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SUMMARY 

Considerable work (both within the psychometric and cognitive literature) has 

explored the tendency for response strategies to shift within the course of a single 

assessment.  The current project proposes a novel, flexible item response model that intends 

to capture the pattern of these strategy shifts, as well as any latent classes defined by 

differences in these shifting patterns.  The novel model represents an integration of hidden 

Markov techniques within the framework of Explanatory Item Response Modeling; a 

family of psychometric models that constrain parameters as functions of observed 

variables.  Such an integration affords the opportunity to evaluate various hypotheses of 

response strategies and shifting patterns, while still retaining the desirable measurement 

properties of item response models.  The feasibility of such a modeling approach is 

evaluated via parameter recovery with a set of Monte Carlo simulations, and its practical 

utility demonstrated with an empirical example involving response data from a spatial 

reasoning task. 

Results from the simulation study show that the structural parameters (transition 

probabilities, initial strategy probabilities, and IRT parameters) are generally well 

estimated, with the exception of the case when an absorbing state is present. In these cases, 

IRT parameters for the transient state are estimated with a considerable degree of bias and 

imprecision, although all transition and initial strategy probabilities are still recovered well.  

In all cases, however, person level parameters were estimated with substantial error and 

bias.  A correction to the deviance statistic is proposed in order to account for imprecision 
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in the person level parameter estimates, and it is shown that theis corrected deviance 

statistic performs reasonably well for model selection procedures.  

When applied to the empirical response data from a spatial reasoning test, the model 

seems to account for guessing processes, making salient its degree of flexibility.  If 

guessing is reframed as a subject centered response style, then it can be captured within a 

broader class of response process models; in this case, a class of temporally variant mixture 

models.  In fact, many traditional standalone IRT models and traditions (3PL model, 

mixture IRT models) may be subsumed by this more generalizable, coherent framework.
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CHAPTER 1: INTRODUCTION 

     The standards and expectations for measurement practice have increased markedly 

over the last 20 years. Because of the widespread use and increased stakes of 

standardized testing in the educational community, measurement instruments are being 

evaluated with much more rigor and are increasingly expected to provide more discrete 

and nuanced information regarding examinee ability (Huff & Goodman, 2007; Mislevy, 

Almond, & Lukas, 2004). Evidence-centered test design is representative of the current 

zeitgeist in the educational community, in which items are expected to be developed and 

selected according to rigorous empirical and theoretical notions regarding the trait of 

interest. The objective is to construct tests that allow for a more refined set of hypotheses 

and conclusions to be drawn regarding the limits of skill acquisition and mastery. 

     This sets the stage for an approach to testing that transcends a pure measurement and 

scaling focus to an appraisal of how specific examinee properties interact with item 

features to produce observed test behavior.  Calls to establish response process validity 

and identify examinees with fundamental differences in problem solving approaches were 

made explicit in the measurement community 20 years ago (Standards for educational 

and psychological testing, 1999) and continue to be reverberated (Embretson & Gorin, 

2001; Noble, Rosebery, Suarez, Warren & O’Connor, 2014; Therese N. Hopfenbeck & 

Andrew Maul, 2011;). 

     In maintaining a contemporaneous position with the prevailing conceptual 

frameworks, measurement and psychometric research has begun to align its focus 

towards the particular strategies and cognitive processes that actually underly test 

https://www.tandfonline.com/author/Noble%2C+Tracy
https://www.tandfonline.com/author/Rosebery%2C+Ann
https://www.tandfonline.com/author/Suarez%2C+Catherine
https://www.tandfonline.com/author/Warren%2C+Beth
https://www.tandfonline.com/author/O%27Connor%2C+Mary+Catherine
https://www.tandfonline.com/author/Hopfenbeck%2C+Therese+N
https://www.tandfonline.com/author/Maul%2C+Andrew
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performance and capturing the individual differences therein. One particular modeling 

approach that affords an integration of measurement theory and cognitive theory falls 

within the psychometric tradition of explanatory IRT modeling (De Boeck & Wilson, 

2004). In essence, the explanatory IRT framework represents a family of models that 

reparametrize traditional IRT parameters as functions of observed person, item, or 

environmental features.  This provides a relatively intuitive and straightforward means of 

reframing psychometric model parameters in a manner that is directly interpretable with 

respect to both basic and applied research questions.  For example, although the structure 

of the Rasch model is rigorously justified in terms of measurement theory, it represents a 

saturated model with respect to item difficulty parameters, and therefore is atheoretical 

with respect to notions of response process and invoked strategies.  In contrast, the 

explanatory IRT analogue of the Rasch model reparametrizes item difficulty as a 

weighted sum of relevant item features, allowing for hypothesis testing with respect to 

response processes. If a cognitive theory can explicate the impact of specific item 

features on response processes, then such a psychometric model has the flexibility to 

evaluate the validity of a proposed solution process while still conforming to basic Rasch 

measurement principles of additive conjoint measurement and specific objectivity (see 

Fischer, 1987 for a formal justification).  

     This reparameterization of the Rasch model is formally referred to as the linear 

logistic test model (LLTM; Fischer, 1973) and can be considered the seminal explanatory 

IRT model. It provided a powerful generalization of the Rasch model to accommodate 

validity questions of response processes (the Rasch is simply an application of the LLTM 

with a saturated design matrix), and established the foundation for reframing IRT model 
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parameters in the context of relevant covariates.  However, the LLTM is still highly 

restrictive in the sense that it assumes a singular, temporally invariant response process; 

and furthermore, equal loadings of items on the latent trait.  In turn, the basic LLTM tenet 

of regressing IRT parameters on observed contextual features has continued to be 

integrated into progressively more general and complex IRT models to alleviate these 

restrictions, thus establishing the tradition of explanatory IRT modeling.  

 In the following sections, I briefly review a few noteworthy models within the 

explanatory IRT framework, with an emphasis on a proposed model from Rijmen et al. 

(2005) that allows for temporal variance in strategy use.  Subsequently, I propose a 

generalized form of this model that is able to capture different patterns of temporal 

invariance; additionally, I present and explore several approaches to estimating model 

parameters (both parametric and non-parametric) that represent alternatives to the EM 

algorithm originally adopted by Rijmen and colleagues. A simulation study is then 

proposed in order to evaluate the conditions under which model parameters (for both 

Rijmen’s model and the generalized form introduced here) may be reasonably recovered. 

Lastly, an application of the generalized model to an empirical data set is proposed in 

order to exemplify its potential utility in applied settings.  

1.1  The Explanatory IRT Modeling Tradition 

1.1.1 Rasch and LLTM Foundations 

     As mentioned, the seminal explanatory IRT model, the LLTM, has its roots in the 

Rasch modeling tradition. Formally, the Rasch model establishes that, given some 

monotonic transformation, g, the expected value of an observed response for person j on 



4 

 

item i can be represented as an additive function of latent person (휃𝑗) and item difficulty 

parameters (𝛽𝑖): 

 𝑓(𝐸(𝑟𝑖𝑗|휃𝑗 , 𝛽𝑖)) = 휃𝑗 − 𝛽𝑖  

For dichotomously scored items with a Bernoulli error distribution and expected value 𝑝, 

the logistic transformation is often invoked for f:   

 
𝑓 (𝐸(𝑟𝑖𝑗|휃𝑗 , 𝛽𝑖)) = ln(

𝑝(𝑥𝑖𝑗 = 1|휃𝑗 , 𝛽𝑖)

1 − 𝑝(𝑥𝑖𝑗 = 1|휃𝑗𝛽𝑖)
) = 휃𝑗 − 𝛽𝑖 

 

In contrast, the LLTM applies a linear constraint to item difficulty, with observed item 

features serving as predictors:  

 

ln(
𝑝(𝑥𝑖𝑗 = 1|𝒒𝒊𝜼, 휃𝑗)

1 − 𝑝(𝑥𝑖𝑗 = 1|𝒒𝒊𝜼, 휃𝑗)
) = 휃𝑗 −(∑𝑞𝑓𝑖휂𝑓

𝐹

𝑓=1

+ 휂0) 

 

 

(1) 

where 𝑞𝑓𝑖 is the observed value for feature f on item i, 휂𝑓 is the associated 

weighting parameter for feature f, and 휂0 is an intercept.  This reframes the Rasch 

approach within both a measurement model and response process model framework, 

setting the foundation for a family of models that can make predictions regarding 

cognitive processes and strategies. 

1.1.2 When Examinees Invoke Different Strategies – the Mixture LLTM 

     In 1990, Mislevy and Verhelst noted that if the LLTM is capable of validating theories 

of response processes, then it could serve as the basis for deriving latent classes defined 

by fundamentally different cognitive strategies. Consider, for example, the oft-replicated 
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finding of a strong linear relationship between degree of required rotation for spatial 

reasoning tasks and both response time and accuracy (Berg, Hertzog, & Hunt, 1982; 

Farrell & Robertson, 1998; Shepard & Metzler, 1975; Hertzog & Rypma, 1991; Shiima, 

Saito, & Suzuki, 1997). The finding implies that Rasch item difficulties are 

dimensionally over-specified for such items, and that item difficulties may instead be 

adequately represented along a single dimension related to rotational requirement. In this 

case, the LLTM offers utility as a method of dimensionality reduction and validating the 

relationship between required rotation and task difficulty.  

    However, a number of studies have demonstrated some preference for an alternative, 

verbal-analytical solution strategy that operates independently of spatial complexity 

(Bethell-Fox & Shepard, 1988; Gluck & Fitting, 2003; Schultz, 1991).  Thus, a two-

dimensional solution for item difficulty may be required in order to account for both 

spatial rotation and analytical complexity of items: 

ln(
𝑝𝑖𝑗(𝑥𝑖𝑗 = 1|𝒒𝒊𝜼, 휃𝑗)

1 − 𝑝𝑖𝑗(𝑥𝑖𝑗 = 1|𝒒𝒊𝜼, 휃𝑗)
) = 휃𝑗 − (𝑞𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑖휂𝑠𝑝𝑎𝑡𝑖𝑎𝑙 + 𝑞𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙𝑖휂𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 + 휂0) 

where 𝑞𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑖and 𝑞𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙𝑖 represent scored spatial and analytical complexity 

measures for item i. However, if individual differences in strategy preference are reliable 

and remain fixed across time, then model parameters are obfuscated by a mixture of 

response processes. To rectify the issue, responses from each strategy group would need 

to be modeled with a separate set of LLTM parameters: 

ln(
𝑝𝑖𝑗(𝑥𝑖𝑗 = 1|𝒒𝒊, 𝜼𝒌, 휃𝑗𝑘 , 𝑘)

1 − 𝑝𝑖𝑗(𝑥𝑖𝑗 = 1|𝒒𝒊, 𝜼𝒌, 휃𝑗𝑘 , 𝑘)
)

= 휃𝑗𝑘 − (𝑞𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑖휂𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑘 + 𝑞𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙𝑖휂𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙𝑘 + 휂0𝑘) 
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where the subscript k corresponds to a class specific indicator. The probability of the full 

response vector for person j, conditional on strategy class and latent ability, is defined as 

follows: 

𝑝(𝒙𝒋|𝒒𝒊, 𝜼𝒌, 휃𝑗𝑘 , 𝑘)

=∏
exp(𝑥𝑖𝑗[휃𝑗𝑘 − (𝑞𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑖휂𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑘 + 𝑞𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙𝑖휂𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙𝑘 + 휂0𝑘)])

1 + exp(휃𝑗𝑘 − (𝑞𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑖휂𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑘 + 𝑞𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙𝑖휂𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙𝑘 + 휂0𝑘))

𝐼

𝑖=1

 

 

 

(2) 

and if a prior density function for the distribution of latent abilities is established, then the 

full log-likelihood is: 

ℒ(𝛺|𝒙) =∑log[ 𝑝(ф𝑗 = 𝑘|𝝅)]

𝐽

𝑗=1

+∑log[𝑝(𝒙𝒋|𝒒𝒊, 𝜼𝒌, 휃𝑗𝑘 , 𝑘𝑗)]+∑log[𝐹 (휃𝑗𝑘|𝜓𝑘)]

𝐽

𝑗=1

𝐽

𝑗=1

 

 

 

(3) 

Where ф𝑗 is a parameter that classifies examinees into one of K possible strategy classes, 

𝝅 is a vector of length K, {𝜋𝑘 ∈ ℝ: 0 ≤ π ≤ 1} and ∑ 𝜋𝑘
𝐾
𝑘=1 = 1, representing strategy 

class proportions; and 𝜓𝑘 is a vector of class specific hyperpriors for the presumed ability 

distributions.  

     Of course, the complication for traditional maximum likelihood parameter estimation 

is that the ф𝑗  values are not known a priori.  Mislevy and Verhelst recommend an EM 

algorithm, treating class designation and ability as missing values. Expected values of 

class designation and ability are derived, conditional on a set of provisional structural 

parameters (휂𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑘 , 휂𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙𝑘 ,𝜋𝑘,𝜓𝑘) and the observed responses. Once these 
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expected values are obtained, the structural parameters can be estimated via traditional 

maximum likelihood approaches. The new structural estimates are then treated as fixed, 

and a new set of expected values for group designation and ability are derived. The 

process iterates until some convergence criterion is achieved. Mislevey and Verhelst then 

re-estimate the group designation and ability values via an empirical Bayes solution, 

treating the EM estimated structural parameters as fixed and known. 

     More recently, fully Bayesian methods of parameter estimation for the mixture LLTM 

have been utilized (see Choi and Wilson, 2015 for an application with MCMC methods 

and Gibbs sampling) and shown to be superior for smaller sample sizes and smaller item 

pools when applied to Mixture Rasch models (Finch & French, 2012). Given the 

likelihood function defined in (3) and a set of prior distributions for 휂𝑓𝑘 , 휃𝑗𝑘 , 𝜓𝑘, 𝑘𝑗 , 𝝅, the 

joint posterior of model parameters can be derived.  Choi and Wilson adopted Gaussian 

priors for the item feature weights and person abilities, with all hyperparameters fixed for 

model identifiability except ability variance (which was drawn from a gamma prior).  The 

strategy class designations, 𝑘𝑗, were drawn from a categorical distribution: 

ф𝑗~𝑐𝑎𝑡(𝜋1, 𝜋2…𝜋𝐾) 

with the vector of class probabilities drawn from a Dirichlet distribution with fixed 

hyperparameters: 

𝝅~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(
1

𝐾
,
1

𝐾
, …

1

𝐾
) 

Note that the Dirichlet distribution represents the conjugate prior to the categorical 

distribution, simplifying the estimation of the posterior.  
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1.1.3 Strategy Specific Item Loading Patterns – 2PL Constrained and Mixture 2PL 

Constrained 

     In 1999, Embretson proposed a 2PL analogue of the LLTM, whereby both 

discrimination and difficulty parameters are regressed on a set of observed contextual 

features: 

 
ln(

𝑝𝑖𝑗(𝑥𝑖𝑗 = 1|𝒒𝒊, 𝜼,𝒎𝒊, 𝜸, 휃𝑗)

1 − 𝑝𝑖𝑗(𝑥𝑖𝑗 = 1|𝒒𝒊, 𝜼,𝒎𝒊, 𝜸, 휃𝑗)
)

= (∑𝑚𝑙𝑖
𝛾𝑙

𝐿

𝑙=1

+ 𝛾0) (휃𝑗 − (∑𝑞𝑓𝑖휂𝑓

𝐹

𝑓=1

+ 휂0)) 

 

 

(4) 

with 𝑚𝑙𝑖 representing the scored value for an item feature, l, that is assumed to be related 

to item loading; and 𝛾𝑙 its associated weight. The approach was empirically justified with 

a set of matrix reasoning items, whereby both the number and types of rules dictating the 

matrix patterns were shown to be related to the slope and location of item characteristic 

curves. Embretson proposed a Joint Maximum Likelihood approach to estimating model 

parameters, though marginal maximum likelihood approaches may also be suitable if an 

appropriate prior for ability may be assumed. The model has particular utility when there 

is interest in automatic item generation for a test battery.  

     In 2021, Hauenstein and Embretson adopted the 2PLC as a basis for identifying latent 

clusters, introducing a mixture 2PLC (Mix-2PLC) with fully Bayesian estimation to 

evaluate performance on spatial reasoning items across several learning interventions.  
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Consistent with previously noted motivations for IRT mixture modeling, difficulty was 

regressed on both analytical and spatial indicators of complexity; however, 

discrimination was regressed on number of interventions received.  Results showed a 

reliable clustering of examinees by differential mean changes in item discrimination 

across learning interventions, implying that interventions were effective in reducing 

construct irrelevant variance for some examinees, but not others.  

1.1.4 Temporal Variance in Strategy Use – the Hidden Markov LLTM 

     While the Mix-LLTM and Mix-2PLC removed the constraint of strategy invariance 

across groups, temporal invariance in strategy use was still assumed.  Although the 

assumption of temporal invariance may be tenable in some measurement applications, it 

is certainly unjustified in certain contexts. Using a previous example, Michaelides (2003) 

has found that not only will both spatial and analytic solution strategies be invoked for 

spatial reasoning items, but that examinees may shift between the two approaches within 

a single testing window.  Additionally, dynamic testing paradigms are predicated on 

incurring both ability gains and strategy shifts over the course of a test through the use of 

scaffolding and feedback (Embretson, 1987; Resing & Elliot, 2011; Resing, Tunteler, & 

Elliot, 2015). And in the context of formative assessment, where ability tests are 

administered periodically over a longer time course, it is certainly expected that 

maturation and development would effect strategy shifts. It is this latter notion in 

particular that motivated Rijmen et. al to propose a hidden Markov formulation of the 

LLTM which directly accounts for these strategy shifts. Formally, the hidden Markov 

LLTM (HM-LLTM) defines the probability of an observed response vector for person j, 

x, as follows: 
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 𝑝(𝒙𝒋|𝒒𝒊, 𝜼𝒌, 𝝃𝒋, 휃𝑗𝑘)

=∏ ∏
exp(𝑥𝑖𝑗[휃𝑗𝑘 − (∑ 𝑞𝑓𝑖휂𝑓𝑘

𝐹
𝑓=1 + 휂0𝑘)])

1 + exp (휃𝑗𝑘 − (∑ 𝑞𝑓𝑖휂𝑓𝑘
𝐹
𝑓=1 + 휂0𝑘))

𝐼

𝑖:𝑥𝑖𝑗∈𝐼𝑗𝑘

𝐾

𝑘=1

 

 

 

(5) 

where𝝃𝒋 = (ф𝑗,𝑡=1,ф𝑗,𝑡=2…ф𝑗,𝑡=𝑇) and represents the chain of strategy classes visited 

by subject j over the entire item set, and 𝐼𝑗𝑘 reflects the subset of items responded 

to by subject j while visiting state k. Thus, the inner product function 

calculates the conditional probability of a set of item responses for which a 

particular state was visited; and the outer product function computes the 

joint probability across all state specific response vectors.  Note that the 

parameterization is identical to that of the mixture LLTM in (1), with the only distinction 

being the adjustment to account for multiple states being visited by a single individual. 

This implies a time variant extension of the mixture LLTM, such that individuals are 

allowed to ‘switch’ from one strategy class to another over time. In particular, the model 

assumes a Markov process for these strategy shifts: 

 𝑃(ф𝑗𝑡
|ф𝑗𝑡−1

,ф𝑗𝑡−2
, …ф𝑗𝑡−∞

) = 𝑃(ф𝑗𝑡
|ф𝑗𝑡−1

) (6) 

Practically, this constraint dictates that the strategy invoked at any given time point is 

dependent only on the strategy invoked in the immediately previous time point (what 

exactly constitutes a time point will be discussed shortly). Although the degree to which 

this assumption is tenable may be debated, it drastically reduces the burden for parameter 

estimation and represents a parsimonious means of tracking longitudinal shifts in 

response processes over time. For the simple case of two possible strategies, the 
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longitudinal shifting pattern across any number of time points is governed simply by a set 

of three parameters: 

𝜋𝐼1 , 𝜋12, 𝜋21 

where 𝜋𝐼1 is the initial probability of invoking strategy 1 at time point t=1, 𝜋12 is the 

probability of transitioning to strategy 2 at time t+1, given a classification of strategy 1 at 

time t, and 𝜋21 is the probability of transitioning to strategy 1 at time t+1, given a 

classification of strategy 2 at time t. The complementary events (e.g. 𝜋𝐼2 , 𝜋11, 𝜋22) do not 

represent free parameters since the probabilities must sum to 1. If the transition 

probabilities are collected into a transition matrix (A): 

 
𝑨 = (

1 − 𝜋12 𝜋12
𝜋21 1 − 𝜋21

) 
 

(7) 

 

such that the kth row represents the full set of transition probabilities for moving from 

state k to another state (or remaining in state k), then the probability of the full chain of 

classes visited by examinee j, given the transition matrix and initial class probabilities, 

can be calculated as follows: 

 

𝑝(𝝃𝒋|𝐴, 𝝀, 𝜋𝐼) = 𝜋𝐼 (𝜆𝑗1)
𝑇𝑃

∏𝜆𝑗𝑡𝐴(𝜆𝑗𝑡+1)
𝑇𝑃

𝑇

𝑡=1

 

 

 

(8) 

where 𝜆𝑗𝑡  is a row vector of length K, such that each kth element is a dichotomous 

indicator variable designating whether or not subject j visited strategy k at time t.  Note 

that the TP superscript here refers to the transpose function.  
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Given matrix A, the marginal distribution of states at any given time point (휁𝑡) is also 

easily obtained: 

 휁𝑡 = 휁𝑡−1𝑨 (9) 

     For a motivated example, the authors reference the developmental stages proposed by 

Piaget, and describe how such a model can capture discontinuous transitions from one 

stage to another across testing windows. In such an application, a particular Piagetian 

stage would be reflected in the pattern of relations between item features and difficulty; 

and furthermore, that sudden shifts in these relations are indicative of stage transitions.  

     Taking into account both the LLTM measurement model and the Markov state 

transition process, the complete likelihood function for the HM-LLTM can be defined: 

 

ℒ(𝛺|𝒙) =∑log[ 𝑝(𝝃𝒋|𝝅𝑰, 𝑨)]

𝐽

𝑗=1

+∑log[𝑝(𝒙𝒋|𝒒𝒊, 𝜼𝒌, 휃𝑗 , 𝝃𝒋)] +∑∑log[𝐹(휃𝑗𝑘|𝜓𝑘)]

𝐾

𝑘=1

𝐽

𝑗=1

𝐽

𝑗=1

 

 

 

(10) 

where𝝅𝑰 is a vector of length K representing strategy class proportions at t=1, A is the 

transition matrix populated by the full set of state transition probabilities, and 𝜓𝑘 is again 

a vector of class specific hyperpriors for the presumed ability distributions. For parameter 

estimation, the Rijmen et al. adopt the same EM approach as Mislevy and Verhelst in the 

mixture LLTM, with each examinee’s vector of strategy specific latent abilities 

(휃𝑗𝑘=1, 휃𝑗𝑘=2,…휃𝑗𝑘=𝐾)and chain of strategy classes (𝝃𝒋, or equivalently 𝝀𝒋) treated as 

missing data in the EM algorithm.  
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     The approach of Rijmen et al. provides one of the most flexible and generalized 

approaches to explanatory IRT modeling, accomplished by removing the constraints of 

inter-cluster invariance and temporal invariance in model parameters. Nonetheless, their 

presentation leaves several critical issues unaddressed.   First, the motivated example 

(which also constitutes the empirical application provided in their report) represents a 

very restrictive testing scenario. In such a scenario, time points are represented by whole 

tests; multiple tests need to be administered over an extended period of time (in their 

case, 11 moderate length tests over the course of a year) with little attrition. Although 

such a paradigm is relevant for formative assessment protocols and developmental 

applications, it is at odds with situations where the response process is expected to be 

variant within a test (whether due to spontaneous or experimenter controlled learning). 

Neither trial and error learning nor insight (a cognitive restructuring of the problem by 

uncovering novel relations among stimuli and integrating these relations to construct a 

new solution hypothesis; see Greeno, 1978) are expected to be restricted to between 

testing windows.  The authors do mention briefly that the model has the potential to 

capture strategy shifts within a single test, whereby each item represents a single time 

point, but no further discussion regarding the testing conditions that provide reasonable 

parameter recovery is provided. Furthermore, while the authors cite the potential use of 

penalized fit statistics to determine the optimal number of strategies to model, no further 

guidance is offered in terms of the conditions under which such metrics are accurate and 

reliable. Additionally, the use of the LLTM as a basis for identifying states ignores the 

potential for items to exhibit differential loading patterns across strategies (see 

Embretson, 1999 for more discussion on this point). Lastly, their approach assumes that 
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all subjects follow a uniform pattern of state transition probabilities; this may be an 

unreasonable constraint in certain testing applications. For example, some examinees 

may uniformly transition from one state to another with no reversals (such is the case for 

an ‘absorbing’ state), whereas others may be more fluid in their response process and 

periodically transition between states during the course of testing. Adopting the same 

motivated example as the authors to address this point, substantial variability in the 

timing of Piaget stage transitions has been observed, and in applied clinical work there is 

an understandable interest in identifying clusters of developmentally anomalous children 

with delayed transitions.  Modeling cluster specific transitions is relatively 

straightforward to accommodate within the modeling framework of Rijmen et al. if the 

clusters governed by different transition matrices are known a priori.  However, 

identification of latent clusters with different transition patterns requires a novel 

modeling approach.  

     The goal of the current project is to address these issues, and in doing so, propose an 

extended form of Rijmen’s model that can account for latent clusters with distinct state 

transition patterns. This novel model conforms the class of mixture hidden Markov 

models, which have been implemented in other domains, but are new to the IRT tradition. 

Additionally, through a simulation study, the current project evaluates the conditions 

under which model parameters are estimated with reasonable precision, both for the 

generalized form (distinct transition matrices for latent classes) and the restricted form 

proposed by Rijmen (singular transition matrix).  Also through simulation, the utility of 

several model selection procedures is evaluated; specifically the use of more traditional 

metrics (AIC, BIC, DIC), as well as the use of a ‘stick-breaking’ process in the prior in 
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order to infer the number of mixture components from the posterior. This is a more 

contemporary, non-parametric approach that avoids the necessity of fixing the number of 

mixture components a priori and obviates the need for using penalized fit statistics to 

identify the optimal number of mixture components.  The adoption of a stick breaking 

process into a hidden Markov IRT model is novel, and provides an opportunity for 

improved time efficiency in exploratory applications.  I also consider a parametric 

alternative to the stick-breaking process that carries the same benefits with respect to time 

economy.  Lastly, the proposed, extended form of Rijmen’s model is applied to an 

empirical dataset to demonstrate its usefulness in applied measurement settings. In the 

following section, a formal presentation of the model and proposed estimation procedures 

is provided, along with an account of several model selection procedures to be 

considered. Next, a description of the simulation study and manipulated conditions is 

given; and finally a description of the empirical dataset to which the proposed model will 

be applied.  
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CHAPTER 2: A NOVEL MODEL FOR CLUSTER VARIANCE IN 

STRATEGY TRANSITIONS 

     As mentioned previously, the proposed extension of the Rijmen et al. model can be 

effectively characterized as an application of a mixture hidden Markov model; and 

specifically, a mixture hidden Markov IRT model where the states are defined by 

different relations of item features to item parameters via the 2PLC model. For the 

remainder of this proposal, this model will be referred to as the Mixture Hidden Markov 

2PLC, or MHM-2PLC (and the single transition cluster variant as the hidden Markov 

2PLC, or HM-2PLC).  

     If the chain of strategy classes is known for subject j, then the probability a response 

vector in the MHM-2PLC is identical to that in (5), except that discrimination values are 

no longer constrained to unity and are allowed to vary according to a linear model: 

 𝑝(𝒙𝒋|𝒒𝒊, 𝜼𝒌, )

=∏ ∏
exp(𝑥𝑖𝑗((∑ 𝑚𝑙𝑖

𝛾𝑙𝑘
𝐿
𝑙=1 + 𝛾0𝑘)[휃𝑗𝑘 − (∑ 𝑞𝑓𝑖휂𝑓𝑘

𝐹
𝑓=1 + 휂0𝑘)]))

1 + exp((∑ 𝑚𝑙𝑖
𝛾𝑙𝑘

𝐿
𝑙=1 + 𝛾0𝑘) (휃𝑗𝑘 − (∑ 𝑞𝑓𝑖휂𝑓𝑘

𝐹
𝑓=1 + 휂0𝑘)))

𝐼

𝑖:𝑥𝑖𝑗∈𝐼𝑗𝑘

𝐾

𝑘=1

 

 

 

(11) 

The primary distinction in the MHM-2PLC is the presence of group specific initial and 

transition probabilities, so that the probability of a subject’s sequence of state visitations 

is conditional on  latent group assignment, g: 
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𝑝(𝝃𝒋|𝐴𝑔, 𝜋𝐼 , 𝑔) = 𝜋𝐼𝑔 (𝜆𝑗1)
𝑇𝑃

∏𝜆𝑗𝑡𝐴𝑔(𝜆𝑗𝑡+1)
𝑇𝑃

𝑇

𝑡=1

 

 

 

(12) 

which produces cluster specific marginal state distributions for each time point: 

 휁𝑡𝑔 = 휁𝑡−1,𝑔𝑨𝒈 (13) 

So that every group is defined by unique set of transition probabilities (note the g 

subscript on the vector of initial state probabilities and the transition matrix).  The full 

log-likelihood function for the MHM-2PL is then be defined: 

 

ℒ(𝛺|𝒙) =∑log[𝑝𝑗(𝛿𝑗|𝜈)]

𝐽

𝑗=1

+∑log[ 𝑝𝑗 (𝜉𝑗|𝜋1𝑔 , 𝐴𝑔)]

𝐽

𝑗=1

+∑log[𝑝.𝑗(𝑥.𝑗|𝑞.𝑖, 휂𝑘 , 휃𝑗𝑘 , 𝑘𝑗)] +∑∑log[𝐹(휃𝑗𝑘|𝜓𝑘)]

𝐶

𝑐=1

𝐽

𝑗=1

𝐽

𝑗=1

 

 
(14) 

where 𝝂 is a vector of probability values that defines the distribution of examinees across 

the g transition clusters. Each subject’s transition cluster membership (e.g. which 

transition matrix governs their pattern of strategy shifts) may be indexed by parameter 𝛿𝑗; 

if the 𝛿𝑗
′s are known, then the EM algorithm proposed by Rijmen et al. can be directly 

applied to estimate model parameters.  If the 𝛿𝑗
′s are not known, then a novel estimation 

approach is required. One possibility is a further extension of Rijmen et al.’s approach 

that considers 𝛿𝑗, 𝜉𝑗, and 휃𝑗𝑘  all as missing data. Alternatively, a fully Bayesian method 

can be adopted to estimate structural and person parameters simultaneously, similar to the 
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approach implemented by Choi and Wilson (2016) and described previously. For this 

project, fully Bayesian methods are implemented due to improved parameter recovery for 

small sample sizes (Finch & French, 2012) and because they afford the opportunity to 

develop non-parametric and pseudo non-parametric hidden Markov models that learn the 

number of strategy classes and transition clusters from the data.  In the next section, the 

general structure of prior distributions for the MHM-LLTM is described; and following, 

different strategies for identifying the appropriate number of strategy classes and 

transition clusters are presented.   

2.1 Prior Structure for Bayesian Estimation of MHM-2PLC 

     Given the likelihood function in (14) and a full set of prior distributions for the 

structural and person parameters, EAP estimates may be obtained for all parameters. As 

with the Mix-LLTM and Mix-2PLC described previously, all item feature weights are 

assumed to be Gaussian distributed with fixed hyperparameters: 

휂𝑓𝑘~𝑁(0,1) 

𝛾𝑓𝑘~𝑁(0,1) 

And on the person side, the class specific ability estimates also follow a Gaussian prior 

with fixed hyperparameters to anchor the scale: 

휃𝑓𝑘~𝑁(0,1) 

The strategy class designations at time t follow a categorical distribution, conditional on 

the class designation at t-1 to conform to the Markov process constraint. For a particular 

strategy class k at t-1 
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ф𝑗𝑡
|(ф𝑗𝑡−1

= 𝑘)~𝑐𝑎𝑡(𝜋𝑘1𝑔 , 𝜋𝑘2𝑔 …𝜋𝑘𝐾𝑔) 

Where the vector (𝜋𝑘1𝑔 , 𝜋𝑘2𝑔 …𝜋𝑘𝐾𝑔) represents the full set of cluster specific transition 

probabilities for moving from state k at t-1 to any designated state at t.  These transition 

probabilities are collected into the kth row of the transition matrix 𝐴𝑔, and are themselves 

distributed according some designated prior distribution, C with parameter vector 𝜶: 

(𝜋𝑘1𝑔 , 𝜋𝑘2𝑔 …𝜋𝑘𝐾𝑔)~𝐶(𝜶𝟎) 

And the actual transition cluster assignments for examinees, 𝛿𝑗 follow a categorical prior: 

𝛿𝑗~𝑐𝑎𝑡(𝜈1, 𝜈2, … 𝜈𝐺) 

With the vector of 𝝂 values, representing the proportional distribution of examinees 

across the G transition matrices, also being distributed according to some chosen prior 

distribution C: 

(𝜈1, 𝜈2, … 𝜈𝐺)~𝐷(𝜶𝟏) 

Note that if G is fixed to 1, then the MHM-2PLC simply reduces to the HM-2PLC, 

providing an alternative to the EM approach of Rijmen et al. for estimating parameters in 

hidden Markov explanatory IRT models. Note furthermore that this presentation has thus 

far neglected to establish any specific form to the prior distribution on the class and 

cluster probabilities. The reason is that several choices are available for the forms of 

𝐶(𝜶𝟎) and 𝐷(𝜶𝟏), each based on different theoretical representations of the clustering 

process and representing different biases with respect to the degree of clustering.  In the 

following sections, I review three common choices for 𝐶(𝜶𝟎) and 𝐷(𝜶𝟏): 1) the finite 



20 

 

Dirichlet, 2) the stick-breaking process, and 3) the sparse finite Dirichlet, and discuss 

their implications for identifying the number of strategy classes and transition clusters. 

   

2.1.1 The Finite Dirichlet   

     One exploratory method of identifying the number of strategy classes and transition 

clusters in the MHM-2PLC is to simply run a series of models that each specify a 

different set of fixed values for K and G; and then subsequently evaluate penalized fit 

statistics (e.g. AIC, BIC, DIC) to select an optimal solution.  For this method, both 𝐶(𝜶𝟎) 

and 𝐷(𝜶𝟏) are set to Dirichlet priors, with concentration parameters fixed to some 

reasonably large value.  The reason for this decision on the concentration parameters is to 

force the model to populate the full set of K strategies and G clusters in each run (e.g. 

avoid vacant classes/clusters). In this case, each penalized fit statistic has a direct 

interpretation with respect to a specific clustering solution.  Frühwirth-Schnatter (2006) 

recommends fixing full set of concentration parameters to 4 to achieve this, and this 

guidance is followed in the current analysis. 

2.1.2 The Dirichlet Process/Stick-Breaking Process   

     A disadvantage of the approach above pertains to time economy; Bayesian estimation 

procedures for hidden Markov models, relying on Monte Carlo sampling from the 

posterior, can be quite time consuming. It becomes prohibitively time consuming when 

fit statistics must be derived for an entire set of models that exhaust a set of K x G 

combinations.  
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     An alternative approach is to estimate the number of strategy and transition classes 

from the observed data, given a reasonably specified prior distribution. In particular, the 

Dirichlet process  (Ferguson, 1973; and specifically, its stick-breaking representation), 

can be exploited to simultaneously consider a range of N possible strategy classes and N 

possible transition clusters, where N is the total number of subjects.  This bypasses the 

need to run multiple analyses with differing numbers of class/cluster solutions.  

     The Dirichlet process distribution is an infinite extension of the standard Dirichlet 

distribution and can be thought of as a ‘distribution of distributions’; that is, its 

realizations are themselves entire distributions.  Specifically, the Dirichlet process defines 

a distribution of partitions over a measurable set, given two parameters: a concentration 

parameter (𝛼) and a base distribution (𝐻): 

𝑉~𝐷𝑃(𝛼, 𝐻) 

Formally, the Dirichlet process is represented as draws from a Dirichlet distribution, with 

the Dirichlet parameters defined as a function of the base distribution and alpha 

parameter. For a measurable set, S, and K finite partitions (or clusters) of S, 𝐴1, 𝐴2, … 𝐴𝐾: 

 (𝑉(𝐴1), 𝑉(𝐴2), …𝑉(𝐴𝐾))~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼𝐻(𝐴1), 𝛼𝐻(𝐴2), …𝛼𝐻(𝐴𝐾)) (15) 

where 𝐻(𝐴𝑖) is the probability mass associated with cluster I according to base 

distribution, H, and the vector (𝑉(𝐴1), 𝑉(𝐴2),…𝑉(𝐴𝐾)) is a single realization of the 

Dirichlet process; also note that for I in 1:K, 𝑉(𝐴𝑘) ≥ 0and ∑ 𝑉(𝐴𝑘) = 1𝑘
𝑖=1 .  

Effectively, the Dirichlet process transforms a continuous distribution into a discrete 

distribution with a countably infinite number of point masses.  This property is what 

establishes the Dirichlet process as a useful prior for cluster and mixture modeling 
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applications; in fact, data clustering algorithms represent one of the most widely used 

applications of the Dirichlet process. 

     A simple, intuitive way to think of the Dirichlet process is through a classification 

procedure, whereby each new value is either classified into an existing cluster (with 

probability proportional to the cluster size, 𝑛𝑘) or into its own new cluster (with 

probability proportional to the concentration parameter, α). Thus, the concentration 

parameter controls the degree of clustering; when α is large, new clusters are favored and 

𝑉(𝐴) → 𝐻(𝐴). Conversely, if α is sufficiently small, 𝑉 reflects a degenerate distribution. 

This has obvious implications for the application of the Dirichlet process prior in mixture 

modeling, as α can be tuned according to one’s prior beliefs regarding the degree of 

clustering. Alternatively, α can itself be derived empirically from the data evidence.   

     This intuitive perspective of the Dirichlet process has often been illustrated through 

the metaphor of the ‘Chinese Restaurant Process’. The basic idea is that a restaurant may 

have as many tables (clusters) as customers (observations). As customer 𝑥𝑖 enters, that 

customer may be seated at a particular table with probability proportional to 
𝑛𝑘

𝑁+𝛼
, where 

𝑛𝑘 is the number of customers already seated at table 𝐴𝑘, 𝑁 is the total number of 

customers seated in the restaurant, and 𝛼 is the concentration parameter described 

previously. However, customer 𝑥𝑗 may also be seated at a new, unoccupied table with 

probability proportional to  
𝛼

𝑁+𝛼
, and the process repeats itself as a new customer enters.  

Essentially, tables (or clusters) may be continually added to accommodate new customers 

according to parameter 𝛼 and existing cluster membership: 
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𝑝(ф𝑖 = 𝑘|ф−𝒊, 𝛼) = {

𝑛𝑘
𝑁 + 𝛼

𝑓𝑜𝑟𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝛼

𝑁 + 𝛼
𝑓𝑜𝑟𝑛𝑒𝑤𝑐𝑙𝑢𝑠𝑡𝑒𝑟

 

 

 

(16) 

     The fact that tables can continually be added as needed underscores the utility of the 

Dirichlet prior in mixture modeling applications; it represents a non-parametric approach 

with a theoretically infinite number of components. The number of components is learned 

from the data rather than being set a priori. 

     The Chinese Restaurant process can be extended to the situation where cluster 

assignments are associated with some relevant, observed value. If each table corresponds 

to a particular value, 휃𝑘, then each customer seated at the table would be assigned that 

value. Conversely, if a customer is seated at a new table, they adopt a value drawn from 

the base distribution, 𝐻. This is consistent with the representation from Blackwell and 

MacQueen (1973), and reflects the posterior probability of the assigned 휃 value for the 

nth customer, given all previous assignments for n-1 customers. 

     Another means of representing the Dirichlet process is through a ‘stick-breaking 

process’, and it is this conceptualization which will be directly reflected in the choice for 

𝐶(𝜶)here (see the WinBugs code for the MHM-2PLC in Appendix A). The ‘stick-

breaking’ moniker refers to the use of a beta distribution to recursively ‘break’ segments 

of unit length; with the relative lengths of these components used as a prior for cluster 

probabilities.  First, the parameter defining each class/cluster is distributed according to a 

base distribution as before: 

휃𝑘~𝐻 
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Then the stick-breaking process to obtain cluster probabilities is defined: 

 

𝜋𝑘 = 𝛽𝑘∏(1− 𝛽𝑙)

𝑘−1

𝑙=1

 

𝛽𝑘~𝐵𝑒𝑡𝑎(1, 𝛼) 

(17) 

where the parameter, 𝛼, controls the degree of clustering as discussed previously.  For the 

sake of simplifying presentation, the stick breaking process in (17) will be given the 

following representation: 

𝐶(𝜶) = 𝑆𝐵(𝛼) 

If some a priori notion regarding the degree of clustering can be established, then 𝛼 may 

be fixed accordingly (smaller values favor fewer clusters). In a fully exploratory 

approach, however, it makes sense to allow 𝛼 to be freely estimated from the data. As 

mentioned, a common choice is the gamma distribution: 

𝛼~𝐺𝑎𝑚𝑚𝑎(휀, 𝜏) 

And with cluster probabilities now derived from the stick-breaking process, V is defined: 

𝑉 = ∑𝜋𝑘𝛿𝜃𝑘

𝐾

𝑘=1

 

where  𝛿𝜃𝑘 is the Dirac delta function. This construction is equivalent to the 𝑉~𝐷𝑃(𝛼,𝐻) 

described earlier. 

     For applications of the MHM-2PLC, a hierarchical version of the stick breaking 

process is applied, conforming to the hierarchical Dirichlet process presented by Teh, 

Jordan, Beal, and Blei (2006): 
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𝑉𝑔~𝐷𝑃(𝛼𝑔, 𝐿) 

𝐿~𝐷𝑃(𝛼0, 𝐻) 

 so that the result of a lower order Dirichlet process forms the base distribution for a 

higher order Dirichlet process.  This hierarchical structure to the Dirichlet process 

essentially constrains the cluster specific parameter values to be constant across higher 

order latent groups, but allows the probability weights associated with these parameter 

values to differ across the groups.  In the case of the MHM-2PLC specifically, this 

amounts to constraining the item feature weights for all strategy classes to be the same 

for all transition clusters (eg 휂𝑓𝑘𝑔 = 휂𝑓𝑘−𝑔 and 𝛾𝑓𝑘𝑔 = 𝛾𝑓𝑘−𝑔 for all f, k and g), but 

allowing the transition probabilities to vary by cluster. Put another way, the higher order 

transition clusters only differ in the pattern of strategy shifts, not the strategies 

themselves.  Given the structure of prior distributions presented in section 2.1, the 

hierarchical stick-breaking process for the MHM-2PLC is easily constructed: 

𝐶(𝜶𝟎) = 𝑆𝐵(𝛼0) 

𝐷(𝜶𝟏) = 𝑆𝐵(𝛼1) 

In the case where no assumptions are made regarding the number of strategy classes and 

transition clusters, and the posterior distributions of 𝛼0 and  𝛼1 are derived from the data 

evidence with a gamma distributed prior, the choice for the shape and rate parameters on 

the prior become crucial to ensure the number of classes/clusters is not under or over 

specified. This issue is discussed further in section 3 (simulation).  

2.1.3 The Sparse Finite Dirichlet   
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     The sparse finite Dirichlet approach to clustering (Frühwirth-Schnatter, & Malsiner-

Walli, 2019) represents a compromise between the finite Dirichlet in 2.1.1 and the 

infinite, non-parametric Dirichlet in 2.2.2. The approach is not built on the theoretical 

concept of potentially infinite clusters (as the Dirichlet process is); rather it retrofits a 

finite Dirichlet prior to function similar to a Dirichlet process prior. This is accomplished 

by fixing K and G to large (overspecified) values and adopting conversative distributions 

for 𝛼0 and 𝛼1 that are biased towards smaller values. The distinction between the 

Dirichlet process prior and sparse Dirichlet prior is salient when considering the 

probability of forming new clusters. As mentioned, the Dirichlet process generates a new 

cluster with probability proportional to 𝛼: 

𝑝(ф𝑖 = 𝑘𝑛𝑒𝑤|ф−𝒊, 𝛼) =
𝛼

𝑁 + 𝛼
 

 so that new clusters are generated independently of the number of non-vacant clusters, 

𝐾+. Given that the expected number of non-vacant clusters in the Dirichlet process 

increases logarithmically with sample size, 𝐾+ = 𝛼log(𝑁), the Dirichlet process favors a 

solution with a small number of highly populated clusters and a large number of sparsely 

populated clusters. Conversely, adopting a finite Dirichlet prior will produce a new 

cluster with probability that increases with 𝛼 and K, and decreases with 𝐾+: 

𝑝(ф𝑖 = 𝑘𝑛𝑒𝑤|ф−𝒊, 𝛼, 𝐾) =
𝛼(𝐾 − 𝐾+)

𝑁 + 𝛼𝐾
 

such that the probability of generating a new cluster approaches 0 as 𝐾+ increases. 

Consequently, the finite Dirichlet prior favors a solution with a moderate number of 

clusters that is more robust to increases in sample size.  
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     Thus, a finite Dirichlet prior can also have utility alongside the Dirichlet process prior 

for exploratory clustering applications, with the proviso that it remains more conservative 

in estimating 𝐾+. Of course, care needs to be taken in the choice for 𝛼, as large values 

will still favor a solution where 𝐾+ = 𝐾.  Once again, for exploratory applications it 

makes sense to freely estimate 𝛼 from the data with a more conservative prior 

distribution. Choices for the parametrization of the prior distribution will be further 

discussed in section 3.  

 

2.2 Constraints and Assumptions 

     For the HM-2PLC and MHM-2PLC, a location and scale indeterminacy exists within 

strategy classes similar to the 2PL model: 

 𝑝(𝑥𝑖𝑗 = 1|𝛳𝑗 , 𝑘 )

=
exp(

∑𝑞𝑓𝑖 𝛾𝑓𝑘 + 𝛾0𝑘
𝑠 (𝑠𝛳𝑗𝑘 + 𝑐 − 𝑠∑𝑞𝑓𝑖 휂𝑓𝑘 + 𝑠휂0𝑘 + 𝑐))

1 + exp(
∑𝑞𝑓𝑖 𝛾𝑓𝑘 + 𝛾0𝑘

𝑠 (𝑠𝛳𝑗𝑘 + 𝑐 − 𝑠∑𝑞𝑓𝑖 휂𝑓𝑘 + 𝑠휂0𝑘 + 𝑐))

 
(18) 

 

such that equivalent fit will be exhibited for any value of 𝑠 and 𝑐. A simple means of 

resolving this indeterminacy is to set the difficulty model intercept, 휂0𝑘, and the 

discrimination model intercept, 𝛾0𝑐, to some fixed value (for example, 0 and 1, 

respectively) for all strategy classes. Alternatively, equivalent scale anchoring can be 

achieved by fixing the parameters of the ability distributions across classes: 𝛳𝑗𝑘~𝑁(0,1), 

and freely estimating 휂0𝑘 and 𝛾0𝑘 for all k.  For this application, this latter constraint is 
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chosen (and reflected in the fixed hyperparameters in 2.1).  The following assumptions 

are also reflected in the previous presentation of the model, but are explicated here: 

1) The transition matrix in (7) has no time subscript and is therefore time invariant. 

The 𝜋𝑘𝑘′ transition probabilities remain constant across time points for all k.  

2) The class specific emission probabilities are time invariant, conditional on 휃𝑗𝑘; 

that is, the class specific item feature weights (휂𝑓𝑘 , 𝛾𝑓𝑘) remain constant across all 

time points. Put another way, strategy transitions occur, but not gradual shifts in 

strategy. If a particular strategy evolves sufficiently over time, this would be 

modeled as a novel, distinct strategy with a new set of item feature weights.  

     The assumptions above are similar to what Rijmen and colleagues established for their 

hidden Markov IRT model. The MHM-2PLC carries the additional assumption that each 

examinee is governed by a single transition matrix during the course of testing. Just as the 

transition matrix in (7) is populated by values that govern the pattern of strategy 

transitions within a single cluster, a higher order transition matrix can be defined that 

governs the shifting pattern from one transition cluster to another: 

 

(

𝜏11 𝜏12 … 𝜏1𝐺
𝜏21 𝜏22 … 𝜏2𝐺
⋮ ⋮ ⋱ ⋮
𝜏𝐺1 𝜏𝐺2 ⋯ 𝜏𝐺𝐺

) (19) 

so that the element in row 1 and column 2, for example, represents the probability of an 

examinee migrating from transition matrix 1 to transition matrix 2, 𝐴1 → 𝐴2. If this 

matrix is freely estimated, then an examinee’s pattern of strategy transitions is allowed to 

shift over time to another pattern of transitions. For this application, however, I restrict 

this higher order transition matrix to an identity matrix: 



29 

 

(

1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

) 

     Future work may explore the data conditions under which this restriction may be 

relaxed and the matrix in (19) freely estimated.  
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CHAPTER 3: METHODS 

3.1 Simulation Study 

     To evaluate the conditions under which precise and accurate parameter estimates are 

obtained for both the HM-2PLC and HMH-2PLC, a simulation study will be carried out 

across two manipulated factors: the dissimilarity of the strategy classes and the type of 

transition matrix. Dissimilarity of the invoked strategies was indexed by Euclidean 

distance between the sets of item parameters defining each strategy class.  The dissimilar 

strategy condition was defined by a Euclidean distance of 1.414; this reflects a situation 

where the discrimination and difficulty parameters between strategy classes differ by an 

average margin of ~1, given z scored item features.  The similar strategy class condition 

cut this margin by half.  For the transition matrix type, 4 basic transition processes were 

considered: Slow regression, rapid regression, slow absorption, and rapid absorption: 

                              

     For the HM-2PLC, each of the transition matrices above was considered a separate 

level of the manipulated transition matrix factor and fully crossed with similarity of 

strategy, producing eight total conditions.  For the MHM-2PLC, which considers more 

than one transition matrix operating in the data, various pairs of the above matrices were 

considered as a manipulated factor. Specifically, the following three pairs were 

considered: Slow Regression/Fast Regression, Slow Absorption/Slow Regression, and 

(
. 8 . 2
. 2 . 8

) (
. 2 . 8
. 8 . 2

) (
. 8 . 2
0 1

) (
. 2 . 8
0 1

) 

Slow Regression Fast Regression Slow Absorption Fast Absorption 
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Fast Absorption/Slow Absorption. Similar to the HM-2PLC analysis, these manipulated 

conditions were fully crossed with similarity of strategy, producing six total conditions.  

Note additionally that across these 14 conditions (eight for HM-2PLC and six for MHM-

2PLC), three types of modeling approaches were considered: parametric modeling, non-

parametric modeling with a stick breaking prior, and non-parametric with a sparse finite 

Dirichlet prior. Thus, across all manipulations, a total of 42 conditions were considered.  

Sample size and number of items were fixed at 770 and 28, respectively, to reflect the 

properties of the empirical dataset. Tables 1 and 2 provide a summary of both the 

manipulated and fixed factors for the HM-2PLC and MHM-2PLC, respectively.  

Table 1 

Manipulated and Fixed Conditions for HM-2PLC Simulation 

 Factor Conditions 

 

 

 

 

Manipulated Factors 

Dissimilarity of Strategy 

Classes 

d=1.414  

d=.707 

Transition Matrix Type Slow Regression 

Fast Regression 

Slow Absorption 

Fast Absorption 

Modeling Approach Parametric (finite Dirichlet prior) 

Non-parametric (stick breaking 

prior) 

Non-Parametric (sparse finite 

Dirichlet) 

 

Fixed Factors 

Number of Subjects 770  

Number of Items 28 

Number of Strategy 

Classes 
2 
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Table 2 

Manipulated and Fixed Conditions for MHM-2PLC Simulation 

 Factor Conditions 

 

 

 

Manipulated Factors 

Dissimilarity of Strategy 

Classes 

d=1.414  

d=.707 

Transition Matrix Type Slow Reg./Fast Reg. 

Slow Abs./Slow Reg. 

Fast Abs./Slow Abs. 

Modeling Approach Parametric (finite Dirichlet prior) 

Non-parametric (stick breaking 

prior) 

Non-Parametric (sparse finite 

Dirichlet) 

 

Fixed Factors 

Number of Subjects 770  

Number of Items 28 

Number of Strategy 

Classes 
2 

 

     The pattern of transition probabilities is an important consideration, since determines 

how much support is provided for estimation of IRT parameters. In the fast absorption 

case, for example, subjects quickly transition from strategy 1 to strategy 2 without ever 

regression back to strategy 1. In this case, there will be very few instances where strategy 

1 is invoked, resulting in parameter estimates with diminished reliability for that strategy. 

The dissimilarity of strategy classes was also considered an important condition to 

evaluate, since it allows for an evaluation of the model’s degree of sensitivity in 

discriminating strategy classes when the differences may be more subtle.  
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     For both the HM-2PLC and MHM-2PLC, the number of invoked strategies will be 

fixed to two, reflecting common two-strategy hypothesis testing in discriminating spatial 

vs analytical reasoning (Milevy & Verhelst, 1990), engaged vs guessing behavior 

(Yamamato, 1989), and fast vs slow processing (Molenaar, Bolsinova, Rozsa  & De 

Boeck, 2016).   

     As mentioned previously, an issue with exploratory applications of the presented 

models is selecting the appropriate number of strategy and transition clusters.  Three 

approaches were described with respect to the prior placed on the class/cluster 

probabilities – use of a finite Dirichlet prior, a stick-breaking process prior, and a spare 

finite Dirichlet prior. Use of the finite Dirichlet prior usually carries with it a dependence 

on penalized fit statistics for multiple model specifications. While this approach is widely 

implemented and has demonstrated reasonable success in identifying the appropriate 

number of classes/clusters (Finch & French, 2012; Frühwirth-Schnatter, 2006), it can be 

prohibitively time consuming for the MHM-2PLC. The steak-breaking prior and the 

sparse finite Dirichlet offer a more time efficient alternative, and as thus will be preferred 

approaches unless shown to be inferior in parameter recovery. Theoretically, the stick-

breaking process prior and sparse Dirichlet prior should perform somewhat similarly, 

though with the stick breaking process prior favoring more clusters with smaller 

representation. Whether there is a distinction between the two approaches in practice with 

the MHM-2PLC (and hierarchical hidden Markov models more generally) remains an 

open question, however. To resolve these questions, I evaluate parameter recovery and 

class/cluster recovery across all manipulated conditions with each of the three 

classification approaches. Table 3 provides detailed information regarding the choices for 
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fixed parameter values; these choices were guided by the recommendations of Frühwirth-

Schnatter (2019) for proper cluster identification in mixture models.  

Table 3 

Hyperpriors and Hyperparameters for Implemented Clustering Approaches at K =5   

Clustering Approach Prior Structure 

Finite Dirichlet 𝝅~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼1, 𝛼2, … 𝛼𝐾) 

𝜖 = 𝛼1 = 𝛼2… = 𝛼𝐾 

𝜖0 = 4 

Stick-Breaking 

𝜋𝑘 = 𝛽𝑘∏(1 − 𝛽𝑙)

𝑘−1

𝑙=1

 

𝛽𝑘~𝐵𝑒𝑡𝑎(1, 𝛼) 

𝛼~𝐺𝑎𝑚𝑚𝑎(1,10) 

Sparse Finite Dirichlet 𝝅~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼1, 𝛼2, … 𝛼𝐾) 

𝜖 = 𝛼1 = 𝛼2… = 𝛼𝐾 

𝜖~𝐺𝑎𝑚𝑚𝑎(1,10) 

 

In all cases, posterior distributions were obtained through the Gibbs sampling procedure 

as implemented in either the OpenBugs or JAGS software packages.  

3.2  Empirical Study 

     To demonstrate the practical utility of the MHM-2PLC with data from cognitive and 

educational batteries, I apply the MHM-2PLC to a set of item responses from the Spatial 

Learning Ability Test (SLAT; Embretson 1994).  Specifically, responses to 28 items from 
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769 Air Force recruits were considered for the analysis.  Items required examinees to 

correctly match an unfolded cube to its folded counterpart (see Figure 1).  

 

Figure 1 

Example SLAT item 

 

 

     The expected strategy is a physical-analogue process, whereby the mental solution 

process reflects the physical process of converting the unfolded stem to the folded, cube 

form. This analogue process involves a two step procedure: in step one, two adjacent 

sides from the unfolded stem are mentally overlayed onto a response option. In step two, 

the remaining surfaces are folded to determine whether the remaining visible side of the 

response option matches the folded stem.  Step one difficulty is affected by the degree of 

rotation required to overlay the stem onto each response option (0◦ 90◦ or 180◦), and step 

two difficulty is related to the number of stem surfaces that must be folded in order to 

match the third side of the response option (one, two, or three folds).  This dataset has 

been evaluated in a number of previous studies (Embretson, 1997; Embretson, 1997; 

Embretson, 2007) with various item response models. However, apart from one study 

which considered growth in the latent trait across time (Embretson, 1991), none of these 
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previous analyses have considered longitudinal shifts in the response process.  Given the 

items were generated according to a specific strategy approach which most examinees 

may not initially be familiar with, it seems reasonable to consider whether or not 

longitudinal changes are observed in applying this strategy. For example, many 

examinees may initially exhibit guessing behavior, then transition to a response process 

representative of the physical-analogue approach with increasing familiarity with the 

items. Additionally, there may be cluster differences in how quickly this transition is 

made, or there may be a small of cluster of examinees who invoke the physical-analogue 

strategy immediately on the first item.    A previous analysis using the mixture Rasch 

model (Embretson, 2007) found evidence for four distinct classes of examinees, based on 

differing patterns of item difficulty.  The physical-analogue process described previously 

was well represented in one class of examinees, while the remaining classes were 

comprised of an analytic-verbal group, a guessing group, and a partial analogue 

processing group (‘partial analogue’ since this latter group only seemed to engage in the 

analogue process for a subset of items).  

     I carry out a reanalysis of the data with a MHM IRT model in order to determine 

whether previous analyses were overly restrictive in assuming temporally invariant use of 

strategies. In particular, the following questions are examined: 

• Do strategy class transitions occur, such that examinees shift from the guessing 

class to a more process oriented strategy class, with increasing familiarity with 

items? Do similar transitions occur within process oriented classes (e.g. 

transitioning from the partial analogue processing class to the full analogue 

processing class)? 
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• Do clusters of examinees exist that show differential patterns of transitions? For 

example, can a cluster of examinees who never transition out of the guessing class 

be distinguished from a cluster of examinees who do? 

     Consistent with a previous analysis (Embretson, 2007) the item difficulty predictors 

include degrees of rotation, number of surfaces carried, and the interaction thereof. Novel 

to the 2007 analysis, I also consider whether these item properties are related to item 

loading patterns within a particular strategy class. Note additionally that no a priori 

notion regarding the number of relevant strategies or transition matrices is established, I 

apply a MHM IRT model in a completely exploratory fashion with respect to the number 

of strategy classes and transition patterns.  
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CHAPTER 4: RESULTS 

     Generally speaking, the structural parameters of both the HM-2PLC and MHM-2PLC 

were recovered well from the posterior distributions for simpler models. Note, however, 

that when states were visited only fleetingly (as is the case when subjects rapidly 

transition from one state to another with no return path), IRT parameter estimates were 

imprecise and biased, though this is expected given the lack of data support. However, 

even in the case of states with only fleeting visitations, transition probabilities were 

estimated well.  

     Person level parameter estimates (strategy specific abilities, item by item strategy 

classifications, and transition cluster membership) exhibited a high degree of entropy in 

the Bayesian sampling chain, with inaccurate modal and expected values. These 

inaccuracies in turn produced erroneous deviance values, which in turn invalidated the 

use of any deviance based fit statistic for model selection in exploratory applications.  As 

a correction, I propose an adjusted deviance statistic that simply models the overall 

transition cluster proportions, the change in strategy proportions at each time point, and 

integrates out the strategy specific abilities. This effectively produces a likelihood 

statistic that evaluates fit without reference to any person level parameter. This adjusted 

fit statistic can then be penalized by model complexity by a weighting convention of 

choice for model selection purposes.  

     Alternatively, one may wish to adopt one of the proposed non-parametric approaches 

for exploratory applications. However, the non-parametric, stick-breaking formulation of 

the MHM-2PLC demonstrated a tendency to overselect the number of strategies, as well 
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as elevated error in the IRT parameters. Furthermore, these non-parametric approaches 

exhibited unreliable implementation across multiple Bayesian software packages and 

operating systems (Table 4 summarizes the capabilities of both OpenBUGS and JAGS 

for implementing these models across various operating systems).   

Table 4 

 

Feasibility of Implementing parametric and non-parametric HM-2PLC and MHM-

2PLC  

 OpenBUGS 

(Windows 

operating 

system) 

OpenBUGS 

(Linux 

operating 

system) 

JAGS 

(Windows 

operating 

system) 

JAGS (Linux 

operating 

system) 

Parametric 

(finite 

Dirichlet) 

Compiles 

within a few 

minutes arrives 

at an optimal 

solution within 

15,000 

iterations 

Compiles 

within a few 

minutes and 

arrives at an 

optimal 

solution within 

15,000 

iterations 

Compiles after 

12 hours and 

arrives at an 

optimal 

solution within 

15,000 

iterations 

Compiles after 

12 hours and 

arrives at an 

optimal 

solution within 

15,000 

iterations 

Non-

paramatric 

(stick breaking 

process) 

Compiles 

within 12 hours 

and arrives at 

an optimal 

solution within 

15,000 

iterations 

Does not 

compile within 

5 days 

Compiles after 

1 day but does 

not arrive at an 

optimal 

solution within 

50,000 

iterations 

Compiles after 

1-2 days but 

does not arrive 

at an optimal 

solution within 

50,000 

iterations 

Non-

parametric 

(sparse finite 

Dirichlet) 

Does not 

compile 

Does not 

compile 

Compiles but 

sampling stalls 

Compiles but 

sampling stalls 

 

And although the non-parametric form with the stick-breaking prior can be implemented 

OpenBUGS with a Windows operating system, its complexity results in a marked 

increase in runtime. Even if the ceiling for both the number of strategy classes and 

transition clusters is restricted to just five, the expected runtime is roughly 24 to 48 hours 
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to obtain a stable posterior distribution. In contrast, the parametric form of the model for 

two strategy classes and two transition clusters requires roughly two to three hours to 

achieve a stable posterior distribution. Thus, it is recommended that interested users 

adopt the parametric forms of the HM-2PLC and MHM-2PLC for exploratory 

applications, and utilize the proposed adjusted deviance statistic for model selection.   

This recommendation is particularly strong if one expects a lower number of strategies 

and transition clusters in the data and has access to multiple computing cores for parallel 

processing. In the following sections, I review the simulation results for both HM-2PLC 

and MHM-2PLC in more detail and provide a more detailed account of the proposed 

adjusted deviance statistic.  

4.1 Parameter Recovery for Parametric (finite Dirichlet) HM-2PLC 

     Tables 5 through 8 display bias and RMSE values for structural parameters when 

applying the parametric HM-2PLC to simulated data according to four different transition 

matrices and two levels of strategy similarity (see methods for full description of 

conditions).  Generally, item difficulty estimates exhibited less bias and higher precision 

than the item discrimination estimates.  Additionally, accuracy and precision were 

attenuated when the strategies were more similar; though still within a reasonable range 

for the conditions with slow regression and fast regression transition matrices.  However, 

both the conditions with slow absorbing and fast absorbing transition matrices exhibited 

at least a moderate (and sometimes severe) degree of bias and imprecision. As noted 

previously, this is due to the lack of data to support accurate IRT parameter estimates 

when a state acts solely as a transition point to another state with no chance for 

revisitation (e.g. a transitory state along the path to an absorbing state).  
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     Tables 9 shows parameter recovery for the transition probabilities and starting state 

probabilities. Note that across all conditions, the initial state and transition probability 

estimates exhibited reasonable precision; even when the transition matrices included an 

absorbing state. This is important not just for matters of substantive interpretation; it 

allows users to quickly determine how much trust may be placed in the difficulty and 

discrimination estimates. For transition matrices with either vary slow transitions to an 

absorbing state or regressions to previous states, the difficulty and discrimination 

parameters may be interpreted with a high degree of confidence. However, if a transition 

matrix with an absorbing state is produced (particularly with a fast transition to that 

absorbing state), the user should exercise extreme caution when using the difficulty and 

discrimination parameters to characterize the nature of the identified strategies. It is also 

worth noting that although the presence of an absorbing state compromises recovery of 

IRT parameters for the transitory state, it does lead to fairly accurate strategy 

classifications for persons at the item level (see Table 10) since within a few short items 

almost all subjects are invoking the same strategy.  

     As can be expected, strategy specific ability estimates were more accurate and precise 

for absorbing strategy states (see Table 11); this is simply due to the increased number of 

response observations within that strategy to support estimation. Although there was no 

overall bias in the ability estimates (averaged within and over replications) there was 

enough imprecision in the estimates for transitory states to question the model’s utility 

for deriving individual level parameters.  The inconsistencies in classifying individual 

strategies also reinforce this point.  The model’s seeming limitation at providing any 
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reliable estimates outside of the structural parameters is a point that will be returned to in 

section 5.3.1 when model selection procedures are discussed for exploratory applications.  

Table 5 

IRT Parameter Recovery for HM-2PLC; Slow Regression Transition 

 

 Dissimilar Strategy Similar Strategy 

IRT Parm True Value Bias RMSE True Value Bias RMSE 

𝛾01 2 -0.033 0.132 2 0.039 0.183 

𝛾11 1 -0.021 0.079 .75 0.003 0.137 

𝛾21 0 0.005 0.052 .25 -0.005 0.128 

𝛾02 2 0.027 0.158 2 -0.042 0.133 

𝛾12 0 -0.006 0.075 .25 0.006 0.097 

𝛾22 1 0.006 0.093 .75 -0.044 0.151 

휂01 0 0.018 0.052 0 -0.004 0.084 

휂11 1 0.031 0.054 .75 -0.022 0.114 

휂21 0 0.002 0.029 .25 0.029 0.122 

휂02 0 0.028 0.051 0 -0.043 0.122 

휂12 0 -0.001 0.032 .25 0.0423 0.137 

휂22 1 -0.018 0.054 .75 -0.033 0.162 
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Table 6 

IRT Parameter Recovery for HM-2PLC; Slow Absorption Transition 

 

 Dissimilar Strategy Similar Strategy 

IRT Parm True Value Bias RMSE True Value Bias RMSE 

𝛾01 2 -0.120 0.245 2 0.005 0.299 

𝛾11 1 -0.010 0.180 .75 -0.208 0.398 

𝛾21 0 -0.010 0.140 .25 0.035 0.262 

𝛾02 2 0.014 0.123 2 0.022 0.061 

𝛾12 0 0.005 0.125 .25 0.004 0.024 

𝛾22 1 0.003 0.070 .75 0.006 0.037 

휂01 0 0.060 0.067 0 0.004 0.092 

휂11 1 0.050 0.0270 .75 0.014 0.110 

휂21 0 -0.015 0.038 .25 -0.016 0.078 

휂02 0 -0.004 0.037 0 -0.003 0.035 

휂12 0 -0.010 0.016 .25 -0.003 0.013 

휂22 1 0.005 0.034 .75 -0.001 0.024 
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Table 7 

IRT Parameter Recovery for HM-2PLC; Fast Regression Transition 

 

 Dissimilar Strategy Similar Strategy 

IRT Parm True Value Bias RMSE True Value Bias RMSE 

𝛾01 2 0.037 0.188 2 -0.003 0.132 

𝛾11 1 0.016 0.114 .75 -0.042 0.103 

𝛾21 0 -0.017 0.076 .25 0.017 0.157 

𝛾02 2 -0.001 0.096 2 -0.011 0.140 

𝛾12 0 0.002 0.052 .25 0.034 0.122 

𝛾22 1 0.003 0.070 .75 -0.040 0.157 

휂01 0 -0.010 0.049 0 -0.019 0.078 

휂11 1 0.003 0.034 .75 -0.018 0.125 

휂21 0 0.007 0.030 .25 0.039 0.107 

휂02 0 0.008 0.045 0 0.026 0.070 

휂12 0 -0.003 0.027 .25 0.027 0.118 

휂22 1 0.008 0.051 .75 -0.032 0.109 
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Table 8 

IRT Parameter Recovery for HM-2PLC; Fast Absorption Transition 

 

 Dissimilar Strategy Similar Strategy 

IRT Parm True Value Bias RMSE True Value Bias RMSE 

𝛾01 2 -0.750 0.819 2 -0.801 0.856 

𝛾11 1 -1.056 1.216 .75 -0.793 1.037 

𝛾21 0 0.529 0.998 .25 -0.173 0.680 

𝛾02 2 0.064 0.096 2 0.079 0.107 

𝛾12 0 0.005 0.026 .25 0.008 0.031 

𝛾22 1 0.034 0.046 .75 0.040 0.052 

휂01 0 0.304 0.806 0 0.072 0.635 

휂11 1 -0.739 0.927 .75 -0.370 0.723 

휂21 0 1.050 1.393 .25 0.311 0.621 

휂02 0 -0.013 0.045 0 -0.001 0.044 

휂12 0 <.001 0.014 .25 -0.005 0.013 

휂22 1 -0.009 0.037 .75 -0.008 0.029 
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Table 9 

Parameter Recovery for HM-2PLC Initial and Transition Probabilities 

   Dissimilar Strategy Similar Strategy 

Matrix Parameter True Value Bias RMSE Bias RMSE 

Slow 

Regression 

𝜋𝐼1 .5 -.003 .046 .019 .066 

𝜋11 .8 .001 .013 -.010 .024 

𝜋22 .8 -.003 .014 .006 .022 

Slow 

Absorption 

𝜋𝐼1 .5 .016 -.035 -.005 .034 

𝜋11 .8 -.012 .002 -.023 .033 

𝜋22 1 -.002 .02 -.004 .004 

Fast 

Regression 

𝜋𝐼1 .5 .008 .045 -.007 .057 

𝜋11 .2 -.001 .022 .001 .024 

𝜋22 .2 .007 .031 -.002 .024 

Fast 

Absorption 

𝜋𝐼1 .5 .009 .067 .025 .056 

𝜋11 .2 .051 .066 .050 .069 

𝜋22 1 -.014 .014 -.013 .013 
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Table 10 

Strategy Classification Accuracy for HM-2PLC 

 Dissimilar Strategy Similar Strategy 

Matrix Strategy Classification Accuracy Strategy Classification Accuracy 

Slow Reg .716 .621 

Slow Abs .955 .934 

Fast Reg .718 .716 

Fast Abs .944 .982 

 

Table 11 

Parameter Recovery for HM-2PLC Person Abilities 

 Dissimilar Strategy Similar Strategy 

 Bias RMSE 𝜌�̂�𝛳 Bias RMSE 𝜌�̂�𝛳 

Matrix 𝛳1 𝛳2 𝛳1 𝛳2 𝛳1 𝛳2 𝛳1 𝛳2 𝛳1 𝛳2 𝛳1 𝛳2 

Slow Reg .008  .014 .663  .669 .747  .746 -.010 -.016 .760  .747 .649  .663 

Slow Abs -.005  -.005 .915 .343 .403  .956 .003 .003 .925 .335 .379 .942 

Fast Reg -.002 -.002 .611 .615 .791 .787 .008 .008 .663 .669 .747 .746 

Fast Abs -.004 -.004 1.00 .337 .157 .917 -.004 -.004 .972 .305 .242 .954 

 

4.2 Parameter Recovery for Parametric (finite Dirichlet) MHM-2PLC 

     For the novel and more general MHM-2PLC, two transition clusters were considered, 

with different pairings of transition matrices across the two clusters serving as the 
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manipulated condition. Three pairings were considered: slow regression against fast 

regression, slow absorption against slow regression, and fast absorption against slow 

absorption.  Additionally, these three conditions were crossed with strategy similarity. 

Across all conditions, Bayesian estimation of the MHM-2PLC behaved at least as well as 

the HM-2PLC (see Tables 12 through 14). In fact, for the MHM-2PLC, the presence of a 

fast absorbing state was less consequential for IRT parameter recovery, since a second 

cluster of examinees with different transition patterns compensated for the limited 

information produced by an absorbing state. For example, recall that for the HM-2PLC, 

IRT parameter estimates for a transitory strategy/state was severely biased in the presence 

of an absorbing state. However, in the case where one cluster is dominated by a fast 

absorbing process, but another cluster is dominated by a slower absorbing process, IRT 

parameter estimates are not so severely biased. This is because responses from the slower 

absorbing subjects provide the data support missing from the subjects who visit the 

transitory state only fleetingly; see Table 14 where difficulty and discrimination 

parameters are not severely biased when response processes are defined by both fast 

absorbing and slow absorbing transition matrices.   
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Table 12 

IRT Parameter Recovery for MHM-2PLC, Slow Regression/Fast Regression 

Clusters 

 

 Dissimilar Strategy Similar Strategy 

IRT Parm True Value Bias RMSE True Value Bias RMSE 

𝛾01 2 0.065 0.176 2 0.058 0.196 

𝛾11 1 0.018 0.104 .75 0.005 0.115 

𝛾21 0 0.004 0.073 .25 0.023 0.083 

𝛾02 2 -0.025 0.146 2 0.011 0.162 

𝛾12 0 0.005 0.069 .25 0.004 0.105 

𝛾22 1 -0.032 0.093 .75 -0.006 0.094 

휂01 0 0.028 0.068 0 -0.001 0.077 

휂11 1 0.021 0.056 .75 0.029 0.066 

휂21 0 -0.002 0.042 .25 0.009 0.038 

휂02 0 -0.009 0.056 0 -0.001 0.072 

휂12 0 -0.004 0.040 .25 -0.013 0.046 

휂22 1 0.007 0.045 .75 -0.010 0.057 

 

 

 

 

 



50 

 

Table 13 

IRT Parameter Recovery for MHM-2PLC, Slow Absorption/Fast Regression 

Clusters 

 

 Dissimilar Strategy Similar Strategy 

IRT Parm True Value Bias RMSE True Value Bias RMSE 

𝛾01 2 0.089 0.227 2 0.157 0.214 

𝛾11 1 0.039 0.130 .75 0.001 0.097 

𝛾21 0 0.003 0.079 .25 0.028 0.084 

𝛾02 2 0.013 0.109 2 0.071 0.117 

𝛾12 0 0.001 0.039 .25 0.011 0.059 

𝛾22 1 0.006 0.062 .75 0.034 0.048 

휂01 0 -0.013 0.066 0 -0.029 0.075 

휂11 1 -0.004 0.0688 .75 -0.017 0.073 

휂21 0 -0.010 0.044 .25 0.004 0.041 

휂02 0 0.005 0.058 0 0.001 0.056 

휂12 0 <.001 0.020 .25 -0.029 0.035 

휂22 1 0.013 0.044 .75 0.003 0.038 
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Table 14 

IRT Parameter Recovery for MHM-2PLC, Fast Absorption/Slow Absorption Clusters 

 Dissimilar Strategy Similar Strategy 

IRT Parm True Value Bias RMSE True Value Bias RMSE 

𝛾01 2 -0.128 0.266 2 -0.121 0.250 

𝛾11 1 -0.121 0.212 .75 0.001 0.149 

𝛾21 0 0.078 0.207 .25 -0.032 0.114 

𝛾02 2 0.017 0.087 2 0.104 0.149 

𝛾12 0 -0.004 0.014 .25 0.002 0.015 

𝛾22 1 0.021 0.044 .75 0.059 0.069 

휂01 0 0.077 0.134 0 0.029 0.097 

휂11 1 -0.109 0.178 .75 -0.007 0.086 

휂21 0 0.036 0.062 .25 0.011 0.087 

휂02 0 -0.006 0.034 0 0.013 0.037 

휂12 0 0.014 0.024 .25 -0.007 0.017 

휂22 1 -0.025 0.038 .75 0.005 0.044 

 

     Similar to the HM-2PLC, transition probabilities were estimated precisely and 

accurately, regardless of the type of transition matrix or the similarity of strategy used to 

generate data (see Table 15). There is no relation between the accuracy and precision of 

transition probability estimates and IRT parameter estimates; reliable estimates for 

transition probabilities may be derived even in the face of biased IRT parameter 

estimates.  Transition cluster proportions were also estimated quite well (see Table 16).  
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Table 15 

Parameter Recovery for MHM-2PLC Initial and Transition Probabilities  

   Dissimilar Strategy Similar Strategy 

Matrix Parameter True Value Bias RMSE Bias RMSE 

 

Slow Reg./ 

Fast Reg. 

𝜋𝐼11  1 -0.141 

 

0.154 -0.200 0.209 

𝜋111  .2 0.007 0.038 -0.021 0.042 

𝜋221  .2 0.023 0.041 0.020 0.037 

𝜋𝐼12  .5 0.007 0.084 0.020 0.086 

𝜋112  .8 -0.010 0.033 0.010 0.037 

𝜋222  .8 -0.005 0.027 -0.028 0.053 

 

Slow Abs./ 

Slow Reg. 

𝜋𝐼11  1 -0.143 0.182 -0.299 0.332 

𝜋111  .8 0.048 0.057 0.057 0.102 

𝜋221  .8 0.037 0.055 0.011 0.040 

𝜋𝐼12  .5 0.089 0.133 0.092 0.140 

𝜋112  .8 0.011 0.012 0.034 0.058 

𝜋222  1 0.061 0.076 0.068 0.091 
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Table 15 - continued 

   Dissimilar Strategy Similar Strategy 

Matrix Parameter True Value Bias RMSE Bias RMSE 

 

Fast Abs./ 

Slow Abs. 

𝜋𝐼11  1 - - - - 

𝜋111  .2 -0.026 0.045 0.051 0.080 

𝜋221  1 0.040 0.042 -0.055 0.070 

𝜋𝐼12  1 - - - - 

𝜋112  .8 0.053 0.057 -0.041 0.052 

𝜋222  1 0.004 0.004 -0.007 0.008 

 

Table 16 

Parameter Recovery for MHM-2PLC Transition Cluster Probabilities 

 Dissimilar Strategy Similar Strategy 

Matrix Bias RMSE Bias RMSE 

Slow Reg./Fast Reg. 0.021 0.058 0.004 0.040 

Slow Abs./Slow Reg. -0.014 0.027 -0.034 0.065 

Fast Abs./ Slow Abs. -0.012 0.057 -0.116 0.159 

 

     However, initial state probabilities were less well estimated (see Table 15 again), 

exhibiting moderate bias when data was generated with some initial states being vacant. 

Recall that for the parametric form of the HM-2PLC and MHM-2PLC, a symmetric set of 

concentration parameters with large values was fixed for the Dirichlet prior (based on 
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recommendations from Frühwirth-Schnatter, 2006). Fixing concentration parameters to 

be symmetric and large establishes a rather strong assumption that all states and clusters 

are populated at all times; this makes sense for the confirmatory approach that the 

parametric form is meant to serve. If, however, some classes or clusters remain 

unpopulated, then the model is mis-specified and parameters will be biased towards the 

prior. Note, that while the initial state probabilities are susceptible to this bias, the 

transition probabilities seem more robust to these types of overspecifications (showing 

about half as much bias or less, see Table 15 for bias and RMSE values for strategy states 

with a retention rate of 1).   

     As far as parameter estimates at the person level, recovery showed similar patterns as 

with the HM-2PLC. Strategy specific abilities were inconsistently estimated, with 

absorbing strategies showing satisfactory recovery but transitory strategies exhibiting 

increased RMSE and low correlations with true values (see Table 17). Strategy and 

transition classifications were also inconsistent (Tables 18 and 19), sometimes falling at 

just above chance values. As with the HM-2PLC, the model seems to be limited at 

deriving reliable structural parameters; with enough error in individual level parameter 

estimates to severely limit their utility or render them unusable for practical 

interpretation.  

 

 

 

 

 



55 

 

Table 17 

Parameter Recovery for MHM-2PLC Person Abilities 

 Dissimilar Strategy Similar Strategy 

 Bias RMSE 𝜌�̂�𝛳 Bias RMSE 𝜌�̂�𝛳 

Matrix 𝛳1 𝛳2 𝛳1 𝛳2 𝛳1 𝛳2 𝛳1 𝛳2 𝛳1 𝛳2 𝛳1 𝛳2 

Slow Reg/ 

Fast Reg 

.014 .003 .663 .662 .751 .753 -.003 -.001 .715 .711 .698 .707 

Slow Abs/ 

Slow Reg 

-.010 .009 .810 .552 .595  .834 -.015 <.001 .847 .606 .545 .799 

Fast Abs/ 

Slow Abs 

-.008 -.004 .820 .340 .553 .940 .016 .014 .799 .334 .611 .943 

 

Table 18 

Strategy Classification Accuracy for MHM-2PLC 

 Strategy Classification 

Accuracy, Dissimilar 

Strategy 

Strategy Classification 

Accuracy, Similar Strategy 

Slow Reg./ Fast Reg. .710 .650 

Slow Abs./Slow Reg. .857 .800 

Fast Abs./Slow Abs. .930 .925 
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Table 19 

Transition Cluster Classification Accuracy for MHM-2PLC 

 Transition Cluster Classification 

Accuracy, Dissimilar Strategy 

Transition Cluster 

Classification Accuracy, 

Similar Strategy 

Slow Reg/ Fast Reg .673 .618 

Slow Abs/Slow Reg .819 .730 

Fast Abs/Slow Abs .660 .592 

 

4.3 Model Selection in Exploratory Applications 

     The previous section focused solely on parameter recovery for the parametric form of 

the model, which fixes the concentration parameters of the Dirichlet prior to be 

symmetrical and fairly large. This specification assumes more clustering in the solution, 

with all specified strategy classes and transition clusters being populated.  Thus, this 

formulation is conducive to situations where a strong a priori notion is held regarding the 

nature of strategy use and transition patterns.  

     For exploratory applications, where no strong a priori assumptions are made regarding 

the response process, one generally has two options. The first is to apply a series of 

confirmatory models, each with a different specification, and then examine all fits to 

determine an optimal representation of the data. The other option is learn the 

concentration/clustering parameter from the data itself.  



57 

 

    The former approach is predicated on deriving an accurate likelihood estimate to serve 

as the basis for a fit statistic of choice. However, in the previous section, concern was 

noted regarding the model’s ability to accurately and reliably derive person level 

parameters, even if structural parameters are estimated well. Since the likelihood estimate 

is based on both structural and person parameters (see equation 14), evaluating relative fit 

of several models no longer becomes a straightforward endeavor. In the following 

section, I elaborate on this challenge more fully and propose a potential solution. 

4.3.1 Developing a Fit Statistic for Model Comparisons 

     Consider Figures 2 and 3, which show a series of fit statistics for a single replication 

of the HM-2PLC and MHM-2PLC, respectively.  For Figure 2, data was generated with a 

two strategy HM-2PLC, and evaluated with the properly specified model, as well as an 

underspecified model where transitions were constrained to 0 (essentially a Mixture 

2PLC) and two over-specified models (HM-2PLC with three strategies, and MHM-2PLC 

with two strategies and two transition clusters). For Figure 3, data was generated with a 

two strategy, two transition cluster MHM-2PLC and evaluated with the properly 

specified model, an underspecified model (two strategy HM-2PLC), and two over-

specified models (two strategy, three transition cluster MHM-2PLC and a three strategy 

two transition cluster MHM-2PLC). Critically, note that in both cases, the BIC and DIC 

favor over-specified models, while the integrated complete likelihood statistic (ICL) 

favors underspecified models.   
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Figure 2 

Penalized Deviances for HM-2PLC Simulated Data with Several Hidden Markov IRT 

Models  

 

Note. Models are ordered with increasing complexity. The HM-2PLC (2 Strat.) represents 

the correctly specified model.  

 

Figure 3 

Penalized Deviances for MHM-2PLC Simulated Data with Several Hidden Markov IRT 

Models  

 

 

Note. Models are ordered with increasing complexity. The MHM-2PLC (2 Strat., 2 

Trans.) represents the correctly specified model.  
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     The tendency to select over-specified models is not just a quirk specific to that set of 

generated data. Across a set of 25 replications with the HM-2PLC, the average drop in 

deviance between a correctly specified model with two strategies (15 structural 

parameters) and an over-specified model with three strategies (26 structural parameters) 

was 17305.  For the MHM-2PLC, the average drop between a correctly specified model 

with two transition matrices and two strategies (19 structural parameters) and an over-

specified model with two transition matrices and three strategies (35 structural 

parameters) was 1399.  This is a substantial margin that will be difficult to compensate 

for with any penalty term for complexity.  In fact, neither the penalties applied with BIC, 

DIC or WAIC were able to overcome this deficit across 25 replications, with over-

specified models still being favored.  

         A possible explanation for the substantial drops in deviance for over-specified 

models is the inability to precisely and accurately estimate person level parameters. If 

these estimates are fraught with error, then any resulting fit statistics are based on mis-

specified parameters and reflect mostly fit to error variance. As components are added to 

the model, relative fit seems to improve since there is no tradeoff between capturing 

systemic and error variance.  This also aligns with the tendency for the ICL to prefer 

simpler and under-specified models. The ICL is essentially a traditional BIC statistic 

penalized by average entropy in the cluster and class assignments. Because the model 

produces imprecise estimates for person level parameters with little information, more 

complex models receive large penalties for their uncertainty in these classifications.  

     Thus, a simple correction would be to define a likelihood statistic that is only 

concerned with the fit of structural parameters, and ignores person level parameters. One 
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possible approach to obtain this correction is to define a likelihood statistic that is 

marginalized over ability, strategy classifications, and transition cluster assignments. This 

can be accomplished by averaging response probabilities over all possible chains of 

strategy visitations and all possible transition clusters for each person; and furthermore by 

treating ability as a random effect and integrating it out within each strategy chain.  

     The only complication with this approach is computational feasibility. If a test with 28 

items and 770 subjects is considered with two strategies, this amounts to averaging over 

228 possible chains of strategy visitations for each subject’s response vector. 

Furthermore, ability must be integrated out from each of the 228 chains for each person. 

Even with a small number of quadrature points (say 11 per ability dimension), this 

amounts to over 1.4 quadrillion calculations(!). The number of calculations increases 

exponentially if three strategies are considered. For most personal computing machines, 

this calculation becomes untenable. An alternative approach is to reconsider the model as 

a mixture model, but with a time varying mixture proportion; 

 

𝑝(𝒙𝒋) =∏∑휁𝑘𝑖

𝐾

𝑘=1

𝐼

𝑖=1

∗ 𝑝(𝑥𝑖𝑗|𝑞𝑖, 휂𝑘 , 𝛾𝑘, 𝛳𝑗𝑘) 
(20) 

     Note that this conforms to the structure of a traditional mixture IRT model, with the 

exception of an item subscript on the mixing proportion, 휁𝑖𝑘. For ease of estimation, one 

can apply the constraint that the mixing proportion evolves with time according to a 

Markov process: 

휁𝑘𝑖 = 휁𝑘𝑖−1𝝅𝒌′𝒌 

where 𝜋𝑘′𝑘 represents the transition probability of moving from strategy k’ to k and is 

collected into the transition matrix, A. Note that this is equivalent to the HM-2PLC 
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described previously, since the strategy transition probabilities at the individual level will 

be reflected in the temporal changes in value of the overall mixing proportion. The 

exception here is that no effort is made to derive individual strategy classifications.  For 

the MHM-2PLC, the mixing proportion shows a different pattern of evolution across 

latent clusters, and is identified with a cluster specific subscript, g: 

 

𝑝(𝒙𝒋) =∏∑휁𝑘𝑖𝑔

𝐾

𝑘=1

𝐼

𝑖=1

∗ 𝑝(𝑥𝑖𝑗|𝑞𝑖, 휂𝑘, 𝛾𝑘, 𝛳𝑗𝑘) 

 

(21) 

and cluster specific transition probabilities are defined: 

휁𝑘𝑖𝑔 = 휁𝑘𝑖−1𝑔𝝅𝒌′𝒌𝒈
 

 This approach eliminates the need to derive individual strategy classifications, but still 

depends on other person level parameters (ability and transition cluster assignment). 

These can simply be marginalized out: 

 

𝑝(𝒙𝒋) = ∑𝑣𝑔

𝐺

𝑔=1

∬∏∑휁𝑘𝑖𝑔

𝐾

𝑘=1

𝐼

𝑖=1

∗ 𝑝(𝑥𝑖𝑗|𝑞𝑖, 휂𝑘 , 𝛾𝑘, 𝛳𝑗𝑘)𝑔(𝛳1, 𝛳2|𝜇, 𝛴)𝑑𝛳1𝑑𝛳2 

 

(22) 

and the product taken over all subjects in order to derive a likelihood statistic that only 

depends on structural parameters. This reduces the number of calculations to around 5 

million for 28 items, 770 subjects, two strategies, and 11 quadrature points.  This is much 

more manageable set of calculations, taking roughly five minutes on a personal computer.  

     To evaluate the performance of these adjusted likelihood values for model comparison 

and selection, I simulated data from the HM-2PLC with two strategies (25 replications), 

and from the MHM-2PLC with two strategies and two transition matrices (25 
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replications).  For all replications of the HM-2PLC two strategy data, I applied the 

correctly specified model, as well as an underspecified model (two strategies with no 

transitions, i.e. a Mixture 2PLC) and two over-specified models (HM-2PLC with three 

strategies, and a MHM-2PLC with two strategies and two transition matrices). I then 

evaluated model selection with both unadjusted and adjusted BIC values (that is, BIC 

terms based on either the unadjusted or adjusted likelihood values previously discussed). 

For the MHM-2PLC generated data, a similar analysis was carried out, with several 

models applied to the simulated data: a correctly specified model, one underspecified 

model (HM-2PLC with two strategies) and two over-specified models (HM-2PLC with 

three strategies and MHM-2PLC with two strategies and three transition matrices).   

     Table 20 shows the results for the comparison of unadjusted and adjusted BIC values 

across all applied models with the two strategy HM-2PLC data. Note that the unadjusted 

BIC values select the three strategy HM-2PLC 100% of the time, while the adjusted BIC 

value selects the correctly specified model 88% of the time. Table 21 shows the results 

for the same analysis with the two strategy, two transition matrix MHM-2PLC. Again, 

the unadjusted BIC values select an over-specified model 100% of the time, with a vast 

improvement in performance observed for the adjusted BIC values.  However, in the case 

of the MHM-2PLC, the adjusted BIC statistic is somewhat too conservative, selecting the 

correctly specified model 68% of the time and the underspecified model 32% of the time.  
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Table 20 

Model Selection Performance of Unadjusted and Adjusted BIC for HM-2PLC 

 Mixture 

2PLC 

2 Strategy 

HM-2PLC 

2 Transition/2 

Strategy MHM-

2PLC 

3 Strategy 

HM-2PLC 

Parameters 13 15 19 26 

Selection Rate, 

Unadjusted BIC 

 

0% 0% 0% 100% 

Selection Rate, 

Adjusted BIC  

 

0% 88% 22% 0% 

Note. Green heading indicates correctly specified model. 

 

 

Table 21 

Model Selection Performance of Unadjusted and Adjusted BIC for MHM-2PLC 

 2 Strategy 

HM-2PLC 

2 Transition/2 

Strategy MHM-

2PLC 

3 Transition/2 

Strategy MHM-

2PLC 

2 Transition/3 

Strategy MHM-

2PLC 

Parameters 15 19 23 35 

Selection Rate, 

Unadjusted BIC 

 

0% 0% 0% 100% 

Selection Rate, 

Adjusted BIC  

 

32% 68% 0% 0% 

Note. Green heading indicates correctly specified model. 

4.3.2 Model Selection and Parameter Recovery for the Non-parametric MHM-2PLC 

     For exploratory applications, one can alternatively, attempt to learn the 

clustering/concentration parameters from the data. This amounts to sampling the 
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clustering/concentration parameter itself from the posterior, rather than fixing it to a 

prespecified value. However, removing this constraint drastically increases runtime, both 

in terms of model compilation and posterior sampling. As mentioned, there are two ways 

to go about freely estimating the clustering/concentration parameter – with a stick 

breaking process prior or a sparse finite Dirichlet prior. The latter approach proved 

untenable with both OpenBUGS and JAGS across Linux and Windows operating 

systems. The stick-breaking process approach was able to be implemented in OpenBUGS 

on a Windows machine; however, this eliminated the possibility of running a full set of 

simulations across all conditions within a reasonable timeframe. Because a single run 

with a stick-breaking non-parametric formulation requires between three and four days, 

the total runtime across all simulations is roughly 3.8 years (!). Carrying out these 

simulations only becomes feasible with access to high performance computing resources 

where analyses can be distributed across 350 cores or more. While high performance 

computing resources were able to be utilized for the simulations with parametric forms of 

the model, the inability to implement the stick breaking non-parametric formulation on a 

Linux system excluded the possibility of submitting these analyses to a supercomputer. 

However, since the stick breaking non-parametric approach was at least able to be 

implemented on a Windows operating system, a limited simulation was carried out on a 

local machine. For this analysis, the simulated data was generated from a MHM-2PLC 

model with two strategies and two transition matrices. One transition matrix was 

represented by a slow regression process, and the other transition matrix was represented 

by a fast regression process. Additionally, the data was generated according to a pair of 
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dissimilar strategies. As with the other simulations, sample size was set to 770 and 

number of items to 28 in order to reflect the properties of the empirical dataset.  

     First, model selection with the non-parametric MHM-2PLC entails analyzing initial 

and transition strategy probabilities to determine a reasonable solution. The model 

produces sparser populations in the various strategy classes to the extent that they are less 

relevant to the observed data. In an ideal situation, only relevant strategies would be 

populated, and any additional strategies specified would be left vacant. In practice, 

discretion and judgment must be exercised to determine how minimally a strategy needs 

to be populated before it is considered irrelevant. And as mentioned previously in section 

2.1.3, the stick breaking approach to non-parametric hidden Markov modeling is 

expected to over-select the number of clusters. This expectation was borne out in the 

current analysis, with a required transition probability threshold of 𝜋𝑘𝑘′ < .11 set in 

order to select the appropriate number of strategy transitions in the data. In other words, 

any estimated transitions falling below .11 had to be ignored in order to arrive at the 

correct solution. However, a more conservative threshold was able to be set for selecting 

the number of starting states and transition clusters, with 𝜋𝐼1 < .03 and ν <.003, 

respectively.   

     As far as bias and RMSE values for IRT parameter estimates, the stick-breaking form 

of the MHM-2PLC exhibits moderately higher bias and RMSE in the discrimination 

weight parameter estimates, relative to the same analysis with a parametric MHM-2PLC 

(see table 22 for results from the non-parametric analysis and Table 12 for the 

comparison, parametric analysis).  However, difficulty weights were estimated 
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reasonably well for the stick-breaking MHM-2PLC and comparable to the parametric 

approach.  

Table 22 

IRT Parameter Recovery for Stick-breaking MHM-2PLC, Slow Regression/Fast Regression 

Clusters 

 Dissimilar Strategy 

IRT Parm True Value Bias RMSE 

𝛾01 2 0.321 0.463 

𝛾11 1 0.158 0.260 

𝛾21 0 0.030 0.060 

𝛾02 2 0.045 0.346 

𝛾12 0 -0.031 0.053 

𝛾22 1 0.023 0.155 

휂01 0 0.001 0.043 

휂11 1 -0.059 0.088 

휂21 0 -0.016 0.028 

휂02 0 0.018 0.065 

휂12 0 0.015 0.040 

휂22 1 -0.004 0.034 

 

Table 23 displays bias and RMSE results for recovery of initial state and transition 

probabilities, as well as the transition cluster probabilities (𝝅𝑰,𝝅𝒌′𝒌, 𝝂, respectively). 
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Again, bias and RMSE values are somewhat elevated relative to the parametric solution 

(see Table 15).  The start values in particular show very elevated RMSE values.  

Table 23 

Initial, Transition, and Cluster Probability Parameter Recovery for Stick-breaking 

MHM-2PLC, Slow Regression/Fast Regression Clusters 

   Dissimilar Strategy 

Matrix Parameter True Value Bias RMSE 

 

 

 

 

 

Slow Reg./ 

Fast Reg. 

𝜋𝐼11  1 -0.081 0.121 

𝜋𝐼21  0 0.066 0.107 

𝜋111  .2 0.017 0.078 

𝜋121  .8 -0.048 0.114 

𝜋211  .8 -0.063 0.078 

𝜈1 .5 .069 0.183 

𝜋221  .2 0.057 0.070 

𝜋𝐼12  .5 0.012 
0.458 

𝜋𝐼22  .5 -0.022 
0.461 

𝜋112  .8 -0.039 0.051 

𝜋122  .2 -0.028 0.077 
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Table 23 - continued 

   Dissimilar Strategy 

Matrix Parameter True Value Bias RMSE 

 

Slow Reg./ 

Fast Reg. 

𝜋212  .2 -0.033 0.053 

𝜋222  .8 -0.021 0.027 

𝜈2 .5 -.072 0.184 

 

4.4 Findings from the Empirical Analysis 

     In order to demonstrate the practical utility of these modeling approaches in applied 

settings, response data from a spatial reasoning test was reanalyzed with a mixture hidden 

Markov IRT model (see Embretson, 2007 for a full description of the spatial reasoning 

test, as well as a summary in section 4 of this manuscript). Recall that items were 

generated according to a physical-analogue response process model, which defines a 

mental solution strategy that mirrors a set of physical manipulations to identify the 

correct answer.  In the first stage, the unfolded cube in the stem is mentally rotated to 

align with the various response options; in the second stage, the sides are folded around 

the response option in order to determine if a correct match is made. Previous analyses 

did not consider temporal variance in the response process, and the goal here was to 

implement the mixture hidden Markov IRT modeling framework to identify longitudinal 

changes in the use of the physical-analogue strategy or alternative strategies; and 

furthermore, if different clusters of examinees demonstrated different patterns of 

longitudinal change.  
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     No a priori notion regarding the number strategies or transition matrices operating in 

the data was established; this work remains completely exploratory. Thus, the non-

parametric form of the MHM-2PLC with the stick breaking prior was applied in order to 

learn the number of strategies and transition patterns producing the response data.  

However, given the tendency for the stick-breaking approach to over-select the number 

of strategies, results were confirmed with a set of confirmatory model comparisons 

(utilizing adjusted BIC, see section 5.3.1). Additionally, a preliminary analysis indicated 

little variance in item discrimination values, so discrimination values were fixed to unity 

within each strategy class.  

     Table 24 displays results for the estimated number of transition matrices from the non-

parametric approach. The model strongly identifies only a single transition cluster, with 

the first cluster accounting for strategy transitions in 99.87% of the examinees, and the 

remaining clusters together accounting for less than half a percent.   

Table 24 

Transition Cluster Proportions from the Non-parametric MHM-

2PLC 

Transition Cluster Prob. Estimate Posterior St. Dev. 

1 .9987 .0027 

2 .001196 .0027 

3 <.001 <.001 

4 <.001 <.001 

5 <.001 <.001 
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Tables 25 shows the estimated initial probabilities (for up to five strategies) and Table 26 

shows the transition probabilities for the first transition cluster.  Note that while the 

model was set to explore up to five strategies, transitions for only the three most relevant 

strategies are displayed here for the sake of clarity of presentation. From Table 25, only 

two primary initial strategies are identified, with others demonstrating only trivial 

representation.  

Table 25 

Starting State Probabilities from the Non-parametric MHM-2PLC 

Strategy Prob. Estimate Posterior St. Dev. 

1 .636 .003 

2 .353 .003 

3 .008 <.001 

4 .0013 <.001 

5 .0013 <.001 
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After completing the first item, the subjects who had invoked strategy one continued to 

maintain that strategy with a probability of .768, and those who invoked strategy two 

maintained it into the next item with a probability of .713.  Note that for those using 

strategy two, there was a very small but non-ignorable probability of transitioning into 

strategy three (.015 probability); however, strategy three is a fluid state; subjects 

Table 26 

Transition Probabilities from the Non-parametric MHM-2PLC 

 Transition Prob. Estimate Posterior St. Dev. 

 

 

Strategy 1 Transitions 

1 → 1 .768 .015 

1 → 2 .232 .015 

1 → 3 <.001 <.001 

1 → 4 <.001 <.001 

1 → 5 <.001 <.001 

 

 

Strategy 2 Transitions 

2 → 1 .713 .032 

2 → 2 .265 .026 

2 → 3 .015 .019 

2 → 4 .006 .011 

2 → 5 <.001 <.001 

 

 

Strategy 3 Transitions 

3 → 1 .900 .205 

3 → 2 .093 .191 

3 → 3 .009 .034 

3 → 4 <.001 .001 

3 → 5 <.001 <.001 
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immediately transition back to strategy one or two.  There remains almost zero 

probability of subjects maintaining strategy three beyond a single item. Thus, responses 

seem primarily driven by two distinct strategies, with only a single transition matrix 

governing the patterns of strategy shifts. Note that this solution from the non-parametric 

Mixture Hidden Markov IRT model was also confirmed with a series of confirmatory 

models and adjusted BIC values (Table 27). 

Table 27 

Adjusted BIC Values for Hidden Markov IRT Models with Increasing Complexity  

Model Adjusted BIC 

Mixture 2PLC 26606.917 

2 Strategy HM-2PLC 26097.906 

2 Strategy/2 Transition MHM-2PLC 26298.070 

3 Strategy HM-2PLC 26158.690 

Note. The model printed in green text corresponds to the solution identified with the 

non-parametric form. Both the non-parametric approaches and parametric approaches 

select the same model solution.  

 

     With a two strategy/single transition matrix solution identified, the remaining task is 

to characterize the nature of these strategies in terms of underlying response processes.  

The differences in the discrimination and difficulty weights across strategies can provide 

some insight into these underlying response processes. Note that no absorbing states were 

observed in the estimated transition matrix; thus IRT parameter estimates across all 

strategies can be assumed to be reasonably reliable. 
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     . Table 28 shows the estimated values for these weights across the two strategy 

classes. For strategy one, the assumed physical-analogue response process seems to be 

represented, with both required rotation and surfaces carried being positively related to 

item difficulty. Note, however, that surfaces carried shows a stronger effect on difficulty; 

almost double the weight of spatial rotation. Thus, for the purposes of discriminating 

subjects across a wide range of ability levels, manipulating the number of required 

surfaces to be carried in an item is more effective. 

Table 28 

IRT Parameter Estimates for the First Two Strategies 

 IRT Parm. Estimate Posterior St. Dev. 

 

 

Strategy 1 

𝛾01 2.326 .5712 

휂01 .2479 .1065 

휂𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛1 .4216 .0613 

휂𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑠1 .8091 .0581 

휂𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛∗𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑠1 .03568 .03932 

 

 

Strategy 2 

𝛾02 1.269 .9175 

휂02 -2.957 .500 

휂𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛2 -1.736 .4939 

휂𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑠 -.3382 .2352 

휂𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛∗𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝑠 -.4893 .2465 
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     Conversely, the physical-analogue strategy does not seem to be represented in strategy 

two. In fact, both the required degrees of rotation and the number of surfaces carried 

exhibit a negative relationship with difficulty. However, note the large, negative value for 

the intercept. The item feature scores are centered around zero, so the large negative 

intercept indicates all items are centered around a low difficulty value (see the histogram 

of produced item difficulties in Figure 4).   

 

Figure 4 

Distribution of Item Difficulties for Strategy 2 

 

     The range of item difficulties is so low that even subjects falling at the lower end of 

the latent trait scale are expected to have at least a moderate degree of success on any 

given item. Note also that items show much less discriminating power in strategy two, 

relative to strategy one. Thus, strategy two seems to reflect a state where items are 

correctly answered regardless of ability. This can be interpreted in one of two ways. One 

interpretation is that strategy two represents a sort of ‘hack’ to solving the items, similar 
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to the strategy of identifying parallel end pieces to solve spatial rotation items (see 

Vandenberg and Kruse, 1978). However, one would expect such insight to result in an 

absorbing state; it would not make sense for examinees to return to an earlier strategy that 

requires much more cognitive effort. Recall that examinees here were found to transition 

back to strategy 1 from strategy 2 with an estimated probability of .713.  Thus, a more 

logical conclusion is that the model is essentially capturing correct guessing behavior as a 

traditional 3PL model would. This interpretation seems even more plausible when one 

considers that each item is presented with four response options, and that the probability 

of transitioning into strategy two (.232) closely reflects the probability of selecting a 

correct answer at random (.25). Furthermore, the probability of remaining in strategy 2 

(.265) also closely reflects the probability of randomly choosing a correct answer. 
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CHAPTER 5:  DISCUSSION AND FUTURE DIRECTIONS 

     This work was concerned a flexible approach to explanatory IRT modeling that allows 

for temporal variance in response strategies. In particular, I consider a hidden Markov 

IRT approach, where strategies are defined by differential relationships of observed item 

features to IRT item parameters. Anchored by the work of Rijmen and colleagues (2005), 

who integrate the traditional LLTM within a hidden Markov framework, I address a few 

important questions in developing and applying temporally variant explanatory IRT 

models. These questions may be summarized as follows: 

1. How do explanatory IRT hidden Markov models behave, in terms of parameter 

recovery, when time points are represented by individual items? In other words, 

can these models be applied when it is assumed that examinees may transition 

strategies after any given item? Note that Rijmen and colleagues only considered 

a more restrictive case where time points were represented by blocks of items.  

2. Embretson (1999) has demonstrated that it may be important to define strategies 

in terms of the relationships between item features and both item difficulty and 

discrimination. This effectively establishes a 2PL explanatory IRT model. Can the 

hidden Markov LLTM from Rijmen and colleagues be extended to its 2PL 

counterpart with reasonable parameter recovery? 

3. Acknowledging that in many applications it would be reasonable to assume 

cluster-level differences in the pattern of strategy transitions, is a mixture hidden 

Markov IRT model tenable? Such a novel model would essentially define cluster 

specific transition probabilities.   
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4. For exploratory applications, where the number of strategies is not known a priori, 

what is the optimal and most practical approach to identifying the number of 

strategies? Can non-parametric approaches, which learn the number of strategies 

form the data, provide an expedient and reliable solution? 

In essence, the works represents somewhat of a ‘testing the limits’ evaluation of hidden 

Markov explanatory IRT models. Can the extant models be extended to 2PL and cluster-

variant representations, while limiting the information available for each time point to a 

single item? 

     In general, results demonstrate that while the model is not completely untenable under 

these circumstances, many conditions must be considered and limitations acknowledged. 

In addressing questions one through three, the general finding is that while the structural 

parameters of the HM-2PLC and MHM-2PLC (item parameters, transition and initial 

strategy state probabilities, and transition cluster proportions) generally show reasonable 

parameter recovery, individual level parameters are often quite inaccurate and imprecise. 

Thus, when it is assumed that transitions may occur after any item, interpretation should 

be limited to characterizing processes at the population or cluster-level. The model 

should not be used when there is interest in characterizing the strategies and abilities of 

specific individuals. Even for interpreting structural parameters at the cluster-level, 

caution needs to be exercised.  For the HM-2PLC, Fast movement to an absorbing state 

limits the volume of response data available for the transient state, and greatly 

compromises the reliability of the IRT parameters (item difficulties and discriminations) 

for the transient state. This issue is less prevalent for the MHM-2PLC though, as long as 

the same fast absorbing state is not present across all transition clusters. The transition 



78 

 

probabilities are the only parameters that demonstrated reasonable parameter recovery 

across all conditions. As pointed out previously, this provides a critical diagnostic tool for 

assessing the reliability of item parameters. If an absorbing state is observed with a fast 

pathway, then much caution should be exercised in evaluating response process 

hypotheses with the item parameters.  

     For the fourth question, while non-parametric approaches seem to generally identify 

the correct number of strategies and transition clusters, bias and RMSE values are 

somewhat elevated relative to the parametric approach, especially for item discrimination 

parameters and starting state probabilities. However, the most salient challenge with the 

non-parametric approaches pertains to their difficult implementation. In this study I found 

that the sparse finite Dirichlet form of the non-parametric hidden Markov IRT model was 

essentially impossible to employ across the most widely available Bayesian software 

packages and operating systems. Implementation of the non-parametric form with the 

stick breaking prior was not much easier, though was at least viable using OpenBUGS on 

a Windows machine. Given these challenges, the protracted runtimes of non-parametric 

approaches (roughly three and a half days, even with a modest ceiling of five strategies 

and five transition clusters), and the elevated bias and RMSE parameter estimates, 

parametric approaches with a finite Dirichlet prior are recommended.  At most, the stick-

breaking non-parametric approach may provide some utility as a preliminary analysis to 

narrow the scope of models that should be considered in a set of confirmatory runs. If 

high performance computing resources are available, with multiple cores accessible and 

the opportunity to run models in parallel, then the preference for the parametric 

approaches becomes unequivocal.  
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     However, a parametric approach is not without its challenges either. Choosing an 

appropriate fit statistic, penalized by model complexity, that reliably selects an 

appropriate number of strategies and transition clusters is not straightforward. Because of 

the inaccurate and imprecise person level parameter estimates, the likelihood values from 

the posterior are unreliable and tend to favor over-specified models. A potential solution 

to this issue, with some encouraging results, is to redefine the likelihood in a manner that 

only considers fit at the level of the structural parameters (see equation 22). Using 

simulated data, these adjusted likelihoods produced BIC statistics with vastly improved 

accuracy in model selection, though still were not perfect (in the case of the HM-2PLC, 

the rate of selecting over-specified models was reduced from 100% to 22%; and in the 

case of the MHM-2PLC, the adjusted BIC was too conservative at a rate of 32%, while 

the unadjusted BIC selected an over-specified 100% of the time).  Note, however, that 

only 11 quadrature points were used per ability dimension when integrating out ability 

from the likelihood function. A reanalysis with improved precision in ability weights may 

show improved performance with the adjusted BIC.  In any case, given the challenges of 

implementing non-parametric approaches, it will be imperative for to develop reliable fit 

statistics and procedures for model selection in future work.  

     It is worth noting here that the improved performance of the adjusted likelihood 

statistic in model selection points more generally to an alternative estimation procedure 

that should be considered. The Bayesian approach with Dirichlet priors pursued in this 

work is of limited utility for two reasons: 1) when each time point is represented by a 

single item, person level parameters are extremely error prone and unreliable, so 

estimates of structural parameters should not be conditioned on their values and 2) the 
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principle advantage of a Bayesian approach is the availability of non-parametric 

clustering algorithms. Since the non-parametric approaches demonstrated exceedingly 

difficult implementation with questionable expediency advantages over parametric 

approaches, there remains little basis to justify their use.  Alternatively, the adjusted 

likelihood statistic proposed earlier suggests the feasibility of a marginal maximum 

likelihood approach to estimation. This eliminates all person level parameters from the 

estimation procedure, and therefore avoids issues with conditioning IRT parameters, 

transition probabilities, and cluster proportions on erroneous person level parameters. 

Furthermore, estimation times may be drastically improved, since a cumbersome 

sampling procedure from a posterior across structural and person parameters is no longer 

necessary.   

     Of course, these points all relate to more technical aspects of implementation and 

estimation feasibility. A pressing question pertains to the model’s practical utility. How 

do the proposed approaches improve psychometric modeling in an applied sense? An 

example application with empirical data was carried in order to demonstrate the 

flexibility of mixture hidden Markov IRT models to address a wide range of response 

process questions. The results of the empirical analysis may initially seem uninspiring, 

given that only a single transition pattern was identified, with a solution that conformed 

to essentially a 3PL model. However, an alternative perspective is that these results speak 

to the flexibility of a mixture hidden Markov approach, and the utility of 

reconceptualizing previously defined IRT models within a broader hierarchy of 

temporally variant mixture models.  In fact, this is a point addressed by Matthias von 

Davier in 2009. He notes that the guessing component of the 3PL model can easily be 
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reparametrized, without any loss of meaning, and integrated into broader classes of 

mixture IRT models, discrete mixture distribution models, and multinomial processing 

tree models. From this perspective, the 3PL model becomes somewhat antiquated and no 

longer needed as a standalone model; rather, guessing processes can be identified simply 

as specific types of processes within a broader set of process oriented models. This 

effectively reduces the required ‘toolkit’ for a psychometrician, since broader modeling 

frameworks can be implemented to identify a wide range of processes and components in 

place of a series of standalone models. In this analysis, it was shown how guessing 

processes can be implemented in an even broader framework that extend mixture IRT 

models to their temporally variant counterparts. For example, the Hybrid model from 

Yamamato (1989), and its extension to a change point model (Yamamoto, 1995) have 

often been utilized to capture guessing behavior within a broader hierarchy of mixture 

IRT modeling. Both of these models may be subsumed by the HM-2PLC and MHM-

2PLC approaches presented here. The HM-2PLC removes the constraint of one 

directional movement in the change point hybrid model, and the MHM-2PLC further 

allows for different clusters to move in and out of guessing states with different patterns.  

     One last point is worth mentioning for future developments within the mixture hidden 

Markov IRT framework. The biggest shortcoming of the approach is the inability to 

extract accurate person level parameters when individual items represent time points. 

With only dichotomous responses available for each time point, it becomes difficult to 

extract information regarding strategy use, ability, and transition cluster membership for 

each person. However, by implementing response data into the model that exists on a 

continuous scale, it may be easier to extract person level parameters because of the 
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increased information available for clustering. For example, response time data may be 

easily incorporated into the model to improve strategy identification at the individual 

level.  
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APPENDIX A. WINBUGS/JAGS CODE FOR HM-2PLC/MHM-2PLC 

A.1  HM-2PLC (finite Dirichlet, K=2, G=2) 

model{ 

for (j in 1:J){ 

for (i in 1:I){ 

Response[j,i]~dbern(prob[j,i]) 

 

logit(prob[j,i]) <- (a[class[j,i],1]+a[class[j,i],2]*q[i,1]+a[class[j,i],3]*q[i,2])*(theta[class[j,i], j]-

(b[class[j,i],1]+b[class[j,i],2]*q[i,1]+b[class[j,i],3]*q[i,2])) 

} 

} 

 

for (j in 1:J){ 

theta[1,j]~dnorm(0,1) 

theta[2,j]~dnorm(0,1) 

class[j,1]~dcat(start[1:2]) 

} 

 

for (j in 1:J){ 

for (i in 2:I){ 

class[j,i]~dcat(phi[class[j,i-1],1:2]) 

} 

} 

 

 

phi[1,1:2]~ddirch(alpha[]) 

phi[2,1:2]~ddirch(alpha[]) 

start[1:2]~ddirch(alpha[]) 

 

alpha[1]<-4 

alpha[2]<-4 

 

for (g in 1:2){ 

a[g,1]~dlnorm(0,.5) 

a[g,2]~dnorm(0,1) 

a[g,3]~dnorm(0,1) 

b[g,1]~dnorm(0,1) 

b[g,2]~dnorm(0,1) 

b[g,3]~dnorm(0,1) 

} 

} 
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A.2 MHM-2PLC (finite Dirichlet, K=2, G=2) 

 
model{ 

for (j in 1:J){ 

for (i in 1:I){ 

Response[j,i]~dbern(prob[j,i]) 

logit(prob[j,i]) <- (a[class[j,i],1]+a[class[j,i],2]*q[i,1]+a[class[j,i],3]*q[i,2])*(theta[class[j,i], j]-

(b[class[j,i],1]+b[class[j,i],2]*q[i,1]+b[class[j,i],3]*q[i,2])) 

} 

} 

 

for (j in 1:J){ 

theta[1,j]~dnorm(0,1) 

theta[2,j]~dnorm(0,1) 

class[j,1]~dcat(start[cluster[j],1:2]) 

} 

 

for (j in 1:J){ 

for (i in 2:I){ 

class[j,i]~dcat(phi[cluster[j],class[j,i-1],1:2]) 

} 

} 

 

for (j in 1:J){ 

cluster[j]~dcat(xi[1:2]) 

} 

 

xi[1:2]~ddirch(alpha[]) 

lambda[1]<-4 

lambda[2]<-4 

 

for (h in 1:2){ 

phi[h,1,1:2]~ddirch(alpha[]) 

phi[h,2,1:2]~ddirch(alpha[]) 

start[h,1:2]~ddirch(alpha[]) 

} 

 

alpha[1]<-4 

alpha[2]<-4 

 

for (g in 1:2){ 

a[g,1]~dlnorm(0,.5) 

a[g,2]~dnorm(0,1) 

a[g,3]~dnorm(0,1) 

b[g,1]~dnorm(0,1) 

b[g,2]~dnorm(0,1) 

b[g,3]~dnorm(0,1) 

} 

} 
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A.3 HM-2PLC (Stick-Breaking Process for K=10, G=10) 

model{ 

for (j in 1:J){ 

for (i in 1:I){ 

Response[j,i]~dbern(prob[j,i]) 

logit(prob[j,i]) <- (a[class[j,i],1]+a[class[j,i],2]*q[i,1]+a[class[j,i],3]*q[i,2])*(theta[class[j,i], j]-

(b[class[j,i],1]+b[class[j,i],2]*q[i,1]+b[class[j,i],3]*q[i,2])) 

} 

} 

 

for (j in 1:J){ 

class[j,1]~dcat(start[1:10]) 

} 

 

for (j in 1:J){ 

for (i in 2:I){ 

class[j,i]~dcat(phi[class[j,i-1],1:10]) 

} 

} 

 

for (g in 1:10){ 

for (j in 1:J){ 

theta[g,j]~dnorm(0,1) 

} 

{ 

 

for (h in 1:10){ 

phi[h,1] <- r[h,1] 

for (j in 2:10) { 

phi[h,j] <- r[h,j] * (1- r[h,j-1]) * (phi[h,j -1] / r[h,j - 1]) 

} 

phi.sum[h] <- sum(phi[h,])   

for (j in 1:10){      

r[h,j] ~ dbeta(1,10)    

# scaling to ensure sum to 1  

pi[h,j] <- phi[h,j] / phi.sum[h] 

} 

} 

 

start[1] <- r0[1] 

for (j in 2:10) { 

start[j] <- r0[j] * (1- r0[j-1]) * (start[j -1] / r0[j - 1]) 

} 

start.sum <- sum(start[])   

for (j in 1:10){      

r0[j] ~ dbeta(1,10)    

# scaling to ensure sum to 1  

pi0[j] <- start[j] / start.sum  

} 

 

for (g in 1:10){ 

a[g,1]~dlnorm(0,.5) 

a[g,2]~dnorm(0,1) 

a[g,3]~dnorm(0,1) 

b[g,1]~dnorm(0,1) 

b[g,2]~dnorm(0,1) 

b[g,3]~dnorm(0,1) 

} 

} 
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A.4 MHM-2PLC (Stick-Breaking Process for K=10, G=10) 

model{ 

for (j in 1:J){ 

for (i in 1:I){ 

Response[j,i]~dbern(prob[j,i]) 

logit(prob[j,i]) <- (a[class[j,i],1]+a[class[j,i],2]*q[i,1]+a[class[j,i],3]*q[i,2])*(theta[class[j,i], j]-

(b[class[j,i],1]+b[class[j,i],2]*q[i,1]+b[class[j,i],3]*q[i,2])) 

} 

} 

 

for (j in 1:J){ 

class[j,1]~dcat(start[cluster[j],1:10]) 

cluster[j]~dcat(xi[1:10]) 

} 

 

for (j in 1:J){ 

for (i in 2:I){ 

class[j,i]~dcat(phi[cluster[j],class[j,i-1],1:10]) 

} 

} 

 

for (g in 1:10){ 

for (j in 1:J){ 

theta[g,j]~dnorm(0,1) 

} 

{ 

 

for (g in 1:10){ 

for (h in 1:10){ 

phi[g,h,1] <- r[g,h,1] 

for (j in 2:10) { 

phi[g,h,j] <- r[g,h,j] * (1- r[g,h,j-1]) * (phi[g,h,j -1] / r[g,h,j - 1]) 

} 

phi.sum[g,h] <- sum(phi[g,h,])   

for (j in 1:10){      

r[g,h,j] ~ dbeta(1,10)    

# scaling to ensure sum to 1  

pi[g,h,j] <- phi[g,h,j] / phi.sum[g,h] 

} 

} 

} 

 

for (g in 1:10){ 

start[g,1] <- r0[g,1] 

for (j in 2:10) { 

start[g,j] <- r0[g,j] * (1- r0[g,j-1]) * (start[g,j -1] / r0[g,j - 1]) 

} 

start.sum[g] <- sum(start[g,])   

for (j in 1:10){      

r0[g,j] ~ dbeta(1,10)    

# scaling to ensure sum to 1  

pi0[g,j] <- start[g,j] / start.sum[g] 

} 

} 

xi[1] <- x0[1] 

for (j in 2:10) { 
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xi[j] <- x0[j] * (1- x0[j-1]) * (xi[j -1] / x0[j - 1]) 

} 

xi.sum <- sum(xi[])   

for (j in 1:10){      

x0[j] ~ dbeta(1,10)    

# scaling to ensure sum to 1  

xpi0[j] <- xi[j] / xi.sum 

} 

 

for (g in 1:10){ 

a[g,1]~dlnorm(0,.5) 

a[g,2]~dnorm(0,1) 

a[g,3]~dnorm(0,1) 

b[g,1]~dnorm(0,1) 

b[g,2]~dnorm(0,1) 

b[g,3]~dnorm(0,1) 

} 

} 
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A.5 HM-2PLC (sparse finite Dirichlet for K = 10, G=10) 

model{ 

for (j in 1:J){ 

for (i in 1:I){ 

Response[j,i]~dbern(prob[j,i]) 

logit(prob[j,i]) <- (a[class[j,i],1]+a[class[j,i],2]*q[i,1]+a[class[j,i],3]*q[i,2])*(theta[class[j,i], j]-

(b[class[j,i],1]+b[class[j,i],2]*q[i,1]+b[class[j,i],3]*q[i,2])) 

} 

} 

 

for (j in 1:J){ 

class[j,1]~dcat(start[1:10]) 

} 

 

for (j in 1:J){ 

for (i in 2:I){ 

class[j,i]~dcat(phi[class[j,i-1],1:10]) 

} 

} 

 

for (g in 1:10){ 

for (j in 1:J){ 

theta[g,j]~dnorm(0,1) 

} 

{ 

 

for (h in 1:10){ 

phi[h,1:10]~ddirch(alpha[h,1:10]) 

} 

 

for (h in 1:10){ 

for (n in 1:10){ 

alpha[n,h]<-E[n] 

} 

} 

 

for (n in 1:10){ 

E[n]~dgamma(1,200) 

} 

 

start[1:10]~ddirch(beta[]) 

for (h in 1:10){ 

beta[h]<-S 

} 

 

S~dgamma(1,10) 

 

for (g in 1:10){ 

a[g,1]~dlnorm(0,.5) 

a[g,2]~dnorm(0,1) 

a[g,3]~dnorm(0,1) 

b[g,1]~dnorm(0,1) 

b[g,2]~dnorm(0,1) 

b[g,3]~dnorm(0,1) 

} 

} 
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A.6 MHM-2PLC (sparse finite Dirichlet for K = 10, G=10) 

model{ 

for (j in 1:J){ 

for (i in 1:I){ 

Response[j,i]~dbern(prob[j,i]) 

logit(prob[j,i]) <- (a[class[j,i],1]+a[class[j,i],2]*q[i,1]+a[class[j,i],3]*q[i,2])*(theta[class[j,i], j]-

(b[class[j,i],1]+b[class[j,i],2]*q[i,1]+b[class[j,i],3]*q[i,2])) 

} 

} 

 

for (j in 1:J){ 

class[j,1]~dcat(start[cluster[j],1:10]) 

cluster[j]~dcat(xi[1:10]) 

} 

 

for (j in 1:J){ 

for (i in 2:I){ 

class[j,i]~dcat(phi[cluster[j], class[j,i-1],1:10]) 

} 

} 

 

for (g in 1:10){ 

for (j in 1:J){ 

theta[g,j]~dnorm(0,1) 

} 

{ 

 

for (g in 1:10){ 

for (h in 1:10){ 

phi[g,h,1:10]~ddirch(alpha[g,h,1:10]) 

} 

} 

 

for (g in 1:10){ 

for (h in 1:10){ 

for (n in 1:10){ 

alpha[g,h,n]<-E[g,h] 

} 

} 

} 

 

for (g in 1:10){ 

for (h in 1:10){ 

E[g,h]~dgamma(1,10) 

} 

} 

 

for (g in 1:10){ 

start[g,1:10]~ddirch(beta[g,1:10]) 

} 

 

for (g in 1:10){ 

for (h in 1:10){ 

beta[g,h]<-S[g] 

} 

} 

 

for (g in 1:10){ 

S[g]~dgamma(1,10) 
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} 

 

xi[1:10]~ddirch(delta[]) 

for (g in 1:10){ 

delta[g]<-C 

} 

 

C~dgamma(1,10) 

 

for (g in 1:10){ 

a[g,1]~dlnorm(0,.5) 

a[g,2]~dnorm(0,1) 

a[g,3]~dnorm(0,1) 

b[g,1]~dnorm(0,1) 

b[g,2]~dnorm(0,1) 

b[g,3]~dnorm(0,1) 

} 

} 
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