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SUMMARY

Sustainability is one of the most important modern challenges faced by the aviation

industry, with proposed solutions ranging from novel aircraft architectures to sustainable

aviation fuels. A key barrier to robust long-term growth is the successful mitigation

of aviation noise at airports. In addition to infrastructure constraints, community noise

exposure remains a crucial limiting factor on capacities at most global large airports. With

increasing urbanization and robust growth in air traffic passenger volumes, community

noise exposure is expected to be of ever-increasing concern. The consequences of aviation

noise can be categorized as direct and indirect health effects, effects on the human and non-

human environments, and economic effects. These effects range from sleep disturbances,

lower learning outcomes in schools, and declining real-estate valuations.

Various stakeholders have proposed a wide variety of mitigation measures to abate the

consequences of aviation noise. The International Civil Aviation Organization (ICAO)’s

Balanced Approach classifies these measures into four broad categories – reduction of

aircraft noise at source through the development of new technologies, land-use planning

and management, noise abatement operational procedures, and operating restrictions.

While technology development is limited to aircraft and engine manufacturers, airports

may employ a combination of operational measures. With a variety of options available, it

is crucial that the potential noise outcomes of each option be accurately analyzed.

Existing methods and tools to quantify aviation noise rely on two fundamental

capabilities – the ability to model aircraft operations in the terminal airspace to obtain

trajectories and performance information, and the ability to use the generated trajectory

and performance to compute various noise metrics. The first capability is usually achieved

through point-mass aircraft performance and dynamics models. The second capability

is usually based on Noise-Power-Distance (NPD) curves, which use lookup tables to

interpolate noise metrics using the computed thrust and separation of the aircraft to the
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observer at multiple points in the trajectory. These physics-based and semi-empirical

methods used by traditional aviation noise modeling methods and tools are computationally

expensive. Considering the wide variety of factors which can influence aviation noise,

such as ambient temperature, wind, choice of operational profile etc., it is infeasible to

comprehensively evaluate all possible factors. This leads to simplifying assumptions which

limit the accuracy and applicability of the model at non-assumed conditions.

The fundamental cause of computational complexity is the high-dimensionality of

the output to be calculated. Community noise exposure analysis inevitably involves the

computation of noise metrics on a large grid of points surrounding the airport. Traditional

surrogate modeling methods that attempt to speed up the noise computation process suffer

from the same high-dimensional outputs, and are therefore unable to make meaningful

improvements to computational speed; or must make similar simplifying assumptions to

make the problem tractable which limits the proposed model’s accuracy and applicability.

The secondary problem is that some averaged assumptions such as the flight profile of

an aircraft are difficult to represent with numeric parameters and are often handled using

categorical variables.

The overarching objective of this dissertation is to develop a methodology that

addresses these two problems with traditional aviation noise quantification models. First, a

parametric definition for the representation of aircraft trajectories and flight characteristics

is proposed. It is shown that the developed parametric definition can reasonably present

the variation present in real-world trajectory data. Next, a method is proposed by which

real-world time-series flight data, which are typically difficult to model for aviation noise

results, can be mapped onto a parametric definition. A supplementary method is also

developed based on the unsupervised machine learning technique of clustering which is

used to group similar real-world flights together, so that only the median representatives of

the identified groups need to be modeled.

Next, the identified parameters are screened for their influence on aviation noise
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metrics. Using a step-wise regressions, the parameters with the most influence on the

noise results are identified. This information is of importance when performing parametric

trade-off analyses and optimization studies, where the design space of aircraft trajectories

can be explored efficiently, given a ranked list of parameters based on their influence.

Additionally, the parameters which do not have a significant impact are also identified.

These least influential parameters can be safely set to default values when performing the

aforementioned many-query studies.

Finally, the high-dimensional complexity of the noise output is addressed with the

use of Model Order Reduction techniques. The Principal Component Analysis method

is adapted for use with aviation noise outputs. This method works by reorienting the high-

dimensional data along identified principal directions or axes. With this reorientation, the

variability within the dataset can be explained just using the first few directions, and all

other directions can be discarded. This effectively results in a projection of the high-

dimensional data onto a lower-dimensional hyperplane. With the dimensionality reduction

complete, the final problem of predicting the coordinates of the projected data is tackled.

A predictive regression model based on the Boosted Tree algorithm is generated. This

developed prediction model can accurately quantify the coordinates of the projected lower-

dimensional data based on input parameter values. The model order reduction combined

with the surrogate modeling in lower-dimensional space is collective referred to as Reduced

Order Modeling or Field Surrogate Modeling. Thus, given a set of parameters, and the

developed field surrogate model, complete noise grids can be accurately predicted with

near real-time computational speed.

The conclusion of the research effort yielded a methodology that encapsulates the

contributions of both research areas and provides an integrated platform for the rapid,

accurate, and parametric quantification of aviation noise metrics. Thus, the developed

methodology fulfils the research objective and answers the motivating research question

of this dissertation. The application of this methodology is shown in a case study, where

xx



a large set of real-world flights are analyzed for their sound exposure level. Additionally,

this methodology can also be employed for many-query applications such as parametric

trade-off analyses and optimization efforts.
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CHAPTER 1

INTRODUCTION

As the commercial aviation industry progresses towards sustainable growth, some key

barriers need to be overcome. This chapter provides details about these barriers, their

consequences, and attempts at their mitigation. The chapter concludes with a motivating

research question and a research objective which guide the research in this dissertation.

1.1 Sustainable Aviation

1.1.1 Growth of the Global Aviation Industry

The modern civil aviation industry since its inception in the early 20th century has

witnessed strong and robust long-term growth. Initial demand for air travel was limited

to the capabilities of the aircraft of the time. As technologies continued to mature,

aircraft became safer, more economical, and could fly farther and faster, thereby increasing

accessibility to the skies. Current air travel growth is strongly correlated with economic and

demographic growth. Over the past few decades, the civil aviation industry has continued

to maintain robust long-term growth globally, despite powerful short-term shocks to the

market. This trend is expected to continue into the future, driven by modest growth in

developed markets, and rapid growth in newly industrializing countries.

Growth forecasts and analyses performed by different stakeholders provide the data

to back up these predictions. The Boeing Company’s Commercial Market Outlook for

2021-2040 predicts a global averaged fleet growth rate of 3.1% and an air traffic growth

rate of 4.0% per year [1]. Similarly, the Global Market Forecast released by Airbus for

2021-2040 predicts an average annual growth rate of 3.9% [2]. These predictions by

the aircraft manufacturers are corroborated by reports from governmental agencies. The
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Federal Aviation Administration (FAA) estimates a average growth rate over 2021-2040

to be 2.3% for the US domestic market, after a recovery to pre-pandemic levels [3].

EUROCONTROL’s predictions in its Aviation Outlook 2050 report range from 0.6% to

1.8% depending on the scenario [4]. As noted previously, the lower growth numbers for

the developed US and European aviation markets are to be expected.

Although this growth in passenger numbers and fleet sizes is robust over the long-term,

it is not always steady. Figure 1.1 shows the number of scheduled passengers boarded

by the global airline industry from 2004 to 2022. While most years from this chart

show growth, there are two notable exceptions. There is a slight contraction in passenger

numbers between 2008 and 2009, attributed to the economic recession of that time and

volatility in fuel costs, among other factors [5]. The industry recovered quickly, and

passenger numbers were rising again by 2010. A much more drastic contraction occurred

due to the Covid-19 global pandemic which suspended almost all global commercial

aviation, especially international travel, and crippled the airline industry. As both business

and leisure travel plummeted, the actual number of global passengers post-Covid ended up

being 1.8 billion, about 40% of the expected 4.7 billion. Passenger numbers recovered

slightly in 2021, and are expected to continue their recovery in 2022. In the near-

future, the International Air Transport Association (IATA) forecasts a steady recovery,

with overall passenger numbers reaching 94% of 2019 levels in 2023, 103% in 2024,

and 111% in 2025 [6]. EUROCONTROL’s Forecast Update for 2021-2027 outlines the

potential recovery timelines for European markets in three scenarios [7]. In the ‘low’

scenario, recovery to pre-pandemic levels is delayed until 2027, but in the baseline and

high scenarios, can happen as soon as 2023. The prospects of recovery have also been

studied by academia, with similar predicted outcomes [8, 9].

The robust long-term growth of commercial aviation is complimented by the potential

growth from new air-transportation concepts that are currently being developed. The Urban

Air Mobility (UAM) is an emerging concept where small vehicles operate as air taxi

2



20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

 p
re

-C
O

V
ID

 (e
st
.)

20
20

 p
os

t-C
O

V
ID

20
21

20
22

 (e
st
.)

0

1000

2000

3000

4000

5000

N
u

m
b

er
 o

f 
p

as
se

n
g

er
s,

 m
il

li
o

n
s

Figure 1.1: Number of scheduled passengers boarded by the global airline industry from
2004 to 2022, created with data from Statista [10]

services. There are several companies developing vehicles which range from piloted to

autonomous, and from single-seater to multi-seater configurations. Propulsion systems

are usually battery-electric, and lift generation is either through rotors, or through a

combination of rotors and lift-generating surfaces. These concepts have the potential to

open up new areas in the aviation market, and their ability to generate demand has been

studied extensively [11, 12, 13]. According to findings by NASA-commissioned market

studies, the annual demand by 2030 could be as high as 500 million flights for package

delivery services and 750 million flights for passenger services, which have the potential

to make the UAM concept profitable and relevant [14]. Additionally, general aviation and

transport category aircraft are also being investigated for potential electrification with a

research emphasis on safety analysis [15, 16] and certification [17, 18].

The re-emergence of supersonic aircraft is another concept which has the potentially

to significantly impact the industry. With supersonic flight over land unlikely to be
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approved, a large amount of resources have been invested in demand forecasting and

routing models [19]. Conventionally, the demand for supersonic travel has been seen as

a premium segment, and studies have attempted to estimate the market potential for these

aircraft by analyzing the premium ticket market globally [20]. Indeed, the most promising

initial application of supersonic flight in the near future is likely to be in the business jet

market [21, 22]. This mode of flight will likely attract subsonic business travel, and not

necessarily induce new demand. Nevertheless, the environmental impacts of supersonic

aircraft are typically higher than subsonic aircraft, and must be a part of the consideration

for sustainable aviation [23, 24, 25].

1.1.2 Environmental Effects of Aviation

The predicted long-term growth of traditional commercial aviation and the emergence of

new concepts have several barriers which will need to be overcome. Increasing demand

for air travel is expected to be met by airlines through a combination of measures. These

measures include the addition of new city-pair operations to existing airline networks, the

‘upgauging’ of routes so that higher capacity aircraft are deployed, and an increase in the

frequency of operations on existing routes. There are several challenges associated with

accommodating these additional operations – airspace congestion, allocation of slots at

busy airports, ground handling logistics and infrastructure, and so on.

Other key concerns are about the associated environmental impacts from the growing

aviation industry [26, 27, 28, 29]. Environmental impacts from aviation can be classified

into three categories – exposure of people living near airports to noise from aircraft,

pollutant discharge in storm water runoff from airports, and aircraft engine emissions into

the atmosphere [30]. The mitigation of these environmental effects is a key enabler to

sustainable aviation growth. This has given rise to major areas of research with with interest

from governmental agencies, academia, and the industry.

In order to mitigate these effects, several aggressive goals have been set by various
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stakeholders in the aviation industry. The Environmentally Responsible Aviation (ERA)

program by the National Aeronautics and Space Administration (NASA) was created

to focus on the development and demonstration of integrated systems technologies to

Technology Readiness Levels (TRL) of 4 to 6 which could simultaneously reduce CO2,

NOx, and noise emissions on a system level [31]. Aggressive targets were assigned

progressively over three generations, called N+1, N+2, and N+3. These targets are

summarized in Table 1.1. The goals represent projected benefits in metric values once

multiple technologies are matured and implemented by the industry. For example, some of

the technologies considered are drag reduction through laminar flow, weight reductions

with advanced composite structures, Low NOx and fuel-flexible combustors, and the

integration of advanced ultra high bypass engines. The reference aircraft for the N+1 and

N+3 values is a Boeing 737-800 aircraft with CFM56-7B engines, whereas the reference

aircraft for the N+2 values is a Boeing 777-200 with GE90 engines.

Table 1.1: NASA ERA Goals for Subsonic Transport System Level Metrics [31]

Technology Generations (TRL 4-6)

Technology Benefits N+1 N+2 N+3

Noise

(cumulative below Stage 4)
−32 dB −42 dB −71 dB

LTO NOx Emissions

(below CAEP 6)
−60% −75% −80%

Cruise NOx Emissions

(relative to 2005 best in class)
-55% -70% -80%

Aircraft Fuel/Energy Consumption

(relative to 2005 best in class)
-33% -50% -60%

Similarly, the International Air Transport Association (IATA) has created a roadmap

to identify a timeline for potential CO2 reductions by 2050 as shown in Figure 1.2 [32].

This roadmap also outlines the various avenues of improvement through which the target

of −50% CO2 emissions can be achieved. These include a mix of existing technologies,

5



economic measures, and alternative fuels. In 2009, various stakeholders committed to a set

of ambitious climate goals including 1.5% fuel efficiency improvements per year, reaching

net carbon neutrality by 2020, and reducing the global net carbon emissions by 50% in the

year 2050, when compared to a baseline of 2005. Along similar lines, the International

Civil Aviation Organization (ICAO) in 2017 with the help of industry and governments,

developed and adopted the new aircraft CO2 emissions standard in order to reduce the

impact of aviation greenhouse gas emissions on the global climate [33].
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Figure 1.2: Schematic Roadmap for CO2 emissions reductions by IATA (based on [32])

1.2 Aviation Noise

In addition to concerns over fuel consumption and pollutants, the International Civil

Aviation Organization has identified aircraft noise as “the most significant cause of adverse

community reaction related to the operation and expansion of airports.” To this effect, one

of ICAO’s main priorities and key environmental goals is limiting or reducing the number

of people affected by significant aircraft noise. As part of the CAEP/11 update to the
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ICAO Global Environmental Trends in 2019, a range of scenarios was developed for the

assessment of future noise trends. The high level indicator used for this assessment was the

total contour area and population contained within the 55 DNL dB contour at 315 airports

worldwide. This assessment captured about 80% of global traffic. The trends for various

scenarios are shown in Figure 1.3.
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Figure 1.3: Total aircraft noise contour area above 55 DNL dB for 315 global airports
(based on [34])

Aviation noise consists of several sources, related to both the engine and the airframe

itself. The noise at source then propagates through the atmosphere before reaching a

receptor. A breakdown of the sources and the atmospheric effects on propagation is shown

in Figure 1.4.

ICAO’s main overarching policy on aircraft noise is the Balanced Approach to Aircraft

Noise Management [36]. This policy consists of identifying the noise problem at a

specific airport and assessing the different measures available to reduce noise. These

reduction measures are classified into four principal elements – reduction of noise at
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Figure 1.4: Breakdown of typical noise sources for a fixed-wing aircraft (based on [35])

source (technology standards), land-use planning and management, noise abatement

operational procedures, and operating restrictions. The noise problem is addressed on an

individual airport basis, by identifying the noise-related measures that achieve maximum

environmental benefit while also being the most cost-effective. This cost-benefit analysis

should be performed using objective and measurable criteria.

1.2.1 Consequences of Aviation Noise

There are several undesirable consequences of aviation noise to society. Many major

airports across the world already consider noise to be the largest major concern for

their operations in the near-term and long-term future. This problem will continue

with increasing air traffic and will be further exacerbated by increasing levels of global

urbanization. In a 2010 survey by the US Government Accountability Office, addressing

noise issues was the most commonly cited environmental issue that led to delay in

implementing operational changes [37].

The impacts of aviation noise can be categorized as direct health effects, effect of noise

on human environments, effect of noise to non-human environment, and the economic
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effects of noise [38, 39, 40, 41, 42, 43].

The most direct concern arising from aviation noise is related to the potential effects

is might have on the health of the community. It is difficult to establish conclusive

causal correlations between effects and aviation noise, due to the large amount of other

confounding variables which can often not be accounted for. Nevertheless, there is some

scientific evidence to suggest that aviation noise exposure can induce hearing impairment

and cardiovascular conditions [44]. Additionally, noise disturbs the sleeping patterns of

residents in neighboring communities. In fact, most noise-exposed populations in the

vicinity of airports cite sleep disturbance as a common complaint [42]. Repeated exposure

to noise events impairs sleep quality by delayed sleep onset, early awakenings, more time

spent in superficial sleep stages, and overall poor quality of sleep [39, 45].

Beyond direct health effects, noise also has other effects on people’s living and working

environment [46]. These other effects are related to annoyance and interference. Although

it is subjective, annoyance is the most widespread and well document response to noise.

Annoyance can be described as a feeling of resentment, discomfort, or dissatisfaction

which occurs when noise interferes with thoughts, feelings, and daily activities. There

are several factors which affect annoyance, including the sound itself (amplitude, pitch,

duration, temporal profile) and psychological factors [47, 48]. Speech interference is a

major contributor to annoyance. Additionally, there is a considerable amount of research

on the effect that noise has on the learning abilities of children. Two studies spaced three

years apart at the Munich airport demonstrated that in areas with high noise, there was

evidence of poor persistence for challenging tasks [49]. The switch of airports at Munich

in 1998 provided researchers with a unique opportunity. Researchers collected data from

areas around the old and new airports, before and after the switch. They found that long-

term memory and reading skills were impaired in children at the new airport, while there

was improvement in children at the old airport, who were no longer exposed to aviation

noise [50]. An improvement in short-term memory was also observed after closure of the
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old airport, while speech perception suffered in the children newly exposed to noise at the

new airport.

The effects of aviation noise are not limited to humans alone, and extend to both

domesticated animal species and wildlife [51]. It has been noted in literature that noise

alone can be a minor disturbance, but in combination with the visual stimulus can trigger a

reaction [52]. Most prior research in this area has been performed in controlled laboratory

conditions to maintain accurate measures of noise levels and changes in the animal’s

response. Therefore, the results cannot always be applied directly to wildlife species.

However, further research in this area has been encouraged with potential adverse effects

including habitat changes, predator-prey relationships, reproductive failure, intra- and inter-

species behavior patterns, and nutritional deficiencies [53].

Lastly, there are a large variety of economic effects which arise from aviation noise [54,

55]. These effects range from lost economic output due to land-use compatibility and real-

estate valuations to actual spending on noise mitigation programs such as home insulation

grants. Balancing this lost economic output with the economic boosts that airports provide

is a key challenge faced by many airport operators. Loss of economic output often affects

entire communities which are located in the airport vicinity. Increases in noise levels over

time also drive down real estate prices, and can also make the sale of a property more

difficult [56]. This is usually true for residential zoned land, while some commercial zones

such as business centers may favor proximity to the airport [57]. Noise management

programs can also have expensive components such as funding for noise insulation or

acquisition of non-compatible land. Since the start of the Airport Noise Compatibility

Planning program in 1982, the FAA has spent almost $6 billion for Part 150 studies and

implementation [58]. This funding is typically obtained either through passenger fees or

through federal taxes. Airports can also impose landing fees or surcharges on airlines,

which would ultimately pass the costs on to the passengers.

Aviation noise has long been an undesirable consequence of aviation. Technology has
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certainly improved over the years, and reduced noise levels at the individual aircraft level.

However, at a systems level, increased number of air operations have ensured that noise

mitigation remains a key issue at most major airports. To enable sustainable aviation, it

is important to understand the effects of noise as well as investigating potential mitigation

strategies.

1.2.2 Noise Mitigation and Management Programs

There are several measures for noise control and management which have been categorized

by ICAO’s Balanced Approach for airport noise management into four major categories –

reduction of noise at source (technology standards), land-use planning and management,

noise abatement operational procedures, and operating restrictions [36]. These guidelines

are general, as ICAO recognized the need for the solution each airport’s noise problem to be

developed in accordance with the specific characteristics of the airport. However, similar

solutions can be applied if similar noise problems are identified at airports. An analysis

of noise management practices at airports revealed no fewer than 18 measures, with many

airports implementing a combination of features based on their suitability and efficacy [59,

60, 61, 62]. These measures are discussed in detail according to the ICAO categories in

this subsection.

The reduction of noise at the aircraft source is one of the most effective solutions

available for long-term improvement [63]. Jet-powered aircraft have benefited from a large

reduction in engine noise, as engine architectures have moved from inefficient turbojet

to low-bypass turbofan to high-bypass turbofan engines which are present on all modern

aircraft designs [64, 65]. A higher bypass engine pushes a larger volume of air at a lower

exit velocity, thereby reducing jet noise. A comprehensive assessment of the noise impact

of technologies discussed in NASA ERA Projects ranging in levels from component to

single event to multi-event is presented in [66]. The development of these technologies

usually occurs concurrently with new aircraft or engine model programs. Recent examples
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of this include the nacelle chevrons [67] included on most modern Boeing commercial

aircraft starting with the 787 aircraft family which entered commercial service in 2011

and the geared turbofan architecture [68] developed by Pratt and Whitney which entered

into commercial service in 2016 as an engine option for the Airbus A320 NEO family.

New technologies can also be deployed on older aircraft through retrofits also known as

“hushkits” [69]. However, these solutions often exacerbate the problem by only reducing

the noise levels to the permissible limit, which then adds several years to the operational

life of the older aircraft. While technologies are certainly effective, developing them is a

time and capital intensive process. Even technologies which are selected for deployment

on production aircraft may take several years to make a pronounced effect – aircraft fleet

replacement is a time-consuming and capital-intensive proposition for airlines.

The second major category is land-use planning and management which is primarily

undertaken by the airport operator and local government. Noise insulation programs fall

under this category which may include structural changes to buildings such as insulated

sidings, solid core doors, and double pane windows [70, 71]. These programs typically

include homes which are deemed to be exposed to a significant level of noise exposure. The

area of significant noise exposure is determined by overlaying contours of noise metrics on

maps. With the help of appropriate zoning laws, these contours help prevent or discourage

incompatible development of property within the contour without the proper notice and

documentation. Another strategy can be to provide purchase assurance to homeowners

located within the airport noise contours, or for airport operators to acquire incompatible

land in the airport vicinity [72, 73, 74, 75]. Under purchase assurance programs, the airport

proprietor agrees to be a last resort option for the homeowner, if the house cannot be sold

in the open market.

Noise abatement procedures and operational changes are also important tools for noise

mitigation. These allow airport operators to make relatively quick changes (as compared to

land use policies and new technologies) to aircraft operations and observe benefits. These
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can include simple measures such as operating quotas based on the time of the year, aircraft

type, time of the day etc. Preferential runway and ground track assignments can also help

by directing traffic away from populated areas, if Air Traffic Control, weather, and safety

conditions permit [76, 77]. For example, in many coastal areas, departures may be flown

out over water bodies where the exposure to humans is limited. Finally, noise abatement

procedures are utilized by airlines and sometimes recommended by airports which alter

the aircraft’s departure or arrival trajectory and thrust variation to suitably tailor the noise

footprint of each operation.

Operating restrictions and legislative measures are the final category of noise manage-

ment measures. These include various types of restrictions on aircraft operations imposed

by individual airports and also more coordinated efforts such has increasingly stringent

noise certification standards. Some airports may choose to implement engine run-up or

APU restrictions which may limit where and how an aircraft can perform a run-up or use

its APU respectively. An airport may have to offer additional accommodations in order

to implement these limits. For example, limiting the use of the APU would require the

airport to have ground power units available. The airport may impose curfews or quiet

hours where operations are not allowed, usually during night time or on weekends. Noise

charges may also be imposed on airlines whose aircraft exceed the allowable values of

noise [78]. The amount of this charge can be flexible based on the severity by which the

noise limit is exceeded. These fees can help airports fund other noise mitigation efforts. An

airport may also choose to have a noise “budget” which involves assigning departure and

arrival slots to different aircraft in order to meet a pre-defined noise metric target. Finally,

airports may choose to outright ban certain types of aircraft from operating. Such bans

may be imposed for older aircraft which were not certified according to the latest noise

certification standards recommended by ICAO or FAA.

In the US, aircraft noise standards are defined in Part 36 of the noise certification

requirements of the United States Code of Federal Regulations (CFR) Title 14 [79].
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Certified noise levels are published by the FAA in Advisory Circular 36-1H – Noise

Levels for U.S. Certificated and Foreign Aircraft [80]. The implementation of noise

certification requirements and standards ensures that the latest improvements in noise

reduction technology are incorporated into the aircraft design process. The current standard

for jet and large turboprop aircraft is Stage 5, which is equivalent to ICAO’s Chapter 14

standards. Noise certification standards are defined as a limit on the total EPNdB calculated

at three reference points. These reference points are shown in Figure 1.5 and described

below –

• Fly-over – 6.5 km from the brake-release point, under the take-off flight path.

• Sideline – the highest noise measurement recorded at any point 450 m from the

runway axis during take-off.

• Approach – 2 km from the runway threshold, under the approach flight path.

The permissible EPNdB level is a function of the aircraft’s gross takeoff weight – heavier

aircraft have higher permissible noise levels. As technology improves, standards are

updated accordingly. The progression of ICAO’s noise certification standards is seen in

Figure 1.6. The horizontal axis is the aircraft’s Maximum Take-Off Mass on a logarithmic

scale. The vertical axis represents the maximum allowable cumulative EPNdB. The trend

of smaller permissible noise limits for certification is observed in this figure. Notably, the

most recent Chapter 14 adopted in 2013 represents an improvement of at least 7 cumulative

EPN dB over the previous Chapter 4. Lighter aircraft, those below 10.0 tonnes will need to

make an even larger improvement to be certified.

As mentioned previously, airports may choose a combination of measures best suited

to their situation [82]. Many of these measures are complementary, and it has been found

that there exists a significant correlation between not only the applied Noise Abatement

Measures (NAMs) and particular airport-related characteristics, but also between NAMs

themselves [83].
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Figure 1.5: Reference points used to measure noise for aircraft noise certification (Image
source: ICAO website [81])

For example, consider the Noise Action Plan created by the London City Airport [84].

Some of the measures undertaken by the airport for noise mitigation are – imposition of

limits on aircraft movements, limitation of noise contours to a fixed area, improvements to

flight tracks and noise monitoring systems, imposition of incentives and penalties, measures

to reduce noise from aircraft ground movements, a scheme to classify aircraft into new

noise categories, and enhancements to the sound insulation scheme. The combination

of these measures aims to mitigate the effects of noise exposure to the surrounding

communities.

1.3 Need for Rapid Noise Models

As outlined in the previous section, a large number of noise abatement measures are

available for airports to implement. Some of these measures relate directly to aircraft

movements, such as operating restrictions, and flight paths. Other measures do not

directly affect aircraft movements, such as the installation of sound insulation at homes

and businesses. In order to make the correct decisions on which measures to implement,

stakeholders must be able to perform quantitative cost-benefit analyses for each measure. In

order to help with such decision making, various stakeholders have developed quantitative
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Figure 1.6: Progression of ICAO’s aircraft noise standards (Image source: ICAO
website [81])

tools for noise assessment.

Traditional aviation noise quantification tools such as the Integrated Noise Model

(INM) or the Aviation Environmental Design Tool (AEDT) can be used to perform such

analyses. However, due to the large amount of variables involved, it is often not feasible to

evaluate a comprehensive set of scenarios. The quantification of a single scenario involves

knowledge of the airport layout, population distribution in the surrounding communities,

operational counts of aircraft types, and the departure and arrival trajectories flown by each

aircraft. Furthermore, even if all these parameters are known, the noise impact varies from

day to day due to changing weather conditions which affect both the aircraft performance

and trajectory, and also noise propagation through the atmosphere. Thus, the evaluation

of aviation noise is a very high dimensional problem leading to computationally expensive

models.

A proven solution to address the problem of computationally expensive models is

the use of surrogate models. Surrogate models or models of models are, broadly

speaking, mathematical constructs which are computationally inexpensive to evaluate, and

approximate the original model with sufficient accuracy over the domain for which they are
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created. It should be noted that although the cost of evaluating a surrogate model is very

low, the cost of creating or training it may be quite high. This distinction is often referred to

in the literature as offline and online costs. Offline costs refer to the often large investment

made to train the model, whereas online costs refers to the evaluation cost of a trained

model. Typically, a high offline cost may be acceptable, as it is a one-time occurrence, if

there is sufficiently acceptable improvement in the online costs.

However, in the context of aviation noise estimation, scalar surrogate models (which

estimate scalar-valued functions evaluated on a set of parameters) have typically fallen

short. These shortcomings typically arise from the inherent complexity of the aviation noise

estimation problem and are examined in detail in chapter 2. The shortcomings typically

lie on either of end of the following spectrum – a simple surrogate model will have low

offline cost, but will inevitably contain simplifying assumptions which will greatly limit

the usability of the model. A more general model with fewer assumptions will typically

not be much faster to evaluate than the original model, and thus will not justify the offline

training efforts.

A different class of models called Reduced Order Models (ROMs) show promise

in this application. ROMs are well suited to the prediction of field quantities, such

as pressure, temperature etc. Fundamentally, noise is unwanted sound which manifests

through changes in air pressure. ROMs are well suited to problems with high dimensional

data, as the first step of a ROM is to perform Model Order Reduction (MOR). In this step,

the high dimensional data is transformed into a lower dimensional space. The MOR is

performed so as to minimize the errors related to this transformation, and several different

algorithms exist for this purpose. The lower order data are then treated as the input

data for interpolation/regression schemes, which link the transformed data to the input

parameters. With the correct implementation, results for different parameter combinations

can be obtained in near real-time speed, while maintaining acceptable levels of accuracy.

These models are investigated in detail in chapter 2.
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In addition to the problem of high dimensionality and ill-suited scalar-valued surrogate

models, aviation noise estimation models also inevitably include various categorical

variables as inputs. Some inputs, such as the ambient temperature and pressure can be

easily represented numerically. Other inputs, such as the flight path and trajectory of the

aircraft are difficult to represent numerically. In traditional analyses, such inputs have

been defined as categorical variables. Categorical variables have values which do not

have an intrinsic numerical meaning. Instead, their values are treated as labels with no

implicit ordering. For example, a departure operation out of an airport will follow a pre-

determined procedure. This procedure is often labeled as ‘NADP-1’ or ‘NADP-2’, which

do not provide much numeric information about the operation.

The problem with categorical variables is that they are not conducive to being used as

inputs to a surrogate modeling process. Therefore, when dealing with categorical variables,

multiple surrogate models have to be developed. Usually, this takes the form of one model

per value (label) that the categorical variable takes. An internal if-then logic is then used

to determine the appropriate model to be applied. This sort of break-down into smaller

surrogate model often compromises the ability to train fast and accurate models, and thus

poses a major problem in the context of aviation noise estimation.

1.4 Summary

As commercial aviation activity returns to its long-term growth trajectory, the mitigation

of aviation noise remains an increasingly important facet of sustainable aviation. The

mitigation of aviation noise is a topic of research for various stakeholders, and several

solutions have been developed ranging from technology improvements to operational

measures to stringent regulations. Due to the large number of potential solutions

and variables which affect aircraft noise, the quantitative evaluation and comparison of

airport mitigation strategies is crucial. Current aviation noise analysis inevitably involves

simplifying assumptions and localized efforts due to the immense complexity of the
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problem.

Existing research in the literature has attempted to address these inherent complexities

with the help of surrogate models, with limited success. The complexities of the aviation

noise quantification process inevitably lead to surrogate models that are either too complex

and time-consuming to provide any benefit, or models that end up with too many

simplifying assumptions to make the problem tractable, at the expense of model accuracy

and applicability.

At this point, the motivation for the subsequent research is clear and the motivating

research question can be stated.

Motivating Research Question

How can the process of aviation noise quantification be improved to enable

rapid quantification of noise metrics to facilitate parametric trade-off analyses and

optimization efforts?

In order to address the motivating research question and guide subsequent research, the

overall research objective is stated here.

Research Objective

Develop a methodology to address inherent complexities in the aviation noise

computation problem, thereby enabling rapid quantification of noise metrics in a

variety of scenarios, thus facilitating parametric trade-off analyses and optimization

efforts.

The Motivating Research Question and the Research Objective inform the subsequent

research presented in this dissertation.
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1.5 Document Outline

The remainder of this dissertation is organized as follows –

• Chapter 2 provides a detailed background of the noise quantification process and

optimization efforts in the literature. Various efforts by researchers on creating

parametric rapid noise assessments tools are also studied and described.

• Chapter 3 contains the formal problem formulation and research questions based on

gaps identified in the literature. The high level research questions are decomposed

into specific sub research questions. Hypotheses are developed to answer these

research questions, and experiments are designed to support hypotheses.

• Chapters 4 and 5 provide details of the execution of the research plan. Results

from the experiments which support the formulated hypotheses are included in these

chapters.

• Chapter 6 documents the overall methodology and the results of a case study

which was conducted to demonstrate the modeling capabilities of the developed

methodology.

• Chapter 7 contains the summary, conclusions, and contributions of the work

undertaken in this dissertation. Potential avenues for future research are also

identified and included.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

The stated motivating research question and the research objective in the previous chapter

serve as the starting point for subsequent literature review. In this chapter, findings from the

review of literature are described and major observations are highlighted explicitly. This

chapter is divided into several sections, each addressing a key part of the overall objective.

The chapter ends with a summary of the observations, and a formalization of the gaps to be

addressed in this dissertation.

2.1 Aviation Noise Modeling

The many facets of aviation noise modeling are covered in this section. First, a list of

noise metrics is discussed. Next, the process of noise exposure calculation is covered

supplemented by a discussion of available state-of-the-art noise tools. A comprehensive

literature review of methods for rapid noise computation is discussed next.

2.1.1 Noise Metrics

There are several different metrics developed to quantify aviation noise, with usage

depending on the context. The harmful effects of aviation noise which were described

in subsection 1.2.1 correlate to different noise metrics [85, 86, 87]. A list of noise metrics

and their use cases described in literature is presented here [88, 89, 90] –

1. Instantaneous sound level metrics

(a) Frequency weighted metrics – The human ear responds differently to sounds

of different frequencies, even if they are of the same amplitude. This leads to

some frequencies being perceived as louder or more annoying than others. To
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account for this sensitivity of the human ear, various frequency weightings have

been developed. These are summarized in Table 2.1. The absence of frequency

weighting is referred to as a “flat” response.

Table 2.1: Summary of different frequency weightings for sound pressure level

Weighting Definition Purpose

A
SPL modified to de-
emphasize low frequency
portion of sounds

Approximate the relative
“noisiness” or “annoyance”
of many commonly occurring
sounds

B
Similar to A but different
weighting

No longer in common use

C
SPL modified to limit the low
and high frequency portion of
sounds

Primarily used to approximate
overall SPL where the fre-
quency range of interest is
between 31.5 Hz and 8000 Hz

D

SPL modified to de-
emphasize low frequency
portion and emphasize high
frequency of sounds

Developed as a simple
approximation of perceived
noise level, intended to
be more accurate than
A-weighting for many
commonly occurring sounds

E

SPL modified to de-
emphasize low frequency
portion and emphasize high
frequency of sounds

Designed to measure the nois-
iness or loudness of sounds
such as aircraft flyovers

(b) Computed metrics

i. Perceived Noise Level (PNL) is the rating of the noisiness of a sound

computed from SPL measured in octave or one-third octave frequency

bands. It is mainly used for ranking the relative annoyance or disturbance

caused by aircraft flyover noise.

ii. Tone Corrected Perceived Noise Level (PNLT) adds a tone correction

factor to the PNL level. The intent of the correction is to account for the

added annoyance due to discrete frequency components such as tones.
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2. Single event metrics

(a) Maximum Sound Level (Lmax) accounts for only the amplitude and represents

the maximum sound amplitude at some time during the event.

(b) Effective Perceived Noise Level (EPNL) is PNL of a single event with

adjustments for both tonal corrections and for added annoyance due to duration.

As it takes the entire event into account, it is used to measure subsonic aircraft

flyovers. This metric forms the basis for the FAA’s procedure for aircraft noise

certification [79, 80].

(c) Sound Exposure Level (SEL) is an energy averaged metric which represents

A-weighted sound level over the specified duration of time referenced as one

second. The relation between SPL, Lmax, Equivalent Sound Level, and SEL is

shown in Figure 2.1.

Figure 2.1: Relation between SPL, Lmax, Equivalent Sound Level, and SEL (Image source:
FAA website [91])

(d) Single Event Noise Exposure Level (SENEL) is a subset of the SEL and is

calculated. similarly. The difference is that for SENEL, only the sound level

above a certain threshold is used.

3. Multiple event metrics
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(a) Equivalent Continuous Sound Level (LEQ) is the level of A-weighted sound

energy which is averaged over a period of time. It is useful in assessing people’s

reactions to aircraft and vehicular traffic noise, and correlates with annoyance,

speech interference, and sleep interference.

(b) Hourly Noise Level (HL) is the level of mean-square A-weighted sound

pressure over a one hour period. It is similar to QL calculated for one hour.

(c) Time Above Threshold (TA) measues the amount of time of noise exposure

above a pre-selected threshold of A-weighted sound level.

(d) Composite Noise Rating (CNR) is calculated over a 24-hour period based on

the perceived noise levels of all events during that period. Different ratings are

calculated for flight and for run-up operations. Adjustments are typically made

for the time of day, type of aircraft, and the number of operations.

(e) Noise Exposure Forecast (HEF) is based on the effective perceived noise levels

over a 24-hour period. Adjustments similar to those for CNR are made.

(f) Day-Night Average Sound Level (DNL) is the energy averaged A-weighted

sound level over a 24 hour period with a 10dB penalty added for night time

operations as shown in Figure 2.2. Operations between 10:00 pm and 7:00

am are penalized to account for the increased sensitivity to noise intrusions

during night time hours. This measure is used for creating noise exposure

maps (NEMs) and for assessing land-use compatibility and making zoning

recommendations. As the DNL metric is based on the total noise energy over a

24-hour period, it accounts for both the number of operations and the noisiness

of each operation. Thus, there are several different combinations of operations

which can result in the same DNL level. This also implies that given a DNL

limit or target, a quieter aircraft can fly more operations than a louder one, as

shown in Figure 2.3. There is a correlation between the annoyance experienced
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Figure 2.2: Calculation of DNL from hourly LEQ (Image source: FAA website [91])

by a human towards a certain noise event and the DNL value of the noise event,

as shown in Figure 2.4.

(g) Community Noise Equivalent Level (CNEL) is computed similarly to the DNL

but an additional penalty is added for evening operations between 7:00 pm and

10:00 pm. This metric is used instead of the DNL in the state of California for

land-use compatibility assessments and zoning recommendations.

(h) Noise and Number Index (NNI) is based on the average maximum perceived

noise level for aircraft flyovers in a given time period.

(i) Weighted Equivalent Continuous Perceived Noise Level (WECPNL) is a

cumulative rating based on the EPNL. Adjustments are made based on the

variables associated with aircraft noise such as discrete tones, time of day, and

season of the year.

4. Speech communication metrics

(a) Articulation Index (AI) is based on a weighted measure of the difference

between the background noise and the speech signal to estimate the proportion

of normal speech which can be understood by a listener. It is expressed as a

number between 0 and 1, where 1 indicates complete speech intelligibility.

(b) Speech Interference Level (SIL) is the arithmetic average of the sound pressure

levels in four octave bands centered on 500 Hz, 1000 Hz, 2000 Hz, and 4000 Hz.

It is used to determine the expected vocal effort for face-to-face communication.
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Figure 2.3: Combination of operations yielding the same DNL value (Image source: FAA
website [91])

Although the noise metrics described here are numerous, this list should not be

considered as comprehensive. In order to adequately capture noise impacts from emerging

technologies such as Urban Air Mobility concepts for cargo and passenger operations, new

metrics may need to be defined. For example, recent research has proposed creating an

alternate noise weighting to account for the unique noise signatures arising from Urban Air

Mobility operations [93].

Each of these numerous noise metrics described above have their own formulations

and use-cases. A commonly used noise metric for community noise exposure is the DNL,

which is used to create Noise Exposure Maps (NEMs) as per 14 CFR Part 150. NEMs are

used to inform the public about noise exposure and land use in the vicinity of airports. A

typical NEM consists of DNL noise contours overlaid on a map, as shown in Figure 2.5. To
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Figure 2.4: Relationship between the percentage of the population which is annoyed and
the DNL value of the noise event (Image reproduced from [92])

show the noise variation over an extended area, noise metrics shown as contours are more

useful than point valued depictions. Such contours are created by computing noise levels

over a collection of points and then joining points with the same noise levels to create a

closed shape.

When creating NEMs, the noise metric has to be computed over a number of locations,

most commonly structured as a two dimensional grid. In this context, the calculated value

of the noise metric changes not only with the noise event scenario, but also the location of

the receptor. Additionally, all noise metrics are based fundamentally on sound manifested

as temporal variations of air pressure. This temporal variation accounts for both the

sound level (amplitude) and frequency (pitch). Figure 2.1 and Figure 2.2 show how the

computation of the SEL and DNL metrics can be traced back to the time varying SPL.

Thus, for the purposes of creating NEMs, noise metrics can be considered to be functions

of the spatial and temporal variations of air pressure.

Observation 1: Noise metrics are functions of the spatial and temporal variations of

atmospheric pressure, and are field quantities.
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Figure 2.5: 2016 Noise Exposure Map for Munich airport (Image source: Wikimedia
Commons.

2.1.2 Tools for computation of aviation noise

The basis of any noise mitigation effort is the ability to accurately predict relevant noise

metrics in a variety of scenarios. Methods for the quantification of aviation noise have

been developed by SAE International [94], ICAO [95], and the European Civil Aviation

Conference (ECAC) [96]. Using such methods, several noise quantification tools have

been developed by regulators, researchers, and other stakeholders. Some of the commonly

used tools in the U.S. are discussed here. Other tools addressing parts or whole of

the noise quantification problem include the SysTem for AirPort noise Exposure Studies

(STAPES) [97], Aircraft Noise Control Model (ANCON) [98, 99], Integrated aircraft noise

and emissions modelling platform (IMPACT) [100], Parametric Aircraft Noise Analysis

Module (PANAM) [101], Nord2000 [102]. Note that although not all tools are discussed

in detail here, the fundamental idea and process of noise quantification is similar among
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them.

NASA’s Aircraft Noise Prediction Program (ANOPP) along with its next generation

version ANOPP2 [103] provide the capability to model noise from aircraft including

source noise, propagation, and metrics. It predicts total aircraft noise accounting for

both propulsion and airframe sources. It can also be used to model aircraft components

individually. Propagation effects such as spherical spreading, atmospheric absorption,

ground absorption and reflection, terrain effects, and refraction/scattering effects are

modeled in ANOPP.

The Integrated Noise Model (INM) [104, 105] was developed to evaluate aircraft

noise impacts in the vicinity of airports, used for FAR Part 150 noise compatibility

planning studies and FAA Order 1050 environmental assessments and environmental

impact statements. INM was based on the algorithm and framework outlined in the

SAE-AIR-1845 standard ”Procedure for the calculation of airplane noise in the vicinity

of airports” [94]. This framework used Noise-Power-Distance (NPD) data to estimate

noise by taking into consideration aircraft specific data, thrust setting, separation between

source and receiver, and environmental factors. INM has now been replaced by the Aviation

Environmental Design Tool (AEDT).

AEDT [106, 107] was developed to replace legacy tools INM, Noise Integrated

Routing System (NIRS), and the Emissions and Dispersion Modeling System (EDMS).

AEDT is the official tool used for quantifying the environmental impacts of aviation in

the US and is used for informing policy decisions, domestic planning, environmental

compliance, and research analyses. Users include domestic and international regulatory

agencies, airlines, airports, academic institutions, aircraft and engine manufacturers,

environmental organizations, and consultants. AEDT utilizes aircraft performance models

to compute aircraft trajectories and performance characteristics in space and time to

produce environmental metrics such as fuel burn, emissions, and noise. The scope of

modeling ranges from single flight departure/arrival/gate-to-gate operations to airport level
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modeling consisting of several types of aircraft and operations. AEDT is under continuous

development to improve modeling accuracy and capabilities, recent improvements include

the inclusion of the BADA4 performance model developed by EUROCONTROL [108].

The tool itself has also been to various modeling validation studies to assess the impact of

its assumptions [109, 110, 111].

A typical study in AEDT is built-up by assigning aircraft operations to specific airport

layouts. Aircraft trajectories can either be directly imported or pre-defined operations

can be used. The tool then uses an aircraft performance model to compute the aircraft’s

position and state in space and time. Position information contains both the aircraft’s

absolute position such as MSL altitude, latitude, and longitude and relative position such

as AFE altitude and cumulative ground track distance. The state information contains

aircraft’s speed, thrust level, fuel flow to the engines, etc. The computed position and

state information serves as the input to various environmental models. The noise model

in AEDT uses NPD data to estimate the noise impact. AEDT can also combine operation

level results to create airport level analyses. A combination of physics-based and empirical

models are used throughout this process. For example, the trajectory of the aircraft is

calculated using physics-based equations of motion, while the calculation of aircraft thrust

are based on empirical equations with supporting coefficients. A simplified flowchart is

shown in Figure 2.6.

The core process of computations in AEDT is performed by modules that rely on many

databases. These databases can be grouped according to three categories –

1. Weather data consists of weather parameters such as temperature, humidity, pressure,

density, and wind speed. These parameters affect not only the performance of the

aircraft, but also the noise propagation through atmospheric absorption.

2. Aircraft data – In order to compute the trajectory of the aircraft, several aircraft-

specific parameters are required. The thrust and aerodynamic coefficients are re-

quired in order to compute the aircraft’s trajectory through fundamental performance
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Figure 2.6: Generic process for calculating aviation noise metrics

equations. Additionally, the operational data relating to how a pilot might fly the

aircraft is encoded through the profile, weight, and runway assignments.

3. Airport data – the airport runways provide an anchor for the computed aircraft

trajectory. Additionally, the airport also affects the weather through elevation, and

historical weather data.

From Figure 2.6, it is evident that quantifying noise metrics involves many computa-

tionally expensive processes which are necessary to guarantee a high degree of confidence

in the results. Additionally, due to the underlying dependencies on a large amount of

variables and data, the parameters which can influence the noise result are numerous.

Observation 2: The process of calculating aviation noise is reliant on computationally

expensive physics-based and semi-empirical models.

Observation 3: The input space of parameters which can influence the value of aviation

noise metrics is very high dimensional.

These observations indicate that tools like AEDT are very useful for quantifying noise

metrics in specific scenarios, where only a small subspace of the complete input space

needs to be evaluated. For comprehensive analyses spanning a larger subspace of the

input space, the usage of a full order model like AEDT is infeasible. This problem of

computational intractability has been identified by the research community and there are
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several strategies documented in literature which attempt to address this problem. These

strategies are discussed in section 2.2.

2.2 Methods for rapid noise evaluation

In order to make improvements on the computational time for aviation noise quantification,

several different methods have been proposed and tools have been created. This section

provides an overview of these methods, including their improvement strategies, underlying

assumptions, documented applications, and limitations.

2.2.1 Airport Noise Grid Interpolation Method

The Airport Noise Grid Interpolation Method was developed by Bernardo [38] for the

rapid computation of noise grids and contours, thereby enabling the evaluation of a more

exhaustive set of scenarios. The core improvement is the creation of a library of pre-

computed vehicle-level SEL noise grids which remove the requirement of running through

the aircraft performance model, NPD lookups and interpolation, and noise propagation

models.

Figure 2.7: Process overview of the Airport Noise Grid Interpolation Method (ANGIM)
[38]

The overall process behind ANGIM is shown in Figure 2.7, with the steps described in

detail below –

1. First, the single-event aircraft-level noise grids are computed using the INM tool.

Separate computations are performed for departure and arrival operations, and for
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each stage length defined within those operations. By centering the grid about the

runway axis, and assuming a straight ground track, only half of the noise grid needs

to be stored, due to symmetry. An adequately sized and finely spaced grid is defined,

and the results are stored. This step is only performed once and after this step, INM

is no longer required.

2. The second step is the computation of runway DNL grids by using the pre-computed

single-event noise grids. Two inputs are required for this – the flight schedule and the

runway geometry. The flight schedule provides the number and type of operations

for each aircraft, the runway used to perform that operation, and the time of operation

(required to impose the night-time operation penalty for the DNL noise metric). The

runway geometry is defined by the anchoring Cartesian coordinates for the runway

end, and the heading direction. These inputs modify the pre-computed noise grids to

calculate the runway level grids.

(a) Single-event SEL grids are converted to Sound Exposure Ratio at each grid

point using Equation 2.2. Unlike SEL, the exposure ratio is linear, and therefore

can be scaled and summed across different operations at the same grid point.

SELac = 10 log10

{∫ t2
t1

p2A(t)dt

p20t0

}
= 10 log10(Eac) (2.1)

Eac = 10
SELac

10 (2.2)

(b) The exposure ratio is scaled by the number of operations for an aircraft assigned

to the runway. Night-time and day-time operations are handled separately at

this stage.

(c) The scaled exposure ratios are summed across operation types, thus combining

all arrivals and departures across all different aircraft types.
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(d) The runway level exposure metric is then converted to the DNL metric for each

receptor point in the grid using Equation 2.3.

DNLrwy = 10 log10 (Erwy,day + 10× Erwy,night)− 49.4 (2.3)

(e) Finally, the DNL noise grid is mirrored across the runway axis to obtain the

symmetric noise grid for the runway.

3. Next, the runway noise grids are rotated and translated to achieve the correct relative

positioning across the different runways. Standard Cartesian rotation and translation

operations are applied, in that order.

4. Finally, the runway level grids are combined by first interpolating the rotated and

translated runway grids onto a common airport grid, and then summing the noise

values logarithmically. The interpolation is performed logarithmically from the

nearest neighbor. The summation formula is shown in Equation 2.4.

DNLapt = 10 log10

(∑
rwy

10

(
DNLrwy

10

))
(2.4)

5. Once the airport level DNL grids are calculated, post-processing can be performed

to obtain contour area, population exposure etc.

In summary, the development of ANGIM enabled the creation of rapid fleet-level anal-

yses, by using clever superimposition of pre-computed noise grid data. The benchmarking

of ANGIM against INM was done in a verification and validation study which showed

large improvements in computation time [112]. For example, in a case study with four

parallel runways including crossflow traffic patterns, the ANGIM runtime was 5.92 minutes

as compared to the INM runtime of 56.6 minutes. Similar levels of improvements were

observed for a wide range of cases which were tested. The study also reported acceptable

accuracy when the underlying assumptions were obeyed.
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However, when considering cases outside of those covered by the underlying assump-

tions of ANGIM, the accuracy deteriorated quickly, thus limiting the applicability of the

tool. The core ANGIM tool was initially developed without any calibrations. The authors

of [112] noted that by adding suitable calibrating factors, the accuracy of ANGIM could

be improved for conditions outside of the assumptions. For example, it was proposed that

the relationship between the noise response and the airport elevation could be modeled,

thereby negating the sea-level assumption.

The errors introduced by the assumptions were quantified using a comprehensive 94

airport study in subsequent research [113]. The annual flight schedules for the year 2015

were computed in AEDT and were used as the validation data. Diverging ground tracks

were included in the validation data, as were two different atmospheric attenuation models.

The noise results for all airports were then repeated in ANGIM by matching aircraft types

and runway assignments. It was observed that for nearly all airports, the noise results

for ANGIM were underestimating the noise levels, likely due to the sea-level assumption

which led to a higher atmospheric density value. It was also observed that the assumption

of standard day performance and straight ground track together resulted in a net over-

prediction of noise results.

In summary, although the baseline ANGIM tool greatly sped up the process of aviation

noise quantification, it did so partly by making simplifying assumptions to narrow down

the aforementioned input space. Thus, while the tool was accurate and fast for a sea-level

airport with straight ground tracks on standard day conditions, it was not applicable at other

conditions. Noting this, researchers tried to make improvements to ANGIM by addressing

some of these assumptions which are discussed in subsection 2.2.2.

Observation 4: The use of pre-computed noise grids greatly increases the speed of

noise computation, but does not scale well to the complete input space due to storage

requirements.
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2.2.2 Enhancements to the Airport Noise Grid Interpolation Method

This section describes the various efforts undertaken by researchers to improve upon the

basic ANGIM process. Note that while these improvements were motivated by a desire

to improve ANGIM, they are not necessarily tied-in to the ANGIM process. Results and

methodologies may be used for stand-alone analyses if appropriate.

Average generic vehicles

One way to speed up the computation even further is to make use of representative aircraft

which stand in for all aircraft within a certain class. For example, the Boeing 737-700 can

be used to represent all aircraft in the 150-180 passenger class. LeVine et al. [114] further

improved on this by creating average generic vehicles which are better representations

of an aircraft set than any individual aircraft within than set. The development of these

representative average aircraft involved combining Environmental Design Space (EDS)

with ANGIM. EDS is a modeling and simulation environment created for the design

and evaluation of subsonic aircraft by integrating several industry standard tools into one

framework [115, 116, 117]. To create average generic vehicle definitions, the overall

process is shown in Figure 2.8 and described below –

1. Environmental metrics for each aircraft were computed – total mission fuel burn,

total mission NOx emission, Terminal area NOx emission for departure and arrival,

SEL contour areas, lengths, and widths.

2. Aircraft level metrics were converted to airport level metrics by aggregating the fuel

burn and NOx emissions, and by converting the SEL noise grids to DNL noise grids.

3. Next, linear discriminant analysis was used to refine the baseline classification which

was based on passenger seat capacity. The linear discriminant analysis method

predicts mis-classification among a-priori groups by using techniques from linear

algebra, principal component analysis, and multiresponse permutation tests.
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Figure 2.8: Process overview of creating average generic vehicles [114]

4. Targets were created for each environmental metric to represent the aggregate

performance per the generic vehicle class.

5. A main effects screening test was performed to identify the most influential input

variables for the relevant aircraft level metrics.

6. A design of experiments was created from the reduced set of influential input variable

settings.

7. The created design of experiments was evaluated in a high fidelity aircraft-level

model and the relevant environmental metrics were recorded for each design.

8. Surrogate models were created to map the computed metrics to the designs.

9. An optimization exercise was performed to optimize the input variables and obtain

the best match to the average generic targets.

10. The optimal design was evaluated in the high fidelity model for verification.
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It was observed that creating the average generic vehicle definitions depended primarily

on the thermodynamic cycle design and sizing of the engine. The best designs per class

featured similar engine OPR, BPR, and sea-level static thrust. The researchers were able to

improve on the traditional method of using representative in-class vehicle, by making the

representation more accurate while retaining the computational benefits.

Runway utilization

Instead of assigning each operation to a specific runway end, ANGIM included a feature

where utilization ratios could be used instead. These ratios were envisioned to be useful

when actual runway assignments were unknown. However, without additional guidance on

the actual values of these ratios, the value would default to an equal utilization assumption

where each runway end was assumed to be used equally. This does not reflect real-world

runway utilization where often one runway end is prioritized due to prevailing winds or

traffic flow patterns. Researchers in [113] used 2015 airport schedule information to

derive unique runway utilization factors for approaches and departures for 94 airports.

In addition to improving the computational speed by not requiring computations for each

operation-runway assignment combination, the computed ratios also improved the accuracy

compared to the scenario of assuming equal runway utilization. These ratios are also useful

for evaluating future scenarios, where runway assignments cannot be known ahead of time.

Curved ground tracks

The original conception of ANGIM used straight-in and straight-out ground tracks for

arrivals and departures respectively. This assumptions was made in part so that the resulting

noise grids would be symmetric, thus requiring only half of the pre-computed grid to be

stored. Consequently, many real-world operations could not be modeled accurately as real-

world ground tracks often depart from the runway axis.

To address this limitation, a parameterization of ground tracks paired with a surrogate
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model was proposed [118]. A demonstration case-study was performed by creating twenty

alternative ground tracks using a parametric definition of a baseline ground track involving

two left turns. The parametric definition decomposed the baseline track into five segments,

with varying lengths and turn radii. These lengths and turn radii were used as parameters

to generate alternate ground tracks. Treating the SEL value at a specific grid point as the

response, an Artificial Neural Network (ANN) with 2 hidden layers of 1 Gaussian nodes

each was trained. It was reported that with fewer nodes, the model was not sufficiently

accurate. On the other hand, increasing the number of nodes greatly increased the model

training and model evaluation times. The inputs to this ANN were the track parameters,

the X-Y location of the noise grid receptor, and the SEL value of the baseline ground track.

The predicted SEL grid was calculated using the surrogate model and compared against

data set aside for model validation. These results were used to compute noise contours

which were compared as shown in Figure 2.9. It is observed that although the model

was accurate for the 65 dB-SEL contours, the accuracy deteriorated quickly for higher dB

levels. For the 80 dB-SEL contours, the contour shape could not be recreated accurately.

Due to the nature of overlap, the error in contour area was lower than the distortion of the

contour shape.

Figure 2.9: Comparison of validation testing results of ANN-based surrogate model for
curved ground tracks [118]. 80 dB-SEL (left) and 65 dB-SEL (right).
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The results obtained in this study point to the complexity of accounting for curved

ground tracks in aviation noise analyses. Although accuracy could be improved further by

adding more nodes to the ANN structure, it was computationally prohibitive. Thus, when

curved ground tracks need to be modeled, the only suitable alternative is a full order model,

like AEDT.

Calibration to atmospheric uncertainties

The use of standard day sea-level weather was identified as a key source of error when using

ANGIM to model real world airports [113]. To address this problem, researchers tried to

develop methods to perform the calibration of the pre-computed baseline weather noise

grids at other weather conditions [119]. The dependency of SEL noise grids to weather

was attributed to two main reasons – the aircraft performance and sound propagation.

The takeoff and climb performance of an aircraft is highly dependent on ambient weather

conditions. Additionally, the speed of sound and atmospheric absorption also depend on the

ambient conditions. These ambient conditions were identified to be temperature, pressure,

density, and humidity. The goal of the calibration exercise was to develop a surrogate model

which could operate on the sea level SEL grids to obtain better estimations of noise results

over a range of weather conditions.

Training and validation data for the surrogate model fit was generated for the B737-

800 with CFM56-7B26 engines. The design space of atmospheric variables was explored

by creating a latin hypercube design of experiments. This design of experiments was run

through the full order model (AEDT). Fifty cases were used to train the model and an

additional four cases were used for validation.

Several different surrogate modeling architectures were explored in order to identify

the most suitable. Initial efforts using Procrustes analysis and superimposition was deemed

unsuitable due to the non-linear grid scaling. Response Surface Equations (RSEs) were also

tried, but the 2nd order RSEs proved to be inaccurate, whereas higher order RSEs were too
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computationally expensive to train and evaluate. The interpolation technique called Kriging

which leverages spatial correlations and Gaussian processes for estimating response values

was another candidate. This method required the inversion of a correlation matrix, which

was computationally intractable as the number of points increased.

The final method to be tested was an Artificial Neural Network. Initial single layer

ANNs were not accurate, but two layer ANNs were deemed to be suitable with 15 Gaussian

nodes in each layer as shown in Figure 2.10. The obtained results were largely positive,

with R2 values of the order of 0.999 and root-mean-squared errors between 0.10 and 0.15.

However, when looking at the residuals between predictions and full order model “truth”

data, it was observed that the error grew for higher SEL dB values. For high dB SEL values,

the error could be as high as ±2 dB. This trend is undesirable because when performing

noise analyses, it is the higher decibel values which are the most important. It was also

noted that one of the four validation cases showed an overall grid error of 18.86%. It was

noted that this validation case was characterized by a very low ambient temperature and a

very high atmospheric pressure, thus suggesting that the ANN based surrogate model may

break down at the edges of the design space.

Summary of improvements to ANGIM

While several research efforts have been made to improve beyond the initial conception of

ANGIM, the improvements have largely been limited to extending the capability to certain

parameters instead of the complete input space. In most cases, the efforts to improve upon

ANGIM resulted in slight computational cost increases, after the upfront cost of initial

training of the surrogate models.

When trying to account for variations in atmospheric weather conditions and curved

ground tracks, the accuracy of predictions varied greatly depending on the specific use-case.

Traditional surrogate modeling methods were either inaccurate or too computationally

expensive. Additionally, when ANNs were utilized, they produced unacceptable level of
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Figure 2.10: Neural Network Architecture for weather calibration [119]

errors at the edge cases. Finally, it is also noted that while many “hyperplanes” of the input

space were explored, the arrival and departure trajectories were always kept constant. At

this stage, the following observations are noted –

Observation 5: Traditional surrogate modeling methods based on scalar valued

surrogates do not work well for replicating noise grids of full order models.

2.2.3 Rapid Environmental Impact on Airport Community Tradeoff Environment

Monteiro et al. [92, 120, 121] recognized that the state-of-the-art modeling software do not

meet three main requirements that are essential for rapid noise exposure analysis – rapid

assessment, forecasting ability, and parametric interactivity. To address this problem, they

created the Rapid Environmental Impact on Airport Community Tradeoff Environment

(REACT). The modeling architecture for REACT built upon ANGIM and the Global

and Regional Environmental Aviation Tradeoff (GREAT) [122] tools, and is shown in
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Figure 2.11.

Figure 2.11: Modeling architecture of the REACT environment [92]

The goal of REACT was to create individual airport specific trade-off environments,

which would tailor the database to each airport. This was necessary as community noise

exposure is a very airport specific problem due to the uniqye population distributions and

airport runway geometries. Two airports were selected to be used as case-studies within

REACT – Kansas City International Airport (MCI) and Dallas-Fort Worth International

Airport (DFW). The individual components which made up the environment are enumer-

ated below –

1. Airport data – The data which is unique to each airport and most relevant for noise

calculation are the runway geometries and atmospheric conditions. For runway

configurations, the ANGIM referencing method was utilized. Atmospheric data in

the form of temperature, pressure, humidity, and wind was extracted from the AEDT

2c database.

2. Fleet and Operations data – This contained information about the type of aircraft

and the flight schedules (time of operation, runway assignment etc.). Operations

were referenced to an averaged day in 2015 with data being obtained from airport

partners.
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3. Operations forecasting – The method outlined in the FAA Terminal Area Forecast

(TAF) 2015 model [123] was used. The FAA’s TAF is the official tool for forecasting

commercial, general aviation, military, and commuter operations at all US airports.

4. Flight Track Parameterization – The definition used by AEDT to create curved and

straight vector ground tracks was used. A generic ground track definition is used

consisting of five segments described by nine parameters, as shown in Figure 2.12.

The parametric track was later converted to a set of sequential points to generate the

necessary shape files for the tool interface.

Figure 2.12: Parametric definition of curved ground tracks [92]

5. Population Database and Forecasting – Baseline population densities were obtained

from the 2010 US Census data, which has a high resolution. Census county block

level data was downloaded for each airport surrounding and imported into the tool.

To forecast population trends, the Ratio Based Postcensal Small Area Projections

method [124] was used which is a derivative of the Cohort Component Method [125].

6. Noise mitigation strategies – REACT was developed with the capability to create

strategies for land planning by population block density control, operational changes
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through forecasted years, track flexibility, and the simulation of technology advance-

ments.

7. Environmental calculations – AEDT was used as a benchmark for validation of re-

sults generated by REACT. The fundamental benefit of ANGIM (pre-computed noise

grids) was used along with aircraft substitutions to make the tool computationally

efficient.

The components of REACT were integrated into an environment programmed using

the ArcGIS for Developers SDK for Java. The validation results for REACT showed that

the full order model results from AEDT were recreated accurately for a fraction of the

computation time. However, there was a significant upfront cost involved in creating the

environment itself, and adding the airport specific data.

2.2.4 Reduced Order Modeling applied to AEDT

Almost all literature on the creation of rapid noise modeling methods has been based on

scalar surrogate modeling techniques which try to fit a model for the noise response treating

various sets of parameters as inputs. The most common models used were Response

Surface Equations, Kriging Interpolation, and Artificial Neural Networks. Kim et al. [126]

recognized that such scalar valued surrogate models were more suited to outputs such as

aggregate fuel burn or emissions related to an operation, but less so for noise grids. Thus,

they focused their efforts on the use of a different class of surrogate models which are

capable of dealing with high dimensional data by transforming it into a low dimensional

space. Their method was based on a Reduced Order Model created by performing a Proper

Orthogonal Decomposition (POD) of noise data coupled with a Kriging interpolation

scheme in the lower dimensional latent space.

The first step of this process was to use the POD method to extract a set of orthonormal

basis vectors which could be used to construct the lower dimensional space. The noise grid
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computations from AEDT were projected onto this lower dimensional space coordinates.

Thus, after projection, each noise grid could be identified by its coordinates along the basis

vectors. These coordinates were then fit into a Kriging model with respect to the input

parameters. The input parameters used in this case were weather conditions – elevation,

temperature, pressure, humidity and headwind.

A total of 512 cases were run through the full order model and the noise results were

recorded on a rectangular grid covering 32 by 16 nautical miles with a resolution of 0.08

nautical miles. The POD results found that the first three basis vectors were sufficient

to recreate the full order results with an accuracy of 99.78%. The researchers noted

remarkable improvements in computation time – 0.0042 seconds as compared to about

7 seconds taken by AEDT to simulate a single departure or arrival flights. It was also

noted, however, that setting up the ROM and the interpolation scheme entailed a significant

one-time upfront cost of 2.13 hours. The researchers also noted that ROM based noise

computation methods could be extended to different aircraft types, flight tracks, and trip

lengths.

2.2.5 Summary of methods for rapid noise evaluation

This section presented literature on the efforts of researchers to improve the computational

efficiency of the aviation noise computation process. Several different methods were

documented, all based on the idea of training a surrogate model which would be

significantly faster to evaluate, once the upfront burden of training the model was complete.

Most methods included some combination of simplifying assumptions, pre-computed and

stored intermediate data, and scalar surrogate models. One method documented the use of

Reduced Order Models instead of scalar-valued models and showed encouraging results.

Observation 6: The use of Reduced Order Modeling methods shows significant

advantages over traditional scalar surrogate modeling methods seen in literature for

aviation noise computation.
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Each of the methods described previously demonstrated their method on a subset of

the overall input space of the noise problem. These included some combination of varying

weather conditions, parametric definitions of ground tracks, generic vehicle definitions,

and population distributions. However, no study accounted for variations in the aircraft

operations profiles – how the aircraft is flown by the pilot. Indeed, only the effect of

aircraft weight on the trajectory and performance was studied by accounting for multiple

stage lengths. Given that operational profiles are a significant influencer of noise impacts

by affecting both trajectory and performance characteristics, this is a key gap in existing

research.

Observation 7: Rapid noise quantification methods in the literature have explored

various parts of the input space such as ground tracks, weather, aircraft model, community

population etc. However, variations in operational profiles have not been included.

2.3 Parametric representation of the aviation noise quantification problem

An important part of creating a rapid noise quantification and optimization method is the

ability to represent the problem using parameters. A parametric definition is advantageous

over other definitions for a number of reasons. Firstly, a parametric definition allows

many different and unique problems to be mapped onto a generic representation. If this

mapping is known, then only the parameter values need to be stored and input to the overall

model, instead of storing unique definitions of each problem. For example, ANGIM was

able to approximate the layout of any airport by creating a parametric definition based on

the runway ends, heading angles, and relative positions. Another advantage is that if an

object consisting of categorical variables can be parameterized numerically, the parameters

can serve as the basis for the creation of surrogate models. Categorical variables do not

typically do well in surrogate models, typically requiring a separate surrogate model to be

trained per setting of the categorical variable, thus eliminating it as one of the variables.

Finally, parametric definitions are useful for understanding the isolated and combined
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effects of parameters on the output, and are therefore useful for sensitivity analysis and

optimization studies.

This section reviews existing literature on the parametric definition of the aircraft noise

quantification problem. Due to the vast size of the input space of this problem, researchers

have focused their efforts on smaller subsets of the complete problem. Each of these subsets

are reviewed in the following subsections.

2.3.1 Airport representation

The representation of airports primarily concerns runway placement and orientation,

ground tracks, airport elevation and baseline weather, and population distribution in the

vicinity. For the context of this research, quantifying population exposure is excluded from

the core methodology and treated as a post-processing step.

The parametric representation of runways was covered sufficiently in the original

conception of ANGIM [38]. The curved ground track definition included in AEDT [107]

and in an improved implementation of ANGIM [118] makes use of 5 segments represented

by 9 parameters as shown in Figure 2.9. The airport elevation can be treated as a single

parameter represented numerically by the elevation above mean sea level. The elevation is

important because higher elevation airports have thinner atmospheres, which affects both

aircraft performance and noise propagation.

The treatment of baseline weather is covered in subsection 2.3.2.

2.3.2 Weather definition

Weather conditions play a significant role in aviation noise metrics by affecting both

aircraft performance and noise propagation [127]. Fundamental characteristics of aircraft

performance such as lift, drag, and thrust forces are all highly dependent on atmospheric

density. Additionally, thrust production by the engines is also dependent on the ambient

temperature.
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These factors, along with humidity also affect noise propagation and atmospheric

absorption of sound. Thus, to accurately model noise metrics, all of these parameters have

to defined and accounted for. Within AEDT, there are three levels of fidelity available for

weather modeling. The two lower fidelity levels are based on a baseline weather definition

with a lapse model used to determine the weather at different altitudes. The baseline

weather can be the International Standard Atmosphere or, more accurately, be an averaged

weather condition defined for each airport. At the highest fidelity level, the weather can be

defined at multiple points in space and time, if such data is available.

To define the weather, six parameters are typically used in AEDT, and have also been

adopted for use in various research [107, 119, 126]. These parameters are Sea-level

Pressure, Station Pressure, Temperature, Relative Humidity, Dew Point Temperature, and

Wind Speed. These inter-dependent parameters form a complete but non-unique weather

definition. For example, the same definition can also be described by using absolute

humidity in place of relative humidity. Also, although wind direction should be a factor,

most noise models do not consider the effect of crosswinds. Thus, in this definition, only

the wind speed is required and is applied as a headwind, regardless of the heading of the

aircraft.

2.3.3 Aircraft definition

Most noise tools rely on a library of empirical data for each aircraft in their database.

This data is obtained from real-world experiments and flight testing, and thus is typically

only available for existing aircraft. Noise-Power-Distance tables, engine performance

coefficients, aerodynamic coefficients etc. are part of such datasets. Treating these tables

and coefficient values as parameters is a logical choice, although such treatment could

not be found in literature. Instead, aircraft-engine combinations are treated as categorical

variables representing a set of table and parameter values specific to that aircraft.

A second group of noise prediction tools permit the evaluation by new aircraft or
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engine concepts by supplementing empirical data with physics-based models. In such

models, major noise sources are modeled individually as parametric and semi-empirical

noise sources. Thus, the effects of geometry and operating conditions can be accounted

for. A prominent example of this is NASA’s ANOPP tool [103] which is described in

subsection 2.1.2.

The DLR Institute of Aerodynamics and Flow Technology developed the Parametric

Aircraft Noise Analysis Module (PANAM) [128, 129] to perform overall noise prediction at

the aircraft conceptual design stage. This was achieved by modeling individual components

with semi-empirical and parametric source models which captured the major physical

effects and correlations. Additionally, PANAM was developed to be modular for easy

integration into upstream and downstream tools. For example, PANAM could be integrated

with a flight simulation platform to design noise abatement operations. An application of

PANAM to design a spiraling approach noise abatement procedure is documented in [130].

2.3.4 Trajectory definition

The trajectory and performance characteristics of an aircraft performing a landing or takeoff

operation is a key influencer of noise metrics. There are typically two ways of describing

this data – a time-series point-based representation or an event-based representation. Noise

computation tools can typically handle one or both representations. In AEDT, a time-series

representation is modeled as a Fixed-Point Profile (FPP) and an event-based representation

is modeled as a procedural profile.

Time-series representation

A time-series representation treats the continuous trajectory of the aircraft as a sequence

of points in the sky. These points are identified by their 4-D location – latitude,

longitude, altitude, and time. Then, each point is associated with the aircraft performance

characteristics – the instantaneous thrust, speed, climb rate, weight etc. Such data is
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typically recorded in a tabular format.

There are many potential sources for this data, both aircraft-based and ground-based,

which are described below –

1. Automatic Dependent Surveillance–Broadcast (ADS–B) based systems use periodic

“pings” from the aircraft which report the aircraft’s identification, altitude, position,

and velocity [131]. The data transmitted by the aircraft is picked up by ground-based

receivers and can be processed to recreate the aircraft’s trajectory. There are several

websites which utilize a large network of receivers to recreate trajectories such as

FlightAware [132] and Flightradar24 [133]. Although this type of data is highly

accessible, it is often low resolution, which leads to the loss of information about the

aircraft’s actual position over periods of time.

2. Ground-based radar systems such as those used by airports can also be used for

recreation of trajectories. One of the most comprehensive of these systems is

the Performance Data Analysis and Reporting System (PDARS) [134]. PDARS

consists of several Air Route Traffic Control Centers (ARTCC’s) and Terminal Radar

Approach Control (TRACON) facilities.

3. Threaded Track developed by MITRE [135] makes use of geospatial data fusion

techniques for aircraft flight trajectories. Threaded Track data is created by fusing

data from a variety of sources including the aforementioned ADS-B, along with

Airport Surface Detection Equipment, Model X (ASDE-X), the National Offload

Program (NOP), and the Enhanced Traffic Management System (ETMS).

4. Flight Operational Quality Assurance (FOQA) data consists of data recorded by

the airline operating the flight. The basis for the FOQA program is laid by the

FAA Advisory Circular 120-82 which states ” The value of FOQA programs is

the early identification of adverse safety trends that, if uncorrected, could lead to

accidents” [136]. To this effect, FOQA systems record large amount of data at a very
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high frequency (typically at one recording per second, i.e. 1 Hz) and the data have

been used for a number of safety related applications in prior work [137, 138, 139].

While point-based representations can be used directly for parametric implementations,

there are a few key disadvantages. Firstly, real-world flight trajectories have many

variations even among the same aircraft and missions due to real-world effects. This leads

to a unique representation of each flight, which does not scale well to a large number of

operations. Parametric variation is also difficult, while perturbations can be applied to the

points, there is no guarantee that the resulting trajectory is actually flyable by the aircraft.

Thus, every perturbed flight has to be verified by a performance model, at additional

computational expense.

Observation 8: Point-based trajectory and performance representations are not

conducive to rapid noise evaluation.

Event-based representation

An event-based representation is a description of the trajectory as intended by the pilot,

which may be different that the actual trajectory due to real-world effects. In AEDT, this is

defined by a procedural profile consisting of a sequence of steps reflecting pilot inputs. This

procedural profile is then input to an aircraft performance model to compute the aircraft

trajectory and performance in space and time. Note that because all output trajectories are

produced by a performance model, there is no need to validate their flyability.

Procedural profiles can be used for both approach and arrival profiles. In fact, these

can be extended to represent a complete flight, although the modeling of flights above the

terminal area is usually inconsequential for subsonic aircraft. The steps which make up a

typical procedural profile for departures is described below –

1. The profile starts with a takeoff ground roll with a given throttle and flap setting.

2. After lift-off the aircraft maintains its lift-off speed and climbs to a safe altitude.
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3. At the safe altitude, the aircraft performs a thrust cutback from takeoff setting to

climb setting.

4. After cutback, the aircraft starts accelerating wither immediately, or after reaching a

higher altitude.

5. As the aircraft accelerates, the high-lift devices are retracted as per the flap schedule.

6. After reaching clean configuration, the aircraft continues accelerating to the final

climbout speed either immediately, or after reaching a higher altitude.

7. Once the final climbout speed is attained (usually 250 knots calibrated airspeed

(KCAS)), the aircraft stops accelerating and continues to climb to the end of terminal

airspace (usually 10,000 ft MSL).

Procedural profiles are typically developed by airlines under guidance from ICAO and

FAA [140, 141]. The FAA’s Advisory Circular 91-53A outlines the development of two

Noise Abatement Departure Profiles (NADPs) – one for benefits to the close-in community

and another for distant communities. Some safety guidelines are also provided such as the

limit that no cutback may be performed below 800 ft AFE.

Airlines typically develop two profiles based on their specific needs, although on rare

occasions, the airport being operated to/from may require the use of a third profile [142].

The two profiles are typically labeled as ICAO-A and ICAO-B or NADP-1 and NADP-2,

and are treated as categorical variables in noise modeling tools. Based on a comprehensive

literature review and interviews, Lim et al. [143, 144] proposed a method to model these

profiles, collectively called the NADP Library. This library consists of 20 profiles and

their definitions for implementation in AEDT. The profiles differ in their cutback initiation,

flap-retraction acceleration initiation, and final climbout speed acceleration initiation.

The effect of these profiles on the SEL noise metric was also documented [145, 146].

The development of the NADP Library is helpful in expanding the options available to

modelers, but it not a true parametric representation.
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2.3.5 Summary of parametric representations

Researchers have studied various parts of the noise quantification problem and have

successfully come up with parametric definitions for some of those parts. The parametric

definitions identified in literature for airport, aircraft, and weather definitions seem to

be well-suited for the creation of a rapid noise assessment model. However, flight

profiles are typically still treated as categorical variables in the literature and are without

a true parametric definition. Additionally, although point-based representations of aircraft

trajectories can be created, they necessitate the inclusion of a performance validation model

which would add computation time and cost to the process.

Observation 9: Many aspects of the noise quantification problem have been parame-

terized, but a parametric definition of aircraft trajectories remains elusive.

2.4 Optimization of Aviation Noise

Various methods of noise management and mitigation were discussed briefly in subsec-

tion 1.2.2. These solutions are typically classified into three categories – source noise

reduction with new technologies, land-use planning and management, and noise abatement

procedures and operational changes. Although new technologies can significantly reduce

noise impacts, the process of developing a new technology is capital and time intensive,

making them a long-term solution. On the other hand, land-use planning is difficult to

implement, especially for older airports with significant residential areas in the vicinity.

In the short term, operational changes and noise abatement procedures seem to hold the

most promise. Noise abatement procedures typically do not require any physical changes

to the aircraft, and different procedures can be programmed into the flight management

software. Typically, the scope for improvement in arrival operations is more limited than

that for departures [147]. This is due to the 3°glideslope angle which almost all arrival

operations converge on to during their final approach. The fundamental benefit of noise
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abatement procedures emanates from the trade-off between the trajectory of the aircraft

and the thrust variation. When the aircraft uses less thrust, the noise generated at the

source is lower, but the aircraft’s excess power is also lower leading to a trajectory closer

to the ground. Similarly, an aircraft may aim to climb as fast as possible, usually at the

compromise of higher noise at source due to higher thrust levels.

Indeed, this trade-off has been studied as far back as 1969, by Erzberger and Lee at

NASA [148]. While the optimum trajectories were found to depend on the choice of noise

criterion as well as other factors, a few similarities were observed across the cases. The

computed optimum trajectories all had a period of acceleration as early as permissible after

lift-off. It was suggested that prioritizing acceleration over climb rates may lead to a lower

trajectory over sensitive areas, which may reduce the overall noise exposure if the clean

configuration is achieved. Additionally, a maximum thrust reduction was performed upon

reaching the noise sensitive area. If the noise sensitive area was more than four miles away

from point of brake release, the initial acceleration permitted the complete retraction of

flaps. It should be noted that aircraft and engine technology has changed significantly since

1969, and the results observed may not be directly applicable for modern aircraft.

In 1997, Clark [149] made use of a tool which combined a flight simulation model, a

noise model, and a GIS model to evaluate aircraft’s noise impacts. For approach profiles, it

was found that a 3°decelerating approach provided the most significant noise reduction

when compared to the baseline Instrument Landing System (ILS) approach. Studies

of departure operations showed that the appropriate procedure depends heavily on the

population distribution and should be developed on a case by case basis.

Initial research done by Visser et al. [150, 151, 152, 153] in the early 2000s used

a similarly approach by combining a noise model, GIS model, and a dynamic trajectory

optimization algorithm, later labeled as NOISHHH. The dynamic model could be used to

optimize a very intricate trajectory comprising of precise turns and climb profiles to reduce

awakenings on the ground. Multi-objective criteria were also sometimes included such as
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fuel burn and noise contour areas. Such formulations made use of different weightings to

prioritize the different objectives. One research article also noted that flying such complex

trajectories may not be practical and instead used a procedural profile as a reference and

then attempted to optimize deviations from this profile.

Subsequent research by Visser et al. focused on improvements to the NOISHHH

tool and expansion of the framework’s capabilities to new problems. By extending the

scope from terminal area to full flight computations, a noise optimal runway-to-runway

trajectory for a city-pair flight was created [154]. By extending the use-case from a single

flight to multiple events, aggregated noise metrics could be optimized. Such an extension

was applied to nightly flights at a major international airport and showed improvements

to the number of people highly annoyed due to aircraft noise [155]. By changing the

optimization scheme to a genetic algorithm based on parametric trajectory definitions,

the process was made more efficient. This could be achieved by suitably choosing

parameters to ensure compliance with operational requirements on departures, thereby

avoiding infeasible solutions [156, 157, 158]. The approach was further extended into a

two-step optimization framework for the design and selection of aircraft departure routes,

and the allocation of flights to those routes [159, 160].

A similar problem was studied by Prats et al. as a non-linear multi-objective optimal

control problem. Instead of using different weighting schemes for the multiple objectives,

a Lexicographic optimization was performed instead [161]. This approach establishes a

hierarchical order among the optimization objectives instead of assigning numeric and

usually arbitrary weights. This technique was applied to to minimize noise annoyance with

the maximum perceived noise metric at five different noise sensitive locations in [162].

This was later extended to include population data and results showed a dependency of the

optimal trajectory on the type of aircraft and the hour of the day [163]. This optimization

scheme was slightly adjusted by neglecting marginal benefits of noise reduction below a

threshold value in [164]. Later, an optimization study revealed that if departure speed
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constraints were removed, CO2 emissions could be removed by 180 kg per flight at the cost

of increased noise exposure below 70 dB [165].

A common theme across these optimization studies is that although they have been

developed for generic use-cases, they have been applied to very specific scenarios. Typical

demonstrations include modeling a single aircraft flying out of a specific airport. The

effect of weather conditions or on the optimal trajectory is typically not studied. Thus,

the optimized trajectories are not a comprehensive solution but are instead limited to a

select few scenarios. The reason behind this can be linked back to the many-query nature

of optimization studies – in order to evaluate optimum profiles across a variety of operating

conditions, noise results have to be computed at each condition. However, these evaluations

do not scale well with a large number of conditions due to the computation cost of the

underlying physics based aircraft dynamic models and semi-empirical noise models.

Observation 10: Aircraft trajectory optimization efforts have been limited to specific

instances, due to the difficulty in efficiently evaluating multiple scenarios using methods

based on computationally expensive aircraft dynamics and performance models.

2.5 Reduced Order Modeling methods

In previous sections, it was observed that traditional surrogate modeling methods fall short

when applied to even a moderately sized input subspace. It was also observed that there

is extremely limited research on the application of Reduced Order Models to the aviation

noise problems. The only application that could be found in literature showed promising

results [126]. This section provides an overview of ROMs – what they are, how they work,

and where they are typically used.

Is simple terms, Reduced Order Modeling or Model Order Reduction (MOR) is a

method for reducing the computational complexity of mathematical models in numerical

simulations [166, 167]. The fundamental idea of ROM/MOR is the identification and

recreation of the underlying pattern of the data and not the complete replication. By
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allowing for some data loss, the computational cost and time can be greatly reduced. This

is especially useful in situations where there are many variables and models to consider,

but the accuracy of full order models is not necessary. These situations typically arise in

the early stages of a process, such as conceptual aircraft design.

The desire to replace or complement a complicated function with an approximation

can be traced back to the early 19th century. In 1807, Fourier published the method of

approximating any continuous function as a series of trigonometric terms [168]. The initial

steps towards model reduction in linear algebra came in the form reducing a matrix to a

tri-diagonal form or to a smaller matrix. Fundamental methods in the area of Model Order

Reduction were published in 1980s and 1990s. One of the most commonly used method,

Proper Orthogonal Decomposition (POD), was discovered independently by researchers

in different disciplines, and is also known as Principal Component Analysis (PCA) or

Karhunen-Loève decomposition.

Reduced Order Models have numerous applications in many different disciplines of

science, engineering, and math. Within the realm of aerospace applications, the most

popular application by far has been in advanced Computational Fluid Dynamics (CFD)

applications involving unsteady aerodynamics, aero-elastic effects, hypersonic flow fields

etc. [169, 170, 171, 172]. These models have also been used for multi-disciplinary design,

analysis, and optimization applications, such as the design optimization of airfoils [173].

A useful classification of ROMs is whether they are projection-based or interpolation-

based. Projection-based methods operate using the underlying governing equations and

are also known as intrusive methods. These types of ROMs are advantageous because

they retain the underlying physics of the problem, if the underlying equations are known.

Interpolation-based methods, on the other hand, are “non-intrusive” and do not rely on

knowledge of the underlying physics of the problem, and perform interpolation directly on

the reduced space. Thus, interpolation-based methods offer greater flexibility and are better

suited to aviation noise quantification.
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An interpolation-based ROM has two major steps – the model order reduction step,

and the creation of a surrogate model in the latent space. As with all surrogate models, a

solution set is generated using the full order model. These solutions (also called snapshots)

are then divided into two mutually exclusive subsets – one for training the ROM, and the

other for validating the ROM. The training dataset is used to develop the surrogate model.

Predictions made from the surrogate model are then compared to the validation dataset to

assess whether the surrogate model has the desired accuracy. The process of training and

validation is often iterative, until the desired accuracy is achieved.

2.6 Clustering of flight trajectories

As discussed in subsection 2.3.4, point-based representations of aircraft trajectories are

unsuitable for parametric noise quantification models. One reason behind this is that point-

based trajectories are often developed from aircraft recordings or ground-based RADAR

systems. Each flight has a unique point-based trajectory, even if the pilot intends to fly a

common, pre-defined operation. This is due to the introduction of real-world effects such

as weather, and minor differences amongst aircraft of the same class.

Although the resultant trajectories and their point-based representations are unique, the

differences among them are relatively minor. In such cases, collecting trajectories into a

few self-similar groups can help reduce the amount of data to be stored, processed, and

analyzed. The process of grouping entities based on similarity is known as clustering.

Clustering is generally classified as an unsupervised Machine Learning (ML) technique,

where the algorithm does not have a sample solution set with which to train the provided

data.

Clustering techniques have been primarily used in safety applications, particularly in

the terminal airspace. Gariel et al. [174] recognized that by grouping together similar

trajectories, a knowledge base of typical operations and their variability could be generated.

Current operations could then be monitored against the typical operations to detect
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anomalies. This idea was conceived as a tool to monitor the instantaneous health of the

airspace, with a “healthy” airspace being one in which all aircraft are flying as per typical

operations. When an aircraft is not in conformance, more ATC attention is required to guide

the flight. Similar work was done by Olive and Morio [175] to foster good understanding

of traffic flow and structure, and enable a probabilistic approach to risk assessment in air

traffic safety. Corrado et al. [176] introduced weighting functions to the standard Euclidean

distance to address the limitation of skewed classification and inadequate identification.

By trying different weighting methods, it was found that giving more weight to points

closer to the boundary of the terminal airspace yielded more accurate clustering results.

While clustering is usually done on similarity distance computations based on positions,

times, and thematic attributes, not all may be equally relevant. This was recognized by

Andrienko et al. [177] who proposed an analytical workflow in which relevance flags could

be attached to different elements, and irrelevant elements could be ignored by the distance

function. Basora et al. [178] created a trajectory clustering framework using minimal input

parameters for application to real trajectories over a French area control center.

While several applications of trajectory clustering have been made in literature, these

are largely limited to risk and safety identification. Applications to the evaluation of

aviation environmental metrics are not observed in the literature. However, the core

technique seems to hold promise for such applications as well.

2.7 Summary of Observations and Gaps

The observations drawn based on the initial literature review point towards the gaps in

existing research. These gaps serve to narrow the focus of subsequent research, and

addressing these gaps becomes the primary means of satisfying the research objective.

These gaps represent the technical challenges that must be solved, and help to define the

formal Research Questions for which Hypotheses can be posed and tested.
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2.7.1 Gap 1 – Parametric definitions of aircraft trajectories

The first gap arises out of Observations 7, 8, and 9 which showed how existing

representations of aircraft trajectories in literature are insufficient for building parametric

models. In order to build a rapid and parametric modeling capability, a new representation

has to be developed.

Gap 1: No parametric definition for aircraft trajectories exists which can be used to

build the desired rapid aviation noise model.

2.7.2 Gap 2 – Field surrogate modeling capabilities

The second gap addresses the types of mathematical models that are used for noise

quantification. Based on Observations 1, 2, 3, 4, 5, and 6, it is evident that methods

in literature are inadequate in handling the entirety of the aviation noise quantification

problem.

Gap 2: Current state-of-the-art tools and scalar valued surrogate models are unable to

adequately address the inherent complexities of the noise problem.

2.7.3 Overall Gap – Parametric Aviation Noise Model

The Overall Gap that needs to be addressed is linked to Observation 10. The fulfilment of

Gaps 1 and 2 will provide a path to the fulfilment of this Overall Gap.

Overall Gap: There is a lack of parametric aviation noise models which can enable

rapid quantification, optimization, and other many-query applications.

In chapter 3, a formal problem formulation and a research plan is stated which aims to

solve these gaps.
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CHAPTER 3

RESEARCH FORMULATION

Building on the literature review, observations, and stated gaps in the previous chapter,

this chapter focuses on formalizing the problem formulation and research questions, which

eventually lead to the development of the methodology in response to the original research

objective.

The observations and gaps from Chapter 2 are collected into two high-level research

areas. Each area has certain requirements which must be addressed by the proposed

methodology. These lead into the formal Research Questions which aim to tackle the

identified gaps, and when answered, directly contribute to the Research Objective. Each

Research Question is answered with a Hypothesis, which is supported with original

research conducted by the author.

Finally, with the construction of the complete overall methodology, a demonstrative

case study is performed on a suitable test case. The test case is designed to showcase the

capabilities of the methodology, and thus demonstrate the contributions of this original

research.

3.1 Research Objective

Before the formal research formulation, it is helpful to revisit the original Motivating

Research Question and the overall Research Objective, which are stated here for reference

–
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Motivating Research Question

How can the process of aviation noise quantification be improved to enable

rapid quantification of noise metrics to facilitate parametric trade-off analyses and

optimization efforts?

Research Objective

Develop a methodology to address inherent complexities in the aviation noise

computation problem, thereby enabling rapid quantification of noise metrics in a

variety of scenarios, thus facilitating parametric trade-off analyses and optimization

efforts.

Without going into the details, the Research Objective lays out the basic requirements

that any methodology must meet, in order for the objective to be satisfied. The end

goal is to facilitate parametric trade-off analyses and optimization efforts. These type of

efforts require the evaluation of many hypothetical scenarios which are compared to the

current real-world scenario. This type of scaling up of analyses can only occur when the

evaluation process is efficient on time and resources, which brings in the need to have rapid

quantification capabilities. However, this type of rapid quantification can only occur when

the inherent complexities of the aviation noise computation problem are addressed.

The inherent complexities mentioned in the research objective were evident from the

literature review conducted in chapter 2. The observations from the literature review were

organized into two formally stated Gaps, and corresponding research areas. Research Area

1 deals with the challenge of coming up with parametric definitions of the aviation noise

modeling problem. This is a pre-requisite for the elimination of categorical variables

and for handling complex aircraft trajectory data. Research Area 2 deals directly with

the aviation noise modeling process and aims to enhance the surrogate modeling efforts

observed in literature to achieve rapid noise modeling capabilities.

63



Based on this understanding, the identified Research Areas and their contributions to

realizing the overall Research Objective are shown in Figure 3.1.

Research Area 1

Parametric Definition

Research Area 2

High-dimensional

Surrogate Modeling

Rapid Aviation Noise Quantification

(Improvement to existing process)

Parametric Trade-off Analyses and Optimization

(Newly enabled use-cases)

Figure 3.1: Break-down of the overall Research Objective

The remainder of this chapter is a deep dive into each Research Area. Within each

area, specific Research Questions are posed to help address the identified Gaps. The

problem is characterized and a separate literature review is conducted to attempt to answer

each research question. A Hypothesis is formulated for each Research Question, and

an Experiment is designed to test each Hypothesis. Depending on the results of the

experiments, each Hypothesis is accepted or rejected. The methods of the accepted

Hypothesis form the components of the Overall Methodology.

3.1.1 Scoping of the problem

The original Motivating Research Question and Research Objective were intentionally

broad in their scope. With the conclusion of the subsequent literature review, it was

discovered that different parts of the problem had been addressed to varying degrees, and
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thus, more focused research areas emerged.

For example, various parts of the aviation noise modeling process have been assigned

parametric definitions by literature, including airports [38, 107, 118], weather [107, 119,

126], and aircraft [101, 128, 129]. However, aircraft trajectory information remains

resigned to either a high-dimensional time-series representation, or a categorical event-

based representation.

Similarly, the computation of population exposure based on airport-level noise grids

has been well studied and improvised in existing literature [92, 120, 121]. The process

of computing airport-level noise grids themselves from aircraft-level single event noise

metrics has also been adequately addressed in the literature [38, 112, 113]. However,

obtaining those aircraft-level single event noise metrics in an accurate and rapid manner

still poses a significant challenge and still remains an unsolved problem in the literature.

The scope of this research is thereby narrowed to a more specific purpose. Two key

areas of research emerge within this domain of aircraft-level noise metric quantification –

parametric representation of real-world aircraft trajectories and rapid modeling of aviation

noise metrics.

3.2 Research Area 1 – Parametric Representation of Aircraft Trajectories

The first gap identified from literature review was about the lack of parametric aircraft

trajectory representations. To fill this gap, the first high-level Research Question is posed –

Research Question 1

How can the input space of aircraft trajectories be represented to enable parametric

quantification and optimization?

Based on this high-level research question, the following requirements arise which any

solution must satisfy –
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1. The first requirement is that of the representation itself. The solution must be

able to provide a representation for aircraft trajectories that is better than existing

representations. It must be a complete representation over the relevant domain,

and consist entirely of numerical parameters. In addition to the representation, a

method must also be provided to be able to convert real-world trajectory data into the

proposed representation.

2. The second requirement is of relevance when real-world trajectories are evaluated

for aviation noise. As noted previously, real-world trajectories are unique and thus

cannot be efficiently modeled in large numbers using traditional methods. In order to

effectively analyze such large datasets, the method must be scalable. If such scaling

is not possible, a supplementary process must be designed.

3. Finally, in order to perform optimization and trade-off analyses, it is important to

identify which parameters have the most influence on the noise results, so that they

can be prioritized. Thus, the parameters which form the basis of the representation

must be ranked in their order of influence so that their design space can be explored

efficiently.

With these requirements, this research question can be further divided into three key

parts that need to be addressed – representation, scalability, and exploration. These three

parts lead to the three lower-level Research Questions.

3.2.1 Research Question 1.1 – Inverse Map of the aircraft performance model

It was previously noted that real-world aircraft trajectories are not well-suited for use with

parametric models. Typical real-world flight data is usually available in a tabular format

representing time-series information of various parameters.

When real-world data is unavailable, or cannot be modeled in large quantities,

modelers have to rely on theoretical procedural profile definitions. As described in
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subsection 2.3.4, these definitions are usually descriptive, and provide an enumeration of

steps that collectively represent the departure or arrival operation. For example, the default

departure procedure for a Boeing 737-800 aircraft (labeled as ‘STANDARD’), as modeled

by AEDT for a short stage length 1 mission is shown in Table 3.1 and detailed below –

1. The first step is the take-off ground roll, with the flaps set at ‘T 05’ setting and with

the use of maximum available take-off thrust.

2. Once the aircraft is airborne, the aircraft maintains the flap and thrust settings and

climbs with constant speed to an altitude of 1000 ft AFE.

3. After reaching 1000 ft altitude, the aircraft pitches over and starts to accelerate, while

maintaining a positive vertical climb rate. The target altitude in this case is 181.7

knots calibrated airspeed, while maintaining a climb rate of 1885.7 ft/min. At the

end of this step, the flaps are retracted from ‘T 05’ to ‘T 01’ setting.

4. Next, the aircraft continues to accelerate, this time with a target airspeed of 204.8

knots calibrate airspeed, while maintaining a climb rate of 2112.0 ft/min. At the end

of this step, the flaps are retracted from ‘T 01’ to ‘T 00’ setting. The ‘T 00’ setting

in this case implies a clean configuration.

5. Having completed the flap retraction, the aircraft maintains it’s calibrated airspeed

and climbs to an altitude of 3000 ft AFE. At this altitude, the aircraft performs a

thrust cutback by changing the thrust setting from ‘Max Takeoff’ to ‘Max Climb’.

6. Having performed the thrust cutback, the aircraft accelerates to its final climbout

speed of 250 knots calibrated airspeed, while maintaining a climb rate of 1891.3

ft/min.

7. The final three steps are constant speed climbs up to 10,000 ft AFE with intermediate

steps at 5500 ft AFE and 7500 ft AFE. These seemingly redundant intermediate steps

are added for numerical conditioning of the tool’s performance computations.
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Table 3.1: Procedural definition of a departure operation for the Boeing 737-800 [107]

Step

Number

Step

Type
Flap ID Thrust Level

Altitude

AFE

(ft)

Calibrated

Airspeed

(kt)

Climb

Rate

(ft/min)

1 Takeoff T 05 Max Takeoff

2 Climb T 05 Max Takeoff 1000

3 Accelerate T 05 Max Takeoff 181.7 1885.7

4 Accelerate T 01 Max Takeoff 204.8 2112

5 Climb T 00 Max Takeoff 2040

6 Climb T 00 Max Climb 3000

7 Accelerate T 00 Max Climb 250 1891.3

8 Climb T 00 Max Climb 5500

9 Climb T 00 Max Climb 7500

10 Climb T 00 Max Climb 10000

These unsuitable and descriptive representations lead to Research Question 1.1.

Research Question 1.1

How can aircraft trajectories and performance characteristics be represented

parametrically?

A procedural profile definition can be adapted to different operations by changing a

few parameters – such as the rate of climb, or the altitude of thrust cutback. This was the

basis of the creation of the NADP Library [143] which provided 20 profile definitions for

departure operation implementation in noise modeling tools. However, these definitions are

still descriptive, and contain a categorical variable in their treatment of the thrust cutback.

This categorical variable takes on the value of “Before” if the thrust cutback is performed

before the initiation of acceleration for flap retraction, and “After” if performed after flap

retraction is complete.

Converting these descriptive definitions into a numeric parametric basis is relatively
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straightforward if the structure of the description is fixed. If the underlying structure of the

profile description – the number, order, and type of steps is held constant, then each profile

differs only in numeric parameters such as altitude, target airspeed, and proxy labels of

numeric parameters such as thrust setting.

With the conversion to a fixed structure and the replacement of proxy labels by their

underlying numeric values, procedural profile definitions can be represented purely using

numeric parameters. The bigger task at hand is to convert time-series operations to this

set of parameters. These descriptive definitions of operations serve as inputs to a tool’s

performance computation model, with the output being a time-series dataset consisting of

information about the aircraft’s trajectory and performance characteristics. For example,

the corresponding performance output for the profile described in Table 3.1 is depicted

in Figure 3.2. The step numbers corresponding to each section of the trajectory are also

labeled on the plot.

0 2 4 6 8 10

Cumulative ground track distance, nmi

0

1000

2000

3000

4000

5000

6000

7000

A
lt
it
u

d
e

 A
F

E
, 

ft

1
2

3, 4
5

6

7

8, 9, 10

Figure 3.2: Visualization of resultant trajectory for the 737-800 aircraft for provided profile
definition in Table 3.1

The fundamental modeling capability required here is an inverse model of an aircraft

performance computation model, which can operate in the reverse direction, by taking in

time-series data and giving a parametric profile definition as output. This desired capability
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is summarized in Figure 3.3 and leads to Hypothesis 1.1.

Event-based 

representation

Time-series

representation

Other 

required 

data

Aircraft Performance 

Model

Desired Process

"Inverse Map Model"

Figure 3.3: Desired inverse map model of an aircraft performance model

Hypothesis 1.1

If an inverse mapping of aircraft trajectory and performance calculations can be

identified, then aircraft trajectories can be represented parametrically.

Formulation of the inverse map

First, it is helpful to note the following definitions –

• The numerical parameters that define an operation are represented by

{pi | i = 1, 2, . . . , n}.

• Each operation xi is therefore defined by the collection of parameter values as xi =

{p1, p2, . . . , pn}.

• The space of all possible sets of parameter values is X.
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• The corresponding trajectories and performance characteristics of an operation

denoted by xi is yi.

• The space of all corresponding trajectories and performance characteristics is Y.

• The Aircraft Performance Model is represented as fAPM : X → Y, fAPM(xi) = yi.

• The desired inverse map of the Aircraft Performance Model is represented as f−1
APM :

Y → X, f−1
APM(yi) = xi.

To develop the formulation, the first step is to develop a set of known mappings X ⊂

X, Y ⊂ Y. Then, the question to be answered is, given a new trajectory yj ∈ Y, /∈ Y ,

what is the corresponding parameter set xj? As such, fAPM has a sequence of steps which

uses standard equations and coefficients to convert the parameter set into the corresponding

aircraft trajectory and performance. Therefore, f−1
APM cannot be expected to have a closed

form expression, and must instead be developed mathematically with the help of data

analysis.

Given the nature of the problem, it is reasonable to assume that if two trajectories are

very similar to each other, then their input parameters must also be similarly valued. That

is,

yj ≈ yi =⇒ xj ≈ xi (3.1)

Thus, if an approximately equal trajectory can be identified from the set Y , then an

approximate inverse can also be identified from the set X . This brings the notion of

trajectory similarity into question. To objectively compute the similarity between aircraft

trajectories, a similarity function is proposed, which maps two input trajectories onto scalar

similarity metrics. The similarity should be judged based on the relevant variables of the

trajectory, such as the variation of aircraft altitude with ground track distance, the variation
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of airspeed with altitude, and the variation of thrust with altitude. These three aspects are

selected because of their strong influence on aviation noise, although it is rare to have thrust

data available when using real-world data. Thus, when using k similarity metrics,

fsimilar : Y× Y −→ Rk

To evaluate the similarity, each trajectory has to be interpolated to a new sampling

basis. This basis is envisioned to be a linear space of cumulative ground track distance with

equally spaced sampling points. The trajectory itself is terminated at 10,000 ft AFE. Once

all trajectories have been re-sampled onto a common sampling basis, then the differences

in altitude and airspeed are evaluated at each sampling point. These differences are then

summarized using an appropriate summary statistic, such as the Root Mean Square. With

this similarity metric computed, two trajectories can be judged on their “closeness” to each

other. A low value of similarity metric indicates that profiles are similar.

With the construction of the similarity function, the inverse mapping process is now

complete. The process for the creation of the inverse map is summarized here –

1. Create a library of operational profiles based on input parameters and compute their

output trajectories and performance data.

2. Given a new trajectory, compute it’s similarity to each of the profiles in the library.

3. Select the profile which is the most similar.

4. Assign the parameter values of the most similar profile.

In order to test Hypothesis 1.1, additional operations will be modeled using known

parameter values and the results obtained from the inverse map will be compared. If the

inverse mapped parameter values are sufficiently close to the known input parameter values,

and the differences in corresponding noise results are acceptably small, then Hypothesis 1.1

is accepted.
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3.2.2 Research Question 1.2 – Clustering of real-world trajectories

With the creation of the inverse map in RQ1.1, the first requirement ‘representation’ of

the high-level RQ1 is satisfied. The next requirement is to be able to apply the developed

method to real-world trajectories. The key problem in expanding to real-world trajectories

is that of scalability. The calculation of the inverse map involves many steps, and is not

necessarily computationally efficient. Applying the method developed in Hypothesis 1.1 to

every real world operation may not necessarily be feasible, or even useful.

Additionally, even if there was a negligible cost associated with calculating the inverse,

modeling each unique flight in a noise modeling tool would be impractical. Each flight

would require the modeling of its unique parameter set, which would then go through the

entire computationally expensive process of performance computation and noise metric

calculation. As the number of flights to be modeled increase, the modeling effort increases

linearly, and thus, for large sets of flights, this would inevitably be infeasible. As an

example, even with the reduction is commercial aviation activity due to the Covid-19

pandemic, the top 10 busiest airports in the world still handled more than 1100 aircraft

movements on average per day in 2020 [179].

This need for scalability leads to Research Question 1.2.

Research Question 1.2

How can real-world aircraft trajectories be efficiently mapped to a parametric

definition?

To scale the process, a pre-processing step is proposed, where different real-world

trajectories are first grouped together, and then a representative flight from within that group

is used in the inverse mapping process. The obtained set of parameters is then considered

to be representative of the entire group.

The grouping of objects based on their similarity is also called clustering. Clustering
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is an unsupervised machine learning technique which groups similar objects based on their

features. Thus, this technique can be adapted here for use with real-world trajectories. The

similarities between different elements of the dataset are identified and used to cluster the

dataset so that objects within a cluster are similar to each other and dissimilar to objects

within another cluster.

Being an unsupervised learning technique, clustering does not require any prior

knowledge about the similarity patterns within the dataset. By applying clustering

algorithms to flight trajectory data, the dataset can be reduced to a few representative

groups. Differences in flight trajectories that arise from various factors such as weather,

load factor, pilot intent etc. form the basis of the separation into the groups.

Various algorithms exist for clustering, each with their own advantages and drawbacks.

The application of this technique to aircraft data in the context of aviation safety has been

documented in the literature. Using Flight Data Recorder datasets, researchers in [180]

used clustering techniques to detect abnormal operations. Such research has also been

conducted for General Aviation operations using energy metrics [181]. Other studies have

focused on en-route trajectories [182], approach phase of flight [183], or in the selection of

parameters for flight risk identification [184].

However, the use of clustering techniques has not been observed in literature for the

purpose of aviation environmental impact assessment. It is proposed that the adaptation

of the technique to this context will enable the efficient mapping of real-world trajectories

onto a parametric definition. This leads to Hypothesis 1.2.

Hypothesis 1.2

If real-world aircraft trajectories are clustered into groups, then multiple trajectories

within a group can linked to a single parametric definition using the inverse map of

the cluster representative.
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Formulation of the clustering process

The first step in performing clustering is to generate a quantitative method of judging

the closeness or similarity of two objects. This requirement has strong parallels with

the development of the similarity function for testing Hypothesis 1.1. In fact, the same

similarity function which was developed there can be directly used here to assess the

similarity between two real-world trajectories.

Thus the process for clustering real-world trajectory data is outlined below –

1. Obtain and pre-process set of real-world flight data.

2. Apply the similarity function for each pair of flights, thus obtaining the similarity of

each flight to every other flight.

3. A clustering algorithm will be used to group flights based on their similarities.

Different clustering algorithms will be researched and the appropriate algorithms

will be deployed.

4. Pick a representative flight from each group.

The proposed process will be tested with different clustering algorithms and will likely

require tuning of parameters associated with the algorithms. Hypothesis 1.2 is accepted

if a sufficiently low error is obtained when substituting a real-world flight with its cluster

representative.

3.2.3 Research Question 1.3 – Ranking of influential parameters

After the first two requirements of RQ1 are addressed, the final consideration of ‘explo-

ration’ remains. The focus the shifts on parametric optimization, in which the objective

is to design a theoretical optimal operational profile. This is in contrast to parametric

quantification, where real operations had to be quantified accurately. Previously, the focus

was on creating accurate parametric definitions of aircraft operations. Now, the parameters

75



are known, and therefore can be varied in appropriate ranges to generate theoretical

candidate profiles for evaluation.

This leads to Research Question 1.3.

Research Question 1.3

How can the design space for aircraft trajectories be explored efficiently?

Given a set of parameters which influence the output to be optimized, it is very rarely the

case that each parameter is equally influential on the output. In fact, a few key parameters

usually drive the change in the output, an observation that is referred to as the Pareto

Principle. Given this observation, it makes sense to focus on the important parameters

and allocate more resources in order to evaluate more values of such parameters. This

enables a richer and denser exploration of the design space where it matters the most.

The broader field of research in this context is called Global Sensitivity Analysis [185,

186, 187]. Some of the objectives of such analysis, which vary with application, are

– assessment of similarity between the model and the underlying system, identification

and screening of factor importance and function, location and characterization of regions

of sensitivity, determination of factor interdependence, factor and model reduction, and

quantitative uncertainty apportionment [188]. In this context, the objective is to is to idenify

and screen the factors/parameters of importance.

Local sensitive analysis is focused on points within a much larger space, and makes

use of partial derivatives to determine the sensitivities. These partial derivatives may be

obtained either from analytically or numerically, depending on the type of model. On the

other hand, GSA methods attempt to provide more general results by considering the entire

domain of the model and characterizing the response sensitivity over it.
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Hypothesis 1.3

If a screening test is performed and the primary drivers can be identified, the design

space for aircraft trajectories can be explored efficiently.

Formulation of the screening test

The objective of RQ1.3 is to enable the efficient exploration of the design space of aircraft

trajectories. The experiment performed here will involve modeling several combinations

of parameters and assessing the importance of each parameter’s influence on aviation noise

metrics.

The following steps are proposed to text Hypothesis 1.3.

1. The identified list of parameters from RQ1.1 is used.

2. An appropriate range of variation for each parameter is to be determined using a

literature review and domain knowledge.

3. These parameters are then sampled to create a design space of parameters, using a

suitable Design Of Experiments.

4. The corresponding noise metrics of the obtained designs are evaluated. Any post

processing if necessary is performed.

5. Statistical regression methods are used to perform the screening tests and identify

parameter importance.

This information about the importance ranking of parameters is crucial to efficiently

explore the trajectory design space. The higher ranked parameters are those which

have a large influence on the noise metrics, and therefore must be sampled more finely.

Additionally, when performing optimization, changing these higher ranked parameters will

yield the most change in the objective function.
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3.2.4 Summary of Research Area 1

Observations 7, 8, and 9 from literature review led to the identification of the first gap,

which states that there are no available parameteric definitions of aircraft trajectories which

can be used for developing rapid noise models. This motivated the first research area

and the high-level Research Question 1 which aimed to develop a representation of the

input space of aircraft trajectories to enable parametric quantification and optimization.

This led to three requirements of representation, scalability, and exploration which were

formulated with Research Questions 1.1, 1.2, and 1.3 respectively. This chain of reasoning

is summarized in

With RQ1.1, it is shown that any trajectory can be transformed into a parametric

definition. Since the parameter set is based on a procedural profile definition, it is ready for

use in noise modeling tools such as AEDT. With RQ1.1, any source of aircraft trajectory

data can be inverse-mapped onto a parametric definition and readily modeled to obtain

noise metrics. With RQ1.2, the applicability of this inverse-mapping is expanded to be

scalable to real-world flight data with use of a clustering technique which downsizes the

number of real-world operations to be modeled. Finally, RQ1.3 helps inform efficient

future optimization efforts based on the prioritization of the input parameters of the noise

model.

3.3 Research Area 2 – Rapid modeling of aviation noise

The second gap identified in the literature was about the inability of current state-of-the-art

tools and scalar valued surrogate models to adequately address the inherent complexities

of the noise problem. This inability leads to computationally expensive physics-based and

semi-empirical tools which are incompatible with rapid noise modeling applications.
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Research Question 2

How can the process of computing aviation noise metrics be made more

computationally efficient?

The primary complexity that most studies in literature are unable to address is the high

dimensional output in the form of aviation noise metric grids that are generated. Noise

results are typically quantified over a grid of points, so that contour shapes may be created

for visualization. However, with the necessary resolution and size of the grid, the noise

results become very high dimensional, often in the order of tens of thousands of points.

Scalar values surrogate models typically struggle with high dimensional data – either

one surrogate model needs to be trained for each grid point, or a single model has to be

trained which can differentiate between grid points based on their location. This leads to

either inaccurate models which are fast, or accurate models which are slow. Models which

are both fast and accurate are needed and preliminary research on Reduced Order Modeling

of AEDT has shown promise [126].

So, the first problem to be tackled is that of dimensionality reduction. A process needs

to be developed which can transform high dimensional noise grids into something which

is easier to model. However, the process must also be reversible, so that actual noise grids

can be recovered from the model. These two considerations led to the creation of the two

specific research questions within this research area.

3.3.1 Research Question 2.1 – Model Order Reduction of noise results

The first key part is the reduction of dimensionality of the noise results from noise modeling

tools. As noted previously, the high dimensionality of the noise results leads to inaccurate

or impractical surrogate models. Thus, a pre-processing step is required to transform the

high dimensional data before any accurate and rapid surrogate models can trained.
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Research Question 2.1

How can the high dimension of the solution space be addressed?

In literature, the methods used for this purpose are collectively called Model Order

Reduction techniques. By reducing the dimension of the data, an approximation of

the original data is created, which is called a reduced order model. An approximation

by definition involves errors, and the various techniques for Model Order Reduction in

literature differ in their approaches towards minimizing this error.

Model order reduction methods have successfully been applied in numerous engineer-

ing disciplines and have been used to solve large-scale problems in areas such as control

engineering [189, 190], signal processing [191, 192], image compression [193, 194],

fluid mechanics [195, 196], power systems [197, 198], and earthquake engineering [199].

Specific to the field of aerospace engineering, applications have been found in design

space exploration [200, 201, 202, 203], evaluation of aerodynamic loads [204, 205], solid

mechanics and structural assessment [206, 207, 208, 209], aeroelasticity [210, 211], and

design optimization [212, 213, 214, 215, 216].

With the numerous existing applications of Model Order Reduction in literature, it is a

good candidate for application in this context of aviation noise metric data. This leads to

Hypothesis 2.1.

Hypothesis 2.1

If Model Order Reduction techniques are used on the noise grid data, then the

solution space can be projected onto a lower dimension space.

Formulation of the Model Order Reduction

There are three requirements that the MOR technique selected must satisfy –

1. Minimal error when projecting from the high dimensional space to the low dimen-
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sional space.

2. Preservation of the underlying trends and properties of the data. This is needed so

that the resultant reduced order model can be used effectively for surrogate modeling.

3. Ability to return to the high dimensional space, so that full noise grids can be

recovered and used for analysis.

There are several different ways in which Model Order Reduction techniques can be

classified –

• Parametric vs. Non-Parametric: Non-parametric reduced order models are typically

used for applications when the simulation itself is computationally infeasible, such

as for real-time control applications [217, 218]. Parametric reduced order models

play the role of surrogate models for the prediction of fields (instead of scalars) as

functions of input parameters [219, 220].

• Intrusive vs. Non-Intrusive: Intrusive reduced order models require access to the

original full order model equations or matrix coefficients. Non-intrusive models work

under constraint of having only output data available [221, 222].

• Projection based vs. Interpolation based: Projection-based models are a class of

intrusive methods which work on governing equations directly. Interpolation based

models are non-intrusive models which provide solutions at untested parameter

combinations by directly interpolating in the reduced dimensional space.

A variety of methods exist for the creation of the reduced order space such as isomap,

Fourier Model Reduction, Reduced-Basis method etc. One of the most commonly

used method is the Proper Orthogonal Decomposition, also called Principal Component

Analysis. The idea behind POD is that every point in the high dimensional space can

be recreated using a linear combination of a basis vectors. The basis vectors are chosen

such that almost all information can be captured with a very small number of basis vectors.
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Thus, once the basis vectors have been computed, representing each high dimensional point

becomes as easy as storing the coordinates along each basis vector.

For this experiment, the Proper Orthogonal Decomposition method is used to obtain

the reduced order space due to two key reasons – first, the method has been proven to work

with extensive engineering applications and is reliable for most field predictions Secondly,

it is a method which is relatively easy to understand and implement. Given that there is

scarce proven application of MOR techniques in this context, it makes sense to start with

the method which is the most well understood.

The aim here is to demonstrate that the POD technique can be successfully adapted for

the use of aviation noise modeling. The following steps are planned –

1. First, a large set of noise results will be obtained, collectively referred to as the

solution space. A set of test cases similar to the one designed for testing Hypothesis

1.3 can be used. Each noise result here refers to a grid of receptor points at which

a noise metric has been computed by AEDT. In the POD terminology, a single full-

order solution is referred to as a snapshot.

2. The Proper Orthogonal Decomposition method will be used to map the full-order

solutions onto a reduced space. The error for this step is defined as the projection

error and is computed as aggregated difference in noise metric values across all

receptor points between the reduced and original solution.

If the results of this experiment show that it is possible to reduce the dimension of the

solution space and subsequently recreate full noise grids with acceptable error margins,

then Hypothesis 2.1 will be accepted.

3.3.2 Research Question 2.2 – Field surrogate modeling

With the high dimensional solution space addressed using MOR techniques, the final piece

of the puzzle is adapting the reduced solution space for surrogate modeling. The high
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dimensional full order solution space was linked to the input space of the noise model by

the noise modeling tool. Additionally, the reduced solution space is linked to the original

solution space through the Model Order Reduction algorithm.

Research Question 2.2

How can the reduced solution space be mapped to the input space?

To map the reduced solution space to the input space, the coordinates of the reduced

solution space need to be developed into functions of the input parameters. This type of

surrogate model is referred to as field surrogate modeling, as it is able to work with field

data such as high dimensional noise grids.

Hypothesis 2.2

If an interpolation/regression model is developed linking the solution in the latent

space to the parameters, then the reduced solution space can be mapped to the input

space.

Formulation of the Field Surrogate Model

This final experiment is based on the creation of regression or interpolation models of the

coordinates of the latent space. If such a model is created, then the coordinates in the

reduced solution space can be estimated given an input parameter set. This reduced order

solution can then be transformed back into the high dimensional solution using the inverse

of the Model Order Reduction process.

The steps for this experiment are –

1. A set of solutions in the reduced solution space are required. The projected high

dimensional solutions from Experiment 2.1 is used here. The coordinates of these

solutions in the reduced space created by the Proper Orthogonal Decomposition are
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collected.

2. The input parameter values which led to the original high dimensional solution are

collected. These serve as the independent variables which influence the dependent

variables which are the coordinates in the reduced space.

3. Regression models are then created to build predictions of the reduced space

coordinates based on input parameters. Different models will be tested including

Response Surface Equations, Kriging (also known as Gaussian process regression),

and various types of Artificial Neural Networks. The performance of these different

models will be evaluated using metrics such as the error distribution, model fit error,

and model prediction error.

If accurate surrogate models can be developed in this step, then the reduced space will

successfully be mapped to the input parameters, and Hypothesis 2.2 will be accepted.

3.3.3 Summary of Research Area 2

Observations 1, 2, 3, 4, 5, and 6 from literature review led to the identification of the second

gap, which states that current state-of-the-art tools and methods are unable to address the

high-dimensional complexities of the noise quantification problem. This motivated the

second research area and the high-level Research Question 2 which aimed to develop a

computationally efficient process for the prediction of aviation noise metrics. This lead

to two focused research tasks – the reduction of the dimensionality of the original high-

dimensional data, and the creation of surrogate models in the lower-dimensional space.

With RQ2.1 it is shown how the high-dimensional can be handled and projected onto

a lower-dimensional space with the use of a Model Order Reduction technique known as

Proper Orthogonal Decomposition. With RQ2.2 it is shown how the coordinates of the

high-dimensional data along the basis vectors can be predicted with surrogate models.
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3.4 Overall Methodology

With the completion of the experiments, the overall methodology can now be constructed.

The overall methodology represents a compilation of the methods, processes, and results

obtained from executing the research plan. First, an Overarching Hypothesis is developed

to answer the Motivating Research Question, and to satisfy the Research Objective.

Overarching Hypothesis

If a methodology is developed that

1. can efficiently represent real-world time-series flight trajectory data with a

parametric definition obtained using an inverse map;

2. which is then used as an input to a field surrogate model developed using

model order reduction;

then rapid quantification of noise metrics is enabled in a variety of scenarios, which

facilitates parametric trade-off analyses and optimization efforts.

The Overarching Hypothesis is accepted if the requisite methodology can be developed.

The developed methodology is developed in steps, with each step related to the research

questions, hypotheses, and experiments. The verification of each hypothesis will lead

contribute to the demonstration of the overall methodology and the acceptance of the

Overarching Hypothesis.

Using the methods developed in the research plan, the overall methodology is formed

as shown in Figure 3.4. The methodology is developed for two fundamental use-cases. The

first use-case is for the quantification of real-world flights through the use of time-series

trajectory data, and the second use-case is for many-query contexts such as optimization of

noise metric footprints, parametric trade-off analyses etc.

The first research area is comprised of focused research questions which process
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Figure 3.4: Overall Methodology
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these two use-cases for parametric definitions of the aircraft trajectories and performance

characteristics. RQ1.1 and RQ1.2 process real-world time-series data into parametric

mappings. RQ1.3 provides guidance on how important each parameter is and how they

should be varied. The second research area is comprised of focused research questions

which take in parametric definitions (regardless of the use-case in which they originated)

and rapidly model their noise impact. RQ2.1 and RQ2.2 together comprise of the field

surrogate model which enables this rapid quantification of noise metrics.

The outcomes of the research plan are shown in chapter 4 and chapter 5. Details of the

overall methodology are presented in chapter 6. Additionally, a practical case-study is also

demonstrated using the developed methodology.

3.5 Test Problem Definition

The methods and processes proposed and developed in this Research Plan are fairly

independent of specific use-cases, and can be easily adapted for a wide variety of scenarios.

The overall methodology which is developed can be used both for rapid noise quantification

of real-world flights, or for parametric trade-off analyses and optimization studies.

For the purposes of demonstration in each experiment, it is helpful to have practical

examples and datasets. Therefore, suitable test cases must be identified which are

appropriate to each experiment and facilitate the testing of the stated hypotheses.

3.5.1 Choice of Aircraft

The Boeing 737-800 is selected as the aircraft to be modeled for noise metrics, and for

which real-world datasets are procured. The Boeing 737-800 is one of the most commonly

used aircraft both within the US and globally. Data from the T-100 Segment database of

the Bureau of Transportation Statistics for July 2018 is shown in Table 3.2 and shows that

the Boeing 737-800 was used to perform more than 10% of all operations in the US [223,

224].
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Table 3.2: Analysis of operational frequency of aircraft types in the US for July 2018 [223,
224]

Aircraft Name
Aircraft

Category

Departures Scheduled Departures Performed

Number Percentage Number Percentage

Boeing 737

-700/700LR/Max 7

Narrow-body

Jet
103323 10.53% 103954 10.59%

Boeing 737-800
Narrow-body

Jet
94493 9.63% 101160 10.31%

Embraer ERJ-175 Regional Jet 66488 6.78% 68849 7.02%

Airbus Industrie

A320-100/200

Narrow-body

Jet
62802 6.40% 66996 6.83%

Canadair RJ

-200ER /RJ-440
Regional Jet 55375 5.64% 55571 5.66%

There are two key advantages of choosing this frequently operated aircraft. Firstly, there

is a larger quantity of real-world flight data available which can be analyzed. Secondly, the

results obtained have more impact as they are relevant for a larger share of the total flight

operations.

3.5.2 Choice of Operation

In this dissertation, the focus is on departure operations and not on arrival operations. One

of the primary reasons for this is that arrival operations are usually much more constrained

in their trajectory, especially at low altitudes, where all aircraft converge onto a typical 3◦

glideslope. Thus, there is little scope for parametric variation of the aircraft trajectory

and its analysis. Parametric variations on the level-off height and distance have been

performed in literature [147] and show that although variations in aviation noise results

are observed, the changes are typically limited to very low SEL dB values, which are not

always significant. Additionally, the contribution of airframe noise is especially important

for arrivals, due to the range of configurations used and low thrust values [225]. Such

effects cannot always be accurately modeled in current noise modeling tools.
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Thus to observe the variability in aircraft trajectories and to develop useful parametric

definitions, it is helpful to focus solely on departure operations. With suitable modifica-

tions, the methodology developed can certainly be adapted for arrival operations as well.

3.5.3 Choice of Noise metric

There are several possible noise metrics which can be modeled. Here, the Sound Exposure

Level (SEL) is chosen for modeling. The SEL is an energy averaged metric which

represents the A-weighted sound level over a duration of time by representing the total

noise energy with a 1 second reference duration.

The most commonly used metric for community noise exposure is the Day-Night

averaged Level (DNL). However, DNL is appropriate for use when a large number of

operations are being modeled. For single events such as individual operations, which

are being modeled in this dissertation, the SEL metric is appropriate. The DNL can be

computed by aggregating SEL metrics if the time of the operation is known.

3.6 Chapter Summary

Starting with the original Motivating Research Question and the Research Objective, this

chapter decomposed the problem into two high-level areas – parametric representations

of real-world flight data, and rapid noise modeling. Within these research areas, three

and two low level Research Questions were posed respectively. To answer these Research

Questions, formal Hypotheses were stated. Finally, a formulation for each Hypothesis was

created in order to test them.

The results from the formulated experiments in shown in chapter 4 and chapter 5. With

the results from these experiments, the stated Hypothesis are accepted and satisfactorily

answer their associated Research Questions. With the help of the developed techniques,

both identified gaps are closed and the overall methodology is constructed. This overall

methodology is the answer to the original Motivating Research Question and fulfils the
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Research Objective.
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CHAPTER 4

PARAMETRIC REPRESENTATION OF AIRCRAFT TRAJECTORIES

This chapter presents the research and findings from Research Area 1, i.e. the parametric

representation of aircraft trajectories. As a quick recap, the high-level Research Question

for this is mentioned below.

Research Question 1

How can the input space of aircraft trajectories be represented to enable parametric

quantification and optimization?

This high-level Research Question led to three key requirements – representation,

scalability, and exploration; which were addressed with three specific Research Questions

and their associated Hypotheses. Each Hypothesis was then supplemented with a

formulation to test the Hypothesis. This chapter will present the results of the Experiments

which support each Hypothesis.

This chapter begins with section 4.1 which describes the real world dataset being used

in Experiments 1.1 and 1.2. Following this, section 4.2, section 4.3, and section 4.4 provide

the details of the experimental setup, obtained results, and analysis of the results. Finally

section 4.5 provides a summary of the chapter.

4.1 Description of real-world dataset

The real-world aircraft trajectory and performance data used in this chapter is obtained

from ‘The OpenSky Network’ which is a non-profit association based in Switzerland [226,

227]. Their goal is to provide open access to real-world air traffic data for research into the

reliability, security, and efficiency of the air space usage. The intended target audience for
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this dataset are university-affiliated researchers, governmental organizations, or aviation

authorities. Data is available for download with SQL-like query interface and a public API.

Python and MATLAB interfacing scripts are also available for data access and download.

The root source for all data hosted by OpenSky is the Automatic Dependent Surveillance-

Broadcast (ADS-B). The ADS-B allows aircraft to broadcast their position and velocity

information periodically. OpenSky operates a wide network of ADS-B receivers around

the world and harvests the data which is then uploaded to their servers.

While there are several datasets which are available for download, the most com-

prehensive data tables combine most parameters into a single table and are called ‘state

vectors’. There is one state vector row per second in the table, representing a 1 Hz

sampling frequency. A description of relevant parameters is mentioned in Table 4.1. A

comprehensive list containing descriptions of all parameters is available on the OpenSky

website [226].

4.1.1 Data pre-processing

It is important to note that while the OpenSky dataset is very useful, it is not a perfect

dataset (as is the case with many real-world datasets which rely on sensor information).

Therefore, before proceeding with any modeling, it is necessary to process the data to make

it suitable for specific applications and also to clean the data to remove any ‘erroneous’ data

points.

For the purposes of this study, a one-year timeframe was selected. Data pertaining to

all airlines operating the Boeing 737-800 aircraft type at the San Francisco International

Airport (KSFO) for the year 2019 (pre-pandemic) was selected for analysis. This dataset

contained a total of 5070 flights operated by 10 airlines.

Due to the nature of this type of dataset, crucial information about the aircraft weight

and thrust was missing. To mitigate this, the flight’s great-circle-distance was computed

using the origin-destination pair information. Given this information, the aircraft were
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Table 4.1: List of important parameters included in the OpenSky dataset [226]

Group Parameter Unit Description

Time Time seconds Unix time, also known as POSIX
or epoch time representing number
of seconds elapsed since 00:00:00
UTC on 1 January 1970

IDs
ICAO
transponder
ID

6 digit
hexadecimal
string

24-bit ICAO transponder ID which
can be used to track specific
airframes over different flights

Callsign Alphanumeric
string

Usually the airline and flight number

Squawk code 4 digit octal
number

Identification code used by ATC

Position

Latitude degree Last known latitude as decimal
WGS84 coordinate

Longitude degree Last known longitude as decimal
WGS84 coordinate

Barometer
altitude

meters Altitude measured by barometer,
depends on weather

Geometric
altitude

meters Altitude measured by GNSS/GPS
sensor

Trajectory
Groundspeed meters per

second
Speed over ground

Track angle degree Clockwise from geographic North

Verticalspeed meters per
second

Climb/Descent rate of the aircraft

classified into different ‘stage lengths’, which is a commonly used proxy for aircraft weight

in environmental analysis. This classification for trips up to 4500 nmi is shown in Table 4.2.

The data was then further partitioned into sets representing a particular airline and stage

combination as shown in Table 4.3. Not all combinations had flights associated with them.

Finally, the dataset was analyzed to remove anomalous flights. First, flights which did

not cross 10,000 ft AFE within the first 25 nmi of ground track were removed. Next, flights

which took more than 2 nmi of ground track distance for take-off ground roll were removed,

which is the maximum runway length at SFO airport. With this, a total of 117 flights were
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Table 4.2: Stage Length definition as a function of trip length

Stage Length Trip Length, nmi Representative Range, nmi

1 0–500 250

2 500–1000 850

3 1000–1500 1350

4 1500–2500 2200

5 2500–3500 3200

6 3500–4500 4200

Table 4.3: Grouping of real-world dataset by airline and stage length

SL1 SL2 SL3 SL4 Total

Airline 1 999 442 302 1361 3104

Airline 2 83 0 117 345 545

Airline 3 78 126 54 74 332

Airline 4 39 51 0 193 283

Airline 5 163 51 0 0 214

Others 592

identified as anomalous and were removed. Finally, all flights were re-sampled so that each

row was exactly 0.167 nmi apart in cumulative ground track distance.

At the end of the data partitioning and cleaning, the most populous group of Airline

1 and SL4 containing 1361 flights was retained for further analysis. Each flight was then

given a serialized label starting with “Flight 1” and ending with “Flight 1361”. A small

subset of randomly selected 30 flights from this dataset is visualized in Figure 4.1.

4.2 Experiment 1.1

In this section, the experimental setup and results for RQ1.1 are explained. For reference,

RQ1.1 and H1.1 are repeated below –
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Figure 4.1: Visualization of real-world flight data for a small subset of flights

Research Question 1.1

How can aircraft trajectories and performance characteristics be represented

parametrically?

Hypothesis 1.1

If an inverse mapping of aircraft trajectory and performance calculations can be

identified, then aircraft trajectories can be represented parametrically.

The purpose of this experiment is to demonstrate that real-world flight data can be

mapped onto a parametric definition. As noted previously, the procedural profile definitions

as shown in Table 3.1 present a way to generate parametric profiles. Four parameters were

identified in an attempt to reproduce the variation in real-world flights as well as possible.

These parameters are explained below –

1. Takeoff weight – The takeoff weight of the aircraft of the aircraft represent a key

variation observed in real-world operations, resulting from variations in both fuel

weight (depends on the trip distance) and the payload weight (depends on the load
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factor). Given that the chosen real-world dataset corresponds to stage length 4, the

chosen parameter values here are the weights which correspond to stage length 3, 4,

and 5 in AEDT.

2. Takeoff thrust reduction – Generally speaking, pilots do not always employ the

maximum take-off thrust available. The choice of take-off thrust is a result of a

multitude of factors such as runway length, weather conditions, weight of the aircraft

etc. If safe to do so, pilots may elect to ‘derate’ the takeoff thrust in order to reduce

engine maintenance [228]. Here, all four thrust derate options allowed in AEDT are

included.

3. Altitude for acceleration initiation – This is the altitude at which the aircraft begins

to pitch over and accelerate beyond its original lift-off speed. The minimum altitude

for this is 800 ft as required by the FAA [141], though airlines may choose to delay

it further. Here, five levels are used for this parameter ranging from 800 ft AFE to

1600 ft AFE in increments of 200 ft.

4. Energy share for acceleration – This parameter dictates how the aircraft allocates

excess energy between climbing and accelerating. Given the maximum available

acceleration Gm as a fraction of g (acceleration due to gravity), and Ap (the percent

of thrust applied to acceleration), the climb gradient G can be found as –

G = Gm

(
1− Ap

100

)
(4.1)

This parameter is varied between 20%, 40%, 60%, and 80%. The extremity values

are not used as 0% would indicate no acceleration, and 100% would indicate the

aircraft leveling off to accelerate, which does not occur in commercial aviation.

The range of variation and parameter values identified for modeling are summarized

in Table 4.4. There a total of 3 × 4 × 5 × 4 = 240 total possible combinations of these
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parameters, which were all created as tabular profile definitions. These were then imported

into AEDT and were modeled to obtain their performance outputs.

Table 4.4: Identified parameters and their ranges of variation

Parameter Description Possible values Units

α1

Takeoff weight

(through Stage Length)

151100 (SL3),

162150 (SL4),

169950 (SL5)

lbm

α2 Takeoff thrust reduction 1.00, 0.95, 0.90, 0.85 multiplier

α3 Altitude for acceleration
800, 1000, 1200,

1400, 1600
ft

α4 Energy share percentages 20, 40, 60, 80 %

4.2.1 Flights modeled in AEDT

Once the real-world flights from OpenSky had been identified, a complementary dataset

was required to build the inverse model. This dataset comes by modeling procedures

created by using different combinations of the identified parameters. A total of 240

procedural profiles were created and modeled in the Aviation Environmental Design Tool.

To be consistent with the real-world data, these operations were modeled at the SFO

airport in AEDT, with take-off on runway 01R over the bay, which is consistent with SFO

operations. The averaged airport weather definition in AEDT for this airport was used.

The complete set of trajectories is shown in Figure 4.2. It is observed that a rich variety

of trajectories were captured by the chosen parametric definition and the ranges on those

parameters.

Once the results from AEDT were obtained, they had to be re-sampled so that the

cumulative ground track distance points were consistent with the OpenSky real-world data.

The process of resampling consists of simple 1-D interpolation to the two nearest points

on either side of the sampled point. This method contructs piecewise linear functions for

the interpolation. Any required value pj at new sampling point xj can be found using the
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Figure 4.2: Visualization of all 240 trajectories obtained from AEDT

values pi, pi+1 at points xi, xi+1 if xi < xj < xi+1 using the following formula –

yj = yi

(
xi+1 − xj

xi+1 − xi

)
+ yi+1

(
xj − xi

xi+1 − xi

)
(4.2)

The process of resampling is visualized in Figure 4.3. For better clarity, only the first

3 nmi of ground track is shown. It is evident that the linear interpolation works well to

convert the data onto a consistent sampling basis, while ensuring that the ‘shape’ of the

original data is retained.

4.2.2 Development of the similarity function

With the sampling basis of the real-world flight data and AEDT output performance data

made consistent, the similarity function between two flights can be evaluated. Each real-

world flight is compared to each of the 240 flights modeled in AEDT. The comparison is

made by computing the ‘trajectory score’ of the two flights. The process of comparing the

trajectory scores between two real world flights is detailed below –

1. Obtain the vectors for cumulative ground track distance gRW , gAEDT for the real-

world flight and the AEDT modeled flight respectively. Also obtain their correspond-
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Figure 4.3: Visualization of the resampling process

ing altitude vectors hRW , hAEDT . Note that while the ground track distance vectors

have the same resolution, they are not necessarily of the same length.

2. Identify the smaller dataset. The trajectory score is computed between the two flights

up to the length of the smaller dataset L.

L = min{length (gRW ) , length (gAEDT )} (4.3)

3. The trajectory score t is then computed by taking the differences in altitude, and

aggregating the differences into a single number with the Root Mean Square formula.

t =

√√√√ 1

L

L∑
i=1

(hRW,i − hAEDT,i)
2 (4.4)

Figure 4.4 shows a zoomed-in plot for this process over the first 3 nmi. The trajectory

score is the Root Mean Square value of the lengths of all red line segments. This process

is then repeated for all 1361 real-world flights, with comparisons to all 240 operations and

is stored in a matrix T1361×240, with element ti,j representing the trajectory score between
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real-world flight i and AEDT modeled flight j.
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Figure 4.4: Sample calculation of the trajectory score between a real-world flight and
AEDT modeled flight

4.2.3 Generating the inverse map

With the trajectory score matrix T computed, the inverse map assignments can be made.

A row of matrix T represents the score of a real-world flight when compared against all

AEDT modeled flights. To find the AEDT modeled flight which best represents the real-

world flight, the trajectory score should be minimized for each row. In other words, AEDT

modeled flight j is the best representation of real-world flight i, if the following holds true

–

j = argmin {ti,j | i = 1, 2, . . . , 240} (4.5)

With the best representation found, the assignment of the inverse map is trivial. The

parameter values which resulted in the closest matching trajectory from AEDT are assigned

to the real-world operation. With this assignment, the construction of the inverse map is

complete.
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4.2.4 Results

With the inverse map complete, each real-world flight is assigned to a parametric definition.

However, there has not yet been any measure defined to check the ‘goodness’ of this

assignment. After all, the process by itself only guarantees that each flight will be assigned

to a parametric definition. It does not necessarily guarantee that the assignment will be

reasonable. To assess this reasonability, the following error metric is proposed –

einvmap =

√√√√ 1

L

L∑
i=1

(
hRW,i − hAEDT,i

hRW,i+hAEDT,i

2

)2

(4.6)

This error definition is helpful in a few key ways. It is non-dimensional, so the error

can be expressed in terms of percentages. Additionally, it is closely related to the trajectory

score definition. A low trajectory score implies a good match between the two flights,

and thus a lower error. Finally, due to the normalization by vector length, the error

is independent of the amount of data points in each flight comparison, which can vary

significantly.

One potential drawback of this error computation is for points when both flights are

on the ground, where the operation can become indeterminate due to a division by zero

attempt. Similarly, when the aircraft is close to the ground, the denominator is quite small

which can cause the error to be artificially large. Hence, the error formulation needs to be

updated to exclude such points. Let k be the first point where both flights have crossed 500

ft altitude. Then, the error computation can be modified as –

k = min i such that hRW,i, hAEDT,i > 500 (4.7)

einvmap =

√√√√ 1

L

L∑
i=k

(
hRW,i − hAEDT,i

hRW,i+hAEDT,i

2

)2

(4.8)

The error metric is computed for each real-world flight, and is shown in Figure 4.5a,
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(b) Error boxplot

Figure 4.5: Error involved in the inverse map

when sorted from the flight with the least error to the most error. The accompanying boxplot

in Figure 4.5b shows the distribution of this error metric. It is observed that for most flights,

the mapping resulted in an error of between 2% and 22%. While this may seem large,

it is important to note the context in which these errors appear. Real-world flights with

time series data have numerous deviations from the ideally modeled theoretical procedural

profiles in AEDT. Nevertheless, in most cases, the parametric definitions do a good enough

job of approximating the real-world flight, which can be seen in the visualizations in the

following subsections.

Flights with least mapping error

The best six mappings obtained with the least error are discussed in this section. Figure 4.6

shows the visualization of these six flights and their respective mapped AEDT modeled

flight. Their respective mappings to parametric definitions, trajectory scores, and errors are

tabulated in Table 4.5.

With visual observation, it is evident that the AEDT modeled flights have accurately
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Figure 4.6: Top six flights with the best mappings

represented the real-world trajectories. With the exception of Flight 1245, all flights were

also able to accurately recreate the lift-off point for each flight. For a majority of the

distance, the two trajectories are co-incident, which is consistent with the low trajectory

scores and error values associated with them. The parametric mappings shown in Table 4.5

also show good variation in takeoff weight, and takeoff thrust reduction, indicating that

many different operating conditions could be inverse mapped successfully. The constant

Energy Share percentage of 40% is reflective of that fact that most pilots tend to split excess

energy evenly between acceleration and climb.
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Table 4.5: Inverse mapping of best six flights to parameters

Real-world

data
Inverse map Mapping scores

Flight #

Takeoff

Weight,

lb m

Takeoff

thrust

reduction,

multiplier

Altitude for

acceleration,

ft

Energy

Share,

%

Trajectory

Score,

ft

Error,

%

1028 162150 0.90 1000 40 98.15 2.109%

251 151100 0.90 1200 40 106.36 2.278%

1284 162150 0.90 1600 40 145.53 3.082%

1245 151100 1.00 1600 40 99.47 3.293%

285 169950 1.00 1600 40 150.93 3.314%

571 169950 0.85 1600 40 103.64 3.318%

It is noted here that for these mappings which are quite accurate, the quantified

trajectory scores range from about 100 ft to 150 ft. This indicates that on average over

the complete departure up to 10,000 ft AFE, the two flights were about 100 ft to 150 ft

apart vertically. Correspondingly, the error metric ranges from about 2.1% to 3.3%.

Flights with median mapping error

The median six mappings obtained with error values around the median are discussed in this

section. Figure 4.7 shows the visualization of these six flights and their respective mapped

AEDT modeled flight. Their respective mappings to parametric definitions, trajectory

scores, and errors are tabulated in Table 4.6.

With this set of flights, larger differences in the AEDT modeled flights and the real-

world trajectory represented by them can be observed. With the exception of Flight 369,

all comparisons seem to show at least one cross-over point, where the trajectory which was

previously higher dips below the other trajectory. Additionally, with the exception of Flight

369, differences in the liftoff point can also be observed. In fact, the real-world data for

Flight 645 shows no take-off ground roll, which indicates an incomplete dataset for that
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Figure 4.7: Median six flights with their respective mappings

flight. Differences in the liftoff point have a significant influence on the trajectory scores

and error as they case the entire trajectory to be laterally shifted. The parametric mappings

shown similarly show good variation in the takeoff weight, takeoff thrust reduction, and

altitude for acceleration initiation.

For these set of flights representing the median error among the entire real-world

dataset, the trajectory scores range from about 220 ft to 320 ft. This indicates that on

average over the complete departure up to 10,000 ft AFE, the two trajectories were about

220 ft to 330 ft apart vertically. Correspondingly, the error metric is about 11%.
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Table 4.6: Inverse mapping of median six flights to parameters

Real-world

data
Inverse map Mapping scores

Flight #

Takeoff

Weight,

lb m

Takeoff

thrust

reduction,

multiplier

Altitude for

acceleration,

ft

Energy

Share,

%

Trajectory

Score,

ft

Error,

%

952 151100 0.90 800 20 302.62 11.004%

645 151100 1.00 1200 20 313.91 11.026%

61 151100 0.95 800 20 264.89 11.049%

369 162150 1.00 1600 40 258.78 11.050%

1030 162150 0.90 1600 40 223.48 11.056%

467 151100 0.85 1600 40 306.13 11.059%

Flights with significant error

The worst six mappings obtained with the highest error are discussed in this section.

Figure 4.8 shows the visualization of these six flights and their respective mapped AEDT

modeled flight. As the inverse function did not do a good job of mapping the real-world

trajectories to parametric definitions, the table outlining their parametric definition is not

included. The trajectory scores, and errors are tabulated in Table 4.7.

Table 4.7: Inverse mapping of worst six flights

Real-world data Mapping scores

Flight # Trajectory Score, ft Error, %

432 1042.53 29.370%

1250 1025.24 30.903%

73 1242.96 30.970%

949 1429.66 33.517%

430 1541.48 35.287%

1099 1837.52 38.510%

It is quite evident visually that no flight among the 240 modeled in AEDT using
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Figure 4.8: Bottom six flights with the worst mappings

parametric definitions could accurately represent any of these real-world flights. Most of

these flights do not follow a ‘nominal’ trajectory which would be expected from a departure

operation. For starters, three of the six flights (Flight 432, Flight 949, and Flight 430) did

not have any takeoff ground roll data. Additionally, all six flights show at least one phase

of flight where the altitude is held constant, with Flight 73 and Flight 949 showing two

such level-off segments. While common for arrival operations, such level-off segments are

highly unusual for departures. As these flights are outliers in the real-world dataset, there

is little hope of the inverse map providing an accurate parametric definition for them. In
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fact, the procedural profile definition used in AEDT does not allow for level-off steps to be

defined for departure operations.

Unsurprisingly, the trajectory scores for these flights are quite high, ranging from about

1000 ft to 1800 ft. Correspondingly, the errors are quite high as well, ranging from about

29% to 39%.

To gain further insight into the inability of the inverse map function to create accurate

parametric definitions for these flights, Flight 1099 is visually compared to all 240 AEDT

modeled flights in Figure 4.9. It can be seen from the plot that due to the almost 6 nmi

long level-off segment, the flight trajectory was shifted considerably out of the range which

could be modeled in AEDT. This shift explains the poor inverse map performance and the

large error for this flight and for the other outliers.
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Figure 4.9: Comparison of outlier flight to AEDT modeled flights

4.2.5 Summary and evaluation of Hypothesis

The first experiment was designed to create an inverse mapping of real-world trajectory

time-series data on to parametric definitions. The real-world data was obtained from

OpenSky and processed to include 1361 flights departing out of San Francisco with a trip

distance of 1500 to 2500 nmi (stage length 4). The complementary set to these flights was
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created in AEDT by making use of the procedural profile definition. Four parameters were

identified and varied between suitable values for a total 240 possible combinations. Each

flight was modeled in AEDT at the SFO airport and the resulting performance report was

exported.

The real-world flights were then compared to each AEDT modeled flight and a

trajectory score was computed. Each pair of real-world and AEDT flight was assigned

a trajectory score, with a lower score indicating more similarity between the flights. Each

real-world flight was then mapped onto that AEDT modeled flight which minimized the

trajectory score, and by extension to the underlying parametric definition.

To verify the ‘goodness’ of these mappings, an error metric was defined and computed.

Several flights and their assigned mapping were analyzed for different values of the error.

While most flights could be reasonably mapped onto a parametric definition, some flights

showed large errors. The cause of these large errors was identified and the flights were

found to have level-off segments, which made them outliers.

There are some potential avenues to further improve the mapping. The first area of

improvement should be the correct identification of the lift-off point along the cumulative

ground track distance. With the lift-off point correctly identified, the trajectories can be

aligned to start at the same origin. This improves the validity of the trajectory score being

computed. Additionally, a larger library of profiles can potentially lead to more accurate

mappings as there are more options available for comparison.

For the purposes of RQ1.1, however, these potential improvements are considered out

of scope and are recommended for future work. Revisiting Hypothesis 1.1, the primary

requirement was the identification of an inverse map of aircraft trajectory and performance

calculations. With the designed experiment, it was shown how such an inverse map can

be constructed and deployed on real-world data. Therefore, Experiment 1.1 is considered

successful and Hypothesis 1.1 is accepted.
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4.3 Experiment 1.2

In this section, the experimental setup and results for RQ1.2 are explained1. For reference,

RQ1.2 ans H1.2 are repeated below –

Research Question 1.2

How can real-world aircraft trajectories be efficiently mapped to a parametric

definition?

Hypothesis 1.2

If real-world aircraft trajectories are clustered into groups, then multiple trajectories

within a group can linked to a single parametric definition using the inverse map of

the cluster representative.

During the research formulation stage, it was previously noted that the technique

developed in RQ1.1 may not necessarily be feasible to directly use on large sets of data.

Indeed, while the method worked well on datasets up to about 1000 flights, scaling it up

further would be challenging. Additionally, the process of modeling all inverse mapped

flights uniquely for aviation noise metrics may not be useful, as the desire is to retain high-

level variability, and not the small perturbations between otherwise similar trajectories.

In Experiment 1.1, it was observed that the inverse-mapping is a many-to-one mapping,

1Parts of the research described in this section are documented in the following publications –

• A. Behere, L. Isakson, T. G. Puranik, Y. Li, M. Kirby, and D. Mavris, “Aircraft landing and
takeoff operations clustering for efficient environmental impact assessment,” in AIAA AVIATION 2020
FORUM, Jun. 2020. DOI: 10.2514/6.2020-2583. eprint: https://arc.aiaa.org/doi/pdf/10.2514/6.2020-
2583. [Online]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.2020-2583 [229]

• A. Behere, J. Bhanpato, T. G. Puranik, M. Kirby, and D. N. Mavris, “Data-driven approach to
environmental impact assessment of real-world operations,” in AIAA Scitech 2021 Forum, Jan. 2021.
DOI: 10.2514/6.2021-0008. eprint: https://arc.aiaa.org/doi/pdf/10.2514/6.2021-0008. [Online].
Available: https://arc.aiaa.org/doi/abs/10.2514/6.2021-0008 [230]
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with many real-world flights being mapped onto the same parametric definition. These

observations from Experiment 1.1 further reinforce the motivation behind RQ1.2.

The purpose of Experiment 1.2 is to demonstrate that instead of mapping each real-

world trajectory onto a parametric definition, it is computationally efficient to first group the

real-world flights and then map a single representative of each group onto its corresponding

parametric definition. Then, instead of modeling the noise metrics for a large number of

real-world flights, only a handful need to be modeled and the resultant noise metrics can be

scaled up accordingly.

4.3.1 Clustering algorithms & validation measures

Clustering is an unsupervised Machine Learning technique that can be utilized to identify

hidden trends and patterns within datasets. In order to cluster the dataset such that objects

within a cluster are similar to each other and dissimilar to objects in other datasets, the

similarities among objects must be identified. Being an unsupervised ML technique,

clustering does not require any prior knowledge of grouping inherent within the dataset.

Therefore, the application of clustering algorithms to flight trajectory data is relatively

straightforward regardless of whether underlying similarities are known a-priori.

The underlying differences in flight operations can be the result of many factors, not

all of which are recorded within the dataset. Some examples are the ambient weather, load

factor and weight of the aircraft, piloting actions, air traffic constraints, and so on. The idea

behind clustering is that with the correct choice of features and the correct similarity metric

based on those features, similar objects can be successfully grouped.

Various algorithms for clustering exist in literature, with different formulations and use-

cases. It is therefore important to evaluate and compare these algorithms before selecting

the appropriate one for this use-case. There were three clustering algorithms which were

considered –

1. K-Means Clustering [231, 232]: The K-Means algorithm is a method that aims to
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partition objects into a pre-determined number of clusters. It is an iterative algorithm

in which each object can be thought of a point in some “space” of data. Starting with a

random selection of points as clusters, more points are added based on their proximity

to the currently selected cluster centroids. This proximity (and cluster centroids) can

be evaluated using different distance functions, such as Euclidean distance. In each

iteration, the newly added points shift the centroid of each cluster. The iteration ends

when all points have been assigned to a cluster and the cluster definitions are stable.

The K-Means algorithm is easy to understand and to implement. However, there

are certain drawbacks to this algorithm. Firstly, the number of clusters K has to

be known or guessed before the algorithm can start clustering, which is not always

straightforward. Often, various different values of K are tried and the results are

evaluated using some evaluation metric. Additionally, the choice of initial random

assignment can influence the final outcome. Thus, the resultant cluster distributions

are not guaranteed to be optimum. The algorithm itself also requires a large number

of computations, so some heuristics are needed to supplement the method to make it

efficient.

2. Kernel K-means Clustering [233, 234]: This algorithm is similar to the original K-

means algorithm but makes use of a transformation to project data onto a higher

dimensional space. This is done with the help of a kernel function prior to deploying

the K-means algorithm. They key advantage of this method is that it addresses

one of the disadvantages of the K-means algorithm, which is the inability to work

correctly with irregularly shaped data which are not linearly separable. For non-

linearly separable data, it is beneficial to transform the data to a high dimensional

space where it is linearly separable. Thus K-means can be deployed successfully on

the transformed data.

However, the other drawbacks from Kernel K-means remain. Additionally, applying
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the Kernel function is not always feasible for very large datasets due to its time

complexity. In addition to still needing to specify a pre-determined number

of clusters to the algorithm, various Kernel functions which can be used for

transformation need to be tested to determine their appropriateness for the data.

3. Agglomerative Hierarchical Clustering [235, 236]: This type of clustering is also

known as bottom-up hierarchical clustering. In this algorithm, all individual data

points are considered to be their own singleton clusters in the first step. The algorithm

then successively merges or agglomerates pairs of clusters until all the clusters have

been merged into a single cluster containing the entire dataset. Then, depending on

the number of clusters desires or the number that makes sense, the final few merges

can be undone.

Due to the bottom-up approach, clusters of various sizes can be identified. Addi-

tionally, this clustering algorithm does not require any specification of the number

of clusters before the algorithm can be employed. However, due to the nature of

the algorithm, all points are assigned to clusters, and therefore the algorithm is

susceptible to outliers.

As clustering is an unsupervised technique, typically there is no available data against

which the obtained clusters can be validated. Additionally, given that the obtained clusters

may need user input (as with K-means and Kernel K-means) and that different resuls can

be obtained based on the initialization cluster (which is often done randomly with some

heuristics), cluster validation is of increasing importance. For example, the goal here is

to cluster real-world data into groups so that the environmental impacts can be assessed

efficiently. There is no ‘ground truth’ data available against which the obtained groupings

can be validated. Some data labels such as the airline and stage length were already

identified and used to segregate the data before any clustering is performed. Hence, the

use of cluster validation measures is important [237, 238].
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It is important to remember that the original goal of clustering is to identify hidden

patterns in the data by grouping similar objects together while ensuring groups are

dissimilar to each other. Thus, the effectivity of a clustering algorithm can be assessed

by measuring the compactness of each cluster in some n-dimensional space (known as

cohesion) and by the dissimilarity between clusters (known as separation). The measure of

compactness and separation is performed by many of the same distance functions utilized

by the clustering algorithms. Three different validation measures (also known as scores

or indices) which were used are detailed below. All measures were evaluated using the

Euclidean distance function.

1. Silhouette score [239]: This score makes use of pairwise comparisons of cohesion

and separation for each point in the dataset. The measure itself is normalized to lie in

the range [−1,+1], with the ideal score being +1. Values closer to −1 indicate that

many samples have been incorrectly placed in the wrong cluster. Values closer to 0

indicate spatial overlap in the n-dimensional space between clusters.

Given d(x, y) as the distance between data points x and y, Ci representing cluster i,

and ni being the number of data points in Ci, the mean intra-cluster distance a(x)

and mean nearest cluster distance b(x) can be calculated.

a(x) =
1

ni − 1

∑
y∈Ci,y ̸=x

d(x, y) (4.9)

b(x) = min
j,j ̸=i

 1

nj

∑
y∈Cj

d(x, y)

 (4.10)

Note that the scores a(x) and b(x) are computed for each data point individually. To

assess the accuracy of the clustering algorithm, these scores have to be aggregated

across all data points. Given N total number of clusters, this aggregated score Ssil is
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computed.

Ssil =
1

N

∑
i

[
1

ni

∑
x∈Ci

b(x)− a(x)

max {a(x), b(x)}

]
(4.11)

From the formulation, it is clear that when b(x) > a(x), the score will tend towards

+1. This is the desired outcome where a good cluster will have the mean intra-cluster

distance much smaller than the mean distance to the nearest cluster.

2. Davies-Bouldin score [240]: This score is defined as the average similarity of each

cluster with its most similar cluster. Similarity in this score is defined as the ratio of

intra-cluster distances to inter-cluster distances. A better score occurs when clusters

are compact and far apart from their nearest cluster. The minimum score for this

cluster is 0, and smaller scores indicate better clustering.

Using the same notation as above, and introducing ci as the centroid of cluster Ci,

the Davies-Bouldin score can be computed.

SDB =
1

N

∑
i

max
j,j ̸=i

[
1
ni

∑
x∈Ci

d(x, ci) +
1
nj

∑
x∈Cj

d(x, cj)

d(ci, cj)

]
(4.12)

3. Calinski-Harabasz score [238]: Also known as the Variance Ratio criterion, this score

measures the ratio of the sum of inter-cluster dispersion and intra-cluster dispersion.

The dispersion is quantified as the sum of squares of distances. A higher score

indicates better defined clusters with more compactness and with higher separation

between cluster centers.

Using the same notation as above, and introducing c as the centroid of the complete

dataset, and n as the total number of samples in the dataset, the Calinski-Harabasz
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score can be computed.

SCH =

∑
i nid

2(ci, c)∑
i

∑
x∈Ci

d2(x, ci)

n−N

N − 1
(4.13)

4.3.2 Data pre-processing and clustering setup

In order to implement clustering algorithms, the typical approach for unsupervised machine

learning techniques was followed. Starting with the dataset outlined in section 4.1 and

grouping by airline and stage length, the steps are – generation of feature vectors and their

scaling, computation of distance functions, assignment to clusters, and evaluation of cluster

validation measures.

Feature vector generation and scaling

The first step in the clustering process is to generate a feature vector. A feature vector

consists of parameters or variables which are relevant for the assessment of similarity.

For the evaluation of aviation noise, the trajectory and thrust of the aircraft are of utmost

importance. As noted previously, various trajectory and performance parameters are known

in the OpenSky dataset, with the notable exception of thrust. In addition to the altitude

at each ground track point, the horizontal and vertical speeds of the aircraft were also

identified as features for clustering. The horizontal speed is available as the ground speed,

and the vertical speed is available as the rate of climb/descent.

The three identified parameters are then rearranged as a single vector which acts as the

feature vector for the flight. Given p as the total number of points in the flight, and m
(i)
j as

the value of parameter i at location j, the feature vector f is given below –

f =

[
m

(1)
1 . . . m

(1)
p m

(2)
1 . . . m

(2)
p m

(3)
1 . . . m

(3)
p

]
(4.14)

As noted previously, every flight data record was resampled to be on a consistent basis
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for cumulative ground track distance. Further, flight lengths were truncated as necessary to

ensure a consistent basis across all flights. Each flight was represented by a feature vector

of 450 elements, with 150 values of each of the three parameter. 150 sample points also

represent 25 nmi of cumulative ground track distance. The variation of these feature values

over the departure phase for a single flight is shown in Figure 4.10.
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Figure 4.10: Identified features used for clustering

Due to the nature of the features and their units, their scale is quite different. As is

evident from Figure 4.10, the ground speed varies from 100 to 400 knots, whereas altitude

varies from 0 to 10000 ft AFE. The problem here is that one feature can overshadow the

clustering computations simply due to the units being used. Such features can bias the

117



clustering results, and therefore, the influence of units must be removed. To mitigate this

influence of magnitide, the feature vectors were scaled to be on the range of [0, 1] using a

MinMaxScaler.

Each element of the feature vector was scaled independently. Given values m(i)
j,1,m

(i)
j,2,

. . . ,m
(i)
j,n of parameter i for all n flights in the dataset, at point j in the departure. The

scaled value for the first parameter m(i)
j,1 is given by –

m̂
(i)
j,1 =

m
(i)
j,1 −min

{
m

(i)
j,1,m

(i)
j,2, . . . ,m

(i)
j,n

}
max

{
m

(i)
j,1,m

(i)
j,2, . . . ,m

(i)
j,n

}
−min

{
m

(i)
j,1,m

(i)
j,2, . . . ,m

(i)
j,n

} (4.15)

The formula ensures that each element of the feature vector is scaled to the range [0, 1].

Additionally, it also ensures that the minimum value is scaled to 0 and the maximum value

is scaled to 1.

Distance function computation

After the features have been identified and scaled appropriately, the next step is the

evaluation of the distance function. For the K-means and Agglomerative clustering

algorithms, the Euclidean distance function is used. Other measures of distance include

weighted Euclidean distance, Manhattan distance etc. Euclidean distance is suitable when

the vectors are of equal length. When feature vectors are not of equal length or have an

uneven sampling basis, more complex distance computation is required such as shape-

based or warping-based distance [241].

Given two feature vectors x, y corresponding to two different flights, the Euclidean

distance is calculated as –

d(x, y) = ∥x− y∥ =

√√√√ p∑
i=1

(xi − yi)
2 (4.16)

For the Kernel K-means algorithm, the distance computation takes place in a trans-
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formed space [233, 234]. The two Kernel functions employed in this experiment are –

1. Cosine Similarity Kernel: This makes use of the dot product of two feature vectors.

k(x, y) =
xTy

∥x∥∥y∥
(4.17)

2. Gaussian/Radial Basis Function Kernel: This uses an exponential function to

evaluate similarity with σ as a hyperparameter.

k(x, y) = exp

(
−∥x− y∥2

2σ2

)
(4.18)

This concludes the data processing and clustering setup which is required before

deploying the clustering algorithms. The algorithms and the cluster scoring metrics are

implemented in Python using the scikit-learn toolbox [242].

4.3.3 Results from clustering

Evaluation of cluster validation measures

The three clustering methods mentioned were deployed on the data with both Kernel

functions being used for Kernel K-means. The resulting 4 sets of results were evaluated

with the three cluster validation scores. The cluster validation scores and their variation

with number of clusters ranging from 2 to 19 is shown in Figure 4.11. The Silhouette score

is observed to decrease with increasing number of clusters. A similar trend is observed

for the Calinski-Harabasz score, whereas the Davies-Bouldin scores have more fluctuation.

The agglomerative clustering algorithm seems to outperform the others in two score metrics

and underperform in the third. Based on this observation, the remainder of section will

present results from the Agglomerative Hierarchical clustering algorithm.

Once the algorithm has been down-selected, the number of clusters has to be deter-

mined. Ideally, the number of clusters should maximize the Silhouette and Calinski-
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Figure 4.11: Comparison of clustering algorithms across three validation measures

Harabasz score and minimize the Davies-Bouldin score. Monotonically increasing or

decreasing scores do not seem to suggest the preference of any one cluster solution over the

other. Ideally, it is preferable to have a number of clusters which shows a local optimum.

On closer inspection, it is observed that when choosing the number of clusters to be 4, there

is local minima for the Davies-Bouldin score and a local maxima for the Calinski-Harabasz

score. Therefore the analysis is performed with four clusters. It should be noted here that

there is no one clear solution for the selection of number of clusters. Often, it comes down

to heuristics and to subject matter expertise.
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Cluster assignment

With the number of clusters identified, the flights belonging to each cluster can be

identified. The variation of the three features across four clusters is visualized in Fig-

ure 4.12. The corresponding number of flights within each cluster is also shown in the

figure. It is observed that most flights were clustered into a single group (Cluster A),

with the other three clusters showing some key differences. Cluster B represents flights

which are consistently higher than those observed in other clusters. Cluster C represents

several flights which have a level-off segment. These flights were previously identified in

Experiment 1.1 as being outliers.

With the visual observations, it is evident that the clustering algorithm was able to

identify and separate out flights with markedly different characteristics from those with

more nominal behavior. Indeed the purpose of clustering was to identify groups of flights

which will have similar noise impacts. The employed clustering algorithm was able to

segregate flights based on their overall flight profile. For example, flights in Cluster C

which have level-off segments are expected to have significantly different noise results

than from those in other clusters.

Selection of representative flights

With the identification of clusters and the corresponding flight assignments, the process

of clustering is complete. However, for this use-case, the intention is to identify a

representative cluster for each group, which can then act as a stand-in for all other

flights within that group when evaluating noise metrics. The ideal representative flight

should produce minimal error when compared to other flights in the same cluster. Such a

requirement naturally leads to the notion of an average or median flight.

A simple approach to constructing such a representative flight can be to simply take the

average or median of all feature vectors within a cluster. However, there is no guarantee

that the obtained representative actually represents a valid flight, which can physically be
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Figure 4.12: Visualization of flight assignment to four clusters
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flown. To ensure a physics-consistent representative, the following process is proposed –

1. First, the ideal median feature vector for each cluster is obtained. Each element of

this vector represents the median for that element across all flights.

2. Next, all flights within the cluster are compared to this ideal median. The flight which

is most similar, based on the distance function used for clustering is considered to be

the representative for that cluster. Given x̄i as the ideal median for cluster Ci, the

representative flight fi is found as –

fi = arg min
xj ,xj∈Ci

∥xj − x̄i∥ (4.19)

Using this process, the representative flight for each cluster was obtained. As this

representative is an actual real-world flight, there are no additional checks necessary

to determine whether the chosen flight is actually feasible to be flown. The selected

representatives for each cluster are visualized Figure 4.13. This visualization confirms

that each median representative does a good job of being a stand-in for its cluster.

With the development of the median, the entire original dataset of 1361 flights has been

reduced to only 4 flights, with Flight A representing Cluster A’s 1310 flights, and so on.

The task of modeling the environmental metrics for these real-world flights has been greatly

simplified. Particularly, the computationally expensive noise metric quantification process

only needs to be performed 4 times, as compared to 1361 times, which should take only

0.2939% of the resources. Scaling up each obtained noise result according to the number

of flights in each cluster is a relatively simple process.

4.3.4 Summary and evaluation of Hypothesis

The second experiment was designed to create a process which supplemented the inverse

map by which real-world aircraft trajectories could be efficiently mapped to a parametric

definition. The same real-world dataset used in Experiment 1.1 was used, representing a
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Figure 4.13: Median representative flight selection for each cluster
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set of 5070 flights departing from San Francisco airport. Three clustering algorithms –

K-Means, Kernel K-Means, and Agglomerative Hierarchical clustering were implemented

and their performance on the datasets was evaluated using three cluster scoring methods

– Silhouette score, Davies-Bouldin score, and the Calinski-Harabasz score. Due to a

large number of potential combinations, only a small subset of results were shown for

this Experiment.

The implementation of a clustering algorithm required the generation of feature vectors,

where three parameters – altitude, ground speed, and vertical speed were identified and

collected for each flight. The feature vectors were then scaled to remove any bias from

parameters with naturally higher valued units. The distance function was then evaluated

to ascertain the pair-wise similarity between flights. The clustering algorithms were then

deployed with the number of clusters being a hyperparameter.

The ‘goodness’ of each cluster distribution was assessed using the three scores. In the

example result shown, 4 clusters were chosen for the flight group representing 1361 flights

from a single airline flying a stage length 4 mission. Next, the median representative flights

for each cluster were computed. These median representatives serve as an efficient way to

parametrically map the cluster to a parametric representation.

Revisiting Hypothesis 1.2, the requirement was to show that real-world trajectories

could be clustered into groups in the context of aviation noise estimation. The accompany-

ing experiment was designed to do exactly that and the obtained results confirm that such

clustering is possible. Therefore, Experiment 1.2 is considered successful and Hypothesis

1.2 is accepted.
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4.4 Experiment 1.3

In this section, the experimental setup and results for RQ1.3 are explained2. For reference,

RQ1.3 and H1.3 are repeated below –

Research Question 1.3

How can the design space for aircraft trajectories be explored efficiently?

Hypothesis 1.3

If a screening test is performed and the primary drivers can be identified, the design

space for aircraft trajectories can be explored efficiently.

The purpose of this experiment is to identify the primary drivers, if any, have the

most significant contribution to aviation noise metrics so that the design space for aircraft

trajectories can be explored efficiently for optimization or for trade-off studies. A screening

test is proposed to identify the contribution of each parameter to the relevant noise metric.

The objective of the screening test is to obtain a ranking of parameters, so that the most

important parameters are prioritized when performing large-scale studies.

4.4.1 Methods for parameter screening

The overarching field of statistics which is applicable here is known as Global Sensitivity

Analysis [185]. In a general sense, the objective of GSA is to provide measures of

sensitivity of a model’s output with respect to the model inputs. As the sensitivity of an

output to a given input increases, so does the influence of that parameter on the model.

2Parts of the research described in this section are documented in the following publication –

• A. Behere, M. Kirby, and D. N. Mavris, “Relative importance of parameters in departure procedure
design for lto noise, emission, and fuel burn minimization,” in AIAA AVIATION 2022 Forum, Jun.
2022. DOI: 10.2514/6.2022-3916. eprint: https://arc.aiaa.org/doi/pdf/10.2514/6.2022-3916. [Online].
Available: https://arc.aiaa.org/doi/abs/10.2514/6.2022-3916 [243]
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Conversely, if an output is not sensitive to a particular input, then that input does need to

be sampled as densely.

With a fundamental understanding of the definition of sensitivity analysis, different

methods in literature can be evaluated. Most methods in literature are based on partial

derivatives. Indeed, this partial derivative ∂Yj

∂Xi
for a given output Yi versus some input

Xi can be thought as being the mathematical definition of sensitivity. However, partial

derivative based methods have some major drawbacks. A key drawback is that the

computed derivative is only useful and informative at the point at which it is computed.

Thus, it is only suitable for a very narrow scope of local sensitivity analysis. Only in the

case of linear models can the partial derivative be extended to the entire domain. However,

most models are complex and non-linear.

Several methods for performing sensitivity analysis have been developed for different

applications. One method which can be used with many different model types is called

step-wise regression. Instead of being a separate method by itself, it is a modification to the

standard process of fitting regression models. With regular regression modeling, typically

all input variables will be used to fit the model. With step-wise regression, a procedure is

used to determine which input variables will be included in the model.

Step-wise regression can be performed by either iteratively adding the most influential

variables, or by removing the ones with the least influence. Statistical significance tests

are performed to determine which variable should be included/excluded in the model. The

process is repeated until a pre-defined stopping criteria is met. Using these two methods,

there are three approaches for step-wise regression –

1. Forward selection involves starting with a constant valued model, and with no input

variables included. Next, each possible inclusion to the model is tested and the

the one whose inclusion provides the most statistically significant improvement is

included. This process is continued until a convergence criteria is met. Typically,

the convergence criteria is a check on whether the inclusion of any of the remaining
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parameters can improve the model to a statistically significant extent.

2. Backward selection operates in an opposite manner, by first including all variables

in the model and then iteratively eliminating the ones with least significance.

The process is repeated until no variable can be removed without resulting in a

statistically significant loss of model fit.

3. Bidirectional elimination uses a combination of the two selection approaches. At

each step, variables are tested for inclusion or exclusion from the model.

Thus, by providing a subset of variables which are used to build the model, a reduced

model can be constructed which leaves out the variables with negligible effect on the

output. While this is certainly a useful application of step-wise regression, it is not the

primary motive in this Research Question. Instead, rather than the subset itself, the order

in which variables are included in the model provides a way to identify the primary drivers

of the output.

4.4.2 Identified parameters

In Experiment 1.1, 1 list of 4 parameters was identified which were used to generate a set of

240 procedural profiles to be used with an aircraft performance model. These 4 parameters

represented the design space of trajectories and associated performance characteristics.

These parameters were sufficient for Experiments 1.1 as the outputs of relevance were

the trajectories themselves.

However, when working with aviation noise metrics, a large number of external

parameters are present which can influence the noise metrics. One of the most important

parameters for the quantification of aviation noise is the ambient weather. Temperature

in particular, has an impact on both the propagation of noise through the atmosphere, and

on the aircraft performance itself. Therefore, an analysis of parameter influence on noise

incomplete without the inclusion of ambient temperature as a factor.
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In the aviation noise modeling AEDT, the ambient weather conditions are accounted for

by specifying a set of six values representing six weather parameters. These parameters,

along with their default values for the Atlanta airport are shown in Table 4.8. Several of

these weather parameters have correlations and interdependencies. Therefore, they cannot

all be set independently, and their dependencies have to be calculated to ensure a physically

consistent weather definition. For example, among the set of {T,RH,DP}, only two need

to be specified and the third can be solved as a function of the other two. There are several

models proposed in literature to resolve the interdependency of these three variables [244].

Table 4.8: Weather vector definition in AEDT with example values at KATL airport

Weather

parameter
Description

Example

value
Units Correlations

T Ambient temperature 63.44 °F with RH and DP

Pst Station pressure 981.21 mbar with Psl

Psl Sea-level pressure 1018.00 mbar with Pst

RH Relative humidity 63.04 % with DP and T

DP Dew point temperature 50.64 F with T and RH

W Wind speed 6.79 knots none

Including the ambient temperature as a variable, brings the total number of parameters

to five. Of these parameters, the ambient temperature and takeoff weight can be considered

as external factors, which are not controllable as part of the departure profile. Takeoff

weight is usually a function of the payload of the aircraft and the fuel weight to be carried

for the trip distance. On the other hand, the three remaining parameters, which are the

takeoff thrust reduction, altitude for acceleration initiation, and the energy share percentage

are all design variables for the profile.

Keeping in mind the computational resource constraints of the full-order aviation noise

estimation tool AEDT, a set of values for each parameters was used to create a set of 960

results on which step-wise regression was to be performed. The parameters and their range

of values is shown in Table 4.9.
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Table 4.9: Identified parameters and their ranges of variation

Parameter Description Possible values Units

α1

Takeoff weight

(through Stage Length)

151100 (SL3),

162150 (SL4),

169950 (SL5)

lbm

α2 Takeoff thrust reduction 1.00, 0.95, 0.90, 0.85 multiplier

α3 Altitude for acceleration
800, 1000, 1200,

1400, 1600
ft

α4 Energy share percentages 20, 40, 60, 80 %

α5 Ambient temperature 40, 60, 80, 100 °F

The range of temperature variation was chosen to be aligned with the typical tempera-

tures measured at the Atlanta airport. Additionally, the dew point temperature was updated

during modeling to be ensure a constant relative humidity level was maintained. This

ensured that the effects on the noise metric were isolated to those from the temperature

only, and humidity effects could be controlled for.

The selected parameters all influence noise metrics either directly, or indirectly. The

takeoff weight of the aircraft directly influences the trajectory of the departing aircraft.

Given that takeoff and climb thrust levels are due to constant thrust settings, heavier aircraft

have less excess energy to climb and accelerate. Thus, heavier aircraft are closer to the

ground for a longer duration than lighter aircraft and thus their resulting noise footprint is

higher. The effect of other parameters is more nuanced.

Takeoff thrust is directly correlated with engine noise, which is the largest component

of noise for departures. Therefore, higher thrust levels should increase the noise footprint

of the operation. However, a higher takeoff thrust also implies an ability to accelerate

and climb faster, and hence at locations further down the ground track, the aircraft may

be sufficiently far away that the noise impact is actually lower. Thus, the location is

of importance when discussing the effects of the chosen parameters on noise metrics.

Similarly, the choice of altitude for acceleration initiation, and energy share percent have a
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complex effect on aviation noise metrics. Finally, the effect of temperature, as previously

noted, is through both atmospheric propagation, and through influence on the aircraft

performance.

4.4.3 Noise metric modeling

This subsection outlines the process from which the noise metric results were obtained and

processed for model fitting.

Modeling setup

As mentioned previously, the Aviation Environmental Design Tool is used to model the

noise metric results for this experiment. The process can be broken down into various steps

outlined below –

1. First, the procedural profile definitions resulting from the 240 possible combinations

of parameters {α1, α2, α3, α4} were created and imported into AEDT.

2. Next, the four ambient temperature conditions were formatted into the appropriate

weather definition and imported into AEDT. The dew-point temperature was varied

appropriately to ensure that the relative humidity across the runs remained constant.

3. A set of SQL scripts were used to create a full factorial set of jobs in AEDT. Each

job represented one operation being flown at a particular weather condition. All

operations were modeled at the KATL airport, flying out of runway 09L with a East-

bound heading along a straight ground track.

4. A set of noise receptors was created around the ground track along which the noise

metric was evaluated. The set was set up as a 2D grid of receptor points, spaced 0.1

nmi along both the North-South and East-West directions. As the flight track was

aligned with the East-West direction, more points were needed in that direction. 401

receptors were created along this ‘longitudinal’ direction, whereas 81 receptors were
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created along the transverse direction. This led to a total of 32481 points at which

the noise metric was computed. The grid itself was then positioned so that the start

of the runway would be located at a position 4 nmi East and 4 nmi North from the

Southwestern corner of the grid. The elevation of the grid was set to be the same

elevation as the runway.

5. The Sound Exposure Level (SEL) noise metric was modeled on the noise grid for

all jobs. While various noise metrics are relevant, the SEL is one of the most

commonly used noise metrics used for aviation noise analysis. The Day-Night

averaged Level (DNL) is the most commonly used metric, but is more relevant for

groups of operations. For the noise evaluation of single operations, the SEL metric

is more appropriate.

The modeled noise metrics are available in the noise report in AEDT. These reports were

exported outside of AEDT for post-processing and analysis.

Post-processing

The raw noise metric results obtained in the noise report are in a tabular format. As a

sample, Table 4.10 shows 5 consecutive rows (of 32481) for the noise report obtained

for job number 437 (of 960) which consists of a procedural profile characterized by the

parameters α1 = 151100 lbm, α2 = 1.00, α3 = 1000 ft, α4 = 40% at temperature

α5 = 60 ◦F .

The raw noise reports were then aggregated into scalar metrics in the form of the areas

and lengths of noise contours. Figure 4.14 shows the noise contours obtained from the

noise report for job number 437 for four noise levels – 75 dB SEL, 80 dB SEL, 85 dB

SEL, and 90 dB SEL. The noise levels are higher in the innermost contour and decrease in

decrements of 5 dB SEL as one moves to the outward contours. Noise contours and their

dimensions are one of the most commonly used metrics for aviation noise. The lengths and

areas of the contours shown in Figure 4.14 are summarized in Table 4.11.
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Table 4.10: Sample set of rows from a noise report obtained in AEDT

Receptor # Latitude (deg) Longitude (deg) Elevation(ft) Noise Level (dB)
...

...
...

...
...

11684 33.616334 -84.420027 1018.7 77.29

11685 33.616333 -84.418031 1018.7 77.68

11686 33.616333 -84.416035 1018.7 78.05

11687 33.616332 -84.414040 1018.7 78.37

11688 33.616332 -84.412044 1018.7 78.61
...

...
...

...
...
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Figure 4.14: Noise contour visualization for a sample flight

The obtained contour dimensions in the form of area and length are used to build the

regression models to perform the screening tests. In this case, the length of a contour is

defined as the longer dimension of the smallest rectangular bounding box which can fully

contain the contour. The area of the contour is obtained by dividing the contour into thin

trapezoidal ‘slices’ aligned in the North-South direction and integrating the area of all such

slices along the East-West direction.

Table 4.11: Contour dimensions for sample job 437

Noise Level Length (nmi) Area (nmi2)

75 dB SEL 15.2453 35.2442

80 dB SEL 8.9931 13.2438

85 dB SEL 4.7853 4.7853

90 dB SEL 2.0966 2.0966
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4.4.4 Results

With the contour dimensions constructed, the sensitivity of these dimensions with respect

to the input parameters can be analyzed. Before moving onto the step-wise regression

modeling, it is instructive to visually observe the effect of each of the five parameters on

the noise contours.

One Factor At a Time analysis

A One Factor At a Time (OFAT) analysis is a type of sensitivity analysis in which the effects

of only one input parameter is studied while the others are held constant. This type of

sensitivity analysis can be considered to be halfway between a local and a global sensitivity

analysis. It has a higher scope than local sensitivity analyses because the chosen parameter

is varied not just within a small neighborhood, but across its entire range of permissible

values. Of course, an OFAT analysis is still more limited than a global sensitivity analysis

as it does not include variations of all parameters at the same time.

First, the variation of the noise contours with the aircraft weight is shown in Figure 4.15.

In this case, the weight is varied between its three possible values, while the other

parameters are held constant at their central values, α2 = 0.90, α3 = 1200 ft, α4 =

40%, α5 = 60 ◦F . The corresponding values of the contour dimensions are shown

in Table 4.12.

Table 4.12: Variation on contour dimensions with aircraft takeoff weight

Takeoff

Weight

Area, nmi2 Length, nmi

75 80 85 90 75 80 85 90

151100 29.40 10.49 3.91 1.48 15.28 8.44 4.88 3.44

162150 32.11 11.25 4.21 1.57 16.89 9.22 5.38 3.77

169950 34.15 11.82 4.49 1.63 18.09 9.82 5.81 4.01

From the figure, it is evident that the original expectation of a higher noise metric for a

heavier takeoff weight has held true. Across the outer three contours, significant increases
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Figure 4.15: Variation of 75, 80, 85, and 90 dB SEL noise contours with aircraft takeoff
weight
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in the contour lengths, and consequently, contour areas can be observed. The change is less

evident for the innermost contour representing 90 dB SEL. Nevertheless, inspecting the

numbers for these two dimensions in Table 4.12 serves to confirm the visual observations.

The reason for this increase is noise metric levels is quite straightforward. With an

increase in aircraft weight, the aircraft becomes less agile due to a lower thrust to weight

ratio. Consequently, with a higher weight, the aircraft cannot climb or accelerate as fast

as it can with a lower weight. Hence the aircraft trajectory ends up closer to the ground,

which decreases the separation between the noise source and observer, leading to the higher

values observed.

The variation of the noise contours with the aircraft takeoff thrust reduction is shown

in Figure 4.16. In this case, the takeoff thrust is varied between its four possible values,

while the other parameters are held constant at their central values, α1 = 162150 lbm, α3 =

1200 ft, α4 = 40%, α5 = 60 ◦F . The corresponding values of the contour dimensions are

shown in Table 4.13.

Table 4.13: Variation on contour dimensions with aircraft takeoff thrust reduction

Takeoff

Thrust multiplier

Area, nmi2 Length, nmi

75 80 85 90 75 80 85 90

0.85 31.73 11.01 3.98 1.36 17.19 9.57 5.66 3.69

0.90 32.11 11.25 4.21 1.57 16.89 9.22 5.38 3.77

0.95 38.05 13.80 4.88 1.89 16.99 10.04 5.68 3.93

1.00 38.83 14.39 5.27 2.28 16.80 9.82 5.46 4.10

The effect of aircraft takeoff thrust reduction on the noise contours is a little more

difficult to ascertain. There are two competing effects at play here, so it is difficult to

intuitively expect what the outcome should be. The first effect is that with a higher thrust

level, the aircraft is more agile and is better able to climb and accelerate. Therefore, the

trajectory for higher thrust is also expected to be higher. On the other hand, due to a higher

thrust, the noise produced at the source is higher. The level of noise at any grid point
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Figure 4.16: Variation of 75, 80, 85, and 90 dB SEL noise contours with aircraft takeoff
thrust reduction
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depends on which of these two competing effects is dominant.

From the figure, the length of contours tends to decrease with increasing thrust for the

75 dB contour, but increases for the 90 dB contour. The 90 dB contour is formed due to

the noise energy at the very beginning stages of the profile. Hence, it makes sense that the

higher noise source effect would be dominant. Conversely, the 75 dB contour is comprised

of noise energy from the entire procedure. Here, the higher climb rate effect wins out as

it has enough time to be significant. The contour area is less dependent on the climb rate

effect, as the width of the contours are largely influenced by the thrust levels. Therefore,

the area of all contours show a monotonic increase with higher takeoff thrust levels.

The variation of the noise contours with the altitude for acceleration initiation is shown

in Figure 4.17. In this case, the altitude is varied between its five possible values, while

the other parameters are held constant at their central values, α1 = 162150 lbm, α2 =

0.90, α4 = 40%, α5 = 60 ◦F . The corresponding values of the contour dimensions are

shown in Table 4.14.

Table 4.14: Variation on contour dimensions with altitude of acceleration initiation

Altitude for

acceleration

Area, nmi2 Length, nmi

75 80 85 90 75 80 85 90

800 31.78 10.94 3.83 1.56 17.00 9.32 5.20 3.82

1000 31.95 11.10 4.02 1.57 16.95 9.28 5.26 3.80

1200 32.11 11.25 4.21 1.57 16.89 9.22 5.38 3.77

1400 32.29 11.41 4.42 1.57 16.85 9.17 5.54 3.76

1600 32.45 11.58 4.59 1.57 16.79 9.12 5.69 3.75

The effect of altitude of acceleration initiation on the noise contours is quite difficult

to decipher from the figures alone. Very little variation among the contours is seen across

the five levels for this parameter. The most notable distinction is that in the shape of the

80 dB contour. The shape is more tapered for the lower altitude values and becomes more

rounded as the altitude increases. Based on the values in Table 4.14, it is observed that there

is little variation in contour areas and lengths. The variation, however small, is observed to
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Figure 4.17: Variation of 75, 80, 85, and 90 dB SEL noise contours with altitude for
acceleration initiation
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be monotonic. The area of contours increases monotonically with altitude, and the length

of the contours decrease monotonically.

The physical effect of the altitude of acceleration initiation is through the delaying of

flap retraction and thrust cutback. By delaying these events, the aircraft is able to maximize

its climb rate potential, with the caveat of having high thrust. Thus, the similar competing

effects come into play which were observed for the takeoff thrust reduction percentage.

Consequently, similar trends for contour areas and lengths are observed. However, it is

noted that the variation introduced by this parameter is not as large as the other parameters.

This will be confirmed in the next set of results from the step-wise regression model.

The variation of the noise contours with the energy share percentage is shown

in Figure 4.18. In this case, the energy share percent is varied between its four possible

values, while the other parameters are held constant at their central values, α1 =

162150 lbm, α2 = 0.90, α3 = 1200 ft, α5 = 60 ◦F . The corresponding values of

the contour dimensions are shown in Table 4.15.

Table 4.15: Variation on contour dimensions with energy share percentage

Energy Share Percent
Area, nmi2 Length, nmi

75 80 85 90 75 80 85 90

20 36.96 14.53 5.18 1.57 16.80 9.62 6.42 3.78

40 32.11 11.25 4.21 1.57 16.89 9.22 5.38 3.77

60 31.79 10.83 3.75 1.57 17.13 9.46 5.28 3.83

80 31.66 10.70 3.65 1.54 17.25 9.61 5.39 3.71

Next, the effect of energy share percentage on the noise contours is analyzed. The shape

of the contours changes quite evidently across the four levels for this parameter. Although

the length of the contours stays relatively constant, the width shows significant changes,

which is carried over into the area of the contours as well. The contour for 20% energy

share is quite smooth whereas the one for 80% energy share shows a wavy contour shape.

To explain this observation, it is helpful to first recall the definition of energy shape
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Figure 4.18: Variation of 75, 80, 85, and 90 dB SEL noise contours with energy share
percentage
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percent. A higher value indicates more energy is allocated for acceleration than climbing.

Therefore, at higher values, the aircraft’s climb gradient is quite low. There are three

distinct acceleration steps in the procedural profile definition with a common value of

energy share percentages across them. As the aircraft has an overall lower rate of climb, the

transitions between these three acceleration steps occur at a lower altitude. Consequently,

their effects are more pronounced on the noise contours. For the low energy share percent,

the climb rate is higher and the transitions happen at a higher altitude, thus making their

effect on the noise contour less pronounced.

Finally, the variation of the noise contours with the ambient temperature is shown

in Figure 4.19. In this case, the temperature is varied between its four possible values,

while the other parameters are held constant at their central values, α1 = 162150 lbm, α2 =

0.90, α3 = 1200 ft, α4 = 40%. The corresponding values of the contour dimensions are

shown in Table 4.16.

Table 4.16: Variation on contour dimensions with ambient temprature

Ambient

Temperature

Area, nmi2 Length, nmi

75 80 85 90 75 80 85 90

40 42.02 12.59 4.31 1.58 19.18 9.81 5.34 3.75

60 32.11 11.25 4.21 1.57 16.89 9.22 5.38 3.77

80 22.38 8.32 3.55 1.30 13.86 7.92 5.28 3.48

100 19.06 6.86 3.13 1.10 12.49 6.78 5.17 3.27

Finally, the final parameter, ambient temperature, shows a strong effect on the noise

contours. Both the length of the outer two contours and the areas of all contours show a

inverse correlation with the ambient temperature. It is observed that at lower temperatures,

the contour lengths are significantly higher for the 75 and 80 dB SEL contours. The entire

contour for these two levels seems to shrink in both length and width at higher temperatures.

This is confirmed by the values in Table 4.16, which show that the area of the 75 dB SEL

contour for 40 °F is more than double that for 100 °F.
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Figure 4.19: Variation of 75, 80, 85, and 90 dB SEL noise contours with ambient
temperature
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The explanation for this is that sound travels faster at lower temperatures and is less

affected by atmospheric effects. Thus the noise is able to reach receptors faster and with

higher amplitude at lower temperatures. This explains the trends observed in the contour

areas and lengths. The effects of ambient temperature on noise propagation is explained

by several adjustments, such as the acoustic impedance adjustment (AIADJ ) in AEDT’s

technical manual [107].

Step-wise regression analysis

With the initial analysis using visualizations with the OFAT analysis complete, a more

global sensitivity analysis can be conducted with a step-wise regression model. Before

building a regression model however, it is generally recommended that the input and output

variables of the model be scaled to be on a consistent basis.

The input parameters are all varied along linear scales, and thus a linear scaling is

appropriate. The input parameters are scaled based on their minimum and maximum values

to lie on a range of [0,1]. The formula for this scaling is –

α̂i =
αi −minαi

maxαi −minαi

(4.20)

The output parameters however are distributed similar to a normal distribution and

Gaussian scaling is used for them instead. The effect of this scaling on the four contour

areas and lengths is shown in Figure 4.20 and Figure 4.21.

Ŷi =
Yi − µ(Y )

σ(Y )
(4.21)

These scaled/normalized inputs and outputs were then used to build regression models

in JMP [245]. A step-wise regression model was built for each of the eight outputs. A

response surface type of model was selected for fitting. A response surface includes linear,

quadratic terms, and cross-terms. As there are five input parameters, a total of 21 terms are
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Figure 4.20: Normalization of contour areas
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Figure 4.21: Normalization of contour lengths
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possible, as shown in the following equation –

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 ++β5X5

+ β11X
2
1 + β22X

2
2 + β33X

2
3 + β44X

2
4 + β55X

2
5

+ β12X1X2 + β13X1X3 + β14X1X4 + β15X1X5

+ β23X2X3 + β24X2X4 + β25X2X5

+ β34X3X4 + β45X4X5

+ β45X4X5

(4.22)

The step-wise model fit option in JMP implements different user options for direction

of variable inclusion/exclusion and for different stopping criteria. Although not all options

affected the model fit, these settings were investigated and the best options were selected

which led to the most accurate model fit. For conciseness, only the model fitting outcomes

for the 75 dB contour are presented here.

The general steps followed for model fitting are outlined below –

1. 1
6
th of the 960 total data points were randomly selected and set aside for model

validation. The remaining 800 data points were used to train the model.

2. The selected Response Surface model was trained and the sequence of steps from

the step-wise regression was saved. Each step contained information about the

variable added, and the associated R2 along with additional measures of statistical

significance.

3. The obtained model was then evaluated at the validation points and the errors

between the predicted and the actual values were analyzed. A good model has a

high R2, low Model Fit Error (MFE), and a low Model Representation Error (MRE).

The three goodness of fit metrics mentioned above are summarized in Table 4.17.

The distribution of the Model Fit Error and Model Representation Error is visualized
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Figure 4.22: Distribution of the Model Fit Error and Model Representation error for the
step-wise regression model

in Figure 4.22.

Table 4.17: Summary statistics for regression model errors

75 dB SEL Area 75 dB SEL Length

R2 0.9732 0.9540

MFE RMS 1.7443 nmi2 0.5554 nmi

MRE RMS 1.8048 nmi2 0.5915 nmi

With the regression models created for all eight contour dimension measures, the

relative importance of each variable in the regression model was obtained. The top eight

variables in terms of cumulative contribution to the R2 value are shown in Table 4.18 with

the variable labels described in Table 4.19. Not all variables are included as some such as

the square of the altitude of acceleration initiation α2
3 were not present in the list of any of

the contour dimension regression models.

Some notable observations from Table 4.18 are listed below –

1. The single most important parameter which influences all contour dimensions is the

ambient temperature. This is an important observation as departure operations are

often not optimized for ambient conditions such as the temperature.
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Table 4.18: Rankings of the top eight parameters for each contour dimension regression
model

Variable
Area of SEL contour Length of SEL contour

75 dB 80 dB 85 dB 90 dB 75 dB 80 dB 85 dB 90 dB

α1 4 6 7 5 2 2 2 1

α2 3 3 3 1 3

α3 7

α4 2 2 2 3

α5 1 1 1 2 1 1 1 2

α2
2 8

α2
4 5 4 5 8 3 4

α2
5 6 4 7 5

α1 × α4 7

α1 × α5 8 6 7

α2 × α3 8 6

α2 × α4 8 6 6 5 3

α2 × α5 7 5 4 3 4 5 6

α3 × α4 6 8 8

α3 × α5 7

α4 × α5 8 7 5 4 4

2. For contour areas, the next most important parameters are the energy share percent-

age values and the takeoff thrust reduction values. These observations are consistent

with the findings from the OFAT sensitivity analysis. The remainder of the important

variables depend on the noise level of the contour for which the regression is built.

3. For contour lengths, the next most important parameter is the takeoff weight. Again,

this observation is consistent with the findings from the OFAT sensitivity analysis.

As with the contour areas, the next important factors depend on the noise level of the

contour.

4. During the OFAT analysis, the altitude for acceleration initiation was identified to

not have much effect on noise contours. Here, the effects of this parameter do not
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Table 4.19: Description of variables used to build regression models for contour dimensions

Variable Description Variable Description

α1 Weight α1 × α2 Weight × Thrust

α2 Thrust α1 × α3 Weight × Altitude

α3 Altitude α1 × α4 Weight × Energy Share

α4 Energy Share α1 × α5 Weight × Temperature

α5 Temperature α2 × α3 Thrust × Altitude

α2
1 Weight2 α2 × α4 Thrust × Energy Share

α2
2 Thrust2 α2 × α5 Thrust × Temperature

α2
3 Altitude2 α3 × α4 Altitude × Energy Share

α2
4 Energy Share 2 α3 × α5 Altitude × Temperature

α2
5 Temperature 2 α4 × α5 Energy Share × Temperature

appear in the top 8 ranked important variables for most contour dimension regression

models. Where they do appear, the ranking is quite low. For example, for the 80 dB

SEL contour area, the altitude for acceleration initiation is the 7th most important

factor.

The variation of the R2 value for each contour dimension regression model with their

respective top eight variables is visualized in Figure 4.23. As predicted, the inclusion

of the first few top ranked parameter quickly accounts for most variance in the contour

dimensions.

Notable, the inclusion of the top 4 variables accounts for an R2 value of at least 0.80.

In all cases except the 85 dB contour length, the inclusion of top 8 ranked variables yields

an R2 value of at least 0.90.

4.4.5 Summary and evaluation of Hypothesis

Experiment 1.3 was designed to evaluate and identify the primary drivers of aviation noise

to enable the efficient exploration of the design space of aircraft trajectories. The original

four parameters of procedural profile definition were paired with an additional parameter
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Figure 4.23: Variation of model R2 with the top eight ranked variables

in the form of ambient temperature. This led to the creation of a set of 960 test cases, with

each of the 240 possible procedural profiles being flown at 4 different ambient temperature

conditions. A dependent variation of dew point temperature was added to hold the relative

humidity at a constant level and control for effects of humidity.

This set of operations was then modeled in the Aviation Environmental Design Tool

to obtain resultant noise metrics. The operations were modeled at the KATL airport and

the Sound Exposure Level noise metric was modeled at a grid of receptor points. The grid

was sized with appropriate dimensions, resolution, and alignment to ensure that the noise

dB levels of interest would be captured correctly. Noise contours were then created as a

post-processing step, and their dimensions in the form of contour area and contour length

were computed.

Two types of sensitivity analysis were conducted. A One Factor At a Time analysis

was conducted to get an understanding of the effect of individual parameters on the noise

contours. An analysis was conducted with visual comparisons of contour plots and numeric
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comparison of the contour dimensions. This type of sensitivity analysis was of a medium

scope, lying between local and global sensitivity analyses.

The second analysis was conducted in the form of a step-wise regression. The collected

contour dimensions and input variables were normalized to be on similar relative scaled.

The JMP software was used to perform step-wise regression assuming a response surface

model type. Each step of the step-wise regression provided insight into the parameters

which had the most effect on the modeled dimension. It was observed that the ambient

temperature was the most important parameter for the prediction of contour dimensions.

Takeoff thrust and energy share percentage were important for the prediction of contour

areas, whereas the takeoff weight was important for contour length. The two analyses also

revealed that the altitude of acceleration initiation does not have a major impact on any of

the modeled contour dimensions.

Revisiting Hypothesis 1.3, the requirement was to perform a screening test and identify

the primary drivers behind aviation noise. The accompanying Experiment 1.3 performed

two types of sensitivity analyses to identify the importance of parameters and confirm that

such a screening is possible. Thus, Experiment 1.3 is considered successful and Hypothesis

1.3 is accepted.

4.5 Summary of Research Area 1

This chapter presented the findings from Experiments 1.1, 1.2, and 1.3 which supported

their respective Hypotheses. All formulated Hypotheses were accepted, and the Research

Questions leading to those hypotheses were answered.

The original high-level Research Question 1 is recapped below. The three requirements

of representation, scalability, and exploration were addressed by Research Questions 1.1,

1.2, and 1.3 respectively.

152



Research Question 1

How can the input space of aircraft trajectories be represented to enable parametric

quantification and optimization?

Research Question 1.1 led to the creation of a process in which real-world time-series

based flight data could be represented as a set of parameters. This process was labeled

as the inverse map, and was demonstrated on a set of 1361 real-world flights obtained

from the OpenSky Network. The process involved the creation of a library of profiles with

pre-defined parameter values and their resultant trajectories and performance. Real-world

trajectories were then assessed in their similarity to this pre-defined library with the help of

a defined similarity metric. The most similar pre-defined profile was then assigned as the

inverse-mapped parametric definition for the real-world flight.

Research Question 1.2 led to the development of clustering processes to group similar

flights together so that representative from each group could be efficiently modeled for

environmental impact analyses. An advanced similarity metric was defined to determine

the similarity between two real-world flights. Three different clustering algorithms were

implemented and deployed on a set of 5070 flights. Cluster verification was also performed

using three cluster scoring metrics. The process showed that with the help of clustering

algorithms, real-world flight data could be grouped by similarity.

Research Question 1.3 was motivated by the desire to efficiently explore the design

space of aircraft trajectories in the context of aviation noise. A set of 240 procedural

profiles were modeled at 4 ambient temperature conditions. The resultant noise metrics

were quantified on a grid of receptors and noise contours were created. The area and

lengths of contours for 75, 80, 85, and 90 dB SEL were computed and fitted with a step-

wise regression model. The model took the form of a Response Surface Equation and the

independent variables were the five parameters, their squared terms, and their cross terms.

The step-wise regression model showed a ranking of parameters based on their importance
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for each regression model.

Together, these three RQs, their accompanying hypotheses, experiments, and the

techniques developed in those experiments satisfied all requirements of the high-level

Research Question 1. This concludes the discussion on Research Area 1.

154



CHAPTER 5

RAPID MODELING OF AVIATION NOISE

This chapter presents the research and findings from Research Area 2, i.e. the rapid

modeling of aviation noise. As a quick recap, the high-level Research Question for this

is mentioned below.

Research Question 2

How can the process of computing aviation noise metrics be made more

computationally efficient?

Two focused research areas emerged from this high-level Research Question – the

reduction of dimensionality of original high-dimensional data, and the creation of surrogate

models in the lower-dimensional space. These areas were addressed with two specific

Research Questions and their associated Hypotheses. Each Hypothesis was then supple-

mented with a formulation to test the Hypothesis. This chapter will present the results of

the Experiments which support each Hypothesis.

This chapter begins with section 5.1 which describes the dataset being used in

Experiments 2.1 and 2.2. Following this, section 5.2 and section 5.3 provide the details of

the experimental setup, obtained results, and analysis of the results. The resulting Reduced

Order Model or field surrogate model is described insection 5.4. Finally section 5.5

provides a summary of the chapter.

5.1 Description of dataset used

Before the creation of any models, the underlying data needs to be gathered. In Experiment

1.3, a large set of noise results was generated to determine the effects of different
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parameters on the SEL aviation noise metric. A total of 960 cases were modeled in the

Aviation Environmental Design Tool at the KATL airport. Each case resulted in the SEL

noise metric dB value being computed on a receptor grid of 401× 81 = 32481 points.

The analyses performed in Experiment 1.3 however, were limited to scalar valued

aggregated metrics, instead of analyzing the entire grid as a whole. The sensitivity analysis

based on step-wise regression modeling used eight aggregated scalar valued measures –

the areas and lengths of contours for 75 dB SEL, 80 dB SEL, 85 dB SEL, and 90 dB SEL.

Such type of analysis is typical in the field of aviation noise quantification and mitigation

where aggregated measures are modeled and minimized.

Another type of common analysis focuses on the noise grid, but only at a select few

locations. Thus, raw noise metrics can be quantified/optimized instead of their aggregated

measures. A common example of this are the three locations for which noise certification

is performed – flyover, sideline, and approach (see Figure 1.5).

There is a lot of information loss when such type of analyses are conducted, which

greatly limits the usefulness of such analysis. In the two types of analyses mentioned

above, information about different locations on the grid is lost or information about the

contour shape is lost. Aggregated metrics such as contour areas and lengths do not retain

information about the shape of the contour. In fact, different shapes of the contour can lead

to the same area and length.

Although such analyses are of limited use, they are the best analyses which can be

conducted on current state-of-the-art noise modeling capabilities. In order to scale analyses

up to entire noise grids with tens of thousands of points, a whole new class of models is

needed. One such modeling process making use of Model Order Reduction is described in

Experiments 2.1 and 2.21.

1Parts of the research described in this chapter are documented in the following publication –

• A. Behere, D. Rajaram, T. G. Puranik, M. Kirby, and D. N. Mavris, “Reduced order modeling methods
for aviation noise estimation,” Sustainability, vol. 13, no. 3, 2021, ISSN: 2071-1050. DOI: 10.3390/
su13031120. [Online]. Available: https://www.mdpi.com/2071-1050/13/3/1120 [246]
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5.1.1 Dimensionality of noise metric modeling

Throughout this dissertation, it has been noted on several occasions that the quantification

of aviation noise is a complex process with the involvement of many high-dimensional

datasets. Before proceeding with the experiments, it is helpful to make a clear distinction

in which high-dimensional dataset is being addressed.

The input space of the aviation noise modeling process is one such high-dimensional

dataset. As noted in Observation 3 from subsection 2.1.2, there are a very large number

of parameters and their possible values which influence aviation noise metrics. Some of

these include external factors which cannot be controlled such as ambient temperature,

humidity, wind speed and direction etc., and pilot-controllable factors such as the choice

of thrust, procedure being flown etc. The input space being high-dimensional is a problem

only when the model itself is computationally expensive, as is the case with aviation noise

computation.

The process itself is computationally expensive because the output space of this

problem is also high-dimensional. This dimensionality is directly related to the typical

size of noise grids. Noise grids have to be defined so that – (a) their overall dimensions

sufficiently cover the area of interest, and (b) their resolution is sufficiently fine/dense,

so that smooth contour lines can be created. This results in typical noise grids with

O(105 − 106) points.

The dimensionality which is addressed in this chapter refers to the output space of the

aviation noise quantification problem. The idea is that by addressing this dimensionality,

the complexity of the noise quantification process can be reduced. This will allow for more

points in the input space to be evaluated, thereby also helping address the dimensionality

of the input space, albeit indirectly.
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5.2 Experiment 2.1

In this section, the experimental setup and results for RQ2.1 are explained. For reference,

RQ 2.1 and H2.1 are repeated below –

Research Question 2.1

How can the high dimension of the solution space be addressed?

Hypothesis 2.1

If Model Order Reduction techniques are used on the noise grid data, then the

solution space can be projected onto a lower dimension space.

The purpose of this experiment is to demonstrate a method by which the high-

dimensional data can be converted into a lower-dimensional space which is easier to

model. By performing this conversion, the amount of outputs to be predicted by a noise

quantification model is reduced drastically. Model Order Reduction (MOR) techniques

from literature were researched and the Principal Component Analysis (PCA) or Proper

Orthogonal Decomposition (POD) technique is proposed to be implemented here.

5.2.1 Principal Component Analysis

The PCA/POD method is a way of reframing a set of data along its principal axis. The

method relies on the Singular Value Decomposition (SVD), which is a generalized form of

the well-known Eigendecomposition of square matrices. The method relies on identifying

orthogonal directions of variation in the dataset which are linearly uncorrelated. Any

datapoint can then be represented by a set of coordinates along each such orthogonal

direction. Typically, it is observed that the first few directions are sufficient to adequately

recreate the original datapoint with acceptably low errors. Thus, a high dimensional
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data point is easily represented by its coordinates along a handful of principal orthogonal

directions.

5.2.2 Formulation of PCA for aviation noise

The first step in performing PCA is to gather the data in a suitable format. Aviation noise

grids are typically represented as 2D matrices, with a row of the matrix representing a row

of receptor points in the East-West direction, and a column of the matrix representing a

row of receptor points in the North-South direction. Even if an irregularly shaped grid of

receptor points is available, the first step is to vectorize the obtained noise metric values.

The idea is to serialize the receptor points and collect all data into a single vector w. This

process is shown in Figure 5.1.

Figure 5.1: Representation of the conversion of 2D noise grid data matrix into a column
vector

The obtained noise vector is a function of the entire input space of the aviation noise

model. For the context of this experiment, the input space is considered to be the set of five

parameters αi, and their respective values. Here, let µ = {α1, α2, α3, α4, α5} represent the

input space. Then, w(µ) represents the vectorized noise grid obtained as a function of the

input space µ.

The following notation is used for the formulation of the PCA –
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• µ ∈ Rd represents the input space of dimension d. The dimension is nothing but the

number of parameters which define the input space, which in this context is five.

• w(µ) ∈ Rm represents the vectorized noise grid obtained of size m × 1. w is the

high dimensional output which has to be modeled, with m ∼ O(105). Note that for

brevity, the dependency of w on µ may not be explicitly mentioned. In such cases,

wi is understood to be w(µi). Such a noise grid is also referred to as the full-order

solution.

• W = [w(µ1) w(µ2) . . . w(µn)] ∈ Rm×n represents a set of n noise grids evaluated

at the input parameters µi collected together as column vectors to form a matrix. In

this context, n = 960. In the terminology of MOR, W is referred to as the snapshot

matrix consisting of various snapshots wi as column vectors.

With the notation and definitions complete, the steps for the PCA can be performed.

Step 1: Computation of principal components via Singular Value Decomposition

The starting point for this step is the snapshot matrix W32481×960 which is factorized using

the Singular Value Decomposition –

Wm×n = Φm×mΣm×nV
T
n×n (5.1)

where Φ, V are real-valued square matrices, and Σ is a rectangular diagonal matrix with

non negative real numbers on the diagonal. It is noted that apart from the possible

rearrangement of the columns of Φ, V and the diagonal entries of Σ, the SVD is a unique

decomposition. The matrices Φ, V are orthogonal matrices, implying that their columns

and rows are mutually orthonormal. The diagonal entries of Σ are known as the singular
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values σi of matrix W .

Σm×n =



σ1 0 . . . 0

0 σ2 . . . 0

...
... . . . ...

0 . . . 0 σn

0 . . . . . . 0

...
...

...
...

0 . . . . . . 0


m×n

(5.2)

Typically, the diagonal entries of Σ are arranged in a descending order, so that i <

j =⇒ σi ≥ σj

Step 2: Selection of Principal Directions

The next step is to identify the principal directions so that the basis of the lower-dimensional

space can be constructed. To aid in this, a selection criteria known as the Relative

Information Content (RIC) is developed. The RIC is a measure which is used to rank

the relative importance of columns of Φ.

RICi =

∑i
j=1 σ

2
j∑n

j=1 σ
2
j

(5.3)

By design, the RICi value increases from 0 to 1 as i increases. The idea is to select a

particular value of i, say k such that RICk is at an acceptable threshold. By the nature

of the PCA method, k ≪ m. With a chosen k, the original snapshot matrix W can be
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approximated as

Wm×n ≈ ΦkΣkV
T
k (5.4)

where Φk ∈ Rm×k,Σk ∈ Rk×k, and Vk ∈ Rk×n. This approximation of W is guaranteed to

minimize the reconstruction error in the L2 norm.

Step 3: Expressing noise grids in new basis

The principal directions obtained in Φk serve as the basis for the reduced order representa-

tion of full order solutions. Thus, any full order solution w can be represented by a linear

combination of these basis vectors, plus some error. In practice, instead of projecting the

complete full order solution w, only the difference from the mean w̄ is projected. Note that

this difference from the mean is still a high-dimensional vector.

w̄ =

∑n
i=1wi

n
(5.5)

w′
i = wi − w̄ (5.6)

Representing this deviation from the mean as a linear combination of the k basis vectors,

the following expression is obtained

w′
i ≈ ai,1ϕ1 + ai,2ϕ2 + . . .+ ai,kϕk (5.7)

=
k∑

j=1

ai,jϕj + eproj,i (5.8)

Noting that w′
i is a shorthand for w′(µi), the coefficients of the linear combination are also

functions of the input space, i.e. ai,j = aj(µi). Given that the basis of linear combination
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are orthonormal, these coefficients are simply the component of w′
i along each basis vector.

aj(µi) = ⟨w(µi)− w̄, ϕj⟩ (5.9)

= ⟨w′(µi), ϕj⟩ (5.10)

Note that with this projection, each full order solution wi of size m × 1 has been reduced

to a collection of coordinates {ai,1, ai,2, . . . , ai,k} along the chosen k principal directions.

Given that k ≪ m, the dimensionality reduction is complete.

Step 4: Quantifying the error due to projection

As noted in the equations above, the choice of neglecting the k+1, k+2, . . .m remaining

principal directions leads to an error due to projection, labeled here as eproj . This error

can be thought of as the difference between the original high-dimensional vector and the

projected lower-dimensional vector as shown in Figure 5.2. This error is computed as –

eproj,i = w′
i −

k∑
j=1

ai,jϕj (5.11)

Step 5: Recreating high-dimensional noise grids

At any point, if the high-dimensional form of the noise grid is required, it can be

approximated by the following equation –

wproj,i = w̄ +
k∑

j=1

ai,jϕj (5.12)

163



Figure 5.2: Visualization of projection from high-dimensional to lower-dimensional space

5.2.3 Results of Model Order Reduction

With the process formulation complete, this subsection presents the results from the

application of the PCA method to the set of 960 noise results.

Choice of number of principal directions

The obtained noise results were compiled into a snapshot matrix W32481×960. The SVD

of this matrix yielded the singular values, leading to the computation of the Relative

Information Content (RIC). As expected, the RIC value quickly approached 1.00 with the

first few principal directions, as shown in Figure 5.3. In fact, the first 12 principal directions

were sufficient to produce the RIC value of 99.9%.

Projection to lower-dimensional space

With the 12 principal directions (also called basis vectors) were identified, the next step

was to project each of the 960 noise results onto the space spanned by these 12 principal

directions. The error resulting from these projections was computed. The relative error was
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Figure 5.3: Variation of RIC with number of chosen principal directions

then computed with the following formula –

eproj,rel,i =
∥eproj,i∥
∥wi∥

(5.13)

The obtained relative projection error distribution is visualized in Figure 5.4 and

summarized in Table 5.1. It is observed that most of the error variation is between the

values of 0.12% to 0.38% with a few outliers. These low error values indicate that very

little information was lost due to the projection, and that much of the original noise grid

could be preserved by the projection. However, it is also noted that there were 44 outliers

as indicated by the Boxplot, which need to be investigated further. While the error for these

outliers was higher than the rest of the cases, the value of the relative error is still no more

than 0.7%.
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Figure 5.4: Relative error introduced by the projection to lower-dimensional space

Visualization of projected noise grids.

In addition to the analysis of the projection error, it is also helpful to visualize how the

projection to lower-dimensional space affected the noise grids. Therefore, the two extreme

cases of minimum and maximum projection error are visualized here.

As noted previously, the projected noise grid vectors are constructed as a linear combi-

nation of the twelve basis vectors. In other words, the noise grid vectors were represented

by twelve coordinates in the twelve principal directions. Thus, the reconstructed grid can

be thought of as a 12th order projection. In addition to this, the 1st, 4th, and 8th order

projections are also visualized here which correspond to RIC values of 77.45%, 97.30%,

and 99.49% respectively.

To visualize the reconstructed noise grid values and compare it to the original full-

order solutions obtained from AEDT, a contour comparison plot it made with a colormap

background. The features of this type of plot are outlined below –
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Table 5.1: Summary statistics for relative error due to projection

Summary Statistic Value

Minimum 0.12

Median 0.22

Mean 0.24

Maximum 0.7

Range 0.58

Standard Deviation 0.0752

Number of outliers 44

1. Solid contour lines represent the original solutions from the full-order model. 4

contour lines are presented representing the 90 dB SEL (innermost contour), 85 dB

SEL, 80 dB SEL, and the 75 dB SEL (outermost).

2. Dashed contour lines represent the projected noise grid recreations, created in the

same levels.

3. The background of the plots is a colormap showing which parts of the grid were

underpredicted (blue colors) and which were overpredicted (red colors). The

intensity of the color indicates the magnitude of difference. Light gray colors indicate

a good match between predicted and original values, representing negligible errors.

A colorbar is included to match the colors with the value of SEL dB difference.

The case with the lowest projection error is Job ID 217 and its recreation is shown

in Figure 5.5. From the plot, it is observed that the 1st order projections are quite poor,

but the quality of projections increases rapidly as the order of projection increases. At 4

basis vectors, the error is limited to ±1 dB SEL. The inclusion of 8 and 12 basis vectors

decreases the error across the grid to even lower values. At 12 basis vectors, the RIC

crosses 99.9% and large sections of the noise grid are recreated with negligibly low error.

The noise contours from the original noise grid and the projected noise grid are almost

coincident at this stage.
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Figure 5.5: Projected noise grid recreation: least error
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Figure 5.6: Projected noise grid recreation: highest error
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The case with the highest projection error is Job ID 936 and its recreation is shown

in Figure 5.6. Similar to the least error case, it is observed that the 1st order projections are

inaccurate, but get better as the order of projection increases. At 4 basis vectors, the error is

still quite high, with some regions exceeding ±2 dB SEL. The inclusion of 8 and 12 basis

vectors decreases the error across the grid to within ±1 and ±0.5 dB SEL respectively. At

12 basis vectors, the error across the noise grid is quite low and large sections of the noise

grid are recreated with negligibly low error, although some pockets of higher error remain.

The noise contours from the original noise grid and the projected noise grid are almost

coincident at this stage, with some exceptions. The 80 dB and the 75 dB SEL contours

show a deviation between the projected and the original noise grid.

It should be noted that although the worst case projection with most error is an outlier,

large sections of the noise grid could still be recreated with minimal error. The error for

most cases is much lower than the error for this outlier case.

5.2.4 Summary and evaluation of Hypothesis

Experiment 2.1 was designed to determine a process by which the high-dimensionality

of the aviation noise grids could be managed. The Principal Component Analysis (also

known as Proper Orthogonal Decomposition) was identified as a Model Order Reduction

technique. The PCA method works by creating a vectorized representation of the full-order

model data in some high dimensional space. By identifying principal axes (a generalized

version of eigendirections), the data could be reoriented and represented as coordinates

along the principal axes.

The dataset obtained in Experiment 1.3 was repurposed for this experiment. A total

of 960 cases were evaluated for their SEL noise metric at a grid of receptors consisting of

401 × 81 receptors. With the identification of the principal axes, the Relative Information

Content metric was computed to determine the appropriate number of directions to retain.

A threshold requirement of 99.9% information retention led to the down-selection of the
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first 12 principal directions.

The selected 12 directions formed the hyperplane onto which the high-dimensional data

was projected. In this lower-order representation, each noise grid was represented simply

by its coordinates along the 12 orthonormal basis vectors. Thus the original noise grid with

32481 values was reduced to just 12, representing an immense improvement. Although this

reduction in dimensionality came with some error associated with the projection, the error

was minimized through the construction and selection of the principal directions.

The best and worst cases with the least and highest error respectively were studied

with visual comparisons of the noise grids and contours. It was observed that although

minor errors remained, a vast majority of the region of noise grid could be recreated with

negligibly small error. Most noise contours could also be recreated correctly.

Revisiting Hypothesis 2.1, the requirement was to show how the full-order solutions

could be projected onto a lower dimensional space. The designed Experiment 2.1

demonstrated that the Model Order Reduction technique called PCA could successfully be

adapted for use with aviation noise metrics. The change in dimensions from 32481 to just

12 with minimal loss of information demonstrated how effective Model Order Reductions

can be for the aviation noise quantification process. Thus, Experiment 2.1 is considered

successful and Hypothesis 2.1 is accepted.

5.3 Experiment 2.2

In this section, the experimental setup and results for RQ2.2 are explained. For reference,

RQ2.2 and H2.1 are repeated below –

Research Question 2.2

How can the reduced solution space be mapped to the input space?
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Hypothesis 2.2

If an interpolation/regression model is developed linking the solution in the latent

space to the parameters, then the reduced solution space can be mapped to the input

space.

In RQ2.1, a process was shown by which the high-dimensional noise grid data could

be projected onto a much lower dimensional space. While the reduction of dimension is

certainly helpful in terms of compression and storage, a new problem arises when the noise

impacts of a previously unseen parameter have to be obtained. In such a case, there is

no pre-existing full-order or reduced-order data. Hence, to complete the second half of the

problem, a method needs to be generated by which the coordinates of a lower-order solution

can be directly predicted as functions of the input parameters. The high-dimensional noise

grid can then be generated from the lower-order solution coordinates using the orthonormal

basis vectors.

5.3.1 Surrogate modeling setup

The entire surrogate modeling effort in this experiment was performed in JMP. The outputs

to be modeled are the twelve coefficients {a1, a2, . . . , a12} which represent the components

of a full-order solution is the lower-dimensional space. The input parameters are the

set of five parameters {α1, α2, . . . , α5} which represent the takeoff weight, takeoff thrust

reduction, altitude of acceleration initiation, energy share percentage, and the ambient

temperature respectively. Consistent with the step-wise regression modeling performed

in Experiment 1.3, the cross-term factors and quadratic factors were also included in the

modeling. Let âi be the approximate surrogate model of coefficient ai. Then, the regression
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model can be represented as

âi ≈ ai (5.14)

âi = fi(α1, α2, α3, α4, α5) (5.15)

Also consistent with the process followed in Experiment 1.3, the five input parameters

and twelve outputs were normalized before any surrogate modeling was attempted.

Training and Validation data

As with any surrogate modeling exercise, it is important to set aside a subset of the available

data for model validation. Model validation is done with data which were not used to train

the model. In this experiment, 25% of cases are set aside of model validation (240 of 960).

The remaining 720 cases are used to train the model. This split was done randomly to

prevent any selection biases from affecting the modeling process.

Models considered

Numerous models are available for evaluation within JMP and a subset of those were

selected for evaluation on the dataset. Each model is described here briefly. Hyperpa-

rameters which are required for some models were set to their default values, or to values

recommended by JMP.

1. Bootstrap Forest – This type of model makes use of many decision trees and takes

their average to form the final model. Each decision tree is fit to a bootstrap sample

of the training dataset. The predicted output from this model is the average of the

predicted values for that output over all decision trees.

2. Boosted Tree – The process of ‘boosting’ a tree involves the building of a larger

decision tree by fitting a sequence of smaller decision trees which are called layers.
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The final predicted output is the of predicted residuals for an observation over all

layets.

3. K-Nearest Neighbors – The KNN algorithm assumes that objects which are similar

in the dataset will be close to each other. Therefore, this supervised learning method

predicts the output as some average of k nearest neighbors to the sampled point.

4. Neural Networks – Artificial Neural Networks are a class of models used for

regression that are inspired by biological neural networks. ANNs make use of hidden

layers of nodes which act as intermediaries between the inputs and the outputs. Many

possible combinations of the number of layers and the number of nodes within a layer

are possible.

5. Support Vector Machines – SVM methods are used in data classification, regression,

and outlier identification. The methods make use of hyperplanes in the high-

dimensional space.

6. Least Squares Fit – Common model fitting method in which the sum of squares of

errors is minimized.

5.3.2 Results of surrogate model

All models described above were evaluated in JMP to assess their suitability for building

the surrogate model. A comparison of the different models for the outputs is shown in

this subsection. Based on the comparison, a single class of model was selected. The

performance of that model on the validation dataset is also shown.

Model comparison and selection

The selected six regression models and their performance on the twelve coefficients to be

modeled is shown in Figure 5.7.
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Figure 5.7: Comparison of regression model performance

It is observed that the best two methods are the Boosted Tree and the Bootstrap Forest

methods, with the former showing slightly better performance overall, with higher R2

values for a6, a7, a10, and a11. The other methods do not seem to work as well, with the

Least Squares fit consistently performing the worst of all methods. Further, the R2 value

has a slight downward trend as the coefficient to be modeled changes from a1 to a12, with a

sharp fall-off for the final coefficient. This can be explained by bringing back the notion of

the Relative Information Content. As the index of the coefficient increases, the information

stored by that coefficient decreases. In other words, there is far less information being held

by coefficient a12 than by coefficient a1. This decrease in information content explains the

slight downward trend in R2 values.

Based on the observations from Figure 5.7, the Boosted Tree algorithm for selected for

further analysis.
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Evaluation of selected model

Once the Boosted Tree algorithm was selected, additional evaluation were performed to

determine the accuracy and goodness of the model fit. First, the model was evaluated on

the validation points, and the resulting R2 values are shown in Figure 5.8.
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Figure 5.8: Comparison of R2 values for training and validation data

The overall trends between the training and the validation datasets is similar, with

the model performing better for the first few coefficients and with a marked decrease in

performance for the latter coefficients. With one exception, the R2 values for the validation

dataset are lower than those for the training dataset.

Next, the predicted values are plotted as function of the actual values for each of the

twelve coefficients in Figure 5.9. In an ideal model fit, all of these plots would look like a

straight and thin y = x lines. For most of the subplots, the expected behavior is observed,

with the cloud of points aligned in the expected direction. A larger spread of points in the

transverse direction indicates larger error in the predictions. Notably, the coefficient a12

which had resulted in a poor R2 score deviates significantly from the y = x behavior.
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Figure 5.9: Predicted by True values for the 12 coefficients
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The next step of plots is shown in Figure 5.10. Each subplot in this figure shows the

absolute error against the true value of the coefficient. An ideal shape here is a cloud of

points centered around the origin, with no discernible distortions in a particular direction.

Again, the notable exception here is coefficient a12 which shows a downward slope

indicating that when the true coefficient values are high, they tend to be underpredicted.

Conversely, when the true coefficient values are low, they tend to be overpredicted.

The magnitude of this error is also quite large, however, as this is the final coefficient

representing the component along the least important chosen principal axis, the error for

a12 should not significantly impact the final noise grid predictions.

The distributions of the absolute and relative errors in the prediction of coefficients ai

are shown in Figure 5.11. From the boxplots, it is evident that there are a large number of

outliers indicating that at some data points, the coefficients could not be predicted with a

sufficiently low error. Discarding the outliers, the relative error is quite low for the first two

coefficients a1 and a2, but increase for the other coefficients.

5.3.3 Predicted noise grids

With the error metrics and goodness of fit measures evaluated for the regression model,

the focus shifts on the prediction of the noise grids. The end goal of this experiment, is to

determine the noise grid results as a function of the input parameters.

The predicted noise grid is constructed using the predicted coefficient values of

a1, a2, . . . , a12 obtained by evaluating the model at the validation parameter conditions.

It should be noted that the predictions wpred,i are being performed in the lower-dimensional

space, and hence the comparison is also made to the projected noise grids wproj,i. The
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Figure 5.10: Absolute Error by True values for the 12 coefficients
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Figure 5.11: Distribution of the absolute and relative errors in the prediction of coefficients

formula for reconstruction is given by –

wproj,i = w̄ +
k∑

j=1

ai,j (5.16)

wpred,i = w̄ +
k∑

j=1

âi,jϕj (5.17)

The two cases with the minimum and maximum projection error, Job ID 217 and 936

respectively are recalled at this stage for comparison. The comparison is made between

the predicted and the projected noise grids, and not between the predicted and the true

noise grids. Thus, the predictions are judged solely by their ability to recreate the projected

noise grids, and not the original noise grids, regardless of how accurate the projected grids

actually are when compared to the original noise grids.

The same features of the comparison plot are used which were explained in subsub-

section 5.2.3. Here, the solid contour lines show the original projected data and the dotted

contour lines show the predicted projected data.
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The comparison for Job ID 217 is shown in Figure 5.12. The same four subplots

showing the contour recreation with 1, 4, 8, and 12 basis vectors. It is observed that the

recreation of the 1st order projection could be done very accurately with coincident contour

lines and very low error across the noise grid. Most of the grid was recreated accurately

or with a slight overprediction. This accurate recreation is to be expected, as only the â1

model is being used, which did have a high R2 value and low errors.

As additional basis vectors are added, the quality of the prediction decreases. This is

due to the poorer fitting models for the latter coefficients, for example â8 and â12. With

8th and 12th order projections, the predicted noise contours start to show some deviation

at the East end of the 75 dB and 80 dB SEL contours, although they do remain coincident

for large sections of the grid. Additionally, regions of the grid may show underprediction

or overprediction, but the magnitude of this difference is limited to within ±0.4 dB SEL.

The comparison for Job ID 936 is shown in Figure 5.13. The predictions in this case

seem to perform worse than the predictions for Job ID 217. The trend of prediction quality

remains, the prediction is more accurate for the 1st order projections, and worsens as

additional basis vectors are included in the projection. The contours could accurately be

recreated in the top subplot, but started to diverge especially at the East ends of the contours.

The overall noise grid also shows regions of both underprediction and overprediction with

the magnitude limited to ±1.5 dB SEL. For the 12th order projection, the majority of the

noise grid is overpredicted, although a small region near the ‘neck’ of the contours (near x

location 1.5 nmi and y location 0 nmi) shows underprediction.

5.3.4 Summary and evaluation of Hypothesis

Experiment 2.2 was designed to develop a surrogate model which could link the original set

of parameters {α1, α2, α3, α4, α5} to the coefficients of projection in the lower-dimensional

representation. The experiment started where E2.1 left-off, with the projected coordinates

for each of the 960 evaluated jobs along the 12 identified basis vectors.
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Figure 5.12: Prediction of projected noise grid with least projection error
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Figure 5.13: Prediction of projected noise grid with highest projection error
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Various different surrogate modeling techniques were evaluated, and the best perform-

ing overall was determined to be the Boosted Tree method. The chosen technique was then

used to fit the prediction models for all 12 coefficients individually. 240 cases were set

aside for validation purposes and were not used to train the model. Various goodness of fit

measures were employed to ensure that the 12 coefficients could be predicted reasonably

well by the trained models. Nevertheless, the performance of the surrogate model decreased

for coefficients of the latter basis vectors. This drop in performance was explained by

the decrease in information content for the latter basis vectors. With more information

contained within the data, there is a hidden pattern that can actually be captured by the

surrogate model.

After the evaluation of the model fit, actual noise grids were compared. The same

two cases from Experiment 2.1 were visualized to determine whether the noise grids could

accurately be recreated by the surrogate model in the projected space. The visualization

was constructed with 4 different choices of basis vectors, and provided insight into the

dependence of accuracy of predictions on the basis vector being modeled. Generally, the

1st order projections could be predicted quite accurately due to the accurately fit models

for the first coefficient a1. As additional basis vectors were included, the error increased.

It was noted that this error increase was only due to the prediction. The projection error, as

noted in Experiment 2.1, does decrease when more basis vectors are included.

Revisiting Hypothesis 2.2, the requirement was to develop a model/process by which

the solution in the projected space could be linked to the original input parameters to the

noise quantification tool. This requirement was fulfiled by the creation of surrogate models

for the coefficients along the twelve identified principal directions identified in Experiment

2.1. Therefore, the original input parameter alues could be linked to the twelve coefficients,

which could then provide a noise grid solution in the projected space. Thus, Experiment

2.2 is considered successful, and Hypothesis 2.2 is accepted.
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5.4 Integration of MOR and surrogate modeling

With the conclusion of Experiments 2.1 and 2.2, separate capabilities were developed to (a)

project high-dimensional noise grid data onto a lower-dimensional representation and (b)

link the projected data to the input parameters. The experiments also showed visualizations

of noise grids as they are projected, and then predicted in the projected space. This section

combines the Model Order Reduction step with the surrogate modeling step into a process

which is called Reduced Order Modeling.

By integrating both experiments into a single process, the overall results obtained from

predictions in the projected space can be compared to the original full-order solutions. This

will help in understanding the total error which will be introduced when such Reduced

Order Modeling is performed. The visualization of the original high-dimensional data,

lower-order projection, and prediction in lower-dimensional space accompanied by the

projection, prediction, and total errors is shown in Figure 5.14. The total error here is

defined as the vector sum of errors resulting from projection and prediction –

etotal,i = epred,i + eproj,i (5.18)

= (wpred,i − wproj,i) + (wproj,i − wi) (5.19)

= wpred,i − wi (5.20)

This total error is a vector which shows the error at each point in the noise grid. The

relative total error can be obtained by making use of vector norms –

etotal,rel,i =
∥etotal,i∥
∥wi∥

(5.21)

The distribution of total error across the entire grid for for Job ID 217 and 936 is shown

in Figure 5.15. It is observed that the overall quality of prediction increases with the use of

higher order projections, as indicated by the lower error values. The first order predictions
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Figure 5.14: Visualization of prediction in lower-dimensional space and errors

do not do a good job of recreating the true noise grid, with differences as large as ±8 dB

SEL for the Job ID 936 without considering any outliers.

Finally, the predicted projected noise grids are compared to the true noise grids.

This is the comparison which shows how well the Reduced Order Model (combination

of projection from high-dimensional space to lower-dimensional space and prediction of

coefficients in the lower-dimensional space) performed when compared to the full-order

model predictions.

The comparison of predicted noise contours for Job ID 217 is shown in Figure 5.16.

This case had the least projection error among all 960 cases. For this case, it is observed

that the prediction quality improved significantly as more basis vectors/principal directions

were used. With the use of 12 basis vectors corresponding to 99.9% RIC, the noise grid

could be recreated quite accurately. The noise contours could mostly be recreated exactly,

although some minor divergences were observed with the 80 dB SEL and 85 dB SEL

contours.

The comparison of predicted noise contours for Job ID 936 is shown in Figure 5.17.

This case had the highest projection error among all 960 cases. As with the previous case,
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Figure 5.15: Box plot showing the distribution of error across the noise grid for predictions
of different order projections

the quality of prediction improved considerably with the inclusion of a higher number

of basis vectors. The 75 dB SEL contour showed more apparent deviations from the

true contour. Additionally, the entire noise grid seemed to be slightly underpredicted, as

indicated by the various shades of blue color on the colormap. However, the magnitude

of difference was quite low for large sections of the grid, which is particularly impressive

given that this case was an outlier with a 7% relative projection error.
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Figure 5.16: Comparison of predicted noise grids in projected space to original true noise
grids, Case 217
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Figure 5.17: Comparison of predicted noise grids in projected space to original true noise
grids, Case 936
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5.5 Summary of Research Area 2

This chapter presented the findings from Experiments 2.1 and 2.2, which supported their

respective Hypotheses. All formulated Hypotheses were accepted, and the Research

Questions leading to those hypotheses were answered.

The original high-level Research Question 2 is recapped below. This led to the

requirements of model order reduction and surrogate modeling which were addressed by

Research Questions 2.1 and 2.2 respectively.

Research Question 2

How can the process of computing aviation noise metrics be made more

computationally efficient?

Research Question 2.1 led to the creation of a Model Order Reduction process in

which the high-dimensional noise grid data could be projected onto a lower dimensional

space. The Principal Component Analysis method was successfully adapted for this

application. A set of 960 noise results, each representing a high-dimensional noise grid was

successfully projected onto a lower-dimensional space which could be represented much

more compactly. The error associated with this projection was quantified and analyzed to

ensure that the original full-order noise grids could still be recovered accurately.

Research Question 2.2 led to the creation of a surrogate model in the lower-dimensional

space. This model was developed to link the original input parameters of the noise

quantification process to the coefficients representing the components along each of the

chosen principal directions. This enabled the prediction of noise grids for previously

unseen parameter values, without ever needing to run the full-order model. The error

associated with this prediction was quantified and analyzed to ensure the correct type of

model was being fit.

The methods and processes obtained from Experiments 2.1 and 2.2 were then combined
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to produce a Reduced Order Model. The predictions of this Reduced Order Model were

then compared to the original full-order predictions to analyze the accuracy of predictions.

It was determined that the ROM could reproduce the original result accurately for almost

all cases. For some outlier cases, the contours could not be reproduced exactly and showed

minor deviations in small regions of the noise grid.

Together, these two RQs, their accompanying hypotheses, experiments, and the

techniques developed in those experiments satisfied all requirements of the high-level

Research Question 2. This concludes the discussion on Research Area 2.

191



CHAPTER 6

OVERALL METHODOLOGY AND DEMONSTRATION

With the conclusion of the Research Plan execution, the overall methodology can be

assembled. The overall methodology is presented in this chapter and a small application of

the developed methodology is demonstrated.

6.1 Methodology Objectives

It is helpful to revisit the original Motivating Research Question which was posed

in chapter 1.

Motivating Research Question

How can the process of aviation noise quantification be improved to enable

rapid quantification of noise metrics to facilitate parametric trade-off analyses and

optimization efforts?

The Research Objective, also first seen in chapter 1, was designed as a goal to address

the Motivating Research Question.

Research Objective

Develop a methodology to address inherent complexities in the aviation noise

computation problem, thereby enabling rapid quantification of noise metrics in a

variety of scenarios, thus facilitating parametric trade-off analyses and optimization

efforts.

The inherent complexities of the aviation noise quantification problem were identified

to be linked to the dimensionality of the problem. It was observed that both the input and
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the output space of any aviation noise quantification process were high-dimensional. In

the input space, it was observed that aircraft trajectories, which are crucial to determining

noise impacts, could not be suitably represented using a set of parameters. On the output

side, it was observed that due to the nature of noise analysis which is fundamentally based

on grids of noise metrics, the quantification process was computationally expensive.

An Overarching Hypothesis was developed to answer the Motivating Research Ques-

tion, and to satisfy the Research Objective.

Overarching Hypothesis

If a methodology is developed that

1. can efficiently represent real-world time-series flight trajectory data with a

parametric definition obtained using an inverse map;

2. which is then used as an input to a field surrogate model developed using

model order reduction;

then rapid quantification of noise metrics is enabled in a variety of scenarios, which

facilitates parametric trade-off analyses and optimization efforts.

The methodology envisioned in the Overall Hypothesis can be constructed with the

research formulations, experiments, and findings contained in this dissertation. Based on

the Research Objective, the following requirements are stated for this methodology –

1. Rapid quantification of noise metrics in both real-world and hypothetical scenarios.

Real-world scenarios refer to the situation when a large amount of real-world flight

data, obtained from either ground or aircraft sources are available, and an accurate

noise impact assessment must be made. Hypothetical scenarios refers to a situation

in which theoretical profiles or trajectory designs are being evaluated.

2. Parametric trade-off analyses and optimization, which do not rely on assumed or
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averaged conditions. This required the elimination of categorical variables and the

creation of parametric definitions of aircraft trajectories.

6.2 Components of Methodology

The overall methodology is shown in Figure 6.1. The complete methodology can

be decomposed into three modules, which are related to the research plan identified

in chapter 3.

1. The Real-World Quantification module is used when a large number of real-world

flight data in the form of time-series is available and the resultant noise metrics must

be evaluated. The clustering process developed in RQ1.2 and the inverse mapping

process developed in RQ1.1 are present in this module. The output from this module

is a set of parameter values which can accurately represent the entire set of real-world

trajectories.

2. The Trade-off analysis/Optimization module is used when theoretical profiles are

being designed. The factor screening process helps with the identification of

important parameters which influences candidate profile design. The process itself

can be repeated until the user is satisfied with the selection of candidate profiles. The

output of this module is the parametric definition of the chosen candidate profiles.

3. The Field Surrogate Modeling module is used to then rapidly model the noise metrics

of any given input parameter combination. When using the methodology, it is

assumed that the field surrogate model as already been developed, i.e. the offline

cost has been incurred. The online cost of obtaining noise grids for the given input

parameters is then done with practically real-time speed.

Thus, there are two modes in which the methodology can be deployed. The first use-

case is for the rapid and accurate evaluation of real-world time-series flight data, and the
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Figure 6.1: Overall Methodology
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second use-case is for many-query applications such as parametric trade-off analyses and

optimization, where many inputs have to be evaluated.

6.3 Demonstration of Methodology

Although every component of the methodology has been demonstrated individually

through the various experiments, these experiments often used different sets of data. The

interconnections of the different modules have not yet been shown. With the overall

methodology now constructed, it is demonstrated on a practical case study, where the noise

impacts of a large number of real-world flights will be quantified.

6.3.1 Real-world quantification

The first mode of use for the methodology is for the quantification of aviation noise impacts

for real-world time-series flight trajectory data. Before deploying the methodology, it is

helpful to note what the existing challenges for performing such impact analysis are –

• Real-world time-series trajectory data are uniquely represented. Thus, a set of 1000

flights, would need a 1000 evaluations of a noise model, which traditionally is

prohibitively expensive in terms of computation cost.

• Almost all real-world flight data, whether it is based on ground-based RADAR, or

aircraft-based sensors, lacks information about the aircraft weight and thrust. While

weight is relatively easy to estimate, the variation of thrust throughout the aircraft

trajectory is difficult to estimate.

Step 1: Collection of real-world data

The first step is to collected the real-world data and pre-process it. Here, the dataset which

was introduced in Experiment 1.1 is used. To recap, this dataset represents a set of 1361

departure operations flown by the Boeing 737-800 aircraft out of the SFO airport, by a
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single airline. The data is obtained from the OpenSky Network. These flights represent

trip distances between 1500 and 2500 nmi. The complete set of flights is visualized

in Figure 6.2.

Figure 6.2: Visualization of 1361 flights from OpenSky dataset

Starting with this set of real-world data, the objective is to quantify the noise impact

of each of these flights. Traditionally, capturing the variation in real-world trajectories has

been difficult due to the need to model each flight uniquely. However, with the developed

methodology, each flight does not have to be modeled.

Step 2: Trajectory clustering

Next, the collected flights were put through the clustering process outlined in RQ1.2.

This process included the resampling of data to a consistent basis, evaluation of similarity

function, creation of clusters and validation of created groupings, and the identification of

representative medians for each cluster. The identified groupings and their representative

medians are visualized in Figure 6.3.

The size of clusters is important as it impacts the scaling of the noise results obtained
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Figure 6.3: Visualization of the four identified clusters and their median

for each median further downstream in the process. For example, to obtain the DNL noise

metric result, the noise contribution of each individual flight is aggregated. Therefore, in

this case, the noise contributions of the representative flights would need to be scaled by

the number of flights before adding the contributions of each representative to obtain an

airport level noise result.

Step 3: Inverse mapping of cluster medians

Next, the identified median representative of each flight inverse mapped onto a set of four

procedural profile parameters. The median representative for each cluster and its closest

matching flight which yields the inverse map are shown in Figure 6.4. These identified

parametric definitions are summarized in Table 6.1.

It is observed that although the numeric error values are high, the visualizations confirm

that the best suitable match for each median representative flight was identified. Thus at this

stage, every single real-world flight has been converted to a parametric definition through
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Figure 6.4: Visualization of the four identified clusters, their medians, and respective
inverse mappings

the inverse map of its representative median cluster flight.

Step 4: Evaluation of noise metrics

With the determination of the parameters, only one final step remains. The constructed

field surrogate model, or Reduced Order Model in chapter 5 is used to evaluate the SEL

noise metric of each of the four representative median flights. The ROM needs an input for

temperature, in addition to the four parameters. Here, the temperature is assumed to be 60

◦F. The separate SEL noise grids representing the single median flight from each cluster is

shown in Figure 6.5.

Summary

With the obtained noise grids and contours, the methodology is complete. Over the four

steps outlined above, the methodology was able to receive a large number of real-world

time-series flight data and obtain the noise metrics and contours for each real flight by
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Figure 6.5: Noise contours for each of the four cluster median representative flights
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Table 6.1: Inverse parametric mappings of the four cluster median representative flights

Cluster A B C D

Number of flights in cluster 1310 36 9 6

Representative Median ID 969 1295 186 1380

Closest matched AEDT flight ID 195 90 150 238

Error of mapping process 8.24% 12.93% 16.09% 16.16%

Takeoff Weight, lbm, α1 151100 151100 169950 169950

Takeoff thrust reduction, α2 0.90 1.00 0.95 0.85

Altitude of acceleration initiation, ft, α3 1600 1600 1000 1600

Energy Share Percentage α4 40 60 40 40

evaluating a field surrogate model on the parametric definition of the median representative

flight for its cluster.

This demonstration of the methodology shows how the complexities of handling real-

world flight data and the high dimensional noise grid outputs was addressed. With the

constructed methodology, rapid quantification of aviation noise is made possible, thus

facilitating parametric trade-off analyses and optimization efforts. The original Research

Objective is therefore considered to be fulfilled.

6.4 Discussion on improvements to current modeling methods and tools

With the overall methodology now developed and demonstrated, it is helpful to revisit

the state-of-the-art modeling methods and tools and see how the developed methodology

improves upon them. Both use-cases are discussed here.

6.4.1 Improvements to real-world quantification

First, consider a situation where a large number of real-world trajectories have to be

analyzed for their noise impact. Such type of analysis is often required for airport-level

noise contours where an averaged day of operations might need to be modeled. There are

two possible processes by which such modeling might be carried out in a tool like AEDT.
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The first option is to simply use the pre-defined default departure operation which removes

all variation in the real-world trajectory. This pre-defined departure operation is created to

represent real-world variation in an averaged sense, and thus gets rid of the variability in

the real-world dataset that might be desirable.

The other option is to model each real-world flight uniquely by directly using its

trajectory and performance as a fixed-point profile. There are two shortcomings to this

method. Firstly, the thrust variation along the trajectory must be known and specified in

this method. As noted earlier, many real-world data sources based on ADS-B or RADAR

do not contain thrust information. Second, modeling each flight uniquely is feasible only

for a small number of flights. As each flight needs to be properly formatted and processed

to get the noise results, the process does not scale well to large number of flights.

These two modeling options can be thought of as the two end points of a spectrum.

On one side, the default departure operation is fast to use but cannot provide variability.

On the other side, fixed-point profiles can be used to retain variability but do not scale

well for large number of flights. The methodology developed here provides a suitable

compromise – variability is retained by having multiple clusters, and scalability is provided

by only modeling the representatives of each cluster. This represents an improvement

on the current state-of-the-art and using this method may lead to more accurate noise

quantification analyses for real-world flights.

6.4.2 Improvements to optimization

Second, consider the situation where an airline or airport is trying to minimize the noise

footprint from their operations. Given the modeling scenario (aircraft, weight, runway

orientation), the objective would be to minimize the noise impact. In addition to the profile

design, this noise impact is dependent on external conditions such as the elevation of the

airport, ambient temperature, ambient humidity etc. Thus, to do a true optimization effort,

a comprehensive study of all possible scenarios must be conducted.
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As noted in the literature review, this comprehensive study is infeasible with existing

methods and tools. At present, such studies would require subject matter expert input and

some heuristics would be used to narrow the scope of analyses. A common method for

scoping down is limiting the consideration to a single elevation (such as a sea-level airport)

or to a single weather condition (airport average or standard day). Typically, a handful of

profiles would be designed and evaluated for their noise impact. The best performing of

these alternatives would then be chosen as the ‘optimal’. Although this type of optimization

is limited in its scope, it is the best that current methods and tools can support.

The switch to field surrogate modeling, as shown in the developed methodology

introduces rapid noise quantification capabilities and enables true optimization. While the

fundamental improvement in speed is certainly important, the facilitation of new type of

analyses is the main benefit. External conditions such as ambient weather can be included,

and many thousands of candidate profiles can be evaluated, instead of just a handful.

Additionally, due to the nature of the parametric model, the design space of profiles can

be explored efficiently. Thus, the developed methodology represents an improvement over

the current state-of-the-art and using it enables more comprehensive optimization studies.

6.5 Expansion of methodology capabilities

The methodology developed in this dissertation had a focus on improving the traditional

noise modeling process. By surveying the literature, it was identified that improving the

modeling capabilities for aircraft level noise impacts by replacing physics-based and semi-

empirical models with parametric field surrogate models would provide the most benefit.

This section provides a discussion on how the developed methodology interfaces with

existing literature, and how it can be used to improve airport-level noise modeling.
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6.5.1 Modeling of additional/generic aircraft types

The experiments throughout this dissertation used the Boeing 737-800 aircraft as an

example aircraft type for the various processes developed. The methods developed here,

however are quite agnostic of the aircraft type and can be adapted for use with other

aircraft types for which existing noise modeling capabilities exist. For example, AEDT

contains the relevant equations, coefficients, and data to model the noise impacts of almost

all commercial aircraft. To adapt this method to work with a different aircraft type, such as

an Airbus A320, the process must be repeated using data specific to that aircraft.

The inverse map developed in RQ1.1 for example uses a pre-computed library of

trajectories which must match the aircraft for which real-world data is available. Using the

same parametric definition, the A320 can be modeled to obtain the pre-computed library.

Then real-world trajectories of the A320 can be compared using the similarity metric to

obtain the inverse mapping. Similarly, the field surrogate model must also be updated to be

based on the full-order model results corresponding the the A320 aircraft.

Another approach can be to develop generic models of different aircraft categories,

such as regional, narrow-body, and wide-body instead of using specific models of aircraft.

AEDT does not provide generic aircraft modeling capabilities, however some studies in

literature have attempted to build generic aircraft models for the purposes of aircraft

noise estimation [247]. For example, the GENERICA method developed by LeVine et.

al. [114] provides such generic aircraft definitions for which this methodology could be

built. By using appropriately designed generic vehicles, the amount of data in the pre-

computed inverse-map library and the field surrogate model can be greatly reduced while

simultaneously expanding the applicability of the methodology.

6.5.2 Improving airport-level noise computations

Another enhancement of this methodology is to link it with airport-level analyses. In

literature, airport-level analyses have been made rapid by maintaining a library of pre-
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computed vehicle-level noise grids. By rotating and combining these pre-computed grids,

an airport level grid could be obtained. This process was developed by Bernardo et. al. and

is called the Airport Noise Grid Interpolation Method (ANGIM) [38, 112, 113]. The key

limitation of this was that vehicle-level grids were not sensitive to the aircraft trajectory,

ambient weather, airport elevation etc.

Choosing to include those sensitivities would have implied expanding the pre-computed

library by a factor of 10 to 100, which would be impractical due to storage requirements.

Noise grid information is high-dimensional data with many thousands of points per grid.

The methodology developed here solves the problem by providing a rapid method of

obtaining the vehicle-level noise grids in a variety of scenarios. Thus, by merging this

methodology with ANGIM, airport-level noise analyses can be conducted rapidly – rapid

vehicle-level noise quantification from this methodology, and rapid airport-level noise

quantification with ANGIM.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

This chapter concludes the dissertation with a summary of each Research Question

formulation and accompanying experiments, key contributions resulting from this research,

and the identification of potential avenues for future work which can draw from the work

presented in this dissertation.

Starting with the high-level Motivating Research Question and Research Objectives,

an initial literature review was performed and key observations were highlighted. The

observations led to the discovery of two formally stated Gaps in modeling capabilities.

Each Gap was addressed by a high-level Research Question, which in turn was decomposed

into five specific Research Questions. These then led to another round of review of

methods and processes which helped in the formation of Hypothesis. To determine whether

each Hypothesis could be accepted, detailed Experiments were proposed and performed.

With the conclusion of all experiments, the Research Plan was complete, and the overall

methodology could be constructed, which fulfilled the Research Objective.

7.1 Summary of Research Plan

The Research Plan was divided into two key areas, which are summarized here. The overall

research formulation of this dissertation is presented in Figure 7.1.

7.1.1 Summary of Research Area 1

The first research area was identified to deal with the problem of parametric representation

of aircraft trajectories. First, RQ1.1 solved the problem of representation, RQ1.2 solved

the problem of scalability, and RQ1.3 solved the problem of efficient exploration.

In Research Question 1.1, a parametric representation for aircraft trajectories and
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Figure 7.1: Overview of the Research Formulation
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performance characteristics was proposed and an inverse-map method was developed in

order to create parametric representations of real-world time-series flight data. The inverse-

map was developed on the notion of trajectory similarity, and the evaluation of such

similarity on a pre-computed library of trajectories. Thus, a real-world flight was assigned

the parametric definition of the pre-defined trajectory it was most closely aligned with.

In Research Question 1.2, a supplementary method was proposed to make the inverse-

mapping and subsequent noise quantification process more efficient for large real-world

flight datasets. A clustering process was developed to group flights together based on their

similarities in altitude, ground speed, and vertical speed over ground track distance. Once

clusters had been identified, a representative flight from each cluster was chosen. This

chosen representative was then put through the inverse map process, to obtain a parametric

definition for all flights within the parent cluster.

In Research Question 1.3, the focus shifted from real-world noise quantification, to

theoretical procedural profile design. In addition to the four profile parameters, an external

parameter in the form of ambient temperature was added. A large set of noise results were

obtained, and the raw results were converted into the aggregated metrics of contour length

and area. These aggregated metrics were then used to build parameter screening models

to help identify the relative importance of each of the five input parameters on each of the

aggregated contour metrics. The obtained rankings showed which parameters were most

influential, and which did not appreciably influence any given metric.

7.1.2 Summary of Research Area 2

The second research area was identified to deal with the problem of high-dimensionality

of the output noise grids from any noise quantification process. First, RQ2.2 solved the

problem of model order reduction and RQ2.2 solved the problem of linking solutions to

the input parameters.

In Research Question 2.1, a model order reduction technique called Principal Compo-
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nent Analysis was adapted for use with aviation noise grids. This technique projected

the high dimensional data along a new set of principal directions computed using the

singular value decomposition method. In this projected hyperplane, each noise grid could

be accurately represented with only a handful of coordinates along each of the chosen

principal directions. Thus, the dimensionality of noise grids was greatly reduced while

minimizing the loss of information due to the projection.

In Research Question 2.2, a prediction model for the projected data was constructed to

link the input parameters directly to the coordinates in the projected hyperplane. Thus, the

complete process of aviation noise estimation could be bypassed, after the construction

of the prediction surrogate model. By using the predicted coordinates in the lower-

dimensional space, it was demonstrated how the original high-dimensional noise grids

could be reconstructed. In combination with the projection step, this developed model

was referred to as a Reduced Order Model or a field surrogate model.

7.2 Contributions

The primary contribution of this dissertation is the creation and demonstration of a method-

ology for the rapid and accurate quantification of aviation noise metrics. In particular, the

developed methodology showed that it was possible to rapidly predict entire noise grids

using field surrogate modeling, instead of relying on scalar-valued surrogate models of

aggregated metrics such as contour areas. This represents a significant improvement from

noise modeling techniques in literature, where either speed is compromised for accuracy

or vice-versa. A salient feature of the developed methodology is the adaptation of Model

Order Reduction techniques for the aviation noise quantification problem, which represents

a significant shift away from traditional modeling paradigms in this domain of research and

represents the core improvement which enabled rapid and accurate modeling.

The theoretical improvements of this new paradigm of models was also demonstrated

using a large and comprehensive set of noise results obtained by the state-of-the-art
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Aviation Environmental Design Tool. With the projection and prediction techniques

developed in the second research area, the process of constructing, validating, and using

the field surrogate model was documented.

The second set of contributions from this dissertation are the data-driven techniques

created for the parametric representation of aircraft trajectories. Existing environmental

modeling options for real-world flights were significantly limited in their scope and/or

accuracy. With the absence of thrust data, most real-world flights had to be approximated

by a single averaged procedural profile. However, a single averaged flight could not

possible represent the wide range of variation observed in real-world trajectories. This

dissertation provides methods for both handling the large number of unique flights, and

also for mapping such flights to a parametric representation. A key benefit of parametric

representation is that it provides a way for thrust estimation of real-world flight data using

only available trajectory and speed information. To the best of the author’s knowledge,

this dissertation is the first to document an inverse map process created to generate

parametric definitions of real-world flight data, particularly in the context of aviation noise

quantification.

The third and final contribution of this dissertation is the global sensitivity analysis of

aviation noise metrics to the identified input parameters. The step-wise regression method

used provided a ranking of parameters (and their interactions) in terms of their influence

on the noise grids and contour dimensions. Additionally, it also identified parameters

which were not influential on the output metrics of interest. This serves to provide a

recommendation to future modeling studies, where only a limited number of designs may

be potentially evaluated. In such restrictive conditions, the parameters identified with the

most effect should be sampled more finely, whereas the ones with negligible impacts can

safely be discarded or set to their default values.

In summary, the developed methodology and underlying techniques fill the gaps

observed in literature by facilitating the rapid quantification of aviation noise metrics in
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a variety of scenarios and thus enabling many-query applications such as parametric trade-

off analyses and optimization studies. The developed framework can be deployed both for

accurate real-world noise quantification, or for optimization studies such as those for the

design of noise abatement departure procedures.

7.3 Recommendations for Future Work

Aviation sustainability is and will continue to be at the forefront of aviation research in the

future. The successful mitigation of aviation noise is a key component of sustainability,

and thus there will always be a need for the rapid evaluation of aviation noise metrics.

Although the hypotheses tested in this dissertation have answered the posed Research

Questions, closed the identified gaps, and fulfilled the Research Objective; there are a

potential avenues for further improvement or extension of the developed methodology.

These avenues are discussed here, in the order in which their relevant research question

appears in this dissertation.

The inverse map was developed to provide a method for real-world aircraft data to be

represented with a handful of parameter values. This proposed method made use of only

the aircraft trajectory in the form of aircraft altitude and ground track distance, and worked

well to identify the inverse mappings for a large number of real-world flights. However,

some outlier flights could not be accurately mapped due the presence of unexpected flight

events such as a level-off during the climb-out phase. Thus, the identification of outliers

would be helpful in improving the accuracy of the inverse mapping. Another potential

source of improvement would be the identification of the start of takeoff-ground roll. Some

real-world flights have unexpectedly long ground roll segments, likely due to the inclusion

of some pre-departure taxiing segments. Finally, this process may also benefit from the

inclusion of additional parameters such as the speed of the aircraft or the time elapsed at

various points through the flight.

Another key area of improvement would be the inclusion of the ground track of flights
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throughout the methodology. Currently, only the variation in the 2D vertical profile of the

flight is considered. However, including the ground track of the flights would make the

methodology more accurate by expanding the analysis to 3D trajectories. Ground tracks

can be defined parametrically by using their vector representations. A vector ground track is

represented as a sequence of segments of varying lengths, radii of curvature and directions

of curvature. Thus, the parametric definition of the flight trajectories could be expanded

to include these additional ground track parameters. The field surrogate model can also be

expanded to include sensitivities to ground track.

While the reduced order modeling capability demonstrated in this dissertation showed

great promise, it was only tested with the SEL noise metric. The applicability of this

method to other noise metrics remains to be seen. Even with the SEL noise metric,

many outliers could be observed at the projection step. For these outliers, the projection

from the original high-dimensional space to the identified lower-dimensional hyperplane

resulted in significant errors. It is possible that the original cloud of high-dimensional

data is not well suited for linear dimensionality reduction techniques such as the Principal

Component Analysis. Therefore, non-linear Model Order Reduction techniques such as

isomap and other manifold learning algorithms should be investigated. The application of

these models to similar datasets may yield in more accurate dimensionality reduction with

fewer outliers.
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