of the probabilities (pij) of each task ordering (δij)

having a value of 1 or 0 in the optimal set of task orderings ρ∗. Directly converting this

output to a set of task orderings will generally yield invalid schedules due to temporal in-

consistency. As such, we employ two possible search-based decoding strategies to convert

this set of probabilities into a valid task ordering which we describe below.

6.6.1 Greedy Search

The greedy search strategy operates on a space of task orderings and starts from an ini-

tial search node where none of the task orderings have been set. For the initial node, we

construct a Simple Temporal Network (STN) [33] from the precedence constraints, task

durations, and deadlines.

At each expansion step, the greedy search selects the task ordering δij with the highest

directional probability, where directional probability is calculated as |2 ∗ (pij − 0.5)|. It

then sets the value of δij to ⌊pij⌉ where ⌊·⌉ is the nearest integer operator.

151



It is possible that setting a specific task ordering forces others task orderings to be

set. As an example, say there is a precedence constraint τi ≺ τj and that there are mutex

constraints τi ↔ τk and τj ↔ τk. If we set the task ordering δjk to 1, then the task ordering

δik is forced to be 1 or there would be a temporal inconsistency where a task would have

to occur before itself. While we have described this transitive property for the simple

triangular case, it is possible that the property cascades and that both the setting of δjk and

the setting of δik can force more task orderings to be set. We update our STN with edges to

represent these new transitive task orderings. This update can efficiently be completed in

polynomial time [158].

Once the task orderings are set we need to check if any deadlines have been violated.

This can be achieved through an All-Pairs Shortest Path (APSP) algorithm that can handle

negative edges (e.g. Bellman-Ford [159]) on our STN to create a distance graph. If no

negative cycles are detected in the distance graph then a child node is created with the

updated set of task orderings and the updated STN, and the greedy search continues from

the child node.

If a negative cycle is detected then the greedy search attempt to set the task ordering

with the second highest directional probability. It continues down the list of possible task

orderings according to directional probability until it is able to set one without any temporal

inconsistencies or deadline violations and a child node is created.

A solution is found when all task orderings have been set. When all task orderings

have been set, the distance graph used to check for temporal inconsistencies or deadline

violations can easily be checked for the makespan of the solution. The set of task orderings

ρ and the makespan C are output by our approach.

6.6.2 Beam Search

A beam search is a limited-width breadth-first search [160]. When using this search strat-

egy, our approach operates on the same space as when using the greedy search and starts

152



from the same initial search node. At each level of the search tree, beam search generates

all of children nodes from the nodes at the current level, however, all but theB best children

according to the probability of the partial set of task orderings are pruned. The probability

of the partial set of task orderings is defined as

p(ρ̂) =
∏
δ̂ij∈ρ̂

(δ̂ijpij + (1− δ̂ij)(1− pij)) (6.10)

where ρ̂ ⊆ ρ is a set of the individual task orderings whose values have been set.

The larger the value of B, which is known as beam width, the fewer search nodes are

pruned, and with an infinite beam width the beam search is identical to breadth-first search.

Children nodes are created using the same expansion process as that of the greedy search

(i.e, using the transitive property to determine if additional task orderings should be set and

then checking if deadlines have been violated).

For our approach, the beam search will have a maximum depth of |ρ|. Upon reaching

this depth, instead of pruning all but the best B child nodes based on the probability of the

partial set of task orderings we simply find the singular best child node based on makespan.

The task ordering ρ and makespan C from this child node are output as the solution from

our approach.

6.7 Experimental Evaluations

We evaluate the proposed approach via numerical experiments in a simulated emergency

response domain used in prior work [60, 19, 63, 5]. In this domain, a diverse set of robots

with different capabilities and speeds need to work together to rescue wounded survivors,

deliver medicine to hospitals, put out fires, clear rubble, and rebuild damaged infrastructure,

all while not exceeding any deadlines. For all of our experiments, a graph representation

of the maps used in the Robocup Rescue Simulation League [60, 161] were used.

The experimental campaign consists of three parts. The first part aims at assessing the

153



performance of different variants of the HG-GCN presented in Section 6.5. The second part

evaluates the proposed scheduling framework in its entirety through comparison against an

optimal baseline and a state-of-the-art scheduling algorithm. The third party evaluates how

HTGS improves the scalability of our heterogeneous multi-robot coordination framework

GRSTAPS.

We implemented our approach in C++ with LibTorch [162]. In all of the experiments,

we use the GUROBI MILP solver [163] with default parameters both for providing the

optimal solution for training and as a baseline for evaluating the resulting performance of

our approach. All experiments are run on a computer equipped with an AMD 3970X CPU,

an A6000 GPU, and 32 GB of RAM.

6.7.1 Ablation Study

We randomly generated a training dataset of 200,000 HCSD problems from the emergency

response domain by randomly sampling the number of robots, survivors, fires, and damaged

buildings. Each problem had between 5-10 robots and 10-25 tasks, which would be in the

small problem size as described below. We also randomized the locations of the survivors,

fires, damaged buildings, hospitals, and the robots’ initial locations. Deadlines for putting

out fires and transporting survivors to hospitals were set based on the equations from the

Robocup Rescue Simulator [161]. The specific set of tasks and the allocation of robots to

tasks were predetermined for each of these training problems.

We trained different variants of the HG-GCN architecture outlined in Section 6.5 by

considering different combinations of: number of HG-GC layers (4, 8, 26) and number of

training samples (1k, 5k, 10k). All models used 6 layers for our Multi-Layer Perceptron.

The feature dimension for each hidden layer was 64 and we used the Adam optimizer [164]

with a learning rate of 1e− 3. The batch size for training was 10.

We then evaluated the F1 score for each of these variants on 1000 randomly generated

problems for each of three sizes:

154



• Small: [5, 15] robots and [10, 25] tasks

• Medium: [16, 30] robots and [26, 50] tasks

• Large: [31, 45] robots and [51, 75] tasks

Table 6.1: Ablation Study of the F1 score for different variants of the HG-GCN architec-
ture. Red: The best model. Violet: The second best model.

# Layers # Samples Small Medium Large

4
10k 0.689± 0.140 0.602± 0.104 0.538± 0.063
50k 0.715± 0.135 0.634± 0.105 0.581± 0.065
100k 0.732± 0.104 0.666± 0.105 0.628± 0.071

8
10k 0.644± 0.172 0.613± 0.128 0.587± 0.101
50k 0.759± 0.124 0.675± 0.100 0.657± 0.063
100k 0.799± 0.063 0.729± 0.079 0.673± 0.055

16
10k 0.749± 0.167 0.701± 0.184 0.653± 0.176
50k 0.871± 0.133 0.842± 0.154 0.783± 0.176
100k 0.993± 0.074 0.975± 0.064 0.907± 0.093

In general we observe in Table 6.1, as expected, that increasing the number of layers

and number of training samples results in better performance. We select the model that

obtains the best F1 results for the remaining experiments.

6.7.2 Comparison with other Scheduling Approaches

For our second experiment, we benchmarked our approach with both search strategies

against solving the MILP formulation from Equation 6.1 with GUROBI and the MILP-

based scheduling algorithm used by DITAGS in [153] which we will call DITAGSsched.

For DITAGSsched, we add temporal deadlines to their formulation as the two equations

6.1g and 6.1h. We refer to the variant of our approach that utilizes the greedy search as

HTGSgreedy and the variant of our approach that utilizes the beam search as HTGSbeam.

155



We used a beam width of 10. Each approach was given a 30s timeout for each problem

instance.

We compared all four approaches on problem coverage, optimality gap, solution makespan

(C), and computation time. For both solution makespan and computation time, we com-

puted separate means and standard deviations for problems where an optimal solution could

be computed within the time limit and problems where it could not. For each problem size,

we randomly generated 1000 HCSD Problems to evaluate with.

Table 6.2: Summary of benchmarking results for HCSD Problems. Red: The best value for
each metric. Violet: The second best value for each metric.

Approaches
MILP DITAGSsched HTGSgreedy HTGSbeam

Small

Cov. (%) 100 100 100 100
Opt. gap (%) 0 0.8± 1.0 3.7± 1.9 2.1± 0.9
C - opt. 2, 565.8± 306.8 2, 586.0± 301.0 2, 660.8± 321.7 2, 620.0± 314.1
Comp. Time - opt. (s) 0.041± 0.028 0.010± 0.003 0.019± 0.007 0.021± 0.014

Medium

Cov. (%) 68.9 100 100 100
Opt. gap (%) 0 5.9± 5.1 8.0± 4.9 4.1± 2.9
C - opt. 3, 656.6± 421.1 3, 886.3± 576.1 3, 949.5± 488.6 3, 805.8± 451.2
C - no opt. N/A 5, 526.6± 142.6 5, 750.6± 661.9 5, 392.2± 466.3
Comp. Time - opt. (s) 10.277± 4.961 0.096± 0.022 0.043± 0.021 0.060± 0.034
Comp. Time - no opt. (s) N/A 0.566± 0.362 0.051± 0.025 0.093± 0.031

Large
Cov. (%) 0 74.6 100 92.3
C - no opt.a N/A 6, 980.6± 725.1 7, 662.5± 890.5 6, 771.3± 628.4
Comp. Time - no opt. (s) a N/A 19.723± 13.287 0.929± 0.453 1.987± 1.456

aComputed using problems for which all three satisficing approaches were able to solve the problem.

MILP

As can be seen in Table 6.2, MILP was always the slowest approach when it was able

to compute a solution. This is because while MILP is using the commercially developed

solver in GUROBI, it is the only approach that must prove that its solutions are optimal.

Furthermore, it is unable to solve all of the medium problems in the time limit - it solved

68.9% - and was unable to solve any of the large problems in the time limit. This is due to

the combinatoric nature of the problem - as the number of tasks and the number of robots

156



increase, the number of mutex constraints increases combinatorically. The combinatorics

become further exaggerated as the problem which is an instance of a Disjunctive Temporal

Problem [137] which is NP-Hard with respect to the number of disjunctions (i.e., the num-

ber of mutex constraints). This can be seen as MILP on average takes about 250x as long

to solve a medium problem as a small problem.

DITAGSsched

For small problems, DITAGSsched has an average optimality gap of less than 1% and, on

average, is the fastest approach. For medium and large problems, the combinatoric factors

described for MILP start to affect the results, but not to the same degree as for MILP. This is

because DITAGSsched also solves a MILP as part of its approach. However, unlike MILP,

DITAGSsched is a satisficing approach that attempts to find quality solutions but is not

concerned with discovering the optimal solution. As such, it can solve all of the medium

problems but only 74.6% of the large problems in the time limit. Additionally, for medium

and large problems, it is, on average, the slowest of the 3 satisficing approaches, and for

large problems is an order of magnitude slower than either of the learned approaches but

has the second-best solution quality on average.

HTGSgreedy

For small problems, HTGSgreedy is the second fastest approach behind onlyDITAGSsched.

This is likely due to the DITAGSsched using a commercially developed solver and com-

putational overhead from the deep architecture used by HTGSgreedy. For medium and large

problems, HTGSgreedy is the fastest approach and is the only approach to solve all of the

large problems. For medium and large problems, it is on average two orders of magnitude

faster than MILP on problems that could be solved optimally, an order of magnitude faster

than DITAGSsched, and takes about half of the time of HTGSbeam. This is speed is caused

by a greedy search that only expands at most |M| nodes and only visits at most |M|2
2

nodes

157



making both the number of expansions and the number of visits polynomial with the num-

ber of mutex constraints. This combined with incremental updates to the STN and distance

matrix during search results in an efficient approach. The tradeoff for this increase in effi-

ciency is HTGSgreedy has the lowest quality solutions on average, but for problems where

an optimal solution could be computed, it still, on average, has an optimality gap less than

10% and for problems where an optimal solution could not be computed HTGSgreedy com-

puted solutions that were on average less than 10% worse than the best solution that the

other approaches could find. This demonstrates a very efficient approach that still produces

comparable solution quality.

HTGSbeam

For small problems, HTGSbeam is marginally slower than HTGSgreedy, but is still about

twice as fast as MILP. For medium and large problems that HTGSbeam could solve (it only

solved 92.3% of the large problems), it on average, had the highest quality solutions of the

satisficing approaches. This is likely a result of it using the beam width to explore more of

the search tree than the greedy search and using the makespan to select the solution during

the final expansion. Additionally, for these problems, it was the second fastest approach

only behind HTGSgreedy and was about an order of magnitude faster than DITAGSsched.

This speed is caused by the beam search only expanding at most (|M| − 1) ∗B + 1 nodes

and visiting at most B|M|2 + (2B +1)|M|−B nodes making both the number of expan-

sions and the number of visits polynomial with the number of mutex constraints. The beam

search is sped up further through a parallelized implementation. However, even with the

parallelized implementation, there is additional overhead for each expansion when com-

pared to the greedy search in HTGSgreedy. This demonstrates an efficient approach that

trades some speed for improvement in solution quality.

158



6.7.3 Usage within the GRSTAPS framework

For our third experiment, we demonstrated how the efficiency of HTGS aids our hetero-

geneous multi-robot coordination framework GRSTAPS in solving larger problems with

more robots and tasks within a specified amount of time. For this experiment, we gener-

ate 100 large Simultaneous Task Allocation and Planning with Spatiotemporal Constraints

(STAP-STC) problems. In these problems, the specific set of tasks and allocation of robots

to tasks were not predetermined for these problem instances.

GRSTAPS utilizes a scheduling algorithm to make decisions about what tasks to in-

clude in the plan and what robots to allocate to each task. As part of solving the prob-

lem, the scheduling algorithm is run thousands of times on problems of various sizes as

GRSTAPS searches for the best tasks and task allocations. In this experiment, we refer to

each variant of GRSTAPS by the scheduling algorithm it uses. As the optimal baseline was

not able to solve any of the large problems in the previous experiment, we did not use it

for this experiment. Each approach was given a 10-minute timeout and was evaluated on

problem coverage, solution makespan (C), and computation time. For solution makespan

and computation time, we compute separate means and standard deviations for problems

that all three approaches were able to solve and for problems that only both of the HTGS

approaches were able to solve.

DITAGSsched

As we observe in Table 6.3, when GRSTAPS uses DITAGSsched as its scheduling algo-

rithm, it is only able to solve 3 problems. This is caused by the large amount of time needed

to solve large scheduling problems. This extra time compounds and significantly increases

the time that GRSTAPS needs to solve a problem. As with the previous experiment, when

DITAGSsched is able to solve a problem, it tends to have the second best solution quality

of the satisficing approaches behind HTGSbeam.

159



Approaches
DITAGSsched HTGSgreedy HTGSbeam

Cov. (%) 3 68 33
CALL

a 6, 477.6± 441.0 7, 180.1± 499.5 6, 234.3± 333.4
Comp. TimeALL (s)a 541.0± 113.5 356.1± 23.83 431± 54.7
CHTGS

b N/A 7, 654.2± 503.0 6, 771.6± 343.6
Comp. TimeHTGS (s)b N/A 411.3± 34.8 511.8± 123.4

Table 6.3: Summary of benchmarking results for STAP-STC Problems. Red: The best
value for each metric. Violet: The second best value for each metric.

aComputed using all problems for which all three approaches were able to solve the problem.
bComputed using all problems for which both HTGSgreedy and HTGSbeam could solve.

HTGSgreedy

In comparison to the other two approaches, we observe that when GRSTAPS uses HTGSgreedy

as its scheduling algorithm, it is able to solve 68 problems which is more than twice as

many as HTGSbeam and more than an order of magnitude more than DITAGSsched. This

is caused by the efficiency of HTGSgreedy as it is the only approach to average less than

1s to solve large scheduling problems. When HTGSgreedy is used by GRSTAPS this speed

compounds as the scheduling algorithm is run thousands of times. This speed comes at the

expense of having a worse solution quality than the other two approaches for the subset of

problems that they can solve; however, on average, it produced solutions with makespans

within 15% of those produced by the other approaches. This demonstrates that HTGSgreedy

aids GRSTAPS in being able to solve significantly more large problems than prior work

through being a very efficient approach that produces solutions with similar quality to state-

of-the-art.

HTGSbeam

When GRSTAPS uses HTGSbeam as its scheduling algorithm, we observe that it is able to

solve 33 of the problems. This is less than half of the number of problems that HTGSgreedy

160



can solve it is still significantly more than the prior work of DITAGSsched. Additionally,

for the problems that it can solve, it produces the highest quality schedules of any of the

approaches. This is likely a result of it using the beam width to explore more of the search

tree than the greedy search and using the makespan to select the solution during the fi-

nal expansion. This demonstrates that HTGSgreedy aids GRSTAPS in being able to solve

more large problems than prior work through being an efficient approach that on average,

produces superior quality solutions than state-of-the-art.

6.8 Discussion & Conclusion

In this chapter, we introduced a novel learning-based approach named Heterogeneous Tem-

poral Graph Scheduler (HTGS) to solve the Heterogeneous Coalition Scheduling with

Deadlines (HCSD) Problem. This approach utilizes a Heterogeneous Graph Convolution

Network-based model which outputs the probability that each individual task ordering is

in the optimal solution and a search-based method that utilizes these probabilities to set

task orderings. We first present an ablation study where we determine the number of GNN

layers and the number of training samples to use for our model. We then demonstrate that

our approach is more efficient than an optimal baseline and a state-of-the-art scheduling

algorithm while still generating comparable solutions. Furthermore, we demonstrate that

the proposed approach scales to larger problems. Finally, we demonstrate how HTGS aids

in guiding a higher-level multi-robot coordination framework in GRSTAPS to high-quality

solutions for large problems.

However, HTGS does have its limitations and there are open questions left to explore.

First, it assumes quality data is available to train with however previous literature tends to

think this is an acceptable assumption [157, 165]. Second, while all 13 of Allen’s tempo-

ral relationships can be represented in the heterogeneous graph that we construct, further

research can be conducted to explore how well this method handles each different type of

temporal relationship. Third, recent research in exploring autoregressive approaches has

161



demonstrated better results in terms of generalizing from small to large problems [157,

166]. Future work can explore updating HTGS as an autoregressive approach and other

methods that can improve the generalization capabilities.

162



CHAPTER 7

CONCLUSION AND FUTURE DIRECTIONS

Throughout this dissertation, we have made several contributions to the field of heteroge-

neous multi-robot coordination. We focused on representations and frameworks that allow

independent algorithms to focus on the properties of tasks and robots from their individual

sub-problems, while leveraging information discovered by other algorithms utilizing dif-

ferent properties, to simultaneously solve a large-scale heterogeneous multi-robot coordi-

nation problem. Specifically, this thesis examines the use of shared constraints on tasks

and robots to interleave algorithms for task planning, task allocation, scheduling, and

motion planning and investigates the hypothesis that a framework that interleaves

algorithms to these four sub-problems will lead to solutions with lower makespans,

greater computational efficiency, and the ability to solve larger problems.

7.1 Summary of Contributions

This dissertation has made the following contributions to validate this claim:

7.1.1 Interleaving Task Planning and Scheduling

We contributed Forward Chaining Partial-Order Planner (FCPOP), which interleaves task

planning and scheduling layers to solve the temporal planning problem. FCPOP lever-

ages techniques from state-space-based forward chaining for efficiency and more informed

search guidance and techniques from plan-space-based partial-order planning for flexibil-

ity. Furthermore, we contributed Forward Chaining Hierarchical Partial-Order Planner

(FCHPOP), a hierarchical temporal planner, which builds upon FCPOP through the in-

tegration of techniques from Hierarchical Task Networkss. FCHPOP utilizes and refines

abstract tasks to benefit from domain expert knowledge and reduce the number of search

163



steps needed to discover a solution. We demonstrated that FCPOP and FCHPOP outper-

formed state-of-the-art baselines on common benchmark problems.

7.1.2 Interleaving Task Allocation, Scheduling, and Motion Planning

We contributed Incremental Task Allocation Graph Search (ITAGS), which interleaves task

allocation, scheduling, and motion planning layers to solve the trait-based time-extended

task allocation problem. ITAGS is a search-based approach that leverages two novel com-

plementary heuristics in Allocation Percentage Remaining (APR) and Normalized Sched-

ule Quality (NSQ) and a convex combination of the two heuristics in Time-Extended Task

Allocation Quality (TETAQ). Our experiments demonstrate the relative influence of each

of these heuristics and illustrate the benefits of interleaving information between layers

through shared constraints. Furthermore, we show that ITAGS outperformed state-of-the-

art baselines on benchmark problems.

7.1.3 Interleaving Allocation, Planning, and Scheduling

We contributed the formulation of a novel holistic heterogeneous multi-robot coordina-

tion problem named Simultaneous Task Allocation and Planning with Spatiotemporal Con-

straints (STAP-STC) that simultaneous considers all four questions of coordination: what

(task planning), who (task allocation), when (scheduling), how (motion planning). Further-

more, we contribute an initial solution to the STAP-STC problem named Graphically Re-

cursive Simultaneous Task Allocation, Planning, and Scheduling (GRSTAPS). GRSTAPS

builds upon our previous interleaved frameworks, FCPOP and ITAGS, to interleave layers

for all four sub-problems. Our experiments demonstrate the benefits of interleaving infor-

mation through shared constraints over two sequentially chained baselines. Furthermore,

we demonstrate the benefits of this approach over trying to solve a monolithic version of the

problem through a comparison of GRSTAPS and three state-of-the-art temporal planners

that are given a discretized version of the problem.

164



7.1.4 Heterogeneous Coalition Scheduling with Temporal Uncertainty

We contributed the formulation of a novel uncertainty-aware scheduling problem named

Heterogeneous Coalition Scheduling with Temporal Uncertainty (HCSTU) as a subset of

the STAP-STC problem. The HCSTU explicitly considers the uncertainties in the durations

of tasks and task transitions. Additionally, we contribute a sampling-based risk-aware ap-

proach named Coalition Scheduling with Heuristic Sample Selection and Risk Guarantee

(CS-HSSRG) that provides a a theoretical guarantee on a user provided acceptable amount

of risk. We demonstrate that CS-HSSRG is more efficiency that state-of-the-art approaches,

while not being overly conservative, and that CS-HSSRG aids GRSTAPS in making robust

decisions about what tasks to include in the task plan and what robots to allocate to those

tasks.

7.1.5 Learning to Set Task Orderings for Heterogeneous Coalition Scheduling with Deadlines

We contribute a Heterogeneous Gated Graph Convolution Network (HG-GCN) model that

learns the probability that pairs of tasks are ordered in a specific way in an optimal sched-

ule. Furthermore, we contribute a search-based approach named Heterogeneous Temporal

Graph Scheduler (HTGS) with two search strategies that utilizes the output of the HG-

GCN model to approximately solve the Heterogeneous Coalition Scheduling with Dead-

lines problem. We demonstrate the efficiency of this approach against state-of-the-art base-

lines and the compounded benefits of utilizing it within GRSTAPS.

7.2 Open Questions

While the contributions of this dissertation have explored the benefits of interleaving in-

formation through shared constraints within the context of the multi-robot coordination

problem, there remain many open questions at various levels of scope for the problem

considered during this dissertation. The following subsections provide open questions at

165



varying levels of scope for this problem.

7.2.1 Reducing Motion Planning Assumptions

Due to the complexity of the STAP-STC problem, we made a number of assumptions so

that we could create our initial solution, GRSTAPS. Several of these assumptions affect the

motion planning layer leaving ample room to improve both the motion planning layer itself

and its interaction with the other layers.

First, the motion planning layer current does not consider collisions between robots and

makes the assumption that modern motion controllers can handle avoiding collisions with

moved objects [82, 87, 100]. For the domains considered in this dissertation, tight coupling

of robot motion was not required (there were no instances of cooperative manipulation, and

no narrow passageways that could lead to deadlock). For domains where more intricate

robot-to-robot interaction is required (e.g., multiple mobile manipulators cooperating to

perform household tasks), it will be essential to include robot interaction when planning

collision-free paths. More advanced Multi-Agent Pathfinding (MAPF) [25, 116] or Multi-

Agent Motion Planning (MAMP) [111, 167] algorithms may be more suitable for teams

of heterogeneous robots, while for shared manipulation, some combination of sampling-

based planning in composite configuration spaces and low-level cooperative control (during

execution) may prove effective.

Second, we assume a simplistic, static representation of the environment that does not

update robots’ free configuration spaces when robots rearrange objects in the work space.

Again, because the domains considered in this dissertation did not require close interaction

between robots and objects in the environment, this limitation was not problematic. It is

possible to relax this assumption to allow for representation of more domains by utiliz-

ing techniques developed in the Task and Motion Planning community, in particular those

developed for Multi-Modal Motion Planning [168, 169, 91]. Furthermore, through com-

monly used representations, such as the Kinematic Graph [168], a connection can be made

166



between the symbolic objects used by task planning and the geometric objects used by

motion planning. These connections can be utilized to make shared constraints on the pa-

rameters of grounded tasks to prune operators or partially grounded operators which will

reduce the overall branching factor of task planning.

Third, currently the motion planning layer generates a negative constraint for a mo-

tion planning query if it determines that creating a motion plan is infeasible or if it times

out. When a sampling-based motion planning algorithm is used that is probabilistically

complete, then GRSTAPS is not complete as the infeasibility of a motion plan cannot be

determined. Recent and ongoing research is exploring general approaches for constructing

proofs of infeasibility for sampling-based motion planning algorithms [66, 67, 68]. These

approaches could be incorporated to make GRSTAPS a complete algorithm regardless of

motion planning algorithm. Furthermore, they would improve the efficiency of GRSTAPS

as it would not need to spend time computing a motion plan when one is infeasible.

7.2.2 Uncertainty

While we pursued an initial exploration into uncertainty in Chapter 5, there are numerous

sources of uncertainty within the context of the STAP-STC problem and numerous ap-

proaches that can be developed to improve robustness within the context of an interleaved

framework like GRSTAPS. We discuss a few of them here.

First, there is the possibility for uncertainty in the effects of the symbolic tasks. There

has been significant research on probabilistic planning for a single agent focusing on Markov

Decision Process-based approaches [170, 171, 172]. These probabilistic planners do not

reason about temporal constraints and are ill-suited for the multi-robot planning problem as

the size of the search space increases exponentially with the number of robots [173], how-

ever, it is possible that there are techniques that can be utilized or modified to work within

the context of FCPOP or GRSTAPS. Incorporating probabilistic planning techniques for

individual robots as an additional layer underneath the task allocation layer, similar to ap-

167



proach used by [173], is potentially feasible, however, further analysis would have have to

be conducted on the scalability with respect to the number of robots on such an approach.

Second, there is the possibility for uncertain robot traits or task trait requirements. In

our current formulation, we assume that each robot of the same species has the same traits,

but in a real scenario, a robot’s trait could be different from others of the same species due

to different conditions (e.g., wear and tear, battery life, sensor failure, etc). Furthermore,

knowing the exact trait requirements to execute a task is not always viable. Past research

has considered this type of uncertainty for an instantaneous task allocation problem [41,

174], however, to the best of our knowledge there are no approaches that consider trait

uncertainty for the time-extended problem. It is possible to build upon APR through in-

corporating the Sequential Probability Ratio Test that we used to reason about temporal

uncertainty in Chapter 5. This would allow for a user-specified risk tolerance on making

sure that each coalition had sufficient traits for each task it was assigned.

Third, there is the possibility that traversibility is uncertain. There are many real world

scenarios where information about the environment is uncertain (e.g., stale map informa-

tion, weather causing potential road blockages, etc). Modern approaches to solving this

type of problem, including the Canadian Traveler Problem (CTP) that we mentioned in

Chapter 5, are online approaches that utilize information discovered as the robot traverses

the environment, however, there may be techniques from these approaches that could be

incorporated into a framework like GRSTAPS.

Finally, each of these types of uncertainty has ramifications on other layers than than

the one that we mentioned in its paragraph above. For instance, if a road is blocked a robot

could take significantly more time to transition to a task. This may in turn make another

robot that is further way, but has a more direct route, better suited to participate in the task.

Additionally, uncertainties might stem from the integration of sub-problems. For example,

for task that is selected the outcome probabilities may depend on the coalition assigned to

it. Furthermore, having contingencies might be needed to decrease the risk of failure.

168



7.2.3 Execution

Finally, GRSTAPS is an offline algorithm that assumes the solution it generates can be ex-

ecuted perfectly, however, in real problems, there are numerous opportunities for execution

to fail. The obvious solution for execution failure would be to re-solve the problem from

the new initial state, however, this would be time consuming and fails to utilize the large

amount of information contained in the previous solution, the previous searches, and the

previous shared constraints. It is possible that the new solution may only need a small

deviation from the current solution to still be a viable solution. This opens up several ques-

tions on how to use the information/modules in GRSTAPS to best repair a solution. Is it

better to try to repair the solution through a monolithic approach or interleave algorithms

such as those found in [175, 153] in a similar manner to how GRSTAPS interleaves its

current modules? How can the current information discovered such as open/closed/pruned

task plan nodes, open/closed/pruned task allocation nodes be used to improve/speed up the

repair? Should an algorithm select what portion of the solution to repair based on the type

of execution failure or another metric? If execution changes beyond what is expect, but

execution does not fail should the algorithm still attempt to repair the solution or just allow

it to continue to execute?

169



REFERENCES

[1] J. Liu and R. K. Williams, “Coupled temporal and spatial environment monitoring
for multi-agent teams in precision farming,” IEEE Conference on Control Technol-
ogy and Applications, pp. 273–278, 2020.

[2] S. Jeon, J. Lee, and J. Kim, “Multi-Robot Task Allocation for Real-Time Hospital
Logistics,” in International Conference on Systems, Man, and Cybernetics, 2017.

[3] C. J. McCook and J. M. Esposito, “Flocking for heterogeneous robot swarms: A
military convoy scenario,” in Proceedings of the Annual Southeastern Symposium
on System Theory, 2007, pp. 26–31.

[4] R. Stern et al., “Multi-agent pathfinding: Definitions, variants, and benchmarks,” in
International Symposium on Combinatorial Search, 2019, pp. 151–158.

[5] G. Neville, A. Messing, H. Ravichandar, S. Hutchinson, and S. Chernova, “An
Interleaved Approach to Trait-Based Task Allocation and Scheduling,” in Interna-
tional Conference on Intellifent Robots and Systems, IEEE, 2021.

[6] A. Torreño, E. V. A. Onaindia, and U. P. D. València, “Cooperative Multi-Agent
Planning : A Survey,” ACM Computing Surveys, vol. 50, no. 6, pp. 1–32, 2017.

[7] S. Irnich, P. Toth, and D. Vigo, “The Family of Vehicle Routing Problems,” in
Vehicle Routing, 2014, ch. 1, pp. 1–33.

[8] R. Shome and K. E. Bekris, “Anytime multi-arm task and motion planning for
pick-and-place of individual objects via handoffs,” in International Symposium on
Multi-Robot and Multi-Agent Systems, 2019.

[9] D. Bredström and M. Rönnqvist, “Combined vehicle routing and scheduling with
temporal precedence and synchronization constraints,” European Journal of Oper-
ational Research, vol. 191, no. 1, pp. 19–31, 2008.

[10] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “An incremental
constraint-based framework for task and motion planning,” International Journal
of Robotics Research, vol. 37, no. 10, pp. 1134–1151, 2018.

[11] D. G. MacHaret and M. F. Campos, “A survey on routing problems and robotic
systems,” Robotica, vol. 36, no. 12, pp. 1781–1803, 2018.

[12] C. R. Garrett, “Sampling-Based Task and Motion Planning for Robots in the Real
World,” Ph.D. dissertation, 2021.

170



[13] A. Wald, “Sequential Tests of Statistical Hypotheses,” The Annals of Mathematical
Statistics, vol. 16, no. 2, pp. 117–186, 1945.

[14] J. Allen, “Maintaining knowledge about temporal intervals,” Communications of
the ACM, vol. 26, no. 11, pp. 832–843, 1983.

[15] O. Sapena, A. Torrenõ, and E. Onaindiá, “Parallel heuristic search in forward partial-
order planning,” Knowledge Engineering Review, vol. 31, no. 5, pp. 417–428, 2016.

[16] J. Benton, A. Coles, and A. Coles, “Temporal planning with preferences and time-
dependent continuous costs,” in International Conference on Automated Planning
and Scheduling, 2012.

[17] J. Kvarnström, “Planning for loosely coupled agents using partial order forward-
chaining,” in International Conference on Automated Planning and Scheduling,
2011.

[18] A. Coles, A. Coles, M. Fox, and D. Long, “Forward-Chaining Partial-Order Plan-
ning,” in International Conference on Automated Planning and Scheduling, 2010.

[19] P. Bechon, M. Barbier, G. Infantes, C. Lesire, and V. Vidal, “HiPOP: Hierarchical
Partial-Order Planning,” STAIRS, pp. 51–60, 2014.

[20] A. Coles, A. Coles, M. Martinez, and P. Sidiropoulos, International Planning Com-
petition 2018 Temporal Track.

[21] R. Lallement, L. De Silva, and R. Alami, “HATP: An HTN Planner for Robotics,”
in Workshop on Planning and Robotics (PlanRob), 2014.

[22] S. Edelkamp and J. Hoffmann, “PDDL2.2: The Language for the Classical Part of
the 4th International Planning Competition,” Tech. Rep., 2004.

[23] International Planning Competition 2011 Temporal Track, 2011.

[24] J. Rosell, “Assembly and task planning using Petri nets: A survey,” Proceedings of
the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufac-
ture, vol. 218, no. 8, pp. 987–994, 2004.

[25] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search for
optimal multi-agent pathfinding,” Artificial Intelligence, vol. 219, pp. 40–66, 2015.

[26] Y. H. Kim and B. K. Kim, “A multi-robot task planning system minimizing the
total execution time for hospital service,” in International Conference on Control,
Automation and Systems, 2010.

171



[27] C. Galindo, J. A. Fernández-Madrigal, J. González, and A. Saffiotti, “Robot task
planning using semantic maps,” Robotics and Autonomous Systems, vol. 56, no. 11,
pp. 955–966, 2008.

[28] B. Schattenberg, “Hybrid Planning and Scheduling,” Ph.D. dissertation, 2009.

[29] G. J. Sussman, “A computational model of skill acquisition,” Ph.D. dissertation,
1973.

[30] D. S. Weld, “An Introduction to Least Commitment Planning,” AI magazine, vol. 15,
no. 4, pp. 27–27, 1994.

[31] Q. Yang, Intelligent planning: a decomposition and abstraction based approach.
Springer Science & Business Media, 2012.

[32] H. L. Younes and R. G. Simmons, “VHPOP: Versatile heuristic partial order plan-
ner,” Journal of Artificial Intelligence Research, vol. 20, pp. 405–430, 2003.

[33] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,” Artificial Intel-
ligence, vol. 49, pp. 61–95, 1991.

[34] A. Bit-Monnot, “A constraint-based encoding for domain-independent temporal
planning,” in International Conference on Principles and Practice of Constraint
Programming, 2018.

[35] P. Eyerich, R. Mattmüller, and G. Röger, “Using the Context-Enhanced Additive
Heuristic for Temporal and Numeric Planning,” in International Comference on
Planning and Scheduling, 2009.

[36] M. Helmert, “The fast downward planning system,” Journal of Artificial Intelli-
gence Research, vol. 26, pp. 191–246, 2006.

[37] O. Sapena, E. Onaindia, and A. Torreño, “FLAP: Applying Least-Commitment in
Forward-Chaining Planning,” AI Communications, vol. 28, no. 1, pp. 5–20, 2015.

[38] J. Hoffman and B. Nebel, “The FF Planning System: Fast Plan Generation Through
Heuristic Search,” Journal of Artifiial Intelligence (JAIR), pp. 253–302, 2001.

[39] O. Sapena and E. Onaindia, “TFLAP - Planner Abstract,” in International Planning
Competition 2018 Temporal Track, 2018.

[40] A. Prorok, M. A. Hsieh, and V. Kumar, “The Impact of Diversity on Optimal Con-
trol Policies for Heterogeneous Robot Swarms,” IEEE Transactions on Robotics,
2017.

172



[41] H. Ravichandar, K. Shaw, and S. Chernova, “STRATA: A Unified Framework
for Task Assignments in Large Teams of Heterogeneous Agents,” Journal of Au-
tonomous Agents and Multi-Agent Systems, 2019.

[42] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task allocation
in multi-robot systems,” International Journal of Robotics Research, vol. 23, no. 9,
2004.

[43] G. Korsah, A. Stentz, and M. Dias, “A comprehensive taxonomy for multi-robot
task allocation,” International Journal of Robotics Research, vol. 32, pp. 1495–
1512, 2013.

[44] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task allocation
problems with temporal and ordering constraints,” Robotics and Autonomous Sys-
tems, vol. 90, 2017.

[45] S. Sariel and T. Balch, “Dynamic and distributed allocation of resource constrained
project tasks to robots,” in International Workshop on Multi-Agent Robotic Systems,
2006.

[46] E. G. Jones, M. B. Dias, and A. Stentz, “Time-extended multi-robot coordination
for domains with intra-path constraints,” Autonomous Robots, vol. 30, pp. 41–56,
2011.

[47] S. Giordani, M. Lujak, and F. Martinelli, “A distributed multi-agent production
planning and scheduling framework for mobile robots,” Computers and Industrial
Engineering, vol. 64, no. 1, 2013.

[48] M. Krizmancic, B. Arbanas, T. Petrovic, F. Petric, and S. Bogdan, “Cooperative
Aerial-Ground Multi-Robot System for Automated Construction Tasks,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 798–805, 2020.

[49] M. F. Tompkins, “Optimization Techniques for Task Allocation and Scheduling
in Distributed Multi-Agent Operations,” Ph.D. dissertation, MIT, Cambridge MA,
2003.

[50] G. A. Korsah, B. Kannan, B. Browning, A. Stentz, and M. B. Dias, “xBots: An ap-
proach to generating and executing optimal multi-robot plans with cross-schedule
dependencies,” in International Conference on Robotics and Automation, IEEE,
2012, pp. 115–122.

[51] J. Guerrero, G. Oliver, and O. Valero, “Multi-robot coalitions formation with dead-
lines: Complexity analysis and solutions,” PLoS ONE, vol. 12, no. 1, 2017.

173



[52] S. Thakar et al., “Task assignment and motion planning for bi-manual mobile ma-
nipulation,” in International Conference on Automation Science and Engineering,
2019.

[53] A. M. Kabir et al., “Incorporating Motion Planning Feasibility Considerations dur-
ing Task-Agent Assignment to Perform Complex Tasks Using Mobile Manipula-
tors,” in International Conference on Robotics and Automation, 2020.

[54] S. D. Ramchurn, M. Polukarov, A. Farinelli, C. Truong, and N. R. Jennings, “Coali-
tion formation with spatial and temporal constraints,” in International Joint Con-
ference on Autonomous Agents and Multiagent Systems, vol. 2, 2010.

[55] L. Capezzuto, D. Tarapore, and S. D. Ramchurn, “Anytime and Efficient Coalition
Formation with Spatial and Temporal Constraints,” in European Conference on
Multi-Agent Systems, 2020.

[56] M. Koes, I. Nourbakhsh, and K. Sycara, “Heterogeneous multirobot coordination
with spatial and temporal constraints,” AAAI, vol. 5, pp. 1292–1297, 2005.

[57] H. Choset et al., Principles of Robot Motion. 2005.

[58] M. Gini, “Multi-robot allocation of tasks with temporal and ordering constraints,”
AAAI, pp. 4863–4869, 2017.

[59] F. Glover and M. Laguna, “Tabu Search,” in Modern Heuristic Techniques for Com-
binatorial Problems, 1993.

[60] H. Kitano et al., “RoboCup rescue: search and rescue in large-scale disasters as a
domain for autonomous agents research,” Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, vol. 6, pp. 739–743, 1999.

[61] A. Whitbrook, Q. Meng, and P. W. Chung, “A novel distributed scheduling algo-
rithm for time-critical multi-agent systems,” in IEEE International Conference on
Intelligent Robots and Systems, vol. 2015-Decem, 2015, pp. 6451–6458.

[62] W. Zhao, Q. Meng, and P. W. Chung, “A Heuristic Distributed Task Allocation
Method (PIA),” IEEE Transactions on Cybernetics, vol. 46, no. 4, pp. 902–915,
Apr. 2016.

[63] A. Messing and S. Hutchinson, “Forward Chaining Hierarchical Partial-Order Plan-
ning,” International Workshop on the Algorithmic Foundations of Robotics, vol. 14,
2020.

[64] R. Bohlin and L. E. Kavraki, “Path Planning Using Lazy PRM,” International Con-
ference on Robotics and Automation (ICRA), no. April, 2000.

174



[65] I. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning Library (OMPL),”
IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp. 72–82, 2012.

[66] S. Li and N. T. Dantam, “Towards general infeasibility proofs in motion planning,”
in International Conference on Intelligent Robots and Systems, 2020.

[67] S. Li and N. Dantam, “Learning Proofs of Motion Planning Infeasibility,” in Robotics:
Science and Systems, 2021.

[68] S. Li and N. T. Dantam, “Exponential Convergence of Infeasibility Proofs for Kine-
matic Motion Planning,” International Workshop on the Algorithmic Foundations
of Robotics, pp. 1–16, 2022.

[69] E. Marie, E. H. Durfee, C. L. Ortiz, and M. J. Wolverton, “A Survey of Research
in Continual Planning,” AI Magazine, vol. 20, no. 4, pp. 13–22, 1999.

[70] F. Lagriffoul, N. T. Dantam, C. Garrett, A. Akbari, S. Srivastava, and L. E. Kavraki,
“Platform-Independent Benchmarks for Task and Motion Planning,” IEEE Robotics
and Automation Letters, vol. 3, no. 4, pp. 3765–3772, 2018.

[71] C. Garrett et al., “Integrated Task and Motion Planning,” International Journal of
Robotics Research, vol. 32, no. 9-10, pp. 1–30, 2020.

[72] T. Vidal, G. Laporte, and P. Matl, “A concise guide to existing and emerging vehicle
routing problem variants,” European Journal of Operational Research, vol. 286,
no. 2, pp. 401–416, 2020.

[73] M. Štolba and A. Komenda, “The MADLA planner: Multi-agent planning by com-
bination of distributed and local heuristic search,” Artificial Intelligence, vol. 252,
pp. 175–210, 2017.

[74] J. Tožička, J. Jakubův, and A. Komenda, “PSM-based Planners Description for
CoDMAP 2015 Competition,” in Competition of Distributed and Multi-Agent Plan-
ners, 2015, pp. 29–32.

[75] A. Torreno, E. Onaindia, and O. Sapena, “FMAP: Distributed cooperative multi-
agent planning,” Applied Intelligence, vol. 41, no. 2, pp. 606–626, 2014.

[76] S. S. Chouhan and R. Niyogi, “MAPJA: Multi-agent planning with joint actions,”
Applied Intelligence, vol. 47, no. 4, pp. 1044–1058, 2017.

[77] C. Boutilier and R. I. Brafman, “Partial-order planning with concurrent interacting
actions,” Journal of Artificial Intelligence Research, vol. 14, pp. 105–146, 2001.

175



[78] J. S. Penberthy and D. Weld, “UCPOP: A Sound, Complete, Partial Order Planner
for ADL,” Proc. KR-92, 1992.

[79] R. Brafman and U. Zoran, “Distributed Heuristic Forward Search for Multi-Agent
Systems,” in ICAPS DMAP, 2014.

[80] M. Crosby, M. Rovatsos, and R. P. Petrick, “Automated agent decomposition for
classical planning,” in International Conference on Automated Planning and Schedul-
ing, 2013.

[81] S. Shekhar and R. I. Brafman, “Representing and planning with interacting actions
and privacy,” Artificial Intelligence, 2020.

[82] P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Decomposition of Finite LTL
Specifications for Efficient Multi-agent Planning,” in Distributed Autonomous Robotic
Systems, 2018, pp. 253–267.

[83] ——, “Simultaneous task allocation and planning for temporal logic goals in het-
erogeneous multi-robot systems,” International Journal of Robotics Research, vol. 37,
no. 7, pp. 818–838, 2018.

[84] Y. Chen, A. Stefanescu, and C. Belta, “Formal Approach to the Deployment of
Distributed Robotic Teams Yushan,” IEEE Transactions on Robotics, vol. 28, no. 1,
pp. 158–171, 2012.

[85] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality and robust-
ness in multi-robot path planning with temporal logic constraints,” International
Journal of Robotics Research, vol. 32, no. 8, pp. 889–911, 2013.

[86] A. Nikou, D. Boskos, J. Tumova, and D. V. Dimarogonas, “Cooperative planning
for coupled multi-agent systems under timed temporal specifications,” Proceedings
of the American Control Conference, pp. 1847–1852, 2017.

[87] F. Faruq, B. Lacerda, N. Hawes, and D. Parker, “Simultaneous Task Allocation and
Planning Under Uncertainty,” in International Conference on Intelligent Robots
and Systems (IROS), 2018.

[88] R. Nissim and R. Brafman, “Distributed Heuristic Forward Search for Multi-agent
Planning,” Journal of Artificial Intelligence Research, vol. 51, pp. 293–332, 2014.

[89] H. Ma and S. Koenig, “Optimal target assignment and path finding for teams of
agents,” Proceedings of the International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS, no. February, pp. 1144–1152, 2016.

176



[90] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “FFRob: Leveraging symbolic
planning for efficient task and motion planning,” International Journal of Robotics
Research, vol. 37, no. 1, pp. 104–136, 2018.

[91] K. Hauser, V. Ng-Thow-Hing, and H. Gonzalez-Baños, “Multi-modal motion plan-
ning for a humanoid robot manipulation task,” in Robotics Research, vol. 66, 2010,
pp. 307–317.

[92] J. Barry, L. P. Kaelbling, and T. Lozano-Perez, “A hierarchical approach to ma-
nipulation with diverse actions,” in International Conference on Robotics and Au-
tomation, 2013.

[93] W. Vega-Brown and N. Roy, “Asymptotically Optimal Planning under Piecewise-
Analytic Constraints,” Algorithmic Foundations of Robotics, vol. 12, pp. 528–543,
2016.

[94] M. Toussaint, “Logic-geometric programming: An optimization-based approach to
combined task and motion planning,” in International Joint Conference on Artifi-
cial Intelligence, 2015, pp. 1930–1936.

[95] D. Driess and M. Toussaint, “Hierarchical Task and Motion Planning using Logic-
Geometric Programming,” in RSS Workshop on Robust Task and Motion Planning,
2019.

[96] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method for solving se-
quential manipulation planning problems,” in International Conference on Intelli-
gent Robots and Systems, 2014, pp. 3684–3691.

[97] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel, “Semantic
attachments for domain-independent planning systems,” in International Confer-
ence on Automated Planning and Scheduling Semantic, 2009.

[98] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras, “Combining high-
level causal reasoning with low-level geometric reasoning and motion planning for
robotic manipulation,” in International Conference on Robotics and Automation,
2011, pp. 4575–4581.

[99] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion planning in the
now,” in International Conference on Robotics and Automation, 2011, pp. 1470–
1477.

[100] S. Y. Lo, S. Zhang, and P. Stone, “PETLON: Planning efficiently for task-level-
optimal navigation,” Proceedings of the International Joint Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS, vol. 1, no. Aamas, pp. 220–
228, 2018.

177



[101] F. Lagriffoul, D. Dimitrov, A. Saffiotti, and L. Karlsson, “Constraint propagation
on interval bounds for dealing with geometric backtracking,” in IEEE International
Conference on Intelligent Robots and Systems, 2012, pp. 957–964.

[102] F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, and L. Karlsson, “Efficiently com-
bining task and motion planning using geometric constraints,” International Jour-
nal of Robotics Research, vol. 33, no. 14, pp. 1726–1747, 2014.

[103] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel, “Com-
bined task and motion planning through an extensible planner-independent inter-
face layer,” in International Conference on Robotics and Automation, 2014, pp. 639–
646.

[104] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “Incremental task
and motion planning: A constraint-based approach,” in Robotics: Science and Sys-
tems, vol. 12, 2016.

[105] A. Akbari, Muhayyuddin, and J. Rosell, “Task planning using physics-based heuris-
tics on manipulation actions,” in International Conference on Emerging Technolo-
gies and Factory Automation, 2016.

[106] M. Toussaint and M. Lopes, “Multi-bound tree search for logic-geometric pro-
gramming in cooperative manipulation domains,” in International Conference on
Robotics and Automation, 2017.

[107] I. Umay, B. Fidan, and W. Melek, “An integrated task and motion planning tech-
nique for multi-robot-systems,” in International Symposium on Robotic and Sen-
sors Environments, 2019, pp. 9–15.

[108] A. Akbari, F. Lagriffoul, and J. Rosell, “Combined heuristic task and motion plan-
ning for bi-manual robots,” Autonomous Robots, vol. 43, no. 6, pp. 1575–1590,
2019.

[109] J. Motes, R. Sandstrom, H. Lee, S. Thomas, and N. M. Amato, “Multi-Robot Task
and Motion Planning with Subtask Dependencies,” IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 3338–3345, 2020.

[110] S. H. Semnani, H. Liu, M. Everett, A. De Ruiter, and J. P. How, “Multi-Agent
Motion Planning for Dense and Dynamic Environments via Deep Reinforcement
Learning,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3221–3226,
2020.

[111] L. Cohen, T. Uras, T. K. Satish Kumar, and S. Koenig, “Optimal and bounded-
suboptimal multi-agent motion planning,” Proceedings of the 12th International
Symposium on Combinatorial Search, SoCS 2019, no. SoCS, pp. 44–51, 2019.

178



[112] Z. Wang and M. Gombolay, “Learning to Dynamically Coordinate Multi-Robot
Teams in Graph Attention Networks,” arXiv preprint, 2019.

[113] E. Flushing, L. Gambardella, and G. Di Caro, “A mathematical programming ap-
proach to collaborative missions with heterogeneous teams,” in International Con-
ference on Intelligent Robots and Systems, 2014, pp. 396–403.

[114] H. Ravichandar, K. Shaw, and S. Chernova, “STRATA: unified framework for
task assignments in large teams of heterogeneous agents,” Autonomous Agents and
Multi-Agent Systems, vol. 34, no. 2, pp. 1–25, 2020.

[115] A. Coles and A. Coles, “OPTIC,” in International Planning Competition 2018 Tem-
poral Track, 2018.

[116] A. Andreychuk, K. Yakovlev, D. Atzmon, and R. Stern, “Multi-agent pathfinding
with continuous time,” in International Joint Conference on Artificial Intelligence,
2019, pp. 39–45.

[117] A. Messing, G. Neville, S. Chernova, S. Hutchinson, and H. Ravichandar, “GRSTAPS:
Graphically Recursive Simultaneous Task Allocation, Planning, and Scheduling,”
International Journal of Robotics Research, vol. 41, no. 2, pp. 232–256, 2022.

[118] J. Blazewicz, J. K. Lenstra, and A. H. Kan, “Scheduling subject to resource con-
straints: classification and complexity,” Discrete Applied Mathematics, vol. 5, no. 1,
pp. 11–24, 1983.

[119] P. Lamas and E. Demeulemeester, “A purely proactive scheduling procedure for
the resource-constrained project scheduling problem with stochastic activity dura-
tions,” Journal of Scheduling, vol. 19, no. 4, pp. 409–428, 2016.

[120] N. Fu, P. Varakantham, and H. C. Lau, “Robust partial order schedules for RCP-
SP/max with durational uncertainty,” in International Conference on Automated
Planning and Scheduling, 2016, pp. 124–130.

[121] P. Varakantham, N. Fu, and H. C. Lau, “A proactive sampling approach to project
scheduling under uncertainty,” in AAAI Conference on Artificial Intelligence, 2016,
pp. 3195–3201.

[122] Y. Zhang and L. E. Parker, “Multi-robot task scheduling,” in International Confer-
ence on Robotics and Automation, 2013.

[123] E. Bischoff, F. Meyer, J. Inga, and S. Hohmann, “Multi-Robot Task Allocation and
Scheduling Considering Cooperative Tasks and Precedence Constraints,” in IEEE
International Conference on Systems, Man and Cybernetics, 2020.

179



[124] D. Matos, P. Costa, J. Lima, and A. Valente, “Multiple Mobile Robots Scheduling
Based on Simulated Annealing Algorithm,” in International Conference on Opti-
mization, Learning Algorithms and Applications, 2021.

[125] P. Morris, N. Muscettola, and T. Vidal, “Dynamic control of plans with tempo-
ral uncertainty,” in International Joint Conference on Artificial Intelligence, 2001,
p. 499.

[126] I. Tsamardinos, “A Probabilistic Approach to Robust Execution of Temporal Plans
with Uncertainty,” in Hellenic Conference on Artificial Intelligence, 2002, pp. 97–
108.

[127] M. Saint-Guillain, T. S. Vaquero, S. A. Chien, J. Agrawal, and J. Abrahams, “Prob-
abilistic Temporal Networks with Ordinary Distributions: Theory, Robustness and
Expected Utility,” Journal of Artificial Intelligence Research, vol. 71, pp. 1091–
1136, 2021.

[128] C. Fang, P. Yu, and B. C. Williams, “Chance-Constrained Probabilistic Simple
Temporal Problems,” in AAAI Conference on Artificial Intelligence, 2014.

[129] T. Vidal and H. Fargier, “Handling contingency in temporal constraint networks:
From consistency to controllabilities,” Journal of Experimental and Theoretical
Artificial Intelligence, vol. 11, no. 1, pp. 23–45, Jan. 1999.

[130] J. Brooks, E. Reed, A. Graver, and J. C. Boerkoel, “Robustness in probabilistic
temporal planning,” in AIII Conference on Artificial Intelligence, 2015.

[131] P. Santana, T. Vaquero, C. Toledo, A. Wang, C. Fang, and B. Williams, “PARIS:
A Polynomial-Time, Risk-Sensitive Scheduling Algorithm for Probabilistic Simple
Temporal Networks with Uncertainty,” in International Conference on Automated
Planning and Scheduling, 2016.

[132] F. Habibi, F. Barzinpour, and S. J. Sadjadi, “Resource-constrained project schedul-
ing problem: review of past and recent developments,” Journal of Project Manage-
ment, pp. 55–88, 2018.

[133] A. Kleywegt, A. Shapiro, and T. Homem-De-Mello, “The Sample Average Ap-
proximation Method for Stochastic Discrete Optimization,” SIAM Journal on Op-
timization, vol. 12, no. 2, pp. 479–502, 2002.

[134] J. F. Benders, “Partitioning procedures for solving mixed-variables programming
problems,” Numerische Mathematik, vol. 4, pp. 238–252, 1962.

[135] W. Song, D. Kang, J. Zhang, and H. Xi, “Risk-aware proactive scheduling via con-
ditional value-at-risk,” in AAAI Conference on Artificial Intelligence, 2018.

180



[136] D. Duue and J. Pan, “An Overview of Value at Risk,” Journal of Derivatives, vol. 4,
no. 3, pp. 7–49, 1997.

[137] K. Stergiou and M. Koubarakis, “Backtracking algorithms for disjunctions of tem-
poral constraints,” Artificial Intelligence, vol. 120, no. 1, pp. 81–117, 2000.

[138] J. C. Beck and N. Wilson, “Proactive algorithms for job shop scheduling with prob-
abilistic durations,” Journal of Artificial Intelligence Research, vol. 28, pp. 183–
232, 2007.

[139] N. Fu, H. C. Lau, P. Varakantham, and F. Xiao, “Robust local search for solv-
ing RCPSP/max with durational uncertainty,” Journal of Artificial Intelligence Re-
search, vol. 43, pp. 43–86, 2012.

[140] J. Luedtke, S. Ahmed, and G. L. Nemhauser, “An integer programming approach
for linear programs with probabilistic constraints,” Mathematical Programming,
vol. 122, no. 2, pp. 247–272, Apr. 2010.

[141] J. Banfi, A. Messing, C. Kroninger, E. Stump, S. Hutchinson, and N. Roy, “Hier-
archical Planning for Heterogeneous Multi-Robot Routing Problems via Learned
Subteam Performance,” IEEE Robotics and Automation Letter, 2022.

[142] D. Fried, S. E. Shimony, A. Benbassat, and C. Wenner, “Complexity of Canadian
traveler problem variants,” Theoretical Computer Science, vol. 487, pp. 1–16, 2013.

[143] P. Eyerich, T. Keller, and M. Helmert, “High-quality policies for the Canadian trav-
eler’s problem,” in AAAI Conference on Artificial Intelligence, 2010.

[144] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants of the conflict-
based search algorithm for the multi-agent pathfinding problem,” in Symposium on
Combinatorial Search, 2014, pp. 19–27.

[145] M. C. Gombolay, R. J. Wilcox, and J. A. Shah, “Fast Scheduling of Robot Teams
Performing Tasks with Temporospatial Constraints,” IEEE Transactions on Robotics,
vol. 34, no. 1, pp. 220–239, 2018.

[146] J. Blumenkamp, S. Morad, J. Gielis, Q. Li, and A. Prorok, “A Framework for Real-
World Multi-Robot Systems Running Decentralized GNN-Based Policies,” in In-
ternational Conference on Robotics and Automation, 2022, pp. 8772–8778.

[147] Z. Wang, C. Liu, and M. Gombolay, “Heterogeneous graph attention networks
for scalable multi-robot scheduling with temporospatial constraints,” Autonomous
Robots, vol. 46, no. 1, pp. 249–268, 2022.

181



[148] H. Raghavan, O. Madani, and R. Jones, “Active Learning with Feedback on Both
Features and Instances,” Journal of Machine Learning Research, vol. 7, pp. 1655–
1686, 2006.

[149] Q. Li, W. Lin, Z. Liu, and A. Prorok, “Message-Aware Graph Attention Networks
for Large-Scale Multi-Robot Path Planning,” IEEE Robotics and Automation Let-
ters, vol. 6, no. 3, pp. 5533–5540, 2021.

[150] E. Seraj et al., “Learning Efficient Diverse Communication for Cooperative Hetero-
geneous Teaming,” in International Joint Conference on Autonomous Agents and
Multiagent Systems, 2022, pp. 1173–1182.

[151] W. Gosrich et al., “Coverage Control in Multi-Robot Systems via Graph Neural
Networks,” International Conference on Robotics and Automation, pp. 8787–8793,
2022.

[152] X. Bresson and T. Laurent, “An Experimental Study Of Neural Networks For Vari-
able Graphs,” in International Conference on Learning Representations Workshop
Track, 2018.

[153] G. Neville, S. Chernova, and H. Ravichandar, “D-ITAGS: A Dynamic Interleaved
Approach to Resilient Task Allocation, Scheduling, and Motion Planning,” in ArXiv,
2022.

[154] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1,
pp. 61–80, 2009.

[155] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A Comprehensive Survey
on Graph Neural Networks,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 32, no. 1, pp. 4–24, 2021.

[156] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson, “Benchmarking
Graph Neural Networks,” arXiv preprint, 2020.

[157] C. K. Joshi, T. Laurent, and X. Bresson, “An Efficient Graph Convolutional Net-
work Technique for the Travelling Salesman Problem,” ArXiv, 2019.

[158] A. Cesta and A. Oddi, “Gaining efficiency and flexibility in the simple temporal
problem,” in International Workshop on Temporal Representation and Reasoning,
1996.

[159] L. Ford, “Network Flow Theory,” RAND Corporation, Santa Monica, California,
Tech. Rep. Paper P-923, 1956.

182



[160] M. Medress et al., “Speech Understanding Systems* Report of A Steering Com-
mittee,” Artificial Intelligence, vol. 9, no. 3, pp. 307–316, 1977.

[161] C. Skinner and S. Ranchurn, “The RoboCup rescue simulation platform,” in Inter-
national Conference on Autonomous Agents and Multiagent Systems, 2010, pp. 1647–
1648.

[162] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library,” in Advances in Neural Information Processing Systems 32, Curran
Associates, Inc., 2019, pp. 8024–8035.

[163] L. Gurobi Optimization, Gurobi Optimizer Reference Manual, 2022.

[164] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in In-
ternational Conference on Learning Representations, 2015.

[165] Z. Wang and M. Gombolay, “Heterogeneous Graph Attention Networks for Scal-
able Multi-Robot Scheduling with Temporospatial Constraints,” in Robotics: Sci-
ence and Systems, 2020.

[166] W. Kool, H. Van Hoof, and M. Welling, “Attention, learn to solve routing prob-
lems!” In International Conference on Learning Representations, 2019.

[167] I. Solis, J. Motes, R. Sandstrom, and N. Amato, “Representation-Optimal Multi-
Robot Motion Planning Using Conflict-Based Search,” IEEE Robotics and Automa-
tion Letters, vol. 6, no. 3, pp. 4608–4615, 2021.

[168] S. Lavalle, Planning Algorithms. 2006.

[169] K. Hauser and V. Ng-Thow-Hing, “Fast smoothing of manipulator trajectories us-
ing optimal bounded-acceleration shortcuts,” in International Conference on Robotics
and Automation, 2010.

[170] T. Keller and P. Eyerich, “PROST: Probabilistic planning based on UCT,” Interna-
tional Conference on Automated Planning and Scheduling, pp. 119–127, 2012.

[171] S. Garg, A. Bajpai, and Mausam, “Symbolic network: Generalized neural policies
for relational MDPs,” in International Conference on Machine Learning, 2020,
pp. 3355–3365.

[172] F. Geißer, D. Speck, and T. Keller, “Trial-based heuristic tree search for MDPs
with factored action spaces,” in International Symposium on Combinatorial Search,
2020, pp. 38–47.

183



[173] Y. Carreno, J. H. A. Ng, Y. Petillot, and R. Petrick, “Planning, Execution, and
Adaptation for Multi-Robot Systems using Probabilistic and Temporal Planning,”
in International Joint Conference on Autonomous Agents and Multiagent Systems,
2022, pp. 217–225.

[174] M. Rudolph, S. Chernova, and H. Ravichandar, “Desperate Times Call for Des-
perate Measures: Towards Risk-Adaptive Task Allocation,” in IEEE International
Conference on Intelligent Robots and Systems, Institute of Electrical and Electron-
ics Engineers Inc., 2021, pp. 2592–2597, ISBN: 9781665417143.

[175] R. Van Der Krogt and M. De Weerdt, “Plan Repair as an Extension of Planning,”
in Annual Conference on Artificial Intelligence, 2005.

184


	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Summary
	1 | Introduction
	Thesis Statement
	Contributions
	Relevant Publications
	Dissertation Organization

	2 | Interleaving Task Planning and Scheduling
	Introduction
	Background
	Related Work
	fcpop
	fchpop
	Experimental Evaluations
	Discussion & Conclusion

	3 | Interleaving Task Allocation, Scheduling, and Motion Planning
	Introduction
	Related Work
	Problem Description
	Communication Between Sub-Problems
	itags
	Experimental Evaluations
	Discussion & Conclusion

	4 | Interleaving Allocation, Planning, and Scheduling
	Introduction
	Related Work
	Problem Formulation
	Communication Between Sub-Problems
	grstaps
	Experimental Evaluations
	Discussion & Conclusion

	5 | Heterogeneous Coalition Scheduling with Temporal Uncertainty
	Introduction
	Related Work
	Problem Description
	Approach
	Experimental Evaluations
	Discussion & Conclusion
	Appendix: sprt

	6 | Learning to Set Task Orderings for Heterogeneous Coalition Scheduling with Deadlines
	Introduction
	Related Work
	Problem Description
	Building a Heterogeneous Graph
	Model
	htgs
	Experimental Evaluations
	Discussion & Conclusion

	7 | Conclusion and Future Directions
	Summary of Contributions
	Open Questions

	References

