
DEEP REINFORCEMENT LEARNING FOR THE VELOCITY CONTROL OF A
MAGNETIC, TETHERED DIFFERENTIAL-DRIVE ROBOT

A Dissertation
Presented to

The Academic Faculty

By

Devarsi Rawal

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in Computer Science
College of Computing

Georgia Institute of Technology

December 2022

© Devarsi Rawal 2022

DEEP REINFORCEMENT LEARNING FOR THE VELOCITY CONTROL OF A
MAGNETIC, TETHERED DIFFERENTIAL-DRIVE ROBOT

Thesis committee:

Dr. Cédric Pradalier
College of Computing
School of Interactive Computing
Georgia Institute of Technology

Dr. Sehoon Ha
College of Computing
School of Interactive Computing
Georgia Institute of Technology

Dr. Mackenzie Lau
College of Engineering
School of Aerospace Engineering
Georgia Institute of Technology

Date approved: December 6, 2022

They know enough who know how to learn.

Henry Adams

To my loving parents and brother

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my advisor Dr.

Cédric Pradalier for providing me the opportunity to break into the robotics field through

two exceptional classes and a year of engaging research. Your wisdom and expertise have

been invaluable, and you truly helped me find a new passion. I would also like to thank the

members of the thesis committee, Dr. Sehoon Ha and Dr. Mackenzie Lau, for lending their

knowledge and taking the time to review the research done in this thesis.

I would also like to thank my graduate mentor Dr. Antoine Richard for all the help you

provided over the past year. From fighting through bugs to hosting the others and I at the

SpaceR lab in Luxembourg, I would not trade those experiences for anything.

To Luis Batista, Stéphanie Aravecchia, Pete Schroepfer, Salim Khazem, Mehran Adibi,

Dr. Othmane Ouabi, and the other members of the DREAM lab, thank you for the won-

derful conversations, advice, and support. You all made a once-in-a-lifetime experience in

France even more unique.

Special thanks go out to Ithan Velarde for helping set up SEED RL to run on the lab

computers. You were a great help, and it was a pleasure working with you for the semester.

Finally, I would like to thank my father, for encouraging me to do a thesis and always

pushing me to strive for my best, my mother, for her unconditional love and support, and

my brother, for being my best friend and a great role model. I would not be the person I

am today without you and consider myself incredibly blessed.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . x

List of Figures . xi

List of Acronyms . xiii

Summary . xv

Chapter 1: Introduction and Background . 1

1.1 Motivation . 1

1.2 ROBOPLANET Altiscan Crawler . 2

1.3 Problem Definition . 3

1.4 Research Goal . 5

1.5 Outline . 6

Chapter 2: Fundamentals . 7

2.1 Differential Drive Robot Kinematics . 7

2.2 Reinforcement Learning . 10

2.2.1 Markov Decision Processes . 11

2.2.2 Returns . 13

vi

2.2.3 Policy . 13

2.2.4 Value Functions . 13

2.2.5 Optimality . 15

2.2.6 Monte Carlo Methods . 15

2.2.7 Temporal Difference Learning . 18

2.2.8 Value Function Approximation . 19

2.3 Deep Learning . 19

2.3.1 Perceptrons . 20

2.3.2 Activation Functions . 20

2.3.3 Deep Neural Networks . 21

2.3.4 Training . 21

2.3.5 Recurrent Neural Networks . 22

2.3.6 Long-Short Term Memory Networks 23

2.4 Deep Reinforcement Learning . 24

2.4.1 Introduction . 24

2.4.2 Value-Based Methods . 25

2.4.3 Policy Gradient Methods . 27

2.4.4 Actor-Critic Methods . 28

2.4.5 Trust Region Policy Optimization 31

2.4.6 Proximal Policy Optimization (PPO) 32

Chapter 3: Related Works . 34

3.1 Classical Control . 34

vii

3.2 Modern Control . 35

3.3 Reinforcement Learning . 36

Chapter 4: Experimental Setup . 37

4.1 Simulation Environment . 37

4.2 Scene Setup . 39

4.3 Task Setup . 42

4.3.1 Reward Function . 43

4.4 Agent Training . 46

4.5 Sim-to-Real Transfer . 47

Chapter 5: Evaluation Methods . 49

5.1 Training Performance . 49

5.2 Runtime Performance . 50

5.3 Robustness Evaluation . 51

5.3.1 Environment Robustness . 52

5.3.2 Robustness to Initial Conditions 54

5.3.3 Model Resilience . 54

Chapter 6: Results . 55

6.1 Training Performance . 55

6.2 Runtime Performance . 57

6.3 Robustness Evaluation . 58

6.3.1 Environment Robustness . 58

viii

6.3.2 Robustness to Initial Conditions 60

6.3.3 Model Resilience . 62

Chapter 7: Discussion & Conclusion . 65

Appendices . 69

Appendix A: Simulation Physics Parameters 70

Appendix B: Model Parameters . 71

References . 73

ix

LIST OF TABLES

4.1 Isaac Gym Physics Parameters . 40

4.2 PPO DNN Architecture . 47

4.3 PPO-LSTM DNN Architecture . 47

6.1 Maximum Training Rewards . 55

6.2 Runtime Performance . 57

A.1 Isaac Gym Simulation Parameters . 70

A.2 PhysX Parameters . 70

B.1 Base Model Parameters . 71

B.2 PPO Parameters for rl-games . 72

B.3 PPO-LSTM Recurrent Network Parameters for rl-games 72

x

LIST OF FIGURES

1.1 BugWright2 Project Concept . 2

1.2 ROBOPLANET Altiscan . 4

2.1 DDR Velocity . 8

2.2 DDR Pure Rotation . 9

2.3 Agent-Environment Interaction . 11

2.4 General Policy Iteration Flow . 16

2.5 Simple RNN . 23

2.6 LSTM Chain . 25

2.7 Actor-Critic Architecture . 29

4.1 Isaac Gym Parallelization . 38

4.2 Comparison of Reward Function . 45

6.1 Training Rewards . 56

6.2 Training Reward for Isaac Gym and PyBullet 57

6.3 Linear and Angular Tracking per Velocity in a Noisy Environment with
Constant Tether Disturbances . 59

6.4 Average Velocity RMSEs by Environment and PPO Variant 60

6.5 Effect of Initial Caster Wheel Position on Crawler Trajectory and Velocity . 61

xi

6.6 Effect of Initial Orientation on Crawler Trajectory and Velocity 62

6.7 Cross Evaluation of PPO Velocity Control Model 63

6.8 Cross-Evaluated PPO Model Errors Compared to a Symmetrically-Evaluated
Model . 64

xii

LIST OF ACRONYMS

A2C advantage actor-critic

A3C asynchronous advantage actor-critic

AC actor-critic

BPTT back-propagation through time

DDR differential drive robot

DL deep learning

DNN deep neural network

DOF degree of freedom

DQN deep Q-network

DRL deep reinforcement learning

GLIE Greedy in Limit with Infinite Exploration

GPI generalized policy iteration

ICC instantaneous center of curvature

IID independent and identically distributed

IMU inertial measurement unit

IVK inverse velocity kinematics

KL Kullback-Leibler

LSTM long-short term memory

MC Monte Carlo

MDP Markov decision process

MP Markov process

MRP Markov reward process

xiii

MSE mean-squared error

ONNX Open Neural Network Exchange

PID proportional-integral-derivative

PPO proximal policy optimization

ReLU rectified linear unit

RL reinforcement learning

RMSE root mean-squared error

RNN recurrent neural networks

ROS Robot Operating System

TD temporal-difference

TGS Temporal Gauss-Siedel

TRPO trust-region policy optimization

UAV unmanned aerial vehicle

UGV unmanned ground vehicle

URDF Unified Robot Description Format

UUV unmanned underwater vehicle

UWB ultrawide band

xiv

SUMMARY

The ROBOPLANET Altiscan crawler is a magnetic-wheeled, differential-drive robot

being explored as an option to aid, if not completely replace, humans in the inspection

and maintenance of marine vessels. Velocity control of the crawler is a crucial part in

establishing trust and reliability amongst its operators. However, thanks to the crawler’s

elongated, magnetic wheels and umbilical tether, it operates in a complex environment rich

with nonlinear dynamics which makes control challenging. Model-based approaches for

the control of a robot that aim to mathematically formalize the physics of the system require

an in-depth knowledge of the domain.

Reinforcement learning (RL) is a trial-and-error-based approach that can solve control

problems in nonlinear systems. To accommodate for high-dimensionality and continuous

state spaces, deep neural networks (DNNs) can be used as nonlinear function approxima-

tors to extend RL, creating a method known as deep reinforcement learning (DRL). DRL

coupled with a simulated environment provides a way for a model to learn physics-naive

control. The research conducted in this thesis explored the efficacy of a DRL algorithm,

proximal policy optimization (PPO), to learn the velocity control of the Altiscan crawler

by modeling its operating environment in a novel, GPU-accelerated simulation software

called Isaac Gym. The approaches evaluated the error between measured base velocities of

the crawler as a result of the actions provided by the DRL model and target velocities in

six different environments. Two variants of PPO, standard and reccurent, were compared

against the inverse velocity kinematics model of a differential-drive robot. The results show

that velocity control in simulation is possible using PPO, but evaluation on the real crawler

is needed to come to a meaningful conclusion.

xv

CHAPTER 1

INTRODUCTION AND BACKGROUND

The use of mobile robots for inspection, maintenance, and repair in commercial and in-

dustrial settings has grown in recent years given their versatility and safety in hazardous

environments. Unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), and

unmanned underwater vehicles (UUVs), have been used to monitor a variety of infras-

tructure such as cell towers, bridges, and nuclear plants [1, 2]. Mobile robots have also

been used in more complex environments that demand atypical features; instead of using

traditional locomotion techniques, robots that are inserted into pipes can use wheels that

attach magnetically to the pipage or attain a different kind of locomotion using bio-inspired

movement [3]. Control of these robots can be difficult considering the multitude of external

disturbances present in these unpredictable environments. In this thesis, the main focus is a

magnetic, differential-drive crawling robot used for the inspection of large, ferromagnetic

structures. This chapter provides the motivation for using such a robot, the problem this

thesis aims to solve, the framework for a potential solution to this problem, and an outline

for the rest of the thesis.

1.1 Motivation

The inspiration for this thesis comes from the BugWright2 Project [4], a multinational pilot

venture funded by the European Union’s Horizon 2020 research and innovation program for

the autonomous inspection and cleaning of marine vessels. It is known that container ships

face exposure to abrasive elements while at sea which can corrode their outer hulls. These

corrosion patches can affect a ship’s hydrodynamics and increase its fuel consumption,

which increases the operating costs for marine commerce and contributes to environmental

pollution. Currently, detailed inspections are performed manually by humans, which is a

1

Figure 1.1: An illustration of the multi-robot interaction concept in the BugWright2 project.
The coordinated scanning by UAVs, UUVs, and crawlers enable inspection of the hull of a
ship without dry-docking [4].

time-consuming, expensive, and laborious process, particularly considering the immense

length of large vessels (>50m). The BugWright2 initiative aims to take a proactive stance

on detecting external defects by deploying a multi-robot network of UAVs, UUVs, and

magnetic-wheeled crawling robots in order to minimize human intervention while main-

taining inspection efficiency. Each robot is equipped with an array of visual, acoustic, and

laser sensors. For such a critical part of inspection for ships, it is necessary to develop a

framework that allows for the precise control of a robot to ensure accurate self-localization,

detection of defects, and coordination between robots.

1.2 ROBOPLANET Altiscan Crawler

The magnetic-wheeled crawler used in the BugWright2 project is the primary focus of this

thesis. The Altiscan by ROBOPLANET is a differential-drive mobile robot with two front

wheels actuated by brushless DC motors and a passive caster wheel that provides magnetic

support and balance [5]. Each wheel is comprised of a cylindrical electromagnet which

provides 135N of magnetic force and enables the crawler to traverse vertical, ferromag-

netic surfaces. Rotary wheel encoders capture the position of these wheels and a Roboclaw

hardware motor controller provides a voltage proportional-integral-derivative (PID) con-

2

troller for their velocities. The carbon steel body of the robot gives it a spatial footprint

of 35x35x20cm and a mass of 7kg. The crawler has been modified from its manufactured

version with sensors that aid in autonomy. Several off-the-shelf sensors have been rigged

to the frame of the crawler such as a 6-DOF inertial measurement unit (IMU), an ultrawide

band (UWB) receiver, and an RGB camera. A forward-facing 3D LiDAR sensor is also

attached and can provide point clouds of the surrounding environment. A contact piezo-

electric transducer is included for the detection of corrosion patches and landmarks used

in localization. On-board compute is provided by an embedded Axiomtek CAPA310 com-

puter. A picture of the crawler can be found in Figure 1.2. In its current state, the crawler

is a well-equipped but resource intensive machine which renders teleoperation infeasible.

Hence, an umbilical tether that attaches to the crawler from some base station is required.

The 30m long tether includes data and power cables, as well as a tube for water supply to

ensure adequate contact between the piezoelectric transducer and the surface. The crawler

can be controlled autonomously or manually using a standard joystick and can reach a top

speed of 20cm/s. Manual control relies on the inverse velocity kinematics of a differen-

tial drive robot detailed later in Section 2.1. The autonomy package of the crawler relies

on probabilistic state-estimation in the form of a mesh-constrained particle filter that in-

corporates IMU, UWB, and encoder (odometry) readings [6]. The control, sensing, and

computing done by the crawler is conducted using the Robot Operating System (ROS)

middleware [7].

1.3 Problem Definition

During field-testing of the crawler, operators qualitatively noted inconsistencies in its mo-

tion when traversing large areas non-proximal to the ground station. Specifically, during

vertical transection, the crawler struggles to maintain a base linear velocity that matches the

linear velocity commanded by the operator. The same issues are faced during horizontal

transection. During rotation, the crawler tends to increase its base angular velocity when

3

Figure 1.2: An image of the ROBOPLANET Altiscan in action on a vertical surface. The
cord attached to the chassis of the crawler is the tether that contains a bundle of transfer
cables for data, power, and water supplies.

4

turning towards the ground and base station and decrease its base angular velocity when

turning away to reach a higher point. With these locomotion artifacts, control of the crawler

becomes difficult and a liability when working in a coordinated setting. One hypothesis for

these inconsistencies is that the dynamics of the crawler and environment are highly non-

linear. The kinematics model of a differential drive robot operates on many assumptions

detailed in Section 2.1 which may be impossible to abide by in the real world. The crawler

has long, magnetic wheels, which add to the nonlinearity by introducing wheel slippage

and friction into the equation. Second, the constant force from gravity can influence the

motion of the crawler on vertical surfaces. Finally, the umbilical attached to the crawler

can add a significant amount of weight. Since the tether is relatively free-moving aside

from its two anchor points, the rope forces that act on the crawler can be difficult to model.

Therefore, the objective of this thesis is to develop a controller to handle the nonlinear

dynamics of the crawler’s environment to achieve robust velocity control. Physics model-

based control methods based on classical and modern control theory exist, but require a

deep knowledge of the domain dynamics. Reinforcement learning (RL)—more specifi-

cally deep reinforcement learning (DRL)—has gained popularity in the past decade as a

physics-naive approach to control systems. DRL has been used in autonomous vehicles

to achieve smooth and efficient velocity control to optimize driving performance [8]. This

thesis will explore the effectiveness of using DRL for the velocity control of a magnetic,

tethered differential-drive robot.

1.4 Research Goal

The research goals of this thesis are to develop a simulation capable of capturing the dy-

namics of the crawler’s environment, train a DRL velocity controller capable of tracking

velocity better than a standard kinematics model, and provide a framework to test this

model on a real system.

5

1.5 Outline

This thesis is structured as follows:

• Chapter 2 provides a comprehensive overview of the concepts examined in this the-

sis. Section 2.1 explains the forward and inverse kinematics model of a differential-

drive robot. Section 2.2 details the basics of RL including policy optimization. Sec-

tion 2.3 introduces the notion of using deep neural networks as nonlinear function

approximators. Finally, Section 2.4 combines the previous two ideas to explain the

state-of-the-art used in this thesis, including the implementation of proximal policy

optimization (PPO).

• Chapter 3 surveys the various methods used for the control of differential-drive robots

and other robots with nonlinear dynamics.

• Chapter 4 presents the simulation software Isaac Gym and details how the environ-

ment and RL task are setup for learning.

• Chapter 5 proposes different environments and metrics to evaluate the performance

of a DRL velocity controller for the crawler.

• Chapter 6 evaluates the effectiveness to a DRL velocity controller for the proposed

methods in comparison to the baseline kinematics model currently used in the crawler.

• Chapter 7 presents a summary of the work, detailing the strengths and weaknesses of

the approach used, and provides direction for future work.

6

CHAPTER 2

FUNDAMENTALS

2.1 Differential Drive Robot Kinematics

The differential drive robot (DDR) is a versatile class of mobile robots characterized by a

set of fixed standard wheels placed coaxially on opposite sides of a chassis. These wheels

are typically powered by motors that provide the necessary torque to command the robot to

drive in a certain direction at a specific velocity. The relatively cheap design requirements

for a DDR make it suitable for a wide variety of use cases such as autonomous home

vacuum cleaners [9], pharmaceutical warehousing [10], and storage tank inspection [6].

The velocity control of a DDR can be determined by its kinematics model under a set of

critical assumptions:

• Movement occurs across a horizontal surface

• Wheels contact the surface at a single point

• Wheels are non-deformable

• Wheels are pure rolling, so no slipping, skidding, or sliding occurs

• No rotational friction around the point of contact

• Steering axis of wheels is orthogonal to the surface

• Wheels are connected by a rigid frame (chassis)

Under these constraints, the instantaneous change in position (linear velocity) is always

in the steering direction of the DDR. The velocity in the frame of the robot body vbody is

7

Figure 2.1: A representation of the velocity of a DDR. For a DDR that follows some path
γ(s) where s defines its parameters, the velocity v in the frame of the robot is tangent to
the path with a rotational velocity derived from the change in its heading θ [11].

formalized as

vbody =


vx

0

θ̇

 , (2.1)

where vx is the velocity in the x-direction and θ̇ is the angular velocity of the base of

the robot. It is important to note that the velocity in the y-direction vy is 0. Though a

DDR cannot move freely along its lateral axis, it is able to perform turning maneuvers by

rotating its wheels in opposite directions. To go straight, the angular velocity of both wheels

ϕ̇left, ϕ̇right must be equal to each other. The linear velocity of a wheel can be computed by

multiplying its radius r by its angular velocity

vwheel = rϕ̇wheel. (2.2)

8

Figure 2.2: A representation of pure rotation for DDR. For an axle of length L, the instan-
taneous center of curvature (ICC) lies at the point L

2
along it. The linear velocities of each

wheel are exact opposite, such that −vleft = −rϕ̇left and vright = rϕ̇right [11].

By the pure rolling constraint, no energy is lost to the surrounding environment, so the

velocities of each wheel are exactly equal to the base linear velocity vwheel = vx. By

substitution, the angular velocity of each wheel is

ϕ̇wheel =
vx
r
. (2.3)

While turning in place, the ICC for the DDR occurs exactly at the midway point along its

axle. Point rotation is achieved by turning both wheels in opposite directions at the exact

same speed, as shown in Figure 2.2. By applying the equations of circular motion, the

9

angular rotation of each wheel during point rotation is

ϕ̇left = −Lθ̇
2r

(2.4)

ϕ̇right =
Lθ̇

2r
. (2.5)

The inverse velocity kinematics (IVK) of a differential drive robot can be found by com-

bining the pure translation and pure rotation models.

ϕ̇left =
vx
r

− Lθ̇

2r
(2.6)

ϕ̇right =
vx
r

+
Lθ̇

2r
(2.7)

IVK is useful for computing target wheel velocities in order to reach some desired base

velocity. Forward velocity kinematics, on the other hand, determine the expected base

velocity given the angular velocities applied to each wheel, which can be found by alge-

braically rearranging the terms in Equation 2.6 and Equation 2.7, respectively:

vx =
r

2
(ϕ̇right + ϕ̇left) (2.8)

θ̇ =
r

L
(ϕ̇right − ϕ̇left). (2.9)

2.2 Reinforcement Learning

Reinforcement learning (RL) is a subset of machine learning that provides a learner the

means to maximize a numerical feedback signal through an iterative trial-and-error decision-

making process. The RL dichotomy, as seen in Figure 2.3, consists of the learner, tradi-

tionally referred to as the agent, and the environment. The agent decides what actions to

take based on the observations it extracts from the environment. Executing an action allows

an agent to interact with its environment, which in turn gives a reward, a scalar value that

quantifies how good a particular action is in an instant. This reward is accumulated over

10

Figure 2.3: The agent-environment interaction in reinforcement learning. An agent exists
in state St and takes an action At at each timestep t. Based on the dynamics of the environ-
ment, the agent will end up in state St+1 with a reward Rt+1 [12].

time after a sequence of actions has been performed. The goal of an RL agent is to bal-

ance exploration and exploitation to find an optimal mapping between states and actions,

also known as a policy, that maximizes the expected sum of rewards. The following sec-

tion is based on Sutton and Barto’s work [12] and will look at the formalization of the RL

problem, the difference between approaches to model-based and model-free problems, and

optimizations to these approaches.

2.2.1 Markov Decision Processes

A Markov process (MP) is a stochastic process that satisfies the memorylessness of the

Markov property where the current state, St, encompasses all information needed to make

an adequate prediction of future outcomes. MPs are typically simplified to a Markov Chain

with a discrete number of states defined by the tuple ⟨S,Pss′⟩, where:

• S: the finite set of states, or state space, where s ∈ S

• Pss′: (S×S) → [0, 1], the state transition matrix defining the probability of reaching

state s′ from s

11

By interacting with the environment, an agent is given feedback in the form of a re-

ward. This is formalized by the Markov reward process (MRP). An MRP is a 4-tuple

⟨S,Pss′ ,Rs, γ⟩, where S and Pss′ are the same as before, and Rs and γ define:

• Rs: (S × S) → R, the expected reward over all possible states reachable from s

Rs = E[Rt+1|St = s]

• γ: the reward discount factor, γ ∈ [0, 1]

One limitation of MRPs is the inability to model sequential decision-making through ac-

tions. The Markov decision process (MDP) addresses this by extending the MRP to include

a set of finite actions. MDPs are formalized by the 5-tuple ⟨S,A,Pa
ss′ ,Ra

s , γ⟩, where:

• S: the set of states, or state space, where s ∈ S

• A: set of actions, or action space, where a ∈ A

• Pa
ss′: (S × S ×A) → [0, 1], the state transition function

Pa
ss′ = p(s′|s, a) = p(St+1 = s′|St = s, At = a)

• Ra
s : (S × A × S) → R the expected reward over all possible states reachable from

s by taking action a

Ra
s = r(s, a, s′) = E[Rt|St = s, At = a, St+1 = s′]

• γ: the reward discount factor, γ ∈ [0, 1]

12

2.2.2 Returns

By defining a reward signal, the agent knows the difference between what it should and

should not achieve. Its objective is now to maximize the expected return, Gt, which can be

formally defined as:

Gt = Rt+1 +Rt+2 +Rt+3 + ...+RT ,

where T is the time step in which the agent enters a terminal state. However, many RL

problems are continuous tasks and do not enter a natural terminal state, so T = ∞. In this

case, the agent must choose an action to maximize the expected discounted return:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (2.10)

2.2.3 Policy

A policy π defines the behavior of an agent in a particular state. It can be modeled by

a probability distribution π(a|s) where s ∈ S and a ∈ A(s). In a stochastic policy, an

action will be sampled from π(·|s), whereas in a deterministic policy π(s), an action will

be picked uniquely based on the state.

2.2.4 Value Functions

RL algorithms depend on an estimate of how good it is for an agent to be in its current

state. If a policy π is given, the state-value function vπ(s) defines the expected return of a

given state s, provided the agent follows the actions sampled from the policy:

vπ(s) = Eπ[Gt|St = s] = Eπ
[∞∑
k=0

γkRt+k+1|St = s

]
,∀s ∈ S (2.11)

13

This formulation gives rise to a recursive relation known as the Bellman Equation for vπ.

This relation becomes apparent by expanding the previous equation:

vπ(s) = Eπ[Gt|St = s] (2.12)

= Eπ[Rt+1 + γGt+1|St = s]

= Eπ[Rt+1 + γvπ(St+1)|St = s]

=
∑
a∈A

π(a|s)
∑
s′∈S

Pa
ss′

(
Ra
s + γEπ

[
Gt+1|St+1 = s′

])
=

∑
a∈A

π(a|s)
(
Ra
s + γ

∑
s′∈S

Pa
ss′vπ(s

′)

)

Similarly, the action-value function qπ(s, a) defines the expected return of being in a

given state s and taking a certain action a, provided the agent follows the actions sampled

from the policy thereafter:

qπ(s, a) = Eπ[Gt|St = s, At = a]

= Eπ
[∞∑
k=0

γkRt+k+1|St = s, At = a

]
,∀s ∈ S,∀a ∈ A

There also exists a Bellman Equation for qπ

qπ(s, a) = Eπ[Gt|St = s, At = a] (2.13)

= Eπ[Rt+1 + γGt+1|St = s, At = a]

= Eπ[Rt+1 + γqπ(St+1, At+1)|St = s, At = a]

= Ra
s + γ

∑
s′∈S

Pa
ss′

∑
a′∈A

π(a′|s′)qπ(s′, a′)

14

2.2.5 Optimality

By formally defining the value functions, a partial ordering over policies becomes apparent.

A policy π is considered equivalent to or better than another policy π′ if:

vπ(s) ≥ vπ′(s),∀s ∈ S

An optimal policy π∗ is a policy that is equivalent to or better than every other policy. The

optimal state-value function v∗(s) is defined as the state-value function given an optimal

policy, or formally:

v∗(s) = max
π

vπ(s),∀s ∈ S

Likewise, the optimal action-value function q∗(s, a) can be defined formally as:

q∗(s, a) = max
π

qπ(s, a),∀s ∈ S, ∀a ∈ A(s)

2.2.6 Monte Carlo Methods

In RL, if the model of the environment is given (the full MDP is known), then a generalized

policy iteration (GPI) framework consisting of a policy evaluation and policy improvement

routine can be used to find the optimal value function and optimal policy after some time

with dynamic programming. In practice, MDPs that capture all the dynamics of an envi-

ronment are difficult to create. For example, without prior knowledge of the state-transition

function P , the Bellman optimality equations cannot be solved. Monte Carlo (MC) meth-

ods aim to address this problem by learning from simulated experience through episodic

tasks.

15

Figure 2.4: An illustration of the GPI flow. Every policy evaluation is subsequently fol-
lowed by a policy improvement step. After many iterations, the agent will converge to an
optimal policy and optimal value function [12].

Prediction

The first part of GPI is policy evaluation. To evaluate a policy π using MC, an agent must

sample from a generic policy to create an episode of S0, A0, R1, S1, ..., ST−1, AT−1, RT .

The estimated value of a state V (St) can be updated incrementally over each episode, such

that

N(St) = N(St) + 1

V (St) = V (St) +
1

N(St)
(Gt − V (St)) (2.14)

= V (St) + α(Gt − V (St)) (2.15)

where N(St) represents the number of times the state is visited. α is a constant step-size

parameter . This update can be applied the first time (first-visit) or every time (every-visit)

16

a state is seen in an episode. V (s) will converge to vπ(s) as N(s) → ∞. While an estimate

of the state-value function is useful when the transition model is known, an estimate of the

state-action value function captures more information.

Q(St, At) = Q(St, At) + α(Gt −Q(St, At)) (2.16)

Special consideration must be given to ensure that all state-action pairs are explorable. The

MC prediction utilizes exploring starts which specifies that each episode starts with a state-

action pair and that each pair has a non-zero probability of being selected. Over an infinite

number of sampled episodes, all pairs will be visited and Q(s, a) will converge to qπ(s, a).

Control

The second part of GPI is policy improvement—a way to generate a new policy π′ such

that π′ ≥ π. Using Q(s, a), a greedy policy improvement scheme looks like:

π′(s) = argmax
a∈A

Q(s, a) (2.17)

Unfortunately, the exploring starts assumption is unrealistic. A more approachable way

to ensure all state-action pairs are visited is to use an on-policy (improving the policy used

to make the decisions) MC control method called ϵ-greedy. In this method, when updating

a policy π, all actions begin with a minimum probability ϵ
|A(s)| . The greedy action receives

an added incentive of 1 − ϵ of being chosen. Formally, a policy with ϵ-greedy exploration

is

π(a|s) =


ϵ

|A(s)| + 1− ϵ a∗ = argmaxa∈AQ(s, a)

ϵ
|A(s)| otherwise

(2.18)

Over an infinite number of episodes, an ϵ-greedy exploration policy will converge to an

optimal policy π∗ by the Greedy in Limit with Infinite Exploration (GLIE) definition [13].

17

2.2.7 Temporal Difference Learning

Like MC methods, temporal-difference (TD) methods do not require a full MDP and use

the GPI framework to evaluate and improve a policy. TD also uses raw experience to learn,

but rather than estimating the value function by sampling entire episodes, it learns from

incomplete episodes by bootstrapping the target value.

Prediction

To reiterate, the goal of the prediction stage is to evaluate the value function given a policy

π. Previously, V (s) was updated based on the true return Gt calculated from the trajectory

of the sampled episode. TD learning algorithms no longer have this ability and must shift

the value function towards an estimated return called the TD target. The new state-value

function update looks like

V (St) = V (St) + α
[
Rt+1 + γV (St+1)− V (St)

]
, (2.19)

where Rt+1 + γV (St+1) is the TD target and Rt+1 + γV (St+1)− V (St) is the TD error for

a one-step look-ahead. This TD target can also be adapted for further look-aheads using

n-step returns.

Control

TD control can be split up into two distinct and commonly used methods: Sarsa and Q-

Learning. As with MC control, TD control uses the action-value function to account for an

incomplete MDP.

Sarsa is an on-policy TD control method that uses 5 sequential events (St, At, Rt+1, St+1, At+1)

to update the estimated action-value function Q(St, At). The action At+1 taken from the

next state is chosen directly from the current policy π.

18

Q(St, At) = Q(St, At) + α
[
Rt+1 + γQ(St+1, At+1)−Q(St, At)

]
(2.20)

Q-Learning is a TD control method that also uses bootstrapping to estimate the action-value

function, but unlike Sarsa, the action taken in the subsequent state depends on the action

that gives the maximum value from the current action-value function. By removing reliance

on the current policy to determine the next action, this method is considered off-policy.

Q(St, At) = Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
(2.21)

2.2.8 Value Function Approximation

Reinforcement learning can be used to solve problems of varying complexity. For relatively

simple problems with small state spaces, a tabular representation of the value function suf-

fices to capture all possibilities for the MDP. However, as the problem grows increasingly

complex, such as in robotic control tasks with a continuous state and action space, a very-

large—sometimes infinite—tabular solution is needed, which can render policy optimiza-

tion computationally expensive or impossible. Instead, parameterized functions are used to

approximate the value of a state of state-action pair. Linear approximators, such as polyno-

mials and Fourier basis functions [14], and non-traditional approximators, such as decision

trees [15] and nearest neighbor methods [16], have been used. Most notably, however, ar-

tificial neural networks have been widely used as nonlinear value function approximators.

2.3 Deep Learning

Deep learning (DL)—in contrast to shallow learning methods such as linear regression,

support vector machines, decision trees, etc.—is a machine learning paradigm used to ap-

proximate nonlinear functions by layering computation flows between an input and output

19

[17]. These models have been used extensively in medical imaging, autonomous driving,

and robotic controls [18, 19]. For the purposes of this thesis, deep learning will be used as

a tool to approximate the value functions in RL for complex tasks. The upcoming section

is largely based on the work by Goodfellow et. al [20] and Bishop [21].

2.3.1 Perceptrons

Neural networks are the basis behind DL. They are mathematical representations that

loosely model the neuron in the animal brain. The neuron works by accumulating some

impulses from its input branches, called dendrons, until the polarization reaches a certain

threshold, after which it propagates an action potential down its output branches, called

axons. Similarly, neural networks consist of single neurons, called perceptrons, that sum

together an input x balanced by some weight and a bias b to produce an output z.

z =
∑
i

wixi + b (2.22)

2.3.2 Activation Functions

After the perceptron receives an input, it defines a threshold at which the signal can be

propagated. In neuroscience, this threshold is thought of as all-or-nothing; however, the

perceptron allows for some granular control by specifying an activation function to produce

an output. These activation functions give rise to the nonlinear behavior desired by neural

networks. Some commonly-used activation functions include:

1. Sigmoid: The sigmoid activation function limits the range of the output between 0

and 1.

f(z) =
1

1 + e−z
(2.23)

2. Hyperbolic tangent (tanh): The tanh activation function limits the range of the output

20

between -1 and 1.

f(z) =
ez − e−z

ez + e−z
(2.24)

3. Rectified linear unit (ReLU): The ReLU activation function zeros all negative inputs

while keeping the true values for all non-negative inputs.

f(z) =

 0 when z ≤ 0

z when z > 0
(2.25)

2.3.3 Deep Neural Networks

A perceptron can have many inputs, and when those inputs are shared across multiple

perceptrons, a fully-connected layer emerges. A deep neural networks (DNNs) extends

this structure to include hidden layers, layers that take the outputs of a previous layer as

inputs. DNNs have the capability to model more complex data.

2.3.4 Training

For a DNN to model a nonlinear function, its parameters must be fine-tuned to line up with

the given data. Let θ represent the parameters of the DNN. For some input x, a forward

pass through a DNN will give an estimated value ŷ. In order for the network to learn, a

target value y for the input x must be provided. To judge the quality of the predicted value,

a loss function L can be used. A commonly used loss function is the p-norm:

Lp = ∥y − ŷ∥pp =
N∑
i=1

|yi − ŷi|p (2.26)

The goal of training a DNN is to update its weights θ such that the loss L is minimized.

Theoretically, ∇θL = 0 is the ideal solution; however, the complexity of the DNN prevents

21

an exact solution. Instead, an algorithm called back-propagation uses stochastic gradient

descent to recursively update the weights and biases of each layer in the DNN such that:

θt+1 = θt − α∇θtL, (2.27)

where α controls the learning rate.

2.3.5 Recurrent Neural Networks

Recurrent neural networkss (RNNs) are a special type of neural network that operate on

data that do not necessarily abide by the Markov property. DNNs have trouble generating

sequential data such as stock prices, temperature, and natural language, but having knowl-

edge of their previous states can be useful in predicting future states. In a feed-forward

DNN, the flow between input to output is unidirectional. To give the sense of memory, an

RNN adds a looping mechanism that takes the output of the hidden layer as an input to

itself. Let ht be the output of the current hidden state and ht−1 be the output of the previous

hidden state. The current output can be defined as:

ht = f(W [ht−1;xt] + b), (2.28)

where W is the matrix of weights, xt is the input vector concatenated to ht−1, b is the bias

term, and f is function that adds nonlinearity, most often the sigmoid or tanh activation

functions. To train this type of network, a method called back-propagation through time

(BPTT) is used which adapts the back-propagation algorithm to update the weights be-

tween the input and the hidden layer, inside the hidden layers themselves, and between the

hidden layers of each time series. However, RNNs suffer from the exploding gradient and

vanishing gradient problems during BPTT. The exploding gradient problem occurs when

the magnitude of the eigenvalues of W are greater than 1 which causes the output h to

increase exponentially and unbounded. The vanishing gradient problem suffers from the

22

Figure 2.5: An illustration of a simple RNN. The recursive flow of a RNN gives it the
ability to learn across a related sequence of inputs [22].

opposite where the magnitude of the eigenvalues of W are less than 1 which causes the

output h to approach 0 if the input sequence is long enough.

2.3.6 Long-Short Term Memory Networks

Long-short term memory (LSTM) networks [23] are an extension to RNNs that solve the

exploding and vanishing gradient problems. Rather than relying on a single activation

function to transform the combination of inputs and weights, a series of gates are used to

preserve information across an entire sequence of inputs as seen in Figure 2.6. The long-

term memory of an LSTM is stored in the cell-state Ct. The short-term memory, or hidden

state memory, is stored in ht. The control gates in an LSTM cell are:

• Forget gate: The forget gate uses the sigmoid activation function to determine whether

the previous cell state Ct−1 should be forgotten based on the current input xt and the

previous hidden layer output ht−1.

ft = σ(Wf [ht−1;xt] + bf) (2.29)

• Input gate: The input gate also uses a sigmoid activation function but uses it to de-

termine what the new information to store in the cell state.

it = σ(Wi[ht−1;xt] + bi) (2.30)

23

• Output gate: The output gate takes the input and passes it through another sigmoid

activation function but will eventually be combined with the current cell state to

produce a memory-balanced output.

ot = σ(Wo[ht−1;xt] + bo) (2.31)

The LSTM network also contains two update steps:

• Cell state update: The cell state update weights the previous cell state Ct−1 by the

output of the forget gate ft and adds to it a candidate cell state weighted by the output

of the input gate.

Ct = ft × Ct−1 + it × tanh(WC [ht−1;xt] + bC) (2.32)

• Hidden state update: The hidden state update gives the cell output and the short-term

memory to be used in the next cell state. This update takes current updated cell state

and weights it by the output of the output gate ot.

ht = ot × tanh(Ct) (2.33)

2.4 Deep Reinforcement Learning

2.4.1 Introduction

Deep reinforcement learning (DRL) has garnered much interested among RL researchers in

recent years. Classical RL assumes tables are used to store the values for the state-value and

action-value functions. This, however, is only suitable for problems with small state spaces;

more complex problems are defined by larger state spaces. For example, board games,

while seemingly simple, consist of a large amount of states—backgammon has about 1020

24

Figure 2.6: An illustration of the cell configuration of an LSTM network. The top line acts
as a highway for the cell state which retains long-term memory across all cells. The bottom
line represents the short-term memory dependent only on the output of the hidden layer
from the previous cell [22].

states, chess has about 1040 states, and Go has about 10170 states. The compute power

required to handle finding an optimal policy scales with a problem’s complexity. DNNs are

nonlinear function approximators that can act directly has value functions and/or policies.

They have been deployed successfully to create agents that achieve human-level play in

the aforementioned games [24, 25, 26]. Control tasks typically exist in environments with

continuous state and/or action spaces. DRL can also be used to provide optimal control to

maximize a relevant goal in this domain, such as smart grid energy optimization [27] and

robotic manipulation [28].

2.4.2 Value-Based Methods

Q-Learning provided an intuitive solution to tabular methods of off-policy classical RL

problems by bootstrapping the value function and choosing the next action based on the

action-value from the Q-table. With DRL, the action-value function used is parameterized

as the Q-network Qθ(s, a). Rather than looking to update cells in a table, the objective is to

update the parameters of the DNN backing the Q-network. To do this, a loss function must

be defined to guide the parameters to optimality by way of gradient descent. An example

25

mean-squared error (MSE) loss function is

L(θ) = Es,a,s′,r∼π
[
(r + γmax

a′
Qθ(s

′, a′)−Qθ(s, a))
2
]

(2.34)

The previous function acts as an optimization objective between the approximate action-

value functionQθ(s, a) and an estimate of the true action-value function r+γmaxa′ Qθ(s
′, a′),

or the target. This loss function, however, suffers from two major drawbacks: the target is

always changing because it depends onQθ itself and the data used as inputs to the DNN are

not independent and identically distributed (IID) random variables. This causes instability

during value iteration and can prevent convergence to even a local minimum [14].

Deep Q-Network

The target-chasing and IID problems raised before can be addressed by introducing the

deep Q-network (DQN) [29] with two key ideas. The first idea is to employ the use of an

experience replay [30]. Over the course of an episode, the agent experiences its current

state, current action, reward, and next state at every timestep summarized by the 4-tuple

(St, At, Rt, St+1). These experiences are stored in the replay buffer D, typically capped at

a size of N , and randomly sampled in mini-batches for the control update. This sampling

reduces the correlation between sequential experiences and thus minimizes most problems

caused by IID data. The second idea is to separate the target and estimated state-value

functions using a target network. This specialized network delays the update of the target

network parameters θ− by synchronizing with the estimated state-value function after C

timesteps. Formally, the MSE of a DQN is:

L(θ) = Es,a,s′,r∼D
[
(r + γmax

a′
Qθ−(s

′, a′)−Qθ)
2
]

(2.35)

Together, the experience replay and target network of a DQN help improve stability and

reduces oscillation in the Q-network during training.

26

2.4.3 Policy Gradient Methods

DQN parameterizes the value function by using a DNN to determine the appropriate values

given some state and action. To create an optimal policy, a traditional ϵ-greedy policy

can be layered above the Q-network to determine a noisy best action. However, value-

based methods still fail to accommodate larger, continuous action spaces. Policy gradient

methods abstract the policy above a DNN. By parameterizing the policy to πθ, an agent is

able to optimize the policy directly, which gives rise to better convergence properties. The

objective is to find a parameter set θ that maximizes some objective function J .

θ∗ = argmax
θ

J(θ) (2.36)

This objective function reflects the agent’s goal to maximize the cumulative discounted

reward across a trajectory τ

J(θ) = Eτ∼πθ [R(τ)] (2.37)

= Eτ∼πθ
[T∑
t=0

γtRt

]
(2.38)

Two main methods exist to optimize the policy parameters: gradient-free and gradient-

based. Gradient-free methods use cross-entropy loss to update the parameters, whereas

gradient-based methods take the gradient of the objective function J and perform gradient-

ascent to push the policy in a direction that maximizes the discounted cumulative reward.

Gradient ascent is outlined below.

θ = θ + α∇θJ(θ) (2.39)

27

By way of the log-derivative trick and the notion of reward-to-go, where the cumulative

reward is only computed after an action At, the gradient of the objective function is

∇θJ(θ) = Eτ∼πθ

[T∑
t=0

∇θ log πθ(At|St)R(τ)
]

(2.40)

= Eτ∼πθ

[T∑
t=0

∇θ log πθ(At|St)
T∑
t′=t

Rt′

]
(2.41)

This vanilla policy gradient is referred to as REINFORCE [31].

2.4.4 Actor-Critic Methods

The policy update depends directly on the update rule seen in Equation 2.26. However, this

update suffers from high variance because the gradient of the objective function depends on

an entire trajectory, similar to MC methods. Actor-critic (AC) [32, 33] methods are similar

to TD-learning and work by bootstrapping the estimated parameterized value function. The

actor is the parameterized policy πθ and the critic is the parameterized value function V πθ
ψ ,

where ψ is the parameter set for the DNN backing the value function. Practically, θ and

ψ do not need to be separate parameter sets; the network can be shared across the policy

and value function and still works as a nonlinear function approximator for both. The AC

algorithm combines gradient descent and gradient ascent such that the parameter updates

are:

ψ = ψ − αψ∇ψLV πθψ (ψ) (2.42)

θ = θ + αθ∇θJ(θ), (2.43)

for a loss function LV πθψ (ψ) that calculates the loss between a target and estimated value

and an objective function J(θ). To accommodate the high variance from REINFORCE, an

advantage estimation ϕt can be used in place of the cumulative reward to reduce variance

and improve optimization capabilities without affecting the overall expected value, given

28

Figure 2.7: A diagram of the actor-critic architecture. [12]

29

that the baseline only depends on the current state St. This can be proven by the Expected

Grad-Log-Prob Lemma, which states

Ex∼Pθ
[
∇θ logPθ(x)

]
= 0, (2.44)

for a parameterized probability distribution Pθ over a random variable x. Consequentially,

for some baseline b dependent on state st, if:

ϕt =
T∑
t=0

Rt − b(st), (2.45)

then

Eτ∼πθ
[
∇θ log πθ(At|St)b(St)

]
= 0. (2.46)

A common advantage estimation function is the advantage itself which describes the value

of taking a certain action At from state St compared to the overall intrinsic value of being

in state St.

ϕt = Aπθψ (St, At) = Qπθ
ψ (St, At)− V π

ψ (St) (2.47)

Thus, a simple objective function for an advantage actor-critic (A2C) that reduces the over-

all variance is

J(θ) = Eτ∼πθ
[
Aπθψ (St, At)

]
(2.48)

The critic loss function can be defined as

LV πθψ (ψ) = Eτ∼πθ
[
Aπθψ (St, At)

2
]

(2.49)

30

2.4.5 Trust Region Policy Optimization

Policy gradient methods suffer from a few issues that can severely affect performance.

First, the first-order gradient computed by ∇θJ(θ) can lead to undesirably large steps if the

objective function has a dynamic curvature to it. Second, the trajectories used to update θ

are sampled directly from πθ and place a heavy dependence on the tuning of the step size

parameter αθ. A solution to both of these problems can be found in the trust-region policy

optimization (TRPO) [34] algorithm. The idea behind TRPO stems from [35] where a new

policy πθ′ is updated such that it improves on the current policy πθ. The objective function

that details this improvement is:

J(θ′) = J(θ) + Eτ∼πθ′
[∞∑
t=0

γtAπθ(St, At)

]
(2.50)

(2.51)

However, the bonus term takes a trajectory over an infinite horizon from πθ′ which cannot

be sampled from. So, TRPO uses importance sampling to sample states from the state

space of the old policy and actions from the old policy given that state. In order to do this,

the advantage function must be weighted by the action probabilities under the new policy.

The bonus term can then be represented as:

Lπθ(πθ′) = Eτ∼πθ′
[∞∑
t=0

γtAπθ(St, At)

]
= Eτ∼πθ

[∞∑
t=0

γt
πθ′(At|St)
πθ(At|St)

Aπθ(St, At)

]
, (2.52)

where Lπθ(πθ′) as a loss function represents the surrogate advantage function of πθ′ with

importance sampling. Luckily, a theoretical constraint emerges from the approximation

error and can be expressed in terms of the worst-case Kullback-Leibler (KL) divergence

Dmax
KL between the old and new policies.

|J(θ′)− J(θ)− Lπθ(πθ′)| ≤ C Dmax
KL (πθ∥πθ′) (2.53)

31

By way of Lagrangian duality, an optimal policy can be found using

max
πθ′

Lπθ(πθ′) (2.54)

subject to Es∼ρπθ
[
DKL(πθ∥πθ′)

]
≤ δ,

where Es∼ρπθ
[
DKL(πθ∥πθ′)

]
is the trust-region function subjected to the constraint δ. Solv-

ing this constraint optimization problem can be done using the natural gradient, which in-

cludes the second-order derivative, and gives an analytic form to the new policy parameter

update:

θ′ = θ +

√
2δ

g⊤H−1g
H−1g (2.55)

where g = ∇θLπθ(πθ′) and H is the Hessian matrix of the trust-region function.

2.4.6 Proximal Policy Optimization (PPO)

In reality, the natural gradient is computationally expensive and can be replaced by regu-

larized and clipped versions of the optimization function using a method called proximal

policy optimization (PPO) [36]. The first approach defines a new objective LKLPENπθ
(πθ′)

where the original objective is regularized by penalizing the trust-region constraint.

LKLPENπθ
(πθ′) = Lπθ(πθ′)− λEs∼ρπθ

[
DKL(πθ∥πθ′)

]
(2.56)

This is done to ensure that new policies tend to stay closer to the old distribution. The

regularization coefficient λ also adapts according to the constraint depending on if it meets

a particular target. The update of this term is defined by

λ =


λ
b

if d < dtarget
a

λb if d > a× dtarget

, (2.57)

32

where a and b are hyperparameters typically defined as 1.5 and 2, respectively, d is the

trust-region constraint, and dtarget is the target value for the expected KL divergence. While

LKLPENπθ
(πθ′) offers an ease-of-use advantage over TRPO, the authors of the original PPO

paper noted that LCLIPπθ
(πθ′) performs better. The clipped surrogate objective does not rely

on any penalty term for the optimization function; rather, it provides a range for the proba-

bility ratio between πθ′(At|St) and πθ(At|St) which in turn scales the advantage function.

The objective function can be formally defined as

LCLIPπθ
(πθ′) = Eτ∼πθ′

[
min(rt(θ)A

πθ(St, At), clip(rt(θ), 1− ϵ, 1 + ϵ))Aπθ(St, At)
]
,

(2.58)

where rt(θ) =
πθ′ (At|St)
πθ(At|St)

. Clipping the ratio acts as another way of penalizing a policy

update that takes too big a step.

Recently, popularity among recurrent PPO algorithms has increased due to the sup-

posed increase in performance. One common implementation of this type of algorithm is

PPO-LSTM which includes a layer of LSTM nodes stacked before or after the actor/critic

networks. This way, the hidden layers will adjust their weights according to the state ob-

servations as well as the weights of the hidden layers themselves.

All models discussed to this point have their strengths and weaknesses in various use

cases. With all algorithms considered, variants of PPO will be evaluated due to their ability

to handle continuous action and observation spaces, stability in dynamic reward structures,

and ease of implementation. PPO also works well with simulation RL tasks due to the

dense reward structure and lax requirements of sample efficiency. Therefore, PPO and

PPO-LSTM will be used as the DRL algorithms for velocity control of the crawler.

33

CHAPTER 3

RELATED WORKS

The control of dynamical systems, or systems that can be defined by some ordinary dif-

ferential equations, is a common problem that has been studied extensively in the field of

robotics. Control theory concerns the development of models that map inputs to outputs

governed by a set of feedback laws. This provides a way to create predictive models using

data gathered from an environment. The methods of control theory are typically divided

into two subdomains: classical and modern control. This chapter will explore previous re-

search related to classical control, modern control, and reinforcement learning control with

an emphasis on velocity control and differential drive robots.

3.1 Classical Control

Classical control refers to the methods of controlling a closed-loop system, or plant, where

inputs are determined by the sensor feedback outputs. The controller of the system calcu-

lates an error between the target and actual outputs and tries to minimize that error in order

to match a desired signal, or reference. Classical control methods operate on the assump-

tion that the system is linear, meaning the additive response of two inputs can be achieved

by applying each input individually, and time-invariant, meaning the output of the system

will be identically no matter when the input was applied. The most common method in

this subdomain is the proportional-integral-derivative (PID) controller. The PID controller

is model-free and requires no knowledge of the system. As the name suggests, there are

three components: a proportional, integral, and derivative part. If the error term is defined

by e(t) at a time step t, then the output can be given by

u(t) = KP e(t) +KI

∫
e(t)dt+KD

d

dt
e(t), (3.1)

34

where KP , KI , and KD represent tunable gain parameters for each term. The proportional

term drives the output higher as the error term increases, and vice versa. The derivative

term acts as a damping term and can prevent overshoot from the proportional term. The

integral term exists to eliminate bias that may exist in the system [37].

PID control has been used to control state in differential drive robots. Trajectory con-

trol, or the control of a mobile robot to track a path over time, has been implemented using

nonlinear and fuzzy PID controllers [38, 39]. Cruise control functionality in many auto-

mobiles use variants of PID controllers to maintain velocity despite hills, curves, or bumps

in the road [40, 41]. PID control was also the basis of velocity tracking in the form of a

steering strategy for a differential drive forklift [42].

3.2 Modern Control

Modern control theory, on the other hand, encompasses a wider range of problems than

classical control theory. This theory caters to complex systems with multiple inputs and

multiple outputs, where the time-invariant and linearity requirements do not hold. Some

methods of modern control engineering include robust control, adaptive control, and opti-

mal control. Robust control concerns models that are designed to handle uncertainty in a

system. A linear-quadratic Gaussian motion-planning model [43] for DDRs has been de-

signed to track trajectories with motion uncertainty and imperfect state information. Adap-

tive controllers maintain a steady state and guide actions to an optimal level by adjusting

the parameters for the controller to compensate for system dynamics. A model-reference

adaptive controller was designed for a DDR with a passive, lagging caster wheel to handle

actuator and friction dynamics [44]. Optimal control strategies aim to maximize or min-

imize an objective function in relation to the dynamics of a system. The linear quadratic

regulator (LQR) is an optimal control method where the system dynamics can be defined

as a set of differential equations and the objective function is characterized by a quadratic.

LQRs have also been used for DDR trajectory tracking [45].

35

3.3 Reinforcement Learning

RL also falls under the umbrella of modern control theory. It can be thought of as an opti-

mal control method where the dynamics of the state are captured in its transition function

and the objective is defined by the value function. Problems with well-defined MDPs could

be solved using dynamic programming [12]. However, in complex environments, DNNs

can be used as nonlinear function approximators to accommodate more states and actions,

as seen in Section 2.4. A DRL model, specifically the deep deterministic policy gradient

algorithm, was shown to outperform a non-RL modern control method in the velocity con-

trol of an automobile for adaptive cruise control [8]. DRL is also capable of disturbance,

rejection control in nonlinear, uncertain, dynamical environments [46]. For robotic con-

trol, DRL models transferred from simulation to reality have also been proven effective.

Robust locomotion control has been achieved on legged robots such as the Cassie bipedal

robot [47] using a simulator with a gait-library plugin and the Anymal C for dynamic loco-

motion in unstructured environments [48]. The methods of experimentation in this thesis

will expand on [48] for the velocity control of the Altiscan in a dynamic environment with

disturbances.

36

CHAPTER 4

EXPERIMENTAL SETUP

This chapter presents the setup required to train a DRL velocity controller for the crawler.

Section 4.1 covers the use of a novel simulation software called Isaac Gym. Section 4.2

and Section 4.3 provide specific implementation details for the physics and task parame-

ters used in simulation. Variations of the reward function is given in Section 4.3.1 which

will ultimately be used to update the parameters in the PPO model defined in Section 4.4.

Finally, a framework to export a trained model to the real robot is given in Section 4.5.

4.1 Simulation Environment

For a DRL agent to learn, it must experience situations where it is tasked to make a de-

cision. For robotic control tasks, this decision is typically described as the actuation of

a particular set of joints. Experiences can be collected by recording data directly from a

robot operating in the real world, but such scenarios are time-consuming and costly, partic-

ularly if a robot makes a mistake. To reduce the time and cost overhead of training a DRL

agent, robotics researchers use physics simulators to build an approximate model of a real-

world scenario so that the actors are able to fail freely while pursuing the trial-and-error

learning style inherent to RL. Some popular physics simulators include PyBullet [49], Mu-

JoCo [50], RaiSim [51], and Drake [52]. Many of these simulators perform calculations of

contact physics entirely on the CPU, which becomes a performance bottleneck as the sim-

ulation environment grows increasingly complex. On the other hand, tensor-based DNN

training can be accelerated on GPUs, which have a greater propensity for parallelization.

However, context switching between CPU and GPU cores is inefficient because observa-

tion and action data must be passed between the two to complete the agent-environment

interaction loop. Isaac Gym [53] is an end-to-end GPU accelerated contact physics sim-

37

Figure 4.1: A picture of the parallelization capabilities of Isaac Gym. Multiple actors can
be spawned in the same scene thanks to the parallel computation capabilities of GPUs.

ulator developed by NVIDIATM that solves the data transfer problem by delegating the

computation of observations, rewards, and actions entirely to the GPU. The speedup Isaac

Gym provides for training models that achieve performant control reduces the real-world

training time to an order of minutes. Isaac Gym provides substantial speedup for training

models and is able to achieve performant control that reduces training time to an order of

minutes. Isaac Gym is also capable of massive parallelization of actors in the same scene,

as seen in Figure 4.1, as a result of the physics calculations occurring on the GPU.

Python is the language of choice for the Isaac Gym API, as it offers an abstraction

over the core C++ and CUDA backend. Raw data buffers provided from the simulation

are wrapped in tensors from the machine learning framework PyTorch [54] which aid in

the speedup as they can be stored on either the CPU or GPU. Robots in Isaac Gym can be

modeled using the Unified Robot Description Format (URDF). URDF models consist of

a chain of links, or rigid bodies, connected by joints, degrees of freedom (DOFs) that can

be fixed, revolute, prismatic, or spherical. The API provides state tensors consisting of a

38

position, orientation (in quaternions), linear velocity, and angular velocity for every actor

root and rigid body in the scene. The position and velocity of every joint is also readily

available through a DOF state tensor. For revolute joints, the velocity is given in terms of

radians per second, and for prismatic joints, the velocity is given in terms of meters per

second. In order to manipulate an actor, physics control tensors are provided. The DOF

control tensors can be separated into three distinct methods: actuation force, positional,

and velocity. The first DOF control method, effort control, applies a torque or linear force

to the joint. The second method, positional control, uses a PD controller to move a joint to

a given position. The last method, velocity control, also uses a PD controller to adjust the

forces applied to the joint in order to reach a certain linear or angular velocity. The API

also provides an interface to apply forces and torques to rigid bodies relative to their center

of mass. Isaac Gym is built on top of NVIDIA’s PhysX physics engine which relies on a

Temporal Gauss-Siedel (TGS) solver [55]. The tunable parameters for this solver can be

found in Table 4.1.

4.2 Scene Setup

A scene can be described as a simulation setup where actors interact with each other. An

actor is a controllable or uncontrollable object for which contact physics can be calculated.

It should be noted that the use of actor here differs from the use of actor in DRL methods

in DRL. In the upcoming experiments, the actors are individual instances of the Altiscan

crawler, spawned using the assets of the crawler which are proprietary URDF and mesh

models provided by Roboplanet. The model includes a base link and base frame that act

as parent links to two coaxial front wheels, defined as cylindrical collision meshes with a

length of 5.5cm and a radius of 2.5cm. Each wheel is offset in the y-axis by 7cm and in the

z-axis by 3cm. A revolute joint oriented on the y-axis represents the motors for the front

wheels. The rear wheel is a caster wheel mechanism simulated by a revolute joint oriented

along the z-axis for the base or swivel and a revolute joint oriented along the y-axis for the

39

Table 4.1: This table, adapted from [53], represents the tunable physics parameters for
Isaac Gym available to the user.

Parameter Description
Time Delta (dt) Controls time-step size.
Substeps Number of physics iterations between each time step.
Gravity Controls the gravity in the scene.
Collision Filtering Filters collisions between shapes.
Position Iterations Biased (velocity + positional error correcting solver it-

erations).
Velocity Iterations Unbiased (velocity error only correcting) solver itera-

tions.
Max Bias Coefficient Limits the magnitude of position error bias friction.
Restitution Controls bounce.
Static/Dynamic Friction Static and dynamic friction coefficients.
Bounce Threshold Relative normal velocity limit below which restitution

is ignored.
Rest Offset Distance at which shapes are held separated. Default

is 0 but can be increased to hold objects at gap. Useful
for thin objects.

Friction Offset Threshold Distance at which friction anchors are discarded (static
friction depends on friction anchor caching).

Solver Offset Slop An ϵ value used to correct for round-off errors in con-
tact gen. Corrects small skew effects with rolling
spheres or capsules.

Friction Correlation Distance Distance at which contacts are merged into a single
friction constraint.

Max Force Per-body and per-contact force limits.
Drive Stiffness Positional error correction coefficient of a PD con-

troller.
Drive Damping Velocity error correction coefficient of a PD controller.
Joint Friction Per joint frictional term. Simulates dry friction in a

joint.
Joint Armature Per joint armature term. Simulates motor intertia.
Body/Link Damping World-space linear/angular damping on each

body/link.
Max Velocity Linear/angular velocity limits per body.

40

wheel itself. The swivel is offset by 13cm along the x-axis behind the center of the crawler.

The caster wheel is defined by a slightly smaller cylindrical collision mesh with a length

of 4cm and a radius of 2cm with an arm offset of 2cm laterally and 3.5cm downwards in

the z-direction. Only the front wheels are actuated, so in the DOF property parameters,

the drive modes are set to velocity control with a maximum effort of 1000Nm. Since

velocity control is determined by a PD controller in Isaac Gym, stiffness, the positional

error coefficient, is set to 800 units and damping, the velocity error coefficient, is set to

200 units. The swivel and caster wheel joints are set as free-moving joints with stiffness

and damping set to 0 units. Each actor is then spawned in its own environment, defined

by an upper and lower boundary for its starting position. Actors can be tiled along the

xy-plane in a grid-like fashion. For the experiments performed in this thesis, a total of

1024 actors are spawned in parallel. The ground plane can also be defined by controlling

its normal vector. This could be useful for simulating walls or vertical surfaces, similar to

surfaces best suited for the crawler to traverse. However, during sandbox testing of Isaac

Gym for the crawler, inconsistencies in the physics computation occurred when using a

ground plane normal to either the x- or y-planes. This may have been because Isaac Gym

does not allow for tiling actors in the z-direction; when spawning a large number of actors

along a vertical surface, their initial positions extend past the size of the ground plane,

which may cause computational issues. To solve the problem of simulating a vertical plane,

a horizontal plane with a modified gravity vector is used. Instead of the gravity vector

pointing in the −z-direction in the global frame, it points in the −y-direction. To simulate

magnetism, a force could be applied directly to the center of mass of the front and caster

wheels in a direction normal to the surface; however, inconsistencies were found during

testing that caused a drifting behavior in the crawler when applying forces directly to the

wheels. Instead, a global force of 135N normal to the surface is applied generally across

all crawlers in the scene. More rigorous testing is necessary to conclude the true cause of

these inconsistencies.

41

4.3 Task Setup

In order for an actor to observe and act, a task must include a workflow to initialize an

actor, step through simulation, and end cleanly. OpenAI provides an RL toolkit called

Gym [56] that neatly packages the previous framework into an easy-to-use Python library.

While this library is universally applicable, it has been specifically adapted to Isaac Gym

in a repository called IsaacGymEnvs1.

In order to create a velocity controller for the Altiscan crawler derived from a DRL

model, a continuous observation space S and action space A must be defined. The obser-

vation space consists only of the measured base linear x-velocity (v̂) and angular z-velocity

(ω̂) of the crawler and its corresponding commanded velocity (v, ω). The action space will

provide outputs for the angular velocity control of the left and right wheels (ϕ̇left, ϕ̇right).

S =



v̂

ω̂

v

ω


A =

 ϕ̇left
ϕ̇right



In simulation, the base velocity can be found by transforming the actor root velocity vector

into the actor’s base frame orientation. The commanded velocity was given by sampling

random linear velocity commands between [−0.2, 0.2]m/s and angular velocity commands

between [−1.0, 1.0]rad/s. Gaussian noise and sinusoidal bias was added to the observed

base velocities to emulate noisy sensor data. The standard deviation of the noise and pe-

riod/frequency of the bias term are tunable. The action space outputs a continuous value

between [−1.0, 1.0] which can were scaled to apply an appropriate angular wheel velocity.

Each episode lasted 3000 time-steps, which equates to 50 simulated seconds for a simu-

lation running at 20Hz with 30 physics sub-steps. New commands were sampled every

1https://github.com/NVIDIA-Omniverse/IsaacGymEnvs

42

https://github.com/NVIDIA-Omniverse/IsaacGymEnvs

250 time-steps to encourage the RL agent to generalize. Each crawler was also initialized

with a random heading direction and a random swivel position to increase the number of

possible states observed and encourage robust control.

4.3.1 Reward Function

One of the many challenges in RL is defining a reward function that efficiently guides an

agent towards some desired behavior. For the crawler, that desired behavior is accurately

tracking some commanded linear and angular velocity. In other words, the goal was to

minimize the error between the target and measured velocities. A few different reward

structures were considered for the experiments.

The simplest reward structure considered was the sum of the absolute value between

the target velocities and the measured velocities subtracted by 1, as seen in Equation 4.1.

r = 1− (|v̂ − v|+ |ω̂ − ω|) (4.1)

However, this absolute value reward structure suffers from scaling issues when trying to

find the error between velocities of different magnitude. To solve this, the error can be

divided by the target to give a relative error that scales with the magnitude of the target

velocity. An issue arises when dealing with 0 velocities, which is solved by eliminating the

scaling for the special case. For example, the reward term for linear velocity would look

like:

rv =

 1− | v̂−v
v
| if v ̸= 0

1− |v̂ − v| if v = 0
.

The reward term for angular velocity rω would look similar, where rv and rω are the sum-

mands for the overall reward r . During preliminary sandboxing, the scaled absolute value

reward function failed to learn a model that could sufficiently control the crawler, perhaps

due to the flatness of the absolute value function. In this reward structure, as the agent

43

learns to track the commanded velocities, a change in error that minimizes the total error

will result in the same increase in reward as a change in error that maximizes it. For ve-

locity tracking, it is crucial that the agent is rewarded at a greater scale for small errors

and actions that minimize the error produce a greater magnitude of reward than actions that

increase the error.

The next reward structure considered was the Gaussian function. Gaussian functions

take the form of a bell curve that peaks at an input of 0 and tapers off as the input approaches

∞ or −∞. In this case, the input is treated as a velocity error. Two Gaussians define

the reward for linear and angular velocity. The error terms are scaled by their respective

variance values: σ2
v and σ2

ω. Here, the product of partial rewards is used instead of the sum.

By multiplying the Gaussians together, a larger reward is produced at a particular timestep

when the action taken minimizes both the error in linear and angular velocity. Equation 4.2

gives a formal definition of this Gaussian reward structure.

r = e
(v̂−v)2

σ2v · e
(ω̂−ω)2

σ2ω (4.2)

While this new reward structure characterizes the improvements sought after from the

scaled absolute value reward, learning also stalled during sandbox testing. The problem

with the Gaussian reward structure is that its steepness, dictated by the variance, also con-

trols the rate at which the bell curve tapers off. For large errors, the reward is minimal; ac-

tions that provide small, incremental increases in reward do not influence the agent enough

to learn better controls. However, the steepness of the Gaussian is still desired because it

rewards finer, optimal control. This leads to the final reward structure used for experimen-

tation: the Gaussian mixture reward. The Gaussian mixture reward provides a path for poor

models to perform better by increasing the change in reward for decreasing errors with a

relatively large magnitude, while preserving the steepness around an error of 0. This is

accomplished by summing two weighted Gaussians with a scaled variance. Formally, the

44

blueprint of the Gaussian mixture reward structure is:

rv = αe
(v̂−v)2

σ2v + (1− α)e
(v̂−v)2

100σ2v

rω = αe
(ω̂−ω)2

σ2ω + (1− α)e
(ω̂−ω)2

100σ2ω

r = rv · rω. (4.3)

Here, α represents the weighting factor that affects the mixing between the two Gaussians,

and rv and rω represent the reward terms for linear and angular velocity. The right-hand

summand in each term adds a slight incline to the bell curve as the error approaches 0

for larger error values. The graph in Figure 4.2 offers a visual comparison between the

Gaussian reward structure to the Gaussian mixture reward structure. This reward structure

produced the best results during sandbox testing, and was used for further testing. The

hyperparameter values used are α = 0.9, σ2
v = 0.001, and σ2

ω = 0.01.

Figure 4.2: A comparison of the reward functions considered. Notice how the simple
Gaussian reward function has less of a taper as the error increases compared to the Gaussian
mixture reward function. Also, the absolute value reward uses a different reward scale,
since the negative reward is unbounded.

45

4.4 Agent Training

As referenced in Section 2.4.6, PPO and PPO-LSTM were chosen as the DRL algorithms

for the velocity control of the crawler. To use PPO with Isaac Gym, a single model must

take in observations from each of the parallel actors in simulation and produce a respective

action for each one. For this an asynchronous advantage actor-critic (A3C) [57] architec-

ture can be used to consolidate the learning to an individual model while distributing the

agent/environment interaction to parallel workers. Isaac Gym also claims end-to-end GPU-

based learning, so any A3C with a PPO extension to it used with Isaac Gym must allow

GPU acceleration. The algorithms used in this thesis are from rl-games [58] which pro-

vides an open-source implementation of a PyTorch-based DRL library and has been used

in many DRL contexts with real-world transferability [53, 59, 60, 61]. The RL framework

IsaacGymEnvs also allows for full interoperability with rl-games with ease of use by pro-

viding hyperparameter tuning through the open-source framework Hydra [62]. A full list

of the hyperparameters used can be found in Appendix B.

The DNN architectures were not evaluated; rather, the architectures are borrowed from

other models that have shown success in Isaac Gym. For the PPO algorithm, a DNN was

used as a function approximator for the policy distribution used to produce actions from

input observations. The DNN architecture for PPO, presented in Table 4.2, consists of 1

input layer, 3 hidden layers, and 1 output layer. The input layer received a vector of 4

continuous observations: the measured and target linear and angular velocities. The first

and second hidden layers contain 256 nodes, while the last layer contains 128 nodes. Each

node uses a ReLU activation function to propagate its signal. The output layer is described

by the continuous action space vector of size 2. This output is clipped between -1 and 1

and later scaled to the appropriate left and right wheel velocities.

Rl-games also allows for RNN implementations such as LSTM and gated recurrent

networks (GRUs). As mentioned in Section 2.3.5, RNNs are better at predicting outcomes

46

Table 4.2: This table shows the DNN architecture that supports the actor and critic for the
implementation in rl-games.

Layer Type Activation Size
1 Input - 4
2 Fully-Connected ReLU 256
3 Fully-Connected ReLU 256
4 Fully-Connected ReLU 128
5 Fully-Connected Linear 2

Table 4.3: This table shows the PPO-LSTM DNN architecture that supports the actor and
critic for the implementation in rl-games.

Layer Type Activation Size
1 Input - 4
2 Fully-Connected ReLU 256
3 Fully-Connected ReLU 256
4 Fully-Connected ReLU 128
5 LSTM ReLU 128
5 Fully-Connected Linear 2

of input data that are sequential in nature. The LSTM networks introduced in Section 2.3.6

improve upon RNNs and allow for more stable gradient descent. PPO-LSTM incorporates

an LSTM network into the DNN that serves the actor and critic. The architecture backing

the PPO-LSTM algorithm used in this thesis can be found in Table 4.3. A single LSTM

layer of size 256 is stacked before the output of the DNN, while the rest of the DNN remains

the same. The efficacy of these algorithms will be evaluated in Chapter 5 and Chapter 6.

4.5 Sim-to-Real Transfer

After training the agent, the model would have been configured with a certain set of weights

for an optimal policy. However, in this case, all training was done in simulation. True eval-

uation of the model must be grounded in the real world with the physical robot. Bridging

the gap to reality by porting the knowledge gained during simulation is called sim-to-real

transfer [63]. The model creation provided by rl-games relies on PyTorch and the weights

are defined by .PTH files. These can be reconstructed to be used directly on the crawler;

47

however, Python is relatively computationally heavy in comparison to C++. To export the

model to C++, a framework called Open Neural Network Exchange (ONNX) [64] can be

used.

48

CHAPTER 5

EVALUATION METHODS

With the simulation environment, task, and DRL algorithm primed for training, the spe-

cific evaluation metrics and cases can be detailed. Since DRL has not been applied to the

velocity control of ROBOPLANET Altiscan before, this methodology serves as a proof-

of-concept for its effectiveness. The scenes modeled in simulation increase in complexity

to highlight the strengths and weakness of the DRL velocity controller. This chapter will

expand upon the specifics of the environment setups in Isaac Gym. First, an ideal environ-

ment will be evaluated. This ideal environment relies on the contact physics and friction

models from PhysX to simulate crawler motion on a flat, horizontal plane with gravity act-

ing as the sole external factor. Next, noise will be added to the observations to test the

robustness of the controller. The crawler will then be evaluated on a vertical surface with

a constant force of gravity applied parallel to the surface. Finally, simulated tether forces

will be applied to the base of the crawler to test the crawler’s ability to withstand nonlinear

external disturbances.

5.1 Training Performance

The first stage in model creation is the training process. Proper evaluation during training

can help the end user determine the effectiveness of the controller without waiting until

the end of the entire process. Metrics such as loss in the actor and critic networks can

provide insights to model performance; however, these values can sometimes be difficult

to interpret and do not necessarily pertain to the defined task. Fortunately, reward is a task-

specific signal calculated per timestep that is available to track during the training process.

Rl-games is integrated with a machine learning experiment-tracking suite called Weights &

Biases [65] which provides a dashboard interface to monitor statistics such as actor-critic

49

loss, rewards per timestep, and even system data like GPU temperature. Here, Weights &

Biases is used to track the reward statistic over the course of training. At each timestep,

every actor in simulation computes a reward based on the Gaussian mixture reward given in

Equation 4.3 for the corresponding action given by the model. The average of this reward

across all actors provides a broad overview of the performance of a model. The range of

the Gaussian mixture reward ranges from 0 (exclusive) to 1 (inclusive). A reward closer to

0 indicates poor performance because it relates to a larger error. A reward of 1 indicates

optimal velocity tracking because in order to reach this value, the error between the target

and measured velocities must be 0. As a preliminary quantitative check to determine the

potential of a model, the reward per timestep metric will be used to evaluate velocity control

among different environments and between PPO and PPO-LSTM.

5.2 Runtime Performance

Isaac Gym promises significant speed-up compared to other simulators by using the mas-

sive parallelization capabilities of an end-to-end GPU pipeline. To evaluate the runtime per-

formance of the training process, the total elapsed time was recorded. However, it should

be noted that since the task for velocity control was not episode-length dependent, training

always ended at a pre-specified number of timesteps. Since the computational load during

training for different environments or algorithms does not significantly affect runtime, it

is more notable to compare the performance of Isaac Gym to that of another simulator. A

mirror simulation with a similar environment, task, and reward setup was constructed in

PyBullet [49], a CPU-based contact physics engine built atop the Bullet physics backend.

The model of the Altiscan crawler was reused, though the tunable physics parameters differ

greatly between the two physics engines. Timestep and substep parameters remained the

same while most others were not exposed through by Bullet’s Python API. The simulation

scene in PyBullet only supports one actor. Another difference exists in the implementation

of the PPO DRL algorithm.

50

While Isaac Gym relies on IsaacGymEnvs and rl-games for its RL framework, PyBul-

let works nicely with the standard OpenAI Gym API and SEED RL [66]. SEED RL is

an asynchronous DRL library that allows for the scalable distribution of actors/simulation

environments across multiple machines with a centralized learner. SEED RL provides mul-

tiple DRL algorithms based on Tensorflow [67], but only the PPO implementation will be

used. Runtime performance evaluation will be conducted for the velocity control of the

crawler for simulations implemented in PyBullet1 and Isaac Gym2. The scene consisted

only of the basic, ideal, horizontal plane, and the task only concerned optimal velocity

tracking without regard for robustness. The Isaac Gym-rl-games tandem ran on a machine

with an NVIDIA RTX 3090 GPU, AMD Ryzen 9 3900X 12-core processor, and 128GB of

DDR4 RAM. The learner and actors in SEED RL were distributed in Docker [68] contain-

ers across 4 machines with an NVIDIA Quadro P400 GPU, 16-core Intel i7-11700 proces-

sor, and 16GB of RAM. The efficiency of the two simulators was based on the maximum

reward per timestep achieved and total training time.

5.3 Robustness Evaluation

For DRL models to be deployed on real-world systems, they must be robust enough to han-

dle the natural complexities of their environment. The natural environment of the Altiscan

consists of noisy localization measurements, constant and stochastic forces from gravity

and the tether, and motion artifacts due to initial conditions. Modeling these situations in

simulation provides more observations to the agent which enable it to extrapolate actions

for states it has never seen. The metrics used for robustness evaluation will rely on the root

mean-squared error (RMSE), a measure of a model’s predictive capabilities, between the

target velocity and measured velocity for an entire trajectory. These will then be averaged

across target linear and angular velocities or environments.

1https://github.com/devarsi-rawal/crawler gym
2https://github.com/devarsi-rawal/CrawlerGymIsaac

51

https://github.com/devarsi-rawal/crawler_gym
https://github.com/devarsi-rawal/CrawlerGymIsaac

5.3.1 Environment Robustness

Four environments of increasing complexity were evaluated in this research. Velocity track-

ing in these environments was evaluated in comparison to the inverse velocity kinematics

model given in Section 2.1.

Ideal Environment

The ideal environment is the most basic environment to be evaluated. The goal of learning

in this environment is to show that velocity control of a differential drive robot is possible

in simulation. The ideal environment consists of a flat, horizontal ground plane with exact

observations (considering some simulation noise) and no external disturbances.

Noisy Environment

Self-localization of the Altiscan crawler relies on a particle filter to calculate position and

velocity estimates. Particle filters are known to have an element of uncertainty due in

part to the noisy IMU, UWB, and odometry sensor readings and constant resampling of

particles. However, Isaac Gym provides accurate position and velocity readings through

its exposed state-tensor API. As such, noise can still be introduced by abstracting a layer

of stochasticity on top of the observations. While the target linear and angular velocities

should be known since they are applied as inputs from a joystick, the other set of obser-

vations, measured base linear and angular velocities, can have simulated noise. This noise

will be applied as a Gaussian distribution centered around the true measured velocity with

a standard deviation respective to linear or angular velocity. A sinusoidal bias term is also

included to simulate drifting behavior common in sensor readings. This environment is

designed to evaluate the model’s robustness to noisy observations.

52

Noisy Environment with Constant Disturbance

The defining feature of the crawler is its electromagnetic wheels which allow it to traverse

vertical surfaces. As such, a constant disturbance is introduced as gravity no longer acts

parallel to the z-axis of the base of the robot. In simulation, the forces on the crawler

are applied using the universal gravity vector [0.0,−9.81,−135]. Notice that the vertical

surface is simulated by changing the force of gravity to the −y-direction and applying the

135N magnetic force of the wheels globally in the −z-direction.

Noisy Environment with Tether Disturbances

The key question evaluated by this research was the velocity control of the crawler when

influenced by the forces of a tether. This can be modeled in simulation by reusing the

noisy environment with constant disturbance from before and adding a layer of complexity

by simulating tether forces acting on the base of the crawler. This was done by defining

the two anchor points of the tether. The first anchor is placed at the center of mass of the

crawler and the second anchor placed at the global origin. The force direction vector points

from the first anchor point to the second anchor point. This direction vector is normalized

and scaled by a force magnitude value. Three methods of tether force application were

explored:

• Constant tether force: At every timestep, a constant force is applied to the base of the

crawler at its anchor point equal to the scaled force vector described before.

• Impulse tether force: Here, a sudden application of force to the crawler is simulated

by increasing the magnitude of the force every 100 timesteps. This simulates situa-

tions where the tether may snag on protrusions present on the structure the crawler is

inspecting.

• Sinusoidal tether force: A fluctuating tether force is also explored to simulate the

free-moving nature of the suspended tether. The magnitude of the force applied to

53

the base of the crawler is scaled in a sinusoidal fashion at every timestep.

5.3.2 Robustness to Initial Conditions

The initial caster wheel swivel position and base orientation of the crawler can have an im-

pact on the outcome of the trajectory it takes given certain commanded velocities. Though

the caster wheel is assumed to be a passive wheel that is tangent to the crawler’s trajectory

and included for stabilization in DDRs, the forces of magnetism and mass attributed to the

wheel make its affect on the system nonneglible. The initial orientation of the crawler can

also impact its trajectory in environments with forces directed in a constant direction, such

as those with vertical surface. To evaluate the effects of caster wheel position, the crawler

will be initialized with four positions at 90◦ increments and the trajectory of each will be

recorded for a constant linear velocity of 0.1m/s. The effect of initial orientation on the

crawler in a vertical setting will be evaluated by recording the trajectory and velocities at

the same constant linear velocity for four orientations at 90◦ increments, as well.

5.3.3 Model Resilience

Model resilience here will refer to the ability of the DRL model to adapt to environmental

conditions it was never exposed to while training in simulation. Model resilience will be

evaluated by testing velocity control in a noisy environment with constant tether distur-

bances using a model trained in an ideal environment.

54

CHAPTER 6

RESULTS

This section will explore the quantitative and qualitative results received from each test.

6.1 Training Performance

Training performance was evaluated by tracking the reward per timestep over the entire

training period. 1024 actors were trained on a time horizon of 32 timesteps over 500

epochs, which gives about 16 million total training steps across all actors. Figure 6.1

shows the development of rewards across the entire training period, demonstrating how

both PPO and PPO-LSTM increase performance in velocity tracking as training progresses.

Table 6.1 provides detailed measures of performance by environment and algorithm. The

optimal models were created in the ideal environment in which both PPO and PPO-LSTM

achieve a reward of 0.958, while the next best model learned in the noisy environment

which achieved a reward of 0.953 and 0.954 for the two algorithms. A notable drop in

performance occurred, however, when introducing the simulated vertical surface and tether

forces to the environment. PPO also learned better than PPO-LSTM for all of these external

disturbances. The environment in which both models learned the worst was the environ-

ment with an impulse force in addition to gravity forces and noisy observation.

Table 6.1: Maximum Training Rewards.

PPO PPO-LSTM
Ideal 0.958 0.958
Noisy 0.953 0.954
Noisy w/ Constant Disturbance 0.908 0.898
Noisy w/ Constant Tether Disturbance 0.913 0.903
Noisy w/ Impulse Tether Disturbance 0.905 0.901
Noisy w/ Sin Tether Disturbance 0.911 0.906

55

(a) PPO

(b) PPO-LSTM

Figure 6.1: Training Rewards by Environment and PPO Variant

56

6.2 Runtime Performance

The runtime performance of training a DRL model using Isaac Gym and rl-games was eval-

uated against the distributed training with PyBullet and SEED RL for a noisy environment

with constant tether disturbance. Both training methods ran for a total of about 16 million

global timesteps. Table 6.2 provides the wall clock time, or real world time, to reach 16

million training timesteps. Isaac Gym ran significantly faster taking a wall clock time of 12

minutes and 10 seconds compared to PyBullet taking 17 hours, 3 minutes, and 16 seconds;

however, it should be noted that Isaac Gym simulated 1024 actors while PyBullet had 4 dis-

tributed simualtions with 1 actor each. Figure 6.2 shows the reward per timestep between

the two setups. The maximum reward per step achieved in Isaac Gym 0.913, whereas in

PyBullet it reached a maximum of 0.681.

Table 6.2: Runtime performance.

Simulation Software DRL Library Training Time
Isaac Gym rl-games 12m10s
PyBullet SEED RL 17h3m16s

Figure 6.2: Training Reward for Isaac Gym and PyBullet

57

6.3 Robustness Evaluation

6.3.1 Environment Robustness

Six environments were evaluated to test a DRL model’s ability to learn the dynamics of

varying levels of external disturbances. Section 6.1 demonstrated that the models were

able to learn velocity control generally over across environment. However, by analyzing the

models in action, it is easier to highlight the strengths and weaknesses of velocity tracking

by commanded velocity and by environment. For example, Figure 6.3a and Figure 6.3b

show each PPO variant’s ability to track linear and angularity velocity. There were 21

linear and 21 angular velocities evaluated by letting the crawler run for 200 timesteps,

recorded after 50 steps to allow for stabilization. The mean linear and angular velocity

was taken for each trajectory. Each target linear velocity captures a combination with all

21 angular velocities. In a noisy environment with a simulated vertical plane, both PPO

and PPO-LSTM track velocity close to their target linear and angular velocities. Near

the extremes of the commanded linear velocity range (-0.2m/s and 0.2m/s), the median

measured linear velocity deviates from the target the most. This behavior is seen in both

PPO and PPO-LSTM controllers.

58

(a) PPO (b) PPO-LSTM

Figure 6.3: Linear and Angular Tracking per Velocity in a Noisy Environment with Constant Tether Disturbances

59

(a) Average Linear Velocity RMSE (b) Average Angular Velocity RMSE

Figure 6.4: Errors by Environment and PPO Variant

Figure 6.4 shows the average RMSE of linear and angular velocity across all six envi-

ronments. Here, a comparison between the PPO, PPO-LSTM, and IVK velocity controllers

is presented. The RMSE is calculated across the trajectory of the crawler and averaged over

every linear or angular velocity, respective to the figure. The IVK gives an average linear

RMSE of of 0.00371 across all environments, compared to 0.00833 for PPO and 0.00995

for PPO-LSTM. For angular velocity, the average RMSE was 0.0386 for PPO, 0.0399 for

PPO-LSTM, and 0.162 for IVK across all environments.

6.3.2 Robustness to Initial Conditions

To evaluate the robustness to initial conditions, tests were performed with four caster wheel

positions and four initial orientations in a noisy environment with constant tether distur-

bances. The four initial conditions were rotations, 0◦, 90◦, 180◦, and 270◦, about a central

axis. For the caster wheel, 0◦ is the regular, lagging position along the x-axis of the crawler.

180◦ is also along the x-axis but is more unstable in forward motion. 90◦ and 270◦ are po-

sitions orthogonal to the trajectory of motion. Figure 6.5 shows the trajectory and velocity

60

(a) Trajectory (b) Velocities

Figure 6.5: Effect of Initial Caster Wheel Position on Crawler Trajectory and Velocity

tracking of the PPO model on 4 crawlers when given a linear velocity of 0.2m/s and no

angular velocity. The measured linear velocity rises quickly past the target after which it

stabilizes at a value around 0.21m/s. The measured angular velocity oscillates around a

value of 0rad/s. Figure 6.6 shows the effect of orientation on crawler trajectory and ve-

locity tracking the same environment. An initial orientation of 0◦ points in the positive

x-direction. The following orientations turn in a clockwise rotation, where 90◦ points in

the positive y-direction, 180◦ points in the negative x-direction, and finally 2700◦ points in

the negative y-direction. For the simulated vertical surface, the force of gravity points in

the negative y-direction. Similar to the position of the caster wheel, the velocity tracking

amongst different orientations gives a stabilized linear velocity of 0.21m/s with oscillations

in angular velocity around 0rad/s. The trajectories, however, deviate greatly from their tar-

get.

61

(a) Trajectory (b) Velocities

Figure 6.6: Effect of Initial Orientation on Crawler Trajectory and Velocity

6.3.3 Model Resilience

Model resilience was evaluated to measure a DRL model’s ability to generalize velocity

control in an environment never experienced in training. Specifically, a PPO model trained

in an ideal environment was cross-evaluated in a noisy environment with a constant tether

force and constant force of gravity. Figure 6.7 shows the velocity tracking for specific

linear and angular velocities. Similar increases tracking errors occur near the bounds of

the linear velocity as in the model with symmetric evaluation. Figure 6.8 gives a compari-

son between a symmetrically-evaluated model and the cross-evaluated model. The model

trained in an ideal environment yields a lower linear velocity RMSE at 0.00913 than the

symmetric model at 0.0120; however, for angular velocity, it yields an RMSE greater than

the symmetric model at 0.0487 compared to 0.311.

62

Figure 6.7: Cross evaluation of a PPO velocity control model. The PPO model was trained
an in ideal environment and evaluated in noisy environment with constant tether distur-
bance.

63

Figure 6.8: Cross-evaluated model errors compared to a symmetrically-evaluated model.
”Same” or symmetric refers to the model trained in the environment it was tested in.
”Cross” refers to the model trained in an ideal environment and tested elsewhere.

64

CHAPTER 7

DISCUSSION & CONCLUSION

Over the course of this thesis, deep reinforcement learning (DRL) velocity control of the

ROBOPLANET Altiscan, a magnetic-wheeled, tethered differential-drive robot. PPO and

PPO-LSTM were selected as two state-of-the-art DRL algorithms suitable for learning in

simulation using the end-to-end GPU stack of Isaac Gym and rl-games.

First, it was shown that PPO and PPO-LSTM were able to learn the basic controls of a

DDR. In Section 2.3.6, it was noted that LSTM networks have better predictive capabilities

for sequential data than traditional DNNs and in Section 2.4.6, it was mentioned that PPO-

LSTM could leverage these advantages by appending an LSTM layer to the actor-critic

network. Surprisingly, PPO-LSTM performed worse in training than PPO as shown in

Table 6.1, specifically in the environments with external disturbances. This fails to confirm

the original hypothesis that PPO-LSTM would perform better when subject to forces of

gravity and the tether, though tuning hyperparameters may give different results.

The second major finding was with regard to training speed performance. Table 6.2

shows the stark difference in real-world training time for the 16 million timesteps between

the parallelized GPU pipeline with Isaac Gym and rl-games and the distributed CPU-based

pipeline with PyBullet and SEED RL. However, the bias towards GPU training must be

stated. First, the hardware used for GPU training far outclassed the processing power for

CPU training. Second, 1024 actors were spawned in parallel in Isaac Gym compared to 4

actors across 4 instances of PyBullet. Given Figure 6.2, if we were to normalize reward by

total wall clock time instead of total timesteps, the former duo would take an aggregated

204 hours to reach an optimal learning reward while the latter would take 68 hours. This

means that Isaac Gym and rl-games is not necessarily more efficient in terms of learning

time per actor than a similar CPU based setup. While PyBullet and SEED RL did not

65

quite reach the same maximum reward as its GPU-based counterpart, it is possible that

training was stopped prematurely for comparison sake. This provides ample opportunity

for further research. Some interesting tests could be to use the full capabilities of the CPU

by distributing actors across multiple cores for each machine. This would allow the order

of number of actors to more feasibly reach the parallelization capabilities of Isaac Gym.

Deploying PyBullet and SEED RL on the AMD Ryzen 9 3900X 12-core processor may

also provide better comparisons.

The third major finding considers the robustness of PPO variants for velocity tracking

in environments of increasing complexity and its comparison to an IVK controller. The re-

sults found in Figure 6.3a and Figure 6.3b showed that velocity tracking near non-boundary

target linear and angular velocities performs fairly well with minimal spread for both PPO

and PPO-LSTM. However, larger interquartile ranges occur near the boundaries. The rea-

son for this is because the maximum velocity of the crawler is 0.2m/s. This means that

both actuated wheels must turn at a rate of 8rad/s to achieve this target. However, adding

any angular velocity while maintaining this linear velocity means keeping the same speed

in one wheel while increasing the speed in the second wheel. This is rendered physically

impossible with the current crawler setup. A better evaluation method should only include

physically possible target linear and angular velocities. Figure 6.4 gave a comparison of the

average RMSE of velocity between PPO, PPO-LSTM, and IVK across all environments.

These results are difficult to understand, especially when comparing PPO to PPO-LSTM.

The two models trade-off RMSE values between environments. This may be caused due

to PPO-LSTM implementation. PPO and LSTM networks are both susceptible to perfor-

mance changes between implementation, so tuning hyperparameters may provide clearer

results. The IVK controller also gives some inconclusive results. For linear velocity, the

IVK yields a smaller error for all environments; however, for angular velocity, it yields er-

rors about 3.5 times greater than either PPO variant. This could be attributed to simulation

inconsistencies. While Isaac Gym is a promising simulation software with great possibili-

66

ties for speed-up, it is still in its alpha version and is prone to bugs especially in its contact

physics calculations. Further testing should be done to verify the validity of the physics

conducted in Isaac Gym and PhysX.

Similar simulation artifacts can be seen in the results from Section 6.3.2. Though ini-

tial conditions seem to have little effect on both linear and angular velocity tracking, a

significant amount of drifting can be seen in the trajectories. This could be attributed to

the oscillations in angular velocity experienced as a result of the actions provided from

the PPO model. One solution to this could be to penalize the model for sharp changes in

applied wheel velocities. This would encourage smooth control of the crawler and result in

smaller, less frequent oscillations in base velocities.

The last major finding was the resilience of a PPO model when trained in two different

environments. Findings showed that a model trained in an ideal environment provided

similar tracking errors in a noisy environment with constant tether disturbances to a model

trained in that exact same environment. However, this also yields inconclusive results as to

whether modeling the external disturbances truly benefits real-world velocity tracking.

Unfortunately, due to time constraints and other restrictions, testing of the DRL model

could not be done on the real Altiscan crawler. The author acknowledges that deploying

the model on the physical robot is the greatest indicator of performance. However, the

promising results that DRL can be used for the velocity control of a DDR opens the gate

for improvements and future work, such as:

• Modeling of true noise and bias experienced from the particle filter localization of

the crawler. In this thesis, these values were chosen without regard for the real-world

values.

• Replacing simulated tether forces with a soft-body rope. Isaac Gym offers soft-body

simulation with its Flex physics backend. This allows for fluid dynamics contact

physics calculations, such that of a rope or tether. This may provide a more realistic

representation of the forces that act of the crawler.

67

• Cross-checking physics in Isaac Gym to ensure they align with real-world data. The

physics calculations computed in Isaac Gym and PhysX were taken as a ground truth;

however, many of the simulation artifacts experienced weaken the strength of that

assumption and encourage the validation of the contact physics.

• Hyperparameter tuning for PPO. PPO is susceptible to differences in implementa-

tion and hyperparameters. Further testing should be done to find an optimal set of

parameters for this task.

• Evaluation of different DRL models. PPO and PPO-LSTM were the only DRL al-

gorithms used in this thesis. However, PPO is a constantly evolving field and state-

of-the-art algorithms are continuously discovered. Algorithms such as SAC [69],

ACKTR [70], and DDPG [71] could be

• Explore trajectory tracking control. While velocity control is useful for manual con-

trol of a robot, trajectory tracking control has greater value for autonomous systems,

as is the end goal for the crawler in the BugWright2 project.

In conclusion, the results found in this thesis are encouraging for the applicability of

deep reinforcement learning to the velocity control of the ROBOPLANET Altiscan crawler.

Deep neural networks proved useful in capturing the dynamics of a nonlinear system which

included wheel slippage and tether forces. The rapid prototyping enabled by the speed-up

offered from Isaac Gym makes DRL and robotic control research more approachable and

allows researchers to learn by trial-and-error. Furthermore, the versatility of DRL can be

leveraged to include sensory observations to provide a complete autonomy package for

the crawler. Overall, there is a rich potential for future work that builds off the research

conducted in this thesis.

68

Appendices

APPENDIX A

SIMULATION PHYSICS PARAMETERS

Table A.1: Isaac Gym Simulation Parameters.

Parameter Name Value Description
dt 0.05 Simulation time step
substeps 30 Number of physics iterations between each

time step
up axis “z” Up axis

gravity

[0, 0,−9.81] for hori-
zontal surfaces
[0, -9.81, -135] for
vertical surfaces with
magnetism

Gravity vector for simulation. A vertical
plane is simulated by placing -9.81 in the y
position. Magnetism is simulated by placing
-135 in the z position

use gpu pipeline “gpu” Uses either GPU or CPU pipeline

Table A.2: PhysX Parameters

Parameter Name Value Description
bounce velocity threshold 0.0 A contact with a relative velocity below this

will not bounce.
contact collection 2 Collects contacts from all previous substeps.
contact offset 0.0025 Shapes whose distance is less than the sum of

their contact offset values will generate con-
tacts.

default buffer size multiplier 5.0 Default buffer size multiplier.
max depenetration velocity 100.0 Maximum velocity permitted to be intro-

duced by the solver to correct the penetrations
in contacts.

max gpu contact pairs 1048576 Maximum number of contact pairs.
num position iterations 6 PhysX solver position iteration counts.
num subscenes 4 Number of subscenes for multithreaded sim-

ulation
num velocity iterations 2 PhysX solver velocity iteration counts.
rest offset 0.0 Distance for two objects to come to rest at.
solver type 2 PhysX solver used. 1 for the Projected Gauss-

Siedel (PGS) solver. 2 for the Temporal
Gauss-Siedel (TGS).

70

APPENDIX B

MODEL PARAMETERS

B.1 PPO Parameters

Table B.1: Base Model Parameters

Parameter
Section

Parameter
Name

Value Description

base seed 42 Random seed for PyTorch
algo name a2c continuous Base algorithm type
model name continuous a2c logstd Base model type
network name actor critic Network type

separate False Use separate networks for actor and
critic

mlp units [256, 256, 128] Defines the structure of the DNN
activation relu Activation function used for each layer

71

Table B.2: PPO Paramters for rl-games

Parameter Name Value Description
ppo True Use PPO for gradient stepping
normalize input True Apply running mean and standard deviation

normalization for input
normalize value True Apply running mean and standard deviation

normalization for value
scale value 0.01 Scale for computed values
normalize advantage True Apply running mean and standard deviation

for advantage function
gamma 0.99 Value to discount future rewards by
tau 0.95 Lambda for the Generalized Advantage Esti-

mate
learning rate 1e-3 Learning rate for
lr schedule adaptive Learning rate scheduler for each miniepoch
kl threshold 0.016 KL threshold for adaptive learning rate

scheduler
max epochs 500 Maximum number of forward and backward

passes of observation data
grad norm 1.0 Gradient truncation value for learning stabi-

lization
entropy coef 0.0 Entropy coefficient
clip loss True Apply PPO clip parameter
e clip 0.2 Clip parameter for PPO loss
horizon length 32 Horizon length for each actor
minibatch size 32768 Minibatch size
mini epochs 8 Number of miniepochs
critic coef 2 Coefficient for critic loss
bounds loss coef 1e-4 Coefficient to the auxiliary loss for continu-

ous space

Table B.3: PPO-LSTM Recurrent Network Parameters for rl-games

Parameter Name Value Description
name lstm Type of recurrent network layer
layers 1 Number of recurrent layers
units 128 Number of nodes in the recurrent layer
before mlp False Append the recurrent layer before the DNN

72

REFERENCES

[1] L. E. Parker and J. V. Draper, “Robotics applications in maintenance and repair,”
Handbook of industrial robotics, vol. 2, pp. 1023–1036, 1998.

[2] D. Lattanzi and G. Miller, “Review of robotic infrastructure inspection systems,”
Journal of Infrastructure Systems, vol. 23, no. 3, p. 04 017 004, 2017.

[3] I. N. Ismail et al., “Development of in-pipe inspection robot: A review,” in 2012
IEEE Conference on Sustainable Utilization and Development in Engineering and
Technology (STUDENT), IEEE, 2012, pp. 310–315.

[4] C. Pradalier, Bugwright2: Autonomous inspection and maintenance on ship hulls,
[Online; accessed November 27, 2022], 2022.

[5] ROBOPLANET, Altiscan v1.3, [Online; accessed November 27, 2022], 2022.

[6] G. Chahine, P. Schroepfer, O.-L. Ouabi, and C. Pradalier, “A magnetic crawler sys-
tem for autonomous long-range inspection and maintenance on large structures,”
Sensors, vol. 22, no. 9, p. 3235, Apr. 2022.

[7] M. Quigley et al., “Ros: An open-source robot operating system,” in ICRA Workshop
on Open Source Software, 2009.

[8] M. Zhu, Y. Wang, Z. Pu, J. Hu, X. Wang, and R. Ke, “Safe, efficient, and com-
fortable velocity control based on reinforcement learning for autonomous driving,”
Transportation Research Part C: Emerging Technologies, vol. 117, p. 102 662, 2020.

[9] N. E. M. Joseph L. Jones and P. E. S. David M. Nugent, Autonomous floor-cleaning
robot, U.S. Patent 6883201B2, 2005.

[10] P. Fiorini and D. Botturi, “Introducing service robotics to the pharmaceutical indus-
try,” Intelligent Service Robotics, vol. 1, pp. 267–280, Jan. 2008.

[11] F. Dellaert and S. Hutchinson, Introduction to perception and robotics, [Online; ac-
cessed November 16, 2022], 2022.

[12] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[13] S. P. Singh, T. Jaakkola, M. Littman, and C. Szepesvári, “Convergence results for
single-step on-policy reinforcement-learning algorithms,” Machine Learning, vol. 38,
no. 3, pp. 287–308, 2000.

73

[14] J. Tsitsiklis and B. Van Roy, “An analysis of temporal-difference learning with
function approximation,” IEEE Transactions on Automatic Control, vol. 42, no. 5,
pp. 674–690, 1997.

[15] L. Pyeatt and A. Howe, “Decision tree function approximation in reinforcement
learning,” Jul. 2001.

[16] D. Shah and Q. Xie, “Q-learning with nearest neighbors,” CoRR, vol. abs/1802.03900,
2018. arXiv: 1802.03900.

[17] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function,” Neural
Networks, vol. 6, no. 6, pp. 861–867, 1993.

[18] G. Litjens et al., “A survey on deep learning in medical image analysis,” Medical
Image Analysis, vol. 42, pp. 60–88, 2017.

[19] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous driv-
ing: Common practices and emerging technologies,” IEEE Access, vol. 8, pp. 58 443–
58 469, 2020.

[20] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA,
USA: MIT Press, 2016, http://www.deeplearningbook.org.

[21] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006, ISBN: 0387310738.

[22] C. Olah, “Understanding lstms,” colah’s blog, 2015.

[23] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computa-
tion, vol. 9, no. 8, pp. 1735–1780, Nov. 1997. eprint: https://direct.mit.edu/neco/
article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf.

[24] G. Tesauro, “Td-gammon, a self-teaching backgammon program, achieves master-
level play,” Neural Computation, vol. 6, no. 2, pp. 215–219, 1994.

[25] D. Silver et al., “A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.
eprint: https://www.science.org/doi/pdf/10.1126/science.aar6404.

[26] D. Silver et al., “Mastering the game of go with deep neural networks and tree
search,” Nature, vol. 529, pp. 484–489, Jan. 2016.

[27] T. Sogabe et al., “Smart grid optimization by deep reinforcement learning over dis-
crete and continuous action space,” in 2018 IEEE 7th World Conference on Photo-

74

https://arxiv.org/abs/1802.03900
http://www.deeplearningbook.org
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://www.science.org/doi/pdf/10.1126/science.aar6404

voltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th
PVSEC & 34th EU PVSEC), 2018, pp. 3794–3796.

[28] S. S. Gu, E. Holly, T. P. Lillicrap, and S. Levine, “Deep reinforcement learning for
robotic manipulation,” ArXiv, vol. abs/1610.00633, 2016.

[29] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature,
vol. 518, pp. 529–33, Feb. 2015.

[30] J. O’Neill, B. Pleydell-Bouverie, D. Dupret, and J. Csicsvari, “Play it again: Reacti-
vation of waking experience and memory,” Trends in Neurosciences, vol. 33, no. 5,
pp. 220–229, 2010.

[31] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Mach. Learn., vol. 8, no. 3–4, pp. 229–256, 1992.

[32] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” in Advances in Neural Informa-
tion Processing Systems, S. Solla, T. Leen, and K. Müller, Eds., vol. 12, MIT Press,
1999.

[33] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods
for reinforcement learning with function approximation,” in Advances in Neural In-
formation Processing Systems, S. Solla, T. Leen, and K. Müller, Eds., vol. 12, MIT
Press, 1999.

[34] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, Trust region policy
optimization, 2015.

[35] S. M. Kakade and J. Langford, “Approximately optimal approximate reinforcement
learning,” in ICML, 2002.

[36] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy
optimization algorithms, 2017.

[37] A. O’Dwyer, “Pi and pid controller tuning rules: An overview and personal perspec-
tive,” in 2006 IET Irish Signals and Systems Conference, 2006, pp. 161–166.

[38] U. Zangina, S. Buyamin, M. S. Z. Abidin, M. S. Azimi, and H. Hasan, “Non-linear
pid controller for trajectory tracking of a differential drive mobile robot,” Journal of
Mechanical Engineering Research and Developments, vol. 43, no. 1, pp. 255–270,
2020.

[39] J. Heikkinen, T. Minav, and A. D. Stotckaia, “Self-tuning parameter fuzzy pid con-
troller for autonomous differential drive mobile robot,” in 2017 XX IEEE Interna-

75

tional Conference on Soft Computing and Measurements (SCM), 2017, pp. 382–
385.

[40] C. Qiu, C. Liu, F. Shen, and J. Chen, “Design of automobile cruise control system
based on matlab and fuzzy pid,” Transactions of the Chinese Society of Agricultural
Engineering, vol. 28, no. 6, pp. 197–202, 2012.

[41] R. Pradhan, S. K. Majhi, J. K. Pradhan, and B. B. Pati, “Antlion optimizer tuned
pid controller based on bode ideal transfer function for automobile cruise control
system,” Journal of Industrial Information Integration, vol. 9, pp. 45–52, 2018.

[42] T. Wang, R. Dong, R. Zhang, and D. Qin, “Research on stability design of differential
drive fork-type agv based on pid control,” Electronics, vol. 9, no. 7, p. 1072, 2020.

[43] J. van den Berg, P. Abbeel, and K. Goldberg, “Lqg-mp: Optimized path planning for
robots with motion uncertainty and imperfect state information,” I. J. Robotic Res.,
vol. 30, pp. 895–913, Jun. 2011.

[44] P. Petrov and V. Georgieva, “Adaptive velocity control for a differential drive mobile
robot,” in 2018 20th International Symposium on Electrical Apparatus and Tech-
nologies (SIELA), 2018, pp. 1–4.

[45] H. Zhang, J. Gong, Y. Jiang, G. Xiong, and H. Chen, “An iterative linear quadratic
regulator based trajectory tracking controller for wheeled mobile robot,” J. Zhejiang
Univ. Sci. C, vol. 13, no. 8, pp. 593–600, 2012.

[46] M. Ran, J. Li, and L. Xie, “Reinforcement learning-based disturbance rejection con-
trol for uncertain nonlinear systems,” 2020.

[47] Z. Li et al., Reinforcement learning for robust parameterized locomotion control of
bipedal robots, 2021.

[48] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, Learning to walk in minutes using
massively parallel deep reinforcement learning, 2021.

[49] E. Coumans and Y. Bai, Pybullet, a python module for physics simulation for games,
robotics and machine learning, http://pybullet.org, 2016.

[50] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based con-
trol,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
2012, pp. 5026–5033.

[51] J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for solving contact
dynamics,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 895–902, 2018.

76

http://pybullet.org

[52] R. Tedrake and the Drake Development Team, Drake: Model-based design and ver-
ification for robotics, 2019.

[53] V. Makoviychuk et al., Isaac gym: High performance gpu-based physics simulation
for robot learning, 2021.

[54] A. Paszke et al., “Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems 32, H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran
Associates, Inc., 2019, pp. 8024–8035.

[55] M. Macklin et al., “Small steps in physics simulation,” in Proceedings of the 18th An-
nual ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ser. SCA
’19, Los Angeles, California: Association for Computing Machinery, 2019, ISBN:
9781450366779.

[56] G. Brockman et al., Openai gym, 2016. eprint: arXiv:1606.01540.

[57] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,” 2016.

[58] D. Makoviichuk and V. Makoviychuk, Rl-games: A high-performance framework
for reinforcement learning, https://github.com/Denys88/rl games, May 2022.

[59] A. Allshire et al., Transferring dexterous manipulation from gpu simulation to a
remote real-world trifinger, 2021.

[60] C. S. de Witt et al., Is independent learning all you need in the starcraft multi-agent
challenge? 2020.

[61] J. Wong, V. Makoviychuk, A. Anandkumar, and Y. Zhu, Oscar: Data-driven opera-
tional space control for adaptive and robust robot manipulation, 2021.

[62] O. Yadan, Hydra - a framework for elegantly configuring complex applications,
Github, 2019.

[63] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep reinforce-
ment learning for robotics: A survey,” CoRR, vol. abs/2009.13303, 2020. arXiv:
2009.13303.

[64] J. Bai, F. Lu, K. Zhang, et al., Onnx: Open neural network exchange, https://github.
com/onnx/onnx, 2019.

[65] L. Biewald, Experiment tracking with weights and biases, Software available from
wandb.com, 2020.

77

arXiv:1606.01540
https://github.com/Denys88/rl_games
https://arxiv.org/abs/2009.13303
https://github.com/onnx/onnx
https://github.com/onnx/onnx

[66] L. Espeholt, R. Marinier, P. Stanczyk, K. Wang, and M. Michalski, Seed rl: Scalable
and efficient deep-rl with accelerated central inference, 2019.

[67] Martı́n Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous
systems, Software available from tensorflow.org, 2015.

[68] D. Merkel, “Docker: Lightweight linux containers for consistent development and
deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.

[69] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor, 2018.

[70] Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba, Scalable trust-region method for
deep reinforcement learning using kronecker-factored approximation, 2017.

[71] T. P. Lillicrap et al., Continuous control with deep reinforcement learning, 2015.

78

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Summary
	1 | Introduction and Background
	Motivation
	ROBOPLANET Altiscan Crawler
	Problem Definition
	Research Goal
	Outline

	2 | Fundamentals
	Differential Drive Robot Kinematics
	Reinforcement Learning
	Deep Learning
	Deep Reinforcement Learning

	3 | Related Works
	Classical Control
	Modern Control
	Reinforcement Learning

	4 | Experimental Setup
	Simulation Environment
	Scene Setup
	Task Setup
	Agent Training
	Sim-to-Real Transfer

	5 | Evaluation Methods
	Training Performance
	Runtime Performance
	Robustness Evaluation

	6 | Results
	Training Performance
	Runtime Performance
	Robustness Evaluation

	7 | Discussion & Conclusion
	Appendices
	A | Simulation Physics Parameters
	B | Model Parameters

	References

