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SUMMARY

The thesis is to give an integrated approach to efficiently learn the interdependency rela-

tion among high dimensional signal components and reconstruct signals from observations

collected in a linear sensing system. Broadly speaking, the topics can be divided into three

parts: (i) interdependency relation learning; (ii) sensing system design; and (iii) signal

reconstruction.

Interdependency relation learning. Previous works on learning graphical models usu-

ally assume direct observation of samples without measurement noise. However, this as-

sumption may be impractical or too expensive in real-world applications. To handle such

problems, one may turn to indirect observations. In this thesis, we study interdependency

of random variables with both parametric and non-parametric methods. First, for a Gaus-

sian distributed random vector X, we reconstruct the corresponding graphical structure

from noisy indirect measurements by modifying the covariance estimation in gLasso and

CLIME. For the first time, we show that the correct graphical structure can be recovered

under the indefinite sensing system using low number of samples. The results suggest that,

with fewer samples than the length of signal, we can still recover the graph structure of a

high dimensional signal from its low dimensional observations.

Second, we consider the non-parametric method. We assume random vector X follows

the nonparanormal distribution. In particular, we assume the joint distribution of g(X) ex-

hibits a Gaussian distributionN (µ,Σ), i.e., X behaves as multivariate Gaussian after some

transformation g(·). Under mild conditions, we show that our graph-structure estimator can

obtain the correct structure, from which we can derive the minimum sample number and

the projection dimension. Additionally, we obtain a non-asymptotic uniform bound on the

estimation error of the cumulative distribution function (CDF) of X from indirect observa-

tions with inexact knowledge of the noise distribution. To the best of our knowledge, this

bound is derived for the first time and may serve as an independent interest.

xiv



Sensing system design. We study the problem of sensor design from the viewpoint of in-

ference in probabilistic graphical models. The most used algorithm for inference in graph-

ical model is the so-called belief propagation (or message passing). Generally speaking, in

factor graphs, it is used to compute the posterior probabilities. Provided the factor graph

contain no loops, the belief propagation will generate the accurate posterior probabilities.

In this thesis, for the first time, we leverage the analytical tool of the message passing al-

gorithm and design a sensing matrix that can provide a preferential treatment for a specific

part of the whole signal. In particular, the proposed sensing system will allow to recon-

struct a specific part of the signal with higher accuracy than the rest of the signal in a linear

compressed sensing setup. To illustrate the benefits of our method, we first revisit a regular

sensing scenario, where all signal components are treated equally. For the sparse signal,

our method can reproduce the classical results of the compressive sensing. Then we turn

to the preferential sensing scenario. Numerical experiments suggest our method leads to

not only a significant reduction of the error within the high-priority part but also a modest

reduction of the total error.

Signal reconstruction with an indefinite linear sensing system. Here we consider recon-

struction of a high dimensional signal with an indefinite linear sensing system. Assuming

a sparse signal, we investigate this problem from the viewpoint of compressive sensing and

considers three problems as following. First, we consider the problem of signal reconstruc-

tion with inexact knowledge of the sensing system. Generally speaking, uncertainties in

the sensing system weakens the system performance and reduces the reliability of recov-

ered signals. Here, we specifically focus on recovering the sign values of signals instead of

their exact values. We show that as long as the uncertainty in the sensing matrix is sparse,

a thresholding mechanism can be developed to recover the sign vector. In particular, pro-

vided that the true signal satisfies certain conditions, the exact sign vector can be recovered

with high probability even under uncertain sensing matrices.

Second, we formulate a novel optimization problem to reconstruct the pseudo-sparse

xv



signal, when corrupted by noise, via the `∞ norm. In previous works, a noise whitening

method is often used which leads to the noise folding phenomenon, increasing the noise

energy greatly. We introduce a different approach and design a new optimization model to

recover x with `∞ norm. For the analysis, we assume the noise to have a uniform magnitude

and show that a unique solution close to the true values of pseudo-sparse signals can be

obtained in an indefinite measurement system. For the numerical experiments, we abandon

the uniform-magnitude assumption and return to the setting of Gaussian noise. Compared

to the noise-whitening method, our method can greatly reduce the noise with only a modest

sacrifice of the support-set recovery rate.

Third, we study a general framework for compressive sensing assuming the existence

of the prior knowledge that the signal x belongs to the union of multiple convex sets. This

framework, in a way, is a more general formulation of compressive sensing problems. In

fact, by proper choices of these convex sets, the problem can be transformed to well known

CS problems such as the sparse phase retrieval, quantized compressive sensing, and model-

based CS. To begin with, we analyze the impact of this prior knowledge on the minimum

number of measurements M to guarantee the uniqueness of the solution. Then we for-

mulate a universal objective function for signal recovery, which is both computationally

inexpensive and flexible. Moreover, an algorithm based on multiplicative weight update

and proximal gradient descent is proposed and analyzed for signal reconstruction. Finally,

we investigate as to how we can improve the signal recovery by introducing regularizers

into the objective function.

xvi



CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

The thesis proposes an integrated framework to recover high-dimensional signals and/or

learn graphical models from compressed measurements. Broadly speaking, the workflow

can be divided into three phases:

• Phase I: interdependency relation learning. Given a designed sensing system,

we will collect samples and design learning algorithms to uncover the dependency

relations among the entries of the signals. Once the relations are learned, we can

utilize them to further optimize the sensing system.

• Phase II: sensing system design. Equipped with some prior knowledge of signals,

we leverage the tools from coding theory, to put it more specifically, density evolu-

tion (DE), to design the sensing system. Notably, our sensing system can provide

preferential treatment for a specific part of the signals with higher-priority.

• Phase III: signal reconstruction with indefinite linear sensing system. Here, we

focused on the signal reconstruction with a given sensing system. Problems consid-

ered in this phase include (i) signal reconstruction with inexact knowledge of the

sensing system; (ii) signal reconstruction with the signal being contaminated by un-

desired noise; and (iii) signal reconstruction with the signal belonging to a union of

convex sets.

The proposed research is at the intersection of the compressive sensing and all its related

techniques with the current machine learning research, in particular graphical models. To

begin with, we briefly review the existing related work, which thereby consists of two parts:

(i) research on graphical models and (ii) research on compressive sensing.
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1.1 Interdependency Relation Learning

In recent years, we have witnessed a surge in the use of of graphical models, which provides

a general framework of representing the dependency relations among random variables,

in a variety of applications such as biology, natural language processing and computer

vision [1, 2]. For an arbitrary random vector X ∈ Rp, we can construct a graphical model

G = (V,E), known as Markov Random Fields (RMF), by associating each entry Xi with a

node vi ∈ V and adding an edge e = (vi, vj) to the edge setE ifXi andXj are conditionally

dependent given other random variables, where Xi and Xj denote the ith and jth entry of

X, respectively.

There have been extensive works on learning Gaussian Graphical Model (GGM) when

samples of data X are directly observed [3, 4, 5, 6]. However, in certain applications, direct

observations of the desired signal is not possible. Instead, the signal has to be measured

indirectly. One potential application is the biological sensing system designed to detect the

concentration of certain molecules, e.g. miRNAs, which are small molecules regulating the

cell growth, development, differentiation, and are linked to a wide variety of human dis-

eases [7, 8]. Expression analysis suggests that perturbed miRNA expression can be linked

to cancer and heart diseases. As a result, we can use miRNAs as indicators for the disease

diagnosis and even the disease intervention. Notice that one would require an expensive

bio-sensor which responds exclusively to individual miRNA among over 1000 different

miRNAs if a direct observation is required. However, turning to indirect observations al-

lows us to use sensors which may not be specialized to each miRNA types separately. The

cost reduction can be achieved, even with the same number of sensors as the direct observa-

tions, i.e., d = p. This thesis assumes that the measurements are given by a linear sensing

matrix, i.e., Y = AX + W where Y denotes the measurement results, A is the sensing

matrix, X is the signal of interests, and W represents the Gaussian noise. Our goal is to

study how to recover the graph structure from indirect measurements.
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1.1.1 Parametric Method of Graphical Model Learning

The most related work is the GGM [1, 9], where random vector X ∈ Rp satisfies the

Gaussian distribution, i.e., X ∼ N (0,Σ\). Let Θ\ be the precision matrix of the ran-

dom vector X, i.e., Θ\ = (Σ\)−1. One important characteristics of the GGM is that

Θ\
i,j = 0 if Xi and Xj are independent given the rest of entries X\{i,j}. Therefore we

can associate the structure E with the support set S of the precision matrix Θ\, where

S ,
{

(i, j) | Θ\
i,j 6= 0, ∀i 6= j

}
. This property of the precision matrix forms a foundation

for many algorithms that recover the structure of GGM.

Related Work

The two most famous methods are (i) Graphical Lasso (gLasso) [3] and (ii) constrained

`1 minimization for inverse matrix estimation CLIME [4].

• Graphical Lasso: Compared with the discrete graphical model, one of the major differ-

ence is that its joint probability can be written in a closed form [9]. In [3], the authors

proposed gLasso, which can be regarded as an M-estimator [10] (Ch. 9). The basic as-

sumption is that the ground-truth signal (i.e., the support set of the precision matrix)

lies within a certain low-dimensional space. By minimizing the negative log-likelihood

plus some specific regularizers, one can reconstruct the signal from insufficient samples,

which is the major bottleneck in the high-dimensional statistics.

• CLIME. While sharing the same assumptions as to the gLasso, i.e., a sparse precision

matrix, CLIME estimator takes a different approach without explicitly exploiting the joint

distribution. Instead of maximizing the likelihood, the authors first obtain an empirical

covariance matrix Σ̂n and then force the precision matrix Θ̂n to approximate its inverse.

Noteworthy, it can be applied to other models as well provided their precision matrices

are sparse. Hence, its impact goes beyond the GGM or even the continuous graphical

model. One example is its application to the mixture model [11].
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Under mild conditions, both of these two estimators can obtain the underlying graphical

structure. Furthermore, whenever some prior information or constraints on the structure of

graphical model are available, other variations of GGM-learning such as GGM with hidden

variables [6, 12], and GGM with an unknown block structure [13] have been proposed. For

a more thorough discussion on this topic, please refer to [5, 10].

Additionally, there are also some works trying to accelerate the learning process [14,

15, 16, 17]. Since the computational issue is not our focus, we only list the references and

omit a detailed discussion. Apart from the research on continuous RVs, other directions of

research include discrete models and mixture models as discussed in the following.

Discrete Model. The most crucial model lying in this category is the Markov random

field [18]. For the discrete model, the major difficulties can roughly be divided into two

categories:

• Computation of the partition function. One widely-used trick to handle such problem

is replacing the joint distribution with the conditional distribution [19, 20, 18].

• Insufficient samples. This problem is usually fixed by placing priors on the graphical

structure with the most popular one being the sparsity assumption. Typical examples

include [20, 19, 18]. In [20], the authors considered the Ising model where each random

variable can only take values in {±1}. In [19], the binary setting is extended to m differ-

ent values. In [18], a different setting with generalized linear regression is considered.

Mixture Model. These works can be seen as a combination of the previous two models.

For the conciseness, we omit the corresponding discussion and only list some of the most

typical literatures [21, 22, 23, 24].
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Our Contributions

In chapter 2, we consider learning the graphical structure of a p-dimensional Gaussian ran-

dom variable x, i.e., x ∈ Rp ∼ N (µ,Σ), µ ∈ Rp,Σ ∈ Rp×p. Unlike the previous works

which observe x directly, we consider the indirect observation scenario where samples y

are obtained via an under-determined sensing matrix A ∈ Rd×p (d < p), and possibly cor-

rupted with some additive noise, i.e, y = Ax + w. Assuming an sparse precision matrix

Θ\, we modify the gLasso in [3] and CLIME in [4] and propose two estimators namely M-

gLasso and M-CLIME, respectively, to reconstruct the graphical structure of GGM when

observations are collected indirectly through a matrix A. Sufficient conditions to obtain

the correct graphical structure are derived, and numerical experiment are provided for the

verification.

• We investigate the statistical properties of the proposed algorithms in terms of the mini-

mum sample size n. Denote deg as the maximum Markov blanket in the graphical model.

When d → ∞, we require n ≥ c0

√
deg2 · log p (c0 > 0 is some positive constant) for

the correct structure recovery, which is the same as the direct observation setting in [20]

when d → ∞. Under the indefinite sensing matrix setting where d < p, we need to

increase n to Ω
(
deg2 · (log p)3

)
for the precise graph recovery, which suggests fewer

samples can be drawn when compared with the length of signal p.

• Unlike the previous results with direct observations in [3] and [4] where the correct recov-

ery of the graphical structure only depends on the sample number n and the dimension of

the signal p, our result with indirect observations is also affected by the projection dimen-

sion d, which is never involved in the analysis before. When infinite samples are drawn,

i.e., n → ∞, we only require d ≥ c0

√
deg · p log p for the exact recovery of graphi-

cal structure, where c0 > 0 is some positive constant. Provided insufficient samples are

drawn, i.e., n < p, the minimum projection dimension d increases to
√

deg·p3/4·(log p)1/3

for the correct graphical structure. Notice that both the above scenarios allow d to be far
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less than p, suggesting the feasibility of the indefinite sensing matrix setting.

1.1.2 Nonparametric Method of Graphical Model Learning

The most related works on the nonparametric learning of graphical model are [25, 26, 27,

28, 29, 24], which focus on the nonparanormal distributed random vector X, i.e., the joint

distribution g(X) follows the Gaussian distribution N (µ,Σ) after the transform of certain

function g(X) = [gi(Xi) · · · gp(Xp)]
>. Let Θ be the inverse of the covariance matrix Σ,

the conditional independence relation of X is completely incorporated into matrix Θ. To

put more specifically, we have Θi,j = 0 iff Xi and Xj are independent given the rest of

entries X\{i,j}. Similar as the GGM, the goal of learning the graphical structure reduces to

detecting the support set S of Θ, where S , {(i, j) | Θi,j 6= 0, ∀i 6= j}.

Related Work

The basic idea in the previous work is to first estimate the covariance matrix and then

plugging into the gLasso [3], CLIME [4], etc. The differences across the above works lie in

the estimation method of the covariance matrix. In [25], the covariance matrix is estimated

via the CDF estimator; while in [30], it is estimated by the Spearman’s rho estimator. In

an independent work, [27] pointed out the covariance matrix can be estimated by Kendall’s

tau estimator as well. Moreover, [30] only studied the rank-based estimators, while [27]

also compared the rank-based estimators with the normal-score based estimator. Later, [28]

proposed a projection based algorithm to accelerate the estimator in [27].

Apart from the graphical models following the nonparanormal distribution, other types

of graphs include the graph with forest structure [27], graph with the elliptical distribution

[29], latent Gaussian copula model [24], etc. Since they are not directly related to our work,

a detailed discussion is omitted.

In addition to the above work, we also require some background knowledge about the

density deconvolution dating at least back to [31, 32, 33], where kernel-based estimators
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are proposed for the noise with infinite support set. To improve the performance for the

noise with finite support, a ridge-parameter method is proposed in [34]. Similar work in-

cludes [35, 36]. Work [37] generalized [33] and gave a data-driven method to select the

optimal bandwidth. Apart from the kernel-based methods, [38] presented a projection-

based method based on the Meyer-type wavelets, which adapts to the super-smooth noise

automatically. Notice the above works all assume the perfect knowledge of the noise distri-

bution. Later, [39, 40, 41] studied the setting with unknown noise but all required repeated

measurements to estimate the distribution of the noise.

Our Contributions

In chapter 3, we consider the nonparametric learning of the graphical structure of a p-

dimensional random vector X ∈ Rp under noisy measurements, namely, Y = AX + W,

where A ∈ Rd×p denotes sensing matrix and W represents the additive measurement noise.

To suppress the noise W, we assume extra measurements being conducted, namely, d > p.

Provided that the random vector X follows a nonparanormal distribution and the majority of

variables in X are conditionally independent (i.e., an sparse graphical model), we propose

an estimator to obtain the correct graphical structure together with the theoretical analysis

of its properties, for example, the minimum sample number n and dimension d. Denote

β > 0 as some fixed positive constant to be defined.

• We propose an estimator for the graphical structure together with the sufficient conditions

for the correct recovery. We show that the sample number n must be at least n �

(deg)4 log4 n, where deg denotes the maximum Markov blanket in the graph. Further, we

obtain a lower bound on the dimension as d� p+ (deg)β/4 logβ/4(d− p), where β > 0

is some fixed positive constant to be defined.

• Additionally, our work is the first to consider the deconvolution estimator for the CDF

with limited knowledge of the noise distribution. Compared with the previous work [39,
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40, 41], our work does not assume perfect knowledge of noise distribution, and our esti-

mator requires no additional steps to estimate the noise distribution. Moreover, we give

a non-asymptotic uniform bound on the estimation error, that is, supx

∣∣∣F̂ (x)− F (x)
∣∣∣ ≤

c0 log2(np)

(d−p)β/2 + c1√
n

(cf. Thm. Theorem 3), where F̂ (·) and F (·) denote the estimated marginal

CDF and ground-truth marginal CDF, respectively, and c0 and c1 are some positive con-

stants. The analysis to obtain these results is a technical ground break and is likely useful

in other areas of statistics.

1.2 Sensing System Design

At the core of our work is the message passing (MP) algorithm over factor graphs [42, 43,

1, 44]. Generally, it is used to compute the posterior probabilities within the factor graphs

(a bipartite graph with variable nodes and factor nodes), whose computation steps can be

divided into two categories:

• Product: this operation is for the variable node, whose role is simply to multiply all the

coming information, i.e., probabilistic messages, and to send a resulting message to the

adjacent factor node.

• Sum: this operation is done by the factor node, whose role is to calculate the weighted

sum of all incoming messages and transmit the resulting message to the variable node.

The message passing algorithm is also referred to as belief propagation, or sum-product, or

min-sum algorithm. These different names are due to its constant rediscovery in different

fields. In physics, this algorithm existed no later than 1935, when Bethe used a free-energy

functional to approximate the partition function (cf. [43]). In the probabilistic inference,

Pearl developed it in 1988 for the acyclic Bayesian network and showed it gave the exact

inference [44]. The most interesting thing is its discovery in the coding theory. In early

1960s, Gallager proposed it to decode low-density parity-check (LDPC) codes over graphs

under the name sum-product [42]. However, Gallagher work was almost forgotten and was
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rediscovered again in 90s [45, 46]. Later [47] equipped it with the analytical tool called

density evolution (DE) and used it for the design of LDPC codes.

1.2.1 Related Work

When narrowing down to the compressed sensing, MP has been widely used for signal

reconstruction [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60] and analyzing the perfor-

mance under some specific sensing matrices.

In the context of the sparse sensing matrix, the authors in [61] first proposed a so-called

sudocode construction technique and later presented a decoding algorithm based on the MP

in [62]. In [63], the non-negative sparse signal x is considered under the binary sensing

matrix. The work in [64] linked the channel encoding with the CS and presented a deter-

ministic way of constructing sensing matrix based on high-girth LDPC code. In [65, 49,

51], the authors considered the verification-based decoding and analyzed its performance

with DE. In [50], the spatial coupling is first introduced into CS and is evaluated with the

decoding scheme adapted from [65]. However, all the above mentioned works focused on

the noiseless setting, namely, w = 0. In [53, 55, 56], the noisy measurement is considered.

A sparse sensing matrix based on spatial coupling is analyzed in the large system limit

with replica method and DE. They proved its recovery performance to be optimal when m

increases at the same rate of n, i.e., m = O(n).

Note that the above mentioned related works are not exhaustive due to their large vol-

ume. For a better understanding of the MP algorithm, the DE, and their application to the

compressive sensing, we refer the interested readers to [43, 66, 56]. In addition to the work

based on MP, there are other works based on LDPC codes or graphical models [67, 68, 69,

70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81].
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1.2.2 Our Contributions

In chapter 4, we consider the linear measurement system y = Ax + w, where y ∈ Rn,

x ∈ Rn, and w denote the measurements, the signal with certain structures, and the mea-

surement noise, respectively [82]. Compared to the previous work exploiting MP [65, 49,

51, 50, 53, 55, 56, 57, 58], our focus is on the sensing matrix design of A rather than

the decoding scheme. By viewing the high dimensional signal reconstruction from the

low dimensional measurements as a message passing algorithm over a graphical model, we

leverage tools from coding theory in the design of LDPC, i.e., DE, and provide a framework

for the design of matrix A.

Two design schemes for the sensing matrix, namely, (i) a regular sensing and (ii) a

preferential sensing, are proposed and are incorporated into one single framework. As an

illustration, we consider the `1 regularizer, which corresponds to Lasso, for both of the

designs.

• Regular Sensing. We consider the k-sparse signal x ∈ Rn and associate it with a prior

distribution such that each entry is zero with probability 1 − k/n. First we approximate

this distribution with Laplacian prior by letting the probability mass near the origin point

to be 1 − k/n. Afterwards, we use our framework and reproduce the classical results in

CS, i.e., m ≥ c0k log n, which is a lower bound on the number of measurements required

to recover the signal.

• Preferential Sensing. We design the sensing matrix that would result in more accurate

(or exact) recovery of the high-priority sub-block of the signal relative to the low-priority

sub-block. Numerical experiments suggest our framework can (i) reduce the error in the

high-priority sub-block significantly; (ii) and yet be able to reduce the error with regard

to the whole signal modestly as well. Additionally, we emphasize that although we focus

on two levels of priority in signal components in this work, we can easily extend the

framework to the scenario where multiple levels of preferential treatment on the signal

components are needed, by simply incorporating associated equations into the DE.
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1.3 Signal Reconstruction with Indefinite Linear Sensing System

This part of work is closely related with compressive sensing (CS) [83, 84, 85], which

studies the problem of reconstructing a sparse high dimensional signal x from the under-

determined linear system y = Ax + w, where y denotes the low dimensional observation,

A denotes the sensing matrix, and w denotes the sensing noise. We consider three problems

in the CS. In the following, we separately list the contributions of these three works and

their corresponding related works.

1.3.1 Sparse Recovery of Sign Vectors under Uncertain Sensing Matrices

First, we consider the problem of signal reconstruction when there are uncertainties about

sensing matrix coefficients [86].

Related Work

Past works [87, 88, 89, 90] in the context can be summarized as following. In [87], signal

x is recovered by pretending the values of the sensing matrix are exact. In [91], sparse

Bayesian learning is extended to reconstruct an sparse signal x. In [88, 89], optimization

problems are formulated to recover x and the perturbation matrix E simultaneously. In

[88], this is achieved by adding a Frobenius norm penalizing the perturbation matrix E. In

[89], special structures are assumed on the perturbation matrix E and then E is recovered

via a constraint optimization. All the above works focused on recovering the exact value of

the signal x. However, in some applications [92, 93, 94, 86, 95, 96, 97, 60], the sign values

in the vector x is desired instead of the exact values of x.

Our Contributions

In chapter 5, we consider recovering the sign vector under an uncertain sensing matrix. Our

contributions are listed as the following.
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• We consider a sparse perturbation matrix E and analyze its impact on the system

performance. In general, perturbation matrix E is random and has different distri-

butions in different applications. Typical examples of distributions include Gaussian

distribution and an arbitrary distribution with limited range [97]. We consider a case

that is unique to miRNA sensing in biology. Note that the (i, j)th element, Ψij , in

sensing matrix Ψ models the reaction between sensor i and miRNA j. If Ψij is zero,

it means that sensor i does not react to miRNA j. However, due to the stochastic

nature of molecular binding in biological receptors (i.e., sensors), certain miRNAs

may still have unexpected footprints on some sensors, i.e., unexpectedly changing

some entries in the sensing matrix from zero to non-zero values [98]. Since this hap-

pens only for a small subset of miRNA and sensor pairs, the perturbation matrix E is

sparse. Adopting our model in [79], we analyze the perturbation matrix E and study

how it affects the system performance.

• We propose a thresholding mechanism to recover the sign vector under uncertain

sensing matrices although its correct value cannot be guaranteed due the sensing

matrix uncertainties. We studied sign vector recovery under quadratic measurement

setting in [76], in the present work we consider linear measurements but with some

random perturbations in the sensing matrix. In [96], a thresholding mechanism based

on Dantzig and Lasso is proposed to get the correct sign vector without considering

the sensing matrix uncertainties. In [97], sensing matrix uncertainties are assumed

to be limited-range and sign vector is obtained by thresholding the solution to one

specifically designed problem. Inspired by the above works, we introduce a frame-

work that is tailored toward applications with constraints described. We have proved

that the recovered sign vector is correct provided that certain assumptions hold.
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1.3.2 Recovering Noisy-Pseudo-Sparse Signals from Linear Measurements via `∞

Second, we formulate a novel optimization problem to reconstruct the pseudo-sparse high-

dimensional signal, which is contaminated by noise, via the `∞ norm [99].

Related Work

Consider the sensing relation y = A(x+e)+w, where y denotes the low-dimensional ob-

servation, A is the known sensing matrix, x is the sparse high-dimensional signal awaiting

to be reconstructed, e is some small deviations, causing the signal to deviate slightly from

the sparsity model, i.e., a pseudo sparse signal, and w denotes the measurement noise.

In [100], a general model is proposed to handle perturbation Ae. However, they do not

provide any method as to how we modify the cost function to account for Ae. Besides,

due to the indefinite nature of sensing matrix A, their formulation cannot be modified to

to incorporate e as in our setting. In [101], parsimony constraint ‖Ae‖1 is introduced to

handle Ae. However, the method cannot be extended to Gaussian noise. In [102, 103], the

support set T is assumed to be known and e only corrupts the value of zero elements in x.

To recover x, [103] proposed a cancel-and-recover method, which projects A(x + e) onto

the orthogonal space spanned by columns of matrix A. In [102], objective function ‖x‖1 is

modified to ‖xT‖1 and the robustness of the recovery algorithm is guaranteed under some

conditions. In [104], the same model is considered. The authors treat Ae + w as some

non-white Gaussian noise and propose to first whiten the noise Ae + w and then transform

it into the traditional CS measurement model. But this method can lead to noise-folding

phenomenon, seriously degrading the recovery performance.

Our Contributions

In chapter 6, we pursue a novel approach to tackle this problem directly instead of methods

such as noise-whitening and with no assumption on the support set. The contributions of

our work can be summarized as the following.
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• We take into account the shape of Gaussian, i.e., non-drastically increasing ‖e‖∞,

and propose a new optimization model. In traditional approaches, only the energy

of e is constrained by ‖e‖2 ≤ σ2. We add a new penalty term ‖e‖∞ to prevent

individual components of e to grow too large. Further, different from [104], our

method does not perform noise whitening and can recover the sparse signal x and its

Gaussian deviation e simultaneously. The simulation results suggest that our method

greatly improves the recovery accuracy compared with that of the noise whitening

method [104].

• We consider a simplified case and give a theoretical analysis to facilitate model un-

derstanding. First we prove that recovering the exact solution is not possible but a

unique solution x̂ in its proximity can be obtained. Then we provide a lower bound

on the number of measurements to guarantee the unique solution. Adopting the same

model as in [79] for the measurement matrix, we show that a unique solution (x̂, ê)

can be obtained with high probability with an indefinite measurement matrix A, i.e.

m < n.

1.3.3 Sparse Signal Reconstruction with a Multiple Convex Sets Domain

Third, in chapter 7 we study a general framework for compressive sensing assuming the

existence of the prior knowledge that the signal x belongs to the union of multiple convex

sets, x ∈
⋃
i Ci [105].

Related Work

We first discuss the work regarding the analysis of the statistical properties, from which

we can obtain the minimum sensor number m. Broadly speaking, there are at least 3 types

of methods to analyze the sensor number m. The most related work takes the viewpoint

from stochastic geometry. In [106], the authors transform the problem into counting faces

of randomly projected polytopes. Work [107] consider the Gaussian sensing matrix and
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transform the correct recovery problem into the mesh escaping problem, which concerns

with the condition where two subspaces fail to intersect with each other. With the tools

invented by [108], [107] can easily reproduce the classical results regarding the sensor

number m, namely, m ≥ c0k log n for a k-sparse signal, where c0 > 0 is some constant.

Noteworthy, this method can be easily extended to other norms apart from `1. Later, [109]

generalized the Gaussian setting to a broader class of matrices. In addition to the geometric

method, other directions of work include RIP-based method [110] and AMP-based method

[58, 111, 66]. Since they are not directly related to our work, we only mention their names

without detailed discussions.

Another line of research regards the computational method. Accelerated proximal gra-

dient descent [112], FISTA [112, 113] are the most widely used optimization algorithm.

Besides, the problem-specific algorithms are proposed. In [114], the author studied the

minimum number of measurements M under different models, i.e., shape of Li, and modi-

fied CoSaMP algorithms [83] to reconstruct signal. In [115], the authors expanded the sig-

nal onto different basis and transformed model-based CS to be block-sparse CS. In [116],

the author studied model-based CS with incomplete sensing matrix information and refor-

mulated it as a matrix completion problem.

Our Contributions

Our contribution can be divided into two parts in general: the statistical property and asso-

ciated optimization method.

• We analyze the minimum number of measurements to ensure uniqueness of the so-

lution. We first show that the conditions for the uniqueness can be represented as

minu∈E ‖Au‖2 > 0, for an appropriate set E. Assuming the entries of the sensing

matrix A are i.i.d. Gaussian, we relate the probability of uniqueness to the number

of measurements, M . Our results show that depending on the structure of Ci’s, the

number of measurements can be reduced significantly.
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• We propose a novel formulation and the associated optimization algorithm to recon-

struct the signal x. First, note that existing algorithms on e.g., model-based CS are

not applicable to our problem as they rely heavily on the structure of constraint sets.

For example, a key idea in model-based CS is to consider expansion of x onto the

basis of each convex set Ci and then rephrase the constraint as the block sparsity on

the representation of x on the union of bases. However, such an approach may add

complicated constraints on the coefficients of x in the new basis, as the sets Ci’s are

not necessarily simple subspaces.

Note that although Ci’s are assumed to be convex, their union
⋃
i Ci is not neces-

sarily a convex set, which makes the optimization problem (Equation 7.2.2) hard

to solve. By introducing an auxiliary variable, p, we convert the non-convex opti-

mization problem to a biconvex problem. Using multiplicative weight update [117]

from online learning theory [118], we design an algorithm with convergence speed

ofO(T−1/2) to a local minimum. Further, we investigate improving the performance

of the algorithm by incorporating appropriate regularization. Compared to the naive

idea of solving L simultaneous optimization problems

min
x
‖x‖1, s.t. y = Ax, x ∈ Ci,

and choosing the best solution out of L results, our method is computationally less-

expensive and more flexible.
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1.4 Notations

We denote c, c0, ci > 0 as arbitrary fixed positive constants. Notice that the specific values

may not be necessarily identical even if they share the same name. For arbitrary real num-

bers a and b, we denote a . b if there exists some c0 > 0 such that a ≤ c0b. Similarly we

define a & b. We write a � b when a . b and a & b hold simultaneously. The maximum

of a and b is denoted as a∨ b; while the minimum is denoted as a∧ b. We have a ∝ b when

a is proportional to b. The imaginary number
√
−1 is denoted as j.

For an arbitrary matrix M ∈ Rm1×m2 , we denote Mi as its i-th column and Mij as

the (i, j)-th entry. Its Frobenious norm ‖M‖F is defined as
√∑

i,jM
2
i,j . Furthermore, we

define |||M|||a,b as max‖z‖a=1 ‖Mz‖b. Two special cases are |||M|||1,1 and |||M|||∞,∞, which

can be written as |||M|||1,1 , maxj
∑

i |Mi,j|, and |||M|||∞,∞ , maxi
∑

j |Mi,j|, respectively.

The operator norm ‖M‖OP can be viewed as a shorthand for |||M|||2,2. Additionally, we

need the element-wise norm ‖·‖1 and ‖·‖∞, which are defined as ‖M‖1 ,
∑

i,j |Mi,j|

and ‖M‖∞ , maxi,j |Mi,j|, respectively. Moreover, we define |||M|||off,F ,
√∑

i 6=jM
2
i,j ,

|||M|||1,off ,
∑

i 6=j |Mi,j|, and |||M|||off,∞ , maxi 6=j |Mi,j|. The inner product 〈M1,M2〉

between matrices M1 and M2 is defined as
∑

i,j(M1)i,j(M2)i,j .
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CHAPTER 2

PARAMETRIC LEARNING OF GRAPHICAL MODELS

2.1 Introduction

Graphical models provide a general framework of representing the dependency relations

among random variables. They have a broad spectrum of applications in biology, natural

language processing and computer vision [1, 2], etc. For an arbitrary random vector X ∈

Rp, we can construct a graphical model G = (V,E) by associating each entry Xi with a

node vi ∈ V and adding an edge e = (vi, vj) to the edge setE ifXi andXj are conditionally

dependent given other random variables, where Xi and Xj denote the ith and jth entry of

X, respectively.

Discovery of the graph structure from a collection of direct observations of X has been

widely studied in the past [3, 4, 25, 27, 28, 29, 24]. However, in some applications, direct

observations of the desired signal is not possible. Instead, the signal has to be measured

indirectly. Further, one commonly encountered problem is that the observations are con-

taminated with measurement noise, which leads to inaccurate estimation of the graphical

structure. Inspired by these challenges, we consider the graph structure recovery under an

indirect linear measurement scenario from the desired signal as

Y(s) = AX(s) + W(s), 1 ≤ s ≤ n, (2.1.1)

where Y(s) denotes the sth measurement, A ∈ Rd×p denotes the sensing matrix, and W ∈

Rd denotes the sensing noise. Assuming the random vector X to be Gaussian distributed,

the goal of this chapter is to learn the pair-wise independence relation (structure) of an

undirected graphical model, i.e., Markov random fields, from the observations {Y(s)}1≤s≤n

with a parametric method.
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Notations Let X ∈ Rp follow the Gaussian distribution with zero mean and covariance

Σ\, i.e., X ∼ N (0,Σ\). We assume that most entries of X are pair-wise conditionally

independent, i.e., the precision matrix Θ\ = (Σ\)−1 is sparse. Let S be the support set of

Θ\, namely, S =
{

(i, j) : Θ\
ij 6= 0

}
, and define deg , maxi ‖Θ\

i‖0 and κΣ ,
∣∣∣∣∣∣Σ\

∣∣∣∣∣∣
∞,∞.

Note that the deg, i.e., the maximum of the number of non-zero elements in a column,

is the maximum Markov blanket in the graphical model. Furthermore, we define Γ as

Σ\⊗Σ\, such that Γ(i1,j1),(i2,j2) = Cov(Xi1Xj1 , Xi2Xj2), where⊗ is the kronecker product

[119], and κΓ as |||(ΓSS)−1|||∞,∞.

2.2 Problem Formulation

With n indirect observations
{
Y(i)

}n
i=1

, our goal is to recover the graphical structure of

X, i.e., the support set S ,
{

(i, j) | Θ\
i,j 6= 0, ∀ i 6= j

}
of the precision matrix of X. The

relation between Y and X is given as

Y = AX + W,

where A ∈ Rd×p is an under-determined matrix with d < p, and W denotes the mea-

surement noise with each entry Wij being a Gaussian RV with zero mean and variance

σ2, i.e., Wij ∼ N (0, σ2). Note that with an arbitrary measurement matrix A and with-

out imposing any constraint, it would be impossible to recover S. A simple example is

A = [Id×d 0d×(p−d)]. It can be easily verified that the structure of the last (p − d) entries

of X cannot be recovered as no information about those entries are captured by the mea-

surements. In our analysis, as in most compressive sensing literature, we assume that A

is drawn randomly from a Gaussian distribution, i.e., entries of A follow i.i.d. Gaussian

distribution. Without loss of generality, we assume that each column of A is both centered

and normalized, i.e., Aij is iid distributed N (0, 1) for all i and j. Moreover, to avoid mea-

surements being dominated by one or a small group of Xi’s, we assume that Var(Xi) = 1,
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1 ≤ i ≤ p.

The goal is recovering the graphical structure of X, i.e., the support set of Θ\, from the

measurements
{
Y(i)

}n
i=1

. As such, we propose two estimators, M-CLIME and M-gLasso,

whose details are given in Algorithm 1 and Algorithm 2.

Comparisons with MLE. The major drawback of ML estimation is that it is non-convex

under our setting: the covariance matrix of Y is A>ΣXA while the sparsity constraint is

placed on the precision matrix ΘX = (ΣX)−1. Compared with the ML estimator, our

estimator has an amenable analytical structure and is computational-friendly.

Algorithm 1 M-gLasso Estimator.

Input: Samples
{
Y(i)

}n
i=1
∈ Rp and sensing matrix A ∈ Rd×p.

Stage I: Estimate the covariance matrix Σ̂
param
n as

Σ̂
param
n = I +

1

d+ 1

[
A>

(
1

n

n∑
i=1

Y(i)Y(i)>

)
A

]
off

, (2.2.1)

where [·]off denotes the operation of picking non-diagonal entries,
Stage II: Obtain Θ̂

param
G as

Θ̂
param
G = argmin

Θ�0

− log det(Θ) + Tr(Σ̂
param
n Θ) + λparam

G |||Θ|||1,off, (2.2.2)

where λparam
G > 0 is some positive constants.

Output: Estimated precision matrix Θ̂
param
G .

2.3 Theoretical Properties of Covariance Matrix Estimator

Here we describe the properties of our proposed GGM structure learning algorithms, namely,

M-gLasso (Algorithm 1) and M-CLIME (Algorithm 2). We will show that a correct graph-

ical structure can be obtained when the penalty coefficient λparam
G in (Equation 2.2.2) is

properly chosen. The core of the analysis lies in bounding the error of the covariance es-

timation, i.e.,
∥∥∥Σ̂n −Σ\

∥∥∥
∞
. τ∞, where Σ̂

param
n is defined in (Equation 2.3.2), and the
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Algorithm 2 M-CLIME Estimator.

Input: Samples
{
Y(i)

}n
i=1
∈ Rp and sensing matrix A ∈ Rd×p.

Stage I: Estimate the covariance matrix Σ̂
param
n as in Stage I in Algorithm 1.

Stage II: Obtain Θ̃
param
C as

Θ̃
param
C = argminΘ‖Θ‖1, s.t.

∥∥∥Σ̂param
n Θ− I

∥∥∥
∞
≤ λparam

C , (2.2.3)

where λparam
C is some positive constant.

Stage III: Obtain the symmetric matrix Θ̂
param
C from Θ̃

param
C as

(Θ̂
param
C )ij =

(Θ̃
param
C )ij, if

∣∣∣(Θ̃param
C )ij

∣∣∣ < ∣∣∣(Θ̃param
C )ji

∣∣∣ ;
(Θ̃

param
C )ji, otherwise.

Output: Estimated precision matrix Θ̂
param
C .

threshold parameter τ∞ is written as

τ∞ ,
c0

√
d log p

d+ 1
max
i

∥∥∥Σ\
i

∥∥∥
2

+
c1 log p

d+ 1

(
1 +

c2p

d

) ∣∣∣∣∣∣Σ\
∣∣∣∣∣∣

off,F

+
c3 log p

√
dp√

n(d+ 1)
+
c4p(log p)3/2

√
n(d+ 1)

(
1 +

c2p

d

)
+
c5p
√

log p√
d(d+ 1)

+
c6σ

2 log p

d

[
1 + c7

(√
d

n
∨ d
n

)]
. (2.3.1)

Then we have the following lemma.

Lemma 1. Consider the covariance estimator Σ̂
param
n which reads

Σ̂
param
n = I +

1

d+ 1

[
A>

(
1

n

n∑
i=1

Y(i)Y(i)>

)
A

]
off

, (2.3.2)

where (·)off denotes the operation of picking non-diagonal entries. We then have ‖Σ̂
param
n −

Σ\‖∞ . τ∞ holding with probability at least 1− c0p
−1 − c1p

2e−c2d − c3p
2e−c4p.

Provided all non-zero elements in the ground-truth precision matrix Θ\ are greater than

cτ∞, where c is some positive constant, we will show that a correct graphical structure can

be obtained when the penalty coefficients are properly chosen. The formal statement comes
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as follows in Theorem 1 and Theorem 2.

2.3.1 Proof Outline

By the definition of our estimator,
∥∥∥Σ̂param

n −Σ\
∥∥∥
∞

= maxi 6=j

∣∣∣∣(Σ̂
param
n

)
i,j
−Σ\

i,j

∣∣∣∣, we

only consider the off-diagonal entries

∥∥∥Σ̂param
n −Σ

∥∥∥
off,∞
≤ 1

d+ 1

∥∥A>AΣparam
n A>A− (d+ 1)Σparam

n

∥∥
off,∞︸ ︷︷ ︸

ϑ1

+
∥∥Σparam

n −Σ\
∥∥

off,∞︸ ︷︷ ︸
ϑ2

,

where Σparam
n is defined as n−1(

∑n
i=1 X(i)X(i)>). Then we separately bound ϑ1 and ϑ2. To

bound ϑ1, we first define Z = A>AΣparam
n A>A, which gives

P (ϑ1 ≥ δ) = P
(

max
i 6=j
|Zi,j − EZi,j| ≥ δ

)
≤
∑
i 6=j

P (|Zi,j − EZi,j| ≥ δ, i 6= j) . (2.3.3)

W.l.o.g. we assume i = 1 and j = 2. Define Ti, 1 ≤ i ≤ 6 as

T1 , (Σparam
n )1,2 ‖A1‖2

2‖A2‖2
2;

T2 , (Σparam
n )2,1 (〈A1,A2〉)2 ;

T3 ,
∑
` 6=1

(Σparam
n )2,` ‖A2‖2

2 〈A1,A`〉+
∑
`6=2

(Σparam
n )`,1 ‖A1‖2

2 〈A2,A`〉 ;

T4 ,
∑
6̀=1,2

(Σparam
n )`,` 〈A1,A`〉 〈A2,A`〉 ;

T5 ,
∑

`1,`2 6=1,2
`1 6=`2

(Σparam
n )`1,`2 〈A1,A`1〉 〈A2,A`2〉 ;

T6 , n−1A>1

(
n∑
`=1

W(`)W(`)>

)
A2.

To study the concentration behavior of |Zi,j − EZi,j|, i 6= j, we decompose Z12 into∑6
k=1 Tk resulting |Z1,2 − EZ1,2| .

∑6
k=1 |Tk − ETk|. Then we will prove the following
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equation holds with probability exceeding 1− c0p
−3 − c1e

−c2p − c3e
−c4d,

|T1 − ET1| .
√

log p

d

(∣∣∣Σ\
1,2

∣∣∣+

√
log p

n

)
;

|T2 − ET2| .
log p

d

(∣∣∣Σ\
2,1

∣∣∣+

√
log p

n

)
;

|T3 − ET3| .
√

log p

d

(∥∥∥Σ\
1

∥∥∥
2

+
∥∥∥Σ\

2

∥∥∥
2

+

√
p log p

n

)
;

|T4 − ET4| .
p
√

log p

d3/2

(
1 + c0

√
log p

n

)
+

√
p log p

d

(
1 + c0

√
log p

n

)
;

|T5 − ET5| .
log p

d

(
1 +

c1p

d

)(∣∣∣∣∣∣Σ\
∣∣∣∣∣∣

off,F + p

√
log p

n

)
;

|T6 − ET6| . c0σ
2

(
1 + c1

√
log p

d

)√
log p

d

(
1 + c2

(√
d

n
∨ d
n

))
. (2.3.4)

Combining (Equation 2.3.3) and (Equation 2.3.4) will yield the upper-bound for ϑ1. Mean-

while for ϑ2, we can invoke the standard result in [4], which gives ϑ2 .
√

log p/n, and

complete the proof.

2.4 Theoretical Properties of M-gLasso

We assume that the irrepresentable condition, which is stated as in Assumption 1 and

previously used in [3].

Assumption 1. There exists a positive constant α ∈ (0, 1] such that |||ΓScS(ΓSS)−1|||1,1 ≤

1− α.

Under the above assumptions, the proposed M-gLasso estimator (Equation 2.2.2) has

the following properties.

Theorem 1. Let τ∞ . α
6(α+8)(deg)·κ3ΣκΓ

, and set λparam
G = 8τ∞/α. Then, with probability at

least 1− c0p
−1 − c1p

2e−c2d − c3p
2e−c4p, the matrix Θ̂

param
G has the following properties
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• (Θ̂
param
G )i,j = 0 for all (i, j) outside the support set S, (i, j) ∈ Sc,

• if min(i,j)∈S |Θ
\
i,j | ≥ 2κΓ(1 + 8α−1)τ∞, then sign(Θ̂

param
G ) = sign(Θ\),

where ci, 0 ≤ i ≤ 4, are some fixed positive constants independent of n, d and p.

This theorem proves that M-gLasso can detect all conditionally independent pairs (the

graph edges), provided that the non-zero elements Θ\
i,j , (i, j) ∈ S, are strong enough,

i.e., the absolute value of non-zero elements in Θ\ are above some fixed threshold.

2.4.1 Discussions

In the following, we provide more insights regarding: (i) the minimum sample size and

(ii) the minimum projection dimension d. An illustration of the infeasible region of n and

d is plotted in Figure 2.1.

Figure 2.1: Infeasible region w.r.t number n and dimension d.

Minimum Sample Size n. In the high-dimensional setting, it is desirable to reduce the

sample number n to less than the dimension of signal p, i.e., n < p. This subsection

discusses the minimum sample size n under indirect observations.

Intuitively, large sample size n and dimension d, which corresponds to number of sen-

sors in the real world applications, contribute to a more accurate recovery of the graphical

structure. First we compute the minimum sample size n by letting d→∞. Treating α, κΣ,

and κΓ as some positive constants, Theorem 1 requires that deg · τ∞ to be some positive

constant, from which we can obtain the minimum sample size n &
√

deg2 · log p. This
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result coincides with the traditional setting where samples X(i), 1 ≤ i ≤ n are observed

directly (cf. Sec. 9.3.4 in [5]).

For the case of indefinite sensing matrix A ∈ Rd×p (d < p), we need to increase the

sample number n to the order of Ω
(
deg2 · (log p)3

)
, which is obtained by setting d = cp,

where 0 < c < 1 is some positive constant. When d reduces to Ω(p0.8), we need to further

inflate the sample number n to be at least deg2(log p)3p0.8, which is still less than order p.

Minimum Projection Dimension d. This part investigates the minimum projection di-

mension d and proves the possibility of exact recovery of graph with an indefinite sensing

matrix A ∈ Rd×p such that d < p. First we consider the special case where infinite sam-

ples are available, i.e., n → ∞. Intuitively, more samples will lead to a more accurate

estimation, which is captured by (Equation 2.3.1). As n→∞, the parameter τ approaches

τ∞ '
c0

√
d log p

d+ 1
max
i

∥∥∥Σ\
i

∥∥∥
2

+
c6

√
p log p

d+ 1
+

c7p
√

log p√
d(d+ 1)

+
c1 log p

d+ 1

(
1 +

c2p

d

) ∣∣∣∣∣∣Σ\
∣∣∣∣∣∣

off,F.

However, unlike covariance estimation from directly observed data, in indirect mea-

surements, there is still a gap τ∞ between the true and estimated covariance even with

infinite number of measurements. This is caused by the under-determined sensing matrix

A. According to the assumption in Theorem 1, we require deg · τ∞ to be less than some

positive constant, which yields

d & deg2 · log p

(
max
i

∥∥∥Σ\
i

∥∥∥2

2

)
∨
√

deg · p log p
∣∣∣∣∣∣Σ\

∣∣∣∣∣∣
off,F ∨

√
deg · p log p. (2.4.1)

Denote 0 < c
′
, c
′′
< 1 as some fixed constants. Provided that

∣∣∣∣∣∣Σ\
∣∣∣∣∣∣

off,F = o (p) and

maxi

∥∥∥Σ\
i

∥∥∥
2

= o(
√
p), we can reduce (Equation 2.4.1) to

d & deg2 · log p · p1−c′ ∨
√

deg · log p · p1−c′′ ,
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which suggests the feasibility of the indefinite sensing matrix A. If
∣∣∣∣∣∣Σ\

∣∣∣∣∣∣
off,F reduces to

some positive constant, the above requirement for d further reduces to O(
√

deg · p log p),

which is approximately of order
√

deg · p� p.

Under the high-dimensional setting where we require n ≤ p, we need d to be at least

d &
√

deg · p log p ·
∣∣∣∣∣∣Σ\

∣∣∣∣∣∣
off,F ∨ σ

2deg · log p

∨ p3/4 (log p)1/3
√

deg ∨ deg2 · log p ·
(

max
i

∥∥∥Σ\
i

∥∥∥2

2

)
,

which is less than p given that
∣∣∣∣∣∣Σ\

∣∣∣∣∣∣
off,F = o (p) and maxi

∥∥∥Σ\
i

∥∥∥
2

= o(
√
p). If

∣∣∣∣∣∣Σ\
∣∣∣∣∣∣

off,F

is some fixed positive constant, we can reduce the dimension d to
√

deg · p3/4(log p)1/3,

approximately of the order (deg)1/2 p3/4.

2.4.2 Proof Outline

The analysis is based on primal-dual method, which is adapted from [3]. First we write

the optimality condition for (Equation 2.2.2) as

Σ̂
param
n −

(
Θ̂

param
G

)−1

+ λparam
G G = 0, (2.4.2)

where G is the sub-gradient [120] of
∣∣∣∣∣∣∣∣∣Θ̂param

G

∣∣∣∣∣∣∣∣∣
1,off

and is defined as

Gij ,


sgn(Θ̂

param
G )i,j, if (Θ̂

param
G )i,j 6= 0;

∈ [−1, 1], otherwise.

for i 6= j. However, because of the complexity of (Equation 2.4.2), directly bounding

the deviation ‖Θ̂
param
G − Θ\‖∞ can be difficult. Instead, we construct a pair

(
Θ̃

param
G , G̃

)
which satisfies: (i) G̃ is the sub-differential of

∣∣∣∣∣∣∣∣∣Θ̃param
G

∣∣∣∣∣∣∣∣∣
1,off

; and (ii) the pair (Θ̃
param
G , G̃)

satisfies the condition in (Equation 2.4.2). Then we show it coincides with the solution of

(Equation 2.2.2). The basic rational is as follows. First we verify that Θ̂
param
G is the unique

solution of (Equation 2.4.2). Since our constructed pairs (Θ̃
param
G , G̃) satisfies the condition
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in (Equation 2.4.2), which corresponds to the solution (Equation 2.2.2) exclusively, we can

hence show the constructed pair (Θ̃
param
G , G̃) is the identical solution of (Equation 2.2.2),

namely, (Θ̂
param
G ,G). Afterwards, we can upper bound ‖Θ̂

param
G − Θ\‖∞ by investigating

‖Θ̃
param
G −Θ\‖∞, which is more amenable for the analysis as following.

Stage I: construct Θ̃
param
G . Given the oracle information of the support set S, we obtain

(Θ̃
param
G )S as

(Θ̃
param
G )S = argmin Θ�0

Θ=Θ>,ΘSc=0

− log det Θ +
〈
Σ̂

param
n ,Θ

〉
+ λparam

G |||Θ|||1,off.

The rest of entries in Θ̃
param
G , namely (Θ̃

param
G )Sc , is set to zero.

Stage II: construct G̃. For the entry (i, j) ∈ S, we set G̃i,j = sign(Θ̃
param
G )i,j . For the

entry (i, j) that is outside of the support set S, we set G̃i,j as

G̃i,j = λ−1
n,G

[(
Θ̃

param
G

)−1

i,j
− (Σ̂

param
n )i,j

]
.

The goal of this step is to ensure that
(
Θ̃

param
G , G̃

)
satisfies (Equation 2.4.2).

Stage III: verify G̃ to be the sub-differential of
∣∣∣∣∣∣∣∣∣Θ̃param

G

∣∣∣∣∣∣∣∣∣
1,off

. For the index (i, j) ∈ S,

we can verify that they are the sub-differential of
∣∣∣∣(Θ̃

param
G

)
i,j

∣∣∣∣. The major focus is to

show |G̃i,j| < 1 hold with high probability for the entry (i, j) ∈ Sc given the condition in

Theorem 1.

In the following analysis, we verify that |G̃i,j| < 1, which yields the upper-bound on

‖Θ̃
param
G −Θ\‖∞ as a byproduct. We first need the necessary lemmas from [3].

Lemma 2 (Lemma 6 in [3]). Suppose that r , 2κΓ

(∥∥∥Σ̂param
n −Σ\

∥∥∥
∞

+ λparam
G

)
≤

1∧(κ2ΣκΓ)
−1

3κΣdeg , then
∥∥∥Θ̃param

G −Θ\
∥∥∥
∞
≤ r.
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Lemma 3 (Lemma 5 in [3]). Provided that we have
∥∥∥Θ̃param

G −Θ\
∥∥∥
∞
≤ (3κΣdeg)−1, then

∥∥∥∥(Θ̃
param
G

)−1

−Θ\−1 + Θ\−1
(
Θ̃

param
G −Θ\

)
Θ\−1

∥∥∥∥
∞
≤ 3

2
deg · κ3

Σ

∥∥∥Θ̃param
G −Θ\

∥∥∥2

∞
.

Lemma 4 (Lemma 4 in [3]). If we have

∥∥∥Σ̂param
n −Σ\

∥∥∥
∞
∨
∥∥∥∥(Θ̃

param
G

)−1

−Θ\−1 + Θ\−1
(
Θ̃

param
G −Θ\

)
Θ\−1

∥∥∥∥
∞
≤ αλparam

G /8,

we conclude that |G̃i,j| < 1.

Now, setting λparam
G = 8τ∞/α, first we verify the conditions in Lemma 2. We have

r
1©
≤ 2

(
1 + 8α−1

)
κΓτ∞

2©
≤ (3κΣdeg)−1

(
1 ∧

(
κ2

ΣκΓ

)−1
)
,

where in 1© we use
∥∥∥Σ̂param

n −Σ\
∥∥∥
∞
≤ τ∞ from Lemma 1, and in 2© we use the assump-

tions of τ∞ in Theorem 1. Then we conclude that

∥∥∥Θ̃param
G −Θ\

∥∥∥
∞
≤ 2κΓ

(∥∥∥Θ̂n −Θ\
∥∥∥
∞

+
8τ∞
α

)
≤ (3κΣdeg)−1 .

Invoking Lemma 3, we have

∥∥∥∥(Θ̃
param
G

)−1

−Θ\−1 + Θ\−1
(
Θ̃

param
G −Θ\

)
Θ\−1

∥∥∥∥
∞
≤ 3

2
deg× κ3

Στ
2
∞

3©
≤ τ∞,

where 3© is due to the requirement of τ∞ in Theorem 1. In the end, we verify the condition

in Lemma 4,

αλparam
G /8 = τ∞ ≥

∥∥∥Σ̂param
n −Σ\

∥∥∥
∞
∨
∥∥∥∥(Θ̃

param
G

)−1

−Θ\−1 + Θ\−1
(
Θ̃

param
G −Θ\

)
Θ\−1

∥∥∥∥
∞
,

which concludes the proof.
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2.5 Theoretical Properties of M-CLIME

We now modify the CLIME estimator in [4] and propose the modified-CLIME estimator,

denoted by M-CLIME for indirect measurement scenario. The analysis of the proposed M-

gLasso estimator required limiting the number of non-zero elements in columns without

bounding their magnitude. For the analysis of M-CLIME estimator, we assume that Θ\ lies

within the region

U =
{

Θ |Θ � 0, |||Θ|||1,1 ≤M
}
,

whereM is a fixed constant. This imposes an extra conditions on the magnitude of Θ\. De-

fine the element-wise hard-thresholding estimator T (Θ; τ) as sign(Θ)1(|Θ| ≥ τ). Then

we have the following results.

Theorem 2. Let Θ\ ∈ U and min(i,j)∈S |Θ\
i,j| ≥ 8M2τ∞. Then

sign
(
T
(
Θ̂

param
C ; 4M2τ∞

))
= sign(Θ\) (2.5.1)

holds with probability at least 1− c0p
−1 − c1p

2e−c2d − c3p
2e−c4p, where ci, 0 ≤ i ≤ 4, are

some positive constants when setting the coefficient λparam
C = c4Mτ∞.

Compared with the M-gLasso estimator, M-CLIME is computationally more demand-

ing. However, it can tolerate a larger threshold τ∞ on values of ‖Θ̂
param
C −Θ\‖∞ when the

dependencies among X, i.e., min(i,j)∈S |Θ\
i,j|, are strong enough. Apart from these two dif-

ferences, its statistical properties are similar to M-gLasso in terms of the minimum sample

complexity n, the minimum projection dimension d, and the differential privacy. Hence the

corresponding discussions are omitted for a concise presentation.
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2.5.1 Proof Outline

The key part is to bound
∥∥∥Θ̂param

C −Θ\
∥∥∥
∞

, which is adapted from [4] and conditioned on

the event
∥∥∥Σ̂param

n −Σ\
∥∥∥
∞
≤ τ∞ as in Lemma 1.

Stage I: We verify that Θ\ lies within the region
∥∥∥Σ̂param

n Θ\ − I
∥∥∥
∞
≤ λparam

C when setting

λparam
C = Mτ∞.

Stage II: We bound the element-wise `∞ norm on Θ̂
param
C −Θ\, which reads∥∥∥Θ̂param

C −Θ\
∥∥∥
∞

=
∥∥∥Θ\Σ\

(
Θ̂

param
C −Θ\

)∥∥∥
∞

≤ M

[
2λparam

C +

(∣∣∣∣∣∣∣∣∣Θ̂param
C

∣∣∣∣∣∣∣∣∣
1,1

+
∣∣∣∣∣∣∣∣∣Θ̂\

∣∣∣∣∣∣∣∣∣
1,1

)∥∥∥Σ\ − Σ̂
param
n

∥∥∥
∞

]
.

After showing
∣∣∣∣∣∣∣∣∣Θ̂param

C

∣∣∣∣∣∣∣∣∣
1,1
≤
∣∣∣∣∣∣Θ\

∣∣∣∣∣∣
1,1

, we conclude
∥∥∥Θ̂param

C −Θ\
∥∥∥
∞
≤ 4Mλparam

C .

Stage III: We prove (Equation 2.5.1) given the conditions in Theorem 2. First we show

that (Θ̂
param
C )i,j = 0 if Θ\

i,j = 0. This is because∣∣∣(Θ̂param
C )i,j

∣∣∣ ≤ ∥∥∥Θ̂param
C −Θ\

∥∥∥
∞
≤ 4M2τ∞.

Due to the definition of hard-thresholding estimator T (Θ; 4M2τ∞), this entry will shrink

to zero. Then we show that sign((Θ̂
param
C )i,j) = sign(Θ\

i,j) for (i, j) ∈ S. We assume that

(Θ̂
param
C )i,j > 0 w.l.o.g. Then we have∣∣∣(Θ̂param

C )i,j

∣∣∣ ≥ ∣∣∣Θ\
i,j

∣∣∣− ∥∥∥Θ̂param
C −Θ\

∥∥∥
∞

4©
≥ 4Mτ 2

∞,

where 4© is due to the assumption in Theorem 2. Hence, we conclude that the sign is

preserved by T (Θ; 4M2τ∞).

2.6 Numerical Experiments with Synthetic Data

The following context presents the numerical experiments. We only apply the M-gLasso

estimator in Algorithm 1 because (i) M-CLIME has prohibitively high computational bur-

den; and (ii) M-CLIME shares similar statistical properties with M-gLasso.

30



2.6.1 Impact of Sample Number n

We adopt the classical setting as [5] (9.5, P 252), where the ground-truth precision matrix

Θ\ is set to be

(
Θ\
)
ij

=


ρ1, if i = j;

ρ2, if |i− j| = 1;

0, otherwise.

Same as [5], we set ρ1 = 1 and ρ2 = 0.4. For other possible values of ρi, i ∈ {1, 2}, we

should observe similar behaviors. 1 First we create samples X(i) and then mask it by the

sensing relation Y(i) = AX(i) + W(i), where Aij
i.i.d∼ N (0, 1) and W(i) ∼ N (0, σ2In×n).

With our estimator M-gLasso, we reconstruct Θ̂
param
G and evaluate it with the recall rate and

precision rate. The results are shown in Figure 2.2 and Figure 2.3, respectively.

2000 4000 6000 8000 10000
0.89

0.9

0.91

0.92

0.93

0.94

d = 1500

2000 4000 6000 8000 10000
0.94

0.95

0.96

0.97

0.98

d = 1600

2000 4000 6000 8000 10000
0.91

0.92

0.93

0.94

0.95

0.96

d = 1700

2000 4000 6000 8000 10000
0.96

0.965

0.97

0.975

0.98
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Figure 2.2. We study the impact of sample size n on the recall rate. The signal dimension
p is fixed as 2000.

1Notice that Σ\ii 6= 1 in this setting. Hence we need to adapt the estimation of the diagonal elements of Σ̂.

31



2000 4000 6000 8000 10000
0.6

0.64

0.68

0.72

0.76

0.8

0.84

0.88

d = 1500

2000 4000 6000 8000 10000
0.7

0.73

0.76

0.79

0.82

0.85

0.88

0.91

d = 1600

2000 4000 6000 8000 10000
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

d = 1700

2000 4000 6000 8000 10000
0.83

0.85

0.87

0.89

0.91

0.93

d = 1800

Figure 2.3. We study the impact of sample size n on the precision rate. The signal dimen-
sion p is fixed as 2000.

2.6.2 Discussions

From Figures 2.2 and 2.3, we confirm that the edge of graphical model can be selected

correctly with high probability even when the dimension of the projection space is much

lower than the dimension of the signal. In addition, we notice a threshold effect on n when

σ2 = 1 in Figure 2.3. This can be explained by the parameter τ∞ in (Equation 2.3.1),

which contains the term c8σ2 log p
d

(1 + c9(
√

d
n
∨ d
n
)). If d is not high enough, this term is still

lower-bounded by c8σ
2 log p/d even as n → ∞, which means a large τ∞ and further the

violation of the assumption in Theorem 1.

Generally speaking, we find larger sample size n, higher dimension d, and lower noise

variance σ2 contribute to the more accurate edge selection, which is consistent with our

intuition and verifies Theorem 1.
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2.7 Numerical Experiments with Real-world Database

We now consider the real-world databases, which consists of 5 databases: Carolina Breast

Cancer (GSE148426) with 2497 samples (patients) [121], Lung Cancer (GSE137140) with

3924 samples [8], Ovarian Cancer (GSE106817) with 4046 samples [122], Colorectal Can-

cer (GSE115513) with 1513 samples [123], and Esophageal Squamous Cell Carcinoma

(GSE122497) with 5531 samples [124]. For each patient in the database, the measurements

are given as the concentration of miRNAs. The miRNAs are known to have dependency

among each other, i.e., a non-diagonal precision matrix, and hence there is an underlying

graphical model describing these dependency structure based on the associated precision

matrix. In our experiments we will use the recovered/ estimated precision matrix inside a

classification task. The accuracy of the classification algorithm under two precision matri-

ces, one estimated from direct observation referred to as the Baseline method in Table 2.1

and another from indirect observation using our method, will be presented for performance

comparison.

Table 2.1. Classification Accuracy (CA) on real-world databases, namely, GSE148426
[121], GSE137140 [8], GSE106817 [122], GSE115513 [123], and GSE122497 [124]. The
baseline corresponds to the precision matrix Θi, i ∈ {1, 2}, trained by direct observations.

d/p
GSE

148426
GSE

137140
GSE

106817
GSE

115513
GSE

122497

0.1 0.49 0.37 0.46 0.49 0.38
0.2 0.49 0.49 0.50 0.49 0.70
0.5 0.49 0.63 0.50 0.50 0.74
1.0 0.51 0.64 0.50 0.50 0.77
2.0 0.51 0.64 0.50 0.50 0.77
5.0 0.51 0.64 0.50 0.50 0.77
10.0 0.51 0.64 0.50 0.50 0.77

Baseline 0.51 0.63 0.5 0.48 0.75

2.7.1 Preprocess

For each database, there are multiple types of data, namely, healthy vs non-healthy, benign

cancer vs non-benign cancer, etc. Based on the labels, we first divide the whole dataset into
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two types of data and separately preprocess them. For each type, we split the data into the

training and testing sets {Ditrain,Ditest}, i ∈ {1, 2}. The sensing matrix A is assumed to be

Aij
i.i.d∼ N (0, 1) and the measurement noise w is set to be zero.

2.7.2 Training

Using the training setDitrain, which are directly observed from the desired signal (miRNAs),

we first select the penalty coefficients in graphical lasso via cross-validation. Then estimate

the precision matrix via the graphical Lasso and use it as the baseline Θi, i ∈ {1, 2} as they

are obtained through direct observation. We denote Θ1 for D1 while Θ2 for D2. Then we

mask the training set with the synthetic sensing matrix A and create indirect observation of

data. Last we estimate the precision matrix Θ̂i, from the indirect observations, i.e., ADitrain

using M-gLasso, i ∈ {1, 2}.

2.7.3 Testing

Notice that the ground-truth precision matrix Θ\
i , i ∈ {1, 2} cannot be obtained in the real-

world applications, even with the direct observations. Hence a direct comparison between

Θ\
i and Θ̂i cannot be performed. To evaluate the performance of the algorithm, we take an

indirect way by using quadratic discriminant analysis [125] to perform classification in the

testing set {D1
test
⋃
D2

test}, with the estimated matrix Θ̂i, i ∈ {1, 2}. Then we compare with

the classification accuracy when using Θi, i ∈ {1, 2}. The summary of the classification

rates are shown in Table 2.1.

2.7.4 Discussion

From the tables we conclude that our estimated precision matrix Θ̂i achieves almost the

same classification accuracy with the baseline Θi when d = p, and is only a slightly worse

when d = 0.5p, i.e., the dimension of the projection space under the indirect observation

is half of the dimension of the signal space. In some special cases, we even see some
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improvements with indirect observations. One possible reason is that the features are mixed

by sensing matrix A, which lead to better quantities for the classification.

2.8 Conclusions

We studied the problem of learning the graphical structure of Gaussian graphical model

by using only indirect observations, i.e., the observations obtained via compressive sens-

ing of the desired signal. Assuming the sensing matrix to be indefinite Gaussian matrix,

we proposed two estimators, M-CLIME and M-gLasso, and showed that the correct re-

construction can be guaranteed under mild conditions, from which the relation between

the sample number n, dimension of signal p, and projection dimension d are obtained. In

addition, we provided numerical experiments, from both synthetic and real world miRNA

data, to corroborate the correctness of our theorems.
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CHAPTER 3

NON-PARAMETRIC LEARNING OF GRAPHICAL MODELS

3.1 Introduction

In this chapter, we extend the parametric method of learning the pair-wise independence

relation (structure) of graphical models under indirect observations in chapter 2 to the non-

parametric method. Same as the previous chapter, we assume the indirect sensing relation

reading as

Y(s) = AX(s) + W(s), 1 ≤ s ≤ n,

where Y(s) denotes the sth measurement, A ∈ Rd×p denotes the sensing matrix, and W ∈

Rd denotes the sensing noise. Our goal is to learn the graphical structure from the indirect

measurements {Y(s)}1≤s≤n with a non-parametric method.

Different from the previous chapter which focuses only on the Gaussian distributed ran-

dom vector X, this chapter considers a much broader family of distributions, i.e., the non-

paranormal distribution, which means the joint distribution g(X) exhibits a Gaussian distri-

bution of N (µ,Σ) after the transform of certain function g(X) = [gi(Xi) · · · gp(Xp)]
>.

A rigorous definition of nonparanormal distribution is deferred to Defition 1 later in this

chapter.

Compared with the previous work on non-parametric learning method which assumes

direct measurements under the noiseless setting, our work considers the noisy indirect mea-

surements. How to obtain a reliable estimation of the transform function g(·) in the pres-

ence of the measurement noise W constitutes the technical bottleneck. To handle such an

issue, we relax the constraint that sensing matrix A is under-determined. In fact, whether

a compressive sensing system, i.e., d < p, can be used to estimate the transform function
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g(·) still remains an open-problem.

3.2 Background

We begin the discussion with some background knowledge on the nonparanormal distribu-

tion.

Definition 1 (Nonparanormal). We call a set of random variables X = [Xi · · · Xp]
> fol-

low the nonparanomral distribution, namely, X ∼ NPN(g,µ,Σ), if there exists a set of

functions {gj}1≤j≤p such that Z = [g1(X1) · · · gp(Xp)]
> follows the Gaussian distribu-

tion, i.e., Z ∼ N (µ,Σ).

Assume that X satisfies the nonparanormal assumption, i.e., X ∼ NPN(g,µ,Σ). Let

Θ be the inverse matrix of the covariance matrix Σ.

Lemma 5 (Lemma 3 in [25]). Random variables Xi and Xj are pairwise conditionally

independent, i.e., Xi ⊥ Xj

∣∣X\i,j , iff Θij = 0.

Thus, the pair-wise independence relation across the entries of X is fully incorporated

into the matrix Θ. Denote the marginal distribution function of the ith entry Xi as Fi(·)

and define the function hi(x) = Φ−1 (Fi(x)), where Φ(·) is the CDF of the standard normal

RV, namely, Φ(·) = 1√
2π

∫ (·)
−∞ e

−t2/2dt. According to [25], we can estimate function gi(·)

by estimating function hi(·), from which we can conclude the bottleneck in estimating the

graphical structure lies in the estimation of the CDF functions, i.e., Fi(·), 1 ≤ i ≤ p. Differ-

ent from the previous work [25], our sensing relation assumes noisy indirect measurements

instead of noiseless direct measurements, which bring extra difficulties.

Notations The imaginary number
√
−1 is denoted as j. The support set S is defined as

S = {(i, j) |Θi,j 6= 0, ∀ i, j}, where Θ is the inverse of the covariance matrix Σ. More-

over, we define the maximum Markov blanket in the graphical model as deg, or equivalently

the maximum of the non-zero entries in an arbitrary column of Θ, i.e., deg , maxi ‖Θi‖0.

The parameter κΣ is defined as |||Σ|||∞,∞. Furthermore, we define the Fisher information
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matrix of Σ be Γ , Σ⊗Σ, where ⊗ is the kronecker product [126]. The parameter κΓ is

defined as |||(ΓSS)−1|||∞,∞.

3.3 Problem Formulation

We start this section with a formal restatement of the sensing relation reading as

Y(s) = AX(s) + W(s), 1 ≤ s ≤ n, (3.3.1)

where Y(s) ∈ Rd denotes the sth reading, A ∈ Rd×p (d > p) is the sensing matrix with

each entry Aij being a standard normal RV, i.e., Aij ∼ N (0, 1), X(s) ∈ [0, 1]p denotes the

sth sample, and W(s) ∈ Rd denotes the measurement noise with each entry Wij being a

Gaussian RV with zero mean and variance σ2, i.e., Wij ∼ N (0, σ2).

Our goal is to uncover the graphical structure (or pair-wise independence) of X, or

equivalently, to detect the support set of the matrix Θ from the indirect observations
{
Y(s)

}
1≤s≤n.

Before proceed, we first list the assumptions.

• We assume extra measurements being conducted, i.e., d > p, which is to suppress

the sensing noise and improve the performance of graphical structure recovery.

• We assume that random vector X follows a nonparanormal distribution and most en-

tries are pair-wise independent, i.e., the matrix Θ is sparse, a widely-used assumption

in previous works [25, 27, 30].

3.4 Graphical Structure Estimator

This section presents the estimator for the graphical structure. According to Lemma 5, we

conclude the bottleneck in estimating the graphical structure lies in the estimation of the

CDF functions, i.e., Fi(·), 1 ≤ i ≤ p. Different from the previous work [25], our sens-

ing relation assumes noisy indirect measurement instead of noiseless direct measurement,
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which brings extra difficulties.

Algorithm 3 Graphical Structure Estimator.

Input: Samples {Y(i)}ni=1 ∈ Rp and sensing matrix A ∈ Rd×p.
Stage I. We reconstruct the values X̂(s) via the least-square (LS) estimator reading as

X̂(s) = argminX

∥∥∥Y(s) −AX
∥∥∥
2
. (3.4.1)

Stage II. We estimate the marginal distribution function F̂i(·) for the ith entry from the samples
{X̂(s)

i }1≤s≤n reading as

F̂i(x) =
1

2
− 1

nπ

n∑
s=1

∫ ∞
0

sin
[
t(X̂

(s)
i − x)

]
t

×
exp

(
− σ2t2

2(d−p)

)
exp

(
−σ2t2

d−p

)
∨ γta

dt, (3.4.2)

where γ > 0 and a > 1 are some fixed positive constants. Then we truncate the estimated CDF function
as

F̂ tr
i (x) =


δn,d,p, F̂i(x) ≤ δn,d,p;

F̂i(x), δn,d,p ≤ F̂i(x) ≤ 1− δn,d,p;

1− δn,d,p, F̂i(x) ≥ 1− δn,d,p,

(3.4.3)

where δn,d,p > 0 is some pre-determined parameter.
Stage III. First, we estimate the mean m̂i and the variance v̂i as

m̂i =
1

n

n∑
s=1

X̂
(s)
i ; v̂i =

√√√√ 1

n− 1

n∑
s=1

(
X̂

(s)
i − m̂i

)2
− n

n− 1

σ2

d− p
.

Then we estimate the covariance matrix Σ̂
non-param
n as

Σ̂
non-param
n =

1

n

n∑
s=1

[
ĥ
(
X̂(s)

)
− µ̂

] [
ĥ
(
X̂(s)

)
− µ̂

]>
, (3.4.4)

where the ith entry of ĥ is defined as ĥi(x) = m̂i + v̂iΦ
−1(F̂ tr

i (x)), and µ̂ is the estimated mean of ĥ(·),
namely, n−1

∑n
s=1 ĥ(X(s)).

Stage IV. We reconstruct the matrix Θ̂
non-param
G as

Θ̂
non-param
G = argminΘ log det(Θ)− Tr

(
ΘΣ̂

non-param
n

)
+ λnon-param

G |||Θ|||1, (3.4.5)

where λ > 0 is some positive constant for the regularizer |||Θ|||1.
Output: Estimated matrix Θ̂

non-param
G .

The basic idea of our estimator is to first transform the sensing relation in (Equation 3.3.1)

to the additive model such that X̂(s) = X(s)+Ŵ(s), where Ŵ(s) is defined as
(
A>A

)−1
AW(s).

Then our task reduces to estimating the marginal CDF from the samples X̂(s), which is

contaminated by the noise Ŵ(s). This problem can be broadly categorized as the density

deconvolution problem in statistics. When comparing with the previous work, we can ac-
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cess some inexact knowledge of the distribution of Ŵ(s). To put more specifically, we can

only compute its mean and the approximated value of its variance as

E(ŵi) = 0, Var(ŵi) ≈
σ2

d− p
, (3.4.6)

where ŵi denotes the ith entry of the noise Ŵ. Whereas the previous work such as [31, 32,

33, 34] assumes perfect knowledge of the distribution, and the work [39, 40, 41] assumes

total ignorance of the distribution and requires extra steps to estimate the variance of noise

{Ŵ(s)}1≤s≤n. The computation procedure of (Equation 3.4.6) is deferred to Lemma 32

and the details of the estimator is summarized in Algorithm 3.

3.5 Properties of CDF Estimator

This section investigates the properties of the marginal CDF estimator in (Equation 3.4.2)

where each entry Xi is within the region [0, 1]. We begin the discussion by presenting the

assumptions.

Definition 2 (Density family Fα,L). The density family Fα,L is defined as the set of all

distributions whose density functions f(·) and characteristic functions φ(·) possess the

following properties:

• The density functions f(·) satisfy
∫∞
−∞ x

2f(x)dx <∞;

• The characteristic functions φ(·) satisfy
∫∞
−∞ |φ(t)|2 (1 + t2)αdt ≤ L.

We also need the following two assumptions.

Assumption 2. For an arbitrary entryXi, we assume its distribution belongs to the density

family Fα,L such that α > −1
2
.

Assumption 3. For an arbitrary entry Xi, we assume its density function fi(·) is bounded

by some constant Lf , i.e., |fi(·)| ≤ Lf .
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Setting the parameter a as some fixed positive constant and using γ � log(np)
(

σ2

d−p

)a/4
,

we can prove that the estimation error of the CDF estimator converges to zero with high

probability, which is formally stated in the following theorem.

Theorem 3. Under the Assumptions 2 and 3,

sup
x∈[0,1]

∣∣∣Fi(x)− F̂i(x)
∣∣∣ ≤ (log n)εx + c1

√
εx +

c2√
n
, (3.5.1)

for 1 ≤ i ≤ p, holds with probability exceeding 1−o(1) when setting γ � log(np)
(

σ2

d−p

)a
4
.

The parameter εx is defined as

εx ,
log2/a(np)σ√

d− p
+

log2(np)

(d− p)a4
+

(
σ2

d− p

) 2α+1
4

+
1

n
, (3.5.2)

where a > 1 is some pre-determined positive constant.

To the best of our knowledge, this is the first non-asymptotic uniform bound on the

estimation error of a CDF deconvolution estimator with inexact knowledge of the noise

variance. Details of the proof is deferred to section B.1.

Remark 1. A more readable form of εx defined in (Equation 3.5.2) is given as

εx �
log2(np)

(d− p)β
+

1

n
,

where β is defined as 1
2
∧ a

4
∧ 2α+1

4
. Thus, we can simplify the bound in (Equation 3.5.1) as

sup
x∈[0,1]

∣∣∣Fi(x)− F̂i(x)
∣∣∣ . log(np)

(d− p)β/2
+

1√
n
.

3.5.1 Proof Outline

At the core of the proof is the Talagrand inequality (cf. 2.6 in [127]), which is stated as
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P
[∣∣∣∥∥∥F̂ − F∥∥∥

∞
− E

∥∥∥F̂ − F∥∥∥
∞

∣∣∣ ≥ t
]
. exp

(
− nt

KCU
log

(
1 +

ntCU
V

))
,

where CU is the uniform bound for
∥∥∥F̂ − F∥∥∥

∞
, i.e.,

∥∥∥F̂ − F∥∥∥
∞
≤ CU for all x and s, and

the variance V satisfies

V ≥ n sup
x∈[0,1]

E
∣∣∣Fi(x)− F̂i(x)

∣∣∣2 + 16CU ·
(
E
∣∣∣Fi(x)− F̂i(x)

∣∣∣) .
Step I. We first verify that

∣∣∣Fi(x)− F̂i(x)
∣∣∣ ≤ CU

holds universally for all possible x.

Step II. We first prove

E
∣∣∣Fi(x)− F̂i(x)

∣∣∣2 . log2/a(np)σ√
d− p

+
(log(np))2

(d− p)a4
+

(
σ2

d− p

) 2α+1
4

+
1

n
.

Define the function F̃ (·) as

F̃ (x) =
1

2
− 1

π

∫ ∞
0

1

t
=

[
φŵ(−t)φ̂X̂(t)

|φŵ(t)|2 ∨ γta
e−jtx

]
dt,

we perform the decomposition

E
∣∣∣Fi(x)− F̂i(x)

∣∣∣2 ≤ 2E
∣∣∣F̂ (x)− F̃ (x)

∣∣∣2 + 2E
∣∣∣F̃ (x)− F (x)

∣∣∣2 .
Afterwards, we complete the proof by separately proving

E
∣∣∣F̂ (x)− F̃ (x)

∣∣∣2 . log2/a(np)σ√
d− p
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and

E
∣∣∣F̃ (x)− F (x)

∣∣∣2 . (log(np))2

(d− p)a4
+

(
σ2

d− p

) 2α+1
4

+
1

n
.

Step III. We bound the expectation E
∥∥∥Fi − F̂i∥∥∥

∞
as

E
∥∥∥Fi − F̂i∥∥∥

∞
≤ E

∣∣∣Fi(x)− F̂i(x)
∣∣∣+

c0√
n
.

Setting t as V log n/n, we conclude

sup
x

∆x ≤ E sup
x

∆x +
cV log n

n

holds with probability exceeding 1−O(n−c).

3.6 Theoretical Properties of Graphical Structure Estimator

The technical challenges in this part can be divided as two parts: (i) choosing the appro-

priate truncation parameter δn,d,p in (Equation 3.4.3); and (ii) estimating the covariance

matrix with the noisy samples
{
Y(s)

}
1≤s≤n.

Denote the oracle empirical covariance matrix Σnon-param
n as

Σnon-param
n ,

1

n

n∑
s=1

h(X(s))h(X(s))> −

(
1

n

n∑
s=1

h(X(s))

)(
1

n

n∑
s=1

h(X(s))

)>
, (3.6.1)

where h(·) denotes the oracle estimator of the transform functions in Def. 1. The core

of the analysis lies on bounding the estimation error of the covariance matrix in terms of

the `∞. In comparison with the previous work [25], we cannot directly access the sam-

ples
{
X(s)

}
1≤s≤n. Instead, we have to use the perturbed samples {X̂(s)}1≤s≤n, which will

lead to additional errors in estimating the covariance matrix. How to bound these errors

constitutes the technical bottleneck.
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Define β as 1
2
∧ a

4
∧ 2α+1

4
and set δn,d,p in (Equation 3.4.3) as

δn,d,p =
c0

(log n)n1/4
+

c1 log2(np)√
log(d− p)(d− p)β/4

. (3.6.2)

We conclude

Theorem 4. Under the Assumption 2 and Assumption 3, we have

∥∥∥Σnon-param
n − Σ̂

non-param
n

∥∥∥
∞
.
√

log n ∨ log(d− p)

(√
log n

n1/4
∨
√

log(d− p)
(d− p)β/4

)
,

with probability exceeding 1− o(1), where δn,d,p is set as (Equation 3.6.2), β is defined as

1
2
∧a

4
∧2α+1

4
, and Σnon-param

n and Σ̂
non-param
n are defined in (Equation 3.6.1) and (Equation 3.4.4),

respectively.

Having obtained the covariance matrix Σ̂
non-param
n , we estimate the graphical structure of

X by plugging Σ̂
non-param
n into the graphical lasso estimator [5], which is put in (Equation 3.4.5).

Same as the parametric method, we assume the irrepresentable condition to analyze the

properties of the graphical structure estimator,

Assumption 4. There exists a positive constant θ ∈ (0, 1] such that |||ΓScS(ΓSS)−1|||1,1 ≤

1− θ.

Then, we adopt the same strategy as in Theorem 1 and obtain the conditions for the

correct recovery of graphical structure under Assumptions 2, 3, and 4, which is stated as

Theorem 5. Set λnon-param
G �

√
logn∨log(d−p)

θ

(
√

logn
n1/4 ∨

√
log(d−p)

(d−p)β/4

)
and define β = 1

2
∧ a

4
∧

2α+1
4

. Provided that

√
log n ∨ log(d− p)

(√
log n

n1/4
∨
√

log(d− p)
(d− p)β/4

)
.

θ

(θ + 8)(deg) · κ3
ΣκΓ

, (3.6.3)

we have (Θ̂
non-param
G )i,j = 0 for all (i, j) outside the support set S, i.e., (i, j) ∈ Sc, with
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probability 1− o(1), where ci, 0 ≤ i ≤ 4, are some fixed positive constants independent of

n, d and p, Furthermore, if

min
(i,j)∈S

|Θi,j| ≥ 2κΓ(1 + 8θ−1)
√

log n ∨ log(d− p)

(√
log n

n1/4
∨
√

log(d− p)
(d− p)β/4

)
,

we have sign(Θ̂
non-param
G ) = sign(Θ\) with probability 1− o(1).

3.6.1 Discussions

Following the same logic as in the discussion of the parametric method, we can obtain the

minimum sample number n in terms of dimension d, and length p from (Equation 3.6.3).

Treating parameters θ, deg, κΣ, and κΓ as some constants, the condition (Equation 3.6.3)

requires the left-hand side to be constant.

Minimum Sample Size n. We can show that

n & (deg)4 log2 n
(
log2 n ∨ log2(d− p)

)
.

In contrast, the previous work [25] only requires the sample number n to satisfy n &

(deg)4 log4(n). Hence our result experience a loss of up to log2(d−p)
log2(n)

∨ 1. Since this in-

flation is closely related to the dimension d, we conclude the loss is due to the indirect

measurement scheme.

Minimum Projection Dimension d. For the dimension d, we require

d ≥ p+ (deg)β/4 logβ/8(d− p)
(

logβ/8 n ∨ logβ/8(d− p)
)
,

which is a slightly larger than the dimension p. To the best of our knowledge, this is the

first condition involving the dimension d for the nonparametric learning of the graphical
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structure. Whether we can use a compressive sensing system, namely, d < p, for the

nonparametric method still remains an open-problem.

3.6.2 Proof Outline

The core of the proof is Theorem 4. Define ϕ̂(s)
i , ϕ̃(s)

i , and ϕ(s)
i as

ϕ̂
(s)
i = ĥi(X̂

(s)
i );

ϕ̃
(s)
i = ĥi(X

(s)
i );

ϕ
(s)
i = hi(X

(s)
i ).

The (i, j)th entries of the corresponding covariance matrices Σ̂
non-param
n , Σ̃

non-param
n , and

Σnon-param
n are written as

(
Σ̂

non-param
n

)
i,j

=
1

n

n∑
s=1

ϕ̂
(s)
i ϕ̂

(s)
j − µ̂iµ̂j;(

Σ̃
non-param
n

)
i,j

=
1

n

n∑
s=1

ϕ̃
(s)
i ϕ̃

(s)
j − µ̃iµ̃j;

(Σnon-param
n )i,j =

1

n

n∑
s=1

ϕ
(s)
i ϕ

(s)
j − µiµj.

We bound the deviation between Σnon-param
n and Σ̂

non-param
n as

∥∥∥Σnon-param
n − Σ̂

non-param
n

∥∥∥
∞
≤
∥∥∥Σnon-param

n − Σ̃
non-param
n

∥∥∥
∞

+
∥∥∥Σ̃non-param

n − Σ̂
non-param
n

∥∥∥
∞
.

The proof is complete by showing
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∥∥∥Σnon-param
n − Σ̃

non-param
n

∥∥∥
∞
.

√
log n

n1/4
∨
√

log(d− p)
(d− p)β/4

;

∥∥∥Σ̂non-param
n − Σ̃

non-param
n

∥∥∥
∞
.
√

log n ∨ log(d− p)

(√
log n

n1/4
∨
√

log(d− p)
(d− p)β/4

)

+
Lσ (log n ∨ log(d− p))
c0 log2(np)(d− p)1/4

,

hold with high probability.

Having showed that the correct graphical structure can be obtained under mild condi-

tions, next we will present some numerical experiments to validate our theoretical analysis.

3.7 Simulation Results

This section presents the numerical results consisting of both the synthetic data and the

real-world database.

3.7.1 Synthetic Data Case

We construct the sparse precision matrix Θ as

Θi,j =


ρ1, if i = j;

ρ2, if |i− j| = 1;

0. otherwise,

which is previously adopted in [3]. The corresponding edge set of is denoted as E. We fix

the signal length p as 100 and evaluate the performance with the following three types of

marginal distribution for the random vector X:

• uniform distribution within the region [0, 1];

• exponential distribution, i.e., e−z for z ≥ 0;

• Gaussian mixture, i.e., 0.25
∑4

i=1N (µi, 10−2), where µi ∈ {±0.25,±0.5}.
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We set ρ1 and ρ2 as 1 and 0.4, respectively. For the baseline in Table 3.1, we assume

the underlying distribution of X to be jointly Gaussian. With direct observations, we learn

the graphical structure with graphical lasso. The recall rate and precision rate is shown

in Table 3.1. For the uniform and exponential distribution, our algorithm has a significant

improvement in terms of both the recall rate and precision rate. While for mixture Gaussian,

the improvement is modest. This phenomenon may justify the approximation of mixture

Gaussian with Gaussian distribution, which is widely used in the field of coding theory,

machine learning, etc.

Table 3.1. Recall rate and precision rate. The signal length p is fixed as 100 and σ2 is
fixed as 1.0. The sample number corresponding to the baseline is set as 175, the maximum
sample number.

Uniform Exponential Gauss Mixture

n Recall Rate Precision Rate Recall Rate Precision Rate Recall Rate Precision Rate

d = 200
100 0.9315 0.9257 0.9839 0.9029 0.9732 0.9114
115 0.9342 0.9527 0.9866 0.9043 0.9758 0.9331
130 0.9369 0.9555 0.9906 0.9323 0.9826 0.9363
145 0.9450 0.9655 0.9946 0.9375 0.9866 0.9534
160 0.9490 0.9756 0.9946 0.9527 0.9866 0.9638
175 0.9490 0.9793 0.9946 0.9504 0.9879 0.9712

d = 300
100 0.9584 0.9347 0.9852 0.9074 0.9852 0.9176
115 0.9651 0.9400 0.9799 0.9070 0.9906 0.9191
130 0.9812 0.9545 0.9919 0.9276 0.9933 0.9290
145 0.9812 0.9549 0.9933 0.9333 0.9933 0.9298
160 0.9852 0.9597 0.9973 0.9411 0.9946 0.9376
175 0.9839 0.9656 0.9973 0.9458 0.9960 0.9513

d = 500
100 0.9745 0.9455 0.9812 0.9097 0.9879 0.9126
115 0.9758 0.9758 0.9866 0.9320 0.9893 0.9320
130 0.9758 0.9813 0.9919 0.9467 0.9906 0.9343
145 0.9826 0.9826 0.9946 0.9470 0.9933 0.9477
160 0.9879 0.9879 0.9946 0.9502 0.9946 0.9537
175 0.9893 0.9893 0.9973 0.9619 0.9960 0.9604

Baseline 0.3356 0.1834 0.3765 0.0497 0.8188 0.8538
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3.7.2 Real-World Data

We now consider the real-world databases, which consists of 5 databases: Carolina Breast

Cancer (GSE148426) with 2497 samples (patients) [121], Lung Cancer (GSE137140) with

3924 samples [8], Ovarian Cancer (GSE106817) with 4046 samples [122], Colorectal Can-

cer (GSE115513) with 1513 samples [123], and Esophageal Squamous Cell Carcinoma

(GSE122497) with 5531 samples [124]. Each database is divided into two categories, i.e.,

Healthy group and Patients, where the measurements are given as the concentration of

miRNAs. The miRNAs are known to have dependency among each other, i.e., a non-

diagonal precision matrix, and hence there is an underlying graphical model describing

these dependency structure based on the associated precision matrix.

The sensing matrix A ∈ Rd×p is assumed to be Aij
i.i.d∼ N (0, 1) and the variance of the

measurement noise is set to one, Wi
i.i.d∼ N (0, 1). The goal is to reconstruct the underlying

dependency graph among miRNAs.

Evaluation. We adopt the nonparametric method for the evaluation due to its wider ap-

plications. The precision matrix Θ learned with noiseless direct measurements using the

method in [25] is assumed to be the ground-truth. We evaluate the performance of our

estimator via the recall rate and the precision rate of the edge selection, which are shown

in Table 3.2 and Table 3.3, respectively. These experiments confirm that our estimator can

obtain the correct dependency relation with high-probability.

3.8 Conclusions

This is the first work on the nonparametric learning of the graphical structure with noisy

indirect measurements. Assuming the random vector follows the nonparanormal distri-

bution and the graphical structure is sparse, we proposed a practical estimator based on

the deconvolution estimator of the CDF and graphical lasso. Considering the setting with

inexact knowledge of the noise distribution, we established a non-asymptotic uniform
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Table 3.2. Recall rate of edge selection on real-world databases, namely, GSE148426 [121],
GSE137140 [8], GSE106817 [122], GSE115513 [123], and GSE122497 [124]. The preci-
sion matrix Θ learned by direct observations is assumed to be the ground-truth.

Healthy group Unhealthy group

d/p
GSE

148426
GSE

137140
GSE

106817
GSE

115513
GSE

122497
GSE

148426
GSE

137140
GSE

106817
GSE

115513
GSE

122497

2 0.9494 0.8892 0.9 0.9856 0.7659 0.9424 0.9692 1 0.9856 0.8379
5 1 0.9950 1 1 0.9220 1 0.9692 1 1 0.9632
10 1 1 1 1 0.9707 1 1 1 1 0.9963
12 1 1 1 1 0.9805 1 1 1 1 1
15 1 1 1 1 0.9902 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1

Table 3.3. Precision rate of edge selection on real-world databases, namely, GSE148426
[121], GSE137140 [8], GSE106817 [122], GSE115513 [123], and GSE122497 [124]. The
precision matrix Θ learned by direct observations is assumed to be the ground-truth.

Healthy group Unhealthy group

d/p
GSE

148426
GSE

137140
GSE

106817
GSE

115513
GSE

122497
GSE

148426
GSE

137140
GSE

106817
GSE

115513
GSE

122497

2 1 1 1 0.9548 1 0.9704 0.9692 1 0.9581 1
5 0.9080 0.9900 1 0.9176 1 0.9205 0.9692 1 0.9207 0.9924
10 0.9080 0.9341 0.9091 0.9207 0.9900 0.9205 0.9420 1 0.9268 0.9854
12 0.9080 0.9475 0.9259 0.9237 0.9901 0.9329 0.9420 1 0.9268 0.9645
15 0.9080 0.9566 0.9434 0.9299 0.9621 0.9456 0.9420 1 0.9299 0.9645
20 0.9518 0.9613 0.9615 0.9393 0.9535 0.9586 0.9420 1 0.9457 0.9784

bound on the errors of the CDF estimation for the first time, which constitutes one of

the major technical contribution. Moreover, we showed our estimator can generate the

correct graphical structure under mild conditions, from which the sufficient condition for

the sample number n and dimension d can be obtained, namely, n � (deg)4 log4 n and

d � p + (deg)β/4 logβ/4(d− p). Simulations with both synthetic data and real-world data

are provided to confirm the correctness of our theorems.
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CHAPTER 4

DESIGN OF COMPRESSIVE SENSING SYSTEMS USING DENSITY

EVOLUTION

4.1 Introduction

In this chapter, we focus on the compressive sensing problem in a linear sensing system

y = Ax\ + w, where y ∈ Rm, x\ ∈ Rn, and w denote the measurements, the signal with

certain structures, and the measurement noise, respectively. To ensure reliable recovery of

x\ from y, sensing matrix A needs to satisfy certain conditions. Typical conditions include

incoherence in [85], RIP in [110, 128], neighborhood stability in [129], irrespresentable

condition in [130], etc. While all the above works treat each entry of x\ equally, in certain

applications entries of x\ may have unequal importance from the recovery perspective.

One practical application in image processing is JPEG compression, where coefficients

corresponding to the high-frequency part are more critical than the rest of coefficients. 1

In this chapter, we propose a heuristic but general design framework of A to meet the

requirements of the signal reconstruction such as placing more importance on the accuracy

of a certain components of the signal. First, we transform the signal reconstruction to

the inference problem in graphical models adopting the Bayesian viewpoint. This idea is

widely used and has been adopted to derive approximate message passing (AMP). Then, we

transform the problem of sensing matrix design to the problem of designing the graphical

model. Leveraging the tools from coding theory, namely, density evolution (DE), we relate

the performance of the signal reconstruction with the connectivity of the graphical model.

Ultimately, we formulate bi-convex optimization problems to design the sensing matrix,

which can be efficiently solved. Two design schemes for the sensing matrix, namely, (i)

1An introduction can be found in https://jpeg.org/jpeg/documentation.html.
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a regular sensing and (ii) a preferential sensing, are proposed and are incorporated into a

single framework.

Notations We have a ∝ b when a is proportional to b. For two distributions d1 and d2, we

denote d1
∼= d2 if they are the equal up to some normalization.

4.2 Problem Description

We begin this section with a formal statement of our problem. Consider the linear mea-

surement system

y = Ax\ + w, (4.2.1)

where y ∈ Rm, A ∈ Rm×n, x\ ∈ Rn, and w ∈ Rm, respectively, denote the obser-

vations, the sensing matrix, the signal, and the additive sensing noise with its ith entry

wi
i.i.d∼ N (0, σ2). We would like to recover x\ with the regularized M-estimator, which is

written as

x̂ = argminx

1

2σ2
‖y −Ax‖2

2 + f(x), (4.2.2)

where f(·) is the regularizer used to enforce certain underlying structure for signal x̂. Our

goal is to design a sparse sensing matrix A which provides preferential treatment for a

sub-block of the signal x\. In other words, the objective is to have a sub-block of the signal

to be recovered with lower probability of error when comparing with the rest of x\. Before

we proceed, we list our two assumptions:

• Measurement system A is assumed to be sparse. Further, A is assumed to have

entries with with EAij = 0, and Aij ∈ {0,±A−1/2}, where an entry Aij = A−1/2 (or

−A1/2) implies a positive (negative) relation between the ith sensor and the jth signal

component. Having zero as entry implies no relation.
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• The regularizer f(x) is assumed to be separable such that f(x) =
∑n

i=1 fi(xi). If it

is not mentioned specifically, we assume all functions fi(·) are the same.

First we transform (Equation 4.2.1) to a factor graph [131]. Adopting the viewpoint of

Bayesian reasoning, we can reinterpret M-estimator in (Equation 4.2.2) as the maximum a

posteriori (MAP) estimator and rewrite it as

x̂ = argmaxx exp

(
−‖y −Ax‖2

2

2σ2

)
× exp (−f(x)) .

The first term exp
(
−‖y−Ax‖22

2σ2

)
is viewed as the probability P(y|x) while the second term

exp(−f(x)) is regarded as the prior imposed on x. Notice the term e−f(·) may not neces-

sarily be the true prior on x\.

As in [66], we associate (Equation 4.2.2) with a factor graph G = (V , E), where V

denotes the node set and E is the edge set. First we discuss set V , which consists of two

types of nodes: variable nodes and check nodes. We represent each entry xi as a variable

node vi and each entry ya as a check node ca. Additionally, we construct a check node

corresponds to each prior e−f(xi). Then we construct the edge set E by: (i) placing an edge

between the check node of the prior e−f(xi) and the variable node vi, and (ii) introducing

an edge between the variable node vi and cj iff Aij is non-zero. Thus, the design of A is

transformed to the problem of graph connectivity in E .

4.3 Sensing Matrix for Regular Sensing (RS)

With the aforementioned graphical model, we can view recovering x\ as an inference prob-

lem, which can be solved via the message-passing algorithm [131]. Adopting the same

notations as in [66] as shown in Figure 4.1, we denote m(t)
i→a as the message from the vari-

able node vi to check node ca at the tth round of iteration. Likewise, we denote m̂(t)
a→i as

the message from the check node ca to variable node vi. Then message-passing algorithm
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Figure 4.1. Illustration of the message-passing algorithm, where the square icons represent
the check nodes while the circle icons represent the variable nodes.

is written as

m
(t+1)
i→a (xi) ∼= e−f(xi)

∏
b∈∂i\a

m̂
(t)
b→i(xi); (4.3.1)

m̂
(t+1)
a→i (xi) ∼=

∫ ∏
j∈∂a\i

m
(t+1)
j→a (xi) · e−

(ya−∑n
j=1 Aajxj)

2

2σ2 dxj, (4.3.2)

where ∂i and ∂a denote the neighbors connecting with vi and ca, respectively, and the

symbol ∼= refers to the equality up to the normalization. At the tth iteration, we recover xi

by maximizing the posterior probability

x̂i = argmaxxiP(xi|y) ≈ argmaxxie
−f(xi)

∏
a∈∂i

m̂
(t)
a→i(xi). (4.3.3)

In the design of matrix A, there are some general desirable properties that we wish to hold

(specific requirements will be discussed later): (i) a correct signal reconstruction under the

noiseless setting; and (ii) minimum number of measurements, or equivalently minimum

m. Before proceeding, we first introduce the generating polynomials λ(α) =
∑

i λiα
i−1

and ρ(α) =
∑

i ρiα
i−1, which correspond to the degree distributions for variable nodes

and check nodes, respectively. We denote the coefficient λi as the fraction of variable

nodes with degree i, and similarly we define ρi for the check nodes. An illustration of the

generating polynomials λ(α) and ρ(α) is shown in Figure 4.2.
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Figure 4.2. Illustration of the generating polynomials: λ(α) = 1
3 + 2α

3 and ρ(α) = α
2 + α2

2 .
The square icons represent the check nodes while the circle icons represent the variable
nodes.

4.3.1 Density evolution for RS

To design the matrix A, we study the reconstruction of x\ from y via the convergence

analysis of the message-passing over the factor graph. Due to the parsimonious setting of

A, we have E to be sparse and propose to borrow a tool known as density evolution (DE)

[132, 131, 133] that is already proven to be very powerful in analyzing the convergence in

sparse graphs resulting from LDPC.

Basically, DE views m(t)
i→a and m̂(t)

a→i as RVs and tracks the changes of their probability

distribution. When the message-passing algorithm converges, we would expect their dis-

tributions to become more concentrated. However, different from discrete RVs, continuous

RVs m(t)
i→a and m̂(t)

a→i in our case require infinite bits for their precise representation in gen-

eral, leading to complex formulas for DE. To handle such an issue, we approximate m(t)
i→a

and m̂
(t)
a→i as Gaussian RVs, i.e., mi→a ∼ N (µi→a, vi→a) and m̂a→i ∼ N (µ̂a→i, v̂a→i),

respectively. Since the Gaussian distribution is uniquely determined by its mean and vari-

ance, we will be able to reduce the DE to finite dimensions as in [133, 53, 55].

In our work, the DE tracks two quantities E(t) and V (t), which denote the deviation

from the mean and average of the variance, respectively, and are defined as

E(t) =
1

m · n

n∑
i=1

m∑
a=1

(
µ

(t)
i→a − x

\
i

)2

;

V (t) =
1

m · n

n∑
i=1

m∑
a=1

v
(t)
i→a.

55



Then we can show that the DE analysis yields

E(t+1) = Eprior(s)Ez
[
hmean

(
s+

∑
i,j

ρiλjz

√
i

j
E(t) +

Aσ2

j
;
∑
i,j

ρiλj
Aσ2 + iV (t)

j

)
− s
]2

;

(4.3.4)

V (t+1) = Eprior(s)Ezhvar

(
s+

∑
i,j

ρiλjz

√
i

j
E(t) +

Aσ2

j
;
∑
i,j

ρiλj
Aσ2 + iV (t)

j

)
, (4.3.5)

where prior(·) denotes the true prior on the entries of x\, z is a standard normal RVN (0, 1).

The functions hmean(·) and hvar(·) are to approximate the mean µi→a and variance vi→a,

which are given by

hmean(µ; v)= lim
γ→∞

∫
xie
−γf(xi)e−

γ(xi−µ)2

2v dxi∫
e−γf(xi)e−

γ(xi−µ)2

2v dxi

; (4.3.6)

hvar(µ; v)= lim
γ→∞

γ
∫
x2
i e
−γf(xi)e−

γ(xi−µ)2

2v dxi∫
e−γf(xi)e−

γ(xi−µ)2

2v dxi

− (hmean(µ; v))2 .

For detailed explanations and the proof, we refer interested readers to the Appendix.

4.3.2 Sensing matrix design for RS

Once the values of polynomial coefficients {λi}i and {ρi}i are determined, we can con-

struct a random graph G = (V , E), or equivalently the sensing matrix A, by setting Aij

as P(Aij = A−1/2) = P(Aij = −A−1/2) = 1
2
, if there is an edge (vi, cj) ∈ E ; otherwise

we set Aij to zero. Hence the sensing matrix construction reduces to obtaining the feasible

values of {λi}i and {ρi}i while satisfying certain properties for the signal reconstruction as

discussed in the following.

Our first requirement is to have a perfect signal reconstruction under the noiseless sce-

nario (σ2 = 0). This implies that

• the algorithm must converge, i.e., limt→∞ V
(t) = 0;
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• the average error should shrink to zero, i.e., limt→∞E
(t) = 0.

Second, we wish to minimize the number of measurements. Using the fact that n (
∑

i iλi) =

m (
∑

i iρi) =
∑

i,j 1((vi, cj) ∈ E), we formulate the above two design criteria as the fol-

lowing optimization problem

min
λ∈∆dvmax−1;
ρ∈∆dcmax−1

m

n
=

∑
i≥2 iλi∑
i≥2 iρi

, (4.3.7)

s.t. lim
t→∞

(
E(t), V (t)

)
= (0, 0); (4.3.8)

λ1 = ρ1 = 0, (4.3.9)

where ∆d−1 denotes the d-dimensional simplex, namely, ∆d−1 =
{
z ∈ Rd |

∑
i zi = 1, zi ≥ 0

}
.

Note that the spaces of λ and ρ are discrete RVs and ∆(·)−1 are the corresponding convex

hulls. The constraint in (Equation 4.3.9) is to avoid one-way message passing as in [133,

47].

Generally speaking, we need to run DE numerically to check the requirement

(Equation 4.3.8) for every possible values of {λi}i and {ρi}i. However, for certain choices

of regularizers f(·), we can reduce the requirement (Equation 4.3.8) to a closed-form equa-

tion. As an example, we set the prior in (Equation 4.3.1) to be a Laplacian distribution, i.e.,

e−β|x|. In this case, the regularizer f(·) in (Equation 4.2.2) becomes β‖·‖1 and the M-

estimator in (Equation 4.2.2) transforms to Lasso [134].

4.3.3 Example of regular sensing with a Laplacian prior

Assuming the signal x\ is k-sparse, i.e.,
∥∥x\∥∥

0
≤ k, we would like to recover x\ with the

regularizers β‖·‖1. Following the approaches in [57] in the noiseless case, we can show

that

E(t+1) = Eprior(s)Ez∼N (0,1)

[
prox

(
s+ a1z

√
E(t); βa2V

(t)
)
− s
]2

;

V (t+1) = Eprior(s)Ez∼N (0,1)

[
βa2V

(t)prox
′
(
s+ a1z

√
E(t); βa2V

(t)
)]
, (4.3.10)
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where a1 is defined as
∑

i,j ρiλj
√
i/j, and a2 is defined as

∑
i,j ρiλj (i/j). Further, op-

erator prox(a; b) is the soft-thresholding estimator defined as sign(a) max(|a| − b, 0), and

operator prox′(a; b) is the derivative w.r.t. the first argument.

Remark 2. Unlike SE that only tracks E(t) [57], our DE takes into account both the av-

erage variance V (t) and the deviation from mean E(t). Assuming V (t) ∝
√
E(t), our DE

equation w.r.t. E(t) in (Equation 4.3.10) reduces to a similar form as SE.

Having discussed its relation with SE, we now show that our DE can reproduce the classical

results in compressive sensing, namely, m ≥ c0k log(n/k) = O(k log n) (cf. [135]) under

the regular sensing matrix design, i.e., when all variable nodes have the same degree dv

and the check nodes have the same degree dc. Before we proceed, we first approximate

the ground-truth distribution with the Laplacian prior. Assuming that the entries of x\ are

iid and x\ ∈ Rn is k-sparse, each entry becomes zero with probability (1− k/n). Hence

we set β such that the probability mass within the region [−c0, c0] (where c0 is some small

positive constant) with the Laplacian prior is equal to 1− k/n. That is

β

2

∫
|α|≤c0

e−β|α|dα = 1− k

n
.

This results in β = n/(c0n log(n/k)). Then we conclude the following

Theorem 6. Let x\ be a k-sparse signal and assume that β is set to n/(c0 log (n/k)). Then,

the necessary conditions for limt→∞
(
E(t), V (t)

)
= (0, 0) in (Equation 4.3.10) results in

a2
1 ≤ n/k and a2 ≤ n/ (c0k log(n/k)), where a1 and a2 are defined as

∑
i,j ρiλj

√
i/j and∑

i,j ρiλj (i/j), respectively.

When turning to the regular design, namely, all variable nodes are with the degree dv and

likewise all check nodes are with degree dc, we can write a1 and a2 as
√
n/m and n/m,

respectively. Invoking Theorem 6 will then yield the classical result of the lower bound

on the number of measurements m ≥ c0k log(n/k). The technical details are deferred to

section C.1.
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In addition to the Laplacian prior, we also considered the Gaussian prior, i.e., e−β‖x‖
2
2 ,

which makes the M-estimator in (Equation 4.2.2) the ridge regression [136]. Correspond-

ing discussion is left to section C.2 for interested readers.

4.4 Sensing Matrix for Preferential Sensing (PS)

Having discussed the regular sensing scheme, this section explains as to how we apply

our DE framework to design the sensing matrix A such that we can provide preferential

treatment for different entries of x\. For example, the high priority components will be

recovered more accurately than the low priority parts of x\.

4.4.1 Density evolution for PS

Dividing the entire x\ into the high-priority part x\H ∈ RnH and low-priority part x\L ∈ RnL ,

we separately introduce the generating polynomials λH(α) =
∑
λH,iα

i−1 and λL(α) =∑
λL,iα

i−1 for the high-priority part x\H and the low-priority part x\L, respectively. Note

that λH,i and likewise λL,i denote the fraction of variable nodes corresponding to high-

priority part and low-priority part with degree i. Similarly, we introduce the generating

polynomials ρH(α) =
∑

i ρH,iα
i−1 and ρL(α) =

∑
i ρL,iα

i−1 for the check nodes connect-

ing the high-priority part x\H and the low-priority part x\L, respectively.

Generalizing the analysis of the regular sensing, we separately track the average error

and variance for x\H and x\L. For the high-priority part x\H , we define EH as∑
m

∑
i∈H

(
µi→a − x\i

)2

/(m·nH) and VH as
∑

m

∑
i∈H vi→a/(m·nH), where nH denotes

the length of the high-priority x\H . Analogously we define EL and VL for the low-priority

part x\L. We then write the corresponding DE as

E
(t+1)
H = Eprior(s)Ez∼N (0,1)

[
hmean

(
s+ z · b(t)

H,1; b
(t)
H,2

)
− s
]2

;

V
(t+1)
H = Eprior(s)Ez∼N (0,1)

[
hvar

(
s+ z · b(t)

H,1; b
(t)
H,2

)]
, (4.4.1)
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where b(t)
H,1 and b(t)

H,2 are defined as

b
(t)
H,1 =

∑
`,i,j

λH,`ρL,iρH,j

√
Aσ2 + iE

(t)
L + jE

(t)
H

`
;

b
(t)
H,2 =

∑
`,i,j

λH,`ρL,iρH,j
Aσ2 + iV

(t)
L + jV

(t)
H

`
.

The definitions of hmean and hvar are as in (Equation 4.3.6). Switching the index H with L

yields the DE w.r.t. the pair
(
E

(t+1)
L , V

(t+1)
L

)
. Notice we can also put different regularizers

fH(·) and fL(·) for x\H and x\L. In this case, we need to modify the regularizers f(·) in

(Equation 4.3.6) to fH(·) and fL(·), respectively.

4.4.2 Sensing matrix design for PS

In addition to the constraints used in (Equation 4.3.7), the sensing matrix for preferential

sensing must satisfy the following constraint:

Consistency requirement w.r.t. edge number. Consider the total number of edges in-

cident with the high-priority part x\H ,
∑

i∈H 1 ((vi, ca) ∈ E). From the viewpoint of the

variable nodes, we can compute this number as nH (
∑

i iλH,i). Likewise, from the view-

point of the check nodes, the total number of edges is obtained as
∑

i∈H 1 ((vi, ca) ∈ E) =

m (
∑

i iρH,i). Since the edge number should be the same with either of the above two

counting methods, we obtain

∑
i∈H

1 [(vi, ca) ∈ E ] = nH

(∑
i

iλH,i

)
= m

(∑
i

iρH,i

)
.

Similarly, the consistency requirement for the edges connecting to the low-priority part x\L

would give
∑

i∈L 1 ((vi, ca) ∈ E) = m(
∑

i iρL,i) = nL(
∑

i iλL,i).

Moreover, we may have additional constraints depending on the measurement noise:

• Preferential sensing for the noiseless measurement. In the noiseless setting (σ =
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0), we require VH and VL diminish to zero to ensure the convergence of the MP

algorithm. Besides, we require the average error E(t)
H in the high-priority part x\H to

be zero. Therefore, the requirements can be summarized as

Requirement 5. Under the noiseless setting, i.e., σ = 0, we require the quantities

E
(t)
H , V

(t)
H , and V (t)

L in (Equation 4.4.1) converge to zero

lim
t→∞

(
E

(t)
H , V

(t)
H , V

(t)
L

)
= (0, 0, 0) , (4.4.2)

which implies the MP converges and the high-priority part x\H can be perfectly re-

constructed.

Notice that no constraint is placed on the average error E(t)
L for the low-priority part

x\L, since it is given a lower priority in reconstruction.

• Preferential sensing for the noisy measurement. Different from the noiseless set-

ting, the high-priority part x\H cannot be perfectly reconstructed in the presence of

measurement noise, i.e., limt→∞E
(t)
H > 0. Instead we consider the difference across

iterations, namely, δ(t)
E,H = E

(t+1)
H −E(t)

H and δ(t)
E,L = E

(t+1)
L −E(t)

L , which corresponds

to the convergence rate. To provide an extra protection for the high-priority part x\H ,

we would like δ(t)
H to decrease at a faster rate. Hence, the following requirement:

Requirement 6. There exits a positive constant T0 such that the average error E(t)
H

converges faster than E(t)
L whenever t ≥ T0, i.e.,

∣∣∣δ(t)
E,H

∣∣∣ ≤ ∣∣∣δ(t)
E,L

∣∣∣.
Apart from the above constraints, we also require λL,1 = λH,1 = ρL,1 = ρH,1 = 0 to avoid

one-way message passing [47, 131, 133]. Summarizing the above discussion, the design of

the sensing matrix A for minimum number of measurements m reduces to the following
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optimization problem

min
λL∈∆dvL−1,

λH∈∆dvH−1,

ρL∈∆dcH−1,

ρH∈∆dcL−1

m

n
=
nL (

∑
i iλL,i) + nH (

∑
i iλH,i)∑

i i (ρL,i + ρH,i)
; (4.4.3)

s.t.
∑

i iλL,i∑
i iλH,i

×
∑

i iρH,i∑
i iρL,i

=
nH
nL

; (4.4.4)

Requirement (5) and (6); (4.4.5)

λL,1 = λH,1 = ρL,1 = ρH,1 = 0, (4.4.6)

where ∆d−1 denotes the d-dimensional simplex, and the parameters dvH and dcL denote the

maximum degree w.r.t. the variable nodes corresponding to the high-priority part x\H and

low-priority part x\L, respectively. Similarly we define the maximum degree dcH and dcL

w.r.t. the check nodes.

The difficulties of the optimization problem in (Equation 4.4.3) come from two-fold:

(i) requirements from DE; and (ii) non-convex nature of (Equation 4.4.3). In the follow-

ing scenario, we will revisit the example of `1 regularizer and show how to simplify the

optimization problem in (Equation 4.4.3).

4.4.3 Example of preferential sensing with a Laplacian prior

Consider a sparse signal x\ whose high-priority part x\H ∈ RnH and the low-priority part

x\L ∈ RnL are kH-sparse and kL-sparse, respectively. In addition, we assume kH
nH
� kL

nL
,

implying that the high-priority part x\H contains more data.

Ideally, we need to numerically run the DE update equation in (Equation 4.4.1) to check

whether the requirement in (Equation 4.4.5) holds or not, which can be computationally

prohibitive. In practice, we would relax these conditions to arrive at some closed forms.

The following outlines our relaxation strategy with all technical details being deferred to

the Appendix.
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Relaxation of Requirement 5. First we require the variance converge to zero, i.e.,

limt→∞

(
V

(t)
H , V

(t)
L

)
= (0, 0). The derivation of its necessary condition consists of two

parts: (i) we require the point (0, 0) to be a fixed point of the DE equation w.r.t. V (t)
H and

V
(t)
L ; and (ii) we require that the average variance

(
V

(t)
H , V

(t)
L

)
to converge in the region

where the magnitudes of V (t)
H and V (t)

L are sufficiently small.

The main technical challenge lies in investigating the convergence of
(
V

(t)
H , V

(t)
L

)
. De-

fine the difference δ(t)
V,H and δ

(t)
V,L across iterations as δ(t)

V,H , V
(t+1)
H − V

(t)
H and δ

(t)
V,L ,

V
(t+1)
L − V (t)

L , respectively. Then, we obtain a linear equationδ(H)
V (t+ 1)

δ
(L)
V (t+ 1)

 = L
(t)
V

δ(H)
V (t)

δ
(L)
V (t)


via the Taylor-expansion. Imposing the convergence constraints on V

(t)
H and V

(t)
L , i.e.,

limt→∞

(
δ

(t)
V,H , δ

(t)
V,L

)
= (0, 0), yields the condition inft

∥∥∥L(t)
V

∥∥∥
OP
≤ 1. That is

(βHkH
nH

∑
`

λH,`
`

)2

+

(
βLkL
nL

∑
`

λL,`
`

)2


×

(∑
i

iρH,i

)2

+

(∑
i

iρL,i

)2
 ≤ 1. (4.4.7)

Then we turn to the behavior of E(t)
H . Assuming E(t)

L converges to a fixed non-negative

constant E(∞)
L , we would like E(t)

H to converge to zero. Following the same strategy as

above, we obtain the following condition

kH
nH

(∑
`

λH,`√
`

)2 [(∑
i

√
iρH,i

)2

+

(∑
i

√
iρL,i

)2]
≤ 1. (4.4.8)

The technical details are deferred to section C.4.

Relaxation of Requirement 6. First we define the difference across iterations as δ(t)
E,H =

E
(t+1)
H − E(t)

H and δ(t)
E,L = E

(t+1)
L − E(t)

L . Using the Requirement 6, we perform the Taylor
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expansion w.r.t. the difference δ(t)
E,H and δ(t)

E,L, and obtain the linear equation

δ(t+1)
E,H

δ
(t+1)
E,L

 =

LE,11 LE,12

LE,21 LE,22


δ(t)

E,H

δ
(t)
E,L

 .
To ensure the reduction of δ(t)

E,H at a faster rate than δ(t)
E,L, we would require LE,11 ≤ LE,21

and LE,12 ≤ LE,22. This results in

kH
nH

(∑
`

λH,`√
`

)2

≤ kL
nL

(∑
`

λL,`√
`

)2

. (4.4.9)

Summarizing the above discussion, we transform the constraint in (Equation 4.4.5) to

the closed-form and find the local optimum of (Equation 4.4.3), which is bi-convex, via an

alternating minimization method.

4.5 Potential Generalizations

This section discusses two possible generalizations, i.e., non-exponential family priors and

reconstruction via a MMSE decoder. The design principles of the sensing matrix are exactly

the same as (Equation 4.3.7) and (Equation 4.4.3) except that the DE equations need to be

modified.

4.5.1 Non-exponential priors

Previous sections assume the prior to be e−f(x), which belongs to the exponential fam-

ily distributions. In this subsection, we generalize it to arbitrary distributions p̂rior(x).

One example of the non-exponential distribution is sparse Gaussian, i.e., k
n
e−(x−µ)2/2σ2

+(
1− k

n

)
δ(x), which is used to model k-sparse signals. With the generalized prior, the MP
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in (Equation 4.3.1) is modified to

m
(t+1)
i→a (xi) ∼= p̂rior(xi)

∏
b∈∂i\a

m̂
(t)
b→i(xi);

m̂
(t+1)
a→i (xi) ∼=

∫ ∏
j∈∂a\i

m
(t+1)
j→a (xi)× e−

(ya−∑n
j=1 Aajxj)

2

2σ2 dxj, (4.5.1)

and the decoding step at each iteration becomes

x̂i = argmaxxiP(xi|y) ≈ argmaxxi p̂rior(xi) ·
∏
a∈∂i

m̂
(t)
a→i(xi). (4.5.2)

Moreover, the functions hmean (·; ·) and hvar (·; ·) in (Equation 4.3.4) are modified to ĥmean (·; ·)

and ĥvar (·; ·) as

ĥmean(µ; v) = lim
γ→∞

∫
xi · eγ log p̂rior(xi) · e−

γ(xi−µ)2

2v dxi∫
eγ log p̂rior(xi) · e−

γ(xi−µ)2

2v dxi

;

ĥvar(µ; v) = lim
γ→∞

γ
∫
x2
i · eγ log p̂rior(xi) · e−

γ(xi−µ)2

2v dxi∫
eγ log p̂rior(xi) · e−

γ(xi−µ)2

2v dxi

−
(
ĥmean(µ; v)

)2

.

Afterwards, we can design the sensing matrix with the same procedure as in (Equation 4.3.7)

and (Equation 4.4.3).

4.5.2 MMSE decoder

Notice that both (Equation 4.3.3) and (Equation 4.5.2) reconstruct the signal by minimizing

the error probability P
(
x̂ 6= x\

)
, which can be regarded as a MAP decoder. This subsection

considers MMSE decoder, which is to minimize the `2 error, i.e.,
∥∥x̂− x\

∥∥
2
. The message-

passing procedure stays the same as (Equation 4.5.1) while the decoding procedure needs

to be modified to
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x̂i =

∫
xiP(xi|y)dxi ≈

∫ (
xi · p̂rior(xi) ·

∏
a∈∂i

m̂
(t)
a→i(xi)

)
dxi.

Moreover, the functions hmean(·; ·) and hvar (·; ·) in the DE in (Equation 4.3.4) are modified

to h̃mean (·; ·) and h̃var (·; ·) as

h̃mean(µ; v)=

∫
xi · p̂rior(xi) · e−

(xi−µ)2

2v dxi∫
p̂rior(xi) · e−

(xi−µ)2

2v dxi

;

h̃var(µ; v)=

∫
x2
i · p̂rior(xi) · e−

(xi−µ)2

2v dxi∫
p̂rior(xi) · e−

(xi−µ)2

2v dxi

−
(
h̃mean(µ; v)

)2

.

Having discussed two potential directions of generalization, next we will present the

numerical experiments.

4.6 Numerical Experiments

This section presents the numerical experiments using both synthetic data and real-world

data. We consider the sparse signal and compare the design of preferential sensing with

that of the regular sensing. For the simplicity of the code design and the construction

of the corresponding sensing matrix, we fix the degrees {ρH,i} and {ρL,i} of the check

nodes to ρH,dcH = 1 and ρL,dcL = 1, respectively. Therefore, each check node has dcH

edges connecting to the high-priority part x\H and has dcL edges connecting to the low-

priority part x\L. Then we construct the sensing matrix with the algorithm being illustrated

in Algorithm 4.

We evaluate two types of sensing matrices for the preferential sensing, namely, A(init)
preferential

and A
(final)
preferential, which correspond to the distributions {λH} and {λL} in the initialization

phase and at the final outcome of Algorithm 4. As the baseline, we design the sensing

matrix Aregular via (Equation 4.3.7) which provides regular sensing with an additional con-

straint which enforces equal edge number with A
(final)
preferential for a fair comparison.
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Algorithm 4 Design of Sensing Matrix for Preferential Sensing.
• Input: maximum variable node degree dvmax, check node degree dcH and dcL, signal

lengths nH and nL, sparsity numbers kH and kL, and iteration number T .

• Initialization: set βH � log
(
nH
kL

)
, βL � log

(
nL
kL

)
. Then we initialize {λH,i} and

{λL,i} as

min
λH∈∆dvmax−1,
λL∈∆dvmax−1

∑
i

iλH,i,

s.t. nHdcL

(∑
i

iλH,i

)
= nLdcH

(∑
i

iλL,i

)
;(

βHkH
nH

∑
`

λH,`
`

)2

+

(
βLkL
nL

∑
`

λL,`
`

)2

≤ 1

(dcH)2 + (dcL)2
;

∑
`

λH,`√
`
≤

√
nH√

kH
√
dcH + dcL

;

λL,1 = λH,1 = 0,

which is equivalent to (Equation 4.4.3) without the Requirement 6.

• Iterative Update: denote λ(t)
H (or λ(t)

L ) as the updated version of λ(H) (or λ(L)) in

the tth iteration.

• For time t = 1 to T : update λ(t)
H and λ

(t)
L by alternating minimization

of (Equation 4.4.3) with Requirement 5 and Requirement 6 being replaced by

(Equation 4.4.7), (Equation 4.4.8), and (Equation 4.4.9).

1. Update λ(t)
H with λL being fixed to be λ(t−1)

L ;

2. Update λ(t)
L with λH being fixed to be λ(t)

H .

• Output: degree distribution λ(T )
H and λ(T )

L .

4.6.1 Experiments with synthetic data

Experiment set-up. We fix the check node degrees dcH and dcL as 5 and let the maximum

variable node degree dvmax as 50. The magnitude of the non-zero entries is set to 1. Then we
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study the recovery performance with varying SNR =
∥∥x\∥∥2

2
/σ2. The following numerical

experiments separately study the impact of the signal length nH and nL and the impact of

the sparsity number kH and kL.

Impact of sparsity number

We fix the length nH of the high-priority part x\H as 100 and the length nL of the low-

priority part x\L as 400. The simulation results are plotted in Figure 4.3.

We first investigate the recovery performance w.r.t. the high priority part x\H . Using

the sensing matrix Aregular (regular sensing) as the baseline, we conclude that our sens-

ing matrix A
(final)
preferential (preferential sensing) achieves better performance when the signal

is more sparse. Consider the case when SNR = 100. When kH = kL = 10, the ratio

‖x̂H − x\H‖2/‖x\H‖2 for A
(final)
preferential is approximately 0.35 while that of the Aregular is 0.86.

When the sparsity number kH and kL increase to 15, the improvement is approximately

(0.85− 0.4)/0.85 ≈ 53%. When the sparsity number kH and kL increase to 20, the corre-

sponding improvement further decreases to (0.95− 0.55)/0.95 ≈ 42%.

When turning to the reconstruction error
∥∥x̂− x\

∥∥
2
/
∥∥x\∥∥

2
w.r.t. the whole signal,

we notice a similar phenomenon, i.e., a sparser signal contributes to better performance.

Additionally, we notice the sensing matrix A
(final)
preferential achieves significant improvements in

comparison to its initialized version A
(init)
preferential.

Impact of signal length

We also studied various settings in which the length nH of the high-priority part x\H is set

to {150, 200, 250, 300} and the corresponding length nL of the low-priority part x\L is set

to {600, 800, 1000, 1200}. The simulation results are plotted in Figure 4.4.

Compared to regular sensing, our sensing matrix A
(final)
preferential can reduce the error in

the high-priority part x\H significantly. For example, when SNR = 100, the ratio ‖x̂H −

x\H‖2/‖x\H‖2 reduces between 40% ∼ 60% with the sensing matrix A
(final)
preferential. Meanwhile,
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Figure 4.3. Comparison of preferential sensing vs regular sensing. The length nH of the
high-priority part x\H is set as 100; while the length nL of the low-priority part x\L is set as
400. (Left panel) We evaluate the reconstruction performance w.r.t. the high-priority part
‖x̂H − x\H‖2/‖x

\
H‖2. (Right panel) We evaluate the reconstruction performance w.r.t. the

whole signal ‖x̂− x\‖2/‖x\‖2.

w.r.t. the whole signal x\, the ratio
∥∥x̂− x\

∥∥
2
/
∥∥x\∥∥

2
decreases with a smaller magnitude.

4.6.2 Experiments with real-world data

We compare the performance of sensing matrices for images using (i) MNIST dataset

[137], which consists of 10000 images in the testing set and 60000 images in the training

set; and (ii) Lena image.
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Figure 4.4. Comparison of preferential sensing vs regular sensing. Both the sparsity num-
ber kH and kL are set as 15. (Left panel) We evaluate the reconstruction performance w.r.t.
the high-priority part ‖x̂H − x\H‖2/‖x

\
H‖2. (Right panel) We evaluate the reconstruction

performance w.r.t. the whole signal ‖x̂− x\‖2/‖x\‖2.
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To obtain a sparse representation for each image, we perform a 2D Haar transformH(·),

which generates four sub-matrices being called as the approximation coefficients (at the

coarsest level), horizontal detail coefficients, vertical detail coefficients, and diagonal detail

coefficients. The approximation coefficients are at the coarsest level and are treated as the

high-priority part x\H ; while the horizontal detail coefficients, vertical detail coefficients,

and diagonal detail coefficients are regarded as the low-priority part x\L. Hence we can

write the sensing relation in (Equation 4.2.1) as

y = AH(Image) + w, (4.6.1)

where Image denotes the input image, H(·) denotes the vectorized version of the coeffi-

cients and is viewed as the sparse ground-truth signal, and w denotes the sensing noise.

The sensing matrix A is designed such that the approximation coefficients of H(Image)

can be better reconstructed.

Figure 4.5. The performance comparison between the sensing matrix for preferential sens-
ing A

(final)
preferential and sensing matrix for regular sensing Aregular. (Top) The ground-truth

images. (Middle) The reconstructed images with the sensing matrix A
(final)
preferential. (Bottom)

The reconstructed images with the sensing matrix Aregular.

4.6.3 Experiments with MNIST

Experiment set-up. We set the images from MNIST as the input images, which consists

of 10000 images in the testing set and 60000 images in the training set with each image

being of dimension 28× 28.

The whole datasets can be divided into 10 categories with each category representing a
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digit from zero to nine. For each digit, we design one unique sensing matrix. The lengths

nH and nL are set to (28/2)2 = 196 and 3 × (28/2)2 = 588, respectively. The sparsity

coefficients kH and kL varied among different digits.

Discussion. To evaluate the performance, we define ratios rH,(·) and rW,(·) as

rH,(·) ,
‖x̂H − x\H‖2

‖x\H‖2

;

rW,(·) ,
‖x̂− x\‖2

‖x\‖2

,

which correspond to the `2 error in the high-priority part x\H and the entire signal x\, re-

spectively. We use the sensing matrix Aregular as the benchmark. In addition, we omit the

results of A
(init)
preferential, since the sensing matrix A

(final)
preferential has better performance.

The results are listed in Table 4.1. A subset of the reconstructed images are shown

in Figure 4.5. From the Table 4.1 and Figure 4.5, we conclude that our sensing matrix

A
(final)
preferential for the preferential sensing can better preserve the images when comparing with

the sensing matrix Aregular for the regular sensing.

Figure 4.6. (Left) Ground-truth image. (Middle) Reconstructed image via sensing ma-
trix A

(final)
preferential for preferential sensing. (Right) Reconstructed image via sensing matrix

Aregular for regular sensing.

4.6.4 Experiments with Lena Image

Experiment set-up. We evaluate the benefits of using A
(final)
preferential for the Lena image with

dimension 512 × 512. Notice that the sensing matrix would have been prohibitively large
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Table 4.1. The index i = p corresponds to the sensing matrix A
(final)
preferential for the preferential

sensing; while the index i = r corresponds to the sensing matrix Aregular for the regular
sensing. We define the ratio rH,(i) (i = {p, r}) as the error w.r.t. the high priority part,
namely, ‖x̂H − x\H‖2/‖x

\
H‖2. Similarly we define the ratio rW,(i) (i = {p, r}) as the

ratio w.r.t. the whole signal, namely, ‖x̂ − x\‖2/‖x\‖2. Moreover, we put the results
corresponding to the sensing matrix A

(final)
preferential in the bold font.

Training Set Testing Set

Digit rH,(p) rH,(r) rW,(p) rW,(r) rH,(p) rH,(r) rW,(p) rW,(r)

0 0.28315 0.5154 0.44818 0.60131 0.30292 0.45749 0.46283 0.56486
1 0.16746 0.33751 0.29332 0.41599 0.1511 0.45264 0.2659 0.51864
2 0.26303 0.50365 0.42984 0.59959 0.24896 0.4233 0.42216 0.52556
3 0.24613 0.43677 0.42514 0.53163 0.26446 0.46766 0.43534 0.56189
4 0.28331 0.44377 0.44623 0.53791 0.30092 0.4445 0.45804 0.53749
5 0.28405 0.53511 0.45727 0.6198 0.27258 0.47044 0.44382 0.56622
6 0.28801 0.39436 0.45053 0.51701 0.27084 0.5086 0.44134 0.59534
7 0.25503 0.41621 0.41809 0.52896 0.27266 0.51329 0.41693 0.5783
8 0.31263 0.51918 0.47618 0.61492 0.32731 0.48163 0.48699 0.5837
9 0.30171 0.54394 0.45241 0.61799 0.27385 0.55313 0.43116 0.62785

if we used the whole image as the input. To put more specifically, we would need a matrix

with the width 5122 = 262144. To handle such issue, we divide the whole images into a

set of sub-blocks with dimensions 32 × 32 and design one sensing matrix with the width

322 = 1024. For each sub-block, we first obtain a sparse representation with the 2D Haar

transform and then reconstruct the signal in (Equation 4.6.1).

Discussion. The comparison of results is plotted in Figure 4.6, from which we conclude

that the sensing matrix A
(final)
preferential has much better performance in image reconstruction in

comparison with the sensing matrix Aregular. The ratios rH,(p) and rH,(r) are computed as

0.0446 and 0.3029, respectively; while the ratio rW,(p) and rW,(r) are computed as 0.0709

and 0.3144, respectively.

Remark 3. The degree distributions λH(·) and λL(·) of the variable nodes for the sensing

matrix A
(final)
preferential are obtained as
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λH(α)

= 0.0057856α + 0.025915α2 + 0.36394α3 + 0.35183α4

+ 0.10333α5 + 0.04134α6 + 0.021619α7 + 0.013508α8

+ 0.0094374α9 + 0.0070906α10 + 0.0056α11

+ 0.0045851α12 + 0.0038574α13 + 0.0033145α14

+ 0.0028963α15 + .0025659α16 + 0.0022992α17

+ 0.0020801α18 + 0.0018973α19 + 0.0017428α20

+ 0.0016109α21 + 0.001497α22 + 0.001398α23

+ 0.0013111α24 + 0.0012344α25 + 0.0011662α26

+ 0.0011053α27 + 0.0010506α28 + 0.0010013α29

+ 0.0009565α30 + 0.00091576α31 + 0.00087852α32

+ 0.00084436α33 + 0.00081292α34 + 0.00078388α35

+ 0.00075697α36 + 0.00073197α37 + 0.00070867α38

+ 0.00068691α39 + 0.00066652α40 + 0.00064738α41

+ 0.00062937α42 + 0.00061238α43 + 0.00059633α44

+ 0.00058114α45 + 0.00056673α46 + 0.00055304α47

+ 0.00054001α48 + 0.0005276α49;

λL(α) = α.

The check node degrees dcH and dcL are both set as 4. Meanwhile the sensing matrix

Aregular designed in (Equation 4.3.7) is a regular sensing matrix whose variable node and

check node degree distributions are given by λ(α) = α2 and ρ(α) = α7, respectively.
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4.7 Conclusions

We presented a general framework of the sensing matrix design for a linear measurement

system. Focusing on a sparse sensing matrix A, we associated it with a graphical model

G = (V , E) and transformed the design of A to the connectivity problem in G. With the

density evolution technique, we proposed two design strategies, i.e., regular sensing and

preferential sensing. In the regular sensing scenario, all entries of the signal are recovered

with equal accuracy; while in the preferential sensing scenario, the entries in the high-

priority sub-block are recovered more accurately (or exactly) relative to the entries in the

low-priority sub-block. We then analyzed the impact of the connectivity of the graph on

the recovery performance. For the regular sensing, our framework can reproduce the clas-

sical result of Lasso, i.e., the number of measurements m should be at least in the order

O(k log n), where n is the length of the signal and k is the sparsity number. For the prefer-

ential sensing, our framework can lead to a significant reduction of the reconstruction error

in the high-priority part and a modest reduction of the error in the whole signal. Numerical

experiments with both the synthetic data and real-world data are presented to corroborate

our claims.
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CHAPTER 5

SPARSE RECOVERY OF SIGN VECTORS UNDER UNCERTAIN SENSING

MATRICES

5.1 Introduction

Generally speaking, uncertainties in the sensing matrix weakens the system performance

and reduces the reliability of recovered signals. Meanwhile in some applications [86, 97,

96], the sign values of signals instead of their exact values may be needed. One such an

application is detecting irregular concentration patterns of biomarker miRNAs, a small non-

coding RNA molecules for monitoring certain diseases [86]. Let entries of vector z be the

concentration of miRNAs. Let signal vector ∆z be concentration changes in all miRNAs

between two consecutive measurements, ∆z = z1 − z2. Since the number of biomarker

miRNAs is small compared to the total number of miRNA types, x , ∆z can be assumed

to be an sparse vector as the concentrations of non-biomarker miRNAs have subtle changes

between two consecutive measurements. For disease diagnosis, only directions of changes

in entries of x over multiple measurements z1, z2, rather than the exact values, are desirable.

In other words, sign(∆z), ∆z = z1 − z2, is the parameter of interest. Note that since the

measurements are linear, we will drop ∆ from the abstraction of the problem for simplicity

of presentation.

This chapter will show that as long as the uncertainty in the sensing matrix is sparse, a

thresholding mechanism can be developed to recover the sign vector. In particular, provided

that the true signal satisfies certain conditions, the exact sign vector can be recovered with

high probability even under uncertain sensing matrices.
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5.2 Problem Formulation

Consider the sensing system

y = Ψx + w,

Ψ = A + E,

where y ∈ Rm denotes the reading, x ∈ Rn is the k-sparse signal, and w ∈ Rm denotes the

sensing noise. Further, A ∈ Rm×n (m < n) represents the ideal desirable sensing matrix,

but Ψ ∈ Rm×n denotes the actual resulting sensing matrix because of the perturbation

matrix E ∈ Rm×n. To recover signal x, ideally we would adopt the optimization

min
x
‖x‖1, s.t. ‖y −Ψx‖2 ≤ σ2,

where σ2 denotes the maximum norm of noise. However, due to the inaccessibility of true

matrix Ψ, we modify the constraint to be ‖y − Ax‖2 ≤ σ
′2. Hence, our optimization

problem is modified to

x̂ = argminx ‖x‖1, s.t. ‖y −Ax‖2 ≤ σ
′2, (5.2.1)

where σ′2 denotes the modified noise norm that should be set to allow the true x satisfy the

constraint. Denote x̂ as the solution to (Equation 5.2.1). In the following, we will analyze

the solution x̂ and propose a thresholding method to get the correct sign vector sign(x)

with x̂ under the existence of perturbation matrix E.

Before proceeding, we denote the support set of x as T , i.e., the index set of non-zero

entries {i : xi 6= 0}. Then, we construct [xT xT c ], such that xT represents the entries

xi with its indices to be within the support set T while xT c denotes the rest of entries in

x. Besides, we define the difference between solution x̂ and true signal x as h = x̂ − x.

Similarly, we form hT and hT c from h. Further, we assume ‖x‖2 is upper bounded by

some constant C.
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5.3 Theoretical Foundation

Structure of this section can be divided into three components. First, we will analyze the

perturbation matrix E. Then we will set σ′2 and bound ‖Ah‖2
2. Finally, we will investigate

the infinity norm of h. Notice that to recover sparse signal x, sensing matrix A should be

designed to facilitate the recovery, whose property can be characterized by the following

two concepts: coherence ρ and RIP-constant δk [83].

Definition 3 (Coherence). For sensing matrix A ∈ Rm×n, the coherence ρ is defined as

ρ = max
i 6=j

|〈Ai,Aj〉|
‖Ai‖2‖Aj‖2

,

where Ai and Aj denote the ith and jth columns of matrix A, respectively.

Definition 4 (RIP-constant). For sensing matrix A, its RIP constant δk is defined as the

minimum value that satisfies

(1− δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δk)‖x‖2
2

for all k-sparse x.

5.3.1 Analysis of Perturbation Matrix

We now analyze the perturbation matrix E. Different distributions of matrix E results in

different types of errors in the sensing matrix Ψ [87, 138, 97]. Motivated by the biologi-

cal application, we consider a unique case as following. Note that the (i, j)th entry of Ψ

models the reaction between ith sensor and jth miRNA. If Ψij is zero, it means that sensor

i does not react to miRNA j. However, due to the stochastic nature of molecular binding,

certain miRNAs may still bound to a binding site in a sensor (to which they are not ex-

pected to) and create undesirable footprints. Hence, some entries of Ψ that are expected

(by design) to be zero could turn out to be non-zero. Since this happens occasionally, the
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perturbation matrix E can be assumed sparse.

As our model in [79], we may assume

pE(eij) =
pE√
2πσE

exp
(
−e2

ij/2σ
2
E

)
+ (1− pE)δ(eij = 0),

where δ(eij = 0) is the delta function and σ2
E denotes the variance. Here, pE controls the

sparsity in matrix E.

Note that ‖Ex‖2 = ‖ETxT‖2, which implies only those columns with indices are in

the support set T can contribute to the norm ‖Ex‖2. Therefore, we only need to consider

the sub-matrix Rm×k of E. We have the following lemma.

Lemma 6. For an arbitrary sub-matrix E(k) ∈ Rm×k, the expectation of its maximal sin-

gular value σmax(E
(k)) is bounded by

Eσmax(E
(k)) ≤ C

√
pEσE(

√
m+

√
k),

where C > 0 is some constant.

Proof. Define process Xu,v and Gaussian process Yu,v with v ∈ Rk, u ∈ Rm, and ‖v‖2 =

‖u‖2 = 1 as,

Xu,v =
〈
u,E(k)v

〉
, Yu,v =

√
pEσE 〈G,u〉+

√
pEσE 〈h,v〉 ,

where G and h are random variables with the distributions G ∼ N (0, Im), and h ∼

N (0, Ik), respectively.

First, we calculate the distance E‖Xu,v −Xw,z‖2
2 as

E‖Xu,v −Xw,z‖2
2 = pEσ

2
E

∑
ij

(uivj − wizj)2

= pEσ
2
E‖u−w‖2

2 + pEσ
2
E‖v − z‖2

2 + 2pEσ
2
E

(
〈u,w〉 − ‖w‖2

2

) (
‖v‖2

2 − 〈v, z〉
)

≤ pEσ
2
E‖u−w‖2

2 + pEσ
2
E‖v − z‖2

2.

79



Then we calculate the distance E‖Yu,v − Yw,z‖2
2 as

E‖Yu,v − Yw,z‖2
2 = pEσ

2
E‖u−w‖2

2 + pEσ
2
E‖v − z‖2

2.

Since E‖Xu,v − Xw,z‖2
2 ≤ E‖Yu,v − Yw,z‖2

2, by Talagrand’s comparison equality [139],

we should have

EE(k) sup
u,v

Xu,v = EE(k)σmax(E
(k)) ≤ CEG,h sup

u,v
Yu,v = C

√
pEσE(

√
n+
√
k),

where C > 0 is some constant and completes the proof.

Having obtained an upper bound for Eσmax(E
(k)), we will then show that the maximal

singular value σmax(E
(k)) is not sufficiently larger than this bound in most cases.

Lemma 7. For all sub-matrices E(k) ∈ Rm×k, the maximal singular value σmax(E
(k))

satisfies

σmax(E
(k)) ≤ C

√
pEσE(

√
m+

√
k) + t, t > 0,

with probability at least 1−
(
n
k

)
exp(−t2/2).

Proof. Take an arbitrary sub-matrix E(k) ∈ Rm×k from E. Define binary matrix M(k) as

M
(k)
ij =


0, E

(k)
ij = 0;

1, otherwise,

whereM (k)
ij andE(k)

ij denote the (i, j)th entry in matrices M(k) and E(k), respectively. Then

we can couple E(k) with a Gaussian matrix G(k) and M(k) such that E(k) = M(k) ◦G(k),
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where ◦ denotes the Hadamard product [119], i.e., E(k)
ij = M

(k)
ij G

(k)
ij . Then we have

P
{
σmax(E

(k)) ≥ C
√
pEσE(

√
m+

√
k) + t

}
≤ P

{
σmax(E

(k)) ≥ Eσmax(E
(k)) + t

}
= E1

{
σmax(E

(k))− E σmax(E
(k)) ≥ t

}
= EM(k)EE(k)|M(k)1

{
σmax(E

(k))− E σmax(E
(k)) ≥ t

}
= EM(k)P

{
σmax(E

(k))− E σmax(E
(k)) ≥ t |M(k)

}
1©
≤ e−t

2/2, t > 0,

(5.3.1)

where 1© is because entries in G(k) is gaussian and the mapping is a 1-Lipschitz function,

so we can use Theorem 5.6 in [140]. Note that there are
(
n
k

)
different types of sub-matrices

E(k) in total. Hence, the event that all sub-matrices E(k) satisfy (Equation 5.3.1) holds with

probability at least 1−
(
n
k

)
exp(−t2/2).

5.3.2 Bound on σ′2 and ‖Ah‖2

We now determine σ′2 and obtain bound for ‖Ah‖2. Since the true signal x should satisfy

the constraint ‖y −Ax‖2 ≤ σ
′2, we have

‖y −Ax‖2 = ‖Ψx+ w −Ax‖2 = ‖Ex + w‖2

≤ ‖w‖2 + ‖Ex‖2 ≤ σ2 + σmax(E
(k))C.

Therefore, to ensure the constraint in (Equation 5.2.1), σ′2 should be at least σ2+σmax(E
(k))C.

On the other hand, setting σ′2 to a large value may lead to a trivial solution 0. In the sequel,

we set σ′2 as σ2 + σmax(E
(k))C and obtain the following lemma.

Lemma 8. The relation ‖Ah‖2 ≤ 2(σE
√
pEm+ σE

√
pEk + t)C + 2σ2 holds with prob-

ability at least 1−
(
n
k

)
exp(−t2/2), t > 0.

Proof. We have
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‖Ah‖2 = ‖Ax−Ax̂‖2 = ‖Ax− y + y −Ax̂‖2

≤ ‖Ax− y‖2 + ‖y −Ax̂‖2 ≤ 2σ
′2 = 2σ2 + 2σmax(E

(k))C.

Since the relation σmax(E
(k)) ≤ √pEσE(

√
m +

√
k) + t, t > 0 holds with probability at

least 1−
(
n
k

)
exp(−t2/2), by Lemma 7, the proof is completed.

5.3.3 Bound on ‖h‖∞

We now obtain an upper bound on ‖h‖∞ using ‖Ah‖2.

Remark 4. The deviation h satisfies [83, 141] ‖hT c‖1 ≤ ‖hT‖1.

Since this remark can be driven easily from widely known results in compressive sensing

[83, 141], we omit the proof.

Lemma 9. The infinity norm of h satisfies

‖h‖∞ ≤
‖Ah‖2

min1≤i≤n ‖Ai‖2

+ 2ρ
√
k‖hT‖2.

Proof. Inspired by the proof in [97], we first define the covariance matrix Σ ∈ Rn×n with

its (i, j) entry written as

Σij =
〈Ai,Aj〉
‖Ai‖2‖Aj‖2

.

Easily we can verify that the matrix Σ satisfies

Σii = 1, 1 ≤ i ≤ n,

|Σij| ≤ ρ, 1 ≤ i 6= j ≤ n.

For the simplicity of following analysis, let B be a matrix whose ith column is Bi ,

Ai/‖Ai‖2. Easily we can verify that BTB = Σ.

Consider the inner product 〈ci,Σh〉, where ci ∈ Rm denotes the vector with all entries

to be zero except the ith entry. Then, we have
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〈ci,Σh〉 =
〈
ΣTci,h

〉
= hi +

∑
j 6=i

Σjihj.

Moving terms around, we obtain hi = 〈ci,Σh〉 −
∑

j 6=i Σjihj . Then, we can bound ‖h‖∞

as

‖h‖∞ = max
i
|hi| ≤ ‖Σh‖∞ +

∥∥∥∥∥∑
i 6=j

Σjihi

∥∥∥∥∥
∞

≤ ‖Σh‖∞ + ρ

∣∣∣∣∑
i 6=j

hi

∣∣∣∣ ≤ ‖Σh‖∞ + ρ‖h‖1.

We then obtain bounds for both ‖Σh‖∞ and ‖h‖1. First, we bound the term ‖Σh‖∞ as

‖Σh‖∞ =
∥∥BTBh

∥∥
∞ = max

1≤i≤n

∣∣BT
i Bh

∣∣≤ max
1≤i≤n

‖Bi‖2‖Bh‖2

≤ ‖Bh‖2 max
1≤i≤n

‖Bi‖2 = ‖Bh‖2 ≤
‖Ah‖2

min1≤i≤n ‖Ai‖2

.

Then, we bound the term ‖h‖1 as

‖h‖1 = ‖hT‖1 + ‖hT c‖1

(a)

≤ 2‖hT‖1 ≤ 2
√
k‖hT‖2,

where (a) is due to Remark 4. Combining the above two bounds, we complete the proof.

In the above analysis, we have shown that ‖h‖∞ is closely related to ‖Ah‖2 and ‖hT‖1.

Since ‖Ah‖2 has already been bounded, our next goal is to find a bound for ‖hT‖1. Our

analysis will obtain the bound via two concepts: the coherence ρ and the RIP-constant δ2k.

First, we use ρ.

Lemma 10. Given that ρ < (3αk)−1, α > 1, then we have

‖hT‖2 ≤
√

α

α− 1

‖Ah‖2

min1≤i≤n ‖Ai‖2

.

Proof. First, we verify that the lemma holds for the trivial case of ‖h‖2 = 0. For the
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non-trivial case ‖h‖2 6= 0, we have the following inequality [96, 97],

min
h6=0, ‖h

TC
‖1≤‖hT ‖1

‖Bh‖2

‖hT‖2

≥
√

1− 1

α
,

for all support |T | ≤ k. Moving the terms, we have the inequality

‖hT‖2 ≤
√

α

α− 1
‖Bh‖2 ≤

√
α

α− 1

‖Ah‖2

min1≤i≤n ‖Ai‖2

,

which completes the proof.

Note that the above lemma requires ρ < (3αk)−1, α > 1. For large k, this lemma

requires small coherence ρ; often leading to the undesirable requirement of large number

of sensors m. In the following, we will bound ‖hT‖1 with the RIP-constant δ2k. Compared

with coherence, δ2k is hard to compute, which may limit its application. However, it usually

results in a tighter upper bound.

Lemma 11. Provided that RIP-constant associated with matrix A satisfy δ2k <
√

2 − 1 ,

we have [141, 83]

‖hT‖2 ≤
√

1 + δ2k

1− (1 +
√

2)δ2k

‖Ah‖2.

The proof is provided in [141, 83]. Note that the existence of E does not affect the

proof. Combining Lemma 8, Lemma 10, and Lemma 11, we obtain the upper bound for

‖h‖∞ in Lemma 9.

5.4 Thresholding Mechanism

In the previous section, we have obtained an upper bound for ‖h‖∞. In this section, we will

propose a thresholding mechanism based on this bound to get the sign vector and prove the

recovered sign vector to be correct given certain conditions hold. Inspired by [96], we adapt
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thresholding to our setting to get the correct sign vector. Define thresholding parameter τ1

and τ2 as

τ1 ,

(
1 + 2ρ

√
k(1 + δ2k)

1− (1 +
√

2)δ2k

)[
2σ2 +

(C
√
pEσE(

√
m+

√
k) + t)

min1≤i≤n‖Ai‖2

]
,

τ2 ,

(
1 + 2ρ

√
kα

α− 1

)
2σ2 + (C

√
pEσE(

√
m+

√
k) + t)

min1≤i≤n‖Ai‖2
.

Define τ as

τ =


τ1, if ρ ≥ 1

3k
;

min(τ1, τ2), otherwise,

which corresponds to the upper bound for ‖h‖∞. Then we perform thresholding to the

recovered value x̂ and get x̃ via

x̃i =

{
(|x̂i| − τ)+

}
sign(x̂i),

where x̃i and x̂i denote the ith component of x̃ and x̂, respectively. Further, (·)+ =

max(0, ·). Then we have the following theorem.

Theorem 7. Provided that minxi 6=0 |xi| > 2τ , the thresholded result x̃ would give the cor-

rect sign vector, i.e., sign(x̃i) = sign(xi), with probability at least 1−
(
n
k

)
exp(−t2/2), t >

0.

Proof. Our proof is inspired by [96]. According to Lemma 6, we have shown that σmax(E(k))

is less than C
√
pEσE(

√
m+

√
k) + t with probability 1−

(
n
k

)
e−t

2/2. Hence τ is the upper

bound for ‖h‖∞ with probability at least 1−
(
n
k

)
e−t

2/2, i.e.,

‖h‖∞ ≤ τ.

To study the sign vector recovery, our proof in below analyzes the support set T and its
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complement T c.

• Consider i ∈ T c, i.e., xi is zero. Then we have x̃i = 0. Otherwise, we have

‖h‖∞ = max
j
‖xj − x̂j‖1 ≥ ‖xi − x̂i‖1 > τ,

which is contradictory to the fact that ‖h‖∞ ≤ τ .

• Consider i ∈ T , i.e., xi 6= 0. Without loss of generality, we assume xi to be positive.

Based on the relation ‖h‖∞ ≤ τ , we have

‖x̂i − xi‖ ≤ τ =⇒ xi − τ ≤ x̂i ≤ xi + τ.

According to the assumption that minxi 6=0 |xi| > 2τ , we have x̂i > τ . Thus,

sign(x̃i) > 0.

Combining the above two cases, we complete the proof.

Therefore, we have proved that the sign vector of x can be correctly recovered even under

the existence of the perturbation matrix E provided that minxi 6=0 |xi| > 2τ .

Remark 5. If the assumption minxi 6=0 |xi| > 2τ does not hold, we can still prove that if

xi = 0, then we will have x̃i = 0. However, certain non-zero entries in x with small

magnitude may not be detected due the the sensing matrix uncertainties.

5.5 Simulation Results

In Figure 5.1, we plot cumulative distribution function (CDF) of maximum singular value

of matrix E under different sparsity parameters pE . Here we setm = 500, k = 4, and σE =

1.0. The plots show that σmax(E
(k)) often concentrates around the value

√
pEσE(

√
m +

√
k), which suggests the constant C ≈ 1 and is adopted in the following simulations.

Further, larger pE (i.e., denser matrix E(k)) increases Eσmax(E
(k)) which is consistent with

our theoretical analysis and intuition.
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Figure 5.1. CDF of maximum singular value of matrix E(k) when m = 500, k = 4, and
σ2
E = 0.001.
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Figure 5.2. Thresholding parameters τ1 and τ2 when n = 1000, k = 1, pE = 0.5,
σ2
E = 0.001, and C = 10.0.

Figure 5.2 shows the relation between the thresholding parameters τ1 and τ2 and the number

of sensors m. The entries in the sensing matrix A are i.i.d distributed following N (0, 1
m

).

Since the RIP constant δ2k is hard to compute, we adopt its expectation
√

2k/m as an

approximation. Note that δ2k concentrates around its expectation and the approximation

is quite close to the exact value. Comparing the two plots, we confirm that τ1 serves as a

better bound than τ2.

In Figure 5.3, we study the relation between the error rate and the variance σ2
E . Here

we treat the recovery as wrong even if there is one mismatch between the recovered sign

vector sign(x̃) and the true sign vector sign(x). In Region I, the true value x satisfies the
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Figure 5.3. Recovery error rate when n = 500, m = 100, k = 1, pE = 0.05, σ2 = 0, and
C = 10.0.

assumption in Theorem (Theorem 7) whereas in Region II it does not. We can see that there

is almost no wrong recovery in Region I, which is consistent with our theorem. However

in Region II, the recovery results become unreliable, even though we may still get a correct

recovery in certain cases as shown in Figure 5.3.

5.6 Conclusions

We proposed a thresholding strategy to recover the sign values under an uncertain sensing

matrix. We provided a sufficient condition under which with high probability the recon-

structed sign value will be correct. Using simulation results, we confirmed that the max-

imal eigenvalue corresponding to the matrix E(k) concentrates around its expectation, as

our analysis suggested. Further, we compared two thresholding parameters τ1 and τ2. The

simulation shows that τ1 serves as a better bound than τ2, although τ2 is easier to com-

pute. Further, the simulation results confirmed our analysis that the recovered sign values

via thresholding are correct as long as the assumption of the theorem is satisfied. For the

cases that the assumption does not hold, the simulation implied that the recovered results

are unreliable.
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CHAPTER 6

RECOVERING NOISY-PSEUDO-SPARSE SIGNALS FROM LINEAR

MEASUREMENTS VIA INFINITY NORM

6.1 Introduction

Compressive Sensing (CS) [142, 83, 85] considers the problem of recovering a sparse signal

x ∈ Rn from m (linear) measurements. However, in many practical situations [99, 100,

101, 102, 143], the signal is not exactly sparse. Instead the signal may be best modeled as

x + e where x is the dominant sparse component and e is some small deviations, causing

the signal to deviate slightly from the sparsity model, i.e., a pseudo sparse signal.

Numerical experiments suggest a straightforward application of CS algorithms to re-

cover sparse signal x in the above settings may fail due to the non-sparsity of x + e. In the

previous work [104], such issue is handled by a noise-whitening method. However, their

method can severely inflate the R.I.P. constant [83] associated with the sensing matrix and

damage the system performance. A detailed explanation is deferred to the next section.

In this chapter, we exploit the statistical properties of the noise distribution and propose

a novel objective function for the signal reconstruction. Numerical results suggest our new

objective function can lead to a significant error reduction in terms of `2 norm with almost

negligible loss in the detection rate of the support set of signal x.

6.2 Sensing Model

The sensing model we consider here is given by

y = Ax\ + Ae\ = Ax\ + w̃,
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where y ∈ Rm denotes the observation, and A ∈ Rm×n denotes the sensing matrix. We

use (·)\ to represent the ground-truth, i.e., we represent sparse signal as x\ ∈ Rn and model

the noise-like behavior of non-significant components of the signal by e\. Further, we

assume that e\ follows the distribution N (0, σ2I). It can be easily verified that w̃ = Ae\

is a Gaussian N (0,AATσ2) noise. Before we proceed, we first briefly discuss the noise-

whitening method proposed in [104].

First, the authors propose to whiten the noise w̃ by multiplying the measurements by

the matrixQ = (AAT)−1/2. Then, the sensing model was transformed to the conventional

CS measurement

Qy = QAx\ + QAe\,

where the noise QAe\ is now distributed asN (0, σ2I). Hence, one can solve the following

optimization problem to recover the sparse signal x\;

min
x
‖x‖1, s.t. ‖Qy −QAx‖2

2 ≤ C, (6.2.1)

where C is the upper bound on the new noise energy. However, this method ignores the

statistical properties of the Gaussian distribution and may inflate the R.I.P. constant signif-

icantly, which usually corresponds to a performance degradation.

In our work, we notice that for Gaussian distributed e\, we have ‖e\‖∞ = maxi |e\i| be

bounded as

1√
2

√
σ2 log n ≤ E‖e\‖∞ ≤

√
σ2 log n,

(see e.g., [140] Sec. 2.5 and Thm. 13.4). We introduce the penalty term ‖ · ‖∞ to the

objective function and formulate our proposed optimization problem, without performing
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any noise whitening, as

min
x,e
‖x‖1 + λ‖e‖∞,

s.t. y = Ax + Ae, ‖e‖2
2 ≤ C,

(6.2.2)

where λ is a non-negative constant, controlling the trade-off between the sparse component

x and deviation e. Note that for λ = 0, our formulation in (Equation 6.2.2) is reduced to

similar form as (Equation 6.2.1).

Remark 6. Moreover, minimizing the `∞ usually leads to a more uniformly distributed re-

sults [144]. In many applications, we may assume that the deviation e is bounded. Adding

the penalty term ‖e‖∞ can contribute to a more accurate estimation of e.

Notation We denote the solution of (Equation 6.2.2) by (x̂, ê). T is the support set of

the sparse signal x\, i.e., {i : x\i 6= 0}. In addition, in our analysis, we set C = ‖e\‖2
2 in

(Equation 6.2.2).

6.3 Main Results

To facilitate the understanding of (Equation 6.2.2), in this section we provide a theoreti-

cal analysis of our proposed algorithm in the sense of the performance error and number

of measurements required to achieve this performance. Before we proceed, we need the

following assumptions.

First we assume that the non-zero values of the sparse signal have a relatively large

magnitude compared to the deviation counterpart e, i.e., minx\i 6=0 |x
\
i| > 2‖e\‖∞. Other-

wise, the support set of x cannot be reliably determined even with the exact knowledge of

x\ + e\. Moreover, due to the difficulties of analyzing the infinity norm ‖ · ‖∞ of Gaussian

distributed e\, we consider a simplified case, where the magnitudes of the components of

e\ are uniform, in this section. This setting is purely for the mathematical convenience and

we will restore to Gaussian distributed e\ in the simulations.
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Figure 6.1. Impossibility of achieving exact solution: |x̂i| = 1, |êi| = 1 while |x\i | =

3, |e\i| = 1.

6.3.1 Exact Solution Analysis

First we observe that recovering exact (x\, e\) would be impossible due to the ambiguity

in e\ (see Figure 6.1 for an illustrative example). However, we will show that a unique

solution (x̂, ê) can be guaranteed within the proximity of (x\, e\).

We first consider the oracle case, where x\ + e\ and ‖e\‖∞ are perfectly known, to

gain insights of (Equation 6.2.2). Note that if we cannot recover (x\, e\) under the oracle

case, it is hopeless to recover them in the practical case where the above information are

missing. For both the noise-whitening method and our proposed method, the following can

be proven.

Lemma 12. Suppose that mini∈T |x\i| > 2‖e\‖∞. Then,

sign(x̂i) = sign(êi), ∀ x̂i 6= 0,

holds for the recovered signal (x̂, ê).

The proof is given in Appendix. Due to Lemma 12, the closest we can get to the true values

(x\, e\) via solving (Equation 6.2.2) is given by


(x̃i, ẽi) = sign(x\i + e\i)

(
|x\i + e\i| − |e

\
i|, |e

\
i|
)
, i ∈ T ;

(x̃i, ẽi) = (x\i, e
\
i), i ∈ T c.

(6.3.1)
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Property 1. For (x̃, ẽ) as in (Equation 6.3.1), it can be easily verified that ẽi = sign(ẽi)‖ẽ‖∞

and sign(x̃i) = sign(ẽi) = sign(x\i + e\i).

This property is easy to verify and we omit its proof. In the sequel, we show that (x̃, ẽ)

can be obtained uniquely. Fortunately, the maximum deviation ‖x̃ − x\‖2 between x̃ and

x\ is at most 2
√
k‖e\‖∞ = 2

√
k/n‖e\‖2, which is often negligible as k � n.

6.3.2 Analysis of the Solution Uniqueness

We now prove the uniqueness of solution (x̂, ê). Define the joint tangent cone T λx̃,ẽ as

T λx̃,ẽ ,
{

(a,b) : ‖x̃+ ta‖1 + λ‖ẽ+ tb‖∞ ≤ ‖x̃‖1 + λ‖ẽ‖∞, ∃ t ≥ 0
}
,

which contains all descending directions from point (x̃, ẽ). Further, define set Ωx̃,ẽ as

Ωx̃,ẽ =
{
a + b : (a,b) ∈ T λx̃,ẽ \ (0,0), 〈b, ẽ〉 < 0

}
. (6.3.2)

We can form the following lemma for the uniqueness.

Lemma 13. Provided that k < λ < n − k, the solution (x̂, ê) is unique and is equal to

(x̃, ẽ) if

Ωx̃,ẽ

⋂
Sn−1

⋂
null(A) = ∅, (6.3.3)

where Sn−1 denotes the n-dimensional unit-sphere.

Despite of the similar forms as in [79, 107], we cannot directly apply their proof technique

to Lemma 13, which is due to the replacement of tangent cone T λx̃,ẽ with set Ωx̃,ẽ. Detailed

explanation is given as the following. When dealing with tangent cone T λx̃,ẽ as in [79, 107],

zero element 0 can be safely ignored in the analysis since it corresponds to the case where

a = b = 0, i.e., desired solution (x̃, ẽ) is obtained. While in our case, zero elements

0 ∈ Ωx̃,ẽ suggests a + b = 0 in (Equation 6.3.2) rather than a = b = 0, which still

contains solution ambiguity. Hence, a more delicate analysis is required and we put it in
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Appendix.

To avoid the prohibitive computational cost of directly verifying (Equation 6.3.3), we

instead investigate the equivalent condition

min
u∈Ωx̃,ẽ

⋂
Sn−1
‖Au‖2 > 0. (6.3.4)

For the simplicity of notations, in the rest of the paper, we will use Ω to refer to Ωx̃,ẽ.

6.3.3 Lower Bound for the Number of Measurements

In this subsection, we assume as in [79], each measurement has footprint from only a

limited number of signal components, i.e., entries in x. As in [79], we also assume the

entries of a are i.i.d. according to the distribution

P(Aij = a) = (1− p)δ(a) +
p√
2π

exp

(
−a

2

2

)
. (6.3.5)

Here δ(·) is the delta function and a is a Gaussian r.v.. An entry is zero with the large

probability 1 − p. Hence, each measurement can read a linear combination of only a few

signals.

We study the conditions satisfying (Equation 6.3.4). As such, we first relate it to Gaus-

sian width [108, 107] of space Ω. Then we study the relation between the number of

measurement and the Gaussian width. Similar to [79], we can show the following re-

sult.

Theorem 8. Provided that m ≥ ω2(Ω) + 1, the optimization problem (Equation 6.2.2) has

a unique solution (x̃, ẽ) with the probability at least 1 − exp
(
−p

2
[am − ω(Ω)]2

)
, where

am =
√

2Γ
(
m+1

2

)
/Γ
(
m
2

)
and ω(Ω) is the Gaussian width of Ω, defined by

ω(Ω) = Eg sup
u∈Ω

⋂
Sn−1

〈g,u〉 , g ∼ N (0, I). (6.3.6)
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In the following, our goal becomes finding an upper bound for sup[ω2(Ω)]. Setting m

to be sup[ω2(Ω)] + 1 would guarantee the uniqueness of the solution with high probability

as stated in Theorem 8.

Theorem 9. To satisfy the constraint in Theorem Theorem 8, it is sufficient that

m ≥

(
√
n− (1− 2−n)

√
log n

2
− 2

1
2
−n
√
π

)2

+ 1. (6.3.7)

Due to the complicated structure of Ω, its Gaussian width ω (Ω) cannot be directly upper-

bounded with the existing methods as in [139, 107, 105]. Instead, we need a delicate

analysis, which consists of the following two steps: (i) construct a complementary set

Θ for Ω; (ii) lower-bound its Gaussian width ω(Θ). The detailed calculation is in the

Appendix.

Remark 7. This theorem suggests that we can obtain a unique solution (x̃, ẽ) with an

indefinite measurement matrix a at the rate of m ∼ O
(
n−
√
n log n

)
. Although this

bound seems to be a marginal improvement compared with the bound m ∼ O (k log n)

associated with the traditional CS [142, 83], our signal setting is different from them in

that our signal x\ + e\ is not sparse. Meanwhile the number of measurements m can be

further reduced with more accurate bounds for ω(Ω) and our simulations also suggest our

proposed method greatly outperforms the existing work as in (Equation 6.2.1).

Remark 8. Although the x\’s non-zero number k is missing in the above bound (Equation 6.3.7),

it is involved in our previous analysis such that (i) we require k < λ < n− k and (ii) the

maximum deviation between
∥∥x̃− x\

∥∥
2

is bounded by 2
√
k/n

∥∥e\∥∥
2
.

6.4 Simulation

In the previous sections, we considered the ideal case that e has uniformly distributed

magnitude for the analytical convenience and we restore to the Gaussian setting in this
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section. For the simulations, we set n = 300, m = 70, and k = 2. To evaluate the

performance of the proposed algorithm, we consider two different metrics: the error norm

‖x̂− x\‖2
2 and the correct recovery rate of the support set P{supp(x̂) = supp(x\)}.

Figure 6.2: ‖x̂− x‖2 versus variance of e.

Figure 6.3: Prob. of correct support set recovery vs variance of e.

Figure 6.2 shows the error ‖x̂−x\‖2
2 versus the variance σ2 of e\ for various λ’s in both

the proposed scheme and the noise-whitening method [104]. Generally, larger λ usually

leads to better performance in our scheme. For example, at σ = 5, our proposed algorithm

for λ = 60 can reduce the error norm by more than 50% relative to the noise whitening

method [104]. However, by increasing λ further, there is a subtle performance gain (or

even loss) in our algorithm.
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We have plotted the probability of correct recovery of support set in Figure 6.3 for

different noise variances. It is observed that our algorithm can beat the noise-whitening

method in the beginning. When λ = 40, our results can improve the correct rate from

99.75% to 99.95%. However, our algorithm sometimes falls behind the noise-whitening

method as we increase λ. But the gap between our method and the noise whitening method

is rather subtle, i.e., less than 0.3%. Overall, taking into account the large improvement in

‖x̂− x\‖2
2, the small sacrifice in the support set recovery rate is most likely acceptable.

6.5 Conclusions

In this chapter, we proposed a new method to recover a noisy-pseudo-sparse signal from

linear measurements. To facilitate its understanding, we studied the ideal case where the

entries of the signal deviation are uniformly distributed and showed that, even with this

constraint, finding the exact solution is impossible. However, we proved that a unique

solution in the proximity of true value could be obtained. We analyzed the probability of

obtaining a unique solution when the measurement matrix is sparse-Gaussian and bounded

the required number of measurements to obtain such a solution. In the end, we went back

to the Gaussian setting of signal deviation and our simulations suggested relative to the

noise whitening method, our algorithm can reduce error by 50% at the expense of less than

0.3% loss in support-set recovery rate.
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CHAPTER 7

SPARSE SIGNAL RECONSTRUCTION WITH A MULTIPLE CONVEX SETS

DOMAIN

7.1 Introduction

This chapter considers reconstructing the sparse signal from an ill-posed inverse problem.

Different from the setting of traditional compressive sensing (CS) [142, 110, 83], we as-

sume the existence of extra prior knowledge that x lies in the union of some convex sets,

x ∈
⋃L
i=1 Ci, where L denotes the number of constraint sets and Ci is the i-th convex con-

straint set. This problem (i.e., given measurement y, solving for x) turns out to be a rather

general form of CS. For example, setting
⋃
Ci = Rn simplifies our problem to the tradi-

tional CS problem. In the following, we will further show that by appropriate choices of

these convex sets, our setting can include sparse phase retrieval [145, 146, 147], quantized

compressive sensing [148], and model-based CS [114] problems. A detailed discussion is

given as follows.

• Sparse Phase retrieval. Consider the noiseless phase retrieval problem in which the

measurements are given by

yi = |〈ai, x〉|2 , 1 ≤ i ≤ l,

where yi is the i-th measurement and ai denotes the corresponding coefficients. Con-

sidering the first measurement, the constraint
√
y1 = |〈a1, x〉| can be represented via

x ∈ B(1)
+

⋃
B(1)
− where B(1)

+ = {x : 〈a1,x〉 =
√
y1} and B(1)

− = {x : 〈a1,x〉 =

−√y1}. Following these steps, the constraints {yi = 〈ai,x〉2}li=1 can be transformed to

x ∈
⋂
i

(
B(i)

+

⋃
B(i)
−
)

=
⋃2l

j=1 Cj , for some appropriately defined Cj’s given by the inter-

section of different B(i)
± . Setting sensing matrix A = 0 will restore the phase retrieval to
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our setting.

• Quantized compressive sensing. In this scenario, the measurements are quantized, i.e.,

yi = Q(〈ai, x〉), 1 ≤ i ≤ L,

where Q(·) is the quantizer. Since Q−1(·) is an interval on real line, Ci would be a convex

set and the quantized CS can be easily transformed to our setting.

• Model-based compressive sensing. These lines of works [114, 115, 116] are the most

similar work to our model, where they consider

y = Ax\, x\ ∈
⋃
i

Li.

Here, Li is assumed to be a linear space whereas the only assumption we make on the

models is being a convex set. Hence, their model can be regarded as a special case of our

problem.

7.2 System Model

We start the discussion with a formal restatement of our problem. Let A ∈ RM×N be the

measurement matrix, and consider the setup

y = Ax\, and x\ ∈
L⋃
i=1

Ci, (7.2.1)

where x\ is a K-sparse high-dimensional signal, y ∈ RM is the measurement vector, and

Ci ⊂ RN , i = 1, 2, . . . , L, is a convex set.

Due to the sparsity of x\, we propose to reconstruct x\ via

x̂ = argminx ‖x‖1, s.t. y = Ax, x ∈
L⋃
i=1

Ci, (7.2.2)
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where x̂ denotes the reconstructed signal. In the following, we will study the inverse prob-

lem in (Equation 7.2.2) from two perspectives; the statistical and the computational aspects.

7.3 Statistical Property

In this section, we will find the minimum number of measurements M to x̂ = x\, i.e.,

d = 0. For the simplicity of analysis, we assume that the entries Ai,j of A are i.i.d. normal

N (0, 1).

Definition 5. The tangent cone Tx for ‖x‖1 is defined as [107]

Tx , {e : ‖x + te‖1 ≤ ‖x‖1, ∃ t ≥ 0}.

Geometric interpretation of Tx is that it contains all directions that lead to smaller ‖ · ‖1

originating from x. In the following analysis, we use T as a compact notation for Tx\ .

Easily we can prove that d ∈ T .

Definition 6. The Gaussian width ω(·) associated with setU is defined as ω(U) , E supx∈U 〈g, x〉,

g ∼ N (0, I), [108].

Define cone C̃i,j as

C̃i,j ,
{
z
∣∣ z = t(x1 − x2), ∃ t > 0, x1 ∈ Ci,x2 ∈ Cj

}
,

which denotes the cone consisting of all vectors z that are parallel with x1 − x2, x1 ∈ Ci,

and x2 ∈ Cj . Then we define event E as

E ,

{⋃
i,j

(
null(A)

⋂
T
⋂
C̃i,j
)

= {0}

}
.
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Lemma 14. We can guarantee the correct recovery of x, i.e., x̂ = x\, iff we have event E

to be satisfied.

Proof. This proof is fundamentally the same as [79, 107]. Let d , x̂− x\ be the deviation

of the reconstructed signal x̂ from the true signal x\. First we prove that E leads to x̂ 6= x\.

Provided d , x̂− x\ 6= 0, we then have a x̂ 6= x\ such that ‖x̂‖1 ≤ ‖x\‖1. Setting e ‖ d,

we hav a non-zero e ∈ null(A)
⋂
T
⋂

(
⋃
i,j C̃i,j), which violates E .

Then we prove that x̂ 6= x\ implies E . Assume that there exists non-zero e such that

e ∈ null(A)
⋂
T
⋂(⋃

i,j

C̃i,j

)
.

We can show that signal x\ + te, where t is some positive constant such that ‖x\ + te‖1 ≤

‖x\‖1, satisfying constraints described by (Equation 7.2.1). This implies that d = te 6= 0

and the wrong recovery of x\.

Since a direct computation of the probability of event E can be difficult, we analyze the

following equivalent event,

min
x∈T

⋂
(
⋃
i,j C̃ij)

‖Ax‖2 > 0.

Using Gordon’s escape from mesh theorem [108], we obtain the following result that relates

P(E) with the number of measurements M .

Theorem 10. Let aM = E‖g‖2, where g ∈ N (0, IM×M), and ω(·) denotes the Gaussian

width. Provided that aM ≥ ω(T ) and (1− 2ε)aM ≥ ω(C̃ij) for 1 ≤ i, j ≤ L and ε > 0, we

have

P(E) ≥ 1−
(
P
(

min
u∈T c\{0}

‖Au‖2 > 0

)
︸ ︷︷ ︸

P1

∧P

(
min

u∈
⋂
C̃ci \{0}

‖Au‖2 > 0

)
︸ ︷︷ ︸

P2

)
,

101



where a ∧ b denotes the minimum of a and b, and P1 and P2 can be bounded as

P1 ≤ 1 ∧ exp

(
−(aM − ω(T ))2

2

)

P2 ≤ 1 ∧ 3

2
exp

(
−ε

2a2
M

2

)
+
∑
i≤j

exp

−
(

(1− 2ε)aM − ω(C̃ij)
)2

2

 .

Theorem 10 links the probability of correct recovery of (Equation 7.2.2) with the num-

ber of measurements M , and the “size” of constraint set. Detailed explanation is given as

the following. To ensure high-probability of E , we would like to P1 ∧P2 to approach zero,

which requires large value of aM . Meanwhile, aM is a monotonically increasing function of

the sensor number M . Hence, we can obtain the minimum sensor number M requirement

by unique recovery via investigating aM .

Remark 9. Notice that P1 is associated with the descent cone T of the optimization func-

tion, namely, ‖x‖1, while P2 is associated with the prior knowledge x ∈
⋃
i Ci. Theorem 10

implies that event E (uniqueness) holds with higher probability than the traditional CS due

to the extra constraint x ∈
⋃
i Ci. If we fix P(E), we can separately calculate the corre-

sponding M with and without the constraint x ∈
⋃
i Ci. The difference ∆M would indicate

the savings in the number of measurements due to the additional structure x ∈
⋃
i Ci over

the traditional CS.

One simple example is attached below to illustrate the improvement brought by Theo-

rem 10.

Example 1. Consider the constraint set

Ci = {(0, · · · , 0, xi, · · · , xK+i, 0, · · · , 0)},

where 1 ≤ i ≤ N − K. We study the asymptotic behavior of Theorem 10 when N is of

orderO(Kc), where c > 1 is constant. In the sequel we will show that Theorem 10 gives us
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the order M = O(K) to ensure solution uniqueness as K approaches infinity, which gives

us the same bound as shown in [114] and suggests the tightness of our result.

Setting ε = 1/4, we can bound P2 as

P2 ≤
3

2
exp

(
−a

2
M

32

)
+

N2

2
exp

(
−(aM − 2a2K)2

8

)
,

provided aM ≥ 2aK . With the relation M√
M+1

≤ aM ≤
√
M [108, 107] and setting

M = 3K, we have

P2 ≤ c1 exp(−c2K) + c3N
2 exp(−c4K),

where c1, c2, c3, c4 > 0 are some positive constants. Since N = O(Kc), we can see P2

shrinks to zero as K approaches infinity, which implies the solution uniqueness.

Comparing with the traditional CS theory without prior knowledge x ∈
⋃
i Ci, our

bound reduces the number of measurements from M = O(K logN/K) = O(K logK) to

M = O(K).

7.4 Computational Algorithm

Apart from the statistical property, another important aspect of (Equation 7.2.2) is to design

an efficient algorithm. One naive idea is to consider and solve L separate optimization

problems

x̂(i) = argminx ‖x‖1, s.t. y = Ax, x ∈ Ci,

and then selecting the best one, i.e., the sparsest reconstructed signal among all x̂(i)’s.

However, this method has two drawbacks:

• It requires solving L separate optimization problems, which in many applications might

be prohibitively large and difficult to handle, but the proposed method is based on one

single optimization procedure.
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• It is inflexible. For example, some prior knowledge of which Ci the true signal x\ is more

likely to reside might be available. The above method cannot incorporate such priors.

To overcome the above drawbacks, we (i) reformulate (Equation 7.2.2) to a more

tractable objective function, and (ii) propose a computationally efficient algorithm to solve

it. In the following, we assume that x is bounded in the sense that for a constant R,

‖x‖2 ≤ R.

7.4.1 Reformulation of the Objective Function

We introduce an auxiliary variable p and rewrite the Lagrangian form in (Equation 7.2.2)

as

min
x

min
p∈∆L

∑
i

pi

(
‖x‖1 + 1̃(x ∈ Ci) +

λ1

2
‖y −Ax‖2

2 +
λ2‖x‖2

2

2

)
, (7.4.1)

where ∆L is the simplex {pi ≥ 0,
∑

i pi = 1}, 1̃(·) is the truncated indicator function,

which is 0 when its argument is true and is some large finite number C otherwise, and

λ1, λ2 > 0 are the Lagrange multipliers. The term ‖y −Ax‖2
2 is used to penalize for the

constraint y = Ax while ‖x‖2
2 corresponds to the energy constraint ‖x‖2 ≤ R. It can be

easily shown that solving (Equation 7.4.1) for large enough C ensures x ∈
⋃L
i Ci.

Algorithm 5 Non-convex Proximal Multiplicative Weighting Algorithm.

• Initialization: Initialize all variables with uniform weight p(0)
i = L−1 and x(0) = 0.

• For time t = 1 to T : We update p(t+1)
i and x(t) as

p
(t+1)
i

∼= p
(t)
i e
−η(t)p fi(x

(t)) (7.4.2)

x(t+1) = prox
η
(t)
w ‖·‖1

[
x(t) − η(t)

x

∑
i

p
(t)
i

(
∇xhi(x

(t))

+ λ1A
>(Ax(t) − y) + λ2x

(t)

)]
, (7.4.3)

where p(t)
i denotes the ith element of p(t), and the proximal operator prox‖·‖1(x) is

defined as argminz

(
‖z‖1 + 1

2
‖z− x‖2

2

)
[113].

• Output: Calculate the average value p̄ =
∑
t p(t)

T
and value x̄ =

∑
t x(t)

T
. Then output

x̂ by projecting x̄ onto the set of
⋃
i Ci.
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Apart from the universality, our formulation has the following benefits:

• It is memory efficient. Compared with the naive idea that needs to store L different x̂(i),

our method only needs to track one x̂ and one redundant variable p. This reduces the

storing memory from O(NL) to O(N + L).

• It is very flexible. We can easily adjust to the case that x belongs to the intersection, i.e.,

x ∈
⋂
i Ci via modifying minp∈∆L

in (Equation 7.4.1) to maxp∈∆L
.

Besides, to the best of our knowledge, this is the first time that such a formulation (Equa-

tion 7.4.1) is proposed. In the following, we will focus on the computational methods. Note

that the difficulties in solving (Equation 7.4.1) are due to two aspects:

• Optimization over p: Although classical methods to minimize over p with fixed x, e.g.,

alternating minimization and ADMM [149], can calculate local minimum efficiently (due

to the bi-convexity of (Equation 7.4.1), they can be easily trapped in the local-minima.

This is because some entries in p can be set to zero and hence x will be kept away

from the corresponding set Ci thereafter. To handle this problem, we propose to use

multiplicative weight update [117] and update p with the relation p(t+1) ∝ p(t)e−η
(t)
p fi(x),

where p(t) denotes p’s value in the tth iteration. This update relation avoids the sudden

change of p(t)’s entries from non-zero to zero, which could have forced x(t) being trapped

in a local minimum.

• Optimization over x: Due to the non-smoothness of 1̃(x ∈ Ci) and ‖x‖1 in (Equa-

tion 7.4.1) and the difficulties in calculating their sub-gradients, directly minimizing

(Equation 7.4.1) would be computationally prohibitive. We propose to first approximate

1̃(x ∈ Ci) with a smooth function hi(x) and update x(t) with the relation (Equation 7.4.3)

used in proximal gradient descent [112].
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Definition 7 (Lg-strongly smooth [112]). Function g(·) : X 7→ R is Lg-strongly smooth iff

g(y) ≤ g(x) + 〈∇g(x), y − x〉+
Lg
2
‖x− y‖2

2,

for all x, y in the domain X .

7.4.2 Non-convex Proximal Multiplicative Weighting Algorithm

Here we directly approximate the truncated indicator function 1̃(x ∈ Ci) by Lh,i strongly-

smooth convex penalty functions hi(x), which may be different for different shapes of

convex sets. For example, consider the convex set Ci in Example 1. We may define

hi(x) =
∑N

j /∈[i,i+K] x
2
j , where [a, b] denotes the region from a to b. While for the set

{x : 〈a,x〉 ≤ b}, we may instead adopt the modified log-barrier function with a finite

value. Then (Equation 7.4.1) can be rewritten as

min
p

min
x
L(p,x) ,

L∑
i=1

pifi(x), (7.4.4)

where fi(x) is defined as

fi(x) , ‖x‖1 + hi(x) +
λ1

2
‖y −Ax‖2

2 +
λ2

2
‖x‖2

2.

Hence, the optimization problem in (Equation 7.4.4) can be solved via Algorithm 5.

Lemma 15. h(x) ,
∑

i pihi(x) +
λ1‖y−Ax‖22

2
+

λ2‖x‖22
2

is strongly-smooth with some

positive constant denoted as Lh.

Proof. First, we can check that λ1‖y−Ax‖22
2

+
λ2‖x‖22

2
is strongly-smooth. Denote the cor-

responding parameter as Lh,0. Meanwhile, due to the construction of hi(x), it is strongly-

smooth for every i. Since pi is non-negative for every i, we can easily prove the following

inequality

h(x1) ≥ h(x2) + 〈∇h(x2),x1 − x2〉+
Lh
2
‖x1 − x2‖2

2,

where Lh is defined as min(Lh,i), 0 ≤ i ≤ L.
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Then we have the following theorem.

Theorem 11. Let η(t)
x = ηx ≤ L−1

h , and η
(t)
p = R−1

f

√
2 logL/T , where |fi(·)| ≤ Rf ,

‖x‖2 ≤ R. Then we have∣∣∣∣minp

∑
t L(p,x(t))

T
−
∑

t L(p(t),x(t))

T

∣∣∣∣+

∣∣∣∣∑t L(p(t),x(t))

T
− minx

∑
t L(p(t),x)

T

∣∣∣∣
≤ 2R2

ηxT
+Rf

√
logL

T
,

where T denotes the number of iterations.

Due to the difficulties in analyzing the global optimum, in Theorem 11 we focus on ana-

lyzing the closeness between the average value
∑
t L(p(t),x(t))

T
to its local minimum. The first

term denotes the gap between average value
∑
t L(p(t),x(t))

T
and the optimal value of L(p,x)

with x(t) being fixed. Similarly, the second term represents the gap with p(t) being fixed.

As T →∞, the sum of these two bounds approaches to zero at the rate of O(T−1/2).

Moreover note that setting η(t)
p requires the oracle knowledge of T , which is impractical.

This artifacts can easily be fixed by the doubling trick (cf. Sec. 2.3.1 in [118]). In addition,

we have proved the following theorem.

Theorem 12. Let η(t)
w ≤ L−1

h , where |fi(·)| ≤ Rf . Then we have

1

T

∑
t

‖x(t+1) − x(t)‖2
2 ≤

2L(p(0),x(0))

LhT
+

4R2
f

∑
t η

(t)
p

LhT
.

This theorem discusses the convergence speed with respect to the x(t) update. Due to the

O(T−1) of the first term on the right side of the above inequality, the best convergence rate

we can obtain isO(T−1), which is achievable by η(t)
p ∝ t−2. However, using fixed learning

rate ηp as in Theorem 11 would result in the convergence rate of O(T−1/2).

7.4.3 Regularization for p

Another drawback of the naive method is that they cannot exploit the prior knowledge.

For example, if we know that the true x\ is most likely to reside in set C1. With the naive
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method, we cannot use this information but separately solve (Equation 7.2.2) for all L sets.

In the sequel, we will show that our formulation (Equation 7.4.1) can incorporate such prior

knowledge by adding regularizers for p, and bring certain performance improvement.

Note that we can interpret pi, the i-th element of p in (Equation 7.4.4) as the likelihood

of x\ ∈ Ci. Without any prior knowledge about which set Ci the true signal x\ resides,

variable p is uniformly distributed among all possible distributions ∆L. When certain prior

information is available, its distribution is skewed towards certain distributions, namely q.

Here we adopt ‖·‖2
2 to regularize p towards q and write the modified functionLR(p,x)

as

LR(p,x) = L(p,x) +
λ3

2
‖p− q‖2

2,

where λ3 > 0 is a constant used to balance L(p,x) and 1
2
‖p − q‖2

2. Based on different

applications, other norms such as KL-divergence or l1 norm can be used as the regularizer.

Then we substitute the update equation (Equation 7.4.2) as

p(t+1) = P∆

(
p(t) − η(t)

p g(t)
)
,

where g(t) = ∇p(t)LR(p,x(t)) = f(x(t)) + λ3(p(t) − q), and f(x(t)) denotes the vector

whose ith element is fi(x(t)). Similar as above, we obtain the following theorems.

Theorem 13. Provided that ‖g(t)‖2 ≤ Rg, by setting η(t)
x = ηx ≤ L−1

h and η(t)
p = (λt)−1

we conclude that∣∣∣∣minp
∑

t LR(p,x(t))

T
−
∑

t LR(p(t),x(t))

T

∣∣∣∣+

∣∣∣∣∑t LR(p(t),x(t))

T
−

minx
∑

t LR(p(t),x)

T

∣∣∣∣
≤

R2
g log T

2λ3T
+

R2

2ηxT
,

Comparing with Theorem 11, Theorem 13 implies that the regularizers improve the

optimal rate fromO(T−1/2) toO(log T/T ). Therefore, our framework can exploit the prior

information to improve the recovery performance whereas the naive method of iterative
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computation fails to achieve as such.

Theorem 14. Provided that ‖g(t)‖2 ≤ Rg, by setting η(t)
w = ηx ≤ L−1

h we conclude that

1

T

∑
t

‖x(t+1) − x(t)‖2
2 ≤

2LR(p(0),x(0))

LhT
+

2R2
g

LhT

∑
t

η(t)
p +

λ3

(
η

(t)
p

)2

2

 .

In this case, if we set η(t)
p as t−2, then 1

T

∑
t ‖x(t+1) − x(t)‖2

2 would decrease at the rate of

O(T−1), which is the same as Theorem 12.

7.5 Conclusions

We studied the compressive sensing with a multiple convex-set domain. First we analyzed

the impact of prior knowledge x ∈
⋃
i Ci on the minimum number of measurements M to

guarantee uniqueness of the solution. We gave an illustrative example and showed that sig-

nificant savings in M can be achieved. Then we formulated a universal objective function

and developed an algorithm for the signal reconstruction. We showed that in terms of the

speed of convergence to local minimum, our proposed algorithm based on multiplicative

weight update and proximal gradient descent can achieve the optimal rate of O(T−1/2).

Further, in terms of T−1‖x(t+1) − x(t)‖2
2, the optimal speed increases to O(T−1). More-

over, provided that we have a prior knowledge about p, we showed that we can improve

the optimal recovery performance by ‖ · ‖2
2 regularizers, and hence increasing the above

convergence rate from O(T−1/2) to O
(

log T
T

)
.
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CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

This chapter summarizes the thesis research and presents the future directions.

8.1 Summary of Present Work

This thesis presents an integrated framework of learning dependency relation and signal

reconstruction, which consists of three parts.

Interdependency relation learning. First, we presented the parametric method of learning

the graphical structure with indirect observations. Assuming the random vector is Gaussian

distributed and the majority of entries are conditionally independent, we proposed two

novel estimators, namely, M-CLIME and M-gLasso, and analyzed their properties. For the

first time, we showed that the correct graphical structure can be correctly obtained under

the indefinite sensing system (d < p) with insufficient samples (n < p). One feasible

parameter setting is when dimension d is at the order of Ω (p0.8) and sample number n is

at the order of Ω
(
p0.8 log3 p

)
. Numerical experiments suggest a threshold phenomenon

may appear if the projection dimension d is not large enough, which is consistent with our

theorem.

Second, we extended the parametric method to the non-parametric method of learn-

ing graphical models. Relaxing distribution assumption of the random vector X, namely,

from Gaussian distribution to nonparanormal distribution, we proposed a practical estima-

tor based on the deconvolution estimator of the CDF and graphical Lasso. Under mild

conditions, we showed our graphical structure estimators can obtain the correct structure,

from which the minimum sample number n and dimension d can be obtained, that is,

n & (deg)4 log4 n and d & p + (log(d− p))c, where c > 0 is some positive constant. As

a byproduct, we obtained a non-asymptotic uniform bound on the estimation error of the
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CDF with inexact knowledge of the noise distribution. To the best of our knowledge, this

bound never exists before and may serve as independent interests. Additionally, we com-

pared the parametric method and non-parametric method when the underlying distributions

are uniform, exponential, and Gaussian mixture, respectively. Numerical experiments sug-

gest the non-parametric method can result in a significant performance improvement under

the uniform and exponential setting and a modest improvement under the Gaussian mixture

setting. Furthermore, we applied our algorithm to multiple real-world miRNA datasets and

verified its effectiveness.

Sensing system design. We presented a general framework to design a sparse sensing

matrix A ∈ Rm×n, for a linear measurement system y = Ax\ + w, where y ∈ Rn,

x\ ∈ Rn, and w denote the measurements, the signal with certain structures, and the mea-

surement noise, respectively. By viewing the signal reconstruction from the measurements

as a message passing algorithm over a graphical model, we leveraged the density evolution

technique and incorporated two design schemes, namely, (i) a regular sensing and (ii) a

preferential sensing, into a single framework. To the best of our knowledge, this is the first

work that uses density evolution to design the sensing system in CS. In the regular sensing

scenario, we considered the `1 regularizer, which corresponds to Lasso estimator, as an

illustration. Noteworthy, our framework can reproduce the classical result of Lasso, i.e.,

m ≥ c0k log(n/k) after a proper distribution approximation, where c0 > 0 is some fixed

constant. In the preferential sensing scenario, we formulated the sensing system design as a

bi-convex optimization problem, which can be efficiently solved via an alternating method.

In the end, we evaluated our design method with both the synthetic and real-world data.

For the synthetic data, we showed our sensing system can give a significant reduction of

the `2 error in the high-priority part and a modest reduction of the `2 error in the whole

signal when compared with the matrix designed with the previous method. For the real-

world data, we evaluated our sensing matrix with both the MNIST dataset and the Lenka

image. Numerical experiments suggest our sensing system can reconstruct the original
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images with better qualities and confirm the superiority of our method.

Signal reconstruction with indefinite linear sensing system. First, we considered recov-

ering the sign value of the signal with uncertain sensing matrix. Assuming the perturbation

matrix to be sparse Gaussian, we proposed a thresholding strategy and gave a sufficient

condition, under which with high probability the reconstructed sign value will be correct.

Numerical experiments verify the correctness of our theorem and suggest the recovery per-

formance is unstable once the sufficient condition is violated.

Second, we proposed a new objective function to recover a noisy-pseudo-sparse signal

from linear measurements. We gave a theoretical analysis of the reconstructed signal’s

properties. For the convenience of analysis, we studied the ideal case where the entries

of the signal deviation are uniformly distributed and proved that a unique solution in the

proximity of ground-truth could be obtained with an indefinite sensing matrix. Moreover,

we provided simulation results with the Gaussian noise and showed a significant reduction

(approximately 50%) in the `2 error of the signal reconstruction with our method.

Third, we studied the compressive sensing with a multiple convex-set domain, where

the sparse signal is assumed to reside within the union of several convex sets. Notice that

multiple CS problems can be recasted as this problem with certain algebraic manipulations.

From the statistical perspective, we analyzed the impact of prior knowledge x ∈
⋃
i Ci on

the minimum number of measurements M to guarantee uniqueness of the solution. To il-

lustrate the significant savings resulted from the prior knowledge, we present an illustrative

example in which the number M reduces from O(K logK) to O(K) (K is the sparsity

number of the signal). From the computational perspective, we formulated a universal

objective function and designed an optimization algorithm based on multiplicative weight

update and proximal gradient descent. Compared with the previous method that iteratively

reconstructs the sparse signal for each convex set Ci, our method enjoys the following ben-

efits.

• Reduce the storage size. Our algorithm reduces the storage size from O(NL) to
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O(N + L), where N is the length of signal and L is the number of convex sets.

• Capable of exploiting prior knowledge for acceleration of algorithm. Without the

prior knowledge of the distributions on the union
⋃
i Ci, our algorithm can converge

to the local minimum at the speed of O(T−1/2), where T is the number of iterations.

Given the prior knowledge, the convergence rate will increase to O(log T/T ).

8.2 Summary of Future Directions

This section lists the possible directions of the future research.

Interdependency relation learning. In the parametric method of graphical structure learn-

ing, our current work assumes the random vector to be Gaussian distributed. In the future

research, we can extend the analysis to other types of graphs, e.g., graphs for discrete ran-

dom variables. Further, we only considered undirected graphs. One may extend the work

to Bayesian graphs.

For the nonparametric method of the graphical structure learning, we can turn to the

setting of compressive sensing system, i.e., with an indefinite sensing matrix A ∈ Rd×p.

To the best of our knowledge, whether we can use insufficient sensors to detect the correct

graphical structure with non-parametric method is still an open problem.

Furthermore, one can focus on other methods of covariance matrix estimation. Possible

directions include Spearman’s rho estimator, Kendall’s tau estimator, etc. Moreover, other

types of graphical models such as graphs with forest structure, graph with the elliptical

distribution, and latent Gaussian models can be investigated.

Additionally, we can revisit our current work on graphical structure recovery from the

viewpoint of the privacy. Consider the setting where the direct inquiry about X cannot be

returned due to the privacy concern, for example when X denotes some health or financial

information. Our goal then becomes learning the structure of graphical models without

leaking the exact information about one particular sample. How to balance the performance

of the graphical structure recovery and the data privacy constitutes as another promising

113



future research direction.

Sensing system design. For the design of compressive sensing system with density evolu-

tion, our current work only specifies the degree distributions of the variable nodes and check

nodes. Meanwhile, the previous work [55, 53] suggest that the spatial coupling technique

can lead to significant performance improvement of the signal reconstruction. Hence, one

potential direction of future research will be incorporating the structural information into

the design framework. Additionally, one can extend the work to design the compressive

sensing system {ai}1≤i≤p, for the non-linear sensing relation, i.e., yi = fi (〈ai,x〉) + noise.

Moreover, one can revisit the problem of sensing system design from the perspective of

robustness. Notice that the practical sensing system can deviate from the designed sensing

matrix, which may lead to serious performance degradation. In such case, how to design

a sensing sensing that is robust to the undesirable deviations constitute another future re-

search direction.

Signal reconstruction with indefinite linear sensing system. In our current analysis, we

assume the linear sensing relation, namely, y = Ax + w, which can be impractical in

real-world applications. In our future research, we can revisit our previous problems by

considering a general form of sensing relation, i.e.,

yi = fi (〈ai,x〉) + noise,

where fi(·) denotes some non-linear function, yi denotes the ith reading, and ai is the

corresponding coefficient vector. Obtaining the minimum number of measurements for the

signal recovery and the design of efficient reconstruction algorithms are two interesting

questions awaiting to be answered.

114



Appendices



APPENDIX A

APPENDIX OF PARAMETRIC LEARNING OF GRAPHICAL MODELS

A.1 Proof of Lemma 1

For the convenience of analysis, we rescale the sensing matrix Ã such that Ãij ∼ N (0, d−1).

Lemma 16. Consider the covariance estimator Σ̂
param
n which reads

Σ̂
param
n = I +

d

d+ 1

[
Ã>

(
1

n

n∑
i=1

Y(i)Y(i)>

)
Ã

]
off

, (A.1.1)

where (·)off denotes the operation of picking non-diagonal entries. We then have ‖Σ̂
param
n −

Σ\‖∞ . τ∞ holding with probability at least 1− c0p
−1 − c1p

2e−c2d − c3p
2e−c4p.

We begin the analysis by redefining the following events,

E1 ,

{
1− c0

√
log p

d
≤
∥∥∥Ãi

∥∥∥
2
≤ 1 + c0

√
log p

d
, ∀ i

}
;

E2 ,

{
|
〈
Ãi, Ãj

〉
| .

√
log p

d
∨ log p

d
, ∀ i 6= j

}
;

E3 ,

{∥∥∥Σ̂param
n −Σ\

∥∥∥
∞
.

√
log p

n

}
;

E4(B) ,


∥∥∥∥∑
6̀=1

B`Ã`

∥∥∥∥
2

.
√∑

`6=1

B2
`

 , where B ∈ Rp is a fixed vector.

Additionally, we define Ψ(E) as E1(E). Moreover, our analysis focuses on the region when

d� log p.
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A.1.1 Main Structure

Having collected all the lemmas, we turn to the proof of Lemma 1. Notice that by the

definition of our estimator,
∥∥∥Σ̂param

n −Σ\
∥∥∥
∞

= maxi 6=j

∣∣∣∣(Σ̂
param
n

)
i,j
−Σ\

i,j

∣∣∣∣. Hence, we

only consider the off-diagonal entries, which gives

∥∥∥Σ̂param
n −Σ\

∥∥∥
off,∞

=

∥∥∥∥∥ d

d+ 1
Ã>

(
n∑
`=1

Y(`)Y(`)>

)
Ã−Σ\

∥∥∥∥∥
off,∞

≤ 2

∥∥∥∥ d

d+ 1
Ã>ÃΣparam

n Ã>Ã−Σ\

∥∥∥∥
off,∞

+
2d

n(d+ 1)

∥∥∥∥∥Ã>
(

n∑
`=1

W(`)W(`)>

)
Ã

∥∥∥∥∥
off,∞

1©
=

2d

d+ 1

∥∥∥Ã>ÃΣparam
n Ã>Ã− EÃ

(
Ã>ÃΣparam

n Ã>Ã
)∥∥∥

off,∞︸ ︷︷ ︸
ϑ1

+
2d

d+ 1

∥∥∥EÃ

(
Ã>ÃΣparam

n Ã>Ã
)
− EÃ,X

(
Ã>ÃΣparam

n Ã>Ã
)∥∥∥

off,∞︸ ︷︷ ︸
ϑ2

+
2d

n(d+ 1)

∥∥∥∥∥Ã>
(

n∑
`=1

W(`)W(`)>

)
Ã

∥∥∥∥∥
off,∞︸ ︷︷ ︸

ϑ3

,

where Σparam
n is defined as n−1

(∑n
`=1 X(`)X(`)>), and in 1© we use

d

d+ 1
EÃ,X

(
Ã>ÃΣparam

n Ã>Ã
)

= Σ\.

Then we separately upper-bound ϑ1, ϑ2, and ϑ3 conditional on the event
⋂3
i=1 Ei. For the

conciseness in notations, define Z = Ã>ÃΣparam
n Ã>Ã. Therefore ϑ1 = ‖Z− EZ‖off,∞.

For an arbitrary entry Zi,j , we can expand it as

Zi,j =
∑
`1,`2

(Σparam
n )`1,`2

〈
Ãi, Ã`1

〉〈
Ãj, Ã`2

〉
, i 6= j.

Compared to the existing work [3], our analysis ofZij involves fourth-order Gaussian chaos

[150], which exhibits heavy tails, and constructs the major obstacle.
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Stage I: Bounding ϑ1. To obtain upper bound on ϑ1, we first adopt the union bound and

obtain

P (ϑ1 ≥ δ) = P
(

max
i 6=j
|Zi,j − EZi,j| ≥ δ

)
≤
∑
i 6=j

P (|Zi,j − EZi,j| ≥ δ, i 6= j) . (A.1.2)

Then our focus is to bound the probability P (|Zi,j − EZi,j| ≥ δ, i 6= j). Without loss

of generality, assume that i = 1 and j = 2 and expand Z1,2 as
∑5

i=1 Ti, which reads

T1 , (Σparam
n )1,2

∥∥∥Ã1

∥∥∥2

2

∥∥∥Ã2

∥∥∥2

2
;

T2 , (Σparam
n )2,1

(〈
Ã1, Ã2

〉)2

;

T3 ,
∑
6̀=1

(Σparam
n )2,`

∥∥∥Ã2

∥∥∥2

2

〈
Ã1, Ã`

〉
+
∑
`6=2

(Σparam
n )`,1

∥∥∥Ã1

∥∥∥2

2

〈
Ã2, Ã`

〉
;

T4 ,
∑
6̀=1,2

(Σparam
n )`,`

〈
Ã1, Ã`

〉〈
Ã2, Ã`

〉
;

T5 ,
∑

`1,`2 6=1,2
`1 6=`2

(Σparam
n )`1,`2

〈
Ã1, Ã`1

〉〈
Ã2, Ã`2

〉
.

Now, we separately bound the deviations |Ti − ETi|, 1 ≤ i ≤ 5. First, we have

|T1 − ET1| = | (Σparam
n )1,2 | ×

∣∣∣∣∥∥∥Ã1

∥∥∥2

2

∥∥∥Ã2

∥∥∥2

2
− 1

∣∣∣∣
= | (Σparam

n )1,2 | ×
∣∣∣∥∥∥Ã1

∥∥∥
2

∥∥∥Ã2

∥∥∥
2
− 1
∣∣∣× (∥∥∥Ã1

∥∥∥
2

∥∥∥Ã2

∥∥∥
2

+ 1
)

2©
≤ | (Σparam

n )1,2 | ×
(∣∣∣∥∥∥Ã1

∥∥∥
2
− 1
∣∣∣ ∥∥∥Ã2

∥∥∥
2

+
∣∣∣∥∥∥Ã2

∥∥∥
2
− 1
∣∣∣)× ((1 + c0

√
log p/d

)2

+ 1

)
3©
≤ | (Σparam

n )1,2 | × c0

√
log p/d(2 + c0

√
log p/d)×

((
1 + c0

√
log p/d

)2

+ 1

)
4©
. | (Σparam

n )1,2 |
√

log p/d
5©
.

√
log p

d

(∣∣∣Σ\
1,2

∣∣∣+

√
log p

n

)
, (A.1.3)

where in 2© and 3© we condition on event E1, 4© is due to d � log p, and 5© is by the

definition of event E3.
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For |T2 − ET2|, by invoking Lemma 21,

|T2 − ET2| . | (Σparam
n )2,1 | ×

(
log p

d
+

√
log p

d3/2

) 6©
.
∣∣∣(Σparam

n )2,1

∣∣∣ log p

d

7©
.

log p

d

(∣∣∣Σ\
2,1

∣∣∣+

√
log p

n

)
, (A.1.4)

holds with probability exceeding 1− 2p−3, where 6© is because d� log p, and 7© is due to

event E3.

We continue to bound |T3 − ET3| by

|T3 − ET3|

≤
∥∥∥Ã1

∥∥∥2

2
×
∣∣∣∣∑
6̀=2

(Σparam
n )1,`

〈
Ã2, Ã`

〉 ∣∣∣∣+
∥∥∥Ã2

∥∥∥2

2
×
∣∣∣∣∑
` 6=1

(Σparam
n )`,2

〈
Ã1, Ã`

〉 ∣∣∣∣
≤

(
1 + c0

√
log p

d

)2 ∣∣∣∣∑
` 6=2

(Σparam
n )1,`

〈
Ã2, Ã`

〉 ∣∣∣∣+

(
1 + c0

√
log p

d

)2 ∣∣∣∣∑
`6=1

(Σparam
n )`,2

〈
Ã1, Ã`

〉 ∣∣∣∣
8©
.

(
1 + c0

√
log p

d

)2

×
√

log p

d

√∑
`6=2

(Σparam
n )2

1,` +

√∑
`6=1

(Σparam
n )2

`,2


9©
.

√
log p

d

√∑
6̀=2

(Σparam
n )2

1,` +

√∑
`6=1

(Σparam
n )2

`,2


A©
.

√
log p

d

(∥∥∥Σ\
1

∥∥∥
2

+
∥∥∥Σ\

2

∥∥∥
2

+

√
p log p

n

)
(A.1.5)

which holds for probability exceeding 1−c0p
−3−c1e

−c2d, where in 8©we invoke Lemma 22,

in 9© we use that Σparam
n is symmetric and d� log p, and A© is due to event E3.

To bound |T4 − ET4|, we invoke Lemma 23,
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|T4 − ET4|

.

∣∣∣∑`>2 (Σparam
n )`,`

∣∣∣
d

√
log p

d

+

√
log p

d

[√∑
`>2

(Σparam
n )2

`,` ∨
(√

log p(max
`
| (Σparam

n )`,` |)
)]

B©
.

p
√

log p

d3/2

(
1 + c0

√
log p

n

)

+

√
p log p

d

[(
1 + c0

√
log p

n

)
∨

√
log p

p

(
1 + c0

√
log p

n

)]
︸ ︷︷ ︸

1+c0
√

log p
n

, (A.1.6)

holds with probability exceeding 1− 2p−3, where B© is by definition of event E3.

The deviation |T5 − ET5| is bounded via Lemma 24, which gives

|T5 − ET5| .
log p

d

(
1 + c0

√
p

d

)2 ∣∣∣∣∣∣Σ\
∣∣∣∣∣∣

off,F (A.1.7)

C©
.

log p

d

(
1 +

c1p

d

)(∣∣∣∣∣∣Σ\
∣∣∣∣∣∣

off,F + p

√
log p

n

)
, (A.1.8)

with probability exceeding 1− 4p−3 − e−c0p, where in C© we condition on event E3.

Combining (Equation A.1.3), (Equation A.1.4), (Equation A.1.5), (Equation A.1.6),

and (Equation A.1.7), we conclude that

|Zi,j − EZi,j| .
√

log p

d

(∥∥∥Σ\
i

∥∥∥
2

+
∥∥∥Σ\

j

∥∥∥
2

)
+

log p

d

(
1 +

c1p

d

) ∣∣∣∣∣∣Σ\
∣∣∣∣∣∣

off,F

+
log p
√
p

√
nd

+
c0p(log p)3/2

n1/2d

(
1 +

c1p

d

)
+

√
p log p

d
+

p
√

log p

d3/2
,

with probability 1 − c0p
−3 − c1e

−c2d − c3e
−c4p. We conclude the proof by plugging into

(Equation A.1.2) and
∣∣∣∣∣∣Σparam

n −Σ\
∣∣∣∣∣∣

off,∞ ≤
∥∥Σparam

n −Σ\
∥∥
∞ .

√
log p/n according to

event E3.

Stage II: Bounding ϑ2. We rewrite ϑ2 as
∥∥Σparam

n −Σ\
∥∥

off,∞ and invoke event E3.
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Stage III: Bounding ϑ3. This stage is completed by invoking Lemma 25. Combing the

above three stages will then yield the proof.

A.1.2 Supporting Lemmas

We first compute the values of Ψ(Ei), 1 ≤ i ≤ 3.

Lemma 17. Ψ(E1) ≥ 1− 2p−1.

Proof. We conclude that

P

(∣∣∣∥∥∥Ãi

∥∥∥
2
− 1
∣∣∣ ≥ c0

√
log p

d
, ∃1 ≤ i ≤ p

)
≤ pP

(∣∣∣∥∥∥Ãi

∥∥∥
2
− 1
∣∣∣ ≥ c0

√
log p

d

)
1©
≤ 4p exp

(
−2d× log p

d

)
= 2p−1,

where 1© is due to the properties of χ2 distribution.

Lemma 18. Conditional on E1, we have Ψ(E2) ≥ 1− 2p−1.

Proof. Due to the independence between Ãi and Ãj , where i 6= j. We can condition on

Ãi and view
〈
Ãi, Ãj

〉
as a Gaussian RV with mean zero and variance d−1

∥∥∥Ãi

∥∥∥2

2
, namely,

N
(

0, d−1
∥∥∥Ãi

∥∥∥2

2

)
. Then we conclude that

Ψ
(
E2 | E1

) 1©
≤ p2Ψ

(
|
〈
Ãi, Ãj

〉
| ≥ δ | E1

) 2©
≤ 2p2

Φ

− √dδ∥∥∥Ãi

∥∥∥
2

×Ψ(E1)


3©
≤ 2p2

exp

− dδ2

2
∥∥∥Ãi

∥∥∥2

2

×Ψ(E1)

 4©
≤ 2p2 exp

− dδ2

2
(

1 + c0

√
log p/d

)2

 ,

where 1© is due to the union bound, in 2©we denote Φ(t) = 1/
√

2π
∫ t
−∞ e

−x2/2dx, the CDF

of the normal distribution, 3© is because Φ(x) ≤ e−x
2/2, and 4© is according to event E1.
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In the end, we complete the proof by setting δ as c1

(√
log p
d
∨ log p

d

)
, which yields

Ψ(E2 | E1) ≤ 2p−1.

Lemma 19. Ψ(E3) ≥ 1− 4p−1.

Proof. The proof can be found in the proof of Thm. 1 and Thm. 4 in [4].

Lemma 20. For an arbitrary fixed vector B ∈ Rp, we have Ψ(E4(B)) ≥ 1− e−0.8d.

Proof. Notice that
∑
6̀=1B`Ã` is a vector satisfying N

(
0, d−1

(∑
`6=1 B

2
`

)
I
)

. Hence,

d∑
` 6=1B

2
`
‖
∑
6̀=1B`Ã`‖2

2 is a χ2 RV with freedom d, which suggests

P

(∥∥∥∥∑
6̀=1

B`Ã`

∥∥∥∥2

2

≥ 4

(∑
`6=1

B2
`

))
= P

(
d∑

`6=1B
2
`

∥∥∥∥∑
`6=1

B`Ã`

∥∥∥∥2

2

≥ 4d

)
1©
≤ exp

(
d

2
(log 4− 3)

)
≤ e−0.8d,

where 1© is due to the properties of χ2 distribution.

Lemma 21. Conditional on event E1,

∣∣∣∣∣∑
6̀=1

B`

〈
Ã1, Ã`

〉2

− d−1

(∑
` 6=1

B`

)∣∣∣∣∣ . 1

d

√log p

√∑
`6=1

B2
` ∨ (log p)

(
max
`6=1
|B`|

)
+

∑
`6=1B`

d

√
log p

d

holds with probability exceeding 1− 2p−3, for an arbitrary fixed vector B ∈ Rp.
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Proof. First, we decompose the above term as

∣∣∣∣∣∑
` 6=1

B`

〈
Ã1, Ã`

〉2

− d−1

(∑
` 6=1

B`

)∣∣∣∣∣
≤

∥∥∥Ã1

∥∥∥2

2

d

∣∣∣∣∣∣∣
∑
6̀=1

B`

 √d
〈
Ã1, Ã`

〉
∥∥∥Ã1

∥∥∥
2

2

−
∑
` 6=1

B`

∣∣∣∣∣∣∣+ d−1

∣∣∣∣∑
`6=1

B`

∣∣∣∣ ∣∣∣∣∥∥∥Ã1

∥∥∥2

2
− 1

∣∣∣∣
1©
≤ 1

d

(
1 + c0

√
log p

d

)∣∣∣∣∣∣∣
∑
6̀=1

B`

 √d
〈
Ã1, Ã`

〉
∥∥∥Ã1

∥∥∥
2

2

−
∑
` 6=1

B`

∣∣∣∣∣∣∣︸ ︷︷ ︸
T

+

∣∣∣∑`6=1B`

∣∣∣
d

√
log p

d

2©
.

T

d
+

∣∣∣∑` 6=1B`

∣∣∣
d

√
log p

d

where 1© is due to the definition of event E1, and 2© is because d � log p. Our following

analysis focuses on upper-bounding T . First we define Λ as Λ = [Λ2 · · · Λd]
>, where

Λi =
√
d
〈
Ã1, Ã`

〉
/
∥∥∥Ã1

∥∥∥
2
. Then we can rewrite T as

T =
∑
`6=1

B`Λ
2
i = Λ>diag(B`)` 6=2Λ.

Due to the independence between Ã1 and Ã`, ` 6= 1, we can condition Ã1 and can

view Λi as a Gaussian RV satisfying N (0, 1). Invoking the Hanson-Wright inequality

(Thm. 6.2.1 in [139]), we conclude that

P (T ≥ δ) ≤ 2 exp

(
−c

(
δ2

|||diag(B`)`6=1|||2F
∧ δ

|||diag(B`)`6=1|||OP

))
.

Setting δ as
(
c0

√
log p

√∑
6̀=1B

2
`

)
∨ c1 (log p×max`6=1 |B`|) , we conclude that P(T ≥

δ) ≤ 2p−3 and complete the proof.
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Lemma 22. Given a fixed vector B ∈ Rp,

∣∣∣∣∑
6̀=1

B`

〈
Ã1, Ã`

〉 ∣∣∣∣ .
√

log p

d

√∑
`6=1

B2
` ,

holds with probability at least 1− p−3 − e−0.8d.

Proof. Due to the independence between Ã1 and Ã`, where ` 6= 1. We condition on Ã` and

view
∑
6̀=1 B`

〈
Ã1, Ã`

〉
as a Gaussian distributed RV N

(
0, d−1‖

∑
`6=1B`Ã`‖2

2

)
. Then

we obtain

P

∣∣∣∣∑
6̀=1

B`

〈
Ã1, Ã`

〉 ∣∣∣∣ &
√

log p

d

√∑
` 6=1

B2
`


= P

∣∣∣∣∑
` 6=1

B`

〈
Ã1, Ã`

〉 ∣∣∣∣ &
√

log p

d

√∑
`6=1

B2
`

×Ψ(E4(B))

︸ ︷︷ ︸
T1

+ P

∣∣∣∣∑
` 6=1

B`

〈
Ã1, Ã`

〉 ∣∣∣∣ &
√

log p

d

√∑
`6=1

B2
`

×Ψ(E3(B))

︸ ︷︷ ︸
T2

.

The proof is then completed by separately bounding T1 and T2. For term T1, we have

T1

1©
≤ EÃ`

exp

(
−
c log p(

∑
` 6=1B

2
` )

‖
∑
6̀=1 B`Ã1‖2

2

)
×Ψ(E4(B))

2©
≤ exp

(
−

3 log p(
∑

`6=1 B
2
` )∑

` 6=1B
2
`

)
,

where 1© is due to the tail bound for the Gaussian RV
∑

`6=1 B`

〈
Ã1, Ã`

〉
conditional on

Ã`, and 2© is according to the definition of E4(B). For term T2, we have T2 ≤ Ψ(E3(B)) ≤

e−0.8d. Summaring the above analysis finishes the proof.
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Lemma 23. Conditional on events E1, E2, we have

∣∣∣∣∣∑
6̀=1,2

B`

〈
Ã1, Ã`

〉〈
Ã2, Ã`

〉∣∣∣∣∣ .
∣∣∑

`>2B`

∣∣
d

√
log p

d

+

√
log p

d

[√∑
`>2

B2
` ∨

(√
log p(max

`
|B`|)

)]
,

hold with probability at least 1− 2p−3 for an arbitrary fixed vector B ∈ Rp.

Proof. First we rewrite the term
∑

`6=1,2B`

〈
Ã1, Ã`

〉〈
Ã2, Ã`

〉
as

∑
6̀=1,2

B`

〈
Ã1, Ã`

〉〈
Ã2, Ã`

〉
=
∑
` 6=1,2

Ã>`

(
B`Ã1Ã

>
2

)
Ã`.

Then we concatenate the vectors Ã`, ` 6= 1, 2 to a vector of length d(p − 2) and denote it

as vec
(
Ã
)

. Hence the summarization can be rewritten as

∑
` 6=1,2

Ã>`

(
B`Ã1Ã

>
2

)
Ã` = vec

(
Ã
)>

Λvec
(
Ã
)
,

where Λ is a block-diagonal matrix whose ith block is Bi+2Ã1Ã
>
2 , 1 ≤ i ≤ p − 2. Due

to the independence between Ã`, 1 ≤ ` ≤ p, we first condition on Ã1, Ã2 and perform the

following decomposition

∣∣∣∣∣∑
` 6=1,2

B`

〈
Ã1, Ã`

〉〈
Ã2, Ã`

〉∣∣∣∣∣ ≤ d−1
∣∣∣Ã>1 Ã2

∣∣∣ ∣∣∣∣ ∑
` 6=1,2

B`

∣∣∣∣︸ ︷︷ ︸
ϑ1

+ d−1

∣∣∣∣∣dvec
(
Ã
)>

Λvec
(
Ã
)
−
∑
`6=1,2

B`Ã
>
1 Ã2

∣∣∣∣∣︸ ︷︷ ︸
ϑ2

.
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The upper-bound for ϑ1 is relatively easy, which reads as

ϑ1 .

∣∣∣∣∣∑
`>2

B`

∣∣∣∣∣×
√

log p

d
.

The following analysis focus on bound ϑ2. Since ϑ2 also reads as

ϑ2 =

∣∣∣∣dvec
(
Ã
)>

Λvec
(
Ã
)
− EÃ`,`>2

(
dvec

(
Ã
)>

Λvec
(
Ã
))∣∣∣∣ ,

we can invoke the Hanson-Wright inequality (Thm. 6.2.1 in [139]) and obtain

P (ϑ2 ≥ δ) ≤ 2 exp

(
−c

(
δ2

|||Λ|||2F
∧ δ

|||Λ|||OP

))
,

where Ã1, Ã2 are viewed as constants. We complete the proof by setting δ as

δ �
(√

log p|||Λ|||F
)
∨ (log p|||Λ|||OP) ,

which yields P(ϑ2 ≥ δ) ≤ 2p−3. The specific values of |||Λ|||F and |||Λ|||OP are computed as

|||Λ|||2F =

(∑
`>2

B2
`

)∣∣∣∣∣∣∣∣∣Ã1Ã
>
2

∣∣∣∣∣∣∣∣∣2
F

1©
=

(∑
`>2

B2
`

)
Tr
(
Ã2Ã

>
1 Ã1Ã

>
2

)
2©
=
∥∥∥Ã1

∥∥∥2

2

∥∥∥Ã2

∥∥∥2

2

(∑
`>2

B2
`

)
3©
.
∑
`>2

B2
`

|||Λ|||OP = max
`
|B`|

∣∣∣∣∣∣∣∣∣Ã1Ã
>
2

∣∣∣∣∣∣∣∣∣
OP

4©
= max

`
|B`| ×

∥∥∥Ã1

∥∥∥
2

∥∥∥Ã2

∥∥∥
2
. max

`
|B`| ,

where in 1©we use |||M|||2F = Tr(M>M) for arbitrary matrix M, in 2©we use Tr(M1M2) =

Tr(M2M1), in 3© we condition on event E1, and in 4© we use
∣∣∣∣∣∣uv>

∣∣∣∣∣∣
OP = ‖u‖2‖v‖2 for

arbitrary vectors u,v.

126



Lemma 24. We have

∣∣∣∣ ∑
`1,`2 6=1,2
`1 6=`2

B`1,`2

〈
Ã1, Ã`1

〉〈
Ã2, Ã`2

〉 ∣∣∣∣ . log p

d

(
1 + c0

√
p

d

)2√√√√ ∑
i 6=1,2
j 6=1,2,i

B2
ij,

holds with probability exceeding 1− 4p−3 − e−c0p for a fixed matrix B.

Proof. We begin the proof by first rewriting
∑

`1,`2 6=1,2
`1 6=`2

B`1,`2

〈
Ã1, Ã`1

〉〈
Ã2, Ã`2

〉
as Ã>1 ΛÃ2,

where Λ is defined as

Λ ,
∑
`1 6=1,2

∑
`2 6=1,2,`1

B`1,`2Ã`1Ã
>
`2
.

The whole proof procedure can be divided into the following stages.

Stage I. Due to the independence across Ã`, we have

P
(∣∣∣Ã>1 ΛÃ2

∣∣∣ ≥ δ
)
≤ P

(∣∣∣Ã>1 ΛÃ2

∣∣∣ ≥ δ,
∥∥∥ΛÃ2

∥∥∥
2
≤ δ1

)
+ P

(∥∥∥ΛÃ2

∥∥∥
2
≥ δ1

)
1©
≤ 2 exp

(
−dδ

2

2δ2
1

)
+ P

(∥∥∥ΛÃ2

∥∥∥
2
≥ δ1

)
, (A.1.9)

where in 1©we first condition on Ã`, (` > 2) and view Ã>1 ΛÃ2 as a Gaussian RV satisfying

N
(

0, d−1‖ΛÃ2‖2
2

)
.

Stage II. To bound the probability P
(∥∥∥ΛÃ2

∥∥∥
2
≥ δ1

)
, we need to upper bound the Frobe-

nius norm |||Λ|||F. First we define two matrices, namely, ˜̃A and B̃, for the conciseness of

notation, which reads

˜̃
A ,

[
Ã3 · · · Ãp

]
, (B̃)i,j ,


Bi+2,j+2, if i 6= j;

0, otherwise.
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Easily we can verify Λ is equivalent to Λ as ˜̃AB̃
˜̃
A
>

, which gives

|||Λ|||F =

∣∣∣∣∣∣∣∣∣∣∣∣ ˜̃AB̃Ã>
∣∣∣∣∣∣∣∣∣∣∣∣

F

2©
≤
∣∣∣∣∣∣∣∣∣∣∣∣ ˜̃A∣∣∣∣∣∣∣∣∣∣∣∣2

OP

∣∣∣∣∣∣∣∣∣B̃∣∣∣∣∣∣∣∣∣
F

3©
≤
∣∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣∣2

OP

∣∣∣∣∣∣∣∣∣B̃∣∣∣∣∣∣∣∣∣
F
,

where in 2© we adopt the relation |||M1M2|||F ≤ |||M1|||OP|||M2|||F such that M1,M2 are

arbitrary matrix, and in 3© we use the relation
∣∣∣∣∣∣∣∣∣∣∣∣ ˜̃A∣∣∣∣∣∣∣∣∣∣∣∣

OP
≤
∣∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣∣

OP
in Corol. 2.4.2 [126]

since ˜̃A can be viewed as a sub-matrix of Ã.

Hence we conclude that

P

(
|||Λ|||F ≥

(
1 + c0

√
p

d

)2 ∣∣∣∣∣∣∣∣∣B̃∣∣∣∣∣∣∣∣∣
F

)

= P
(
|||Λ|||F &

p

d

∣∣∣∣∣∣∣∣∣B̃∣∣∣∣∣∣∣∣∣
F
,
∣∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣∣

OP
≤
√
c0p

d

)
+ P

(
|||Λ|||F &

p

d

∣∣∣∣∣∣∣∣∣B̃∣∣∣∣∣∣∣∣∣
F
,
∣∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣∣

OP
>

√
c0p

d

)
≤ P

(∣∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣∣2
OP
&
p

d
,
∣∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣∣

OP
≤
√
c0p

d

)
︸ ︷︷ ︸

0

+P
(∣∣∣∣∣∣∣∣∣Ã∣∣∣∣∣∣∣∣∣

OP
≥
√
c0p

d

) 4©
≤ e−c0p,

where 4© is due to Thm. 6.1 in [10].

Stage III. We bound P
(∥∥∥ΛÃ2

∥∥∥
2
≥ δ1

)
by splitting it as

P
(∥∥∥ΛÃ2

∥∥∥
2
≥ δ1

)
= P

(∥∥∥ΛÃ2

∥∥∥
2
≥ δ1, |||Λ|||F ≥

(
1 + c0

√
p

d

)2 ∣∣∣∣∣∣∣∣∣B̃∣∣∣∣∣∣∣∣∣
F

)
︸ ︷︷ ︸

≤ P
(
|||Λ|||F ≥(1+c0

√
p
d)

2|||B̃|||F
)

+ P

(∥∥∥ΛÃ2

∥∥∥
2
≥ δ1, |||Λ|||F <

(
1 + c0

√
p

d

)2 ∣∣∣∣∣∣∣∣∣B̃∣∣∣∣∣∣∣∣∣
F

)
. (A.1.10)

Notice that the first term is bounded in Stage II, we focus on bounding the second term in
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this stage, which proceeds as

P

(∥∥∥ΛÃ2

∥∥∥
2
≥ δ1, |||Λ|||F <

(
1 + c0

√
p

d

)2 ∣∣∣∣∣∣∣∣∣B̃∣∣∣∣∣∣∣∣∣
F

)
5©
≤ E1

(∣∣∣∣d∥∥∥ΛÃ2

∥∥∥2

2
− |||Λ|||2F

∣∣∣∣ ≥ δ2, |||Λ|||F <

(
1 + c0

√
p

d

)2 ∣∣∣∣∣∣∣∣∣B̃∣∣∣∣∣∣∣∣∣
F

)
6©
≤ 2 exp

(
−c0

(
δ2∣∣∣∣∣∣Λ>Λ
∣∣∣∣∣∣

OP

∧ δ2
2∣∣∣∣∣∣Λ>Λ
∣∣∣∣∣∣2

F

))
× 1

(
|||Λ|||F <

(
1 + c0

√
p

d

)2 ∣∣∣∣∣∣∣∣∣B̃∣∣∣∣∣∣∣∣∣
F

)

≤ 2 exp

(
−c0

(
δ2∣∣∣∣∣∣Λ>Λ
∣∣∣∣∣∣

F

∧ δ2
2∣∣∣∣∣∣Λ>Λ
∣∣∣∣∣∣2

F

))
× 1

(
|||Λ|||F <

(
1 + c0

√
p

d

)2 ∣∣∣∣∣∣∣∣∣B̃∣∣∣∣∣∣∣∣∣
F

)
7©
≤ 2p−3, (A.1.11)

where in 5© we require dδ2
1 ≥ |||Λ|||

2
F + δ2, 6© is due to the Hanson-Wright inequality (cf.

Thm. 6.2.1 in [139]), and in 7© we set δ2 as (1 + c0

√
p/d)4 log p

∣∣∣∣∣∣∣∣∣B̃∣∣∣∣∣∣∣∣∣2
F
.

Combining (Equation A.1.9), (Equation A.1.10), and (Equation A.1.11), we set δ1, δ as

c
√

log p/d(1 + c0

√
p/d)2

∣∣∣∣∣∣∣∣∣B̃∣∣∣∣∣∣∣∣∣
F

and c3δ �
√

log p/dδ1, respectively, which yields

P

(∣∣∣Ã>1 ΛÃ2

∣∣∣ & log p

d

(
1 + c0

√
p

d

)2 ∣∣∣∣∣∣∣∣∣B̃∣∣∣∣∣∣∣∣∣
F

)
≤ 4p−3 + e−c0p,

and completes the proof.

Lemma 25. Conditional on the event E1, we have

P

[
n−1

∣∣∣∣∣Ã>i
(

n∑
`=1

W(i)W(i)>

)
Ãj

∣∣∣∣∣ ≥ c0σ
2

(
1 + c1

√
log p

d

)√
log p

d

(
1 + c2

(√
d

n
∨ d
n

))]

≤ p−4 + c3e
−c4d

with fixed i, j.

Proof. First we define the matrix Ξ̂n as 1
n

∑n
`=1 W(i)W(i)> for the conciseness of notation.
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Then we upper-bound ÃiΞ̂nÃj , i 6= j as

P
(∣∣∣Ã>i Ξ̂nÃj

∣∣∣ ≥ δ
) 1©
≤ P

(
‖Ξ̂nÃj‖2 ≥ δ1

)
+ exp

(
−dδ

2

2δ2
1

)
2©
≤ P

(∣∣∣∣∣∣∣∣∣Ξ̂n

∣∣∣∣∣∣∣∣∣
OP

∥∥∥Ãj

∥∥∥
2
≥ δ1

)
+ p−4

3©
≤ P

(∣∣∣∣∣∣∣∣∣Ξ̂n

∣∣∣∣∣∣∣∣∣
OP
≥ δ2

)
+ p−4

4©
≤ P

(∣∣∣∣∣∣∣∣∣Ξ̂n − σ2I
∣∣∣∣∣∣∣∣∣

OP
≥ c2σ

2

(
d

n
∨
√
d

n

))
+ p−4

5©
≤ p−4 + c0e

−c1d,

where in 1© we exploit the independence between Ãi and Ãj when i 6= j and treat

Ã>i Ξ̂nÃj as a Gaussian RV with mean zero and variance d−1‖Ξ̂nÃj‖2
2, in 2©we use the fact

δ = 2δ1

√
2 log p/d, and in 3© we condition on event E1 and set δ1 ≥ δ2

(
1 + c0

√
log p/d

)
,

4© is because δ2 = σ2
(

1 + c2

(
d/n ∨

√
d/n
))

, and in 5© we use Thm. 6.5 in [10]. The

proof is then completed by setting δ as

δ = c0σ
2

(
1 + c1

√
log p

d

)√
log p

d

(
1 + c2

(√
d

n
∨ d
n

))
.

A.2 Insight Behind the Design of the Covariance Matrix Estimator

We now explain the rational behind the covariance matrix estimators of X that we use in

the graphical structure estimation via the parametric method. For this purpose, we exploit

the statistical properties of Ã.

We approximate data samples, X̂(i)’s, as X̂(i) = Ã>ÃX(i) = Ã>Y(i), 1 ≤ i ≤ n.

Due to the assumption on sensing matrix Ã, we have EÃX̂(i) = X(i). Hence, we can view

the samples {X̂(i)}ni=1 as a “perturbed” version of the true data points
{
X(i)

}n
i=1

. Hence,

we propose to estimate the covariance matrix of X from {X̂(i)}ni=1. Following the above

approach, a naive covariance estimator is given as

Σ̂n,1 =
1

n

n∑
i=1

X̂(i)X̂(i)> = Ã>

(
1

n

n∑
i=1

Y(i)Y(i)>

)
Ã.
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However, through numerical experiments, we observed that this estimator performs poorly.

To improve the performance of Σ̂n,1, we first analyze its properties thoroughly and then

refine the estimator.

A.2.1 Theoretical Properties

First, we evaluate the mean and variance of the naive covariance estimator Σ̂n,1.

Lemma 26. The mean of the naive covariance estimator is given by

EÃ,X[Σ̂n,1] =
d+ 1

d
Σ\ +

p

d
I + σ2I.

Proof. Due to the independence between X and Ã, we first condition on Ã and take ex-

pectation w.r.t X,W, which gives

EX,WΣ̂n,1 = Ã>ÃΣ\Ã>Ã + σ2Ã>Ã.

Then we conclude that

EÃ

(
Ã>ÃΣ\Ã>Ã

)
ij

= EÃ

∑
`1,`2

Σ\
`1,`2

〈
Ã`1 , Ãi

〉〈
Ã`2 , Ãj

〉
+ σ21(i = j)

= EÃ

∑
`1,`2

Σ\
`1,`2

(∑
`3

Ã`3,`1Ã`3,i

)
·

(∑
`4

Ã`4,`2Ã`4,j

)
+ σ21(i = j)

=
∑

`1,`2,`3,`4

Σ\
`1,`2

EÃ

(
Ã`3,`1Ã`3,iÃ`4,`2Ã`4,j

)
+ σ2I

1©
= d−2

[ ∑
`1,`2,`3,`4

Σ\
`1,`2

(
1 (`1 = i)1(`2 = j) + 1 (`3 = `4)1(`1 = `2)1(i = j)

+ 1(`3 = `4)1(`1 = j) 1(`2 = i)

)]
+ σ21(i = j)

= d−2

[∑
`3,`4

Σ\
i,j + 1(i = j)

(∑
`1

∑
`2

Σ\
`1,`1

)
+ Σ\

j,i

∑
`3,`4

1(`3 = `4)

]
+ σ21(i = j)

= d−2

[
d2Σ\

i,j + 1(i = j)d
∑
`

Σ\
`,` + dΣ\

i,j

]
+ σ21(i = j)

=
(
1 + d−1

)
Σ\
i,j + d−1

(∑
`

Σ\
`,`

)
1(i = j) + σ21(i = j),
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which completes the proof with the fact Σ\
`,` = 1. In 1©, we use the Wick’s theorem, which

is listed as Theorem 18 for the sake of self-containing.

Then we study the variance VarÃΣ̂n,1, which is listed as the following. Due to the

complex formula of the variance, we only consider the noiseless case, namely, σ2 = 0.

Lemma 27. Consider the noiseless case where σ2 = 0, we have VarÃ(Σ̂n,1)i,j = Ω(d−1)+

Ω(d−1)1(i = j) + Ω(d−2).

The detailed proof is given in the appendix. We use results of Lemma 26 to improve our

naive covariance estimator in two perspectives: bias correction and variance reduction.

Proof. With the relation VarÃΣ̂n,1 = EÃ(Σ̂n,1)2
i,j −

(
EΣ̂n,1

)2

i,j
, we complete the proof by

invoking Lemma 26 and Lemma 28. The following context focuses on proving Lemma 28.

Lemma 28. We have

EÃ(Σ̂n,1)2i,j = (Σparam
n )2i,j + d−1

[
‖(Σparam

n )i‖22 + ‖(Σparam
n )j‖22 + 4(Σparam

n )2i,j + 2(Σparam
n )i,i(Σ

param
n )j,j

]
+ d−2

[
2 ((Σparam

n )i,i + (Σparam
n )j,j) Tr(Σparam

n ) + 4(Σparam
n )i,i(Σ

param
n )j,j + 2‖(Σparam

n )j‖22

+ 2‖(Σparam
n )i‖22 + ‖Σparam

n ‖2F + 7(Σparam
n )2i,j

]
+ d−3

[
3‖(Σparam

n )i‖22 + 3‖(Σparam
n )j‖22 + 2 ((Σparam

n )i,i + (Σparam
n )j,j) Tr(Σparam

n )

+ Tr2(Σparam
n ) + 2(Σparam

n )i,i(Σ
param
n )j,j + 4(Σparam

n )2i,j

]
+ d−11(i = j) [〈(Σparam

n )i, (Σ
param
n )j〉+ 2(Σparam

n )i,j Tr(Σparam
n )]

+ d−21(i = j)
[
11 〈(Σparam

n )i, (Σ
param
n )j〉+ Tr2(Σparam

n ) + 6(Σparam
n )i,j Tr(Σparam

n )
]

+ d−31(i = j)
[
12 〈(Σparam

n )i, (Σ
param
n )j〉+ 8(Σparam

n )i,j Tr(Σparam
n ) + Tr2(Σparam

n ) + 2‖Σparam
n ‖2F

]
.

Proof. The proof procedure is fundamentally the same as the steps in computing EXΣ̂
param
n

but is more involved (requires computing over 100 terms).

We begin the proof with the following expansion
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E
[(

Ã>Ã(Σparam
n )Ã>Ã

)
ij

]2

=
∑

`1,`2,`3,`4,`5,`6,`7,`8

(Σparam
n )`1,`2(Σparam

n )`5,`6 E
(
Ã`3,`1Ã`3,i Ã`4,`2Ã`4,j Ã`7,`5Ã`7,i Ã`8,`6Ã`8,j

)
.

Then we expand the term E
(
Ã`3,`1Ã`3,i Ã`4,`2Ã`4,j Ã`7,`5Ã`7,i Ã`8,`6Ã`8,j

)
via the Wick’s

theorem, which is also listed as Theorem 18 for the sake of self-containing. Additionally,

we need to divide d4 for the following result.

A.2.2 Estimator Refinement

Bias Correction. First we note that the naive estimator is biased EÃ,XΣ̂n,1 6= Σ\. Adopt-

ing ideas similar to the moment estimator, we correct the bias of the estimator via

Σ̂n,2 ,
d

d+ 1
Ã>

(
1

n

n∑
i=1

Y(i)Y(i)>

)
Ã− p+ dσ2

d+ 1
I.

It can be easily verified that EÃ,X[Σ̂n,2] = Σ\.

Variance Reduction. To further improve the performance of the covariance estimator,

we perform variance reduction. From Lemma 27, we observe that the diagonal entries

(Σ̂n,2)i,i have a higher variance than non-diagonal entries. On the other hand, there is no

need for estimating diag(Σ\) since by the assumptions, we know that the diagonal elements

of the covariance matrix are 1. Therefore, we suggest refining the estimator Σ̂n,2 by fixing

its diagonal entries to 1, i.e., the resulting refined covariance estimator is given as

Σ̂
param
n = I +

d

d+ 1

[
Ã>

(
1

n

n∑
i=1

Y(i)Y(i)>

)
Ã

]
off

, (A.2.1)
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where (·)off denotes the operation of picking non-diagonal entries. It can be easily verified

that the estimator Σ̂
param
n in (Equation A.2.1) is unbiased.

A.3 Proof for the Graphical Model Estimator

A.3.1 Proof of M-gLasso

The analysis is based on primal-dual method, which is adapted from [3]. First we write

the optimality condition for (Equation 2.2.2) as

Σ̂
param
n −

(
Θ̂

param
G

)−1

+ λparam
G G = 0, (A.3.1)

where G is the sub-gradient [120] of
∣∣∣∣∣∣∣∣∣Θ̂param

G

∣∣∣∣∣∣∣∣∣
1,off

and is defined as

Gij ,


sgn(Θ̂

param
G )i,j, if (Θ̂

param
G )i,j 6= 0;

∈ [−1, 1], otherwise.

for i 6= j. However, because of the complexity of (Equation A.3.1), directly bounding the

deviation ‖Θ̂
param
G −Θ\‖∞ can be difficult. Instead, we construct a pair

(
Θ̃

param
G , G̃

)
which

satisfies: (i) G̃ is the sub-differential of
∣∣∣∣∣∣∣∣∣Θ̃param

G

∣∣∣∣∣∣∣∣∣
1,off

; and (ii) the pair (Θ̃
param
G , G̃) satisfies

the condition in (Equation A.3.1). Then we show it coincides with the solution of (5).

The basic rational is as follows. First we verify that Θ̂
param
G is the unique solution

of (Equation A.3.1). Since our constructed pairs (Θ̃
param
G , G̃) satisfies the condition in

(Equation A.3.1), which corresponds to the solution in (5) exclusively, we can hence show

the constructed pair (Θ̃
param
G , G̃) is the identical solution of (5), namely, (Θ̂

param
G ,G). Af-

terwards we can upper bound ‖Θ̂
param
G −Θ\‖∞ by investigating ‖Θ̃

param
G −Θ\‖∞, which is

more amenable for the analysis as following.

Stage I: construct Θ̃
param
G . We construct the primal-dual witness solution

(
Θ̃

param
G , G̃

)
assuming the support set S is given as a prior. This step can further be divided into three

stages, as illustrated in the main context. First we construct the matrix Θ̃
param
G . For the
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entries (i, j) restricted to the set S, we set them as

(Θ̃
param
G )S =argmin Θ�0

Θ=Θ>,ΘSc=0

− log det Θ +
〈
Σ̂

param
n ,Θ

〉
+ λparam

G |||Θ|||1,off.

For the rest of entries (Θ̃
param
G )Sc , we set them to be zero values. Then we construct the

sub-differential G̃ corresponding to the matrix Θ̃
param
G . For the entry (i, j) ∈ S, we set

G̃i,j = sign(Θ̃
param
G )i,j . For the entry (i, j) that is outside of the support set S, we set G̃i,j

as
G̃i,j = (λparam

G )
−1

[(
Θ̃

param
G

)−1

i,j
− (Σ̂

param
n )i,j

]
.

The goal of this step is to ensure that
(
Θ̃

param
G , G̃

)
satisfies (Equation A.3.1). As illus-

trated in the main context, we have the pair
(
Θ̃

param
G , G̃

)
coincides with the solution of

(Equation A.3.1) once
∣∣∣G̃i,j

∣∣∣ < 1 for the entry (i, j) ∈ Sc. The following step focuses on

showing
∣∣∣G̃i,j

∣∣∣ < 1.

Stage II: construct G̃. For the entry (i, j) ∈ S, we set G̃i,j = sign(Θ̃
param
G )i,j . For the

entry (i, j) that is outside of the support set S, we set G̃i,j as

G̃i,j = (λparam
G )

−1

[(
Θ̃

param
G

)−1

i,j
− (Σ̂

param
n )i,j

]
.

The goal of this step is to ensure that
(
Θ̃

param
G , G̃

)
satisfies (Equation A.3.1).

Stage III: verify G̃ to be the sub-differential of
∣∣∣∣∣∣∣∣∣Θ̃param

G

∣∣∣∣∣∣∣∣∣
1,off

. In the following analysis,

we verify that |G̃i,j| < 1, which yields the upper-bound on ‖Θ̃
param
G −Θ\‖∞ as a byproduct.

We first need the necessary lemmas from [3].

Lemma 29 (Lemma 6 in [3]). Suppose that r , 2κΓ

(∥∥∥Σ̂param
n −Σ\

∥∥∥
∞

+ λparam
G

)
≤

1∧(κ2ΣκΓ)
−1

3κΣdeg , then
∥∥∥Θ̃param

G −Θ\
∥∥∥
∞
≤ r.

Lemma 30 (Lemma 5 in [3]). Provided that we have
∥∥∥Θ̃param

G −Θ\
∥∥∥
∞
≤ (3κΣdeg)−1,
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then

∥∥∥∥(Θ̃
param
G

)−1

−Θ\−1 + Θ\−1
(
Θ̃

param
G −Θ\

)
Θ\−1

∥∥∥∥
∞
≤ 3

2
deg · κ3

Σ

∥∥∥Θ̃param
G −Θ\

∥∥∥2

∞
.

Lemma 31 (Lemma 4 in [3]). If we have

∥∥∥Σ̂param
n −Σ\

∥∥∥
∞
∨
∥∥∥∥(Θ̃

param
G

)−1

−Θ\−1 + Θ\−1
(
Θ̃

param
G −Θ\

)
Θ\−1

∥∥∥∥
∞
≤ θλparam

G /8,

we conclude that |G̃i,j| < 1.

Now, setting λparam
G = 8τ∞/θ, first we verify the conditions in Lemma 29. We have

r
1©
≤ 2

(
1 + 8θ−1

)
κΓτ∞

2©
≤ (3κΣdeg)−1

(
1 ∧

(
κ2

ΣκΓ

)−1
)
,

where in 1© we use
∥∥∥Σ̂param

n −Σ\
∥∥∥
∞
≤ τ∞ from Lemma 16, and in 2© we use the assump-

tions of τ∞ in Theorem 1. Then we conclude that∥∥∥Θ̃param
G −Θ\

∥∥∥
∞
≤ 2κΓ

(∥∥∥Θ̂n −Θ\
∥∥∥
∞

+
8τ∞
θ

)
≤ (3κΣdeg)−1 .

Invoking Lemma 30, we have∥∥∥∥(Θ̃
param
G

)−1

−Θ\−1 + Θ\−1
(
Θ̃

param
G −Θ\

)
Θ\−1

∥∥∥∥
∞
≤ 3

2
deg× κ3

Στ
2
∞

3©
≤ τ∞,

where 3© is due to the requirement of τ∞ in Theorem 1. In the end, we verify the condition

in Lemma 31,

θλparam
G /8 = τ∞ ≥

∥∥∥Σ̂param
n −Σ\

∥∥∥
∞
∨
∥∥∥∥(Θ̃

param
G

)−1

−Θ\−1 + Θ\−1
(
Θ̃

param
G −Θ\

)
Θ\−1

∥∥∥∥
∞
.

which concludes that Θ̃
param
G is identical to the solution Θ̂

param
G .

Step IV: bound the error. For the entries (i, j) ∈ Sc outside the support set S, we have

(Θ̂
param
G )i,j to be zero due to the construction method of Θ̃

param
G . For the entries (i, j) ∈ S
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inside the support set, we upper-bound the element-wise deviation
∥∥∥Θ̂param

G −Θ\
∥∥∥
∞

as

∥∥∥Θ̂param
G −Θ\

∥∥∥
∞

=
∥∥∥Θ̃param

G −Θ\
∥∥∥
∞

1©
≤ 2κΓ(1 + 8θ−1)τ∞, (A.3.2)

where 1© is due to Lemma 29 and has been verified in Step II. Then we prove sign(Θ̂
param
G )

reaches the ground truth once min(i,j)∈Sc
∣∣∣Θ\

i,j

∣∣∣ ≥ 2κΓ(1 + 8θ−1)τ∞. W.l.o.g. we assume

Θ\
i,j > 0 for (i, j) ∈ S. Then we have

(Θ̂
param
G )i,j ≥

∣∣∣Θ\
i,j

∣∣∣− ∣∣∣Θ̂param
G −Θ\

∣∣∣ ≥ ∣∣∣Θ\
i,j

∣∣∣− ∥∥∥Θ̂param
G −Θ\

∥∥∥
∞

2©
> 0,

and complete the proof, where 2© is due to the assumption on min(i,j)∈Sc
∣∣∣Θ\

i,j

∣∣∣ and (Equation A.3.2).

A.3.2 Proof of M-CLIME

This proof largely follows the outline given in the main context and fills the technical

details.

Stage I: We verify that Θ\ lies within the region
∥∥∥Σ̂param

n Θ\ − I
∥∥∥
∞
≤ λparam

C when setting

λparam
C = Mτ∞, which proceed as∥∥∥Σ̂param

n Θ\ − I
∥∥∥
∞

=
∥∥∥(Σ̂

param
n −Σ\

)
Θ\
∥∥∥
∞
≤
∥∥∥Σ̂param

n −Σ\
∥∥∥
∞

∣∣∣∣∣∣Θ\>∣∣∣∣∣∣
1,1
≤Mτ∞.

Stage II: We bound the element-wise `∞ norm on Θ̂
param
C −Θ\, which reads∥∥∥Θ̂param

C −Θ\
∥∥∥
∞

=
∥∥∥Θ\Σ\

(
Θ̂

param
C −Θ\

)∥∥∥
∞

1©
≤ M

(∥∥∥Σ̂param
n Θ̂

param
C − I

∥∥∥
∞

+
∥∥∥Σ̂param

n Θ\ − I
∥∥∥
∞

+
∣∣∣∣∣∣∣∣∣Θ̂param

C −Θ\
∣∣∣∣∣∣∣∣∣

1,1

∥∥∥Σ\ − Σ̂
param
n

∥∥∥
∞

)
2©
≤ M

[
2λparam

C +

(∣∣∣∣∣∣∣∣∣Θ̂param
C

∣∣∣∣∣∣∣∣∣
1,1

+
∣∣∣∣∣∣∣∣∣Θ̂\

∣∣∣∣∣∣∣∣∣
1,1

)∥∥∥Σ\ − Σ̂
param
n

∥∥∥
∞

]
, (A.3.3)

where in 1© we use the assumption that
∣∣∣∣∣∣Θ\

∣∣∣∣∣∣
1,1
≤ M , and in 2© we use the constraints in

(Equation 2.2.3) such that
∥∥∥Σ̂param

n Θ̂
param
C − I

∥∥∥
∞
≤ λparam

C .
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Then we prove
∣∣∣∣∣∣∣∣∣Θ̂param

C

∣∣∣∣∣∣∣∣∣
1,1
≤
∣∣∣∣∣∣Θ\

∣∣∣∣∣∣
1,1

. Notice that (Equation 2.2.3) is equivalent to

solving the following series optimization functions

(Θ̃
param
C )i = argminθ‖θ‖1, s.t.

∥∥∥Σ̂param
n θ − ei

∥∥∥
∞
≤ λparam

C , (A.3.4)

where ei denotes the ith canonical basis with 1 on its ith entry and zero elsewhere. Hence

we obtain ∥∥∥(Θ̂
param
C

)
i

∥∥∥
1

3©
≤
∥∥∥(Θ̃

param
C

)
i

∥∥∥
1

4©
≤
∥∥∥Θ\

i

∥∥∥
1
,

where 3© is due to the construction of Θ̂
param
C , and 4© is because Θ̃

param
C is the minimal in

(Equation A.3.4). This suggests∣∣∣∣∣∣∣∣∣Θ̂param
C

∣∣∣∣∣∣∣∣∣
1,1

= max
i

∥∥∥(Θ̂
param
C

)
i

∥∥∥
1
≤ max

i

∥∥∥Θ\
i

∥∥∥
1

=
∣∣∣∣∣∣Θ\

∣∣∣∣∣∣
1,1
. (A.3.5)

Combining (Equation A.3.3) and (Equation A.3.5) then yields the inequality∥∥∥Θ̂param
C −Θ\

∥∥∥
∞
≤ 2M

(
λparam
C +

∣∣∣∣∣∣Θ\
∣∣∣∣∣∣

1,1

∥∥∥Σ\ − Σ̂
param
n

∥∥∥
∞

)
≤ 4Mλparam

C .

Stage III: We prove (Equation 2.5.1) given the conditions in Theorem 2. First we show

that (Θ̂
param
C )i,j = 0 if Θ\

i,j = 0. This is because∣∣∣(Θ̂param
C )i,j

∣∣∣ =
∣∣∣(Θ̂param

C )i,j −Θ\
i,j

∣∣∣ ≤ ∥∥∥Θ̂param
C −Θ\

∥∥∥
∞
≤ 4M2τ∞.

Due to the definition of hard-thresholding estimator T (Θ; 4M2τ∞), this entry will shrink

to zero. Then we show that sign((Θ̂
param
C )i,j) = sign(Θ\

i,j) for (i, j) ∈ S. We assume that

(Θ̂
param
C )i,j > 0 w.l.o.g. Then we have∣∣∣(Θ̂param

C )i,j

∣∣∣ ≥ ∣∣∣Θ\
i,j

∣∣∣− ∥∥∥Θ̂param
C −Θ\

∥∥∥
∞

5©
≥ 4Mτ 2

∞,

where 5© is due to the assumption in Theorem 2. Hence, we conclude that the sign is

preserved by T (Θ; 4M2τ∞).

138



APPENDIX B

APPENDIX OF NONPARAMETRIC LEARNING OF GRAPHICAL MODELS

B.1 Proof of Theorem 3

B.1.1 Notations

For the conciseness of notation, we drop the subscript i in the marginal CDFs Fi(·), F̂i(·),

and entry X̂
(s)
i , and denote them as F (·), F̂ (·), and X̂(s), respectively. We define the

approximate characteristics function φ̂ŵ(t) as

φ̂ŵ(t) , exp

(
− σ2t2

2(d− p)

)
.

Additionally, we construct the function F̃ (·) as

F̃ (x) =
1

2
− 1

π

∫ ∞
0

1

t
=

[
φŵ(−t)φ̂X̂(t)

|φŵ(t)|2 ∨ γta
e−jtx

]
dt,

where the characteristic function φŵ(·) denotes the ground-truth characteristics function of

the noise ŵ, and the function φ̂X̂ is defined as n−1
∑n

s=1 e
−jtX̂(s) .

Let the term ∆
(s)
x be

∆(s)
x =

1

π

∫ ∞
0

1

t
=

 φ̂ŵ(−t)∣∣∣φ̂ŵ(t)
∣∣∣2 ∨ γta exp

(
jtX̂(s) − jtx

) dt

− E
[

1

π

∫ ∞
0

1

t
=
[
φX̂(t)

φŵ(t)
e−jtx

]
dt

]
. (B.1.1)

Our goal is to obtain the uniform convergence rate of the CDF estimator
∥∥∥F̂ − F∥∥∥

∞
, which

is written as
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∥∥∥F̂ − F∥∥∥
∞

= sup
x∈[0,1]

∣∣∣F̂ (x)− F (x)
∣∣∣ = sup

x∈[0,1]

1

n

∣∣∣∣∣
n∑
s=1

∆(s)
x

∣∣∣∣∣ , ∆x.

Before proceed, we define the event Ew as

Ew ,
{∣∣∣∣E(ŵi)

2 − σ2

d− p

∣∣∣∣ ≤ σ2

5(d− p)
, ∀ 1 ≤ i ≤ p

}
, (B.1.2)

where ŵi denotes the ith entry of the noise Ŵ.

The parameter γ is set as c0 log(np)
(

σ2

d−p

)a/4
and the number a > 1 is some fixed

positive constant.

B.1.2 Main Proof

Proof. We decompose the probability supx ∆x ≥ E supx ∆x + t as

P
(∣∣∣∣sup

x
∆x − E sup

x
∆x

∣∣∣∣ ≥ t

)
≤ E1(Ew) + E1

[(∣∣∣∣sup
x

∆x − E sup
x

∆x

∣∣∣∣ ≥ t

)⋂
Ew
]
.

The first term E1(Ew) is investigated in Lemma 32; while the second term is bounded with

the Talagrand inequality (cf. Thm. 2.6 in [127]), which is stated as

E1
[(∣∣∣∣sup

x
∆x − E sup

x
∆x

∣∣∣∣ ≥ t

)⋂
Ew
]
. E

[
exp

(
− nt

KCU
log

(
1 +

ntCU
V

))
1(Ew)

]
,

where CU is the uniform bound for ∆
(s)
x , i.e., |∆(s)

x | ≤ CU for all x and s, and the variance

V satisfies

V ≥ n sup
x∈R

E |∆x|2 + 16CU ·
(
E sup

x
|∆x|

)
.

Setting t as V log n/n, we conclude

sup
x

∆x ≤ E sup
x

∆x +
cV log n

n
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holds with probability exceeding 1−O(n−c). The following context focuses on computing

the values of CU , E supx ∆x, and supx E |∆x|2 conditional on event Ew in (Equation B.1.2).

Step I. We show there exists some positive constant CU such that |∆(s)
x | ≤ CU for all x

and s, 1 ≤ s ≤ n (cf. Lemma 34);

Step II. We prove that E supx ∆x ≤ E∆x + c0/
√
n, where c0 is some positive constant.

With the symmetrization inequalities (cf. Lemma 11.4 in [140]), we obtain

E sup
x

(∆x − E∆x) ≤ E sup
x

2

n

n∑
s=1

εs∆
(s)
x , (B.1.3)

where {εs} are the Rademacher RVs, i.e., P(εs = ±1) = 1/2, 1 ≤ s ≤ n. With regarding

the empirical process n−1
(∑

s εs∆
(s)
x

)
, we have

Eeλn
−1
(∑

s εs
(

∆
(s)
x1
−∆

(s)
x2

))
1©
=

n∏
s=1

E exp

[
λεs
n

(
∆(s)
x1
−∆(s)

x2

)]
2©
≤

n∏
s=1

E exp

[
λ2

2n2

(
∆(s)
x1
−∆(s)

x2

)2
]
,

where in 1© we exploit the independence across the samples, in 2© we use the fact that εs is

a Rademacher RV and the Hoeffding’s lemma [140] (Lemma 2.2).

Invoking the Dudley’s entropy integral (cf. Corol 13.2 in [140]), which is also listed as

Theorem 17 for the sake of self-containing, we conclude

E sup
x,εs

1

n

n∑
s=1

εs∆
(s)
x .

1√
n

∫ 2c0

0

√
H([0, 1], δ)dδ

3©
.

1√
n

∫ 2c0

0

(
1 +

√
log

c0

t

)
dδ � 1√

n
, (B.1.4)

whereH([0, 1], δ) denotes the δ-entropy number [140], in 3©we upper-bound the δ-entropy

number H([0, 1], δ) as c0 + c1 log (b/δ) (cf. Example 5.24 in [10]). The proof is then
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completed by combining (Equation B.1.3) and (Equation B.1.4).

Step III. We set the variance V as

V = n sup
x∈R

E |∆x|2 +
c0√
n

+ c1

√
E∆2

x

4©
≥ n sup

x∈R
E |∆x|2 +

c0√
n

+ c1E∆x

5©
≥ n sup

x∈R
E |∆x|2 + c0E sup

x
∆x,

where in 4© we use the fact E∆x ≤
√

E∆2
x, and in 5© we use the results in Step II such that

E supx ∆x ≤ E∆x + c0/
√
n. Invoking Lemma 32 and Lemma 35 will complete the proof.

B.1.3 Supporting Lemmas

Lemma 32. The event Ew in (Equation B.1.2) holds with probability exceeding 1−2pe−c0p,

where c0 is some fixed positive constants.

Proof. Perform SVD for A as A = USV>, we can rewrite the product
(
A>A

)−1
A> as

(
A>A

)−1
A> = VS−2V>VS>U> = VS−1U>.

Then the ith entry of Ŵ can be written as a>i U>W, where ai as

ai =
[
λ−1

1 Vi1 . . . λ
−1
p Vip

]
,

and λi is the ith singular value of S, and Vij is the (i, j)th entry of the matrix V. Since each

entry Aij is iid standard normal RV, i.e., Aij ∼ N (0, 1), we conclude that its eigenvalues

{λi}1≤i≤p are independent from its eigenvectors V, which is uniformly distributed on a

Haar measure [151]. Hence we can rewrite ai as a product as S−1g/‖gi‖2, where gi is a

Gaussian distributed RV with zero mean and unit variance, namely, gi ∼ N (0, Ip×p).
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First, we define the event Eg as

Eg ,
{
∃ 1 ≤ i ≤ p, s.t.

∣∣‖gi‖2
2 − p

∣∣ ≥ p/4
}
.

Then we bound E1(Ew) as

E1
(
Ew
)
≤ E1

(
Eg
)

+ E1
(
Ew
⋂
Eg
)
,

where (·) denotes the complement of the event. Due to the fact that g is a Gaussian RV

such that g ∼ N (0, I), we invoke Lemma 52 and bound the first term as E1(Eg) ≤ 2pe−c0p.

While for the second term, we first compute the expectation E
∥∥S−1giU

>W
∥∥2

2
as

E
∥∥S−1giU

>W
∥∥2

2
= σ2E

∥∥S−1gi
∥∥2

2
= σ2

∥∥S−1
∥∥2

F.

Invoking the Marcenko-Pastur law in [151] (cf. Thm. 2.35, which is also listed as Lemma The-

orem 16 for the self-containing of paper), we have

∥∥S−1
∥∥2

F =

p∑
i=1

λ−2
i →

p

d

∫ U(τ)

L(τ)

t−1

[(
1− τ−1

)
+
1(t) +

√
[t− L(τ)][U(τ)− t]

2πτt

]
dt

=
p

d
× 1

1− τ
=

p

d− p
,

where τ is defined as p/d, function L(·) is defined as
(
1−
√
·
)2, and function U(·) is

defined as
(
1 +
√
·
)2. Hence we have E

∥∥S−1gU>w
∥∥2

2
= E‖S−1‖2

Fσ
2 = pσ2/(d − p) and

will show E1
(
Ew
⋂
Eg
)

to be zero. This is because

E

[∥∥S−1giU
>W

∥∥2

2

‖gi‖2
2

1(Eg)

]
1©
≥ 4

3p
E
∥∥S−1giU

>W
∥∥2

2
=

4σ2

3(d− p)
,

where 1© is due to the definition of Eg. Similarly we can show
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E

[∥∥S−1giU
>W

∥∥2

2

‖gi‖2
2

1(Eg)

]
≤ 4

5p
E
∥∥S−1giU

>W
∥∥2

2
=

4σ2

5(d− p)
,

which suggests that Ew will always hold, and complete the proof.

Lemma 33. Conditional on the event Ew in (Equation B.1.2), we have

∣∣∣φ̂ŵ(t)− φŵ(t)
∣∣∣ . log2(np)σ2t2

d− p
e−

σ2t2

2(d−p) ,

where φ̂ŵ(t) and φŵ(t) denotes the estimated characteristic function and the ground-truth

characteristic function of ŵi, respectively.

Proof. Notice that the characteristic function of the Gaussian N (0,Var) is written as

φVar(t) = exp

(
−(Var)t2

2

)
.

Then we conclude that

∣∣∣φ̂ŵ(t)− φŵ(t)
∣∣∣ =

∣∣∣∣exp

(
− σ2t2

2(d− p)

)
− exp

(
− σ̂

2t2

2

)∣∣∣∣
1©
≤ |σ

2/(d− p)− σ̂2| t2

2
·
(

exp

(
− σ̂

2t2

2

)
+ exp

(
− σ2t2

2(d− p)

))
2©
.

log2(np)σ2t2

d− p
e−

σ2t2

2(d−p) ,

where σ̂2 is defined as the ground-truth variance of the noise ŵ, 1© is because of the relation

|e−z1 − e−z2| ≤ |z1 − z2| |e−z1 + e−z2|/2 for arbitrary z1 and z2, 2© is because of event

Ew.

Lemma 34. Setting γ � log(np)
(

σ2

d−p

)a/4
, we conclude |∆(s)

x | . 1 for all s, 1 ≤ s ≤ n,

where ∆
(s)
x is defined in (Equation B.1.1).
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Proof. We verify that ∆
(s)
x to be bounded by some constant, which is written as

∆(s)
x ≤

∣∣∣∣∣∣∣
1

π

∫ ∞
0

1

t
=

 φ̂ŵ(−t)∣∣∣φ̂ŵ(t)
∣∣∣2 ∨ γta exp

(
jt
(
X̂(s) − x

)) dt

∣∣∣∣∣∣∣+ F (x)︸ ︷︷ ︸
≤1

. (B.1.5)

Defining the term t⊥ as (2γ)−1/a, we split the whole region (0,∞) as three disjoint sub-

regionsR1 = (0, t⊥) andR2 = (t⊥,∞). Then we perform the decomposition as

∫ ∞
0

1

t
=

 φ̂ŵ(−t)∣∣∣φ̂ŵ(t)
∣∣∣2 ∨ γta exp

(
jtX̂(s) − jtx

) dt

=

∫
R1

1

t
=

 φ̂ŵ(−t)∣∣∣φ̂ŵ(t)
∣∣∣2 ∨ γta exp

(
jtX̂(s) − jtx

) dt

︸ ︷︷ ︸
T1

+

∫
R2

1

t
=

 φ̂ŵ(−t)∣∣∣φ̂ŵ(t)
∣∣∣2 ∨ γta exp

(
jtX̂(s) − jtx

) dt

︸ ︷︷ ︸
T2

, (B.1.6)

Then we separately bound the terms T1 and T2.

Step I. We can bound term T1 as

T1 =

∫
R1

1

t
=

(
φ̂ŵ(−t)=

[(
exp

(
jtX̂(s) − jtx

))[
1 +

∞∑
k=1

(
1−

(∣∣∣φ̂ŵ(t)
∣∣∣2 ∨ γta))k]]) dt

1©
≤

∫
R1

sin
(
t
(
X̂(s) − x

))
t

dt+

∫
R1

1

t

∞∑
k=1

(
σ2t2

d− p

)k
dt

2©
. 1 +

∞∑
k=1

1

2k

(
σ2t2⊥
d− p

)k 3©
. 1, (B.1.7)

where in 1© we use the fact |φŵ(t)|2 ∨ δta ≥ 1 − c1σ2t2

d−p for t ∈ R1, in 2© we use the fact

supτ>0

∣∣∫ τ
0

sin(u)/udu
∣∣ ≤ 3, and 3© is because σ2t2⊥ �

√
d− p(log(np))−

2
a ≤ d−p

2
and

hence
∑∞

k=1
1
2k

(
σ2t2⊥
d−p

)k
≤
∑∞

k=1

(
σ2t2⊥
d−p

)k
. 1.
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Step II. For term T3, we have

T2 ≤
∫
R2

φ̂ŵ(−t)

t

√∣∣∣φ̂ŵ(−t)
∣∣∣2 ∨ δtadt

4©
≤
∫
R2

1
√
γt1+a

2

dt =
1

a
√
γt
a/2
⊥

=
1√
2a
� 1, (B.1.8)

where 4© is because φ̂ŵ(·) ≤ 1, and complete the proof by summaring (Equation B.1.5),

(Equation B.1.6) and (Equation B.1.8).

Lemma 35. Under the setting of Theorem 3, we have

E (∆x)
2 .

log2/a(np)σ√
d− p

+
(log(np))2

(d− p)a4
+

(
σ2

d− p

) 2α+1
4

+
1

n
,

when setting γ � log(np)
(

σ2

d−p

)a/4
Proof. The proof largely follows [41]. However, extra measurements are required to es-

timate the characteristic function φ̂ŵ(·) in [41], which leads to a simple form of the error

|φ̂ŵ(t) − φŵ(t)| only depending on the number of extra measurements. In contrast, our

setting does not need these additional measurements and the error |φ̂ŵ(t) − φŵ(t)| varies

with t.

With the decomposition

E
∣∣∣F̂ (x)− F (x)

∣∣∣2 ≤ 2E
∣∣∣F̂ (x)− F̃ (x)

∣∣∣2 + 2E
∣∣∣F̃ (x)− F (x)

∣∣∣2 ,
we complete the proof by invoking Lemma 36 and Lemma 37.

Lemma 36. Under the setting of Theorem 3, we can upper-bound the deviation E
∣∣∣F̂ (x)− F̃ (x)

∣∣∣
as
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E
∣∣∣F̂ (x)− F̃ (x)

∣∣∣2 . log2/a(np)σ√
d− p

,

when setting γ � log(np)
(

σ2

d−p

)a/4
.

Proof. First we expand the term F̂ (x)− F̃ (x) as

F̂ (x)− F̃ (x) =
1

π

∫ ∞
0

1

t
=


 φ̂ŵ(−t)∣∣∣φ̂ŵ(t)

∣∣∣2 ∨ γta −
φŵ(−t)

|φŵ(t)|2 ∨ γta

 φ̂X̂(t)e−jtx

 dt
1©
=

1

nπ

∫ ∞
0

D(t)

t

n∑
s=1

sin
(
t
(
X̂(s) − x

))
dt

where in 1© we define D(t) as

D(t) ,
φ̂ŵ(−t)

|φ̂ŵ(t)|2 ∨ γta
− φŵ(−t)
|φŵ(t)|2 ∨ γta

.

According to [41], it satisfies the relation

|D(t)| ≤ 2εE(t)√
|φ̂ŵ(t)|2 ∨ γta ·

√
|φŵ(t)|2 ∨ γta

+
εE(t)

|φŵ(t)|2 ∨ γta
, (B.1.9)

where ε(t) is defined as
∣∣∣φ̂ŵ(t)− φŵ(t)

∣∣∣, which is upper bounded by Lemma 33.

Define the terms I1 and I2 as

I1 , E

(
1

nπ

∫ t⊥

0

∣∣∣∣∣D(t)

t

n∑
s=1

sin
(
t
(
X̂(s) − x

))∣∣∣∣∣ dt
)2

,

I2 , E

(
1

nπ

∫ ∞
t⊥

∣∣∣∣∣D(t)

t

n∑
s=1

sin
(
t
(
X̂(s) − x

))∣∣∣∣∣ dt
)2

,

respectively, where t⊥ is defined as ((d − p)/σ2)1/4 log1/a(np). We upper-bound the term
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E
∣∣∣F̂ (x)− F̃ (x)

∣∣∣2 as

E
∣∣∣F̂ (x)− F̃ (x)

∣∣∣2 ≤ 2I1 + 2I2. (B.1.10)

Stage I. We bound the term I1 as

I1

2©
≤

(
1

π

∫ t⊥

0

[∣∣∣∣D(t)

t

∣∣∣∣× n−1

(
n∑
s=1

∣∣∣t(X̂(s) − x
)∣∣∣)] dt)2 3©

.

(∫ t⊥

0

|D(t)| dt
)2

,

where in 2© we use the fact sin(·) ≤ |·|, in 3© we use the fact |X̂(s) − x| ≤ 1 for all

s, 1 ≤ s ≤ n.

Notice in the regionR1, we can lower bound the function φŵ(·) ≥ c1 as

|φŵ(t)|
4©
≥ |φŵ(t⊥)| = O

[
exp

(
− c0σ

2

d− p
·
√
d− p
σ

)]
= O(1),

where in 4©we use the fact such that |φ(·)ŵ| is non-increasing. Then we invoke (Equation B.1.9)

and bound D(t) as |D(t)| . εE(t), since |φŵ(t)|2 ∨ γta ≥ |φŵ(t)|2 & 1. Hence term I1 is

upper-bounded as

I1 ≤
[∫ t⊥

0

σ2 log2(np)t2

d− p
e−

σ2t2

2(d−p)dt

]2 5©
≤ log4(np)

(∫ log1/a(np)( σ2

d−p )1/4

0

ξ2e−ξ
2/2dξ

)2

,

≤ σ2 log4+ 2
a (np)

d− p

(∫ ∞
0

e−ξ
2/2dξ

)2

� σ2 log4+ 2
a (np)

d− p
, (B.1.11)

where in 5© we use the substitution ξ = σt/
√
d− p.

Stage II. We define the function Λ(t) as

Λ(t) =
1

n

n∑
s=1

sin
[
t
(
X̂(s) − x

)]
−=

(
φX̂(t)e−jtx

)
,

and bound the term I2 as
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I2 = E
∣∣∣∣∫ ∞
t⊥

D(t)

t

[
Λ(t) + =

(
φX̂(t)e−jtx

)]∣∣∣∣2 . I2,1 + I2,2,

where I2,1 and I2,2 are defined as

I2,1 , E
∣∣∣∣∫ ∞
t⊥

D(t)

t
=
(
φX̂(t)e−jtx

)∣∣∣∣2 ,
I2,2 , E

∣∣∣∣∫ ∞
t⊥

D(t)Λ(t)

t

∣∣∣∣2 .
Notice that within regionR2, we can upper-bound |D(t)| as |D(t)| . εE(t)

γta
and hence

I2,1 ≤

∣∣∣∣∣
∫ ∞
t⊥

∣∣φX̂(t)
∣∣√E|D(t)|2

t
dt

∣∣∣∣∣
2

6©
≤

∣∣∣∣∣
∫ ∞
t⊥

√
E|D(t)|2
t

dt

∣∣∣∣∣
2

7©
≤
(∫ ∞

t⊥

εE(t)

γt1+a
dt

)2

=
log4(np)σ4

(d− p)2γ2

(∫ ∞
t⊥

exp

(
− σ2t2

2(d− p)

)
t1−adt

)2

=
log4(np)σ2a

(d− p)aγ2

(∫ ∞
log1/a(np)( σ2

d−p )1/4
ξ1−ae−ξ

2/2dξ

)2

8©
≤ log4(np)σ2a

(d− p)aγ2
log

2
a
−2(np)

(
σ2

d− p

) 1−a
2
(∫ ∞

0

e−ξ
2/2dξ

)2

� log2/a(np)σ√
d− p

,

where in 6© we use the fact |φX̂(·)| ≤ 1, in 7© we use the bound |D(t)| ≤ εE/(γt
a), and in

8© we use the assumption a > 1.

Afterwards, we bound term I2,2 as

I2,2 ≤ 2E
∣∣∣∣∫ ∞
t⊥

∫ ∞
t⊥

D(u)D(v)Λ(u)Λ(v)

uv
dudv

∣∣∣∣
≤ 2

∫ ∞
t⊥

∫ ∞
t⊥

√
E|D(u)|2

√
E|D(v)|2 · E (Λ(u)Λ(v))

uv
dudv.

According to Lemma 5.1 in [41], we can bound the term E (Λ(u)Λ(v)) as
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E (Λ(u)Λ(v))

=
1

2n

[
<
[
ej(v−u)tφX̂(u− v)

]
−<

[
e−j(u+v)xφX̂(u+ v)

]
− 2=

[
e−juxφX̂(u)

]
· =
[
e−jvxφX̂(s)

]]
≤ 1

2n

[∣∣φX̂(u+ v)
∣∣+
∣∣φX̂(u− v)

∣∣+ 2
∣∣φX̂(u)

∣∣ ∣∣φX̂(v)
∣∣] 9©
≤ 2

n
,

where in 9© we use the fact |φX̂(·)| ≤ 1.

Following the same strategy as above, we can upper-bound |D(t)| as |D(t)| . εE(t)
γta

and

hence

√
E|D(u)|2

√
E|D(v)|2 ≤ εE(u)εE(v)

γ2uava
.

Combing the above then yields the bound

I2,2 .
1

nγ2

∫ ∞
t⊥

∫ ∞
t⊥

εE(u)εE(v)

u1+av1+a
dudv =

log4/a(np)σ2+a

n(d− p)
.

To sum up, we have

I2 = I2,1 + I2,2 .
log2/a(np)σ1+a

2

√
d− p

+
log4/a(np)σ2

n(d− p)
� log2/a(np)σ√

d− p
,

and complete the proof by combining it with (Equation B.1.10) and (Equation B.1.11).

Lemma 37. Under the setting of Theorem 3, we can upper-bound the deviation
∣∣∣F̃ (x)− F (x)

∣∣∣
as

E
∣∣∣F̃ (x)− F (x)

∣∣∣2 . (log(np))2

(d− p)a4
+

(
σ2

d− p

) 2α+1
4

+
1

n
,

when setting γ � log(np)
(

σ2

d−p

)a/4
.
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Proof. We decompose the deviation E|F̃ (x) − F (x)|2 as the the bias and variance, which

are defined respectively as

Bias ,
∣∣∣EF̃ (x)− F (x)

∣∣∣2 ,
Variance , E

∣∣∣F̃ (x)− EF̃ (x)
∣∣∣2 .

The following context separately bound the bias and variance.

Bounding bias. We rewrite the difference EF̃ (x)− F (x) as

EF̃ (x)− F (x) =
1

π

∫ ∞
0

1

t
=

[(
|φŵ(t)|2 φX(t)

|φŵ(t)|2 ∨ γta
− φX(t)

)
e−jtx

]
dt,

which yields

Bias ≤ 1

π2

[∫ ∞
0

|φX(t)|
t
=

[(
|φŵ(t)|2

|φŵ(t)|2 ∨ γta
− 1

)
e−jtx

]
dt

]2

≤ 1

π2

[∫ ∞
0

|φX(t)|
t

∣∣∣∣∣1− |φŵ(t)|2

|φŵ(t)|2 ∨ γta

∣∣∣∣∣ dt
]2

.

[∫ t�

0

|φX(t)|
t

∣∣∣∣∣1− |φŵ(t)|2

|φŵ(t)|2 ∨ γta

∣∣∣∣∣ dt+

∫ ∞
t�

|φX(t)|
t

∣∣∣∣∣1− |φŵ(t)|2

|φŵ(t)|2 ∨ γta

∣∣∣∣∣ dt
]2

≤ J2
1 + J2

2 ,

where t� is defined as c0

(
d−p
σ2

)1/8
, and terms J1 and J2 are defined as

J1 ,
∫ t�

0

|φX(t)|
t

∣∣∣∣∣1− |φŵ(t)|2

|φŵ(t)|2 ∨ γta

∣∣∣∣∣ dt,
J2 ,

∫ ∞
t�

|φX(t)|
t

∣∣∣∣∣1− |φŵ(t)|2

|φŵ(t)|2 ∨ γta

∣∣∣∣∣ dt,
respectively. For the term J1, we have
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1− |φŵ(t)|2

|φŵ(t)|2 ∨ γta
≤
(
|φŵ(t)|2 ∨ γta

)
− |φŵ(t)|2

|φŵ(t)|2 ∨ γta
1©
≤ γta

|φŵ(t)|2 ∨ γta
2©
≤ γta

cR
,

where in 1© we use the relation |φŵ(t)|2 ∨ γta − |φŵ(t)|2 ≤ γta; in 2© we use the fact

|φŵ(t)|2 ∨ γta ≥ cR in the regime [0, t�), which can be easily verified. Then we obtain

J1 ≤
∫ t�

0

|φX(t)|
t

γta

cR
dt =

γ

cR

∫ t�

0

ta−1dt =
γ

cR

ta�
a
� σ

a
4 log(np)

(d− p)a8 a
. (B.1.12)

Afterwards, we bound term J2 as

J2 ≤
∫ ∞
t�

|φX(t)|
t

dt
3©
. t

−(2α+1)/16
� �

(
σ2

d− p

) 2α+1
8

, (B.1.13)

where in 3© we use the Lemma 6 from [41] since φX(·) satisfies the Assumption 2. Com-

bining (Equation B.1.12) and (Equation B.1.13) then yields

Bias .
(log(np))2

(d− p)a4
+

(
σ2

d− p

) 2α+1
4

. (B.1.14)

Bounding variance. We bound the VarF̃ (x) as

VarF̃ (x)

= Var
[

1

π

∫ ∞
0

1

t
=
(

φŵ(−t)
|φŵ(t)|2 ∨ γta

φ̂X̂(t)e−jtx

)
dt

]
4©
≤ 1

nπ2
E
[∫ ∞

0

1

t
=
(

φŵ(−t)
|φŵ(t)|2 ∨ γta

ejt(X̂−x)

)
dt

]2

≤ 2

nπ2
(K1 +K2) ,

where in 4© we use the bound Var (·) ≤ E(·)2, and the terms K1 and K2 are defined as

K1 , E
[∫ t⊥

0

1

t
=
(

φŵ(−t)
|φŵ(t)|2 ∨ γta

ejt(X̂−x)

)
dt

]2

,

K2 , E
[∫ ∞

t⊥

1

t
=
(

φŵ(−t)
|φŵ(t)|2 ∨ γta

ejt(X̂−x)

)
dt

]2

,
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and t⊥ is defined as (2γ)−1/a. First, we bound K1 as

K1 = E

∣∣∣∣∣
∫ t⊥

0

1

t
=

(
φŵ(−t)ejt(X̂−x)

(
1 +

∞∑
k=1

(
1−

(
|φŵ(t)|2 ∨ γta

))k))
dt

∣∣∣∣∣
2

. E
∣∣∣∣∫ t⊥

0

1

t
=
(
φŵ(−t)ejt(X̂−x)

)
dt

∣∣∣∣2 + E

∣∣∣∣∣
∫ t⊥

0

1

t

∞∑
k=1

(
1−

(
|φŵ(t)|2 ∨ γta

))k
dt

∣∣∣∣∣
2

5©
≤ E sup

τ>0

∣∣∣∣∫ τ

0

sin t

t
dt

∣∣∣∣2 + E

∣∣∣∣∣
∫ t⊥

0

1

t

∞∑
k=1

(
1− |φŵ(t)|2

)k
dt

∣∣∣∣∣
2

≤ 3 + E

[∫ t⊥

0

1

t

∞∑
k=1

(
σ2t2

d− p

)k]2 6©
. 1, (B.1.15)

where in 5© we use the fact |φŵ(t)|2 ∨ δta ≥ 1 − c1σ2t2

d−p for t ∈ (0, t⊥), and in 6© we use

σ2t2⊥ �
√
d− p(log(np))−

2
a ≤ d−p

2
.

Then we expand the term K2 as a product of two terms reading as

K2 = E

[∫ ∞
t⊥

∫ ∞
t⊥

1

uv
=

(
φŵ(−u)φŵ(−v)ej(u+v)(X̂−x)[
|φŵ(u)|2 ∨ γua

] [
|φŵ(v)|2 ∨ γva

]) dudv]

≤ E
[∫ ∞

t⊥

∫ ∞
t⊥

φŵ(−u)φŵ(−v)

uv
· 1

|φŵ(u)|2 ∨ γua
· 1

|φŵ(v)|2 ∨ γva
dudv

]
≤ 1

γ2
E
[∫ ∞

t⊥

1

ta+1
dt

]2

=
1

a2γ2t2a⊥
� 1. (B.1.16)

Combining (Equation B.1.15) and (Equation B.1.16) generates

VarF̃ (x) . n−1. (B.1.17)

And the proof is completed by combining (Equation B.1.14) and (Equation B.1.17).
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B.2 Proof of Theorem 4

B.2.1 Notations

We assume that the correct estimation of mi = 0 and vi = 1 w.l.o.g. Let

hi(x) = Φ−1 (Fi(x)) ;

gi(x) = h−1
i (x),

where (·)−1 denotes the inverse of the function. For the conciseness of the notation, we

define ϕ̂(s)
i , ϕ̃(s)

i , and ϕ(s)
i as

ϕ̂
(s)
i = ĥi(X̂

(s)
i );

ϕ̃
(s)
i = ĥi(X

(s)
i );

ϕ
(s)
i = hi(X

(s)
i ).

The (i, j)th entries of the corresponding covariance matrices Σ̂
non-param
n , Σ̃

non-param
n , and

Σnon-param
n are written as (

Σ̂
non-param
n

)
i,j

=
1

n

n∑
s=1

ϕ̂
(s)
i ϕ̂

(s)
j − µ̂iµ̂j;(

Σ̃
non-param
n

)
i,j

=
1

n

n∑
s=1

ϕ̃
(s)
i ϕ̃

(s)
j − µ̃iµ̃j;

(Σnon-param
n )i,j =

1

n

n∑
s=1

ϕ
(s)
i ϕ

(s)
j − µiµj.

Moreover, we define two regionsRE andRM as

RE ,
[
− cU

√
log(n ∨ (d− p)),−cL

√
log n ∨ log(d− p)

)
⋃ (

cL
√

log(n ∨ (d− p)), cU
√

log n ∨ log(d− p)
]
;

RM ,
[
− cL

√
log(n ∨ (d− p)), cL

√
log(n ∨ (d− p))

]
. (B.2.1)
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B.2.2 Main Proof

Proof. We bound the deviation between Σnon-param
n and Σ̂

non-param
n as

∥∥∥Σnon-param
n − Σ̂

non-param
n

∥∥∥
∞
≤
∥∥∥Σnon-param

n − Σ̃
non-param
n

∥∥∥
∞︸ ︷︷ ︸

,T1

+
∥∥∥Σ̃non-param

n − Σ̂
non-param
n

∥∥∥
∞︸ ︷︷ ︸

,T2

.

Step I. For the first term T1, we invoke the triangle inequality and have

∥∥∥Σnon-param
n − Σ̃

non-param
n

∥∥∥
∞
≤ max

i,j

1

n

∣∣∣∣∣
n∑
s=1

ϕ̃
(s)
i ϕ̃

(s)
j − ϕ

(s)
i ϕ

(s)
j

∣∣∣∣∣+ ‖µiµj − µ̃iµ̃j‖∞.

Following a similar strategy that is used in [25], we focus on the first term as the second

term is of higher order.

We bound the value of maxi,j n
−1
∣∣∣∑n

s=1 ϕ̃
(s)
i ϕ̃

(s)
j − ϕ

(s)
i ϕ

(s)
j

∣∣∣ as

P

(
max
i,j

n−1

∣∣∣∣∣
n∑
s=1

ϕ̃
(s)
i ϕ̃

(s)
j − ϕ

(s)
i ϕ

(s)
j

∣∣∣∣∣ ≥ ϑ

)

≤ p2E

[(
n−1

∣∣∣∣∣
n∑
s=1

ϕ̃
(s)
i ϕ̃

(s)
j − ϕ

(s)
i ϕ

(s)
j

∣∣∣∣∣ ≥ ϑ

)
1

(
ϕ

(s)
i ∈ RE

⋃
RM ,∀ 1 ≤ s ≤ n, 1 ≤ i ≤ p

)]

+ npE1
(
ϕ

(s)
i 6∈ RE

⋂
RM , ∃ 1 ≤ s ≤ n, 1 ≤ i ≤ p

)
.

Following a classical procedure as in [140], we can show the second probability E1
(
ϕ

(s)
i 6∈ RE

⋂
RM

)
is no greater than e−c0(n∧(d−p)). For the conciseness of notation, we define the deviation δ(s)

i,j

as

δ
(s)
i,j = ϕ̃

(s)
i ϕ̃

(s)
j − ϕ

(s)
i ϕ

(s)
j .

Then the summary n−1
(∑n

s=1 ϕ̃
(s)
i ϕ̃

(s)
j − ϕ

(s)
i ϕ

(s)
j

)
1

(
ϕ

(s)
i ∈ RE

⋃
RM ,∀ 1 ≤ s ≤ n, 1 ≤ i ≤ p

)
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can be decomposed as

1

n

n∑
s=1

δ
(s)
i,j =

1

n

n∑
s=1

δ
(s)
i,j 1[C(s)

1 (i, j)]︸ ︷︷ ︸
,T1,1

+
1

n

n∑
s=1

δ
(s)
i,j 1[C(s)

2 (i, j)]︸ ︷︷ ︸
,T1,2

+
2

n

n∑
s=1

δ
(s)
i,j 1[C(s)

3 (i, j)]︸ ︷︷ ︸
,T1,3

,

where the events C(s)
1 (i, j), C(s)

2 (i, j), and C(s)
3 (i, j) are defined as

C(s)
1 (i, j) ,

{
ϕ

(s)
i ∈ RE, ϕ

(s)
j ∈ RE

}
;

C(s)
2 (i, j) ,

{
ϕ

(s)
i ∈ RM , ϕ

(s)
j ∈ RM

}
;

C(s)
3 (i, j) ,

{
ϕ

(s)
i ∈ RE, ϕ

(s)
j ∈ RM

}
,

respectively, where the definitions ofRE andRM can be found in (Equation B.2.1).

In the following, we will separately bound the three terms and show n−1
∣∣∣∑n

s=1 δ
(s)
i,j

∣∣∣ .
ϑ , ϑ1∨ϑ2, where the quantities ϑ1 and ϑ2 are defined in (Equation B.2.2) and (Equation B.2.4),

respectively. The analysis of the first term T1,1 and second term T1,2 is deferred to Lemma 38

and Lemma 39, respectively; while that of the third term T1,3 is omitted due to their simi-

larities of Lemma 38 and Lemma 39.

Step II. The second term T2 is upper-bounded in Lemma 40. The analysis is in the same

spirit as the above procedure but requires some modifications.

Lemma 38. We have

1

n

∣∣∣∣∣
n∑
s=1

δ
(s)
i,j 1[C(s)

1 (i, j)]

∣∣∣∣∣ ≤ 2c0

[
n−c1 ∨ (d− p)−c1

]
(log n ∨ log(d− p))

3
2 , ϑ1, (B.2.2)

with probability exceeding 1− c2n
−c3 ∧ (d− p)−c4 − c5n

−c6 , where the parameters ci are

some fixed constant, 0 ≤ i ≤ 6.

Proof. Invoking the union bound, we obtain
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P

(
1

n

∣∣∣∣∣
n∑
s=1

δ
(s)
i,j 1[C(s)

1 (i, j)]

∣∣∣∣∣ & 2c0

[
n−c1 ∨ (d− p)−c1

]
(log n ∨ log(d− p))

3
2

)
1©
≤ E1

(
max
s

∣∣∣δ(s)
i,j

∣∣∣ & (log n ∨ log(d− p))
)
1[C(s)

1 (i, j)]︸ ︷︷ ︸
P1

+P

(
1

n

n∑
s=1

1[C(s)
1 (i, j)] ≥ ϑ

)
︸ ︷︷ ︸

P2

,

where ϑ is defined as

ϑ = 2c0

[
n−c1 ∨ (d− p)−c1

]√
log n ∨ log(d− p), (B.2.3)

and in 1© we use the union bound.

With the relation

∣∣∣δ(s)
i,j

∣∣∣ ≤ ∣∣∣(ϕ̃(s)
i − ϕ

(s)
i

)(
ϕ̃

(s)
j − ϕ

(s)
j

)∣∣∣+
∣∣∣ϕ(s)

i

(
ϕ̃

(s)
j − ϕ

(s)
j

)∣∣∣+
∣∣∣ϕ(s)

j

(
ϕ̃

(s)
i − ϕ

(s)
i

)∣∣∣ ,
we can upper bound the probability P1 as

P1 ≤ npE1
(
ϕ

(s)
i ≤ cU

√
log p ∨ log(d− p)1[C(s)

1 (i, j)], ϕ̃
(s)
i . cU

√
log n ∨ log(d− p)

)
2©
. n−c ∧ (d− p)−c,

where 2© is due to Lemma 41.

While for probability P2, we have

P

(
n∑
s=1

1[C(s)
1 (i, j)] ≥ nϑ

)
≤ P

(
1

n

n∑
s=1

1[ϕ
(s)
i ∈ RE] ≥ ϑ

)

= P

(
1

n

n∑
s=1

[
1[ϕ

(s)
i ∈ RE]− E1

(
ϕ

(s)
i ∈ RE

)]
≥ ϑ− 1

n

[
n∑
s=1

E1
(
ϕ

(s)
i ∈ RE

)])
3©
≤ exp

(
−n

2

[
ϑ− P

(
ϕ

(s)
i ∈ RE

)]2
)
,

where in 3© we use the Hoeffding’s inequality (cf. Thm. 2.8 in [140]). Notice that the
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probability P
(
ϕ

(s)
i ∈ RE

)
can be bounded as

P
(
ϕ

(s)
i ∈ RE

)
=

2√
2π

∫ cU
√

logn∨log(d−p)

cL
√

logn∨log(d−p)
e−t

2/2dt .

√
2

π
e−

cL
2

(logn∨log(d−p))
√

log n ∨ log(d− p)

≤ c0

[
n−c1 ∨ (d− p)−c1

]√
log n ∨ log(d− p),

where 0 < c1 < 1/2 is some fixed positive constant. Recalling the value of ϑ in (Equation B.2.3),

we have

P

(
n∑
s=1

1[C(s)
1 (i, j)] ≥ nϑ

)
≤ exp

(
−c0n

1−2c1 log n
)
� n−c,

and complete the proof.

Lemma 39. We have

1

n

∣∣∣∣∣
n∑
s=1

δ
(s)
i,j 1

(
C

(s)
2 (i, j)

)∣∣∣∣∣ .
√

log n

n1/4
∨
√

log(d− p)
(d− p)β/4

, ϑ2, (B.2.4)

with probability exceeding the probability 1−p2 exp
(
− c0

√
n

log2 n
− c1n log4(np)

log(d−p)(d−p)β/2

)
−p2n−c3−

2p3e−c4p − 4n−c5p−c6 , where β is defined as 1
2
∧ a

4
∧ 2α+1

4
.

Proof. For each term δ
(s)
i,j , we can decompose it as

δ
(s)
i,j =

(
ϕ̃

(s)
i − ϕ

(s)
i

)(
ϕ̃

(s)
j − ϕ

(s)
j

)
+ ϕ

(s)
i

(
ϕ̃

(s)
j − ϕ

(s)
j

)
+ ϕ

(s)
j

(
ϕ̃

(s)
i − ϕ

(s)
i

)
.

Then we can decompose the summary as
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1

n

∣∣∣∣∣
n∑
s=1

δ
(s)
i,j 1

(
C

(s)
2 (i, j)

)∣∣∣∣∣ ≤ 1

n

n∑
s=1

∣∣∣(ϕ̂(s)
i − ϕ̃

(s)
i

)(
ϕ̂

(s)
j − ϕ̃

(s)
j

)
1

(
C

(s)
2 (i, j)

)∣∣∣
+

1

n

n∑
s=1

∣∣∣ϕ̃(s)
i

(
ϕ̂

(s)
j − ϕ̃

(s)
j

)
1

(
C

(s)
2 (i, j)

)∣∣∣
+

1

n

n∑
s=1

∣∣∣ϕ̃(s)
j

(
ϕ̂

(s)
i − ϕ̃

(s)
i

)
1

(
C

(s)
2 (i, j)

)∣∣∣ .
Our next goal is to investigate the behavior of supi

∣∣∣ϕ̃(s)
i − ϕ̂

(s)
i

∣∣∣1 [C(s)
2 (i, j)

]
. Define the

an event EF (·) as

EF (i) =
{
δn,d,p ≤ F̂i ≤ 1− δn,d,p

}
, 1 ≤ i ≤ n.

We have

P

(
1

n

∣∣∣∣∣
n∑
s=1

δ
(s)
i,j 1

(
C

(s)
2 (i, j)

)∣∣∣∣∣ ≥ ϑ2

)
≤ P

(
sup
i

∣∣∣ϕ̃(s)
i − ϕ̂

(s)
i

∣∣∣1 [C(s)
2 (i, j)

]
≥ ϑ2

)
≤ p2 E1

(
1

(
C

(s)
2 (i, j)

)
EF (i)

)
︸ ︷︷ ︸

T1

+p2 E1
((∣∣∣ϕ̃(s)

i − ϕ̂
(s)
i

∣∣∣1(C(s)
2 (i, j)

)
≥ ϑ2

)⋃
EF (i)

)
︸ ︷︷ ︸

T2

.

Easily we can verify that δn,d,p satisfy the relation

2δn,d,p ≤ 1− Φ
(
cL
√

log n ∨ log(d− p)
)
−
√
εx,

where εx is defined in (Equation 3.5.2). Invoking Lemma 42, we can bound term T1 as

T1 ≤ 2 exp

(
−2n

(
1− δn,d,p − Φ

(
cL
√

log n ∨ log(d− p)
)
−
√
εx

)2
)
≤ 2 exp(−2nδ2

n,d,p)

. 2 exp

(
− c0

√
n

log2 n
− c1n log4(np)

log(d− p)(d− p)β/2

)
.

Conditional on event EF (i), we study the term T1 by investigating the difference ϕ̃(s)
i −ϕ̂

(s)
i .

We assume F̂ tr
i (X

(s)
i ) ≥ Fi(X

(s)
i ) w.l.o.g. According to the mean value theorem, we have
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ϕ̃
(s)
i − ϕ

(s)
i = Φ−1

(
F̂ tr
i (X

(s)
i )
)
− Φ−1

(
Fi(X

(s)
i )
)

=
(
Φ−1

)′
(ξ)
∣∣∣F̂ tr

i (X
(s)
i )− Fi(X(s)

i )
∣∣∣ ,

where ξ is some point such that Fi(X
(s)
i ) ≤ ξ ≤ F̂ tr

i (X
(s)
i ). Due to the fact that X(s)

i ∈ RM

and conditional on event EF (i), we conclude δn ≤ ξ ≤ 1− δn and hence

∣∣∣(Φ−1(ξ)
)′∣∣∣ ≤ ∣∣∣(Φ−1(1− δn,d,p)

)′∣∣∣ ∨ ∣∣∣(Φ−1(δn,d,p)
)′∣∣∣ =

∣∣∣(Φ−1(1− δn,d,p)
)′∣∣∣

=
1

φ (Φ−1(1− δn,d,p))
≤ exp

[
1

2

(
Φ−1(1− δn,d,p)

)2
] 1©
≤ 1

δn,d,p
,

where 1© is due to Lemma 53 and the fact that δn,d,p → 0. Set ϑ2 such that

ϑ2δn,d,p ≥ (log n)εx +
c0√
n

+ c1

√
εx,

where εx is defined in (Equation 3.5.2). We invoke Theorem 3 and conclude

T1 ≤ P
(∣∣∣F̂ tr

i (X
(s)
i )− Fi(X(s)

i )
∣∣∣ ≥ δn,d,pϑ2

)
≤ n−c3 + 2pe−c4p + 4n−c5p−c6 .

Recalling the definition of δn,d,p in (Equation 3.6.2), we conclude ϑ2 to be approximately

ϑ2 �
√

log n

n1/4
∨
√

log(d− p)
(d− p)β/4

,

where β is defined as 1
2
∧ a

4
∧ 2α+1

4
.
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Lemma 40. Under the Assumption 3, we have

∥∥∥Σ̂non-param
n − Σ̃

non-param
n

∥∥∥
∞

(B.2.5)

.
√

log n ∨ log(d− p)

(√
log n

n1/4
∨
√

log(d− p)
(d− p)β/4

)
+
Lσ (log n ∨ log(d− p))
c0 log2(np)(d− p)1/4︸ ︷︷ ︸

,ϑ3

,

(B.2.6)

with probability exceeding 1− e−c0(n∧(d−p)) − e−c1n.

Proof. The proof conditions on the event

∣∣∣ϕ̃(s)
i

∣∣∣ . cU
√

log n ∨ log(d− p),

holds for all s and i with probability exceeding 1− e−c0(n∧(d−p)).

Following the same argument as in Theorem 4, our analysis focus on the error

n−1
∑n

s=1

(
ϕ̂

(s)
i ϕ̂

(s)
j − ϕ

(s)
i ϕ

(s)
j

)
. Adopting the decomposition such that

ϕ̂
(s)
i ϕ̂

(s)
j − ϕ̃

(s)
i ϕ̃

(s)
j = ϕ̃

(s)
i

(
ϕ̂

(s)
j − ϕ̃

(s)
j

)
+ ϕ̃

(s)
j

(
ϕ̂

(s)
i − ϕ̃

(s)
i

)
+
(
ϕ̂

(s)
i − ϕ̃

(s)
i

)(
ϕ̂

(s)
j − ϕ̃

(s)
j

)
,

we have

1

n

n∑
s=1

(
ϕ̂

(s)
i ϕ̂

(s)
j − ϕ

(s)
i ϕ

(s)
j

)
=

1

n

n∑
s=1

ϕ̃
(s)
i

(
ϕ̂

(s)
j − ϕ̃

(s)
j

)
︸ ︷︷ ︸

T1

+
1

n

n∑
s=1

ϕ̃
(s)
j

(
ϕ̂

(s)
i − ϕ̃

(s)
i

)
︸ ︷︷ ︸

T2

+
1

n

n∑
s=1

(
ϕ̂

(s)
i − ϕ̃

(s)
i

)(
ϕ̂

(s)
j − ϕ̃

(s)
j

)
︸ ︷︷ ︸

T3

.

We only need to analyze the behavior of the terms T1 and T2, since the term T3 is of higher

order. Conditional on the event discussed in Theorem 3, we have

161



∣∣∣ϕ̂(s)
i − ϕ̃

(s)
i

∣∣∣
=
∣∣∣(Φ−1(ξ)

)′∣∣∣ ∣∣∣F̂ tr(X̂
(s)
i )− F̂ tr(X

(s)
i )
∣∣∣ ≤ 1

δn,d,p

∣∣∣F̂ tr(X̂
(s)
i )− F̂ tr(X

(s)
i )
∣∣∣

≤ 1

δn,d,p

[∣∣∣F̂ tr(X̂
(s)
i )− F (X̂

(s)
i )
∣∣∣+
∣∣∣F (X̂

(s)
i )− F (X

(s)
i )
∣∣∣+
∣∣∣F (X

(s)
i )− F̂ tr(X

(s)
i )
∣∣∣]

1©
≤ 2

δn,d,p

[
(log n)εx +

c0√
n

+ c1

√
εx

]
+
L
∣∣∣ŵ(s)

i

∣∣∣
δn,d,p

,

where 1© is because of the Lipschitz property in Assumption 3. Then we obtain

T1 .
2
√

log n ∨ log(d− p)
δn,d,p

[
(log n)εx +

c0√
n

+ c1

√
εx

]
︸ ︷︷ ︸

T1,1

+
L
√

log n ∨ log(d− p)
nδn,d,p

n∑
s=1

|ŵ(s)
i |︸ ︷︷ ︸

T1,2

2©
. 2

√
log n ∨ log(d− p)

(√
log n

n1/4
∨
√

log(d− p)
(d− p)β/4

)

+
L
√

log n ∨ log(d− p)
δn,d,p

√∑n
s=1 |ŵ

(s)
i |2

n
,

where in 2© we plug in the definition of εx in (Equation 3.5.2), that is,

T1,1 � 2
√

log n ∨ log(d− p)

(√
log n

n1/4
∨
√

log(d− p)
(d− p)β/4

)
.

Since the ŵ(s)
i is approximately Gaussian distribution with mean zero and σ2/(d− p) vari-

ance, we have (d−p)/σ2
∑n

s=1 |ŵ
(s)
i |2 be ξ2-RV with freedom n, which means

∑n
s=1 |ŵ

(s)
i |2 ≤

2nσ2/(d− p) holds with probability at least 1− e−cn. To sum up, we obtain
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T1 .
√

log n ∨ log(d− p)

(√
log n

n1/4
∨
√

log(d− p)
(d− p)β/4

)
+

Lσ
√

log n ∨ log(d− p)
δn,d,p

√
d− p

.
√

log n ∨ log(d− p)

(√
log n

n1/4
∨
√

log(d− p)
(d− p)β/4

)
+
Lσ (log n ∨ log(d− p))
c0 log2(np)(d− p)1/4

,

and complete the proof.

B.2.3 Supporting Lemmas

Lemma 41. For all possible i (1 ≤ i ≤ n), we conclude

sup
t∈RE

∣∣∣Φ−1
(
F̂ tr
i (t)

)
− Φ−1 (Fi(t))

∣∣∣ ≤ 2cU
√

log n ∨ log(d− p),

whereRE is defined in (Equation B.2.1).

Proof. We conclude that

∣∣∣Φ−1
(
F̂ tr
i (t)

)
− Φ−1 (Fi(t))

∣∣∣ ≤ ∣∣Φ−1 (Fi(t))
∣∣+
∣∣∣Φ−1

(
F̂ tr
i (t)

)∣∣∣ .
For the first term, we have

∣∣Φ−1 (Fi(t))
∣∣ ≤ cU

√
log n ∨ log(d− p),

according to the definitions of RE . Meanwhile for the second term
∣∣∣Φ−1

(
F̂ tr
i (t)

)∣∣∣, we

have

Φ−1
(
F̂ tr
i (t)

) 1©
≤ Φ−1 (1− δn,d,p)

2©
≤

√
2 log

1

1− δn,d,p

3©
≤ cU

√
log n ∨ log(d− p),

where in 1© we exploit the fact F̂ tr
i (t) ≤ 1 − δn,d,p, in 2© we invoke Lemma 11 in [25] (cf.

Lemma 53), and in 3© we use the fact that δn,d,p ≥ 1
n
∨ 1

d−p .
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Lemma 42. Provided that δn,d,p ≤ 1−Φ
(
cL
√

log n ∨ log(d− p)
)
−√εx, we can bound

the probability

P
(
F̂i(gi(cL

√
log n ∨ log(d− p))) ≥ 1− δn,d,p

)
≤ exp

(
−2n

(
1− δn,d,p − Φ

(
cL
√

log n ∨ log(d− p)
)
−
√
εx

)2
)

;

P
(
F̂i(gi(−cL

√
log n ∨ log(d− p))) ≤ δn,d,p

)
≤ exp

(
−2n

(
1− δn,d,p − Φ

(
cL
√

log n ∨ log(d− p)
)
−
√
εx

)2
)
,

where εx is defined in (Equation 3.5.2).

Proof. We have

P
(
F̂i(gi(cL

√
log n ∨ log(d− p))) ≥ 1− δn,d,p

)
= P

[
F̂i(gi(cL

√
log n ∨ log(d− p)))− EF̂i(gi(cL

√
log n ∨ log(d− p)))

≥ 1− δn,d,p − EF̂i(gi(cL
√

log n ∨ log(d− p)))

]

≤ exp

[
−2n

(
1− δn,d,p − EF̂i(gi(cL

√
log n ∨ log(d− p)))

)2
]
.

The term is bounded as

1− δn,d,p − EF̂i
(
gi(cL

√
log n ∨ log(d− p))

)
≥
∣∣∣1− δn,d,p − Fi (gi(cL√log n ∨ log(d− p))

)∣∣∣
−
∣∣∣Fi (gi(cL√log n ∨ log(d− p))

)
− EF̂i(gi(cL

√
log n ∨ log(d− p)))

∣∣∣
=
∣∣∣1− δn,d,p − Φ

(
cL
√

log n ∨ log(d− p)
)∣∣∣−√εx.

Similarly, we can prove

P
(
F̂i(gi(−cL

√
log n ∨ log(d− p))) ≤ δn,d,p

)
≤ exp

(
−2n

(
1− δn,d,p − Φ

(
cL
√

log n ∨ log(d− p)
)
−
√
εx

)2
)
.
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APPENDIX C

APPENDIX OF DESIGN OF COMPRESSIVE SENSING SYSTEMS USING

DENSITY EVOLUTION

C.1 Proof of Theorem 6

Proof. We begin the proof by restating the DE equation w.r.t. E(t+1) and V (t+1) as

E(t+1) = Eprior(s),z∼N (0,1)

[
prox

(
s+ a1z

√
E(t); βa2V

(t)
)
− s
]2

︸ ︷︷ ︸
,ΨE(E(t);V (t))

;

V (t+1) = Eprior(s),z∼N (0,1)

[
βa2V

(t)prox
′
(
s+ a1z

√
E(t); βa2V

(t)
)]

︸ ︷︷ ︸
,ΨV (E(t);V (t))

.

The derivation of the necessary conditions for limt→∞
(
E(t), V (t)

)
= (0, 0) consists of two

parts:

• Part I. We verify that (0, 0) is a fixed-point of the DE equation;

• Part II. We consider the necessary condition such that DE equation converges within

the proximity of the origin points, i.e., E(t) and V (t) are close to zero.

Since Part I can be easily verified, we put our major focus on Part II. Define the difference

across iterations as δ(t)
E = E(t+1) − E(t) and δ(t)

V = V (t+1) − V (t), we would like to show

limt→∞

(
δ

(t)
E , δ

(t)
V

)
= (0, 0). With Taylor expansion, we obtain

δ
(t+1)
E = ΨE

(
E(t+1), V (t+1)

)
−ΨE

(
E(t), V (t)

)
=

(
∂ΨE (E, V )

∂E

∣∣
E=E(t),V=V (t)

)
· δ(t)

E +

(
∂ΨE (E, V )

∂V

∣∣
E=E(t),V=V (t)

)
· δ(t)

V

+ O

((
δ

(t)
E

)2
)

+O

((
δ

(t)
V

)2
)
. (C.1.1)
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Consider the region where δ(t)
E and δ(t)

V are sufficiently small, we require δ(t)
E and δ(t)

V to

converge to zero. Notice the quadratic terms in (Equation C.1.1) can be safely omitted

in this region. Denote the gradients
(
∂ΨE(E,V )

∂E

)(t) ∣∣
E=E(t),V=V (t) , ∂ΨE(E,V )

∂V

∣∣
E=E(t),V=V (t) ,

∂ΨV (E,V )
∂E

∣∣
E=E(t),V=V (t) , and ∂ΨV (E,V )

∂V

∣∣
E=E(t),V=V (t) as

(
∂ΨE(E,V )

∂E

)(t)

,
(
∂ΨE(E,V )

∂V

)(t)

,
(
∂ΨV (E,V )

∂E

)(t)

,

and
(
∂ΨV (E,V )

∂V

)(t)

, respectively. We obtain the linear equation

δ(t+1)
E

δ
(t+1)
V

 =


(
∂ΨE(E,V )

∂E

)(t) (
∂ΨE(E,V )

∂V

)(t)(
∂ΨV (E,V )

∂E

)(t) (
∂ΨV (E,V )

∂V

)(t)


︸ ︷︷ ︸

,L(t)

δ(t)
E

δ
(t)
V

 ,

and would require the lower bound of the operator norm of the matrix L(t) to be less than

1, i.e., inft
∥∥L(t)

∥∥
OP ≤ 1, since otherwise the values of δ(t)

E and δ(t)
V will keep increasing.

Exploiting the fact ∂ΨV (E,V )
∂E

= 0, we conclude

∥∥L(t)
∥∥

OP = max

[(
∂ΨE (E, V )

∂E

)(t)

,

(
∂ΨV (E, V )

∂V

)(t)
]
.
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The proof is then concluded by computing the lower bounds of the gradients ∂ΨE(E,V )
∂E

and

∂ΨV (E,V )
∂V

as

∂ΨE (E, V )

∂E

∣∣
E=E(t),V=V (t)

= a2
1 · Eprior(s)

[
Φ

(
−s+ a2V

(t)

a1

√
E(t)

)
+ Φ

(
s− a2V

(t)

a1

√
E(t)

)]
1©
=

a2
1k

n

[
Φ

(
−c0 + a2V

(t)

a2

√
E(t)

)
+ Φ

(
c0 − a2V

(t)

a1

√
E(t)

)]
+ 2a2

1

(
1− k

n

)
Φ

(
−a2V

(t)

a1E(t)

)
2©→ ka2

1

n
+ 2a2

1

(
1− k

n

)
Φ

(
− a2V

(t)√
a1E(t)

)
3©
≥ ka2

1

n
;

∂ΨV (E, V )

∂V

∣∣
E=E(t),V=V (t)

= βa2 · Eprior(s)

[
Φ

(
−s+ a2V

(t)

a1

√
E(t)

)
+ Φ

(
s− a2V

(t)

a1

√
E(t)

)]
4©
=

βa2k

n

[
Φ

(
−c0 + a2V

(t)

a2

√
E(t)

)
+ Φ

(
c0 − a2V

(t)

a1

√
E(t)

)]
+ 2βa2

(
1− k

n

)
Φ

(
−a2V

(t)

a1E(t)

)
5©→ kβa2

n
+ 2βa2

(
1− k

n

)
Φ

(
− a2V

(t)√
a1E(t)

)
6©
≥ kβa2

n
, (C.1.2)

where Φ(·) = (2π)−1/2
∫ (·)
−∞ e

−z2/2dz is the CDF of the standard normal RV z, namely, z ∼

N (0, 1). In 1© and 4© we use the prior distribution prior(s) = k/n ·1(c0) + (1− k/n)1(0).

Further, in 2© and 5© we use the fact

lim
E(t)→0

Φ

(
−c0 + a2V

(t)√
a1E(t)

)
+ Φ

(
c0 − a2V

(t)√
a1E(t)

)
= 1,

since c0 6= 0. Finally, in 3© and 6© we omit the non-negative terms Φ(·).

C.2 Example of regular sensing with a Gaussian prior

In addition to the Laplacian prior studied in subsection 4.3.3, we also investigate the Gaus-

sian prior. Assuming the ground-truth x\ to be Gaussian distributed with zero mean and

unit variance, we would like to recover the signal x\ with the regularizer f(x) = ‖x‖2
2. In

167



1.0 1.5 2.0 2.5 3.0

1.0

1.5

2.0

2.5

3.0

1.0 1.5 2.0 2.5 3.0

1.0

1.5

2.0

2.5

3.0

Figure C.1. Illustration of DE in (Equation C.2.1) when setting prior(s) = 1(s = 1). Left
panel:

∑
i,j ρiλj

√
i/j < 1. Right panel:

∑
i,j ρiλj

√
i/j > 1. Notice that the left panel

has a fix-point (0, 0) while the right panel is with non-zero fix-point.

this case, the DE equation reduces to

E(t+1) =
a2

1E
(t) + a2

2(V (t))2

(1 + a2V (t))
2 ; (C.2.1)

V (t+1) =
a2V

(t)

1 + a2V (t)
, (C.2.2)

where a1, a2 are defined the same as above. Then we have the following theorem.

Theorem 15. Provided that
∑

i,j ρiλj
√
i/j < 1, the average error E(t) and the variance

V (t) decrease exponentially after some iteration index T , that is, E(t) ≤ e−c0(t−T )E(T ) and

V (t) ≤ e−c1(t−T )V (T ) whenever t ≥ T , where c0, c1 > 0 are some fixed constants.

An illustration of the DE in (Equation C.2.1) is shown in Figure C.1.

Proof. We begin the proof by restating that the functions Ezhmean(·; ·) and Ezhvar (mean; var)

are written as

Ezhmean

(
s+ a1z

√
E(t); a2V

(t)
)

=
a2

1E
(t) + a2

2

(
V (t)

)2
s2

(1 + a2V (t))
2 ;

Ezhvar

(
s+ a1z

√
E(t); a2V

(t)
)

=
a2V

(t)

1 + a2V (t)
,
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which can be easily verified. Then we prove that V (t) decreases exponentially since a2 > 0

and hence for an arbitrary time index T1 the relation

V (t) ≤
(

a2

1 + a2

)t−T1
V (T1) = e−c1(t−T1)V (T1)

holds for t ≥ T1, where c1 is defined as log(1 + a−1
2 ) > 0.

Afterwards, we study the behavior of E(t). Denote VS as Eprior(s)(s
2), we have

E(t+1) ≤ a2
1E

(t) +
a2VSV

(t)

2
1©
≤ a2

1E
(t) +

a2VS
2

(
a2

1 + a2

)t
V (0), (C.2.3)

where in 1© we use the relation V (t) ≤ (a2/(1 + a2))t V (0). Define a new sequence Ẽ(t) =

E(t)/a2t
1 , we can transform (Equation C.2.3) to

Ẽ(t+1) =
E(t+1)

a
2(t+1)
1

≤ E(t)

a2t
1

+
a2VSV

(0)

2a2
1

(
a2

(1 + a2)a2
1

)t
= Ẽ(t) +

a2VSV
(0)

2a2
1

(
a2

(1 + a2)a2
1

)t
,

after rearranging the terms. Due to the time-invariance, we also have the relation

Ẽ(t) ≤ Ẽ(t−1) +
a2VSV

(0)

2a2
1

(
a2

(1 + a2)a2
1

)t−1

.

Iterating over all such inequalities, we obtain the equation

Ẽ(t+1) ≤ Ẽ(1) +
a2VSV

(0)

2a2
1

a2
(1+a2)a21

(
1−

(
a2

(1+a2)a21

)t)
1−

(
a2

(1+a2)a21

) ,
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which leads to

E(t+1) ≤ a2t
1 E

(1) +
a2VSV

(0)

2a2
1

· a2

1 + a2

a2t
1 −

(
a2

1+a2

)t
1− a2

(1+a2)a21︸ ︷︷ ︸
I

. (C.2.4)

Since a1 < 1 and a2/(1 + a2) < 1, we have the second term I in (Equation C.2.4) to be

negligible as t goes to infinity. Hence we can choose a sufficiently large T such that for

t ≥ T , we have E(t+1) is approximately equal to a2t
1 E

(1) and conclude the exponential

decay of E(t).

C.3 Discussion of the DE for both regular and irregular designs

First we explain the physical meaning of the quantities E(t) and V (t), which track the

average error and the average variance at the tth iteration, respectively. Since the physical

meaning of V (t) can be easily obtained, we focus on the explanation of E(t). For the

convenience of the analysis, we rewrite the MAP estimator as

x̂ = argmaxx exp

(
−γ‖y −Ax‖2

2

2σ2

)
· exp (−γf(x)) ,

where γ > 0 is a redundant positive constant. Then we restate the message-passing algo-

rithm, which is used to solve the MAP estimator, as

m̂
(t+1)
a→i (xi) ∼=

∫ ∏
j∈∂a\i

m
(t)
j→a(xi)× e

−
γ(ya−∑n

j=1 Aajxj)
2

2σ2 dxj

m
(t+1)
i→a (xi) ∼= e−γf(xi)

∏
b∈∂i\a

m̂
(t+1)
b→i (xi).

The MAP estimator of x̂i is hence written as
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x̂i = argmaxxiP (xi|y) ≈ argmaxxie
−γf(xi)

∏
a∈∂i

m̂
(t)
a→i(xi).

Notice that x̂i can be rewritten as the mean w.r.t. the probability measure e−γf(xi)
∏

a∈∂i m̂
(t)
a→i,

namely,

x̂i ≈
∫
xi

xie
−γf(xi)

∏
a∈∂i

m̂
(t)
a→i(xi)dxi,

by letting γ →∞. Since the mean µi→a is computed as

µi→a =

∫
xi

xie
−γf(xi)

∏
b∈∂i\a

m̂
(t)
b→i(xi)dxi,

which is close to x̂i, we obtain the approximation m−1
∑m

a=1(µi→a − x\i)
2 as (x̂i − x\i)

2.

We then conclude

E(t) =
1

mn

n∑
i=1

m∑
a=1

(
µi→a − x\i

)2

≈ 1

n

n∑
i=1

(
x̂i − x\i

)2

,

which is approximately the average of error at the tth iteration. Having discussed the phys-

ical meaning of the quantities E(t) and V (t), we turn to the derivation of the DE equation.

C.3.1 Supporting Lemmas

We begin the derivation with the following lemma, which is stated as

Lemma 43. Consider the message flow m̂
(t+1)
a→i from the check node a to the variable node

i and approximate it as a Gaussian RV with mean µ̂(t+1)
a→i and variance v̂(t+1)

a→i , i.e., m̂(t+1)
a→i ∼

N
(
µ̂

(t+1)
a→i , v̂

(t+1)
a→i

)
. Then, we can obtain the following update equation at the (t + 1)th

iteration
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µ̂
(t+1)
a→i = xi + A

∑
j∈∂a\i

AaiAaj

(
xj − µ

(t)
j→a

)
+ AAaiwa;

v̂
(t+1)
a→i = Aσ2 + |∂a|V (t),

where |∂a| denotes the degree of the check node a.

Proof. Consider the message flow m̂
(t+1)
a→i from check-node to variable node at the (t+ 1)th

iteration

m̂
(t+1)
a→i =

1

Zt
a→i

∫ ∏
j∈∂a\i

m
(t)
j→a(xj)× exp

−γ
(
ya −

∑
j=1Aajxj

)2

2σ2

 dxj. (C.3.1)

Approximate the message flow m
(t+1)
j→a as a Gaussian RV with mean µ(t+1)

j→a and variance

v
(t+1)
j→a . Plugging into (Equation C.3.1) yields

m̂
(t+1)
a→i =

1

Zt
a→i

∫ ∏
j∈∂a\i

exp

−γ
(
xj − µ(t)

j→a

)2

2v
(t+1)
j→a

× exp

−γ
(
ya −

∑
j=1Aajxj

)2

2σ2

 dxj.
(C.3.2)

The direct calculation of the above integral involves the cross terms such as Aaj1Aaj2xj1xj2

(j1 6= j2), which can be cumbersome. To handle this issue, we adopt the trick in [152, 55],

whose basic idea is to introduce a redundant variable ω and exploit the relation

e−
t2

2σ2 =
1√

2πσ2

∫
e−

ω2

2σ2
+ itω
σ2 dω,

where t is an arbitrary number. As such, we can transform (Equation C.3.2) to
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m̂
(t+1)
a→i

∼=
∫
dω

∏
j∈∂a\i

dxj · exp

−γ
(
xj − µ(t)

j→a

)2

2v
(t+1)
j→a


· exp

−iωγ
(
ya −

∑
j=1Aajxj

)
σ2

 · exp

[
−γω

2

2σ2

]
,

which diminishes the cross term xj1xj2 (j1 6= j2). Rearranging the terms for each xj , we

can iteratively perform the integral such that

∫
dxj · exp

−γ
(
xj − µ(t)

j→a

)2

2v
(t)
j→a

+
iωγAajxj

σ2



=

√
2πv

(t)
j→a

γ
· exp

−γ(µ̂
(t)
j→a)

2

2v̂
(t)
j→a

+

v
(t)
j→a

(
γµ

(t)
j→a

v
(t)
j→a

+
iγωAaj
σ2

)2

2γ


=

√
2πv

(t)
j→a

γ
· exp

(
−
γω2A2

ajv
(t)
j→a

2σ4
+
iγωAajµ

(t)
j→a

σ2

)
.

With some algebraic manipulations, we can compute its mean µ̂(t+1)
a→i and its variance v̂(t+1)

a→i

as

µ̂
(t+1)
a→i =

Aai

(
ya −

∑
j∈∂a\iAajµ

(t)
j→a

)
A2
ai

;

v̂
(t+1)
a→i =

σ2 +
∑

j∈∂a\iA
2
ajv

(t)
j→a

A2
ai

.

The following analysis focuses on how to approximate these two values. We begin by the

discussion w.r.t. the variance v̂(t+1)
a→i . Note we have

v̂
(t+1)
a→i

1©
≈ Aσ2 +

∑
j∈∂a\i

v
(t)
j→a,

where in 1©we useA2
ai ≈ E (A2

ai|Aai 6= 0) = A−1 for i ∈ ∂a. As for the sum
∑

j∈∂a\i v
(t)
j→a,
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we can view it to be randomly sampled from the set of variances
{
v

(t)
j→a

}
and approximate

it as ∑
j∈∂a\i

v
(t)
j→a ≈ (|∂a| − 1)V (t) ≈ |∂a|V (t).

Notice that the variance is closely related with the check node degree |∂a|. Having obtained

the variance v̂(t+1)
a→i , we turn to the mean µ̂(t+1)

a→i , which is computed as

µ̂
(t+1)
a→i =

Aai

(
ya −

∑
j∈∂a\iAajµ

(t)
j→a

)
A2
ai

2©
≈ AAai

Aaixi +
∑
j∈∂a\i

Aaj

(
xj − µ

(t)
j→a

)
+ wa


3©
≈ xi + A

∑
j∈∂a\i

AaiAaj

(
xj − µ

(t)
j→a

)
+ AAaiwa,

where in 2© and 3© we use the approximation A2
ai ≈ A−1 for i ∈ ∂a.

C.3.2 Derivation of DE

We study the message flow m
(t+1)
i→a from the variable node i to the check node a

m
(t+1)
i→a

∼= e−γf(xi)
∏
b∈∂i\a

e
−
γ(xi−µ̂(t+1)

b→i )
2

2v̂
(t+1)
b→i .

To begin with, we study the product
∏

b∈∂i\a exp

(
−
γ
(
xi−µ̂

(t+1)
b→i

)2
2v̂

(t)
b→i

)
. Its variance ṽ(t+1)

i→a is

approximately computed as

γ

ṽ
(t+1)
i→a

≈
∑
b∈∂i\a

γ

v̂
(t+1)
b→i

,

which yields
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ṽ
(t+1)
i→a =

(
|∂i| − 1

Aσ2 + |∂a|V (t)

)−1

≈ Aσ2 + |∂a|V (t)

|∂i|
.

Further, the mean µ̃(t+1)
i→a is calculated as

µ̃
(t+1)
i→a =

 ∑
b∈∂i\a

µ̂
(t+1)
b→i

v̂
(t+1)
b→i

 /

 ∑
b∈∂i\a

1

v̂
(t+1)
b→i

−1

1©
=

Aσ2 + |∂a|V (t)

|∂i|

×

 ∑
b∈∂i\a

xi + A
∑

j∈∂b\iAbiAbj

(
xj − µ

(t)
j→b

)
+ AAbiwb

Aσ2 + |∂a|V (t)


≈ xi +

A

|∂i|

 ∑
j∈∂b\i

AbiAbj

(
xj − µ

(t)
j→b

)
+
∑
b∈∂i\a

Abiwb

 ,
where in 1©we invoke Lemma 43. We then approximate the term

∑
j∈∂b\iAbiAbj

(
xj − µ

(t)
j→b

)
+
∑

b∈∂i\aAbiwb as a Gaussian RV with its mean being calculated as

E

 ∑
b∈∂i\a

∑
j∈∂b\i

AbiAbj

(
xj − µ

(t)
j→b

)
+
∑
b∈∂i\a

Abiwb

 = 0,

and its variance as

E

 ∑
b∈∂i\a

∑
j∈∂b\i

AbiAbj

(
xj − µ

(t)
j→b

)
+
∑
b∈∂i\a

Abiwb

2

= E

 ∑
b∈∂i\a

∑
j∈∂b\i

AbiAbj

(
xj − µ

(t)
j→b

)2

+ E

 ∑
b∈∂i\a

Abiwb

2

≈ A−2|∂i|
∑
j∈∂a\i

(
xj − µ(t)

j→b

)2

+ A−1σ2|∂i|

2©
≈ |∂i|

(
A−2|∂a|E(t) + A−1σ2

)
.
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In 2© we assume the term
(
xj − µ(t)

j→b

)2

is randomly sampled among all possible pairs

(i, a). Hence for the fixed degree |∂i| and |∂a|, we can approximate the mean µ̃(t+1)
i→a as a

Gaussian RV with mean xi+z
√

(Aσ2 + |∂a|E(t)) /|∂i| and variance
(
Aσ2 + |∂a|V (t)

)
/|∂i|,

namely,

x ∼ N

(
xi + z

√
Aσ2 + |∂a|E(t)

|∂i|
,
Aσ2 + |∂a|V (t)

|∂i|

)
,

where z is a standard normal RV. Recalling that distribution of the degrees of the variable

node i and check node a satisfies P(|∂i| = α) = λα and P (|∂a| = β) = ρβ , we can ap-

proximate the distribution of the product
∏

b∈∂i\a exp

(
−γ
(
xi − µ̂(t)

b→i

)2

/(2v̂
(t)
b→i)

)
as the

mixture Gaussian
∑

i,j ρiλjN
(
z
√

iE(t)+Aσ2

j
, Aσ

2+iV (t)

j

)
1 and further approximate it as a

single Gaussian RV with mean xi+
∑

i,j ρiλjz
√

iE(t)+Aσ2

j
and variance

∑
i,j ρiλj

Aσ2+iV (t)

j
.

Invoking the definitions of hmean(·; ·) and hvar (·; ·) as in (Equation 4.3.6), we then approxi-

mate the mean µ(t+1)
i→a and the variance v(t+1)

i→a as

µ
(t+1)
i→a ≈ hmean

(
xi + z

∑
i,j

ρiλj

√
iE(t) + Aσ2

j
;
∑
i,j

ρiλj
Aσ2 + iV (t)

j

)
;

v
(t+1)
i→a ≈ hvar

(
xi + z

∑
i,j

ρiλj

√
iE(t) + Aσ2

j
;
∑
i,j

ρiλj
Aσ2 + iV (t)

j

)
.

Then, the DE w.r.t. the average error E(t+1) is derived as

E(t+1) =
1

mn

m∑
a=1

n∑
i=1

(
µ

(t+1)
i→a − x

\
i

)2

≈ Eprior(s)Ez
[
hmean

(
x\i + z

∑
i,j

ρiλj

√
iE(t) + Aσ2

j
;
∑
i,j

ρiλj
Aσ2 + iV (t)

j

)
− x\i

]2

.

1One hidden assumption is that there is no-local loops in the graphical model we constructed, which is
widely used in the previous work [43].
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Following a similar method, we obtain the DE w.r.t. the average variance V (t+1) as stated

in (Equation 4.3.4). This completes the proof.

C.3.3 Derivation of DE for Irregular Design

Different from the regular design, we separately track the average error and average vari-

ance w.r.t. the high-priority part and low-priority part. Then we define four quantities,

namely, E(t)
L , E

(t)
H , V (t)

L , and V (t)
H , which are written as

E
(t)
L =

1

mnL

m∑
a=1

∑
i∈L

(
µ

(t)
i→a − x

\
i

)2

;

E
(t)
H =

1

mnH

m∑
a=1

∑
i∈H

(
µ

(t)
i→a − x

\
i

)2

;

V
(t)
L =

1

mnL

m∑
a=1

∑
i∈L

v
(t)
i→a;

V
(t)
H =

1

mnH

m∑
a=1

∑
i∈H

v
(t)
i→a,

where nH and nL denote the length of the high-priority part x\H and low-priority part x\L, re-

spectively. Following the same procedure as above then yields the proof of (Equation 4.4.1).

The derivation details are omitted for the clarify of presentation.

C.4 Discussion of subsection 4.4.3

We start the discussion by outlining the DE equation w.r.t. E(t)
H , E

(t)
L , V

(t)
H , and V (t)

L

177



E
(t+1)
H = Eprior(s)Ez∼N (0,1)

[
prox

(
s+ z · b(t)

H,1; βHb
(t)
H,2

)
− s
]2

, ΨE,H

(
E

(t)
H , E

(t)
L , V

(t)
H , V

(t)
L

)
;

E
(t+1)
L = Eprior(s)Ez∼N (0,1)

[
prox

(
s+ z · b(t)

L,1; βLb
(t)
L,2

)
− s
]2

, ΨE,L

(
E

(t)
H , E

(t)
L , V

(t)
H , V

(t)
L

)
;

V
(t+1)
H = Eprior(s)Ez∼N (0,1)

[
βHbH,2 · prox

′
(
s+ z · b(t)

H,1; βHb
(t)
H,2

)]
, ΨV,H

(
E

(t)
H , E

(t)
L , V

(t)
H , V

(t)
L

)
;

V
(t+1)
L = Eprior(s)Ez∼N (0,1)

[
βLbL,2 · prox

′
(
s+ z · b(t)

L,1; βLb
(t)
L,2

)]
, ΨV,L

(
E

(t)
H , E

(t)
L , V

(t)
H , V

(t)
L

)
,

where notation prox(a; b) is the soft-thresholding estimator defined as sign(a) max(|a| −

b, 0), notation prox
′
(a; b) is the derivative w.r.t. the first argument, and the notations b(t)

H,1, b
(t)
H,2, b

(t)
L,1,

and b(t)
L,2 are defined as

b
(t)
H,1 =

∑
`,i,j

λH,`ρH,iρ
L
j

√
Aσ2 + iE

(t)
H + jE

(t)
L

`
;

b
(t)
H,2 =

∑
`,i,j

λH,`ρH,iρ
L
j

Aσ2 + iV
(t)
H + jV

(t)
L

`
;

b
(t)
L,1 =

∑
`,i,j

λL` ρL,iρH,j

√
Aσ2 + iE

(t)
L + jE

(t)
H

`
;

b
(t)
L,2 =

∑
`,i,j

λL` ρL,iρH,j
Aσ2 + iV

(t)
L + jV

(t)
H

`
.

Similar to the proof in section C.1, we define the differences across iterations as
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δ
(t)
E,H , E

(t+1)
H − E(t)

H ;

δ
(t)
E,L , E

(t+1)
L − E(t)

L ;

δ
(t)
V,H , V

(t+1)
H − V (t)

H ;

δ
(t)
V,L , V

(t+1)
H − V (t)

H .

C.4.1 Discussion of (Equation 4.4.7)

This subsection follows the same logic as in section C.1. We first relax the Requirement 5

w.r.t. the average variance V (t)
H and V (t)

L . Performing the Taylor-expansion, we obtain

δ
(t+1)
V,H

= ΨV,H

(
V

(t+1)
H , V

(t+1)
L , E

(t+1)
H , E

(t+1)
L

)
−ΨV,H

(
V

(t)
H , V

(t)
L , E

(t)
H , E

(t)
L

)
=

(
∂ΨV,H (·)
∂EH

∣∣∣
EH=E

(t)
H ,EL=E

(t)
L ,VH=V

(t)
H ,VL=V

(t)
L

)
δ

(t)
E,H

+

(
∂ΨV,H (·)
∂EL

∣∣∣
EH=E

(t)
H ,EL=E

(t)
L ,VH=V

(t)
H ,VL=V

(t)
L

)
δ

(t)
E,L

+

(
∂ΨV,H (·)
∂VH

∣∣∣
EH=E

(t)
H ,EL=E

(t)
L ,VH=V

(t)
H ,VL=V

(t)
L

)
δ

(t)
V,H

+

(
∂ΨV,H (·)
∂EH

∣∣∣
EH=E

(t)
H ,EL=E

(t)
L ,VH=V

(t)
H ,VL=V

(t)
L

)
δ

(t)
V,L

+ O

((
δ

(t)
V,H

)2
)

+O

((
δ

(t)
V,L

)2
)
. (C.4.1)

Following the same logic in section C.1, our derivation consists of two parts:

• Part I. We verify that (0, 0) is a fixed point of the DE equation w.r.t. V (t)
H and V (t)

L ;

• Part II. We show the DE equation w.r.t. V (t)
H and V (t)

L converges within the proximity

of the origin points.

Our following derivation focuses on showing that DE converges, or equivalently,

limt→∞

(
δ

(t)
V,H , δ

(t)
V,L

)
= (0, 0), as the second part can be easily verified. We consider the

region where V (t)
H , V

(t)
L , δ

(t)
V,H , and δ

(t)
V,L are sufficiently small and hence can safely omit
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the quadratic terms in (Equation C.4.1). Exploiting the fact that ∂ΨV,H/∂EH = 0 and

∂ΨV,H/∂EL = 0, we obtain the linear relation

δ(t+1)
V,H

δ
(t+1)
V,L

 =


(
∂ΨV,H(·)
∂VH

)(t) (
∂ΨV,H(·)
∂VL

)(t)(
∂ΨV,L(·)
∂VH

)(t) (
∂ΨV,L(·)
∂VL

)(t)


︸ ︷︷ ︸

L
(t)
V

δ(t)
V,H

δ
(t)
V,L

 ,

where the notation
(
∂ΨV,H(·)
∂VH

)(t)

is a abbreviation for the gradient

(
∂ΨV,H (·)
∂VH

)(t)

=
∂ΨV,H (·)
∂VH

∣∣∣
EH=E

(t)
H ,EL=E

(t)
L ,VH=V

(t)
H ,VL=V

(t)
L
.

Similarly we define the notations (∂ΨV,H (·)/∂VL)(t), (∂ΨV,L (·)/∂VH)(t), and (∂ΨV,L (·)/∂VL)(t).

Then we require inft

∥∥∥L(t)
V

∥∥∥
OP
≤ 1. Otherwise, the values of δ(t)

V,H and δ(t)
V,L will keep in-

creasing and stay away from zero. We then lower bound the gradients (∂ΨV,H(·)/∂VH)(t)

and (∂ΨV,H(·)/∂VL)(t) as

(
∂ΨV,H(·)
∂VH

)(t)
1©
= βH

(∑
`

λH,`
`

)
·

(∑
i

iρH,i

)
·

[
2

(
1− kH

nH

)
Φ

(
−
βHb

(t)
H,2

b
(t)
H,1

)
+
kH
nH

]
2©
≥ kHβH

nH

(∑
`

λH,`
`

)
·

(∑
i

iρH,i

)
;

(
∂ΨV,H(·)
∂VL

)(t)
3©
= βH

(∑
`

λH,`
`

)
·

(∑
i

iρL,i

)
·

[
2

(
1− kH

nH

)
Φ

(
−
βHb

(t)
H,2

b
(t)
H,1

)
+
kH
nH

]
4©
≥ kHβH

nH

(∑
`

λH,`
`

)
·

(∑
i

iρL,i

)
,

where Φ(·) = (2π)−1/2
∫ (·)
−∞ e

−z2/2dz is the CDF of the standard normal RV z, i.e., z ∼

N (0, 1). In 1© and 3©, we follow the same computation procedure as in (Equation C.1.2),

and in 2© and 4© we drop the non-negative terms Φ(·). Following a similar procedure, we

lower bound the gradients (∂ΨV,L(·)/∂VH)(t) and (∂ΨV,L(·)/∂VL)(t) as
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(
∂ΨV,L(·)
∂VH

)(t)

≥ kLβL
nL

(∑
`

λL,`
`

)
·

(∑
i

iρH,i

)
;

(
∂ΨV,L(·)
∂VL

)(t)

≥ kLβL
nL

(∑
`

λL,`
`

)
·

(∑
i

iρL,i

)
,

and conclude the discussion.

C.4.2 Discussion of (Equation 4.4.8)

This subsection relaxes the requirement limt→∞E
(t)
H = 0, which consists of two parts:

• Part I. we consider the necessary conditions such that DE equation w.r.t. E(t)
H con-

verges;

• Part II. We verify that 0 is a fixed point of DE w.r.t. E(t)
H given that limt→∞

(
V

(t)
H , V

(t)
L

)
=

(0, 0).

Since the second part can be easily verified, we focus on the first part. We consider the

region where E(t)
H and δ(t)

E,H are all sufficiently small and require δ(t)
E,H to converge to zero.

Via the Taylor expansion, we obtain the following linear equation

δ
(t+1)
E,H ≈

(
ΨE,H(·)
∂EH

)(t)

δ
(t)
E,H +

(
ΨE,H(·)
∂EL

)(t)

δ
(t)
E,L, (C.4.2)

where
(

ΨE,H(·)
∂EH

)(t)

denotes the gradient ΨE,H(·)
∂EH

at the point
(
E

(t)
H , E

(t)
L , V

(t)
H , V

(t)
L

)
. Enforc-

ing the variable δ(t)
E,H to converge to zero, we require

inf
t

[(
ΨE,H(·)
∂EH

)(t)
]2

+

[(
ΨE,H(·)
∂EL

)(t)
]2

≤ 1.
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Then our goal becomes lower-bounding the gradients, which are written as

(
ΨE,H(·)
∂EH

)(t)

= b
(t)
H,1

(∑
`

λH,`√
`

)∑
i,j

iρH,iρL,j√
iE

(t)
H + jE

(t)
L

 · [2

(
1− kH

nH

)
Φ

(
−
βHb

(t)
H,2

b
(t)
H,1

)
+
kH
nH

]

≥
kHb

(t)
H,1

nH

(∑
`

λH,`√
`

)∑
i,j

iρH,iρL,j√
iE

(t)
H + jE

(t)
L

 ; (C.4.3)

(
ΨE,H(·)
∂EL

)(t)

= b
(t)
H,1

(∑
`

λH,`√
`

)∑
i,j

jρH,iρL,j√
iE

(t)
H + jE

(t)
L

 · [2

(
1− kH

nH

)
Φ

(
−
βHb

(t)
H,2

b
(t)
H,1

)
+
kH
nH

]

≥
kHb

(t)
H,1

nH

(∑
`

λH,`√
`

)∑
i,j

jρH,iρL,j√
iE

(t)
H + jE

(t)
L

 . (C.4.4)

Taking the limit E(t)
H → 0, we can conclude the relaxation by simplifying (Equation C.4.3)

and (Equation C.4.4) as

(
ΨE,H(·)
∂EH

)(t)

≥ kH
nH

(∑
`

λH,`√
`

)2(∑
i

√
iρH,i

)2

;

(
ΨE,H(·)
∂EL

)(t)

≥ kH
nH

(∑
`

λH,`√
`

)2(∑
i

√
iρL,i

)2

.
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C.4.3 Discussion of (Equation 4.4.9)

The basic idea is to linearize the DE update equation with Taylor expansion and enforce

the difference δ(t)
V,H to decrease at a faster rate than δ(t)

V,L:

(
ΨE,H(·)
∂EH

)(t)

≤
(

ΨE,L(·)
∂EH

)(t)

; (C.4.5)(
ΨE,H(·)
∂EL

)(t)

≤
(

ΨE,L(·)
∂EL

)(t)

. (C.4.6)

Following the same logic as (Equation C.4.3) and (Equation C.4.4), we can lower-bound

the gradients
(

ΨE,L(·)
∂EH

)(t)

and
(

ΨE,L(·)
∂EL

)(t)

as

(
ΨE,L(·)
∂EH

)(t)

≥ kL
nL

(∑
`

λL,`√
`

)2(∑
i

√
iρH,i

)2

;

(
ΨE,L(·)
∂EL

)(t)

≥ kL
nL

(∑
`

λL,`√
`

)2(∑
i

√
iρL,i

)2

.

Combining with (Equation C.4.5) will then yield the Requirement 6.

183



APPENDIX D

APPENDIX OF RECOVERING NOISY-PSEUDO-SPARSE SIGNALS FROM

LINEAR MEASUREMENTS VIA INFINITY NORM

D.1 Proof of Lemma 12

Proof. Assume that the recovered results (x̂
′
, ê
′
) with at least one entry violating the above

condition. We would prove that we can always make the objective function smaller by

making sign(x̂i) = sign(êi). Without loss of generality, we can assume that x\ + e\ and

‖e\‖∞ are perfectly recovered. Assume that sign(x̂i) = −sign(êi). Hence,

x\i + e\i = x̂i + êi = sign(x̂i)(|x̂i| − |êi|)

⇒
∣∣|x̂i| − |êi|∣∣ = |x\i + e\i|

⇒ |x̂i| = |êi|+ |x\i + e\i| or |êi| = |x̂i|+ |x\i + e\i|.

If |êi| = |x̂i|+ |x\i + e\i|, then

|êi| ≥ |x\i| − |e
\
i| > 2‖e‖∞ − |e\i| ≥ ‖e‖∞,

which is a contradiction. Hence, |x̂i| = |êi| + |x\i + e\i|. On the other hand, by defining x̃i

and ẽi as

(x̃i, ẽi) = sign(x\i + e\i)
(
|x\i + e\i| − |e

\
i|, |e

\
i|
)
, (D.1.1)

it can be easily verified that they satisfy the constraints in (Equation 6.2.2). However,

‖ẽ‖∞ = ‖ê‖∞ ‖x̃‖1 < ‖x̂‖1.

In other words, (Equation 6.2.2) achieves a lower value at (x̃, ẽ), which is a contradiction.

This completes the proof of the lemma.
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D.2 Proof of Lemma 13

Proof. Assume that solution (x̂, ê) is not unique or not equal to (x̃, ẽ). Consider (a,b) =

(x̂− x̃, ê− ẽ). According to Lemma 44, we have a + b 6= 0 in the following. Consider

(a, b)
‖a+b‖2 ∈ Sn−1 in the following:

• First, note that (a, b)
‖a+b‖2 ∈ null(A), since

A(x̃ + ẽ) = A(x̂ + ê) =⇒ A (a + b)

‖a + b‖2

= 0,

which indicates that (x̂− x̃, ê− ẽ) ∈ null(A).

• Then, we can verify that (a, b)
‖a+b‖2 ∈ T

λ
x,e \ {0,0}. Further, we have

∥∥∥∥ẽ +
tb

‖a + b‖2

∥∥∥∥2

2

≤ ‖e\‖2
2 = ‖ẽ‖2

2,

which leads to
〈
ẽ, b
‖a+b‖2

〉
≤ 0. Combining the above together, we have a+b

‖a+b‖2 ∈

Ωx̃,ẽ.

Since a+b
‖a+b‖2 ∈ Sn−1 belongs to both null(A) and Ωx̃,ẽ, we encounter contradictions with

(Equation 6.3.3) and thus have proved this lemma.

Lemma 44. If ‖b + ẽ‖2
2 ≤ ‖ẽ‖2

2, then

a + b 6= 0, ∀ (a,b) ∈ T λx̃,ẽ \ {0,0}.

Proof. If b = 0, then by definition a 6= 0. Suppose that b 6= 0 but a + b = 0. By the

definition of sub-differential [153], we have

‖x̃ + ta‖1 + λ‖ẽ + tb‖∞ ≥ ‖x̃‖1 + 〈∂‖x̃‖1, ta〉 + λ‖ẽ‖∞ + λ 〈∂‖ẽ‖∞, tb〉 . (D.2.1)

Combining (Equation D.2.1) and (a,b) ∈ T λx̃,ẽ, we obtain
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〈∂‖x̃‖1, a〉+ λ 〈∂‖ẽ‖∞,b〉 ≤ 0.

Since magnitudes of the elements of ẽ are the uniformly distributed, we have [107]

∂‖ẽ‖∞ = {w : wiẽi ≥ 0, ‖w‖1 = 1}.

For example, we have sign(e)/‖e‖1 ∈ ∂‖ẽ‖∞. For ∂‖x‖1, we have

(∂‖x̃‖1)i = sign(x̃i), i ∈ T,∣∣ (∂‖x̃‖1)i
∣∣ ≤ 1, i ∈ T c.

Here we set the ith entry in ∂‖x̃‖1 as sign(ẽi), i ∈ T c. Since we have sign(x̃i) = sign(ẽi)

for i ∈ T as shown in Property 1, we have ∂‖x̃‖1 = sign(ẽ). If a + b = 0, we have

(
1− λ

n

)
〈sign(ẽ),b〉 ≥ 0

1©
=⇒ 〈ẽ,b〉 ≥ 0, (D.2.2)

where 1© is because of k < λ < n − k, and ẽ = sign(ẽ)‖ẽ‖∞ shown in Property 1. Note

that ẽ + b should satisfy

‖ẽ + b‖2
2 ≤ ‖e\‖2

2 = ‖ẽ‖2
2,

which leads to 〈ẽ,b〉 ≤ −‖b‖
2
2

2

2©
< 0, where 2© is due to the fact that b 6= 0. Since this

inequality is contradictory to (Equation D.2.2), we have a + b 6= 0.

D.3 Proof of Theorem 9

Proof. To prove the theorem, it suffices to show that

ω(Ω
⋂

Sn−1) ≤
√
n− (1− 2−n)

√
log n

2
− 2

1
2
−n
√
π
.

First, we define Θẽ, S1, and S2 as
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Θẽ = {θ : θiẽi ≥ 0, θ 6= 0} ;

S1 = Ω
⋂

Bn, S2 = Θẽ

⋂
Bn,

(D.3.1)

where Bn denotes an n-dimensional ball. Easily we can verify that S1, S2, and S1 ∪ S2 are

all convex. Further, according to Lemma 45, we have S1

⋂
S2=∅. Since Ω(S1 ∪ S2) ≤

ω(Bn) =
√
n, using [107] we have

ω(Ω
⋂

Sn−1) + ω(S2)
1©
≤ ω(S1) + ω(S2)=ω(S1 ∪ S2) + ω(S1

⋂
S2)

= ω(S1 ∪ S2) ≤ ω(Bn) =
√
n,

where 1© is because Ω
⋂

Sn−1 ⊂ S1. Combining with Lemma 46, we have

ω(Ω
⋂

Sn−1) ≤
√
n− (1− 2−n)

√
log n

2
− 2

1
2
−n
√
π
.

The proof is completed by plugging ω(S1) into

m ≥ ω2(Ω
⋂

Sn−1) + 1.

Lemma 45. For Ω defined in (Equation 6.3.2) and Θ defined in (Equation D.3.1), we have

Ω
⋂

Θ = ∅, which means that θ ∈ Θ cannot be decomposed as a + b such that (a, b) ∈

T λx̃,ẽ, 〈b, ẽ〉 ≤ 0.

Proof. Assume the above argument is untrue. Then we can write (a,b) = (θ + c,b) ∈

T λx̃,ẽ and have

a + b = θ + c + b = θ =⇒ c + b = 0. (D.3.2)

Note that θiẽi ≥ 0 and sign(x̃i) = sign(ẽi) in Property 1. Then, we can verify that

‖x̃ + θ‖1 > ‖x̃‖1, sign(x̃i + θi) = sign(x̃i), i ∈ T. (D.3.3)

According to the definition of (θ + c, b) ∈ T λx̃,ẽ, we have
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‖x̃ + θ + c‖1 + λ‖ẽ + b‖∞ ≤ ‖x̃‖1 + λ‖ẽ‖∞
1©
< ‖x̃ + θ‖1 + λ‖ẽ‖∞, (D.3.4)

where inequality 1© in (Equation D.3.4) is because of (Equation D.3.3). Then we can con-

clude that (c,b) ∈ T λx̃+θ,ẽ. Further, we can verify that (c,b) 6= (0, 0) since otherwise we

have ‖x̃ + θ‖1 + λ‖ẽ‖∞ ≤ ‖x̃‖1 + λ‖ẽ‖∞, which is contradictory to (Equation D.3.3).

Similar to the proof in Lemma 44, we can prove c + b 6= 0, which is omitted for the

conciseness of the presentation and is contradictory to (Equation D.3.2). Hence, we have

Ω
⋂

Θ = ∅.

Lemma 46. For Θ defined in (Equation D.3.1), we have

ω(Θ
⋂

Bn) ≥ (1− 2−n)

√
log n

2
+

2
1
2
−n
√
π
.

Proof. First, we define a unitary matrix U as

U = {diag(ui)}ni=1, ui = sign(ei).

Based on the rotation invariant property of Gaussian RVs, [139] we have ω(UΩ) = ω(Ω),

where UΩ is written as UΩ = {θ : θi ≥ 0, θ 6= 0}. For a specific Gaussian RV g, define

an event E as {∃ i, s.t. gi ≥ 0} whose probability is 1− 2−n. Then we have

Eg sup
u∈Ω

⋂
Bn
〈g,U〉 = EEg|E sup

u∈Ω
⋂

Bn
〈g,U〉

= P(E)E max
1≤i≤n
∃gi≥0

gi + P(Ec)E max
1≤i≤n
∀gi<0

gi

≥ P(E)Emax
i
gi + P(Ec)E(gi |gi < 0)

≥ (1− 2−n)

√
log n

2
+

2
1
2
−n
√
π
,

where P(E) and P(Ec) denote the probability of event E and its complement Ec, respec-

tively.
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APPENDIX E

APPENDIX OF SPARSE SIGNAL RECONSTRUCTION WITH A MULTIPLE

CONVEX SETS DOMAIN

E.1 Proof of Theorem 10

Proof. Note that for any-vector non-zero h ∈ null(A)
⋂
T
⋂(⋃

i,j C̃i,j
)

, we can always

rescale to make it unit-norm. Hence we can rewrite the event E as

E =

{
null(A)

⋂
Sn−1

2

⋂
T
⋂(⋃

i,j

C̃i,j

)
= ∅

}
.

For the conciseness of notation, we define C̃ to be C̃ =
⋃
i,j C̃i,j . Then we upper-bound

1− P(E) as

1− P(E) = P
(

null(A)
⋂

Sn−1
2

⋂
T
⋂
C̃ 6= ∅

)
1©
≤ P

(
null(A)

⋂
Sn−1

2

⋂
T 6= ∅

)
︸ ︷︷ ︸

P1

∧P
(

null(A)
⋂

Sn−1
2

⋂
C̃ 6= ∅

)
︸ ︷︷ ︸

P2

,

where 1© is because

{
null(A)

⋂
Sn−1

2

⋂
T
⋂
C̃ 6= ∅

}
⊆
{

null(A)
⋂

Sn−1
2

⋂
T 6= ∅

}
,{

null(A)
⋂

Sn−1
2

⋂
T
⋂
C̃ 6= ∅

}
⊆
{

null(A)
⋂

Sn−1
2

⋂
C̃ 6= ∅

}

With Lemma 47 and Lemma 48, we can separately bound P1 and P2 and finish the proof.

Lemma 47. We have P1 ≤ 1 ∧ exp
(
− (am−ω(T ))2

2

)
, if am ≥ ω(T ).
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Proof. Note that we have

P
(

null(A)
⋂

Sn−1
2

⋂
T 6= ∅

)
︸ ︷︷ ︸

P1

+P
(

null(A)
⋂

Sn−1
2

⋂
T = ∅

)
︸ ︷︷ ︸

Pc1

= 1.

Then we lower-bound Pc1 as

Pc1 = P

(
min

u∈Sn−1
2

⋂
T
‖Au‖2 > 0

)
1©
≥ 1− exp

(
−(am − ω (T ))2

2

)
,

provided am ≥ ω(T ), where 1© is because of Corollary 3.3 in [107], and ω(·) denotes the

Gaussian width.

Lemma 48. If ω(C̃ij) ≤ 1− 2εaM , we have

P2 ≤ 1 ∧ 3

2
exp

(
−ε

2a2
M

2

)
+
∑
i≤j

exp

−
(

(1− 2ε)aM − ω(C̃ij)
)2

2

 ,

Proof. Note that we have

P
(

null(A)
⋂

Sn−1
2

⋂
C̃ 6= ∅

)
︸ ︷︷ ︸

P2

+ P
(

null(A)
⋂

Sn−1
2

⋂
C̃ = ∅

)
︸ ︷︷ ︸

Pc2

= 1.

Here we upper-bound P2 via lower-bounding Pc2 . First we define Pc2(d) as

Pc2(d) , P
(

min
u∈
⋃
Si,j , v∈null(A)

‖u− v‖2 ≥ d

)
.

Then we have Pc2 = limd→0Pc2(d). The following proof trick is fundamentally the same as

that are used in Thm. 4.1 in [108] but in a clear format by only keeping the necessary parts

for this scenario. We only present it for the self-containing of the thesis and do not claim

any novelties.
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We first define Si,j = Sn−1
2

⋂
C̃i,j and two quantities Q1 and Q2 as

Q1 , P
(

min
u∈
⋃
Si,j
‖Au‖2 ≥ d(1 + ε1)E‖A‖2

)
,

Q2 , P

 ⋂
i1≤j1

⋂
u∈Si1,j1

( M∑
i2=1

g2
i2

)1/2

+
∑
j2

uj2hj2 ≥ d(1 + ε1)E‖A‖2 + ε2aM

 ,

where aM = E‖g‖2, g ∈ N (0, IM×M), and gj , hi are iid standard normal random vari-

ables N (0, 1). The following proof is divided into 3 parts.

Step I. We prove that Pc2(d) + e−ε
2
1a

2
M/2 ≥ Q1, which is done by

Q1 = P
(

min
u∈
⋃
Si,j
‖Au‖2 ≥ d(1 + ε1)E‖A‖2

)
= P

(
min

u∈
⋃
Si,j , v∈null(A)

‖A(u− v)‖2 ≥ d(1 + ε1)E‖A‖2

)
1©
≤ P

(
min

u∈
⋃
Si,j , v∈null(A)

‖A‖2‖u− v‖2 ≥ d(1 + ε1)E‖A‖2

)
2©
≤ P (‖A‖2 ≥ (1 + ε1)E‖A‖2) + P

(
min

u∈
⋃
Si,j , v∈null(A)

‖u− v‖2 ≥ d

)
︸ ︷︷ ︸

≤ Pc2(d)

3©
≤ exp

(
−ε

2
1(E‖A‖2)2

2

)
+ Pc2(d)

4©
≤ exp

(
−ε

2
1a

2
M

2

)
+ Pc2(d),

where in 1© we use ‖A‖2‖u− v‖2 ≥ ‖A(u− v)‖2, in 2© we use the union bound for

{
min

u∈
⋃
Si,j , v∈null(A)

‖A‖2‖u− v‖2 ≥ d(1 + ε1)E‖A‖2

}
⊆ {‖A‖2 ≥ (1 + ε1)E‖A‖2}

⋃ {
min

u∈
⋃
Si,j , v∈null(A)

‖u− v‖2 ≥ d

}
,

in 3© we use the Gaussian concentration inequality Lipschitz functions (Theorem 5.6 in

[140]) for ‖A‖2, and in 4© we use ‖A‖2 ≥ ‖Ae1‖2 = ‖
∑M

i=1Ai,1‖2, where e1 denotes the

canonical basis.
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Step II. We prove that Q1 + 1
2
e−ε

2
2a

2
M/2 ≥ Q2, which is done by

Q1 +
1

2
e−ε

2a2M/2
5©
≥ Q1 + P{g ≥ ε2aM}

6©
≥ P

(
min

u∈
⋃
Si1,j1

‖Au‖2 + g‖u‖2 ≥ d(1 + ε)E‖A‖2 + ε2aM‖u‖2

)

= P

 ⋂
i1≤j1

⋂
u∈Si1,j1

‖Au‖2 + g‖u‖2 ≥ d(1 + ε)E‖A‖2 + ε2aM‖u‖2


7©
≥ P

 ⋂
i1≤j1

⋂
u∈Si1,j1

(
M∑
i2=1

g2
i2

) 1
2

+
N∑
j2=1

uj2hj2 ≥ d(1 + ε1)E‖A‖2 + ε2aM


︸ ︷︷ ︸

Q2

,

where in 5© g is a RV satisfying standard normal distribution, in 6©we use the union bound,

and 7© comes from Lemma 3.1 in [108] and ‖u‖2 = 1.

Step III. We lower bound Q2 as

1−Q2 = P

 ⋃
i1≤j1

⋃
u∈Si1,j1

( M∑
i2=1

g2
i2

) 1
2

+
N∑
j2=1

uj2hj2 ≤ d(1 + ε1)E‖A‖2 + ε2aM


≤ P

( M∑
i2=1

g2
i2

) 1
2

− aM ≤ −ε2aM


+ P

 ⋃
i1≤j1

⋃
u∈Si1,j1

N∑
j2=1

uj2hj2 ≤ d(1 + ε1)E‖A‖2 − (1− 2ε2)aM


8©
≤ exp

(
−
ε22a

2
M

2

)
+ P

 ⋃
i1≤j1

⋃
u∈Si1,j1

N∑
j2=1

uj2hj2 ≤ d(1 + ε1)E‖A‖2 − (1− 2ε2)aM


9©
≤ exp

(
−
ε22a

2
M

2

)
+
∑
i1≤j1

P

 ⋃
u∈Si1,j1

N∑
j2=1

uj2hj2 ≤ d(1 + ε1)E‖A‖2 − (1− 2ε2)aM


A©
≤ exp

(
−
ε22a

2
M

2

)
+
∑
i1≤j1

P

 max
u∈Si1,j1

N∑
j2=1

uj2h
′
j2 ≥ (1− 2ε2)aM − d(1 + ε1)E‖A‖2


B©
≤ exp

(
−
ε22a

2
M

2

)
+
∑
i1≤j1

exp

−
(

(1− 2ε2)aM − d(1 + ε1)E‖A‖2 − ω(C̃ij)
)2

2

 ,
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where in 8© we use E
√∑M

i2=1 g
2
i2

= aM and Gaussian concentration inequality in [140],

in 9© we use union-bound, in A© we define h′ = −h and flip the sign by the symmetry of

Gaussian variables, and in B© we use the definition of ω(C̃ij). Assuming (1 − 2ε2)aM ≥

d(1 + ε1)E‖A‖2 + ω(C̃ij), we finish the proof via the Gaussian concentration inequality in

[140].

Combining the above together and set d(1 + ε1)→ 0 while ε1 →∞, we conclude that

Pc2 ≥ 1− 3

2
exp

(
−ε

2a2
M

2

)
−
∑
i≤j

exp

−
(

(1− 2ε)aM − ω(C̃ij)
)2

2

 ,

provided (1− 2ε)aM ≥ ω(C̃ij), and finish the proof.

E.2 Proof of Theorem 11

Proof. Define p∗ and x∗ as

p∗ = argminp

∑
t

L
(
p,x(t)

)
, x∗ = argminx

∑
t

L
(
p(t),x

)
. (E.2.1)

respectively First we define T t1 and T t2 as

T t1 = L(p(t),x(t))− L(p∗,x(t));

T t2 = L(p(t),x(t))− L(p(t),x∗),

respectively. Then our goal becomes bounding |
∑

t T t1 | + |
∑

t T t2 |. With Lemma 49 and

Lemma 50, we have finished the proof.

Lemma 49. Define T t1 = L(p(t),x(t))−L(p∗,x(t)), where p∗ is defined in (Equation E.2.1),

then we have
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0 <
∑
t

T t1 ≤ Rf

√
T logL,

when η(t)
p = Rf

√
2 logL/T .

Proof. Based on the definition of p∗, we note that
∑

t T t1 is non-negative and prove the

lower-bound. Then we prove its upper-bound.

Since the function is linear, optimal p∗ must be at the edge of ∆L and we denote the

non-zero entry as i∗. Hence, we could study it via the multiplicative weight algorithm

analysis [117]. First we rewrite the update (Equation 7.4.2). Define w(0) = 1 ∈ RL and

update w(t+1) as

w
(t+1)
i = w

(t)
i exp

(
−η(t)

p fi(x
(t))
)
, p

(t+1)
i =

w
(t+1)
i∑
iw

(t+1)
i

.

where (·)i denotes the ith element, and p(t+1) can be regarded as the normalized version of

w(t+1).

First we define Ψt Ψt =
∑L

i=1w
(t)
i . Then we have Ψ0 = L while

ΨT ≥ w
(T )
i∗ = exp

(
−

T∑
t=1

η(t)
p fi∗(x

(t))

)
= exp

(
−ηp

T∑
t=1

fi∗(x
(t))

)
,

where η(t)
p = ηp =

√
2 logL/T . Then we study the division Ψt+1/Ψt as

Ψt+1 =
∑
i

w
(t+1)
i =

∑
i

wti exp
(
−ηpf i(x(t))

) 1©
≤
∑
i

wti

(
1− ηpf i(x(t)) +

η2
pf

2
i (x(t))

2

)

= Ψt

(
1− ηp

〈
p(t),f(x(t))

〉
+
η2
pR

2
f

2

) 2©
≤ Ψt exp

(
−ηp

〈
p(t),f(x(t))

〉
+

η2
pR

2
f

2

)

where in 1© we use e−x ≤ 1 + x + x2/2 for x ≥ 0, and in 2© we use ex ≥ 1 + x for all

x ∈ R. Using the above relation iteratively, we conclude that
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ΨT

Ψ0

≤ exp

(
−ηp

∑
t

〈
p(t),f(x(t))

〉
+
η2
pTR

2
f

2

)
,

which gives us

log ΨT ≤ logL− ηp
∑
t

〈
p(t),f(x(t))

〉
+

Tη2
pR

2
f

2
.

With relation log ΨT ≥ logw
(T )
i∗ , we obtain

ηp
∑
t

(〈
p(t),f(x(t))

〉
−
〈
ei∗ ,f(x(t))

〉)
= ηp

∑
t

(〈
p(t),f(x(t))

〉
−
〈
p∗,f(x(t))

〉)
≤ logL+

Tη2
pR

2
f

2
,

where ei∗ denotes the canonical basis, namely, has 1 in its i∗th entry and all others to be

zero.

Lemma 50. Define T t2 = L(p(t),x(t))−L(p(t),x∗), where x∗ is defined in (Equation E.2.1),

and set η(t)
x = ηx ≤ L−1

h , then we have

0 ≤
∑
t

T t2 ≤
1

2ηx
‖x(0) − x∗‖2

2.

Proof. From the definition of x∗, we can prove the non-negativeness of
∑

t T t2 . Here we

focus on upper-bounding
∑

t T t2 by separately analyzing each term T t2 . For the conciseness

of notation, we drop the time index t. Define h(x) as

h(x) =
∑
i

pihi(x) +
λ1‖y −Ax‖2

2

2
+

λ2‖x‖2
2

2
.

First, we rewrite the update equation as

x(t+1) = x(t) −
(
x(t) − proxηx‖·‖1

[
x(t) − ηw∇h(x(t))

])︸ ︷︷ ︸
ηxH(x(t))

,

which means that
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H(x(t)) =
x(t) − proxηx‖·‖1

(
x(t) − ηw∇h(x(t))

)
ηx

,

where proxηx‖·‖1(x) is defined as [112]

proxηx‖·‖1(x) = argminz ηx‖z‖1 +
1

2
‖x− z‖2

2.

Here we need one important property of H(x(t)), that is widely in the analysis of proximal

gradient descent (direct results of Theorem 6.39 in [112]) and states

H(x(t)) ∈ ∇h(x(t)) + ∂‖x(t+1)‖1.

Here we consider the update relation f(x(t+1))− f(z) as

T t+1
2 =

∑
i

p
(t)
i

[
fi(x

(t+1))− fi(x∗)
]

= ‖x(t+1)‖1 + h(x(t+1))− ‖x∗‖1 − h(x∗)

1©
≤
〈
∂‖x(t+1)‖1, x(t+1) − x∗

〉
+ h(x(t)) +

〈
∇h(x(t)), x(t+1) − x(t)

〉
+
Lh
2
‖x(t+1) − x(t)‖2

2 − h(x∗)

2©
≤
〈
∂‖x(t+1)‖1, x(t+1) − x∗

〉
+
〈
∇h(x(t)), x(t) − x∗ + x(t+1) − x(t)

〉
+
Lh
2
‖x(t+1) − x(t)‖2

2

=
〈
∂‖x(t+1)‖1 +∇h(x(t)), x(t+1) − x∗

〉
+
Lh
2
‖x(t+1) − x(t)‖2

2

3©
≤
〈
H(x(t)), x(t+1) − x∗

〉
+
Lh
2
‖x(t+1) − x(t)‖2

2

4©
=

1

ηx

〈
x(t) − x(t+1),x(t+1) − x∗

〉
+
Lh
2
‖x(t+1) − x(t)‖2

2

5©
≤ 1

ηx

〈
x(t) − x(t+1),x(t+1) − x∗

〉
+

1

2ηx
‖x(t+1) − x(t)‖2

2

=
1

ηx

〈
x(t) − x(t+1),x(t+1) − x∗

〉
+

1

2ηx
‖x(t+1) − x∗‖2

2 +
1

2ηx
‖x(t) − x∗‖2

2

+
1

ηx

〈
x(t+1) − x∗, x∗ − x(t)

〉
=

1

2ηx
‖x(t) − x∗‖2

2 +
1

2ηx
‖x(t+1) − x∗‖2

2 +
1

ηx

〈
x(t+1) − x∗, x∗ − x(t) + x(t) − x(t+1)

〉
=

1

2ηx
‖x(t) − x∗‖2

2 −
1

2ηx
‖x(t+1) − x∗‖2

2,

where in 1© we use ‖x∗‖1 ≥ ‖x(t+1)‖1 +
〈
∂‖x(t+1)‖1,x

∗ − x(t+1)
〉

based on the definition
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of sub-gradients, and h(xt+1) ≤ h(x(t)) +
〈
∇h(x(t)), x(t+1)

〉
+ Lh‖x(t+1) − x(t)‖2

2/2

from the Lh smoothness of h(·), in 2© we use h(x∗) ≥ h(x(t)) +
〈
∇h(x(t)),x∗ − x(t)

〉
since h(·) is convex, in 3© we use H(x(t)) ∈ ∇h(x(t)) + ∂‖x(t+1)‖1, and in 4© we use

x(t+1) = x(t) − ηxH(x(t)), and in 5© we use ηx ≤ L−1.

Hence, we finishes the proof by∑
t

T t2 ≤
∑
t

[
1

2ηx
‖x(t−1) − x∗‖2

2 −
1

2ηx
‖x(t) − x∗‖2

2

]
=

1

2ηx
‖x(0) − x∗‖2

2 −
1

2ηx
‖x(T ) − x∗‖2

2 ≤
1

2ηx
‖x(0) − x∗‖2

2

(i)

≤ 4R2

2ηx
,

where in (i) we use ‖x(0) − x∗‖2 ≤ ‖x∗‖2 + ‖x(0)‖ ≤ 2R.

E.3 Proof of Theorem 12

Proof. First we define h(x) =
∑

i pihi(x) + λ1‖y −Ax‖2
2/2 + λ2‖x‖2

2/2. Then we

consider the term L(p(t),x(t+1))− L(p(t),x(t)) and have

L(p(t),x(t+1))− L(p(t),x(t)) = ‖x(t+1)‖1 − ‖x(t)‖1 +
∑
i

p
(t)
i

(
hi(x

(t+1))− hi(x(t))
)

1©
≤

〈
∂‖x(t+1)‖1,x

(t+1) − x(t)
〉

+
∑
i

p
(t)
i

[〈
∇hi(x(t)), x(t+1) − x(t)

〉
+

Lh
2
‖x(t+1) − x(t)‖2

2

]
2©
=

〈
∂‖x(t+1)‖1 +

∑
i

p
(t)
i ∇hi(x(t))︸ ︷︷ ︸

H(x(t))

, x(t+1) − x(t)

〉
+

Lh
2
‖x(t+1) − x(t)‖2

2

3©
=

〈
x(t) − x(t+1)

η
(t)
w

, x(t+1) − x(t)

〉
+

Lh
2
‖x(t+1) − x(t)‖2

2

=
1

2

(
Lh −

2

η
(t)
w

)
‖x(t+1) − x(t)‖2

2

4©
≤ −Lh

2
‖x(t+1) − x(t)‖2

2,

where in 1© we have ‖x(t)‖1 ≥ ‖x(t+1)‖1 +
〈
∂‖x(t+1)‖1, x(t) − x(t+1)

〉
from the definition

of sub-gradient [112], and hi(x(t+1)) ≤ hi(x
(t))+

〈
∇hi(x(t)),x(t+1) − x(t)

〉
+ Lh

2
‖x(t+1)−

x(t)‖2
2, in 2© we use the property ∂‖x(t+1)‖1 +

∑
i p

(t)
i ∇hi(x(t)) ∈ H(x(t)), in 3© we use

x(t+1) = x(t) − η(t)
w H(x(t)), and in 4© we use η(t)

w ≤ L−1.
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Adopting similar tricks as [154], we could upper-bound ‖x(t+1) − x(t)‖2
2 as

‖x(t+1) − x(t)‖2
2 ≤

2

Lh

[
L(p(t),x(t))− L(p(t),x(t+1))

]
=

2

Lh

L(p(t),x(t))− L(p(t+1),x(t+1))︸ ︷︷ ︸
T t1

+L(p(t+1),x(t+1))− L(p(t),x(t+1))︸ ︷︷ ︸
T t2

 .
Then we separately discuss bound T t1 and T t2 . Since most terms of

∑
t T t1 will be cancelled

after summarization, we focus the analysis on bounding T t2 , which is

T t2 =
〈
p(t+1) − p(t),f(x(t+1))

〉
≤ ‖p(t+1) − p(t)‖1 ‖f(x(t+1))‖∞︸ ︷︷ ︸

≤Rf

,

where f(x(t+1)) denotes the vector whose ith element is fi(x(t+1)). Notice that we have

‖p(t+1) − p(t)‖2
1

5©
≤ 2DKL

(
p(t+1)||p(t)

) 6©
≤ 2η(t)

p

〈
p(t) − p(t+1), f(x(t))

〉
≤ 2η(t)

p ‖p(t+1) − p(t)‖1‖f(x(t))‖∞ ≤ 2η(t)
p Rf‖p(t+1) − p(t)‖1,

which gives us ‖p(t+1) − p(t)‖1 ≤ 2η
(t)
p Rf , where 5© is because of Pinsker’s inequality

(Thm. 4.19 in [140]) and 6© is because of Lemma 51. To conclude, we have upper-bound

T t2 as T t2 ≤ 2η
(t)
p R2

f . Then we finish the proof as∑
t

‖x(t+1) − x(t)‖2
2 ≤

2L(p(0),x(0))− 2L(p(T+1),x(T+1))

Lh
+

4R2
f

∑
t η

(t)
p

Lh

7©
≤ 2L(p(0),x(0))

Lh
+

4R2
f

∑
t η

(t)
p

Lh
,

where 7© is because L(p(T+1),x(T+1)) ≥ 0.

Lemma 51. With Algorithm 5, we have

DKL

(
p(t+1)||p(t)

)
≤ η(t)

p

〈
p(t) − p(t+1), f(x(t))

〉
,

where f(x(t)) denotes the vector whose ith element is fi(x(t)).
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Proof. Here we have

DKL(p(t+1)||p(t)) =
∑
i

p
(t+1)
i log

(
p

(t+1)
i

p
(t)
i

)

=
∑
i

p
(t+1)
i log

e−η
(t)
p fi(xt)

Zt
= − log (Zt)− η(t)

p

∑
i

p
(t+1)
i fi(x

(t))

= − log (Zt)− η(t)
p

〈
p(t), f(x(t))

〉
− η(t)

p

〈
p(t+1) − p(t), f(x(t))

〉
,

where Zt ,
∑

i p
(t)
i e
−ηpfi(x(t)). Then we have

η(t)
p

〈
p(t) − p(t+1), f(x(t))

〉
= DKL(p(t+1)||p(t)) + log

(∑
i

p
(t)
i e
−η(t)p fi(x

(t))

)
+ η(t)

p

〈
p(t), f(xt)

〉
1©
≥ DKL(p(t+1)||p(t)) + log

[∏
i

e−η
(t)
p ptifi(x

(t))

]
+ η(t)

p

〈
p(t),f(x(t))

〉
= DKL(p(t+1)||p(t)) +

∑
i

log
(
e−η

(t)
p p

(t)
i fi(x

(t))
)

+ η(t)
p

〈
p(t), f(xt)

〉
︸ ︷︷ ︸

0

= DKL(p(t+1)||p(t)),

where in 1© we use
∑

i pixi ≥
∏

i x
pi
i such that

∑
i pi = 1, pi ≥ 0.

E.4 Proof of Theorem 13

Proof. Define p∗ and x∗ as

p∗ = argminp

∑
t

LR
(
p,x(t)

)
, x∗ = argminx

∑
t

LR
(
p(t),x

)
. (E.4.1)

respectively First we define T t1 and T t2 as

T t1 = LR(p(t),x(t))− LR(p∗,x(t));

T t2 = LR(p(t),x(t))− LR(p(t),x∗),
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respectively. Then our goal becomes bounding |
∑

t T t1 |+ |
∑

t T t2 |, For term |
∑

t T t2 |, the

analysis stays the same as Lemma 50. Here we focus on bounding
∑

t T t1 , which proceeds

as ∑
t

T t1 =
∑
t

(
LR(p(t),x(t))− LR(p,x(t))

)

=
∑
t

−
〈
∇tLR(p(t),x(t))︸ ︷︷ ︸

g(t)

, p− p(t)

〉
− λ3

2
‖p(t) − p‖2

2


=
∑
t

{〈
g(t),p(t) − p

〉
− λ3

2
‖p(t) − p‖2

2

}

Then we consider the distance ‖p(t+1) − p‖2
2 which is

‖p(t+1) − p‖2
2 =

∥∥P∆(p(t) − ηtpg(t))− p
∥∥2

2

1©
≤
∥∥p(t) − η(t)

p g(t) − p
∥∥2

2

=
∥∥p(t) − p

∥∥2

2
+ (η(t)

p )2 ‖g(t)‖2
2 − 2η(t)

p

〈
g(t), p(t) − p

〉
,

where in 1© we use the contraction property for projection, which gives us

〈
g(t),p(t) − p

〉
≤ η

(t)
p ‖g(t)‖2

2

2
+
‖p(t) − p‖2

2 − ‖p(t+1) − p‖2
2

2η
(t)
p

By setting η(t)
p = (λt)−1, we have

∑
t

T t1 ≤
R2
g log T

2λ3

+
λ3

2

∑
t

t(‖p(t) − p‖2
2 − ‖p(t+1) − p‖2

2)− λ3

2

∑
t

‖p(t) − p‖2
2

=
R2
g log T

2λ3

+
λ3

2

∑
t

‖p(t) − p‖2
2 −

λ3(T + 1)

2
‖p(T+1) − p‖2

2 −
λ3

2

∑
t

‖p(t) − p‖2
2

=
R2
g log T

2λ3

− λ3(T + 1)

2
‖p(T+1) − p‖2

2 ≤
R2
g log T

2λ3

.

Hence, we have ∑
t T t1 + T t2
T

≤
R2
g log T

2λ3T
+

R2

2ηxT
,

which completes the proof.
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E.5 Proof of Theorem 14

Proof. Following the same procedure in section E.3, we can bound

‖x(t+1) − x(t)‖2
2 ≤

2

Lh

[
LR(p(t),x(t))− LR(p(t),x(t+1))

]
=

2

Lh

LR(p(t),x(t))− LR(p(t+1),x(t+1))︸ ︷︷ ︸
T t1

+LR(p(t+1),x(t+1))− LR(p(t),x(t+1))︸ ︷︷ ︸
T t2

 .
Since T t1 will cancel themselves after summarization, we focus on bounding T t2 . Then we

have

LR(p(t),x(t+1)) = LR(p(t+1),x(t+1)) +
〈
∇pLR(p(t+1),x(t+1)), p(t) − p(t+1)

〉
+

λ3

2
‖p(t+1) − p(t)‖2

2

1©
= LR(p(t+1),x(t+1)) +

〈
f(x(t+1)) + λ3(p(t+1) − q), p(t) − p(t+1)

〉
+

λ3

2
‖p(t+1) − p(t)‖2

2,

where in 1© we have∇p LR(p(t+1),x(t+1)) = f(x(t+1)) +λ3

(
p(t+1) − q

)
. Then we have

LR(p(t+1),x(t+1))− LR(p(t),x(t+1)) =
〈
g(t+1), p(t) − p(t+1)

〉
+

λ3

2
‖p(t+1) − p(t)‖2

2

≤ ‖g(t+1)‖2

∥∥p(t+1) − p(t)
∥∥

2
+

λ3

2

∥∥p(t+1) − p(t)
∥∥2

2

≤ ‖g(t+1)‖2‖η(t)
p g(t)‖2 +

λ3

(
η

(t)
p

)2

2
‖g(t)‖2

2 ≤ R2
g

η(t)
p +

λ3

(
η

(t)
p

)2

2

 .

Hence, we conclude that

∑
t

‖x(t+1) − x(t)‖2
2 ≤

2LR(p(0),x(0))

Lh
+

2R2
g

Lh

∑
t

η(t)
p +

λ3

(
η

(t)
p

)2

2

 ,

where ‖g(t)‖2 ≤ Rg.
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APPENDIX F

USEFUL FACTS ABOUT PROBABILITY INEQUALITIES, EMPIRICAL

PROCESS, AND RANDOM MATRICES

For the self-containing of this thesis, we list some useful facts about probability inequali-

ties, empirical process, and random matrices.

Lemma 52 ([10] (Example 2.11, P29)). For a χ2-RV Z with ` degrees of freedom, we have

P (|Z − `| ≥ t) ≤ 2 exp

(
−
(
t2

8`
∧ t

8

))
, ∀ t ≥ 0.

Theorem 16 (Theorem 2.35 in [151]). For a d×p matrix A whose entries are independent

zero-mean real RVs with variance d−1 and fourth moment of order O(d−2), we have the

empirical distribution of the eigenvalues of A>A converge to the distribution with density

fτ (x) =
[
0 ∨

(
1− τ−1

)]
1(x) +

√[(
(1 +

√
τ)

2 − x
)
∨ 0
]
×
[(
x− (1−

√
τ)

2
)
∨ 0
]

2πτx
,

as d and p approaches to infinity with p/d→ τ .

Theorem 17 (Corol. 13.2 in [140]). Consider a totally bounded pseudo-metric space (T , dist(·, ·)).

Provided a collection of RVs {Zu}u∈T satisfying

Eeλ(Zu−Zv) ≤ νλ2dist2(u, v)

2
, ∀ λ ≥ 0,

we have

E sup
u

(Zu − Zu0) ≤ 12
√
ν

∫ diam(T )/2

0

√
H (δ, T )dδ,
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whereH (t, T ) denotes the δ-covering entropy with pseudo-metric dist(·, ·), and diam(·) ,

sup dist(u, u0) is the diameter of the set T .

Lemma 53 (Lemma 11 in [25]). Denote the distribution function and density function of

the standard normal RV as Φ(·) and φ(·), respectively. We have

(
Φ−1

)′
(η) =

1

φ (Φ−1(η))
.

Furthermore, we have

Φ−1(η) ≤
√

2 log
1

1− η
,

for η ≥ 0.99.

Theorem 18 (Wick’s theorem, Thm. 1.28 (P11) in [155]). Considering the centered jointly

normal variables ξ1, ξ2, · · · , ξn, we conclude

E (ξ1ξ2 · · · ξn) =
∑

all possible disjoint
pairs (ik,jk) of [n]

∏
k

E (ξikξjk) .

Notice that the variables {ξi}1≤i≤n are not necessarily different nor independent. To illus-

trate this theorem, we consider two special cases. First we let ξ1 = ξ2 = ξ3 = ξ4 = ξ ∼

N (0, 1), then we have

Eξ4 = E (ξ1ξ2ξ3ξ4) = E(ξ1ξ2)E(ξ3ξ4) + E(ξ1ξ3)E(ξ2ξ4) + E(ξ1ξ4)E(ξ2ξ3) = 3.

Second we consider the case where n is odd. Since we cannot partition {1, 2, · · · , n} into

disjoint pairs (ξik , ξjk), we always have E(ξ1 · · · ξn) = 0.
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