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SUMMARY 

The infrastructure management agencies dedicate a sizable portion of their 

construction budget, in excess of $2 billion annually, to maintain and rehabilitate concrete 

bridge decks. Two widely adopted nondestructive evaluation methods—impact echo (IE) 

and ground penetrating radar (GRP)—have been recognized as effective investigation tool 

for evaluating reinforced concrete (RC) bridge decks. This dissertation attempts to 

improve and extend the application of these two methods in the field of concrete condition 

evaluation. At the beginning, it introduces the background and motivation of this 

dissertation. It reviews the literature on IE and GPR and identifies a few research gaps. To 

bridge these gaps, it further lays out several relevant research questions and address these 

questions in three chapters respectively. Chapter II proposes an ensemble empirical mode 

decomposition (EEMD) approach to decompose the IE testing data into different spectral 

composition for defect signal extraction. The EEMD approach overcomes the challenge of 

extracting reflected P-wave from the impact-echo signal that may contain strong surface 

wave. The results show that the high frequency resonance mode is easier to be extracted 

than the low frequency resonance mode from the IE signal. To realize direct visualization 

of internal defects of concrete structures for nondestructive evaluation, Chapter III 

develops an automated data fusion and visualization process based on impact-echo testing 

with source-receiver arrays. Both the simulation and experimental results demonstrate that 

the automated data fusion and visualization process can effectively extract delamination 

regions from the impact-echo test data. Chapter IV adopts the 𝑓 -𝑥  variational mode 

decomposition (VMD) method to remove the direct wave clutter of GPR Data from RC 



 xii 

bridge decks. The 𝑓-𝑥 VMD method can effectively remove the stripe-like interference 

waves, which are the main problem hindering the discrimination of the target of interest. 

As a result, this method can separate the useful rebar reflection signal from direct wave 

event. It also compares the performance of 𝑓-𝑥 VMD method with two other approaches, 

including average background subtraction and F–K filter with dip relaxation. The 

superiority and effectiveness of proposed method is demonstrated in simulation, 

experiment, and field test environments over the other two methods. 
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CHAPTER 1. INTRODUCTION 

This chapter presents the background of nondestructive evaluation for reinforced 

concrete (RC) bridge decks. It begins with the introduction of two nondestructive testing 

methods: impact echo and ground penetrating radar. Then, it presents the research 

challenges associated with each method, conducts related literature review, and proposes 

approaches used in this disserataion to overcome these challenges. Finally, it outlines the 

structure of this dissertation. 

1.1 Background and Motivation 

As of 2018, 54,259 of 612,677 bridges in the United States are reported as 

structurally deficient, and an additional 226,837 bridges have identified repair needs. To 

maintain and rehabilitate concrete bridge decks, the infrastructure management agencies 

dedicate a sizable portion of their construction budget, in excess of $2 billion annually [1]. 

Many defects may contribute to the deterioration of reinforced concrete bridge decks, 

among which vertical cracking, delamination, concrete degradation, and rebar corrosion 

have received significant attention in both academia and industry. Detection and 

localization of the defects, therefore, are essential for structure condition estimation and 

critical for the preventive maintenance. Destructive tests are the most accurate mechanisms 

to assess the bridge quality. However, the usage of these tests are greatly impeded by the 

destructive nature, making the relevant application very labor intensive and time 

consuming.  
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Existing literature indicates that the nondestructive tests (NDT), which do not need 

to alter the article being inspected, can evaluate bridge deck condition by saving both time 

and money [2]. A detailed literature review of NDT technologies is provided by Gucunski 

et al. (2013) [3], which summarizes fourteen NDT technologies that can facilitate 

identifying defects in concrete bridge decks. Specifically, these NDT methods include 

impact echo, ground-penetrating radar, ultrasonic pulse echo, ultrasonic surface waves, 

impulse response, microwave moisture technique, eddy current; half-cell potential, 

galvanostatic pulse measurement, electrical resistivity, infrared thermography, visual 

inspection, chloride concentration measurement, and chain dragging and hammer 

sounding. 

The focus of this dissertation is on two types of NDT technique: impact echo (IE) 

and ground penetrating radar (GPR). The IE method can detect delaminated zones at 

different stages of deterioration, as well as evaluate corrosion-induced deck delamination 

effectively and rapidly [4]. Specifically, IE can detect internal defects in concrete, such as 

voids, cracks, delaminations, and debonding [5]. It has also been applied to bond quality 

evaluation at steel interfaces [6], corrosion damage detection of rebar in concrete [7] and 

thin walled concrete pipes evaluation [8]. GPR has been adopted by many state 

transportation departments as a major technique for investigating and assessing RC bridge 

decks. GPR can detect both metallic and non-metallic targets, it has been widely used in 

archaeology [9], mineral exploration [10] and concrete investigation [11]. 

Despite IE and GPR have many advantages for condition evaluation of RC bridge 

decks, they are not without constraints. Impact echo is suitable for detection of voids, 

cracks, delamination and determining thickness [12], but it could not detect the rebar 
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clearly and the results are hard to interpret [12]. GPR has the advantages of rebar, voids, 

and honeycombing detection, however, it can only detect the defects perpendicular to the 

travel of the radar pulse and cannot penetrate through metal [12][13]. The purpose of this 

thesis is to improve the performance of condition evaluation for RC bridge decks using 

these two NDT methods. The performance of each method is analyzed and improved, and 

the results of impact echo method are further combined effectively to achieve better 

estimation of concrete condition. 

1.1.1 Signal extraction of Impact-echo Data 

In the impact echo test, a transducer is used to measure the surface motion of a 

concrete structure when a mechanical impact is applied to the surface nearby. The 

mechanical impact generates elastic waves in the concrete. If there is an interface beneath 

the test point, multiple compression (P) wave reflections occur between the internal 

interface and the top surface. When the time domain signal measured by the transducer is 

transformed to frequency domain using Fourier transform, the multiple compression wave 

reflections form a peak in the Fourier spectrum. The echo peak frequency (𝑓) can be used 

to estimate the depth of the reflector (𝐷), which corresponds to either the bottom of a 

concrete slab or internal defects.  

𝐷 = !"!
#$

 ,                                                         (1) 

where 𝑉% is the P-wave velocity in the concrete and 𝛽	is an empirical correction factor, 

which is approximately 0.96 for plate-like structures.  
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The time domain signal of impact echo needs to be transformed to the frequency 

domain in order to identify the defects. In practice, however, it is difficult to interpret the 

Fourier spectrum since it is contaminated by the strong surface wave, flexural mode 

vibrations, reflected and diffracted body waves, and noises. To deal with these difficulties, 

several time-frequency analyses have been proposed to analyze the impact echo data. Song 

and Cho [14] applied the short-time frequency transform (STFT) for tunnel shotcrete 

evaluation. Shokouhi et al [15] compared the STFT and the continuous wavelet transform 

(CWT) and showed that CWT can more efficiently extract time and frequency information 

from the impact echo data. Nevertheless, both short-time Fourier transform and wavelet 

transform, which offer a better time resolution, reduce frequency resolution compared with 

Fourier transform. This makes it difficult to precisely determine the echo peak frequency 

that is used to calculate the depth of the reflector. Yeh and Liu [16] further combined the 

wavelet marginal spectrum and the Fourier spectrum to enhance the spectral resolution and 

suppress the interference in the Fourier spectrum.  

 Another time-frequency method is the Hilbert-Huang transform (HHT), which 

combines empirical mode decomposition (EMD) and Hilbert transform [17]. Algernon and 

Wiggenhauser [18] compared the performances of STFT, CWT and HHT and concluded 

that HHT provides better frequency resolution than other methods and the HHT marginal 

spectrum in a short integration range can be used to extract the impact echo signal and 

obtain clear thickness frequencies. To investigate the spectral composition of the impact 

signal, Lin et al [19] applied EMD to decompose the impact echo signal into several 

intrinsic mode functions (IMFs) and used the Fourier transform to analyze each IMF. The 

idea is to use EMD to separate different signals into different IMFs, because noise, echo 
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wave, surface wave and modal vibrations usually have separate frequency bands. As a 

result, the spectrum of each echo IMF has little influence from other signals and the echo 

peak can be easily identified. However, EMD may cause mode mixing [20][21] due to the 

intermittency of the surface wave, which makes the physical meaning of the related IMF 

unclear. An intermittence test was proposed to separate a mixing mode [22]. But the 

intermittence test was based on a subjectively selected scale, which lacks physical 

justification and makes EMD non-adaptive. Additionally, the intermittence test often did 

not work well in the cases that scales were not clearly separable [23]. To overcome the 

mode mixing drawback of the original EMD, Wu and Huang [23] proposed a noise-assisted 

data analysis method EEMD. 

 The EEMD method has been applied to different applications for signal extraction, 

such as the machine health monitoring and the defect diagnosis [21], the pipeline flaw 

magnetic flux leakage signal extraction [24], and the human gait signal analysis [25]. Most 

research focused on extracting intermittent signals instead of continuous signals with 

intermittent noises. Yet, limited studies have analyzed the potential impact of EEMD 

parameters, i.e., the amplitude of added white noise and the number of ensemble, on the 

results. Some research has been performed to analyze the effects of the white noise 

amplitude and ensemble number on the EEMD results [26]. These researchers emphasized 

on extracting intermittence signals with relatively smaller amplitudes and higher 

frequencies from continuous signals with low frequencies.  

 The impact echo signal may contain strong surface wave, which is an intermittent 

signal that has wide frequency range[27]. Because surface wave has high energy in a broad 

bandwidth, it is a challenge to extract reflected P-wave, a continuous signal that is used for 
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internal defect detection. Thus, this study adopts EEMD to decompose the impact echo 

signal into different spectral composition, for the purpose of extracting reflected echo 

waves, and investigates the proper parameter setting of EEMD for IE signal analysis[28]. 

The parameters include the amplitude of added white noise and the number of ensemble 

for the EEMD method. 

1.1.2 Data Fusion of Impact-echo Data 

The impact-echo is a point-wise testing method. For a large test area, it has been a 

challenge to interpret a large amount of test data and provide an overall evaluation of the 

condition of the concrete structure. Visualization has been proposed by many researchers 

to simplify the IE interpretation for large concrete structures [29-34]. The most commonly 

used imaging method was based on the IE frequency spectra. Ohtsu and Watanabe [29] 

developed stack imaging of spectral amplitude of the IE data to visually identify flaws in 

concrete structures. Zhu and Popovics [30] generated two-dimensional contour images of 

defects in the frequency domain using air-coupled impact echo. Schubert et al. used the B-

scan image to improve the detection of flaws [31]. As the image generated using the 

frequency spectra could not have a direct interpretation of the structure interior [33], some 

researchers translated the frequency spectrum into the depth spectrum before constructing 

the vertical spectral tomogram of the concrete structures to provide a direct image of the 

concrete interior [34][35]. The main idea of the current IE visualization research is to 

visualize all individual test data in one platform for overall condition assessment, without 

increasing the accuracy of the IE test result of each test point. However, in the impact–echo 

test, practical experience revealed that single point measurements were not very reliable 

and strongly sensitive to small shifts of impact source and receiver positions [31]. 
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Specifically, the interpretation of the IE signal becomes more difficult when the test point 

is above the region close or across the delamination boundary, since wave leakage and 

mode conversions at the delamination boundary may lead to erroneous interpretation of the 

IE test results [35]. 

Our research demonstrated that data fusion can improve the accuracy of the IE test, 

especially at the delamination boundary [36][37]. However, the extraction of the feature 

parameter in a manual fashion for data fusion is very time-consuming. The dissertation 

develops an automated approach to perform data fusion and visualization for effective and 

reliable interpretation of the impact-echo test results [38]. The feasibility and effectiveness 

of the proposed method are validated by both numerical simulation and experimental 

results. 

1.1.3 Interference Removal of GPR data 

The most common GPR system is impulse GPR which transmits short pulse signals 

with nanoseconds duration and frequency range from several MHz to a few GHz. The 

transmitted electromagnetic pulses penetrate the ground and are reflected back to the 

receiving antenna when hitting an object with inhomogeneous surroundings.  A collection 

of time-series returns in B-scan generates a radargram for interpretation. In a ground 

penetrating radargram collected from concrete bridge decks, the reflections of rebar mat 

appear as a series of hyperbolic curves [39]. Corroded rebar usually with defect around 

produces weaker reflection in the radargram [40]. It appears as abnormal zones in the 

attenuation map generated by the reflection amplitudes. This is a deterioration indication 

of the concrete.   If the target is buried shallowly, the target reflected waves are deteriorated 
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by the direct waves which include antenna crosstalk and ground bounce. These interference 

waves with horizontal shape and strong amplitudes in the GPR images are the main 

components of clutter [41]. Therefore, it is essential to effectively remove the interferences 

before further processing the GPR data collected from RC bridge decks. 

A variety of methods have been proposed to reduce the direct wave clutter to 

improve the performance of GRP method. In the time domain, conventional approaches 

such as average background subtraction and time-gating are widely used for filtering data. 

Average background subtraction method is the subtraction of a mean A-scan, which is 

simple to apply but only effective for a purely horizontal background. Also, the mean 

subtraction step will impact the target reflection component[42]. Especially, when facing 

a scenario of rough surface or shallow target, neither average background subtraction nor 

time-gating methods is sufficient, given that these two methods may cause the target 

response overlap with the direct wave. However, for RC Bridge decks, the top rebar mat 

could be considered shallow, and the surface roughness of the concrete deck sometimes 

cannot be neglected [43]. Unconventional approaches include hardware and software 

solutions that can extract target signal from the clutter. Differential GPR system [44] and 

the transmitter-receiver-transmitter configuration [45][46] are two common hardware 

solutions, but they do not have excellent performance for shallow target, inhomogeneous 

ground medium, or rough ground surface [43]. Another hardware solution setting the 

transmitter at the Brewster angle [47] is unpractical for field test and not useful to remove 

crosstalk clutter [43].  

Three classes of software solutions include component separation methods, 

parametric clutter modeling/statistics-based methods, and filtering-based methods. 
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Component separation methods are also referred as subspace projection methods [48], 

which contain singular value decomposition (SVD) [49], principal component analysis 

(PCA) [50], and independent component analysis (ICA) [51]. This group of methods split 

the GPR data into target subspace and noise signal subspace, which have been used to 

assess the performance of changing soil type, burial depth, and material type [52][53]. 

Specifically, the SVD methods are most effective in evaluating GPR simulation data but 

require visual inspection for the singular values to estimate the clutter subspace [48]. The 

parametric clutter modeling/statistics-based methods have two primary constraints. First, 

such methods require reference data. Second, the performance of these methods strongly 

depends on the clutter model and on the assumptions for parameter and statistical feature 

estimation [43][48][53]. The filtering-based methods include F-k filtering, Kalman 

filtering, time-frequency analysis methods. F-k filter has been developed to remove the 

direct waves in a frequency–spatial frequency (f–k) domain, based on the differences of 

apparent velocities between interferences and target signal reflection [43][54]. It has been 

used to suppress the crosstalk for bistatic ground-penetrating Radar [55]. However, the 

designed F-k filters[55] assume the surface is flat, and the medium is homogenous, which 

may not always hold. F-K filtering combined with the dip-relation method is proposed to 

improve the performance for rough surface [43], but the appropriate dip relation angle is 

still an open issue and must be determined empirically. Kalman filter relies on reference 

data, which is not always available for GPR evaluation on RC bridge deck [43][56]. 

Regarding the time-frequency methods, 2-D physical wavelet transform is applied 

to GPR data to eliminate direct wave [57]. Such a method is tested on the buried metal tube 

and plastic tube. But the testing environment is restricted to a flat surface, homogeneous 



 10 

medium, and less clutter overlapping.  Compared to wavelet transform method that relies 

on subjective experience to select parameters, empirical mode decomposition (EMD) is an 

adaptive time-frequency analysis method. The combination of Ensemble empirical mode 

decomposition (EEMD) and permutation entropy (PE) is proposed to suppress the 

Gaussian white noise in GPR signal [58]. Dragomiretskiy and Zosso [59] proposed a 

variational mode decomposition (VMD) which is an entirely non-recursive variational 

model and less sensitive to noise than EMD. Traditional wavelet transform (WT), EEMD, 

and VMD are compared to remove the background noise in GPR field test data [60]. The 

result of VMD method obtains the highest signal-to-noise ratios. VMD method, applied in 

the 𝑓-𝑥 domain, could also filter out the ground roll coherent noise usually generated by 

Rayleigh wave in seismic data [61][62].  Motivated by [61][62], we propose to remove the 

direct wave interferences with the F-X VMD filter for GPR data from the RC bridge deck 

[63].  However, the dip angle of the ground roll coherent noise in seismic data application 

is high, with values usually greater than 45 degrees. Our application focuses on removing 

the low dip direct wave generated by electromagnetic waves, and the dip angle of direct 

wave is usually lower than 10 degrees. Thus, the 𝑓-𝑥  VMD parameters suggested by 

seismic data application may not be suitable for our application. The dissertation will also 

evaluate the proper parameters for this application.  

1.2 Dissertation Outline 

The rest of the dissertation is organized as follows. Chapter II adopts ensemble 

empirical mode decomposition (EEMD) to decompose the impact echo (IE) testing data 

into different spectral composition for defect signal extraction and studies the effects of 

critical EEMD parameters. By using both numerical simulations and experimental tests, 
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this chapter verifies the effectiveness of the EEMD method for IE signal decomposition. 

Chapter III develops an automated data fusion and visualization process for nondestructive 

evaluation and direct visualization of internal defects of concrete structures based on 

impact-echo testing using source-receiver arrays. The effectiveness of this process is 

demonstrated with both numerical simulation and experimental testing. Chapter IV 

proposes to exploit the 𝑓-𝑥 VMD method to remove the direct wave clutter of GPR Data 

from RC bridge decks. The chapter theoretically and experimentally verifies the feasibility 

of using 𝑓-𝑥 VMD to remove direct wave in GPR profile from RC bridge decks. Chapter 

V concludes the thesis by summarizing contributions and discussing the potential 

of future work.  
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CHAPTER 2. EEMD OF IMPACT-ECHO DATA 

 This chapter proposes an ensemble empirical mode decomposition (EEMD) 

approach to decompose the impact echo (IE) testing data into different spectral 

composition for defect signal extraction. First, a brief description of the EEMD method is 

provided. Next, the parameter settings of EEMD for analyzing IE data are investigated. 

Then, both numerical simulation and experimental data are used to evaluate the 

performance of EEMD method.  

2.1 Proposed Approach 

2.1.1 Empirical mode decomposition (EMD) 

 EMD, an adaptive time-frequency data analysis method, decomposes any data into 

different simple intrinsic mode of oscillations and a residue. Each oscillatory mode is 

represented by an intrinsic mode function (IMF) that satisfies two conditions [17]: (1) the 

number of extrema and the number of zero-crossing must either equal or differ at most by 

one in the whole dataset, and (2) the mean value of the envelopes defined by the local 

maxima and the local minima is zero at any point. The IMFs of a signal   is extracted 

using the sifting process described below [17]: 

1. Identify all the local maxima and minima of   and generate the upper and 

lower envelopes using the cubic spline functions. Calculate the mean  of the 

upper and lower envelopes and find the difference  between the signal and 

the mean. 

2. If  satisfies the stopping criterion of an IMF,  is the first IMF 

component from the signal. If not, replace  with  and go to step a. The 

x(t)

( )x t

1m

1h

1h 1 1c h=

( )x t 1h
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common stopping criteria include Cauthy-type criterion [17], S-number 

criterion [14], and fixed optimal sifting number [17]. 

3. Separate 𝑐& from the rest of the data by 

                                                (2) 

4. Regard the residue as a new signal and repeat the above procedures several 

times to sift out other IMFs until stopping criteria are satisfied. The stopping 

criteria can be either when the IMF component, 𝑐', or the residue, 𝑟', is so 

small that it is less than the predetermined value, or when the residue, 𝑟' , 

becomes a monotonic function from which no more IMF can be extracted. 

After decomposition, the original signal can be represented as the sum of all 

IMFs and the residue, 𝑟'. 

𝑥(𝑡) = ∑ 𝑐( + 𝑟''
()&                                                       (3)  

2.1.2 Ensemble empirical mode decomposition (EEMD) 

One major drawback of the original EMD is mode mixing, which is defined as 

having different time-scales (or spatial scales) mixed in a single IMF component. Mode 

mixing is a consequence of signal intermittency [22]. EEMD, a noise-assisted data analysis 

method, adds white noise of finite amplitude to a signal before applying EMD and defines 

the true IMF components as the mean of an ensemble of trials [23]. The added white noise 

establishes a uniform reference background in the time-frequency space so that the bits of 

signals of different scales are automatically projected onto proper scales of reference. The 

error introduced by the white noise on each individual trial is cancelled out in the ensemble 

mean of enough trials. 

1 1( )r x t c= -

r1
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The EEMD method is summarized as follows [23]: 

1. Set the amplitude of the added white noise and the number of ensemble. 

2. Generate a white noise series with the set amplitude and add it to the targeted 

data. 

3. Apply EMD to decompose the data with added white noise into IMFs. 

4. Repeat steps b and c specified number of times with a different white noise 

series each time. 

5. Calculate the ensemble means of corresponding IMFs as the final IMFs. 

In developing the EEMD method, Wu and Huang [23][26] pointed out that a sifting 

number of about 10 for each IMF would lead to EMD being an almost perfect dyadic filter 

for noise and guarantee the stability and convergence of the resulting IMFs. As the 

ensemble mean of IMFs from each EMD process may not satisfy the definition of IMF, an 

EEMD post-processing method using EMD can be applied to the EEMD final IMFs [23]. 

A general approach of the EEMD post-processing is to apply EMD to a combination of 

consecutive components of direct EEMD results ( 𝐷( and 𝐷(*&) to extract one IMF (𝐶(). 

The remainder is added to the next component (𝐷(*#), which is subjected to EMD again to 

extract the next IMF (𝐶(*&). The same process is carried out consecutively to extract all 

interested IMFs [23]. 

2.2 Parameter Setting of EEMD for Impact Echo Signal Analysis 

 The amplitude of added white noise and the number of ensemble are two critical 

parameters for the EEMD method. Wu and Huang [23] concluded that increasing noise 

amplitudes and ensemble numbers alter the decomposition little as long as the added noise 

has moderate amplitude and the ensemble has a large enough number of trials based on 
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their experimental observations, and suggested the amplitude of added noise should be 

about 0.2 standard deviation of that of the data in most cases [23]. A few researchers also 

investigated the EEMD parameter setting for different applications [20][26] and their 

finding on the amplitude of added white noise is similar to that from Wu and Huang. 

However, the applications investigated by these researchers focused on extracting 

intermittent signals with relatively small amplitudes and high frequencies from continuous 

signals with low frequencies. These data have different characteristics than the impact echo 

signal, which has strong intermittent surface wave on top of the useful continuous P-wave 

signal as well as other so-called low-energy noises. The surface wave has a broad 

bandwidth that makes separation of P-wave difficult. 

To investigate the EEMD parameter setting for the impact echo application, a 

simulated signal is constructed to represent the out-of-plane displacement of the surface 

particle on a concrete slab under IE testing: 

𝑥(𝑡) = 𝑥&(𝑡) + 𝑥#(𝑡)                                                      (4) 

where 𝑥&(𝑡) = sin	(𝛼𝑡) , 𝑥#(𝑡) = 𝐴(sin(𝜋𝑡 𝜂⁄ ))+(𝑢(𝑡) − 𝑢(𝑡 − 𝜂)) , and 𝑢(𝑡)  is the 

Heaviside step function. The function 𝑥&(𝑡) represents reflected P-wave signal from the 

bottom or an internal defect of a concrete slab. As the P-wave produced by the impact in 

IE testing undergoes multiple reflections between the test surface and the reflecting 

interface, it causes a characteristic displacement for a surface particle, which has a periodic 

pattern that depends on the round-trip travel distance of the P-wave [68]. We choose 𝛼 =

16,000𝜋 as an example here. The function 𝑥#(𝑡) characterizes the surface wave and 𝜂 =

40𝜇𝑠 is the impact duration. This function is selected based on the impact force function 
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used in the IE finite element analysis [69]. 𝐴 is the ratio between the amplitudes of the 

surface wave and P-wave in the displacement signal.  

 Our research focuses on impact echo signals collected by air-coupled sensors, 

which measure air pressure. The air pressure is equivalent to out-of-plane velocity at the 

surface. Therefore, all analysis in this paper concentrates on velocity signals. But similar 

approach can be adopted for analyzing displacement and acceleration signals. The out-of-

plane velocity can be constructed by taking derivative of the displacement function (Eq. 

(4)) with time. The waveform of the simulated signals and the Fourier spectra of the 

velocity are shown in Figure 1 with 𝐴 = 5 as an example. 

 

(a)                                         (b)                                    (c) 

Figure 1: A simulated signal and corresponding Fourier spectra: (a) displacement; 
(b) velocity; and (c) Fourier spectra of the velocity 
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To investigate the effect of the amplitude of added white noise, the correlation 

between the decomposed IMF and the original IE mode velocity component, 𝑥&′, is used 

to evaluate the performance of the EEMD method with different noises. The ratio between 

the noise amplitude and the standard deviation of the IE mode velocity signal is set as 0, 

0.05, 0.1, 0.2, 0.5, 0.7, 1, 1.2, 1.5, 1.7, 2, 2.5, 3, 3.5 and 4. To remove the effect of the 

number of ensemble, the ensemble should have a large enough number of trials. Since our 

experimental observations show that all cases converge before 100 ensemble trials, the 

number of ensemble is fixed at 150 while investigating the effect of the noise amplitude.  

The change of correlation coefficient with the amplitude of added white noise is 

shown in Figure 2 for different ratios between the displacement amplitudes of the surface 

wave and P-wave. As all curves converge before the ratio value reaches 1.5, Figure 2 only 

shows the change when the ratio increases from 0 to 2.5 so that the significant change close 

to 0 is observable. For 𝐴 = 1, a small ratio (0.05) between the amplitudes of added white 

noise and the standard deviation of IE mode velocity provides very high correlation 

coefficient (0.97) between the decomposed IMF and the original IE mode velocity. When 

the amplitude of surface wave increases to 𝐴 = 3, 5 and 7, higher amplitude (1.5 standard 

deviation of the IE mode velocity) of the added white noise is required to achieve good 

correlation between the decomposed IMF and the velocity signal. The correlation 

coefficients are 0.958, 0.930 and 0.910 for 𝐴 = 3, 5 and 7 respectively. Comparing the 

results for different surface wave amplitudes, the EEMD method provides better 

performance for a signal with smaller surface wave intensity. In Figure 2, when there is no 

added white noise, i.e. a zero value for the noise amplitude, it reflects the performance of 

the EMD method. When the surface wave amplitude is small (𝐴 = 1), the decomposed 
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IMF from EMD has acceptable correlation with the original velocity signal with a 

correlation coefficient of 0.930. With the increase of surface wave intensity, the 

performance of EMD drops significantly and the correlation coefficients drop to 0.677, 

0.461 and 0.337 for 𝐴 = 3, 5 and 7 respectively. For all cases with surface waves, the 

EEMD method always performs better than the EMD method even when the added white 

noise has small amplitude. The performance improvement is more dramatic for cases with 

stronger surface waves. 

 

Figure 2: Change of correlation coefficient between the decomposed IMF from 
EEMD and the original IE mode velocity signal with the amplitude of added white 
noise 
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standard deviation of the IE mode velocity signal is fixed at 0.05 for 𝐴 = 1, and 1.5 for 

𝐴 = 3, 5 and 7. 

The change of correlation between the decomposed IMF and the original IE mode 

velocity signal with the number of ensemble trials is shown in Figure 3 for different surface 

wave intensities. For 𝐴 = 1, the correlation coefficient converges after 15 ensemble trials. 

For 𝐴 = 3, 5 and 7, the correlation coefficient stabilizes after 80 ensemble trials. This 

indicates that higher ensemble trials are required for larger added white noise amplitude. 

 

Figure 3: Change of correlation coefficient between the decomposed IMF from 
EEMD and the original IE mode velocity signal with the number of ensemble trials 
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in section 3.1 also applies to a broad range of echo frequencies, the signal frequency is 

changed from 5 kHz to 40 kHz with a step of 5 kHz. Each case has 100 ensemble trials.  

The change of correlation between the decomposed IMF and the original IE mode 

velocity signal with the frequency is shown in Figure 4. Generally, the performance of the 

EEMD method increases with increasing frequency and is relatively stable when frequency 

is above 15 kHz. The correlation between the decomposed IMF and the original signal 

increases with decreasing surface wave intensity, and the performance difference is smaller 

at high frequencies (above 15 kHz) than low frequencies (below 15 kHz). For 𝐴 = 1, the 

ratio of noise amplitude over signal standard deviation is 0.05 and the performance of the 

EEMD method is very good for all frequencies. For higher surface wave intensity, 

especially when  𝐴 = 5 and 7, the EEMD performance drops significantly at 5 and 10 kHz. 

To study the variation of EEMD performance with frequencies at different white noise 

amplitudes, the correlation between the decomposed IMF and the original velocity signal 

is shown in Figure 5 for different signal frequencies with 𝐴 = 7. Figure 5 does show that 

the EEMD method performs worse at low frequencies. The reason is the surface wave 

intensity is determined by the parameter 𝐴, which is the ratio between the amplitudes of 

the surface wave and P-wave in the particle displacement. For a fixed value 𝐴, the surface 

wave is determined by the mechanical impact applied in the impact echo test and does not 

change with the P-wave signal frequency. The velocity is the derivative of displacement 

with time. If the particle displacement amplitude caused by the reflected P-wave has a 

constant value, the corresponding velocity signal has higher amplitude at higher frequency, 

and therefore higher energy. Then in the velocity signal, the relative ratio between the P-

wave energy and the surface wave energy is higher at higher frequencies. Therefore, it is 
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easier for the EEMD method to extract the P-wave signal at higher frequencies since the 

surface wave is less significant.  

As shown in Figure 5, the correlation coefficient stabilizes when the noise 

amplitude reaches 2 for the 5 kHz signal frequency, and only increases slowly with 

increasing noise amplitude afterward. This is the worst case for all signals we have 

analyzed since it has the lowest impact echo signal frequency and highest surface wave 

contamination. For all other signal frequencies, a noise amplitude of 2 standard deviation 

of the velocity signal also have good performance although the EEMD performance may 

converge at lower noise amplitudes. We can choose 2 as an acceptable unique ratio between 

the amplitude of the added white noise and the standard deviation of the velocity signal for 

a range of surface wave intensity and signal frequencies, which makes it easier in practical 

applications. 

 

Figure 4: Change of correlation between the decomposed IMF and the original IE 
mode velocity signal with the signal frequency 
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Figure 5: Comparison of correlation between the decomposed IMF and the original 
IE mode velocity signal with A=7 for different noise amplitudes and frequencies 
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The absorbing boundary conditions were imposed at the four edges of the concrete 

slab to avoid reflection from these boundaries in numerical simulation. The validity of the 

finite element model has been verified by Gibson and Popovics [65] for simulating the out-

of-plane velocity response to a point impact source. 

The receiver was 3 cm away from the impact source and measured the out-of-plane 

velocity on the surface. The sampling frequency was 1 MHz. The time series and its Fourier 

spectrum are shown in Figure 7. Although the delamination echo signal can be easily 

identified in the frequency spectrum in this case, the signal decomposition can help analyze 

the spectral composition.  

 

Figure 6: Cross-section view of the numerical simulation setup 
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Figure 7: The impact echo signal and its Fourier spectrum from numerical 
simulation 
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Although IMF 10 has a frequency peak at 0.5 kHz, it may be treated as part of the residue 

since the signal amplitude is much smaller than other intrinsic modes. 

 

Figure 8: Decomposed IMFs from the EEMD method for IE numerical simulation 
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Figure 9: Frequency spectra of the decomposed IMFs 3-10 from the EEMD method 
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(a)                                                      (b) 

Figure 10: Results of the EMD method for IE numerical simulation data: (a) 
decomposed IMFs; and (b) corresponding frequency spectra 
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2.4 Experimental Test 

 The EEMD method was applied to the impact echo signals from an experimental 

test. The thickness of the concrete slab was 0.26 m and the depth of the delamination was 

0.17 m. The delamination was circular with 0.3 m diameter. The average P-wave velocity 

was 4459 m/s, and the corresponding echo frequencies from the bottom and the 

delamination are 8.2 kHz and 12.6 kHz. A wire-mounted solid steel ball with diameter of 

0.011 m was used as impact source. An air-coupled sensor (PCB model 377B01) [67] was 

used in the impact-echo test. The sensor was 0.02 m above the concrete surface.  

 

Figure 11: Cross-section view of the experimental setup 

 Two impact echo signals were collected. The first mechanical impact (S1) was 

applied at the concrete surface above the delamination center. The receiver (R1) was placed 

0.125 m away from the impact source (Figure 11). The time series and its frequency 

spectrum are shown in Figure 12. Although the signal is contaminated by surface wave and 

other noises, signal decomposition should not be very difficult as the dominant frequency 

range of the surface wave and noises is far from the delamination frequency. The second 

mechanical impact (S2) was applied at the concrete surface above a point between the 

delaminaiton center and boundary, which was 0.075 m from S1. The receiver (R2) was 

0.175 m away from the impact source. This signal is selected since it is severely 

contaminated by surface wave and noises. Figure 13 shows the signal and its frequency 
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spectrum. Many other peaks between 15 kHz and 25 kHz in the frequency spectrum almost 

have the same amplitude as that of the delamiantion echo signal, which could make signal 

decomposition more challenge. 

 

Figure 12: The IE experimental signal 1 and its Fourier spectrum 

 

Figure 13: The IE experimental signal 2 and its Fourier spectrum 
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average time for decomposing each IE signal was about 17 seconds on a 3.40GHz Intel 

Core i7-2600 processor. After applying EEMD to the impact echo experimental data, ten 

IMFs were obtained as shown in Figure 14 for signal 1. IMFs 1-4 are either white noises 

or dominated by the surface wave. Only IMFs 5-10 have the characteristics of echo waves 

or flexural mode vibration. The corresponding frequency spectra for IMFs 5-10 are shown 

in Figure 15. The Fourier spectrum of IMF 5 has a dominant frequency at 12.7 kHz, which 

corresponds to the delamination frequency. The dominant frequency of IMF 6 is 7.3 kHz, 

which is close to the bottom frequency. IMFs 7, 8, 9 and 10 reflect the flexural mode 

vibration with dominant frequencies at 3.42 kHz, 1.46 kHz, 0.98 kHz and 0.49 kHz 

respectively.   

 

Figure 14: Decomposed IMFs for signal 1 using the EEMD method 
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Figure 15: Frequency spectra of decomposed IMFs 5-10 for signal 1 

 For signal 2, ten IMFs were obtained as shown in Figure 16. IMFs 1 and 2 are white 

noises and IMFs 3 and 4 are dominated by surface waves. IMFs 5-10 have characteristics 

of echo waves or flexural mode vibration, and the corresponding frequency spectra are 

shown in Figure 17. The dominant frequency for IMFs 5 and 6 are 12.2 kHz and 7.3kHz, 

representing the delamination and bottom echo signals respectively. IMFs 7-10 reflect the 

low frequency flexural mode vibrations. Since this signal is severely contaminated by the 

surface wave and noises, mode mixing occurs in IMF 7, which confirms that it is a 

challenge to extract low frequency signals using the EEMD method, especially when the 
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Figure 16: Decomposed IMFs for signal 2 using the EEMD method 

 

Figure 17: Frequency spectra of decomposed IMFs 5-10 for signal 2 
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 The EEMD method was also validated using a field testing signal (Figure 18(a)) 

collected on a bridge deck located on south-bound US route 15 across Interstate 66 near 

Gainesville, VA [68]. A core sample (Figure 18(b)) was drilled and extracted from the 

bridge deck slab close to the test point. In practice, the bottom echo frequency can be 

obtained by analyzing the frequency response of IE signals from solid regions of the deck, 

which is about 9 kHz for the tested bridge deck. If the thickness of the bridge deck (21.6 

cm for the tested deck) is known, the P-wave velocity (4000 m/s) can be determined from 

the round-trip travel time of the P-wave in a solid region. If the thickness of the bridge deck 

is not available, the P-wave velocity can be determined by determining the time it takes for 

the surface waveto travel between two points along the surface of the concrete structure 

[69]. 

 

                                              (a)                                                                (b) 

Figure 18: The IE field testing signal: (a) signal and its Fourier spectrum; and (b) 
photo of the drilled core sample 
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are either too small or become monotonic functions. They can be considered as the residue. 

The frequency spectra of IMFs 3-8 are shown in Figure 20. The dominant frequency of 

IMFs 3-5 are 31 kHz, 17.6 kHz and 9 kHz. IMF 5 represents the bottom echo signal. IMF 

4 represents the delamination echo signal. The delamination depth calculated from Eq. (1) 

is 10.9 cm, which is close to the depth shown in Figure 18(b). The thickness of the core 

sample is 21.6 cm, and the delamination is slightly above the midplane of the sample. The 

deviation may be caused by the change of P-wave velocity. The P-wave velocity was 

estimated in sound concrete. The deteriorated concrete may have a decreased P-wave 

velocity. IMF 3 has a relatively broad bandwith and the peak frequency is above the 

maximum useful frequency (22 kHz) of wave energy generated by the 13 mm ball impactor 

used in the IE test [68]. It may be caused by environmental noise or other unexpected 

factors. IMFs 6-8 reflects the low frequency flexural mode vibrations 

 

Figure 19: Decomposed IMFs for the field testing signal using the EEMD method 
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Figure 20: Frequency spectra of decomposed IMFs 3-8 for the field testing signal 
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frequency in nondestructive evaluation of concrete structures is mostly above 5 kHz, the 

EEMD method is sufficient to extract useful intrinsic modes from IE signals for defect 

detection. 

The EEMD method is applied to both impact echo numerical simulation and 

experimental testing data. The results show that the EEMD can successfully decompose 

the IE signals into different modes for spectral composition analysis even when there is 

strong contamination from surface waves and noises. This demonstrates that the EEMD 

can be a very useful tool to facilitate the IE signal analysis, especially when it is difficult 

to use the conventional Fourier analysis to determine echo waves from either internal 

delaminations or concrete slab bottoms.  
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CHAPTER 3. DATA FUSION OF IMPACT-ECHO DATA 

 This chapter develops an automated data fusion and visualization process based on 

impact-echo testing with source-receiver arrays, aiming to conduct nondestructive 

evaluation and realize direct visualization of internal defects of concrete structures. In the 

process, the ratio between the amplitudes of major echo peaks in the frequency spectrum 

after noise reduction and the bottom echo signal is proposed as a feature parameter for data 

fusion. The fused results then go through image segmentation that combines thresholding 

and region growing to extract defect regions for visualization. The data fusion and 

visualization process is demonstrated using both numerical simulation and experimental 

testing data.  

3.1 Data Fusion and Visualization 

3.1.1 Preprocessing 

As the surface wave component in the measured impact-echo signal may affect 

signal interpretation, a Hanning window is first applied to all IE signals to reduce the 

surface waves. After the surface wave components are reduced, all signals are transformed 

into the frequency domain. Since the IE signals generally include noises due to the noisy 

experimental environment, inhomogeneous materials and other unexpected factors, the 

minor frequency peaks are removed by thresholding. For example, if 40 percent of the peak 

frequency amplitude is set as the threshold value, all peaks below the threshold are removed 

prior to further analysis. However, if a minor peak corresponds to the echo frequency from 

the bottom of the concrete slab, it will be tallied for future use that will be described in 

section 3.1.2. 
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Another step taken to reduce major noises is called peak frequency comparison. As 

a transducer measures the IE mode built between the top surface and a reflector below the 

test point in the test, the IE resonant frequencies measured by the transducer at the same 

test point with mechanical impacts applied at different locations nearby should be 

approximately same or within a reasonable range considering possible frequency shift. If 

the IE signal measured by the transducer fixed at a test point has a major frequency peak 

only when an impact is applied at one location but not at other locations nearby, it is highly 

possible this major peak is not the IE mode and can be removed. As our data fusion 

approach discussed in section 3.1.3 is based on test data from a receiver with mechanical 

impacts applied on the opposite sides of the receiver, the two IE signals measured by the 

same transducer at a test point with mechanical impacts applied on both sides can be used 

for noise removing based on the peak frequency comparison. If this approach is extended 

to 3D IE testing, multiple IE signals collected at the same test point with impacts applied 

at different locations may be used for peak frequency comparison based on majority voting 

or other statistical methods. 

The noise reduction procedure is demonstrated using two IE signals collected at a 

surface test point of a concrete slab with an internal delamination shown in Figure 21. The 

receiver (R) is located above the delamination center. Two IE signals collected by the 

receiver R are generated by two impacts (S1 and S2) applied on the opposite sides of the 

receiver one at a time. The estimated bottom echo frequency is 8.2 kHz. The frequency 

spectra of two IE signals are shown in Figure 22. The surface waves and the flexural mode 

signals below 7 kHz have been removed from both signals. To make the illustration easier 

to follow, the frequency spectra are normalized. The horizontal dashed line at the 40% of 
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the peak amplitude indicates the threshold for removing minor frequency peaks. Only 

frequency peaks with amplitude above the threshold from both IE frequency spectra are 

considered in further analysis. These peaks are called major peaks and marked with blue 

circles in Figure 22. For each major peak frequency f, in the first IE signal, if at least one 

corresponding major peak can be found in the second IE signal within the frequency 

interval [-∆f + f,, ∆f + f,], the frequency peak at f, is kept as an IE mode signal for the 

first signal and the corresponding major peaks in the frequency interval are kept as IE mode 

signals for the second signal. If a major frequency peak from one IE signal does not have 

at least one corresponding major peak from the second IE signal within the frequency 

interval, it will be removed from the signal. To avoid the possibility of removing real IE 

mode signals, a relative large frequency interval should be defined during the noise 

reduction process. As some researchers have shown a bottom frequency shift of 0.5 kHz 

[31] in the IE test,  ∆f is set as 1.5 kHz in this paper. The frequency intervals for the two 

major frequency peaks of signal 1 are marked with vertical dotted lines and dot-dashed 

lines respectively in Figure 22. After the noise reduction process, signals 1 and 2 have two 

and three major peaks left respectively, which are marked with red stars in Figure 22. Other 

circled peaks in signal 2 do not have corresponding peaks in signal 1 within the defined 

frequency interval and will be removed as noises.  
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Figure 21: Impact-echo experimental setup for illustrating the noise reduction 
process 

 

Figure 22: Illustration of the noise reduction process using two IE signals generated 
by sources S1 (signal 1) and S2 (signal 2) 

3.1.2 Modified Depth Spectrum 
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from the normalized frequency spectrum of the IE data based on (1). As the frequency is 

inversely proportional to the depth, the depth spectrum can be obtained by either selecting 

a constant frequency interval [32] or a constant depth interval [33]. Since non-uniform 

depth scales are inconvenient for image processing, a uniform depth spectrum strategy [33] 

is adopted in this paper.  

In our research, the depth spectrum not only serves the purpose of imaging process 

and visualization, but also needs to provide feature parameters for data fusion. Our previous 

research showed that the ratio between spectral amplitudes at the delamination echo 

frequency and the bottom echo frequency (the D/B ratio) was a feasible feature parameter 

for IE multisensor data fusion [70]. As the major frequency peaks left for each IE data after 

the noise reduction process are possible IE mode signals, the amplitudes of major peaks 

kept in the frequency spectrum are first normalized by the spectral amplitude of the bottom 

echo frequency before being transformed to the depth spectrum. The frequency-depth 

transformation procedure for each IE signal is as following: 

1. Apply preprocessing discussed in section 3.1.1 to the IE signal and represent 

the data with only major peaks after noise reduction in the frequency spectrum.  

2. Normalize the amplitude of each peak (P) in the frequency spectrum with the 

spectral amplitude of the bottom echo frequency (B) and obtain an updated 

frequency spectrum with the P/B ratio as amplitude for each major peak. 

3. Fix the depth interval∆D , and obtain the depth series D- = i*∆D , i =

1,2, … n 

4. For each D-, set the depth range  (D--
∆/
#
, D- +

∆/
#
]. Calculate the frequencies f-- 

corresponding to D--
∆/
#

, and f-* corresponding to D- +
∆/
#

. 

DD
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5. Determine the maximum amplitude a- in the interval [f-*, f--) in the updated 

frequency spectrum and assign this value to the range (D--
∆/
#
, D- +

∆/
#
] in the 

depth spectrum. If no major peak falls into the corresponding frequency 

interval, the value for the depth range is set as 0. 

6. The shallowest depth range corresponding to the defined depth series should be 

[∆/
#
, D& +

∆/
#
] based on step 4). However, since when the depth is smaller than 

∆/
#

, the corresponding frequency is generally too high to be excited by the 

impact-echo test, the depth range corresponding to D& is extended to [0, D& +

∆/
#
]. The value for this depth range in the depth spectrum is assigned with the 

maximum amplitude in the frequency interval [f&*, f123]. f123 is the maximum 

frequency considered in the IE analysis. 

Generally, depth D of concrete structure is known. The depth spectrum should be 

drawn only for the depth range [0, D& +
∆/
#
]. As the frequency of dominating flexural 

mode, if existed, is usually lower than the concrete slab bottom echo frequency, which 

represents a depth larger than the bottom depth, the flexural mode peaks do not appear in 

the depth spectrum.  

The frequency-depth transformation procedure is demonstrated using the processed 

signals 1 and 2 from section 3.1.1 (Figure 23). The major frequency peaks left and the 

tallied bottom echo signal for both signals are shown in the top row of Figure 23. As the 

bottom echo signal is not a major peak for both signals, it is plotted as a dashed line and 

will not appear in the depth spectrum. The spectral amplitude at the bottom echo frequency 

of each signal is used to normalize all major peaks in its frequency spectrum (middle row 

of Figure 23) before the frequency spectrum is transformed to the depth spectrum. If the 
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depth interval ∆D is set as 1cm, which provides a reasonable resolution for nondestructive 

evaluation of concrete structures, the depth spectra for signals 1 and 2 are shown in the 

bottom row of Figure 23.  

 

Figure 23: The frequency-depth transformation process 
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signals collected at the same test point but generated by impacts applied at the opposite 

sides of the receiver are averaged at the corresponding depth to achieve the fused depth 

spectrum for the test point. Using the modified depth spectra of signals 1 and 2 in Figure 

23 as an example, the fused depth spectrum is shown in Figure 24. After data fusion, the 

value corresponding to the delamination around 18cm is amplified and other values are 

weakened in the fused depth spectrum.  

 

Figure 24: The fused depth spectrum 
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thresholding and region growing methods are combined to extract the delamination areas 

from the integrated fused depth spectra. 

The threshold process first classifies pixels with values greater than a defined 

threshold value as the object pixels (potential defect locations) and other regions as 

background. The region growing method is then applied to the object pixels. This paper 

adopts the widely used seeded region growing method, which begins with selected pixels 

as seeds and then iteratively groups neighboring pixels satisfying predefined homogeneity 

criteria. The seed pixel is often chosen as the brightest pixel or the pixels with gray-level 

values corresponding to the strongest peaks in the computed histogram. The homogeneity 

criteria can be based on any characteristic of a region in the image such as pixel intensity, 

average intensity, variance, shape and size. In the image formed by integrating fused depth 

spectra from impact-echo testing, the fused P/B ratio represents the intensity of each pixel. 

A high P/B ratio value represents a high probability of a delamination under the test point. 

Therefore, the pixel with largest value is selected as the seed pixel, and the homogeneity 

criteria is based on the continuity of the object pixels after background pixels are removed 

by thresholding. The region growing method described in this paper uses a 2D image as an 

example, which can be easily extended to 3D images following the same principle. For a 

2D image, the seeded region growing method often grows in 8 directions as shown in 

Figure 25. However, since the delamination in concrete structures is almost parallel with 

the test surface and the impact-echo test cannot measure the delamination thickness [75], 

only 6 neighbor pixels are considered in the region growing process for a 2D image (Figure 

26). In the region growing process, the seed pixel (x,y) checks the 6 neighbor pixels as 

shown in Figure 26(a). If any of them is an object pixel, it is added to the region. In the 
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next iteration, each of the newly added pixels checks three neighbor pixels in the growing 

direction, which are shown in Figures 26(b) and (c) with one newly added pixel on each 

side of the seed as an example, and includes the neighbor pixels in the region only if they 

are object pixels. The iteration continues until no new pixels can be added to the region. 

This region is extracted as one delamination and removed from the image. The region 

growing process is then applied to the rest of the pixels if needed. If an extracted region is 

smaller than a predefined size, it is considered as noise and removed from the image. 

 

Figure 25: Eight neighbors of pixel (x,y) in a 2D image 
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(a) 

      

                               (b)                                                                (c) 

Figure 26: The neighbor pixels considered in the region growing process: (a) six 
neighbors of the seed pixel (x,y); (b) three neighbors of a newly added pixel on the 
left; and (c) three neighbors of a newly added pixel on the right. 

3.2 Numerical Simulation 

 To validate the data fusion and visualization process, numerical simulations were 

performed to simulate a concrete slab with a delamination. The cross-section of the 

numerical simulation model is shown in Figure 27. The dimensions of the concrete slab 
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a depth of 0.17 m and located at the center of the concrete slab. The Young’s modulus, 

mass density and Poisson’s ratio of the concrete were 50 GPa, 2500 kg/m3, and 0.2, 

respectively. The absorbent type boundary conditions were imposed at the four edges of 

the concrete slab to avoid reflection from these boundaries in numerical simulation, which 
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velocity was 4714 m/s. The corresponding echo frequencies from the delamination and the 

bottom of the slab were 13.3 kHz and 8.7 kHz respectively according to (1). The surface 

response (out-of-plane velocity) of the concrete was evaluated using the finite element 

analysis software ABAQUS with an impact force applied at one of the nine source 

locations (S1-S9) along the centerline as shown in Figure 27. S5 is at the center of the 

concrete slab surface. The distance between two adjacent source locations was 7.5 cm. For 

each impact source, the surface responses were recorded at four locations that were 2.5 cm 

and 5 cm away from the source along the centerline. All the receiver (R) locations are 

indicated by black dots in Figure 27. The time increment used in the analysis was 1 μs.         

 

Figure 27: The impact-echo numerical simulation setup 
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obtained at the same test point but generated by these two mechanical impacts on the 

opposite side of the test point. Since it is impractical to put a receiver at the same location 

as the source, the fused P/B ratio for a source location is estimated using linear 

interpolation.  

 The numerical simulation result is shown in Figure 28(c) after only the noise 

reduction and data fusion processes. Without further image segmentation, the delamination 

region has been clearly extracted and represented by a bright horizontal stripe between -15 

cm and 15 cm at a depth around 17 cm. Other than the delamination stripe, there are two 

weaker stripes at the bottom of the concrete slab outside the delamination region. Since 

there is no delamination above these two regions, the bottom echo signal dominates the 

frequency spectrum. The intensity of these pixels should be around 1 as they have been 

normalized by the bottom echo signal. Since the delamination has been extracted, there is 

no need to perform the image segmentation procedure. To demonstrate the effects of 

different noise reduction steps on the fusion result, the fused result without first going 

through noise reduction is shown in Figure 28(a), which has many noises, especially in the 

regions above and below the area close to the delamination boundary. After applying the 

minor frequency peak removing process with a threshold value of 40% of the peak 

frequency amplitude, although many weak noises are removed, there are still clear noises 

left in the fused result (Figure 28(b)). These noises are fully removed by applying the peak 

frequency comparison process (Figure 28(c)). 
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(a) 

 

(b) 

 

(c) 

Figure 28: Data fusion results (simulation):  (a) without noise reductions; (b) with 
minor peak removing; and (c) with both minor peak removing and peak frequency 
comparison. 

To evaluate whether increasing distance between two adjacent sources affects the 

result, sources S2, S4, S6 and S8 were replaced with receivers. The distance between 

adjacent source locations was increased to 15 cm. For each impact source, the surface 

responses were recorded at ten locations, which range from 2.5 cm to 12.5 cm on both sides 

Distance away from delamination center(cm)

D
ep

th
(c

m
)

 

 

-25 -20 -15 -10 -5 0 5 10 15 20 25

5
10
15
20
25 0

2

4

6

8

Distance away from delamination center(cm)

D
ep

th
(c

m
)

 

 

-25 -20 -15 -10 -5 0 5 10 15 20 25

5
10
15
20
25

0

2

4

6

8

Distance away from delamination center(cm)

D
ep

th
(c

m
)

 

 

-25 -20 -15 -10 -5 0 5 10 15 20 25

5
10
15
20
25 0

2

4

6

8



 51 

of the source along the centerline with a 2.5 cm interval between two adjacent receivers. 

After the noise reduction and data fusion processes, the result is shown in Figure 29(a). 

Although the delamination region can be identified, the result is contaminated by some 

noises. Further image segmentation can easily remove these noises and extract the defect 

region (Figure 29(b)). A threshold value of 1 is used for thresholding. 

 

(a) 

 

(b) 

Figure 29: Data fusion results for IE numerical simulation with a 15 cm distance 
between two adjacent sources: (a) with noise reduction and data fusion; and (b) with 
noise reduction, data fusion and image segmentation 

3.3 Experiment Test 

 Laboratory experiments were performed on a concrete slab with embedded 

artificial defects to further validate the data fusion and visualization process. The internal 

defects before casting the concrete are shown in Figure 30(a). The circular delamination 

(indicated by the yellow arrow) was selected as the target since it had sufficient distance 
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from two adjacent small defects to perform the source-receiver array experiments similar 

to the simulation. The concrete slab was flipped over after casting as the bottom provides 

a smooth testing surface. Figure 30(b) shows the plan view of the concrete slab and the 

targeted internal defect location from the testing surface. The concrete slab was 1.524 x 

1.524 x 0.26 m. The circular delamination was at a depth of 0.174 m and with a diameter 

of 0.3 m. The p-wave velocity was 4459 m/s. The corresponding echo frequencies from 

the delamination and the bottom of the slab were 12.3 kHz and 8.2 kHz respectively.  

         

                                     (a)                                                           (b) 

Figure 30: Experiment test setup (a) Internal defects before casting concrete; and 
(b) targeted delamination and source locations. 

 Similar to the simulation setup, the impact was applied at nine locations (Figure 

30(b)) using a wire-mounted solid steel ball of an 11 mm diameter. The source S5 was 

above the delamination center. The distance between two adjacent sources was 7.5 cm. For 

each impact source location, the surface response was measured at 4 locations with 2 test 

points on each side of the source along the test line. On each side, the receivers were put 

2.5 cm and 5 cm away from the source, respectively. The response was measured using a 

contact accelerometer (PCB 352C65) with a sampling frequency of 1 MHz.  As in the 

simulations, the depth interval ∆D  was set as 1 cm. The value for D5  in the depth DD nD
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spectrum was set as 27 cm considering potential bottom frequency shifting. The spectral 

amplitude of the bottom echo frequency was set as the maximum amplitude in the 

frequency range [f4-0.75kHz, f4 + 0.75kHz]. The data values at each source location were 

estimated using linear interpolation. To show that the experimental data are severely 

contaminated by noises, the depth spectra transformed from the normalized frequency 

spectra after removing surface waves are shown in Figure 31. It is difficult to accurately 

identify the delamination depth and size since bright pixels spread all over the image. 

 

Figure 31: The normalized depth spectra from the IE experimental data 

Figure 32(a) shows the data fusion result without noise reduction. Figures 32(b) 

and (c) demonstrate the fusion results with minor peak removing only and both minor peak 

removing and peak frequency comparison. Although each noise reduction step removes 

some noises from the data fusion result of the experimental test, there are still many noise 

pixels left in the image, especially around the delamination boundary and outside the 

delamination region. After applying thresholding with a threshold value of 1, all object 

pixels are shown in Figure 33(a). A large portion of the noise is removed by thresholding. 

Delamination regions can be extracted by further applying the region growing method to 

the object pixels. For the objected pixels in Figure 33(a), the isolated pixels are highly 

possible caused by noises. Therefore, a region with width less than 3 pixels is considered 
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as noise and removed automatically. The region growing result is shown in Figure 33(b), 

which accurately identifies the delamination depth and size. Figure 34 shows the data 

fusion and visualization result when the distance between two adjacent sources is increased 

to 15cm. The delaminaiton depth and size can also be accurately identified. 

 

(a) 

 

   (b)                                                                     

 

(c) 

Figure 32: Data fusion results (experiment) (a) without noise reduction; (b) with 
minor peak removing; and (c) with both minor peak removing and peak frequency 
comparison. 
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(a)                                                             

 

(b) 

Figure 33: Data fusion and visualization results after image segmentation:  (a)  
thresholding with a threshold value of 1; (b) applying both thresholding and region 
growing. 

 

Figure 34: Data fusion and visualization result for the IE experimental test with a 
distance of 15 cm between two adjacent sources 

3.4 Summary 

 An automated data fusion and visualization process is developed for interpretation 

of the impact-echo test results. The process applies preprocessing, data fusion, and image 
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segmentation algorithms to the impact-echo data collected by source-receiver arrays to 

automatically extract delamination regions and provide direct visualization of defect 

regions in concrete structures. Data fusion is based on a feature parameter calculated by 

taking the ratio between the amplitudes of major echo peaks in the frequency spectrum 

after noise reduction and the bottom echo signal. The fused results in the depth-spectrum 

domain go through further image segmentation, which combines the thresholding and 

region growing methods, for defect region extraction. Both the simulation and 

experimental results demonstrate that the automated data fusion and visualization process 

can effectively extract delamination regions from the impact-echo test data. 
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CHAPTER 4. INTERFERENCE REMOVAL OF GPR DATA  

In this chapter, the 𝑓-𝑥 VMD method is exploited to remove the direct wave clutter 

of GPR Data from RC bridge decks. The collected 𝑡-𝑥 domain B-Scan GPR data is first 

transformed to 	𝑓-𝑥  domain. Then, the spatial series is separated into a real series and an 

imaginary series at each frequency, and VMD is applied to both series and to obtain the 

complex filtered data. Finally, the complex filtered signal is transformed back to 	𝑡-𝑥 

domain to obtain filtered rebar signal. The proper parameters to apply 𝑓-𝑥 VMD method 

are investigated using GPR simulation data. The effectiveness of proposed method is 

validated using simulation, experimental data, and field data. 

4.1 Proposed Approach 

4.1.1 Direct wave in GPR image 

GPR is a well-known accessing tool for concrete bridges. The GPR transmitter 

sends the electromagnetic pulse into the bridge deck and the receiver records the strength 

and the time of the reflected pulses. The recorded signal amplitude as a function of travel 

time is called an A-scan. Different A-scans stacked horizontally along the moving direction 

can form a B-scan GPR image. Figure 35(a) is a part of the B-scan GPR image from the 

bridge deck field test data. The horizontal axis represents the testing distance, and the 

vertical axis is the two-way travel time. The hyperbolic curves between 2ns and 3ns time 

range are the rebar reflections. The horizontal stripe around 1ns is the direct wave clutter, 

which is the energy radiated directly from transmitter to the receiver. The red line in the 

image is the A-scan test on top of the second rebar. The related detailed plot is Figure 35(b).  



 58 

The first positive amplitude peak is from the direct wave. The second positive amplitude 

peak is mainly from rebar reflection signal. The direct wave and rebar reflection are 

partially overlapped. The clutter obscures the target signals and makes it hard to extract 

useful information. 

 

    (a)                                                                   (b) 

Figure 35: Field test GPR data (a)GPR profile t-x domain (b)A-san test time series 

4.1.2 𝑓-𝑥 VMD System Architecture 

To solve the direct wave problem, we apply the 𝑓-𝑥 VMD method. The related 

system architecture is Figure 36. The main idea of the proposed system is to filter the noise 

in the 𝑓 -𝑥  domain. The procedure includes three steps: signal transformation to 	𝑓 -𝑥 

domain, direct wave removal with VMD filter, signal transformation back to 	𝑡-𝑥 domain. 

To illustrate the procedure, we use the simulation data generated by GPR simulator, 

GprMax 2.0, which has been utilized by various researchers.  A segment of the RC bridge 

deck is built in the simulator. The conductivity is set to 0.05 S/m. The dielectric constant 
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is set to 6.4 as the typical value for dry concrete. The exciting source for the transmitting 

antenna is 2.6 GHz. 

 

Figure 36: 𝒇-𝒙 VMD system architecture 

4.1.2.1 FFT transform to 𝑓-𝑥 domain 

The step is to transform the input data from 𝑡-𝑥 domain to 𝑓-𝑥 domain.  The input 

data 	𝐷(𝑡, 𝑥) in Figure 36 is 2D GPR B-scan radargram. The related simulation data is 

Figure 37(a), which is the typical GPR test response from one rebar in the concrete slab. 

Vertical axis in Figure 37(a) is the A-scan signal response of two-way travel time. 

Horizontal axis is the testing distance. The hyperbola in the middle relates to rebar 

reflection which is the target signal. The horizontal stripe around 1ns relates to the direct 

wave noise signal. FFT will apply to each column of the 2D GPR data 𝐷(𝑡, 𝑥(). The 

transformed results are 𝐷(𝑓, 𝑥) in Figure 36, which are complex values. The related real 

part simulation data 𝐷67(𝑓, 𝑥) is Figure 37(b). 

The horizontal axis in Figure 37(b) is still the testing distance. The vertical axis is 

the frequency domain. The direct wave stripe in the 𝑡-𝑥 domain is transformed to multiple 
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stripes in the 𝑓-𝑥 domain. And the target rebar hyperbola is also transformed to multiple 

hyperbolae at reverse direction in the 𝑓-𝑥  domain.  The direct wave and rebar signal 

overlap together. To see the signal change in 𝑥 domain, we extract 𝑥 series data 𝐷67(𝑓( , 𝑥) 

at frequency𝑓( = 2.835GHz, which is the red line in Figure 37(b). The detailed signal is 

Figure 37(c). The signal is symmetric with center around 1.4m. We can observe strong DC 

component at value around 6 ∗ 108, which is from direct wave.  

4.1.2.2 VMD filter 

In the previous step, we get the complex data 𝐷(𝑓, 𝑥), which includes real part 

	𝐷67(𝑓, 𝑥)  and imaginary part 𝐷(9(𝑓, 𝑥) . VMD filter will apply to 𝐷67(𝑓, 𝑥)   and 

𝐷(9(𝑓, 𝑥)  separately at each frequency 𝑓( . The filtered real and imaginary parts will 

combine back to form the target rebar data 𝑅(𝑓( , 𝑥) in Figure 36. The real part filtered result 

at frequency 𝑓( = 2.835GHz of simulation data is Figure 37(d), which is the VMD result 

on Figure 37(c). From Figure 37(d), we can observe the strong direct wave component is 

removed. The collection of all the real part filtered results at each frequency is Figure 37(e) 

𝑅67(𝑓, 𝑥). The red line there relates to Figure 37(d). Compared with the original 𝑓-𝑥 image 

Figure 37(b), all the direct wave noise are filtered out. 

4.1.2.3 VMD filterIFFT transform back to 𝑡-𝑥 domain  

In Figure 36, the last step is to apply IFFT on each vertical trace of the complex 𝑓-

𝑥 filtered image 𝑅(𝑓, 𝑥). The simulation result is Figure 37(f). Compared with the original 

𝑡-𝑥 image Figure 37(a), the strong horizontal noise stripe is filtered out. Only the target 

rebar signal is left in the image. 
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                                   (a)                                                              (b) 

 
                                   (c)                                                                     (d) 

 
                                     (e)                                                             (f) 

Figure 37: 𝒇-𝒙 VMD method in simulation data (a) rebar reflection with direct wave 
in the 𝒕-𝒙 domain 𝑫(𝒕, 𝒙); (b)real part of data in	𝒇-𝒙 domain 𝑫𝒓𝒆(𝒇, 𝒙);(c) 𝒙 series 
data 𝑫𝒓𝒆(𝒇𝒊, 𝒙) at frequency𝒇𝒊 = 𝟐. 𝟖𝟑𝟓𝑮𝑯𝒛	 ;(d)VMD filtered data 𝑹𝒓𝒆(𝒇𝒊, 𝒙) at 
frequency𝒇𝒊 = 𝟐. 𝟖𝟑𝟓𝐆𝐇𝐳; (e) real part of VMD filtered data in 𝒇-𝒙 domain 
𝑹𝒓𝒆(𝒇, 𝒙) ;(f) filtered data in the 𝒕-𝒙 domain 𝑹(𝒕, 𝒙); 
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4.1.3 VMD Filter 

VMD (Variational Mode Decomposition) method is used to remove the direct wave 

influence in 𝐷67(𝑓( , 𝑥)  and 𝐷(9(𝑓( , 𝑥) . We use 1-D signal sequence 𝑑(𝑥) to represent  

𝐷67(𝑓( , 𝑥)  or  𝐷(9(𝑓( , 𝑥). The process decomposes the signal 𝑑(𝑥) into an ensemble of 

band-limited IMFs where most of the direct wave signal is extracted to one mode. And it 

is usually IMF1. The residual signal 𝑟(𝑥)  after subtraction IMF1 from the original 

signal	𝑑(𝑥) will be the target rebar reflection. 

The VMD is an adaptive and quasi-orthogonal signal decomposition technique that 

can non-recursively decompose the signal	𝑑(𝑥) with high efficiency.  The mode extraction 

is achieved by solving the following optimization problem [59]:                   

min
{>"},{A"}

p∑ q𝜕B stu𝛿(𝑥) +
C
DB
w ∗ 𝑑E(𝑥)x ∗ 𝑒𝑥𝑝(−𝑗𝜔E𝑥)|q

#

#
F
E)& }    𝑠. 𝑡. ∑ 𝑑E = 𝑑F

E)& ,   (6)                                                 

where 𝑑E(𝑥) is the 	𝑘th IMF of the input signal	𝑑(𝑥),	𝜔E is the center frequency of 𝑑E(𝑥), 

and 𝐾 is the total decomposed mode number.  

Equation (6) is to estimate the bandwidth of the IMF through the squared  𝐿2 -norm 

of the gradient[77]. The term (𝛿(𝑥) + 𝑗 𝜋𝑥⁄ ) ∗ 𝑑E(𝑥) gets the unilateral spectrum of 𝑑E(𝑥) 

by computing the analytic signal through Hilbert transform. 𝛿 is the Dirac distribution. 

Multiplying 	𝑒𝑥𝑝(−𝑗𝜔E𝑥)  is to shift the frequency spectrum of mode 𝑑E(𝑥)    to the 

baseband region. 
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Equation (6) is a constrained variational problem. To reconstruct it to an 

unconstrained problem, the quadratic penalty 	𝛼 and Lagrange multiplier 	𝜆 are introduced. 

The problem in Equation (6) could be rewritten as the augmented Lagrangian formula: 

𝐿(𝑑E , 𝜔E , 𝜆) = 𝛼 ∑ q𝜕B stu𝛿(𝑥) +
C
DB
w ∗ 𝑑E(𝑥)x ∗ 𝑒𝑥𝑝(−𝑗𝜔E𝑥)|q

#

#
E + ‖𝑑(𝑥) −

∑ 𝑑E(𝑥)E ‖## + 〈𝜆(𝑥), 𝑑(𝑥) − ∑ 𝑑E(𝑥)E 〉.                                    (7) 

𝛼  is the fidelity term to balance the variational energy. The unconstrained problem is 

solved by the alternate direction method of multipliers (ADMM).  The result of the mode 

in spectral-domain is written as [59]:               

𝑑E(𝜔) =
>(A)I∑ >#(A)#$" *K(A) #⁄

&*#M(AIA")%
                                        (8) 

𝑑E(𝑥) = 𝑟𝑒𝑎𝑙{𝑖𝑓𝑓𝑡(𝑑E(𝜔))}                                         (9) 

Where 𝑑E(𝜔), 𝑑(𝜔), 𝜆(𝜔)are Fourier transform of 𝑑E(𝑥), 𝑑(𝑥), 𝜆(𝑥), respectively.  

The detailed steps of 𝑓-𝑥 VMD can be found in Algorithm 1. The preprocessing 

step is to calculate the 𝐷(𝑓, 𝑥)  by FFT on each 𝑡  series and extract the real part or 

imaginary part of the complex 𝑥 series at each frequency. The algorithm input 𝑑(𝜔) is the 

Fourier transform of preprocessing result 𝑑(𝑥). The algorithm parameter values of mode 

number 𝐾, time-step of the dual ascent τ, quadratic penalty term 𝛼, initialization of center 

frequency {𝜔E&}  will be discussed in the next section. The process of ADMM has 

convergence judgment parameter 𝜀 as 10IN. 𝑑E(𝑥) is the 𝑘th IMF. The noise 𝑁(𝑓, 𝑥) is 

the sum of first 𝑀 modes. Postprocessing is to calculate the target rebar signal by IFFT. 
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Algorithm 1 𝑓-𝑥 VMD Process 

Algorithm: 𝑓-𝑥 VMD process 

Preprocessing: 𝐷(𝑡, 𝑥)
OOP
�⎯�𝐷(𝑓, 𝑥)= 𝐷67(𝑓, 𝑥) + 𝑗 ∗ 𝐷(9(𝑓, 𝑥) 

                        Set 𝐷67(𝑓, 𝑥) or 𝐷(9(𝑓, 𝑥) as 𝑑(𝑥) 
Input: 𝑑(𝑥)

OOP
�⎯� 𝑑(𝜔) 

Parameters: 𝐾, τ, α 
Initialization: {𝑑E&(𝜔)} = 0, {𝜔E&}, 𝜆&(𝜔) = 0, 𝑛 = 0 
repeat 
     𝑛=	𝑛+1 
     for 	𝒌 = 1:𝑲 do  
           Update: 

																				𝑑E'*&(𝜔) =
𝑑(𝜔) − ∑ 𝑑('*&(𝜔)(QE − ∑ 𝑑('(𝜔)(RE + 𝜆'(𝜔) 2⁄

1 + 2𝛼(𝜔 − 𝜔E')#
 

𝜔E'*& =
∫ 𝜔|𝑑E'*&(𝜔)|#𝑑𝜔
S
T

∫ �𝑑E'*&(𝜔)�
#𝑑𝜔S

T

 

 
      end for 
      Update: 𝜆'*& = 𝜆' + 𝜏(𝑑 − ∑ 𝑑E'*&E ) 
until convergence condition: ∑ ‖𝑑E'*& − 𝑑E'‖## ‖𝑑E'‖##⁄ < 𝜀F

E  
Output: 𝑁67(𝑓, 𝑥) = ∑ 𝑑E(𝑥) = ∑ 𝑟𝑒𝑎𝑙{𝑖𝑓𝑓𝑡(𝑑E(𝜔))}U

E)&
U
E)&  

              Same steps for 𝑁(9(𝑓, 𝑥) 
Postprocessing: 𝑁(𝑓, 𝑥)= 𝑁67(𝑓, 𝑥) + 𝑗 ∗ 𝑁(9(𝑓, 𝑥) 
                           𝑅(𝑓, 𝑥)= 	𝐷(𝑓, 𝑥) −	𝑁(𝑓, 𝑥) 		

($$V
�⎯� 𝑅(𝑡, 𝑥) 

4.2 Impact of Various Algorithm Parameters 

4.2.1  Direct Wave Center Frequency 

To extract the mode of direct wave noise with VMD method, we need the proper 

initialization value of its center frequency. We use similar simulation in section 4.1.2 to 

illustrate the center frequency change of direct wave. More details of the simulation are as 

following. The simulation is based on the finite-difference time-domain (FDTD) method. 

In the simulation, the conductivity is 0.05 S/m. The dielectric constant is 6.4. The 
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transceivers are two line source antennas. The exciting source for the transmitting antenna 

follows a Ricker function with a center frequency of 2.6 GHz. The common offset is 3cm 

with bistatic acquisition mode. The stand offset is 0.25cm. The time range of each A-scan 

testing is 6 ns. The 2-D simulation radargram data are collected with a step of 5 mm.  

 

Figure 38: Fourier Transfrom on 2.835GHz x series data (Figure 37(c)) 

The rebar reflection signal with a horizontal direct wave in 𝑡-𝑥 domain is shown in 

Figure 37(a). The related real part 𝑓-𝑥 radargram is Figure 37(b). It is the input of VMD 

method. To check the center frequency of direct wave in 𝑓-𝑥 domain, we apply Fourier 

transform to 𝑥 series data at frequency 2.835GHz as an example, which is Figure 37(c).  

The related amplitude plot is Figure 38. It can be observed that the direct waves are 

concentrated at frequency 0, and the target signal is spread over a wide frequency range. 
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                                  (a)                                                                    (b) 

 
                                  (c)                                                           (d) 

Figure 39: GPR profiles with 10-degree direct wave (a) rebar reflection with the 
direct wave in the	𝒕-𝒙 domain; (b)real part of data in 	𝒇-𝒙 domain;(c) 𝒙 series data 
at frequency 2.835GHz;(d)real part of Fourier Transform at 2.835GHz x series data  

To see the influence of non-horizontal direct waves, we manually rotate the direct 

horizontal wave to 10 degrees, and the related data in the 𝑡-𝑥 domain is shown in Figure 

39(a). Figure 39(b) is the related real part in  𝑓-𝑥 domain. Figure 39(c) is the selected 𝑥 

series data at frequency 2.835GHz corresponding to the red line in Figure 39(b). Its 

amplitude plot after Fourier transform is Figure 39(d).  The red point in Figure 39(d) relates 

to direct wave influence. We can see the direct wave frequency shifts away from frequency 

0, but it is still close to frequency 0. From the simulation analysis, we can see that if the 
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direct wave is horizontal or at a small angle(less than 10 degree), the direct wave influence 

in  	𝑓-𝑥 spectrum is close to frequency 0.  

4.2.2 Algorithm Parameters 

The main parameters of VMD methods are the number of modes 𝐾, the initial 

center frequencies, quadratic penalty term 𝛼, and the time-step of the dual ascent 𝜏[78]. 

4.2.2.1 Time-step of the dual ascent 𝜏 and Initialization of center frequency 𝜔E&  

Time-step of the dual ascent 𝜏 is used to enforce constraints. Under a low noise 

level, 𝜏  can ensure the convergence. Under a high noise level,  𝜏  will become an 

impediment. In practical application, the data with noise will usually set 𝜏 to 0[78]. In our 

GPR B-scan data, 𝜏 will be set to zero.  

The general methods to initialize the center frequency 𝜔E&  in VMD include zero 

values, values in a uniform distribution, the largest 𝐾  maximum points of the power 

spectrum. If the initialized 𝜔E& is close to the actual frequency, VMD is more likely to 

extract the true mode. If 𝜔E&  differs from actual frequency by an order of magnitude or 

more, VMD performance will worsen significantly, no matter what values are selected for 

𝐾 and 𝛼[79]. Figure 38 and Figure 39(d) show that the direct wave frequency is close to 

0. Under uniform distribution initialization, the 𝜔&& is set to 0. It will easily lead to capture 

the direct wave. We will use uniform distribution initialization for our GPR data analysis. 
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4.2.2.2 Number of modes 𝐾 

𝐾 determines the number of decomposed modes.  Too large 𝐾 will lead to over-

segmentation. One component will be separated into two or more IMFs. It will generate 

redundant IMFs. Too small 𝐾  will lead to under segmentation. One IMF will contain 

multiple components.  The best 𝐾  is the maximum value before the occurrence of over-

segmentation[80]. 

To evaluate the mode number 𝐾, we need to fix the quadratic penalty term 𝛼. The 

value 𝛼 is recommended to 2000 in various applications[81][82]. We will set 𝛼 to 2000 to 

test the influence of 𝐾. As the previous discussion, time-step of the dual ascent 𝜏 is 0, and 

the initialization of center frequencies used uniform distribution. The performance is 

evaluated by the correlation between the target signal and the filtered signal. 𝑓-𝑥 VMD is 

applied to the simulation data with horizontal direct waves as Figure 37(a) and 10 degree 

direct waves as Figure 39(a). Mode number  𝐾 is changed from 2 to 8. All the performances 

are shown in Table 1. For horizontal direct wave removal, the filtered performance is good 

from mode number 2. And the related correlation is 0.949. When the mode number 

increases, the performance is slightly better. The performance stabilizes at mode number 

7. But for 10-degree direct wave removal, the performance has best performance at mode 

number 2. From mode number 3, the correlation performance drops significantly from 

0.907 to 0.550. In summary, mode number K should be set to 2 to have good performance 

for different direct waves. 
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Table 1: Filtering performance by K for horizontal and 10 degree direct waves 

Mode 𝐾 Correlation for horizontal clutter  Correlation for 10 degree clutter 

2 0.949 0.907 
3 0.956 0.550 
4 0.961 0.347 
5 0.964 0.346 
6 
7 
8 

0.962 
0.970 
0.972 

0.354 
0.339 
0.339 

4.2.2.3 Quadratic penalty term 𝛼 

Quadratic penalty term 𝛼 is related to the filter bandwidth to decompose the IMF. 

A larger value of  𝛼 , it will have narrower filter bandwidth. It may lead to capturing the 

wrong center frequency. A smaller value of 𝛼 will cause wider filter bandwidth. It may 

lead to capturing more noise and interference[83].  

As the previous discussion, time-step of the dual ascent 𝜏 is 0, and initialization of 

center frequencies uses uniform distribution, and Mode number  𝐾 is set to 2. To select the 

suitable 𝛼 value, the performance is still evaluated by the correlation between the target 

signal and the filtered signal. 𝑓-𝑥 VMD is applied to the simulation data with horizontal 

and 10 degree direct waves. The quadratic penalty term 𝛼 is changed from 1 to 5000. For 

horizontal direct wave removal, the filtered performance increases through the increase of 

𝛼 value. For 10-degree direct wave removal, the filtered performance increases through the 

increase of 𝛼 value until the 𝛼 value reaches 2000. When the 𝛼 value is set to 500, 1000, 

2000, the performance is similar. And when the  𝛼  value increases to 5000, the 

performance drops from 0.906 to 0.868. Since the 𝛼 value 2000 is selected by various 
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applications, and it has good performance for different direct wave conditions, 𝛼 value will 

select 2000 for future analysis. 

Table 2: Filtering performance by α for horizontal and 10 degree direct waves 

Quadratic penalty 

term 𝛼 

Correlation for horizontal clutter  Correlation for 10 degree clutter 

1 0.834 0.837 
5 0.851 0.849 
10 0.853 0.851 
50 0.865 0.862 
100 
500 
1000 
2000 
5000 

0.875 
0.911 
0.932 
0.949 
0.965 

0.871 
0.900 
0.908 
0.906 
0.868 

4.3 Performance comparison 

4.3.1 Performance Evaluation Metrics 

4.3.1.1 Normalized Cross Correlation 

Normalized Cross Correlation (NCC) has been widely used in template 

matching[84] to evaluate the image similarity. For our GPR application, the template image 

is the ground-truth rebar reflection without noise. The input image is the filtered result. The 

template and input are in the same size.  The NCC metric is as following equation [85]. 

𝑁𝐶𝐶 = ∑ (W(B,X)IW)̅(Z(B,X)IZ̅)
[&['B,X 																																										(10)	
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𝐼 and 𝐺 are the filtered image and the ground truth image. 𝐼 ̅ and 𝜎W are the mean 

and the standard deviation of the filtered image.  �̅� and 𝜎Z  are the mean of the standard 

deviation of the ground truth image. 𝑁𝐶𝐶 is the calculated normalized cross correlation 

between filtered result and ground truth.  The range of 𝑁𝐶𝐶 value is between -1 and 1. The 

𝑁𝐶𝐶 value 1 means the two images have the exact same shape, while value 0 means the 

two images are uncorrelated. Value -1 means the two images have opposite shapes.. 

4.3.1.2 Peak Signal to Noise Ratio 

Peak signal noise ratio (PSNR) is a common method [86] to quantify the error 

between two images. The definition is as following equation.  

𝑃𝑆𝑁𝑅 = 10 ∗ log&T(
U\]&

%

U^_
)                                       (11) 

𝑀𝐴𝑋W is the maximum pixel value of the image. It is 255 for 8-bit grey-level image. 

And it is 1 if the 2D input value is rescaled to [0,1]. 𝑀𝑆𝐸 (Mean Square Error) is calculated 

by the following equation. 𝐼 and 𝐺 are the filtered image and the ground truth image. 

𝑀𝑆𝐸(𝐼, 𝐺) = &
U∗a

∑ ∑ (𝐼(𝑖, 𝑗) − 𝐺(𝑖, 𝑗))#a
C)&

U
()&                   (12) 

For the GPR results, they are all first rescaled to [0, 1] to calculate the 𝑃𝑆𝑁𝑅 [87]. The 

equation to rescale is Equation (13). For the 2D input 𝐼, 𝐼(𝑥, 𝑦) is the original value at pixel 

(x,y), and 𝐼b(𝑥, 𝑦) is the rescaled value. 𝑚𝑖𝑛W is the minimum value of the input 𝐼, 𝑚𝑎𝑥W is 

the maximum value of 𝐼. 

𝐼b(𝑥, 𝑦) = W(B,X)I9('&
9cB&I9('&

                                              (13) 
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4.3.1.3 Structural Similarity Index Measure 

PSNR sometimes fails when used to access similarity across distortion types [88]. 

Structural Similarity Index Measure (SSIM) is another image similarity measure to model 

the human visual system (HVS) [89]. The SSIM Index between two images is calculated 

through comparison in three terms – luminance, contrast, and structure.  

The luminance, contrast, and structure comparisons of two images (𝐼&(𝑖, 𝑗) and 

𝐼#(𝑖, 𝑗)) are respectively computed using the following functions:  

𝑙(𝑖, 𝑗) = #d(((,C)d%((,C)*e(
d(%((,C)*d%%((,C)*e(

                                              (13) 

𝑐(𝑖, 𝑗) = #[(((,C)[%((,C)*e%
[(%((,C)*[%%((,C)*e%

                                              (14) 

𝑠(𝑖, 𝑗) = [(%((,C)*e)
[(((,C)[%((,C)*e)

                                               (15) 

Assume 𝑊(C  denote a windowed region of size 𝑘 ∗ 𝑘 with indices {𝑖, … , 𝑖 + 𝑘 −

1} ∗ {𝑗, … 𝑗 + 𝑘 − 1}. The local mean 𝜇&(𝑖, 𝑗) and 𝜇#(𝑖, 𝑗) are defined as following: 

𝜇&(𝑖, 𝑗) = ∑ 𝑤(𝑚, 𝑛)𝐼&(𝑖, 𝑗)9,'∈g#,+                                      (16) 

𝜇#(𝑖, 𝑗) = ∑ 𝑤(𝑚, 𝑛)𝐼#(𝑖, 𝑗)9,'∈g#,+                                      (17) 

The standard deviations 𝜎&(𝑖, 𝑗), 𝜎#(𝑖, 𝑗)  and correlation 𝜎&#(𝑖, 𝑗)  are defined as 

following: 

𝜎&#(𝑖, 𝑗) = ∑ 𝑤(𝑚, 𝑛)𝐼&#(𝑖, 𝑗)9,'∈g#,+ − 𝜇&#(𝑖, 𝑗)                         (18) 
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𝜎##(𝑖, 𝑗) = ∑ 𝑤(𝑚, 𝑛)𝐼##(𝑖, 𝑗)9,'∈g#,+ − 𝜇##(𝑖, 𝑗)                         (19) 

𝜎&## (𝑖, 𝑗) = ∑ 𝑤(𝑚, 𝑛)𝐼&(𝑖, 𝑗)𝐼#(𝑖, 𝑗)9,'∈g#,+ − 𝜇&(𝑖, 𝑗)𝜇#(𝑖, 𝑗)                (20) 

The local quality score is defined as  

𝑄(𝑖, 𝑗) = 𝑙(𝑖, 𝑗) ∗ 𝑐(𝑖, 𝑗) ∗ 𝑠(𝑖, 𝑗)                                   (21) 

The Mean SSIM (MSSIM) score between two images: 

𝑀𝑆𝑆𝐼𝑀(𝐼&, 𝐼#) =
&

U∗a
∑ ∑ 𝑄(𝑖, 𝑗)a

C)&
U
()&                              (22) 

In our GPR application, we will first rescale the value of input image to [0,1] [87]. 

Then we calculate the MSSIM between the filtered result and ground truth. 

4.3.2 Simulation test 

4.3.2.1 Surface wave removal 

A. Under horizontal direct waves 

As a comparison to 𝑓-𝑥 VMD, the general average background removal method  

and F-K filter with dip relaxation are applied to remove the direct waves in simulation data. 

Figure 40 is the filtered results for horizontal direct wave influence.  The source signal is 

Figure 37(a). All the three methods could successfully remove the direct wave component. 

The result after background average removal is shown in  Figure 40(a). It shows 

background average removal can remove the direct wave well, but it generates artifacts 

that are pointed by the red arrow.  The artifact is caused by the subtraction of the mean 

pixel value along the same horizontal line. The area with the strongest reflection energy 
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(the apex of the hyperbolic rebar reflection) will leave a clear artificial line [43]. Figure 

40(b) is the performance of F-K filter. It shows F-K filter could extract the target signal 

with less horizontal artifacts.  Figure 40(c) is the 𝑓 -𝑥  VMD performance with least 

horizontal artifacts.  

To quantitively compare the performance of the three methods, we will calculate 

the metric values of MSSIM, NCC, and PSNR between the filtered results of the three 

methods and the reference image. The reference image is the ground truth which is obtained 

by subtracting the clutter image from the original raw input GPR image. The clutter image 

is the simulation result under the same environment of the raw input image without rebar. 

The metric performances is in Table 3.  

For MSSIM, the values for the three methods are all close to 1. It means the results 

of the three methods all have high structural similarity with the ground truth and the 

filtering results are all very good. Among them, the value of the average removal method 

is slightly better than F-K filter and F-X VMD filter.  

For NCC, the results of the three methods all have high correlation values with the 

ground truth (larger than 0.94). It means all the methods have good performance. The 

performance of average removal method is also slightly better than F-K filter and the F-X 

VMD method.   

For PSNR, the average removal method has the best performance, with a value of 

43.99dB; the F-K Filter has a value of 32.18dB; and the F-X VMD has a value of 24.89dB. 

The difference between average removal and F-K filter is 11.81dB. The difference between 

F-K filter and F-X VMD is 7.29dB.  This is because the PSNR is calculated from MSE 
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with reciprocal relation. When MSE value is small, a slight change of the MSE will cause 

a large change of PSNR value.  

The PSNR value is calculated through 𝑀𝑆𝐸, which is the related mean squared 

error between the filtered image and the ground truth after the pixel values are rescaled to 

the range [0, 1]. The rescaled process is based on Equation 13. The 𝑀𝑆𝐸 values are in 

Table 4. The values of 𝑀𝑆𝐸 for the three methods are all very small,  especially that the 

values of average removal method and F-K filter are close to 0. A small difference of 𝑀𝑆𝐸 

will lead to a large change in PSNR values. 𝑀𝑆𝐸¦  in Table 4 represents the original mean 

square error before rescaling between filtered image and ground truth image. There are no 

obvious differences between 𝑀𝑆𝐸¦   of the three methods, implying that these methods have 

similar performance. 

Both visual inspection and quantitative metrics show that the three methods have 

good performance to remove the horizontal direct wave clutter. Based on the visual 

inspection, F-X VMD has minimal horizontal artifacts. From quantitative metrics, average 

removal has the best performance. 

Table 3: Metric performances at horizontal direct waves 

Performance Average Removal F-K Filter F-X VMD 

MSSIM 0.9997 0.9989 0.9911 
NCC 0.9880 0.9820 0.9491 

PSNR (dB) 43.9993 32.1842 24.8918 
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Table 4: MSE values for PSNR at horizontal direct waves 

MSE Values Average Removal F-K Filter F-X VMD 

𝑀𝑆𝐸 0.00004 0.00060 0.0032 
𝑀𝑆𝐸¦  33.9667 50.9965 101.7628 

 

 
              (a)                                                                  (b)

 
                                                    (c) 

Figure 40: Filtered simulation result at horizontal direct waves after (a)Average 
Removal (b)F-K filter (c) 𝒇-𝒙 VMD 

 

1.2 1.4 1.6
Position X [m]

0

1

2

3

4

5

Ti
m

e 
[n

s]

1.2 1.4 1.6
Position X [m]

0

1

2

3

4

5

Ti
m

e 
[n

s]

1.2 1.4 1.6
Position X [m]

0

1

2

3

4

5

Ti
m

e 
[n

s]



 77 

B. Under 10-degree direct waves 

Figure 41 are the comparison results of skew direct wave. The source signal is 

Figure 39(a) which includes 10-degree direct wave.  Figure 41(a) is the performance of 

average removal, which shows that most of the direct wave residues still exist. Figure 41(b) 

is the F-K filter result. The wavenum threshold is selected 5 (unit: 1/m), which has the best 

filtering performance. A large amount of direct waves in the middle are filtered out, but 

there are still clear direct wave at two sides. Figure 41(c) is the filtered result by 𝑓-𝑥 VMD. 

The corresponding parameter mode number is 2, quadratic penalty term is 2000. Most 

direct waves are filtered out. 𝑓 - 𝑥  VMD has best performance by visual judgment, 

compared to average removal, and F-K filter.  

The quantitative results for the three metrics are shown in Figure 41. The reference 

image in the calculation is still the ground truth, which is obtained by subtracting the clutter 

image from the original raw input GPR image. All three metrics verify that the F-X VMD 

method has the best performance. It has largest MSSIM value at 0.9861, and largest NCC 

value at 0.9073, and largest PSNR value at 22.2127dB.  

For MSSIM, F-X VMD has the best performance. Although the value of the 

average removal method seems to be close to the value of F-X VMD, the filtering 

performance in Figure 41(a) shows that the performance of the average removal method is 

bad. 

For NCC, F-X VMD has the best performance. The value of the average removal 

method is 0.2050, which is consistent with its bad performance in Figure 41(a). The value 

of the F-K filter is 0.6419, which matches its acceptable performance in Figure 41(b). The 
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value of F-X VMD is 0.9073, which further supports its best performance in Figure 41(c). 

The results obtained from the NCC metric are consistent with those provided by visual 

inspection. 

For PSNR, F-X VMD has the best performance. But the PSNR value of F-K filter 

is close to the value of the average removal method, which is not consistent with the 

filtering performance of these methods shown in Figure 41(a) and (b). Based on these two 

figures, we can observe that F-K filter could filter out much more direct wave clutter than 

the average removal method. Thus, the PSNR metric may not be able to fully reflect the 

filtered change of the direct wave clutter. 

The PSNR value is calculated through 𝑀𝑆𝐸 shown in Table 6. 𝑀𝑆𝐸 of average 

removal method is close to the value of F-K filter. Close 𝑀𝑆𝐸 values lead to the close 

PSNR performance. 𝑀𝑆𝐸¦  in Table 6 represents the MSE values between the original 

filtered image and ground truth before rescaling. The 𝑀𝑆𝐸¦  of average removal method at 

30901.5214 is 25 times of the F-K filter value at 1245.4186. The 𝑀𝑆𝐸¦	of F-K filter is 5 

times of the F-X VMD value at 251.5247. The big difference of  𝑀𝑆𝐸¦  Values between 

average removal and F-K filter shows that F-K filter has much better performance than the 

average removal method.  The results are consistent with the visual inspection in Figure 

41. The small difference of PSNR values between F-K filter and the average removal 

method could be caused by the MSE rescaling process. 

In sum, both the visual inspection and quantitative analysis verify that the F-X 

VMD has the best performance. Among the three metrics, the NCC metric is an indicator 

that provides consistent results with a visual inspection. PSNR metric could not reflect the 
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obvious performance difference between average removal and F-K filter under 10-degree 

direct wave.  MSSIM metric shows the average removal method has a high structure 

similarity value, although it has bad performance in visual inspection. Therefore, the 

dissertation uses the NCC metric to evaluate the parameter values of the F-X VMD method 

with simulation data. The proper value for mode number 𝐾 is selected as 2, and quadratic 

penalty term 𝛼 is selected as 2000 for future application.  

For practical application, both NCC and MSSIM require the ground truth without 

noise as the reference image to calculate the values. However, it is impossible to get the 

ground truth image to meet this criterion. PSNR could use raw input image as the reference 

image[87]. In such case, higher PSNR means worse performance, and lower PSNR means 

better performance. The dissertation will use it as an indicator in experiment and field test 

data. 

Table 5: Metric performances at 10-degree direct waves 

Performance Average Removal F-K Filter F-X VMD 

MSSIM 0.9360 0.9516 0.9861 
NCC 0.2050 0.6419 0.9073 

PSNR (dB) 17.9893 18.2500 22.2127 

Table 6: MSE values for PSNR at 10-degree direct waves 

MSE Value Average Removal F-K Filter F-X VMD 

𝑀𝑆𝐸 0.0159 0.0150 0.0060 
𝑀𝑆𝐸¦  30901.5214 1245.4186 251.5247 
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                                     (a)                                                                   (b) 

 
                                                                         (c)                                                                        

Figure 41: Filtered simulation result at 10 degree direct waves after (a)Average 
Removal (b)F-K filter (c) 𝒇-𝒙 VMD 

4.3.2.2 Influence of linear event at different angles 

This section is to compare the filter performance between 𝑓-𝑥 VMD and F-K filter 

for linear noise event at different angles. The linear angle is manually changed from 0 

degree(horizontal) to 51 degree. Under different angles, the wavenumber threshold in F-K 

filter will select the value with the best filtering performance which is the highest 

correlation value with the actual target. For 𝑓-𝑥 VMD, the mode number is still 2, but  
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quadratic penalty term will select the value with the best correlation performance. Figure 

42 is the filtering result at different noise angle. The horizontal axis relates to the degree 

value of linear event angle. The vertical axis relates to the correlation value between the 

filtered result and actual target. The blue circle line is the performance of FK filter, which 

red star line is about	𝑓-𝑥 VMD method. For the horizontal event (angle 0), both F-K filter 

and 𝑓-𝑥 VMD have good performance. The correlation values are both close to 1, which 

means almost all the target signals are recovered. And FK filter is slightly better than 𝑓-𝑥 

VMD method. As the linear event goes deeper, the performance of 𝑓-𝑥 VMD drops much 

slower than FK filter method. At 10 degree, the 𝑓-𝑥  VMD still has 0.906 correlation 

filtering performance, but F-K filter already dorps to 0.642. At 51 degree, the correlation 

performance for 𝑓-𝑥 VMD is 0.693, and 0.474 for FK filter. So, for non-horizontal noise 

events, the 𝑓-𝑥 VMD filter has a much better performance than FK filter.  

Figure 43 is the parameter change of quadratic penalty term over different noise 

angle for 𝑓-𝑥 VMD method. The horizontal axis is still the degree value of linear event 

angle. Vertical axis at left is about the quadratic penalty term 𝛼. Vertical axis at right is 

about the correlation coefficient value. The red star line is still 	𝑓 -𝑥  VMD method 

performance, which the blue diamond line is the value change of 𝛼. It shows for deeper 

angle event, we should select the smaller alpha value. From the discussion in section 

4.2.2.3, performance on 𝛼 1000 is only slightly higher than performance on 𝛼 2000 at 10-

degree angle. And usually, the practical direct wave angle is less than 10 degree [43]. So 

we keep 𝛼 value 2000 for practical application. 
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Figure 42: Angle influence of linear event 

 

Figure 43: alpha parameter selection for different linear angle 
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The experimental GPR data is collected on a concrete test slab with prefabricated 

defects using 2.6GHz GSSI SIR-20 system. A scan time range is 12ns. It records 1024 

samples/scan.  The lateral distance of the test slab is 8ft, and the longitudinal distance is 

20ft, as shown in Figure 44. Two mats of uncoated steel reinforcement were placed at 2.5 
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inches and 6-inch depths. No.5 steel bars are used in the reinforcement mats.  Bar space is 

8inch at lateral direction and 10 inch at longitudinal direction. Artificial delaminations are 

placed on the rebar mats.  

 

Figure 44: Fabricated RC bridge deck [43][90] 

The red arrowed line in Figure 44 is the demonstration data. The corresponding B-

scan GPR radargram in 𝑡-	𝑥 domain is shown in Figure 45(a). And the resulted profile from 

the average removal method is Figure 45(b),  from F-K filtering is Figure 45(c), and from 

𝑓-𝑥 VMD filtering is Figure 46(d). The dip relaxation in F-K filtering is selected around 

10 degree as suggested in [43]. For 𝑓-𝑥 VMD, the corresponding parameter mode number 

is still 2, quadratic penalty term is 2000. For the experimental concrete bridge decks, the 

roughness of the surface and the inhomogeneity of the medium is inevitable. From Figure 

45(b), strong direct wave and crossbar signal residues marked by the red arrows can be 

observed after average background subtraction. In contrast, both FK filtering as in Figure 

45(c) and  𝑓 -𝑥  VMD filtering as in Figure 45(d) could remove a large amount of 

interferences. To further compare the performance, we extract the time-series signal at the 

first hyperbola peak in the three filtered images. The position is the same as the dash-dot 

line in Figure 45(a). The results are shown in Figure 46. The black line is the filtered signal 

by average removal, and we can see intense noise within the 2ns time range. Bother FK 



 84 

filtering(blue line), and 𝑓-𝑥 VMD (red line) have much less noise signal. But FK filtering 

also filters out a large amount of useful information. 𝑓-𝑥 VMD method could maintain 

most of the useful raw signal, which is essential for further analysis of the target signal.    

The quantitative analysis with PSNR metric is shown in Table 7. The raw GPR 

image in Figure 45(a) is used as the reference image. The F-X VMD has the lowest PSNR, 

implying that it has the best performance. The PSNR value of F-K filter is close to F-X 

VMD, while the average removal method has a much larger value, indicating that it has 

much worse performance. The findings are consistent with the visual inspection of 

extracted time-series signals in Figure 46. Both visual inspection and quantitative analysis 

show that the F-X VMD has the best performance with experimental data. 

Table 7: PSNR performances for experiment data 

Performance Average Removal F-K Filter F-X VMD 

PSNR (dB) 21.4846 18.6665 18.0262 
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     (c)                                                               (d) 

Figure 45: Results of experimental profiles (a) GPR test data (b) Filtered by average 
removal (b) Filtered by F-K filter (c) Filtered by 𝒇-𝒙 VMD 

 

Figure 46: Signal comparison at peak position after filtering by Average removal, F-
K filtering, and 𝒇-𝒙 VMD method 

4.3.4 Field Test 
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deck is about 8 inches thick. Testing was conducted on an 84 ft. × 12 ft. (25.54m × 3.65 

m) area. GSSI SIR-20 GPR system with 1.5 GHz antennas is used for data collection. 

 

Figure 47: GPR field test[91] 

The raw profile for demonstration in 𝑡-	𝑥 domain is shown in Figure 48(a). The 

ground truth of the red line relates to core F16 as Figure 48(b) taken from the deck. From 

Figure 48(a), the direct wave and rebar reflection already mix together. And the position 

of the rebar hyperbola peak is only a little bit under the surface wave stripe. Figure 49 are 

the filtering results. The dip relaxation in F-K filtering is selected around 10 degree, as 

suggested in [43]. For 𝑓-𝑥 VMD, the corresponding parameter mode number is still 2, 

quadratic penalty term is 2000. Similar to the performance in the experimental test, strong 

direct wave and crossbar signal residues exit after average removal as Figure 50(a), while 

F-K filtering and 𝑓 -𝑥  VMD can reduce a large amount of interferences. For detailed 

analysis, we extract the time series filtered signal related to core F16, which is the red line 

position in Figure 48(a). The black line filtered by average removal still shows a strong 

direct wave mixed signal. The blue line by FK filtering and red line 𝑓-𝑥 VMD have much 

less direct wave influence. But similar to experiment test, FK filtering filters out more 

useful information, which 𝑓-𝑥 VMD maintain more target signal.  
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The quantitative analysis with the PSNR metric is shown in Table 8. The raw GPR 

image as Figure 48(a) is used as the reference image. The PSNR value of F-K filter is larger 

than the other two methods, which means it has the worst performance among the three 

methods. The PSNR value of F-X VMD is close to the average removal method, implying 

that both have similar performance. Although the PSNR metric shows the average metric 

has the best performance, it has the strongest direct wave mixed signal (before 1.8ns of x-

axis) in the extracted time-series signals of Figure 50. Both visual inspection and 

quantitative analysis show that the F-X VMD has consistently good performance with field 

test data.  

Table 8: PSNR performances for field test data 

Performance Average Removal F-K Filter F-X VMD 

PSNR (dB) 13.0415 16.6539 13.9416 

 

 
                                      (a)                                                  (b) 

Figure 48: (a)Field test data around core F16 (b) core F16 [91][92] 
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                                     (a)                                                                     (b) 

 
(c) 

Figure 49: Field data result after (a)Average Removal;(b) F-K Filter;(c) 𝒇-𝒙 VMD 
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Figure 50: Signal comparison at core F16 position after filtering by Average 
removal, F-K filter, and 𝒇-𝒙 VMD method 

4.3.5 Application to autofocusing technique 

Interference removal is the first step of the autofocusing technique. To evaluate 

different clutter removal methods on the performance of autofocusing techniques presented 

by our lab  [76], the variations of the normalized metric values (NMV) of the autofocusing 

technique based on higher-order statics (HOT) with the change of the relative dielectric 

permittivity (RDP) are plotted in Figure 51. It relates to the leftmost rebar in Figure 45. 

The desired autofocusing metric performance is that under the RDP search range, the 

metric should reach a single maximum value. The results show that the performance of 

HOT autofocusing metric is mostly improved in both the 𝑓-𝑥 VMD and F-K filtering 

compared with that after average background removal. But F-K filtering approach needs 

to visually decide the proper dip filtering angle [43]. Our method could be adaptive to the 

uneven ground surface. 
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The autofocusing results of the GPR data in Figure 45 after clutter removal using 

𝑓-𝑥 VMD method are shown in Figure 52. The obtained RDP distribution based on HOT 

autofocusing metric is shown in Figure 52(a), and the corresponding migrated profile is 

shown in Figure 52(b). Rebar 1 (the leftmost rebar) along with Rebar 2, 4, 6, 7 are well 

focused, indicating they are appropriately migrated. The migration regions of Rebar 3 and 

Rebar 5 have rebar reflections undermigrated or overmigrated. This is because there is 

another rebar reflection close to the target rebar refrelction in the same migration region. 

Each rebar reflection has its own proper migration value. This may be resolved by 

developing approaches that adaptively adjust migration parameter values for different 

regions, which is not the focus of this dissertation.  

 

Figure 51: Performance comparison of HOT for preprocessed data after 
background average removal,  𝒇-𝒙 VMD Filter, and F-K Filter 
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(a)                                                                    (b) 

Figure 52:  GPR autofocusing results after clutter removal using 𝒇-𝒙 VMD method  
(a) the obtained RDP distribution based on HOT autofocusing metric and (b) the 
corresponding migrated GPR profile 

4.4 Summary 

 This chapter investigates the 𝑓-𝑥 VMD method to decompose GPR profile for rebar 

signal extraction. The comparison among the general average background removal, FK 

filtering, and 𝑓-𝑥 VMD method for direct wave reduction showed the 𝑓-𝑥 VMD method 

was more robust and effective in analyzing and interpreting GPR signals. Also, the 𝑓-𝑥 

VMD method could be applied to improve the GPR image quality and performance of 

autofocusing techniques.The parameter setting of the 𝑓-𝑥 VMD method was evaluated. 

From the simulation analysis, the optimal parameters of the time-step of the dual ascent τ, 

mode number K, quadratic penalty term α are 0, 2, 2000. And the initialization of center 

frequency used the uniform distribution initialization method. The 𝑓-𝑥 VMD method is 

also applied to both GPR experimental testing and field test data. The results show that the 

𝑓-𝑥 VMD could successfully extract the target rebar signal even when there is strong 

contamination from surface roughness and the cross rebar in heterogeneous concrete bridge 

decks. The 𝑓 - 𝑥  VMD method leads to better interference removal results than the 

conventional background removal approach and FK filtering method. 
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CHAPTER 5. CONCLUSION  

5.1 Dissertation Contributions 

 This dissertation investigates methods to improve performance of the IE and GPR 

NDT methods for concrete condition evaluation. Specifically, we identify a few research 

gaps in the existing literature and address each of them in three chapters.  

 First, the impact echo signal may contain strong surface wave, which is an 

intermittent signal with wide frequency range. The second chapter uses EEMD to extract 

reflected P-wave for internal defect detection. This is the first work to employ EEMD for 

IE data decomposition. The proper setting of the amplitude of added white noise and the 

number of ensemble for the EEMD method is also analyzed for the impact echo 

application. The signal extraction performance for different P-wave frequencies is also 

evaluated. The superior performance of EEMD method is validated using simulation, 

experiment, and field testing data. 

 Second, our research demonstrates that data fusion can improve the accuracy of the 

IE test, especially at the delamination boundary. However, the extraction of the feature 

parameter in a manual fashion for data fusion is very time-consuming. Accordingly, the 

third chapter develops an automated approach to perform data fusion and visualization for 

effective and reliable interpretation of the impact-echo test results. This is the first work to 

apply data fusion to IE data visualization in depth spectrum. The automated process applies 

preprocessing, data fusion and image segmentation algorithms to the IE sensor array data 

for delamination extraction and direct visualization of defect regions. In addition, novel 

noise reduction steps are developed based on the IE data characteristics. The feasibility and 

effectiveness of the proposed method are validated by both numerical simulation and 

experimental results.  
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 Third, this is the first work to employ 𝑓-𝑥  VMD for direct wave removal for RC 

bridge decks. Previous applications in seismic data focus on removing high dip angle 

ground roll coherent noise generated by Rayleigh wave. Our research focuses on filtering 

out low dip direct wave clutter generated by electromagnetic waves. In the presented 

approach, Fast Fourier Transform, VMD filter, and Inverse Fast Fourier Transform are 

implemented to process the collected 2D B-scan GPR data. The VMD method is utilized 

to decompose the GPR data to direct wave clutter component and rebar reflection 

component in the 𝑓-𝑥  domain. The direct wave component is usually the first intrinsic 

mode. The rebar reflection component is the difference between the original signal and the 

direct wave component. The three metrics Mean Structural Similarity Index Measure 

(MSSIM), Normalized Cross Correlation (NCC), Peak Signal to Noise Ratio (PSNR) for 

quantitative performance evaluation are compared and analyzed in simulation data. PSNR 

is also applied as the quantitative metric for experiment and field test data. The superior 

performance of the 𝑓-𝑥  VMD method over the standard approach average background 

subtraction and improved method F-K filter with dip relaxation is validated using 

simulation, experiment, and field test data. The proposed method could also be used as the 

preprocessing step for the autofocusing technique. 

5.2 Future Work 

5.2.1 EEMD on IE signal 

 When the number of IE signals increases significantly for testing large concrete 

structures, it is necessary to develop an automatic process to identify IE modes after EEMD 

and provide defect information at different locations. The automatic process can be 

developed based on the characteristics of different IMFs decomposed from an IE signal 

discussed in the dissertation.  



 94 

5.2.2 Data fusion on IE signal 

 In preprocessing, the peak frequency comparison step compares the major peaks in 

the frequency spectra of two signals collected at the same test point but generated by 

impacts at different locations and removes major peaks only appearing in one signal. In 

practice, IE signals may be complicated by wave scattering and mode conversion caused 

by the inhomogeneity characteristics of the concrete materials or other unexpected noise. 

However, only IE mode signal has a high probability of being recorded consistently by a 

receiver at a test point when impacts are applied at different locations nearby. The peak 

frequency comparison method takes advantage of this point to remove abnormal signals 

from the test results. The peak frequency comparison based on two signals is suitable for 

2D data fusion and visualization, which is the focus of this paper. If extended to 3D, a 

majority voting strategy or other statistical methods can be developed based on the similar 

principle depending on the source-receiver array configuration in the impact-echo test. 

 It should be noted that when the source and/or receiver are close to the delamination 

boundaries, interpretation of IE signals may be difficult due to wave scattering and mode 

conversions. If only a few sources and receivers along a test line are close to the 

delamination boundaries, the interpretation of these signals can be facilitated by other 

signals, which are collected along the same test line and are not significantly affected by 

the boundary effects. But if a test line is close to the delamination boundary, the 

interpretation of all collected signals above and close to delamination becomes very 

challenging. It is necessary to develop advanced 3D data fusion and visualization 

algorithms for accurately characterizing the defect region. 

5.2.3 Data fusion on multiple techniques 
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 IImpact echo (IE) testing is a tool based upon the use of impact generated stress 

waves that transmit through concrete and are reflected by internal flaws. It can be used to 

detect the flaws such as cracks, delaminations, voids, etc. However, this approach is not 

effective for detecting rebar corrosion. Ground-penetrating radar (GPR) is a nondestructive 

method that relies on electromagnetic (EM) fields to image the subsurface. GPR is not only 

good at evaluating rebar corrosion but also possible to detect air voids and water-filled 

voids. Combining the results of both techniques could increase the accuracy and reliability 

of nondestructive testing and evaluation. Nevertheless, feature integration and 

classification for quantitative assessment of the flaws (such as depth, width) are 

challenging.  Further investigation is needed to develop suitable data fusion approaches. 
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