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SUMMARY

The utilization of thermal atoms can enable further miniaturization and scalability of

atomic devices and facilitate more applications of quantum information science in daily

life. Thermal atomic beams can be easily generated and maintained compared with cold

atoms. They also offer a longer coherence time and transverse Doppler-free interaction

compared with thermal vapor. However, thermal atomic beams are rarely utilized in small-

scale atomic devices. This thesis discussed novel approaches to generate miniature atomic

beams and demonstrated their application in the field of quantum optics.

We first introduced the chip-scale collimator based on etching microchannels on a sil-

icon wafer. The generated atomic beams were characterized, and a six-month continuous

test was conducted to determine this device’s long-term performance and robustness. In

another approach, the collimator is fabricated by laser etching collimating channels on a

stainless steel plate using femtosecond laser micromachining techniques. This collimator

is then integrated into a rubidium dispenser to create an atomic source with an overall size

of only 18 mm× 12 mm× 2 mm. Through time-of-flight measurements, we found that the

collimator also greatly reduced the temperature of atoms emitted from the dispenser.

We then studied the combination of our chip-scale atomic beams with nanophotonic

resonators to achieve strong coupling in the cavity QED field. Master equation simulations

are implemented to understand the dynamics of flying atoms interacting with microres-

onators. The prospect and expected signal of magnetically trapped cold atoms interacting

with resonators on-chip were also discussed. An edge coupling strategy was experimen-

tally demonstrated to enable an efficient coupling between the free space laser beam and

silicon nitride waveguide on the chip. Furthermore, the characteristics of a slot resonator

designed for achieving unprecedented single atom cooperativity with atomic beams were

discussed.

In another direction, a customized photon time tagging system with an accuracy of ±50

xii



ps is built. A novel two-fiber photon correlation method is implemented to characterize the

velocity of single atoms in our miniature atomic beam. Through velocity selection, slow

single atoms in our miniature atomic beams were isolated, and atoms with velocity 20 times

smaller than the mean velocity were observed. Photon statistics from single atoms in our

atomic beam were measured and studied theoretically. High values of the second-order and

third-order correlation functions were found, which indicate its potential to be a source of

photon pairs or triplets. Our observations showed the prospect of a bottom-up approach to

building a thermal quantum system with trackable slow single atoms in an atomic beam.
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CHAPTER 1

INTRODUCTION

1.1 Background and motivation

Alkali atoms offer an excellent platform for studying light-atom interaction and atom-atom

interaction. Their simple electronic structure and energy levels allow scientists to easily

control and manipulate them with lasers. The isolated alkaline atoms are well-defined

quantum systems, and every atom of the same kind in the universe has identical dynamics

that depend only on fundamental constants. This property leads to countless novel funda-

mental studies and quantum technologies in atomic optics.

One research direction in this field points to better control and precise manipulation of

neural cold atoms in a laboratory environment. Some examples are quantum gas micro-

scope [1, 2], trapped atoms with a cavity [3, 4, 5], and optical tweezers [6, 7, 8]. Ultra-cold

atoms are utilized and are well-controlled and manipulated with minimum noise. However

high-performance devices in this regime are usually bound to a laboratory environment due

to their complicated system, core component size, and high power consumption. Along

with the requirement for ultra-high vacuum (UHV), they are not ideal for miniaturization

and scalability.

In another direction, tremendous efforts have been made in recent years to make portable,

scalable, and chip-scale atomic devices[9, 10]. Their performance might not be the best

compared with lab-environment setups, but they can provide adequate functionality to gen-

eral users and make a more significant technological and economic impact.

In this direction, the semiconductor industry’s technology, advances in microelectrome-

chanical systems (MEMS), and the dramatic progress made in atomic optics are combined.

Numerous research has been done to bring cold atoms into chip scale [10, 11]. Magneto-
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optical traps (MOT) with a single laser beam are demonstrated with pyramidal mirror struc-

tures [12, 13], and planar diffraction patterns [14, 15, 16]. Microfabricated wires on the

chip are used to create localized magnetic traps to control cold atoms and even a Bose-

Einstein condensate (BEC) [17, 18]. But these localized traps still need to be loaded from

a separate big vacuum apparatus.

The complication and high power consumption of magneto-optical traps (MOT) make

them hard to miniaturize. In addition, because of the Helium permeation and long-lasting

outgassing, ion pumps are usually connected to the package to meet the requirement of

UHV for cold atoms. With these burdens, full chip scale cold-atom devices remain elusive

[11].

On the other hand, more and more attention has been drawn to miniature atomic devices

using thermal atoms. Thermal vapors can be easily generated and maintained using simple

heaters, running current through alkaline dispensers [19] or focusing the laser beam on

an alkali pill [20]. Many miniature atomic devices have been demonstrated using micro

vapor cells [9], for example, miniature alkali vapor cell clocks [21, 22], laser frequency

reference [23], magnetometers [24, 25, 26]. The micro vapors cells suffer from broad

doppler broadening and fast decoherence from collisions with the wall. The inclusion of

buffer gasses and wall coatings can mitigate the decoherence process but will create a much

broader homogeneous broadening, and the characteristics can change over time [9, 11].

Atomic beams can achieve transverse doppler-free interactions with simple passive col-

limation. It has a longer coherence time compared with vapor cells and can also offer

continuous operation and high atom density. These advantages of the atomic beams make

them promising for miniature atomic devices. For example, atomic beam clocks can have a

better performance than their vapor cell peers [9]. The atomic beams are also widely used

in the quantum optics field to interact with cavity to measure vacuum Rabi splitting [27],

achieve quantum memory[28], study Rydberg atoms [29, 30] ,test fundamental science [31,

32, 33] and study quantum computing [34, 35].

2



However, the atomic beam apparatus used to be bulky and not scalable, hindering its

implementation in portable atomic devices. This thesis presents three important contribu-

tions we made in utilizing atomic beams for a new generation of miniature atomic devices.

The first part of the thesis will discuss our work in making atomic beams miniature and

versatile. With our chip-scale atomic beams, the third chapter of the thesis will discuss our

efforts to demonstrate the scalable platform for strong atom-photon interaction with mi-

croresonators. Then, the fourth chapter will focus on our research in isolating and utilizing

single atoms in a thermal atomic beam for chip-scale quantum devices.

1.2 Thesis outline

This thesis is organized as follows:

In chapter two, two approaches to generating miniature atomic beams are discussed, and

the properties of the atomic beams are characterized. In the first approach, microchannels

are etched on a silicon wafer to create highly collimated rubidium atomic beams. The

guiding microchannels are precisely defined by lithography and can be tailored to specific

applications. The lifetime and robustness of the device are tested over six months. The

second approach combined femtosecond laser micromachining techniques and versatile

alkali dispensers. A collimator is fabricated by laser drilling 46 collimating channels on a

600 µm thick stainless steel plate. The rubidium dispenser and collimator plate are bonded

together by ceramic adhesive to create an atomic beam source with an overall size of only

18 mm× 12 mm× 2 mm. The temperature of the atomic beams is also much lower than

the dispenser because of their collision with the collimator plate, which mitigated a big

drawback of alkali dispensers. This approach provides less collimation compared with the

first one, but it does not require special handling of pure rubidium, and the overall size is

much smaller.

The third chapter of the thesis will focus on the efforts to combine our chip-scale atomic

beams with nanophotonic resonators to achieve strong coupling in the cavity QED field.

3



Our chip-scale atomic beams can be delivered by lithographically defined microchannels.

We proposed to integrate the atomic channels and microresonators on the same silicon

wafer, and the nanometer level alignment is naturally satisfied. High quality factor micror-

ing resonators were fabricated by Ali Dorche from Prof Ali Adibi’s group and were care-

fully characterized. Extensive master equation simulations are implemented to understand

the dynamics of flying thermal atoms with resonators. We studied the expected signals and

possible constraints for experiments. Besides thermal atoms, simulations were conducted

to study the dynamics of trapped cold atoms with microring resonators. Both grating cou-

pling and edge coupling are explored to couple light in and out of the resonators. An edge

coupling method was demonstrated to enable an efficient coupling between the free space

laser beam and silicon nitride waveguide on the chip. Besides resonators with a microring

structure, horizontal slot resonators are also studied. More simulations and experimental

efforts are discussed to understand its interaction with atomic beams and to extract the

figure of merit for cavity QED — single atom cooperativity.

In the fourth chapter, the experimental setup we built for enabling single-photon time

tagging and correlation analysis is discussed. Single atoms in our miniature atomic beams

are isolated, and their photon statistics are characterized. We used velocity selection to

select the slow atoms in a thermal atomic beam and implemented a novel two-fiber photon

correlation method to measure their velocity. Our correlation method is able to distinguish

the slow atoms with velocities around 15 m/s, which constitute a ratio of only 10−6 of

the thermal atomic beam. Photon statistics from single atoms in our atomic beam were

also measured by using the Hanbury Brown and Twiss configuration. We observed high

values of the second-order and third-order correlation functions, which indicate its potential

to be a source of photon pairs or triplets for quantum optics. The theoretical analysis of

the observed data was explained. Monte Carlo wave function simulations mimicking our

experiment were also conducted to compare with our theory. Our work paves the way for

a bottom-up approach to building thermal quantum systems.
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CHAPTER 2

MINIATURE ATOMIC BEAMS FOR PORTABLE ATOMIC DEVICES

2.1 Introduction

Generating thermal atomic beams is one of the first approaches scientists utilized to study

atoms’ properties and their interactions with external fields. It is a great atomic source that

can provide continuous, directional, and isolated atoms that do not suffer from transverse

Doppler shifts and atom collisions.

Usually, to generate an alkali atomic beam, an oven containing pure alkali metals will

be heated, and high atomic vapor pressure is created. Then the vapor passes through a

collimator to form a highly directional beam. Two typical types of collimators often used

by atomic physicists are shown in Figure 2.1. The first type is constructed by aligning two

small coaxial apertures in a bigger tube. The vacuum wall between two apertures is usually

actively cooled to low temperatures. As a result, the off-axis atoms will be trapped on the

cold walls, and only on-axis atoms can pass. Recirculating ovens [36, 37] are designed to

cool the off-axis atoms into liquid form and return them to the oven. However, most of

these designs add too much complexity to the oven.

The second type of oven composes of one or an array of long channels aligned in

the same direction. The channels are heated to the same or higher temperature than the

oven. Off-axis atoms hit the wall, are diffusively reflected in all directions and have a high

probability of returning to the source oven. The bigger the divergent angle, the higher the

probability of returning to the source. The collimation is thus achieved, and the divergence

angle HWHM (half-width at half-maximum of the flux angular distribution) θ1/2 roughly

equals to 0.8d/L [38, 39]. The total number of atoms enters the entrance of a channel

per second equals 1
4
nvAs, where n is the atom density in the oven, v is the average atom
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Figure 2.1: (a) Aperture collimator. The wall between two apertures is usually cooled to a
low temperature to trap the off-axis atoms. (b) Channel collimator. The off-axis atoms will
collide with the wall, and diffusive reflect in all directions.

velocity, and As is the cross-section area of the channel. For a transparent channel which

means the mean free path of the atom is longer than the channel length L, the total flux

exiting the channels is [39]:

F =
1

4
WnvAs (2.1)

With W being the transmission probability or Clausing factor [40]. The factor W depends

only on the geometry of the channel, the aspect ratio (d/L). For circular channels W ≈ 4d
3L

.

For a channel collimator with an aspect ratio of d/L = 1/30, we get W ≈ 0.04, meaning

that around 96% atoms are reflected back to the source while the on-axis flux remains the

same. Since for most of the applications, only on-axis flux is useful. Channel collimators

provide a huge advantage because they will elongate the oven lifetime by a factor of 1/W ∼

L/d without harming the performance. Capillaries formed by stacking thin stainless tubes

have been used as the collimator to extend the estimated lifetime of a lithium oven to 50

years [41].

The mentioned collimator designs are mostly bulky and used together with big vacuum

apparatus. In the following sections, we will discuss our efforts in building miniature and

scalable channel collimators for portable atomic devices with a long lifetime.
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Figure 2.2: Fabrication procedure. (a): Grow Oxide (b): Pattern PR and Etch Oxide (c):
Silicon DRIE (d): Strip PR/oxide mask (e): Evaporate Au (f): Si/Au Eutectic Bonding.
Figure taken from Ref [38].

2.2 Atomic beams on silicon chips

When I joined the lab, Chao Li was in charge of the silicon collimator project. Planar col-

limation arrays in silicon are fabricated to create chip-scale collimators that allow for great

flexibility and control over the array elements. Besides the normal long-channel design,

a special cascaded collimator is achieved by creating two gaps on the channels to allow

off-axis atoms to escape.

The properties of the generated beams are measured and analyzed. I helped with some

of the characterizations. Then, I conducted the lifetime and robustness test of this silicon

collimator. The results of our silicon collimator have been published in Ref [38] and Ref

[42], in which I am a co-author. Some of the sentences and figures in this chapter are from

these two publications.

The fabrication of the silicon collimator is done by our collaborator—Prof. Ayazi’s

group. The fabrication process is described in Ref [38], and I repeated it here for the

reader’s convenience. The fabrication process (see Figure 2.2) includes two silicon wafers

bonded together to form an enclosed structure. First, about 2 µm of oxide was grown on
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Figure 2.3: (a) The image of a cascaded collimator with a penny. (b)Microscope image of
the cascaded collimator in the top view showing the two gap regions g1 and g2, where the
capping wafer was removed. Atoms propagated through the channels in the direction of
the arrow. Some of the channel walls are still visible after dicing due to the asymmetry of
the dicing blade. The widths of the gaps g1 and g2 are around 500 µm. Figure taken from
Ref [38].

the base wafer (a). Then, about 3 µm of positive photoresist was patterned, and the oxide

was etched in an RIE process, which formed the mask for the collimators (b). After the

oxide etching, the collimators were etched using the Bosch DRIE process up to the required

depth of 100 µ m (c). The wafer was then cleaned, and the remaining oxide was etched

away in 49% HF solution to form the completed base wafer (d). Gold was evaporated on

the capping wafer (e). The two wafers were then bonded together using a Si–Au eutectic

bond at 450 ◦C. Finally, the different dies were diced across the wafer according to the

length of the collimators to give us a completely sealed structure with access to the two

ends of the collimator lengths (f). The cascaded collimator was realized by partially dicing

through the bonded wafers in two places (see Figure 2.3(b)). The diced region widths were

g1, g2 = 510, 500 µ m. Some of the channel walls are still visible after dicing due to the

asymmetry of the dicing blade. The image of the cascaded collimator with a penny is shown

in Figure 2.3 (a). The size of the collimator is only 1 mm × 5 mm × 3 mm (h× w × l).

Figure 2.4 (c)-(d) shows the front-view images of the bonded collimator and Figure 2.4
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(e) shows the scanning electron microscope images of the fabricated channels before bond-

ing. Each channel has a length L = 3 mm and a cross-section area of 100 µm × 100 µm.

The bonding of the two wafers provided an array of long channels with an aspect ratio of

L/d = 30. One end of the array was connected to a rubidium source and the output flux

of the channels were probed on the other end in the vacuum using free space fluorescence

detection. Figure 2.4 (b) shows a top view fluorescence image of 20 individually visible

atomic beams generated by a cascaded collimator.

Figure 2.4: The planar concept for atomic beams. (a) In a fully planar vision, atoms prop-
agate from a source region into a planar device that has been lithographically etched into
a silicon chip. Shown schematically are multiple sequential operations, including beam
formation by collimation, laser deceleration and/or cooling, atom interferometry or other
sensing protocols using guided atoms, followed by detection. Blue arrows indicate the di-
rection of the atomic beam propagation. (b) Rubidium atom beam collimation as the first
nontrivial element demonstrated in this work. The adjacent image shows the experimen-
tally observed fluorescence output of 20 individually resolved collimation channels. (c)
Optical and (d) scanning electron micrograph (SEM) end images of the channels show the
etched base wafer and sealing capping wafer. (e)–(g) SEM top images before bonding the
capping wafer showing microchannels that (e) collimated the atomic beam, (f) produced a
focusing beam, and (g) created two beams propagating at a relative angle of 12 degrees.
Channel dimensions in (e) are 100 µm × 100 µm × 3 mm (h × w × l) dimension, with 50
µm wall thickness between channels. Figure taken from Ref [38].
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Figure 2.5: A picture of our atomic oven for our silicon collimators using rubidium am-
poules. A copper tube going through an aluminum blank KF40 flange forms the main part
of the oven. The parts on the right of the flange will be in the vacuum. A rubidium ampoule
has been inserted into the copper tube near the left end. The left end of the tube has been
pinched off to make a seal. Rubidium vapors can be generated by heating the copper tube
on the left. Image taken by Chao Li.

2.2.1 Set up and fluorescence spectroscopy

We used pure rubidium metal contained in sealed ampoules to introduce rubidium vapors

into the silicon collimator chip. A custom-made oven is designed to accommodate the

silicon chip and the ampoule. As shown in Figure 2.5, a 101 copper tube going through

a KF40 flange is used as the oven body. After loading the ampoule, the left end of the

tube is sealed by pinching it off with the cold welding technique. The right end of the

tube is terminated with a special holder to hold the silicon collimator. A nichrome heater

is wrapped around the holder to keep the collimator temperature higher than other parts

of the oven to prevent clogging. After installing it in the vacuum chamber and pumping

the chamber to a high vacuum, the copper tube near the ampoule is clamped down with

pliers to break the ampoule. In order to remove possible cold spots, thermal breaks with

low thermal conductivity (Ultem plastic) are also used between the copper tube and the KF

flange.

The oven with our collimator is installed in a 6-inch by 6-inch cubic vacuum chamber
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that can reach 10−7 torr. The oven is heated to 100 ◦C to generate enough rubidium vapor

pressure. A Toptica external cavity laser is used to probe the atoms at 87Rb D2 line. The

probe laser is kept linearly polarized by passing a λ/2 waveplate and a polarizing beam

splitter. The laser is placed to probe the atoms only ≈6 mm away from the channels to

capture the atoms with all angular divergence. Careful alignment is done with the probe

beam to maximize the fluorescence peak height and minimize the full-width half maximum

of the fluorescence spectrum. By doing this, we make sure the probe beam is perpendicular

to the atomic beam to eliminate the effect of the longitudinal velocity distribution. Atomic

fluorescence was collected by two f = 75 mm 2-inch diameter plano-convex lenses and

then focused onto a photodiode (Thorlabs DET100A2). The photocurrent is amplified by a

current preamplifier (DL Instrument Model 1211, with a Gain of 108 V/A) realizing a rise

time of 0.04 ms. The laser is scanned at a frequency of 5 Hz to make sure the signal rise

time is much longer. Both the saturated spectroscopy from the rubidium reference cell for

the frequency calibration and the fluorescence spectrum from the atomic beam are recorded

and averaged over 64 traces by an oscilloscope (TDS2024C).

The spectral data of the ordinary collimator and the cascaded collimator is shown in

Figure 2.6(a). They are taken with the same oven temperature, laser size, and laser power

(saturation parameter s equals 1.2). Multiple hyperfine resonances between the 87Rb 5S1/2,

F = 2 ground state and the 5P3/2, F’= 1,2,3 levels appeared as narrow peaks as a function of

the probe frequency. The strongest such peak is the F’= 3 level, centered at zero frequency

offset. The natural linewidth of this transition is 6 MHz, while our laser linewidth is less

than 1 MHz. The width of this peak is wider because of the power broadening and the

Doppler broadening due to the transverse velocity distribution of the emitted atoms. For

the single straight collimator, this peak has a full width half maximum (FWHM) of 42

MHz, but contains broad wings visible up to 400 MHz detuning.

As a comparison, the data for the cascaded collimator only has a FWHM of 18 MHz.

The collimation is greatly improved, and the off-axis atoms are suppressed with our cas-
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Figure 2.6: (a) Measured atomic fluorescence spectra versus excitation laser frequency
showing the transverse Doppler distribution of the atomic beam. Peaks at 0, 267, and -424
MHz correspond to transitions between the hyperfine F = 2 ground level and F’ = 3, 2,
1 excited levels in 87Rb, respectively. The data from the ordinary collimator (blue) and
the cascaded collimator (red) are shown. The saturation parameter is around 1.2. Solid and
dashed lines are corresponding theoretical calculations. (b) Transverse velocity distribution
of the cascaded collimator derived from the measurement by deconvolution, along with the
theoretical prediction from Monte Carlo simulations. Figure taken from Ref [38].

caded design. Using a deconvolution procedure, we estimated that the transverse Doppler

broadening had a HWHM = 4 m/s, which implies a very narrow beam divergence angle θ1/2

= 0.013 rad. The transverse velocity distribution by deconvolution is shown in Figure 2.6

(b). The details of the theory and more data can be found in Ref [38].

2.2.2 Long-time characterization

A crucial metric for any atomic source is the lifetime. For portable atomic devices, their

lifetime is usually determined by the lifetime of the oven because it is very difficult to

change the oven without introducing contamination or degradation. There are two concerns

about this silicon collimator that we would like to address.

First, the microchannels have a cross-section of 100 µm × 100 µm and a length of 3

mm. Such a small cross area and a big aspect ratio (30) bring concerns that the rubidium

atoms may accumulate on the wall and clog the channels. Second, the silicon wall between

each channel is only 50 µm thick. The thickness of the gold layer for Si/Au Eutectic
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Figure 2.7: A typical fluorescence spectrum with 100 ◦C oven temperature. The blue dots
are the fluorescence signal. The red curve is the fitted curve using two Gaussian peaks
centered at 0 and -267 MHz.

bonding is only around 1 µm. Therefore, the robustness of the delicate structures under

intense rubidium vapor exposure also needs to be tested. We performed a lifetime test

under continuous operation for a period of 6 months at various fixed temperatures with a

focusing type collimator as shown in Figure 2.4 (f). The focusing-type collimator has 29

channels pointing to a focal point that is 2 cm away from the nozzle exit, with a maximum

angle of 0.1 rad. It doesn’t have the gaps as the cascaded collimator. We used this focusing

type collimator because its structure is essentially the same as other types of collimators,

and it is not needed for other projects. The same cubic vacuum chamber is used, and a

stainless steel plate with a 9 mm diameter hole in the center is placed around 2 cm away

from the collimator. The size of the stainless steel is 9 cm in width and 5 cm in length.

The plate allows the atomic beam to pass but will block the potential vapor build-up in

our probe region over time. The laser is placed 6 cm away from the collimator. The laser

and the collecting setup are the same as what we mentioned in subsection 2.2.1. The laser

power was kept the same throughout the test, with a saturation parameter of 3.9.

We recorded the fluorescence spectrum around three times per week to monitor both the

peak height and the spectrum shape. We also used a CCD camera to take an image near the
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Figure 2.8: (a) A fluorescence spectrum with 150 ◦C oven at 1450 hours. The total signal
is fitted with three Gaussian peaks representing the contribution from vapor, atomic beams
F=2 to F’=3, and F=2 to F’=2, the fitted amplitudes are 0.1591, 0.3840 and 0.0077 respec-
tively. (b) A CCD camera image of the vapor and the atomic beam with 150 ◦C oven at
2050 hours. The vapor component was getting higher. The brighter region in the center is
the beam component, and the vapor makes the laser path visible.

collimator to check the output of every individual microchannel. The oven temperature was

set at 100 ◦C at the beginning and increased to 125 ◦C at 1150 h and 150 ◦C at 1320 h. The

vapor accumulated quickly at 150 ◦C. Thus, we reduced the temperature back to 125 ◦C at

2390 h to lower the vapor pressure. Figure 2.7 shows a typical spectrum with 100 ◦C oven

where the vapor is negligible. The 87Rb D2 line F=2 to F’=3 is centered at zero frequency.

The FWHM of the peak is much wider compared with the result in subsection 2.2.1 because

the focusing type collimator makes the longitudinal velocity component contribute to the

spectrum. On the other hand, the tail is not as pronounced compared with the ordinary

collimator because the laser beam is much farther away from the collimator (6 cm vs 6

mm), and atoms with large divergent angles won’t be detected. The height and HWHM of

the F=2 to F’=3 peak are extracted by fitting the spectrum with two Gaussian peaks. One

Gaussian peak centered at 0 frequency represents the contribution from F=2 to F’=3, and

another Gaussian peak center at 267 MHz represents the contribution from F=2 to F’=2.

When the oven was increased to 150 ◦C, the emitted atoms fully coated the inner surface

of the vacuum chamber, and the background rubidium vapor pressure slowly built up. As
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Figure 2.9: (a) The calculated total throughput over the continuous test. The temperature
is 100 ◦C from 0 to 1150 h, 125 ◦C from 1150 to 1320 h, 150 ◦C from 1320 to 2390 h,
and back to 125 ◦C from 2390 h to the end. (b) Black dots connected by lines show the
measured HWHM of the atomic beam fluorescence spectra. The blue dashed lines show
the benchmarks that are scaled to 125 ◦C and 150 ◦C using the averaged value at 100 ◦C.

shown in Figure 2.8, the vapor component is handled by adding another Gaussian peak

centered at zero and a HWHM around 260 MHz into the fitting process. The heights and

HWHMs of all three Gaussian peaks are fitted and extracted from the signal when the vapor

component started to show up. To prove that the vapor was not from a broken collimator,

we turned the oven off for a day to get the vapor pumped away. Then in the next spectrum

data, the vapor component became negligible again.

A camera image as an inset in Figure 2.9 (a) for the atomic beam fluorescence right after

the channel exit indicates all 29 channels are working well (no clogging). The white arrow

on the inset marks the propagation direction of the atomic beams. Three black arrows mark

the time at 454, 1120, and 1510 hours in Figure 2.9 (a) and Figure 2.9 (b) when we took

camera images for the collimator output. None of the channels was clogged or showed any

problem.

The total throughput vs time is shown in Figure 2.9 (a). The details of how to calculate

the total throughput will be discussed in the next section. As we mentioned above, the

oven temperature is set to 100 ◦C at the beginning, 125 ◦C at 1150 h, 150 ◦C at 1320 h,

and 125 ◦C again at 2390 h. Before we had to stop and disassemble the setup for another
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project, this oven had run for over 4200 h, and none of the microchannels showed any sign

of clogging. It can be noticed in Figure 2.9 (a) that the throughput is decaying slowly within

the same temperature, which might result from the migrating of Rb inside the oven from

hotter spots to colder spots. The coating of Rb on the vacuum windows over time and the

drift of laser alignment may also contribute to this decaying effect. Since the flux is around

an order of magnitude higher at 150 ◦C and three times higher at 125 ◦C, our results imply

a continuous operation time at 100 ◦C of over 19000 hours, more than two years, without

failure. This test proved that our microfabricated atomic beams are reliable and robust at

different temperatures and can have a very long lifespan. This validated the advantage of

long-channel collimators. Because the off-axis atoms will tend to return back to the source,

the transmission probability or Clausing factor W in 1
4
WnvAs makes the lifetime 1/W

times longer.

While the total flux might be constant, an open question is whether the collimator an-

gular divergence might experience long-term drifts. To address this, in Figure 2.9(b), we

have plotted the extracted HWHM of the measured fluorescence spectrum over the same,

roughly six months, time period. It is seen to be quite constant over this time period, ruling

out severe long-term degradations or changes in the MEMS fabricated structures due to

interaction with rubidium. For reference, we have plotted dashed lines that show the
√
T

variation of the most probable atomic velocity, where T is the temperature in Kelvins. If

the transverse velocity distribution is only influenced by temperature, the HWHM should

follow the dashed line.

Our data after 1320 h are approximately 10% higher than this line. The possible reason

is that the mean free path of the atoms is smaller than the 3 mm channel length when the

temperature is at 125 ◦C and 150◦C [42]. The collisions between atoms will make the

transverse distribution broader. But their influence, if any, is relatively stable over time.
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Figure 2.10: The diagram for atomic beams and our collection region.

2.2.3 Total throughput calculation

In this section, we will discuss the procedure to calculate the total throughput from the

spectrum data. As shown in Figure 2.10, our laser beam and the imaging system’s field

of view define a collection region where atoms are excited, and the emitted photons are

collected by our photodiode. The laser beam has a Gaussian beam waist radiuswa along the

atomic beam direction and wb in the perpendicular direction (into the page). The diameter

of the field of view defined by the imaging system is L. The volume of the collection region

is V = πwawb ·L, and the cross-section of the region is S = 2wbL. We will show later that

L doesn’t affect our calculation.

The photon scattering rate for one atom is [43]:

Rsc(w) =
Γ

2

s

1 + s+ 4(w−w0

Γ
)2

(2.2)

Where Γ ≈ 2π × 6.06 MHz is the natural linewidth, w0 is the resonance frequency, w
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is the laser frequency, s is the saturation parameter. The total scattering photon rate is a

convolution between the transverse velocity distribution (p(vt)) and the scattering rate [44]:

γ(w) = n · V
∫ ∞

−∞
dvtp(vt)Rsc(w − kvt) (2.3)

Where n is the averaged density of atoms in the collection volume V , k is the wavevector

for the laser. The detected voltage on our oscilloscope is:

Vout(w) = h̄w0γ(w)ηRrespG = h̄w0ηRrespG · n · V
∫ ∞

−∞
dvtp(vt)Rsc(w − kvt) (2.4)

Where Rresp = 0.6 A/W is the responsivity of the photodiode, G = 108 V/A is the gain

of the current amplifier, and η = 1.2% is the overall photon collection efficiency that is

subjected to the transmission of optics and the solid angle over which the emitted photons

could be collected. Vout(w) is the spectrum data shown in Figure 2.7. By using the whole

spectrum data Vout(w) and combining a Fourier transform routine with Tikhonov regular-

ization [38], we can do a deconvolution and get the velocity distribution p(vt). With the

extracted velocity distribution, we can calculate an averaged photon scattering rate at zero

detuning:

Rsc(w0) =

∫ ∞

−∞
dvtp(vt)Rsc(w0 − kvt) (2.5)

Then, we can calculate the average atom density n by just utilizing the voltage at zero

detuning Vout(w0):

Vout(w0) = h̄w0ηRrespG · n · V ·Rsc(w0) (2.6)

The atom flow (atoms/s) is F = n·S ·v, where v is the averaged velocity
√

8kBT
πm

(kB Boltz-

mann constant,T oven temperature, m rubidium mass). Thus we can write the measured

flow as:
Vout(w0)

h̄w0ηRrespG · V ·Rsc(w0)
· S · v (2.7)
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By using V = πwawb · L and S = 2wbL, we get the measured flow:

F =
Vout(w0) · v

h̄w0ηRrespG · πwa

2
·Rsc(w0)

(2.8)

After getting the measured flow, we still need the fraction χ of the total throughput travel

through our collection volume to calculate the total throughput. Monte–Carlo simulations

with our collimator structure and probing configuration are done by utilizing the Molflow+

package [45]. The collection region is the cylindrical region formed by our probe laser.

By counting the atoms entering our collection region and dividing it by the total emitted

atoms (total throughput in the simulation) from our channels, we can get the fraction of

the total throughput that flies into our collection volume χ. The χ is around 1.2% with

the configuration of our long-time test because the probe laser is 6 cm away from the

collimator. Furthermore, the measured flow is the 87Rb atoms in F=2 ground states. For

natural rubidium samples, 87Rb has an abundance of 27.83%. The ratio of 87Rb atoms in

F=2 ground states is 5/8. By setting κr = 27.83% × 5/8 to be the total ratio, we get the

total throughput:

Ftotal =
F

χ · κr
(2.9)

2.2.4 Summary

In summary, we have discussed atomic beam collimators on silicon chips, the first element

in a fully planar atomic device for integrated atomic quantum technologies. The cascaded

collimator design offers a very narrow beam divergence angle θ1/2 = 0.013 rad within a 3

mm distance. Our collimators can greatly reduce the size of quantum devices that utilizes

atomic beams. The long-time performance is also tested by running continuously for over

4200 hours. The robustness and reliability of the collimator make it suitable for portable

devices like atomic clocks, gyroscopes, atom-photonic devices, etc.
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2.3 Miniature atomic beams with alkali dispensers

We have discussed our silicon collimators in the last section. But one drawback for the

silicon collimators is that the size of the associated oven is still big (see Figure 2.5). The

length of the oven is around 20 cm, and it is hard for mass production. The ampoule can

contain a large amount of rubidium which provides a very long lifetime, but it can also

make the whole oven more complicated and bulky.

Therefore, although the collimator has been made miniaturized, a good atomic source

besides rubidium ampoules is also vital for portable atomic devices. Alkali-containing

compounds can also produce pure alkali vapor by reacting with reducing agents at a high

temperature. For example, rubidium pills are an alternative atomic source based on rubid-

ium chromate. It can be handled in the ambient air and activated by heat. Many researchers

are able to put the alkali pills in bonded silicon-glass microcells and use a high-power laser

for activation [11]. If ZrAl2 is used as the reducing agent, the chemical reaction below can

happen with heat to release pure rubidium vapor [11]:

2Rb2CrO4 + ZrAl2 → 4Rb+ Cr2O3 + Al2O3 + ZrO2 (2.10)

Alkali metal dispensers [46] holds a mixture of rubidium chromate and a reducing

agent within a metal container, which has a trapezoidal cross-section with a small slit to

allow alkali metal vapor to exit (see Figure 2.11). They are sold commercially, usually for

alkali coating applications, such as producing photocathodes. These dispensers have been

adapted by atomic physicists to load magneto-optic traps (MOT) [47, 48, 49, 19]. A current

of several amps is passed through the dispenser to generate heat. Once the temperature is

high enough, the chemical reduction reaction process will start producing alkali vapor. The

reaction rate is sensitive to the temperature. Thus changing the supply current can easily

control the atom flux. They are small in size and can be handled in ambient air. The active

area of the dispenser we used (SAES RB/NF/3.4/12 FT 10) is around 6 mm ×1 mm. These
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Figure 2.11: A drawing of the SAES alkali dispenser from ref [46].

properties can significantly reduce the complexity of the atomic oven and make it suitable

for miniature atomic devices.

However, the high temperature needed to initiate the reactions that produce alkali vapor

(550-850 ◦C) creates significant challenges for integration into a chip environment, as they

present a considerable source of radiative heat that can influence other chip components.

Moreover, at such elevated temperatures, the emitted atomic flux from a dispenser has a

substantial longitudinal velocity and must first thermalize with room temperature surfaces

in order to be captured in a magneto-optical trap [19]. For this reason, dispenser activation

and subsequent utilization of the rubidium vapor are often performed in two separate steps.

In this section, we demonstrate a compact technique for the generation of directed

atomic beams from an alkali dispenser, which can be useful for miniature applications

demanding line-of-sight to the alkali source. For such applications, the broad angular dis-

tribution of alkali vapor emitted from a bare dispenser is unacceptable since it can degrade

the signal-to-noise ratio as well as contaminate nearby electronic or photonic components.

In our approach, laser micromachined holes in a collimator plate deliver atoms primarily in

the forward direction. We also find that as the beam is generated, atoms rapidly thermalize

with the collimator to a considerably lower temperature, as determined by measurements
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Figure 2.12: Femtosecond laser machining set up. The nozzle on the left side is connected
to a N2 cylinder to blow the vaporized material away from the material and toward the
vacuum tube. The sample is fixed on the translational stage by a tape.

of the longitudinal velocity. Combined with its small size, this collimated source can be

easily packaged close to other chip-scale components. Our device will find application in

the targeted delivery of neutral atoms to microscope volumes on-chip, including on-chip

cavities or nanophotonic devices for cavity QED [50, 51]. Our results have been published

in Ref [52].

2.3.1 Fabrication

We drilled microchannels in a 600 µm thick stainless steel plate to collimate the emitted

rubidium atoms. This collimator plate is fabricated using the femtosecond laser microma-

chining technique (OPTEC WS-Flex USP). Femtosecond laser machining uses ultra-short

laser pulses with a wavelength of around 1030 nm to ionize and remove the material via

photo-ablation. The laser beam waist at focus is around 10 µm, limiting this machine’s

capability to fabricate smaller-scale structures. The shortest pulse length is around 222 fs

and is tunable to 7 ps. With a maximum power of 4 W or the pulse energy of 65 µJ, this

laser machining technique is effective on polymers, metals, ceramics, glass, silicon, single

crystals, polymorphic crystals, etc. A picture of the setup is shown in Figure 2.12. Since
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Figure 2.13: The fabricated stainless steel collimator. The diameter of the holes is around
100 µm, and the spacing is 160 µm. The size of the plate is 18 mm × 12 mm.

the material is vaporized and ionized by the laser pulse, we need to use nitrogen air blow

combined with a simple vacuum hose to blow them away. Otherwise, the vaporized ma-

terial will drop back to the surface and block further processing. For the laser machining

settings, the cutting works by defining lines for the laser to pass. To cut a cylindrical mi-

crochannel with the stainless steel plate, one cutting layer is achieved by adding circles and

hatching lines spaced by 10 µm within them to cut all the material within the circles. One

layer is repeated ten times to remove at least 2 µm of the tough stainless steel. Because

of the Gaussian beam divergence, the focus of the laser beam cut the fastest and needs to

be tuned to cut through the plate. Thus, after finishing a layer, the focus of the laser is

moved down 1 µm to move the focus of the laser beam into the material and cut deeper.

Furthermore, 300 such layers are created in the software to cut through the 600 µm thick

stainless steel plate. As for the diameter of the channels, we tried 50 µm, 100 µm, and

150 µm. The channels with 50 µm diameter, corresponding to an aspect ratio of 12, will

provide better collimation. With that high aspect ratio and small diameter, the fabricated

dimension of the channels is 72 µm on top and 40 µm on the bottom. However, a portion

of the fabricated channels is still opaque (not through holes) because the femtosecond laser

beam got blocked by the melted stainless steel. Thus, we choose to test the collimator with

a diameter around 100 µm.
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The plate we eventually used is shown in Figure 2.13. We cut 46 channels in the center

of the plate with a spacing of 160 µm that fully covers the active length of the dispenser

(The active length is around 6 mm). The aspect ratio of the channels is around 6:1. As a

result of this aspect ratio and the nature of laser micro-machining, the fabricated channels

have varying diameters across the plate. As shown in Figure 2.14(b), the entrance diameter

is around 115 µm while the exit is an ellipse with 2a ≈ 45 µm and 2b ≈ 70 µm. The plate is

positioned with the entrance facing the dispenser to achieve better collimation. The overall

device dimensions are around 18 mm× 12 mm× 2 mm and could be further reduced.

Then, a high-temperature ceramic adhesive (PELCO) is applied between the dispenser and

the collimator to hold them together while serving as an insulating spacer. Applying the

ceramic adhesive is done in ambient air, and after the adhesive is dried for 20 minutes, the

device is put into an oven to cure for 1 hour at 100 ◦C. This adhesive provides both ultra-low

electrical and thermal conductivity so that the current mostly runs through the dispenser and

creates a temperature difference between the dispenser and the collimator. The adhesive

also seals the space between the dispenser and the collimator to avoid leakage, thereby

creating a small cavity that acts as a rubidium reservoir. The off-axis atoms are more likely

to return to this reservoir and be saved. Although this procedure requires handling the

dispenser in ambient air, we have noticed that the dispensers are not noticeably degraded.

The apparatus is shown schematically in Figure 2.14(a).

2.3.2 Transverse velocity distribution

The device was put inside a cubic vacuum chamber that reached a pressure around 4×10−7

torr. The two terminals (leads) of the dispenser are connected to a two-pin Conflat electric

feedthrough through electrical inline connectors. Then, a high current supply (0-30 A) is

used to supply current to the dispenser.

The device was activated by running an 8 A current for around 10 minutes. After

activation, the current was lowered to around 6 A, and a relatively steady flux of rubidium
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Figure 2.14: (a) Overview of the atomic beam apparatus. The length of the collimator plate
is 18 mm, and 46 channels span across 7.2 mm to cover the active length of the dispenser.
(b) The detailed view of the entrance and exit channel shape and the length of the scale bar
is 100 µm. The entrance faces the dispenser. (c) The CCD camera image of the atomic
beams fluorescence. The laser beam enters from the right, and the atomic beams travel
toward the top. A white line is added at the position of the collimator edge. It also shows
the initial span of the atomic beams (∼7.2 mm).

atoms was produced. The generated miniature atomic beams can be seen in Figure 2.14(c).

The operating current is greater than the bare dispenser because of the small exit area

(∼0.12 mm2) and the extra heat load from the collimator plate and ceramic adhesive.

A laser beam was sent perpendicular to the atomic beam direction. Laser spectroscopy

at the 87Rb D2 line is used to measure the transverse speed distribution. A current of 6.5 A

was run through the dispenser, and the fluorescence was collected by using a 2 inches lens

set with a numerical aperture of around 0.24 and a silicon photodetector (Thorlabs Model

DET100A2). The photocurrent passes through a current preamplifier (Model 1211 DL

Instruments) with a gain of 109 V/A. Figure 2.14(c) is the image of the beam fluorescence

with our laser locked to the 87Rb D2 F = 2 to F ′ = 3 transition. All 46 channels are clearly

visible.

The atomic beam fluorescence spectrum is shown in Figure 2.15 (a) together with the

saturated absorption spectrum of 87Rb from a reference cell for identification of the spectral

lines. The full width at half maximum (FWHM) is 220 MHz. The spectrum is a convolution

between the scattering rateRsc and the atoms’ transverse Doppler distribution n(vt). Using
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Figure 2.15: (a) Measured fluorescence spectrum (blue) with the 87Rb saturated spectrum
(red). (b) The transverse velocity distribution after deconvolution. The red curve is the ideal
symmetric shape. The discrepancy around negative 200 m/s results from the influence of
F=2 to F’=2, 1 transition.

the deconvolution technique as we have discussed in subsection 2.2.3, and given our laser

intensity I = 2 mW with beam size w = 0.586 mm, we can deduce the transverse speed

distribution as shown in Figure 2.15 (b). The FWHM for the transverse speed distribution is

around 120 m/s. The deconvolution process here only considered a single F = 2 to F ′ = 3

hyperfine level, while the F = 2 to F ′ = 2, 1 transitions contribute to the asymmetric shape

around −200 m/s [42]. The FWHM here is much bigger than the silicon collimator that

was discussed earlier because the aspect ratio d/L is only 1/6 compared with 1/30 with the

silicon collimator.

2.3.3 Longitudinal velocity distribution

The next step is to measure the longitudinal speed distribution of the atomic beams. Since

the atomic vapor is generated by the chemical reaction under 550 − 850◦C temperature

rather than heating rubidium metals to a steady temperature, the velocity distribution of the

emitted atomic beams remains an open question. There is a layer of ceramic adhesive with

low temperature conductivity between the fabricated stainless steel collimator and the dis-

penser. Therefore, the collimator is mainly heated by the radiation from the dispenser and
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Figure 2.16: The optical diagram of the setup. The probe and pump laser beams are coupled
from another optical table. The two AOM are used to create pulses of the pumping beam
without creating any frequency shift.

should have a much lower temperature. The emitted fast atoms from the chemical reaction

are expected to collide with the wall of the collimator, which will make the emitted atoms

thermalize with our stainless steel collimator and have a much lower average velocity. One

common way to measure the longitudinal velocity distribution is by sending the probe at

an angle (e.g. 45◦) relative to the atomic beam direction and measuring the longitudinal

Doppler shift spectrally. This method works well with highly collimated atomic beams

with a large mean velocity but has many sources of error for a moderately collimated beam

or atoms with slow velocity. First, this method can be easily affected by the transverse

velocity distribution. If the transverse velocity is not negligible, it is hard to find a well-

defined atomic beam direction, and the Doppler effect observed will be contributed by both

the longitudinal and transverse velocities. Then, the power broadening and the contribu-

tions from other hyperfine transitions will also cause errors in the calculation of velocity

distribution with this method.

We measured the longitudinal velocity distribution by using a modified time of flight

technique [53]. In our time-of-flight technique, a locked pumping laser is tuned to the 87Rb

D2 F = 2 to F ′ = 2 transition that selects atoms with nearly zero transverse velocity,

27



pumping them into the dark hyperfine ground state F = 1. The optical diagram is shown

in Figure 2.16. The pump laser is first sent into an acoustic-optical modulator (AOM),

and its frequency is increased by 80 MHz. Then a second acoustic-optical modulator is

used to decrease the pump laser frequency by 80 MHz. Therefore, the pump frequency

remains unchanged, but we can create pulses of the pump beam by turning the AOM on

and off. A function generator is used to create a 1 kHz TTL signal to control the on and

off of the AOM while providing the trigger signal for our oscilloscope. The pump laser

is placed very close to the stainless steel collimator to pump all the atoms before they

diverge, as shown in Figure 2.17(a) inset. A probe beam locked to the 87Rb D2 F =

2 to F ′ = 3 transition is located downstream from the pump to detect the atoms with

nearly zero transverse velocity. The fluorescence from the probe beam is collected by

a micro-photomultiplier tube (Hamamatsu H12403-20), and the output current from the

micro-photomultiplier is amplified by a current amplifier (DLPCA-200) with a gain of 105

V/A. The rise time for the current amplifier at this gain is around 900 ns.

The separation between our pump and probe laser beams is L = 20 mm, while the

diameters of both beams are d1 = d2 = 1.2 mm. The dispenser current was increased to

7 A to increase the signal-to-noise ratio. In this configuration, the atoms we pumped and

probed are the atoms with near-zero transverse velocities. Thus the longitudinal velocity

measurement is not affected by the transverse component. The power broadening and

other hyperfine transitions also won’t affect our signal. Therefore we can measure the

longitudinal velocity accurately, especially with the slow atoms (v < 100 m/s). While the

pump beam is on, all atoms, with around zero transverse velocity, enter the dark state, and

the probe fluorescence will be zero. By switching off the pump, atoms in the bright state

F = 2 will enter the probe region with a time of arrival that depends on their velocity.

Thus following the switch-off, the detector records a time-dependent fluorescence signal

S(t) that starts from zero and gradually reaches a steady state. Figure 2.17(a) shows the

data after averaging over 64 traces with our oscilloscope (TDS2024C). The fluorescence
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Figure 2.17: (a) The recover signal of the time of flight measurement. Time zero is when
the pump laser pulse is switched off. The fitted curve assumes a Maxwell distribution with
u = 302 m/s. The inset is the diagram for the time of flight setup. (b) Zoomed-in plot for
the signal of slow atoms between 44.5 m/s and 70m/s. The red line is the theoretical curve.

signal in the steady state will depend on the density of atoms in the probe region. Assuming

a Maxwell Boltzmann longitudinal speed distribution [54], we can write our signal as:

S(v, t) =


0 vt ≤ L

c · v2e−
v2

u2 · (vt− L) L ≤ vt ≤ L+ d2

c · v2e−
−v2

u2 · d2 vt ≥ L+ d2

(2.11)

In which L is the distance between the pump beam and the probe beam, d2 is the diameter

of the probe beam, c is the amplitude factor that does not depend on v, and u =
√

2kT/m

is the most probable speed. Then, our total signal at time t, including all velocity groups,

is:

S(t) =

∫ ∞

L/t

S(v, t)dv

= c(

∫ L+d2/t

L
t

v2e
−v2

u2 · (vt− L)dv +

∫ ∞

L+d2
t

v2e
−v2

u2 · d2dv)
(2.12)

This formula is fitted to our signal by minimizing the squared error, as shown in Figure 2.17,
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yielding a peak velocity of u = 302 m/s, corresponding to a Maxwell distribution with a

temperature of around 204 ◦C. This temperature is significantly lower than the expected

operating temperature of the dispenser (> 600◦C), indicating that the atoms thermalize

with the colder surfaces of the collimator plate before exiting the device. Thus it produces

slower atoms on average compared with the bare dispenser.

These findings demonstrated that the temperature of the emitted atoms from our device

is much lower than the dispenser, which suggests that direct line-of-sight laser cooling

might be possible using this integrated dispenser collimator, thus avoiding contamination

of the vacuum chamber or miniature cell.

To further quantify the slow atoms, we can calculate the difference of S(t) at time t1

and t2:

S(t1)− S(t2) =

c

∫ L+d2
t1

L
t1

v2e−
v2

u2 (vt1 − L)dv − c

∫ L+d2
t2

L
t2

v2e−
v2

u2 (vt2 − L)dv + c

∫ L+d2
t1

L+d2
t1

v2e−
v2

u2 d2dv

(2.13)

By setting vi = L+d2
ti

for i = 1, 2, and using d2 << L, we get:

S(t1)− S(t2) ≈ c · v21e
− v21

u2 d2 ·
d2
t1

− c · v22e
− v22

u2 d2 ·
d2
t2

+ c

∫ v2

v1

t1v
2e−

v2

u2 d2dv (2.14)

The first two terms are proportional to d22 and are ignored with d2 << L, we have

S(t1)− S(t2) ∝
∫ v2

v1

v2e−
v2

u2 dv (2.15)

This means that the difference of S(t) between time t1 and t2 is proportional to the density

of atoms between velocity v1 and v2. Figure 2.17 (b) shows the zoomed-in plot between

t1 = 476 µs, t2 = 303 µs which corresponding to v1 = 44.5 m/s and v2 = 70 m/s.

By using the fitted S(t) and normalization S(∞) − S(0) = 1, the atom density within
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v1 = 44.5 m/s and v2 = 70 m/s is calculated to be 0.61% of the entire atom density. By

comparison, the theoretical ratio for a Maxwell distribution is 0.67%, which is very close

to our measured value. Since in Figure 2.17 (b), the amplitude of the noise is much higher

than the change of the signal, one might argue that the contributions from slow atoms

need more supportive evidence. To further confirm these observations, we implemented

the likelihood ratio test between the null hypothesis and the alternative hypothesis. The

null hypothesis is that there are no slow atoms in that velocity range. Thus S(t) should be

flat, and the observed signal is just Gaussian noise. The alternative hypothesis is that the

theoretical equation (Equation 2.12) is valid for slow atoms and the observed signal is S(t)

plus Gaussian noise. We can calculate the likelihood of each scenario happening with its

hypothesis. The likelihood ratio pr of the alternative hypothesis to the null hypothesis is

calculated to be 1.1× 104. Thus the signal shows strong evidence for the existence of slow

atoms in a thermal beam. These slow atoms are easier to control and can be captured by a

MOT downstream or might be used directly for on-chip applications.

Here, we can also notice that the signal-to-noise ratio is limited even with a well-

designed time-of-flight technique and detection with a micro-photomultiplier tube com-

bined with a current amplifier. It is still very challenging to unambiguously detect the slow

atoms with velocity v < 45 m/s in a thermal beam. In Chapter 4, we will show how to

directly detect these slow atoms by implementing a novel technique based on single photon

correlations,

2.3.4 Long-term performance

The long-term performance of this device was characterized by monitoring the flux at vari-

able supply currents. A PC oscilloscope Picoscope (5242D) is used for this test. The PC

oscilloscope needs to connect with a laptop but provides more functionalities compared

with a benchtop oscilloscope. The probe laser was scanned over several GHz around 87Rb

D2 line F=2 to F’=3 transition. An alarm function is implemented to save both the signal
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Figure 2.18: Throughput vs time curves of the integrated dispenser collimator. (a) Current
was run through the dispenser in intervals of ∼0.5 A ranging from 5.5 A to 8.2 A. Curves
with a current of 5.5 A, 7.5 A, and 8.2 A are labeled. Overnight, the laser scan region drifted
out of the 87Rb D2 F=2 to F’=3 transition and caused a gap in the 5.5 A data. (b) Currents
higher than 8.2 A. The currents are increased to an extremely high range to accelerate the
process while serving as a current limit test for our device.

data and the saturated spectrum data to the laptop every minute.

The initial current was 5.5 A, and it was increased in steps of ∼0.5 A to 8.2 A. The total

throughput of the device is calculated by using the methods and procedures mentioned in

subsection 2.2.3 and Ref. [42]. The calculated throughput value at different currents and

times is shown in Figure 2.18. With an elevated current through the dispenser, the flux

first rapidly increased and then slowly decreased on a time scale of hours. This behavior

is typical for alkali dispensers, according to its spec sheet [46]. A feedback loop may

be integrated into the system in the future to produce a constant flux. After 8.2 A, the

input current to the dispenser was gradually increased to 12.8 A to test when the device

would fail. After around 20 minutes at 12.8 A, the collimator plate detached because of

the thermal expansion mismatch between the ceramic adhesive and metal surfaces. This

indicates the current limit of this device should be around 12 A.

The total test lasted around 75 hours. By integrating the area under the curves, we cal-

culated that the rubidium emitted during this test was around 0.18 mg. The device was run

for around 12 hours at 6.5 A before this long-term performance test. As a comparison, a
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bare rubidium dispenser will be empty in around 4 hours at 7 A [19]. Our device lifetime

is greatly increased due to the collimator, which blocks and saves the off-axis atoms while

maintaining the on-axis flux. For applications that only need to operate the atomic beam as

necessary, such as MOT capturing and trapping, this device can last much longer. Applica-

tions requiring higher collimation can use a stainless steel collimator with a higher aspect

ratio which would provide an even longer lifetime.

2.3.5 Summary

Our observations indicate that the hot atoms from the dispenser rapidly thermalize with

the collimator plate with a transit distance of only around 600 µm (the thickness of the

collimator plate). As a result, the temperature of the atoms is lowered by a factor of 3

compared with the bare dispenser. To explore this effect further, we replaced the stainless

steel collimator plate with the silicon collimator from our previous work (section 2.2) and

built a conventional dispenser oven in a stainless steel tube of 3/4 inch diameter. The

temperature of the collimator is monitored and fixed to around 110 ◦ (for more details,

see our publication [52]). The data with this conventional design also demonstrate the hot

atoms from the dispenser thermalize with the collimator wall and oven wall first before

coming out, which supports our theory.

In summary, We have demonstrated a versatile and compact approach to creating atomic

beams using a collimator-integrated dispenser. In our design, the collimation plate is inte-

grated onto the dispenser itself, which serves the dual purpose of shielding the environment

from the high dispenser operation temperature as well as reducing the effective temperature

of the atomic beam. Our results show that atomic beam technology can be considerably

miniaturized without compromising its useful properties, which will extend its applications

to small-scale quantum devices. For example, even further integration could be achieved

by incorporating dispenser material directly into the collimation plate.
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CHAPTER 3

CAVITY QED ON CHIP WITH ATOMIC BEAMS AND MICRORESONATORS

3.1 Introduction

Numerous applications in quantum optics, communications, and computing rely on strong

interactions between single atoms and photons [3, 55, 56, 57]. Atoms can be used as nodes

in a quantum network to create, process, and store quantum information. Photons can be

used as channels to transfer information and link different nodes together [58, 59]. An

efficient and scalable platform for strong atom-photon interaction is thus a long-standing

goal of both fundamental and technological significance.

To efficiently create entanglement between single atoms and single photons, the inter-

action strength between them must be strong enough. Although we could easily use a laser

beam to excite the atoms to measure the spectrum, the probability of a single atom inter-

acting with a single photon is very small. The maximum possible resonant cross-section

σsc between photons and a two-level atom in free space is 3λ2/2π [43]. The probability

P for a photon to be absorbed is σsc/Aeff , where Aeff is the area of the laser beam [56].

For example, if the laser beam has a diameter of 1 mm, the probability is only around

3.7 · 10−6. Even with a diffraction-limited focusing spot with NA=0.5 and Aeff ≈ λ2,

the maximum interaction probability is only around 15%, which is not ideal for single-

photon single-atom interaction. Cavity Quantum Electrodynamics (Cavity QED) is usually

utilized to increase the probability of entanglement between them. A single photon can

experience many round-trips inside a cavity, and the interaction strength is thus enhanced.

The enhanced probability σscNtrips/Aeff is proportional to the figure of merit— single

atom cooperativity C, which will be discussed later. Macroscopic cavities in free space

(Fabry-Perot cavities) have shown great success in achieving strong interaction with the
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atoms [60, 61, 62]. In recent years, there has been lots of effort to utilize microtoroidal

cavities [63, 64], nanofibers [65, 66], nanophotonic structures [67, 68, 51], and microring

resonators [69, 50] to create micro-platforms for strong atom-photon interaction. Several

motivations are the driving force. First, by using modern micro-fabrication techniques, the

new platforms can be more scalable and robust, showing a promising approach to chip-

scale quantum devices. Second, the single-atom cooperativity C is the figure of merit for

single-photon and single-atom interaction. It is inversely proportional to the mode volume.

In these micro-structures, the light is tightly confined, and the mode volume is extremely

small, leading to a larger cooperativity value.

Most of the demonstrated results use free-fall cold atom [70] or trapped cold atoms

[67]. It requires substantial effort to cool, transport, and trap the atoms near the dielec-

tric surface of the nanophotonic system. Miniaturization and scalability are hindered by

these additional requirements. Moreover, there is a mismatch of timescales between the

nanoseconds required to strongly couple atoms and photons in microresonators and the

milliseconds to seconds required for atomic cooling and trap loading. This limits the duty

cycle of quantum devices based on atoms and photons.

In contrast, laser-slowed or even fast thermal atomic beams possess many of the prereq-

uisites for quantum device fabrication [38]. In the previous chapter, we demonstrated our

highly collimated chip-scale atomic beams with silicon lithography. These atomic beams

can be easily generated and continuously operated. We have also shown its robustness and

reliability on six months scale. Since it is feasible to integrate the atomic channels and

microresonators on the same silicon wafer, the micrometer level alignment is naturally sat-

isfied. This chapter will focus on our efforts in trying to combine chip-scale atomic beams

with Si3N4 micro-resonators to create a novel and scalable platform for strong interactions

between single atoms and single photons.
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3.2 Theoretical background

The coupling between an atom and an optical mode is governed by the Jaynes–Cummings

Hamiltonian [3, 43]:

H = HA +HF +HAF = h̄ωaσ
†σ + h̄ω(a†a+

1

2
)− d⃗ · E⃗ (3.1)

In which σ = |g⟩⟨e| is the atomic lowering operator; a is the photon annihilation operator;

ωa and ω are the atomic and cavity angular resonance frequencies, respectively. The last

term is the dipole form of the atom-field interaction Hamiltonian HAF . We have

d⃗ =
−→
d ge(σ + σ†) (3.2)

Here,
−→
d ge is the dipole matrix element for the atomic transition between the ground state

and the excited state. The electric field can be written as [71, 43]:

−→
E (r⃗, t) = −

√
h̄w

2ϵrϵ0
[f(r⃗)a(t) + f ∗(r⃗)a(t)†] (3.3)

Where ϵr, ϵ0 are the relative permittivity and vacuum permittivity and ϵr also have a spatial

dependence in our system, f(r⃗) is the normalized cavity mode function defined by

f(r⃗) =

√
ϵrE(r⃗)√∫

d3r · ϵr|E(r⃗)|2
(3.4)

We can choose the phase to make f(r⃗) real and positive [43]. Then combine d⃗ and
−→
E (r⃗, t),

we get:

HAF = −d⃗ · E⃗ = −
√

h̄w

2ϵrϵ0

−→
d ge · f(r⃗)(σ + σ†)(a+ a†) (3.5)
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We define the atom-cavity field coupling energy

h̄g(r⃗) = −
√

h̄w

2ϵrϵ0

−→
d ge · f(r⃗) (3.6)

The g(r⃗) factor characterizes the interaction strength between the atom and the cavity mode

and 2g(r⃗) is called the single photon Rabi frequency (the reason will be explained later).

To better understand and calculate this factor, we define the mode volume V of the cavity

as

V =

∫
dr3

ϵr|E(r⃗)|2

max(ϵr|E(r⃗)|2)
(3.7)

Combined V with the definition of f(r⃗), we can get

f(r⃗) =
1√
V

·
√
ϵrE(r⃗)

max(
√
ϵr|E(r⃗)|)

(3.8)

g(r⃗) = −
√

w

2h̄ϵrϵ0

−→
d ge · f(r⃗) = g0 ·

√
ϵr|E(r⃗)|

·max(
√
ϵr|E(r⃗)|)

(3.9)

Where g0 = −
−→
d ge · ξ̂

√
w

2h̄ϵrϵ0V
is the maximum possible value of g(r⃗). ξ̂ is the unit

polarization vector of the field mode at the location of the atom. This formula will be used

to calculate the interaction strength in different locations in our atomic beam-resonator

system.

Thus, HAF becomes

HAF = h̄g(r⃗)(σ + σ†)(a+ a†) (3.10)

Then, we move into the interaction picture and make the rotating-wave approximation to

drop the fast oscillating terms [43]. We get

HAF = h̄g(r⃗)(σa† + σ†a) (3.11)
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The total Hamiltonian after dropping the vacuum-field energy constant 1
2
h̄ω is

H = h̄ωaσ
†σ + h̄ωa†a+ h̄g(r⃗)(σa† + σ†a) (3.12)

This is the well-known Jaynes-Cumming Hamiltonian.

To solve the dynamics of Jaynes-Cumming Hamiltonian, we decompose the state in

terms of the joint eigenstates of HA and HF :

|ψ⟩ =
∞∑
n=0

(cg,n|g, n⟩+ ce,n|e, n⟩) (3.13)

Here, g, e represents the atom in the ground state or excited state, respectively, and nmeans

the Fock state with n photons. By using Schrodinger’s equation, we can get the pairs of

equations for all values of n:

∂tce,n = −i(ωa + nω)ce,n − i
√
n+ 1g(r⃗)cg,n+1

∂tcg,n+1 = −i(n+ 1)ωcg,n+1 − i
√
n+ 1g(r⃗)ce,n

(3.14)

By considering the resonance case, which means ∆ = wa − w = 0, and assuming the

system is initially in state |g, n+ 1⟩, we can solve the equations to get the population [43]:

Pe,n =
1

2
(1− cos(2

√
n+ 1g(r⃗)t))

Pg,n+1 =
1

2
(1 + cos(2

√
n+ 1g(r⃗)t))

(3.15)

Thus, when we have n+1 photons in the cavity, the Rabi frequency is 2
√
n+ 1g(r⃗). For a

single photon in the cavity, we have n=0, and 2g(r⃗) is the single photon Rabi frequency. We

can also see that the energy exchange rate between the atom and the cavity is proportional

to g(r⃗).

By diagonalizing the 2 ×2 matrix in Equation 3.14, we can get the eigenenergies and
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Figure 3.1: The eigenvalue diagram for the Jaynes-Cummings Hamiltonian. The left side
is without any atom-cavity coupling g(r) = 0, and the right side is after introducing the
interaction term g(r) > 0. The splitting is proportional to g(r) and the number of photons.

eigenstates of the dressed state picture

En,± = nh̄ω ±
√
nh̄g(r⃗)

|±⟩n =
1√
2
(|e, n− 1⟩ ± |g, n⟩)

(3.16)

The diagram of energy levels is shown in Figure 3.1. The splitting with a single photon

equals 2h̄g(r⃗), which is also called vacuum-Rabi splitting.

To understand the dynamics of an atom interacting with the resonator, we need to add

the outside world into the system, which includes the coupling of input light, the cavity

dissipation mechanisms, and the atomic dissipation.

First, some basics of the cavity will be discussed. The cavity lifetime τc is defined to be the

time the energy stored in a cavity decays to 1/e of its value. Thus, the cavity energy decay

rate is κ = 1/τc, and some papers use the same symbol κ for ’field decay rate,’ which is

just half of the energy decay rate defined here. The quality factor Q of the cavity is defined
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as 2π times the cavity lifetime in terms of the number of optical cycles

Q = 2π · τc/τp =
ω

κ
(3.17)

Here, τp is the inverse of optical frequency, and ω is the angular frequency of the cavity

mode. On the other hand, the finesse F of a cavity is defined as 2π times the cavity lifetime

in terms of the number of round trips

F = 2π · τc/τt =
2π

κn · L/c
=

Qλ

n · L
(3.18)

Where L is the round trip distance in the cavity, τt = n · L/c is the round trip time, n

is the refractive index, and λ is the wavelength of the cavity mode. We can notice that

finesse depends on the cavity length and refractive index, which is less convenient for com-

paring nanophotonic resonators. Thus, the finesse F is usually used in free-space cavities

like Fabry-Perot cavities, while the quality factor Q is frequently used in micro-resonators

fabricated with nanophotonic techniques.

For nanophotonic resonators (e.g., micro-ring, micro-disk, and micro-toroid resonators),

waveguides or tapered fibers are used to couple light in and out of the resonator. There will

be a coupling quality factor Qcouple besides the intrinsic quality factor Qintrinsic. Qintrinsic

depends on the resonator’s propagation loss, as we have discussed. Qcouple is the inverse

of the energy coupling rate between the waveguide (or fiber) and the resonator, which can

be tuned by the distance between them. When Qcouple = Qintrinsic, destructive interference

makes the transmitted field vanish, and all the input light is coupled into the resonator [72,

73]. It is named the critical coupling condition, and the total quality factor Q becomes

1

Q
=

1

Qcouple

+
1

Qintrinsic

=
2

Qintrinsic

(3.19)

If the coupling is weaker, Qcouple > Qintrinsic, the resonator is under-coupled. If the
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coupling is stronger, Qcouple < Qintrinsic, the resonator is over-coupled. In the scope of

this thesis, we focus on critically coupled resonators. The quality factor and the cavity

energy decay rate we refer to will be the total quality factor and total cavity decay rate

(κ = κintrinsic + κcoupling).

The next step is to include the input laser. We can add an extra term in the Hamiltonian

in Equation 3.12, the Hamiltonian with the external laser driving term in a rotating frame

becomes [43]:

H = h̄(ωa − ωL)σ
†σ + h̄(ω − ωL)a

†a+ h̄g(r⃗)(σa† + σ†a) + h̄ξ(a+ a†) (3.20)

Where ωL is the input laser frequency and ξ =
√
κP/h̄ωL/2 under the critical coupling

condition, κ is the total cavity energy decay rate, and P is the power of the input laser. This

extra term deposits energy into the system over time.

In order to introduce the cavity decay and the atom’s spontaneous decay, we use the

density matrix ρ and introduce the environmental reservoirs to the system. The Master

equation for the density operator is [3, 43]:

∂tρ = − i

h̄
[H, ρ] + ΓD[σ]ρ+ κD[a]ρ (3.21)

The Lindblad superoperator D[c]ρ is given by D[c]ρ = cρc† − 1/2(c†cρ + ρc†c) for c =

σ, a. The second term corresponds to the atomic decay, and Γ is the spontaneous emission

rate. The third term corresponds to cavity decay, and κ is the total cavity energy decay

rate. Figure 3.2 shows the calculated cavity transmission by solving Equation 3.21 with

a fixed atom and without an atom (g = 0). The input laser has a power of 7.56 pW,

and its frequency is scanned over 1 GHz. The total quality factor is set to be 10 million

and g/2π = 250 MHz. The transmission spectrum agrees with the dressed state picture

(Figure 3.1). With g > 0, a single resonance peak is split into two peaks separated by 2g,

which demonstrates the vacuum-Rabi splitting.
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Figure 3.2: The calculated transmission spectrum of a micro-ring resonator with and with-
out an atom. The total quality factor is 10 million. The input laser power is 7.56 pW, and
g/2π = 250 MHz. With an atom, the single resonance peak is split into two, and the split-
ting separation is 2g.

Finally, the figure of the merit for cavity QED is the single atom cooperativity C. It is

a dimensionless value defined as

C =
2g2

κΓ
(3.22)

The single atom cooperativity is the square of g factor divided by the product of two dis-

sipation rates, which indicates the ratio between the coherent and incoherent effects in a

coupled system. The inverse of C is also often referred to be the critical atom number,

which gives the number of atoms required to strongly change the cavity transmission. To

achieve a strong interaction between a single atom and a single photon, we need C > 1.

In this case, even a single atom is able to induce a large effect on cavity transmission. If

g ≫ (κ,Γ), the coherent process happens faster than any dissipation mechanism, then the

system is in the ’strong coupling’ regime.

By using the definition of g (Equation 3.9) in C (Equation 3.22) and combining the defini-
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tion of quality factor Q (Equation 3.17), we find that

C ∝ Q

V

∣∣∣∣ ϵrE(r⃗)

max(ϵrE(r⃗))

∣∣∣∣2 (3.23)

We can see that, to achieve large cooperativity, we need to maximize Q/V and direct the

atoms toward the maximum electric field. The small mode volume is one of the biggest

advantages of nanophotonic resonators.
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3.3 Micro-ring resonator

In this section, we will experimentally demonstrate a high-performance silicon nitride

(Si3N4 or, in short, SiN) microring resonator and show, through simulations, that it is capa-

ble of strongly interacting with slow atomic beams during their microseconds-long transit

time above the resonator. We also show that racetrack versions of these resonators can

be combined with thermal atomic beams, which substantially reduces the vacuum require-

ment and laser overhead and paves the way toward highly integrated quantum devices using

atoms on chips. The results in this section have been published in Ref. [50].

The proposed integrated platform is shown in Figure 3.3. We can integrate the silicon

channels we described in Chapter 2 with the nanofabricated microresonators on the same

chip. Rubidium atoms from an atomic source, either a slow atomic beam from a 2D+

magneto-optical trap (MOT) or a beam of fast atoms from a thermal vapor, pass through the

microchannels, fly above the resonator, and strongly interact with it through the evanescent

field. Lithographically defined microchannels of several mm in length help with atomic

beam collimation and alignment with the resonator. The alignment between atoms and

the resonator is a huge issue for many other platforms [67, 63]. The alignment is crucial

for the interaction since the mode volume for these microresonators is extremely small.

Our precisely controlled channel size and location will align the atoms and the resonator

naturally on the same chip, offering a huge advantage in scalability and robustness. As we

discussed in Chapter 2, the microchannels can be freely tailored for different applications,

and great collimation can be achieved to minimize excess contamination by the atoms to

the resonator.

3.3.1 Fabrication and characterization

The high-quality factor (high-Q) micro-ring resonator is fabricated by Ali Dorche in Prof.

Ali Adibi’s group at Georgia Tech and characterized by Ali Dorche and myself. More
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Figure 3.3: Schematic of the proposed integrated platform for cavity QED. The microchan-
nels for atoms and the micro-resonators are integrated on the same chip. Collimated atomic
beams fly above the resonator and interact with it via the evanescent field from the res-
onator. The resonator is coupled with a waveguide to guide photons in and out.

details about fabrication can be found in our publication [50].

In our platform, the microresonator should allow a strong interaction of the atom flying

above the resonator with the evanescent tail of the electric field of a resonant mode. This

requires a thin SiN film with air-clad. Furthermore, the microresonator needs to have a

reasonably small radius for the single atom cooperativity parameter C ∝ Q/V increases

with decreasing mode volume V . The requirements for efficient atom-photon interactions

impose trade-offs among the degrees of freedom to achieve high Qs in microresonators.

High-Q microresonators are usually achieved with a large radius, tight field confinement,

and oxide-clad. Our requirements, along with the increased Rayleigh scattering at typical

wavelengths of atomic transition [74], highlight the challenges to achieve high-Q [75]. Our
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deposited SiN layer has a measured thickness of 287 nm. The width of the waveguide

bent to form the microring resonator is chosen wf = 5 µm to minimize the effect of the

surface roughness at the inner wall of the microresonator. Another reason for choosing

a larger width and radius than Ref [69] is because atomic beams are faster with a larger

spatial distribution than trapped atoms. A bigger resonator increases the overlap with flying

atoms as well as their interaction time. The outer radius of the ring is Ro = 35 µm to

ensure an appropriate quality of the resonant modes, i.e., avoiding significant curvature

while increasing the coupling factor g, and having a large-enough spectral distance between

different families of transverse resonant modes. The second-order radial TE mode has a

higher Q than the first-order one as its electric field peak is farther away from the outer ring

sidewall, thus lowering the scattering losses. The bus waveguide coupled to the microring

resonator has a width of 770 nm at the coupling region to ensure appropriate coupling.

The fabrication process starts with a planar polished oxidized silicon (Si) wafer, with 5

µm thermal oxide that is formed by dry-wet-dry oxidation process, forming a 300 nm-thick

dry silicon dioxide (SiO2) layer on top to ensure the high quality of the oxide region at the

interface with the devices. The SiN layer for defining the waveguide and microresonator is

deposited by LPCVD at a Tystar nitride furnace, with agent gases of dichlorosilane (DCS)

and ammonia at 800◦C. The stoichiometric SiN (i.e., Si3N4) is deposited by adjusting the

agents’ ratio, leading to a refractive index around 2 at λ = 632 nm. The deposition time

is adjusted to reach a SiN thickness of about 290 nm (the actual measured thickness on the

sample has been 287 nm). The sample is cleaned in two steps: first AMI solution (acetone,

methanol, isopropanol), nitrogen blow dry, followed by a short BOE 6:1 (buffered oxide

etchant) wet etching, running DI (deionized) water, and nitrogen blow dry. The sample is

then baked on a hot plate to remove any moisture and prepare it for electron-beam resist

coating. Flowable oxide (DOW corning FOx 16) is then spun on the SiN thin film, fol-

lowed by baking the sample on a hot plate. The devices are patterned using electron beam

lithography (EBL) with current I = 2 nA. The EBL parameters are optimized to minimize
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Figure 3.4: The optical image of the fabricated resonator and grating couplers. (a) A fabri-
cated microring resonator coupled with a waveguide. (b) Some fabricated gratings coupled
with waveguides. They can convert light from the vertical direction into the horizontal
waveguide. The color in the grating results from the interference of visible light. (c) The
picture of the total device ready for characterization.

the edge roughness in the mask. After developing the sample in 25% Tetramethylammo-

nium hydroxide (TMAH electronic grade) and nitrogen blow dry, the sample is etched in

inductively coupled plasma (ICP) reactive ion etching (RIE) machine, with an optimized

flow of oxygen, argon, and carbon tetrafluoride (CF4) as the etching agents. The selectivity

of SiN:FOx has been around one. The process is followed by short wet etching in BOE 6:1

(to avoid major undercutting) and nitrogen blow dry.

Figure 3.4 shows some optical images we took under a microscope with different mag-
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3

Figure 3.5: The characterization setup. Two fibers are fixed to around 80 degrees normal
to the chip surface and are aligned by 5-axis stages to the input and output gratings on the
chip. A 50× long working distance objective is used together with a microscope system to
see the microstructures.

nifications. The waveguide is tapered to a narrower width to couple light into and out of

the resonator. The distance between the resonator and the waveguide is tuned to near the

critical coupling condition. Two gratings are used to couple light in and out of the waveg-

uide.

To characterize the Q of the microresonators, the continuous-wave (CW) laser light

from a tunable diode laser is coupled to the fiber and passed through a fiber polarization

controller. Then, as shown in Figure 3.5, the other end of the fiber is cleaved, and the tip

of the fiber is fixed by a mount and a 5-axis translational stage. The fiber tip is around

80 degrees normal to the chip and is aligned to the gratings by using the stage and the

imaging system. A Mitutoyo long working distance (LWD) objective is needed for the

imaging system because of the vertical clearance requirement by the vertical fiber tip. The

output grating is also similarly aligned with a multimode fiber tip to couple light out. A

Si-amplified detector is used to detect the transmitted light and output an amplified voltage

signal. The CW laser is swept in the wavelength range λ = 770− 780.5 nm with 0.05 pm
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Figure 3.6: Optical characterization of the microring.(a) Normalized transmission through
the waveguide, and (b) the scanning electron microscope (SEM) image of the fabricated
microresonator with an outer radius of 35 µm and a width of 5 µm formed in a 287 nm-
thick SiN on a SiO2 substrate. The microresonator is coupled to a bus waveguide with a
gap distance of 100 nm. The gap size and the bus waveguide width are selected to achieve
proper coupling to the TE1 mode of the resonator. The observed results show the operation
in the under-coupled regime. In (a) families of modes spaced by ∼ 1 nm can be seen.
Within each family, the spacing is large enough to avoid intermode coupling. The TE1

family mode represents high-Q resonances as shown in the zoomed-in plots in (c) and (d).
Loaded Qs at both resonant wavelengths λ = 774 (778.2) nm are above 1.5 × 106. Blue
circles are experimental data and the solid red lines are fits to a double Lorentzian curve to
account for the splitting of degenerate counter-clockwise resonant modes.

resolution. The collected transmission from the detector is then fitted to two-Lorentzian

curves to take into account the intracavity coupling between counter-propagating modes.

This facilitates the characterization of Qs associated with these modes. The characteriza-

tion results are shown in Figure 3.6. The zoomed linear transmissions for two longitudinal

resonant modes at λ = 774.2 nm and λ = 778.2 nm are depicted in Figure 3.6(c), and

Figure 3.6(d), respectively, showing Qs larger than 1.5×106 for both modes. Figure 3.6(c)

indicates the splitting between the counterclockwise and clockwise modes at λ = 774.2
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nm. The splitting is proportional to the coupling between them, so for the resonant mode

at λ = 778.20745 nm, the coupling is negligible. This resonator can be temperature tuned

to the D2 resonance of the 87Rb atom at 780.24 nm. Since the chip needs to be heated

to avoid atomic deposition, a shorter resonant wavelength is desired so that an increasing

temperature will increase the resonant wavelength to the rubidium transition. The spectral

temperature sensitivity is around ≈5.7 GHz/K. With Q = 1.5 × 106, the resonance width

(FWHM) is 256 MHz, which is much broader than the atomic resonance width of 6 MHz

for Rubidium. Standard electronics with a temperature control of 1-2 mK or better can be

used to achieve a good lock to the atomic transition while heating the device to an elevated

temperature.

3.3.2 Simulations

From the introduction section in this chapter, we know that to simulate the dynamics of

atoms interacting with the microresonators, we need to solve the Master equation (Equa-

tion 3.21) with the Hamiltonian (Equation 3.20). We can get the cavity decay rate κ from

our characterization data, but the g(r⃗) factor needs to be calculated carefully with the sim-

ulated electric field of the resonator.

From Equation 3.9 we know

g(r⃗) = g0 ·
√
ϵr|E(r⃗)|

·max(
√
ϵrE(r⃗))

(3.24)

With g0 = −
−→
d ge · ξ̂

√
w

2h̄ϵrϵ0V
, and V =

∫
dr3 ϵr|E(r⃗)|2

max(ϵr|E(r⃗)|2) . The electric field distribution

of the TE1,486 mode is simulated by COMSOL and shown in Figure 3.7(a). The subscript

numbers 1 and 486 indicate the radial and azimuth mode numbers, respectively. This TE

mode is used because it has a higher Q than the first-order one, as its electric field peak is

farther away from the outer ring sidewall, thus lowering the scattering losses.

In the Matlab program, a 4000 × 60000 grid (vertically more accurate) is generated to
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(a) (b)

Figure 3.7: High-Q SiN resonator for strong atom-light interaction. (a) Normalized electric
field distribution at the cross-section of the microresonator for the mode TE1,486 with sub-
scripts 2 and 486 showing the radial and azimuth mode numbers. The width of the SiN film
bent to form the microring is 5 µm, with a height of 287 nm, and an outer radius of 35 µm.
Red lines show the boundary of the SiN resonator, and the gray line shows the boundary of
the SiO2 substrate. (b) The atom-resonator coupling factor g(z) along the vertical dashed
line in (a) at the lateral maximum of the resonator mode intensity at radius R = 33.7 µm.

interpolate the electric field data from the COMSOL simulation to increase the resolution.

Then, each grid cell is used as dA for integration in three dimensions. Since the resonator

is a micro-ring, cylindrical symmetry is used for doing the calculation. The spatial vary-

ing ϵr of the system (Si2O3, SiN, and air) is also included in the calculation. The value

of g(R, z) at R0 = 33.7 µm above the resonator surface is shown in Figure 3.7(b), where

z is the height above the resonator surface, and R is the radius to the center axis of the

ring. It is noticed that g(R0, z) decreases very fast with z, since it is an evanescent field,

emphasizing the importance of air-cladding in resonator design. Our resonator achieves a

single-photon vacuum Rabi frequency 2g(R0, z0) = 2π × 64 MHz around z0 = 100 nm

above the resonator while achieving a high Q with air-cladding. The single-atom coopera-

tivity parameter is C(R0, z0) = 4g(R0, z0)
2/κγ ≈ 2.7 exceeds 1.

We can see from Figure 3.7(b) that the closer our flying atoms are to the resonator

surface, the stronger the interaction is. But the limitations are the strong nonlinear Casimir-

Polder force with the surface. We used an approximate formula for the Casimir-Polder
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Figure 3.8: The atomic trajectories with different velocities and distances from the surface.
(a) Atoms with a velocity of 300 m/s. (b) Atoms with a velocity of 100 m/s. (c) Atoms
with a velocity of 30 m/s.

potential for Rb atoms (Ref [67] supplement)

U(z) =
−C3

λeff
2π

z3 · (z + λeff
2π
)

(3.25)

Where C3/h̄ = 2π × 1500 Hz·µm3, and λeff = 650 nm for SiN. We can see that the

force increases dramatically when it gets closer to the dielectric surface. The different

trajectories of atoms with different velocities are shown in Figure 3.8. The vertical (z)

direction velocity is set to zero, and the transverse velocity of 300, 100, and 30 m/s is

simulated with different heights from 30 nm to 120 nm. The faster the atom is, the closer

it can get to the resonator without crashing, but the shorter the transit time. The transit

time needs to be long enough to accumulate enough photons for an accurate measurement.
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Thus, the system needs to be optimized with the interaction strength and the interaction

time based on specific applications.

Figure 3.9(b) shows the transmission of the cavity versus laser detuning for both an

empty cavity and a cavity containing one stationary atom 100 nm above the resonator at

R = 33.7 µm. The peak splitting is the well-known vacuum Rabi splitting that is propor-

tional to 2g(r⃗)/2π. If we set the excitation laser to zero-detuning and lock the resonator to

the atomic transition, the presence of an atom will cause the transmission of the cavity to

increase. With a constant excitation power, this will result in an increasing photon flux in

the detector. For moving atoms, the change of the photon flux depends on g(r⃗(t)), and with

single-photon counting modules as the detector, we can achieve the real-time monitoring

of an atom transit.

The spatial coordinate of the atom, r⃗(t), is computed and updated classically with an

initial velocity and the Casimir force. Then, the corresponding g(r⃗(t)) is extracted based

on the atom’s location. We applied the adiabatic approximation in solving the Master

equation (Equation 3.21) with slow atomic beams because the time scale for atomic transit

(microseconds) over the resonator is much slower than the internal state evolution time

(tens of nanoseconds) given ((g, γ, κ)/2π ≈ (32, 6, 256) MHz) and we will confirm this

approximation by full time-dependent calculations later. The Master equation is solved

using the instantaneous value of g(r⃗(t)). The steady state of the master equation with each

g(r⃗(t)) value is calculated, and the expected value for cavity decay and atomic decay is

calculated accordingly.

Sample transits for atoms with different velocities are shown in Figure 3.9(c). The

signals are displaced in time for a clearer view. The resonator size is the same as that in

Figure 3.6 with a Q of 1.5 × 106. The extinction ratio at the critical coupling condition is

assumed to be 13 dB. The horizontal and vertical velocities of the atom are set to zero. The

number of transmitted photons increases as an atom flies closer to the resonator surface,

and the double peak in the signal results from the two nodes in the TE1 field distribution
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Figure 3.9: (a) The atoms transit through the evanescent field above the resonator. (b)
Transmission spectra of excitation photons, with g/2π = 32 MHz, loaded Q = 1.5 ×
106, and 52.9 pW optical excitation power under the ideal critical coupling condition (the
average number of photons in the resonator at zero detuning is ∼ 0.12). The cavity is
locked on resonance for atom sensing. (c) The detector signal when an atom flies above
the resonator. The black reference line is the background signal from the imperfect critical
coupling condition. Blue line: v = 3 m/s, h0 = 150 nm; Red dash: v = 1.5 m/s, h0 = 190
nm; Orange dot: v = 0.8 m/s, h0 = 230 nm. The excitation power is 52.9 pW. The vertical
and horizontal velocities are set to be zero. h0 is the vertical distance between atoms and
the top resonator surface. (d) The detector signal when an atom flies above a racetrack
resonator (shown in the inset, with an extinction ratio of 13 dB in the critical coupling
regime), with velocity v = 300 m/s, h0 = 100 nm, and excitation power of 231.8 pW. The
resonator is locked to w0 + kva to compensate the Doppler effect.
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(See Figure 3.9 (a)). Atoms with a broad range of longitudinal velocities can be detected.

The atom’s height and longitudinal velocity determine the signal intensity and duration,

respectively. The faster the atom, the closer it can be to the resonator without crashing and

the more intense (but shorter) signal it creates. With these constraints, we estimate that

atoms with 0.2 m/s to 30 m/s longitudinal velocities can be detected without crashing on

the resonator. The atom beams with such velocities can be generated from a 2D+ MOT [76,

77] and delivered via microchannels as shown schematically in Figure 3.3. Interestingly,

the ring configuration allows us to detect the same atom twice, and the time interval can be

used to calculate the longitudinal velocity of the atom as well.

While the ratio g/κ ≈ 0.12 achieved does not yet allow reversible atom-photon inter-

actions, their interaction is still sufficiently strong to enable quantum device applications.

For example, we envision that our platform could be used for a single-photon switch by

single atoms, similar to what has been demonstrated using macroscopic resonators [78].

Using a 2D+ MOT with 1.8 × 1010 atoms/mm2/s [76], which has an average longitudinal

velocity around 8 m/s, we estimate that with an excitation power of 3.4 photons/µs and a Q

of 1.5 × 106, we can achieve on average, a 50% contrast between ”ON” and ”OFF” states

and a single photon routing rate around 10 kHz for each microchannel-resonator pair. The

routing rate is much faster than those in the typical cold-atoms-dropping approach [79],

which requires around one second to finish one cycle. If the resonator Q can be improved

to 6 × 106, the contrast can be 85%, which is competitive with the cold atom systems but

with much higher repetition rates due to the absence of a long dead time. The switch can

be activated by the entry of a single atom into the vicinity of the resonator and by using fast

electronics to detect the rise of detected photons in the first 100 ns time bin.

We have also fabricated racetrack resonators with ∼ 7×105 loaded Q. The quality factor

is less than the ring resonator because of the extra loss from the mode propagating from

the ring section to the straight section. We studied the potential use of racetrack resonators

to detect thermal atomic beams generated by our microchannel-collimation of 100 ◦C Rb
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vapor. Atomic vapors have recently been proposed for cavity quantum electrodynamics

(QED) applications [51]. The advantage of our approach is the ability to place atoms with

lithographic precision at a discrete location above the resonator. We designed a racetrack

resonator with a R = 20 µm ring section and 30 µm straight sections and align its straight

sections to our microchannels (see Figure 3.9(d) inset). In this way, the collimated thermal

atoms with an average speed of 300 m/s will fly along the 30 µm straight section and

strongly interact with the resonator for ∼ 100 ns. The transit time is thus much longer than

the microring resonator and provides a detectable effect. The Master equation simulation

of a thermal atom transit without adiabatic approximation is shown in Figure 3.9(d). The

setup is similar to Figure Figure 3.3, and the Q of the racetrack resonator is assumed to be

1.5 × 106, with the transverse and vertical velocity set to be zero. The initial peak is the

Rabi oscillation resulting from an atom entering the regime with a strong evanescent field

of the racetrack and will be discussed later. If we monitor photons transmitted in 100 ns

time bins and assume a 50% detection efficiency, we should find the number of photons

jumping from 2.5 to ∼ 6, which indicates an atom transit.

3.3.3 Adiabatic approximation

This section will discuss the adiabatic approximation we used in previous simulations and

compare it with the full-time-evolving method. The adiabatic approximation effectively

means that we assume the internal state evolution time is much faster than the transit time,

and the internal state will reach a steady state before the parameters change dramatically.

For each time step dt, we update the location of the atom classically and find the cor-

responding g(r⃗). Then, we find a steady-state solution of the master equation with the

instantaneous g(r⃗) and calculate expected observables with this quantum state. As for the

full-time-evolving method, a much smaller dt is used, and each step evolves the density ma-

trix according to Equation 3.21 and the instantaneous g(r⃗). The adiabatic approximation

can save the computational time of the program and accelerate different iterations of sim-
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Figure 3.10: The comparison between simulations with and without approximation. (a)
Simulation results for an atom transit above our ring resonator. The blue dashed line is the
full-time evolving simulation result, and the red dashed line is the result with the adiabatic
approximation. (b) Simulation results for an atom transit above the straight section of the
racetrack resonator. The blue line is the result without approximation, and the red line is
with the approximation. (c) The time evolution of each state in (b), we can see that the state
reaches the steady state quickly within ≈30 ns.
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ulations. Here, we simulated systems in the same condition with two different approaches

and demonstrated the accuracy of this approximation.

Figure 3.10 shows the comparison results. In Figure 3.10(a) and (b), the blue line is the

result of full-time-evolving simulation, and the red line is the simulation with the adiabatic

approximation. Figure 3.10(a) simulates an atom with a velocity of 3 m/s transit through

our microring resonator, and we can notice that the full-time-evolving method has a slightly

slagged response to the change of g( ⃗r(t)), but the difference is negligible in this time scale.

Figure 3.10(b) is the comparison result for a 300 m/s atom transiting through the racetrack

resonator. With a transit time of around 100 ns, the difference between the two methods is

more prominent, which is the reason for using the full-time-evolving method in Figure 3.9

(c). The internal states extracted from the density matrix is shown in Figure 3.10(c). Here,

g, e represents the atom in the ground state or excited state, respectively, and n means the

Fock state with n photons. When the atom enters the evanescent field of the resonator, it

interacts with the field and is driven toward the excited state. Thus, all the states with g

decrease, and states with e increase. After a short oscillation period, the states converge

to a steady-state solution. The full-time-evolving result shows some lagging and over-

shooting features compared with adiabatic approximation. However, the average change of

transmitted photons remains roughly the same.
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3.3.4 Microing resonators with cold atoms

Besides the single photon single atom interaction regime, the microresonator can also be

used to interact with a group of atoms. Our system has the potential to build miniaturized

devices like atom interferometers and inertial sensors within this regime. This section

will summarize our simulation efforts in utilizing our high Q microring resonator to detect

periodical transits of cold atoms.

Our collaborator in the Air Force Research Laboratory (Dr. Spencer E. Olson, Dr.

Matthew B. Squires, et al.) has put wires on the back of their chip outside of the vacuum

chamber to create strong magnetic traps. Bose-Einstein condensate (BEC) was achieved

with these magnetic traps combined with a 2D MOT [80, 81]. The cold atomic cloud

is trapped on the chip surface by the magnetic trap, and its transit above our micro-ring

resonator will have a huge detectable effect, which could be used for building precise ac-

celerometers. Figure 3.11 shows the concept of the experiment. The cold atomic cloud

is controlled by two external magnetic traps— A vertical magnetic trap in the Z direction

with a frequency of 2 kHz and a transverse magnetic trap in the X direction. The vertical

magnetic trap prevents atoms from crashing into the chip, and the transverse trap makes

the atomic cloud periodically transit the microring resonator. The cross-section of the chip

and the resonator is shown in Figure 3.11. Only the left section of the resonator is used

to interact with the atoms. The green dashed line is the center of that waveguide and is

also the center of the transverse magnetic trap. The atoms are initially placed around 20

µm left of the green dashed line in the X direction. We have learned that the Casimir force

will be dominant when the distance between atoms and the dielectric surface is very small.

Thus, the silicon dioxide layer should be etched 1000 nm down to reduce the atoms lost

per transit.

The resonator we used in the simulation has a radius of 16 µ m, and a width of 1.1

µm. The resonator is still critically coupled with an extinction ratio of 13dB. But here,

we utilized the TM mode electric field pattern of the resonator. The reason for using TM
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Figure 3.11: The schematic figure for detecting multi-transits of the atomic cloud with
microring resonator. The cold atomic cloud is controlled by a vertical magnetic trap and a
horizontal trap.

mode as an improvement over TE mode is that the electric field of TM mode extends more

into the air. In TM mode, the dominant electric field is perpendicular to the resonator top

surface, and the continuous condition is Eair = ϵrEr. However, for the TE model, the

dominant electric field is parallel to the resonator top surface, and thus Eair = Er. As

shown in Figure 3.12(a), the electric field increases its magnitude after crossing the upper

boundary between the resonator and the air. From Equation 3.9 we know that

g(r⃗) = g0

√
ϵr|E(r⃗)|

max(
√
ϵrE(r⃗))

A higher electric field will provide a higher g factor. Figure 3.12 (b) shows the calculated

g factor of the TM mode in a vertical line at R=15.5 µm, g/2π = 200 MHz at H=0.4 µm.

As a comparison, we also simulated the TE mode of the same resonator and the calculated

g/2π = 115.8 MHz at H=0.4 µm. Thus, the TM model of the microresonator is more

suitable for interacting with atoms, providing a stronger interaction strength. With the

same g factor, the TM mode can allow the cold atomic cloud to stay further away from

the resonator to reduce atoms lost due to the Casimir force, which is crucial for achieving

multiple transits. On the other hand, the TM mode of the resonator has a lower quality

factor compared with the TE mode because it is more affected by surface roughness. As a
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Figure 3.12: (a) The TM mode electric field distribution of a microing resonator with a
radius of 16 µm. The width of the resonator is 1.1 µm (from R=14.9 to 16 µm), and the
height is 0.29 µm (from H=0 to 0.29 µm). (b) The g factor at different H at R=15.5µm
for the TM mode in (a). At H=0.4 µm, g/2π = 200 MHz (c) The g factor at different H
at R=15.5µm for the TE mode in the same resonator of (a). At H=0.4 µm, g/2π = 115.8
MHz

result, we assume that the resonator has a quality factor of 0.5 million with the TM mode.

For the interaction between a cloud of atoms and the resonator, we can still use Equa-

tion 3.20 and Equation 3.21 to simulate the system. The single atom g factor needs to be

replaced by an effective g′ factor for the collective mode of the atoms. The effective g′

factor can be calculated by [27]:

g′ =

√∑
i

gi(r⃗i)2 (3.26)
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Where the summation is over all atoms within the cloud.

In the simulation, the cloud temperature is set to 150 nK. One thousand atoms are

generated with initial velocities vi and initial position ri, which are defined by:

vi = vcenter + vthermal(i)

ri = rcenter + rthermal(i)

(3.27)

Where the thermal velocity vthermal(i) and thermal position rthermal(i) is randomly chosen

from a Maxwell-Bolzmman distribution with a temperature of 150 nK. vcenter and rcenter

are the mean velocity and mean position of the atomic cloud, respectively. The initial vcenter

is set to have a zero vertical velocity while the transverse velocity is set to 16 times the recoil

velocity (16h̄k/m ≈16×5.9 mm/s). Since the effective g′ factor is much larger than the

single atom case, the height of the atomic cloud to the resonator surface is increased to 800

nm to reduce atoms lost. The center of the vertical magnetic trap has the same height as

the initial atomic cloud. The cloud center is placed at 20 µm left of the green dashed line.

Atoms that crashed on the chip are counted and removed from the calculation. To save the

simulation load, the horizontal grid size for the electric field is increased to 16 nm, and the

vertical grid size is increased to 6 nm.

The simulation result with a horizontal trap frequency of 500 Hz is shown in Fig-

ure 3.13. Figure 3.13 (a) shows the transmission versus time for the first six transits. 35%

of the atoms are lost after six transits. The first transit created a great transmission peak, but

the sequential transits had less and less effect on the resonator. To find the reason, we also

plotted the time-evolving vertical position and the horizontal position of the atomic cloud.

The size of the atomic cloud is also calculated based on the standard deviation of the atoms’

distances to the center. Figure 3.13(b) shows that the vertical position of the atomic cloud is

perturbed every time the cloud transit the resonator. The Casimir force keeps enhancing the

oscillation amplitude every time the cloud is above the resonator surface, causing a bigger

and bigger oscillation of the cloud. The interaction between the atoms and the resonator is
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Figure 3.13: The simulation result with 500 Hz horizontal magnetic trap and 2 kHz vertical
magnetic trap. The input power is 5 pW. (a) The transmission versus time for the atomic
clouds. The transit time is around 50 µs for each peak. (b) The vertical position of the
atomic cloud versus time. (c) The cloud radius (calculated by the standard deviation) versus
time. (d) The horizontal position of the atomic cloud versus time.

thus compromised, and the transmission peaks are reduced.

From Figure 3.13(c) and (d), we can see that the atomic cloud is harmonically oscil-

lating in the horizontal direction with the transverse trap. The size of the cloud oscillates

twice the frequency of the transverse trap, and the atomic cloud is the largest when the

cloud passes the center of the transverse trap and has the largest transverse velocity. The

simulation in Figure 3.13 has the trap frequency fvertical = 4 × fhorizontal. We know that

it needs a quarter of the period for the cloud to move from the side to the resonator. When

the vertical frequency is an even multiple of the horizontal frequency, every time the cloud

is over the resonator, its vertical location is at the center of the vertical magnetic trap, and

it has the largest vertical speed and cloud size. This leads to more variance in the Casimir
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Figure 3.14: The simulation result with 400 Hz horizontal magnetic trap and 2 kHz vertical
magnetic trap. The input power is 5 pW. (a) The transmission versus time for the atomic
clouds. The transit time is around 50 µs for each peak. (b) The vertical position of the
atomic cloud versus time. (c) The cloud radius (calculated by the standard deviation) versus
time. (d) The horizontal position of the atomic cloud versus time.

force each atom experiences and creates more fluctuations in each transit. Suppose we

change the horizontal trap frequency so that the vertical trap frequency is an odd multiple

of the horizontal frequency. In that case, the cloud should have the minimum vertical speed

and cloud size when interacting with the resonator. Figure 3.14 shows the simulation re-

sult with fhorizontal = 400 Hz. Figure 3.14 (a) shows the transmission versus time for the

first five transits. The transmission peaks are much stronger after the first transit compared

with Figure 3.13. Figure 3.14 (b) also reveals that the vertical position of the atomic cloud

has a much more stable oscillation. This demonstrated that tuning the horizontal magnetic

trap frequency can greatly improve the multi-transit signal. 36% of the atoms are still lost
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Figure 3.15: The simulation result with 400 Hz horizontal magnetic trap and 6 kHz vertical
magnetic trap. The input power is 5 pW. (a) The transmission versus time for the atomic
clouds. The transit time is around 50 µs for each peak. (b) The vertical position of the
atomic cloud versus time.

after five transits, which is limited by the vertical trap potential. The Casimir force is much

stronger than the magnetic force for the atoms near the resonator surface.

The 2 kHz vertical trap frequency is not the maximum frequency that can be achieved

on-chip [80, 10]. Since our resonator chip is only 500 µm thick and can be even thinner if

needed, a stronger magnetic trap is feasible. We simulated the scenario where the vertical

magnetic frequency is increased to 6 kHz, and the horizontal frequency is kept at 400 Hz.

Then, with a stronger vertical trap potential, we lower the atomic cloud height to 600 nm

above the resonator to increase the interaction strength.

The simulation results are shown in Figure 3.15. The transmission peaks remain strong

after nine transits of the atomic cloud. As shown in Figure 3.15 (b), the vertical position of

the cloud also oscillates very stably in a finite range. At the end of the simulation, only 4%

of the atoms are lost, demonstrating that a robust multi-transit of a cold atomic cloud with

our resonator is feasible. These simulations provide important insights into the interaction

between cold atomic clouds and chip-scale microring resonators, paving the way for using

nanophotonic resonators to make chip-scale devices in the field of inertial sensing and

quantum information.
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3.4 Efficient edge coupling

The resonators we used in section 3.3 are coupled with a waveguide, and the waveguide

is coupled with two gratings on each end (see Figure 3.4). The light from a fiber tip can

be coupled to the grating and eventually to the resonator. There are several advantages

of using grating couplers. First, it is a mature and commonly utilized approach, and the

gratings are relatively easy to design and fabricate. Second, the coupling is achieved with

the fiber tips in the vertical direction perpendicular to the chip, providing great flexibility

in designing the devices. Especially in the early stage of fabrication, many devices need

to be fabricated and tested to explore the parameter space. With grating couplers, tens

or even hundreds of devices can be fabricated on the same chip and individually coupled

and characterized. Third, the grating coupler is polarization selective [82]. Combined

with polarization control of the input light, this property can be used to couple light into a

specific mode of the resonator.

However, the coupling efficiency of grating couplers is usually not big enough with a

simple focusing grating design. Using apodized gratings or combining the grating with

a bottom reflector can greatly improve the coupling efficiency [82]. But the fabrication

challenges and the compatibility with the intended device make it hard to implement. On

the other hand, as shown in Figure 3.5, each fiber needs a special metal tube bent to around

80◦to hold the fiber tip vertically and a precise 5-axis stage to align the fiber with the

grating. The whole setup is huge and bulky. For application with alkali atoms, the coupling

needs to be inside a vacuum chamber. This huge setup is not compatible with most of the

chambers and is against the purpose of miniaturization and scalability. As the simulation in

section 3.3 shows, for thermal atoms, the transit time is very short with the microresonators.

The accumulated signal difference is only a couple of photons per transit and will suffer

from the Poisson noise. On the other hand, the requirement of high vacuum compatibility

and size limit puts extra constraints on the coupling strategy. Thus, a crucial part of our
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Figure 3.16: Our compact setup to couple light between the fiber and the grating inside the
vacuum chamber.

cavity QED platform is connecting it with the outside world with high enough efficiency in

a compact approach. Efforts must be committed to finding a flexible, highly efficient, and

vacuum-compatible approach for coupling light in and out of the microresonators.

Figure 3.16 shows a compact setup we used to couple light between the fiber and the

grating inside the vacuum. A small 5-axis stage is used together with a special holder for a

metal tube. A customized Teflon fiber feedthrough mounted on a Swagelok fitting is used

to deliver the bare fiber into the vacuum chamber [83]. The fiber is fixed with the metal

tube to keep it vertical to the chip. The vacuum chamber we used is a six inches cubic

vacuum chamber from Ideal Vacuum. As we can see, the chamber can only accommodate

one fiber coupler to the grating. The other grating has to be coupled from free space outside

of the chamber. This setup has a low coupling efficiency and is hard to operate. With this

setup, an experiment was conducted where we tried to utilize a focusing grating to collect

fluorescence from rubidium atomic vapors. However, the signal collected out of the fiber

was only around 100 photons/s, which is too weak for more meaningful measurements.
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Thus, the details of this experiment are not included in this thesis.

Edge coupling, on the other hand, is a major approach to couple light into the waveguide

with high efficiency and high power limit [84, 85]. Many groups in the atomic optics field

have etched v-grooves on-chip to hold fibers close to tapered waveguides, achieving highly

efficient and compact edge coupling in the vacuum [86, 87]. Another novel approach is

that instead of bringing the fiber on the chip, the free-space laser beam is focused by a long

working distance (LWD) objective outside of the chamber into the end of the waveguide

[88]. It can achieve high coupling efficiency and allows us to switch easily between differ-

ent devices. This strategy does not require any extra mounts to be put in the chamber nor

use epoxy to glue the fibers on the chip. All the optics are outside the vacuum chamber,

and the free space laser beam can be easily tailored and manipulated without breaking the

vacuum. As a result, we decided to adopt this approach to our system, and this chapter

describes our efforts in realizing this novel approach.

3.4.1 Design and Characterization

Prof Ali Adibi’s group designed and fabricated the edge coupling chip. The chip has the

same fabrication process as we discussed in section 3.3. The chip layout is shown in Fig-

ure 3.17. There are six waveguides in a Z shape configuration; three are also connected to a

resonator for testing. The waveguide is tapered from a width of 600 nm to 80 nm gradually

over a 1.6 mm distance toward to edge of the chip (shown in the red circle in Figure 3.17).

The waveguide mode is slowly converted into an expanding mode and eventually emitted

out of the edge of the chip. Since below the 300 nm thick waveguide is the silicon dioxide

layer and above the waveguide is air. An extra layer of SU8 photoresist (shown as blue in

Figure 3.17) is deposited on top of the waveguide at the tapering region to make sure the

mode expands more symmetrically with the tapering process. The SU8 has a refractive in-

dex of ≈1.56 at 780 nm, which is pretty close to the silicon dioxide (≈1.45 at 780 nm). The

cross-section of the SU8 has a size of 4.5 µm times 4.5µm to accommodate the expanded
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Figure 3.17: The chip designed for edge coupling with a free space laser beam. Six waveg-
uides are shown, and three of them are coupled to resonators. As shown in the red circle,
the end of the waveguide is tapered to let the mode expand. The tapering region is cov-
ered with SU8 photoresist (blue color) to let the mode expand symmetrically. The chip
is cleaved properly to expose the end of the waveguide and let the mode expand into free
space.

mode. SU8 is not the best candidate since the refractive index does not match perfectly,

and the transmission is only around 75% at 780 nm [89]. Nevertheless, using it does not

require designing and testing an extra fabrication procedure.

To characterize the edge coupling chip, we first need to measure the mode divergence

of the light emitted from the end of the waveguide. Then, we can focus our laser beam

to match that divergence to achieve a good coupling efficiency. As shown in Figure 3.18

(a), a cleaved fiber tip is used to couple light into the waveguide from the end of the chip.

The coupling efficiency of fiber to the waveguide is not important as our purpose is to

measure the output beam divergence. The output from the other side of the waveguide

is collected by a lens set and a camera. One measured beam profile of the emitted light

from the other side of the waveguide is shown in Figure 3.18 (b). The beam profile is

very close to a slightly elliptical Gaussian beam. To measure the divergence of the output

beam, the imaging system, which is mounted on a translational stage, is moved along the

beam propagation direction to measure the beam size versus distance. The data is shown

in Figure 3.18 (c). The x-axis is the position labeled on the translational stage; thus, only
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Figure 3.18: Matching the mode of the edge coupling chip. (a) An optical image of the
fiber coupling approach. A cleaved fiber tip is held by a 3D stage to couple light into the
waveguide. The SU8 is visible in the image. (b) The measured beam profile of the emitted
light out of the waveguide. (c) The measured emitted beam size at different distances. The
a-axis is the position labeled in the translational stage. The blue dots line is the measured
data, and the red line is the theoretical beam divergence of a Gaussian beam with a radius
of 0.7 µm.
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the change in its value is meaningful. For a Gaussian beam, the beam radius w follows a

hyperbolic relation:

w(z) = w0

√
1 + (

z

zR
)2 (3.28)

Where z is the axial distance from the beam’s focus, zR is the Rayleigh range zR = πw2
0/λ.

We found that a Gaussian beam with a waist radius w0 =0.7 µm fits the divergence of the

waveguide beam very well (Figure 3.18(c)). The corresponding numerical aperture (NA)

is around 0.32.

With the beam divergence information, we can now use free space optics to match this

beam mode. The setup is shown in Figure 3.19. First, the output laser from a polarization-

maintaining fiber patch cable is collimated using an aspheric lens with a 6.24 mm focus

length (Thorlabs C110TMD-B). Then, a long working distance (LWD) objective with 50X

magnification (Mitutoyo Infinity Corrected) is used to focus the laser beam to around 0.7

µm waist radius to match the waveguide mode. The output on the other end of the waveg-

uide is collected by another 50X LWD objective, then imaged on a camera or photodetector.

To accurately align the laser beam with the end of the waveguide, the input objective is

first removed, and the laser beam is roughly aligned to hit the edge of the chip where our six

waveguides locate. Another imaging system not shown in Figure 3.19 is placed perpendic-

ular to the chip to look at the chip surface and monitor the scattering light. When the rough

alignment is finished, a bright scattering spot can be seen covering all six waveguides.

Then, the input objective is added back. Two mirrors and a miniature 2D translational

mount (Thorlabs LM1XY) are carefully tuned to align the laser spot to one of the waveg-

uides. During this process, the focused laser should create a tiny bright laser scattering spot

on the edge of the chip, which is used as a location indicator. Finally, the distance between

the objective and the waveguide is changed, together with other degrees of freedom, to

move the focus of the laser beam onto the waveguide, matching the waveguide mode and

achieving the highest coupling efficiency. Figure 3.20 shows an image of the chip after

71



Figure 3.19: Free space setup to characterize the edge coupling chip. The laser emitted
from a polarization-maintaining fiber is collimated and directed to the LWD objective. A
λ/2 waveplate is used to control the polarization of the laser. A miniature 2D translational
mount and a 1D translational stage are used to manipulate the input objective. The imaging
system is composed of an objective plus a plano-convex lens mounted on a 3D translational
stage.

all the alignments. Because of the surface roughness, all waveguides and resonators will

create scattering light into the environment, which can be seen in the image. The laser is

tuned to the resonance frequency of the microring resonator. Thus a bright ring can be seen

on the left side of Figure 3.20. In the middle of the image, the end of the SU8 layer is

also quite bright, indicating a high-loss section. The SU8 layer has a fixed width of 4.5

µm and a fixed height of 4.5 µm, covering the whole 1.6 mm region where the waveguide

is gradually tapered. When coupling the free space light into the waveguide, some of the

modes in SU8 are not fully coupled and create a big scattering at the beginning wall of the

SU8 layer. This loss could be reduced by creating a tapering region of the SU8 near the
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Figure 3.20: Image of the edge coupling chip when the alignment is finished. The laser
is tuned to resonator resonance, and the microring resonator can be clearly seen with the
scattering light. The bright spot in the middle is the end of the SU8 layer, where input light
gets scattered. The end of the waveguide is not shown.

beginning to let the mode better convert into the waveguide.

To measure the coupling efficiency of this novel edge coupling strategy, we first char-

acterized the waveguides without resonators to eliminate the effect of resonator-waveguide

coupling. By measuring the input power and output power, we calculated the coupling

efficiency of three waveguides. The end-to-end (two facets) efficiencies corrected for the

input lens transmission (70%) and output lens transmission (75%) are:

Waveguide A: 10.2% (9.9 dB)

Waveguide B: 32.6% (4.9 dB)

Waveguide C: 26.3% (5.8 dB)

The LWD objective on the collecting side has a NA of 0.42, which is higher than the waveg-

uide output NA of 0.32. Thus, the losses should mainly be the chip losses (facet reflection,

SU8 transmission, etc.) and the coupling loss. For waveguide A, we noticed a strong

scattering around the output SU8. It results from small cracks created during the cleaving
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Figure 3.21: Measured resonance peaks of the resonator on edge coupling chip. The x-axis
is the frequency change in MHz, and the y-axis is the voltage on the oscilloscope. The
resonance peak has a FWHM of around 277 MHz, which corresponds to a quality factor of
1.38 million.

process, leading to lower efficiency. If we assume the input coupling facet has the same

loss as the output facet, our non-defective waveguides (B and C) achieved more than 50%

coupling efficiency for each facet. This coupling efficiency is much higher than normal

grating couplers and is even slightly higher than the edge coupling with lensed fibers on

U-grooves [86].

The waveguides with resonators are also characterized. A distributed Bragg reflector

laser (DBR) is used to measure the quality factor of the resonators. DBR laser has a tiny

cavity whose length can be easily tuned by temperature, which allows us to tune the fre-

quency over 500GHz. One measured resonance peak is shown in Figure 3.21. A Lorentzian

function is fitted to the data, and a FWHM of around 278 MHz is extracted. The calculated

quality factor is around 1.38 million. This shows that our resonator is not severely affected

by adapting the edge coupling approach.
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Figure 3.22: The vacuum setup to accommodate the edge coupling chip.

3.4.2 Integration in a glass vacuum chamber

We have demonstrated a highly efficient edge coupling strategy that can couple a free-

space laser beam into the waveguide. The next step is putting the chip inside the vacuum

and preparing it for further interaction with alkali atoms. The working distance of our

LWD objective is 20mm. Thus, to focus our laser beam on the chip from the outside, the

vacuum chamber we use needs to have optical access on the sides of the chip and within a

distance of 20 mm. Our setup is shown in Figure 3.22. A cuboid glass vacuum chamber

with an inner width of 1 inch is used. The distance from the chip to the outer chamber

wall is less than 10 mm, allowing our edge coupling strategy. A cuboid copper heat sink

is combined with a thermoelectric cooler (TEC) to control the temperature of the chip in

order to thermally tune the resonance of the resonator to the transition line of rubidium.

To ensure a good thermal conductivity between different components, a layer of sticky

carbon conductive film (PELCO) is used between different components. Above the TEC,

a customized thin copper plate is attached with the carbon film to transfer heat evenly into

the chip. The extruded rectangular platform in the copper plate (see Figure 3.22) will hold
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our edge coupling chip. The platform has a narrower width than the chip to expose the

waveguide at the edge of the chip fully. A 10K thermistor is glued on this plate to monitor

the temperature.

Our coupling strategy was successfully repeated with the chip inside the chamber,

which proved its flexibility and high efficiency. Furthermore, thermal tuning of the res-

onance peak of the resonator to rubidium transition is also achieved by Linzhao Zhuo in

our lab. Thus, we have demonstrated a versatile and highly efficient apparatus for the inte-

gration of nanophotonics and alkali atoms.

3.5 Slot resonator for thermal atoms

As we mentioned in the introduction, single atom cooperativity, the figure of merit for

cavity QED system, is determined by:

C ∝ Q

V

∣∣∣∣ ϵrE(r⃗)

max(ϵrE(r⃗))

∣∣∣∣2

To achieve large cooperativity, we need to maximize Q/V and direct the atoms toward

the maximum electric field. In section 3.3, we have discussed the microring resonator and

its interaction with atoms. A big limit for the microring resonator is that the maximum

electric field is inside the SiN, and the atoms can only interact with the exponentially de-

caying evanescent field. This section will discuss a new slot resonator we designed that

exposed the atoms to the maximum electric field. The goal is to combine our chip-scale

thermal atomic beams with the slot resonator to achieve unprecedented cooperativity in an

integrated nanophotonic platform.

The schematics for this novel slot resonator and its integration with our atomic channels

are shown in Figure 3.23. The atomic channels are the silicon microchannels we have dis-

cussed in chapter two. The slot resonator is fabricated by using a double-layer SiN platform

with a thin SiO2 layer(see Figure 3.23(c)). The disk has a radius of 30µm, consisting of
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Figure 3.23: The schematics for novel slot resonator interacting with thermal atomic beams.
(a) A rendered image of the 3D model of the slot resonator integrated with our atomic
channels on the same chip. The red balls represent the atoms.(b) The top view schematic.
The slot resonator is coupled with a waveguide, and the atoms transit through the air gap.
(c) Schematic of the double-layer SiN platform to fabricate the slot resonator. The thin
silicon dioxide layer between the two SiN layers will be partially undercut to create an air
gap.
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two SiN layers and a SiO2 layer in between. The thickness of the SiN layer is 180 nm, and

the thickness of the SiO2 layer between them is 100 nm. The edge of the thin SiO2 layer

is partially etched 2.5 µm to create a 100 nm air gap for the atoms to transit. As shown in

Figure 3.23(b), a waveguide is used to couple light into the slot resonator under the critical

coupling condition, and the thermal atoms from our microchannels fly through the 100 nm

air gaps of the resonator.

As we discussed in subsection 3.3.4, the TM mode expands more into the air compared

with the TE mode, offering a stronger interaction strength. The TM mode profile of our slot

resonator is shown in Figure 3.24 (a). Only the edge of our resonator (R =27 to 30 µm) is

shown. The bottom of the resonator is set at H = 0, and the top is at H = 460 nm. A 2.5

µm thick SiO2 layer occupies the area with H < 0. We can see that with our design, most

of the electric field is concentrated in the air gap instead of the SiN layer, creating a smaller

mode volume and also a higher g factor with the atoms. The calculated g factor at R =29.5

µm is shown in Figure 3.24 (b). Some sharp changes occur when crossing the interface

between SiN and air, and between SiN and SiO2, which result from the limited resolution

(mesh size) used in making the plot. As expected, the highest g factor is now in the air

gap with g/2π = 371.5 MHz at the center of the gap, providing a huge advantage over

interactions reply on evanescent fields. The expected cooperativity with different quality

factors is plotted in Figure 3.24 (c). Experimentally, our collaborator (Prof. Ali Adibi’s

group) has fabricated slot resonators with quality factors higher than 500 K, indicating a

cooperativity value higher than 100. With these promising calculations, the next question

is whether the atoms can successfully make transits through the 100 nm air gap. As we

mentioned in the previous sections, the Casimir force dominates when atoms are very close

to the dielectric surface (Equation 3.25). As a result, the effect of Casimir force must be

carefully studied. Figure 3.25(a) shows the schematic side view of the experiment. Since

the thickness of the bottom SiN layer is only 180 nm. First, the SiO2 substrate between

the resonator and the atomic channel (d′) needs to be etched away (∼ 1µm), and only a
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Figure 3.24: (a) The TM mode profile of our slot resonator with a radius of 30µm. The first
SiN layer occupies 0 < H < 180 nm, 180nm < H < 280 nm is the air gap with a width
of 2.5 µm, and the top SiN layer occupies 280nm < H < 460 nm. (b) The calculated
distribution of g factor at R =29.5 µm. The spikes result from the limited resolution across
the boundary of SiN and air and have no further effect on our simulation. We can see that
the highest g factor is inside the air gap and can be accessed by the atoms. (c) The expected
single atom cooperativity with different quality factors.

small distance d remains. Otherwise, the atoms will be attracted to the chip surface before

reaching the air gap. Second, when atoms are within the air gap, the Casimir forces from

the top surface and bottom surface are in opposite directions, which helps the survival of

the atoms. Figure 3.25(b) shows the atoms’ trajectory with a distance of 30 to 70 nm from

the surface of the bottom SiN layer. The atoms are initiated with a longitudinal speed of

300 m/s (the most probable speed of the thermal beam), and the vertical speed is randomly

chosen to have a divergence angle of 0.4 mrad. Around 15% of the atoms hit the wall,
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Figure 3.25: (a) The side view schematic of the experiment. The SiO2 substrate between
the resonator and the atomic channel (d′) needs to be etched away to reduce the atom loss.
The distance d is set to be smaller than 1 mm. (b) The trajectories of atoms inside the
100 nm air gap. The y-axis is the distance to the bottom SiN layer. The atoms have a
longitudinal velocity of 300 m/s with a divergence angle of 0.4 mrad. (c) and (d) The
simulated atom trajectory and transmission signal for d =1 mm, quality factor 100 K, and
input light power 500 pW. The y-axis in (c) is the height from the bottom SiN layer. The
resonator is critically coupled with a 13dB extinction ratio.

demonstrating the feasibility of thermal atoms transiting the air gap. Figure 3.25(c) shows

the atom’s trajectory when the remain distance d =1 mm and Figure 3.25(d) shows the

simulated transmission signal. The methods for conducting the simulation are the same

as in the previous sections. The atom started with a longitudinal speed of 300 m/s and

zero vertical speed, with an initial height of 50 nm to the surface of the bottom SiN layer. It

reached the resonator at time 3.3 µs and was dragged downwards by the suddenly increased

Casimir force. The cavity’s transmission was affected by the atom and showed a huge peak

in Figure 3.25(d).
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Figure 3.26: The transmission signal of atoms’ transit with Q=100 K for the resonator. The
resonator is critically coupled with a 13dB extinction ratio. (a) The atom transit signal with
Pin = 500 pW. The signal-to-noise ratio (SNR) is around 5. (b) The atom transit signal
with Pin = 75 pW. The SNR is increased to 12. (c) Coincidences detection setup. The
transmission signal is split equally into two and directed into two single-photon avalanche
photodiodes (APD). The output TTL signal of the APDs is combined into an AND logic
gate to convert to coincident pulses, which are counted by a counter.

3.5.1 Signal detection and analysis

The high speed of thermal atoms combined with the small size of our microresonator makes

the transit signal very hard to detect. Besides the theoretical expectation, the cooperativity

needs to be measured experimentally and extracted from the experimental signal. As a

result, the detection and analysis of the signal are crucial to this project.

A simulated transit signal is shown in Figure 3.26(a). The transit time dt is only around

40 ns. With an input laser power Pin = 500 pW, the number of photons per transit is ∼20.

With a 10% collecting efficiency, the number of collected photons per transit is only 2. In

this case, the signal-to-noise ratio (SNR) is 5 but detecting a single transit is very hard. The
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SNR is determined by the input laser power Pin and the quality factor (Q) of the resonator.

A higher Pin or a lower Q will have a lower SNR. If we can have higher Q and collecting

efficiency, we could use a higher Pin to have more photons per transit while maintaining

the same SNR.

Single photon avalanche photodiodes (APD) have a dead time of 15 to 30 ns, making

them unsuitable for detecting our signal, which consists of tens of photons in a 40 ns pulse.

Silicon photomultiplier (SiPM) is a solid-state photodetector made of an array of thousands

of integrated single-photon avalanche diodes on one common silicon substrate [90, 91].

For Q=1 million and an improved collecting efficiency of 40%, we can have 40 photons

per transit with the same SNR of 5. SiPM is able to detect the single-transit signal, and

its small size makes it easy to integrate with our nanophotonic platform. However, for the

initial stage, where we have relatively low Q and low collecting efficiency, detecting the

single transit is very challenging.

On the other hand, instead of trying to detect single transit, we can detect an average

difference between the signal with and without atoms. In this regime, we can lower Pin to

increase the SNR. As shown in Figure 3.26 (b), the SNR is increased from 5 to 12 when

Pin is lowered from 500 pW to 75 pW. The ultimate SNR is limited by the extinction

ratio of the critical coupling condition. A 13dB extinction ratio means 5% of the input

light transmitting without an atom, resulting in a maximum SNR of 20. If we denote the

averaged transit time to be dt and the number of transits per second to be T , then the ratio

between the averaged photon rate (Rwith) with atom and the averaged signal without atoms

Rwithout is
Rwith

Rwithout

= 1 + (S − 1) · dtT (3.29)

In which S is the SNR.

Based on an atomic source with a brightness of 1.9 × 1015 atoms/s/sr/mm2 and assuming

atoms pass through the region defined in Figure 3.25(b), we expect to have T ≈ 104. With

the maximum S = 20 and averaged dt=40 ns, we can calculate the ratio to be 1.0076. The

82



ratio is so close to one that it is very hard to detect.

Instead, we came up with a novel coincidence detection method to enlarge the differ-

ence. The setup is shown in Figure 3.26(c). The transmission signal is split 50/50 into two

single-photon avalanche photodiodes in Geiger mode. The output TTL signal is sent into a

logic AND gate and a counter to count the coincidences with zero time delay. For a stream

of photons following Poisson distribution, the two-photon coincidence rate equals

C = R2τ (3.30)

Where τ is the size of the time bin to determine coincidences. The two-photon coin-

cidence rate is proportional to the square of photon rates. Thus the difference between the

signals with and without atoms can be amplified.

When there is no atom, the coincidences rate is R2
withτ . The coincidences rate with atoms

at zero time delay is R2
withτ + (S2 − 1)R2τ · dtT . Thus, we can get the coincidence rate

ratio Nc:

Nc = 1 + (S2 − 1)dtT (3.31)

For S=20, we can have Nc=1.16, which is very feasible to detect.

After detecting a difference in signal with/without atoms, the next step is to find a way

to extract the cooperativity from the data. We could, in principle, extract cooperativity

from Nc. However, Nc can be easily affected by the average transit time and the number of

transits per second. These two values are hard to estimate independently when the single

transit can not be measured. However, the simulations we did are under the condition that

cavity resonance frequency, atom resonance frequency, and the input laser frequency are

the same. We could scan the input laser’s frequency and measure a spectrum to gain more

information from the system. Figure 3.27 shows the calculated cavity transmission, SNR,

and Nc with different input laser frequency. The cavity resonance and the atom resonance

are kept at the same frequency, and the input laser frequency is detuned away by f . The
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Figure 3.27: The proposed coincidences method to measure the cooperativity experimen-
tally. Resonator Q=100 K, input laser power Pin=7.5 pW. The resonator is critically cou-
pled with a 13dB extinction ratio. (a) The transmission spectrum with different detuning
of the input laser relative to the cavity resonance. The blue line is the spectrum with an
atom, and the red line is without an atom. (b) The SNR with different detuning of the input
laser. (c) The calculated coincidence ratio Nc with different detuning of the input laser.
The FWHM is extracted by fitting the curve with a Gaussian function.
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slot resonator has a Q=100 K, and the input laser power Pin=7.5 pW. We can calculate the

SNR(f) from the resonator transmission in Figure 3.27(a). Then, by using Equation 3.31,

we can calculated Nc(f). Figure 3.27(c) shows our calculated Nc(f), which is fitted by

a Gaussian function to extract the FWHM. The FWHM is more robust and will not be

affected by the height of the peak. In fact, after confirming with simulations, the FWHM is

only a function of the resonator quality factor Q, g factor, and the input laser power Pin

FWHM(g,Q, Pin) (3.32)

The quality factor of the resonator and the input laser power can be measured independently

and accurately. The FWHM is an increasing function of g. As a result, we can determine

the g factor after measuring Nc(f) and its FWHM. Then, Equation 3.22 can be used to get

an experimental cooperativity value.

This section demonstrated our study in utilizing a novel slot resonator to achieve un-

precedented cooperativity on a chip-scale platform. Many crucial aspects of the project

are considered, including Casimir force, detection methods, and cooperativity extraction.

Prof. Ali Adibi’s group has made impressive progress in making slot resonators with great

quality factors (>500 K) and on-chip filters to reduce the rubidium contamination on res-

onators. More efforts are being devoted to experimentally observing significantly high

cooperativity.
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CHAPTER 4

SINGLE ATOMS IN MINIATURE ATOMIC BEAMS

Isolating, manipulating, and observing a single quantum system is the foundation for nu-

merous quantum applications and fundamental research. In recent years there has been

a surge of interest in room-temperature atomic vapors for applications in quantum infor-

mation science. Photon pairs generated using four-wave mixing [92, 93, 94], quantum

memories [95, 96] and single photon source [97] have been achieved with thermal atoms

in vapor cells. In contrast to laser-cooled samples, thermal vapors are straightforward to

generate, highly scalable, and can be operated continuously. The latter is especially im-

portant for achieving high data rates in quantum communications and state transfer. One

can define two broad thrusts to this research. One approach is ”top-down” and seeks to

engineer collective quantum behavior in one or a few modes of interest within the vapor

while ignoring the discrete nature of the constituent particles (atoms). This approach is

typical of four-wave mixing experiments [92, 94, 98, 95]. An analogy is the collective

excitation spectrum of quantum degenerate gases where phonons and magnons replace in-

dividual atoms as the relevant degrees of freedom [99, 100, 101]. In a second, ”bottom-up”

approach, one constructs a complex quantum system using individual atoms as building

blocks. This approach has been followed for laser-cooled atoms in optical tweezer arrays

[102, 8], and trapped ion systems [103, 104]. For thermal atomic vapors, this bottom-up

approach has thus far been quite undeveloped due in part to the rapid and random thermal

motion of the atoms that makes it difficult to track them. If one could utilize single atoms

in the thermal vapor, the possibilities are clearly enormous–a typical rubidium vapor cell

at 100 ◦C contains O(109) completely indistinguishable quantum systems within a 1 mm3

volume. Even a small fraction of such a large ensemble constitutes a huge and readily

available resource for quantum information if it can be harnessed.
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In an atomic beam, the arrival of the atoms follows the Poisson distribution. By tuning

the vapor pressure, we can make the probability of having one atom in the field of view

much larger than having more than one atom. In this way, we can make sure that the

single-atom effect dominates. Another advantage of atomic beams is that atoms move in

a well-defined direction. Thus, we can also interact with the atom upstream, selecting the

slow atoms and manipulating their quantum states. As a result, we utilized the chip-scale

atomic beams to demonstrate the feasibility of such a ”bottom-up” approach to quantum

information science with near-room-temperature thermal vapors.

This chapter will first discuss the photon time tagging system we built and tested, which

is the foundation for many quantum optics applications. Then, we experimentally isolated

a sub-ensemble of atoms whose three-dimensional velocity vector is 20 times smaller in

magnitude than the mean. The transit time through a field of view of size 25 µm has

been extended by a similar factor to 1 µs. Moreover, the direction of motion is the same

for all atoms in the sub-ensemble. We use this feature to demonstrate tracking of single

atoms across two detecting regions, with no obvious limit to the tracking ability. While

the approach is highly selective, we nonetheless still observe a sizeable number of such

atoms and suppress the large, unwanted background consisting of fast-moving atoms. As

a first step to constructing bottom-up thermal quantum systems, we observed quantum-

mechanical antibunching and the correlated photons from a single atom for as long as 1 µs,

thus demonstrating that the coherence time is limited by the transit time. We also observed

large values of the second order coherence g(2)(τ) and third-order coherence g(3)(τ1, τ2).

This indicates its potential to be a simple source of photon pairs or triplets for quantum

applications.

4.1 Photon time-tagging system

This section will discuss in detail how we built the photon detection and time-tagging

system from scratch. We hope the information provided can be helpful for researchers who
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are interested in building their own system.

The first element of a photon detection system is the detector. We used the single photon

counting modules (SPCM) from Excelitas Technologies. We have one free space module

(SPCM-AQRH-15) and a fiber-coupled module (SPCM-AQRH-15-FC), allowing us to do

coincidences measurements. The SPCMs we used are silicon avalanche photodiodes oper-

ated in Geiger mode. The absorption of the photon on the active area of the SPCM triggers

an avalanche process, after which a TTL level pulse (∼ 2.2 V) will be generated. Figure 4.1

(c) shows the characteristics of the generated TTL signal. The output pulse has a width of

around 15 ns. The dead time of the device is around 30 ns, which leads to a maximum

count rate of around 30 million/s. The quantum efficiency of the detector is around 65% at

780 nm. The timing resolution is 350 ps, which is sufficient for our applications. The free

space SPCM is mounted on a 1D translational stage, and the light from the fiber is focused

by an aspheric lens and aligned to the SPCM’s active area. The translational stage and the

mount for the aspheric lens can be tuned to optimize the collecting efficiency.

With the detectors, the next step is to count and time-tag the photons. Counting the

photons can provide intensity information about the signal, making the SPCM a very sen-

sitive intensity detector. However, the temporal information about the photons is also very

valuable and sometimes crucial in quantum optics and other fields involving temporal dy-

namics. For our application in measuring the dynamics of rubidium atoms, an accuracy of

at least 1 ns level is needed. As we have shown about the characteristics of our SPCM, the

photon pulses are short (15 ns) and can have high count rates (30 M/s), making accurate

time-tagging a challenging task. Commercial time-tagging devices for doing photon cor-

relations are extremely expensive. For example, a two-channel time tagging device quoted

$12500 from Becker-Hickl and $12000 from PicoQuant in 2019.

To save our hard-earned research funding, we first tried building a time-tagging device

with microcontrollers. The capabilities of a very fast microcontroller board called Teensy

were tested. We bought a Teensy 4.0, which has a 600 MHz processor (ARM Cortex-
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Figure 4.1: (a) and (b) are pictures of the fiber-coupled SPCM and free space SPCM,
respectively. (c) The TTL signal from our SPCM, measured by a 200 MHz bandwidth
oscilloscope. The width of each pulse is around 15 ns.

M7) and only cost $25. The output of a function generator (Keysight 33220A) is used to

create short TTL pulses to test the device’s pulse counting and time tagging accuracy. The

teensy card was tested to be able to count accurately up to 20 MHz, which makes it a good

low-cost counter. As for the time tagging, we wrote codes to access the CPU clock. By

counting the number of CPU oscillations between each TTL signal, we can calculate the

time interval between photons. The maximum frequency the Teensy can time tag is found

to be ∼3 MHz. Figure 4.2 shows a histogram of the time intervals with a 2 MHz pulse

input. We can see that many of the time intervals are ±10 ns away from the expected 500

ns value, showing that it does not meet our accuracy requirement. However, this Teensy

microcontroller can be used as a good counter and a time-tagging device for experiments
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Figure 4.2: The histogram of pulse intervals from the Teensy. The input is 2 MHz pulses
from the function generator. The inset is a picture of the Teensy microcontroller. The
maximum frequency the Teensy can time tag is 3 MHz.

that have dynamics in the microsecond time scale.

We then tested a demo unit from PicoQuant (PicoHarp 300). PicoHarp 300 is a stan-

dalone Time-Correlated Single Photon Counting (TCSPC) system that can be connected to

a PC through a USB interface. The time tagging accuracy is tested with 4 MHz TTL pulses

generated by the same function generator. The histogram of time intervals is shown in Fig-

ure 4.3. The function generator we used (Keysight 33220A) has a time error of around 10

ps with the 4 MHz frequency, which is sufficient for this test. We can see that this commer-

cial device has an accuracy of ±1 ns. In Figure 4.3, 4 million time tags are generated, and

27 intervals with a time of 500 ns are not shown in the figure. The 500 ns interval indicated

that the device has a small probability of missing one pulse, causing a double-size interval.

During the testing of this commercial device, we found that most of the price we paid might

result from the fancy user interface and other integrated functions designed for life science

and lifetime fluorescence measurements. Actually, all the functions can be calculated once

90



Figure 4.3: The histogram of pulse intervals from the PicoHarp 300. The input is 4 MHz
pulses from the function generator. There are 4 million time tags in total. The inset is a
picture of the PicoHarp 300. The maximum frequency the PicoHarp 300 can time tag is
around 4.5 MHz.

we have the accurate time tags of the input pulses. We found a Time Interval Analyzer

(Guidetech GT668) with two independent channels that should satisfy our requirements.

The GT668 is an electronic card with a PCIe interface for desktops. It is a less expensive

(∼$5000) and more basic level instrument, which only provides a python library to allow

customized coding. We wrote python codes to do time tagging and save the data to the

hard disk continuously. The testing result with the same function generator is shown in

Figure 4.4. The accuracy of the card is ±50 ps, which is much better than the $20000

PicoHarp 300. Furthermore, unlike the PicoHarp, no pulses are missed during the tests. To

test whether the two channels are independent and time-synchronized, we connected the

output of the function generator parallel with the two channels of the card with BNC cables

of the same length. Thus, for each pulse, they should register the same time tag. Among

2 million pulses, the maximum time difference between channel 1 and channel 2 for the

same pulse is 0.3 ns, and the minimum is 0.23 ns. The slight offset from the 0 ns might
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Figure 4.4: The histogram of pulse intervals from the Guidetech GT668. The input is 4
MHz pulses from the function generator. There are 2 million time tags in total. The inset
is a picture of the GT668. The GT668 can make measurements up to 4 million times per
second.

result from the non-perfect BNC cable matching or the delays within the card. However,

even if all the errors are attributed to the card, the accuracy across the two channels is suf-

ficient for our application (we need ±1 ns). The code was optimized to allow basically

unlimited data taking. The card has been used to take 100 million time tags and over 10

hours continuously in an experiment. Later, we purchased and tested another time interval

analyzer (Carmel instrument NK732). This card has a PXIe interface, which is required to

be installed on a PXIe chassis and connected to a PC with a Thunderbolt port. The price

of the card is also around $5000, but it can make 20 million measurements per second, 4

times higher than GT668. The accuracy and continuous data-taking capability are similar

to the GT668. However, the coding part is harder because of the C# language it uses and

the lack of documentation.

In summary, we have explored different approaches to achieve photon time tagging.

A cost-efficient and extremely accurate approach using the time interval analyzer cards is
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demonstrated. Since we control the cards with basic codes, we have the flexibility to add

as many functions as we want. For example, the photon count rates of two channels can be

printed to the monitor every second for alignment and fine-tuning.

4.2 Second-order correlation function

With our amazing two-channel photon time-tagging system, we have the ability to conduct

research in many fields of quantum optics. One of the examples is the measurement of the

second-order correlation function.

The normalized first-order coherence g(1)(τ) = ⟨E∗(t)E(t+τ)⟩
⟨E∗(t)E(t)⟩ is useful for quantifying

the coherence between two electric fields, as measured in a Michelson or other linear opti-

cal interferometer. The second-order coherence measures the intensity correlation instead

and is naturally suited to study photon statistics. The degree of second-order coherence,

also called the second-order correlation function, is the normalized form of the intensity

correlation. It is defined as

g(2)(τ) =
⟨E∗(t)E∗(t+ τ)E(t+ τ)E(t)⟩

⟨E∗(t)E(t)⟩2
(4.1)

Since the intensity is proportional to the number of photons, this g(2)(τ) describes how

photons are correlated in time.

A good reference is that for photons following Poisson distribution, g(2)(τ) = 1. With a

Poisson distribution (process), photons are independent of each other and will randomly

arrive at ∆t with a fixed probability. With this reference, g(2)(τ) > 1 means photons

are more likely to be together (bunching), and g(2)(τ) < 1 means photons are less likely

to be together (antibunching). For the laser light, photons follow Poisson distribution,

and g(2)(τ) = 1. For classical light, by using the Cauchy–Schwarz inequality, we can

get the following conditions: g(2)(0) ≥ 1 and g(2)(0) ≥ g(2)(τ) [43]. Violating these

two conditions indicates a unique quantum photon source. The second-order correlation
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Figure 4.5: The second-order coherence function of a single rubidium atom with Rabi
frequency equals 3Γ. Γ=6.06 MHz.

function for a single rubidium atom is plotted in Figure 4.5. In Figure 4.5, the dip near

t = 0 is called antibunching, which happens when we only have one quantum emitter.

Because for a single emitter like an atom, after emitting a photon, it needs time to be

re-excited and release another photon. Thus, the probability of having two photons with

zero time delay is zero. g(2)(τ) → 1 when the time delay is larger means the temporal

correlation between photons is quickly lost [43].

All single-photon detectors have dead time, and the dead time for our SPCM is ∼30 ns.

In order to overcome the dead time limit and measure the full range of g(2)(τ) versus time,

two SPCMs are set up in Hanbury-Brown–Twiss configuration (see Figure 4.6 (a)). The sig-

nal in a multimode fiber is split 50/50 by a 1×2 multimode fiber coupler (TM105R5F1B),

and each end is connected to a SPCM. The outputs of two SPCMs are connected to our

card for time tagging. With this configuration, there is no dead time between channels,

and two photons with zero time delay can be detected with a 50% chance. One thing that

needs to be taken care of is the afterglow or breakdown flash effect of the silicon avalanche
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photodiodes [105]. As we mentioned before, our SPCM is a silicon avalanche photodiode

(APD) in Geiger mode. The avalanche event of charge carriers in silicon is accompanied by

broadband photon emission [106]. The spectrum of the breakdown flash is shown in Fig-

ure 4.6 (c). Each signal photon can create a breakdown flash event which consists of tens

of photons. Under the Hanbury-Brown–Twiss configuration, these artificial photons can

cause cross-talk between two SPCMs and create fake correlation coincidences. We found

that using two fiber-coupled SPCMs will have these fake correlations, which will under-

mine the accuracy of g(2) measurements (especially for very weak signals). Our solution is

to use one free-space SPCM and one fiber-coupled SPCM. Then, a high-performance laser

line Filter (Edmund #64-256) is added in front of the free-space SPCM to filter out most of

the breakdown flash photons. As shown in Figure 4.6 (b), the filter is added between the

mount for the aspheric lens and SPCM. Since the photons in breakdown flash are broad-

band and scattered in all directions, this solution is proven to work well (see Figure 4.7).

In the Hanbury-Brown–Twiss configuration, the second-order correlation function can

be written as the intensity correlation of two detectors:

g(2)(τ) =
⟨IA(t)IB(t+ τ)⟩
⟨IA(t)⟩⟨IB(t+ τ)⟩

(4.2)

To experimentally calculate this value, we need to express g(2)(τ) in terms of the photons

measured by SPCM A and SPCM B. We can utilize the following relations:

IA(t) ∝
nA(t,∆t)

∆t

⟨IA(t)⟩ =
∫ T

0
IA(t)∆t

T

(4.3)

Where ∆t is the size of the time bin, nA(t,∆t) is the number of photons in the time bin at
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Figure 4.6: (a) The schematic for our Hanbury-Brown–Twiss set up for measuring the g(2)

function. One free space SPCM and a fiber-coupled SPCM are used with a 50/50 fiber
splitter. A narrow bandwidth filter is added in front of the fee space SPCM to remove the
breakdown flash photons. (b) A picture of the free space SPCM setup. The signal from
the input fiber is focused on the active area of the SPCM by an aspheric lens. The filter is
fixed on a post with double-sided tape and inserted between the mount and the SPCM. (c)
Normalized breakdown flash spectrum of the silicon avalanche photodiode from Ref [105].

t, and T is the duration of the experiment. Then we have

⟨IA(t)IB(t+ τ)⟩ =
∫ T−τ

0
nA(t,∆t)

∆t
· nB(t,∆t)

∆t
∆t

T − τ

=

∫ T−τ

0
nA(t,∆t)nB(t+ τ,∆t)

(T − τ)∆t

(4.4)

Putting Equation 4.3 and Equation 4.4 into Equation 4.2, we get

g(2)(τ) =
nAB(τ) · (T − τ)

nA(t < T − τ)nB(t > τ) ·∆t
(4.5)
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Figure 4.7: The calculated g(2)(τ) with measured photons from laser scattering light. The
data agree with the expectation that g(2)(τ) = 1.

Where nAB(τ) =
∫ T−τ

0
nA(t,∆t)nB(t + τ,∆t) is the coincidences with time delay τ cu-

mulated over the experiment duration T , nA, nB is the total number of photons from SPCM

A and SPCM B. Usually T ≫ τ , and we can write

g(2)(τ) =
nAB(τ)/T

nA/T · nB/T ·∆t
(4.6)

In this equation, the numerator is the coincidence rate with different time delays, the de-

nominator is the coincidence rate generated by random Poisson distributions (which is

sometimes called accidental coincidence rate). Thus, the physical meaning of g(2)(τ) is

the coincidence rate nAB(τ)/T normalized by the accidental coincidence rate. While these

two coincidence rates depend on the losses of the measuring systems, the value of g(2)(τ)

is independent of system losses, allowing us to robustly measure the temporal coherence

of photons. To calculate nAB(τ), we need to iterate through time tags in one channel and

find the number of corresponding coincidences in the other channel. A naive algorithm
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of iterating each pair of photons has a time complexity of O(nAnB), which is too slow

for millions of photons. A time-efficient algorithm inspired by Ref [107] is implemented

in Matlab to calculate nAB(τ). It utilized the property that the time tags are naturally in

ascending order within each channel and only need O(nAM) time to finish, where M is

the number of needed time bins (∼100). With nAB(τ), g(2)(τ) can easily be calculated

by using Equation 4.5. To test the algorithm and our setup, we measured the scattering

photons from a laser beam. Figure 4.7 shows the calculated g(2)(τ). We can notice that

g(2)(τ) = 1 for all the time delays in the plot, which agrees with the theory. The cross talks

are also eliminated by the extra filter. The fluctuations in g(2)(τ) will be smaller when more

time tags are accumulated. This property makes the photon correlation a very powerful ap-

proach for measuring very weak signals through long-time averaging, and our experiments

later will demonstrate this claim.

4.3 Vacuum setup

The 3D model of the chamber we used is shown in Figure 4.8. The main cuboid glass

section is attached to vacuum flanges with bellows in between to reduce stress. The glass

section is a 12 mm × 12 mm × 42 mm cuboid glass cell, offering great optical access.

Both sides of the glass section are attached to vacuum flanges with bellows in between

to reduce stress. The right venting port is connected to a pumping station to maintain a

pressure of 10−7 Torr. The left port is connected to a three-way cross, in which one way

is used to insert the atomic oven. The other way is also connected to the same pumping

station and assists with pumping the off-axis vapor away. The details of the custom oven

we used are shown in Figure 4.8(b). Part a is a Swagelok union that will be connected to

a copper tube containing the rubidium ampoule. Part b is a 2.75” CF flange with electric

feedthroughs and the center feedthrough for the copper tube. A thermal breaker is added

between the copper tube and the flange to keep a temperature gradient. Part c is the long

copper tube for delivering the rubidium vapor from the ampoule to the collimator. The
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Figure 4.8: (a) A SolidWorks model of the glass vacuum chamber we used. The main
cuboid glass section has great optical access and is attached to vacuum flanges with bellows
in between to reduce stress. A custom-made oven is inserted from the left (details see (b)),
and atomic beams can propagate through the glass section. Two venting ports on each side
are connected to the same pumping station to pump away both the vapor and the beam
component. (b) The custom-made atomic oven. Part a is a Swagelok union that can be
connected to a copper tube containing the rubidium ampoule. Part b is a 2.75” CF flange
with feedthroughs. A thermal breaker is added between the copper tube and the flange to
keep a temperature gradient. Part c is a long copper tube for delivering the rubidium vapor.
Its in-vacuum section is wrapped with a Kapton heating film. Part d has the adapter for our
silicon cascaded collimator. The inset shows a cutaway diagram of part d with our cascaded
collimator.
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section inside the vacuum is wrapped with a Kapton heating film, and the section outside

the vacuum is wrapped with a rope heater. Part d has the adapter to connect the copper tube

to our silicon cascaded collimator we have discussed in section 2.2. A cutaway diagram

is shown in the inset of Figure 4.8(b).coupling Nichrome wires are wrapped around the

adapter to keep the adapter 20◦higher than the tube to prevent clogging of the channels.

The off-axis vapor leaves through the gaps in the collimator while the on-axis atomic beam

travels toward the right port. A small box made of thin stainless steel plates is attached

around the collimator to keep the off-axis vapor away from the interaction region. The

cascaded collimator consists of 20 channels, each with a cross-section of 100 µm ×100

µm, resulting in a beam with a narrow divergence angle (θ1/2 = 0.013 rad, corresponding

to a transverse velocity spread of only ±4 m/s). The excellent two-dimensional passive

filtering of our device, combined with velocity selection, can isolate slow atoms with small

three-dimensional velocity vectors.

4.4 Velocity selection

With our vacuum setup and the photon time tagging system, the next step is to isolate the

slow atoms in our thermal atomic beams. The mean velocity for a rubidium atomic beam

is around 300 m/s. For a field of view of 100 µm, the transit time is only 333 ns, which is

too short for meaningful interactions and operations. Since the purpose of using thermal

atoms is miniaturization and scalability, simple velocity selection is preferred compared

with laser cooling.

The 87Rb D2 line transition diagram and experimental procedure are shown in Fig-

ure 4.9. To select the slow atoms, a Doppler-free pump beam first pumps all atoms into the

hyperfine F = 1 state, while an angled repump beam then selectively pumps atoms back

to F = 2 depending on their longitudinal velocity. For the repump beam interacting with
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Figure 4.9: (a) The schematics for velocity selection and doppler sensitive detection. The
atoms are first pumped into the F=1 dark state and then selectively pumped back to F=2. A
doppler sensitive probe beam is first used to detect the selected atoms. The angle between
repump and the atomic beam is θ =47◦. (b) The involved energy levels for 87Rb D2 line.
The repump is detuned by ∆ to select a certain group of atoms.

atoms with velocity v, the scattering rate is

Rsc(v,∆) =
Γ

2

s

1 + 4(k·v cos θ−∆
Γ

) + s
(4.7)

Where Γ is the spontaneous decay rate, s is the saturation parameter, ∆ < 0 and k are the

detuning and the wave number of the repump beam, and θ is the angle between repump and

the atomic beam. The selected atoms are expected to have a velocity center at vc = ∆
k cos θ

,

and a FWHM of
√
1+s·Γ
k cos θ

. Low velocities were selected by decreasing the detuning |∆|

toward 0. We first used a doppler sensitive probe beam with an angle to the atomic beam

couples the F = 2 → F ′ = 3 transition to qualitatively detect the selected atoms with ∆ =

− 80 MHz. The spectrum data was collected by scanning the frequency of the angled probe

beam. The fluorescence data is recorded with a silicon photodiode, and the photocurrent

is amplified by 109 times with a current amplifier (Model 1211 DL Instruments). The data

is shown in Figure 4.10. Similar to the methods we used in subsection 2.2.3, the voltage

signal is a convolution between the scattering rate and the velocity distribution atoms n(v).

When the saturation parameter is small, the voltage is roughly proportional to n(v). The

yellow curve is the spectrum without repump beam. The bump around -500 MHz is the
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Figure 4.10: The optical spectrum data of the velocity selection with ∆=-80 MHz. The
angle between the probe and the atomic beam is around 65.8◦. The original spectrum
without velocity selection (yellow) and the spectrum with a repump power of 2.6 µW (blue)
and 27 µW (red) are shown. The saturation parameter of the probe beam is 6.

contributions from F = 2 → F ′ = 1, 2. With the repump beam, it can be clearly seen

that only a certain group of atoms are selected. The smaller the repump beam power, the

smaller the FWHM. The expected vc = 92 m/s for ∆ = −80 MHz, and the measured vc =

103 m/s. This doppler sensitive detection method is very simple and easy to implement.

However, the velocity distribution for atoms in a thermal atomic beam is

ρ(v) = 2
v3

v40
e−v2/v20 (4.8)

Where v0 =
√

2kT
m

, k is the Boltzmann constant andm is the mass of the atom. The ratio of

atoms with a velocity below 30 m/s in a thermal rubidium atomic beam is very small, only

≈ 7×10−5 by calculating
∫ 30

0
ρ(v)dv/

∫∞
0
ρ(v)dv. This detection method has many sources

of error that are detrimental for measuring atoms with a slower velocity. First, under high

amplification, electronic noise is a huge problem. The signal with ∆ = −80 MHz already
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suffers a lot from electronic noise. Second, the angled probe beam is only sensitive to

the velocity along with the optical k vector. Thus, it can’t distinguish background vapor

from the slow atoms in the atomic beam. Third, the fluorescence from unwanted isotope

85Rb could affect the accuracy of this detection method. Thus, in the next section, we

demonstrated a novel single-atom photon correlation method to measure the slow atoms

accurately.

4.5 Photon coincidences measurements

4.5.1 Setup

This technique works as follows. A cylindrical plastic holder with a one-inch diameter

and 8 mm thickness is machined. Three through holes with a diameter of 340 µm are

drilled in the center for placing the bare fiber. Two fibers are cleaved and fixed on two

adjacent holes of the holder. The images of the holder and the cleaved fiber tips are shown

in Figure 4.11 (a) and (b), respectively. The distance between the two fiber tips is 450

µm. This holder is then fixed on the image plane of our imaging system and forms two

detection regions separated by d ≈ 55 µm at the objective plane. The other end of each

fiber is connected to a single photon counting module (SPCM) where the detected photons

are time tagged and analyzed. As shown in Figure 4.11(c), after the velocity selection, the

probe beam is focused and sent perpendicular to the atomic beam to excite all the atoms.

The probe beam has a beam waist of w ≈ 60 µm that overlaps both detection regions.

When a single atom passes through two detection regions, the photons collected from the

two fibers will contribute to time-ordered coincidences with a delay τ = d
v
. The accidental

coincidences from laser scattering, detector dark counts, etc., do not depend on time delay

and can be subtracted later. The coincidences signal can be averaged for a long time to

detect tiny signals. Before showing the photon correlation data, we would like to show

more details about our optical setup and some procedures we utilized to minimize the

uncorrelated photon counts. The optical layout to generate the pump, the repump, and the
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Figure 4.11: (a) The optical image of our plastic fiber holder. The distance between holes is
around 500 µm. (b) An optical image of the fiber tips after two fibers are fixed on our fiber
holder. The distance between two fiber tips is measured to be 450 µm. (c) The schematics
of the experiment. Two fibers formed two detection regions. Atoms pass through two
detection regions, emitting photons in each region, and the time delay between photons is
used to determine the velocity.

probe beams is shown in Figure 4.12. In order to pump all the atoms to the F=1 dark state,

the pump beam is enlarged by a telescope and placed very close to the atomic channels. A

darkened razor blade is used to cut the tails of the pump beam towards the silicon collimator

to reduce the scattering light. Some fast atoms still manage to escape the pump and get to

the probe region. A higher pump power will reduce the number of fast escaped atoms but
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Figure 4.12: The our optical layout for the single atom photon correlation experiment. The
repump beam is from a free space laser, and the space between the laser and the setup is
blocked carefully to avoid scattering light. The beam dumps are long lens tubes with irises
and darkened ends.

will increase the scattering light. Thus, the power of the pump beam was experimentally

set to 2 mW which minimized the sum photon counts of laser scattering and unpumped

fast atoms. The repump beam is sent through two AOMs with a center frequency of 80

MHz. One AOM can shift the frequency ∆1, and the other AOM shifts the frequency −∆2.

Thus, we can achieve arbitrary frequency shift ∆ = ∆1 − ∆2. The repump power is set

to around 4 µW to get a narrow FWHM of velocity distribution. To detect single atoms

in a thermal beam, we need to make our field of view very small and the probe beam very

small. A small field of view and a small probe beam will minimize the scattering light and

make the detection region small enough to have an average atom number smaller than 1.

The probe beam is focused by a 50 mm lens, and the focal point is centered on the atomic

beam. Our imaging system consists of a 20X long working distance objective (Mitutoyo

NA=0.42), and a 50 mm tube lens. The field of view is located at the center of the glass
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Figure 4.13: (a) The schematic for explaining the photon correlation experiment. An atom
with velocity v passes through two fiber tip regions and contributes to the coincidences at
the time delay d

v
. (b) The raw coincidences data for ∆ = −80 MHz. The power of repump

beam is 5 µW, and the probe beam power is 20 µW.

chamber to reduce the scattering light from the wall. The plastic holder is designed to have

a one-inch diameter and sit within a lens tube coaxially with our imaging system. The fibers

are taped in multiple places on the mount to create stress relief points. A camera is first

used in the image plane to adjust the imaging system to have a proper image of the atomic

beam. Then, the plastic holder with the fibers replaces the camera, and the imaging system

is fine-tuned to maximize the count rate from the fibers. All laser beams are terminated

with carefully designed beam dumps to reduce scattering light. Thorlabs blackout fabric,

high-performance black masking tape, and black hardboard are used extensively to avoid

any scattering light and environmental light.

4.5.2 Atom velocity distribution measurement

Figure 4.13 (b) shows the raw coincidence data for ∆ = −80 MHz. The peak around +500

ns is the contribution from velocity-selected atoms with a center velocity v = d
τ
≈ 100

m/s. The extra coincidences at time delays larger than 1000 ns are the slow atoms that we

are interested in. Some fast atoms in the atomic beam escape the pumping process and
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contribute to the small bump at around +100 ns. During the data acquisition time, a small

rubidium vapor gradually builds up and contributes to coincidences with both positive and

negative time delays around zero. This vapor could be removed in future experiments for

greater selectivity, for example, by adding a small amount of graphite to the vacuum cell.

The imperfection in imaging can cause a small probability of detecting photons from atoms

between two fiber tips, creating spurious coincidences very close to zero time delay. Thus,

the accuracy for fast atoms is not great. But the accuracy for slow atoms is very high, which

is what we care about.

We can analyze the second-order temporal coherence between SPCM A and SPCM B:

g
(2)
AB(τ) =

⟨IA(t)IB(t+ τ)⟩
⟨IA(t)⟩⟨IB(t+ τ)⟩

(4.9)

From Equation 4.6, we know that g(2)AB(τ) measures the distribution of coincidences with

time delay τ and g(2)AB(∞) → 1 represents accidental coincidences. The correlated part

g
(2)
AB(τ) − g

(2)
AB(∞), after normalization, is the coincidence probability density in the time

domain nAB(τ). Given nAB(τ)dτ = nAB(v)dv and τ = d
v
, we can derive nAB(v), which

is the number density of coincidences contributed by atoms whose velocity is v. The co-

incidences generated by each atom are proportional to the square of transit time through

a single fiber’s detection region, whose diameter is df . Then the atom probability density

ρ(v) is derived from coincidence data by using nAB(v) ∝ ρ(v) · d2f
v2

. We will show the

details of theoretical derivations in the next section.

For ∆ = −80 MHz and oven temperature 100 ◦C, the data for nAB(v) is shown in Fig-

ure 4.14(a). It shows the photon coincidences contributed by atoms with velocities ranging

from 0 to 250 m/s. Figure 4.14(b) is the calculated atom probability density distribution

ρ(v). Compared with the original thermal atomic beam velocity distribution (Figure 4.14(b)

inset), the selected atoms have a much lower velocity–the peak is at 106 m/s, which agrees

reasonably well with the theoretical expectation of 92 m/s.
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Figure 4.14: (a) The coincidences distribution in velocity domain with detuning ∆ = −80
MHz. The peak velocity is 93 m/s. (b) The calculated atom probability density distribution
for ∆ = −80 MHz. The peak velocity is 106 m/s. The inset shows the original thermal
distribution at 100 ◦C.

When calculating the g(2)AB(τ) for this two-fiber correlation data, a special data analysis

technique is used to improve the signal quality. From Equation 4.5, we know that g(2)AB(τ)

normally uses constant time bin size ∆t for all time delays. However, we are looking at the

velocity distribution of atoms which is in the velocity domain. We know that dτ = d
v2
dv,

a constant time bin size will create very sparse data points in the high-velocity range and

super dense data points in the low-velocity range. Since the time bin size determines the

averaging effect, super dense data points in the low-velocity range have weaker averaging

effects and will have unwanted noise. Thus, we created the time bins to be larger at longer

time delays and smaller at short time delays such that the data points are uniform in the

velocity domain as shown in Figure 4.14.

To select even slower atoms, we used ∆ = −20 and −10 MHz, whose data for nAB(v)

are shown in Figure 4.15(a) and (c). We can clearly see the coincidences have shifted to

lower velocities, with the peak occurring at 30 m/s and 20 m/s, respectively. To calcu-

late the ρ(v) of our selected atoms, a background measurement with no repump beam is

also conducted (with pump and probe). The contributions from background vapor and un-

pumped fast atoms are approximately subtracted. The corresponding ρ(v) are shown in Fig
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Figure 4.15: (a) and (c) The coincidences distribution in velocity domain with detuning
∆ = −20 MHz and −10 MHz. The peak velocity is at 30 m/s and 20 m/s, respectively. (b)
and (d): The calculated atom probability density distribution for ∆ = −20 MHz and −10
MHz. With the effect of fast atoms and vapors, the peak velocities are all at ≈ 50 m/s. The
insets are the zoomed-in plot into the slow velocity. Atoms with velocities around 15m/s
can be clearly distinguished.

Figure 4.15 (b) and (d). Here, the size of time bins is chosen to be larger than the case with

∆ = −80 MHz in the high-velocity range to have a more average effect. Compared with

the coincidence nAB(v), the atom probability density distribution is broader and has big-

ger tails in high velocities. The reason is that slower atoms contribute more coincidences.

Thus, the peak locations for nAB(v) are closer to 0, and the peaks are narrower. The ex-

pected peak of atom probability density is at 23 m/s and 12 m/s for Figure 4.15 (b) and (d),

while the actual peak locations are both at around 50 m/s.

Several nonidealities limited the velocity selection purity. First, the imperfection in

109



imaging can cause a small probability of detecting photons from atoms between two fiber

tips, creating spurious coincidences similar to ultra-fast atoms. Some fast atoms managed

to avoid being optically pumped through the pump beam, and the background rubidium

vapor within the small glass chamber increased with time during the experiment. The

background subtraction helps to reduce the effects of vapor and unpumped fast atoms.

But the background vapor pressure change with time and is not subtracted completely.

The photon counts from selected atoms are around 300 counts/s when ∆ = −20 MHz

and only 200 counts/s for ∆ = −10 MHz. As a comparison, the laser scattering rate

plus the fast unpumped atoms contribute around 1100 counts/s. The vapor contributions

started from almost zero and can increase to 1000 counts/s depending on the time of the

experiment. These effects together contributed around 10 times greater background photon

count rates compared with the signal from the velocity-selected atoms at ∆ = −10 MHz.

After averaging for several hours, the correlation method we used could distinguish the

small correlated signals, but some faster atoms inevitably shifted the peak location and

caused the long tail in Figure 4.15 (b) and (d). As for detunings ∆ closer to 0, the signal

from selected atoms is even smaller. We measured ∆ = − 5 MHz, in which the vapor and

unpumped fast atoms dominate ρ(v), and the data is thus not shown. The vapor component

could be removed in future experiments for greater selectivity, for example, by adding a

small amount of graphite to the vacuum cell.

Atoms with velocities between 10 and 15 m/s are clearly observed, as shown in the inset

of Fig Figure 4.15 (b) and (d). The atoms with a velocity below 15 m/s only constitute 10−6

of the thermal atomic beams. In summary, we demonstrated a novel and powerful approach

based on correlated photons from single atoms to characterize atoms’ velocity distribution.

This also demonstrates that we can isolate and directly observe slow atoms with a velocity

< v/20, where v is the mean velocity of the unselected atomic beam.
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Figure 4.16: The single fiber setup with Hanbury-Brown and Twiss configuration to mea-
sure the atoms’ second order correlation function.

4.5.3 Photon pairs and triplets from single atoms in atomic beams

In this section, we will show the result of our experimental measurements on single atoms in

an atomic beam, demonstrating their utility in a ”bottom-up” approach to quantum system

preparation using thermal vapors.

A key signature of single atoms is the photon antibunching effect [31]. In order to

measure the second-order correlation function g(2)(τ), the collector with two fiber tips in

the previous section is replaced by a single fiber tip that is connected to a 50:50 fiber splitter

and two SPCMs to achieve a Hanbury-Brown and Twiss configuration (see Figure 4.16).

The field of view of has a diameter df ≈ 25µm.

We first measured the g(2)(τ) of an unfiltered thermal atomic beam by removing the

pump and repump beams and reducing the oven temperature to 78 ◦C to achieve ⟨N⟩ < 1

in the field of view. The data are shown in Figure 4.17 (a). For classical light the condition

g2(τ) ≤ g2(0) must be met [108], and therefore the observed dip around τ = 0 is the

evidence for the quantum-mechanical antibunching effect from single atoms [31, 109].

After an emission event, an atom needs time to be re-excited to emit a second photon, and
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Figure 4.17: (a) g(2)(τ) with thermal atomic beam at 78 ◦C. The time bin size is 2 ns. The
red line is the theory curve with ⟨N⟩ = 0.138, L = 25 µm. Check the theory section
(section 4.6) for details. (b) g(2)(τ) with selected atoms. The peak value is higher because
the average atom number is smaller compared with the thermal atomic beam. The selected
atoms are more confined in space and suffer less intensity variance in the probe beam. Thus
the second Rabi peak is more visible. The time bin size is 4 ns. (c) Both g(2)(τ) for thermal
and selected atoms are plotted in the long time delay range.

therefore the maximum of g(2)(τ) occurs around the first half Rabi cycle. At zero time

delay, g(2)(0) = 1 rather than 0 because the atomic beam follows the Poisson distribution

and the single emitter condition is not always satisfied.

In comparison with trapped atom systems [110, 111, 112], the peak value of g(2)(τ)

observed was much larger, as high as 10. Such a large value for the photon pair correla-

tion is comparable to what has been observed for correlated photon pairs using four-wave

mixing [92, 113]. The photon pairs generated here are sequentially emitted photons by

single atoms. This is because the accidental coincidences scale with ⟨N⟩2, while the cor-

related coincidences scale with ⟨N⟩. Thus in an atomic beam where ⟨N⟩ ≪ 1, the ratio

of correlated coincidences is much higher. With the Poisson process averaging and transit

time correction, the g(2)(τ) for a thermal atomic beam can be written as (see the theory

section—section 4.6 for derivation):

g(2)(τ) =

∫ v=L/τ

v=0
(1− vτ

L
)ρ(v)

v∫
v

ρ(v)
v
dv

·
g2single(τ)

⟨N⟩
+ 1 (4.10)

Where L is the length of the field of view in the atomic beam direction, ρ(v) here is

the atomic beam Maxwell-Boltzmann velocity distribution, and g(2)single(τ) is the second-
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order coherence function of a single stationary atom. From this equation, we can see that

g(2)(τ)− 1 is inversely proportional to the average atom number ⟨N⟩ and the high g(2)(τ)

value only appears when ⟨N⟩ < 1. The theoretical curve fits well with the data ( Figure 4.17

(a)).

To confirm and compare this effect, the velocity selection scheme was used to measure

the g(2)(τ) for slow atoms at a repump detuning ∆ = −20 MHz, with the data shown in

Figure 4.17 (b). The g(2)(τ) peak is even higher, reaching 17, due to the smaller averaged

atom number for this data. Since the transit time for slow atoms is much longer, g(2)(τ) also

decays more slowly at long τ . Figure 4.17 (c) shows the comparison between the g(2)(τ)

of thermal atoms and selected atoms. The correlated photons can be seen for τ > 1000 ns,

coming from atoms with v < 25 m/s. This shows that by using simple velocity selection

with thermal beams, we can observe a single atom for longer than 1 µs.

The extraordinarily high g(2)(τ) value means a high probability of detecting a second

photon at τ time delay given the first photon. The extraordinarily high g2(τ) value occurs

because atoms only enter our field of view infrequently (the average atom number is ⟨N⟩ ≈

0.1), and therefore photons will be bunched around these events. High photon correlation

has been observed in Mollow triplet [114]. But we are not looking at the Mollow triplet

since our light intensity is small (9 Is), our g(2)(τ) is much larger [115], and only one nice

fluorescence peak is observed. Our condition of smaller than one atom in the field of view

is also not preferable for Mollow triplet [114].

The beautiful thing here is that this process naturally happens in thermal atoms, and it is

robust against the broad speed distribution. Because the photon separation in the bundles is

only determined by spontaneous emission rate and Rabi frequency, the time delay between

the photon pairs can be tuned by the probe laser intensity. With the thermal beam at 78

◦C and a probe laser power of 7 µW, the collected photon pairs have a rate of 0.16 pairs

per second per fiber. However, the simplicity and small size of the source should not

be overlooked. To achieve a practical output flux, one can readily multiplex the output
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Figure 4.18: The histogram of photon counts in one second. The x-axis is the number of
photon counts in one second, and the y-axis is the probability density. The histogram of our
experimental photon tags and an ideal Poisson distribution with the same mean are plotted.
The blue experimental data is from selected atoms with ∆ = −20 MHz, and it is clearly
wider than the Poisson distribution, showing the super-Poissonian statistics.

of several regions, for example, by adding more fibers. Each fiber can be treated as an

independent photon pair source. We can also try to improve the collection efficiency, as the

pair rate scales quadratically with the efficiency. Moreover, unlike spontaneous parametric-

down-conversion sources [116, 117], this system requires no wavelength filtering and is

ideally suited for interaction with rubidium atoms.

Super-Poissonian distribution

The photon number statistics are also calculated with our photon tags data. Figure 4.18

shows the histogram of photon counts in one second for our experimental data and an ideal

Poisson distribution. In a Poisson distribution of photons, the variance equals the mean.

However, if our photons are bunched, as shown in the g(2)(τ), the photon statistics should

be super-Poissonian, which means the variance is bigger than the mean. The reason is
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that our atoms follow Poisson distribution, but each atom can create a bunch of photons,

increasing the variance in the photon number statistics. In Figure 4.18, our photon counts

distribution has a larger variance and is clearly wider than the Poisson distribution. This is

another piece of evidence for super-Poissonian statistics and the photon bunching nature of

the emitted light.

Photon triplet

Photon triplet generation has been a longstanding challenge in the quantum optics field

[118, 119, 120]. We expect our system to also generate photon triplets. The third-order

correlation function g(3)(τ1, τ2) measures the temporal correlation of three photons:

g(3)(τ1, τ2) =
⟨IA(t)IB(t+ τ1)IC(t+ τ2)⟩

⟨IA(t)⟩⟨IB(t+ τ1)⟩⟨IC(t+ τ2)⟩
(4.11)

A high g(3)(τ1, τ2) value means a high probability of detecting three photons with time

delay τ1 and τ2 compared with other time delays. Similar to the derivation of Equation 4.5,

we can derive the numerical formula from calculating the g(3)(τ1, τ2) from time tags data:

g(3)(τ1, τ2) =
n123(τ1, τ2) · T 2

n1n2n3∆t2
(4.12)

g(3) was measured using two detectors in the Hanbury Brown and Twiss configuration. We

recorded the arrival time of photons from SPCM A and SPCM B with an accuracy of 350

ps and a dead time Θ ≈ 45 ns. Then, since photons don’t distinguish SPCM A and SPCM

C, the time tags from SPCM A were used as the time tags for SPCM C. We removed the

spurious coincidences at τ2 ≈ 0 and a partial function g(3)(τ1, τ2 > Θ) was measured.

Figure 4.19 (a), (b) shows the data for the thermal atomic beam and ∆ = −20 MHz

selected atoms, respectively. The time bin size is 100 ns × 100 ns and g(3)(τ1, τ2 < Θ)

is left blank. The peak around zero results from the consecutive three photons emitted

during the transit of single atoms. When τ1 ≈ τ2, channels B and channel C will have
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Figure 4.19: Measured g(3)(τ1, τ2 > Θ). (a) Thermal atomic beam at 78 ◦C. The maximum
g(3) is around 39. (b) Selected atoms by using a detuning of ∆ = −20 MHz. The maximum
g(3) is around 280.

more coincidences as shown in the g2(τ) measurements, resulting in a higher value of

three-photon coincidences and a diagonal line in Figure 4.19 (a). When τ1 or τ2 close to

zero, the same reason leads to the brighter lines close to the axis. For Figure 4.19 (b), the

number of three-photon coincidences is not large enough, and this pattern is blurred by shot

noise. Comparing Figure 4.19(b) to (a), stronger third-order correlations from slow atoms

are detected in large time delays, showing the capability to collect photon triplets from a

single atom for more than 1 µs.

The maximum values of g(3)(τ1, τ2 > Θ) reach 39 and 280 for each case, showing great

potential as a photon triplet source. For the thermal beam, we collected ≈0.166 triplets

per minute. The rate of photon triplet is proportional to the cubic of collecting efficiency.

Improving the collecting efficiency and adding more fibers in the imaging plane can create

bright, narrow linewidth photon triplets that are compatible with Rubidium-based systems.

4.6 Theoretical calculations

This section will first discuss the theory of the second-order correlation function of single

atoms in a thermal atomic beam. A comparison of our theory with Ref [109] is also con-
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Figure 4.20: Diagram of the collection region of a single fiber showing individual atom
transits.

ducted. Then, we will discuss the theory behind the two fiber coincidence measurements

and how to extract the velocity distribution. The effects of extra uncorrelated noise are also

analyzed. With the detailed theoretical derivation, we gained a deeper understanding of

these correlation measurements and showed why they need to be done in the single-atom

regime.

4.6.1 Second order correlation function for single fiber

The second-order correlation function g(2)(τ) is defined to be:

g(2)(τ) =
⟨IA(t)IB(t+ τ)⟩
⟨IA(t)⟩⟨IB(t+ τ)⟩

=
⟨nA(t)/∆t · nB(t+ τ)/∆t⟩
⟨nA(t)/∆t⟩⟨nB(t+ τ)/∆t⟩

(4.13)

Where nA,B(t) is the number of detected photons from detector A(B) in time bin ∆t at

time t and I(t) ∝ n(t)
∆t

. The effect of g(1)(τ) can be negligible in our system. For our

thermal atomic beam experiment, the background counts are negligible (< 1%). Thus, we

ignore the background counts and only consider photons from the atoms. The effects of

uncorrelated background photons will be discussed in subsection 4.6.4.
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For an effusive thermal atomic beam, the velocity distribution of the flux follows:

ρ(v) = 2
v3

v40
e−v2/v20 (4.14)

Where v0 =
√

2kT
m

, k is the Boltzmann constant and m is the mass of the atom, and∫
v
ρ(v)dv = 1. The mean number of atoms that transit our collecting region per second FN

is (see Figure 4.20):

FN =

∫
v

n(v) · vAdv =

∫
v

FNρ(v)dv (4.15)

Where n(v) is the density of atoms with a velocity between v and v + dv, and A is the

cross-section area of the collecting region. n(v) · vA = FNρ(v). The relationship between

FN and the average atom number in the field of view ⟨N⟩ is:

⟨N⟩ =
∫
v

A · L · n(v)dv = FN

∫
v

ρ(v) · L
v
dv (4.16)

where L is the field of view length along the atomic beam direction.

For the denominator of Eqn. (Equation 4.13), the average number of photons detected

is the product of mean atom number ⟨N⟩, scattering rateRs, and collection efficiency Ceff .

In terms of the velocity distribution, we can then write

⟨nA(t)/∆t⟩ = CeffRsFN

∫
v

ρ(v)
L

v
dv. (4.17)

Moreover, since this average is time-independent, the denominator is simply

⟨nA(t)/∆t⟩⟨nB(t)/∆t⟩ =
(
CeffRsFN

∫
v

ρ(v)
L

v
dv

)2

(4.18)

To calculate the numerator correctly, we must consider the fluctuating number of atoms

in the volume. If p(Nf ) is the probability to have Nf atoms in the field of view, then
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⟨N⟩ =
∑

Nf
p(Nf ) ·Nf . Thus, we can write the numerator as:

∑
Nf

p(Nf )⟨(n1A(t)+n2A(t)+...nNfA(t))/∆t·(n1B(t+τ)+n2B(t+τ)+...nNfB(t+τ))/∆t⟩

(4.19)

Where niA(t) represents the number of detected photons from detector A emitted by ith

atom in time bin ∆t at time t. niA(t) · niB(t+ τ) are uncorrelated unless i = j. Therefore,

we can write (Equation 4.19) as a correlated term and an uncorrelated term:

∑
Nf

p(Nf ) ·
i=Nf∑
i=1

⟨niA(t)/∆t ·niB(t+ τ)/∆t⟩+
∑
Nf

p(Nf ) ·
i ̸=j∑

⟨niA(t)/∆t ·njB(t+ τ)/∆t⟩

(4.20)

Since all atoms are equivalent, we may write ⟨ni(t)⟩ = ⟨nj(t + τ)⟩. Therefore, we may

calculate everything in terms of just atom 1’s emission:

∑
Nf

p(Nf )Nf ·⟨n1A(t)/∆t·n1B(t+τ)/∆t⟩+
∑
Nf

p(Nf )Nf (Nf−1)⟨n1A(t)/∆t⟩·⟨n1B(t+τ)/∆t⟩

(4.21)

The relationship between expected ⟨n1A(t)/∆t⟩ and ⟨nA(t)/∆t⟩ can be derived:

⟨nA(t)/∆t⟩ =
∑
Nf

p(Nf )⟨(n1A(t)+n2A(t)+...nNfA(t))/∆t⟩ =
∑
Nf

p(Nf )Nf ⟨n1A(t)/∆t⟩ = ⟨N⟩⟨n1A(t)⟩

(4.22)

Using (Equation 4.18) and (Equation 4.22) with (Equation 4.21), the numerator can be written as:

∑
Nf

p(Nf )Nf ·⟨n1A(t)/∆t·n1B(t+τ)/∆t⟩+
∑
Nf

p(Nf )
Nf (Nf − 1)

⟨N⟩2

(
CeffRsFN

∫
v
ρ(v)

L

v
dv

)2

(4.23)

Next, we are going to solve the first correlated term, which is generated by the same atom and

related to the single atom correlation. The correlated term also requires a transit time correction

since the atoms are not stationary. From (Equation 4.13), we know that for a stationary single atom,

g
(2)
single(τ) =

⟨n′
A(t)/∆t·n′

B(t+τ)/∆t⟩
⟨n′

A(t)⟩⟨n′
B(t+τ)/∆t⟩ . Here ⟨n′

A⟩ = ⟨n′
BA⟩ = CeffRs∆t is the mean number of

received photons from a stationary atom without transit time correction. If we then introduce the
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conditional probability P (B(τ)|A) ·∆t of detecting the second B photon within a time interval ∆t

at the time delay τ given that the first A photon was detected, we obtain

g
(2)
single(τ) =

⟨n′
A(t)/∆t · n′

B(t+ τ)/∆t⟩
CeffRs · CeffRs

=
⟨n′

A(t)/∆t⟩ · P (B(τ)|A)

CeffRs · CeffRs
=

P (B(τ)|A)

CeffRs
(4.24)

For one atom transiting the field of view L with velocity v, if a coincidence with a time delay

τ is to be detected, the first photon must have been emitted within a distance L − vτ to allow

the second photon at τ to be detected. Thus the transit length for the first photon ⟨n1(t)/∆t⟩ is

effectively reduced to L−vτ , resulting in a correction factor of
(
L−vτ
L

)
provided that τ < L/v. No

coincidences can be found from the same atom when v > L/τ . Combining g
(2)
single(τ), the transit

time correction factor and Eqn. (Equation 4.17), we finally obtain:

⟨n1A(t)/∆t · n1B(t+ τ)/∆t⟩ =
∫ v=L/τ

v=0
dvCeffRs

FN

⟨N⟩
ρ(v)

L

v
· (L− vτ)

L
· CeffRs · g(2)single(τ)

(4.25)

In the above, we may substitute the textbook formula for g(2)single(τ) = 1− e−(3Γ/4)τ · (cos(ΩΓτ) +

3Γ
4ΩΓ

sin(ΩΓτ)) [43], where ΩΓ =
√
Ω2 − (Γ4 )

2, and Ω and Γ are the Rabi frequency and sponta-

neous decay rate respectively.

Now we put it back into (Equation 4.23), and since the atomic beam follows the Poisson distri-

bution, we obtain
∑

Nf
p(Nf )Nf = ⟨N⟩ and

∑
Nf

p(Nf )N
2
f = ⟨N⟩2+⟨N⟩. Then (Equation 4.23)

becomes:

C2
effR

2
sFN

∫ v=L/τ

v=0
ρ(v)

(L− vτ)

v
dv · g(2)single(τ) +C2

effR
2
sF

2
N

∫
v
ρ(v)

L

v
dv ·

∫
v
ρ(v)

L

v
dv (4.26)

Combining the denominator (Equation 4.18) and the numerator (Equation 4.26) we get g(2)(τ):

g(2)(τ) =

∫ v=L/τ
v=0 (1− vτ

L )ρ(v)v dv∫
v FNρ(v)Lv dv

∫
v
ρ(v)
v dv

· g(2)single(τ) + 1 (4.27)

From (Equation 4.16), we can see that the first term in the denominator is actually ⟨N⟩. This yields
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Figure 4.21: 78 ◦C thermal atomic beam g(2)(τ) experimental data vs theory

the final expression for g2(τ):

g(2)(τ) =

(∫ v=L/τ
v=0 (1− vτ

L )ρ(v)v dv∫
v
ρ(v)
v dv

)
·
g
(2)
single(τ)

⟨N⟩
+ 1 (4.28)

The transit time correction is the term in parentheses above and includes an extra factor of 1/v

in the integrand compared with the transit time correction derived in Ref [109]. Conceptually, it is

because slower atoms contribute more photons per transit and thus have a higher weight in the g2(τ).

However, in Ref [109], the transit time correction is simply weighted by the velocity distribution of

the flux ρ(v).

We then fit this formula to our 78 ◦C thermal atomic beam data. The averaged atom number

⟨N⟩, the field of view L, and the Rabi frequency Ω in g2single(τ) are fitted to the data while ρ(v) is

the 78 ◦C atomic beam Maxwell-Boltzmann velocity distribution. Because of the intensity variance

in the collecting region, the g2single(τ) is averaged over a Gaussian distributed Rabi frequency Ω.

The fitted parameters are ⟨N⟩ = 0.138, L = 25 µm and Ω is a Gaussian distribution with µ = 6Γ,

σ = 1.5Γ. The theory curve, together with the experimental data, is shown in Figure 4.21.

The difference between our transit correction factor and Ref [109] is shown in Figure 4.22. As

we can see, the correction factor in Ref [109] drops too fast and is only half of our value at 100 ns.

With the correction factor in Ref [109], a huge field of view 75 µm has to be used to roughly fit our
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Figure 4.22: Difference between our transit time correction factor with Ref[109] for a
25 µm field of view. (a) The comparison between our transit time correction factor and
Ref[109]. (b) The percentage difference, defined by the difference divided by Kimble’s
result, can be more than 100% at 100 ns time delay.

experimental data, which far exceeds the estimation of our field of view. Our Monte Carlo wave

function simulation in the next section will provide another piece of evidence for our theory.

4.6.2 Monte Carlo wave function simulation

Figure 4.23: (a) The experimental g3(τ1, τ2) value for 78 ◦C unfiltered thermal atomic
beam. (b) The simulated g3(τ1, τ2)

Monte Carlo wave function (MCWF) simulation is also implemented to test our theory. The

Monte Carlo wave function (MCWF) simulation was designed to mimic what happened in our ex-

perimental system to calculate the photon correlation function. The atoms are generated according
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to the Poisson distribution, and the velocities are chosen from the 78 ◦C atomic beam Maxwell

Boltzmann distribution. The atoms then fly into a laser beam and interact with it. The wavefunc-

tions are evolved according to the MCWF procedure [121]. When atoms are within the field of view

of the fiber, their emitted photons’ emission times are registered and stored. Then the same algo-

rithm used to calculate experimental g(3)(τ1, τ2) is used on the simulation data. The result is shown

in Figure 4.23. The colorbar is in the linear scale, and the simulation fits the data quite well. In the

future, we can put some graphite in the system to absorb the accumulated vapor and average for a

much longer time to reduce the three-photon-coincidences shot noise. Then, we can use a smaller

time bin (4 ns) to see the dynamics near zero time delay.

Similar simulations are also done for the g(2)(τ), and it agrees well with our theory (see Fig-

ure 4.24).

Figure 4.24: The simulated g(2)(τ) with the same parameter we used to fit our experimental
data, plotted together with our theoretical curve. ⟨N⟩ = 0.138, L = 25 µm and Ω is a
Gaussian distribution with µ = 6Γ, σ = 1.5Γ.

4.6.3 Two fiber velocity detection

Similar to the single fiber second-order correlation theory, here we start with a formula for the

coincidences distribution C(τ)dτ in the time domain and convert the coincidences into the velocity

domain later. As before, we ignore the background counts and only consider photons from the

atomic beam. The effects of uncorrelated noise do not affect the accuracy of our method, which
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will be shown in subsection 4.6.4. We set the field of view of the fiber to be df and the distance

between two fibers in the objective plane to be d. We make the approximation that df/d ≪ 1. Two

components contribute to the coincidences:

C(τ)dτ = uncorrelated term + correlated term (4.29)

The first uncorrelated term is the accidental coincidences generated by randomly having atoms

at fiber A and atoms at fiber B at the same time. This term has no relationship with time delay τ and

can be written as:

uncorrelated term =

∫
v
CeffRsFNρ(v)

df
v
dv ·

∫
v
CeffRsFNρ(v)

df
v
dvdτ (4.30)

Where dτ is the size of time bins for coincidences The correlated term comes from atoms with

velocity vτ =
d±df
τ ≈ d

τ . We ignore df here since df
d is small. These atoms emitted photons in

fiber A and in fiber B at τ later:

CeffRs
df
vτ

· CeffRs
df
vτ

FNρ(vτ )dvτ (4.31)

Since vτ = d
τ , put dvτ = dτ · v2τ

d into (Equation 4.31) we get:

correlated term = C2
effR

2
s

d2f
d
FNρ(vτ )dτ (4.32)

If we divided the uncorrelated term (Equation 4.30) on both side of (Equation 4.29), combine the

definition of average atom number⟨N⟩(Equation 4.16) we get:

C ′(τ) = 1 +

df
d ρ(vτ )

⟨N⟩
∫
v
ρ(v)
v dv

(4.33)

This formula shows that it needs to be in the single atom regime (⟨N⟩ ≪ 1) so that the second

correlated term is large enough to be detected. We can also see that when τ → ∞, C ′(τ) → 1. Since

g
(2)
AB(τ) is also the coincidences distribution normalized to infinity time delay, C ′(τ) equals the

cross-correlation g
(2)
AB(τ). Next, as we mentioned in the paper, that value g

(2)
AB(τ)− g

(2)
AB(∞), after
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Figure 4.25: 70 ◦C thermal atomic beam experimental data after processing versus theory.
The distance between two fibers in the objective plane d=55 µm.

normalization, is the coincidences probability density from atoms in time domain nAB(τ), which

is proportional to ρ(vτ ). Given nAB(τ)dτ = nAB(v)dv and τ = d
v , we can get the coincidences

probability density in velocity space nAB(v) = nAB(τ) · d
v2

. And finally we can get nAB(v) ∝

ρ(v) · 1
v2

.

To calibrate our theory with data, we measured the unfiltered thermal atomic beam at 70 ◦ C with

our two-fiber detector. The result is shown in Fig. Figure 4.25. The circles are the experimental

data after processing, and the red curve is the theoretical curve for 70 ◦C atomic beam Maxwell

Boltzmann distribution. The theory fits very well for velocities below 300 m/s which is the range

we focused on. The error becomes larger when velocity is larger because df/d ≈ 0.45 and it could

have an uncertainty error around 22.5%. Also, because of the imperfect imaging, some atoms can

emit photons into both fibers during the transit from fiber A to fiber B, which causes some spurious

population at high velocity.

For ∆ = −20 MHz and ∆ = −10 MHz, as mentioned in the experiment section, the fast

unpumped atoms and vapor are more than the selected atoms. To get the atom density of the selected

atoms ρs(v), we also measured the background g
(2)
b (τ) with the pump beam and probe beam only.

We know the average atom number in the denominator is proportional to the photon count rate.

Thus, if we assume
∫
v
ρ(v)
v dv have roughly the same value with and without the repump beam,

(g(2)(τ)− 1) ·R is proportional to the atom density in both cases. As a result, the value (g(2)(τ)−
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1) · R − (g
(2)
b (τ) − 1) · Rb is proportional to the density of selected atoms ρs(v) and we can use

the same logic with nAB(τ) to calculate an accurate ρs(v). By doing this, we managed to subtract

most of the atoms from fast unpumped atoms and vapor. The different background vapor pressure

when measuring g
(2)
b (τ) and g(2)(τ) and the assumption of same

∫
v
ρ(v)
v dv value limit the accuracy

of this subtraction procedure.

4.6.4 Effects of uncorrelated noise

In the previous analysis, we all ignored the uncorrelated background photons. These photo counts

can come from the laser scattering photons and the dark counts of SPCM. Here, we will analyze the

effect of these background photons on the second order correlation function.

We start with the definition of g(2)(τ) (Equation 4.13) and use the instantaneous photon rate

RA,B(t) to represent nA,B(t)/∆t, the averaged photon rate RA,B to represent ⟨nA,B(t)/∆t⟩ for

simplicity. We have

g(2)(τ) =
⟨RA(t)RB(t+ τ)⟩

RARB
(4.34)

We denote RsA,sB(t) as the photon rate from our correlated signal (atoms), and RbA,bB(t) as the

photon rate from the uncorrelated background (laser scattering, dark counts, etc.). The pure second

order correlation function from our signal iss

g(2)(τ) =
⟨RsA(t)RsB(t+ τ)⟩

RsARsB
(4.35)

Then, by putting RA(t) = RsA(t) + RbA(t), RB(t) = RsB(t) + RbB(t) and RA,B = RsA,sB +

RbA,bB into Equation 4.34, we have the second order correlation function with both signal and

background g(2)(τ)′ :

g(2)(τ)′ =
⟨(RsA(t) +RbA(t)) · (RsB(t+ τ) +RbB(t+ τ))⟩

(RsA +RbA)(RsB +RbB)

=
⟨RsA(t)RsB(t+ τ)⟩+ ⟨RsA(t)RbB(t+ τ) +RbA(t)RsB(t+ τ) +RbA(t)RbB(t+ τ)⟩

(RsA +RbA)(RsB +RbB)

(4.36)

There is no correlation between the signal and the background, we have ⟨RsA(t)RbB(t + τ)⟩ =
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RsARbB . The background photons are also not correlated, ⟨RbA(t)RbB(t+ τ)⟩ = RbARbB . Com-

bined with Equation 4.35, we get :

g(2)(τ)′ =
g(2)(τ) ·RsA ·RsB +RsARbB +RbARsB +RbARbB

(RsA +RbA)(RsB +RbB)
(4.37)

With the Hanbury-Brown and Twiss configuration, the signal and background photons are both split

50/50 to channel A and channel B. Assuming SPCM A and SPCM B have the same detection effi-

ciency, we have RsA = RsB , RbA = RbB . By dividing R2
sA on both the numerator and denominator

and setting the signal-to-noise ratio k = RsA/RbA, we have:

g(2)(τ)′ =
g(2)(τ) + 2/k + 1/k2

(1 + 1/k)2
= 1 +

g(2)(τ)− 1

(1 + 1/k)2
(4.38)

We can see that when the signal-to-noise ratio is high, g(2)(τ)′ ≈ g(2)(τ). However, when the uncor-

related background is higher, the correlated component will drop depending on the signal-to-noise

ratio: g(2)(τ)′−1 = (g(2)(τ)−1)/(1+1/k)2. This conclusion also applies to the cross-correlation

case when two fibers have the same count rate.

We can see here why our two-fiber correlation experiment can still be precise with the laser scat-

tering background. From subsection 4.6.3 and Equation 4.33, we know that our theory utilizes the

proportionality between g
(2)
AB(τ)− 1 and the atom probability density ρ(v). Thus, the constant fac-

tor 1/(1 + 1/k)2 will not affect our calculation. Monte Carlo wave function simulation with two

detection regions is conducted to test our theory. The simulation method has been described in

subsection 4.6.2. One thing we added in the simulation is that after collecting all the photon time

tags from atoms, random time tags (Poisson distributed) are generated and added to the data. The

number of added time tags can be chosen to have different signal-to-noise ratios k. The result is

shown in Figure 4.26. Figure 4.26 (a) shows the data with no background, the peak value is 7.3.

Figure 4.26 (b) and (c) show the data with a signal-to-noise ratio of 1 and 1/3, the peak values are

2.6 and 1.4, respectively. The changes in peak value agree with our formula, and the shape remains

the same.
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Figure 4.26: Monte Carlo wave function simulation with different signal-to-noise ratio
(SNR). A 70◦thermal atomic beam passes two detection regions (mimic two fiber tips)
with ⟨N⟩=0.06. (a) g(2)(τ) with no background noise. The peak value is 7.3 (b) g(2)(τ)
with SNR=1. The peak value is 2.6. (c) g(2)(τ) with SNR=1/3. The peak value is 1.4. The
changes in peak value agree with our formula.

4.7 Discussion

In summary, we demonstrated a novel approach to isolating and detecting the slow atoms within a

thermal atomic beam. The single-atom nature of the system is proved by taking single-photon cor-

relation measurements. g(2)(τ) and g(3)(τ1, τ2) are measured, and their large values show potential

to be used as photon pair and photon triplet sources. Our experiments show the possibilities of the

’bottom-up’ approach to thermal quantum systems. Figure 4.27 illustrates an array of “mesoscopic”

cells within a thermal vapor. The array need only be partially ordered to be useful, provided one

knows the population of each cell accurately. This can be determined with a high-resolution mi-

croscope and single photon detection. Since the field of view with our fiber is 25 µm, individual
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(a) (b)

Figure 4.27: Concept of the bottom-up approach to room temperature quantum information
processing with neutral atoms under a high-resolution microscope. The field of view is
divided into mesoscopic cells (size ∼ 25 µm), with less than one atom per cell on average,
to ensure the dynamics are dominated by single emitters. Only a few cells are shown for
simplicity. (a) Ordinary vapor with randomly oriented velocities of magnitude v̄. Individual
atoms cannot be tracked in this case. (b) Three-dimensional velocity selection with v ≪ v̄.
Atoms move much slower, and their motion can be tracked from one cell to the next. This
constitutes a new paradigm for a bottom-up approach to quantum information processing.
For example, select atoms (shown in dashed circles) can be entangled with one another by
a joint detection of the photons from the corresponding cells.

cells are taken to be 25 µm in size. Around 1600 cells can be constructed within a field of view

∼ 1 × 1 mm. However, at typical thermal velocities of 300 m/s, atoms cannot be observed for

more than ∼ 83 ns within one cell, which is too short for most purposes. Moreover, atoms move in

random directions and cannot be tracked. We demonstrated that slow single atoms could be isolated

whose three-dimensional velocity vector is 20 times smaller in magnitude than the mean, which

extends the observation time to > 1 µs and simultaneously enables tracking of atoms across cells

since all atoms travel in the same direction. In the future, these cells could be constructed by an

array of fibers on the image plane. With the signals from the fiber array, fast electronics can be

used to observe and manipulate single atoms in an atomic beam and construct a quantum system.

Future work could also use a single photon camera to directly observe an entire array of slow atoms

generated using the technique described in this chapter for applications in quantum imaging [122],

and quantum memories [95, 96].
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Appendices



APPENDIX A

SUPPLEMENTAL DATA AND FIGURES FOR CHAPTER 4

This appendix will show some figures and data that are not presented in the main text in chapter 4.

The two fiber coincidences data with detuning ∆ = −5 MHz is shown in Figure A.1. After

comparing with Figure 4.15 (a) and (c), we can notice that the peak location moved to slower

velocity, but the noise around zero is a bit too much. The reason is that the signal from atoms is less

than 200 photons/s, but the unwanted photons from the laser, vapor, and unpumped fast atoms can

quickly reach 2000 photons/s. With a growing vapor component, an even longer experiment time

cannot provide a better SNR. With better control of the vapor, the data with -5 MHz detuning could

be improved.

Figure A.1: Two fiber coincidences distribution in velocity domain with detuning ∆ = −5
MHz.
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Figure A.2 shows the experimental data of the second order correlation function g(2)(τ) with

different laser intensities. The data was taken with thermal beams generated by our setup with an

old oven at 70◦C. We can see that different laser intensities caused different Rabi frequencies, which

modified the photon pair’s time interval. Using a strong laser and a smaller field of view, we can

have photon pairs very close together in time.

Figure A.2: The measured second order correlation function g(2)(τ) with different laser
intensity and 70 degree atomic beams. (a) Probe power equals 0.12 Isat. (b) Probe power
equals 4.2 Isat. Isat is the saturation intensity.
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The theory and our observations about second order correlation function are not limited to a

specific transition. Here, we switched the probe beam to couple to the transition F=1 to F’=0 in

87Rb D2 line. The excited state of this transition only has one hyperfine level (F’=0, m=0), and the

ground state only has three hyperfine levels (F=1, m=-1,0,+1). Thus, this transition could be used

to create polarization-entangled photon pairs or entangle two different atoms by a joint detection

[123]. Figure A.3 shows the experimental data. The excitation probe beam is linearly polarized

with an intensity of 0.55Isat. g(2)(τ) value drops much faster than other cases because F=1 to F’=0

transition have dark state (m=1,m=-1) for linearly polarized light, and multiphoton are less likely to

be generated. Thus, this transition created another unique photon statistics.

Figure A.3: The measured second order correlation function g(2)(τ) from F=1 to F’=0. The
probe beam is linearly polarized with an intensity of 0.55 Isat.
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The third order correlation function g(3)(τ1, τ2) that was shown in Figure 4.19 (a) used a large

time bin size of 100 ns × 100 ns to have more averaging and reduce the shot noise. However, the

resolution of g(3)(τ1, τ2) is severely compromised because of the large time bin size. Figure A.4

shows g(3)(τ1, τ2) calculated from the same photon tags but with smaller time bins and smaller time

ranges. We can see that the value of g(3)(τ1, τ2) is even higher because of the improved resolution.

The maximum g(3)(τ1, τ2) is around 90 for a 30 ns × 30 ns time bin.

Figure A.4: The measured third order correlation function g(3)(τ1, τ2) with 30 ns time bin
for better resolution. The data is from 78◦C unfiltered thermal atomic beam. (a) A 2D color
plot of g(3)(τ1, τ2). (b) A bar plot of g(3)(τ1, τ2).
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APPENDIX B

MISCELLANEOUS WORK

This appendix will briefly talk about some of the works I have done that didn’t result in any publi-

cation.

B.1 Rydberg atoms

A blue laser centered around 488 nm was built to create Rydberg atoms in our miniature atomic

beams. The blue laser diode is bought from beamq.com at a price of $ 99. A Thorlabs TE-Cooled

laser diode Mount was modified to accommodate this diode, and old homemade heat sinks and

mounts were used to build this laser. Figure B.1 (a) shows the first beautiful blue light we got from

this laser diode. The aspheric lens was installed later to collimate the laser beam, and a special

laser grating was used to create an external cavity diode laser (ECDL). Figure B.1 (b) shows the

diagram for generating Rydberg atoms. The probe beam is from our standard Toptica laser at 780

Figure B.1: (a) The first light of the homemade blue laser. The grating and aspheric lens for
the diode has not been added. (b) The diagram for generating Rydberg states with rubidium
atoms.
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Figure B.2: (a) The EIT effect data showing rydberg atoms generation. The x-axis is the
frequency detuned from some point near 486 nm, and the y-axis is the normalized fluores-
cence signal. (b) The spatial image of the reduced fluorescence indicates the distribution
of Rydberg atoms.

nm, which is tuned to 52S1/2 to 52P3/2. The coupling beam is from the blue laser tuned around 486

nm to couple 52P3/2 to n2D3/2 and n2D5/2. Figure B.2 shows the data we collected. The probe

beam is locked to 52S1/2 to 52P3/2 transition, and the frequency of the coupling beam is scanned

to find the Rydberg resonance transition. The reduced absorption of the probe beam is also called

electromagnetically-induced transparency (EIT) effect. The peak in Figure B.2 (a) has a FWHM of

18 MHz, which shows that Rydberg atoms were created and can be used to detect external fields.

The frequency of the coupling beam was monitored, and its frequency at 617279.466 GHz will

couple the atoms into 21 2D5/2. Figure B.2 (b) showed the spatial distribution of the reduced

fluorescence, indicating the distribution of Rydberg atoms.
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Figure B.3: (a) The SolidWorks model of the chip integrated with fibers on a copper
adapter. (b) The Solidworks model for the Teflon fiber feedthrough we used.

B.2 Fiber on chip

Fibers are integrated with atomic channels on the same silicon chip to form a miniature device.

As shown in Figure B.3, this chip composes of three layers of 500 µm thick silicon wafers. All

three wafers and the channels on the wafers are cut by using the femtosecond laser micromachining

techniques. The bottom layer is a flat wafer to provide a smooth surface and thermal uniformity for

the other two layers. Three atomic channels were cut in the middle layer with 100 µ m× 100 µm

cross-section. Five fiber channels were also cut to align the fiber center with the atomic channels.

Two gaps were cut on the top capping wafer to allow off-axis atoms to escape, forming a cascaded

collimator. Three layers are glued together by Masterbond epoxy to form an integrated device. The

device is then fixed on a copper adapter for further connection with rubidium vapors.

A great fiber feedthrough inspired by Ref [83] was fabricated and tested. As shown in Fig-

ure B.4, we found that we can have one or four holes (possibly even more) on the Teflon feedthrough

to accommodate multiple fibers. The Teflon feedthrough is then used with a KF40 to Swagelock

adapter. With the fibers installed, we first hand tightened it mildly, then tightened it 180 degrees

with a wrench. A leak detection was conducted, and no leak was detected. We also found that the

fiber was fine with this procedure, and the feedthrough can be used multiple times.

After using the fiber feedthrough, the fibers were cleaved, aligned within the fiber channels,

fixed by a self-locking tweezer, and glued with Masterbond epoxy. The coating section of the fiber
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Figure B.4: The optical images of the fiber on chip. (a) Three atomic channels and gaps
in the capping wafer to form a cascaded collimator can be seen in the top left. Two fiber
channels can be seen facing each other can be seen in the bottom right. (b) and (c) The
images after fibers are glued on the channels on chip.

is glued on the chip to avoid cracking the fiber. Figure B.4 shows the optical image of the final

device.
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[17] W. Hänsel, P. Hommelhoff, T. Hänsch, and J. Reichel, “Bose–einstein condensation
on a microelectronic chip,” Nature, vol. 413, no. 6855, pp. 498–501, 2001.
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[56] D. Chang, J. Douglas, A. González-Tudela, C.-L. Hung, and H. Kimble, “Col-
loquium: Quantum matter built from nanoscopic lattices of atoms and photons,”
Reviews of Modern Physics, vol. 90, no. 3, p. 031 002, 2018.

[57] A. Frisk Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultra-
strong coupling between light and matter,” Nature Reviews Physics, vol. 1, no. 1,
pp. 19–40, 2019.

[58] J. P. Dowling and G. J. Milburn, “Quantum technology: The second quantum revo-
lution,” Philosophical Transactions of the Royal Society of London. Series A: Math-
ematical, Physical and Engineering Sciences, vol. 361, no. 1809, pp. 1655–1674,
2003.

[59] H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030,
2008.

[60] C. Hood, M. Chapman, T. Lynn, and H. Kimble, “Real-time cavity qed with single
atoms,” Physical review letters, vol. 80, no. 19, p. 4157, 1998.

[61] A. Boca, R. Miller, K. Birnbaum, A. Boozer, J. McKeever, and H. Kimble, “Obser-
vation of the vacuum rabi spectrum for one trapped atom,” Physical review letters,
vol. 93, no. 23, p. 233 603, 2004.

[62] C. Hamsen, K. N. Tolazzi, T. Wilk, and G. Rempe, “Two-photon blockade in an
atom-driven cavity qed system,” Physical review letters, vol. 118, no. 13, p. 133 604,
2017.

143



[63] T. Aoki et al., “Observation of strong coupling between one atom and a monolithic
microresonator,” Nature, vol. 443, no. 7112, pp. 671–674, 2006.

[64] B. Dayan, A. Parkins, T. Aoki, E. Ostby, K. Vahala, and H. Kimble, “A photon turn-
stile dynamically regulated by one atom,” Science, vol. 319, no. 5866, pp. 1062–
1065, 2008.

[65] S. Kato and T. Aoki, “Strong coupling between a trapped single atom and an all-
fiber cavity,” Physical review letters, vol. 115, no. 9, p. 093 603, 2015.

[66] S. Kato et al., “Observation of dressed states of distant atoms with delocalized
photons in coupled-cavities quantum electrodynamics,” Nature communications,
vol. 10, no. 1, pp. 1–6, 2019.

[67] J. D. Thompson et al., “Coupling a single trapped atom to a nanoscale optical cav-
ity,” Science, vol. 340, no. 6137, pp. 1202–1205, 2013.

[68] A. P. Burgers, L. S. Peng, J. A. Muniz, A. C. McClung, M. J. Martin, and H. J.
Kimble, “Clocked atom delivery to a photonic crystal waveguide,” Proceedings of
the National Academy of Sciences, vol. 116, no. 2, pp. 456–465, 2019.

[69] T.-H. Chang, B. M. Fields, M. E. Kim, and C.-L. Hung, “Microring resonators on
a suspended membrane circuit for atom–light interactions,” Optica, vol. 6, no. 9,
pp. 1203–1210, 2019.

[70] T. Aoki et al., “Efficient routing of single photons by one atom and a microtoroidal
cavity,” Physical review letters, vol. 102, no. 8, p. 083 601, 2009.

[71] L. C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quan-
tum boxes in pillar microcavities: Theory,” Physical Review B, vol. 60, no. 19,
p. 13 276, 1999.

[72] A. Yariv, “Universal relations for coupling of optical power between microres-
onators and dielectric waveguides,” Electronics letters, vol. 36, no. 4, pp. 321–322,
2000.

[73] V. Van, Optical microring resonators: theory, techniques, and applications. CRC
Press, 2016.

[74] M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in
high-q microspheres,” JOSA B, vol. 17, no. 6, pp. 1051–1057, 2000.

[75] Y. Zhao et al., “Visible nonlinear photonics via high-order-mode dispersion engi-
neering,” Optica, vol. 7, no. 2, pp. 135–141, 2020.

144



[76] K. Dieckmann, R. Spreeuw, M. Weidemüller, and J. Walraven, “Two-dimensional
magneto-optical trap as a source of slow atoms,” Physical Review A, vol. 58, no. 5,
p. 3891, 1998.

[77] J. Ramirez-Serrano, N. Yu, J. M. Kohel, J. R. Kellogg, and L. Maleki, “Multistage
two-dimensional magneto-optical trap as a compact cold atom beam source,” Op-
tics Letters, vol. 31, no. 6, pp. 682–684, 2006.

[78] D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch con-
trolled by a single atom,” Physical Review Letters, vol. 111, no. 19, p. 193 601,
2013.

[79] I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan,
“All-optical routing of single photons by a one-atom switch controlled by a single
photon,” Science, vol. 345, no. 6199, pp. 903–906, 2014.

[80] M. B. Squires et al., “Ex vacuo atom chip bose-einstein condensate,” Applied Physics
Letters, vol. 109, no. 26, p. 264 101, 2016.

[81] J. A. Stickney et al., “Tunable axial potentials for atom-chip waveguides,” Physical
Review A, vol. 96, no. 5, p. 053 606, 2017.

[82] L. Cheng, S. Mao, Z. Li, Y. Han, and H. Fu, “Grating couplers on silicon photonics:
Design principles, emerging trends and practical issues,” Micromachines, vol. 11,
no. 7, p. 666, 2020.

[83] E. R. Abraham and E. A. Cornell, “Teflon feedthrough for coupling optical fibers
into ultrahigh vacuum systems,” Applied optics, vol. 37, no. 10, pp. 1762–1763,
1998.

[84] R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, and P. Minzioni, “Coupling
strategies for silicon photonics integrated chips,” Photonics Research, vol. 7, no. 2,
pp. 201–239, 2019.

[85] X. Mu, S. Wu, L. Cheng, and H. Fu, “Edge couplers in silicon photonic integrated
circuits: A review,” Applied Sciences, vol. 10, no. 4, p. 1538, 2020.

[86] T.-H. Chang, X. Zhou, M. Zhu, B. M. Fields, and C.-L. Hung, “Efficiently cou-
pled microring circuit for on-chip cavity qed with trapped atoms,” Applied Physics
Letters, vol. 117, no. 17, p. 174 001, 2020.

[87] S.-P. Yu et al., “Nanowire photonic crystal waveguides for single-atom trapping
and strong light-matter interactions,” Applied Physics Letters, vol. 104, no. 11,
p. 111 103, 2014.

145
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