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SUMMARY

Biomass and derived compounds have the potential to form the basis of a sustainable

economy by providing a renewable source of many chemicals. The selective synthesis

and conversion of biomass compounds are often catalyzed by transition metal catalysts.

Computational screening has emerged as a promising tool for discovery and optimization

of active and selective catalysts, but most existing examples focus on small molecule re-

actions. In this study, the density functional theory (DFT) approach is first validated by

comparing computational results to experiments for ethanol conversion over molybdenum

oxide. Subsequently, DFT is combined with machine-learning approaches to identify and

overcome challenges associated with computational screening of biomass catalysts. A re-

cursive algorithm is used to elucidate possible intermediates and chemical bond cleavage

reactions are for linear biomass molecules containing up to six carbons. Machine-learning

algorithms based on the Mol2Vec embedding are applied to classify reaction types and

predict gas-phase reaction energies and adsorption energies on Rh(111) (MAE ∼ 0.4 eV).

With the workflow, we are able to combine the physics-based density functional tight bind-

ing method with the machine learning model to identify the stable binding geometries of

biomass intermediates on the Rh (111) surface. Finally, we show preliminary results toward

the development of a neural network force field based on the Gaussian multipole feature

approach. The results indicate that this strategy is a promising route toward fast and accu-

rate predictions of both energies and forces of hydrocarbons on a range of transition-metal

surfaces. The results of this thesis demonstrate the utility of machine-learning techniques

for studying biomass reactions, and indicate the potential for further developments in this

field.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Definition of biomass and the importance of biomass compounds

Biomass compounds are a kind of compounds that can be derived from natural products

like lignin, which is the most abundant biopolymer in nature and the side-product of bio-

fuel production. Biomass and their derived compounds are the basis of a sustainable econ-

omy by producing renewable sources of many chemicals. In particular, the Department of

Energy has reported the top biorefinery chemicals in 2004 [1]. Most of these biorefinery

chemicals are able to convert to each other under transition metal catalysts and the ability

to selectively convert between biomass compounds are important. For example, sorbitol

can be produced directly from glucose, which also has a high volume commercial market

and smaller compounds, including xylitol and lactic acid, can be produced from sorbitol

[2]. Glycerol, as one of the smallest biorefinery compounds, its catalytic conversion to

glyceraldehyde and ethylene glycol is widely studied [3, 4, 5]. It is found that both the

structure and reaction pathways of glycerol should be similar to sorbitol [6].

1.2 Prior computational studies of biomass compounds on transition-metal surfaces

1.2.1 Different biomass molecules/intermediates on transition metal surface

Biomass products are the raw material for small molecules like ethanol and are able to

convert to other biomass compounds on transition metal surfaces. Selective conversion be-

tween those biomass products and other small molecule products are important if biomass

compounds are to form the basis of a sustainable economy. Rh is a commonly-used tran-

sition metal catalyst for conversion of biomass compounds and has been the subject of

numerous experimental studies. For example, Rh catalysts have been used for succinic

1



acid conversion to fumaric acid [7], hydrogenolysis of furfural to 1,2-pentanediol [8] and

production of C1 compounds from ethanol [9, 10, 11]. However, there have been rela-

tively few systematic computational studies of biomass intermediates on Rh surfaces [12].

Density functional theory (DFT) is the most common theory used to study the adsorption

and reaction of biomass compounds [13, 14, 15]. However, complex molecules have mul-

tiple binding sites and various geometries, and DFT calculations of larger molecules are

expensive and require significant computational effort to converge. Thus, previous studies

often utilize empirical and machine learning (ML) methods to relate reaction properties of

biomass molecules or intermediates to their structures, physical properties and even exper-

imental conditions [16, 17, 14, 18]. Besides Rh, there are also study on other transition

metals. Vlachos and co-workers have been investigating the small molecule reactions on Pt

surfaces by DFT. They studied the elementary bond-cleavage reactions between C-2 species

and found that CH3C is the most stable C-2 species on both surfaces and that ethane dis-

sociation and CH3CH dehydrogenation are rapid processes on Pt (111) surface [19]. They

also developed a group additivity method to estimate the properties on Pt surfaces [20, 21].

Heyden and coworkers have also contributed to the biomass molecule and transition metal

catalyst system. They have investigated the cleavage mechanism of the C-O ether bond in

the lignin model compound over Pd (111) catalyst surface and proposed the reaction path-

way as dehydrogenation first to form ketone and enol, then C-O bond cleavage afterward

[22]. They have studied the solvent effects in the hydrodeoxygenation of levulinic acid

over Ru (001) surface and their microkinetic models suggest that water facilitates the re-

action kinetics significantly than other solvents and the solvent effect is strongest at lower

temperature [23].

1.2.2 An introduction to model compound

Most biorefinery molecules contain more than 4 carbon (C) and/or oxygen (O) atoms. The

large structure of these molecules creates challenges in studying fundamental properties

2



like adsorption energy and binding configurations due to large system sizes in calculations,

similarity of different functional groups in spectroscopic investigations, and the vast num-

ber of possible intermediates or spectators that may be present in either experimental or

computational studies of reaction kinetics. As an example, Figure 1.1 shows the average

number of possible intermediates based on the total number of C and O atoms. A molecule

with 12 heavy atoms has more than 10,000 possible intermediates. Clearly, it is not fea-

sible to study all elementary steps since manually setting up experiments or even calcula-

tions on a metal surface slab could take years or decades to finish. This fact has driven the

use of smaller “model compounds” for studying biomass reactions. A model compound

is a compound that has similar structures and properties to the target compound, but is

smaller and less complex. A common example would be the use of glycerol to study xyl-

itol/sorbitol. Previous studies have shown the similarity between glyceraldehyde/glycerol

and linear glucose/sorbitol [24], and also between C-C scission in glycerol/ethylene gly-

col and xylitol/ethylene glycol or propylene glycol over transition metals [25, 26]. These

results illustrate the effectiveness of glycerol as a model compound, and the similarities

are consistent with chemical intuition. Other examples of model compounds are phenolic

molecules used to study the hydrodeoxygenation of lignin derivatives on MoO3, [27] and

fufuranic/aromatic compounds used as model feedstocks of biooils on metal catalysts. [28]

Despite the widespread use of model compounds to study complex reactions, there is no

systematic way of evaluating the efficacy of a model compound, or of identifying model

compounds for other complex molecules/reactions.

As mentioned previously, a key challenge with biomass molecules is their complexity,

and “model compounds” are often used to simplify systems of interest. A “model com-

pound” refers to a relatively small molecule (typically fewer than 8 heavy atoms) that can

be used for studying larger compounds with similar chemical properties and functional

groups. Previous experimental studies showed that the reaction pathway of glyceraldehyde

<=> glycerol is similar to linear glucose <=> sorbitol [13, 29, 15, 30] and that propionic
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Figure 1.1: Average number of possible intermediates according to the total number of C
atoms and O atoms based on the recursive bond-breaking algorithm used in this work.

acid ketonization is similar to the larger carboxylic acid ketonization on Rh surface [14,

31]. While model compounds are commonly used, they are typically identified by heuris-

tics and intuition. However, a data-driven strategy for systematic identification of model

compounds is proposed in chapter 4 [32]. It was pointed out that glycerol, glyceraldehyde,

propionic acid, and erythrose are good model compounds to study larger molecules like

sorbitol and linear-structured glucose. This makes these four molecules a key starting point

for computational and experimental studies seeking a more general understanding of the

catalytic conversion of biomass derivatives on solid surfaces.
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1.3 Review of quantitative and machine learning (ML) methods on predicting prop-

erties

1.3.1 Review of softwares and machine learning methods

Various properties can be predicted by combining fingerprints of molecular structures or

other encoding methods with regression and classification models. This approach of quan-

titative structure-property models has been widely used in the pharmaceutical industry.

Several software packages are developed to predict the properties based on the potential

drug structures. For example, SYNCHEM, an early computer program was created to

search synthesis procedures and predict drug-like properties [33]. SYNCHEM is also able

to estimate the properties of the compounds not in their database with a substructure match-

ing then estimating based on the most similar compounds in structure. Chematica, which

took more than 10 years to be developed, further allows selecting the most promising com-

pounds and the optimal synthesis pathway by optimizing a cost function [34]. Chematica

is taking structure information and energies from previous publications for providing a

feasible reaction pathway.

Recently, machine learning techniques have also been applied to drug discovery. Deep

learning has been implemented for both training and encoding the compounds into vector

spaces. ProtVec tool, an open-source python package based on natural language process-

ing (NLP), is developed for embedding proteins based on their biological sequence [35].

Deep neural networks can also be used to predict protein-protein interactions (PPI) [36]

and predict the secondary structures of proteins [37]. Random forest (RF) models have

been used to predict drug-like interactions with FP2 fingerprints [38] and assess chemical

toxicity [39]. Support vector machines (SVM) have been used to predict the effect of ion

doping in pharmaceuticals [40] and enzyme selectivity [41]. Artificial neural networks are

also widely used in understanding pharmaceutical lipophilicity and other properties [42].

While machine learning techiques have the longest history in pharmaceutical molecules,
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they have also been applied to numerous other domains including MOFs/zeolites [43, 44],

superconductivity [45, 46] and catalysis [16]. RINGS is an open-source software devel-

oped for estimating the properties of chemical compounds. RINGS could do the analysis

of topological networks based on the part of the structural information which can be repre-

sented in the graph theory using nodes for the atoms and links for the bonds. [47]

Specifically for catalysis systems, machine learning is also playing a central role in cat-

alyst screening and property prediction such as atomization [48], formation energies [49],

density of states [50], band gaps [51] and melting temperatures [52]. Machine learning

is used in finding new materials, scaling relations, and DFT-derived functions. [53] Vari-

ous machine learning methods have been applied to the crystal structure of AB-type alloys

[54] and explored the metal oxide chemical space in a search of previously uncharacterized

compounds [55]. Important contributions have been made to establishing scaling relation-

ships between adsorption energies and reactants and intermediates using d-band model [56,

57]. Several reports have also described machine learning predictions of the adsorption en-

ergies of reactants and surface intermediates, including DFT-derived adsorption energies on

metal and alloy surfaces [58, 59], and to predict d-band centers, [60, 61] which are widely

used descriptors for reactions over heterogeneous transition metal surfaces. Heyden and

coworkers have been using data-driven model to predict transition energies on Pd surface

[12]. CatMAP, [62] an open-source Python package, developed for proposing microkinetic

models for catalysts, can also be used to do the screening of different catalysts for specific

reactions. Machine learning has aided the design of specific reaction catalysts [63] and has

been used for the discovery of inorganic complexes [64]. Gaussian process regression has

been used in predicting redox potentials [65] and Bayesian approaches have been used to

predict solubility [66]. However, there have been relatively few applications of machine

learning techniques to biomass molecules and reaction networks [17, 12]. Most of these

ML methods could reach a mean absolute error of adsorption energy/transition state energy

within 0.4 eV, [18, 20, 12] with some examples of predictions as accurate as 0.2 eV using
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a combination of physical and structural features along with feature selection methods [67,

17].

1.3.2 Fingerprinting and encoding methods

Identification and evaluation of model compounds and analysis of biomass molecules, can

be facilitated by developing vector representations or “fingerprints” for these molecules

[68, 69]. Encoding methods are a strategy for quantitative comparison of different molec-

ular compounds. There are several ways to encode molecular structure including SMILES

notation [70], Morgan fingerprint extended connectivity fingerprints (ECFP) [71], FP2 fin-

gerprints[38], group matrices [72], and neural networks [73, 74, 75]. SMILES is a very

commonly used linear string-like notation for chemical compounds, and is the basis for

many subsequent encoding methods like barcode encoding [76] or artificial neural network

encoders [77]. However, SMILES notation can be complicated when the system is large.

Morgan fingerprints and ECFP fingerprints generate lists of integers from the molecular

structure and properties like atomic number and atomic mass, providing a vector of in-

tegers for a given structure, and FP2 fingerprints work similarly but hash the result into

a binary representation. Encoding by group is another approach for creating a vector of

integers and was originally proposed by Benson [72]. The idea of group encoding is to

split the whole molecule into one-heavy-atom-center substructures and encode the number

of appearances of each substructure into a matrix. Group additivity has been extended in

several ways to increase accuracy and treat more complex systems [78, 79]. For example,

Vlachos and co-workers have applied group additivity to predict the adsorption energies

of biomass molecules on metal surfaces and in aqueous environments [18, 80, 20]. Group

matrices are convenient for regression to molecular properties since matrix algebra is well-

established, and the resulting vectors have intuitive meaning (contributions of each group).

However, the accuracy is often limited due to the low number of groups, and the method

relies on a test set that contains multiple examples of all groups. Encoding molecular
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structures through neural networks is an alternative approach that leads to a vector of con-

tinuous values that corresponds to each molecular structure. These continuous vectors are

advantageous because they are natural inputs to machine learning algorithms like regres-

sion and classification. Neural network encoders can also be tuned to provide vectors of

different sizes, providing a way to arbitrarily adjust the complexity of molecular encod-

ing. Moreover, if an auto-encoding architecture is used, the encoded representation can be

transformed back into a molecular representation, although challenges exist with ensuring

that the resulting inverse transform is chemically valid [81, 82].

1.4 Summary of the thesis

In this thesis, we first validated DFT approach using a system where experimental data was

available. Next, we applied ML methods to the clustering, classification and regression

of molecular biomass structures, reactions, and reaction energies. We also proposed new

workflows for assessing the model compounds quantitatively and identifying the stable

binding geometries on metal surfaces. Finally, we present initial efforts toward the con-

struction of a neural network force field (NNFF) that is generally applicable for biomass

and transition metal catalytic systems.

The DFT approach is validated through the energy and vibrational frequency calcula-

tion of small biomolecules on MoOx surface. Both energy and frequency are in qualitative

agreement with the experimental results then DFT with Quantum ESPRESSO is used for

calculation in the following work. In the gas-phase study, we apply the “Mol2Vec” em-

bedding algorithm to analyze the plethora of compounds and elementary steps involved in

the conversion of biomass molecules. Unsupervised dimensional reduction and clustering

algorithms applied to molecular vectors provide a more detailed approach for classifying

elementary steps in biomass reaction networks into a total of 90 possible classes. Linear

discriminant analysis (LDA) were applied to the results and found to be able to classify

elementary steps into these subclasses with a classification accuracy of 0.99 with a reduced
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dimensionality of 5 components. The resulting LDA decomposition is also used to assess

regression models for gas-phase reaction energy, resulting in a minimum error of 0.59 eV,

compared to 2.9 eV for group additivity. Finally, we apply the machine-learned representa-

tions to quantitatively assess the ability of different model compounds to represent different

reaction types. The results indicate that neural-network based encoding techniques are a

promising approach for understanding the complex reaction networks of biomass reactions.

Then, we extend the previously-developed embedding models of gas-phase formation

energies to adsorbed surface intermediates on the Rh(111) surface. A total of 171 inter-

mediates from the first 2 bond-breaking recursions of erythrose, glyceraldehyde, glycerol

and propionic acid are studied. Mol2Vec is used for generating vector descriptors and 83

clusters based on 6 reaction types (C-C, C-O, O-H, C-H, C-M, O-M) are obtained from

single-group “radius zero” (R0) Mol2Vec descriptors. Linear discriminant analysis (LDA)

and partial least squares (PLS) are used for dimensional reduction of two- and three-group

“radius one” (R1) Mol2Vec descriptors, providing low-dimensional vector descriptors for

each adsorbate. These vectors are combined with a linear least-squares regression model,

yielding mean absolute errors (MAE) as low as 0.39 eV. Finally, pre-optimization via

density-functional tight binding (DFTB) is combined with our embedding models to es-

tablish a workflow for rapidly identifying stable adsorption geometries. We show that this

workflow identifies 20 new lowest-energy geometries for 171 adsorbates studied, indicating

that systematic approaches for identifying the lowest-energy structures of large adsorbed

molecules are a necessary addition to the tool set of computational catalysis.

Further more, a NNFF based on AMPtorch is in development and the test errors (MAE)

of the present NNFF are 0.11 eV for for energy and 0.06 for force on atoms. The dataset

contains DFT calculations of smaller molecules consisting of no more than 4 C and 4 O

on transiton metal (211) surfaces. Adsorbates on Rh are first tested with AMPtorch and

then transferred to multiple metals. The NNFF based on AMPtorch could be a potential

substitution of Hotbit as a pre-optimization tool.
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1.5 Summary of the introduction

Biomass molecules pose a significant challenge due to their size and complexity. As men-

tioned above, the number of possible intermediates is increasing exponentially with the

size of molecule and there exists more than 10,000 possible intermediates for a molecule

containing more than 10 heavy atoms. Also, the binding geometry become more com-

plex as the number of atoms increases. Machine learning approaches have been useful for

making rapid property predictions in numerous other fields of chemistry and biochemistry

(drug discovery for example) and machine learning could be a potential method for study-

ing the biomass systems. However, there have been relatively few efforts to apply machine

learning to biomass molecules, making this a promising research direction.
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CHAPTER 2

ALGORITHMS AND METHODS

2.1 DFT and DFTB

2.1.1 Schrödinger’s equation

The famous Schrödinger’s equation [83] is the equation that all quantum chemistry calcu-

lations start with to solve:

ih̄
∂

∂t
Ψ = ĤΨ (2.1)

and its original form is:

ĤΨ = EΨ (2.2)

Both the Ĥ (Hamiltonian) and the Ψ (wavefunction) are complex and depend on each

other. The Hamiltonian is an operator that is related to the described physical system

[84]. It is commonly expressed as the sum of operators corresponding to the kinetic (T̂ )

and potential energies (V̂ ) of a system. The potential energies can be expressed by the

summation of electron-nucleus (V̂en) and electron-electron energy (V̂ee). Catalysis systems

typically contain adsorbates and metal atoms with multiple nuclei and free electrons. Thus,

we need to solve for the equation with Hamiltonian that can represent many-body system.

Initially,

Ĥ = T̂ + V̂en + V̂ee (2.3)
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and T̂ , V̂en, V̂ee can be calculated by :

T̂ = −1

2

Ne∑
i

∇2
i (2.4)

V̂en =
Ne∑
i

Nn∑
I

−ZI
|−→ri −

−→
RI |

(2.5)

V̂ee =
1

2

Ne∑
i

Ne∑
j 6=i

1

|−→ri −−→rj |
(2.6)

where Ne or Nn is the number of electrons or nuclei in the system,∇2 is the Laplacian

operator, −→ri is the spatial coordinate of electron i,
−→
RI is the spatial coordinate of nucleus I

[85] and ZI is the charge of nucleus I.

The wavefunction (Ψ) is depending on the coordinates of all the electrons in the system

at a specific time (Ψ = Ψ(−→r1 , ...,−→rNe) = Ψ(−→ri )) with 3Ne dimensions as each electron

should have 3 spatial coordinates. The wavefunction is complex-valued and in this case it

could describe all the electrons.

However, solving for the position of electrons and the energies simultaneously are not

possible for a many-body system. Thus, analytical solutions to the Schrödinger’s equa-

tion is not possible and different numerical methods with different accuracy are used. For

example, Hartree-Fock and perturbation theory are both the approximations to the wave-

function and Hamiltonian. While the accuracy of the approximation methods increase, the

complexity and cost also increases. For most of these methods, for example, Hartree-Fock,

requires solving N-coupled equations for N spin orbitals and a recursive solution for those

equations known as “self-consistent field method” (SCF) until convergence although it ap-

proximates the N-body wave function by a single Slater determinant. So approximation

methods to wavefunction are still very computationally costly and require a constraint on

the size of studied system.
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2.1.2 Kohn-Sham equations

In a many-body system, only the electron density but not the wavefunction could be ob-

served. The electron density means the expectation value of the number of electrons at

a specific point in the system space and the expectation value could be calculated by the

probability of an electron being found at that point. Indeed, the wavefunction could be used

to fully describe a many-body system for interacting electrons, but the wavefunction is not

observable as the electron probability or electron density. But the electron density can be

obtained from the wavefunction:

n(−→r ) = N

∫
· · ·

∫
R3

Ψ∗(−→r ,−→r2 . . . ,−→rNe)Ψ(−→r ,−→r2 . . . ,−→rNe)d−→r2 . . . d−→rNe (2.7)

= N

∫
· · ·

∫
R3

|Ψ(−→r ,−→r2 . . . ,−→rNe)|2d−→r2 . . . d−→rNe (2.8)

where |Ψ|2 is the probability of the wavefunction density, which is normalized to 1 by

definition and Ψ∗ is the complex conjugate of Ψ. The electron density only contains 3

spatial dimensions and is real-valued, also observable. Thus it is much easier to deal with

than the wavefunction with complex-value and 3Ne dimensions.

The electron density is the foundation of DFT as well as the two theorems proved by

Hohenberg and Kohn [86]. The conclusion of the two Hohenberg-Kohn theorems is that

the exact electron density could be obtained by optimizing (usually minimizing) the energy

with respect to the electron density (∂E[nexact(
−→r )]

∂n(−→r ) = 0) given the exact energy functional

(Eexact[n(−→r )]). This leads to a 3-dimensional optimization (minimization) problem and

could be solved by numerical methods. But solving for the exact energy and defining the

energy functional still remains a challenge. Equation 2.3 can be expanded in the form of

electron density as energy is the eigenvalue (expectation) of Hamiltonian:
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Ene = −
∫
R3

n(−→r )
Nn∑
i

ZI

|−→ri −
−→
RI |

d−→r (2.9)

= −
∫
R3

n(−→r )Vne(
−→r )d−→r (2.10)

Eee =
1

2

∫
R3

∫
R3

n2(
−→q ,−→r )

|−→q −−→r |
d−→q d−→r (2.11)

where n2 is the density correlation function and provides the probability given that

the other electron exists at −→r with an electron exists at −→q . Some approximations are

necessary since the density of the two-electron system cannot be obtained by the single-

electron density. The two-electron density could be obtained by just taking the product of

two single-electron densities if the two particles are independent. And this independent

correlation gives us (some correction is implemented):

n2(
−→q ,−→r ) = n(−→q )n(−→r ) + δn2(

−→q ,−→r ) (2.12)

which suggests:

Eee =
1

2

∫
R3

∫
R3

n(−→q )n(−→r )

|−→q −−→r |
d−→q d−→r +4Eee (2.13)

So the conclusion here is that both Coulombic potential energy and electron potential en-

ergy are functionals of electron density:

Een(n(−→r )) = −
∫
R3

n(−→r )Vne(
−→r )d−→r (2.14)

Eee(n(−→r )) =
1

2

∫
R3

∫
R3

n(−→q )n(−→r )

|−→q −−→r |
d−→q d−→r (2.15)

Above calculations are the estimations of potential energies. We still have not talked

about the kinetic energy. To estimate the kinetic energy T̂ , one key assumption of DFT is
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used: there exists some collections of Ne non-interacting electrons which have the same

ground-state density as the true interacting system.

n(−→r )
assume

=
Ne∑
i

|φi(−→r )|2 (2.16)

where the φi(−→r ) are the Kohn-Sham orbitals [87] and these orbitals are unspecified

initially. The assumption here is that the true density could be expressed by these non-

interacting orbitals while actually this might not be the case. The kinetic energy density

can be expressed as (if the assumption is true):

ET = −1

2

Ne∑
i

∫
R3

φ∗i (
−→r )∇2φi(

−→r )d−→r +4ET (2.17)

ET (φi(
−→r )) = −1

2

Ne∑
i

∫
R3

φ∗i (
−→r )∇2φi(

−→r )d−→r (2.18)

where4ET is the term representing the difference between the true kinetic energy and the

kinetic energy derived from non-interacting Kohn-Sham orbitals. After this substitution,

the energy can be expressed as:

E = ET [φi(
−→r )] + Een[n(−→r )] + Eee[n(−→r )] +4Eee[n2(

−→q ,−→r )] +4ET [Ψ(−→r1 , . . . ,−→rNe)]

(2.19)

where the first 3 terms (ET , Een, Eee) are known while the last 2 terms (4Eee, 4ET ) are

unknown. 4Eee and 4ET are representing the compensate for the approximations in Eee

and ET . It is proven by the first Hohenberg-Kohn theorem that the energy is a functional

of the density. This suggests that these energies (Eee, ET and Een) are also functionals of

the density. Therefore we can combine the two energy correction terms together and the

combined term is known as “exchange correlation” energy:

Exc[n(−→r )] = 4Eee[n2(
−→q ,−→r )] +4ET [Ψ(−→r1 , . . . ,−→rNe)] (2.20)
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Various different approximations have been developed for the exchange-correlation

(Exc[n(−→r )]) since it is impossible to calculate the true exchange-correlation energy an-

alytically. With the exchange-correlation part, the energy functional can be written as:

E[φi(
−→r )] = ET [φi(

−→r )] + Een[n(−→r )] + Eee[n(−→r )] + Exc[n(−→r )] (2.21)

The above equation is a functional of Kohn-Sham orbitals and the electron density and

the electron density can be estimated by Kohn-Sham orbitals given our previous assumption

when deriving the exchange-correlation. So minimizing the function with respect to Kohn-

Sham or the electron density should be equivalent. Taking the derivative, the functional can

be minimized and gives:

[−1

2
∇2(φi(

−→r )) + Veff (n(−→r ))]φi(
−→r ) = εiφi(

−→r ) (2.22)

Veff (n(−→r )) = Vne(n
−→r ) +

∫
R3

n(−→q )

|−→q −−→r |
d−→q +

δExc
δn(−→r )

(2.23)

The above equation is known as the famous “Kohn-Sham” equation and is also the foun-

dation of DFT. The original 3Ne-dimensional wavefunction transforms toNe 3-dimensional

non-interacting Kohn-Sham orbitals.

It is still a challenge to solve the Kohn-Sham equation although the equation is already

much simpler than the well-known Schrödinger’s equation. There are many different pack-

ages for solving it, for example, VASP, Quantum ESPRESSO, and GPAW [88, 89, 90, 91].

In this thesis, the calculations are carried out with Quantum ESPRESSO and all details are

provided in the corresponding chapters. This section is a high-level and very general intro-

duction of the equations, theorem, and approximations to solve the equations. Usually, the

numerical method goes through an “SCF” cycle to be converged:

• Choose an initial guess for trial density (n(−→r ))

• Solve Equation 2.23 for φi(−→r ) using the trial density in Veff
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• Calculate the electron density of these solutions as ñ(−→r ) =
∑Ne

i |φi(
−→r )|2

• Compare the trial density n(−→r ) with the solution density ñ(−→r ). If the difference is

smaller than the cutoff, this density is considered the ground-state electron density.

Otherwise, method like gradient-descent is applied to obtain a new trail density and

Step 2 - Step 4 are repeated.

The electronic ground state is determined by the “SCF cycle” but one assumption that

the exact coordinates of the nuclei are known is applied here. However, this is not the case

in reality but this can be overcome. The Hellman-Feymann theorem says
−→
FI =

−→
FI [n(−→r )],

where FI is the force on nucleus I [92]. So we know that the forces on nuclei can be

obtained from the electron density. The local minima can be determined given the initial

guess:

• Choose an initial guess for the atomic coordinates
−→
RI

• SCF cycle to calculate the ground truth energy for the given initial guess coordi-

nates/optimized coordinates

• Force calculated by taking the derivative of energy

• Check force error. If the maximum force error is within the tolerance then a local

minima is found. If not, the atom are moved to new coordinates and Step 2- Step 4

are repeated until convergence

This local minimum obtained is highly depending on the initial guess and it is not

necessarily guaranteed as a global minimum. Several initial guesses should be attempted

here to get a “global minimum”.

2.1.3 Selection of DFT parameters

DFT provides a systematic way to solve the Schrödinger’s equation, it still has the limita-

tion that the Hohenberg-Kohn theorems only prove that the ground-state energy is a func-
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tional of the electron density. However, most chemistry can be captured by the ground-state

calculations. Also, Kohn-Sham orbitals are not equivalent to the true wavefunctions, thus

the eigenvalues are not the true eigenvalues of the system, although the practical results

show they are reasonable. In addition, the practical limitation of the true exchange cor-

relation (Exc[n(−→r )]) is not known. The PBE functional is one of the earliest and most

successful of the surface-tailored functionals, while the BEEF-vdW functional allows un-

certainty estimation and performs slightly better for adsorption systems. Another strategy is

to abandon the constraint that the exchange correlation is a functional of density and instead

compute the approximate form of exchange correlation based on wavefunction method. For

example, Hartree-Fock can be included in the exchange-correlation energy.

When solving the Kohn-Sham equations numerically, there are many numerical param-

eters that must be selected through convergence testing. The common parameters of DFT

calculations include the plane-wave cutoff, k-point sampling, and the exchange correlation

functionals. There is a trade-off between cost and the accuracy of the estimated energy.

The cost is determined by numerical accuracy that controlled by plane-wave cutoff and

k-points. The higher the value of planewave cutoff and the k-points, the higher the calcula-

tion cost and the higher the accuracy of the estimated energy. Here we are using planewave

cutoff of 400 eV - 450 eV, k-point sampling[93] of 4×4×1/5×5×1 and PBE/BEEF-vdW

as exchange-correlation functionals. All density functional calculations are performed with

Quantum ESPRESSO [88]. A BFGS algorithm provided by Atomic Simulation Environ-

ment (ASE)[90] was applied to the geometry optimization until the maximum force was no

more than 0.05 eV/Å.

2.1.4 Density functional based tight binding theory

Density functional tight-binding (DFTB) provides a rapid physics-based route that provides

relatively accurate energies and geometry of reactive surfaces [94, 95]. DFTB theory is first

proposed by G. Seifert. The formalism of optimized linear combination of atomic orbitals
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as introduced by Eschng and Bergert [96] for band-structure calculations are introduced.

The Kohn-Sham orbitals ψi of the system are expanded in terms of atom-centered localized

basis functions φν :

ψi(r) =
K∑
k

∑
ν

Cνiφν(r −Rk) (2.24)

where Cνi is the linear coefficient and is a constant [96], K is the number of unit cells, Rk

is position. For orbital ψi, solve the following Schrödinger-like equation in a linearized

way:

Ĥψi(r) = εiψi(r) (2.25)

To find εi and the linear coefficient Cνi, multiply both sides of the Schrödinger’s equation,

integrate over all space, and we obtain equations that could be solved in a matrix form.

α1C1i + β1µ
∑

nn,µ6=1

Cµi = εiC1i (2.26)

α2C2i + β2µ
∑

nn,µ6=2

Cµi = εiC2i (2.27)

... (2.28)

αiCνi + βνµ
∑

nn,µ 6=ν

Cµi = εiCνi (2.29)

where αi =
∫
φ∗i Ĥφi and βij =

∫
φ∗i Ĥφj =

∫
φ∗jĤφi and nn representing nearest neigh-

bors. By representing the linear equations in a matrix form, it is easy to find that the energy

ε is the eigenvalue and the Cµis are the eigenvectors. The total energy of the system can be

approximated as the summation of the band-structure energy and a short-range repulsive

two-body potential:

Etot(Rk) = EBS(Rk) + Erep(|Rk −Rl|) (2.30)

=
∑
i

niεi(Rk) +
∑
k

∑
<l

Vrep(|Rl −Rk|) (2.31)
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where ni is the occupation number of orbital i, εi is the eigenvalue of the non-self-consistent

Schrödinger-like equation (Equation 2.25) and Vrep is a short-range pairwise repulsion be-

tween the atoms at Rl and Rk. In DFTB, the electronic-electronic, nuclear-nuclear re-

pulsions are assumed to be pariwised. In this case, the εi is now the solutions of non-

self-consistent Schrödinger’s equation but not the self-consistent one. The original DFTB

ignores the self-consistency and and assumes that all the important nonpairwise behavior

in the interatomic forces comes from the sum of the one-electron eigenvalues.

G. Seifert and coworkers proposed a polynomial approach to estimate the repulsive po-

tential (Vrep) [94]. The “actual” repulsive potentials were obtained by taking the difference

of the total energy (calculated by self-consistent approach) and the band-structure energy ε

with different values of interatomic distances R:

Vrep(R) = Esc(R)− ε (2.32)

Finally, the Vrep(R) could be written as a sum of polynomials:

Vrep(R) =


∑NP

n=2 dn(Rc −R)n (R < Rc)

0 otherwise
(2.33)

In the same paper, the authors determined the coefficients of the polynomial expansion

for short-range repulsive potential of C and H. After the very first polynomial expansion,

there also exists other methods to estimate the repulsive and non-repulsive potential more

accurately, for example, G. Seifert later published a paper taking electron-nuclear long-

distance energy into consideration [97] and method based on the two-center parametriza-

tion of Slater and Koster also Harrison’s tight binding theory [98].

We use the open-source Hotbit [99] Python package with a previously-developed pa-

rameterization for Rh/C/H/O [100] for performing DFTB to get pre-optimized local min-

imas. The Hotbit calculator is used with constrained minima hopping [101] where metal
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slab atoms have fixed positions and adsorbate bonds have fixed lengths [102] to generate

local minima geometries for each adsorbate.

2.2 Molecular structure generation

Gas-phase species data generation is based on a chemical-bond-breaking recursion algo-

rithm. Figure 2.1 shows an example of CH3OH group generation from the original CH3OH

molecule: each chemical bond is broken for the input substructures in each recursion, and

only the unique groups are kept; the process is recursed until no new groups are generated.

The recursive bond breaking of CH3OH leads to the generation of 5 unique substructures

of the 1st recursion, 4 unique substructures of the 2nd recursion, 3 unique substructures

of the 3rd recursion and 2 unique substructures of the 4th recursion. The recursive bond

breaking stops at the 4th recursion since no more unique substructures will be generated

(C and O) further or only single atoms remain, i.e. C. The unique reactions are generated

following the same algorithm as the substructures. The 1st recursion of CH3OH is taken as

an example here. The algorithm generates 3 unique reactions in the 1st recursion, which

are: 1) C-H bond breaking: CH3OH −→ CH2OH + H; 2) O-H bond breaking: CH3OH −→

CH3O + H; 3) C-O bond breaking: CH3OH−→ CH3 + OH. Then each of the generated sub-

structures goes through the same process and finally 14 substructures are generated from

CH3OH. Double bonds are broken simultaneously, for example, C=C −→ C + C. 14 small

biomass molecules are taken as its original input, finally obtaining more than 90k possible

intermediates and chemical bond breaking reactions. More details please see chapter 4.

The advantages of this recursive bond breaking algorithms include: 1) obtaining all

possible intermediates of a given molecule; 2) having a clear stop criterion; and 3) inter-

mediates from any level (recursive number) could be obtained and this algorithms could

be useful where intermediates from the 1st and 2nd recursions are extracted. However,

the algorithm also has some limitations, which are 1) it is a brute force method so larger

molecules would take an unexpected longer time to finish all recursions and 2) it cannot
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Figure 2.1: Recursion bond breaking of CH3OH with the generation of 5 unique groups
of the 1st recursion, 4 unique groups of the 2nd recursion, 3 unique groups of the 3rd
recursion and 2 unique groups of the 4th recursion. The recursive bond breaking stops at
the 4th recursion due to no more unique substructures will be generated further or only
single atoms left.

deal with the mechanisms of chemical bond formation.

The above algorithm is for the data generation of the molecules themselves. Surface

species are also needed to study. However, surface species cannot be obtained by an ap-

proach similar to the gas-phase species since we cannot obtain the system of adsorbates

and surfaces directly from any existing database. A surface species generation algorithm

is needed here. Surface species data generation is based on a metal-adding algorithm (see

Figure 2.2) and yield elementary surface reactions similarly to gas-phase reactions. The

process is first finding the unsaturated atoms and saturate these atoms one by one. See

chapter 5 for detailed examples. Also, there does not exist an algorithm to convert the

atom coordination files (e.g., .xyz file, .traj file) to SMILES notations. We also write an

algorithm to convert the coordination files to SMILES notations (which is the input of

Mol2Vec). First, metal atoms within the covalent bond distance of the adsorbate atoms are

kept and their coordinations are saved. Next, whether a chemical bond is formed is based

on the distance between the atoms and we assign single chemical bonds here since there

are intermediates with free electrons thus conjugate occurs and chemical bond order cannot
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represent the actual situation. (Please see https://github.com/cchang373/molecule rxn)

Figure 2.2: Generating algorithms of SMILES notation of adsorbate with metal atoms

2.3 Molecule encoding and Mol2Vec

The Mol2Vec[73] algorithm is used to generate the unsupervised features of substructures

obtained from the recursive bond-breaking algorithm and metal-adding algorithm described

above. The two hyper-parameters of the algorithm are: dimension and radius; dimension

is the size of vector generated by Mol2Vec for each substructure and radius refers to how

large each group is. Mol2Vec is an embedding method for chemical structures based on

Word2Vec [103], an NLP (natural language process) tool that developed by Google to

extract word meaning. The skip-gram is a shallow two-layer neural network. It takes a

large amount of context corpus and outputs a vector space (weight) based on the nearby

words and Figure 2.3 shows skip-gram structure.

Different modified extended connectivity fingerprint (ECFP) [71] are implemented in

Mol2Vec when generating vector descriptors for gas-phase and surface species (see chap-

ter 4 and chapter 5) respectively. The steps of ECFP algorithm includes: 1) an initial

stage assigned to each atom with an integer identifier; 2) a second iterating stage where the

identifier of each atom is updated from the information of the atom’s neighbors, including
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Figure 2.3: Word2Vec skip-gram neural network structure

identification of whether it is a structural duplicate of other features; and 3) a final stage

where the duplicate identifiers are removed but the occurrence count is retained in the final

feature list. The original ECFP contains 6 invariants: atomic number, number of heavy

atoms around, number of hydrogen atoms around, charge, mass, and whether the atom is

in rings. Valence and electronegativity are added to the invariants for a more clear classi-

fication of C and O atoms, and the invariant of the atom is in a ring is removed since this

analysis is restricted to linear-structures.

Methanol is still taking as an example to illustrate how ECFP works. In radius 0,

CH3OH can be divided to 2 substructures: CH3 and OH and the atom dictionary containing

the neighbors and properties are hashed to integers shown in the green OH and the red

CH3. Next step, in radius 1, the whole molecule is included and only counted once since

we do not want duplicate structures, the information of hashed integers of radius 0 are as

the values or inputs of the radius 1 dictionary and the dictionary is hashed into another

integers. For methanol, the first 2 iterations (radius 0 and radius 1) cover every piece of
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the molecule. The iteration would stop when either all pieces (group size assigned by the

radius input) are covered or it reaches the assigned radius.

Figure 2.4: Illustration of how ECFP works with the example of methanol, radius 0 contains
2 substructures: CH3 and its hashed integer in red, OH and its hashed integer in green;
radius 1 contains 1 more (sub)structure: CH3OH and its hashed integer in blue

As Figure 2.4 shows, methanol with radius 1 (or more than radius 1) should result in

three hashed integers: 1559727544100182573, −9126863805943820965 and 457634414

−0313498384. Each of these integer descriptors is equivalent to one “word” in Word2Vec

and all three words form a “sentence”. The projection from Mol2Vec to Word2Vec is that

each group of the structure is similar to a word and the structure containing multiple groups

is similar to a sentence. “paragraph” in Mol2Vec is the multiple structures contained in the

input file. Finally, several “sentences” form a “paragraph” and the structure “paragraph” is

the input of Mol2Vec.

2.4 Dimensional reduction, regression, and clustering

Mol2Vec gives us vector descriptors of 200 dimensions and descriptors with high dimen-

sion are not easy to conceptualize or visualize. ML methods are used here for reducing
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the dimension and analyzing the results. Principal component analysis (PCA) [104] is used

for reducing dimensions and generating unsupervised features. PCA is a linear and unsu-

pervised dimension reduction method. It is based on singular value decomposition (SVD)

and eigenvalue/eigenvector calculation to project the original high-dimension vectors to

lower-dimension vectors with orthogonal columns. Linear discriminant analysis (LDA)

[105] is a linear supervised classification method and performs dimension reduction ac-

cordingly. The algorithm of LDA is also based on SVD and the difference with PCA is that

LDA is supervised while PCA in unsupervised. It is used for the supervised classification

of bond breaking reactions and dimension reduction for all radii. LDA projections from

high-dimension to low-dimension are implemented for the vector descriptor of reaction

and adsorption and then followed by regression method to predict the energy. Ordinary

least squares (OLS) and partial least squares (PLS) are used for reaction energy and ad-

sorption energy regression. OLS and PLS are both regression methods. OLS takes all the

input dimensions while PLS does a feature extraction first and then regression based on the

feature extraction. PLS is also a dimension reduction method but totally supervised and

limited to the vector and the target to be regressed.

A mean shift [106] algorithm with bandwidths from 0.1 to 15 is applied to identify clus-

ters, with the optimal bandwidth determined by the maximum silhouette score. Meanshift is

an unsupervised cluster method and the algorithm is to convergem(x) =
∑

xi∈N(x)K(xi−x)xi∑
xi∈N(x)K(xi−x)

where N(x) is the neighborhood of s and K(xi − x) is the kernel. Silhouette score is an

assessment of the validation of consistency within clusters of data. It is based on Euclidean

distance and is measuring the intra-cluster distance difference with inter-cluster difference.

All machine-learning packages are based on the scikit-learn implementations [107].
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CHAPTER 3

DFT APPROACH VALIDATION: SMALL BIO-MOLECULES ON MOOX

CALCULATION

3.1 Introduction

Catalytic process plays an important role in lignocellulosic biomass conversion. Density

functional theory(DFT) can help understand the mechanism, transitional state and further

design of catalysts. Molybdenum oxides have been the subject of a limited number of

computational investigations [108, 109, 110, 111, 112] with varying levels of theory in-

cluding GGA[111, 112] and hybrids. Previous work have shown that MoO3 is the most

commonly used catalyst due to the moderate temperatures[110]. Vlachos et al have stud-

ied the mechanism of the retro-aldol fragmentation of fructose on MoO3 (010) using DFT

[109]. They have found that fructose could undergo epimerization to hamamelose followed

by retro-aldol fragmentation and further converted to alkyl. It was through the C-C bond

activation by proton abstraction β-OH group with a terminal oxygen and followed by the

C-C bond scission. Besides fructose there are still other biomass DFT studies reported for

MoO3. The Formox process is reported by Rellan-Pineiro and Lopez [108]. Methanol is

oxidised to formaldehyde, in which molybdenum oxides doped with iron are the catalysts.

They have found that Mo(VI) cycles to Mo(IV) and serves as the active center if forming

an O-vacancy and Fe doping could increase the activity by means of DFT. The O-vacancy

reconstruction is a classical reaction pathway that most MoO3 oxidation reaction would

follow. DFT calculations performed on the multistep hydrodeoxygenation of acetone on

MoO3(010) followed the O-vacancy pathway [111]. Green and Shetty also illustrated the

creation of the oxygen vacancy would make the α-MoO3 surface approach metallic be-

0All experimental results were contributed by S. Najmi and C. Sievers.
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havior. And another DFT calculation on acetaldehyde hydrodeoxygenation supports that

[112].

Here, we report DFT calculations on some small biomass molecules, ethanol, methanol,

acetaldehyde, formaldehyde, glycolaldehyde and crotonaldehyde for example using MoOx

as the slab. We report adsorption energies and the possible reconstruction involved in the

adsorption process. In addition, the impact of O-vacancy formation is also studied. How-

ever, the O-vacancy defect concentration in the theoretical calculated MoOx surface is

higher and the vacancies are more organized than would be expected for the experimental

surfaces (R-MoO3 and O-MoO3) due to the periodic boundary conditions. Nonetheless, the

local atomic structure of the defect should remain similar, making it possible to calculate

the adsorption energies and vibrational frequencies at these sites. Therefore, the theoreti-

cal calculated energies and vibrational frequencies are expected to show semi-quantitative

agreement with experimental results for surfaces under various states of reduction, and the

comparison with oxygen vacancy results should qualitatively correlate with the extent of

surface reduction, since the oxygen vacancy concentration will increase as the surface is

more reduced.

3.2 DFT approach

Exchange-correlation interactions are treated with the BEEF-vdW functional [113] and a

Monkhorst-Pack k-point sampling [93] of 5× 5× 1 and a planewave cutoff of 450 eV are

used [108]. A Fermi-Dirac electron smearing width of 0.1 eV is used for convergence and

spin polarization and dipole correction [114] are included to achieve more accurate results.

The slab was modeled using 10Å of vacuum unit cell with periodic boundary condition in x

and y direction. The lower two layers were fixed to facilitate adsorption energy calculation

but upper layers were relaxed to observe the surface change during the adsorption process.

A quasi-Newton algorithm provided by Atomic Simulation Environment (ASE) [90] is ap-

plied to the geometry optimization until the maximum force is no more than 0.05 eV/Å.
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Initial structures are obtained from previous work [108] to achieve energy-minimized struc-

tures. The adsorption energies are calculated as follow:

E = Eslab+ads − Eslab − Eads (3.1)

where E is the adsorption energy, Eslab+ads, Eslab and Eads are the energy of the system(slab

and adsorbate), slab and adsorbate respectively.

Vibrational modes were estimated with the normal mode analysis by using a finite dif-

ference approximation with difference delta of 0.01Å of the Hessian matrix provided by

ASE. Adsorbate gas molecules were calculated based on the optimized structure previ-

ously obtained from DFT calculation. The imaginary and low frequency modes are not

compared with experimental results because they arise due to transitional/rotational modes

that are neglected in the harmonic approximation, or cannot be clearly classified.

3.3 Adsorption energy on MoOx surface calculation

DFT calculations were used to investigate how the presence of oxygen vacancies on MoO3

influences the binding of small biomass compounds. The optimized adsorption geometries

for ethanol, methanol, acetaldehyde, formaldehyde, glycolaldehyde and crotonaldehyde on

O —MoO3 indicate only nondirectional bonds and relatively low adsorption energies of

roughly —0.20 eV (see Figure 3.1 and Table 3.1). These results provide evidence that

all molecules are physisorbed on O —MoO3. In contrast, there was a clear directed in-

teraction between the alcohol/aldehyde group and the oxygen vacancy site, and binding

energies were substantially more exergonic (< —0.75 eV), indicating strong chemisorp-

tion at the vacancy sites. This suggests that defect sites are critical to activating alcohol

and aldehyde functionalities. The results that ethanol and acetaldehyde physi-sorbed on

the pristine MoO3 surface and chemi-sorbed on the defect MoO3 surface via an O through

the O vacancy on the surface are in qualitative agreement with the experiment results. Our
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experimental collaborators provided the DRIFTS of acetaldehyde adsorbed on to different

MoOx surfaces Figure 3.2 [115]. The overtone peaks in DRIFTS of acetaldehyde adsorbed

on R-MoOx suggest that the acetaldehyde are coordinated onto the surface via oxygen

atom and through the vacancy site. Whereas, these overtone peaks do not appear on the O

—MoO3, supporting the physi-adsorbion. The reason that DRIFTS results of O-MoO3 are

in much difference with R-MoOx and I-MoOx is that O-MoO3 is the oxidized surface. Our

experimental collaborator also suggests that the oxygen vacancy sites could also contribute

to the activity and selectivity of the catalyst. Dr. Sievers’ group (our collaborator) also

proposed potential reaction mechanisms for ethanol on the MoO3 surface (see Figure 3.3),

suggesting that the oxygen vacancy through the loss of oxygen in M=O provides possiblity

for the formation of anion-cation sites. The sites are necessary for further dehydrogenation

of the ethanol since the adsorption of ethanol is dissociative into a proton and an ethox-

ide ion. The proposed pathways by the experimental results also implies that the oxygen

vacancy is crucial for adsorbates binding. This qualitative agreement between theory and

experiment validate the DFT approach as the method to calculate adsorption energies.

Table 3.1: Adsorption energy of different molecules on pristine MoO3 and defect MoO3

Molecules Pristine MoO3 (eV) Defect MoO3 (eV)
Ethanol -0.26 -0.75
Methanol -0.26 -0.80
Acetaldehyde -0.19 -0.92
Formaldehyde -0.26 -0.90
Glycoaldehyde -0.21 -0.71
Crotonaldehyde -0.25 -1.14

3.4 Vibrational frequency calculation

Vibrational frequencies are shown in Table 3.4 and Table 3.2 for both types of surfaces and

the adsorbate molecules. For the convenience of visualization, we only keep the vibrational

frequencies that are larger than 1000 cm−1 in the computational study. Intensity values re-

quire density functional perturbation theory, which is unavailable in the code used for this
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Figure 3.1: Adsorption geometries on pristine MoO3 (100) (L) and defect MoO3 (R) of
(a) ethanol, (b) methanol, (c) acetaldehyde, (d) formaldehyde, (e) glycolaldehyde and (f)
crotonaldehyde with Mo atoms (teal) and bulk O atoms (red) are represented by their ionic
radii, while H (white), C (gray)

work, therefore we only report the frequencies. Ethanol and acetaldehyde vibrational fre-

quency calculated by DFT are compared to experimental results. The experimental results

show that for most of the modes, the defect site always caused a slight blueshift of 0 —50

cm1, while the O —H stretch is significantly more red-shifted by around 150 cm−1. How-

ever, the effects of the defect site for acetaldehyde are more ambiguous in that most modes

are slightly blue-shifted (0 —50 cm1), while the C —C and C —H stretch of the CH group

was red-shifted by 45 and 116 cm1 respectively. Although the blueshift and redshift are a

little bit different in number, the qualitative agreement is still achieved between the theo-

retical calculation and the experiment.

The experimental vibrational frequency results of ethanol, acetaldehyde and croton-

aldehyde are shown in Figure 3.4 and Table 3.5 (also from our experimental collaborator).

The region above 3200 cm−1 is classified as the hydroxyl stretching region. In Figure 3.4A,

bands at 1479 and 1447 cm−1 suggested the presence of acetate species on the surface. We
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Figure 3.2: DRIFTS spectra of acetaldehyde adsorbed onto (A) R-MoOx (B) I-MoOx (C)
O-MoO3

could also observe 1489.2 cm−1, 1457.2 cm−1 in computational results for ethanol. 1625

cm( − 1) on the R–MoOx that appeared around 1645 cm( − 1) is most likely the ν(CC)

mode of crotonaldehyde corresponding to 1634.5 cm( − 1) in computational result. In

Figure 3.4B, the are peaks similar to Figure 3.4A. And in Figure 3.4C, the broad peak at

1427 cm−1 is assigned to δ(CHx) modes of various species (acetate species) of acetalde-

hyde on reduced surface can be seen and 1634.5 cm−1 of ν(C = C) for crotonaldehyde

is also in agreement with experimental. Though the computational vibrational frequencies

are not perfectly coincide with the experiment, the qualitative agreement suggests that the

calculation could still have some insights into the vibrational mode.
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Figure 3.3: Potential mechanism for formation of oxygen vacancies on MoO3 via hydrogen
treatment and the stabilization of the ethoxide ion on the surface

3.5 Conclusion

The computational results are in qualitative agreement with experimental results in both

adsorption energy, geometry and vibrational frequency calculations. Thus, DFT calculation

with Quantum ESPRESSO is a validated approach of the following energy calculations for

gas-phase reaction energy and surface adsorption energy systems.
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Table 3.2: Vibrational frequencies of ethanol on pristine MoO3 and defect MoO3 (intensity
is not available)

Pristine MoO3 (cm−1) Defect MoO3 (cm−1)
1013.9
1024.7 1012.9
1093.1 1120.0
1256.7 1174.6
1352.1 1294.2
1380.2 1387.2
1407.6 1409.8
1457.2 1468.6
1489.7 1479.7
1511.0 1496.6
2988.4 3013.7
3010.3 3015.9
3029.4 3064.0
3075.8 3085.1
3135.9 3103.6
3691.9 3545.7

Table 3.3: Vibrational frequencies of crotonaldehyde on defect MoO3 (intensity is not avail-
able from simulations).

Defect MoO3 (cm−1)
1108.3
1197.7
1274.7
1293.3
1311.0
1393.2
1446.7
1484.5
1513.7
1634.5
2829.7
2992.4
3062.8
3072.1
3102.2
3118.6
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Table 3.4: Vibrational frequencies of acetaldehyde on pristine MoO3 and defect MoO3

(intensity is not available)

Pristine MoO3 (cm−1) Defect MoO3 (cm−1)
1069
1106.8 1105.0
1353.7 1356.1
1395.9 1396.3
1447.9 1445.4
1678.5 1564.4
2858.7 2979.3
3022.0 3022.9
3093.1 3040.9
3119.8 3114.0

Table 3.5: Vibrational mode assignments from labeled peaks in Figure 3.4 for species other
than ethanol

Mode (cm−1) Vibration (eV) Species
1268 ν(C −O) Enol
1393 δas(CH3) Acetaldehyde
1427 δ(CHx) Various
1447 δas(CH3), νs(COO) Various
1479 δas(CH2) Various
1524 νas(COO) Acetate
1624 ν(C = C) Enol
1645.7 ν(C = C) Crotonaldehyde
1726 ν(C = O) Acetaldehyde (Chemisorbed)
1735 ν(C = O) Acetaldehyde
1760 ν(C = O) Acetaldehyde (Physisorbed)
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Figure 3.4: Spectral subtraction DRIFTS of (A) ethanol adsorbed onto R–MoOx, I–MoOx,
and O–MoO3 sample at 50 °C. (B) acetaldehyde adsorbed onto R–MoOx, I–MoOx, and
O–MoO3 sample at 100 °C. (C) crotonaldehyde adsorbed onto R–MoOx, I–MoOx, and
O–MoO3 sample at 100 °C
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CHAPTER 4

CLASSIFICATION AND PREDICTION OF GAS-PHASE BOND ENERGIES AND

MODEL COMPOUND ASSESSMENT

4.1 DFT calculations, gas-phase data generation and Mol2Vec

The gas-phase energies of 189 substructures are calculated with density functional theory

(DFT) via the Quantum ESPRESSO[88] package, and the exchange-correlation interac-

tions are treated with the BEEF-vdW functional[113]. Calculations are performed with

a planewave cutoff of 400 eV in a Γ-point calculation. A Fermi-Dirac electron smearing

width of 0.1 eV is used for convergence and spin polarization was included to account for

unpaired electrons. All gas phase groups were modeled using 5Å of vacuum unit cell with

periodic boundary condition. A quasi-Newton algorithm provided by the Atomic Simu-

lation Environment (ASE)[90] is applied with a maximum force of 0.05 eV/Å. Reaction

energies are calculated as:

Ereaction =
∑

Eproduct −
∑

Ereactant (4.1)

where Ereaction is the reaction energy, Eproduct are the energies of products and Ereactant

represents the energy of reactants, and all energies are computed directly from DFT.

The data contain 10 linear structured biomass molecules from top biorefinery chemicals

listed by DOE[1], which are: succinic acid, fumaric acid, malic acid, propionic acid, ita-

conic acid, levulinic acid, sorbitol, xylitol, glycerol and glucose and 5 biomass chemicals

of sorbic acid, muconic acid, 2-hexenedioic acid, 3-hexenedioic acid and erythrose and 33

small molecules that contains no more than 5 carbon atoms. The full list is in Table 4.1 and

Table 4.2. Figure 4.1 shows an example of HC(=O)OH group generation from the original

HC(=O)OH molecule: each chemical bond is broken for the input substructures in each
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recursion, and only the unique groups are kept; the process is recursed until no new groups

are generated. The recursive bond breaking of HC(=O)OH leads to the generation of 7

unique substructures of the 1st recursion, 4 unique substructures of the 2nd recursion. The

recursive bond breaking stops at the 2nd recursion since no more unique substructures will

be generated (C, O and H) further or only single atoms remain, i.e. C. The unique reac-

tions are generated following the same algorithm as the substructures. The 1st recursion of

HC(=O)OH is taken as an example here. The algorithm generates 4 unique reactions in the

1st recursion, which are: 1) C-H bond breaking: HC(=O)OH−→ [C](=O)OH + [H]; 2) O-H

bond breaking: HC(=O)OH −→ [CH](O)=O+[H]; 3) C-O bond breaking: HC(=O)OH −→

[O] + [CH]O and HC(=O)OH−→ [OH] + [CH][O]. Then each of the generated substructures

goes through the same process and finally 11 substructures are generated from HC(=O)OH.

Double bonds are broken simultaneously, for example, C=C −→ C + C. 14 small biomass

molecules are taken as its original input, finally obtaining more than 90k possible inter-

mediates and chemical bond breaking reactions. The training set contains 91098 unique

substructures with full recursions and 13422 reactions from the first 5 recursions.

Table 4.1: Compounds from DOE report

Smile Notaion Rxn Recursion
1 C(CC(=O)O)C(=O)O 5
2 C(=CC(=O)O)C(=O)O 5
3 C(C(C(=O)O)O)C(=O)O 5
4 CCC(=O)O Full
5 C=C(CC(=O)O)C(=O)O 5
6 CC(=O)CCC(=O)O 5
7 C(C(C(C(C(CO)O)O)O)O)O 5
8 C(C(C(C(CO)O)O)O)O 5
9 C(C(CO)O)O Full
10 C(C(C(C(C(C=O)O)O)O)O)O 5
11 CC=CC=CC(=O)O 5
12 C(=CC(=O)O)C=CC(=O)O 5
13 C(CC(=O)O)C=CC(=O)O 5
14 C(C=CCC(=O)O)C(=O)O 5
15 C(C(C(C=O)O)O)O 5

As mentioned previously in chapter 2, Mol2Vec with modified ECFP is applied on the
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Table 4.2: Small compounds

Smiles Notation Rxn Recursion
1 C Full
2 CC Full
3 C=C Full
4 C(C(C=O)O)O Full
5 CCC Full
6 CC=C Full
7 CCCC Full
8 CCCCC Full
9 CCC=CC Full
10 CCCCCO Full
11 CCC(CC)O Full
12 CCCC(C)O Full
13 CCCCO Full
14 CCC(C)O Full
15 CC(C)C(=O)O Full
16 CCCO Full
17 C=CCO Full
18 C=CC=O Full
19 CC=CO Full
20 CC(C)O Full
21 CCC=O Full
22 CC(C)CC Full
23 CCO Full
24 C=CO Full
25 CC=O Full
26 CCOC Full
27 CC(=O)C Full
28 C(CO)O Full
29 CC(=O)O Full
30 C(C=O)O Full
31 CO Full
32 C=O Full
33 C(=O)O Full
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Figure 4.1: Recursion bond breaking of HC(=O)OH with the generation of 7 unique groups
of the 1st recursion, 4 unique groups of the 2nd recursion. The recursive bond breaking
stops at the 2nd recursion due to no more unique substructures will be generated further or
only single atoms left.

91098 structures to generate vector unsupervised features. A modified version of ECFP

is implemented into Mol2Vec. The original ECFP contains 6 invariants: atomic num-

ber, number of heavy atoms around, number of hydrogen atoms around, charge, mass and

whether the atom is in rings. Valence and electronegativity are added to the invariants for

more clear classification of C and O atoms, and the invariants of the atom is in a ring is

removed since this analysis is restricted to linear-structures. Unless otherwise stated, 200

dimensions are used, and both radius 0 and radius 1 are used as described in section 4.3.

4.2 Vector descriptor generation by Mol2Vec

4.2.1 Substructure vector descriptor calculation

Vector representations of molecules provide a straightforward route to training machine

learning models. The Mol2Vec algorithm is an unsupervised approach for converting

molecular substructures to vectors, but it requires a large “corpus” of molecular structures
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to establish context for molecular groups [73]. For this study, the corpus of training struc-

tures is created through a recursive bond breaking algorithm, which starts from 15 common

biomass molecules and generates 91135 unique molecular substructures and 13422 corre-

sponding elementary steps (details in chapter 2). These substructures provide a corpus of

molecular structures that are commonly observed in biomass chemistry, and are used to

train the unsupervised Mol2Vec algorithm.

The Mol2Vec algorithm [73] uses a shallow neural network to learn the joint probability

distribution of the occurrence of different types of groups within a substructure, similar to

the widely used Word2Vec algorithm from natural language processing [103]. One hyper-

parameter of the Mol2Vec algorithm is the radius that defines the group size, where every

heavy atom in a substructure is considered as a ”center”, and the radius determines the

number of centers considered in a group. Vectors for the substructure are obtained by sum-

ming up vectors representing the groups that are generated by Mol2Vec (see Figure 4.2b).

The dimension of these vectors is determined by a second hyper-parameter of the Mol2Vec

algorithm which determines the number of nodes used in the shallow neural network, and

equivalently the dimension of the resulting vector. The vectors generally have a large num-

ber of dimensions (10-1000), and are hence difficult to visualize. Principal component

analysis (PCA) [104] is used to reduce the vectors to 2 dimensions for the convenience

of visualization and analysis. For example, propionic acid (CH3CH2COOH) has 5 heavy

atoms, corresponding to 5 unique radius 0 groups (CH3, CH2, C , O and OH), and 5 unique

radius 1 groups (CH3CH2, CH3CH2C, CH2COOH, C=O and COH), as illustrated in Fig-

ure 4.2. Figure 4.2a shows the first 2 principal components of one-heavy-atom R0 groups

and Figure 4.2b shows multi-heavy-atom R1 groups with the center atom circled with the

same color as the group. Each circled group is analogous to a “word” in Word2Vec, the pro-

pionic acid substructure is analogous to a “sentence” in Word2Vec and the whole training

set of substructures is analogous to a “paragraph” or “corpus” in Word2Vec.

Ultimately, the vectors for groups and substructures must be combined to establish
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a vector representation for particular molecules of interest. The overall radius 0 vector

representing the CH3CH2COOH molecule is calculated as:

VCH3CH2COOH = VCH3 + VCH2 + VC + VO + VOH (4.2)

VCH3CH2COOH = VCH3CH2 + VCH3CH2C

+VCH2COOH + VC=O + VCOH (4.3)

where Vi is the vector for group i. Similarly, glycerol contains 2 CH2, 3 OH, 1 CH at radius

0 and 2 CH2OHCH, 2 CH2OH, 1 CHOH and 1 CH2CHOHCH2 at radius 1. By considering

the different vectors of each group contained in a substructure, Mol2Vec vectors provide

a route to quantify the difference between different types of molecules. For example, the

distance between vectors should be able to measure the similarity of molecules. Figure 4.3a

shows the relative distance between vectors representing glycerol and propionic acid with

different hyper-parameters. The vectors representing glycerol are aligned to the unit vec-

tor along the x-axis and the vectors representing propionic acid are projected using the

projection matrix obtained from the same hyperparameter combination. A visual analysis

reveals that the vectors change between different molecules indicating that the algorithm is

able to distinguish between these molecules. However, the relative orientation of the vec-

tors changes as the radius and dimension hyper-parameters are varied. The results suggest

that a convergence criterion is needed to identify the optimum choice of hyper-parameters

(discussed in section 4.3).

4.2.2 Reaction vector descriptor calculation

Biomass reaction networks are composed of elementary steps that connect various inter-

mediates species. Vector representations of these reactions can enable data-driven classifi-

cation of reaction types, or predictions of reaction energies. Reaction vectors are computed
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(a) propionic acid R0 group example

(b) propionic acid R1 group example

Figure 4.2: Illustration of propionic acid groups in R0 (a) and R1 (b) with 50-dimension
descriptors. The substructure vector is black, and group vectors are color-coded according
to the heavy atom center (small circles) and group (large circles).

from substructure vectors as:

Vreaction =
∑

Vproduct −
∑

Vreactant (4.4)

where Vreaction is the reaction vector descriptors and Vproduct and Vreactant are the vector

descriptors for products and reactants.In this work, we define reaction vectors as the sum of

the vectors representing the product substructures minus the sum of the vectors representing

reactant substructures (equation Equation 4.4). For example, one of the C-C bond breaking
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reactions for propionic acid can be calculated as:

Vreaction = VCH3CH2 + VCOOH − VCH3CH2COOH (4.5)

where Vi is the vector for substructure i (computed following equation Equation 4.2 or

equation Equation 4.3 for radius 0 or radius 1 respectively) and Vreaction is the vector of

reaction.An alternative interpretation is that this vector represents the chemical C-C bond,

and the direction of the vector will determine if the bond is being broken or formed. Similar

to substructure vectors, it is expected that the reaction vector should have the ability of

measuring similarity in bond breaking reactions. Figure 4.3b shows PCA projections of

examples of C-C bond breaking reaction vectors for glycerol and propionic acid with varied

hyper-parameters (vector dimension and radius). Similar to the case of substructures, the

length and direction of vectors are not robust to the change of radius and dimension, which

means not only the vector representation itself changes but the relative position between

two vectors also changes. Moreover, in this case the vectors are not able to distinguish

between the reactions at 50-dimensions with radius 0. This indicates that cancellation of

error does not occur, and emphasizes the need for converging the dimension and radius

(discussed in section 4.3).

(a) PCA decomposed 2-dim vector of glycerol
(normalized on x-axis) with and propionic acid
with 50-, 200- dim and radius 0, 1

(b) PCA decomposed 2-dim vector of CC bond
breaking in glycerol and propionic acid with 50-,
200- dim and radius 0, 1

Figure 4.3: PCA decomposed 2-dim vector of (a) glycerol and propionic acid, (b) C-C
bond breaking reactions in glycerol and propionic acid with different size and radii
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4.3 Classification of gas-phase bond-breaking reactions

4.3.1 unsupervised feature generation

In addition to comparing different reaction/substructure vectors individually, it is useful

to compare all reactions/substructures to each other simultaneously to identify different

classes of reactions or molecular substructures. This is facilitated by visualizing reaction

vectors as points defined by their corresponding vector. Figure 4.4 shows the vector point

data of the bond breaking reaction sample set (13422 reactions in total) in radius 0 and

radius 1 with 200 dimensions projected onto 2 dimensions using PCA. There are clear

discrete clusters in radius 0, while radius 1 consists of a more continuous distribution with

significant scatter. The clusters in radius 0 are separated based on the number of hydrogen

and heavy atoms around a given atomic center. The color indicates that these clusters

generally follow the classification expected based on the nature of each atom center in the

bond (e.g. C-C, C-O, C=C, C=O, C-H, O-H). For example, glycerol C-C bond breaking

reactions (C(C(CO)O)O −→ O[CH]CO+[CH2]O in SMILES notation) and xylitol edge C-

C bond breaking reactions (C(C(C(C(CO)O)O)O)O −→ C(O)C(O)C(O)[CH]O+[CH2]O in

SMILES notation) appear in the same cluster located at [-10.53, 0.92]. In contrast, the

results for radius 1 do not exhibit clear separation between clusters or bond type in the

PCA projection.

The clusters are quantitatively identified using a mean-shift clustering algorithm in the

original 200-dimensional space. This results in 70 clusters for radius 0, and more than

4500 clusters for radius 1. We assess the quality of these clusters by computing the average

silhouette score, which is>0.99 for radius 0 and 0.82 for radius 1. The poor clustering in ra-

dius 1 is consistent with the low-dimensional visualization shown in Figure 4.4. Moreover,

the quality of the clusters is assessed by assigning a bond type to each cluster based on the

mode of bond types in that cluster. This model is then assessed by computing the accuracy

toward assigning/predicting bond type, as shown in Table. Table 5.1. The results confirm
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that the R0 clusters are better able to predict the bond type, although there are some mis-

classifications for C-C/C=C, C-O/C=O. The single/double bond mis-classifications may be

due to conjugated bonds, which are often assigned as single/double in SMILES notation by

the distance between the two atoms. The bond order is determined by the distance between

two atoms within the original molecule structure obtained from the PubChem database.

We use the combination of the two classifications to create a new set of 90 reaction classes,

where 20 of the 70 clusters are split based on single/double bonds. These 90 bond types

represent a richer classification than the simple A-B type bond classification, and present

a data-driven route to automatically identify different types of elementary steps in biomass

reaction networks. We note that this scheme is restricted to reactions that only involve a

single bond, and concerted reactions such as retro-aldol condensation and Grob fragmen-

tation are not included. However, the framework could be extended to include concerted

reactions by summing the reaction vectors for the bonds involved.

(a) 1st vs. 2nd principal components in radius 0 (b) 1st vs. 2nd principal components in radius 1

Figure 4.4: PCA decomposition to 2 dimensions of the original 200-dimension reaction
vectors in radius 0 and radius 1
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Table 4.3: 70 cluster with atomic environment (number of hydrogen atom and heavy atom
surrounding) Note: reaction type with numbers contains both type of reactions in the same
cluster

n cluster n hydrogen 0 n heavy atom 0 n hydrogen 1 n heavy atom 1 label

1 2 3 1 4 C-C

2 2 3 0 4 C-C

3 0 4 0 3 C-C

4 1 4 1 3 C-C

5 1 3 0 3 C-C 433 (C=C) 247

6 0 4 1 3 C-C

7 2 3 1 3 C-C

8 1 4 0 3 C-C

9 0 3 2 3 C-C

10 1 3 1 3 C-C 176 (C=C) 243

11 0 3 0 3 C-C 204 (C=C) 47

12 0 4 0 4 C-C

13 2 3 2 3 C-C

14 1 4 0 4 C-C

15 1 4 1 4 C-C

16 0 2 1 4 C-C

17 0 2 1 3 C-C 80 (C=C) 36

18 0 2 2 3 C-C

19 0 2 0 4 C-C 26 (C=C) 9

20 0 2 0 3 C-C 51 (C=C) 14

21 0 2 0 2 C-C 3 (C=C) 1

22 1 2 2 2 C-C

Continued on next page
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Table 4.3 – continued from previous page

cluster hydrogen 0 heavy atom 0 hydrogen 1 heavy atom 1 label

23 2 2 1 4 C-C

24 2 2 0 3 C-C 56 (C=C) 18

25 0 4 2 2 C-C 55 (C=C) 67

26 2 2 1 3 C-C

27 2 2 2 3 C-C

28 0 2 2 2 C-C 7 (C=C) 1

29 2 2 2 2 C-C

30 0 2 1 2 C-C 5 (C=C) 4

31 1 2 1 4 C-C

32 1 2 0 4 C-C 34 (C=C) 33

33 1 2 1 3 C-C 57 (C=C) 66

34 1 2 0 3 C-C 52 (C=C) 44

35 1 2 2 3 C-C

36 1 2 1 2 C-C 5 (C=C) 3

37 3 2 0 4 C-C

38 3 2 0 3 C-C

39 3 2 2 3 C-C

40 1 3 3 2 C-C

41 3 2 0 2 C-C

42 2 2 3 2 C-C

43 1 2 3 2 C-C

44 1 4 1 2 C-O

45 1 3 1 2 C-O

46 0 4 1 2 C-O

Continued on next page
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Table 4.3 – continued from previous page

cluster hydrogen 0 heavy atom 0 hydrogen 1 heavy atom 1 label

47 0 3 1 2 C-O

48 2 3 1 2 C-O

49 2 2 1 2 C-O

50 0 2 1 2 C-O

51 2 2 0 2 C-O

52 1 3 0 2 C-O 41 (C=O) 20

53 1 4 0 2 C-O

54 0 3 0 2 C-O 162 (C=O) 320

55 0 4 0 2 C-O 313 (C=O) 823

56 2 3 0 2 C-O

57 1 2 1 2 C-O

58 1 2 0 2 C-O 2 (C=O) 1

59 0 2 0 2 C-O 9 (C=O) 8

60 3 1 1 1 C-H

61 3 2 1 1 C-H

62 1 1 1 1 C-H

63 1 4 1 1 C-H

64 1 3 1 1 C-H

65 1 2 1 1 C-H

66 2 2 1 1 C-H

67 2 3 1 1 C-H

68 2 1 1 1 C-H

69 1 2 1 1 O-H

70 1 1 1 1 O-H
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In summary, the results of unsupervised data analysis algorithms have led to the fol-

lowing conclusions: (1) the relationship between different substructures or reaction vectors

(e.g. propionic acid and glycerol, see Figure 4.3) is sensitive to the hyper-parameters used

by Mol2Vec, and (2) the radius 0 vectors can be used to robustly identify 70 sub-classes

of elementary steps, which can be combined with standard bond types to generate 90 total

classes of elementary biomass reactions. The first finding leads to the question of how to

optimize hyper-parameters, which is addressed by using the results of the second finding

along with supervised classification in the subsequent section to arrive at a compact and

robust vector representation of biomass molecules and reactions.

4.3.2 Supervised feature generation

The results of unsupervised dimension reduction through PCA indicate that reaction classes

are not well-separated in radius 1, and that convergence of Mol2Vec hyperparameters is dif-

ficult without an accuracy metric. These shortcomings can be overcome through supervised

classification. Specifically, linear discriminant analysis (LDA) is used to converge and es-

timate the optimal dimension and radius based on classification accuracy of 6 A-B (C-C,

C-H, C-O, O-H, C=C, C=O) type of reactions. Figure 4.7a shows the 5-fold prediction ac-

curacy (with error bars from 5-fold cross validation) from 10- to 400-dimension Mol2Vec

vectors with radius 0, 1 and 2. Based on the 5-fold cross validation, R0 accuracy is highly

sensitive to the data set split for training/testing as the error bars are much larger than R1

and R2. R1 accuracy reaches the highest average of 0.97 at 200-dimension and decreases

slightly at 400-dimension. R2 follows the same trend with R1, but the average accuracy is

lower than R1 before 200-dimension and only slightly higher than R1 at 400-dimension.

The 200-dimension vectors at R1 are selected as giving the best tradeoff between accuracy

and complexity, and are used for all subsequent analysis.

Distinguishing different reactions is a key test of the vector representation. From the

above results, 200-dimension is used for the analysis and identification of A-B type re-
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actions, resulting in an accuracy of 0.97. However, 200-dimension vectors are difficult

to conceptualize and computationally inefficient with respect to both the classification it-

self and subsequent energy regression. Thus, supervised dimension reduction is used to

find a reduced dimensional representation that is capable of capturing basic reaction types.

Specifically, LDA provides a convenient route to dimensional reduction, since the clas-

sification naturally reduces the dimension from 200 to 5 since the total number of reac-

tion types is 6. Figure 4.5a shows the 5-fold average confusion matrix of ground-truth

(row)/prediction (column) at radius 1. The train/test ratios are 80%/20% in both Fig. 6a

and 6b and test sets are randomly selected. The process is repeated 5 times. The major

mis-classification in radius 1 is in C-C/C=C, while there are also some mis-classifications

between C-O/C=O, C-C/C-H, C=C/C-H, and C-H/O-H. The C-C/C=C and C-O/C=O mis-

classifications are chemically intuitive because the conjugation of electrons can make the

boundary between double and single bonds unclear. For example, reaction [O]C[C][CH]O

−→ [C]C[O] + [CH]O / [C][C]=CC=CC −→ [CH]C=CC + [C][C] and reaction [CH][O] −→

[CH] + [O] / [CH]=O−→ [CH] + [O] are in the same classes according to LDA results since

the two C atoms in the C-C (C=C) bond breaking reactions have the same atomic environ-

ment (2 heavy atoms, 0 hydrogen and 2 heavy atoms, 1 hydrogen). The bond breaking type

is not clearly separated here since the free electrons and bonds conjugate in these radicals

and similarly with C, O bond breaking reactions. However, the mis-classifications between

other bond types is more problematic, and reflects an inability of the model to linearly

separate these bond classes in a 5-dimensional space.

As discussed in subsection 4.3.1, the reactions separate into 70 distinct clusters in R0

space (Fig. Figure 4.4a), and can be further classified into 90 distinct reaction classes

by labeling single/double bonds within a given cluster. However, the R1 vectors do not

exhibit this clustering in the reduced PCA space, likely due to loss of variance related to

the information contained in the original high dimension on reduction to 2 dimensions. We

address this by using the 90 reaction classes identified in R0 as inputs to LDA, enabling
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(a) A-B type radius 1 confusion matrix (b) 90 classes radius 1 confusion matrix

Figure 4.5: Averaged confusion matrix for 100 times random train-test split of 6 A-B type
reactions (C-C, C=C, C-O, C=O, C-H, O-H) in radius 1 and of 5 classes and 90 classes
based on radius 0 clusters in radius 1

classification in up to 90 dimensions. Figure 4.6a shows a visualization of the first 2-

dimensions of the LDA vectors labelled by the 6 A-B type reaction classes. Separation

among different classes is much clearer than in the case of PCA (Figure 4.4b), indicating a

more chemically-meaningful dimensional reduction. The accuracy of the classification is

also promising, with an overall accuracy of 0.99 when classifying reactions between the 90

R0 classes. Figure 4.7b shows the classification accuracy vs. number of LDA dimensions

from 5 to 89, showing that a 15-dimensional space achieves an accuracy of 0.99. Moreover,

this higher-dimensional space can be used to separate reactions based on the simpler A-

B type bonds. Figure 4.5b shows the confusion matrix of 6 A-B type reactions based

on the classification into the 90 more specific classes in the 15-dimensional space. The

accuracy is increased to 0.99 as compared to an accuracy of 0.97 from direct classification

on the 6 A-B classes (see Figure 4.5a). This improvement in accuracy is attributed to the

higher dimension of the sub-space. The mis-classifications are also improved, with the only

confusion occurring between C-C/C=C and C-O/C=O bonds, which is unavoidable due to

the single/double bonding in conjugated systems, as previously discussed.
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(a) LDA classification 2D plot of 1st vs. 2nd in
radius 1 with 90 classes

(b) LDA classification 2D plot of 1st vs. 3rd com-
ponents in radius 1 with 90 classes

Figure 4.6: LDA classification results in radius 1 with 90 classes of (a) 1st and 2nd LDA
components with and (b) 1st and 3rd LDA components

4.4 Feature validation via linear regression

The prior sections describe generation of molecular feature vectors obtained by applying

the unsupervised Mol2Vec algorithm followed by supervised dimensional reduction based

on classification of different bonding types. This approach is powerful because it is based

solely on molecular structure, and does not require any first-principles calculations. There-

fore, the ability of these vectors to predict the results of first-principles calculations is an

independent validation of their description of key molecular properties. In this section,

the energies of 189 substructures are computed with DFT and used to determine reaction

energies for 1117 bond breaking reactions. The features computed from LDA are used as

inputs to predict the reaction energies, and the results are compared with the widely-used

group additivity approach. The 15 single-heavy-atom groups are used for group additivity,

and more information is available in Table 4.4.

Reaction energies are predicted using simple linear regression with the LDA feature

vectors for each reaction as input:

D~x = ~p (4.6)

where D is a m× n matrix for m reactions with n = 5- to 89-dimensional features ex-
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(a) 10 dimensions to 400 dimensions were imple-
mented with R0, R1, R2 and 200 dimensions is
the lowest dimension that reaches a high accuracy
of 0.96 (prediction accuracy) in R1

(b) prediction accuracy of 5 dimensions to 85 di-
mensions and 15 dimension as the lowest dimen-
sion that reaches a high accuracy of 0.97

Figure 4.7: Accuracy of (a) 6-type classification of reactions with vector descriptors of
different radius and dimensions and (b) 90-class classification of reactions with radius 1
and different dimensions of LDA projected original 200-dim vectors

tracted from LDA, ~x are the weights determined by linear regression, and ~p is the property

vector.

Regression analysis for gas-phase energies is also performed using both Benson’s orig-

inal group additivity approach [72] and the regression to the vector-based descriptors intro-

duced in this work (details in section 4.4). Comparisons are made using identical training

and testing sets, with training sets chosen to ensure that examples of all groups defined by

group additivity are present. In the case of group additivity, substructure energies are pre-

dicted and reaction energies are computed using Equation 5.1, while for the vector-based

regression introduced here the reaction energies are directly predicted. By comparison, the

group additivity method is defined as:

G~c = ~p (4.7)

where G is a j × k matrix for j molecules with k group types, ~c are the contribution of

each group, and ~p are substructure energies. Reaction energies are computed by subtracting
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the predicted energies of each substructure.In this case, 15 group types are selected based

on all single-heavy-atom groups present in the molecular structures [72]. Group additivity

can also be extended by selecting more groups, but moving beyond single-heavy-atom

groups requires selecting appropriate groups and is beyond the scope of this work. Here,

we select the simplest version of group additivity, and control for complexity by comparing

it to a machine-learned model with the same number of linearly-fitted parameters.

Table 4.4: Group Additivity Groups

Hydrogen count Heavy count SMILES (X for heavy atom)
0 2 [O]X
0 3 [C](X)X
1 2 OX
1 2 [CH]X
1 3 [CH](X)X
0 4 [C](X)(X)X
0 2 [C]X
0 1 [C]
1 1 [CH]
1 1 [OH]
0 1 [O]
2 3 [CH2](X)X
2 2 [CH2]X
1 4 [CH](X)(X)X
2 1 [CH2]

The results are shown in Figure 4.8. As the number of dimensions increases from 5 to

89, the mean/max absolute error goes from 1.59 eV/5.1 eV down to 0.59 eV/2.9 eV. By

comparison, the group additivity model (shown in blue/red cross sign for mean/max abso-

lute error) has a larger mean/max error (3.1 eV/5.9 eV) than the machine-learned model at

15-dimensions. Moreover, the machine-learning model can be systematically extended by

increasing the number of dimensions. In contrast to extending the group additivity mod-

els, this does not require any arbitrary selection of which groups to include or not include,

providing a systematic way to increase model complexity. Furthermore, the results of the

cross-validation suggest that the model does not suffer from significant over-fitting, even

at large numbers of dimensions. However, the variance of the max error does increase
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beyond 80 dimensions suggesting that the results become sensitive to the selection of train-

ing/testing data beyond 80 dimensions and over-fiting may begin to become an issue.

Figure 4.8: Linear regression maximum and mean validation error on LDA components vs.
number of dimensions compared to one-center group additivity results

4.5 Model compound assessment

4.5.1 Quantitative assessment of model compound illustration

As mentioned in chapter 1, glycerol is often used as a model compound to study the reaction

of more complex and larger chemicals (e.g. glucose, xylitol, sorbitol), which contain more

than 10 carbon or oxygen atoms. Although the use of glycerol as a model compound may

seem obvious based on chemical intuition, there is no quantitative way of assessing other

model compounds or evaluating the efficacy of glycerol as a model compound for larger

biomass molecules. In this section we assess model compounds with up to 4 carbons and 4

oxygen atoms (8 total heavy atoms) using comparisons elementary steps and the descriptors

described in chapter 2.
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Figure 4.9: number of classes model compounds represent in 1st recursion bond breaking
with 29 classes in total

One way of evaluating the efficacy of a model compound is by comparing the types

of elementary steps (or chemical bonds) between the model compound and the compound

of interest. The chemical bonds in a given compound are described by the first recursion

of the bond breaking algorithm (see Figure 2.1), and the types of these bonds can be clas-

sified using the 90 classes determined from analysis of the R0 reaction vectors (see Fig.

Figure 4.4a). Fig. Figure 4.9 shows the number of reaction types (bond types) present for

various biomass molecules. This contains only the bonds present in the compound (i.e.

bonds present in substructures are not included), and the results indicate that only 29 of the

90 total classes are present in the compounds studied (see chapter 2). As molecules become

larger, the number of reaction types generally increases. However, there is some variation

within molecules with the same size, and the number of reaction types does not increase
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beyond C5. This suggests that the approach of using model compounds is generally an

efficient route to reduce complexity without reducing the types of chemistry present. For

example, the number of reaction types in erythrose is equal to the number of reaction types

in glucose, and in fact the reaction types are the same, suggesting that ethyrose is an excel-

lent model compound for glucose. Moreover, glyceraldehyde contains 9 different reaction

types, indicating that it is also an excellent model compound for studying general biomass

chemistry. While this analysis only considers single-bond reactions, it could be extended to

identify compounds that exhibit concerted reactions by examining the first two recursions

and comparing the sum of these vectors to important concerted reactions like retro-aldol

condensation or Grob fragmentation. This comparison of reaction types provides insights

into which compounds contain the most diverse types of bonds, but comparison between

specific model compounds and larger target compounds is less intuitive (i.e. just because

glyceraldehyde contains the most bonds doesn’t mean it is the most appropriate model

compound for all larger molecules).

4.5.2 Example of model compound

An alternative approach is to directly compare the similarity of different molecules. This

can be achieved using the vectors obtained from Mol2Vec, and computing the Euclidean

distance between different compounds in the 200-dimensional space. Figure 4.10 shows

the distance between some common compounds in the 200-dimensional vector space. The

results provide a route to identify a small model compound that is most chemically-similar

to a larger compound of interest, and also enable validation of the chemical vectors against

chemical intuition. Glyceraldehyde/glycerol and glucose/sorbitol reactions are two of the

most widely studied compounds in previous research, which has shown similar mecha-

nisms between the two reactions: both are absorbed onto the transition metal surface via

=O, and the rate between the adsorbed species and the dissociated hydrogen is rate deter-

mining. [24, 116] So as an example, we consider the reaction for conversion of glucose
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to sorbitol. Figure 4.10 shows the Euclidean distance between possible model compounds

and sorbitol/glucose. The C1 and C2 compounds are the farthest away, which is consis-

tent with the fact that many of the bond types on sorbitol/glucose are not present in these

small molecules. Of the C3 compounds considered, it is clear that glycerol is closest to sor-

bitol while glyceraldehyde is closest to glucose, and propionic acid is relatively far away

in comparison. This is consistent with chemical intuition, since glyceraldehyde contains

an aldehyde group, similar to glucose, and glycerol contains alcohol groups similar to sor-

bitol. In contrast, propionic acid contains an acid group that is not present in either sorbitol

or glucose, and is hence farther away. If C4 and C5 compounds are considered, erythrose

is found to be very close to glucose, while xylitol is very close to sorbitol, also consis-

tent with chemical intuition. There is also evidence that the bond cleavage of erythrose to

glyceraldehyde and of glucsoe to arabinose follows the same pathway.[117] A full distance

matrix between all compounds studied in this work is available in the Figure 4.10. This

comparison may assist with the identification of model compounds for studying arbitrary

biomass conversion reactions.

4.6 Conclusion and future work

In this section, we investigated a new vector-based descriptor for complex biomass molecules.

The descriptor is able to accurately classify the 6 general types (C-C, C-O, C-H, O-H, C=C,

C=O) of biomass reactions, provide a new classification scheme encompassing 90 types of

bonds in biomass compounds, quantitatively assess the similarity of molecules commonly

used as model compounds, and predict the gas phase reaction energy. The validation accu-

racy of classification using the vector descriptor reached 0.97, and the mean absolute error

for linear regressed projected vector could reach a minimum of 0.59 eV with 85 dimen-

sions. Moreover, we provide a quantitative method to analyse simple model compounds

for complex compounds/reactions that is consistent with chemical intuition.

The vector descriptors are generated by first using unsupervised training of biomass
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substructures/molecules in Mol2Vec with 200-dimensions with both radius 0 and radius 1

used to control the locality of the resulting descriptors. The radius 0 vectors lead to 70

discrete clusters, which are used along with simple bond types to arrive at 89 sub-classes of

bond breaking reactions. Linear discriminant analysis (LDA) is used along with these 90

classes to create a 15-dimensional representation of each compound capable of classifying

the 6 basic bond types with and accuracy of 0.97 and the 90 more complex bond types

with an accuracy of 0.99. The errors in classification were found to primarily arise due to

single/double bonds in conjugated systems, suggesting that the classification is consistent

with chemical intuition.

The vector descriptors from this combination of Mol2Vec and LDA are further used

as inputs to regression models capable of predicting reaction energies for gas-phase re-

actions with mean absolute errors as low as 0.59 eV, compared to errors of 3.06 eV for

the commonly-used group additivity approach. The vector representations are also used

to assess similarities between different commonly-studied biomass compounds, and it was

found that the Euclidean distance between these vectors provides a good metric of com-

pound similarity that is consistent with chemical intuition.

The ability to construct vector descriptors for complex chemical compounds such as

biomass molecules and intermediates provides a new route to constructing machine learn-

ing models for complex chemical systems. The approach developed here can be directly

applied to predict properties of biomass compounds, or can be applied to new types of

chemical compounds like hydrocarbons or biomolecules. The approach utilizes unsuper-

vised learning, making it especially advantageous for situations where limited data is avail-

able. This may improve the ability to develop data-driven models of chemical properties

in the future. The future energies for reactions or adsorptions on transition metal surface

species can also help with prediction of the energies and further obtaining the probability

of intermediates in recursions.
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Figure 4.10: Distance of vectors representing C1-C6 compounds
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CHAPTER 5

COMBINING PHYSICAL AND MACHINE LEARNING MODELS TO IDENTIFY

STABLE GEOMETRIES ON RH (111) SURFACE

5.1 Data generation and algorithms

5.1.1 Data generation for surface species

We establish an approach to assign detailed classes for each bond type of adsorbed biomass

intermediates, similar to the previously-developed approach for gas-phase molecules chap-

ter 4. Mol2Vec [73] is used for generating vector descriptors for intermediates and reactions

with 200 dimensions in R0 and R1 chapter 4. The traditional extended-connectivity finger-

print (ECFP) is modified to include surrounding heavy atom number, surrounding hydrogen

atom number, valence, electric negativity and mass as invariants for atoms contained in a

structure. Metal atoms are still considered to be heavy atoms but all the other properties are

considered as NaN so that metal atoms are a general rather than specific type (e.g. Rh is

indistinguishable from any other metal). An algorithm (see Figure 2.2) to add metal atoms

to unsaturated C, O atoms one-at-a-time is applied to the 171 intermediates generated from

the first 2 bond-breaking recursions of erythrose, glyceraldehyde, glycerol and propionic

acid, and additional structures are generated by DFTB minima hopping calculations, yield-

ing a total of 2,498 adsorbed structures. An example of [CH2][O] (Figure 5.1) is taken

here to illustrate how the adding metal algorithms actually work. [CH2][O] is the starting

point and at the first iteration, C atom from [CH2] is found as the unsaturated atom and

with 1 chemical bond unsaturated, and then 1 [Rh] is added to the C atom and the SMILES

notation after adding [Rh] would be C([Rh])[O], which is the starting point of the second

iteration. Similar to the first iteration, C([Rh])O[Rh] is obtained after the second iteration

and the algorithm stops here since all atoms are saturated. The adsorbed structures are com-
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bined with 91,098 gas-phase species, resulting in a total of 93,569 structures that are used

as the corpus for training the Mol2Vec model. We also utilize 6 basic types of reactions

for visualization and checking intuition. These 6 types include 4 types of intra-adsorbate

reactions, C-C (C=C and C-C), C-H, C-O (C=O and C-O), OH, and 2 types of elemen-

tary reactions with metal atoms, C-M (C-Metal), O-M (O-Metal). The single and double

bond breaking reactions are considered as a single class since the distinction between them

becomes ambiguous for adsorbed species due to partial bond orders and conjugation. A

total of 13,422 gas-phase reactions from our previous work chapter 4 and 1,666 additional

elementary surface reaction steps are included for the analysis of reactions.

Figure 5.1: Generating algorithms of SMILES notation of adsorbate with metal atoms: an
example with [CH2][O],[CH2][O] is the starting point and at the first iteration, C atom
from [CH2] is found as the unsaturated atom and with 1 chemical bond unsaturated, and
then 1 [Rh] is added to the C atom and the SMILES notation after adding [Rh] would be
C([Rh])[O], which is the starting point of the second iteration. Similar to the first iteration,
C([Rh])O[Rh] is obtained after the second iteration and the algorithm stops here since all
atoms are saturated.

5.1.2 Physics-based methods

As mentioned in chapter 2, Hotbit package based on DFTB theory with minima-hopping

is used for obtaining various pre-optimized local-minimas of binding geometries. Rh slab

atoms have fixed positions and adsorbate bonds have fixed lengths [102] to generate local

minima geometries for each adsorbate. For more accurate energy estimations, DFT cal-

culations are performed using Quantum ESPRESSO [88].A Monkhorst-Pack k-point sam-

pling[93] of 4×4×1 and a planewave cutoff of 450 eV were used. All surface species were

modeled using 3.8034 as lattice constant and vacuum of 10.0 Åwith periodic condition.

A BFGS algorithm provided by Atomic Simulation Environment (ASE)[90] was applied

to the geometry optimization until the maximum force was no more than 0.05 eV/Å. The
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adsorption energy is calculated as follow:

Eadsorption = Esystem − Esurface − Eadsorbate (5.1)

where Eadsorption is the adsorption energy, Esystem is the total energy of the adsorbate and

the Rh slab, Esurface is the energy of Rh slab and Eadsorbate is the reference energy of

adsorbate relative to CH4, H2O and H2. Since DFT and DFTB do not use a common

reference, it is necessary to align the energies based on the stochiometry of each adsorbate:

EDFT = EDFTB +

 ∑
i∈[C,H,O]

ci ∗ ni

 + ε (5.2)

where EDFT is the DFT adsorption energy, EDFTB is the DFTB adsorption energy, ni is

the number of C, H, O atoms in the adsorbate, ci are fitted coefficients and ε is the residual

error.

5.1.3 ML algorithms

Principal component analysis is used to reduce the dimension of the original vector de-

scriptors for the convenience of visualization. We also apply the semi-supervised LDA on

the classification of 83-type of reactions and the LDA projections are saved for further ad-

sorption energy regression. We apply ordinary least squares (OLS) and PLS on the original

Mol2Vec vector descriptors, and LDA projection on original vector descriptors followed

by OLS with adsorption energies calculated from DFT to do the regression. In each case

we utilize a 75/25 train/test split with 4 random repeats with the results from the 328 DFT

calculations as the target. The scikit-learn package [107] is used for each algorithm.

We use the Spearman’s correlation coefficient from scipy package to evaluate the ability of

DFTB and ML methods to correctly order the energies of different geometries for a given

adsorbate.
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5.2 Cluster and classification of elementary step reactions

For the convenience of visualization, PCA is used for reducing the 200-dimensional reac-

tion vectors to 2 dimensions, and each type of reaction is represented by a different color

(yellow for C-C, green for C-H, cyan for C-O, red for O-H, black for C-M, blue for O-M).

Figure 5.2 shows an example of how the 6 different types of chemical bonds are defined.

Figure 5.3a and Figure 5.3b show the visualization of R0 and R1 reaction vectors for the

full corpus of intermediates and reactions.

Figure 5.2: Example of different types of chemical bonds (yellow for C-C, green for C-H,
cyan for C-O, red for O-H, black for C-M, blue for O-M)

The PCA result in R0 indicates that there are discrete well-defined clusters within the

15,088 reactions. The Euclidean distance between reactions of the original 200-dim R0

vectors are calculated to identify distinct clusters, and the cutoff to separate clusters is set

to be 0.05. A total of 83 clusters in R0 are obtained. Each of the 83 clusters contain

reactions with different bond-breaking types and different atomic environments of the the

atoms within the elementary reaction. The atomic environment refers to the surrounding

heavy atoms and hydrogen atoms of the 2 reacting atoms. Table Table 5.1 shows all details

of the atomic environments for each of these reaction types.
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5.2.1 Reaction types identified from vector clustering

Table 5.1: 83 clusters from R0 vectors with atomic environment (# of hydrogen atom and
heavy atom surrounding)

cluster hydrogen 0 heavy atom 0 hydrogen 1 heavy atom 1 label

1 2 3 1 4 C-C

2 2 3 0 4 C-C

3 0 4 0 3 C-C

4 1 4 1 3 C-C

5 1 3 0 3 C-C

6 0 4 1 3 C-C

7 2 3 1 3 C-C

8 1 4 0 3 C-C

9 0 3 2 3 C-C

10 1 3 1 3 C-C

11 0 3 0 3 C-C

12 0 4 0 4 C-C

13 2 3 2 3 C-C

14 1 4 0 4 C-C

15 1 4 1 4 C-C

16 0 2 1 4 C-C

17 0 2 1 3 C-C

18 0 2 2 3 C-C

19 0 2 0 4 C-C

20 0 2 0 3 C-C

21 0 2 0 2 C-C

Continued on next page
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Table 5.1 – continued from previous page

cluster hydrogen 0 heavy atom 0 hydrogen 1 heavy atom 1 label

22 1 2 2 2 C-C

23 2 2 1 4 C-C

24 2 2 0 3 C-C

25 0 4 2 2 C-C

26 2 2 1 3 C-C

27 2 2 2 3 C-C

28 0 2 2 2 C-C

29 2 2 2 2 C-C

30 0 2 1 2 C-C

31 1 2 1 4 C-C

32 1 2 0 4 C-C

33 1 2 1 3 C-C

34 1 2 0 3 C-C

35 1 2 2 3 C-C

36 1 2 1 2 C-C

37 3 2 0 4 C-C

38 3 2 0 3 C-C

39 3 2 2 3 C-C

40 1 3 3 2 C-C

41 3 2 0 2 C-C

42 2 2 3 2 C-C

43 1 2 3 2 C-C

44 1 4 1 2 C-O

45 1 3 1 2 C-O

Continued on next page
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Table 5.1 – continued from previous page

cluster hydrogen 0 heavy atom 0 hydrogen 1 heavy atom 1 label

46 0 4 1 2 C-O

47 0 3 1 2 C-O

48 2 3 1 2 C-O

49 2 2 1 2 C-O

50 0 2 1 2 C-O

51 2 2 0 2 C-O

52 1 3 0 2 C-O

53 1 4 0 2 C-O

54 0 3 0 2 C-O

55 0 4 0 2 C-O

56 2 3 0 2 C-O

57 1 2 1 2 C-O

58 1 2 0 2 C-O

59 0 2 0 2 C-O

60 3 1 1 1 C-H

61 3 2 1 1 C-H

62 1 1 1 1 C-H

63 1 4 1 1 C-H

64 1 3 1 1 C-H

65 1 2 1 1 C-H

66 2 2 1 1 C-H

67 2 3 1 1 C-H

68 2 1 1 1 C-H

69 1 2 1 1 O-H

Continued on next page
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Table 5.1 – continued from previous page

cluster hydrogen 0 heavy atom 0 hydrogen 1 heavy atom 1 label

70 1 1 1 1 O-H

71 2 3 C-M

72 1 4 C-M

73 0 4 C-M

74 0 5 C-M

75 1 3 C-M

76 0 3 C-M

77 2 2 C-M

78 3 2 C-M

79 0 2 C-M

80 1 2 C-M

81 0 3 O-M

82 0 2 O-M

83 1 2 O-M

The obtained 83 R0 clusters are then used as labels for a supervised classification on R1.

Linear discriminant analysis (LDA), is applied on the 200-dimension R1 vector descriptors

together with the 83 classes as class labels. Figure 5.3c shows the first and the second LDA

components of LDA-projected R1 reaction vectors, and the 6 reaction types are represented

by 6 different colors for the convenience of visualization. The R1 vectors are reduced to

1-82 dimensions via the LDA projection. The LDA projections represent an unsupervised

vector space for analyzing reactions and intermediates, and are used to predict adsorption

energies on Rh (111) surface.
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Figure 5.3: Visualization of reaction vector clusters and 6 reaction types (yellow for C-C,
green for C-H, cyan for C-O, red for O-H, black for C-M, blue for O-M): (a) 1st vs. 2nd
component of PCA (R0), (b) 1st vs. 2nd component of PCA (R1) and (c) 1st vs. 2nd
component of LDA (R1 with class labels from R0 clusters).

5.3 Adsorption energy calculation and prediction

5.3.1 DFTB and DFT comparison

Ultimately, the goal is to predict adsorption energies of biomass species. The 171 adsor-

bates, ranging from C1 - C4 species included in this study are generated from the first two

bond-breaking recursions chapter 4 of erythrose, glyceraldehyde, glycerol and propionic

acid. In general, each species can have multiple adsorption energies due to differences in

molecular configuration and binding sites. This makes it challenging to directly predict the

most stable binding site even with DFT. For this reason, Hotbit Python package based on

DFTB theory is used to generate pre-optimized binding geometries for each adsorbate.

The DFTB-based minima hopping process is used to generate up to 50 adsorption ge-

ometries for each of the 171 adsorbates, yielding a total of 857 different adsorbate struc-

tures. Geometries that are within 1 eV of the lowest Hotbit energies are then calculated by

DFT. This process yields 328 unique geometries and associated adsorption energies, which

are used as inputs for supervised training of the regression models.

Adsorption energies with both DFT and DFTB are computed for all 328 unique geome-

tries. This data is used to assess the accuracy of the DFTB energies. The corrected error is
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calculated by Equation 5.2. Figure 5.4a shows the distribution of the residual DFTB error

in energy calculation and Figure 5.4b shows the parity plot of DFT and corrected DFTB en-

ergies. The mean absolute error (MAE) of DFTB is 1.46 eV, with notable outliers that can

have errors of >5 eV. The results, shown in Figure 5.5b, reveal that DFTB yields incorrect

ordering of adsorbates more than 60% of the time. Despite these large energy errors, the

geometries are more accurate. The average position difference is 1.04 Å, and 71% of the

328 DFT-converged geometries have the same SMILES notation with the previous DFTB

pre-optimized geometry. This suggests that while DFTB is a reasonable tool for generating

adsorbate geometries, the energy predictions are not sufficiently accurate to yield chemical

insight or even correctly order the stability of various adsorbate geometries.

(a) distribution of corrected errors (b) parity plot of corrected errors

Figure 5.4: Accuracy of DFTB energies after reference alignment (a) error distribution and
(b) parity plot of DFTB vs. DFT energy

5.3.2 ML prediction of adsorption energies

To improve the accuracy of energy predictions we turn to a supervised ML approach.

The workflow utilizes the Mol2Vec vectors for each adsorbate as inputs, similar to our

previously-developed approach for gas-phase energies [32]. We compare three different

linear models for predicting adsorption energies from Mol2Vec vectors: In each case we

evaluate the mean absolute error of the test set as a function of the dimension of the input
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vector, with a maximum dimension of 82 (the maximum dimension of the LDA vectors).

The results of the ML predictions, shown in Figure 5.5a show that the lowest MAE of

OLS, PLS and LDA are∼0.51 eV,∼0.39 eV and∼0.43 eV at∼55-dim,∼30-dim and∼65-

dim respectively. The MAE of OLS, PLS and LDA decrease at first and reach a plateau or

increase slowly after 55-dim, 30-dim and 65-dim. The lowest MAE of the LDA and PLS

models are very similar, and we expect that the LDA model will be more transferrable to

other adsorbates since the adsorption energies are not used to generate the feature vector.

By contrast, we expect that the PLS performance is more specific to this set of adsorbates

since the adsorption energies are used to generate the inputs. Comparing the results of the

machine-learning models to DFTB, we see that the prediction errors are much lower (∼0.4

eV for ML vs. ∼1.5 eV for DFTB). While the error of∼0.4 eV is still somewhat larger than

the typical DFT error (∼0.2 eV), the ordering of energies of different geometries with the

ML model is relatively good, with a correct ordering at least 59% of the time ( Figure 5.5c

and Figure 5.5d). However, the ML models requires geometries as inputs, which must be

generated by DFTB. This suggests a synergistic approach between the models is required,

where DFTB is used to identify geometries and ML is used to predict energies.

5.4 Workflow for identifying stable geometries

5.4.1 Geometry energy order prediction

The average error of the best machine-learning models (∼0.4 eV) is relatively large, indi-

cating that DFT will need to be used when accurate energies are required. However, the

number of possible geometries and active sites for biomass molecules makes brute force

DFT calculations impractical for large numbers of adsorbates. The combination of geome-

tries from DFTB along with predictions from ML can alleviate this issue by identifying the

geometries that are most likely to be stable, thus reducing the number of DFT calculations

required. Spearman’s correlation coefficient is used to quantitatively assess the model’s

ability to predict the energy order for different geometries of the same adsorbate. We uti-
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lize a 75/25 train/test split with 4 random repeats with the adsorbates for PLS and LDA

(approximately 1-3 geometries per adsorbate). Figure 5.5c and Figure 5.5d show the distri-

bution of Spearman’s correlation coefficient of PLS and LDA test sets with error bars. PLS

and LDA obtain more than 65% and 59% correct energy orders on average with no more

than 25% totally inverted (88% of the totally inverted geometries include only 2 geome-

tries). Figure 5.5b shows the distribution of Spearman’s correlation coefficient of DFTB

with only 35% correct, while more than 30% are totally inverted.

(a) (b)

(c) (d)

Figure 5.5: DFTB and ML results of (a) cross validation error of OLS (black), LDA (red),
PLS (blue) and DFTB MAE (cyan line), spearman’s correlation coefficient of (b) DFTB
calculations, (c) 30-dim PLS regression and (d) 65-dim LDA projections with error bars
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5.4.2 Criterion for workflow

This demonstrates that both PLS and LDA have similar performance, but both are better

than DFTB in predicting energy orders. However, there are still some mis-ordered ener-

gies based on the ML predictions, suggesting that the lowest energy structure may not be

correctly identified in all cases. To increase robustness, we utilize the average standard

deviation of the model errors (0.45 eV) as a tolerance factor, meaning any structure within

0.45 eV of the lowest energy is considered as a possible global minimum. Using simple

estimates from probability theory this corresponds to 75% confidence that the true global

minimum will be included (see Equation 5.10). The confidence interval is calculated by

(assuming Ê1 − Ê2 > 0.45 and σ = 0.45eV ):

E − Ê = Z ∼ Normal(0, σ2) (5.3)

E1 = Ê1 + Z ∼ Normal(Ê1, σ
2) (5.4)

E2 = Ê2 + Z ∼ Normal(Ê2, σ
2) (5.5)

E1E2 ⇒ E1 − E2 ∼ Normal(Ê1 − Ê2, 2σ
2) (5.6)

P (E1 − E2 < 0) = Φ(
Ê2 − Ê1

2σ2
) = 1− Φ(

Ê1 − Ê2

2σ2
) (5.7)

Ê1 − Ê2√
2σ

>
1√
2
⇒ P (E1 − E2 < 0) < 1− Φ(

1√
2

) = 0.25 (5.8)

P (E1 < E2|Ê1 − Ê2 > 0.45) < 0.25 (5.9)

⇒ P (E1 > E2|Ê1 − Ê2 > 0.45) > 0.75 (5.10)

This cutoff can be adjusted to improve confidence at the expense of more DFT calcula-

tions. Both PLS and LDA models are built based on the 328 DFT calculations and are used

for predicting all 857 geometries generated from DFTB and minima hopping. The mini-

mum energy of each adsorbate and the geometries within 0.45 eV of the minimum energy
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are extracted, and any geometries that have not already been computed are calculated with

DFT. Both of the ML models are used, and the geometries are calculated with DFT if the

energy predicted by either model is within the threshold.

5.5 ML and new DFT calculations

5.5.1 Summary of new global minimas found by ML

The ML model identifies multiple possible new global minima for 65 of the adsorbates,

corresponding to 154 additional DFT calculations. The MAE between the model predic-

tions and the DFT energies of the new structures are 0.60 eV and 0.62 eV for LDA and PLS

models, about 50% higher than the MAE of the test set. The results of these calculations re-

veal that the energies of many of these structures are lower than the previously-determined

lowest energy structure, as shown in Fig. Figure 5.6a (see SI for details). For 20 of the

65 adsorbates the configuration of the global minima was sufficiently different to lead to

a new SMILES representation. For example, for the the adsorbate [O]CC(O)[CH] the

ML model identifies a [CH] bidentate-binding geometry with 0.44 eV lower energy than

the monodentate geometry that was previously identified as the lowest energy structure, as

shown in Fig. Figure 5.6b. For 13 other adsorbates, the difference in geometry was less

drastic so that the SMILES string of the new structure was the same as the old structure, but

the energy was slightly different by <0.23 eV (see Fig. Figure 5.6b). The original energy

was lower than all newly-computed energies in 32 adsorbates. Overall, the original work-

flow for identifying global minima failed to identify the global minimum for at least 17% of

adsorbates, and had qualitative differences in binding geometries (different SMILES string

or energy difference > 0.05 eV) for 14% of adsorbates.

5.5.2 Workflow

The results of this work suggest that a combination of physical approximations and ML

models is a promising route toward identifying global minima of complex adsorbates. A
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Figure 5.6: Results of DFT calculations for structures predicted to be low-energy by ML
model. (a) Stacked bar plot of adsorption energy difference for structures with the same
(black) or different (red/blue) SMILES strings from prior global minimum, with lower-
energy structures in red and higher-energy structures in blue. (b) A representative example
of an adsorbate ([O]CC(O)[CH]) where the new lower-energy geometry binds with a qual-
itatively different structure, where [CH] binds directly to a single Rh atom (left, gray box)
instead of two Rh atoms in the previous structure (right, gray box).

general workflow (see Figure 5.8 and Figure 5.8) involves a first step that uses an approxi-

mate physical method (DFTB in this case) to rapidly generate many candidate geometries.

The second step involves using DFT to calculate the energies of the most stable structures

(structures within 1 eV of the minimum in this case, leading to 328 geometries of 171 ad-

sorbates). Third, these DFT energies are used to train ML models, here based on Mol2Vec

and linear regression, and the ML models are then used to predict the energies of all candi-

date structures. Finally, the predictions of the ML model are used to identify new structures

that will be computed with DFT, in this case structures within 0.45 eV (the standard error

of the ML models on the test set) of the predicted minimum. The results of this work show

that this process yields 20 global energy minima that would have been incorrect without

the use of the ML model. We note that a similar process could be applied without an ML

model, by simply increasing the threshold of DFT calculations from the original DFTB

energies. However, increasing this threshold to 1.45 eV (the standard error of DFTB ener-

gies) would result in 149 additional DFT calculations, and would still only identify two of

the new low-energy structures. This indicates the utility of the ML model in the workflow.
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Nevertheless, there is room for improvement, and the workflow can be made more effi-

cient with improved physical approximations and more accurate ML models, which may

be necessary to tackle larger and more complex biomass molecules.

Figure 5.7: Workflow from data generation to model construction.

Figure 5.8: Workflow for identification of stable geometries on the Rh (111) surface.

5.6 Conclusion and future work

The size and complexity of biomass molecules leads to a major challenge in predicting the

global minimum adsorption geometry, and this challenge is compounded by the number

of possible intermediates that appear in biomass reaction networks. It is clear that new

techniques are needed to accelerate the study of these systems since direct calculation with
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DFT or other quantum chemical techniques is impractical. Here, we show that ML models

based on Mol2Vec descriptors can achieve an MAE of 0.39 eV (PLS with 30-dim) and 0.41

eV (LDA with 65-dim) when applied to 171 intermediates derived from erythrose, glycer-

aldehyde, glycerol and propionic acid. These models provide more accurate estimates of

adsorption energies than DFTB (1.46 eV), but the lowest MAE of ML methods are still

not comparable to DFT. Spearman’s correlation is used here to show that ML methods are

much more reliable for assessing the relative stability of different geometries than DFTB.

However, ML methods still need the structure input from DFTB. We combine the strengths

of both to provide a more robust route to identifying low-energy structures.

The best aspects of ML and DFTB techniques are combined leading to a new workflow

of DFTB+minima hopping → DFT → ML → DFT. DFTB is used first to generate up to

multiple possible local minima for each of the adsorbates. Low-energy structures are cal-

culated with DFT. The DFT energies together with the vector descriptors are used to build

ML model and applied to all geometries from DFTB. Finally, geometries with predicted

low-energies are calculated by DFT. This approach allows us to discover 20 new global

minima for the 171 adsorbates studied here, which would be missed if only DFTB were

used to evaluate candidate structures. Nonetheless, the workflow also has the limitation

that there is still uncertainty about whether or not the true global minima is found, since

an exhaustive search is not feasible for these complex adsorbates. However, the results

indicate that combining physical models and ML predictions is a promising path toward

solving this challenging problem.

Following the extension from gas-phase model to Rh surface species in this chapter, a

potential future computational work would be the estimation of the energies for more of the

intermediates and predict the probability for each of the recursions. Also, as a model and

workflow for Rh surface is already built, we are also interested to see how the experiment

results will compare to our ML models. Also, these experimental results from reaction

pathway, intermediates formation and spectrum can help with further improvement of the
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model.
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CHAPTER 6

DEVELOPMENT AND APPLICATION OF NEURAL NETWORK FORCE

FIELDS FOR BIOMASS MOLECULES

6.1 Introduction

As discussed in chapter 5, DFTB provides a fast physics-based method to pre-optimize

the geometry and estimate the energy of adsorption systems. This is an important step in

exploring the different possible adsorbate geometries and identifying the global minimum

adsorption energy. However, DFTB needs significant parameterization and stable parame-

ters are often difficult to obtain. The DFTB method also requires a lot of constraints on the

geometry optimization (e.g. fixed bond lengths), and the energies are wildly inaccurate as

well (see chapter 5). It is clear that an improved method for rapidly estimating geometries

and energies of adsorbates on surfaces is needed to better identify global energy minima for

large adsorbates. Neural network force fields (NNFF) [118] could be a potential alterna-

tive, offering a more transferable data-driven alternative to DFTB that can simultaneously

optimize geometries and offer more accurate predictions of energies.

Behler and co-workers constructed high-dimensional neural network potentials back

in 2010s [118], they used the structural descriptors as well as tested the previous BP and

SOAP descriptors [119]. The feed forward neural network was training on energies and

the forces were calculated by taking the derivative of the predicted energies. They tested

the neural network potentials on Cu and Zinc oxide systems (single atomic species), both

achieves RMSE ∼ 4.5 meV/atom [120, 121]. After Behler’s work and with the develop-

ment of deep learning tools recently, there are a few other descriptors with neural network

force fields implementation in different areas, for example, constructions of the transla-

tional and rotational descriptors by Wang and co-workers in neural network and found that
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1000 MD steps is sufficient to train with satisfied accuracy [122] and similar descriptors

based on electronic structure is used in Hu and co-workers work, they are able to apply it

into predicting thermal transport of Si [123]. In our study, we are using the GMP descrip-

tor [124]. GMP is proved to be a universal electronic structure based descriptor on atomic

structures.

6.2 Methods

For the work in this section, the dataset is changed to 61 smaller molecules/intermediates

that contain no more than 4 C and 4 O on 5 transition metals (211) surfaces: Ag, Au, Pd, Pt,

Rh. We obtain more training data but compromise on molecule size. Quantum ESPRESSO

[88] with (4, 4, 1) k-points, 500 eV planewave cutoff and PBE exchange correlation func-

tion are used for all DFT calculations in this chapter. AMPtorch, combining the AMP

package and the Pytorch package, is the tool used for training the NNFF with GMP de-

scriptor. A total of ∼18,000 data points are taken from the converged and non-converged

structures of the 61 adsorbates on 5 different metal (211) surfaces. We start from Rh since

the rest of the thesis is based on Rh surface. The train/test is split as 80/20 based on the

adsorbates. There are ∼ 30 trajectory structures for each adsorbate both converged and

non-converged. The train/test is split in a way that all the structures of a specific adsorbate

is either in train or test datasets.

6.3 Results on Rh surfaces

We start by evaluating the performance of NNFF models on the Rh surface. The middle

steps between the initial and the converged structures of adsorbates on Rh (211) surface

are taken randomly and a total of ∼15,000 structures are used with a 80/20 train/test split

based on adsorbates. The hyperparameters for the NNFF are determined by an orthogonal

experimental design method. The hyperparameter combinations are shown in Table 6.1.

Finally, descriptor order of 4, nodes of 25, layers of 4 and epochs of 2400 are used based
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on the test error of energy training. We also checked the errors for different train/test

splits under these hyper-parameters to evaluate the influence of more training data (see

Figure 6.1).

Table 6.1: Orthogonal design experiments of hyperparameters

Descriptor order Nodes Layers Epochs
3 10 3 1600
3 15 4 2000
3 20 5 2400
3 25 6 2800
4 10 4 2400
4 15 3 2800
4 20 6 1600
4 25 5 2000
5 10 5 2800
5 15 6 2400
5 20 3 2000
5 25 4 1600
6 10 6 2000
6 15 5 1600
6 20 4 2800
6 25 3 2400

The energy error provides an indication of how accurately the NNFF will be able to pre-

dict adsorption energies, and errors approaching 0.3 eV are promising since this approaches

the accuracy of typical exchange-correlation error (∼0.2 eV). However, for predicting ge-

ometries it is also necessary to predict forces. AMPtorch allows the hyperparameter “force

coefficient” to add the trained force error to the loss function, and the default value of 0

leads to the results in Figure 6.1. A total of 4 additional force coefficients of 0.01, 0.1, 1, 10

are implemented here with the same hyperparameters obtained from the previous orthogo-

nal experiment design. The results, shown in Table Table 6.2, reveal a trade-off between the

force error and energy error. The test energy error is only 0.32 eV when the forces are not

trained, and the force error decreases while the energy error increases with the increasing

force coefficient. The force error estimated at force coefficient 10 is 0.066 eV/Å, which is

very close to the DFT self-consistent setting 0.05 eV/Å. However, the energy error at 10
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Figure 6.1: Validation errors (energy) under descriptor order of 5, nodes of 25, layers of 4
and epochs of 2400 with different train/test split

is as high as 0.94 eV, which is far more than energy error at force coefficient 1. Finally, a

force coefficient 1 is used for the following analysis since it provides a good compromise

between force and energy errors. In the Rh test case, we achieve a validation force error of

0.083 eV/Å, which is more accurate than most reactive force fields for catalysts [125]. The

energy error increases to 0.53 eV in this case, but this is still comparable to the accuracy of

the more specialized machine-learning models presented in Chapter chapter 5.

Table 6.2: MAE for energy and force with different force coefficient errors

Force coefficient Energy MAE Force MAE
0 0.32 eV N/A
0.01 0.46 eV 0.26 eV/Å
0.1 0.49 eV 0.12 eV/Å
1 0.53 eV 0.083 eV/Å
10 0.94 eV 0.066 eV/Å
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6.4 Transfer learning

In the subsequent sections we explore two strategies for improving the accuracy and utility

of the NNFFs using “transfer learning”, where models are trained on one type of data and

then transferred to another. In the first section we seek to reduce the amount of DFT training

data needed by leveraging the large amounts of DFTB data. In the subsequent section we

show that models can be transferred between different metals, opening the door to more

general purpose neural network force fields.

6.4.1 Transfer learning from DFTB to DFT

As DFTB parameterization is already trained with Rh surface and a large amount of Rh

data could be obtained by this approach, the DFTB data from different binding geometries

of the 61 small molecules on Rh (211) surface are pre-trained to obtain an initial NNFF

with ∼15k data points and validation MAE ∼0.8-0.9 eV. Then, the parameters from this

initial NNFF are taken as the starting point for the DFT results (see Figure 6.2).

However, the pre-trained NNFF parameters with DFTB does not either show a faster

convergence or a better final accuracy. The reason might be that the energies and forces

calculated by DFTB is of low accuracy, and the pre-trained NNFF is not approaching a

correct description of the system (see chapter 5 for corrected DFTB errors compared to

DFT) . Thus there is not much difference compared to starting from the random weights

and bias, and both could reach a minimum error of 0.53 eV for energy and 0.083 eV/Å for

force. So, we conclude that starting from models pre-trained with DFTB data is not likely

to be a a good strategy for transfer-learning.

6.4.2 Transfer learning between different metals

As the NNFF is already trained for the adsorbates on Rh (211) surface, we take the previously-

trained parameters as the starting point for the extension to small biomass molecules on
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Figure 6.2: Energy error and force error for starting from pre-trained DFTB NNFF weights
and random-generated weights with different epochs for Rh DFT results

multiple metal surfaces. As a comparison, we also tried the random starting point of the

NNFF with the same hyperparameters. The pre-trained parameters show faster conver-

gence at the beginning of the training process, while the validation error is similar after

1600 epochs and the final lowest MAE for both pre-trained and random-started parame-

ters are similar to each other (see Figure 6.3). After training NNFF for 2400 epochs, both

could reach a force error as 0.06 eV/Å and energy error 0.11 eV. This implies that transfer

learning from the Rh neural network would probably save time and computation force with

lower epochs to train.

We also noticed that the validation error for multiple metals (0.11 eV for energy and

0.06 eV/Å for force) are much lower than the Rh metal only (0.53 eV for energy and 0.08

eV/Å for force). To find out the reason for this, NNFF for each of the rest 4 single metals

are trained and corresponding validation errors are calculated. The validation errors for Rh,
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Figure 6.3: Energy error and force error for starting from pre-trained Rh DFT results
weights and random-generated weights with different epochs for multiple metal DFT re-
sults

Pd, Pt, Au and Ag are shown in Table 6.3 and all 5 type of metals have an energy MAE ∼

0.5 eV and force MAE of ∼ 0.1 eV/Å. Thus, the decrease in validation error when training

on multiple metal data indicates that the overall model is considerably improved due to the

increase in total number of data points (∼4K points per metal). This is a promising result

that suggests that the NNFF for multiple metals are consistent with each other, meaning

there is not a tradeoff between training with different metals. This indicates that the model

trained on all metals is likely to be a good starting point for a general purpose model for

optimization of molecules on metal surfaces.

One exciting capability of the GMP features is their ability to extrapolate between ele-

ments. The decrease in energy and force error as more elements are added is a promising

indication that the model is learning to interpolate between elemental species. To further

test this ability, extrapolation to new metals with the NNFF is explored. To achieve this, we
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Table 6.3: Single metal NNFF validation errors

Metal Energy MAE Force MAE
Rh 0.53 eV 0.083 eV/Å
Pt 0.48 eV 0.094 eV/Å
Pd 0.56 eV 0.100 eV/Å
Au 0.49 eV 0.108 eV/Å
Ag 0.62 eV 0.104 eV/Å

train on all metals except one, and test the model on the metal that was omitted from train-

ing. We do include a single example of the test metal to enable reasonable feature scaling,

but this single point represents a negligible fraction of the total training data (one point out

of∼4K). This test is performed with two metals, Ag and Pd. The validation errors are 0.42

eV and 0.39 eV, respectively. While these errors are higher than the errors of the metals

included in the training set (∼0.1 eV), it is remarkable that they are lower than the errors

for models trained on∼4K examples of Ag and Pd (Table Table 6.3). This further confirms

the ability of the GMP-based NNFF models to predict energies and forces across multiple

metals.

6.5 Conclusions and future work

A NNFF based on GMP features and AMPtorch is being developed for biomass molecules

and transition metal catalytic systems. We have already done a preliminary optimization

of hyperparameters and the training of the force field based on these hyperparameters. The

force error of 0.06 eV/Å and energy error of 0.11 eV could be achieved in the independent

test set. The errors here are already low enough since DFT calculations have an estimated

error of ∼ 0.2 eV. We also checked the NNFF predicted error of our previous biomass

adsorbates on Rh(111) surface. The energy error is 0.44 eV and the force error is 0.15

eV/Å. We would need include more training data from the biomass-Rh(111) system to get

a more accurate result. However, the predicted error is already a lot better than the DFTB

method. The preliminary results suggest that the NNFFs can be combined with ASE as a
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(a) AMPtorch converged structure (conver-
gence takes ∼5 mins)

(b) DFT converged structure (convergence
takes ∼20 hrs)

Figure 6.4: Converged optimization of structures by (a) AMPtorch (within 5 mins) and (b)
DFT (∼ 20 hrs)

potential pre-optimization tool instead of DFTB. Figure 6.4 shows an example starting from

the same initial guess for a small C2 molecule (CH3CHO). DFT takes more than 20 hrs to

converge with the final energy as 2.97 eV while AMPtorch only takes 5 mins to converge

with the final energy as 2.45 eV (only∼0.5 eV in difference). The advantage of AMPtorch

as compared to Hotbit is that the resulting models are transferrable to other elements and

more accurate in terms of both energies and forces. Also, as we already have the previous

workflow for combining the physics-based method (DFTB) and ML models to identify the

stable binding geometries, we could also compare the pre-optimization workflow between
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physics-based DFTB method and AMPtorch NNFF in future work.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In summary, we first validated the DFT level of theory by comparing the calculation re-

sults and experimental results for small oxygenates on the MoO3 surface. Similar DFT

settings are used for the remainder of the calculations. Then, a data generation algo-

rithm is developed to generate all possible intermediates for gas-phase biomass molecules.

Next, Mol2Vec is used for embedding the generated intermediates. DFT calculations of

reaction energies and the vector descriptors are combined for predicting reaction energies

and classification of reaction types through machine learning methods. The framework is

then adapted to study biomass intermediates adsorbed to a transition-metal surface, where

DFTB, DFT and machine learning methods are combined for identifying stable geometries

and their adsorption energies on the Rh (111) surface. Finally, a neural network force field

model is developed as a route to simultaneously solve the problem of geometry optimiza-

tion and energy prediction on various transition-metal surfaces.

First, the adsorption energy of 6 small biomass molecules (ethanol, methanol, acetalde-

hyde, formaldehyde, glycolaldehyde and crotonaldehyde) are calculated with BEEF-vdW.

The results show that biomass molecules are physisorbed on the pristine MoO3 surface and

chemisorbed on MoO3 surfaces with an oxygen vacancy. This is found to be in qualitative

agreement with experimental results. Also, the trends in vibrational frequency calculations

of ethanol, crotonaldehyde and acetaldehyde are in semi-quantitative agreement with the

experimental DRIFT spectrum for most vibrational modes. The agreement between exper-

iment and theory verifies the DFT approach as a valid method for calculation of energies

and vibrational frequencies.
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Subsequently, the problem of complexity in biomass intermediates was tackled using

gas-phase structures. Energies of intermediates are needed for studying the pathways and

mechanisms of biomass molecules conversion on transition metal surfaces. A recursive

chemical bond breaking algorithm is developed for the generation of all possible interme-

diates of several key biomass molecules. The bond breaking reactions are also kept while

generating the intermediates. A total of 91,098 intermediates (represented by SMILES

notations) are used as the input into Mol2Vec for an unsupervised embedding and 13,422

reactions are used for classification. Euclidean distance in radius 0 and cut-off 0.05 are

used for clustering the reactions according to the reaction type and atomic environment.

LDA is used for classification on 90 classes given by radius 0 clustering. General OLS

and LDA projected vector descriptors are implemented for reaction energy prediction and

a lowest MAE of 0.59 eV (compared to group additivity MAE 1.59 eV). The model com-

pound assessment is also based on vector descriptors. The length of the vector represents

the size of the structure and the direction of the vector represents the chemical properties of

the structure. So the similar-sized model compound is assessed according to the distance

between its vector and the vector of the compound studied.

Besides gas-phase molecules, intermediates on metal surfaces are also important. An

algorithm for adding metals recursively to the SMILES notations is developed to get sur-

face species. Following the previous gas-phase workflow, we are able to predict adsorption

energies of intermediates taken from the first two recursions of erythrose, glyceraldehyde,

glycerol and propionic acid with MAE as 0.39 eV and 0.41 eV with PLS and LDA re-

spectively. Furthermore, the physics-based fast DFTB method is combined with ML for

identifying the stable binding geometries on the Rh (111) surface. A new workflow of

DFTB+minima hopping→ DFT→ ML→ DFT is proposed and is able to find 14% new

energy-minima structures of the 171 studied adsorbates. Though the workflow has the

limitation of uncertainty about whether the true global minima is found, and suffers from

inaccuracies in DFTB, it is still a promising general strategy to solve the challenging prob-
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lem of global energy minimization for biomass molecules on surfaces.

Finally, we aim to use NNFFs based on the new GMP framework to create machine-

learning models that can predict both geometries and energies. The results show that the

approach is able to reach comparable accuracies to other ML approaches for Rh surfaces,

and also indicate that accuracies can be improved further by using training data from mul-

tiple metals. This exciting preliminary result suggests that it should be possible to develop

a general-purpose NNFF model for predicting the geometries and energies of biomass in-

termediates on any metal surfaces.

DFT is a useful tool in predicting the energies of biomass molecules on catalytic sur-

faces, but the computational cost is too high for it to be applied directly to all intermediates

and transition-states. Our results show that machine-learning techniques provide a promis-

ing route to tackling the complexity of biomass reaction networks, although the current

accuracy suggests that improved methods are required. Moreover, we show that physics-

based methods like DFTB and DFT can be combined with machine learning to develop

workflows that accelerate searches for intermediate geometries and energies, and that this

general strategy is a promising way to capitalize on the speed of ML methods and the

accuracy of physics-based approaches. However, considerable room remains for the devel-

opment of more efficient and accurate strategies of analyzing biomass reaction pathways

with computational methods.

7.2 Future work

7.2.1 Experimental validation of adsorption stability

In chapter 5, a ML model for the prediction of adsorption energies on Rh (111) surface is

built and a new workflow for identification of stable binding geometries of biomass inter-

mediates are proposed. Experimental validation should start from the 4 biomass molecules

studied (erythrose, glyceraldehyde, glycerol, propionic acid). Surface science studies using

single crystals would be ideal, although results from Rh nanoparticles on an inert support
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would also yield insight. A combination of reactivity studies and spectroscopic investiga-

tions would be necessary to validate the results. Infrared spectra can be simulated for the

different geometries and validated against experimental results, where the spectra would

correspond to the most stable species and geometries. NMR spectroscopy would also yield

insight into the details of the adsorption configurations. Reactivity studies would yield in-

sight into which products were most favorable from decomposition of these 4 molecules,

and could be a starting point for development and validation of microkinetic models.

7.2.2 Application to fragmentation patterns

Mass spectroscopy was found to be able to study the fragmentation patterns of linear chem-

icals in 1970s [126], and is a widely used technique in quantifying the concentrations of

biomass molecules. However, the complex structure of biomass molecules leads to thou-

sands of gas-phase species with similar spectroscopic signals, which is a significant chal-

lenge of mass spectroscopy of biomass molecules. Our algorithm for recursive intermedi-

ate generation could be used to generate gas-phase fragmentation possibilities of biomass

compounds. The algorithm could be used to determine the possible molecular weight and

structure of possible species, and the results could aid in the interpretation of mass spec-

tra. The algorithm could be extended by constructing a library based on the bond breaking

intermediates results, which would be helpful for interpreting the experimental results. Fi-

nally, the ML model could be used to estimate the energy of each intermediate and, by

coupling with experimental results, the probability of existence of each intermediate could

be determined.

7.2.3 NNFF development and pre-optimization tool

Low-cost physical approximations such as DFTB exhibit great speed, but require specific

parameters, and suffer from relatively low accuracy. NNFFs are a potential alternate data-

driven substitution of the DFTB method. NNFFs that we use is based on the python pack-
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age AMPtorch and GMP descriptor and takes multiple binding geometries with forces and

energies to train. NNFFs, combined with geometry optimization, can pre-optimize the

structure and calculate the energy for each step just like other physics-based methods. The

neural network force field is being developed for the biomass molecule and transition metal

catalytic systems. The best hyper-parameter tuning for the force field and the convergence

of the optimization step with the interface of ASE package still remains a challenge. The

future work of the development of force field will be testing different hyper-parameters as

well as applying transfer learning from simple systems to complex systems. The trained

force field could be used as a potential pre-optimization tool if all the problems are solved

and it gives a reasonable estimation of the geometries with local minima energy.

The estimated energy could potentially be sufficient accurate to construct a micro-

kinetic model directly without requiring additional DFT calculations as the current trained

force field has a validation energy error of 0.11 eV and force error of 0.06 eV/Å. The er-

ror is impressive since the accuracy of DFT itself is generally only considered to be about

0.2 eV. A neural-network force field capable of predicting energies of arbitrary biomass

molecules on arbitrary transition-metal surfaces would greatly accelerate screening efforts

for biomass catalysis. For example, descriptor-based microkinetic screening studies may

require thousands of DFT calculations for complex reaction mechanisms [127]. The abil-

ity to rapidly predict these energies to within DFT accuracy would make it practical to

study the complex reaction networks for biomass conversion reactions, and provide an im-

proved route to rationally engineering active and selective catalysts for interconversion of

biomass compounds. The results of this thesis indicate that machine-learning techniques

are a promising strategy to achieving this goal.
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Appendices



APPENDIX A

EXPERIMENTAL EQUIPMENT

A telescope and a spectrometer were used to analyze the sun. Many other instruments were

used.

96



APPENDIX B

DATA PROCESSING

Data was processed before being added to this document.
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