
LEVERAGING VALUE-AWARENESS FOR ONLINE AND OFFLINE
MODEL-BASED REINFORCEMENT LEARNING

A Thesis Proposal
Presented to

The Academic Faculty

By

Nirbhay Modhe

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Interactive Computing

College of Computing

Georgia Institute of Technology

December 2022

© Nirbhay Modhe 2022

LEVERAGING VALUE-AWARENESS FOR ONLINE AND OFFLINE
MODEL-BASED REINFORCEMENT LEARNING

Thesis committee:

Dr. Dhruv Batra
School of Interactive Computing
Georgia Institute of Technology

Dr. Zsolt Kira
School of Interactive Computing
Georgia Institute of Technology

Dr. Mark Riedl
School of Interactive Computing
Georgia Institute of Technology

Dr. Ashwin Kalyan

Allen Institute for AI

Dr. Gaurav Sukhatme

University of Southern California

Date approved: November 29th, 2022

ACKNOWLEDGMENTS

This thesis is dedicated to all those who have supported and shaped me throughout my

life.

I am grateful to my advisor, Dhruv, for his guidance and unwavering support, for always

bringing out the best in me, for always reminding me of the importance of taking a moment

to reflect and be in touch with the bigger picture. I would also like to thank Devi, who has

played a big role in developing my work ethic and inquisitive attitude.

I am lucky to have been mentored and supported by exceptional peers at Georgia Tech

– Ashwin and Rama, who have constantly reminded me of the importance of one’s cultural

roots and ancestral knowledge, who have never let the lack of sleep interfere with any

moment of enjoyment or growth. Karan, Samyak, Prithvi, Ram, Sameer, and all of my

labmates not mentioned here, it has been an absolute pleasure to have met all of you. Thank

you for sharing countless moments of joy, laughter, and deep dives into (occasionally)

important topics.

To my committee, thank you for all of your invaluable feedback that has helped shape

this thesis.

To my undergraduate mentors and teachers Piyush Rai, Raghunath Tewari, and Suren-

der Baswana, thank you for instilling in me a passion for computer science that constantly

drives me to pursue elegant solutions to challenging problems. Your teachings have and will

continue to be the source of my confidence for approaching seemingly impossible problems

with an open mind. To my undergraduate friends Alok, Naman, Divyanshu, Palak, Neha,

and Pramod – thank you for always being there and supporting me.

To Shubhangi, my partner in life, my source of joy in times of comfort and hardship

alike, thank you for being my reason to cherish every moment in life.

It is easy to take one’s parents for granted when they are always there in the background

supporting every little effort throughout one’s lives. While I am guilty of this in the past,

iii

I have especially grown to realize just how lucky and grateful I am for the unconditional

love, support, and blessings of my Mom and Dad. I am also grateful to my brother Vinod,

for fostering my interest in electronics throughout my childhood.

iv

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . viii

List of Figures . ix

List of Acronyms . xii

Summary . xiii

Chapter 1: Introduction and Background . 1

1.1 Thesis Statement . 3

1.2 Outline . 4

Chapter 2: Model-Advantage and Generalization Gap 6

2.1 Introduction . 6

2.2 Related Work . 7

2.3 Preliminaries . 7

2.4 Model-Advantage . 9

2.5 Generalization in RL . 11

2.5.1 Generalization Gap. 12

2.5.2 Generalization with Value Iteration and Fitted Q iteration 13

v

2.5.3 Is My Simulator Good? . 14

2.6 Conclusion . 16

Chapter 3: Model-Advantage Optimization for Model-Based Reinforcement Learn-
ing . 17

3.1 Introduction . 17

3.2 Related Work . 19

3.3 Preliminaries . 20

3.4 Approach: Value-Aware Objective via Model Advantage Upper Bound . . . 23

3.4.1 Direct Model Advantage Optimization 24

3.4.2 Model-Advantage Upper Bound . 25

3.4.3 General Algorithm for Value-aware Objectives 26

3.5 Experiments . 28

3.5.1 Discrete State and Control . 29

3.5.2 Continuous Control . 31

3.5.3 Methods . 31

3.5.4 Results . 32

3.6 Conclusion . 33

Chapter 4: Offline RL: Value-guided data augmentation 34

4.1 Introduction . 34

4.2 Related Work . 35

4.3 Preliminaries . 37

4.4 Approach . 39

vi

4.5 Experiments . 42

4.5.1 Performance on D4RL Environments and Datasets 43

4.5.2 Sign of Perturbation . 46

4.5.3 Distribution of Perturbation Distance 48

4.6 Conclusion . 50

Chapter 5: Conclusion . 51

Appendices . 53

Appendix A: Appendix for Model-Advantage and Generalization Gap 54

Appendix B: Appendix for Model-Advantage Optimization for Model-Based
Reinforcement Learning . 64

References . 66

vii

LIST OF TABLES

4.1 D4RL Score mean and standard error over 6 random seeds for (left to
right) COMBO (reported results by [1]), the implementation of COMBO
by [2] that we use and our proposed PnF-Qgrad method. PnF-Qgrad re-
quires tuning of the hyperparameters δmax, nsteps, faugment which are sensitive
to both datasets and environments. We tune these hyperparameters on the
Walker2D-v2 Medium-Replay dataset, according to the offline tun-
ing guidelines from [1, 3], and report online evaluation performance of the
selected hyperparameters across all other environments and datasets. ∗ in-
dicates tuned on Walker2D-v2 Medium-Replay. 46

B.1 Choices for hyperparameters α for all value aware methods. Note that these
hyperparameters were automatically selected based on highest average re-
turn over 3 random seeds at 200K time steps and over a log-scaled range of
values for each method. 64

viii

LIST OF FIGURES

2.1 Generalization gap on sub-optimal real world policies on FrozenLake en-
vironments (FrozenLake 4x4 on the left and 8x8 on the right). Even a
sub-optimal policy obtained with minimal interactions with the real-world
is sufficient to use model-advantage and compare different training envi-
ronments or simulators. 15

3.1 (Left) A sample of the 8x8 size gridworld environment from Gym Min-
iGrid [4]. (Right) Return curves over 20 random seeds on MiniGrid
Empty environments with varying grid sizes, using 4 value aware methods
and an MLE baseline. Increasing grid size negatively affects MLE perfor-
mance most, while our proposed upper bound and VAML [5] are affected
the least. The direct versions of L1 and L2 model-advantage based objec-
tives (MA Direct L1 and MA Direct L2) are further slower to converge than
MA Upper Bound L1 and MA VAML L2. 26

3.2 Evaluation on continuous control environments for value aware methods
and baselines with SLBO [6], without tuning existing parameters, over 5
seeds. Our objective MA-L1 achieves better return and sample efficiency in
comparison to MA-VAML on most environments (Ant-v1 being the excep-
tion) and in comparison to MLE on all environments. On the Swimmer-v1
and Hopper-v1 environments, we also outperform or are competitive
with SLBO. 29

3.3 Evaluation on continuous control environments for value aware methods
and baselines with MBPO [7], without tuning existing parameters, over 5
random seeds. The two value-aware objectives MBPO MA-L1 and MBPO
MA-VAML obtain near-matching performance with MBPO MLE in several
environments but under-performing in others. 30

ix

3.4 Return snapshots taken after convergence of SLBO, evaluated on three other
variants. MLE corresponds to the SLBO algorithm with just an MLE model
learning objective. MA-L1 Naive corresponds to the SLBO algorithm
where the model learning is objective is replaced with a value-aware ob-
jective LU1 . MA-L1 further uses Algorithm 2 for stale value estimate cor-
rection. In most environments, MA-L1 outperforms MA-L1 Naive and
MLE, indicating that the stale value estimate correction of Algorithm 2 is
the reason for improved performance. 31

4.1 (Left) Relationship between epistemic uncertainty estimated using ensem-
ble disagreement and true model error i.e. the mean absolute difference
between model next state and reward predictions and true quantities, for
the Adroit Pen manipulation task and Human demonstrations dataset. Each
point corresponds to a state obtained by model rollouts from a perturbed
state in Algorithm 4. Horizontal lines measure medians for respective un-
certainty category. (Right) Box plot of true model error aggregated for each
uncertainty category. 41

4.2 Evaluation on two sets of D4RL offline datasets, the Maze2D environment
with varying maze sizes (left) and Adroit Dextrous Hand Manipulation -
Pen Environment with varying dataset types (right). The Maze2D dataset
contain a little under 4 million time steps. The Pen-v1 Expert and
Pen-v1 Cloned datasets contain close to ∼ 495000 time steps, whereas
the Pen-v1 Human dataset contains 4950 time steps. Hyperparameters
are tuned on Maze2D-v1 Medium for the Maze2D tasks and Pen-v1
Human for the Adroit Pen tasks. 44

4.3 Average dataset Q-value (left) and D4RL score (right) for the Walker2d-v2
Medium-Replay task over 6 random seeds. The training curve is for 500
epochs of the policy update phase that occurs after an initial phase of fit-
ting a model to the offline dataset. A consistently and significantly lower
overall average dataset Q-value is obtained for COMBO PnF-Qgrad in
comparison to the COMBO baseline. COMBO [1] advocates for lower aver-
age dataset Q-values as they prevent overestimation of Q-value for unseen
states and actions, while also being strongly linked to higher online eval-
uation performance (D4RL score). We observe a similar result i.e. lower
average dataset Q-values for COMBO PnF-Qgrad lead to better D4RL
score. 47

x

4.4 D4RL score (left) and average dataset Q-value (right) for varying dataset
size fractions for the Walker2D-v2 Medium-Replay task. Each dataset
fraction corresponds to a contiguous subarray taken from the front of the
original dataset. We observe significantly lower average dataset Q-values
but comparable D4RL scores for COMBO PnF-Qgrad versus COMBO as
the dataset size reduces. 47

4.5 D4RL Score comparison on Pen-v1 Human task over 6 random seeds
of ablations of PnF-Qgrad that use positive-only step size along Q-gradient
(i.e. ηs ∼ U(0, δmax) in Algorithm 4), and negative-only step size along
Q-gradient i.e. (i.e. ηs ∼ U(−δmax,0) in Algorithm 4). (left) Ablations for
positive-only and negative-only inherit the hyperparameter values (nsteps, faugment, δmax)
from PnF-Qgrad (positive, negative) (red bar). (right) Each ablation is indi-
vidually tuned to obtain best value of hyperparameters nsteps, faugment, δmax.

. 48

4.6 Histograms of distance of visited unseen states from seen dataset computed
using L2 distance from nearest neighbor in seen dataset (X-axis) for the
Pen-v1 Human dataset. Unseen states in the COMBO baseline are ob-
tained by model rollouts from seen states, whereas unseen states from PnF-
Qgrad and PnF-Random are obtained using model rollouts starting from
augmented states using Algorithm 4 and their respective choice of perturba-
tion directions. Rollout horizon values are (left to right) 1,5,10. PnF-Qgrad
uses δmax = 0.001, nsteps = 4 and PnF-Random uses δmax = 0.1, nsteps = 1,
which were the best hyperparameter values selecting after tuning. Dark
colored full length vertical lines correspond to median of respective distri-
bution. 49

xi

xii

SUMMARY

Model-based Reinforcement Learning (RL) lies at the intersection of planning and

learning for sequential decision making. Value-awareness in model learning has recently

emerged as a means to imbue task or reward information into the objective of model learn-

ing, in order for the model to leverage specificity of a task. While finding success in theory

as being superior to maximum likelihood estimation in the context of (online) model-based

RL, value-awareness has remained impractical for most non-trivial tasks.

This thesis aims to bridge the gap in theory and practice by applying the principle

of value-awareness to two settings – the online RL setting and offline RL setting. First,

within online RL, this thesis revisits value-aware model learning from the perspective of

minimizing performance difference, obtaining a novel value-aware model learning objec-

tive as a direct upper bound of it. Then, this thesis investigates and remedies the issue

of stale value estimates that has so far been holding back the practicality of value-aware

model learning. Using the proposed remedy, performance improvements are presented

over maximum-likelihood based baselines and existing value-aware objectives, in several

continuous control tasks, while also enabling existing value-aware objectives to become

performant.

In the offline RL context, this thesis takes a step back from model learning and ap-

plies value-awareness towards better data augmentation. Such data augmentation, when

applied to model-based offline RL algorithms, allows for leveraging unseen states with

low epistemic uncertainty that have previously not been reachable within the assumptions

and limitations of model-based offline RL. Value-aware state augmentations are found to

enable better performance on offline RL benchmarks compared to existing baselines and

non-value-aware alternatives.

xiii

CHAPTER 1

INTRODUCTION AND BACKGROUND

Reinforcement Learning (RL), with its recent success stories in super-human game perfor-

mance [8, 9, 10] and intersections with deep learning [11, 12], has emerged as a promising

learning paradigm with applications now spread across almost every field of science – in

computer science in the form of robotics [13], recommender systems [14], natural language

processing [15]; in physics for simulating complex phenomena [16]; and in chemistry and

medicine for drug discovery [17]. From the advent of the two most successful approaches

for sequential decision making in Markov Decision Processes (MDPs) – planning and re-

inforcement learning, model-based RL has emerged as field at the intersection of these two

paradigms [18].

The idea of utilizing a model for planning is well-established with roots in optimal con-

trol theory, more specifically model predictive control [19]. With the advent of deep neural

networks for better function approximation, the paradigm of learning to model MDPs has

gained popularity, with most recent advances learning deep neural network models [12] in

conjunction with the objective of approximating the optimal control policy. While several

such methods have focused on how to better utilize a learned parametrized model [6, 7, 20],

the choice of objective for model learning – specifically the learning of a dynamics model

for predicting state transitions – has largely been overlooked.

Maximum-likelihood estimation (MLE) is the prevalent choice for the model learning

objective for learning a “correct” transition model of the underlying MDP. By definition,

this objective is independent of the task or reward function – such independence has not

received much scrutiny as model learning has been treated as an auxiliary objective to be-

havior optimization and planning 1. Recently, this assumption has been questioned by the

1Note that model learning is indirectly influenced by reward functions in practice as the behavior policy’s

1

paradigm of value-aware model learning [21, 5, 22, 23], that have emphasized the injection

of reward or task specific information into model learning. This independence of model

learning from task or reward information is part of the broader paradigm of task-agnostic

methods that aim to study generalization to different evaluation tasks (instantiated by dif-

ferent reward functions), which necessitates such independence [24, 25]. Such methods

typically do not assume changes in transition dynamcics across training and evaluation.

Value-awareness in contrast falls under paradigm of task-specific or task-dependent learn-

ing that does not change the task or reward specification across training and evaluation but

attempts to provide performance difference guarantees when the environment transition

dynamics are changed. However, note that assuming a fixed task or reward definition does

not imply that the reward function is known, it is still learned from data and the approxi-

mate reward function may not match the true reward function. While this thesis initially (in

Chapter 2) studies performance difference guarantees for changes in both reward and tran-

sition dynamics, the latter part (Chapters 3 and 4) is closely aligned with value-awareness

and it’s paradigm of task-dependence given a fixed reward function.

The investigations of this thesis are in three parts, described as follows.

1. Performance difference across environments. We first study the generalization gap

of training and evaluating on different environments, where performance difference

bounds are presented that are a function of the difference in reward and transition

dynamics, in two settings – Value Iteration and Fitted Q Iteration. A model-advantage

based model performance difference lemma is presented that admits an upper bound

objective for use in model-based RL in the next part. Finally, preliminary results

also show the applicability of model performance difference as a metric for ranking

candidate models given a target environment, without the need for an optimal policy

in the target environment.

visited state distribution is influenced by the reward or task, which indirectly biases model learning to only
observe data generated by this behavior policy.

2

2. Value-awareness in Online Model-based RL. This is the standard setting for

model-based RL with online-environment interactions allowed throughout training.

In this setting, we revisit value-aware model learning [5, 22] by deriving a novel

value-aware model learning objective from bounding the absolute model perfor-

mance difference of two models given a fixed policy, using the model performance

difference lemma presented earlier. We propose an alternating optimization strategy

for jointly training the model and value function approximate given a fixed policy and

demonstrate that this leads to significant performance improvements for all value-

aware model learning objectives on several challenging continuous control tasks.

3. Value-awareness in Offline Model-based RL This is the offline reinforcement

learning setting [26] where an offline dataset of behavior trajectories (comprising

states, actions and rewards) is available for training with no further online environ-

ment interactions throughout training. In this setting, value-aware objectives for

model learning do not work as their approximation requires on-policy data. We

propose a means of leveraging task or reward specificity by augmenting each batch

from the offline dataset with unseen states obtained by perturbations along the value-

gradient direction in the state space. Useful perturbed states are obtained by un-

certainty filtering to keep those states whose uncertainty is not too high (within the

generalization boundary) and not too low (too close to seen data to be useful). Perfor-

mance improvements are measured in comparison to COMBO [1], a strong model-

based offline RL baseline.

1.1 Thesis Statement

The central statement of this thesis is as follows.

Value-awareness can be leveraged for improved performance in both online and

offline reinforcement learning. In the online setting, value-awareness in the model

learning objective improves model-based RL performance over maximum-likelihood

3

based objectives. In the offline setting, value-awareness in data augmentation allows

for improved Q-value estimation in a model-based offline RL algorithm.

Specifically, the thesis aims to validate the following claims

• Online Model-based RL: Value-aware model learning, despite its limited practical

instantiations so far in challenging continuous control MBRL benchmarks [27], can

be made performant by selection of an appropriate value-aware objective and by care-

fully addressing moving value targets in practical implementations with parametrized

models and values.

• Offline Model-based RL: Model-based offline RL algorithms make use of a learned

dynamics and reward model to inform Q-value and policy learning beyond the ob-

served offline data. Current approaches do not make use of all possible states where

model predictions generalize well i.e. have low epistemic uncertainty. We claim

that value-aware augmentation of unseen states improves performance over a base-

line model-based offline RL algorithm and is a better strategy than random direction

based (non-value-aware) augmentation.

1.2 Outline

Chapter 2 lays the foundation for a novel value-aware model learning objective by first

taking a step back and deriving the model performance difference of a policy across two

different MDPs using model-advantage, the model equivalent of the well-known policy ad-

vantage function. It presents its roots in the generalization gap and extends the optimality

gap bounds of Value Iteration and Fitted Q Iteration into generalization gap bounds. Fi-

nally, it presents preliminary results indicating the accuracy of proposed model advantage

approximations in predicting relative distance of a set of candidate MDPs (which repre-

sent MDPs induced by an ‘approximated’ dynamics model) w.r.t. a target MDP (which

represents the ‘true’ dynamics).

4

While Chapter 2 presented generalization gap bounds given any two environments (for

training and evaluation respectively), Chapters 3 and 4 assume the model-based RL setting

in which the learned model is treated as the training environment and true environment is

also the evaluation environment.

Chapter 3 introduces a novel value-aware model learning objective by means of up-

per bounding the absolute model performance difference introduced in Chapter 2. It then

identifies and proposes a remedy for the issue of stale value estimates in the practical im-

plementation of value-aware model learning that has been so far holding back value-aware

model learning in being practically performant. It then compares performance of the novel

as well as existing value-aware model learning objectives in several continuous control

tasks.

Chapter 4 changes gears by shifting from the online RL setting assumed so far in previ-

ous chapters into the offline RL setting. It identifies the limits of unseen state visitation in

offline RL algorithms and proposes a novel strategy to find unseen states with low epistemic

uncertainty in order to improve Q-learning and consequently, offline learning performance.

A Q-value gradient based state augmentation strategy is investigated and found to improve

performance over several baselines and ablations in an offline RL benchmark.

5

CHAPTER 2

MODEL-ADVANTAGE AND GENERALIZATION GAP

2.1 Introduction

In this chapter, we approach the model learning task from the perspective that the learned

model will ultimately be applied to perform policy evaluation. We take a step back from

the problem of learning a model and study the general scenario of two MDPs that differ

only in their transition dynamics and reward distributions. Specifically, we derive an upper

bound on the performance difference of a fixed policy across two such MDPs – which we

refer to as model performance difference – and provide ways to approximate this upper

bound in practice. We then relate model performance difference to the generalization gap

and optimality gap in RL and study the effect of using a sub-optimal policy in practice for

ranking multiple candidate models given a true model. The need to upper bound model

performance difference is inspired by works that attempt to quantify the generalization gap

in reinforcement learning [28]. Later in Chapter 3, we delve into the specific setting where

one MDP represents the MDP induced by a learned dynamics (and reward) model and the

other MDP represents the unknown true MDP with the true transition dynamics model.

In order to study the model performance difference of a policy across two MDPs and

how it can be upper bounded, we introduce model-advantage [29, 30] – a quantity similar

to the well-known advantage function in RL. The standard advantage function – which

we refer to as policy-advantage – evaluates the advantage of playing a particular action

as opposed to the action of a reference policy. Similarly, we define model-advantage as

the advantage of transitioning to a state as opposed to transitioning according to an MDP

M , while acting according to some policy. Specifically, we are interested in the expected

advantage of transitioning according to one MDP with respect to another one as reference,

6

which allows us to evaluate the effectiveness of using one model in lieu of the other – much

like how policy-advantage helps compare two different policies.

After introducing model-advantage and its place in the model performance difference

lemma (Lemma 4), this work [29] studies the role of model performance difference in

the generalization gap in reinforcement learning [28] and the optimality gap between an

optimal and approximated policy in Section 2.5.1.

2.2 Related Work

Generalization in RL. Studying and benchmarking generalization properties of RL agents

via large-scale experiments has been the focus of many works in the recent years [31,

32, 33, 34, 35, 36, 37, 38]. Additionally, [39, 40] study generalization properties of RL

agents w.r.t. changes in state representations; the latter work derives a lemma comparable

to Lemma 4 for policies that are lipschitz continuous over a set of state-representations.

Importantly, [28] formally define generalization gap which we adopt in this work (see

Eq. (2.8)) They give formal bounds on this gap in the setting of reparametrizable RL while

making additional assumptions like Lipschitz continuity on value functions. While we do

not require any such assumptions, it is important to note that it is not possible to obtain

tighter bounds without such assumptions. Going beyond evaluating generalization, other

works seek to learn robust policies by drawing inspiration from techniques employed in

the supervised learning literature – for e.g. L2 and entropic regularization [41], data aug-

mentation [42] and constraints like invariance or robustness to noise on the learnt state-

representation [43, 44, 40].

2.3 Preliminaries

Markov Decision Processes. In this work, we consider discrete-time infinite-horizon RL

problems characterized by Markov Decision Processes (MDPs) M defined by the tuple

(S,A,P,R,P0, γ). Here, S is the state space, A, the action space, P ∶ S ×A × S → ∆(S)

7

the transition probabilities or dynamics, R ∶ S ×A→ [0,Rmax] the reward function, P0 the

starting state distribution and finally, γ the discount factor. The goal is to find the optimal

policy π⋆ ∈ Π that maximizes the (discounted) total return J ∶ π → R i.e.

π⋆ = argmax
π∈Π

J(π), J(π) = Eρπ [
∞
∑
t=0

γtR(st, at)] (2.1)

where ρπ is the distribution of trajectories (s0, a0, s1, . . .), s0 ∼ P0, when acting according

to policy π. The state-action value or the Q-function and the value function under policy π

are given by

Qπ(s, a) = Eρπ [
∞
∑
t=0

γtR(st, at) ∣ π, s0 = s, a0 = a] V π(s) = Eρπ [
∞
∑
t=0

γtR(st, at) ∣ π, s0 = s]

Observe that the value function (and similarly, the Q-function) obeys the recursively de-

fined Bellman equation i.e.

V π(s) = T πV π(s) = Ea∼π(⋅∣s) [R(s, a) + γEs′∼P(⋅∣s,a)V
π(s′)]

where T ∶ R → R is the Bellman operator. Additionally, note that V π(s) = Ea∼πQπ(s, a)

and J(π) = Es∼P0[V π(s)]. A more useful version of value function (and therefore the

objective in Eq. (2.1)) is obtained by defining the future state distribution P π
s,t(s′) = Pr(st =

s′ ∣ π, s0 = s) and γ-discounted stationary state distribution ds,π(s′) = (1−γ)∑∞t γtP π
s,t(s′).

Using these definitions, we can now write the value function as:

V π(s0) =
∞
∑
t=0

γtEat,st∼πPs0,t
[R(st, at)] = Ea,s∼πds0,π[R(s, a)] (2.2)

Advantage. Another important quantity that is computed using the value function(s)

is advantage function defined as Aπ(s, a) = Qπ(s, a) − V π(s). Intuitively, it measures

the utility of taking action a instead of continuing to act under the policy π. Importantly,

8

advantage is closely related to the RL objective in Eq. (2.1) through the following lemma

by Kakade and Langford [45].

Lemma 1. (Performance Difference Lemma) Given any two policies π,π′ ∈ Π we have:

J(π) = J(π′) + 1

1 − γEs∼ds0,πEa∼π[Aπ′(s, a)] (2.3)

Owing to this lemma, many RL frameworks optimize Es∼ds0,πEa∼π[Aπ′(s, a)] w.r.t. an

arbitrary fixed policy π′ – a surrogate objective to the ones defined in Eq. (2.1) or Eq. (3.1).

For the rest of the paper, we will refer to this advantage as policy-advantage in order to

differentiate it from model-advantage which we introduce next.

2.4 Model-Advantage

In this section, we formally introduce model-advantage and definitions associated with it.

Recall that Aπ(s, a) i.e. policy-advantage defined over states s ∈ S and actions a ∈ A mea-

sures the utility of taking action a as opposed to acting according to policy π. However,

unlike policy-advantage that measures the difference in utility of taking an action, we are

interested in knowing the utility difference of transitioning to a particular state, while fol-

lowing a single policy. Specifically, model-advantage denoted by Aπ
M(s, s′) compares the

utility of moving to state s′ and following the trajectory governed by model M as opposed

to doing it from state s; both under policy π. By definition, model-advantage is local – it is

a quantity dependent on a given state s′ and next state s′. Comparing two models however

requires a global comparison over multiple states and next states, which we will see soon

in Lemma 4.

We define the model-dependent value function as follows, where we make explicit the

MDP M (and hence, the transition function PM) used to generate trajectories.

V π
M(s) = EρπM

[
∞
∑
t=0

γtRM(st, at) ∣ π,M, s0 = s]

9

Here, ρπ is the distribution of trajectories (s0, a0, s1, . . .), s0 ∼ P0, when acting according

to policy π. Now, the intuition of model-advantage 1 is given by:

Aπ
M(s, s′) = γ [V π

M(s′) −Es′′∼PM (s,π)V
π
M(s′′)] (2.4)

Analogous to policy-advantage that compares different policies in the same environment,

model-advantage helps compare the same policy acting in two different environments. For

such a comparison, we need to look at the quantity Es′∼M ′ [Aπ
M(s, s′)] – the expected

model-advantage (evaluated at π) when the next state s′ is obtained from the MDP M ′.

We formalize this by the following (model) performance difference lemma. The proof

resembles the proof by [45] and is provided in Section A.1.

Lemma 2. (Model Performance Difference Lemma) Let M and M ′ be two different

MDPs. Further, define Rπ(s) = Ea∼π(⋅∣s)[R(s, a)], Rπ
ϵ (s) = Rπ

M(s) − Rπ
M ′(s) and

J(π) = Es∼P0[V π(s)]. For any policy π ∈ Π we have:

JM(π) − JM ′(π) = Es∼dM,π
[Rϵ(s)]

+ 1

1 − γEs∼dM,π
Es′∼PM (s′∣s,π) [Aπ

M ′(s, s′)] (2.5)

Here, we use a model-dependent stationary state distribution dM,π(s) where the dy-

namics PM are used, assuming a start state distribution P0. Compared to its policy coun-

terpart the (model) performance difference lemma involves an additional reward error term

EdM,π
[Rϵ] that vanishes when the two MDPs differ only in the transition probabilities.

We can also use the Bellman evaluation operator for policy π to obtain an equivalent for-

1A Q(s, s′) function can also be defined; however, it requires additional formalism not necessary for our
exposition. See concurrent work [46] for a detailed discussion.

10

malization (see Section A.1):

JM(π) = JM ′(π) + 1

1 − γEdM,π
[T π

MV π
M − T π

M ′V π
M]´¹¹¹¸¹¹¶

deviation error

(2.6)

The term T π
MV π

M −T π
M ′V π

M , which we denote by δπM,M ′

2 represents the deviation in the value

function when acted upon by Bellman operators corresponding to two different MDPs. This

term is exactly equal to model-advantage when the reward functions of the two MDPs are

the same. We can form an upper bound on the extrinsic error as:

JM(π) − JM ′(π) ≤ 1

1 − γ ∥T
π
MV π − T π

M ′V π∥∞

≤ 1

1 − γ [ϵR + γϵP ∥V
π∥∞] (2.7)

where the rewards and the dynamics themselves are individually bounded i.e.

maxsmaxa ∣RM(s, a) −R′M ′(s, a)∣ ≤ ϵR and maxsmaxa ∥PM(s, a) − PM ′(s, a)∥1 ≤ ϵP . Of

course, note that ∥V π∥∞ is trivially bounded by 1
1−γRmax, assuming rewards are bounded

by Rmax.

2.5 Generalization in RL

An RL problem is characterized by an MDP M and is considered solved when a policy

π ∈ Π that maximizes the expected (discounted) return is found. However, in practice,

the RL agent may then be deployed in a slightly different environment characterized by an

MDP M ′. Therefore, we are interested in how well an RL agent performs in an unseen

environment – in other words, its ability to generalize.

2Optionally, when using the optimality operators corresponding to MDPs M and M ′, we drop the π and
denote the deviation error as δM,M ′(V (s)).

11

2.5.1 Generalization Gap.

Let J(π) ∶= E[∑tR(st, at)] denote the cost function, where the stochasticity is due to the

policy and transition dynamics; let Ĵn(π) denote its empirical estimate with n samples.

Given an RL agent trained in MDP M with finite data, we are interested in its performance

in a different MDP M ′. We can formally write this generalization gap as:

Φ = ∣Ĵn(π) − J ′(π)∣

≤ ∣Ĵn(π) − J(π)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

intrinsic error

+ ∣J(π) − J ′(π)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

extrinsic error

(2.8)

The generalization gap can be bounded with two different sources of error as indicated in

Eq. (2.8). Following [28], we call them intrinsic error and extrinsic error to denote the

error due to learning from finite samples and the error due to mismatch in training and

deployment environments. The intrinsic error decreases, typically as O(1/√n), with more

samples; this is well-studied in RL literature [47, 48, 49]. The extrinsic error on the other

hand is an artifact of training and deploying the RL agent in different environments and

therefore, cannot be avoided.

When does π generalize? Observe that the extrinsic error is nothing but the difference

in performance due to model mismatch. From Lemma 4, we know that this is equal to the

model-advantange, allowing us to both estimate and bound this error term. In other words,

if the model-advantage is bounded by ϵ (see Eq. (2.7)) i.e.

∣JM(πM) − JM ′(πM)∣ ≤ ϵ

we can say that πM , the policy learnt with experiences from MDP M achieves similar

performance in the target MDP M ′. As model of the “test” environment is not known, a

reasonable estimate of the model-advantage can be obtained with enough samples – allow-

ing one to predict the extent to which the policy performs in the novel environment.

12

How good is π really? However, note that the above generalization gap still does not

provide the complete picture. Ideally, we would like the policy πM to have performance

comparable to π∗M ′ , the optimal policy in the target MDP M ′, which we quantify with the

optimality gap.

∣JM ′(πM) − JM ′(π∗M ′)∣
´¹¹¹¸¹¹¹¶

optimality gap

≤ ∣JM ′(πM) − JM(πM)∣
´¹¹¹¸¹¹¹¶

term-I

+ ∣JM(πM) − JM ′(π∗M ′)∣
´¹¹¹¸¹¹¹¶

term-II

(2.9)

It is easy to see that term-I is nothing but the extrinsic error in Eq. (2.8) and is related to the

model-advantage (evaluated under policy πM) through Lemma 4. Intuitively, this this term

corresponds to the cost of transfering πM learnt in the seen MDP M to the novel MDP M ′.

In the rest of this section, we will bound term-II for specific instantiations of obtaining

policy πM – specifically, Value Iteration (VI) and Fitted Q-Iteration (FQI), with the former

being a model-based and the latter, a model-free approach to solve MDPs.

2.5.2 Generalization with Value Iteration and Fitted Q iteration

Value Iteration. When the dynamics and the reward functions are known, Value Iter-

ation (VI) and its variants are often employed to arrive at the optimal policy. VI is an

iterative algorithm that applies the Bellman optimality operator TM 3 at each step i.e.

V (n) = TMV (n−1). The obtained iterates converge to V ∗M , the value function of π⋆M , asymp-

totically as TM is a contraction in the infinity-norm. We can bound the difference in value

from training on another MDP with the following theorem:

Theorem 3. Let M,M ′ be two MDPs s.t.maxsmaxa ∣RM(s, a) −RM ′(s, a)∣ ≤ ϵR and

maxsmaxa ∥pM(s, a) − pM ′(s, a)∥1 ≤ ϵP . Let πn+1 be the policy obtained after n VI itera-

3Assume optimality operator by default if policy is not explicitly defined

13

tions on MDP M and let ∥V (n+1)M − V (n)M ∥∞ ≤ ϵ
(n) Then we have,

∥V πn+1

M ′ − V ⋆M ′∥∞ ≤
1

1 − γ [γϵ
(n) + 2ϵR +

2ϵPRmax

1 − γ]

We provide a similar bound when following a Fitted Q iteration (FQI) method, which

is more effective when dealing with a large (or infinite) state space or unknown dynam-

ics/reward functions. The statement and proof of the bound can be found in Section A.2.2.

2.5.3 Is My Simulator Good?

The fundamental bottleneck preventing the usage of RL to train agents in the real-world is

exploration. As the model of the environment is not available, finding the optimal policy

not only requires exploring a large search space but is also costly. A common strategy

to avoid this issue is to learn a coarse policy using a simulator and then fine-tune it upon

deployment. But how does one build the simulator in the first place? It either requires

considerable domain expertise or a large number of samples from the real-world, and we

must know a priori that the simulator can express all variations feasible in the real world.

We are left with the question: Given a set of simulators, which one is likely to “generalize”

best to the real-world?

Predicting Generalization with Model-Advantage. Recall that (model) performance

difference Lemma 4 allows us to compare two models given a policy. Given M , the simu-

lator MDP and M ′, the real-world MDP and πexp, an expert policy for M ′, we can write:

∣JM(πexp) − JM ′(πexp)∣ = ∣E(s,s′)∼M [Aπexp

M ′ (s, s′)] ∣

To compute the advantage function A
πexp

M ′ , the expert policy has to be executed in the real-

world. Alternately, such an “expert” policy and its corresponding value function in MDP

M ′ can be learnt by collecting a finite set of data from the real-world – for instance, by

14

Figure 2.1: Generalization gap on sub-optimal real world policies on FrozenLake envi-
ronments (FrozenLake 4x4 on the left and 8x8 on the right). Even a sub-optimal policy
obtained with minimal interactions with the real-world is sufficient to use model-advantage
and compare different training environments or simulators.

running FQI on the collected dataset 4. After paying this one-time cost of interacting with

the real-world, the model-advantage can be estimated in an inexpensive manner for every

simulator with finite samples. In our experiments we will show that using an approximately

optimal policy is sufficient for comparing model advantage across simulators, alleviating

the need for an expert policy.

Grid World Experiments. We consider the toy environment of FrozenLake available

as part of OpenAI Gym 5 to illustrate the effectiveness of the proposed model-advantage

term in evaluating simulators. We treat the original setting as M , the real-world MDP and

then, corrupt the transition dynamics with various levels of random noise to obtain a set of

“simulators” {M ′
i}Ki=1. We then run DQN [50] that uses a single hidden-layer MLP to learn

Q-values in M and obtain a sub-optimal “expert” Q-function by not running the training

to completion. As can be seen from Figure 2.1, we see that even for Q-values far from

optimal, the model-advantage increases with increasing modeling error ϵP – the same trend

exhibited by the optimal Q-function in the real-world.

4Note that convergence to optimal value-function is guaranteed only if the distribution used to sample
states is exploratory. While the “tax” of exploration cannot be waived, the hope here is that a small amount if
data is sufficient to learn a sub-optimal expert.

5https://gym.openai.com/

15

https://gym.openai.com/

2.6 Conclusion

In this work, we proposed model-advantage that helps compare two models, similar to

policy advantage that can be used to compare two policies. We presented the theoretical

connections of model performance difference with generalization in RL and the optimal-

ity gap. Further, presented toy experiments to show that even a sub-optimal policy, learnt

from minimal interactions with the target environment, can help identify the training envi-

ronment that facilitates maximum generalization. In the next chapter, we will employ an

upper bound on the model performance difference to produce a novel task-aware model

learning objective for model-based RL.

16

CHAPTER 3

MODEL-ADVANTAGE OPTIMIZATION FOR MODEL-BASED

REINFORCEMENT LEARNING

3.1 Introduction

Chapter 2 introduced model-advantage as a quantity useful for characterizing the model

performance difference of a policy across two MDPs differing in their transition dynamics

and/or rewards. In this chapter, we present our recent work [51] where we switch to the

more specific setting of model-based (online) reinforcement learning – where one MDP

represents the learned dynamics model and the other is the true underlying MDP with

unknown dynamics and reward in the reinforcement learning problem definition. In this

setting, model performance difference is an important quantity that leads to a recently in-

troduced task-aware notion of model ‘correctness’ – value equivalence [22]. The learned

dynamics model is said to be value-equivalent w.r.t the true dynamics model for a fixed

policy if the model performance difference for that policy is zero.

Before introducing our model learning objective, we must understand the most com-

monly used model learning objective of maximum likelihood estimation (MLE). MLE

minimizes the KL divergence between predicted and observed next state distributions. A

drawback of this approach is the issue of an objective mismatch between the model-learning

objective and the ultimate purpose of using the model to find an optimal policy [52, 53].

More recent research in MBRL has focused on efforts to overcome these shortcomings

– including optimizing for auxiliary objectives [54, 55, 56], augmenting model-learning

with exploration strategies [7, 57], meta-learning to closely intertwine the two objectives

[58] and introducing inductive biases to the model-learning objective [59]. However, these

MBRL approaches still employ MLE to learn the dynamics as an intermediate step.

17

In this work, we revisit Value Aware Model Learning (VAML) [21, 5], an alternate

objective for learning dynamics. Instead of maximizing the likelihood of the future state

given the current state and action, VAML seeks to minimize the squared error of the ex-

pected value of next state predicted by the dynamics model from the value of the observed

next state in data. This objective is appealing as it factors in the utility of the model in

finding the optimal policy (through the value function) and does not require exact predic-

tion of observed trajectories. It is also amenable to Dyna-style [60] deep model-based RL

algorithms (e.g. [6]) where the critic in an actor-critic agent can be used for computing the

value estimates required by this unique model learning objective. Value-aware model-based

RL has recently found strong theoretical backing in the form of guarantees of convergence

[21, 5], the value-equivalence principle [22] and use optimistic model-based RL for regret

minimization [23]. The MuZero algorithm [61] is also an example of a value-aware (or

‘value-equivalent’) model-based approach for solving discrete action environments while

leveraging Monte-Carlo tree search.

Despite the intuitive and theoretical appeal of existing value-aware model learning ob-

jectives, their utility has thus far remained under-explored beyond toy settings within the

domain of continuous control. In our experiments, we find that existing value-aware objec-

tives perform poorly with recent Dyna-style model-based RL frameworks, independently

replicating recent negative results [27]. In this work, we revisit value-aware model learning

from a novel perspective and bridge the gap in theory and practice in challenging contin-

uous control applications. First, we derive an upper bound on the expected model per-

formance difference of two MDPs or models for a fixed policy, using triangle inequality

on the L1-norm. In contrast, prior value-aware approaches [5], though inspired by the

minimization of (normed) model performance difference, do not upper bound the model

performance difference with their use of the L2-norm, which may explain their inferior

performance compared to our proposed objective in most of our continuous control tasks.

Second, we call to attention the issue of stale value estimates in the naive application of

18

value-aware losses in the dyna-style model-based RL algorithmic framework. Upon cor-

recting for the stale value estimates by intermittently fitting the value network during model

learning, we obtain significant performance improvements on the more challenging contin-

uous control environments. The resulting general purpose dyna-style MBRL algorithm is,

to the best of our knowledge, the first known practical deployment of value-aware objec-

tives in challenging continuous control robotic simulation environments [62].

We empirically test our proposed algorithm and novel upper bound on two recent dyna-

style MBRL algorithms – SLBO [6] and MBPO [7]. We find that our algorithm success-

fully bridges the gap in theory and practice by reaching near-matching performance w.r.t.

MLE-based baselines in most continuous control simulation tasks and outperforming them

in some others. We hope that these encouraging results spur wider interest in the com-

munity leading to both adoption and further study of value-aware methods for practical

model-based RL.

3.2 Related Work

MLE-based MBRL. Maximum likelihood estimation (MLE) is the the most prevalent

and straight-forward objective for model learning in a model-based reinforcement learning

framework [60, 63]. Broadly, MLE-based methods seek to construct a model that mim-

ics the dynamics as accurately as possible. Unlike our proposed value-aware objective,

minimizing dynamics error minimizes a looser upper bound on the model performance

difference [21]. Therefore, multiple MBRL approaches that minimize various definitions

of dynamics error have been proposed. For instance, [48, 64, 65] use naı̈ve empirical fre-

quencies. More sophisticated approaches use function approximators and minimize various

statistical distances – e.g. KL [66], total-variation [7] or Wasserstein distances [67].

Non-MLE based MBRL. Methods that inform model learning via the value function,

reward or policy have recently gained popularity [68, 69, 61, 70]. In particular, [71], [61],

and [72] explore learning dynamics implicitly using the estimated value for a given state,

19

and using a monte-carlo tree search algorithm to plan with this learned model. However,

these works learn a joint model for directly estimating future values and actions (policy)

without any explicit future predictions in the state space. In contrast, we focus on the class

of MBRL methods that explicitly make predictions in the state space, allowing for simple

adaptations on top of of well-known MBRL frameworks e.g. Dyna-style algorithms [60].

Value-aware Model Learning. [21], [5] and [22] are the closest prior works that study

the theoretical properties of value-aware objectives. They present experimental results only

on toy settings (e.g. with ∼25 states and cart-pole environments) and their algorithms do not

effectively scale to challenging environments. [27] demonstrate negative empirical results

for their practical instantiation of value aware model learning [5] with an actor-critic learner

in continuous control environments such as Pusher-v2 and InvertedPendulum-v2.

Their algorithm employs a sparse model update, occurring only once every few policy and

critic updates – different from our algorithm that builds on top of a standard Dyna-style

MBRL algorithm with multiple model updates in between every sequence of policy and

critic updates. Our key insight for modifying this Dyna-style algorithm takes advantage of

the multiple model updates while preventing stale value estimates as a result of changing

model parameters (for details, see Algorithm 2 and Approach section).

3.3 Preliminaries

Markov Decision Processes.

In this work, we consider a discrete-time infinite-horizon RL problem characterized by

Markov Decision Processes (MDPs) M defined as (S,A,P,R,P0, γ). Here, S is the state

space, A, the action space, P ∶ S × A × S → R the transition probabilities or dynamics,

R ∶ S ×A → [0,Rmax] the reward function, P0 the starting state distribution and finally, γ

the discount factor. The goal is to find the optimal policy π⋆ ∈ Π that maximizes the (dis-

counted) total return J ∶ π → R i.e. J(π) = Eρπ [∑tR(st, at)]. where ρπ is the distribution

of trajectories (s0, a0, s1, . . .), s0 ∼ P0, when acting according to policy π.

20

Algorithm 1: Model Based Reinforcement Learning (MBRL)
1 Randomly initialize policy π, model M
2 Initialize replay buffer D ← ∅
3 for nouter iterations do

// model update step
4 for Kmodel updates do
5 D ← D⋃{n samples from true environment M ′ collected by π}
6 Update M ′ using model-learning objective on D // e.g.

ED [KL(ŝ∣∣s)]
7 end

// policy update step
8 for Kpolicy updates do
9 D′ ← {Samples collected in learned model M using π.}

10 Update π using policy learning method // e.g. TRPO [73]
11 end
12 end

The Q-function and the value function under policy π are given by Qπ(s, a) =

Eρπ [∑tR(st, at) ∣ π, s0 = s, a0 = a] and V π(s) = Eρπ [∑tR(st, at) ∣ π, s0 = s] respec-

tively. A more useful version of the value function, and therefore the RL objective itself,

is obtained by defining the future state distribution P π
s,t(s′) = Pr(st = s′ ∣ π, s0 = s) and

γ-discounted stationary state distribution ds,π(s′) = (1 − γ)∑∞t=0 γtP π
s,t(s′), where we drop

the dependency on start state distribution when it is implicitly assumed to be known and

fixed. Using these definitions, we write the value function as:

V π(s0) =
∞
∑
t=0

γtE(at,st)∼(π,Pπ
s0,t
)[R(st, at)]

= 1

1 − γEa,s∼π,ds0,π[R(s, a)]
(3.1)

Model-Advantage and MBRL.

MBRL algorithms work by iteratively learning an approximate model and then deriving

an optimal policy from this model either by planning or learning a separate policy with

imagined experience. The latter case refers to the family of Dyna-style MBRL algorithms

21

[60] that we adopt in this work – see Algorithm 1 for a representative algorithm from

this family. Model-advantage1, proposed by [30, 29], is a key quantity that can be used

to compare the utility of transitioning according to the approximate model M as opposed

to the true model M ′. Specifically, model-advantage denoted by Aπ
M(s, s′) compares the

utility of moving to state s′ and thereafter following the trajectory governed by model

M as opposed to following M from state s itself; while acting according to policy π.

The following definition in Eq. (3.2) captures this intuition. We denote model-dependent

quantities with the model as subscript: transition probability distribution of M is denoted

by PM and value function as V π
M .

Aπ
M(s, s′) ∶= γ [V π

M(s′) −Es′′∼PM (s,π)V
π
M(s′′)] (3.2)

Here, V π
M is the model-dependent value function defined as:

V π
M(s) = EρπM

[
∞
∑
t=0

γtRM(st, at) ∣ π,M, s0 = s]

We are now ready to restate the well-known simulation lemma [74] in an alternate form,

such that it quantifies the model performance difference using model-advantage.

Lemma 4. (Simulation Lemma) Let M and M ′ be two different MDPs. Further, define

Rπ
M(s) = Ea∼π(⋅∣s)[RM(s, a)] and Rπ

δM,M ′
(s) = Rπ

M(s) −Rπ
M ′(s). For a policy π ∈ Π we

have:

JM(π) = JM ′(π) + 1

1 − γ Es∼dM,π
Es′∼PM (s′∣s,π) [Aπ

M ′(s, s′)]
´¹¹¹¸¹¹¶

expected model-advantage

+Es∼dM,π
[Rπ

δM,M ′
(s)]

´¹¹¸¹¹¹¶
reward difference

(3.3)

Here, we use a model-dependent stationary state distribution dM,π(s) (dropping the

dependence on start state distribution) where the dynamics PM are used. To simplify nota-

tion, we will write the expected model advantage term as E(s,s′)∼M [Aπ
M ′(s, s′)] or simply

1Name follows policy-advantage that compares the utility of two actions [45]

22

EM [Aπ
M ′] . A slightly different form of Lemma 4 can be obtained by explicitly indicating

the model in the Bellman operator as follows.

T π
MV (s) ∶= Ea∼π [RM(s, a) + γEs′∼PM (s′∣s,a)[V (s′)]] (3.4)

This leads to the following corollary that provides an alternate view of the model-advantage

term (see Appendix for the proof).

Corollary 5. Let M and M ′ be two different MDPs. For any policy π ∈ Π we have:

JM(π) = JM ′(π) + 1

1 − γEs∼dM,π
[T π

MV π
M ′(s) − T π

M ′V π
M ′(s)]

´¹¹¸¹¹¹¶
deviation error

(3.5)

Note that the term on the right that includes the deviation error is exactly equal to model-

advantage when the reward functions of the two MDPs are identical2. Therefore, setting

aside the reward-error term in Lemma 4, model advantage can be viewed as the deviation

resulting from acting according to different MDPs. Minimizing the deviation error is the

basis of the objective proposed in Value-Aware Model Learning (VAML) [21, 5]. More

recent work [22] shows that various MBRL methods can be thought of as minimizing the

deviation error – a direct consequence of the close relationship between the deviation error

and the model performance difference.

3.4 Approach: Value-Aware Objective via Model Advantage Upper Bound

In this section, we first introduce the basis of our proposed value-aware model learning

objective that minimizes the performance difference of a policy in the true vs approximate

model. From Eqn. Equation 3.3, this translates to optimization of expected model advan-

tage EM [Aπ
M ′] using on-policy samples from the true environment, for which we show an

empirical estimation strategy with samples from the true MDP and gradient based updates
2A common assumption for MBRL works proposing to learn dynamics (e.g. [6]). We make this assump-

tion as well.

23

for a parametrized dynamics model. We then derive a novel upper bound on expected model

advantage and introduce our novel general purpose algorithm for value-aware model-based

RL.

3.4.1 Direct Model Advantage Optimization

For the model-learning step in MBRL, we are interested in an objective for finding model

parameters ϕ corresponding to the dynamics of the approximate MDP i.e. Pϕ(⋅ ∣ s, a) that

eventually lead to the learning of an optimal policy in the true MDP M⋆. By looking at the

model-advantage version of the simulation lemma (i.e. Lemma 4), a natural choice for a

loss function is the absolute value of the expected model advantage. For brevity, we replace

the expectation over st ∼ P π
M⋆,t, st+1 ∼ P π

M⋆,t+1 with d̃t.

L1(ϕ) ∶= ∣JMϕ
(π) − JM⋆(π)∣

=
RRRRRRRRRRR

∞
∑
t=0

γt Ẽ
dt

[γV π
Mϕ
(st+1) − γ E

s′′∼Pπ
Mϕ
(st,π)

[V π
Mϕ
(s′′)]]

RRRRRRRRRRR
(3.6)

This objective can be empirically estimated via a dataset Dm of trajectories (state-action

sequences) sampled from the true MDP M⋆. We omit the input of actions from π in Pπ
Mϕ

.

L̂1(ϕ) =
RRRRRRRRRRR

1

m
∑

(s0,a0,...,
aT−1,sT)∈Dm

T−1
∑
t=0

γt(V π
Mϕ
(st+1) − E

s′∼Pπ
Mϕ
(st)
[V π

Mϕ
(s′)])

RRRRRRRRRRR
(3.7)

In Eqn. Equation 3.7, the value function V π
Mϕ

has a complex dependency on parameters ϕ

which is hard to optimize. In practice, this value can be estimated in any Dyna-style [60]

model-based RL algorithm with a parametrized value function (with parameters included

in θ of policy πθ i.e. as part of an actor-critic pair) for estimating this value. We estimate the

value function without modeling its dependency on ϕ i.e. we replace V π
Mϕ

with a learned

value network V πθ , such that the V πθ is updated during the policy-update step of our algo-

rithm (using imagined experience from Mϕ) to match the true target V π
Mϕ

. This results in

24

a simple stochastic gradient update rule3 for predictions made from P π
Mϕ
(si). Finally, our

empirical objective can be written as follows.

L̂1(ϕ) =
RRRRRRRRRRR

1

m
∑

(s0,a0,...,
aT−1,sT)∈Dm

T−1
∑
t=0

γt(V πθ(st+1) − E
s′∼Pπ

Mϕ
(st)
[V πθ(s′)])

RRRRRRRRRRR
(3.8)

3.4.2 Model-Advantage Upper Bound

In practice, the objective in Eqn. Equation 3.8 is undesirable as it requires full length tra-

jectory samples to compute the discounted sum and therefore, provides a sparse learning

signal i.e. a single gradient update step from an entire trajectory. This limitation is over-

come by further upper bounding Eq. (3.6) via the triangle inequality as shown below (with

abbreviated notation).

L1(ϕ) ∶ = ∣
∞
∑
t=0

γt E
M⋆,t
[Aπ

M] ∣ ≤
∞
∑
t=0

γt E
M⋆,t
[∣Aπ

M ∣]
´¹¹¹¸¹¹¹¶

=∶LU
1 (ϕ)

(3.9)

Observe that this form of the objective is now compatable with experiences i.e. (s, a, s′, r)

sampled from the true MDP M⋆ as opposed to ensure trajectories – thereby providing a

denser learning signal despite being a proxy (upper bound) for the original objective. Later

in Section 3.5.1 we demonstrate the practical benefits of the denser learning signal on dis-

crete environments. We further make this objective amenable to minibatch training by

replacing the the discounted sum over timesteps ∑∞t=0 γtEst(⋅) with the policy’s discounted

stationary state distribution Es∼ρπ,M⋆
(⋅) – this is estimated empirically with a finite dataset

of sampled experiences. Similar to Eq. (3.8), the empirical estimation version of the objec-

3Note that this objective can be optimized via gradient updates as long as the value function V πθ can be
differentiated w.r.t. its inputs i.e. states, which is the case for neural networks.

25

Figure 3.1: (Left) A sample of the 8x8 size gridworld environment from Gym MiniGrid
[4]. (Right) Return curves over 20 random seeds on MiniGrid Empty environments
with varying grid sizes, using 4 value aware methods and an MLE baseline. Increasing
grid size negatively affects MLE performance most, while our proposed upper bound and
VAML [5] are affected the least. The direct versions of L1 and L2 model-advantage based
objectives (MA Direct L1 and MA Direct L2) are further slower to converge than MA
Upper Bound L1 and MA VAML L2.

tive is as follows, where the summation is over trajectories (st, at, st+1) ∈ Dn.

L̂U1 (ϕ) =
1

n
∑
(st,at,

st+1)∈Dn

(∣V πθ(st+1) − E
s′∼pπMϕ

(st)
[V πθ(s′)] ∣) (3.10)

Connection to VAML. Eqn. Equation 3.9 is similar to the L2 norm value-aware objective

introduced in [21, 5]. In our framework, the VAML objective, LVAML
2 , can be obtained by

using the L2 norm in Eq. (3.9) i.e. LVAML
2 ∶= ∑∞t=0 γtEM⋆,t [(Aπ

M)
2]. Imporantly, owing

to the properties of L2 norm, LVAML
2 does not upper bound its corresponding L2 normed

model advantage objective L2. We find in our experiments that LU1 often has better or equal

performance in conjunction with SLBO and MBPO, potentially hinting at the importance

of this relationship with model-advantage.

3.4.3 General Algorithm for Value-aware Objectives

Value-aware objectives such as [5, 22] enjoy several theoretical benefits, but remain iso-

lated from practical use beyond small, finite state toy MDPs within continuous control. We

find that with a naive substitution of value-aware objectives in place of maximum likeli-

hood (Fig. 3.4) in existing MBRL algorithms (Algorithm 2) worked well only for the easy

continuous control environments, namely Cartpole, Pendulum and Acrobot. This

26

Algorithm 2: Value-Aware MBRL
1 Initialize θ = (θp, θv), the policy/value function parameters and model parameters

ϕ randomly;
2 Initialize replay buffer D,D′,D′′ ← ∅;
3 for K iterations do
4 D ← D⋃{n samples from true environment M⋆ collected by πθp};

// model update step
5 for Kmodel updates do
6 Update ϕ using value-aware model-learning objective on D (e.g.

Equation 3.10) ;
7 if every Kinterval model updates then

// update stale value parameters
8 D′′ ← {m samples collected in learned model M using πθp};
9 Update θv to estimate discounted return with D′′;

10 end
11 end

// policy update step
12 for Kpolicy updates do
13 D′ ← {m samples collected in learned model M using πθp};
14 Update θp, θv using policy learning method // e.g. TRPO [73]
15 end
16 end

supports the evidence in [27] where negative results were demonstrated for their choice

of simple environments – Pusher-v2 and InvertedPendulum-v2, and value-aware

errors alone were examined for Hopper-v3 and Walker2d-v3. Next, we describe our

algorithm with which we find positive results in conjunction with the SLBO algorithm [6]

on Swimmer-v1, Hopper-v1 and Ant-v1 and in conjunction with the MBPO algo-

rithm [7] on Walker-v2 and HalfCheetah-v2.

Correcting Stale Value Estimation

Value-aware objectives use V πθ as a white-box estimator in place of V π
Mϕ

when simplifying

Eq. (3.7). However, dropping the dependency on ϕ in V π
Mϕ

from Eq. Equation 3.7 to

Equation 3.8 leads to an issue of stale value estimates in the default dyna-style algorithm,

described as follows. For every model update in Algorithm 1, the parameter ϕ of Mϕ is

27

changed and as a result, the value function term in Eq. (3.7) no longer corresponds to the

same Mϕ. This implies that for multiple consecutive model updates with a fixed V πθ , the

target that V πθ is supposed to estimate has moved – making it a stale estimate.

In Algorithm 2 we remedy this issue by updating the value function intermittently

(while keeping policy fixed) between model updates. Such an intermittent update is rel-

atively cheap to perform as (i) it does not rely on any additional ground truth experience,

(ii) it updates solely the value network and not the policy network, and (iii) the frequency of

intermittent updates need not be very high – controlled by the new hyperparameter Kinterval

in Algorithm 2. We found that setting Kinterval to 20 for SLBO and 5 for MBPO works well

in practice. Intuitively, such intermittent value updates allow for a novel interplay in the

form of a joint optimisation of model estimates and value estimates (keeping policy fixed)

in conjunction with any value aware model learning objective. We hypothesize that this

interplay adds stability to the optimisation of value aware objectives and verify it’s role in

the same with an ablation experiment (Fig. 3.4).

3.5 Experiments

In this section, we investigate our model learning objective in the context of model based

reinforcement learning in two settings. First, we evaluate our algorithm in a discrete-

state MDP where we optimize expected model advantage directly as well as indirectly

via Eqns. Equation 3.8 , Equation 3.10, with the purpose of establishing the performance

and convergence relationship among the selected value-aware objectives and a maximum-

likelihood baseline in a pedagogical setting. Second, we evaluate Algorithm 2 together

with our proposed and a prior value aware objective on several continuous control tasks,

with two recent dyna-style MBRL algorithms – SLBO [6] and MBPO [7].

28

Figure 3.2: Evaluation on continuous control environments for value aware methods and
baselines with SLBO [6], without tuning existing parameters, over 5 seeds. Our objective
MA-L1 achieves better return and sample efficiency in comparison to MA-VAML on most
environments (Ant-v1 being the exception) and in comparison to MLE on all environ-
ments. On the Swimmer-v1 and Hopper-v1 environments, we also outperform or are
competitive with SLBO.

3.5.1 Discrete State and Control

We first establish the efficacy of value-aware objectives in a small, finite state setting, where

we purportedly make transition dynamics learning hard to scale by posing it as an ∣S ∣-way

classification problem. For this experiment, we use a discrete-state episodic gridworld

MDP with cardinal actions {North, South, East, West}, an N ×N grid, deter-

ministic transitions and a fixed, absorbing goal state located at the bottom right of the grid

and agent spawning at the top left. A dense reward is provided for improvement in L2 dis-

tance to the goal square and an additional time-decaying reward is provided upon reaching

the goal. The environment is empty except for walls along all edges. Since the values of

the optimal policy are symmetric for states reflected across the major diagonal of the grid,

this setting should effectively reduce the number of states in the prediction space by half

(∣S ∣ /2) for value-aware methods that find the optimal policy. We use four configurations

of grid sizes: 8 × 8, 12 × 12, 16 × 16 and 20 × 20.

Methods. We denote MA Direct L1 and MA Direct L2 as methods that op-

timize L1 and L2 objectives respectively (Eq. Equation 3.8). MA Upper Bound L1

29

Figure 3.3: Evaluation on continuous control environments for value aware methods and
baselines with MBPO [7], without tuning existing parameters, over 5 random seeds. The
two value-aware objectives MBPO MA-L1 and MBPO MA-VAML obtain near-matching
performance with MBPO MLE in several environments but under-performing in others.

optimizes our proposed upper bound LU1 and MA VAML L2 optimizes LVAML
2 (IterVAML

from [21]). In computing the objectives from equations Equation 3.8 and Equation 3.10,

the expectation over predicted states is computed exactly as a summation over all states.

MLE denotes the maximum likelihood baseline. For all methods, we use A2C for policy

updates.

Results. Figure Figure 3.1 shows return curves for all methods and environment con-

figurations. Return greater than 1 corresponds to reaching the goal (green square) and

solving the task successfully and higher returns correspond to fewer steps taken to reach

the goal. We observe that MLE sample efficiency decreases with increase in grid size (left

to right in Fig. 3.1) and all value based methods outperform this baseline on grid sizes of

16x16 and larger. We observe that the upper bounds on expected model advantage MA

Upper Bound L1 and MA Upper Bound L2 achieve better sample efficiency than

the direct counterparts MA L1 and MA L2, which is expected due to the sparser learning

signal from the norm of the summation over value differences in the direct computation as

opposed to sum of normed value differences in the upper bounds. In conclusion, we find

that value-aware methods do outperform maximum-likelihood in discrete state settings with

increasing number of states.

30

Figure 3.4: Return snapshots taken after convergence of SLBO, evaluated on three other
variants. MLE corresponds to the SLBO algorithm with just an MLE model learning ob-
jective. MA-L1 Naive corresponds to the SLBO algorithm where the model learning is
objective is replaced with a value-aware objective LU1 . MA-L1 further uses Algorithm 2
for stale value estimate correction. In most environments, MA-L1 outperforms MA-L1
Naive and MLE, indicating that the stale value estimate correction of Algorithm 2 is the
reason for improved performance.

3.5.2 Continuous Control

We select two commonly adopted dyna-style MBRL algorithms – SLBO [6] and MBPO [7]

as a foundation for evaluating value-aware approaches in continuous control. For SLBO,

we use their open source code4 and for MBPO, we use the open source PyTorch imple-

mentation by MBRL-Lib5. In both cases, we implement two modifications – (1) the option

to swap out MLE with value-aware losses for model-learning and (2) the option to turn on

correction of stale value estimates as per Algorithm 2.

3.5.3 Methods

For SLBO, we denote the [6]’s model-learning objective as SLBO. This objective uses a

horizon length of 2, effectively decomposing the objective into two terms – the first term

is the same as MLE, while the second term promotes smoothness (by minimizing the dif-

ference of consecutive state differences, see Eqn. 6.1 in [6] with H = 2). We denote an

MLE-only baseline as MLE, which corresponds to keeping just the MLE term of this ob-

jective (dropping the smoothness). Intuitively, this should be a weaker baseline than SLBO

as it represents a bare bones dyna-style MBRL algorithm. Using MLE as the foundation,

4https://github.com/facebookresearch/slbo
5https://github.com/facebookresearch/mbrl-lib

31

we obtain two value-aware variants denoted as MA-L1 and MA-VAML which correspond

to the empirical versions of LU1 and LVAML
2 (IterVAML from [21]) as model learning objec-

tives replacing maximum-likelihood in MLE while keeping everything else the same. The

exact formulae of each model learning objective can be found in the Appendix. Both the

value-aware variants use Algorithm 2 i.e. the proposed stale value estimate correction. In

Figure 3.4, we isolate the benefits of this correction by testing the LU1 objective without

Algorithm 2, which we denote as MA-L1 Naive. We select the same MuJoCo [75] envi-

ronments provided in the open source code by SLBO, shown in Figure 3.2. Additionally,

we show results on two OpenAI Gym [62] environments Pendulum and Acrobot.

For MBPO, we denote the original MBPO algorithm as MBPO MLE. Two value-aware

variants are obtained similar to SLBO, which we denote as MBPO MA-L1 and MBPO

MA-VAML which again correspond to the LU1 and LVAML
2 respectively. We select the same

environments provided in the open source code by MBPO6, shown in Figure 3.3.

3.5.4 Results

We present return curves for SLBO variants in Figure 3.2, and MBPO variants in Fig-

ure 3.3. Among the SLBO variants, we find that our proposed objective MA-L1 outper-

forms MA-VAML on all environments except Ant-v1 (where MA-VAML performs best)

but still achieves performance comparable to SLBO. We find a significant improvement in

performance of value-aware methods over the MLE baseline in most environments. This is

an important positive result for value-aware methods in general – they succeed in solving

continuous control tasks where MLE alone fails (in all environments except Reacher),

demonstrating that striving for learning an accurate model (with zero MLE loss) may in

fact be practically inefficient or sub-optimal. We also observe that on a few environ-

ments, namely Swimmer-v1 and Hopper-v1, MA-L1 outperforms or is competitive

with SLBO – a baseline that benefits from the smoothness regularizer in its second term, in

6Note that the MuJoCo environments for MBPO use the “v2” variants as opposed to the “v1” variants in
SLBO.

32

addition to MLE.

Among the MBPO variants, we find that both value-aware variants MBPO MA-L1

and MBPO MA-VAML perform similarly and are superior to MBPO MLE on Walker-v2,

HalfCheetah-v2 environments while under-performing on Hopper-v2 and

Ant-v2.

In Figure 3.4, using SLBO, we find that the ablation MA-L1 Naive is outperformed

by MA-L1 in all environments except Pendulum and Acrobot. The MA-L1 Naive

in most cases fails to exceed the performance of the MLE baseline, corroborating the neg-

ative results by [27] and highlighting the importance of correcting stale value estimates in

Algorithm 2.

Overall, these results demonstrate that it is possible for value-aware model learning

objectives, in conjunction with Dyna-style MBRL algorithms, to not only match but also

exceed performance of maximum-likelihood alone baselines (i.e. SLBO without smooth-

ness, MBPO) as well as stronger baselines (vanilla SLBO).

3.6 Conclusion

In this chapter, the aim was to bridge the gap in theory and practice of value-aware model

learning for model-based RL. We presented a novel value-aware objective inspired by

bounding the model-advantage between an approximate and true model given a fixed pol-

icy, demonstrating instances of superior performance in comparison to prior value-aware

objectives in conjunction with SLBO [6]. We identified the issue of stale value estimates

that hamper performance of all value-aware methods in general if used as-is in the dyna-

style MBRL framework. Our proposed algorithm enabled successful deployment of value-

aware objectives in complex continuous control environments, representing the first posi-

tive result in the path to bringing value-aware objectives, well-known for their theoretical

benefits, closer to practice.

33

CHAPTER 4

OFFLINE RL: VALUE-GUIDED DATA AUGMENTATION

4.1 Introduction

In Chapters 2 and 3, we have assumed that the fixed policy π, used for estimation of model-

advantage and derived value-aware model learning objectives (Equation 3.6), is the source

of ground truth transition data when interacting with the true environment. As a result,

off-policy data cannot be used to estimate value aware model learning objectives. In this

chapter, we explore a new axis of value-awareness that attempts to leverage the specificity

of the task reward for better training of offline RL policies, without the need for on-policy

data or interactions.

Offline RL methods rely heavily on either uncertainty estimation (in the model-based

case as in MOPO [76] and MOREL [57]) or on conservative Q-learning (e.g. CQL [77]),

or both (as in COMBO [1]), in order to penalize deviating from the seen state-actions in the

offline dataset. This approach prevents over-estimation of Q-values on unseen state-actions

while still allowing Q-value propagation to unseen states via Q-learning. As a result, some

amount of deviation from seen behavior is allowed as long as the Q-value estimates for this

behavior are reasonably high despite the under-estimation bias. A common design choice

in model-based offline RL is to use a learned model to generate branched rollouts starting

from seen states in the offline dataset [57, 1], and either penalizing the Q-value estimates of

all unseen states visited by model rollouts (as in COMBO [1]), or stopping model rollouts

when uncertainty estimates are high (as in MOREL [57]). However, unseen states obtained

by branched model rollouts alone do not cover the set of all states where uncertainty (typ-

ically epistemic) estimates are high and can be potentially useful for effective Q-learning.

Indeed, while it is common practise in offline RL to uniformly sample in the action space

34

to generate ‘negatives’ to penalize Q-values on, there are no prescriptions for explicitly

searching the state space for such negatives.

This chapter introduces a first attempt at explicitly searching for unseen states where

epistemic uncertainty is low, such that they may be used for improved Q-learning via prop-

agation of Q-values to novel unseen regions of the state space not reachable by model-

rollouts alone. First, we propose a simple perturb and filter strategy that takes seen states

and perturbs them along a specified direction in the state space in order to obtain poten-

tially unseen states far away from the seen data distribution and filtering them such that

their epistemic uncertainty estimates are not too high (out of distribution and unknown)

or too low (in-distribution but not useful). Next, we specify our direction of perturbation

as the gradient of estimated Q-value w.r.t input state multiplied by positive and negative

step sizes, motivated by the need to explore unseen states with higher or lower estimated

Q-value. We perform offline tuning of our algorithm and compare it against COMBO [1],

which we also use as a foundation to build on top of. We find that in most cases where

COMBO does not fail completely, our method improves performance over COMBO and

that Q-value gradient based perturbation performs better than random direction based per-

turbations. We also find that the performance improvement of our method depends on both

the positive as well as negative direction along the Q-value gradient, with lower perfor-

mance when using a single direction (positive or negative) alone. Finally, we also inspect

the nearest neighbor distances of unseen states found by our method. We find that Q-value

gradient based perturbations are able to produce more states farther away from the seen data

distribution that also pass through the epistemic uncertainty filtration stage, as opposed to

both the COMBO baseline and random direction based perturbations.

4.2 Related Work

Offline or Batch Reinforcement Learning is a long studied problem of learning optimal

quantities (values or policies) from a fixed set of experiences or data, with its roots in fitted

35

value and Q iteration [78, 79] and has recently gained popularity due to the success of

powerful function approximators such as deep neural networks in learning policies, values,

rewards and dynamics [26, 76, 1, 57]. Offline RL is distinct from imitation learning as

the latter assumes expert demonstrations as offline data without reward labels, whereas

offline RL assumes known reward labels, allowing for use of sub-optimal or non-expert

data. Offline RL datasets such as D4RL [80] and NeoRL [2] are prominent benchmarks for

evaluating and comparing offline RL methods. We use environments from D4RL in this

chapter for evaluating our method.

Unlabeled Data in Offline RL: Offline RL assumes that the fixed dataset consists of

tuples of state, action, next state and reward. However, unlabeled data i.e. without reward

labels is often plentiful and an the question of how to leverage such data to improve Offline

RL with a typically smaller labeled dataset is an important question. Setting the reward of

unlabeled data to zero has been shown to be a simple and effective strategy to leverage this

data [81]. Intuitively, this is reasonable to expect as Q-values from reward labeled states

will propagate to unlabeled states during learning of a Q-function with temporal difference.

Conservative Q-Learning (CQL): A number of works have used or adapted the

method of learning conservative Q estimates by penalizing the estimated value of un-

seen actions while pushing up value of seen actions in the offline dataset [77]. [1] is a

model-based approach that combines CQL [77] with model-based reinforcement learning

by additionally penalizing the estimated values of states actions in model rollouts.

Model-based Offline RL: [1, 57] are model-based offline RL approaches that use the

approximate MDP induced by a learned dynamics model network with a conservative ob-

jective. As previously mentioned, [1] uses CQL by penalizing estimated value of state-

actions visited during model rollouts stating from seen states, while [57] defines their in-

duced MDP in a conservative manner by stopping any model rollouts that fall into states

with high uncertainty as measured by model ensemble disagreement. COMBO [1] ex-

pressly avoids uncertainty estimation citing its inaccuracy in some settings. However, when

36

we use COMBO as a foundation to build our method, we do not re-introduce uncertainty

in the manner COMBO wanted to avoid – we use uncertainty to filter unseen states used

for starting model rollouts as opposed to using it as a reward penalty.

Adversarial Unseen State Augmentation: [82] is a model-free online RL approach

that proposes adversarial states as data augmentation for policy updates via multiple gradi-

ent steps in state space. This is similar to our approach that proposes unseen states via mul-

tiple gradient updates in the state space of the Q-value estimate. Other than the difference

of objective for computing the gradient, there are also two additional differences between

[82] and our approach – (1) we use both the positive and negative gradient direction for

proposing unseen states and find that both are jointly more useful than one direction alone,

whereas [82] is purely adversarial (minimizing their objective with gradient descent), and

(2) [82] keep the sampled action fixed while minimizing their adversarial objective while

we use the differentiability of the parametrized policy to sample new actions.

Relationship with Exploration and Safe RL: Safe RL [83] has a primary focus on

risk-averse decisions and guarantees for safety. Our method is not an exploration method

and hence, does not promote unsafe exploration by mining of unseen states, as these unseen

states are mined based on uncertainty of the model itself. Further, these unseen states are

not unconditionally promoted for visitation by the policy, they are only used for better

Q-learning.

4.3 Preliminaries

In this section, we briefly touch upon Offline Reinforcement Learning (RL) and the baseline

COMBO [1] that we build upon.

Offline RL. In Offline Reinforcement Learning, a fixed dataset of interactions D ∶=

(s, a, r, s′) is provided for finding the best possible policy without any environment interac-

tions (i.e. without “online” interactions). Since we only deal with simulated environments,

the policy found by an algorithm is evaluated with online evaluation.

37

Model-based Offline RL. COMBO [1] is a model-based offline RL algorithm that ex-

tends the concept of conservative Q-learning in CQL [77] to model-generated predictions.

Algorithm 3 depicts the model-based RL algorithm used by COMBO. First, an initial model

fitting stage is executed where the reward and dynamics model is trained with maximum

likelihood estimation (MLE) on the offline data. Note that unlike Chapter 2, we will not

be using any value-aware objectives for substituting MLE (for dynamics model learning)

in this phase as we are dealing with off-policy data incompatible for estimating any value-

aware objective. Second, policy and critic learning happens over a fixed number of training

epochs where the data used for policy training is obtained by means of branched roll-

outs. Branched rollouts are inherited from the model-based algorithm MOPO [76] (which

COMBO uses as a foundation), where a batch of initial states are sampling from the offline

dataset and used to generate model-rollouts up to a fixed horizon H using actions sampled

from a rollout policy µ(⋅ ∣ s) (typically the same as π or sometimes a uniform over actions

policy) and next states sampled from the learned dynamics model (almost always Gaussian

with mean and variance predictions). Then, the policy and critic are updated using this

rollout data.

The conservative Q-value update used by COMBO is as follows. Here, df is an inter-

polation defined by [1] as df(s, a) ∶= fd(s, a) + (1 − f)dµMϕ
(s, a); where d is the empirical

sampling distribution from the offline dataset D.

Q̂k+1 ← argmin
Q
LTD + β ⋅LCQL

LTD ∶= E
(s,a,s′)∼df

⎡⎢⎢⎢⎢⎣
((r(s, a) + γ E

a′∼π̂k(a′∣s′)
[Q̂k (s′, a′)]) −Q(s, a))

2⎤⎥⎥⎥⎥⎦
LCQL ∶= E

s∼dMϕ,π ,a∼π
[Q(s, a)] − E

(s,a)∼D
[Q(s, a)] (4.1)

Two important points are to be noted of the COMBO algorithm which will be useful

38

Algorithm 3: Model-based Offline RL with COMBO [1]
Input: Offline dataset D, parametrized policy and critic πθ, Qθ

Input: Parametrized dynamics model Pϕ
Input: Rollout policy µ(⋅ ∣ s), horizon H ∈ N

1 Split D into train, val splits and optimize Pϕ until convergence on val set;
2 for i = 1 to nepochs do
3 D0 ← Sample a batch of start states from D;

// Branched model rollouts

4 D̂ ← Collect model rollouts with µ,Pϕ up to H starting from states in D0;
5 Fit Qθ with a conservative objective using both D and D̂;
6 Update policy πθ using estimated Qθ values on D̂;
7 end

later: (1) Branched model rollouts are used starting from seen states as shown in Algo-

rithm 3, and (2) Conservative Q-value estimation is used for all rollout data (i.e. Q-values

are pushed down for data produced by the model). This implies that while Q-value prop-

agation does occur for unseen states found by model rollouts, they are down-weighted

proportional to the coefficient β in the above equation ((Equation 4.1)).

4.4 Approach

In this section, we first motivate our method by highlighting the need for augmenting the

model rollout buffer with unseen states. Next, we introduce a simple propose and filter

strategy for finding unseen states – a proposal stage where a seen state is perturbed and

a filter stage where states having estimated uncertainty too low or too high are discarded.

We then propose two perturbation functions for obtaining unseen state proposals – one that

perturbs randomly uniformly in any direction and a second that perturbs along the positive

and negative direction of the Q-value gradient w.r.t states.

Limitations of Model Rollouts. In offline-RL, branched model-rollouts (Algorithm 3)

serve an important role in optimizing the behavior policy. Beginning with a batch of seen

states, branched model rollouts (using a learned dynamics and reward model) visit poten-

tially unseen states up to a horizon H away from seen states. Using the seen and unseen

39

Algorithm 4: PnF-Qgrad : Value-aware unseen state augmentation
Input: Input state batch Dbatch ⊆ D, parametrized Q-network Qθ, policy network πθ

Input: State-dependent uncertainty estimation function ξ ∶ S → R
Input: Number of steps of perturbation nsteps, maximum step size δmax

Input: Desired number of augmented states naugment to fill Daugment

1 Initialize Daugment ← ∅ and U0 ∶= {ξ(s) ∶ s ∈ Dbatch};
2 Initialize ulower, uupper as 0.25-quantile and 0.75-quantile of U0 respectively;
3 while ∣Daugment∣ < naugment do
4 D0 ← {s ∶ (s, a, r, s′) ∈ Dbatch};
5 Sample ηs ∼ U(−δmax, δmax)∀s ∈ D0;
6 for i from 1 to nsteps do
7 Di ← {s ∶ s← s + ηs ⋅ ∇sQθ(s, πθ(s))};
8 end
9 Dall ← ⋃nsteps

i=1 Di;
10 Dfiltered ← {s ∶ ξ(s) > ulower and ξ(s) < uupper ∀s ∈ Dall};
11 Daugment ← Daugment⋃Dfiltered ;
12 If ∣Daugment∣ > naugment, subsample uniformly to keep naugment elements;
13 end

states, the Q-function is optimized by propagation of Q-values using temporal difference

and conservative Q-learning objectives, and the policy is optimized to greedily pick the

highest Q-valued action at each state. While keeping the learned model, policy and offline

dataset fixed, the propagation of accurate Q-values is solely dependent on the unseen states

visited during model rollouts. Ideally, to fully exploit the learned model, all states where

the model has low uncertainty should be included for the Q-learning update. However, this

may not be the case as there is no guarantee that the states visited by H horizon model

rollouts will visit all possible states where the model has low uncertainty i.e. states where

the learned dynamics and reward model generalizes.

Start State Augmentation. In order to maximize coverage of states where the learned

dynamics and reward model generalize to, as measured by estimated uncertainty, we pro-

pose an augmentation strategy that uses a mixture of seen and unseen states as starting

points to perform model rollouts. Given a batch of nstart states sampled from the offline

dataset, we control the fraction of this batch to replace with unseen states as faugment ∈ [0,1].

40

Figure 4.1: (Left) Relationship between epistemic uncertainty estimated using ensemble
disagreement and true model error i.e. the mean absolute difference between model next
state and reward predictions and true quantities, for the Adroit Pen manipulation task and
Human demonstrations dataset. Each point corresponds to a state obtained by model roll-
outs from a perturbed state in Algorithm 4. Horizontal lines measure medians for respective
uncertainty category. (Right) Box plot of true model error aggregated for each uncertainty
category.

We find that faugment = 0.5 works well in practice. Note that faugment = 0 reduces to a no aug-

mentation baseline.

Perturb and Filter. We refer to our perturb and filter method as PnF-Qgrad . Algo-

rithm 4 details the subroutine that takes as input a batch of states sampled from the offline

dataset and produces a set of potentially unseen states via a perturb and filter strategy. First,

a set of candidate state proposals are generated by taking nsteps gradient steps using the Q-

value gradient w.r.t state input, with a step size uniformly sampled from (−δmax, δmax) i.e.

with positive as well as negative directions, and fixed across gradient steps. Next, uncer-

tainty cut-off points ulower, uupper, computed using the 0.25 and 0.75 quantile uncertainty val-

ues of seen data, are used for filtering out states that lie outside of the range (ulower, uupper).

This process is repeated until the desired number of augmented states naugment have been

obtained. The while loop typically runs for just one iteration in most of our hyperparameter

choices.

Uncertainty Estimator. We tested 3 types of uncertainty estimators: (1) ensemble

disagreement via max 2-norm deviation from mean across ensemble (used in the MOPO

41

re-implementation by [2]), (2) maximum 2-norm of standard deviation across ensemble

from (used by MOPO [76]) and (3) standard deviation of mean predictions over ensemble.

Here, the first and third estimators approximate epistemic uncertainty while the second ap-

proximates aleatoric uncertainty. We found (1) and (3) to overall work well in practise and

we select (1) as our choice of (epistemic) uncertainty estimator for all of our experiments.

We exclude MOREL’s discrepancy based uncertainty [57], as we found it to be similar

to (1) in form and practice. COMBO [1] has previously demonstrated the unreliability of

MOPO’s aleatoric uncertainty estimator in terms of being a predictor of true model error. In

order to verify our choice of epistemic uncertainty estimator for this purpose, in Figure 4.1

we measure the relationship with true error and the effect of our quantile based cut-offs in

Algorithm 4.

Ablations. In addition to using the Q-value gradient for generating state proposals,

we also test an ablation of our method named PnF-Random , that substitutes the Q-value

gradient in Algorithm 4, Line 7 with a unit vector sampled uniformly randomly on a hy-

persphere. In order to prevent random walks, we fix nsteps to 1 for this ablation so that the

augmented states are solely a result of a single perturbation per direction. We find that the

Q-gradient produces more informative state proposals after filtering than this PnF-Random

, as measured by final policy performance on tested offline RL benchmarks.

4.5 Experiments

In this section, we perform empirical analyses to answer the following questions: (1) Does

our COMBO PnF-Qgrad method lead to improvemenet in offline RL performance over

a baseline? (2) Does the Q-gradient direction matter for perturbation, when compared

to performance of a PnF-Random baseline? (3) Does the sign of the perturbation (i.e.

ascending or descending the Q-gradient) matter for performance? and (4) What are the

distance characteristics of the unseen states found with PnF augmentation as opposed to

the unseen states visited by model rollouts in the baseline?

42

Algorithm 5: Model-based Offline RL with State Augmentation
Input: Offline dataset D, parametrized policy and critic πθ, Qθ

Input: Parametrized dynamics model Pϕ
Input: Rollout policy µ(⋅ ∣ s), horizon H ∈ N
Input: Fraction of start state batch to augment faugment ∈ [0,1]

1 Split D into train, val splits and optimize Pϕ until convergence on val set;
2 for i = 1 to nepochs do
3 Dstart ← Sample a batch of nstart start states from D;

// Augment start state batch
4 Dstart ← Augment naugment ∶= ⌊faugment ⋅ nstart⌋ states using Algorithm 4;

// Branched model rollouts

5 D̂ ← Collect model rollouts with µ,Pϕ up to H starting from states in Dstart;
6 Fit Qθ with a conservative objective using both D and D̂;
7 Update policy πθ using estimated Qθ values on D̂;
8 end

4.5.1 Performance on D4RL Environments and Datasets

We use COMBO [1] as a foundation on top of which we implement our method PnF-Qgrad

. We use the open source PyTorch implementation of COMBO by [2]. Our method requires

specification of the following additional hyperparameters.

1. nsteps: Number of gradient descent or ascent steps in Algorithm 4. We use the range

{1,2,4,8} to pick the best value.

2. δmax: Maximum value of step size ηs in Algorithm 4. We use the (logarithmic) range

{1.0E −5,5.0E −5,1.0E −4,5.0E −4,1.0E −3,5.0E −3,1.0E −2,5.0E −2,1.0E −

1,0.5} to pick the best value.

3. faugment: Fraction of batch of start states to augment in Algorithm 5. We use the range

{0.5,0.9,1.0} to pick the value, with the mimunum fraction of 0.5 guaranteeing that

at least half of the batch consists of augmented states.

We first compare PnF-Qrad performance to COMBO on several offline RL environ-

ments from the D4RL benchmark [80]. We refer to our method as COMBO PnF-Qgrad

43

Figure 4.2: Evaluation on two sets of D4RL offline datasets, the Maze2D environment with
varying maze sizes (left) and Adroit Dextrous Hand Manipulation - Pen Environment with
varying dataset types (right). The Maze2D dataset contain a little under 4 million time
steps. The Pen-v1 Expert and Pen-v1 Cloned datasets contain close to ∼ 495000
time steps, whereas the Pen-v1 Human dataset contains 4950 time steps. Hyperparame-
ters are tuned on Maze2D-v1 Medium for the Maze2D tasks and Pen-v1 Human for
the Adroit Pen tasks.

to emphasize that COMBO is the base algorithm on top of which we perform unseen state

augmentation. Similarly, we refer to our method with random perturbation directions as

COMBO PnF-Random .

In D4RL, a task (e.g. Pen-v1 Human) is specified by a choice of environment (e.g.

Adroit Pen environment) and a choice of dataset (e.g. Human demonstrations). Figure 4.2

evaluates COMBO , COMBO PnF-Qgrad and COMBO PnF-Random on two types of

D4RL tasks – the Maze2D family of tasks that have three different environments corre-

sponding to varying maze grid sizes (Umaze, Medium, Large). We find that on the

Pen-v1 Human task consisting of 4950 time steps of human demonstrations, COMBO

PnF-Qgrad significantly outperforms baselines. However, on the Pen-v1 Cloned

and Pen-v1 Expert tasks, we find that all methods including baselines perform poorly.

In the Maze2D tasks, we find an improvement over COMBO for both COMBO PnF-Qgrad

and COMBO PnF-Random on the Maze2D-v1 Large task. COMBO PnF-Random

performs poorly on the Maze2D-v1 Medium and Maze2D-v1 Umaze tasks where

COMBO and COMBO PnF-Qgrad perform comparably.

Hyperparameter Sensitivity In Table 4.1, we compare COMBO PnF-Qgrad ,

44

COMBO (our implementation using [2] and the reported performance by Yu et al. in [1].

Due to computational resource constraints, we tune hyperparameters on a single task –

the Walker2D-v2 Medium-Replay task, while evaluating on all other tasks. We find

that, while we do observe statistically significant improvement in performance on the same

environment where hyperparameter values were tuned, we don’t see a complete replication

of this trend when transferring hyperameters to other tasks. We suspect that this sensitivity

is a result of the varying distribution and distance between states in each dataset and en-

vironment, as these will affect the perturbation magnitude in our method PnF-Qgrad (e.g.

value of δmax, nsteps).

Average Dataset Q-value In Figure 4.3, we measure the average dataset Q-value, a

quantity important for not only selecting hyperparameters in an offline manner, but one

which has shown to indicate online evaluation performance. COMBO [1] has shown lower

average dataset Q-values lead to more conservative Q-value estimates i.e. preventing any

overestimation of Q-values, and higher online evaluation performance (D4RL score). We

find that throughout the 500 epochs of policy training, average dataset Q-value is signifi-

cantly lower for COMBO PnF-Qgrad in comparison to COMBO. Further, in Figure 4.4,

we see that this trend holds when reducing the size of the dataset, despite the performance

of the two being comparable at lower dataset sizes. This suggests that conservative Q-value

estimation is an important mechanism of action for our proposed method in contributing to

better online evaluation performance.

In Figure 4.4, we also demonstrate the effect of reducing dataset size for the

Walker2D-v2 Medium-Replay task. We reduce dataset size by selecting a contigu-

ous sub-arrays from the front of the original dataset given a fraction (e.g. fraction 0.5 takes

the first half of the dataset). While fractions of 0.5 and smaller rapidly reduce performance

and make them comparable across methods, we observe that the average dataset Q-value

remains significantly lower for COMBO PnF-Qgrad in comparison to COMBO.

45

Table 4.1: D4RL Score mean and standard error over 6 random seeds for (left to right)
COMBO (reported results by [1]), the implementation of COMBO by [2] that we use
and our proposed PnF-Qgrad method. PnF-Qgrad requires tuning of the hyperparame-
ters δmax, nsteps, faugment which are sensitive to both datasets and environments. We tune
these hyperparameters on the Walker2D-v2 Medium-Replay dataset, according to
the offline tuning guidelines from [1, 3], and report online evaluation performance of the
selected hyperparameters across all other environments and datasets. ∗ indicates tuned on
Walker2D-v2 Medium-Replay.

Dataset type Environment COMBO (Yu et al.) COMBO COMBO PnF-Qgrad*
random halfcheetah 38.8 ± 3.7 14.5 ± 6.4 −1.5 ± 0.5
random hopper 17.9 ± 1.4 4.7 ± 1.8 4.6 ± 2.6
random walker2d 7.0 ± 3.6 7.6 ± 1.4 5.1 ± 1.8
medium halfcheetah 54.2 ± 1.5 62.6 ± 1.3 41.2 ± 4.5
medium hopper 97.2 ± 2.2 61.0 ± 0.4 51.6 ± 15.5
medium walker2d 81.9 ± 2.8 34.2 ± 0.0 70.4 ± 2.0

medium-replay halfcheetah 55.1 ± 1.0 53.0 ± 6.1 41.0 ± 3.8
medium-replay hopper 89.5 ± 1.8 41.3 ± 11.3 34.5 ± 19.1
medium-replay walker2d 56.0 ± 8.6 32.1 ± 25.7 70.9 ± 4.3

med-expert halfcheetah 90.0 ± 5.6 37.6 ± 0.0 86.4 ± 3.5
med-expert hopper 111.1 ± 2.9 34.6 ± 30.4 18.7 ± 4.6
med-expert walker2d 103.3 ± 5.6 48.3 ± 68.0 54.2 ± 25.5

4.5.2 Sign of Perturbation

In Algorithm 4, we choose the step size ηs ∈ U(−δmax, δmax) for a given direction

∇sQθ(s, πθ(s)). In order to verify that both positive and negative step sizes for pertur-

bation along this direction are important for good performance, we evaluate two ablations

that use either a positive-only step size or a negative-only step size, using the Pen-v1

Human task. We refer to COMBO PnF-Qgrad (+ve, -ve) as our original method

that samples ηs ∈ U(−δmax, δmax), COMBO PnF-Qgrad (+ve-only) as the positive-

only ablation that samples ηs ∈ U(0, δmax) and COMBO PnF-Qgrad (+ve-only) as

the negative-only ablation that samples ηs ∈ U(−δmax,0). Figure 4.5 highlights our findings

in two settings. First, we use inherit the hyperparameter values for each ablation from the

46

Figure 4.3: Average dataset Q-value (left) and D4RL score (right) for the Walker2d-v2
Medium-Replay task over 6 random seeds. The training curve is for 500 epochs of
the policy update phase that occurs after an initial phase of fitting a model to the offline
dataset. A consistently and significantly lower overall average dataset Q-value is obtained
for COMBO PnF-Qgrad in comparison to the COMBO baseline. COMBO [1] advocates
for lower average dataset Q-values as they prevent overestimation of Q-value for unseen
states and actions, while also being strongly linked to higher online evaluation performance
(D4RL score). We observe a similar result i.e. lower average dataset Q-values for COMBO
PnF-Qgrad lead to better D4RL score.

Figure 4.4: D4RL score (left) and average dataset Q-value (right) for varying dataset size
fractions for the Walker2D-v2 Medium-Replay task. Each dataset fraction corre-
sponds to a contiguous subarray taken from the front of the original dataset. We ob-
serve significantly lower average dataset Q-values but comparable D4RL scores for COMBO
PnF-Qgrad versus COMBO as the dataset size reduces.

COMBO PnF-Qgrad (+ve, -ve). In this setting, we find that performance is imme-

diately lowered for both ablations, indicating that either both positive and negative step

sizes matter, or that the ablations may need to be individually tuned. Second, we elim-

47

Figure 4.5: D4RL Score comparison on Pen-v1 Human task over 6 random seeds of ab-
lations of PnF-Qgrad that use positive-only step size along Q-gradient (i.e. ηs ∼ U(0, δmax)
in Algorithm 4), and negative-only step size along Q-gradient i.e. (i.e. ηs ∼ U(−δmax,0) in
Algorithm 4). (left) Ablations for positive-only and negative-only inherit the hyperparam-
eter values (nsteps, faugment, δmax) from PnF-Qgrad (positive, negative) (red bar). (right) Each
ablation is individually tuned to obtain best value of hyperparameters nsteps, faugment, δmax.

inate one of the possibilities by individually tuning hyperparameter values for both abla-

tions, where performance is slightly improved over the un-tuned methods, while still having

lower performance than COMBO PnF-Qgrad (+ve, -ve). As a result, we find that it

is important to perturb along the positive as well as negative direction of Q-value gradient

for best performance.

4.5.3 Distribution of Perturbation Distance

In order to understand the impact of our studied perturbations on the distance of augmented

unseen states from seen states, we plot a histogram of nearest neighbor distances of every

unseen state (w.r.t seen states in the entire offline dataset) visited by Algorithm 5 (for PnF-

Qgrad and PnF-Random) and Algorithm 3 (COMBO). For each algorithm, the set of un-

seen states are an aggregation of all states visited during model rollouts. For Algorithm 5,

we set the fraction of model rollouts that occur from unseen states, faugment, to 1.0 We ex-

pect that any perturbation based unseen state augmentation has the potential to visit states

in model rollouts that are far away from any nearest seen state.

Figure 4.6 plots these histograms for PnF-Qgrad , PnF-Random and COMBO on the

Pen-v1 Human task with rollout horizon values in {1,5,10}. For PnF-Qgrad , we set

δmax = 0.001, nsteps = 4, which are the tuned values of these hyperparameters for this task.

48

Figure 4.6: Histograms of distance of visited unseen states from seen dataset computed
using L2 distance from nearest neighbor in seen dataset (X-axis) for the Pen-v1 Human
dataset. Unseen states in the COMBO baseline are obtained by model rollouts from seen
states, whereas unseen states from PnF-Qgrad and PnF-Random are obtained using model
rollouts starting from augmented states using Algorithm 4 and their respective choice of
perturbation directions. Rollout horizon values are (left to right) 1,5,10. PnF-Qgrad uses
δmax = 0.001, nsteps = 4 and PnF-Random uses δmax = 0.1, nsteps = 1, which were the
best hyperparameter values selecting after tuning. Dark colored full length vertical lines
correspond to median of respective distribution.

Similarly, for PnF-Random , we set δmax = 0.1, nsteps = 1 (note that for PnF-Random , nsteps

is always set to 1 as multiple gradient steps are not necessary for a random perturbation

direction). We find that despite the low value of δmax, PnF-Qgrad is able to find unseen state

augmentations that produce model rollout states with farther nearest neighbor L2 distance

than the model rollouts states visited by no augmentation (COMBO baseline). This is

in comparison to PnF-Random , which has overall distribution of distances similar to no

augmentation (despite the higher δmax). This indicates that PnF-Qgrad is able to find unseen

states farther from seen data while still passing through uncertainty filter, whereas random

perturbation are not able to do the same.

49

4.6 Conclusion

In this chapter, we studied how value-awareness can be applied to the domain of offline

reinforcement learning (RL). In this context, we viewed value-awareness from the perspec-

tive of data or unseen state augmentation, by proposing a value-gradient based perturbation

and (epistemic) uncertainty filtering algorithm that successfully found unseen states farther

away from the seen data distribution that were useful for better policy learning in offline

RL. In most cases where the baseline COMBO [1] algorithm had non-zero performance, we

found statistically significant improvements in online evaluated policy performance. Our

method does require offline tuning of hyperparameters given a dataset or task in order to

be most effective. We also study ablations that highlight the importance of augmenting in

both the positive and negative directions of value gradient as compared to a single direction

alone. Finally, we also analyse the distribution of nearest neighbor distances of augmented

states from the seen states in the offline dataset and find that value-gradient based perturbed

and filtered states have a larger L2 distance than random direction based perturbed and fil-

tered states, implying that the value-gradient can be leveraged to find unseen states farther

from the seen data distribution with low epistemic uncertainty.

50

CHAPTER 5

CONCLUSION

This thesis investigates value-awareness for model-based online and offline reinforcement

learning. The primary motivation for value-awareness is to leverage the fact that a re-

ward specification induces a gradation of undesirable versus desirable behavior, a gradation

which can inform model learning in the online RL setting (value-aware model learning),

and one which can inform directions of perturbations for finding useful unseen states in the

offline RL setting.

For the online setting, this thesis revisited value-aware model learning by deriving a

novel value-aware objective based on upper bounding model performance difference i.e.

the difference in performance of a given policy across two models. Next, this objective,

along with existing value-aware objectives, were applied to practical continuous control

manipulation and locomotion tasks in simulation – where the bottleneck of stale value-

estimates was identified and remedied, in order to make value-aware objectives performant

in these domains.

For the offline setting, this thesis studied value-gradient guided perturbations for finding

unseen states with low epistemic uncertainty. Such states were shown to be useful for better

policy performance in offline model-based RL algorithms.

The inductive bias of leveraging value-awareness i.e. the information in the reward

specification of a task, in improving performance at that very task, is the antithesis of the

paradigm of disentangling reward or task information from an environment. While the

latter allows for unsupervised learning in a task independent manner and later adapting

to a specific task, the former paradigm strips away anything not related to the specified

task or reward in order to make learning more efficient. However, this paradigm comes

with its drawbacks, primarily due to the sensitivity to reward specifications and failures

51

with sparse rewards. An important avenue of future research is to find a middle ground

between leveraging task or reward information while also not being brittle to the intricacies

of reward specification or misspecification.

52

Appendices

APPENDIX A

APPENDIX FOR MODEL-ADVANTAGE AND GENERALIZATION GAP

A.1 Performance Difference

A.1.1 Proof of Model Performance Difference Lemma

Restating Lemma 4:

Lemma 6. (Model Performance Difference Lemma) Let M and M ′ be two different MDPs.

Further, define Rπ(s) = Ea∼π(⋅∣s)[R(s, a)] and Rπ
ϵ (s) = Rπ

M(s) −Rπ
M ′(s). For any policy

π ∈ Π we have:

JM(π) = JM ′(π) +Es∼dM,π
[Rϵ(s)]

+ 1

1 − γEs∼dM,π
Es′∼PM (s′∣s,π) [Aπ

M ′(s, s′)]

Proof. Let P0 be the start state distribution for both MDPs, P π
M,t be the state distribution at

time t, starting from s0 ∼ P0 in M and dM,π denote the stationary state distribution under

MDP M , policy π and start state s0 ∼ P0. We use the following slightly modified version

of the definition of value function which has a normalization of 1 − γ:

V π
M(s0) = (1 − γ)

∞
∑
t=0

γtEat,st∼πPM,t
[RM(st, at)]

Then, we have:

JM(π) − JM ′(π)

= Es0∼P0 [V π
M(s0) − V π

M ′(s0)]

= (1 − γ)
∞
∑
t=0

γtEst∼Pπ
M,t

Eat∼π(⋅∣st) [RM(st, at)] −Es0∼P0 [V π
M ′(s0)]

54

= (1 − γ)
∞
∑
t=0

γtEst∼Pπ
M,t
[Rπ

M(st)] −Es0∼P0 [V π
M ′(s0)]

=
∞
∑
t=0

γtEst∼Pπ
M,t
[(1 − γ)Rπ

M(st) + V π
M ′(st) − V π

M ′(st)] −Es0∼P0 [V π
M ′(s0)]

Cancelling the first element in the summation, and shifting the series by 1 step:

=
∞
∑
t=0

γt E
st∼Pπ

M,t

st+1∼Pπ
M,t+1

[(1 − γ)Rπ
M(st) + γV π

M ′(st+1) − V π
M ′(st)]

Expanding V π
M ′(st) with a one-step bellman evaluation operator:

=
∞
∑
t=0

γt E
st∼Pπ

M,t

st+1∼Pπ
M,t+1

[(1 − γ)Rπ
M(st) + γV π

M ′(st+1)

− ((1 − γ)Rπ
M ′(st) + γEs′′∼Pπ

M ′
(st,π) [V π

M ′(s′′)])]

=
∞
∑
t=0

γt E
st∼Pπ

M,t

st+1∼Pπ
M,t+1

[(1 − γ)(Rπ
M(st) −Rπ

M ′(st))

+ γV π
M ′(st+1) − γEs′′∼Pπ

M ′
(st,π) [V π

M ′(s′′)]]

Using definition of Rπ
ϵ :

=
∞
∑
t=0

γt E
st∼Pπ

M,t

st+1∼Pπ
M,t+1

[(1 − γ)Rπ
ϵ (st) + γV π

M ′(st+1) − γEs′′∼Pπ
M ′
(st,π) [V π

M ′(s′′)]]

Using definition of Aπ
M ′:

=
∞
∑
t=0

γt E
st∼Pπ

M,t

st+1∼Pπ
M,t+1

[(1 − γ)Rπ
ϵ (st) +Aπ

M ′(st, st+1)]

55

= 1

1 − γEs∼dM,π
Es′∼PM (s,π) [Aπ

M ′(s, s′)] +Es∼dM,π
[Rπ

ϵ (s)]

A.1.2 Corollary: Deviation Error

The following is a useful corollary for subsequent proofs.

Corollary 7. Let M and M ′ be two different MDPs. For any policy π ∈ Π we have:

JM(π) = JM ′(π) + 1

1 − γEs∼dM,π
[T π

MV π
M(s) − T π

M ′V π
M(s)]´¹¹¸¹¹¹¶

deviation error

(A.1)

Proof.

JM(π) − JM ′(π)

= Es0∼P0 [V π
M(s0) − V π

M ′(s0)]

= ⋯

Proceeding similar to the previous proof upto the following line:

=
∞
∑
t=0

γt E
st∼Pπ

M,t

st+1∼Pπ
M,t+1

[(1 − γ)Rπ
M(st) + γV π

M ′(st+1)

− ((1 − γ)Rπ
M ′(st) + γEs′′∼Pπ

M ′
(st,π) [V π

M ′(s′′)])]

Using definition of the bellman operator T π
M

=
∞
∑
t=0

γtEst∼Pπ
M,t
[T π

MV π
M ′(st) − ((1 − γ)Rπ

M ′(st) + γEs′′∼Pπ
M ′
(st,π) [V π

M ′(s′′)])]

56

Using definition of the bellman operator T π
M ′

=
∞
∑
t=0

γtEst∼Pπ
M,t
[T π

MV π
M ′(st) − T π

M ′V π
M ′(st)]

= 1

1 − γEs∼dπ,M
[T π

MV π
M ′(s) − T π

M ′V π
M ′(s)]

Note that we can further upper bound the difference in values across MDPs for a pol-

icy as follows, which will be useful in subsequent proofs. We compute this bound at an

arbitrary start state s0, and it will then hold for any start state. Let dM,s0,π be the stationary

state distribution of following policy π in MDP M , starting at state s0.

V π
M(s0) − V π

M ′(s0)

= ⋯ (A.2)

Proceeding similar to the proof in Section A.1.1, we get the following:

= 1

1 − γEdM,s0,π
[T π

MV π
M ′ − T π

M ′V π
M ′]

≤ 1

1 − γ ∥T
π
MV π

M ′ − T π
M ′V π

M ′∥∞ (A.3)

≤ 1

1 − γ [∥R
π
M ′ −Rπ

M∥∞ (A.4)

+ γmax
s
∑
s′∈S

V π
M ′(s′)Ea∼π(s) [pM ′(s′∣s, a) − pM(s′, a)]]

≤ 1

1 − γ [ϵR + γ ∥V
π
M ′∥∞max

s
max

a
∥pM ′(s′∣s, a) − pM(s′, a)∥1

´¹¹¹¸¹¹¹¶
ϵP

]

≤ 1

1 − γ [ϵR + γ ∥V
π
M ′∥∞ ϵP]

≤ 1

1 − γ [ϵR +
γϵPRmax

1 − γ] (A.5)

57

A.2 Generalization with VI & FQI

A.2.1 Value Iteration

Restating Theorem 3:

Theorem 8. Let M,M ′ be two MDPs s.t.maxsmaxa ∣RM(s, a) −RM ′(s, a)∣ ≤ ϵR and

maxsmaxa ∥pM(s, a) − pM ′(s, a)∥1 ≤ ϵP . Let πn+1 be the policy obtained after n VI itera-

tions on MDP M . Then we have,

∥V πn+1

M ′ − V ⋆M ′∥∞ ≤
1

1 − γ [γϵ
(n) + 2ϵR +

2ϵPRmax

1 − γ]

Proof. In the main paper, we derived the following results:

∥V πn+1

M ′ − V π′⋆

M ′ ∥∞ ≤ ∥V
πn+1

M ′ − V πn+1

M ∥∞ + ∥V
πn+1

M − V π′⋆

M ′ ∥∞ (A.6)

∥V πn+1

M − V π′⋆

M ′ ∥∞ ≤
γϵn
1 − γ +

δn+1 (V πn+1

M)
1 − γ (A.7)

Now, the first term in the RHS of Eq. (A.6), we use the upper bound derived in Equa-

tion (A.5):

V π
M ′ − V π

M ≤
1

1 − γ [ϵR +
γϵPRmax

1 − γ] (A.8)

Notice that δM,M ′ occurs in Eq. (A.3), and using the same proof as that of Eq. (A.5), we get

the following bount on δM,M ′ for any V .

δM,M ′(V) ≤ ϵR + γϵP ∥V ∥∞

≤ ϵR +
γϵPRmax

1 − γ (A.9)

Putting together Eqs. (A.7) to (A.9), we get the desired bound.

58

A.2.2 Fitted-Q Iteration

Recall that D = {(s, a, r, s′)i}ni=1 is a dataset of experiences where (s, a) ∼ µ × U for some

state-distribution µ and policy U , s′ ∼ PM(s′ ∣ s, a) and r ∼ RM(s, a). FQI is an iterative

algorithm that learns a function f in the model-class F that approximates the Q-function.

At each iteration fk = T̂Mfk−1 where T̂M is the empirical Bellman operator defined as

follows:

T̂Mf ∶ = argmin
f∈F

LD(f, f ′)

LD(f, f ′) ∶ =
1

∣D∣ ∑
(s,a,r,s′)∈D

(f(s, a) − r − γVf ′ (s′))2

We define norms for functions over S × A, similar to [84], as follows: ∥g∥ν×π ∶=

(Es∼ν,a∼π [∣g∣2])
1/2

for ν × π ∈∆ (S ×A) and g ∶ S ×A→ R

Theorem 9. Let M,M ′ be two MDPs s.t.maxsmaxa ∣RM(s, a) −RM ′(s, a)∣ ≤ ϵR and

maxsmaxa ∥pM(s, a) − pM ′(s, a)∥1 ≤ ϵP . Let D = {(s, a, r, s′)i}ni=1 be generated as

(s, a) ∼ µ × U , where µ is exploratory and U is uniform over actions, r ∼ RM(s, a),

s′ ∼ PM(s, a). Let πfk be the greedy policy w.r.t. fk, obtained after k iterations of FQI on

D. Then we have,

∥Qπfk

M ′ −Q⋆M ′∥
ν×π

≤ 1

1 − γ [γ
kRmax +O (

√
∣A∣ ϵ(n)) + 2ϵR +

2ϵPRmax

1 − γ]

Proof. Let π̂ ∶= πfk
, let v′∗, π′∗ denote the optimal value function and policy in the second

MDP M ′, and Q⋆M ′ ∶= Qπ′⋆

M ′ . Let

59

vπ
′⋆

M ′ − vπ̂M ′ ≤
∞
∑
t=1

γt−1Es∼P π̂
M ′,t
[Q⋆M ′(s, π′⋆) −Q⋆M ′(s, π̂)]

≤
∞
∑
h=1

γh−1[∥Q⋆M ′ −Qπ̂
M ′∥

P π̂
M ′,t
×π′∗ + ∥Q

⋆
M ′ −Qπ̂

M ′∥
P π̂
M ′,t
×π̂]

≤ (2

1 − γ) max
ν×π∈∆(S×A)

∥Q⋆M ′ −Qπ̂
M ′∥

ν×π

Now, it remains to bound ∥Qπ̂
M ′ −Q⋆M ′∥ν×π for any ν × π ∈ ∆(S ×A). First we look at

the term ∥Qπ̂
M −Q⋆M ′∥ν×π = ∥fk −Q⋆M ′∥ν×π below. Recall that fk = T̂Mfk−1.

∥fk −Q⋆M ′∥ν×π

= ∥fk − TMfk−1 + TMfk−1 −Q⋆M ′∥ν×π

≤ ∥fk − TMfk−1∥ν×π + ∥TMfk−1 − TM ′fk−1 + TM ′fk−1 −Q⋆M ′∥ν×π

≤
√
∣A∣C ∥fk − TMfk−1∥µ×U + ∥TMfk−1 − TM ′fk−1∥ν×π´¹¹¸¹¹¶

Deviation error

+ ∥TM ′fk−1 −Q⋆M ′∥ν×π

≤
√
2∣A∣Cϵn + δ(k−1)M,M ′ + γ ∥V

πfk−1

M − V ⋆M ′∥
P ′(ν×π)

Defining πf,fk(s) ∶= argmaxa∈Amax{f(s, a), fk(s, a)}, it is easy to verify that

∥Vf − Vfk∥ν ≤ ∥f − fk∥ν×πf,fk

≤
√
2∣A∣Cϵn + δ(k−1)M,M ′ + γ ∥fk−1 −Q⋆M ′∥P ′(ν×π)×πfk−1,Q

′∗

⇒ ∥fk −Q⋆M ′∥ν×π ≤
1 − γk

1 − γ
√
2∣A∣Cϵn +

k

∑
i=1

γiδ
(i−1)
M,M ′ + γk ∥f 0 −Q⋆M ′∥P ′(ν×π)×πf0,Q

′∗

Following [84], we denote ϵn as a bound on the error of using an empirical bellman operator

(with a finite dataset) as opposed to the true bellman operator.

≤ 1 − γk

1 − γ
√
2∣A∣Cϵn +

k

∑
i=1

γiδ
(i−1)
M,M ′ +

γkRmax

1 − γ

60

Now, we can use this to bound ∥Qπ̂
M ′ −Q⋆M ′∥ν×π as follows, where fk ∶= Qπ̂

M :

∥Qπ̂
M ′ −Q⋆M ′∥

ν×π = ∥Q
π̂
M ′ −Qπ̂

M +Qπ̂
M −Q⋆M ′∥

ν×π

≤ ∥Qπ̂
M ′ −Qπ̂

M∥ν×π + ∥fk −Q⋆M ′∥ν×π

≤ ∥Qπ̂
M ′ −Qπ̂

M∥ν×π´¹¹¸¹¹¶
Transfer Error

+ 1 − γ
k

1 − γ
√
2∣A∣Cϵn

´¹¹¸¹¹¶
FQI finite data error

+
k

∑
i=1

γiδ
(i−1)
M,M ′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Deviation Error

+ γkRmax

1 − γ
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

FQI finite iterations error

We can write the deviation error:

δ
(k−1)
M,M ′

= ∥TMfk−1 − TM ′fk−1∥ν×π (A.10)

= E(s,a)∼ν×π [(TMfk−1)(s, a) − (TM ′fk−1)(s, a)]

= E(s,a)∼ν×π[(RM(s, a) −RM ′(s, a) + γ (Es′∼PM (s,a) [Vfk−1
(s′)] −Es′∼PM ′(s,a) [Vfk−1

(s′)]))]

≤ ϵR + ∣∣γ(Es′∼PM (s,a) [Vfk−1
(s′)] −Es′∼PM ′(s,a) [Vfk−1

(s′)])∣∣
ν×π

Considering the term on the right (squared):

∥γ (Es′∼PM (s,a) [Vfk−1
(s′)] −Es′∼PM ′(s,a) [Vfk−1

(s′)]))∥2
ν×π

= E(s,a)∼ν×π[

γ2(∫
s′∈S

Vfk−1
(s′)[pM(s′∣s, a) − pM ′(s′∣s, a)]ds′)

2

]

Using Holder’s with 1/q1 + 1/q2 = 1:

≤ E(s,a)∼ν×π[γ2 (∫
s′∈S
∣Vfk−1

(s′)∣q2 ds′)
2/q2
(∫

s′∈S
∣pM(s′∣s, a) − pM ′(s′∣s, a)∣q1 ds′)

2/q1
]

61

Setting q1 ∶= 1, q2 ∶=∞, and using maxsmaxa ∥pM(s, a) − pM ′(s, a)∥1 ≤ ϵP

= E(s,a)∼ν×π [γ2ϵ2P ∥Vfk−1
∥2∞]

= γ2ϵ2P ∥Vfk−1
∥2∞

Now, we get the following relation for δ(k−1)M,M ′:

⇒ δ
(k−1)
M,M ′ ≤ ϵR + γϵP ∥Vfk−1

∥∞

≤ ϵR +
γϵPRmax

1 − γ (A.11)

Now, we derive a bound on the transfer error as follows:

∥Qπ̂
M ′ −Qπ̂

M∥ν×π

≤ ∥Qπ̂
M ′ −Qπ̂

M∥∞

Using the fact that Qπ̂
M ′ is the fixed point of T π̂

M ′:

= ∥(T π̂
M ′)∞Qπ̂

M −Qπ̂
M∥∞

Using the fact that Qπ̂
M is the fixed point of T π̂

M :

= ∥(T π̂
M ′)∞Qπ̂

M − T π̂
MQπ̂

M∥∞

Adding and subtracting, followed by triangle inequality

≤ ∥(T π̂
M ′)∞Qπ̂

M − T π̂
M ′Qπ̂

M∥∞ + ∥T
π̂
M ′Qπ̂

M − T π̂
MQπ̂

M∥∞

62

Using contraction property

≤ γ ∥(T π̂
M ′)∞Qπ̂

M −Qπ̂
M∥∞ + ∥T

π̂
M ′Qπ̂

M − T π̂
MQπ̂

M∥∞´¹¹¹¸¹¹¶
Deviation Error

Bounding the deviation error same way as Eq. (A.10) to Eq. (A.11):

≤ γ ∥(T π̂
M ′)∞Qπ̂

M −Qπ̂
M∥∞ + ϵR +

γϵPRmax

1 − γ

Using the fact that Qπ̂
M ′ is the fixed point of T π̂

M ′:

≤ γ ∥Qπ̂
M ′ −Qπ̂

M∥∞ + ϵR +
γϵPRmax

1 − γ

⇒ ∥Qπ̂
M ′ −Qπ̂

M∥∞ ≤ γ ∥Q
π̂
M ′ −Qπ̂

M∥∞ + ϵR +
γϵPRmax

1 − γ

⇒ ∥Qπ̂
M ′ −Qπ̂

M∥∞ ≤
1

1 − γ [ϵR +
γϵPRmax

1 − γ]

Substituting back the deviation error, we get the desired bound.

∥Qπ̂
M ′ −Q⋆M ′∥

ν×π (A.12)

≤ 1

1 − γ [γ
kRmax + (1 − γk)

√
2∣A∣Cϵn (A.13)

+ 2(γϵPRmax

1 − γ + ϵR)(1 − γk)]

≤ 1

1 − γ [γ
kRmax +O (

√
∣A∣ ϵ(n)) + 2ϵR +

2ϵPRmax

1 − γ]

63

APPENDIX B

APPENDIX FOR MODEL-ADVANTAGE OPTIMIZATION FOR MODEL-BASED

REINFORCEMENT LEARNING

B.1 Hyperparameter selection and choices

Method: MA-L1
Environment α value

Pendulum 0.05
Acrobot 0.05
CartPole 0.05
Reacher 0.05

Ant 0.5
Swimmer 0.5

HalfCheetah 0.05
Hopper 0.05

(a)

Method: MA-VAML
Environment α value

Pendulum 5e-9
Acrobot 5e-9
CartPole 5e-9
Reacher 1e-10

Ant 1e-10
Swimmer 1e-10

HalfCheetah 1e-10
Hopper 1e-11

(b)

Table B.1: Choices for hyperparameters α for all value aware methods. Note that these hy-
perparameters were automatically selected based on highest average return over 3 random
seeds at 200K time steps and over a log-scaled range of values for each method.

Our proposed objective is LU1 and the VAML objective is LVAML
2 . In practise, we scale

each objective with a scalar α and pick the best value of α automatically for each objective

and environment. In the automatic selection procedure – we run a sweep over 9 values of α

in log-scale ([5e − 1,1e − 1,5e − 2, . . . ,5e − 9] for MA-L1 and a lower scale (shifted lower

by 1e − 5) for MA-VAMl) for each method and environment with 3 random seeds and use

the average return at 200K time steps for selecting the best value. See Table B.1 for all the

selected hyperparameters.

64

B.2 GPU and Server details

Total Compute. We ran each experiment configuration such that multiple runs shared a

single GPU and up to 6 CPU cores. For MuJoCo environments, 2-3 runs were sharing

resources whereas for non-MuJoCo environments such as Pendulum, CartPole, etc up

to 5 runs were sharing resources. Each run refers to a single random seed, and 5 random

seeds were used for the final reported results for each line plotted in the return vs time step

figures.

Type of Compute. We ran all experiments on an internal server with varied GPU types

of either the NVIDIA Titan X or NVIDIA 2080 Ti graphics card.

65

REFERENCES

[1] T. Yu, A. Kumar, R. Rafailov, A. Rajeswaran, S. Levine, and C. Finn, “Combo: Con-
servative offline model-based policy optimization,” Advances in neural information
processing systems, vol. 34, pp. 28 954–28 967, 2021.

[2] R. Qin et al., “Neorl: A near real-world benchmark for offline reinforcement learn-
ing,” arXiv preprint arXiv:2102.00714, 2021.

[3] A. Kumar, A. Singh, S. Tian, C. Finn, and S. Levine, “A workflow for offline model-
free robotic reinforcement learning,” arXiv preprint arXiv:2109.10813, 2021.

[4] M. Chevalier-Boisvert, L. Willems, and S. Pal, Minimalistic gridworld environment
for openai gym, https://github.com/maximecb/gym-minigrid, 2018.

[5] A.-m. Farahmand, “Iterative value-aware model learning,” in Advances in Neural
Information Processing Systems, 2018, pp. 9072–9083.

[6] Y. Luo, H. Xu, Y. Li, Y. Tian, T. Darrell, and T. Ma, “Algorithmic framework
for model-based deep reinforcement learning with theoretical guarantees,” arXiv
preprint arXiv:1807.03858, 2018.

[7] M. Janner, J. Fu, M. Zhang, and S. Levine, “When to trust your model: Model-based
policy optimization,” in Advances in Neural Information Processing Systems, 2019,
pp. 12 498–12 509.

[8] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[9] D. Silver et al., “Mastering the game of go with deep neural networks and tree
search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[10] D. Silver et al., “Mastering the game of go without human knowledge,” Nature,
vol. 550, no. 7676, pp. 354–359, 2017.

[11] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomo-
tor policies,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 1334–
1373, 2016.

[12] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-learning with
model-based acceleration,” in International Conference on Machine Learning, 2016,
pp. 2829–2838.

66

https://github.com/maximecb/gym-minigrid

[13] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A sur-
vey,” The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–
1274, 2013.

[14] M. M. Afsar, T. Crump, and B. Far, “Reinforcement learning based recommender
systems: A survey,” arXiv preprint arXiv:2101.06286, 2021.

[15] V. Uc-Cetina, N. Navarro-Guerrero, A. Martin-Gonzalez, C. Weber, and S. Wermter,
“Survey on reinforcement learning for language processing,” arXiv preprint
arXiv:2104.05565, 2021.

[16] T. Harvey and A. Lukas, “Particle physics model building with reinforcement learn-
ing,” arXiv preprint arXiv:2103.04759, 2021.

[17] N. Stephenson et al., “Survey of machine learning techniques in drug discovery,”
Current drug metabolism, vol. 20, no. 3, pp. 185–193, 2019.

[18] T. M. Moerland, J. Broekens, and C. M. Jonker, “Model-based reinforcement learn-
ing: A survey,” arXiv preprint arXiv:2006.16712, 2020.

[19] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: Theory and
practice—a survey,” Automatica, vol. 25, no. 3, pp. 335–348, 1989.

[20] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models,” arXiv preprint
arXiv:1805.12114, 2018.

[21] A.-m. Farahmand, A. Barreto, and D. Nikovski, “Value-aware loss function for
model-based reinforcement learning,” in Artificial Intelligence and Statistics, 2017,
pp. 1486–1494.

[22] C. Grimm, A. Barreto, S. Singh, and D. Silver, “The value equivalence principle for
model-based reinforcement learning,” arXiv preprint arXiv:2011.03506, 2020.

[23] A. Ayoub, Z. Jia, C. Szepesvari, M. Wang, and L. Yang, “Model-based reinforcement
learning with value-targeted regression,” in International Conference on Machine
Learning, PMLR, 2020, pp. 463–474.

[24] D. Janz, J. Hron, P. Mazur, K. Hofmann, J. M. Hernández-Lobato, and S. Tschi-
atschek, “Successor uncertainties: Exploration and uncertainty in temporal dif-
ference learning,” Advances in Neural Information Processing Systems, vol. 32,
pp. 4507–4516, 2019.

[25] A. Barreto et al., “Successor features for transfer in reinforcement learning,” Ad-
vances in neural information processing systems, vol. 30, 2017.

67

[26] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tutorial,
review, and perspectives on open problems,” arXiv preprint arXiv:2005.01643, 2020.

[27] Â. G. Lovatto, T. P. Bueno, D. D. Mauá, and L. N. Barros, “Decision-aware model
learning for actor-critic methods: When theory does not meet practice,” in Proceed-
ings on ”I Can’t Believe It’s Not Better!” at NeurIPS Workshops, 2020, PMLR,
2020.

[28] H. Wang, S. Zheng, C. Xiong, and R. Socher, “On the generalization gap in reparam-
eterizable reinforcement learning,” in International Conference on Machine Learn-
ing, 2019, pp. 6648–6658.

[29] N. Modhe, H. K. Kamath, D. Batra, and A. Kalyan, “Bridging worlds in reinforce-
ment learning with model-advantage,” LifelongML workshop at ICML2020, 2020.

[30] A. M. Metelli, M. Mutti, and M. Restelli, “Configurable markov decision processes,”
in International Conference on Machine Learning, PMLR, 2018, pp. 3491–3500.

[31] A. Zhang, N. Ballas, and J. Pineau, “A dissection of overfitting and generalization
in continuous reinforcement learning,” arXiv preprint arXiv:1806.07937, 2018.

[32] A. Zhang, Y. Wu, and J. Pineau, “Natural environment benchmarks for reinforcement
learning,” arXiv preprint arXiv:1811.06032, 2018.

[33] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying generaliza-
tion in reinforcement learning,” arXiv preprint arXiv:1812.02341, 2018.

[34] S. Witty, J. K. Lee, E. Tosch, A. Atrey, M. Littman, and D. Jensen, “Measuring
and characterizing generalization in deep reinforcement learning,” arXiv preprint
arXiv:1812.02868, 2018.

[35] E. Bengio, J. Pineau, and D. Precup, “Interference and generalization in temporal
difference learning,” arXiv preprint arXiv:2003.06350, 2020.

[36] C. Zhao, O. Siguad, F. Stulp, and T. M. Hospedales, “Investigating generalisation in
continuous deep reinforcement learning,” arXiv preprint arXiv:1902.07015, 2019.

[37] A. Irpan and X. Song, “The principle of unchanged optimality in reinforcement
learning generalization,” arXiv preprint arXiv:1906.00336, 2019.

[38] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman, “Leveraging procedural generation
to benchmark reinforcement learning,” arXiv preprint arXiv:1912.01588, 2019.

[39] X. Song, Y. Jiang, Y. Du, and B. Neyshabur, “Observational overfitting in reinforce-
ment learning,” arXiv preprint arXiv:1912.02975, 2019.

68

[40] R. B. Slaoui, W. R. Clements, J. N. Foerster, and S. Toth, “Robust domain random-
ization for reinforcement learning,” arXiv preprint arXiv:1910.10537, 2019.

[41] Z. Liu, X. Li, B. Kang, and T. Darrell, “Regularization matters in policy optimiza-
tion,” arXiv preprint arXiv:1910.09191, 2019.

[42] C. Ye, A. Khalifa, P. Bontrager, and J. Togelius, “Rotation, translation, and cropping
for zero-shot generalization,” arXiv preprint arXiv:2001.09908, 2020.

[43] M. Igl et al., “Generalization in reinforcement learning with selective noise injection
and information bottleneck,” in Advances in Neural Information Processing Systems,
2019, pp. 13 956–13 968.

[44] K. Lee, K. Lee, J. Shin, and H. Lee, “Network randomization: A simple technique
for generalization in deep reinforcement learning,” in International Conference on
Learning Representations. https://openreview. net/forum, 2020.

[45] S. Kakade and J. Langford, “Approximately optimal approximate reinforcement
learning,” in ICML, vol. 2, 2002, pp. 267–274.

[46] A. D. Edwards et al., “Estimating q (s, s’) with deep deterministic dynamics gradi-
ents,” arXiv preprint arXiv:2002.09505, 2020.

[47] S. Kakade, M. J. Kearns, and J. Langford, “Exploration in metric state spaces,” in
Proceedings of the 20th International Conference on Machine Learning (ICML-03),
2003, pp. 306–312.

[48] M. G. Azar, R. Munos, and B. Kappen, “On the sample complexity of reinforcement
learning with a generative model,” arXiv preprint arXiv:1206.6461, 2012.

[49] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan, “Is q-learning provably efficient?”
arXiv preprint arXiv:1807.03765, 2018.

[50] V. Mnih et al., “Playing atari with deep reinforcement learning,” Dec. 2013. arXiv:
1312.5602 [cs.LG].

[51] N. Modhe, H. Kamath, D. Batra, and A. Kalyan, “Model-advantage optimization for
model-based reinforcement learning,” arXiv preprint arXiv:2106.14080, 2021.

[52] T. Wang et al., “Benchmarking model-based reinforcement learning,” arXiv preprint
arXiv:1907.02057, 2019.

[53] N. Lambert, B. Amos, O. Yadan, and R. Calandra, “Objective mismatch in model-
based reinforcement learning,” arXiv preprint arXiv:2002.04523, 2020.

69

https://arxiv.org/abs/1312.5602

[54] K. Lee, Y. Seo, S. Lee, H. Lee, and J. Shin, “Context-aware dynamics model for
generalization in model-based reinforcement learning,” in International Conference
on Machine Learning, PMLR, 2020, pp. 5757–5766.

[55] S. Nair, S. Savarese, and C. Finn, “Goal-aware prediction: Learning to model what
matters,” in International Conference on Machine Learning, PMLR, 2020, pp. 7207–
7219.

[56] M. Tomar, A. Zhang, R. Calandra, M. E. Taylor, and J. Pineau, “Model-
invariant state abstractions for model-based reinforcement learning,” arXiv preprint
arXiv:2102.09850, 2021.

[57] R. Kidambi, A. Rajeswaran, P. Netrapalli, and T. Joachims, “Morel: Model-based
offline reinforcement learning,” arXiv preprint arXiv:2005.05951, 2020.

[58] A. Nagabandi et al., “Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning,” arXiv preprint arXiv:1803.11347, 2018.

[59] X. Lu, K. Lee, P. Abbeel, and S. Tiomkin, “Dynamics generalization via information
bottleneck in deep reinforcement learning,” arXiv preprint arXiv:2008.00614, 2020.

[60] R. S. Sutton, “Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming,” in Machine learning proceedings 1990,
Elsevier, 1990, pp. 216–224.

[61] J. Schrittwieser et al., “Mastering atari, go, chess and shogi by planning with a
learned model,” CoRR, vol. abs/1911.08265, 2019. arXiv: 1911.08265.

[62] G. Brockman et al., “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[63] R. S. Sutton, C. Szepesvári, A. Geramifard, and M. P. Bowling, “Dyna-style plan-
ning with linear function approximation and prioritized sweeping,” arXiv preprint
arXiv:1206.3285, 2012.

[64] M. G. Azar, R. Munos, and H. J. Kappen, “Minimax pac bounds on the sample
complexity of reinforcement learning with a generative model,” Machine learning,
vol. 91, no. 3, pp. 325–349, 2013.

[65] M. G. Azar, I. Osband, and R. Munos, “Minimax regret bounds for reinforce-
ment learning,” in Proceedings of the 34th International Conference on Machine
Learning-Volume 70, JMLR. org, 2017, pp. 263–272.

[66] S. Ross and J. A. Bagnell, “Agnostic system identification for model-based rein-
forcement learning,” arXiv preprint arXiv:1203.1007, 2012.

70

https://arxiv.org/abs/1911.08265

[67] Y.-H. Wu, T.-H. Fan, P. J. Ramadge, and H. Su, “Model imitation for model-based
reinforcement learning,” arXiv preprint arXiv:1909.11821, 2019.

[68] J. Oh, S. Singh, and H. Lee, “Value prediction network,” arXiv preprint
arXiv:1707.03497, 2017.

[69] D. Silver et al., “The predictron: End-to-end learning and planning,” in International
Conference on Machine Learning, PMLR, 2017, pp. 3191–3199.

[70] R. Abachi, “Policy-aware model learning for policy gradient methods,” Ph.D. dis-
sertation, University of Toronto (Canada), 2020.

[71] M. Hessel et al., “Muesli: Combining improvements in policy optimization,” CoRR,
vol. abs/2104.06159, 2021. arXiv: 2104.06159.

[72] J. Schrittwieser, T. Hubert, A. Mandhane, M. Barekatain, I. Antonoglou, and D. Sil-
ver, “Online and offline reinforcement learning by planning with a learned model,”
CoRR, vol. abs/2104.06294, 2021. arXiv: 2104.06294.

[73] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy
optimization,” in International conference on machine learning, 2015, pp. 1889–
1897.

[74] M. Kearns and S. Singh, “Near-optimal reinforcement learning in polynomial time,”
Machine learning, vol. 49, no. 2-3, pp. 209–232, 2002.

[75] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based con-
trol,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IEEE, 2012, pp. 5026–5033.

[76] T. Yu et al., “Mopo: Model-based offline policy optimization,” arXiv preprint
arXiv:2005.13239, 2020.

[77] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning for of-
fline reinforcement learning,” Advances in Neural Information Processing Systems,
vol. 33, pp. 1179–1191, 2020.

[78] G. J. Gordon, “Stable function approximation in dynamic programming,” in Machine
learning proceedings 1995, Elsevier, 1995, pp. 261–268.

[79] M. Riedmiller, “Neural fitted q iteration–first experiences with a data efficient neu-
ral reinforcement learning method,” in European conference on machine learning,
Springer, 2005, pp. 317–328.

71

https://arxiv.org/abs/2104.06159
https://arxiv.org/abs/2104.06294

[80] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl: Datasets for deep
data-driven reinforcement learning,” arXiv preprint arXiv:2004.07219, 2020.

[81] T. Yu, A. Kumar, Y. Chebotar, K. Hausman, C. Finn, and S. Levine, “How to leverage
unlabeled data in offline reinforcement learning,” arXiv preprint arXiv:2202.01741,
2022.

[82] H. Zhang and Y. Guo, “Generalization of reinforcement learning with policy-aware
adversarial data augmentation,” arXiv preprint arXiv:2106.15587, 2021.

[83] S. Gu et al., “A review of safe reinforcement learning: Methods, theory and applica-
tions,” arXiv preprint arXiv:2205.10330, 2022.

[84] R. Munos and C. Szepesvári, “Finite-time bounds for fitted value iteration,” Journal
of Machine Learning Research, vol. 9, no. May, pp. 815–857, 2008.

72

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Summary
	1 | Introduction and Background
	Thesis Statement
	Outline

	2 | Model-Advantage and Generalization Gap
	Introduction
	Related Work
	Preliminaries
	Model-Advantage
	Generalization in RL
	Conclusion

	3 | Model-Advantage Optimization for Model-Based Reinforcement Learning
	Introduction
	Related Work
	Preliminaries
	Approach: Value-Aware Objective via Model Advantage Upper Bound
	Experiments
	Conclusion

	4 | Offline RL: Value-guided data augmentation
	Introduction
	Related Work
	Preliminaries
	Approach
	Experiments
	Conclusion

	5 | Conclusion
	Appendices
	A | Appendix for Model-Advantage and Generalization Gap
	B | Appendix for Model-Advantage Optimization for Model-Based Reinforcement Learning

	References

