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SUMMARY 

Aging is modulated by genetic and environmental cues; however, it is difficult to 

study how these perturbations modulate the aging process in a robust, high-throughput 

manner. Methods to gather large-scale behavioral data for aging studies are labor-intensive, 

lack individual-level resolution, or lack precise spatiotemporal environmental control. In 

addition, tools to analyze large-scale behavioral data sets are difficult to scale, unable to be 

broadly applied across complex environments, or fail to detect subtle behavioral changes. 

In this thesis I develop tools to enable robust, microfluidic culture and behavioral 

analysis of C. elegans to examine how environmental cues, such as dietary restriction, 

influence longevity and behavior with age. In Aim 1, I engineer a robust pipeline for the 

long-term longitudinal culture and behavioral monitoring of C. elegans in aging studies 

with precise spatiotemporal environmental control. In Aim 2, I develop a flexible deep 

learning based pipeline for detecting and extracting postural information from large-scale 

behavioral datasets across heterogeneous environments. In Aim 3, I characterize how the 

full behavioral repertoire of individuals change with age, along with examining how these 

age-related behavioral changes are modulated by different dietary restriction regimes. The 

completion of this thesis provides 1) a new toolset to robustly explore how genetic or 

environmental effects influence longevity and healthspan, 2) a flexible pipeline for 

analyzing large-scale behavioral data in C. elegans, and 3) insight into how environmental 

perturbations influence health through age-related changes in behavior. 
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CHAPTER 1. INTRODUCTION 

In the past few decades, global lifespans have dramatically increased due to 

advancements in medicine. However, with this rise in lifespan, there is an accompanying 

rise in age-related diseases. Cases of cardiovascular disease have almost doubled to 523 

million in the thirty years, costing $363 billion annually in the United States alone.1,2 

Global rates of cancer are expected to increase by 47% within the next twenty years, while 

neurodegenerative diseases in the United States are expected to double by 2060 to 13.9 

million cases.3,4 Although these illnesses vary in physical, mental, and societal impacts 

they all have a shared, underlying cause – aging.  

Aging, the functional decline of an organism over time, is largely universal across 

species. Once thought of as an inherent part of the human experience, the past few decades 

have brought new insights into the underlying causes of aging. For instance, factors such 

as cellular senescence, deregulated nutrient sensing, or a breakdown in mitochondrial 

regulation and proteostasis have been shown to drive the aging process across species.5  

However, it is difficult to examine how these biological causes are driven and modulated 

by genetic or environmental factors, particularly in mammalian organisms. As a result, it 

is difficult to design interventions to delay the aging process in order to not just prolong 

lifespan, but also extend the period of healthy, disease-free functional living (i.e. the 

healthspan) or an individual. 

Caenorhabditis elegans (C. elegans) is a commonly used model organism for aging 

studies. It already has demonstrated its usefulness in discovering how different molecular 

pathways, such as the insulin/IGF-1-like (IIS) pathway, can dramatically alter the aging 
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process.5,6 However, although these organisms are easy to cultivate and study throughout 

their entire lifespan, there are some key technical difficulties in performing precisely 

controlled large-scale aging studies, in terms of data collection, data analysis, and 

subsequent interpretation.  

In this thesis, I detail robust and high-throughput tools and techniques to better 

study the aging process in C. elegans, along with biological applications demonstrating the 

impact of genetic and environmental perturbations on aging behaviors. The following 

sections serve as a brief review on prior literature and research on aging in C. elegans (with 

a particular focus on healthspan), detail the limitations of existing technologies, and 

introduce the objectives of this work.  

1.1 Aging in C. elegans 

Aging studies in humans and mammalian models can be difficult to perform due to 

their long natural lifespans, environmental complexity, and high cost.7 As a result, C. 

elegans is a commonly used, powerful, and tractable tool for aging studies. This 1 

millimeter long nematode has a relatively short lifespan (~2-3 weeks) making it possible 

to monitor individuals throughout their entire adult lifespan. It is relatively easy to culture 

and maintain large populations of animals, and there are a wide range of established tools 

for genetic manipulation allowing researchers to examine how environmental and genetic 

perturbations influence the aging process. The organism produces large, isogenic 

populations making it amenable for large scale studies. Lastly, it has a significant degree 

of genetic homology to humans (~38% for protein-coding genes)8 potentially making 

identified pathways or transcription factors in worms translatable across species.  
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1.1.1 Genetic effects on aging 

This organism has already been used to identify key genes and signal pathways 

involved in the aging process. A canonical example is the IIS pathway, in where it was 

discovered that a mutation in the daf-2 receptor in the nematode dramatically results in 

individuals that live twice as long as wild-type individuals.9,10 Additional downstream 

transcription factors in the pathway - such as DAF-16/FOXO, HSF-1, or SKN-1 – also 

impact longevity in the worm, and are associated with stress response, cytoskeletal 

integrity, and protein quality control.9–17 Crucially, the pathway’s effect on longevity is 

conserved across species, ranging from Drosophila melanogaster, mice, and humans.18–21 

In addition to the IIS pathway, a wide variety of other conserved pathways and factors have 

also been implicated in regulating lifespan, and largely are associated with stress-response 

or nutrient sensing genes that respond to environmental cues.22–26  

1.1.2 Environmental effects on aging 

Response to stressors and nutrient availability is perhaps best exemplified by the 

case of dietary restriction (DR). This evolutionarily conserved process, first demonstrated 

in rats but later found across species from yeast to potentially humans, is a prime example 

of how environmental or sensory cues can have a large influence on longevity.27–33 DR has 

been shown to largely activate either the IIS or target of rapamycin (TOR) pathways; 

however, different regimes of DR (such as altering the food levels, frequency, or method 

of restriction) have been shown to trigger different nutrient sensors and subsequent 

transcription factors, indicating a flexibility and wide variety of responses to different 

environmental cues .34,35 Even just sensory cues in response to food have been shown to 
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influence longevity across species.36–39 In addition to nutrient availability, a wide range of 

stressors have also been shown to impact longevity. For instance, modulating body 

temperature has been shown to have similar effects on longevity in both C. elegans 

invertebrates and mammalian models.40–43 Thus, the interactions between environmental 

conditions, the individual’s perception of its surroundings, and resulting genetic response 

strongly influence the aging process.  

1.1.3 Healthspan in C. elegans 

Aging encompasses both an increased risk of death and increased frailty, whether 

it be an increased risk for age-related diseases, declines in sensory abilities (such as vision, 

hearing, or even taste), or reduced physical capabilities.44 As such, it is crucial to measure 

not just the longevity of the individual in response to targeted perturbations, but also the 

health throughout its lifespan to also ensure a prolonged healthspan. For example, if an 

intervention increases the lifespan of the individual without proportionally maintaining or 

extending its health, there is still a substantial disease burden on the individual, making it 

undesirable to pursue.  

There is no set method to measure health and healthspan. For instance, in humans 

this can be done through tracking metrics ranging from the maximum amount of oxygen 

consumption during exercise as a measure of cardiorespiratory fitness, mental health 

assessments to characterize cognitive decline, to a short physical performance battery 

(SPPB) test in a clinical setting as a measure of physical ability.45–47 Similarly, there are 

many ways to gauge healthspan in C. elegans. Prior work has examined physiological 

markers such as mitochondrial morphology, muscular structure, or autofluorescence to 
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measure lipofuscin accumulation.48–52 However, perhaps the most common method of 

measuring healthspan is by gauging sarcopenia or physical ability through examining basic 

behavioral metrics (such as maximum velocity traveled over a set period of time or 

thrashing rates in liquid).48,50,51,53,54 To consistently track these metrics over time requires 

significant time and labor and often is unscalable for large-scale aging studies, particularly 

if using traditional data collection and analysis tools. 

1.2 Existing tools to measure and analyze aging in C. elegans 

Traditionally researchers have used lifespan as the measure of aging, with 

researchers equating longer lifespans with slower rates of aging. Conventional lifespan 

assays for C. elegans require the periodic assessment of motility after mechanical 

stimulation, with a lack of response indicating death.55 They are often done manually, with 

researchers tracking populations on agar plates seeded with E. coli, stimulating each worm 

with a metal every other day, with the average lifespan on the population indicating the 

overall effectiveness of the intervention of interest. Similar to traditional lifespan studies, 

the more recent healthspan assays typically require the periodic manual subsampling of a 

population and manually counting or measuring the phenotype of interest under a 

microscope.48–51,53,54,56 Both assays require large amounts of manual labor, can be prone to 

experimenter bias, and lack precise environmental control over time. For example, 

although plates are typically kept within temperature-controlled incubators, the plates are 

periodically removed for scoring, resulting in unintended and uncontrolled temperature 

fluctuations, which may influence phenotypes of interest, such as behavior or lifespan. 

Specific behavioral metrics, such as the extent of movement or the types of behaviors 

performed, are time-consuming, prone to bias, and difficult to quantify on a large-scale. 
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Furthermore, they often fail to study these trends at an individual-level resolution, therefore 

masking any intrapopulation variability or trends that may point to different aging trends 

within the population.  

It is extremely difficult to perform large-scale aging studies (in terms of examining 

both longevity or health metrics of interest) both on a collection and analysis front using 

the conventional techniques. Although there are some existing methods that have attempted 

to address and reduce this barrier for large-scale analysis in terms of both data collection 

and subsequent analysis, they too have limitations, as detailed below.  

1.2.1 Existing techniques for large-scale data collection for aging studies in C. elegans 

A major difficulty in performing large-scale aging studies is the amount of manual 

labor required to culture, perturb, collect, and finally analyze aging data. The subsequent 

sections detail two distinct veins of approaches that aim to address this challenge. First, I 

discuss a variety of methods for collecting large-scale data sets and examine the existing 

limitations with those approaches. Second, I discuss the lack of behavioral analysis 

methods able to accurately analyze the large sets of data generated from the recent 

advancements in data collection.  

1.2.1.1 Automated methods for aging studies 

To address the challenge of performing large-scale lifespan studies, researchers have 

recently developed methods designed to automate the assay process. For instance, the 

Lifespan Machine uses modified flatbed scanners as a low-cost large-scale imaging tool, 

allowing researchers to periodically scan and observe movement across large swaths of 
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different populations cultured on standard agar plates.57 Although easily amendable to 

large-scale studies and traditional lifespan assay protocols,58 there are limitations to this 

technique. For example, due to the use of scanners as an imaging tool, it is difficult to 

obtain frequent imaging timepoints, preventing the acquisition of high-content behavioral 

data to examine healthspan.  

There are several C. elegans longitudinal culture devices that could be used to 

examine behavior or health metrics over long periods of time (i.e. on the time scale of 

days). These systems culture individual worms on a solid substrate (either agar or a PEG 

gel) and use several low-cost cameras or modified robotic handlers to automate the imaging 

process to automatically record activity over time.59–62 They obtain high-content health 

information on a large scale, with many doing so on an individual worm level resolution, 

allowing researchers to better observe variability in aging within the isogenic population. 

However, they are all “closed-system” culture devices, therefore lacking precise control in 

regulating the organism’s immediate environment. For instance, many individuals are 

given ad libitum amounts of food at the beginning of the experiment, with the amount of 

food changing and decreasing based on the worm’s consumption rate. Furthermore, one is 

unable to introduce dynamic stimulus into the environment (such as pharmaceutical 

intervention or altering their diet midway through their lifespan), limiting the types of 

studies and extent of effects one could investigate.29,63,64 While these technologies address 

the data collection bottleneck through the automated data collection, they lack the required 

precise environmental control ideal for lifespan and aging studies.  

1.2.1.2 Microfluidic approaches towards aging studies 
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Microfluidic devices have been a relatively recent tool in the manipulation and 

culture of C. elegans.65–70 Their ability to handle small volumes of liquid, the 

biocompatibility and tunable mechanical properties of polydimethylsiloxane (PDMS), the 

elastomer used to create these devices, and the similar sized scaled features to that of C. 

elegans allows these devices to easily handle and manipulate organisms while providing 

precise spatiotemporal environmental control.71–73  

As such, as there a variety of existing devices that could be adapted to measure 

phenotypes linked to healthspan, along with devices explicitly designed for performing 

lifespan assays. For example, devices designed to enable high-throughput imaging of 

worms at high levels of magnification could be used to measure physiological traits, such 

as autofluorescence or the structure and organization of the musculature.65,74–76  There are 

devices specifically designed to measure traits such as fecundity or pharyngeal pumping 

rates, metrics that have previously been used to determine the health of individuals.77,78 

However, while these devices are adept at measuring specific phenotypes of interest, they 

are unable to culture worms for long-periods of time, particularly on the scale of their entire 

lifespan. 

In contrast, there are devices specifically designed for long-term culture for aging 

studies.79–82 These devices are often limited in the range of environmental conditions they 

are able to provide, culturing worms in axenic media or low food conditions that are 

atypical of conventional lifespan assays. The micro-scale size of the device features results 

in extreme difficultly to robustly flow bacterial food into the device for the duration of the 

worm’s lifespan. Due to the known impact of food and dietary restriction on lifespan, these 

reduced long-term food levels could likely result in confounding lifespan results.82 
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Additionally, these devices are often not easily scalable. They either lack the capability to 

culture large numbers of worms on a single device (due to having a large footprint for each 

individual) or simply culture worms as a large population, preventing experimenters from 

tracking individuals on a longitudinal basis. Thus, although existing microfluidic devices 

for studying C. elegans lifespans allow for precise spatiotemporal environmental control, 

they either lack experimental robustness, longitudinal tracking, are limited to low food 

levels, or have not demonstrated the ability to scale up for high-throughput studies. 

1.2.1.3 Automated methods of quantifying aging in C. elegans  

With the strides in collecting large-scale data for aging studies for C. elegans, there 

is a need to analyze the large sets of generated data in a scalable, robust manner. Typical 

methods of measuring lifespan – manual inspection of individuals under a microscopy for 

signs of movement after a mechanical stimulus – are infeasible to perform at scale. 

Therefore, there is a need for automated methods to extract and quantify phenotypes of 

interest.  

Within the past few years, there have been a rise in the number of analysis pipelines 

designed to address this gap. For instance, when performing lifespan assays, experimenters 

track and measure the extent of coarse movement to automatically determine whether an 

individual is dead without the need for manual assessment.57,60,62 For more complex 

information, such as examining behavior with age, there are a plethora of tools that can 

aide experimenters in easily measuring and calculating metrics of interest.83–87 For 

example, Tierpsy Tracker is a popular worm-focused software that allows experimenters 

to track and extract behavioral information of individuals, such as the speed of the worm 
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and basic postural information, throughout the video.83 It uses basic image processing 

techniques, such as background subtraction and intensity based thresholding, which are 

parameters optimized by the experimenter, and are subsequently used to extract out the 

worms of interest. Though these tools are highly advantageous for conventional 

experimental conditions (such as when a worm is cultured on a high-contrast 

environmental condition with no other objects nearby) they can be difficult to accurately 

use and scale across heterogeneous environments or experimental conditions. 

1.3 Thesis Objective 

Although there are existing tools that have reduced the burden of performing large-

scale aging studies in C. elegans, they still have significant limitations in terms providing 

flexibility for exploring the impact of environment on the aging process. The purpose of 

this thesis is to develop robust, flexible, and automated methods to study the aging process 

in C. elegans under precise environmental conditions. This encompasses both the long-

term culture and subsequent behavioral analysis of large populations and culminates in 

examining how the behavioral repertoire changes with age and how different forms of 

dietary restriction modulate those changes.  

1.4 Thesis Outline 

This thesis consists of five chapters. Chapter Two presents an automated 

microfluidic-based platform and robust pipeline for large-scale, long-term aging studies. 

This chapter details improvements to both the system’s design and culture protocol for 

increased experimental viability and usability. It then demonstrates the system’s potential 

application in large-scale aging studies, exploring how genetic and environmental 
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perturbations influence longevity and behavioral decline over time, displaying individual-

level resolution. Chapter Three discusses the development of a flexible, deep-learning 

segmentation pipeline for extracting behavioral metrics from worms cultured in complex 

and heterogenous environments. In this work, deep learning is applied to extract 

meaningful, biological data on a large-scale. Chapter Four presents a biological 

application of the long-term culture and behavioral analysis developed in previous 

chapters, exploring how health and aging are influenced by the environment. This work 

defines the behavior repertoire of aging with single animal resolution and examines how 

the repertoire changes within an isogenic population and across different dietary restriction 

regimes. Lastly, Chapter Five provides a conclusion and suggestions for future work. 
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CHAPTER 2. A ROBUST PIPELINE FOR THE LONG-TERM 

CULTURE AND LARGE-SCALE BEHAVIORAL MONITORING OF 

C. ELEGANS FOR AGING STUDIES 

This chapter is adapted from a research article entitled “An automated platform to 

monitor long-term behavior and healthspan in Caenorhabditis elegans under precise 

environmental control” published in Nature Communications Biology in 2020.88 This was 

co-authored in collaboration with Dr. Mei Zhan and Dr. Yongmin Cho. 

2.1 Introduction 

In this chapter I discuss the development and optimization of an automated 

microfluidic-based platform designed to capture high-throughput, long-term, longitudinal 

behavioral recordings under precise spatiotemporal environmental control, resulting in the 

Health And Lifespan Testing Hub (HeALTH). To demonstrate the versatility and 

robustness of the platform, several large-scale aging studies were performed, examining 

how longevity and behaivoral decline varied across  1) IIS mutants, 2) chronic caloric 

restriction, and 3) culture temperture. 

2.2 Background 

Environmental factors play a major role in the health and longevity of an individual. 

39 However, existing methods of studying lifespan and healthspan in C. elegans are limited 

and lack the ability to provide precise environmental control. Traditional lifespan and 

healthspan assays require large amounts of manual labor, making it difficult to scale for 
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different genotypes or environmental conditions.89 Recent high-throughput methods 

developed for scoring longevity or observing behavior over time lack precise control in 

regulating the organism’s immediate environment.57,59,60,62 For instance, dietary restriction 

(DR), an evolutionarily conserved environmental perturbation that modulates aging, 

cannot be studied as food levels deplete over time within these closed culture systems. 

Existing microfluidic devices for studying C. elegans lifespans allow for precise 

spatiotemporal environmental control, but often lack experimental robustness, longitudinal 

tracking, are limited to a range of low food levels, or have not feasibly demonstrated the 

ability to scale up for high-throughput studies.79–82 As a result, there is a need for a robust 

method to probe a wide variety of environmental conditions in a high-throughput manner, 

providing precise spatiotemporal control throughout the entirety of the organism’s lifespan. 

To address these limitations, previous members of the lab, Dr. Mei Zhan and Dr. 

Yongmin Cho, developed a platform designed to provide automated behavioral monitoring 

of individuals throughout the adult lifespan (from Day 2 Adult to death) under precisely 

controlled environmental conditions as shown in Figure 2.1.90 The platform uses a time-

shared, low-cost CMOS camera mounted on an automated x-y stage to allow for automated 

acquisition of behavioral data in scalable manner, while still being both cost and space-

effective. A commercially available white LED ring was mounted to the end of the 

collimator, providing constant illumination to the worms. A Peltier-based, thermal control 

module was developed to maintain the desired temperature throughout the lifespan of the 

worms. A microfluidic chamber array, previously used for observing behavior for chemical 

screening with single-animal resolution, was adapted for use (Figure 2.1b,c).91 The device 

was designed for Day 2 adult animals and consists of 1.5 mm circular chambers connected 
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by a larger serpentine channel, and allowed for robust, characterized fluid exchange across 

the population. The microfluidic device coupled with a custom-made pressure-driven food 

delivery system provided continuous flow to the animals, providing constant exposure to 

the desired food concentration.  

 

Figure 2.1. Overview of the original platform. A) Main modules of the system. Image 

credit from Dr. Mei Zhan’s thesis.90 B) Worm chamber array and zoomed-in insert showing 

the loading channel (b), restriction point (c), culture chamber (d), and small outlet channels 

(e).91 

As a proof of concept, an initial trial of experiments was conducted across a variety 

of genetic and environmental conditions. While the lifespans of the individuals appeared 

comparable to traditional plate assays under certain conditions, there were indications that 

the culture resulted in adverse effects for a few of the experimental conditions, resulting in 

unexpected longevity trends across genotypes and different environmental conditions 

(Figure 2.2a,b). For example, although literature has established daf-16 as a short-lived 

strain, in the initial set of experiments its average lifespan surpassed that of the wild-type 

and was comparable to the daf-2 population. Additionally, when exposing wild-type worms 
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to a range of static, thermal conditions (ranging from 15°C to 25°C) the population reared 

at the 15°C had a significantly shorter lifespan than those reared at warmer temperatures, 

a trend contradicting known literature.41,42 In addition, a large subset of data was unable to 

be analyzed due to poor imaging conditions. For example, the population cultured under 

OD6005 had extremely poor contrast and visibility, making it difficult to accurately quantify 

and assess its behavioral decline over time (Figure 2.2c). Lastly, these experiments were 

extremely difficult to perform and lacked robustness. The experiment required constant 

hourly monitoring throughout the entirety of the experiment to ensure and prevent clogging 

or contamination in the device. Although the hardware was engineered for scalability, there 

was a strong need to modify and optimize the platform and experimental culture protocol 

to improve the throughput and ease of the experiments.  

 

Figure 2.2. Preliminary longevity studies and behavioral recordings. A) Longevity of IIS 

mutants. B) Longevity of WT individuals under thermal perturbations. C) (top) Image of 

the device, with the red box insert highlighting (bottom) the magnified chamber. 

2.3 Materials and Methods 
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2.3.1 C. elegans culture 

The following strains were used: N2, QL12 daf-16(mu86) I, and QL390 daf-

2(e1368) III. Worms were grown at 20°C and fed live E. coli OP50 on agar plates for two 

generations. The synchronized progeny of the F2 generation was obtained within a six-

hour period, grown at 20°C, and fed live E. coli OP50 on agar plates until the L4-stage 

where the worms were either loaded into the microfluidic device or used for manual 

lifespan assays. 

2.3.2 Microfluidic device fabrication 

Microfluidic devices were fabricated from PDMS using standard soft lithography 

techniques and bonded to a glass coverslip using plasma bonding. Devices were sterilized 

by autoclaving before usage. 

2.3.3 E. coli culture and preparation 

Bacterial culture protocols are similar to previously published protocols.92 We grew 

E. coli (HB101) overnight in filtered LB at 37°C within a shaking incubator. We then 

spiked the culture with carbenicillin (50µg/ml) continued culturing for an additional 30 

minutes and chilled it at 4°C to inhibit growth. We spun down the cultures at 2400 rcf at 

4C for 20 minutes and re-suspended the pelleted bacteria in S Medium with Pluronic F-

127 (0.005%), carbenicillin (50µg/ml), and kanamycin (50µg/ml) to prevent the risk of 

bacterial aggregation and contamination during subsequent culture. Bacterial growth was 

measured by sampling a five-fold dilution of the culture before centrifugation and 

measuring the OD600 of the sample. The samples were resuspended to concentrations of 
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OD600 10 and kept at 4°C until use.  For DR experiments, the OD600 10 stock was diluted 

with S Medium with Pluronic, carbenicillin, and kanamycin until reaching the desired 

concentration.  

2.3.4 C. elegans culture on-chip 

Worms are loaded into the microfluidic device using a two-step pressurized loading 

process previously developed in our lab.91 They are then mounted onto a temperature 

control module and cultured at 20°C in bacterial concentrations of OD600 10 with 5uM C22 

on-chip to mitigate any effects DR may have on the developmental process and prevent 

progeny. When mounting devices on the temperature control module, a thin layer of silicon 

oil was applied between the silicon surface and the glass coverslip for enhanced thermal 

conductivity and improved contrast for imaging. At Day 2 of adulthood, worms were then 

shifted to the desired temperature and food level. Every other day, upstream in-line filters 

were changed to prevent excessive bacterial accumulation. Every four days, we exchanged 

upstream and downstream tubing and downstream resistance devices to prevent bacterial 

accumulation and added new bacteria at the desired concentration with 5uM C22 to the 

pressurized food source. All filters, tubing, and food source bottles were sterilized by 

autoclaving before use to prevent potential contamination.  

 

Custom reservoirs filled with the bacteria are pressurized by the pressure box to 

creating flow through the device. A 0.22um filter is placed between the pressure source 

and reservoir to reduce the risk of contamination. To prevent accumulation, the bacteria 

within the pressurized reservoirs is continuously agitated with a stir bar. Additionally, a 

series of mesh filters are placed between the reservoir and device to prevent any bacteria 
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aggregates from entering and clogging the microfluidic device. The resistance device 

downstream of the device and pressure sensor limits the flow rate of the device. We used 

an average flow rate of approximately 15µL/min across all conditions. Every hour, devices 

underwent an increased ‘pulsed’ flow for 5 seconds, with an average flow rate of 

approximately 275 µL/min, to provide additional mechanical stimulation and to help 

reduce bacterial accumulation within the upstream tubing.  

2.3.5 Manual lifespan assays 

Manual lifespan assay protocols are similar to previously published work.92 6cm 

Nematode Growth Medium (NGM) plates were supplemented with 5uM C22 and 50ug/ml 

carbenicillin to prevent progeny and potential contamination. For the first two days, worms 

were placed on plates seeded with lawns of HB101 concentrated at OD600 10 and cultured 

at 20°C. At Day 2 of adulthood worms were transferred to the desired environmental 

conditions and subsequently transferred regularly to fresh plates until the end of the 

reproductive period. Worms were gently stimulated with a platinum wire pick every other 

day to assay for movement; lack of response was scored as death. We performed at least 

three different biological replicates for each genotype examined in the manual assays. Raw 

lifespan data for the plate assays are included in Appendix A.2.1.  

2.3.6 Video acquisition  

Videos were taken twice an hour for 10 seconds at an acquisition rate of 14 fps 

using a 1.3 Megapixel monochrome CMOS camera (Thorlabs DCC1545M camera) 

coupled with a 10X close focus zoom lens (Edmund #54-363). The magnification was set 

to allow all chambers to be within the field of view (24 mm x 19.2 mm). Illumination was 
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provided by a set of concentric red LED rings (Super Bright LEDs 60 and 80mm LED 

Halo Headlight Accent Lights) to reduce the amount of blue light exposed to the worm. To 

prevent excessive, strong light exposure to the worm, the LED was on only while viewing 

devices or during video recordings.  

2.3.7 Behavioral analysis  

To analyze the generated behavioral recordings, we developed a custom MATLAB 

code. The user is presented with a background-subtracted frame of the device and selects 

the center locations of the four corner chambers of the device. The center locations of the 

chambers within the device are then interpolated and recorded, giving us the region of 

interest (ROI) for each worm. To account for potential shifts in the device placement over 

time, we select a static portion of the initial device video – typically a patterned feature in 

the microfluidic chip separate from the fluid flow path. We then perform image registration 

using cross-correlation for the patterned feature for each video and translate shifts in the 

patterned feature to the chamber locations. After extracting the location of each worm, we 

measure raw movement within the chamber (in the form of the pixel difference across 

frames in a video) and track this metric as the worms age. Worms are scored as dead if no 

raw movement is detected after a period of two days. We validated a sample of the lifespan 

results automatically generated with our code with manual curation of the videos and have 

found no significant difference between the two conditions (Appendix A.2.2).  

Due to the large volume and frequency of behavioral recordings, we examined a 

subset of our data, looking at behavior every 12 hours. For each time point, we sampled a 

video of worms undergoing a constant flow rate and a video of worms immediately after 
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experiencing an increased, ‘pulsed’ flow. When examining behavior immediately after 

switching to 15°C for the thermal oscillatory case, we examined videos every other hour 

for increased temporal resolution.  

A major behavioral characteristic we examined was the duration of high activity 

movement. To characterize whether the behavior was seen as high or low activity, we 

performed k-means clustering with two groups using the built-in MATLAB function. The 

clustering was done within each experimental group. 

To examine intrapopulation differences we divided each experimental condition 

into cohorts based on their lifespan. The shortest-lived cohort consisted of the bottom 20th 

percentile, while the longest-lived cohort consisted of the top 20th percentile for each 

experimental condition. Relative behavioral decline within experimental conditions was 

compared for the shortest and longest-lived cohorts, using the Kolmogorov-Smirnov test; 

no significant difference was found.  

2.3.8 Statistical analysis  

For each experimental condition, we performed at least three different biological 

replicates. Raw lifespan data for each analyzed individual cultured on HeALTH, along with 

corresponding experimental conditions and trial information, is included in Appendix A.1. 

To identify and characterize the sources of variance across experimental trials we 

performed a mix-model approach. Similar to previously published work we used GLMs 

using the lme4 v.1.12 package in R.93 We accounted for variance due to different trials, and 

devices or plates within the trial; however, we did not include variance due to different 

batches of bacterial food. 
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Lifespans for both on-chip and plate experiments were analyzed via Kaplan-Meier 

and significance was calculated with the log-rank test in JMP Pro14. Two-sample 

Kolmogorov-Smirnov tests were performed in MATLAB (2018b) using a built-in function. 

Remaining statistical tests (such as one-way ANOVA followed by Tukey’s HSD test, 

Pearson’s correlation coefficient) were performed in GraphPad Prism 5.  

2.4 Results and Discussion 

2.4.1 Engineering the culture system for improved experimental robustness 

To address some of the irregularities previously obtained, along with increasing the 

feasibility of using the system on a large-scale basis, several modifications were 

introduced. The sections below detail changes made on the system hardware, microfluidic 

device design, and experimental protocol. These modifications were made to improve the 

experimental robustness and ease-of-use of the system, increase the amount of gathered 

behavioral information, and reduce any potential stressors to the individuals, thus resulting 

in prematurely shortened lifespans. 

2.4.1.1 System optimization: Modifications of the microfluidic device 

The initial microfluidic device was designed to load and culture worms on Day 2 

of adulthood. To extend the period of monitoring and reduce environmental variability 

early in life the worm chamber array device was adapted to L4 animals, scaling the loading 

channel dimensions for the smaller sized individuals (Figure 2.3). This was non-trivial 

since the loading channel dimensions need to balance being able to effectively trap and 

hold a single L4 to ensure single loading, while avoiding extremely small feature sizes that 
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are easily susceptible to clogging during long-term culture. This dimensional scaling did 

reduce the loading efficiency of the device (45% compared to 56% singly loaded 

chambers), since the smaller size of the worm allows for multiple individuals to bypass the 

restriction channel more easily (Figure 2.3d); however, it still is able to effect trap a large 

number of single individuals within chambers as shown in Figure 2.3c.  

 

Figure 2.3. Worm chamber array device for L4-stage worms. A) Initial chamber array 

device sized for Day 2 of adulthood. B) Modified chamber array device sized for loading 

L4-stage worms. C) L4 sized device loaded with worms. White arrows indicate chambers 

with single-loaded worms (n = 42 individuals). D) Loading efficiency of single-loaded 

worms of the L4 device (27 ± 0.76 single individuals, n = 56 devices) and the Day 2 device 

(33.5 ± 2.31 single individuals, n= 18 devices). 

2.4.1.2 System optimization: Modifying the illumination system 

Another concern was the extent of light exposure on the worms. Literature has 

hinted at the damaging effects high levels of light exposure, particularly blue light, have 

on the health and longevity of C. elegans; by constantly exposing them to white LEDs for 

imaging illumination, it could potentially result in adverse stress and shortened 

lifespans.94,95 An additional concern was the constant long-term exposure to visible light 
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due to the use of a commercially available white LED ring. To mitigate this, the 

commercial LED ring were replaced with a set of custom concentric red LED rings that 

were integrated and controlled by the system GUI, with illumination only occurring during 

recording periods. This minimized light exposure in the blue wavelength, reducing its 

deleterious impact on longevity. 

2.4.1.3 System optimization: The addition of a pressure monitoring system 

A major technical hurdle is the difficulty of maintaining long-term culture on-chip 

throughout the lifespan of the worms. One of the major points of failure in experiments 

was the frequency of bacterial clogging and accumulation within the device. Over time, 

accumulation results in the formation of biofilms, blocking the micrometer-scale features 

of the device and clogging and preventing fluid flow, and causes the premature death of 

the population cultured within the device. This accumulation can be difficult to catch by 

eye and would require near constant monitoring to ensure that no significant clog would 

form within the device, significantly limiting the scale and robustness of the experiment. 

Prior published work that flows bacteria within microfluidic devices either 1) uses 

shorter timescales (on the scale of hours to days) or 2) uses much lower concentration 

levels to reduce the incidence of accumulation over the period of week.76,77,79–82 As such, 

there was no established way of being able to monitor and reduce the rate of bacterial 

aggregation and clogging in a robust manner. To address this limitation, a clog detection 

system was created, consisting of miniature pressure sensors that continuously monitor the 

pressure detected downstream of the device (Figure 2.4). Variations and drops in pressure 

correlate to changes in flow rate indicating the presence of bacterial accumulation or 
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clogging in the upstream filter. The system provides real-time measurements of the 

pressure and is fully integrated to the system and user GUI. Drops below a set threshold 

are reported in real-time to the experimenter via text, alerting the user to either exchange 

upstream filters or tubing.  

 

Figure 2.4. Overview of the clog detection system. A) Conceptual diagram of the clog 

detection system based off the continuous pressure-drive flow. B) Flow diagram of the 

system and location of the pressure sensor. C) Representative example of monitored 

pressure over time and the presence of a clog (indicated by the red arrow). Red dashed lines 

indicate pressure thresholds of when the experimenter is notified by the system for 

irregularities in flow.  

2.4.1.4 Protocol optimization: The use of C22 for progeny prevention 

A common method of preventing progeny in aging studies is through the use of 5-

fluoro-2’-deoxyuridine (FUdR), which inhibits the germline.57,60,93,96,97 However, recent 

studies have indicated that the use of FUdR may have gene-specific effects on lifespan, 
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hinting at unknown, downstream effects on longevity and increased lifespans.98,99 To avoid 

these confounding effects, egg-5(RNAi) was initially used to prevent eggshell formation 

of the fertilized embryos.92 Although effective on plate, it was not fully effective in liquid, 

resulting in the bag of worms phenotype and live progeny within the device. Due to issues 

with the efficacy of egg-5 RNAi for progeny blocking, we used C22, a small molecule that 

impairs eggshell integrity leading to embryonic lethality.100 This drug preserves the 

reproductive system and fecundity of animals, while preventing the occurrence of viable 

progeny without any adverse effects on health. It has been shown to be widely applicable 

across genotypes and environmental conditions. 

To verify the efficacy of the drug in our hands, we performed an initial proof of 

concept trial of progeny preventing using C22 in liquid culture. L4 stage N2 worms were 

cultured in 48-well plates in OP50 (OD6005), with C22 concentrations of 0, 1.25, 2.5, 5, 

and 10µM (n = 10 worms per condition).  With the exception of the control condition, no 

progeny was seen across a 72 hour period, and after 240 hours only worms cultured in the 

1.25 µM condition contained progeny. This validates the effectiveness of C22 as a method 

of progeny prevention in microfluidic and liquid environments.  

2.4.1.5 Protocol optimization: On-chip bacterial food conditions 

Another potential issue is whether the initial culture and behavioral monitoring 

protocol resulted in inadvertent stress on the developmental stages of individuals, causing 

increased levels of stress and premature death in certain experimental conditions. For 

example, the observed bagging phenotypes could indicate stress related to food availability.  
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To reduce those potential stressors, I aimed to culture the worms in higher 

concentrations of E. coli. Balancing optical visibility, contrast between the worm and 

bacteria, and the desire to have high bacterial concentration levels, the concentration of 

OD60010 was selected. Being twice the concentration of the highest food level initially 

examined in the device, it was crucial to ensure that the bacteria would be able to robustly 

flow for long periods of time without accumulation within the small microfluidic features 

or clogging within the device. This concern was further exacerbated by the transition to the 

L4 device, due to the smaller dimension of the loading channel. In addition to the 

implementation of the clog detection system to HeALTH, the strain of E. coli was altered, 

transition from using OP50 to HB101, commonly used in C. elegans liquid culture used 

for its reduced tendency for aggregation compared to OP50.101  

2.4.2 HeALTH recapitulates known behavior and longevity trends in IIS mutants 

A major challenge when developing long-term culture systems is to preserve known 

longevity trends across populations and to ensure no adverse effects prematurely shorten 

the lifespan of the population. To validate the system, we measured the lifespan of a wild-

type (N2) population, along with two different insulin/IGF-1 pathway mutants, daf-

2(e1368) and daf-16 (mu86), which are well-known long- and short-lived mutants 

respectively. Longevity assays performed in HeALTH are comparable to lifespans done 

using traditional plate assay, for both wild-type and mutant populations (Figure 2.5). 

Importantly, our platform exhibits similar variability (including trial-to-trial, across 

devices or plates, and individual variation) across all replicates compared to plate-based 

trials, indicating similar experimental reproducibility (Appendix A.2.3, Appendix 

A.2.4).93 This ability to recapitulate both the average lifespan length and variability in 
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comparison to plate assays underscores the viability of using HeALTH to perform lifespan 

studies.  

 

Figure 2.5. Longevity of IIS mutants cultured on HeALTH. A) (left) Lifespan curves for 

wild-type N2 (18.00 ± 0.23, n = 245 individuals), daf-16(mu86) (12.49 ± 0.26, n = 95), and 

daf-2(e1368) (40.32 ± 0.74, n = 105) populations cultured on the platform and (right) bar 

graph with the average lifespan for each genotype (error bars are SEM, p < 0.0001, via log-

rank test). B) (left) Lifespan curves and (right) bar graph for N2 (19.25 ± 0.21, n = 220), 

daf-16 (14.18 ± 0.17, n = 221), and daf-2 (31.20 ± 0.28, n = 206) for corresponding plate 

controls (error bars are SEM, p < 0.0001, via log-rank test). 

Next, we examined how health is impacted during aging by monitoring behavioral 

decline (Figure 2.6). To do so, we examined how raw movement – measured in terms of 

pixel differences from the first and last frame of the video – changed for each individual 

across time. Previous literature demonstrated the need to look at evoked behavior as an 

accurate measure of behavioral decline during aging.51,60,102 Our microfluidic device 

provides mechanical stimulus through fluid flow, allowing us to observe how stimulated 

locomotion changes as individuals age; however, for our environment the mechanical 
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stimulus resulted in no significant difference in average movement with age (Appendix 

A.2.5).  

 

Figure 2.6. Movement decline across IIS mutants. A) Heatmaps showing individual 

behavioral decline for different behavioral metrics across different genotypes over time. B) 

(top) Population averaged raw movement across mutants (error bars are SEM). (bottom) 

Relative population average activity for raw movement normalized to lifespan across 

mutants (error bars are SEM). Relative behavioral decline of daf-2 is statistically 

significant from the other conditions. (Kolmogorov-Smirnov test, p = 0.0121). c) (left) 

Duration of high activity for raw movement across genotypes and (right) relative fraction 

of life in high activity for raw movement for each genotype (error bars are SD, *** p < 

0.0001, via one-way ANOVA followed by Tukey’s HSD test. Non-significant differences 

are not marked).  
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Similar to previous studies, across all genotypes there appears to be a consistent 

initial period of frequent ‘high activity’ movement, followed by a period of sporadic ‘low 

activity’ movement until the individual’s death.50,51,60,103 Bouts of consistent movement 

suggest an initial period of good health for the worm, which may indicate a lack of 

sarcopenia or cognitive decline.  We examined how mutations impact the duration of ‘high 

activity’ as a proxy of their health and decline with age. Using the raw movement metric, 

we quantified the duration and relative time (normalized to each individual’s lifespan) of 

the high activity period across all genotypes (Figure 2.6c). Average duration of high 

activity correlated with the average lifespan for each genotype. When normalized by 

lifespan, both N2 and daf-16 spend equivalent proportions of their life in the high activity 

period. However, the daf-2 mutant spends a significantly lower proportion of its life in the 

high activity period than the wild-type animals (p < 0.0001, one-way ANOVA followed 

by Tukey’s HSD test), likely due to increased odr-10 expression resulting in preference for 

food over exploration and movement.51 Thus, we show that our system recapitulates known 

behavioral trends on an individual-level with high temporal resolution. 

2.4.3 Effects of DR on longevity and behavior 

We next asked how environmental perturbations influence behavioral decline 

during the aging process. While dietary restriction has been shown to significantly alter 

aging in C. elegans, the interpretation of experimental results can be complex, as it can be 

difficult to perform precisely controlled DR experiments using conventional closed-culture 

systems due to depleting food levels over time. To prevent this variability in food levels, 
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we take advantage of the ability of microfluidics to deliver a constant perfusion of bacteria, 

allowing for precisely controlled food levels over time. To maintain the steady flow of 

bacteria over long periods of time without the formation of biofilms or bacterial 

aggregation on the small features of the device, we use our pressure monitoring system, 

allowing us to culture worms in concentrations up to OD600 of 10 (OD 10).  

We examined the effects of DR on both the lifespan and healthspan of worms. 

Unsurprisingly we see a significant decrease in lifespan for worms cultured at OD 10 

compared to those at the lower concentration levels (p < 0.0001, log-rank, Figure 2.7). The 

behavior over time was also impacted by DR (Figure 2.8). The population average of raw 

movement across the three food levels had similar decline rates later in life; however, their 

initial level of movement differed, with worms in higher food concentrations having lower 

amounts of movement (Figure 2.8a,b). This early difference may be attributed to food 

searching behavior, with worms in DR having increased movement to search for areas with 

higher food concentrations. The duration and normalized period of high activity movement 

increases with decreased food concentration (Figure 2.8c), with animals at OD 10 having 

a significantly lower duration of movement, suggesting a shorter healthspan (p < 0.0001, 

one-way ANOVA followed by Tukey’s HSD test) compared to either OD 5 or OD 2.5 

populations.  



 31 

 

Figure 2.7. Longevity across different food levels. (left) Lifespan curves for wild-type N2 

populations cultured at food levels of OD6002.5 (18.67 ± 0.40, n=147 individuals), OD6005 

(18.00 ± 0.23, n=245), and OD60010 (14.78 ± 0.29, n=108). (right) Bar graph of average 

lifespan at different food levels (OD60010, OD6005, and OD6002.5) (error bars show SEM, 

OD60010 v. OD6005/ OD6002.5: p < 0.0001, log-rank test. OD6005 v. OD6002.5: p = 0.0854, 

log-rank test). 
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Figure 2.8. Movement decline across different food levels. A) Heatmaps showing 

individual decline in raw movement across food levels over time. B) (top) Population 

averaged raw movement for the food conditions (error bars are SEM). (bottom) Relative 

population average activity for raw movement normalized to lifespan across food 

conditions (error bars are SEM). C) (left) Duration of high activity for raw movement 

across food levels (right) Relative fraction of life in high activity for raw movement across 

food levels. (Error bars are SD, *** p < 0.0001, via one-way ANOVA followed by Tukey’s 

HSD test. Non-significant differences are not marked). 

2.4.4 Effects of thermal perturbations on longevity and behavior 
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Given that C. elegans is a poikilotherm and our system can easily vary temperature, 

we examined the effects of thermal fluctuations on aging. We took inspiration from the 

natural diurnal temperature cycle C. elegans experience in the wild and explored whether 

dynamic thermal cycling influences their lifespan and healthspan. We measured the 

lifespan of worms that were switched every 12 hours between 15°C and 20°C, along with 

worms cultured at constant temperatures (15°C, 17.5°C, and 20°C) (Figure 2.9). Average 

lifespan decreases with increased temperature under static conditions, following known 

trends.41,42 Animals undergoing temperature oscillations had an average lifespan similar to 

worms reared at 20°C, showing no beneficial extension in lifespan from their time at 15°C. 

However, the range of lifespans under the cycling condition was much larger than that of 

animals reared at the static 20°C condition, hinting that variability in temperature 

contributes to the variability in longevity within a population.  

 

Figure 2.9. Longevity across thermal perturbations. (left) Lifespan curves for wild-type 

cultured at constant 15°C (36.21 ± 1.19, n = 71), 17.5°C (31.60 ± 1.09, n = 107), and 20°C 

(28.65 ± 0.80, n = 77), and population under oscillatory temperature conditions, changing 

from 15°C to 20°C every 12 hours (29.10 ± 1.04, n= 99). (right) Bar graph of average 

lifespan for worms cultured at static 20°C, 17.5°C, 15°C, and an oscillatory condition that 

switched from 15°C to 20°C every 12 hours. (Error bars show SEM. 20°C v. 17.5°C p = 

0.0094. 20°C v. 15°C p < 0.001, 20°C v. 15°C↔ 20°C p = 0.2082. 17.5°C v. 15°C  p = 

0.0574, 17.5°C v. 15°C↔ 20°C p = 0.1371, 15°C v. 15°C↔ 20°C p = 0.0004 via log-rank 

test). 
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When examining behavior across the constant temperature conditions, all populations 

appeared to have a high level of activity for approximately half of their lifespan followed 

by a period of decline (Figure 2.10a,b). Populations at lower temperatures had a slight 

increase in the duration of high activity movement. However, when normalized by lifespan, 

the proportion of time spent in the high activity period is not significantly different across 

conditions (Figure 2.10c). This suggests temperature has a similar scaling effect on both 

the period of high activity behavior and lifespan. 
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Figure 2.10. Movement decline across thermal perturbations. A) Heatmaps showing 

individual decline in raw movement across static temperature conditions over time. B) (top) 

Population averaged raw movement for the static temperature conditions (error bars are 

SEM). (bottom) Relative population average activity for raw movement normalized to 

lifespan across static temperature conditions (error bars are SEM). C) (top) Duration of 

high activity for raw movement across temperatures (error bars are SD, *** p < 0.0001, 

via one-way ANOVA followed by Tukey’s HSD test) (bottom) Relative fraction of life in 
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high activity for raw movement across temperature conditions (error bars are SD). No 

statistically significant difference from each other (p > 0.0001, via one-way ANOVA 

followed by Tukey’s HSD test. Non-significant differences are not marked). D) (i) 

Heatmap showing individual decline in raw movement across oscillatory temperature 

condition over time. (ii) Population averaged raw movement activity for the oscillatory 

temperature condition (error bars are SEM). (iii) Average raw movement in oscillatory 

condition separated by temperature the population was experiencing at the time (error bars 

are SEM).  

Mirroring the trends in lifespan, the population undergoing temperature oscillations had 

the duration and fraction of life in high activity behavior similar to that of the static 20°C 

condition (Figure 2.10c). However, when examining averaged raw movement we 

observed large fluctuations in average activity (Figure 2.10d), with the magnitude of 

movement corresponding to the temperature at the time (Figure 2.10dii). Interestingly, 

under oscillatory conditions, the average movement at 15°C was reduced compared to 

movement across all other thermal conditions, including the static 15°C control (Figure 

2.10diii). Due to the ability of our system to obtain frequent behavioral recordings, we 

were able to subsample a portion of the population with greater temporal resolution and 

observed a dramatic decrease in movement immediately after the temperature downshift 

(Appendix A.2.5). Over the course of the 12-hour cyclical period there was a steady 

increase in the average movement approaching the levels observed during the static 15°C 

control. Literature has demonstrated the presence of noxious cold receptors in C. elegans 

with an activation threshold around 18°C.104 The drastic decrease in movement could be 

an initial noxious response to the 15°C transition, with subsequent increases in movement 

indicating eventual habituation to the colder thermal condition. This response to 

downshifted temperatures illustrates interesting activity that would otherwise be difficult 

to obtain with existing methods.  



 37 

2.4.5 Intrapopulation differences and variability in movement decline 

In addition to examining population trends, we examined the effects of variability 

on aging in an isogenic population. Similar to previous work, we are able to compare 

behavioral decline across the shortest- and longest-lived cohorts within a population and 

demonstrate different decline patterns across cohorts (Figure 2.11, Appendix A.2.6).59,60 

As previously reported, the shortest-lived cohort generally exhibited higher levels of 

activity throughout its relative lifespan compared to the long-lived cohort across all genetic 

or environmental perturbations. Across thermal conditions, all individuals had similar 

average decline patterns (Appendix A.2.6). Food concentration appears to have a role in 

the variability of a population’s behavioral decline. Shorter-lived cohorts experience higher 

levels of activity later in life; interestingly, higher food concentrations appear to reduce the 

differences in decline between the two subpopulations, with little apparent difference 

between the cohorts (Figure 2.11a,c).  
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Figure 2.11. Intrapopulation variation across genetic and environmental perturbations. A) 

(left) Averaged raw movement over time of the short- (n = 62 individuals) and long-lived 

(n = 55 individuals) subpopulations within the wild-type population culture at 25°C at 

OD6005 food level (error bars are SEM). (right) Averaged raw movement over normalized 

relative lifespan of short- and long-lived WT populations cultured at 25°C at OD6005 food 

level (error bars are SEM). B) Averaged raw movement over the normalized, relative 

lifespan of the short- and long-lived subpopulations across different genotypes at 25°C at 

OD6005 food level. (left) daf-16 short- (n = 23 individuals) and long-lived (n = 21 

individuals) subpopulations. (right) daf-2 short- (n = 22 individuals) and long-lived (n = 

23 individuals) subpopulations (error bars are SEM). C) Averaged raw movement over the 

normalized, relative lifespan of the short- and long-lived subpopulations across wild-type 

populations at 25°C across different food levels. (left) OD6002.5 short- (n = 45 individuals) 

and long-lived (n = 37 individuals) subpopulations. (right) OD60010 short- (n = 22 

individuals) and long-lived (n = 26 individuals) subpopulations (error bars are SEM). 
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In addition to examining averaged decline within subpopulations, our system enables us to 

directly track an individual’s behavior throughout its relative lifespan. To easily compare 

individuals throughout their lifespan we performed dimensional reduction, projecting 

every individual’s relative behavioral trajectory into a shared principal component space 

(Figure 2.12, Appendix A.2.7, Appendix A.2.8). We directly compare an individual’s 

relative behavioral decline across not only the same population, but also with individuals 

under different genetic or environmental perturbations. On a population-level, we see how 

certain perturbations, such as daf-2 mutation or high food conditions (OD 10), appear to 

shift in phenospace, indicating a distinct effect on behavioral decline in comparison to other 

genetic mutations (daf-16) or thermal perturbations. With HeALTH’s ability to perform 

individual behavioral tracking and monitoring, we can observe the spread of the population 

and examine whether certain perturbations result in increased biological noise for relative 

behavioral decline. For example, temperature has a more variable behavioral space within 

the population, indicating increased variability in decline. Furthermore, we can examine 

the separation between subpopulations (i.e. the short- and long-lived cohorts) and how it 

varies across perturbations, giving us insight into how stereotyped relative behavioral 

decline is within a population (Appendix A.2.8). For example, daf-2 shortest- and longest-

lived cohorts were separated largely by the first principal component (PC), while daf-16 

relied on the second PC to distinguish between differently aged cohorts. In contrast, wild-

type used a combination of the two PCs to separate the sub-populations.  
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Figure 2.12. Comparing individuals across genetic and environmental perturbations. All 

individuals (n = 981 individuals) plotted in a shared principal component space.  

2.5 Conclusions 

In Chapter 2 I developed HeALTH, which allows for automated and robust longitudinal 

culture of C. elegans throughout their lifespan under precise spatiotemporal environmental 

conditions. The system’s inherent modularity and flexibility can accommodate a variety of 

experimental conditions. It could easily be adapted to monitor different microfluidic 

devices or environmental perturbations. Furthermore, the overall cost and physical 

footprint makes it feasible to create replicates of the system and expand experimental 

capacity without dramatically increasing space or large equipment requirements. As a 

result, it could be used for a wide array of high-throughput aging and longevity studies, 

providing high-content behavioral data with fine spatial and temporal resolution.  

We demonstrated the power and versatility of HeALTH by examining both 

population-level and individual decline across different genotypes and environmental 

perturbations. Controlled, diurnal temperature shifts resulted in a wider range of lifespans, 

suggesting at the potential of increased variability caused by environmental perturbations. 
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DR altered the level of activity and relative behavioral decline across populations in a non-

linear way. Furthermore, the decreased lifespan at higher bacterial concentrations (OD 10) 

raises the possibility that existing microfluidic lifespan devices inadvertently enact some 

form of DR or hormetic stress on their cultured populations, due to the lower bacterial 

concentrations used by these systems on-chip. This in turn could potentially result in 

confounding effects on longevity. Both environmental conditions would be extremely 

difficult, if not impossible, to study on a large-scale with existing methods, but can be 

performed using HeALTH.  

The inherent modularity and flexibility of HeALTH can enable a variety of 

different assays to examine different facets of the aging process. Due to the liquid culture 

environment, our system could explore the effects pheromone concentration on behavior 

and aging. We could also examine the effects of intermittent fasting, perform drug screens, 

or examine the effect of stressors (such as heat shock, oxidative stress, or osmotic stress). 

The system may also be applied to behavioral neuroscience, examining how sensory 

response and cognitive aging change over time. HeALTH could be expanded for any 

behavioral study that requires precise environmental control with longitudinal tracking. For 

example, it could be used for immunology or toxicology applications to examine the impact 

of pathogens or different microbiome interactions at the whole organism scale. By simply 

rescaling the microfluidic device, this system could be directly used for a variety of small 

model organisms for similar applications. Thus, this platform could be easily adaptable and 

extendable to a variety of different behavioral assays and aging studies, providing insights 

into behavior changes influenced by any genetic, environmental, or stochastic 

perturbations over time. 
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CHAPTER 3. DEEP LEARNING FOR THE FLEXIBLE 

ANALYSIS OF C. ELEGANS BEHAVIOR IN HETERGENOUS 

ENVIRONMENTS 

Portions of this chapter are adapted from a research article entitled “Deep learning for 

robust and flexible tracking in behavioral studies for C. elegans”, in principle accepted to 

PLOS Computational Biology on October 13, 2021  

(https://doi.org/10.1101/2021.02.08.430359).105 This article was co-authored in 

collaboration with Dr. Kathleen Bates. 

3.1 Introduction 

In this chapter, I discuss the development of a deep-learning based analysis pipeline 

that allows for the robust and scalable segmentation and pose extraction of individual C. 

elegans in complex, heterogenous environments. I detail the steps of the pipeline, along 

with the corresponding characterization and validation of its performance. In parallel, I also 

display alternative applications for portions of this pipeline, highlighting the ability for 

object detection to be used as a quick and accurate alternative for commonly used 

behavioral metrics of interest. 

3.2 Background 

Ethology has been crucial in the fields of neuroscience, genetics, and aging.106–109 

This rings true even in the simplified C. elegans model, which has been used to probe a 

variety of ethological questions.110–115 In these experiments, it is extremely valuable to 
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robustly and accurately measure the behavior of C. elegans on a large scale. While 

technological advancements have enhanced the capability to collect large and complex 

behavioral datasets relevant to neuroscience and aging, the increase in the quantity of 

recordings and data shifts the scientific bottleneck to the analysis of large-scale image 

datasets. Traditional methods reliant on manual annotation are infeasible and impractical 

to perform on a large scale. Thus, there is a substantial need for methodologies to address 

this technical limitation.  

One of the major challenges in analyzing behavioral data is the detection and 

subsequent segmentation of the object of interest, particularly across a variety of imaging 

and experimental conditions. There are a variety of existing image processing tools and 

software designed to aid in the automated segmentation of objects of interest.83–85,116–118 

Many rely on basic image processing methods, such as background subtraction, 

thresholding based on the color or intensity of the object, or the use of morphological 

operations or features, to detect and identify the object of interest.83–85,87,118 For example, 

in the popular worm tracker Tierpsy Tracker, users manually optimize parameters based 

on experimental conditions and are subsequently able to extract behavioral data from their 

dataset.83 With these existing segmentation and tracking tools, users can extract a variety 

of informative behavioral phenotypes, such as size, speed of movement, and the posture of 

individuals.  

However, with the advent of more complex experimental setups that introduce more 

heterogeneous experimental or environmental conditions, it is not straightforward to adapt 

these methods to robustly and accurately detect objects of interest (Figure 3.1). In 

conditions with low or uneven imaging contrast, basic thresholding based on intensity 
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values may not be accurate. If animals or the objects of interest display slight movement, 

or if there are alternative moving objects in the frame, background subtraction cannot be 

used to easily differentiate between the object of interest and the background of the image. 

Even with advanced tools, which rely on machine learning for more accurate predictions, 

these challenges still require a large accurate initial training set, making it difficult to 

resolve complex postures (Figure 3.1). Additionally, if there is a wide range in 

morphological properties, such as the dramatic size change of animals during development, 

it is difficult to rely on morphological features such as size as a method of identifying 

objects of interest. Coupled with the increased scale of behavioral datasets,119 there is a 

need for a robust, flexible, and facile method to detect and identify worms that would be 

able to work across a variety of different experimental conditions.  
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Figure 3.1. Existing techniques for segmentation are unable to be easily generalized across 

behavioral recordings. A) Detection of a young worm using Tierpsy Tracker.83 Parameters 

were tuned for a video, with a representative frame shown on the left. The three other 

frames are detections of worms of the same age and contrast conditions using the tuned 

parameters. Detection errors are marked by white arrows. B) Detection of old, slow moving 

worms using Tierpsy Tracker.83 Segmentation parameters were tuned for a video, with a 

representative frame shown on the left. The three other frames are detections of worms of 

the same age and contrast conditions using the tuned parameters. Detection errors are 

marked by white arrows. C) Representative example frames of issues with segmentation 

using Ilastik across similar videos.117 All frames were taken under the same imaging 

condition. (top) Prediction of pixel classification using the trained model. The model was 

trained with at least 50 images prior. Blue denotes background, yellow marks the worm, 

and red marks the egg objects. (bottom) Segmentation of objects based on the predictions. 

Note the truncation of worms and the misclassification of eggs as worms.  
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3.3 Materials and Methods 

3.3.1 C. elegans culture 

The strain used in this work was N2. Synchronized L4-stage wildtype animals were 

loaded into a worm chamber array microfluidic device described in Chapter 2. Worms 

were cultured at 20°C in E. coli (HB101) spiked with Pluronic F-127 (0.005%), 

carbenicillin (50µg/ml), and kanamycin (50µg/ml) to prevent the risk of bacterial 

aggregation and contamination during long-term culture. The bacteria also contained 5uM 

of C22. At Day 2 of adulthood, worms were then shifted to 25°C and to the desired food 

level. Individuals were maintained at OD600 10 unless otherwise stated. See Chapter 2 for 

more details.  

3.3.2 Behavioral recordings 

Recordings were taken under the same imaging conditions as detailed in Chapter 

2. In brief, videos were taken at an acquisition rate of 14 fps using a CMOS camera coupled 

with a 10X close focus zoom lens. The videos were 1280 x 1024 pixels. Illumination was 

provided by a set of concentric red LED rings. Videos were sampled evenly throughout the 

lifespan of individuals in food levels of OD60010 and OD6002.5. 

3.3.3 Model training 

3.3.3.1 Mask R-CNN model training 

Due to the high performance of existing Mask R-CNN models, we used an existing 

pre-trained model on the COCO 2017 dataset 
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(‘mask_rcnn_inception_resnet_v2_1024x1024’) and tuned the model using the behavioral 

dataset of interest. We manually annotated 113 frames of worms and, if present, eggs using 

the Labelme Python package. Images were randomly split into training and testing sets 

using a rough 90/10 split (99 images for training, 14 test images). The model was trained 

using TensorFlow GPU (v 2) on a system with an Intel(R) Xeon(R) CPU E5-1620 v4 

processor and a NVIDIA Quadro M4000 GPU.  

3.3.3.2 Faster R-CNN model training 

Due to the high performance of existing Faster R-CNN models, we used an existing 

pre-trained model on the COCO dataset (‘Faster_rcnn_inception_v2’ model from the 

TensorFlow 1 model zoo) and tuned the model using the behavioral dataset of interest. We 

manually annotated 5,176 frames of worms and, if present, eggs using the labelImg Python 

package. Images were randomly split into training and testing sets using a rough 90/10 split 

(4658 images for training, 518 test images). The model was trained using TensorFlow GPU 

(v 1.14) on a system with an Intel(R) Xeon(R) CPU E5-1620 v4 processor and a NVIDIA 

Quadro M4000 GPU.  

3.3.4 Model characterization 

The performance of the Mask R-CNN and Faster R-CNN models were evaluated 

by using average precision (AP) and average recall (AR). These are standard detection 

metrics used by the Microsoft Common Objects in Context (MS COCO) Object Detection 

Challenge, which is the benchmark set of images used to characterized the performance of 

deep learning algorithms.120  
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To determine whether detections by the models were true positives (TP), false 

positives (FP), or false negatives (FN), we used a measure of the overlap of detections and 

ground truth known as intersection over union (IoU). 

 
𝐼𝑜𝑈 =

|𝐺𝑇 ∩ 𝑃|

|𝐺𝑇 ∪ 𝑃|
 (1) 

GT (ground truth) is the annotated mask or bounding box of the ground truth and P 

is the annotated mask or bounding box of the prediction. An IoU greater than or equal to 

the IoU threshold is categorized as a TP and an IoU less than the IoU threshold as a FP for 

the detections. From these scores, we were able to calculate the precision and recall across 

the set of evaluated images using the equations below. 

 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 
𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

Precision is a measure of the false positive rate, while recall is a measure of the 

false negative rate. The precision and recall values were evaluated across a range of 

confidence thresholds (the probability the predicted object is present in the detected area 

as predicted by the model), which is summarized in precision-recall curves (Appendix 

B.1). The AP is the integral of the precision-recall curve, capturing the average precision 

across the recall values. Higher AP values indicate higher accuracy in detection. The AP 

was evaluated across a range of IoU threshold values (from 0.5 to 0.9) with the mean 

average precision (mAP) being an average of the AP values. In addition to the precision-
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recall curves, we also examined recall-IoU curves, which plots the recall of the model 

across a range of IoU thresholds (ranging from 0.5 to 1.0) and captures the detection 

effectiveness. This curve can be summarized through AR, which is the recall averaged over 

all the IoU thresholds.   

3.3.5 Evaluating movement decline in aging 

To obtain the ground truth of how movement declines with age, we measured raw 

movement across frames. Unlike prior measurements, in where we computed the pixel 

difference across the entire frame, we hand annotated images of worms using Ilastik and 

examined the difference across the segmented bodies. The equation below was used to 

calculate the pixel differences across worms with age. 

 
𝑝𝑖𝑥𝑒𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =

∑|𝑖𝑚𝑔1 − 𝑖𝑚𝑔2|

(𝑖𝑚𝑔1 + 𝑖𝑚𝑔2)/2
 (4) 

Where img1 was the initial segmented frame of the video and img2 was the final 

segmented frame of the video. To gauge movement decline using the bounding boxes, we 

examined the IoU across the boxes, which were calculated using the built-in MATLAB 

function bboxOverlapRatio. The 1-IoU metric was found by looking at the overlap between 

the bounding box found in the first frame and the bounding box found in the last frame of 

the video.  

3.3.6 WormPose model training 

The WormPose convolutional neural network (CNN) model was trained on 

500,000 synthetic images with a batch size of 128 and evaluated on 10,000 real 
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preprocessed images. The synthetic images were generated from 335,239 frames taken 

from 31 different individuals, from Day 2 to 13 of adulthood, capturing the reproductive 

period of the worm. Representative synthetic images are shown in Appendix B.2 alongside 

the frames inputted into the model for reference. The model was trained for 75 epochs. 

This was done using TensorFlow GPU (v 1.14) on a system with an Intel(R) Xeon(R) CPU 

E5-1620 v4 processor and a NVIDIA Quadro M4000 GPU. 

3.4 Results and Discussion 

To address the limitations of previous methods it was crucial to develop an 

algorithm that was able to extract out features of interest across complex conditions - 

throughout a range of sizes, contrast levels, and regardless of the presence of other 

confounding objects - while being scalable for datasets on the order of terabytes.  

To develop this pipeline, we focused on a specific dataset which captures all of 

these complexities – behavioral recordings of worms cultured on the HeALTH platform 

from the L4-stage to death. The pipeline consists of four stages: 1) preprocessing, 2) 

segmentation, 3) postural extraction, and 4) tracking the orientation of the worm and post-

processing to mitigate potential errors from the prior stages (Figure 3.2). The following 

sections detail the design and characterization of these stages.  
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Figure 3.2. Overview of the deep learning analysis pipeline.  

3.4.1 Video preprocessing 

A major objective of this pipeline is to be scalable for large behavioral datasets. 

Oftentimes, a large portion of the area recorded for behavioral studies is not of interest, 

with no individuals present in the region. This area offers no behavioral information while 

increasing the size of the recording file, thereby increasing the computational time and 

difficulty in file handling. To reduce file size and ease file handling, the pipeline finds and 

crops regions of interest within the ROI to separate video files.  

Using a custom MALAB code, the user is presented with a background-subtracted 

frame of the device and selects the center locations of the four corner chambers of the 

device, along with the specific chambers of interest containing isolated worms. The center 

locations of all the chambers within the device are then interpolated and recorded. Potential 

shifts in the device placement over time were measured and adjusted with image 

registration using cross-correlation for a static patterned feature for each video, similar to 

what was described in Chapter 2. The modified ROIs for each worm of interest in each 

behavioral recording were cropped and saved as an independent file. This preprocessing 
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step downsizes a 2GB video (with an ROI of 1280 x 1024 pixels) to 60 7MB videos (with 

ROIs of 91 x 91 pixels), an almost 5x reduction in file size. This step is personalized to this 

particular dataset; however, this concept can easily be generalized to other videos of 

interest.  

3.4.2 Image segmentation via deep learning 

As previously mentioned, traditional image processing techniques for segmenting 

frames require user-defined parameters. For more complex datasets with heterogeneity in 

the contrast levels, intensity values, size of the object of interest, and conflicting objects 

within the field of view with similar intensity values, these basic techniques can fail to be 

applicable across datasets.  

This is particularly apparent in the case of the behavioral recordings of worms 

cultured in the HeALTH system (see Chapter 2 for additional details on HeALTH). Since 

the worm is cultured from L4 stage to death, it undergoes a substantial change in body size. 

Contrast against the background greatly varies depending on the experimental condition of 

interest. Furthermore, due to the use of C22, the individual worms still lay eggs during the 

reproductive period of their life, with the chamber containing clusters of eggs for a 

significant period of the worm’s lifespan. This presents a few major challenges. The image 

intensity values of the eggs and worm are comparable, making it difficult to utilize 

thresholding to separate the two objects, particularly during moments of intersection 

between the two objects (Figure 3.3a). At times the size of the egg cluster is comparable 

to the area of the worm (Figure 3.3b). Also, while the eggs are not actively moving, the 

movement of the worm and the constant flow of bacteria within the chambers at times 
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move the egg clusters, preventing the use of background subtraction from eliminating these 

objects. Lastly, a single device within the experiment could generate over 150 videos of 

the microfluidic chamber array, resulting in potentially 9,000 videos of individual worms 

totaling 63 GB in size, making it difficult to adjust manual parameters and account for 

experimental differences over time in a scalable manner. 

 

Figure 3.3. Worms and clusters of eggs have similar morphological features. A) Histogram 

of the average intensity of the worm (n = 200 frames) and eggs (n = 127 frames), 

demonstrating an almost complete overlap in intensity values across the two objects. B) 

Histogram of the area of the worm and eggs, demonstrating a substantial overlap in size 

across the two groups of objects. C) Representative images of worms and egg clusters 

within the microfluidic chamber.  

As such, there is a need for a flexible method to segment and extract objects of 

interest across different imaging conditions. To achieve this objective, we turn to deep 

learning, which has emerged as a powerful data-driven tool for object detection and 

segmentation. Deep learning is a class of machine learning algorithms that utilize neural 

network architectures with multiple layers.121,122 It requires significant amounts of labeled 

data and is able to automatically learn and identify features of interest, in contrast to other 
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machine learning algorithms that require manual feature extraction. As such, these 

algorithms are highly accurate in computer vision applications, albeit with the drawback 

of needing significant computing power to train the model. This pipeline takes advantage 

of its strength in computer vision applications and uses a consensus approach between two 

convolutional neural networks (CNNs). It performs instance segmentation coupled with an 

independent validation of the objection’s location to allow for the highly accurate 

detection, identification, and segmentation of the worm.  

For the scope of this thesis, the segmentation is trained for a specific application – 

examining aging worms within a constrained microfluidic chamber (the behavioral 

recordings generated by the HeALTH system). However, by design it is flexible and easily 

adaptable to other experimental conditions where worm tracking across a range of 

conditions is required. Examples of its generalizability are detailed in the manuscript “Deep 

learning for robust and flexible tracking in behavioral studies for C. elegans” 

(https://doi.org/10.1101/2021.02.08.430359)  and also noted below in 3.4.4.1.105 

3.4.2.1 Instance segmentation via Mask R-CNN 

Mask R-CNN is a highly accurate, robust algorithm for performing instance 

segmentation. It couples region proposal networks (RPN) with convolutional neural 

networks (CNNs) to extract the location (in the form of bounding boxes) and binary mask 

for each object, along with the corresponding estimated likelihood for each detection.123 It 

is relatively simple to train and has shown to be generalizable across different training sets 

using the same framework. Crucially, it is computationally efficient compared to other 

instance segmentation methods, ideal for large-scale datasets, and most importantly one of 

https://doi.org/10.1101/2021.02.08.430359
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the highest performing segmentation methods as measured by the mean average precision 

(mAP) of detections on the standardized COCO dataset.123 As such, we considered it to be 

a promising method for segmentation.  

After the initial training period, the model was able to accurately detect and 

segment both worms and egg objects, even in instances where multiple objects intersect 

(Table 1, Figure 3.4).  

Table 1. Detection results for the trained Mask R-CNN model 

mAP APIoU=0.5 APIoU=0.75 ARIoU=0.5:0.95 mAPworm mAPegg 

0.683 0.977 0.732 0.700 0.818 0.653 

 

Figure 3.4. Representative examples of object detection and instance segmentation using 

Mask R-CNN.  
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In addition to examining the COCO evaluation metrics to compare the inferenced 

masks to the annotated ground truth masks, it is important to compare the performance of 

Mask R-CNN to existing image processing techniques. The prior iteration of the 

segmentation code for this set of data was a custom MATLAB script.88 It used background 

subtraction coupled with a user selected Niblack thresholding to obtain the binarized frame 

of the worm and post-processing morphological filters to eliminate features based on 

parameters, such as the area or length of the object. It also relied on prior frames to 

iteratively adjust parameters across the dataset. Although this was quick and 

computationally low-cost, it was difficult to scale and unable to segment out the worm in 

either low contrast conditions or in recordings with large, moving egg clusters.  

To compare the two methods, we examined the IoU score for frames with a hand 

annotated segmented ground truth compared to the computed segmented worm. We 

examined frames from recordings of the highest food level (i.e. with the lowest contrast 

between the worm and the background) across the lifespan of the population. The Mask R-

CNN segmentation significantly outperformed the prior method (with an average IoU score 

and standard deviation of 0.89 ± 0.22 compared to 0.44 ± 0.34 respectively), as shown in 

Figure 3.5. To ensure that this improvement was unbiased across the different conditions 

and error cases, we categorized the frames based on the age of the worm, since different 

segmentation challenges are associated with different stages of life. For instance, the 

reproductive period of the worm that results in the presence of eggs within the chamber 

holds different challenges compare to aged, non-moving worms in low-contrast conditions. 

We then subsequently compared the IoU scores throughout the age groups across the two 

methods (Figure 3.5). As the worm age, the accuracy of the initial segmentation code 
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decreases dramatically (0.58 ± 0.33 average IoU for the young individuals to 0.29 ± 0.32 

for the old individuals). In contrast, the accuracy of the Mask R-CNN segmentation 

remained relatively consistent across the age groups. This underscores both consistency of 

Mask R-CNN across the different error cases, along with the large improvement in 

segmentation accuracy compared to the prior segmentation method. Although there was a 

significant improvement in accuracy, there were a few instances, particularly within the 

young age group, where Mask R-CNN failed to properly identify the location of the worm. 

Not only did it fail to identify the location of the worm, it also resulted in a FP detection, 

predicting with high likelihood estimates. Thus, there is still a need to have a validation 

step to reduce the likelihood of false positives in identifying and segmenting the worm. 

 

Figure 3.5. Mask R-CNN segmentation consistently outperforms traditional image 

processing-based techniques. A) The IoU score of annotated frames (n = 1057) segmented 

using traditional image processing techniques (0.44 ± 0.34) compared to Mask R-CNN 

(0.89 ± 0.22) across all ages (error bars are SEM, p < 0.001 via t-test). B) The IoU score 

of frames segmented using traditional image processing techniques compared to Mask R-

CNN separated by age (error bars are SEM): young worms (0.58 ± 0.30 vs. 0.83 ± 0.31, n 

= 338 frames, p < 0.001 via t-test), middle-aged worms (0.45 ± 0.32 vs. 0.94 ± 0.14, n = 

380 frames, p < 0.001 via t-test), old worms (0.29 ± 0.32 vs. 0.91 ± 0.15, n = 380 frames, 

p < 0.001 via t-test). 
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Mask R-CNN has been shown to be a quick deep learning method for performing 

instance segmentation. However, due to the computational complexity, the average 

inference time for a frame (0.421 ± 0.023 seconds) is approximately one order of magnitude 

longer than the prior segmentation method (0.088 ± 0.018 seconds), which relied on basic 

image processing techniques. As a result, it is difficult to perform Mask R-CNN locally on 

a large scale, with a single 4 minute long, 7MB video taking approximately 24 minutes to 

analyze. To address this processing bottleneck, we take advantage of the non-serialized 

nature of instance segmentation along with the availability of parallel computing 

capabilities. Using PACE computing clusters, we run tens of jobs simultaneously, 

drastically reducing active computational wait times. Although this resource is not widely 

available, this could be broadly generalized and performed using Amazon AWS 

ParallelCluster services, or even through online resources such as Google Colab. As a 

result, it is feasible to analyze terabyte scale data sets without unreasonable computational 

time.  

3.4.2.2 Faster R-CNN 

To improve the overall accuracy of Mask R-CNN, we implemented an additional 

validation step in the form of an independent object detection algorithm. Faster R-CNN is 

a top performing object detection method.124 A precursor to Mask R-CNN, Faster R-CNN 

is built off the same network architecture, albeit without the mask prediction of each object. 

Compared to other CNN methods with equivalent or higher mAP, the Faster R-CNN 

architecture is less computationally costly and advantageous for large volumes of data.125 

Further, the Faster R-CNN architecture has been tested in a wide range of applications, 
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ranging from vehicle and pedestrian detection to malarial detection via cell 

classification.124,126 

As such, we considered it to be a powerful method for object detection and 

promising in identifying regions of interest where the worm is within the complex 

environment. After the initial training period, the model was able to accurately detect 

objects, across the different age ranges and contrast levels (Table 2, Figure 3.6, Appendix 

B.1). This model has higher accuracy in mAP, AP, and AR values across conditions in 

comparison to the Mask R-CNN model, likely due to significantly larger training set. As a 

result, this model could be reliably used as a validation step post the initial segmentation 

stage. In addition to the high accuracy of detection, the inference time for each image is 

short (~131 ms/frame) making it a highly feasible method of performing object detection 

on a large scale. Since this is insignificant in comparison to the computational time 

associated with Mask R-CNN, it can be easily run on a large scale using the pre-existing 

parallel computing framework. 

Table 2. Detection results for the trained Faster R-CNN model 

 mAP APIoU=0.5 APIoU=0.75 ARIoU=0.5:0.95 mAPworm mAPegg 

0.777 0.980 0.914 0.795 0.834 0.751 
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Figure 3.6. Representative examples of object detection using Mask R-CNN across a 

variety of object sizes and contrast levels. 

By coupling the outputted detections from the independently trained Mask R-CNN 

model and the Faster R-CNN model, and censoring frames in where there is less than a 0.8 

intersection between the two detection bounding boxes, we improved the average overall 

IoU score from 0.89 to 0.93, with minor computational cost.  

3.4.3 Skeletonization 

After obtaining the segmented mask of the worm, it is crucial to accurately extract 

the centerline or skeleton of the individual for accurate subsequent behavioral analysis. For 

most postures it is relatively trivial to use simple morphological operations to extract the 

skeleton - such as the built-in MATLAB function bwmorph ‘thin’ - and iteratively prune 

small extraneous branches based on the length of the branch. The coordinates of the 

remaining pixels are then smoothed to return the skeleton of the posture. This technique is 

widely used across existing worm trackers and is computationally low-cost.83,118,127 
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However, for more complex postures, such as when the worm is occluded onto itself, this 

technique is often unable to accurately resolve the underlying backbone, resulting in 

censoring these poses from subsequent analysis.  

3.4.3.1 Resolving coiled structures 

Occluded postures often carry biological significance, often occurring during 

foraging, chemotaxis, or as an escape behavior in response to noxious stimuli.114,128,129 As 

a result, it is crucial to be able to capture and resolve these behaviors in a robust manner. 

One common solution aside from censoring those instances is manually annotating frames 

where occlusions occur. Although there are tools that aid in manual annotation and tracing 

the skeleton, this method becomes increasingly difficult, labor intensive, and infeasible 

with increasingly large sets of behavioral recordings.130 There are some existing statistical 

models and optimization based algorithms that have demonstrated the ability to resolve 

occluded postures.131–134 However, they either rely on additional image features making 

them susceptible to changes in imaging conditions and difficult to scale across experiments, 

or are computationally intensive, making them prohibitive to use on a large-scale.  

To address the issue of resolving coiled centerlines on a large-scale I used 

WormPose, an open-source Python package designed for pose estimation for C. elegans.135 

This algorithm creates realistic, synthetic worm postures with known, generated 

centerlines, mirroring the examined data of interest. It then uses a CNN trained with these 

synthetic images to predict an accurate centerline skeleton from the unresolved 

experimental image, validating the model based on real labeled (non-occluded) images. 

Additionally, it generates an image similarity score to compare the predicted synthetic 
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image with the actual frame of interest for further quality control of the predictions. This 

avoids the requirement of needing large, hand-annotated training sets of coiled or occluded 

postures and is flexible enough to be applied to recordings across a wide range of 

conditions. Furthermore, after the initial training period, it is computationally quick and 

theoretically able to perform real-time pose estimation making it feasible for applying to 

large-scale data sets without extensive computational time.  

After training WormPose on C. elegans cultured on-chip across a variety of ages, I 

was able to resolve ~70% of coiled or occluded frames (n = 1840) across a range of 

different image contrast levels, as shown in Figure 3.7. Its quick computational time for 

inferences (~3.37 seconds per frame) and ability to be robustly applied across the data 

makes WormPose a useful tool to incorporate into the overall analysis pipeline to address 

the occurrence of coiled or unresolved postures. Instances of occlusion are automatically 

flagged and subsequently resolved using the trained CNN model.   
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Figure 3.7. WormPose is able to resolve occluded poses of worms cultured on-chip. 

Representative frames of coiled worms and the backbone (the black centerline) as predicted 

by WormPose. The head is noted by the red star. 

3.4.4 Post-processing: Tracking worm orientation throughout time 

In addition to accurately extracting the centerline of the segmented individual, it is 

also crucial to correctly identify and track the head and tail locations for an individual 

throughout the recording. Inaccurate identification can lead to different centerlines, 

potentially resulting in inaccurate behavioral classifications. As a result, there is a need to 

accurately identify and track the location of the head, regardless of missing frames or coiled 

postures. 

Prior methods utilize morphological features, such as body width, the angle of the 

corner of the curvature of segmented worms, or image intensity, to differentiate between 

the two endpoints.83,87,118,127 However, due to the imaging condition, low-magnification, 

and at times low imaging contrast, it can be challenging to reliably and consistently extract 

the features previously used to distinguish between the head or tail of the posture.  
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For the purposes of this pipeline, the head is defined with the underlying 

assumption of movement of the head curvature having higher amplitude relative to the tail 

curvature.118 The head is defined as the 1st tenth of the worm centerline, while the tail is 

defined as the last tenth of the worm centerline. The endpoint with the greatest average 

curvature was designated as the head, with the assumption that worms would move more 

in the forward direction; however, it is important to note that this technique may be work 

for highly moving, swimming individuals, this may not be the most accurate, particularly 

in cases with extremely low to no movement for aged individuals. 

Prior tracking algorithms use nearest neighbor tracking to ensure the consistent 

identification of endpoint identities. However, this can fail in instances of either missing 

frames, issues with segmentation, or instances during coiled postures, omega bends, or 

occlusions. Thus, it was necessary to have a method to ensure the consistent tracking of 

the head endpoint throughout the duration of the recording.  

To address this concern, I created a MATLAB-based graphical user interface (GUI) 

(Appendix B.3) that allows users to view frames of the video of interest, with the initially 

assumed head endpoint highlighted, and allow the user to traverse through the frames of 

the video and manually correct any misclassifications or – in instances with errors in 

obtaining the backbone of the individual – censor the frame from subsequent analysis. For 

frames with potential errors in tracking the head location the user is able to run through the 

videos of interest and correct the head locations throughout the video as needed. 

3.4.4.1 Alternative applications of the Faster R-CNN model 
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Although the Faster R-CNN model was trained to validate the Mask R-CNN model 

to ultimately segment and obtain postural information, object detection can be used to 

independently extract coarse level behavioral information. By utilizing the dynamic 

location of the detected object’s bounding box and tracking it over time, one could use 

Faster R-CNN to measure commonly used behavioral phenotypes, such as the distance 

traveled by an individual or its linear velocity. This could be useful in cases where complex 

behavioral phenotyping is not needed, and there is a need for a computational simplicity. 

As a proof of concept, we examined the centroids of detected bounding boxes 

obtained from the model to the centroids of hand-annotated postures at 9 time points. These 

worms range from L4 stage to Day 16 of adulthood, encapsulating the behavior from late 

development to late in adulthood. The bounding box detected by the model had centroids 

that were comparable to the centroids of the hand-annotated postures (with an average of 

3.05±3.03µm absolute distance ± standard deviation between the two points), 

demonstrating that the centroid of the bounding box could be used as an accurate proxy for 

the centroid of the segmented individual. To test whether we could also measure motion 

accurately with this method, we calculated motion between the bounding box centroids and 

hand-annotated worm shape centroids every 10 seconds. There was no significant 

difference between these two measurements across time (3.69±4.03µm, mean absolute 

difference ± standard deviation), and the motion trends were clearly replicated between the 

hand-annotated shape centroids and the bounding box centroids (Figure 3.8). This 

highlights the potential for Faster R-CNN to track behavior and movement during 

development as an insight into their behavioral state.105 
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Figure 3.8. Faster R-CNN is an accurate estimate of the centroid of the segmented object 

of interest. The centroid distance traveled in 10 seconds is plotted across ages for the 

annotated ground truth segmented worm and the bounding box detected using Faster R-

CNN (n = 10). None of the ground truth and Faster R-CNN detections were significantly 

different across any of the timepoints (p< 0.001, ANOVA with Bonferroni correction). 

Faster R-CNN can also serve as a quick and accurate alternative to gauge behavioral 

decline with aging across a population. By tracking the bounding box locations of the worm 

detected by the Faster R-CNN model and measuring the IoU of the detection bounding 

boxes across the video, we can get a rough metric of movement. Although this method is 

more complex then examining the pixel difference across frames, similar to the previous 

metric in Chapter 2, it is more robust against potential sources of noise in the video. For 

example, in instances with extremely heterogenous environments within the period of 

interest, examining the raw movement in the form of pixel differences could erroneously 

capture differences in the background across time points instead of just the movement of 

the worm.  

To examine how movement changed with age we tracked 31 individual worms 

from L4 stage to Day 16 of adulthood, comparing the IoU of the bounding boxes within 
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the first and last frame of a 10 second recording. We calculated a movement score (1 – 

IoU), and observed individual decline in movement, as well as a population-level 

behavioral declines with age (Figure 3.9a,b). This decline mirrored the pattern observed 

when measuring the pixel difference across the first and last hand annotated segmented 

frames of a video taken across the same timepoints (Figure 3.9c, n = 15 individuals), 

illustrating its ability to capture behavioral decline with age.  

 

Figure 3.9. Tracking movement decline in aging using Faster R-CNN. A) Heatmap of 

individual movement (1-IoU) from L4 to Day 15 of adulthood (n = 31). Individuals are 

cultured at OD60010. B) Average movement decline over time (error is plotted as SEM). C) 

Average pixel change values of segmented worms over time from L4 to Day 15 of 

adulthood (n = 15, error is plotted as SEM). D) Average movement decline over time for 

individuals cultured in high levels of food (OD10) or DR (OD2.5) (error is plotted as SEM, 

movement for OD10 and OD2.5 is significantly different via Kolmogorov-Smirnov 2-

sample test (p = 0.03)). 
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This measurement can also be used to differentiate between movement across 

different experimental conditions. We examined the movement score of worms cultured 

under DR (OD6002.5) starting at Day 2 of adulthood and were able to demonstrate that the 

worms under lower food levels had a statistically significant difference in behavioral 

decline compared to worms cultured at higher food levels (OD60010). This mirrored the 

trends observed in Chapter 2 (Figure 3.9d). In addition, to verify the performance of the 

model on the dataset, we also validated that the detected bounding boxes from the model 

were comparable to the bounding box of the hand annotated, segmented worms (Appendix 

B.4). This demonstrates that motion quantitatively estimated by Faster R-CNN can be used 

as a quick metric to track and examine behavioral decline within an aging population. 

3.5 Conclusions 

In Chapter 3, I demonstrate a flexible, robust deep-learning based platform to extract 

worm postures from heterogeneous, complex environments. In comparison to basic image 

processing techniques, we showed an improved segmentation accuracy (from 0.89 to 0.93 

average IoU score) using a consensus approach from both the Mask R-CNN and Faster R-

CNN models across various ages of individual. We also demonstrate the ability to track 

and extract accurate worms centerlines in complex instances, such as in occluded or coiled 

postures, using a combination of WormPose and an user-annotation tool to correctly track 

the head endpoint.  

Although this pipeline requires training the deep-learning models for the accurate 

segmentation of the worm, which is not an insignificant investment in terms of creating an 

appropriate training and evaluation set, this is designed for large data sets in where methods 
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of using user-defined parameters for optimizing traditional image processing methods 

would falter. Not only is this pipeline accurate and flexible across conditions post training, 

it is easily scalable, being designed for parallel computing, allowing us to apply this on 

large datasets, as exemplified later in Chapter 4. 

Lastly, we demonstrate how portions of this pipeline, such as the objection detection 

from the Faster R-CNN model, can be used to obtain coarse, yet useful, behavioral 

information that may be useful for a variety of ethological behavioral studies. We 

illustrated its use in examining commonly used behavioral phenotypes, such as distance 

traveled over time and raw movement, and highlighted its ability to recapitulate known 

biological trends in behavioral decline under different dietary conditions. This model could 

also be applied to detect other phenotypes of interest, such as detecting and counting eggs 

as a measure of an individual’s fecundity over time, as shown in “Deep learning for robust 

and flexible tracking in behavioral studies for C. elegans” 

(https://doi.org/10.1101/2021.02.08.430359).  By creating a robust and scalable tool for 

extracting posture, this will enable researchers to extract and subsequently analyze 

behavioral results, providing greater insights into the fields of aging and ethology.  
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CHAPTER 4. MEASURING THE IMPACT OF DIET AND 

DYNAMIC PERTURBATIONS ON THE BEHAVIORAL 

REPERTOIRE AND AGE-RELATED BEHAVIORAL CHANGES IN 

C. ELEGANS 

4.1 Introduction 

In this chapter, I characterize age-related changes in the behavior in C. elegans using 

a data-driven, unbiased behavioral mapping approach. I demonstrate that this method can 

be used to uncover subtle behavioral differences not captured with traditional, heuristically 

defined movement-based measurements. I define and characterize the overall behavioral 

repertoire of the worm and examine how different behaviors are temporally connected to 

one another. I then examine how the frequency of these behaviors change with age and 

examine how this differs across individuals in response to stimuli and within the same 

isogenic population. Finally, I explore how known environmental modulators of aging in 

the form of different dietary restriction regimes – chronic caloric restriction (CR) and 

intermittent fasting (IF) – influence behavior and age-related behavioral changes to better 

understand how behavior can be used as a measure to provide insight into the underlying 

physiological health and aging process in individuals.  

4.2 Background 

C. elegans display a surprisingly large behavioral repertoire, ranging from crawling, 

to swimming, to pirouettes and turns as a culmination of their internal state and perceived 

surroundings. Despite the fact that worms exhibit a wide array of behaviors, aging studies 
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examine basic movement metrics, such as the extent of movement after a strong stimulus, 

to gauge the extent of sarcopenia and health of the individual.50,51,59,60 These measurements 

are often coupled with additional metrics, such as the worm’s morphology, reproductive 

capability, and tissue integrity, to assess the overall health and physiological age of the 

individual.50,51,59,102 Thus, it is unknown whether the complete behavioral repertoire of the 

worm is sufficient to indicate its underlying state of health and physiological age. 

In classical ethology and neuroscience studies, a common strategy to measure 

behavior is to identify preselected, user-defined behaviors, such as a forward crawl or an 

omega turn, and count the frequency and or duration of these behaviors over a set 

observational period.109 This type of approach is generally high-throughput, easily 

interpretable, and is generalizable across a we range of model organisms, ranging from 

worms, fish, and mice.83–85,87,118,136–138 However, it is limited by the human-defined 

behavioral categories, being prone to user bias, and often cannot capture subtle behavioral 

differences across groups of interest. As a result, there is a need for an unbiased, data-

driven quantitative method to identify compare behavioral patterns across populations of 

interest. 

There are several methods that aim to quantitatively capture the wide array of 

behaviors in an unbiased manner. For instance, C. elegans behavior has been shown to be 

compressed into repeatable behavioral motifs that describe differences in the locomotion 

across mutants, in response to optogenetic stimuli, and across different 

environments.111,112,139 Another technique, applied to Drosophila melanogaster, uses t-

distributed stochastic neighbor embedding (t-SNE) to map the spatial and dynamic 

temporal elements of behavioral time series data in a 2-D space.140 Areas of high density 
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on the map represent stereotyped behaviors, allowing researchers to identify commonly 

performed behaviors in a data-driven manner. This has been shown to uncover subtle 

behavioral differences across gender, in response to stimuli, and across aged cohorts.140–143 

However, this technique has not been applied to examine behavior in C. elegans in an aging 

context.  

4.3 Materials and Experimental Methods 

4.3.1 C. elegans culture on-chip 

The strain used in this work was N2. To obtain large-scale longitudinal behavioral 

recordings across the entire lifespan, we used the HeALTH platform, described in Chapter 

2. In brief, synchronized L4-stage wildtype animals were loaded into a worm chamber 

array microfluidic device.  Worms were cultured at 20°C in E. coli (HB101) spiked with 

Pluronic F-127 (0.005%), carbenicillin (50µg/ml), kanamycin (50µg/ml, and 5uM of C22. 

At Day 2 of adulthood, worms were then shifted to 25°C and to the desired food level.  

Individuals cultured at the constant high food level (n = 134 individuals) were 

maintained at bacterial food levels of OD600 10 throughout their lifespan. Individuals that 

underwent constant caloric restriction (CR) (n = 103 individuals) were maintained at OD600 

2.5, which was created from the OD600 10 stock was diluted with S Medium with Pluronic, 

carbenicillin, and kanamycin. Individuals cultured under the intermittent fasting (IF) 

condition (n = 110 individuals) were cultured in buffer (S Medium with Pluronic, 

carbenicillin, and kanamycin) for 2 days and then switched to the high food condition of 

OD600 10 for 2 days. This four day cycle repeated until death. See Chapter 2 for more 

details on the culture method.  
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4.3.2 Lifespan and behavioral analysis 

Lifespans for individuals were obtained by manual annotation, with individuals 

being marked as dead if no movement was detected past two days. The lifespans of the 

individuals cultured on the HeALTH platform followed expected trends.63  Individuals 

under either form of DR had extended lifespan, as shown in Figure 4.1. Following prior 

literature, individuals under IF had significantly longer lifespans than those under CR.63 

 

Figure 4.1. DR extends longevity in C. elegans on-chip. (left) Lifespan curves for wild-

type N2 populations cultured under no DR (OD10, 17.19 ± 0.32, n = 134 individuals), CR 

(OD2.5, 23.11 ± 0.41, n = 103 individuals), and IF (S-Med ↔ OD10, 26.35 ± 0.56, n = 

110 individuals). (right) Bar graph of average lifespan under different DR regimes (error 

bars show SEM, p < 0.0001, log-rank test).  

Behavioral recordings of the microfluidic devices were taken every 6 hours under 

the HeALTH imaging conditions, as detailed in Chapter 2. The videos were 4 minutes in 

length, with the last two minutes of the video capturing evoked behavior after a mechanical 

pulse stimulus. The recordings were analyzed using the deep-learning pipeline developed 

in Chapter 3. Due to the large volume of behavioral recordings, we examined a subset of 

our data, looking at behavior every 12 hours. The videos were segmented using 4 cores of 

a Dual Intel Xeon Gold 6226 CPU @ 2.7 GHz as part of a parallel computer cluster. The 
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remaining portions of the pipeline were processed on a system with an Intel(R) Xeon(R) 

CPU E5-1620 v4 processor and a NVIDIA Quadro M4000 GPU.  

Using the pipeline, we resolved 26,470,580 frames from the available 41,734,363 

frames. The number of resolved frames was dependent on the imaging conditions and the 

age of the worm, with increased contrast and greater age resulting in a greater fraction of 

resolved frames (Appendix C.2.1).  

4.3.3 t-SNE embedding 

Common to all the data-driven techniques used to characterize behavior is the need 

to quantitatively define the posture. Due to the morphological simplicity of the worm, it is 

straightforward to measure and describe its pose. Prior work has shown that the space of 

shapes occupied by C. elegans undergoing spontaneous behavior on agar is able to be 

represented in a lower, four-dimensional space.110 Any pose can be reconstructed using a 

combination of a small number of eigenvectors (termed eigenworms), providing a 

simplistic basis of posture for behavioral studies.  

To represent the postures displayed by the worms in the microfluidic environment, 

it was necessary to convert the posture into an independent representation unbound from 

the recorded coordinate locations.  Similar to previous work, the skeleton was divided into 

100 evenly spaced segments, and the tangent angles of the segments were taken from the 

head to the tail of the individual.110 To align the postures, the mean angle was subtracted 

from each of the tangent values, resulting in a 100 length vector that describes the shape of 

the worm without reference to the individual’s position or orientation. To extract postural 

dynamics from this angled representation, we then examine the covariance matrix of angles 
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across the behavioral recordings and perform eigendecomposition to undercover the 

underlying dimensionality of the shape.  

This was done across recordings from all food conditions and time points (n = 

37,881 frames). The worms cultured within the microfluidic device had distinct 

eigenworms from the worms crawling unrestricted on an agar plate. Only five eigenvalues 

were significant, and they accounted for 82.9% of the variance in angle along the worm 

body (Figure 4.2).   

 

Figure 4.2. Eigenworms for C. elegans cultured on-chip. A) The first five eigenworms for 

worms cultured on-chip throughout their lifespan. B) The first five modes capture ~83% 

of postural variance. 

We also examined whether the eigenworms varied across age. Although there were 

slight differences in the head and tail portions of the body length (Appendix C.2.2), no 

major differences were noted in the overall shape of each respective eigenworm, allowing 

us to represent all the collected recordings using the same, underlying basis set and within 

the same representative embedding map. Moving forward, we represented the postural 

dynamics as a time series of five amplitude values.  



 76 

Similar to previous work,140 to account for the underlying dynamics of behavior, 

we then performed a Morlet continuous wavelet transform for the time series values 

ranging from 7 Hz (limited by the Nyquist sampling) to 0.1 Hz. The resulting spectrograms 

were then further dimensionally reduced via t-SNE, creating a 2-D probability density 

function (PDF) across the map of the postural dynamics. Due to the shared basis set, all 

conditions, across age and food condition, were embedded within the same map. When 

comparing across subsets of data video recordings we performed hierarchical bootstrap 

sampling until reaching roughly the equivalent number of frames across comparisons.  

4.3.4 Examining the time scale of behavioral transitions 

To examine how individuals moved across different behavioral regions within the 

map, we measured the transition probability (𝑇) that an individual would travel from region 

𝑖 to region 𝑗 after a set time (τ); compiling all the transition probabilities across the regions 

results in a behavioral transition matrix 𝑇𝑀(𝜏). To examine whether 𝑇𝑀(𝜏) contained non-

Markovian time scales, we examined the transition matrix at longer time scales (τ > 1 

frame). Following existing work,141 the decay time (t2) in a Markovian system can be 

estimated by the equation below. 

 
𝑡2 = −

1

log |𝜆2(1)|
 (5) 

where 𝜆2(1) is the second largest eigenvalue describing 𝑇𝑀(𝜏). The average across 

all individual worms is |𝜆2(1)| = 0.849 ± 0.031. Thus, the presence of structure within 

𝑇𝑀(𝜏)  past 𝑡2 = 6.19 ± 1.14 transitions (i.e. 7 frames or 0.5 seconds) indicates that the 
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behavioral transitions are non-Markovian and in fact have an underlying memory and 

dependence on prior states.  

4.3.5 Measuring the extent of movement 

To gauge the performance of conventional methods of analyzing behavior decline, 

we measured the extent of movement for the obtained behavioral recordings. We examined 

two different metrics based on the detected location of the worm: examining the distance 

traveled by the centroid location and the raw movement of the individual over time. We 

chose to use metrics based on the bounding box locations, obtained using the analysis 

pipeline detailed in Chapter 3 due to quick computational cost, time, and ease of accessing 

the information. 

The first metric measures the distance between the centroid location of the 

bounding box over a set duration. We previously demonstrated how the centroid of the 

bounding box is an accurate estimate of the centroid of the segmented worm (Figure 3.8). 

For these measurements, we took the 90th percentile distance traveled by the centroid of 

the bounding boxes every 10 seconds in the behavioral recordings for the food and time 

point of interest. The second is an analogue to measuring the raw movement of the 

individual. Similar to previous work in Chapter 3, we compared the IoU of the bounding 

boxes within the first and last frame of a every 10 seconds in the behavioral recordings of 

the food and time point of interest. We calculated a movement score (1 – IoU) and 

measured the average of the movement scores over time.  

4.3.6 Statistical Analysis 
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4.3.6.1 Lifespan studies 

For each experimental condition, we performed at least three different biological 

replicates. Raw lifespan data for each analyzed individual, along with corresponding 

experimental conditions and trial information, is included in Appendix C.1. Lifespans 

were analyzed via the log-rank test in JMP Pro14. 

4.3.6.2 Comparing behavioral probability density functions (PDFs) 

This behavioral dataset is hierarchical in nature. As a result, traditional strategies 

for statistical comparisons, such as Student’s t-test or ANOVA, are not accurate due to the 

lack of independence across data points. To address this limitation, we perform hierarchical 

bootstrap to compare across the PDF of the different experimental conditions, which has 

been demonstrated on similar datasets.144 We chose this approach due to its ease of 

implementation and few required assumptions on the underlying structure of the data. In 

addition, it has been shown to have comparable false-positive and false-negative rates 

compared to LMM results.144  

Drawing from prior work,144 we created Gaussian mixture models (GMM) for the 

bootstrap sampled data (n=1000) for each point on the discretized map for the experimental 

conditions of interest. To compare across conditions and across the same spatial area in the 

embedding map, we compute a joint probability distribution of the two GMMs from the 

different experimental conditions of interest. A symmetric Gaussian indicates no 

significant difference between the two groups. Asymmetric distributions, such as if the 

summed density of the joint probability distribution on one side of the diagonal was greater 

than 1 - α/2 or less than α/2, indicate significant differences between the groups. Multiple 
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experimental groups are compared via pairwise-comparisons between groups, with 

significance value (α = 0.05) adjusted with the Bonferroni correction. 

4.3.6.3 Quantitatively comparing changes in behavior over time 

To directly compare how behavior changes with age, we chose to examine the 

behavioral covariance matrix across the different food and age groups. Similar to existing 

work,142 we found the average probability each individual would be in one of the 24 defined 

discretize behavioral regions for each timepoint. We then found the mean behavioral vector 

(𝜇 𝑘
(𝑧)

) for the individuals within each food condition and age group of interest, where 𝑧 is 

the food condition of interest and 𝑘 is the age group. We divided the age groups into two-

day long cohorts. The mean behavioral vectors are then combined to create the behavioral 

matrix 𝑀, where 𝑀 = [𝜇𝐷𝑎𝑦 2−4
𝑂𝐷10  … 𝜇𝐷𝑎𝑦 18−20

𝑂𝐷10 , 𝜇𝐷𝑎𝑦 2−4
𝑂𝐷2.5  … 

𝜇𝐷𝑎𝑦 24−26
𝑂𝐷2.5 , 𝜇𝐷𝑎𝑦 2−4

𝐼𝐹  … 𝜇𝐷𝑎𝑦28−30
𝐼𝐹 ] 𝜖 ℛ24𝑥35, with 24 behavior regions and 35 different 

age and food grouped populations. We then found the covariance of this behavior matrix 

to observe the relationship between behaviors across the time and food conditions.  

To assess the structure of the covariance matrix and test for the number of 

significant modes to describe the covariance matrix, we independently shuffled the 

covariance matrix and performed eigendecomposition on the resulting structure. 

Eigenvalues higher than those from the shuffled matrix indicate significance, as shown in 

Figure 4.9.  

To compare across populations, the average projection plot was smoothed using a 

gaussian filter, with a window of 10. The error was generated using bootstrapping, with 
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1000 samples. The standard deviation across the bootstrapped samples are plotted as the 

region of error for each timepoint.  

4.4 Results and Discussion 

4.4.1 Defining the behavioral repertoire of C. elegans on-chip 

Using the t-SNE behavioral mapping method we obtained a PDF map that captures 

the behavioral repertoire of C. elegans (Figure 4.3). This map contains 26,470,580 frames 

with behaviors ranging from Day 2 of adulthood to 12 hours prior to death. The behaviors 

span across three different food regimes as well: high amounts of food, CR, and IF. The 

peaks on the plot correspond with stereotyped behaviors. To better characterize the 

detected behaviors, the plot was discretized using a watershed algorithm. This resulted in 

a map with 24 distinct behavioral regions (Figure 4.3b).  

 

Figure 4.3. Behavioral map of C. elegans cultured on-chip capturing the entire adult 

lifespan and under various food conditions. A) PDF of stereotyped behavior B) Discretized 

behavioral map. 
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After qualitatively examining the behaviors within each region, we identified four 

main sections. The first (Regions 21-24) encompasses highly active swimming or thrashing 

movements, with regions having different swimming frequencies and body bend 

amplitudes (Appendix C.2.3). Although previous work had identified distinct regions for 

forward and reverse movement on agar, 143 both movements were found in the same region. 

This clustering could be attributed to the frequency of reversal behavior. Unlike worms on 

agar, reversals in liquid are rare, making up ~1-2% of swimming behavior.87 Since 

swimming itself is not a dominant behavior within this dataset, with much larger density 

peaks occurring in other parts of the map, it is likely that the rarity of the behavior made it 

not frequent enough to form its own distinct region.  

The second area (Regions 18-20) has worms undergoing deep body bends; one 

region in this section (Region 20) has coiling behaviors. The third area (Region 1-6, 8,9,11, 

and 16) has slow crawling behavior. Regions 3, 4, 8, and 9 have deeper body bends, while 

regions closer to the top of the map, such as Region 2, tend to have straighter postures. 

Additionally, there is heterogeneity in the frequency of movement, with the regions to the 

left having slower behaviors. There are some behaviors that appear to be slower than the 

10 second window of behavior examined, indicating a potential need to examine longer-

term dynamics within the behavioral recordings. The last area (Regions 7, 10, 12-15, and 

17) consists of behaviors with little to no movement. The postures captured here vary; 

however, similar to previous trends, the regions closer to the top of the map, such as Region 

13, tend to have straighter postures. For more information regarding the characterization 

of behaviors across the regions, see Appendix C.2.3.  
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After characterizing the behaviors of the regions on the map, we examined their 

temporal relation with one another, to observe how individuals travel across different 

behavioral regions within the map (Figure 4.4). We measured the transition probability 

(𝑇) that an individual would travel from Region 𝑖 to Region 𝑗 after a set time (τ = 1 frame) 

throughout the recordings, ignoring instances where the worm performs a ‘static’ behavior, 

staying in the same region. We also observed how the flux across regions changes, defined 

as 𝑓 = 𝜌𝑖 × 𝑇(𝜏)𝑖,𝑗, where 𝜌𝑖 is the stationary probability density for Region 𝑖, accounting 

for the likelihood that the initial behavioral state would occur.  

 

Figure 4.4. Worms travel to similar behaviors throughout the behavioral map. A) Labeled 

discretized behavior map (24 regions). B) Flux matrix across the 24 regions across all 

recordings. C) Transition probability matrix (τ = 1 frame) across the 24 regions across all 

recordings. 

The transitions across regions are largely limited to similar types of behaviors. For 

instance, Regions 21-24 almost exclusively transition to one another, with a few transitions 

to neighboring regions (such as Regions 19-20). This is apparent in the block-like, clustered 

structure within 𝑇𝑀, and follows known trends in literature.141 The transitions across two 

regions are also often asymmetric, implying a preference or directionality of transition. For 

example, the probability of transitioning from Region 13 to 10 is much higher than Region 
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10 to 13, while the probability of transitioning from Region 23 to 24 is much higher than 

Region 24 to 23. Lastly, we are able to pick out that the most common transitions appear 

between Region 10 and 13, due to their high probability density (i.e. frequency of 

occurrence) within the overall behavior map.  

Previous studies have demonstrated that behavioral transitions are non-Markovian, 

retaining a structure, or memory, across long times scales indicative of an internal 

behavioral state.141 Similarly, the transitions across behaviors in worms is non-Markovian, 

with a persistent underlying structure within the transitional matrix remaining past the 

expected decay found in a Markovian system (Appendix C.2.4). This points at the worm 

having a short behavioral ‘memory’, with the transition matrix losing structure past 10 

seconds (τ = 140 frames). Thus, although the behavioral transitions are not completely 

random and are influenced by prior behaviors, within this cultured environment, these 

spontaneous behaviors do not appear to capture long-term memory on the scale of minutes 

or hours within these recordings. 

4.4.2 Behavioral changes in response to mechanical stimulation 

Prior studies have examined the differences between spontaneous and stimulated 

behavior, with stimulated behavior providing a more accurate measure of the physiological 

health of an individual in comparison to spontaneous movement.51,60,102 Traditional 

movement metrics, such as raw movement, were not able to capture significant difference 

between stimulated and non-stimulated movement under the HeALTH system in 

microfluidic culture (Appendix A.2.5). However, we were curious as to whether subtle 

differences in behavior could be detected within the PDF maps. The maps appear to have 
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the similar stereotyped behaviors; however, the stimulated map has significantly greater 

density in areas of movement, such as the swimming region of the map, in comparison to 

the spontaneous map, which had a significantly greater density in idle, non-moving regions 

(Figure 4.5). This mirrors known trends and underscores the ability of the behavioral 

mapping to detect slight behavioral differences across recordings. 

 

 

Figure 4.5. Differences in spontaneous and stimulated behavior. A) Behavioral PDF map 

of recordings prior to a mechanical pulse, across all timepoints and food conditions. B) 

Behavioral PDF map of recordings after a mechanical pulse, across all timepoints and food 

conditions. C) Difference between the two PDFs in A) and B). Outlined areas are 

statistically significantly different regions across the two maps.  

4.4.3 Behavioral changes due to age 

To observe how age impacts the behavior repertoire we examined changes in the 

condition without dietary perturbations. Behavioral recordings were grouped into two-day 

cohorts, and we performed hierarchical bootstrap sampling within groups to ensure even 

sampling across time and plotted the respective PDF within the behavior space (Figure 

4.6, Appendix C.2.5). Following expected trends, as the population ages, their respective 
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behavior changes as well. In early adulthood (Day 2–4) the worms are highly active, largely 

residing in high movement, swimming region of the map. This aligns with the peak 

reproductive period of the worm’s lifespan. As they age, they become increasingly less 

active (Day 4-10) residing in the slower moving, crawling activity behaviors, and once past 

the reproductive period and close to death (Day 10-18) they inhabit the idle regions. This 

qualitatively matches behavioral decline patterns found using commonly used movement 

metrics (Figure 2.8b, Figure 3.9c).  

 

Figure 4.6. Differences in behavior across age. Behavioral PDF maps individuals cultured 

with no DR across their lifespan. 

In addition to comparing the PDF maps with age, the behavioral transitions across 

regions were also compared across age groups (Appendix C.2.6). The structure is largely 

maintained across the different age groups, with regions transitioning to nearby or similar 

behaviors. However, one notable difference is that as the worms get into old age, certain 

transitions, such as the ones in the swimming area of the map, become much less frequent. 
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This is likely attributed to the significant drop in performing these behaviors during this 

age, which is underscored in the corresponding flux matrices.  

4.4.4 Observing intrapopulation differences in aging 

It is known that there is variation in the aging process within an isogenic 

population.48,145 In Chapter 2 we examined behavioral differences within the same 

population using basic movement-based metrics (Figure 2.11). Although there were 

identifiable differences for short- and long-lived individuals within populations across 

different genetic and thermal conditions in this earlier work, there was no significant 

difference in the movement levels for individuals cultured in high food conditions, a trend 

that was recapitulated in this independent set of experiments (Figure 4.10b,d, Appendix 

C.2.7). To take advantage of the depth of behavioral information captured using the t-SNE 

embedding method, and to parse out potential subtle differences in behavior, we examined 

the behavioral maps for the shortest- and longest-lived cohort within the population 

(Figure 4.7).  

 

Figure 4.7. Differences in short- and long-lived individuals within an isogenic population. 

Short-lived individuals consist of the bottom 20th percentile in lifespan while long-lived 
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individuals consist of the top 20th percentile in lifespan. A) Behavioral PDF map of 

recordings of short-lived individuals, across all timepoints under no DR. B) Behavioral 

PDF map of recordings of long-lived individuals, across all timepoints under no DR. C) 

Difference between the two PDFs in A) and B). Outlined areas are statistically significantly 

different regions across the two maps. 

Unlike traditional methods, there is a statistically significant difference between the 

PDF maps across the two cohorts (Figure 4.7c). Long-lived individuals had a higher 

likelihood of occupying the low moving, idle areas of the map, while short-lived 

individuals had a greater probability of subsiding in the high-movement, swimming area 

of the map. This difference across the cohorts is further underscored when examining the 

PDF maps across age groups (Figure 4.8). Both populations follow the same spatial trend 

within the map seen in Figure 4.6, but the relative amount of time spent in each region 

varies, with the short-lived individuals spending less time in the idle regions of the map. 

This is mirrored while comparing across their relative age (Appendix C.2.8), and 

qualitatively hints at a different aging path or trajectory across the two groups. 
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Figure 4.8 Differences in behavior of short-lived and long-lived isogenic individuals 

across age. A) Behavioral PDF maps of short-lived individuals cultured with no DR across 

their lifespan. B) Behavioral PDF maps of long-lived individuals cultured with no DR 

across their lifespan. 

In addition to comparing the PDF maps within the behavioral space, we also wanted 

to quantitatively compare age-related behavioral changes. Similar to previous work,142 we 

examined the behavioral covariance across time and food conditions and performed 
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eigendecomposition to extract the underlying structure (Figure 4.9a). From this, we found 

only one significant mode (Figure 4.9b), which delineates between the idle and moving 

regions on the map (Figure 4.9c). In addition, it also seems to capture some of the 

amplitude differences, with distinctions between the slower moving regions on the bottom 

left and the high movement, swimming behaviors on the map.  

 

Figure 4.9. Behavioral covariance with age. A) Covariance matrix of behavior. B) 

Eigenvalues of the covariance matrix. Only 1 mode is significantly larger than the shuffled 

dataset. C) Eigenvectors of the first eigenvalue.  

We then plotted the projection of each worm’s individual behavior over time onto 

the significant eigenvector. When examining the shortest- and longest-lived individuals for 

the high food condition there was a distinct difference in their average behavioral dynamics 

with age (Figure 4.10a,c). Similar to previous literature, the short-lived individuals tend 

to remain active and experience a precipitous decline immediately prior to their 

death.59,60,88 In contrast, older individuals have an extended period of low-movement in the 

last portion of their lifespan, apart from a slight increase of movement near the end of their 

life. This mirrors the trends qualitatively seen in the PDFs of the two populations, and 

further validates the idea of having distinct aging ‘trajectories’ within the same population, 

demonstrating this trend across different culture environments. Furthermore, this 
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underscores the potential for the t-SNE behavioral mapping technique to detect behavioral 

differences that are otherwise hidden using traditional, basic behavioral metrics. (Figure 

4.10b,d, Appendix C.2.7).  

 

Figure 4.10. Differences in behavior for short- and long-lived individuals within an 

isogenic population with age. A) Projection onto the first eigenvector from the behavioral 

covariance matrix across time (error bars are the standard deviation from bootstrapped 

sampling). B) Maximum distance traveled by the centroid of the bounding box of the worm 

across time (error bars are SEM). C) Projection onto the first eigenvector from the 

behavioral covariance matrix across the normalized lifespan (error bars are the standard 

deviation from bootstrapped sampling). B) Maximum distance traveled by the centroid of 

the bounding box of the worm across the normalized lifespan (error bars are SEM).   

4.4.5 Changes in behavior as a result of DR 

In addition to examining the overall behavioral repertoire of worms, we examined 

how behavior changed in response to controlled environment perturbations, in the forms 

of caloric restriction (CR) and intermittent fasting (IF). To compare their respective 

behaviors, the behavioral recordings were plotted within a shared postural space (Figure 

4.11a-c). The overall distribution patterns across the food conditions appear similar, with 
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large, stereotyped peaks occurring in the idle areas of Regions 7,10 and 13, and smaller 

peaks distributed in similar locations throughout the map, such as in the slower crawling 

areas. No behavioral region defined in the map is specific to a particular food condition. 

Additionally, the behavioral transitions across the food conditions are also conserved, with 

similar transition probabilities and structure across the different behavioral regions 

(Appendix C.2.9). 

 

Figure 4.11. Differences in food conditions. A) Behavioral PDF of recordings of 

individuals cultured under no DR, across all timepoints. B) Behavioral PDF of recordings 

of individuals cultured under CR, across all timepoints. C) Behavioral PDF of recordings 

of individuals cultured under IF, across all timepoints. D) Difference between the PDFs of 

no DR and CR populations. Outlined areas are statistically significantly different regions 

across the two maps. E) Difference between the PDFs of CR and IF populations. Outlined 

areas are statistically significantly different regions across the two maps. F) Difference 

between the PDFs of no DR and IF populations. Outlined areas are statistically 

significantly different regions across the two maps. 
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Although the overall behavioral repertoires across the food conditions appear 

similar, there are subtle differences (Figure 4.11d-f). When comparing the different DR 

regimes, the worms under IF appear to be more idle, while the worms under CR more 

heavily reside in the active swimming and crawling portions of the map (Figure 4.11e). 

When compared to the population without DR, the two DR regimes appear to have similar 

trends (Figure 4.11d,f). The slower moving, crawling portions of the map are largely 

occupied by the cohort with no DR. While DR conditions appear to be more idle, a small 

subregion in Region 13 is highly popular for the high food conditions. Similarly, there 

appears to be subdivisions within the swimming areas of the worm, with the DR and non-

DR conditions residing in distinct subregions within each region. This hints at further 

potential behavioral subdivisions not shown with the current level of categorization.  

In addition to highlighting differences in behaviors across food conditions, there 

are distinct differences within the same dietary regime (Figure 4.12). The behavior of 

worms under IF significantly differs based on the currently experienced food level. While 

cultured in buffer, the preferred behavior of the worm is divided into two distinct groups, 

clustering either in the idle region of the map or in the region capturing active swimming. 

This follows known trends of swimming behavior in C. elegans, in where if cultured in 

liquid for long-time scales individuals have been shown to oscillate between active 

swimming and a stationary, quiescent stage, a potentially adaptive behavior.146,147 

Although this has been examined on the order of hours, this has not been a commonly 

reported phenomena on the timescale of days. In contrast, while under high food 

conditions, the worms are more likely to undergo the slow, crawling behaviors captured in 
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the bottom left portion of the map, mirroring the PDF of worms constantly cultured in 

constant food conditions.  

 

Figure 4.12. Differences in behavior during IF. A) Behavioral PDF of recordings of 

individuals cultured under IF with no food present, across all timepoints. B) Behavioral 

PDF of recordings of individuals cultured under IF with food present, across all timepoints. 

C) Difference between the PDFs of food and no food present for the IF population. Outlined 

areas are statistically significantly different regions across the two maps. 

4.4.6 Changes in behavior with age across DR regimes 

In addition to observing how different forms of DR influence both the longevity 

and behavior of the worm, we are interested in how external modulators alter behaviors 

and behavioral preferences change with age. These changes could give insight into the 

internal state of individuals and potentially link their behavior with their physiological age. 

Similar to the previous examination into the single-food condition, the behaviors for each 

food condition were grouped into two-day cohorts and plotted the PDFs within the same 

behavioral space (Figure 4.13). 
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Figure 4.13. Differences in behavior across food conditions across age. A) Behavioral PDF 

maps of individuals cultured with no DR across their lifespan. B) Behavioral PDF maps of 

individuals cultured under CR across their lifespan. C) Behavioral PDF maps of individuals 

cultured under IF across their lifespan. 

The behavioral changes for the low food condition resemble the aging trajectory 

seen in the high food condition; during early adulthood (Day 2-4) the worms are largely 

active, in the swimming region of the map. With age, (Day 4-12) they increasingly occupy 

the bottom intermediate areas, eventually residing in the upper idle regions of the map for 

the second half of their lifespan (Day 12-26). In contrast to the high food condition, the 

worms under CR perform swimming behaviors more frequently early in life (Figure 

4.13a,b, Appendix C.2.10). This follows expected trends,88 with individuals in lower food 

levels having increased activity, likely searching for greater food concentrations. In 

addition, the CR population appears to spend more time in a transitionary period from the 

lower, active regions to the upper idle regions on the map (Day 10-16) and spends more 

time in its life within the idle regions (Day 16 – 26), seemingly scaling the time spent in 

the areas of the map based on lifespan (Appendix C.2.10).  

Dietary restriction has been shown to influence the reproductive peak and period of 

individuals, reducing the number of progeny but extending the period of reproduction.148 

Similar to the high food condition, we qualitatively observed a peak period of fecundity in 

early adulthood (Day 2-4); however, we did observe an extended period of reproduction, 

with an absence of large egg cluster and with many chambers no longer having eggs around 

Day 7- 8 of adulthood, mirroring the decline in swimming, active movement during that 

age.   
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In contrast to the similar behavioral patterns across the high food and CR 

populations, the IF population displayed distinct behavioral preferences in early to mid-

adulthood. In early adulthood under no exposure to food condition, they were largely 

centered around the high frequency swimming behavior along with the idle regions near 

the top of the map, mirroring the dichotomy seen in Figure 4.12a.  In contrast, from Day 

4-6, under the high food condition, the worms were spread out throughout the map, with 

large peaks in the swimming regions and the active, slower moving bottom regions of the 

map. The dichotomy between the two food conditions within the IF regime is largely 

apparent early in life; this oscillation between states begins to lessen during mid adulthood 

(Day 10 onwards), with the worms eventually mainly occupying the idle regions in mid- 

to late adulthood (Day 16-30). Similar to prior food conditions, the IF condition occupies 

mainly the idle regions in the latter half of the lifespan.  

In addition to exhibiting distinct density functions dependent on the food currently 

exposed to the worm, there were striking similarities in the density functions of the worms 

cultured under IF experiencing high food levels, and those under no DR (Figure 4.14). 

This is apparent through the majority of the lifespan of the IF condition, with plots 

generally mirroring earlier timepoints seen in the constant high food condition. Although 

there are statistically significant differences in the maps across the food conditions 

(Appendix C.2.11), this similarity hints at the possibility that aging and age-related 

behavioral changes can be attenuated or even temporally delayed in response to DR. 

Previous studies have shown a similar link between changes in mortality rates in response 

to the instigation of DR at different ages.29 This phenomenon could potentially be 

modulated by the presented food levels, timing of DR, and frequency of food switching.  
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Figure 4.14. Differences in behavior across no DR and IF conditions across age. A) 

Behavioral PDF maps of individuals cultured with no DR from Day 4-8 of adulthood and 

individuals cultured with IF, in the presence of food, from Day 8-10. B) Behavioral PDF 

maps of individuals cultured with no DR from Day 8-12 of adulthood and individuals 

cultured with IF, in the presence of food, from Day 12-14. C) Behavioral PDF maps of 

individuals cultured with no DR from Day 12-16 of adulthood and individuals cultured 

with IF, in the presence of food, from Day 20-22. 

In addition to examining the spatial and temporal relationships of the behavioral 

regions over time across food conditions, we also wanted to quantitatively compare age-

related behavioral changes. Similar to examining the shortest- and longest-lived cohorts 

within an isogenic population, we compared the time series projections on the first 

eigenvector for the behavioral covariance across time and food conditions (Figure 4.15). 

The average projection of the high food and CR conditions appears similar early in life; 

however, at around Day 8 the average of high food condition appears to diverge from the 

average CR condition. This sudden downward trajectory also occurs for the CR condition 
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at a delayed timepoint, at around Day 10, with the rate of decline similar to the condition 

under no DR. Interestingly, this point of inflection occurs at the same time in where the 

worms on the PDF begin to increasingly occupy the idle regions on the map, potentially 

hinting at the end of the period of life in where worms reliably are able or willing to perform 

active spontaneous movement. Near the end of the very end of their life, both populations 

have a slight positive slope in the average projection. Qualitatively we have often observed 

a bout of spontaneous movement immediately prior to death, which, though masked in the 

PDF plots, is recapitulated through the projections.  

 

Figure 4.15. Differences in behavior across different food conditions with age. A) 

Projection onto the first eigenvector from the behavioral covariance matrix across time 

(error bars are the standard deviation from bootstrapped sampling). B) Maximum distance 

traveled by the centroid of the bounding box of the worm across time (error bars are SEM). 

C) Projection onto the first eigenvector from the behavioral covariance matrix across the 

normalized lifespan (error bars are the standard deviation from bootstrapped sampling). B) 
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Maximum distance traveled by the centroid of the bounding box of the worm across the 

normalized lifespan (error bars are SEM).   

In contrast to the constant food conditions, the projections of the IF condition 

appear to oscillate in early to mid-adulthood (Day 2-10), with the periodicity correlating 

with the food switching frequency (Appendix C.2.13). Although there were differences in 

the PDFs (Appendix C.2.11), the average projection of the periods under the high food 

condition in IF are comparable to the projection values seen in earlier time points under 

the constant high food conditions (Appendix C.2.12), mirroring the qualitative trends seen 

in the density plots in Figure 4.14. With age, after Day 10, the average projection also 

appears to decline, albeit at a smaller slope than seen in the constant food conditions. 

Both the projections and traditional metrics capture differences in behavior with age 

across food conditions; however, they highlight distinct aspects of behavior. For the IF 

condition, while traditional methods appear to capture the environmental oscillations 

throughout the lifespan, the projections and PDFs illustrate a dampening of environmental 

influence on behavior with age, with worms performing similar types of behaviors later in 

life, regardless of environmental condition. For the static food conditions, traditional 

metrics are able capture early in life differences, with worms in CR having higher levels of 

movement, likely attributed to increased food searching behavior, while the projections 

from the t-SNE analysis show no discernable difference. However, as they age the levels 

of movement are comparable, while the average projections and corresponding 

demonstrate a stark difference. Previous metrics demonstrate a non-linear scaling of 

movement decline across high food and DR conditions. In contrast, t-SNE analysis 

illustrates that worms under CR follow the same aging ‘path’ on the behavioral map, 
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performing the same types of behaviors with age linearly scaled to the individual’s lifespan. 

Thus, though the extent of absolute movement does not linearly scale with age, the types 

of behaviors performed with age over time does, illustrating how this method of analysis 

could give complementary insights into the behavior and overall health of the individual.  

4.5 Conclusions 

In Chapter 4, I demonstrate the use of t-SNE behavioral analysis to explore age-

related changes in C. elegans. I defined the entire behavioral repertoire of the worm within 

the microfluidic environment throughout its entire adult life, across over 515 hours of 

behavioral recordings. From this, I extracted stereotyped behaviors in an unbiased manner 

and characterized the temporal relationship between the different behaviors. I explored 

how known environmental modulators of longevity – CR and IF – influenced both the 

behavioral repertoire of the animal, along with age-related behavioral changes.  

Although this approach is computationally intensive and requires large amounts of 

behavioral recordings, it is also able to highlight subtle behavioral differences that are not 

otherwise captured using traditional movement metrics. This was demonstrated in two 

distinct cases. The first was in observing the differences within an isogenic population. The 

shortest- and longest-lived cohorts in the high food condition had distinct behavioral 

‘trajectories’ during the aging process, which was not apparent using basic movement 

metrics. The second was seen in the case of DR, in where we demonstrated that the average 

behavioral ‘trajectory’ scales linearly with age, in contrast to the non-linear of movement 

decline under high food and CR conditions.  
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Overall, the work performed in this chapter establishes a novel way of examining 

aging and age-related behavioral changes in C. elegans. This can be used to create valuable 

insights into how different genetic or environmental modulators of aging influence 

behavior in previously undetected ways, and better characterize how behavior is linked to 

the internal state and physiological age of the individual.  
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 Thesis Contributions 

The objective of this thesis was to develop tools and analytical techniques to 

investigate aging and longevity in C. elegans. The work addresses several technological 

gaps associated with existing methodologies, on both the data collection and on the 

subsequent behavioral analysis front. Current aging assays and culture systems are not able 

to provide robust, long-term culture and behavioral monitoring with single worm level 

resolution and precise spatiotemporal control. In terms of data analysis, existing tools lack 

the flexibility and scalability to accurately segment or extract features of interest within 

large, heterogenous datasets. Furthermore, conventional behavioral metrics used in aging 

studies are low-content and are unable to detect subtle behavioral differences between 

groups of interest. The platform, segmentation pipeline, and alternative approach to 

behavioral analysis overcome these limitations, to help better investigate modulators of 

aging and their impact on the health and age-related changes in behavior in a high-

throughput manner. 

In Chapter 2, in collaboration with Dr. Mei Zhan and Dr. Yongmin Cho, I 

developed HeALTH, an automated microfluidic-based platform designed for the long-term 

culture and behavioral recordings of C. elegans throughout their lifespan. The system 

allows for single-animal, longitudinal behavioral recordings, along with precise 

spatiotemporal environmental control. I improved both the design and culture protocol of 

the initial system for increased experimental viability and usability. This experimental 

robustness was demonstrated in three separate examples of large-scale aging studies. We 
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examined how mutations in the IIS pathway influence changes in movement with age. We 

explored how DR, in the form of CR, altered the level of activity and relative movement 

decline across populations. Lastly, we explored how temperature, and controlled diurnal 

temperature oscillations, influence the aging process. This underscores the power and 

versatility of the system to be used for a wide array of high-throughput aging and longevity 

studies, providing high-content behavioral data with fine spatial and temporal resolution.  

In Chapter 3 I designed a flexible, deep-learning based pipeline to extract worm 

postures from complex, heterogenous conditions and environments. It uses Mask R-CNN 

and Faster R-CNN to perform and confirm instance segmentation of the worm of interest, 

significantly outperforming conventional image processing techniques and existing, 

machine learning based image processing packages. It is also able to accurately track and 

extract the centerline in complex poses, allowing the user to observe and analyze occluded 

or coiled postures. Although this pipeline requires training the deep-learning models for 

the accurate segmentation of the worm, it is accurate and flexible across conditions post 

training, and easily scalable, designed for parallel computing, making it a powerful method 

for analyzing large-scale recordings (on the order of terabytes). In addition, in collaboration 

with Dr. Kathleen Bates, I demonstrate how object detection using Faster R-CNN can be 

used to obtain coarse behavioral information in the context of ethological behavioral 

studies. It is able to recapitulate commonly used metrics, such as distance traveled over a 

set period of time or the movement of an individual and was able to separate two distinct 

behavioral phenotypes. By creating a robust and scalable tool for extracting both basic 

behavioral metrics and complex pose information, this will enable researchers to extract 
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and subsequently analyze behavior in a wide variety of contexts, providing greater insights 

into the fields of aging and ethology.  

In Chapter 4 I investigated the impact of two distinct forms of dietary restriction 

– caloric restriction and intermittent fasting – on longevity and age-related behavioral 

changes in C. elegans. In contrast to conventional behavioral metrics, I used an unbiased, 

data-driven approach to identify stereotyped behaviors and defined the entire behavioral 

repertoire of the worm throughout its entire lifespan using a large-scale behavioral dataset 

(with over 515 hours of recordings). Using this untraditional approach, I identified 

differences in aging behaviors within an isogenic population under the same culture 

conditions, and in worms under CR and IF, changes that were otherwise undetected using 

traditional movement measurements. This provides insight into a complementary approach 

of examining aging and age-related behavioral changes in C. elegans, which could 

potentially detect the influence of subtle genetic or environmental modulators of aging. 

5.2 Future Directions 

The work presented in this thesis illustrates the capabilities of the tools and analysis 

techniques developed to facilitate the study of aging and age-related changes in behavior 

in C. elegans. In this section, I discuss a few possible applications for these tools along 

with opportunities for further development. 

5.2.1 Sex-specific changes in healthspan and longevity 

There are known sex specific differences in aging.19,149–151 A stark example of the 

dimorphism between the two sexes in C. elegans is DR - while DR extends lifespan in 
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hermaphrodites, it has little to no impact on the longevity of male C. elegans.152 However, 

the vast majority of aging studies in C. elegans are performed using hermaphrodites. This 

is in large part due to the difficultly of performing traditional lifespan assays with male 

worms. The deleterious impact of male pheromone on longevity prevents large population 

assays with males, and it is extremely difficult to scale studies that examine isolated, 

individually cultured males.153,154 These handling and scalability challenges makes it 

difficult to examine how different genetic or environmental perturbations have sex specific 

influences.  

Using the HeALTH platform, we could individually culture male worms on a large-

scale and observe how their lifespan and behavior changes in response to a variety of 

stimuli. The constant fluid flow would eliminate the presence of the male pheromone in 

the environment, preventing confounding, premature causes of death. Using this high-

throughput, versatile tool, we could observe and compare the sex specific response to 

ascaroside pheromones, genetic perturbations in the IIS pathway, and even perform drugs 

screens to observe whether the mechanism for lifespan extension are preserved across the 

different sexes. In addition, this could also be used in a non-aging specific context, to better 

capture and characterize the behavior of the male worm outside the context of mating.  

5.2.2 Increasing the phenotypes obtained with HeALTH 

Currently, the HeALTH platform captures whole-body behavior on an individual 

level. In this thesis (Chapters 2 & 4), I have demonstrated how behavior can be used as 

an insightful phenotype to observe aging and the health of an individual. However, 

additional metrics – either physiological or behavioral – have been shown to add a greater 
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depth and accuracy in gauging the internal state and underlying health of 

individuals.50,51,59,102 By modifying the recording scheme along with the imaging and 

illumination hardware, we may be able to increase the breadth of collected information.  

For instance, by increasing the temporal resolution of recordings we would be able 

to better track the fecundity of individuals, a known metric for measuring the health of 

individuals.59,77,155 Due to the use of C22, the worms lay progeny, which are trapped in the 

microfluidic chamber until being pushed out of the outlet channel. This often does not 

occur until a strong mechanical pulse, resulting in a higher flow rate, due to the small size 

of the channel (30µm height) and comparable size of an embryo (~30µm in diameter). If 

the platform captured images immediately prior to the mechanical pulsing, which occurs 

on an hourly basis, we would likely be able to accurately track the trends in the 

accumulation of eggs for each worm and estimate its relative fecundity over time. The 

measurement of the accumulation of eggs could easily be automated using the analysis 

pipeline developed in Chapter 3; the Mask R-CNN model is already trained to segment 

eggs within the chamber. Basic morphological metrics, such as the area of the egg clusters, 

could be used to estimate egg count.  

By adding a fluorescent imaging module to the platform, we would be able to 

measure coarse autofluorescence in the worm’s entire body, as a proxy for lipofuscin 

accumulation, which has shown to have a strong correlation with lifespan and physiological 

health.49,52 Furthermore, the depending on the resolution of the camera, it may be able to 

detect and capture localized fluorescent expression within the worm. This opens the door 

to a multitude of options, ranging from measuring gene expression levels for genes of 

interest to examining neuronal activity using GCaMP and tracking changes over the 
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lifespan of the individual. Not only would this give substantial insight into how specific 

gene expression or neural activity changes with age, but we could also link expression with 

the behaviors performed by the individual. This would give us substantial insight into how 

internal states result in behavioral outputs, and how that impacts long-term outcomes in 

longevity and health.  

5.2.3 Expanding the defined behavioral repertoire and exploring age-related behavioral 

changes across genetic and environmental perturbations 

In Chapter 4 we explored an alternative method to examine and compare changes 

in behavior with age across different perturbations. Although we examined two distinct 

forms of DR, there are a plethora of different genetic and alternative environmental 

modulators of aging that have yet to be explored in terms of their impact on behavioral 

changes with age. A prime example would be the canonical IIS mutants – do daf-2 mutants 

and daf-16 mutants exhibit the same stereotyped behaviors, behavioral range, and changes 

with age? Another question would be whether known pharmaceutical interventions shown 

to extend lifespan in C. elegans delay behavioral changes, mirroring the impact of IF 

compared to individuals cultured in constant high food conditions (Figure 4.14, Figure 

4.15). Lastly, could features from this analysis method be used as an accurate, predictive 

measure of physiological age and eventual lifespan, thus illustrating the full capabilities of 

behavior as a method for gauging the internal state of an individual? 

Additionally, this behavioral space was obtained from videos of worms cultured in 

a very specific environment. Confined within the microfluidic chamber, the animals were 

unable to perform behaviors typically performed on agar plates. Another potential 
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continuation would be to perform similar analysis on aged worms on the conventional agar 

environment and compare the behavioral differences based on the context of the reared 

environment. Although the agar environment would not allow for as precise spatiotemporal 

environmental control, it would provide a more direct comparison to the majority of 

behavioral studies performed within the C. elegans neuroethology community. 
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APPENDIX A. CHAPTER 2 SUPPLEMENTARY MATERIAL 

 The figures below are adapted from a research article entitled “An automated 

platform to monitor long-term behavior and healthspan in Caenorhabditis elegans under 

precise environmental control” published in Nature Communications Biology in 2020.88  

A.1  Raw Data for Survival Analysis  

Table A.1.1. Lifespan data on HeALTH platform.  

Censored idividuals are highlighted in grey. Temperature and food perturbations were 

implemented at Day 2 of adulthood. 

Temperature 

(°C)  
Strain 

Food 

Level 

(OD600)  

Date of L4 Device Chamber 
Age at 

Death 

25 N2 OD5 9/21/2018 Exp29 4 18 

25 N2 OD5 9/21/2018 Exp29 5 15 

25 N2 OD5 9/21/2018 Exp29 9 21 

25 N2 OD5 9/21/2018 Exp29 10 16 

25 N2 OD5 9/21/2018 Exp29 11 17 

25 N2 OD5 9/21/2018 Exp29 13 16 

25 N2 OD5 9/21/2018 Exp29 14 14 

25 N2 OD5 9/21/2018 Exp29 18 16 

25 N2 OD5 9/21/2018 Exp29 19 17 

25 N2 OD5 9/21/2018 Exp29 32 18 

25 N2 OD5 9/21/2018 Exp29 34 14 

25 N2 OD5 9/21/2018 Exp29 36 15 

25 N2 OD5 9/21/2018 Exp29 37 15 

25 N2 OD5 9/21/2018 Exp29 38 13 

25 N2 OD5 9/21/2018 Exp29 41 18 

25 N2 OD5 9/21/2018 Exp29 43 20 

25 N2 OD5 9/21/2018 Exp29 45 18 

25 N2 OD5 9/21/2018 Exp29 46 15 

25 N2 OD5 9/21/2018 Exp29 47 18 

25 N2 OD5 9/21/2018 Exp29 50 14 

25 N2 OD5 9/21/2018 Exp29 55 18 

25 N2 OD5 9/21/2018 Exp29 56 14 

25 N2 OD5 9/21/2018 Exp29 58 15 

25 N2 OD5 9/21/2018 Exp29 60 17 
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Table A.1.1 continued     

25 N2 OD5 10/23/2018 Exp65 2 21 

25 N2 OD5 10/23/2018 Exp65 3 17 

25 N2 OD5 10/23/2018 Exp65 5 15 

25 N2 OD5 10/23/2018 Exp65 7 16 

25 N2 OD5 10/23/2018 Exp65 10 18 

25 N2 OD5 10/23/2018 Exp65 11 21 

25 N2 OD5 10/23/2018 Exp65 14 21 

25 N2 OD5 10/23/2018 Exp65 16 21 

25 N2 OD5 10/23/2018 Exp65 17 18 

25 N2 OD5 10/23/2018 Exp65 20 18 

25 N2 OD5 10/23/2018 Exp65 22 18 

25 N2 OD5 10/23/2018 Exp65 24 24 

25 N2 OD5 10/23/2018 Exp65 25 16 

25 N2 OD5 10/23/2018 Exp65 26 21 

25 N2 OD5 10/23/2018 Exp65 27 22 

25 N2 OD5 10/23/2018 Exp65 28 7 

25 N2 OD5 10/23/2018 Exp65 29 20 

25 N2 OD5 10/23/2018 Exp65 30 26 

25 N2 OD5 10/23/2018 Exp65 31 12 

25 N2 OD5 10/23/2018 Exp65 32 16 

25 N2 OD5 10/23/2018 Exp65 33 21 

25 N2 OD5 10/23/2018 Exp65 34 14 

25 N2 OD5 10/23/2018 Exp65 35 19 

25 N2 OD5 10/23/2018 Exp65 39 23 

25 N2 OD5 10/23/2018 Exp65 41 15 

25 N2 OD5 10/23/2018 Exp65 43 12 

25 N2 OD5 10/23/2018 Exp65 44 20 

25 N2 OD5 10/23/2018 Exp65 45 15 

25 N2 OD5 10/23/2018 Exp65 47 21 

25 N2 OD5 10/23/2018 Exp65 48 23 

25 N2 OD5 10/23/2018 Exp65 51 15 

25 N2 OD5 10/23/2018 Exp65 52 18 

25 N2 OD5 10/23/2018 Exp65 53 14 

25 N2 OD5 10/23/2018 Exp65 54 20 

25 N2 OD5 10/23/2018 Exp65 56 20 

25 N2 OD5 10/23/2018 Exp65 57 23 

25 N2 OD5 10/23/2018 Exp65 58 19 

25 N2 OD5 10/23/2018 Exp65 59 19 

25 N2 OD5 10/7/2018 Exp60 1 19 

25 N2 OD5 10/7/2018 Exp60 2 20 

25 N2 OD5 10/7/2018 Exp60 8 21 

25 N2 OD5 10/7/2018 Exp60 20 15 

25 N2 OD5 10/7/2018 Exp60 21 23 

25 N2 OD5 10/7/2018 Exp60 22 27 

25 N2 OD5 10/7/2018 Exp60 24 17 
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Table A.1.1 continued     

25 N2 OD5 10/7/2018 Exp60 26 20 

25 N2 OD5 10/7/2018 Exp60 27 19 

25 N2 OD5 10/7/2018 Exp60 28 20 

25 N2 OD5 10/7/2018 Exp60 29 19 

25 N2 OD5 10/7/2018 Exp60 30 18 

25 N2 OD5 10/7/2018 Exp60 33 26 

25 N2 OD5 10/7/2018 Exp60 38 20 

25 N2 OD5 10/7/2018 Exp60 40 14 

25 N2 OD5 10/7/2018 Exp60 45 16 

25 N2 OD5 10/7/2018 Exp60 46 21 

25 N2 OD5 10/7/2018 Exp60 47 19 

25 N2 OD5 10/7/2018 Exp60 48 19 

25 N2 OD5 10/7/2018 Exp60 50 19 

25 N2 OD5 10/7/2018 Exp60 52 16 

25 N2 OD5 10/7/2018 Exp60 53 19 

25 N2 OD5 10/7/2018 Exp60 54 18 

25 N2 OD5 10/7/2018 Exp60 55 26 

25 N2 OD5 10/7/2018 Exp60 57 21 

25 N2 OD5 2/18/2019 Exp20 1 15 

25 N2 OD5 2/18/2019 Exp20 3 19 

25 N2 OD5 2/18/2019 Exp20 4 24 

25 N2 OD5 2/18/2019 Exp20 5 16 

25 N2 OD5 2/18/2019 Exp20 6 24 

25 N2 OD5 2/18/2019 Exp20 7 19 

25 N2 OD5 2/18/2019 Exp20 9 16 

25 N2 OD5 2/18/2019 Exp20 13 14 

25 N2 OD5 2/18/2019 Exp20 15 20 

25 N2 OD5 2/18/2019 Exp20 16 10 

25 N2 OD5 2/18/2019 Exp20 17 18 

25 N2 OD5 2/18/2019 Exp20 19 22 

25 N2 OD5 2/18/2019 Exp20 20 20 

25 N2 OD5 2/18/2019 Exp20 21 19 

25 N2 OD5 2/18/2019 Exp20 22 20 

25 N2 OD5 2/18/2019 Exp20 24 19 

25 N2 OD5 2/18/2019 Exp20 27 16 

25 N2 OD5 2/18/2019 Exp20 28 22 

25 N2 OD5 2/18/2019 Exp20 29 12 

25 N2 OD5 2/18/2019 Exp20 30 13 

25 N2 OD5 2/18/2019 Exp20 32 20 

25 N2 OD5 2/18/2019 Exp20 35 17 

25 N2 OD5 2/18/2019 Exp20 37 19 

25 N2 OD5 2/18/2019 Exp20 39 20 

25 N2 OD5 2/18/2019 Exp20 42 20 

25 N2 OD5 2/18/2019 Exp20 43 17 

25 N2 OD5 2/18/2019 Exp20 44 28 
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Table A.1.1 continued     

25 N2 OD5 2/18/2019 Exp20 45 19 

25 N2 OD5 2/18/2019 Exp20 47 24 

25 N2 OD5 2/18/2019 Exp20 48 20 

25 N2 OD5 2/18/2019 Exp20 50 17 

25 N2 OD5 2/18/2019 Exp20 52 20 

25 N2 OD5 2/18/2019 Exp20 53 18 

25 N2 OD5 2/18/2019 Exp20 54 18 

25 N2 OD5 2/18/2019 Exp20 55 17 

25 N2 OD5 2/18/2019 Exp20 56 10 

25 N2 OD5 2/18/2019 Exp21 3 22 

25 N2 OD5 2/18/2019 Exp21 6 16 

25 N2 OD5 2/18/2019 Exp21 10 16 

25 N2 OD5 2/18/2019 Exp21 11 21 

25 N2 OD5 2/18/2019 Exp21 14 19 

25 N2 OD5 2/18/2019 Exp21 16 19 

25 N2 OD5 2/18/2019 Exp21 17 21 

25 N2 OD5 2/18/2019 Exp21 20 20 

25 N2 OD5 2/18/2019 Exp21 23 24 

25 N2 OD5 2/18/2019 Exp21 25 19 

25 N2 OD5 2/18/2019 Exp21 27 23 

25 N2 OD5 2/18/2019 Exp21 28 19 

25 N2 OD5 2/18/2019 Exp21 29 18 

25 N2 OD5 2/18/2019 Exp21 30 21 

25 N2 OD5 2/18/2019 Exp21 31 10 

25 N2 OD5 2/18/2019 Exp21 34 21 

25 N2 OD5 2/18/2019 Exp21 40 23 

25 N2 OD5 2/18/2019 Exp21 41 15 

25 N2 OD5 2/18/2019 Exp21 44 20 

25 N2 OD5 2/18/2019 Exp21 46 21 

25 N2 OD5 2/18/2019 Exp21 50 16 

25 N2 OD5 2/18/2019 Exp21 51 15 

25 N2 OD5 2/18/2019 Exp21 52 19 

25 N2 OD5 2/18/2019 Exp21 53 13 

25 N2 OD5 2/18/2019 Exp21 54 22 

25 N2 OD5 2/18/2019 Exp21 56 16 

25 N2 OD5 2/18/2019 Exp21 57 24 

25 N2 OD5 2/18/2019 Exp21 58 24 

25 N2 OD5 2/18/2019 Exp21 59 20 

25 daf-2 OD5 9/21/2018 Exp31 7 38 

25 daf-2 OD5 9/21/2018 Exp31 8 42 

25 daf-2 OD5 9/21/2018 Exp31 10 36 

25 daf-2 OD5 9/21/2018 Exp31 17 41 

25 daf-2 OD5 9/21/2018 Exp31 18 40 

25 daf-2 OD5 9/21/2018 Exp31 19 34 

25 daf-2 OD5 9/21/2018 Exp31 23 43 
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Table A.1.1 continued     

25 daf-2 OD5 9/21/2018 Exp31 28 33 

25 daf-2 OD5 9/21/2018 Exp31 29 41 

25 daf-2 OD5 9/21/2018 Exp31 31 34 

25 daf-2 OD5 9/21/2018 Exp31 33 36 

25 daf-2 OD5 9/21/2018 Exp31 34 34 

25 daf-2 OD5 9/21/2018 Exp31 38 38 

25 daf-2 OD5 9/21/2018 Exp31 40 38 

25 daf-2 OD5 9/21/2018 Exp31 45 34 

25 daf-2 OD5 9/21/2018 Exp31 46 38 

25 daf-2 OD5 9/21/2018 Exp31 48 41 

25 daf-2 OD5 9/21/2018 Exp31 50 39 

25 daf-2 OD5 9/21/2018 Exp31 51 41 

25 daf-2 OD5 9/21/2018 Exp31 52 36 

25 daf-2 OD5 9/21/2018 Exp31 53 42 

25 daf-2 OD5 9/21/2018 Exp31 54 40 

25 daf-2 OD5 10/23/2018 Exp63 5 30 

25 daf-2 OD5 10/23/2018 Exp63 6 38 

25 daf-2 OD5 10/23/2018 Exp63 7 34 

25 daf-2 OD5 10/23/2018 Exp63 8 42 

25 daf-2 OD5 10/23/2018 Exp63 10 24 

25 daf-2 OD5 10/23/2018 Exp63 11 37 

25 daf-2 OD5 10/23/2018 Exp63 13 34 

25 daf-2 OD5 10/23/2018 Exp63 17 46 

25 daf-2 OD5 10/23/2018 Exp63 18 40 

25 daf-2 OD5 10/23/2018 Exp63 19 41 

25 daf-2 OD5 10/23/2018 Exp63 23 48 

25 daf-2 OD5 10/23/2018 Exp63 25 13 

25 daf-2 OD5 10/23/2018 Exp63 26 42 

25 daf-2 OD5 10/23/2018 Exp63 27 37 

25 daf-2 OD5 10/23/2018 Exp63 28 44 

25 daf-2 OD5 10/23/2018 Exp63 29 34 

25 daf-2 OD5 10/23/2018 Exp63 31 53 

25 daf-2 OD5 10/23/2018 Exp63 33 44 

25 daf-2 OD5 10/23/2018 Exp63 34 30 

25 daf-2 OD5 10/23/2018 Exp63 35 41 

25 daf-2 OD5 10/23/2018 Exp63 36 46 

25 daf-2 OD5 10/23/2018 Exp63 37 47 

25 daf-2 OD5 10/23/2018 Exp63 39 51 

25 daf-2 OD5 10/23/2018 Exp63 41 40 

25 daf-2 OD5 10/23/2018 Exp63 43 41 

25 daf-2 OD5 10/23/2018 Exp63 46 44 

25 daf-2 OD5 10/23/2018 Exp63 47 55 

25 daf-2 OD5 10/23/2018 Exp63 50 32 

25 daf-2 OD5 10/23/2018 Exp63 53 44 

25 daf-2 OD5 10/23/2018 Exp63 56 33 
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25 daf-2 OD5 10/23/2018 Exp63 59 43 

25 daf-2 OD5 10/23/2018 Exp63 60 50 

25 daf-2 OD5 10/23/2018 Exp64 3 49 

25 daf-2 OD5 10/23/2018 Exp64 6 49 

25 daf-2 OD5 10/23/2018 Exp64 7 13 

25 daf-2 OD5 10/23/2018 Exp64 9 30 

25 daf-2 OD5 10/23/2018 Exp64 11 43 

25 daf-2 OD5 10/23/2018 Exp64 24 42 

25 daf-2 OD5 10/23/2018 Exp64 25 53 

25 daf-2 OD5 10/23/2018 Exp64 28 51 

25 daf-2 OD5 10/23/2018 Exp64 33 39 

25 daf-2 OD5 10/23/2018 Exp64 34 47 

25 daf-2 OD5 10/23/2018 Exp64 35 39 

25 daf-2 OD5 10/23/2018 Exp64 39 52 

25 daf-2 OD5 10/23/2018 Exp64 42 42 

25 daf-2 OD5 10/23/2018 Exp64 44 45 

25 daf-2 OD5 10/23/2018 Exp64 45 41 

25 daf-2 OD5 10/23/2018 Exp64 50 50 

25 daf-2 OD5 10/23/2018 Exp64 52 48 

25 daf-2 OD5 10/23/2018 Exp64 55 33 

25 daf-2 OD5 10/23/2018 Exp64 59 43 

25 daf-2 OD5 2/18/2019 Exp18 3 36 

25 daf-2 OD5 2/18/2019 Exp18 5 11 

25 daf-2 OD5 2/18/2019 Exp18 8 41 

25 daf-2 OD5 2/18/2019 Exp18 9 44 

25 daf-2 OD5 2/18/2019 Exp18 10 47 

25 daf-2 OD5 2/18/2019 Exp18 11 35 

25 daf-2 OD5 2/18/2019 Exp18 14 33 

25 daf-2 OD5 2/18/2019 Exp18 17 52 

25 daf-2 OD5 2/18/2019 Exp18 19 44 

25 daf-2 OD5 2/18/2019 Exp18 20 41 

25 daf-2 OD5 2/18/2019 Exp18 21 47 

25 daf-2 OD5 2/18/2019 Exp18 22 41 

25 daf-2 OD5 2/18/2019 Exp18 23 50 

25 daf-2 OD5 2/18/2019 Exp18 24 40 

25 daf-2 OD5 2/18/2019 Exp18 25 25 

25 daf-2 OD5 2/18/2019 Exp18 31 40 

25 daf-2 OD5 2/18/2019 Exp18 32 41 

25 daf-2 OD5 2/18/2019 Exp18 34 43 

25 daf-2 OD5 2/18/2019 Exp18 39 28 

25 daf-2 OD5 2/18/2019 Exp18 40 48 

25 daf-2 OD5 2/18/2019 Exp18 45 44 

25 daf-2 OD5 2/18/2019 Exp18 46 42 

25 daf-2 OD5 2/18/2019 Exp18 48 39 

25 daf-2 OD5 2/18/2019 Exp18 49 23 
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25 daf-2 OD5 2/18/2019 Exp18 50 48 

25 daf-2 OD5 2/18/2019 Exp18 51 43 

25 daf-2 OD5 2/18/2019 Exp18 52 40 

25 daf-2 OD5 2/18/2019 Exp18 53 40 

25 daf-2 OD5 2/18/2019 Exp18 54 39 

25 daf-2 OD5 2/18/2019 Exp18 55 40 

25 daf-2 OD5 2/18/2019 Exp18 57 44 

25 daf-2 OD5 2/18/2019 Exp18 59 56 

25 daf-2 OD5 2/18/2019 Exp18 60 34 

25 daf-16 OD5 9/21/2018 Exp32 3 10 

25 daf-16 OD5 9/21/2018 Exp32 4 11 

25 daf-16 OD5 9/21/2018 Exp32 5 12 

25 daf-16 OD5 9/21/2018 Exp32 7 13 

25 daf-16 OD5 9/21/2018 Exp32 8 11 

25 daf-16 OD5 9/21/2018 Exp32 9 9 

25 daf-16 OD5 9/21/2018 Exp32 10 9 

25 daf-16 OD5 9/21/2018 Exp32 11 15 

25 daf-16 OD5 9/21/2018 Exp32 13 11 

25 daf-16 OD5 9/21/2018 Exp32 14 9 

25 daf-16 OD5 9/21/2018 Exp32 15 10 

25 daf-16 OD5 9/21/2018 Exp32 17 14 

25 daf-16 OD5 9/21/2018 Exp32 18 14 

25 daf-16 OD5 9/21/2018 Exp32 19 10 

25 daf-16 OD5 9/21/2018 Exp32 20 16 

25 daf-16 OD5 9/21/2018 Exp32 21 13 

25 daf-16 OD5 9/21/2018 Exp32 23 11 

25 daf-16 OD5 9/21/2018 Exp32 24 12 

25 daf-16 OD5 9/21/2018 Exp32 26 10 

25 daf-16 OD5 9/21/2018 Exp32 30 11 

25 daf-16 OD5 9/21/2018 Exp32 34 9 

25 daf-16 OD5 9/21/2018 Exp32 38 8 

25 daf-16 OD5 9/21/2018 Exp32 40 11 

25 daf-16 OD5 9/21/2018 Exp32 41 12 

25 daf-16 OD5 9/21/2018 Exp32 42 12 

25 daf-16 OD5 9/21/2018 Exp32 43 11 

25 daf-16 OD5 9/21/2018 Exp32 44 15 

25 daf-16 OD5 9/21/2018 Exp32 45 12 

25 daf-16 OD5 9/21/2018 Exp32 50 10 

25 daf-16 OD5 9/21/2018 Exp32 52 9 

25 daf-16 OD5 9/21/2018 Exp32 53 11 

25 daf-16 OD5 9/21/2018 Exp32 55 10 

25 daf-16 OD5 9/21/2018 Exp32 56 9 

25 daf-16 OD5 9/21/2018 Exp32 59 8 

25 daf-16 OD5 9/21/2018 Exp32 60 10 

25 daf-16 OD5 10/23/2018 Exp66 6 16 
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25 daf-16 OD5 10/23/2018 Exp66 7 17 

25 daf-16 OD5 10/23/2018 Exp66 9 6 

25 daf-16 OD5 10/23/2018 Exp66 11 16 

25 daf-16 OD5 10/23/2018 Exp66 13 9 

25 daf-16 OD5 10/23/2018 Exp66 19 16 

25 daf-16 OD5 10/23/2018 Exp66 23 13 

25 daf-16 OD5 10/23/2018 Exp66 24 11 

25 daf-16 OD5 10/23/2018 Exp66 26 10 

25 daf-16 OD5 10/23/2018 Exp66 30 17 

25 daf-16 OD5 10/23/2018 Exp66 31 15 

25 daf-16 OD5 10/23/2018 Exp66 33 14 

25 daf-16 OD5 10/23/2018 Exp66 37 7 

25 daf-16 OD5 10/23/2018 Exp66 38 10 

25 daf-16 OD5 10/23/2018 Exp66 40 15 

25 daf-16 OD5 10/23/2018 Exp66 41 6 

25 daf-16 OD5 10/23/2018 Exp66 42 13 

25 daf-16 OD5 10/23/2018 Exp66 44 14 

25 daf-16 OD5 10/23/2018 Exp66 50 15 

25 daf-16 OD5 10/23/2018 Exp66 53 13 

25 daf-16 OD5 10/23/2018 Exp66 56 12 

25 daf-16 OD5 10/7/2018 Exp62 1 15 

25 daf-16 OD5 10/7/2018 Exp62 2 14 

25 daf-16 OD5 10/7/2018 Exp62 6 16 

25 daf-16 OD5 10/7/2018 Exp62 8 15 

25 daf-16 OD5 10/7/2018 Exp62 17 13 

25 daf-16 OD5 10/7/2018 Exp62 19 17 

25 daf-16 OD5 10/7/2018 Exp62 20 13 

25 daf-16 OD5 10/7/2018 Exp62 21 15 

25 daf-16 OD5 10/7/2018 Exp62 27 15 

25 daf-16 OD5 10/7/2018 Exp62 28 16 

25 daf-16 OD5 10/7/2018 Exp62 29 14 

25 daf-16 OD5 10/7/2018 Exp62 30 13 

25 daf-16 OD5 10/7/2018 Exp62 31 14 

25 daf-16 OD5 10/7/2018 Exp62 43 12 

25 daf-16 OD5 10/7/2018 Exp62 44 11 

25 daf-16 OD5 10/7/2018 Exp62 50 14 

25 daf-16 OD5 10/7/2018 Exp62 52 16 

25 daf-16 OD5 10/7/2018 Exp62 55 15 

25 daf-16 OD5 10/7/2018 Exp62 56 11 

25 daf-16 OD5 10/7/2018 Exp62 57 11 

25 daf-16 OD5 10/7/2018 Exp61 6 11 

25 daf-16 OD5 10/7/2018 Exp61 9 13 

25 daf-16 OD5 10/7/2018 Exp61 10 13 

25 daf-16 OD5 10/7/2018 Exp61 12 13 

25 daf-16 OD5 10/7/2018 Exp61 13 12 
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25 daf-16 OD5 10/7/2018 Exp61 14 11 

25 daf-16 OD5 10/7/2018 Exp61 17 14 

25 daf-16 OD5 10/7/2018 Exp61 32 17 

25 daf-16 OD5 10/7/2018 Exp61 33 14 

25 daf-16 OD5 10/7/2018 Exp61 34 17 

25 daf-16 OD5 10/7/2018 Exp61 35 10 

25 daf-16 OD5 10/7/2018 Exp61 36 5 

25 daf-16 OD5 10/7/2018 Exp61 38 12 

25 daf-16 OD5 10/7/2018 Exp61 41 4 

25 daf-16 OD5 10/7/2018 Exp61 42 14 

25 daf-16 OD5 10/7/2018 Exp61 43 13 

25 daf-16 OD5 10/7/2018 Exp61 44 4 

25 daf-16 OD5 10/7/2018 Exp61 47 14 

25 daf-16 OD5 10/7/2018 Exp61 48 14 

25 daf-16 OD5 10/7/2018 Exp61 56 13 

25 daf-16 OD5 10/7/2018 Exp61 57 14 

25 daf-16 OD5 10/7/2018 Exp61 58 9 

25 daf-16 OD5 10/7/2018 Exp61 59 11 

25 N2 OD5 5/10/2018 Exp102/C 1 17 

25 N2 OD5 5/10/2018 Exp102/C 2 14 

25 N2 OD5 5/10/2018 Exp102/C 7 17 

25 N2 OD5 5/10/2018 Exp102/C 8 19 

25 N2 OD5 5/10/2018 Exp102/C 10 25 

25 N2 OD5 5/10/2018 Exp102/C 11 18 

25 N2 OD5 5/10/2018 Exp102/C 12 18 

25 N2 OD5 5/10/2018 Exp102/C 14 18 

25 N2 OD5 5/10/2018 Exp102/C 17 15 

25 N2 OD5 5/10/2018 Exp102/C 24 21 

25 N2 OD5 5/10/2018 Exp102/C 28 11 

25 N2 OD5 5/10/2018 Exp102/C 29 20 

25 N2 OD5 5/10/2018 Exp102/C 30 17 

25 N2 OD5 5/10/2018 Exp102/C 31 11 

25 N2 OD5 5/10/2018 Exp102/C 32 20 

25 N2 OD5 5/10/2018 Exp102/C 34 19 

25 N2 OD5 5/10/2018 Exp102/C 35 15 

25 N2 OD5 5/10/2018 Exp102/C 39 18 

25 N2 OD5 5/10/2018 Exp102/C 40 13 

25 N2 OD5 5/10/2018 Exp102/C 41 22 

25 N2 OD5 5/10/2018 Exp102/C 48 17 

25 N2 OD5 5/10/2018 Exp102/C 49 20 

25 N2 OD5 5/10/2018 Exp102/C 50 21 

25 N2 OD5 5/10/2018 Exp102/C 51 21 

25 N2 OD5 5/10/2018 Exp102/C 53 22 

25 N2 OD5 5/10/2018 Exp102/C 55 15 

25 N2 OD5 5/10/2018 Exp102/C 56 14 
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25 N2 OD5 5/10/2018 Exp102/C 58 18 

25 N2 OD5 5/10/2018 Exp102/C 59 19 

25 N2 OD5 5/10/2018 Exp103/D 6 19 

25 N2 OD5 5/10/2018 Exp103/D 7 16 

25 N2 OD5 5/10/2018 Exp103/D 10 17 

25 N2 OD5 5/10/2018 Exp103/D 15 19 

25 N2 OD5 5/10/2018 Exp103/D 17 19 

25 N2 OD5 5/10/2018 Exp103/D 22 22 

25 N2 OD5 5/10/2018 Exp103/D 23 15 

25 N2 OD5 5/10/2018 Exp103/D 25 19 

25 N2 OD5 5/10/2018 Exp103/D 28 21 

25 N2 OD5 5/10/2018 Exp103/D 32 12 

25 N2 OD5 5/10/2018 Exp103/D 35 11 

25 N2 OD5 5/10/2018 Exp103/D 39 21 

25 N2 OD5 5/10/2018 Exp103/D 47 13 

25 N2 OD5 5/10/2018 Exp103/D 48 16 

25 N2 OD5 5/10/2018 Exp103/D 49 16 

25 N2 OD5 5/10/2018 Exp103/D 51 14 

25 N2 OD5 5/10/2018 Exp103/D 53 20 

25 N2 OD5 5/10/2018 Exp103/D 55 10 

25 N2 OD5 5/10/2018 Exp103/D 56 15 

25 N2 OD5 5/10/2018 Exp103/D 57 12 

25 N2 OD5 10/27/2018 Exp49 6 17 

25 N2 OD5 10/27/2018 Exp49 7 15 

25 N2 OD5 10/27/2018 Exp49 8 18 

25 N2 OD5 10/27/2018 Exp49 9 19 

25 N2 OD5 10/27/2018 Exp49 10 20 

25 N2 OD5 10/27/2018 Exp49 16 10 

25 N2 OD5 10/27/2018 Exp49 17 22 

25 N2 OD5 10/27/2018 Exp49 18 11 

25 N2 OD5 10/27/2018 Exp49 22 15 

25 N2 OD5 10/27/2018 Exp49 28 18 

25 N2 OD5 10/27/2018 Exp49 29 16 

25 N2 OD5 10/27/2018 Exp49 30 17 

25 N2 OD5 10/27/2018 Exp49 31 18 

25 N2 OD5 10/27/2018 Exp49 35 18 

25 N2 OD5 10/27/2018 Exp49 37 11 

25 N2 OD5 10/27/2018 Exp49 44 12 

25 N2 OD5 10/27/2018 Exp49 45 20 

25 N2 OD5 10/27/2018 Exp49 46 23 

25 N2 OD5 10/27/2018 Exp49 49 19 

25 N2 OD5 10/27/2018 Exp49 54 19 

25 N2 OD5 10/27/2018 Exp49 56 22 

25 N2 OD5 10/27/2018 Exp49 58 11 

25 N2 OD5 10/27/2018 Exp50 1 10 



 119 

Table A.1.1 continued     

25 N2 OD5 10/27/2018 Exp50 6 15 

25 N2 OD5 10/27/2018 Exp50 7 17 

25 N2 OD5 10/27/2018 Exp50 9 17 

25 N2 OD5 10/27/2018 Exp50 10 17 

25 N2 OD5 10/27/2018 Exp50 14 17 

25 N2 OD5 10/27/2018 Exp50 15 19 

25 N2 OD5 10/27/2018 Exp50 18 21 

25 N2 OD5 10/27/2018 Exp50 24 16 

25 N2 OD5 10/27/2018 Exp50 29 17 

25 N2 OD5 10/27/2018 Exp50 33 18 

25 N2 OD5 10/27/2018 Exp50 35 16 

25 N2 OD5 10/27/2018 Exp50 37 14 

25 N2 OD5 10/27/2018 Exp50 38 22 

25 N2 OD5 10/27/2018 Exp50 40 15 

25 N2 OD5 10/27/2018 Exp50 44 16 

25 N2 OD5 10/27/2018 Exp50 46 23 

25 N2 OD5 10/27/2018 Exp50 47 18 

25 N2 OD5 10/27/2018 Exp50 51 23 

25 N2 OD5 10/27/2018 Exp50 55 23 

25 N2 OD5 10/27/2018 Exp50 56 21 

25 N2 OD5 10/27/2018 Exp50 60 20 

25 N2 OD2.5 10/23/2018 Exp47 3 18 

25 N2 OD2.5 10/23/2018 Exp47 9 19 

25 N2 OD2.5 10/23/2018 Exp47 11 14 

25 N2 OD2.5 10/23/2018 Exp47 13 18 

25 N2 OD2.5 10/23/2018 Exp47 21 16 

25 N2 OD2.5 10/23/2018 Exp47 24 15 

25 N2 OD2.5 10/23/2018 Exp47 33 15 

25 N2 OD2.5 10/23/2018 Exp47 34 21 

25 N2 OD2.5 10/23/2018 Exp47 35 15 

25 N2 OD2.5 10/23/2018 Exp47 37 18 

25 N2 OD2.5 10/23/2018 Exp47 40 18 

25 N2 OD2.5 10/23/2018 Exp47 41 21 

25 N2 OD2.5 10/23/2018 Exp47 42 23 

25 N2 OD2.5 10/23/2018 Exp47 45 21 

25 N2 OD2.5 10/23/2018 Exp47 47 24 

25 N2 OD2.5 10/23/2018 Exp47 55 14 

25 N2 OD2.5 10/23/2018 Exp47 56 19 

25 N2 OD2.5 10/23/2018 Exp47 57 14 

25 N2 OD2.5 10/23/2018 Exp47 58 18 

25 N2 OD2.5 10/23/2018 Exp47 59 21 

25 N2 OD2.5 10/23/2018 Exp48 8 21 

25 N2 OD2.5 10/23/2018 Exp48 14 19 

25 N2 OD2.5 10/23/2018 Exp48 15 19 

25 N2 OD2.5 10/23/2018 Exp48 16 16 
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25 N2 OD2.5 10/23/2018 Exp48 27 15 

25 N2 OD2.5 10/23/2018 Exp48 28 18 

25 N2 OD2.5 10/23/2018 Exp48 30 13 

25 N2 OD2.5 10/23/2018 Exp48 32 18 

25 N2 OD2.5 10/23/2018 Exp48 35 20 

25 N2 OD2.5 10/23/2018 Exp48 36 15 

25 N2 OD2.5 10/23/2018 Exp48 39 8 

25 N2 OD2.5 10/23/2018 Exp48 40 19 

25 N2 OD2.5 10/23/2018 Exp48 41 17 

25 N2 OD2.5 10/23/2018 Exp48 42 20 

25 N2 OD2.5 10/23/2018 Exp48 47 15 

25 N2 OD2.5 10/23/2018 Exp48 53 21 

25 N2 OD2.5 10/23/2018 Exp48 55 21 

25 N2 OD2.5 10/23/2018 Exp48 56 17 

25 N2 OD2.5 10/23/2018 Exp48 59 9 

25 N2 OD2.5 5/10/2018 Exp104/E 1 17 

25 N2 OD2.5 5/10/2018 Exp104/E 2 13 

25 N2 OD2.5 5/10/2018 Exp104/E 3 33 

25 N2 OD2.5 5/10/2018 Exp104/E 5 25 

25 N2 OD2.5 5/10/2018 Exp104/E 9 34 

25 N2 OD2.5 5/10/2018 Exp104/E 10 39 

25 N2 OD2.5 5/10/2018 Exp104/E 11 22 

25 N2 OD2.5 5/10/2018 Exp104/E 14 31 

25 N2 OD2.5 5/10/2018 Exp104/E 19 32 

25 N2 OD2.5 5/10/2018 Exp104/E 21 23 

25 N2 OD2.5 5/10/2018 Exp104/E 23 20 

25 N2 OD2.5 5/10/2018 Exp104/E 25 17 

25 N2 OD2.5 5/10/2018 Exp104/E 29 23 

25 N2 OD2.5 5/10/2018 Exp104/E 31 9 

25 N2 OD2.5 5/10/2018 Exp104/E 34 20 

25 N2 OD2.5 5/10/2018 Exp104/E 35 26 

25 N2 OD2.5 5/10/2018 Exp104/E 39 20 

25 N2 OD2.5 5/10/2018 Exp104/E 43 10 

25 N2 OD2.5 5/10/2018 Exp104/E 44 23 

25 N2 OD2.5 5/10/2018 Exp104/E 46 26 

25 N2 OD2.5 5/10/2018 Exp104/E 49 19 

25 N2 OD2.5 5/10/2018 Exp104/E 54 20 

25 N2 OD2.5 5/10/2018 Exp104/E 55 14 

25 N2 OD2.5 5/10/2018 Exp104/E 57 22 

25 N2 OD2.5 5/10/2018 Exp104/E 58 20 

25 N2 OD2.5 5/10/2018 Exp104/E 59 14 

25 N2 OD2.5 5/10/2018 Exp105/F 3 24 

25 N2 OD2.5 5/10/2018 Exp105/F 5 28 

25 N2 OD2.5 5/10/2018 Exp105/F 6 24 

25 N2 OD2.5 5/10/2018 Exp105/F 7 29 
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25 N2 OD2.5 5/10/2018 Exp105/F 8 23 

25 N2 OD2.5 5/10/2018 Exp105/F 10 20 

25 N2 OD2.5 5/10/2018 Exp105/F 13 18 

25 N2 OD2.5 5/10/2018 Exp105/F 14 19 

25 N2 OD2.5 5/10/2018 Exp105/F 15 16 

25 N2 OD2.5 5/10/2018 Exp105/F 23 24 

25 N2 OD2.5 5/10/2018 Exp105/F 24 24 

25 N2 OD2.5 5/10/2018 Exp105/F 25 14 

25 N2 OD2.5 5/10/2018 Exp105/F 29 20 

25 N2 OD2.5 5/10/2018 Exp105/F 30 15 

25 N2 OD2.5 5/10/2018 Exp105/F 35 13 

25 N2 OD2.5 5/10/2018 Exp105/F 37 18 

25 N2 OD2.5 5/10/2018 Exp105/F 39 22 

25 N2 OD2.5 5/10/2018 Exp105/F 40 24 

25 N2 OD2.5 5/10/2018 Exp105/F 41 21 

25 N2 OD2.5 5/10/2018 Exp105/F 44 24 

25 N2 OD2.5 5/10/2018 Exp105/F 46 20 

25 N2 OD2.5 5/10/2018 Exp105/F 47 23 

25 N2 OD2.5 5/10/2018 Exp105/F 55 20 

25 N2 OD2.5 5/10/2018 Exp105/F 56 16 

25 N2 OD2.5 5/10/2018 Exp105/F 58 11 

25 N2 OD2.5 10/27/2018 Exp53 3 21 

25 N2 OD2.5 10/27/2018 Exp53 4 15 

25 N2 OD2.5 10/27/2018 Exp53 5 14 

25 N2 OD2.5 10/27/2018 Exp53 6 14 

25 N2 OD2.5 10/27/2018 Exp53 8 18 

25 N2 OD2.5 10/27/2018 Exp53 9 16 

25 N2 OD2.5 10/27/2018 Exp53 11 12 

25 N2 OD2.5 10/27/2018 Exp53 14 18 

25 N2 OD2.5 10/27/2018 Exp53 15 16 

25 N2 OD2.5 10/27/2018 Exp53 20 13 

25 N2 OD2.5 10/27/2018 Exp53 22 14 

25 N2 OD2.5 10/27/2018 Exp53 25 20 

25 N2 OD2.5 10/27/2018 Exp53 28 23 

25 N2 OD2.5 10/27/2018 Exp53 30 19 

25 N2 OD2.5 10/27/2018 Exp53 31 15 

25 N2 OD2.5 10/27/2018 Exp53 35 23 

25 N2 OD2.5 10/27/2018 Exp53 38 18 

25 N2 OD2.5 10/27/2018 Exp53 42 24 

25 N2 OD2.5 10/27/2018 Exp53 43 18 

25 N2 OD2.5 10/27/2018 Exp53 44 14 

25 N2 OD2.5 10/27/2018 Exp53 45 15 

25 N2 OD2.5 10/27/2018 Exp53 46 15 

25 N2 OD2.5 10/27/2018 Exp53 48 17 

25 N2 OD2.5 10/27/2018 Exp53 49 19 
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25 N2 OD2.5 10/27/2018 Exp53 50 18 

25 N2 OD2.5 10/27/2018 Exp53 51 17 

25 N2 OD2.5 10/27/2018 Exp53 52 18 

25 N2 OD2.5 10/27/2018 Exp53 55 15 

25 N2 OD2.5 10/27/2018 Exp53 57 27 

25 N2 OD2.5 10/27/2018 Exp54 1 15 

25 N2 OD2.5 10/27/2018 Exp54 7 13 

25 N2 OD2.5 10/27/2018 Exp54 8 17 

25 N2 OD2.5 10/27/2018 Exp54 10 17 

25 N2 OD2.5 10/27/2018 Exp54 11 6 

25 N2 OD2.5 10/27/2018 Exp54 12 16 

25 N2 OD2.5 10/27/2018 Exp54 15 15 

25 N2 OD2.5 10/27/2018 Exp54 18 17 

25 N2 OD2.5 10/27/2018 Exp54 19 13 

25 N2 OD2.5 10/27/2018 Exp54 24 19 

25 N2 OD2.5 10/27/2018 Exp54 25 27 

25 N2 OD2.5 10/27/2018 Exp54 32 20 

25 N2 OD2.5 10/27/2018 Exp54 35 15 

25 N2 OD2.5 10/27/2018 Exp54 39 18 

25 N2 OD2.5 10/27/2018 Exp54 40 17 

25 N2 OD2.5 10/27/2018 Exp54 41 15 

25 N2 OD2.5 10/27/2018 Exp54 42 15 

25 N2 OD2.5 10/27/2018 Exp54 43 20 

25 N2 OD2.5 10/27/2018 Exp54 44 14 

25 N2 OD2.5 10/27/2018 Exp54 46 20 

25 N2 OD2.5 10/27/2018 Exp54 47 22 

25 N2 OD2.5 10/27/2018 Exp54 49 14 

25 N2 OD2.5 10/27/2018 Exp54 51 15 

25 N2 OD2.5 10/27/2018 Exp54 53 16 

25 N2 OD2.5 10/27/2018 Exp54 54 15 

25 N2 OD2.5 10/27/2018 Exp54 55 13 

25 N2 OD2.5 10/27/2018 Exp54 56 16 

25 N2 OD2.5 10/27/2018 Exp54 57 18 

25 N2 OD2.5 10/27/2018 Exp54 59 16 

25 N2 OD2.5 10/27/2018 Exp54 60 15 

25 N2 OD10 5/10/2018 Exp100/A 4 22 

25 N2 OD10 5/10/2018 Exp100/A 6 19 

25 N2 OD10 5/10/2018 Exp100/A 7 17 

25 N2 OD10 5/10/2018 Exp100/A 8 12 

25 N2 OD10 5/10/2018 Exp100/A 10 17 

25 N2 OD10 5/10/2018 Exp100/A 11 18 

25 N2 OD10 5/10/2018 Exp100/A 14 15 

25 N2 OD10 5/10/2018 Exp100/A 16 14 

25 N2 OD10 5/10/2018 Exp100/A 18 18 

25 N2 OD10 5/10/2018 Exp100/A 19 17 
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25 N2 OD10 5/10/2018 Exp100/A 21 18 

25 N2 OD10 5/10/2018 Exp100/A 26 14 

25 N2 OD10 5/10/2018 Exp100/A 28 9 

25 N2 OD10 5/10/2018 Exp100/A 29 16 

25 N2 OD10 5/10/2018 Exp100/A 30 16 

25 N2 OD10 5/10/2018 Exp100/A 32 17 

25 N2 OD10 5/10/2018 Exp100/A 33 14 

25 N2 OD10 5/10/2018 Exp100/A 35 10 

25 N2 OD10 5/10/2018 Exp100/A 39 16 

25 N2 OD10 5/10/2018 Exp100/A 40 14 

25 N2 OD10 5/10/2018 Exp100/A 42 18 

25 N2 OD10 5/10/2018 Exp100/A 43 16 

25 N2 OD10 5/10/2018 Exp100/A 44 16 

25 N2 OD10 5/10/2018 Exp100/A 45 15 

25 N2 OD10 5/10/2018 Exp100/A 47 11 

25 N2 OD10 5/10/2018 Exp100/A 50 18 

25 N2 OD10 5/10/2018 Exp100/A 51 13 

25 N2 OD10 5/10/2018 Exp100/A 53 18 

25 N2 OD10 5/10/2018 Exp100/A 55 16 

25 N2 OD10 5/10/2018 Exp100/A 56 13 

25 N2 OD10 5/10/2018 Exp100/A 58 14 

25 N2 OD10 5/10/2018 Exp100/A 59 13 

25 N2 OD10 5/10/2018 Exp101/B 1 8 

25 N2 OD10 5/10/2018 Exp101/B 11 11 

25 N2 OD10 5/10/2018 Exp101/B 12 15 

25 N2 OD10 5/10/2018 Exp101/B 19 23 

25 N2 OD10 5/10/2018 Exp101/B 25 16 

25 N2 OD10 5/10/2018 Exp101/B 35 17 

25 N2 OD10 5/10/2018 Exp101/B 37 17 

25 N2 OD10 5/10/2018 Exp101/B 38 19 

25 N2 OD10 5/10/2018 Exp101/B 39 12 

25 N2 OD10 5/10/2018 Exp101/B 40 9 

25 N2 OD10 5/10/2018 Exp101/B 41 17 

25 N2 OD10 5/10/2018 Exp101/B 43 15 

25 N2 OD10 5/10/2018 Exp101/B 48 13 

25 N2 OD10 5/10/2018 Exp101/B 58 13 

25 N2 OD10 5/10/2018 Exp101/B 60 18 

25 N2 OD10 10/27/2018 Exp51 1 14 

25 N2 OD10 10/27/2018 Exp51 4 14 

25 N2 OD10 10/27/2018 Exp51 5 13 

25 N2 OD10 10/27/2018 Exp51 6 13 

25 N2 OD10 10/27/2018 Exp51 10 16 

25 N2 OD10 10/27/2018 Exp51 16 15 

25 N2 OD10 10/27/2018 Exp51 22 14 

25 N2 OD10 10/27/2018 Exp51 23 14 
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25 N2 OD10 10/27/2018 Exp51 24 9 

25 N2 OD10 10/27/2018 Exp51 25 20 

25 N2 OD10 10/27/2018 Exp51 27 14 

25 N2 OD10 10/27/2018 Exp51 28 14 

25 N2 OD10 10/27/2018 Exp51 31 9 

25 N2 OD10 10/27/2018 Exp51 33 14 

25 N2 OD10 10/27/2018 Exp51 36 14 

25 N2 OD10 10/27/2018 Exp51 41 17 

25 N2 OD10 10/27/2018 Exp51 45 15 

25 N2 OD10 10/27/2018 Exp51 46 14 

25 N2 OD10 10/27/2018 Exp51 49 7 

25 N2 OD10 10/27/2018 Exp51 50 12 

25 N2 OD10 10/27/2018 Exp51 51 14 

25 N2 OD10 10/27/2018 Exp51 52 16 

25 N2 OD10 10/27/2018 Exp51 53 14 

25 N2 OD10 10/27/2018 Exp51 55 12 

25 N2 OD10 10/27/2018 Exp51 56 19 

25 N2 OD10 10/27/2018 Exp51 57 15 

25 N2 OD10 10/27/2018 Exp51 58 15 

25 N2 OD10 10/7/2018 Exp45 2 20 

25 N2 OD10 10/7/2018 Exp45 3 20 

25 N2 OD10 10/7/2018 Exp45 4 12 

25 N2 OD10 10/7/2018 Exp45 6 20 

25 N2 OD10 10/7/2018 Exp45 8 19 

25 N2 OD10 10/7/2018 Exp45 10 12 

25 N2 OD10 10/7/2018 Exp45 15 13 

25 N2 OD10 10/7/2018 Exp45 16 16 

25 N2 OD10 10/7/2018 Exp45 17 11 

25 N2 OD10 10/7/2018 Exp45 18 11 

25 N2 OD10 10/7/2018 Exp45 23 16 

25 N2 OD10 10/7/2018 Exp45 24 21 

25 N2 OD10 10/7/2018 Exp45 25 14 

25 N2 OD10 10/7/2018 Exp45 27 15 

25 N2 OD10 10/7/2018 Exp45 29 11 

25 N2 OD10 10/7/2018 Exp45 30 13 

25 N2 OD10 10/7/2018 Exp45 31 13 

25 N2 OD10 10/7/2018 Exp45 33 16 

25 N2 OD10 10/7/2018 Exp45 34 15 

25 N2 OD10 10/7/2018 Exp45 38 15 

25 N2 OD10 10/7/2018 Exp45 39 13 

25 N2 OD10 10/7/2018 Exp45 40 14 

25 N2 OD10 10/7/2018 Exp45 41 17 

25 N2 OD10 10/7/2018 Exp45 44 14 

25 N2 OD10 10/7/2018 Exp45 45 16 

25 N2 OD10 10/7/2018 Exp45 46 12 
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25 N2 OD10 10/7/2018 Exp45 47 16 

25 N2 OD10 10/7/2018 Exp45 49 9 

25 N2 OD10 10/7/2018 Exp45 50 15 

25 N2 OD10 10/7/2018 Exp45 54 18 

25 N2 OD10 10/7/2018 Exp45 55 16 

25 N2 OD10 10/7/2018 Exp45 56 13 

25 N2 OD10 10/7/2018 Exp45 58 10 

25 N2 OD10 10/7/2018 Exp45 59 16 

20 N2 OD5 1/17/2019 Exp0 3 29 

20 N2 OD5 1/17/2019 Exp0 6 34 

20 N2 OD5 1/17/2019 Exp0 7 41 

20 N2 OD5 1/17/2019 Exp0 10 21 

20 N2 OD5 1/17/2019 Exp0 13 20 

20 N2 OD5 1/17/2019 Exp0 15 23 

20 N2 OD5 1/17/2019 Exp0 16 36 

20 N2 OD5 1/17/2019 Exp0 19 43 

20 N2 OD5 1/17/2019 Exp0 20 29 

20 N2 OD5 1/17/2019 Exp0 31 38 

20 N2 OD5 1/17/2019 Exp0 33 23 

20 N2 OD5 1/17/2019 Exp0 34 29 

20 N2 OD5 1/17/2019 Exp0 38 28 

20 N2 OD5 1/17/2019 Exp0 41 25 

20 N2 OD5 1/17/2019 Exp0 42 39 

20 N2 OD5 1/17/2019 Exp0 43 39 

20 N2 OD5 1/17/2019 Exp0 44 40 

20 N2 OD5 1/17/2019 Exp0 47 41 

20 N2 OD5 1/17/2019 Exp0 48 37 

20 N2 OD5 1/17/2019 Exp0 53 20 

20 N2 OD5 1/17/2019 Exp0 55 25 

20 N2 OD5 1/17/2019 Exp0 56 19 

20 N2 OD5 1/17/2019 Exp0 57 25 

20 N2 OD5 1/17/2019 Exp0 59 35 

20 N2 OD5 1/17/2019 Exp0 60 30 

20 N2 OD5 1/21/2019 Exp6 2 31 

20 N2 OD5 1/21/2019 Exp6 3 19 

20 N2 OD5 1/21/2019 Exp6 10 25 

20 N2 OD5 1/21/2019 Exp6 13 13 

20 N2 OD5 1/21/2019 Exp6 14 20 

20 N2 OD5 1/21/2019 Exp6 16 32 

20 N2 OD5 1/21/2019 Exp6 17 24 

20 N2 OD5 1/21/2019 Exp6 18 30 

20 N2 OD5 1/21/2019 Exp6 20 32 

20 N2 OD5 1/21/2019 Exp6 21 39 

20 N2 OD5 1/21/2019 Exp6 22 22 

20 N2 OD5 1/21/2019 Exp6 27 27 
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20 N2 OD5 1/21/2019 Exp6 28 26 

20 N2 OD5 1/21/2019 Exp6 29 31 

20 N2 OD5 1/21/2019 Exp6 31 30 

20 N2 OD5 1/21/2019 Exp6 32 20 

20 N2 OD5 1/21/2019 Exp6 37 24 

20 N2 OD5 1/21/2019 Exp6 39 22 

20 N2 OD5 1/21/2019 Exp6 41 28 

20 N2 OD5 1/21/2019 Exp6 43 25 

20 N2 OD5 1/21/2019 Exp6 45 30 

20 N2 OD5 1/21/2019 Exp6 51 22 

20 N2 OD5 1/21/2019 Exp6 53 42 

20 N2 OD5 1/21/2019 Exp6 56 20 

20 N2 OD5 1/21/2019 Exp6 57 30 

20 N2 OD5 1/21/2019 Exp6 59 32 

20 N2 OD5 1/29/2019 Exp12 2 24 

20 N2 OD5 1/29/2019 Exp12 3 26 

20 N2 OD5 1/29/2019 Exp12 7 40 

20 N2 OD5 1/29/2019 Exp12 8 27 

20 N2 OD5 1/29/2019 Exp12 14 22 

20 N2 OD5 1/29/2019 Exp12 15 32 

20 N2 OD5 1/29/2019 Exp12 18 40 

20 N2 OD5 1/29/2019 Exp12 23 40 

20 N2 OD5 1/29/2019 Exp12 27 26 

20 N2 OD5 1/29/2019 Exp12 28 29 

20 N2 OD5 1/29/2019 Exp12 31 25 

20 N2 OD5 1/29/2019 Exp12 34 37 

20 N2 OD5 1/29/2019 Exp12 40 18 

20 N2 OD5 1/29/2019 Exp12 41 24 

20 N2 OD5 1/29/2019 Exp12 42 36 

20 N2 OD5 1/29/2019 Exp12 44 35 

20 N2 OD5 1/29/2019 Exp12 45 21 

20 N2 OD5 1/29/2019 Exp12 49 23 

20 N2 OD5 1/29/2019 Exp12 50 34 

20 N2 OD5 1/29/2019 Exp12 52 23 

20 N2 OD5 1/29/2019 Exp12 53 33 

20 N2 OD5 1/29/2019 Exp12 54 27 

20 N2 OD5 1/29/2019 Exp12 55 27 

20 N2 OD5 1/29/2019 Exp12 56 27 

20 N2 OD5 1/29/2019 Exp12 58 17 

20 N2 OD5 1/29/2019 Exp12 60 28 

15 N2 OD5 1/17/2019 Exp1 1 32 

15 N2 OD5 1/17/2019 Exp1 3 30 

15 N2 OD5 1/17/2019 Exp1 18 35 

15 N2 OD5 1/17/2019 Exp1 33 38 

15 N2 OD5 1/17/2019 Exp1 36 22 
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15 N2 OD5 1/17/2019 Exp1 38 26 

15 N2 OD5 1/17/2019 Exp1 39 29 

15 N2 OD5 1/17/2019 Exp1 40 34 

15 N2 OD5 1/17/2019 Exp1 41 25 

15 N2 OD5 1/17/2019 Exp1 42 39 

15 N2 OD5 1/17/2019 Exp1 44 33 

15 N2 OD5 1/17/2019 Exp1 45 37 

15 N2 OD5 1/17/2019 Exp1 46 45 

15 N2 OD5 1/17/2019 Exp1 47 50 

15 N2 OD5 1/17/2019 Exp1 49 25 

15 N2 OD5 1/17/2019 Exp1 50 29 

15 N2 OD5 1/17/2019 Exp1 51 31 

15 N2 OD5 1/17/2019 Exp1 52 24 

15 N2 OD5 1/17/2019 Exp1 53 45 

15 N2 OD5 1/17/2019 Exp1 54 48 

15 N2 OD5 1/17/2019 Exp1 55 26 

15 N2 OD5 1/17/2019 Exp1 57 23 

15 N2 OD5 1/17/2019 Exp1 58 37 

15 N2 OD5 1/21/2019 Exp9 2 54 

15 N2 OD5 1/21/2019 Exp9 6 32 

15 N2 OD5 1/21/2019 Exp9 8 31 

15 N2 OD5 1/21/2019 Exp9 9 39 

15 N2 OD5 1/21/2019 Exp9 11 40 

15 N2 OD5 1/21/2019 Exp9 13 47 

15 N2 OD5 1/21/2019 Exp9 16 32 

15 N2 OD5 1/21/2019 Exp9 17 25 

15 N2 OD5 1/21/2019 Exp9 18 25 

15 N2 OD5 1/21/2019 Exp9 22 33 

15 N2 OD5 1/21/2019 Exp9 23 18 

15 N2 OD5 1/21/2019 Exp9 25 49 

15 N2 OD5 1/21/2019 Exp9 26 29 

15 N2 OD5 1/21/2019 Exp9 27 54 

15 N2 OD5 1/21/2019 Exp9 31 53 

15 N2 OD5 1/21/2019 Exp9 39 16 

15 N2 OD5 1/21/2019 Exp9 41 45 

15 N2 OD5 1/21/2019 Exp9 43 39 

15 N2 OD5 1/21/2019 Exp9 44 33 

15 N2 OD5 1/21/2019 Exp9 50 27 

15 N2 OD5 1/21/2019 Exp9 53 42 

15 N2 OD5 1/21/2019 Exp9 54 43 

15 N2 OD5 1/21/2019 Exp9 55 27 

15 N2 OD5 1/21/2019 Exp9 57 27 

15 N2 OD5 1/29/2019 Exp13 3 39 

15 N2 OD5 1/29/2019 Exp13 4 20 

15 N2 OD5 1/29/2019 Exp13 5 27 
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15 N2 OD5 1/29/2019 Exp13 7 47 

15 N2 OD5 1/29/2019 Exp13 8 25 

15 N2 OD5 1/29/2019 Exp13 12 34 

15 N2 OD5 1/29/2019 Exp13 14 29 

15 N2 OD5 1/29/2019 Exp13 15 27 

15 N2 OD5 1/29/2019 Exp13 16 31 

15 N2 OD5 1/29/2019 Exp13 17 41 

15 N2 OD5 1/29/2019 Exp13 21 42 

15 N2 OD5 1/29/2019 Exp13 22 41 

15 N2 OD5 1/29/2019 Exp13 25 48 

15 N2 OD5 1/29/2019 Exp13 26 24 

15 N2 OD5 1/29/2019 Exp13 28 50 

15 N2 OD5 1/29/2019 Exp13 31 31 

15 N2 OD5 1/29/2019 Exp13 34 32 

15 N2 OD5 1/29/2019 Exp13 35 25 

15 N2 OD5 1/29/2019 Exp13 40 22 

15 N2 OD5 1/29/2019 Exp13 41 50 

15 N2 OD5 1/29/2019 Exp13 42 51 

15 N2 OD5 1/29/2019 Exp13 45 57 

15 N2 OD5 1/29/2019 Exp13 46 55 

15 N2 OD5 1/29/2019 Exp13 47 41 

15 N2 OD5 1/29/2019 Exp13 51 36 

15 N2 OD5 1/29/2019 Exp13 52 57 

15 N2 OD5 1/29/2019 Exp13 56 25 

17.5 N2 OD5 1/17/2019 Exp2 8 38 

17.5 N2 OD5 1/17/2019 Exp2 9 35 

17.5 N2 OD5 1/17/2019 Exp2 10 36 

17.5 N2 OD5 1/17/2019 Exp2 11 34 

17.5 N2 OD5 1/17/2019 Exp2 13 29 

17.5 N2 OD5 1/17/2019 Exp2 24 45 

17.5 N2 OD5 1/17/2019 Exp2 25 20 

17.5 N2 OD5 1/17/2019 Exp2 27 24 

17.5 N2 OD5 1/17/2019 Exp2 28 16 

17.5 N2 OD5 1/17/2019 Exp2 29 25 

17.5 N2 OD5 1/17/2019 Exp2 32 16 

17.5 N2 OD5 1/17/2019 Exp2 33 24 

17.5 N2 OD5 1/17/2019 Exp2 35 18 

17.5 N2 OD5 1/17/2019 Exp2 37 21 

17.5 N2 OD5 1/17/2019 Exp2 41 55 

17.5 N2 OD5 1/17/2019 Exp2 43 56 

17.5 N2 OD5 1/17/2019 Exp2 44 60 

17.5 N2 OD5 1/17/2019 Exp2 45 48 

17.5 N2 OD5 1/17/2019 Exp2 46 39 

17.5 N2 OD5 1/17/2019 Exp2 47 41 

17.5 N2 OD5 1/17/2019 Exp2 48 35 
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17.5 N2 OD5 1/17/2019 Exp2 51 28 

17.5 N2 OD5 1/17/2019 Exp2 53 21 

17.5 N2 OD5 1/17/2019 Exp2 54 51 

17.5 N2 OD5 1/17/2019 Exp2 55 36 

17.5 N2 OD5 1/17/2019 Exp2 56 29 

17.5 N2 OD5 1/17/2019 Exp2 58 21 

17.5 N2 OD5 1/17/2019 Exp2 59 20 

17.5 N2 OD5 1/21/2019 Exp10 6 43 

17.5 N2 OD5 1/21/2019 Exp10 13 33 

17.5 N2 OD5 1/21/2019 Exp10 14 24 

17.5 N2 OD5 1/21/2019 Exp10 15 23 

17.5 N2 OD5 1/21/2019 Exp10 17 20 

17.5 N2 OD5 1/21/2019 Exp10 20 25 

17.5 N2 OD5 1/21/2019 Exp10 23 36 

17.5 N2 OD5 1/21/2019 Exp10 28 29 

17.5 N2 OD5 1/21/2019 Exp10 31 47 

17.5 N2 OD5 1/21/2019 Exp10 32 39 

17.5 N2 OD5 1/21/2019 Exp10 33 25 

17.5 N2 OD5 1/21/2019 Exp10 34 25 

17.5 N2 OD5 1/21/2019 Exp10 35 16 

17.5 N2 OD5 1/21/2019 Exp10 36 23 

17.5 N2 OD5 1/21/2019 Exp10 38 16 

17.5 N2 OD5 1/21/2019 Exp10 41 25 

17.5 N2 OD5 1/21/2019 Exp10 42 31 

17.5 N2 OD5 1/21/2019 Exp10 43 47 

17.5 N2 OD5 1/21/2019 Exp10 44 36 

17.5 N2 OD5 1/21/2019 Exp10 46 53 

17.5 N2 OD5 1/21/2019 Exp10 47 33 

17.5 N2 OD5 1/21/2019 Exp10 48 38 

17.5 N2 OD5 1/21/2019 Exp10 53 31 

17.5 N2 OD5 1/21/2019 Exp10 56 22 

17.5 N2 OD5 1/21/2019 Exp10 57 24 

17.5 N2 OD5 1/21/2019 Exp10 60 22 

17.5 N2 OD5 1/29/2019 Exp14 4 36 

17.5 N2 OD5 1/29/2019 Exp14 5 15 

17.5 N2 OD5 1/29/2019 Exp14 6 30 

17.5 N2 OD5 1/29/2019 Exp14 7 25 

17.5 N2 OD5 1/29/2019 Exp14 9 27 

17.5 N2 OD5 1/29/2019 Exp14 11 25 

17.5 N2 OD5 1/29/2019 Exp14 15 29 

17.5 N2 OD5 1/29/2019 Exp14 19 52 

17.5 N2 OD5 1/29/2019 Exp14 21 46 

17.5 N2 OD5 1/29/2019 Exp14 23 56 

17.5 N2 OD5 1/29/2019 Exp14 24 25 

17.5 N2 OD5 1/29/2019 Exp14 26 20 
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17.5 N2 OD5 1/29/2019 Exp14 27 26 

17.5 N2 OD5 1/29/2019 Exp14 28 30 

17.5 N2 OD5 1/29/2019 Exp14 29 28 

17.5 N2 OD5 1/29/2019 Exp14 30 32 

17.5 N2 OD5 1/29/2019 Exp14 31 25 

17.5 N2 OD5 1/29/2019 Exp14 37 20 

17.5 N2 OD5 1/29/2019 Exp14 41 62 

17.5 N2 OD5 1/29/2019 Exp14 42 20 

17.5 N2 OD5 1/29/2019 Exp14 43 26 

17.5 N2 OD5 1/29/2019 Exp14 44 45 

17.5 N2 OD5 1/29/2019 Exp14 45 28 

17.5 N2 OD5 1/29/2019 Exp14 46 51 

17.5 N2 OD5 1/29/2019 Exp14 47 43 

17.5 N2 OD5 1/29/2019 Exp14 49 26 

17.5 N2 OD5 1/29/2019 Exp14 50 49 

17.5 N2 OD5 1/29/2019 Exp14 52 40 

17.5 N2 OD5 1/29/2019 Exp14 55 42 

17.5 N2 OD5 1/29/2019 Exp14 56 29 

17.5 N2 OD5 1/29/2019 Exp14 57 25 

17.5 N2 OD5 1/29/2019 Exp16 4 22 

17.5 N2 OD5 1/29/2019 Exp16 6 32 

17.5 N2 OD5 1/29/2019 Exp16 7 23 

17.5 N2 OD5 1/29/2019 Exp16 8 14 

17.5 N2 OD5 1/29/2019 Exp16 9 26 

17.5 N2 OD5 1/29/2019 Exp16 13 24 

17.5 N2 OD5 1/29/2019 Exp16 14 17 

17.5 N2 OD5 1/29/2019 Exp16 17 33 

17.5 N2 OD5 1/29/2019 Exp16 25 37 

17.5 N2 OD5 1/29/2019 Exp16 27 21 

17.5 N2 OD5 1/29/2019 Exp16 29 27 

17.5 N2 OD5 1/29/2019 Exp16 30 42 

17.5 N2 OD5 1/29/2019 Exp16 37 16 

17.5 N2 OD5 1/29/2019 Exp16 43 40 

17.5 N2 OD5 1/29/2019 Exp16 44 22 

17.5 N2 OD5 1/29/2019 Exp16 46 57 

17.5 N2 OD5 1/29/2019 Exp16 47 41 

17.5 N2 OD5 1/29/2019 Exp16 49 23 

17.5 N2 OD5 1/29/2019 Exp16 51 27 

17.5 N2 OD5 1/29/2019 Exp16 52 20 

17.5 N2 OD5 1/29/2019 Exp16 53 38 

17.5 N2 OD5 1/29/2019 Exp16 54 25 

17.5 N2 OD5 1/29/2019 Exp16 55 12 

17.5 N2 OD5 1/29/2019 Exp16 56 15 

17.5 N2 OD5 1/29/2019 Exp16 57 23 

17.5 N2 OD5 1/29/2019 Exp16 58 25 
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15 ↔ 20 N2 OD5 1/17/2019 Exp3 6 37 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 9 29 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 11 29 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 13 35 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 17 24 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 19 29 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 26 18 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 27 28 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 29 27 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 30 29 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 31 25 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 34 19 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 38 19 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 39 25 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 40 17 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 41 41 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 42 21 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 43 60 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 46 46 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 47 48 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 48 30 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 49 21 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 50 48 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 52 26 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 53 24 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 56 25 

15 ↔ 20 N2 OD5 1/17/2019 Exp3 57 21 

15 ↔ 20 N2 OD5 1/21/2019 Exp11 2 32 

15 ↔ 20 N2 OD5 1/21/2019 Exp11 10 32 

15 ↔ 20 N2 OD5 1/21/2019 Exp11 11 33 

15 ↔ 20 N2 OD5 1/21/2019 Exp11 13 30 

15 ↔ 20 N2 OD5 1/21/2019 Exp11 36 16 

15 ↔ 20 N2 OD5 1/21/2019 Exp11 37 24 

15 ↔ 20 N2 OD5 1/21/2019 Exp11 40 14 

15 ↔ 20 N2 OD5 1/21/2019 Exp11 52 57 

15 ↔ 20 N2 OD5 1/21/2019 Exp11 53 21 

15 ↔ 20 N2 OD5 1/21/2019 Exp11 57 21 

15 ↔ 20 N2 OD5 1/21/2019 Exp11 58 25 

15 ↔ 20 N2 OD5 1/21/2019 Exp11 59 32 

15 ↔ 20 N2 OD5 1/21/2019 Exp11 60 27 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 1 28 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 2 10 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 3 42 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 5 30 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 6 30 
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15 ↔ 20 N2 OD5 1/29/2019 Exp15 7 32 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 9 31 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 11 32 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 12 26 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 13 15 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 16 37 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 17 15 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 18 10 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 19 20 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 20 11 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 22 12 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 25 20 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 26 35 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 27 17 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 28 26 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 29 37 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 30 38 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 32 25 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 33 14 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 35 23 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 37 27 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 39 38 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 40 44 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 41 32 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 42 30 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 44 14 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 45 21 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 50 38 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 51 31 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 52 31 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 53 29 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 55 18 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 56 16 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 57 28 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 58 22 

15 ↔ 20 N2 OD5 1/29/2019 Exp15 59 22 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 3 29 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 4 48 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 7 44 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 9 17 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 10 10 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 11 36 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 12 45 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 13 6 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 15 25 
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15 ↔ 20 N2 OD5 1/29/2019 Exp17 24 55 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 28 40 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 29 23 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 30 31 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 33 36 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 45 41 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 47 37 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 49 15 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 52 30 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 53 28 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 55 32 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 56 14 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 59 28 

15 ↔ 20 N2 OD5 1/29/2019 Exp17 60 47 
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Table A.1.2. Lifespan data on plate. 

Worms were cultured at 25°C in OD6005 from Day 2 of adulthood to their death. 

Strain 
Date of 

L4 
Experimenter 

Age 

at 

Death 

Plate Frequency Censor 

N2 2/19/2018 DP 2 3 1 1 

N2 2/19/2018 DP 5 3 1 1 

N2 2/19/2018 DP 7 4 1 1 

N2 2/19/2018 DP 13 2 1 0 

N2 2/19/2018 DP 13 3 1 0 

N2 2/19/2018 DP 15 1 3 0 

N2 2/19/2018 DP 15 2 1 0 

N2 2/19/2018 DP 15 3 2 0 

N2 2/19/2018 DP 15 4 3 0 

N2 2/19/2018 DP 17 1 3 0 

N2 2/19/2018 DP 17 2 4 0 

N2 2/19/2018 DP 17 3 3 0 

N2 2/19/2018 DP 17 4 2 0 

N2 2/19/2018 DP 19 1 3 0 

N2 2/19/2018 DP 19 2 3 0 

N2 2/19/2018 DP 19 3 5 0 

N2 2/19/2018 DP 19 4 7 0 

N2 2/19/2018 DP 21 1 6 0 

N2 2/19/2018 DP 21 2 6 0 

N2 2/19/2018 DP 21 3 4 0 

N2 2/19/2018 DP 21 4 5 0 

N2 2/19/2018 DP 23 1 5 0 

N2 2/19/2018 DP 23 2 3 0 

N2 2/19/2018 DP 23 3 3 0 

N2 2/19/2018 DP 23 4 2 0 

N2 2/19/2018 DP 25 1 1 0 

N2 2/19/2018 DP 25 2 1 0 

N2 2/19/2018 DP 27 2 2 0 

daf-2 2/19/2018 DP 5 4 1 1 

daf-2 2/19/2018 DP 7 1 1 1 

daf-2 2/19/2018 DP 7 3 1 1 

daf-2 2/19/2018 DP 7 4 2 1 

daf-2 2/19/2018 DP 9 4 2 1 

daf-2 2/19/2018 DP 11 3 1 1 

daf-2 2/19/2018 DP 19 1 1 0 

daf-2 2/19/2018 DP 19 3 1 0 

daf-2 2/19/2018 DP 21 2 1 0 

daf-2 2/19/2018 DP 23 2 2 0 

daf-2 2/19/2018 DP 25 1 1 0 
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Table A.1.2 continued     

daf-2 2/19/2018 DP 25 2 1 0 

daf-2 2/19/2018 DP 27 1 1 0 

daf-2 2/19/2018 DP 27 2 2 0 

daf-2 2/19/2018 DP 29 1 5 0 

daf-2 2/19/2018 DP 29 2 4 0 

daf-2 2/19/2018 DP 29 3 4 0 

daf-2 2/19/2018 DP 29 4 4 0 

daf-2 2/19/2018 DP 31 1 2 0 

daf-2 2/19/2018 DP 31 2 3 0 

daf-2 2/19/2018 DP 31 3 5 0 

daf-2 2/19/2018 DP 31 4 2 0 

daf-2 2/19/2018 DP 33 1 3 0 

daf-2 2/19/2018 DP 33 2 3 0 

daf-2 2/19/2018 DP 33 3 2 0 

daf-2 2/19/2018 DP 33 4 3 0 

daf-2 2/19/2018 DP 35 1 4 0 

daf-2 2/19/2018 DP 35 2 3 0 

daf-2 2/19/2018 DP 35 3 4 0 

daf-2 2/19/2018 DP 35 4 3 0 

daf-2 2/19/2018 DP 37 1 1 0 

daf-2 2/19/2018 DP 37 2 1 0 

daf-2 2/19/2018 DP 37 3 1 0 

daf-2 2/19/2018 DP 37 4 2 0 

daf-2 2/19/2018 DP 39 1 1 0 

daf-2 2/19/2018 DP 39 3 1 0 

daf-2 2/19/2018 DP 39 4 1 0 

daf-2 2/19/2018 DP 41 3 1 0 

daf-16 2/19/2018 DP 3 1 1 1 

daf-16 2/19/2018 DP 3 2 1 1 

daf-16 2/19/2018 DP 5 3 1 1 

daf-16 2/19/2018 DP 11 1 1 0 

daf-16 2/19/2018 DP 11 3 2 0 

daf-16 2/19/2018 DP 11 4 2 0 

daf-16 2/19/2018 DP 13 1 3 0 

daf-16 2/19/2018 DP 13 2 6 0 

daf-16 2/19/2018 DP 13 3 2 0 

daf-16 2/19/2018 DP 13 4 2 0 

daf-16 2/19/2018 DP 15 1 11 0 

daf-16 2/19/2018 DP 15 2 10 0 

daf-16 2/19/2018 DP 15 3 10 0 

daf-16 2/19/2018 DP 15 4 10 0 

daf-16 2/19/2018 DP 17 1 3 0 

daf-16 2/19/2018 DP 17 2 2 0 

daf-16 2/19/2018 DP 17 3 5 0 

daf-16 2/19/2018 DP 17 4 5 0 
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Table A.1.2 continued     

daf-16 2/19/2018 DP 19 1 1 0 

daf-16 2/19/2018 DP 19 3 1 0 

daf-16 2/19/2018 DP 21 1 1 0 

daf-16 2/19/2018 DP 21 2 2 0 

N2 2/19/2018 JW 2 3 1 1 

N2 2/19/2018 JW 3 4 2 1 

N2 2/19/2018 JW 5 1 1 1 

N2 2/19/2018 JW 5 2 2 1 

N2 2/19/2018 JW 7 4 1 1 

N2 2/19/2018 JW 9 3 1 1 

N2 2/19/2018 JW 9 4 2 1 

N2 2/19/2018 JW 11 2 1 0 

N2 2/19/2018 JW 15 1 1 0 

N2 2/19/2018 JW 15 4 2 0 

N2 2/19/2018 JW 17 1 3 0 

N2 2/19/2018 JW 17 2 3 0 

N2 2/19/2018 JW 17 3 1 0 

N2 2/19/2018 JW 19 1 6 0 

N2 2/19/2018 JW 19 2 5 0 

N2 2/19/2018 JW 19 3 7 0 

N2 2/19/2018 JW 19 4 3 0 

N2 2/19/2018 JW 21 1 3 0 

N2 2/19/2018 JW 21 2 3 0 

N2 2/19/2018 JW 21 3 5 0 

N2 2/19/2018 JW 21 4 4 0 

N2 2/19/2018 JW 23 1 1 0 

N2 2/19/2018 JW 23 2 1 0 

N2 2/19/2018 JW 23 3 2 0 

N2 2/19/2018 JW 23 4 3 0 

N2 2/19/2018 JW 25 1 4 0 

N2 2/19/2018 JW 25 2 4 0 

N2 2/19/2018 JW 25 3 4 0 

N2 2/19/2018 JW 25 4 3 0 

daf-2 2/19/2018 JW 3 2 2 1 

daf-2 2/19/2018 JW 3 3 1 1 

daf-2 2/19/2018 JW 5 1 3 1 

daf-2 2/19/2018 JW 5 2 2 1 

daf-2 2/19/2018 JW 5 4 2 1 

daf-2 2/19/2018 JW 7 4 2 1 

daf-2 2/19/2018 JW 9 1 2 1 

daf-2 2/19/2018 JW 11 1 1 1 

daf-2 2/19/2018 JW 11 3 2 1 

daf-2 2/19/2018 JW 11 4 1 1 

daf-2 2/19/2018 JW 19 4 1 0 

daf-2 2/19/2018 JW 23 1 1 0 
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Table A.1.2 continued     

daf-2 2/19/2018 JW 25 3 1 0 

daf-2 2/19/2018 JW 25 4 2 0 

daf-2 2/19/2018 JW 27 2 3 0 

daf-2 2/19/2018 JW 27 3 3 0 

daf-2 2/19/2018 JW 29 1 1 0 

daf-2 2/19/2018 JW 29 2 2 0 

daf-2 2/19/2018 JW 29 3 2 0 

daf-2 2/19/2018 JW 29 4 1 0 

daf-2 2/19/2018 JW 31 1 7 0 

daf-2 2/19/2018 JW 31 2 6 0 

daf-2 2/19/2018 JW 31 3 7 0 

daf-2 2/19/2018 JW 31 4 6 0 

daf-2 2/19/2018 JW 33 1 2 0 

daf-2 2/19/2018 JW 33 2 2 0 

daf-2 2/19/2018 JW 33 3 1 0 

daf-2 2/19/2018 JW 33 4 2 0 

daf-2 2/19/2018 JW 35 1 4 0 

daf-2 2/19/2018 JW 35 2 2 0 

daf-2 2/19/2018 JW 35 3 2 0 

daf-2 2/19/2018 JW 35 4 2 0 

daf-2 2/19/2018 JW 37 1 2 0 

daf-2 2/19/2018 JW 37 2 2 0 

daf-2 2/19/2018 JW 37 3 1 0 

daf-2 2/19/2018 JW 39 4 1 0 

daf-16 2/19/2018 JW 3 2 1 1 

daf-16 2/19/2018 JW 3 4 1 1 

daf-16 2/19/2018 JW 5 1 2 1 

daf-16 2/19/2018 JW 5 2 2 1 

daf-16 2/19/2018 JW 5 3 1 1 

daf-16 2/19/2018 JW 5 4 3 1 

daf-16 2/19/2018 JW 7 1 1 1 

daf-16 2/19/2018 JW 7 3 1 1 

daf-16 2/19/2018 JW 9 2 1 1 

daf-16 2/19/2018 JW 11 1 6 0 

daf-16 2/19/2018 JW 11 2 4 0 

daf-16 2/19/2018 JW 11 3 5 0 

daf-16 2/19/2018 JW 11 4 5 0 

daf-16 2/19/2018 JW 13 1 3 0 

daf-16 2/19/2018 JW 13 2 5 0 

daf-16 2/19/2018 JW 13 3 2 0 

daf-16 2/19/2018 JW 13 4 4 0 

daf-16 2/19/2018 JW 15 1 3 0 

daf-16 2/19/2018 JW 15 2 5 0 

daf-16 2/19/2018 JW 15 3 6 0 

daf-16 2/19/2018 JW 15 4 5 0 
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Table A.1.2 continued     

daf-16 2/19/2018 JW 17 1 6 0 

daf-16 2/19/2018 JW 17 2 1 0 

daf-16 2/19/2018 JW 17 3 2 0 

daf-16 2/19/2018 JW 17 4 2 0 

daf-16 2/19/2018 JW 19 2 2 0 

daf-16 2/19/2018 JW 19 3 2 0 

daf-16 2/19/2018 JW 19 4 1 0 

daf-16 2/19/2018 JW 21 2 1 0 

N2 3/27/2018 DP 2 2 1 1 

N2 3/27/2018 DP 2 3 1 1 

N2 3/27/2018 DP 3 1 2 1 

N2 3/27/2018 DP 3 4 1 1 

N2 3/27/2018 DP 7 1 1 1 

N2 3/27/2018 DP 7 4 1 1 

N2 3/27/2018 DP 9 3 1 1 

N2 3/27/2018 DP 13 1 2 0 

N2 3/27/2018 DP 13 4 2 0 

N2 3/27/2018 DP 15 1 4 0 

N2 3/27/2018 DP 15 2 5 0 

N2 3/27/2018 DP 15 3 3 0 

N2 3/27/2018 DP 15 4 4 0 

N2 3/27/2018 DP 17 1 4 0 

N2 3/27/2018 DP 17 2 8 0 

N2 3/27/2018 DP 17 3 7 0 

N2 3/27/2018 DP 17 4 6 0 

N2 3/27/2018 DP 19 1 5 0 

N2 3/27/2018 DP 19 2 4 0 

N2 3/27/2018 DP 19 3 4 0 

N2 3/27/2018 DP 19 4 4 0 

N2 3/27/2018 DP 21 1 2 0 

N2 3/27/2018 DP 21 2 2 0 

N2 3/27/2018 DP 21 3 4 0 

N2 3/27/2018 DP 21 4 2 0 

daf-2 3/27/2018 DP 2 4 1 1 

daf-2 3/27/2018 DP 7 1 1 1 

daf-2 3/27/2018 DP 7 2 3 1 

daf-2 3/27/2018 DP 7 3 1 1 

daf-2 3/27/2018 DP 11 4 1 1 

daf-2 3/27/2018 DP 13 1 1 1 

daf-2 3/27/2018 DP 15 2 1 1 

daf-2 3/27/2018 DP 17 1 1 1 

daf-2 3/27/2018 DP 19 2 2 1 

daf-2 3/27/2018 DP 21 4 1 1 

daf-2 3/27/2018 DP 23 1 1 0 

daf-2 3/27/2018 DP 23 3 2 0 
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Table A.1.2 continued     

daf-2 3/27/2018 DP 23 4 1 0 

daf-2 3/27/2018 DP 25 1 1 0 

daf-2 3/27/2018 DP 25 3 2 0 

daf-2 3/27/2018 DP 25 4 3 0 

daf-2 3/27/2018 DP 27 1 1 0 

daf-2 3/27/2018 DP 27 2 2 0 

daf-2 3/27/2018 DP 27 3 2 0 

daf-2 3/27/2018 DP 27 4 2 0 

daf-2 3/27/2018 DP 29 1 2 0 

daf-2 3/27/2018 DP 29 2 3 0 

daf-2 3/27/2018 DP 29 3 3 0 

daf-2 3/27/2018 DP 31 1 8 0 

daf-2 3/27/2018 DP 31 2 1 0 

daf-2 3/27/2018 DP 31 3 1 0 

daf-2 3/27/2018 DP 31 4 4 0 

daf-2 3/27/2018 DP 34 1 2 0 

daf-2 3/27/2018 DP 34 2 7 0 

daf-2 3/27/2018 DP 34 3 4 0 

daf-2 3/27/2018 DP 34 4 4 0 

daf-2 3/27/2018 DP 36 1 1 0 

daf-2 3/27/2018 DP 36 2 2 0 

daf-2 3/27/2018 DP 36 3 5 0 

daf-2 3/27/2018 DP 36 4 2 0 

daf-2 3/27/2018 DP 38 1 1 0 

daf-16 3/27/2018 DP 2 3 1 1 

daf-16 3/27/2018 DP 3 4 1 1 

daf-16 3/27/2018 DP 5 4 1 1 

daf-16 3/27/2018 DP 7 3 1 0 

daf-16 3/27/2018 DP 9 2 2 0 

daf-16 3/27/2018 DP 9 3 3 0 

daf-16 3/27/2018 DP 9 4 1 1 

daf-16 3/27/2018 DP 9 4 1 0 

daf-16 3/27/2018 DP 11 1 1 0 

daf-16 3/27/2018 DP 11 1 2 1 

daf-16 3/27/2018 DP 11 2 4 0 

daf-16 3/27/2018 DP 11 3 1 0 

daf-16 3/27/2018 DP 11 4 1 0 

daf-16 3/27/2018 DP 13 1 9 0 

daf-16 3/27/2018 DP 13 2 10 0 

daf-16 3/27/2018 DP 13 3 12 0 

daf-16 3/27/2018 DP 13 4 12 0 

daf-16 3/27/2018 DP 15 1 2 0 

daf-16 3/27/2018 DP 15 2 1 0 

daf-16 3/27/2018 DP 15 3 1 0 

daf-16 3/27/2018 DP 15 4 3 0 
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Table A.1.2 continued     

daf-16 3/27/2018 DP 17 1 3 0 

daf-16 3/27/2018 DP 17 2 2 0 

daf-16 3/27/2018 DP 19 1 1 0 

daf-16 3/27/2018 DP 19 2 1 0 

daf-16 3/27/2018 DP 19 3 1 0 

 

A.2  Supplemental Figures 

 

Appendix A.2.1. Validation of automated live/dead code. a) Lifespan curves obtained from 

the automated analysis code for wild-type (18.20 days ± 0.37, n = 87 individuals), daf-16 

(12.48 days ± 0.26, n = 95 individuals), and daf-2 (40.08 days ± 0.91, n = 73 individuals) 

populations. Error is reported as SEM. b) Manual annotation of death for the videos 

inputted into the automated analysis code for wild-type (18.48 days ± 0.42), daf-16 (13.78 

days ± 0.32), and daf-2 (40.29 days ± 0.94) populations. Error is reported as SEM. c) 

Comparison of average lifespans for wild-type, daf-16, and daf-2 populations as found by 

the code and manual annotation. Error is reported as SEM. No significant difference was 

found between code outputted and manually annotated lifespans (log-rank test, daf-16 p = 

0.0162, N2 p = 0.3609, daf-2 p = 0.6333) 
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Appendix A.2.2. Characterization of trial-to-trial variability. a) Lifespan curves for each 

trial for N2, cultured at 25°C with OD6005 food concentration on the platform. Gray curves 

show individual trials while the black curve shows the aggregated lifespan curve. b) 

Lifespan curves for each trial for N2, cultured at 25°C with OD6005 food concentration on 

plate. Gray curves show individual trials while the black curve shows the aggregated 

lifespan curve. 

Appendix A.2.3. Sources of variability across experimental trials 

Variance components and the percent of variance due to difference sources of 

variability across trials cultured on the platform and on plate. Variance was calculated 

using a GLM mixed-effect model. Total variation across the two culture methods is 

comparable. Variance attributed to different trials is lower within the platform. The 

individual variation is higher; however, this could be due to bacteria. A single trial of the 

plate assay was seeded with the same batch of bacteria, while multiple batches were grown 

and used on the platform due to the high consumption rate of bacteria culture. As a result, 

the high ‘individual variation’ could be due to variation across bacterial cultures.  

  PLATFORM 

VARIABILITY 

PLATE CONTROL 

VARIABILITY 

Source of 

Variability 

Variance  Percent of 

Variance (%)  

Variance  Percent of 

Variance (%)  

Trial  0.8281  6.41  2.2211  27.16  

Trial x Plate  0.1568  1.21  0.0237  0.29  
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Individual 

Variation  

11.9275  92.26  5.9189  72.38  

Total 12.9124  8.1773  

 

 

Appendix A.2.4. Worms under constant fluid-flow demonstrated evoked behavior. a) 

Heatmaps of individual raw movement over time for N2, daf-16,and daf-2 populations 

under constant flow conditions (~15μL/min). b) Heatmaps of raw movement over time for 

N2, daf-16,and daf-2 populations after opening the downstream solenoid valve, creating a 

strong, pulse of fluid flow (~275μL/min) for 5 seconds. c) Population averages of raw 

movement over time for both the constant flow and ‘pulsed’ flow conditions across 

genotypes. No statistical significance was found between the two flow conditions 

(Kolmogorov-Smirnov test, N2 p = 0.9782, daf-16 p = 1.000, daf-2 p = 0.1413), indicating 

the constant flow conditions create enough of a mechanical stimulus to view stimulated 

behavior (error bars are SEM). 
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Appendix A.2.5. Average raw movement of a population under oscillatory thermal swings 

(n = 26 individuals). Error bars are SEM. Blue background indicates a culture temperature 

of 15°C and a red background indicates a temperature of 20°C. 

 

 

Appendix A.2.6. Intrapopulation behavioral decline across genetic and environmental 

perturbations. a) Averaged raw movement over time of the short- and long-lived 

subpopulations at 25°C at OD6005 food level across different genotypes (error bars are 

SEM). b) (top) Averaged raw movement over time of the short- and long-lived wild-type 

subpopulations at OD6005 food level across different thermal conditions. 20°C short- (n = 
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16 individuals) and long-lived (n = 16 individuals) subpopulations. 17.5°C short- (n = 24 

individuals) and long-lived (n = 22 individuals) subpopulations. 15°C short- (n = 14 

individuals) and long-lived (n = 15 individuals) subpopulations. 15°C↔20°C short- (n = 

21 individuals) and long-lived (n = 22 individuals) subpopulations (error bars are SEM). 

(bottom) Corresponding average raw movement over normalized, relative lifespan of the 

short- and long-lived subpopulations across different thermal conditions (error bars are 

SEM). c) Averaged raw movement over time of the short- and long-lived wild-type 

subpopulations at 25°C across different food levels (error bars are SEM). 

 

 

Appendix A.2.7. Characterization of PCA. a) First two principle component curves. b) 

Scree plot of explained variance with each principle component. 

 



 145 

 

Appendix A.2.8. Intrapopulation variation within the PC space. a) Individuals 

cultured at 25°C at food level OD6005. Inserts show the spatial location and division of 

the short-lived and long-lived cohorts across the different genotypes. b) Wild-type 

individuals cultured at 25°C. Inserts show the spatial location and division of the short-

lived and long-lived cohorts across the different food levels. c) Wild-type individuals 

cultured at food level OD6005. Inserts show the spatial location and division of the short-

lived and long-lived cohorts cultured at different thermal conditions. 
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APPENDIX B. CHAPTER 3 SUPPLEMENTARY MATERIAL 

A portion of the figures below are adapted from a research article entitled “Deep 

learning for robust and flexible tracking in behavioral studies for C. elegans”, accepted to 

PLOS Computational Biology (https://doi.org/10.1101/2021.02.08.430359).105 

 

 

Appendix B.1. Precision-recall curves for the trained Faster R-CNN model. A) Precision-

recall curve for the overall worm detection (left) and egg detection (right) with confidence 

threshold of 0.5. B) Precision-recall curves for the worm at varying stages in the lifespan 

with confidence threshold of 0.5. C) Precision-recall curves for the worm at different food 

levels/contrasts with confidence threshold of 0.5. 
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Appendix B.2. Characterizing synthetic poses from WormPose. A) Representative frames 

of synthetically created postures using WormPose. B) Representative frames of masked 

experimental data used to train the model. C) Examples of synthetic recreations of inputted 

frames and their corresponding similarity score for quality control.  

 

Appendix B.3. A custom GUI for head tracking and post-processing. A screenshot of a 

MATLAB GUI used to check the location of the head (red) and tail (blue) of the worm 

during coiled and occluded events. 
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Appendix B.4. Accurate detection of worms using Faster R-CNN. Histogram of IoU 

values for bounding boxes detected by the Faster R-CNN model compared to bounding 

boxes of hand annotated, segmented worms of the same frame. (n = 2550 frames). 
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APPENDIX C. CHAPTER 4 SUPPLEMENTARY MATERIAL 

C.1  Raw Data for Survival Analysis  

All individuals were WT N2, cultured at 25°C post Day 2 of adulthood. Censored 

individuals were highlighted in grey. 

Food Level 
Date of 

L4 
Device Chamber 

Age at 

Death 

OD2.5 1/30/2020 IF_4 Exp3 3 17 

OD2.5 1/30/2020 IF_4 Exp3 16 26 

OD2.5 1/30/2020 IF_4 Exp3 17 18 

OD2.5 1/30/2020 IF_4 Exp3 23 24 

OD2.5 1/30/2020 IF_4 Exp3 24 25 

OD2.5 1/30/2020 IF_4 Exp3 26 24 

OD2.5 1/30/2020 IF_4 Exp3 27 22 

OD2.5 1/30/2020 IF_4 Exp3 29 24 

OD2.5 1/30/2020 IF_4 Exp3 31 19 

OD2.5 1/30/2020 IF_4 Exp3 35 30 

OD2.5 1/30/2020 IF_4 Exp3 36 21 

OD2.5 1/30/2020 IF_4 Exp3 40 18 

OD2.5 1/30/2020 IF_4 Exp3 42 21 

OD2.5 1/30/2020 IF_4 Exp3 47 23 

OD2.5 1/30/2020 IF_4 Exp3 48 25 

OD2.5 1/30/2020 IF_4 Exp3 50 24 

OD2.5 1/30/2020 IF_4 Exp3 51 19 

OD2.5 1/30/2020 IF_4 Exp3 53 21 

OD2.5 1/30/2020 IF_4 Exp3 54 25 

OD2.5 1/30/2020 IF_4 Exp3 57 15 

OD2.5 1/30/2020 IF_4 Exp3 58 17 

OD2.5 1/30/2020 IF_4 Exp3 60 14 

OD10 1/30/2020 IF_4 Exp4 2 11 

OD10 1/30/2020 IF_4 Exp4 4 18 

OD10 1/30/2020 IF_4 Exp4 14 14 

OD10 1/30/2020 IF_4 Exp4 15 22 

OD10 1/30/2020 IF_4 Exp4 16 20 

OD10 1/30/2020 IF_4 Exp4 22 9 

OD10 1/30/2020 IF_4 Exp4 25 19 

OD10 1/30/2020 IF_4 Exp4 26 18 

OD10 1/30/2020 IF_4 Exp4 31 16 

OD10 1/30/2020 IF_4 Exp4 33 16 
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Table C.1 continued    

OD10 1/30/2020 IF_4 Exp4 37 19 

OD10 1/30/2020 IF_4 Exp4 39 11 

OD10 1/30/2020 IF_4 Exp4 41 14 

OD10 1/30/2020 IF_4 Exp4 42 15 

OD10 1/30/2020 IF_4 Exp4 48 20 

OD10 1/30/2020 IF_4 Exp4 53 14 

OD10 1/30/2020 IF_4 Exp4 54 18 

OD10 1/30/2020 IF_4 Exp4 56 20 

OD10 1/30/2020 IF_4 Exp4 58 17 

OD2.5 1/30/2020 IF_4 Exp10 3 22 

OD2.5 1/30/2020 IF_4 Exp10 6 27 

OD2.5 1/30/2020 IF_4 Exp10 16 19 

OD2.5 1/30/2020 IF_4 Exp10 18 22 

OD2.5 1/30/2020 IF_4 Exp10 19 21 

OD2.5 1/30/2020 IF_4 Exp10 20 29 

OD2.5 1/30/2020 IF_4 Exp10 21 22 

OD2.5 1/30/2020 IF_4 Exp10 23 21 

OD2.5 1/30/2020 IF_4 Exp10 24 21 

OD2.5 1/30/2020 IF_4 Exp10 29 18 

OD2.5 1/30/2020 IF_4 Exp10 30 26 

OD2.5 1/30/2020 IF_4 Exp10 42 19 

OD2.5 1/30/2020 IF_4 Exp10 43 20 

OD2.5 1/30/2020 IF_4 Exp10 44 17 

OD2.5 1/30/2020 IF_4 Exp10 45 32 

OD2.5 1/30/2020 IF_4 Exp10 46 24 

OD2.5 1/30/2020 IF_4 Exp10 51 21 

OD2.5 1/30/2020 IF_4 Exp10 56 21 

OD2.5 1/30/2020 IF_4 Exp10 57 20 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 3 36 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 4 30 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 7 27 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 8 29 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 15 26 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 17 27 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 18 27 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 24 22 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 25 19 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 27 19 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 28 22 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 29 31 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 30 19 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 31 19 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 33 28 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 42 25 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 43 25 
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Table C.1 continued   

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 44 27 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 51 33 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 52 24 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 53 18 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 55 26 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 56 22 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 57 21 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 58 22 

IF (S-Med, OD10) 1/30/2020 IF_4 Exp11 59 28 

OD10 2/7/2020 IF_5 Exp20 1 20 

OD10 2/7/2020 IF_5 Exp20 2 16 

OD10 2/7/2020 IF_5 Exp20 3 10 

OD10 2/7/2020 IF_5 Exp20 5 10 

OD10 2/7/2020 IF_5 Exp20 7 23 

OD10 2/7/2020 IF_5 Exp20 8 22 

OD10 2/7/2020 IF_5 Exp20 10 15 

OD10 2/7/2020 IF_5 Exp20 15 13 

OD10 2/7/2020 IF_5 Exp20 17 22 

OD10 2/7/2020 IF_5 Exp20 18 7 

OD10 2/7/2020 IF_5 Exp20 19 18 

OD10 2/7/2020 IF_5 Exp20 22 19 

OD10 2/7/2020 IF_5 Exp20 23 20 

OD10 2/7/2020 IF_5 Exp20 24 11 

OD10 2/7/2020 IF_5 Exp20 25 21 

OD10 2/7/2020 IF_5 Exp20 26 13 

OD10 2/7/2020 IF_5 Exp20 27 20 

OD10 2/7/2020 IF_5 Exp20 28 21 

OD10 2/7/2020 IF_5 Exp20 30 18 

OD10 2/7/2020 IF_5 Exp20 32 13 

OD10 2/7/2020 IF_5 Exp20 33 14 

OD10 2/7/2020 IF_5 Exp20 35 7 

OD10 2/7/2020 IF_5 Exp20 37 17 

OD10 2/7/2020 IF_5 Exp20 38 22 

OD10 2/7/2020 IF_5 Exp20 39 21 

OD10 2/7/2020 IF_5 Exp20 42 23 

OD10 2/7/2020 IF_5 Exp20 43 16 

OD10 2/7/2020 IF_5 Exp20 48 19 

OD10 2/7/2020 IF_5 Exp20 50 21 

OD10 2/7/2020 IF_5 Exp20 51 19 

OD10 2/7/2020 IF_5 Exp20 52 18 

OD10 2/7/2020 IF_5 Exp20 54 18 

OD10 2/7/2020 IF_5 Exp20 55 22 

OD10 2/7/2020 IF_5 Exp20 56 20 

OD10 2/7/2020 IF_5 Exp20 57 18 

OD10 2/7/2020 IF_5 Exp20 59 10 
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Table C.1 continued    

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 1 24 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 5 25 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 6 34 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 8 21 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 9 26 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 12 22 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 18 30 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 19 27 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 21 33 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 22 35 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 26 23 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 27 33 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 28 24 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 29 29 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 30 28 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 31 37 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 32 28 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 33 27 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 34 35 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 39 24 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 40 17 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 41 22 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 42 37 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 43 32 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 44 24 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 45 22 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 47 31 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 48 24 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 50 31 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 51 28 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 53 18 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 54 18 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 56 33 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 58 33 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 59 25 

IF (S-Med, OD10) 2/7/2020 IF_5 Exp21 60 23 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 3 28 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 4 24 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 5 28 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 7 24 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 8 27 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 9 27 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 13 28 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 17 30 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 22 14 
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Table C.1 continued    

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 23 33 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 24 23 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 25 35 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 26 39 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 29 21 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 30 26 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 31 23 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 32 22 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 39 30 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 41 34 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 41 26 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 44 26 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 45 31 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 47 23 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 48 19 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 49 26 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 51 16 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 52 25 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 53 25 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 54 28 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 55 20 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 56 29 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 57 15 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp25 59 19 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp28 4 30 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp28 6 24 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp28 10 29 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp28 26 35 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp28 27 4 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp28 31 26 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp28 40 24 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp28 43 27 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp28 46 20 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp28 47 26 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp28 50 30 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp28 51 20 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp28 54 38 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp28 55 38 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp28 56 23 

IF (S-Med, OD10) 2/7/2020 IF_6 Exp28 58 39 

OD10 2/7/2020 IF_6 Exp32 1 17 

OD10 2/7/2020 IF_6 Exp32 4 21 

OD10 2/7/2020 IF_6 Exp32 5 21 

OD10 2/7/2020 IF_6 Exp32 8 16 

OD10 2/7/2020 IF_6 Exp32 9 16 
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Table C.1 continued    

OD10 2/7/2020 IF_6 Exp32 14 16 

OD10 2/7/2020 IF_6 Exp32 15 17 

OD10 2/7/2020 IF_6 Exp32 16 19 

OD10 2/7/2020 IF_6 Exp32 19 22 

OD10 2/7/2020 IF_6 Exp32 20 19 

OD10 2/7/2020 IF_6 Exp32 21 19 

OD10 2/7/2020 IF_6 Exp32 22 21 

OD10 2/7/2020 IF_6 Exp32 23 17 

OD10 2/7/2020 IF_6 Exp32 25 19 

OD10 2/7/2020 IF_6 Exp32 28 11 

OD10 2/7/2020 IF_6 Exp32 30 14 

OD10 2/7/2020 IF_6 Exp32 31 12 

OD10 2/7/2020 IF_6 Exp32 33 21 

OD10 2/7/2020 IF_6 Exp32 38 19 

OD10 2/7/2020 IF_6 Exp32 41 17 

OD10 2/7/2020 IF_6 Exp32 42 10 

OD10 2/7/2020 IF_6 Exp32 44 21 

OD10 2/7/2020 IF_6 Exp32 47 17 

OD10 2/7/2020 IF_6 Exp32 49 20 

OD10 2/7/2020 IF_6 Exp32 50 14 

OD10 2/7/2020 IF_6 Exp32 51 22 

OD10 2/7/2020 IF_6 Exp32 52 21 

OD10 2/7/2020 IF_6 Exp32 54 20 

OD10 2/7/2020 IF_6 Exp32 55 17 

OD10 2/7/2020 IF_6 Exp32 57 12 

OD2.5 9/27/2019 IF_2 Exp8 1 24 

OD2.5 9/27/2019 IF_2 Exp8 5 28 

OD2.5 9/27/2019 IF_2 Exp8 8 21 

OD2.5 9/27/2019 IF_2 Exp8 9 22 

OD2.5 9/27/2019 IF_2 Exp8 10 23 

OD2.5 9/27/2019 IF_2 Exp8 15 21 

OD2.5 9/27/2019 IF_2 Exp8 16 23 

OD2.5 9/27/2019 IF_2 Exp8 17 22 

OD2.5 9/27/2019 IF_2 Exp8 21 21 

OD2.5 9/27/2019 IF_2 Exp8 25 22 

OD2.5 9/27/2019 IF_2 Exp8 26 23 

OD2.5 9/27/2019 IF_2 Exp8 27 26 

OD2.5 9/27/2019 IF_2 Exp8 28 24 

OD2.5 9/27/2019 IF_2 Exp8 32 34 

OD2.5 9/27/2019 IF_2 Exp8 33 24 

OD2.5 9/27/2019 IF_2 Exp8 35 23 

OD2.5 9/27/2019 IF_2 Exp8 40 28 

OD2.5 9/27/2019 IF_2 Exp8 41 31 

OD2.5 9/27/2019 IF_2 Exp8 42 30 

OD2.5 9/27/2019 IF_2 Exp8 46 23 
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Table C.1 continued    

OD2.5 9/27/2019 IF_2 Exp8 47 22 

OD2.5 9/27/2019 IF_2 Exp8 48 26 

OD2.5 9/27/2019 IF_2 Exp8 49 22 

OD2.5 9/27/2019 IF_2 Exp8 50 26 

OD2.5 9/27/2019 IF_2 Exp8 51 27 

OD2.5 9/27/2019 IF_2 Exp8 53 27 

OD2.5 9/27/2019 IF_2 Exp8 54 27 

OD2.5 9/27/2019 IF_2 Exp8 55 24 

OD2.5 9/27/2019 IF_2 Exp8 56 28 

OD2.5 9/27/2019 IF_2 Exp8 57 17 

OD2.5 9/27/2019 IF_2 Exp8 58 12 

OD2.5 9/27/2019 IF_3 Exp15 1 0 

OD2.5 9/27/2019 IF_3 Exp15 4 18 

OD2.5 9/27/2019 IF_3 Exp15 5 33 

OD2.5 9/27/2019 IF_3 Exp15 7 16 

OD2.5 9/27/2019 IF_3 Exp15 9 21 

OD2.5 9/27/2019 IF_3 Exp15 10 21 

OD2.5 9/27/2019 IF_3 Exp15 13 19 

OD2.5 9/27/2019 IF_3 Exp15 15 25 

OD2.5 9/27/2019 IF_3 Exp15 19 25 

OD2.5 9/27/2019 IF_3 Exp15 21 25 

OD2.5 9/27/2019 IF_3 Exp15 22 24 

OD2.5 9/27/2019 IF_3 Exp15 23 30 

OD2.5 9/27/2019 IF_3 Exp15 25 25 

OD2.5 9/27/2019 IF_3 Exp15 28 20 

OD2.5 9/27/2019 IF_3 Exp15 32 27 

OD2.5 9/27/2019 IF_3 Exp15 34 22 

OD2.5 9/27/2019 IF_3 Exp15 35 14 

OD2.5 9/27/2019 IF_3 Exp15 36 23 

OD2.5 9/27/2019 IF_3 Exp15 37 25 

OD2.5 9/27/2019 IF_3 Exp15 38 22 

OD2.5 9/27/2019 IF_3 Exp15 41 29 

OD2.5 9/27/2019 IF_3 Exp15 42 18 

OD2.5 9/27/2019 IF_3 Exp15 45 27 

OD2.5 9/27/2019 IF_3 Exp15 47 31 

OD2.5 9/27/2019 IF_3 Exp15 48 26 

OD2.5 9/27/2019 IF_3 Exp15 49 0 

OD2.5 9/27/2019 IF_3 Exp15 50 25 

OD2.5 9/27/2019 IF_3 Exp15 52 25 

OD2.5 9/27/2019 IF_3 Exp15 53 25 

OD2.5 9/27/2019 IF_3 Exp15 55 23 

OD2.5 9/27/2019 IF_3 Exp15 56 25 

OD2.5 9/27/2019 IF_3 Exp15 58 22 

OD2.5 9/27/2019 IF_3 Exp15 59 24 

OD10 9/27/2019 IF_2 Exp6 1 13 
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Table C.1 continued    

OD10 9/27/2019 IF_2 Exp6 4 14 

OD10 9/27/2019 IF_2 Exp6 5 15 

OD10 9/27/2019 IF_2 Exp6 6 14 

OD10 9/27/2019 IF_2 Exp6 9 14 

OD10 9/27/2019 IF_2 Exp6 14 19 

OD10 9/27/2019 IF_2 Exp6 15 10 

OD10 9/27/2019 IF_2 Exp6 16 15 

OD10 9/27/2019 IF_2 Exp6 32 22 

OD10 9/27/2019 IF_2 Exp6 33 17 

OD10 9/27/2019 IF_2 Exp6 35 13 

OD10 9/27/2019 IF_2 Exp6 39 20 

OD10 9/27/2019 IF_2 Exp6 42 16 

OD10 9/27/2019 IF_2 Exp6 45 25 

OD10 9/27/2019 IF_2 Exp6 50 15 

OD10 9/27/2019 IF_2 Exp6 53 13 

OD10 9/27/2019 IF_2 Exp6 55 13 

OD10 9/27/2019 IF_2 Exp6 56 14 

OD10 9/27/2019 IF_2 Exp6 59 15 

OD10 9/27/2019 IF_2 Exp6 60 17 

OD10 9/27/2019 IF_2 Exp7 2 14 

OD10 9/27/2019 IF_2 Exp7 4 19 

OD10 9/27/2019 IF_2 Exp7 6 11 

OD10 9/27/2019 IF_2 Exp7 7 22 

OD10 9/27/2019 IF_2 Exp7 10 8 

OD10 9/27/2019 IF_2 Exp7 14 22 

OD10 9/27/2019 IF_2 Exp7 17 24 

OD10 9/27/2019 IF_2 Exp7 20 19 

OD10 9/27/2019 IF_2 Exp7 21 23 

OD10 9/27/2019 IF_2 Exp7 23 17 

OD10 9/27/2019 IF_2 Exp7 26 24 

OD10 9/27/2019 IF_2 Exp7 27 19 

OD10 9/27/2019 IF_2 Exp7 28 13 

OD10 9/27/2019 IF_2 Exp7 32 11 

OD10 9/27/2019 IF_2 Exp7 40 18 

OD10 9/27/2019 IF_2 Exp7 44 11 

OD10 9/27/2019 IF_2 Exp7 45 18 

OD10 9/27/2019 IF_2 Exp7 52 14 

OD10 9/27/2019 IF_2 Exp7 55 11 

OD10 9/27/2019 IF_2 Exp7 57 12 

OD10 9/27/2019 IF_3 Exp14 1 19 

OD10 9/27/2019 IF_3 Exp14 7 19 

OD10 9/27/2019 IF_3 Exp14 12 13 

OD10 9/27/2019 IF_3 Exp14 13 15 

OD10 9/27/2019 IF_3 Exp14 14 9 

OD10 9/27/2019 IF_3 Exp14 27 19 
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Table C.1 continued    

OD10 9/27/2019 IF_3 Exp14 28 26 

OD10 9/27/2019 IF_3 Exp14 30 13 

OD10 9/27/2019 IF_3 Exp14 33 18 

OD10 9/27/2019 IF_3 Exp14 36 16 

OD10 9/27/2019 IF_3 Exp14 38 18 

OD10 9/27/2019 IF_3 Exp14 39 19 

OD10 9/27/2019 IF_3 Exp14 40 15 

OD10 9/27/2019 IF_3 Exp14 46 15 

OD10 9/27/2019 IF_3 Exp14 49 0 

OD10 9/27/2019 IF_3 Exp14 54 13 

OD10 9/27/2019 IF_3 Exp14 56 17 

OD10 9/27/2019 IF_3 Exp14 59 11 

OD10 9/27/2019 IF_3 Exp14 60 23 
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C.2  Supplemental Figures 

 

Appendix C.2.1. Characterizing the performance of the deep learning pipeline on the IF 

dataset. (top) Fraction of resolved frames for worms cultured under different food 

conditions with age. Each point is the fraction of resolved frames across an entire day of 

recordings. (bottom) Representative images of worms under the different food and contrast 

conditions. 



 159 

 

Appendix C.2.2. Eigenworms for C. elegans cultured on-chip across different age ranges. 

A) (top) The first five eigenworms for worms cultured on-chip for the 0-20% of the relative 

lifespan. (bottom) The first five modes capture 84.63% of postural variance. B) (top) The 

first five eigenworms for worms cultured on-chip for the 20-40% of the relative lifespan. 

(bottom) The first five modes capture 86.66% of postural variance. C) (top) The first five 

eigenworms for worms cultured on-chip for the 40-60% of the relative lifespan. (bottom) 

The first five modes capture 84.45% of postural variance. D) (top) The first five 

eigenworms for worms cultured on-chip for the 60-80% of the relative lifespan. (bottom) 

The first five modes capture 79.15% of postural variance. E) (top) The first five 

eigenworms for worms cultured on-chip for the 80-100% of the relative lifespan. (bottom) 

The first five modes capture 74.39% of postural variance. 
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Appendix C.2.3. Wavelet amplitudes across eigenworms for the discretized behavioral 

regions.  

 

Appendix C.2.4. Behavioral transition probabilities are non-Markovian in C. elegans. 

Behavioral transition matrices retain a structure past τ = 7 frames, the expected decay in a 

Markovian system. Past τ = 140 frames the transition matrix begins to lose its structure. 
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Appendix C.2.5. Differences in behavior across relative age. Behavioral PDF maps of 

individuals cultured with no DR across their lifespan. 

 

Appendix C.2.6. Worms transition to similar behaviors throughout the behavioral map 

across their lifespan. Flux matrix and transition probability matrix (τ = 1 frame) across the 

24 regions for individuals under no DR across 2-day aged cohorts. A) Day 2-4 aged worms. 

B) Day 4-6 aged worms. C) Day 6-8 aged worms. D) Day 8-10 aged worms. E) Day 10-12 
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aged worms. F) Day 12-14 aged worms. G) Day 14-16 aged worms. H) Day 16-18 aged 

worms. I) Day 18-20 aged worms. 

 

Appendix C.2.7. Differences in movement decline across short- and long-lived individuals 

within an isogenic population. A) Average movement decline over time (error bars are 

SEM). B) Average movement decline across the normalized lifespan (error bars are SEM). 

 

 

Appendix C.2.8. Differences in behavior across short- and long-lived individuals within 

an isogenic population across age. A) Behavioral PDF maps of short-lived individuals 

cultured with no DR across their relative lifespan. B) Behavioral PDF maps of long-lived 

individuals cultured with no DR across their relative lifespan. 
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Appendix C.2.9. Worms transition to similar behaviors throughout the behavioral map 

across different food conditions. (left) Flux matrix and (right) transition probability matrix 

(τ = 1 frame) across the 24 regions across recordings for individuals across all time points. 

A) Worms cultured under no DR. B) Worms cultured under CR. C) Worms cultured under 

IF.  



 164 

 

Appendix C.2.10. Differences in behavior across food conditions across age. A) 

Behavioral PDF maps of individuals cultured with no DR across their relative lifespan. B) 

Behavioral PDF maps of individuals cultured with CR across their relative lifespan. C) 

Behavioral PDF maps of individuals cultured with IF across their relative lifespan. 

 

 

Appendix C.2.11. Significant differences in behaviors from individuals across no DR and 

IF conditions with age. A) Difference between the PDFs of individuals under no DR (Day 

4-8) and IF with food present (Day 8-10). Outlined areas are statistically significantly 

different regions across the two maps. B) Difference between the PDFs of individuals 

under no DR (Day 8-12) and IF with food present (Day 12-14). Outlined areas are 

statistically significantly different regions across the two maps. C) Difference between the 

PDFs of individuals under no DR (Day 12-16) and IF with food present (Day 20-22).  
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Appendix C.2.12. Differences in movement decline across food conditions. (left) Average 

movement decline over time (error bars are SEM). (right) Average movement decline 

across the normalized lifespan (error bars are SEM). 

 

 

Appendix C.2.13. Behavior under IF is dependent on the presented food condition. 

Projection onto the first eigenvector from the behavioral covariance matrix across time 

(error bars are the standard deviation from bootstrapped samples). Areas shaded in blue are 

times where worms were exposed to food. Areas in white indicate periods where no food 

was present. 
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Appendix C.2.14. Individuals in no DR and IF have similar behaviors across the shifted 

age ranges. Projection values for all recordings under the designated time and food 

conditions indicate similar behaviors for individuals under no DR and older IF 

individuals exposed to food. There was no significant difference between any of the aged 

comparisons (t-test, p > 0.001).  
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