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SUMMARY 

Buildings are complex structures with dynamic loading and ever-changing usage. 

Additionally, the need to reduce unnecessary energy consumption in buildings is 

increasing. As a result, buildings and building energy systems should be designed to 

conserve energy, and buildings should be monitored and evaluated to ensure that the 

designs are executed properly and that the buildings are operated correctly. Most building 

designers now use very adequate energy modeling software such as EnergyPlus, IES, 

EQUEST, and others to support the design task. However, the problem with the current 

lineup of programs is that they require extensive inputs for material properties and usage 

loads; this results in spending extensive amounts of time performing model calibration or 

having to adjust multiple values (sometimes hundreds) to bring a model in alignment 

with actual building use. As a consequence, the existing software is complex and 

awkward for efficient monitoring and evaluation, especially for fault detection and 

diagnosis. Due to the limitations of current modeling programs, development has begun 

on rule-based and component-based fault detection by a number of companies. However, 

a suitable rigorous physics-based model has not been developed for the purpose of fault 

detection. Consequently, this thesis research will discuss the design, development, 

evaluation, and testing of a model-based fault detection program and procedure as well as 

comparisons to state-of-the-art neural networks. 

Considering how complex some buildings have become, it has become important 

to make sure the building systems are operating as intended. Some current progress is 

being done by the large energy service companies in the form of logic-based fault 
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detection for individual components. While component-based fault detection is effective, 

it relies on accurate sensor readings and does not account for actual building 

performance. This research herein is the result of the development, testing, and 

refinement of a simplified but rigorous and complete physics-based model for buildings 

and building energy systems that is purposely designed and implemented to support fault 

detection and similar applications. The usefulness and effectiveness of this simplified 

physics-based model (SPBM) is demonstrated by comparison with the obvious currently 

available alternative, a state of the art purely data driven neural network black-box 

model. The models, a simplified physics-based energy model and a neural network, will 

evaluated total building performance using weather and minimal load data that is 

common to most buildings to determine, identify, and measure the impact of building 

faults. Evaluation of performance and accuracy of such a system to a state-of-the-art 

machine learning model provides substantial insight to current and future fault detection 

methods. 
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CHAPTER 1.  INTRODUCTION 

Most modern buildings and their HVAC building energy systems (BES) are 

reasonably well designed and executed considering the constraints faced by developers. 

Nevertheless, buildings are likely to perform worse than expected because of improper or 

changed construction (especially including errors in the control or building automation 

system), loads or usage that are different from expected, and unavoidable degradation 

with age. For example, one highly regarded study found that out of 22 LEED Gold and 

Platinum certified buildings 12 used, on average, 60% more energy than modeled. With 

such a high percentage of new high-efficiency building performing noticeably worse than 

expected, it is important to have some means of fault detection to understand when and 

why the excessive or ineffective energy use is occurring. Even in existing buildings, 

materials degrade, and it is important to make sure faults are not occurring in buildings 

both to maintain occupant comfort and to avoid wasting energy. Consequently, fault 

detection (FD) methods are needed, and currently, independent fault simulation programs 

are largely in development stages. Being able to accurately fit faults in addition to 

detecting abnormalities can allow for higher accuracy diagnostics as well as prediction of 

fault energy impact. This document discusses the development of the first of its kind 

rigorous physics-based fault simulation model and the comparison of this model with a 

model based on a neural network to identify specific faults. This chapter introduces the 

proposed FD candidates and outlines the supporting technology.  

Efficient FD methods and software are highly desirable to prevent energy waste, 

occupant discomfort, or unhealthy environments.  At least two very general FD 
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categories can be identified as either rule-based systems or model-based systems.  While 

this approach is promising, it has limitations because it requires human experts to define 

the rules based on their personal experience and is also mostly limited to detecting faults 

in individual sensors and HVAC components. The number of rules needed to usefully 

detect faults in a major system or subsystem, such as the overall HVAC system or an 

entire building, increases with the product of the number of rules needed for each 

component and may quickly become excessive. The obvious alternative is a model-based 

FD system, and two approaches for model-based systems are presented in this proposal: 

one being a statistically based neural network (NN) model and the other being a 

simplified but fundamentally rigorous physics-based model. A detailed physics-based 

model may be another FD approach, but at present the available detailed models are 

complex and understandably design-oriented, not diagnostics-oriented. Consequently, it 

is believed that the high number of parameters in models such as EnergyPlus 

unnecessarily increase the complexity of FD attempts; therefore, it is appropriate at this 

time to consider and compare the two reasonable alternatives, a simplified physics-based 

model (SPBM) and a neural network (NN) model. This paper discusses the development, 

testing, results, and comparisons of a physics-based building energy model and neural 

networks. Both of these simplified modeling techniques have different strengths and will 

be compared by how accurately they match metered loads, reliability of fault detection, 

and training data.  Fault detection is of course not new, but in-person fault detection is 

costly and probably only appropriate for obviously high-cost or high-value buildings. The 

causes for differences in performance can include excessive infiltration, economizer 

dampers being stuck at one position, malfunctioning occupancy sensors, and unnecessary 
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preheat. While other faults are possible, these four faults test different parts of building 

dynamics while being common and having significant impact on building loads. This 

proposal will investigate the initial process for testing different methods of fault detection 

and describe future plans for determining the best procedure and tools to answer the 

proposed questions stated at the end of this chapter.   

Test buildings are needed for the proposed research, and the availability of 

numerous buildings on the campus of the Georgia Institute of Technology provides an 

opportunity to explore different types of buildings with different loads, constructions, and 

levels of building metering. Since most of the buildings are served by centralized chilled 

water and steam as well as being well-instrumented and networked, our campus provides 

an excellent test environment. These advantages are enhanced by previous experience in 

a campus-wide process called Continuous Monitoring, Modeling, And Evaluation 

(CMME), which is a developing, but different method, of FD. CMME has been useful, 

but it needs to be computerized to be convenient and fully cost effective. Currently, this 

method of fault detection is being performed by spending several months evaluating 

building energy patterns and comparing results with detailed models. Experience has 

shown that manual CMME is costly and time consuming. This was as expected, and it 

was recognized that CMME should eventually be automated. Consequently, the 

automation of CMME is a perfectly suitable application for a SPBM or NN based fault 

detection. Due to the large number of building options, two representative buildings were 

chosen: Whitehead and Old Civil Engineering (Old CE). Whitehead is a modern building 

with high internal loads while Old CE is a historic building that is primarily low in 

occupant count and internal load.   
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 Most currently available thermodynamically rigorous energy modeling programs 

were developed primarily for detailed design and research, are very complex, and are not 

easily calibrated or adjustable to the performance of an actual building. Building models 

have however become sufficiently realistic to use in the development and testing of FD 

models. As described herein and further to be elaborated on in the proposed thesis, the 

first and second generation of building models approximated the conditioned space with a 

“heat balance” model rather than thermodynamically rigorous and realistic transient 

energy and moisture models. Consequently, these models were not well suited to support 

FD research, but the extensive development of the rigorous energy and moisture 

simulation inherent in state of the art models such as EnergyPlus  has made the 

development of the FD methods described herein more feasible and practical, and 

EnergyPlus in particular will be a useful tool for the development and testing of the 

proposed SPBM and NN. 

Within the framework of general modeling theory, three diverse approaches can 

be recognized  : (1) Black Box modeling where the internal workings of the system are 

unknown, and the model is evaluated based on input/output data alone (e.g. a neural 

network), (2) White Box modeling is possible where a priori of information is available 

(e.g. an extensively detailed EnergyPlus model), finally, (3) Grey Box modeling which is 

a combination of white and black modeling (e.g. a SPBM) . The SPBM is a grey box 

model, while the NN model is a black box model; consequently, the thesis will 

demonstrate and utilize all three levels of modeling. 

This thesis will (1) fully explore the conceptualization, development, and testing 

of a SPBM-based procedure to demonstrate the feasibility of modeling a building with 
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automatic calibration, (2) demonstrate the development of a neural network to model the 

same buildings, and finally, (3) compare the methods for automatic fault detection to 

determine which method is superior when minimal information about a building is 

known. A SPBM has certain advantages in that it has the basic capability to account for 

all loading within a building, with some acceptable uncertainty, and to respond to 

changes of use or environment in a realistic manner. In contrast, while a well-trained NN 

may be more accurate in some cases, there is a disadvantage because NNs may not 

reliably extrapolate data and may need to be trained in ‘normal’ and ‘faulty’ operation. In 

addition to programming and electronic errors, building materials degrade over time or 

may be unknown. Consequently, a SPBM may have advantages over both a NN model 

and a complex model because of its inherent adaptability. The nature of a SPBM allows 

for convenient estimation of unknown properties or the automated estimation of changed 

thermal properties. The exact materials used may not be provided in construction 

documents, so it may be more convenient and accurate to initially estimate the bulk 

resistance and heat capacity of one or two hypothetical layers rather than defining a 

minimum of four properties for each of several building layers as required in a complex 

model such as EnergyPlus. If properties change, or are unknown, inferring a few bulk 

properties from observational data will be much easier than trying to evaluate upwards of 

nine properties per material layer. 

This thesis also shows that the research is feasible and useful. Research began by 

(1) developing a suitable rigorous thermodynamic model in EnergyPlus of Whitehead 

and Old CE buildings, (2) testing various resistance-capacitance (R-C) configurations for 

opaque surface modeling, (3) conducting preliminary investigation of opaque surface 
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parameter estimation to determine if the SPBM could produce realistic variables, (4) 

implementing, testing, and evaluating various fenestration simplification methods, (5) 

simulating realistic HVAC system performance in the SPBM with the introduction of 

humidity and temperature control, (6) generating suitable internal load models for the 

SPBM, (7) conducting baseline parameter value estimation of surface properties and 

internal loads,  (8) developing  and testing of NN algorithms and parameters against 

simulated and real building data, (9) testing the fault detection capabilities of the SPBM. , 

(10) Refine indoor air, moisture, and contaminant simulation, (11) Evaluate performance 

of SPBM for fault detection and sensitivity analysis, (12) Test the NN with different 

training and input/output conditions and data (13) Introduce multiple faults and evaluate 

if either the SPBM or NN can accurately determine multiple simultaneous faults. The 

proposed faults are: 1) Excessive infiltration, 2) Malfunctioning occupancy sensors, 3) 

Malfunctioning outdoor air control system, such as a stuck outdoor air damper, and 4) 

Unnecessary/excessive preheat. These faults were chosen in part because of how 

common they are and partly because they provide various kinds of loads on the building. 

Together, the completed thesis will compare a SPBM, which represents all the transport 

and thermodynamic processes in a building with adequate detail, to a neural network and 

determine the optimum approach for automatic fault detection with various amounts of 

building information. 
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CHAPTER 2.  LITERATURE AND TECHNOLOGY REVIEW 

A fundamental understanding of previous works is vital to innovation. This 

section will cover developmental history of building energy models (rigorous, simplified, 

and neural network systems), calibration of models, and fault detection in buildings. 

Reviewing what has previously been accomplished and what programs are available led 

to the decision to develop a SPBM for automatic fault detection. Automatic fault 

detection of building energy systems is developing in both technology and demand. 

Using as few inputs as possible (basic weather and building energy meters) provided the 

most benefit by allowing for minimal information and avoided the new practice of rule-

based automatic fault detection. As machine learning advances, determining what 

modeling system (SPBM or NN) best identifies difficult to notice faults, using only basic 

building data, is vital to success in improving building health, occupant comfort, and 

energy conservation. 

2.1    Overview of Popular Energy Analysis and Simulation Software 

The desire to understand building dynamics is not new. Transient building heat 

flow calculations were published as early the 1920s. Building energy analysis and design 

methods have existed for many years as exemplified by various heat balance estimations 

and the popular Cooling Load Temperature Difference (CLTD) building system sizing 

method[10]. These early load estimation methods were a useful basic energy demand and 

peak load calculation tool; but such models are not especially useful or intended for 

seasonal or annual simulations. CLTD specifically relies on profiles that disperse thermal 

loads across time to replicate physical processes that are modeled in modern high-fidelity 
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building energy simulations as well as the SPBM. However, contemporary high-fidelity 

building energy models and the SPBM are capable of incorporating more specifications 

and perform load prediction for any time period.  

The energy crisis of the 1970s sparked a desire for buildings to use less energy, 

and methods for calculating hourly loads for an entire season or year such as the National 

Bureau of Standards Loads Determination (NBSLD) were developed. A first generation 

of annual modeling programs such as BLAST and DOE-2 (later repackaged as eQUEST), 

expanded on the NBSLD approach to facilitate annual energy simulations of buildings 

and HVACs system through heat balance modeling. These programs were designed to be 

used with the limited computing power available and operated as hourly heat balance 

programs rather than full-featured energy simulation tools. Early energy modeling or 

hourly load calculation models finally developed into more robust programs such as 

EnergyPlus, a rigorous thermodynamic and conservation of energy and mass (air, 

moisture, CO2, and contaminant) model and the similar commercially-available IES 

program. However, these programs require a high degree of information about the 

building including occupancy schedules, number of people, lighting loads, electrical 

loads, material properties, detailed HVAC systems, and many other parameters. For 

instance, to model wall construction in EnergyPlus it is necessary to manually specify the 

thickness, density, specific heat, and conductivity for every layer within a surface . From 

a design perspective, increasing available specifications can increase model accuracy as 

BIM data use becomes more common. However, an abundance of parameters can also 

lead to lowered sensitivity and reduce automatic parameter estimation accuracy. Overall, 

models have become more advanced over time, which while excellent when parameters 
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are known, are prohibitively awkward when attempting to calibrate a model to an existing 

building. In contrast, a comprehensive SPBM or NN may provide benefits the complex 

models cannot allow while delivering comparable results.  

 Internal loads have the same issue where an hourly schedule is needed to calculate 

loads for lighting, electric equipment, and occupancy. While it is possible to use a 

tabulated hourly schedule generated with building occupancy sensors and electric meters, 

many buildings do not have accurate meters, and even fewer buildings subdivide meters 

to different areas and functions throughout the building. All the limitations make tuning a 

model to match an existing building extremely difficult (an accuracy of 10% is often 

considered excellent) and determining the optimal selection of model inputs is 

challenging. Nonetheless, both methods of simplified building energy modeling (SPBM 

and NN) were capable of a faithful reproduction of heating demand and cooling demand. 

 The level of detail allowed in existing programs is beneficial if a reasonably 

accurate estimation of real-world parameters can be made, but increasing complexity can 

make fitting limited data difficult. All modern buildings are not monitored to the same 

degree. To give an example, some have occupancy counters, others have motion sensors, 

and others have no occupancy sensing at all. Additionally, some buildings only provide 

total electrical power used, total heating water load, and total cooling water load. In 

addition, complex simulation programs require a plethora of inputs. As an example, 

EnergyPlus requires at least four variables, but usually seven variables for most cases, for 

each wall layer, numerous settings for each internal load, and specifications for the 

HVAC system. Calibration with so many variables would be difficult and time 

consuming compared to the SPBM method which only may require as few as two 
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variables per layer.  

Currently a HVAC design engineer must adapt or tune the control system to a 

building; although, refinements such as lighting control based off people occupancy and 

natural lighting have been implemented for years. Additionally, interior zone climate 

control based primarily on temperature  may also monitor CO2 concentration in an effort 

to reduce outdoor air and energy demand by controlling ventilation based on actual 

occupancy as opposed to theoretical occupancy. Therefore, physical models must be able 

to account for different control strategies in order to better represent the physical world. 

Modern simulation programs offer unmatched tools for building evaluation and 

design, but the parameters that allow for fine detail hinder calibration when there are 

many unknown parameter values. Simplified building models very greatly in complexity 

and method of energy simulation but potentially offer overall similar results to detailed 

models but require fewer parameters. 

2.2    Implementation of Simplified Models 

An appreciation for uncertainty in design and construction is important for 

understanding building energy models. Analysis of existing elaborate, or high-fidelity, 

building energy models revels that they tend to difficult to quickly implement due to the 

need for extensive information about the building being modeled. For example, without 

electrical and occupancy metering for every room, it is impossible to fully replicate such 

an environment. When lack of knowledge compounds, it can lead to inaccurate building 

energy simulations. 

 

The SPBM being developed herein is designed to automatically adjust for the 
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actual performance of the building with minimal reprocessing . Some detailed 

calibrations have been done, but require extensive data gathering, including individual 

room temperatures which is not practical in most applications. An objective of the 

research is to be able to retroactively implement the program where not all the design 

data is known or available.  

An error minimization tool was needed to help identify the parameters involved. 

There are many options for calibration: linear, least squares, cost, and Monte Carlo to 

name a few. Least squares had many tools available and was pre-programmed into 

Engineering Equation Solver (EES), an equation-based modeling program, and 

MATLAB. Both were also able to use Nelder-Mead method of error minimization, which 

is an efficient and effective tool for the proposed parameter estimation. The calibration of 

the model plays a crucial part in the effectiveness of automatic fault detection; therefore, 

investigating, selecting, and using the proper error minimization technique and algorithm 

is vital to success.  

2.3    Simulation of Wall Construction  

There are many earlier and some current articles on simulating walls with thermal 

mass such as: solving for second-order Fourier series, developing thermal resistance-

capacitance networks, using measured inputs and output optimization, lumped slab 

simplifications, and lumped parameter constructions. Additionally, there are some 

parameter models that aim to match an EnergyPlus simulation to the performance of a 

real building using numerous parameters or pre-defined conditions. These detailed 

models are useful for design, especially when modern energy saving designs are used, 

such as phase change materials. 
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While it is possible to use a fine mesh to simulate wall conduction, estimating 

wall thermal properties is difficult even under controlled and high temperature difference 

conditions. However, it is important to be able to model envelope transient temperature 

change as different materials affect how quickly the interior surface heats up and cools 

down in relation to external loading. Building thermal mass can have a significant impact 

on energy demand throughout the day and accurately representing transient building 

responses is a goal of this model. After thorough comparison presented below it was 

determined that a simple R-C circuit equivalent provides the most flexibility and 

accuracy for this model. 

2.4    In-Field Experiences 

 Preliminary work on fault detection instilled knowledge of the requirements of 

monitoring and modeling a variety of buildings throughout Georgia Tech’s campus; and 

as such, first-hand experience with HVAC systems and modeling industry standards was 

obtained. For several years work has been done monitoring and modeling buildings such 

as: Clough Undergraduate Learning Commons, Engineered Biosystems Building, Carbon 

Neutral Energy Solutions Laboratory, J. Erskine Love Building, and the Biotech Quad 

and Old Civil Engineering . Additionally, models and optimization has been conducted 

for future projects including the Price Gilbert renewal project, known locally as Library 

Next, and ongoing modeling of the first net-zero college building in Georgia Tech. Being 

exposed to a wide diversity of building constructions, systems, and faults allows for an 

appreciation of the subtlety of automatic fault detection. 

 

 Current work is being done on developing rule-based fault detection. The idea is 
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to have individual components (VAV, fans, CO2 sensors, etc.) send fault alerts when 

operating outside specified rules. Rule-based fault detection is limited because currently 

only individual component faults are reported, different sensors are required in each 

component, and only instantaneous readings are used . Building-wide fault detection 

allows for analysis of energy use and changes within the building without needing to 

reprogram flags for faults. SPBM and NN based fault detection relies on minimal sensing 

equipment and changes in loading, providing different benefits to fault detection. 

2.5    Benefits of Building Model Simplification 

 The physical structure of buildings is incredibly complex and would be 

impossible to perfectly model every feature. Even constructions and material properties 

are not perfectly uniform . Consequently, even under experimental conditions where 

everything is known, building simulations can get only within a few percentages of actual 

values ; but accurately calibrating and modeling every window, frame, wall, etc. for a real 

building would be impractical if not essentially impossible. Radiation transfer is another 

common point of simplifying real behaviors - EnergyPlus has an option to have the floor 

absorb all transmitted solar energy  instead of calculating radiation exchange for every 

surface .  

 A common simplification for some overly simplified models is to not account for 

thermal capacity within the mass of a building. Research later in this paper demonstrates 

that the thermal-flywheel effect will delay the impact of all envelope loads and many 

internal loads; therefore, the thermal mass is important in any hour-by-hour (or shorter) 

simulation. The choice to include thermal capacity is especially important when needed 

for predictive control simulations with peak shifting . Peak shifting of thermal loads 
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requires storing heat or “coolth” (actually the exergy of warm or cool material) within the 

mass of the building, or in a dedicated thermal storage medium, to be released later in the 

day when cooling or heating is demanded and electrical prices are high . Additionally, 

predictive control can be used by a building model to accommodate occupant comfort 

and reduce energy consumption. The SPBM is uniquely suited for this type of 

implementation as a cost-effective and simple method of predicting impact on heating 

and cooling loads is desired.  

 One method being explored for simplifying the modeling of a number of 

buildings is to create a detailed model of one building, calibrate that model, then adjust 

the initial model to reflect the performance of nearby buildings . Popular with urban 

building modeling, this approach allows multiple, similar buildings to be evaluated with 

minimal effort. This method is useful for determining if some buildings are operating 

outside the average performance of buildings without having to create detailed and 

calibrated models . 

 Another way to model thermal storage with a simplified model is to evaluate heat 

transfer analogous to current through a resistance-capacitance electrical circuit. These 

models tend to have nodes representing zone air temperatures with a resistor and 

capacitor linking nodes together and to external stimulus such as outdoor air temperature 

and solar loads . Research explored later in this proposal considered thermal capacity in 

walls and discovered that even one thermal capacitance value in a surface is beneficial, 

but some constructions require more R-C nodes to accurately simulate the lag between 

external surface loads entering a zone. Testing also showed the importance of accounting 

for thermal capacitance and wall construction as distributing material properties 
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differently (while keeping overall capacitance and resistance consistent) lead to a 

decrease of 25% in cooling demand over occupied hours . One paper of special interest 

analyzed the order required to accurately represent a building subject to cyclic loading 

with a RC model. It was discovered that lower number of nodes (one and two nodes) 

were capable of a close approximation, higher order was more accurate. Surprisingly, as 

the frequency of the cyclic loading increased only the three-node RC model remained 

close to the detailed model’s phase angle as the four-node (highest order tested) diverged 

. An RC model was even tested and proved to be successful in controlling an AHU 

supply temperature setpoint with weather and occupancy prediction to use less energy 

while maintaining thermal comfort. Given the success of RC models, it will be interesting 

to see how one compares to a neural network in fault detection with minimal input 

information.  

Additionally,  it is possible to simulate only one day that represents the average 

loading for a month then weight the load for that day to represent a month’s load . This 

approach is computationally efficient and excellent for use with specific applications 

such as statistical analysis of future loads and building degradation. However, automatic 

fault detection devices usually operate continuously in order to model components in real 

time and compare predicted performance to actual building data. This kind of analysis is 

susceptible to changes in solar loading, internal loads, outdoor air temperature, and 

humidity that a monthly average load may miss. Success with various simplified building 

models gives confidence that either SPBM or NN modeling may be useful for automatic 

fault detection.  

2.6    Neural Network 
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Neural networks are a series of nodes that are linked together to generate 

input/output responses . some networks can account for time delay between inputs and 

output response. A benefit of neural networks is that no model needs to be created; the 

system is created purely through the real data provided when training. However, neural 

networks perform poorly when extrapolating data, so faulty data or modeled faulty data 

needs to be provided during training if fault identification is desired . Additionally, it is 

difficult to analyze a network once it is created to allow for direct modification, and it is 

possible that the same input/output data can create a different network every time it is 

trained . Due to the above limitations, neural network fault detection can be achieved by 

noticing deviations between predicted and metered data on a network trained only with 

non-faulty data. Fault identification requires extensive data training using sets of data that 

contain both normal and faulty input/output information. 

 Work has been done on neural networks for building models for performance 

evaluation and fault detection. Due to the unknown inputs to a building in the future, 

some previous works have had difficulty getting a Coefficient of Determination, or R2, 

above 0.7  which may be unacceptable in this application. Some methods involved a 

hybrid approach of two or more models working together and comparing the results 

between the two . However, a study by Alberto Hernandez Neto and Flavio Augusto 

Sanzovo Fiorelli found that a neural network was able to achieve higher accuracy when 

compared to an EnergyPlus model with a minimal amount of internal load specifications . 

Some attempt training with a calibrated model while adding faults to the model, one at a 

time, to get extensive input/output data of different faults . Using a calibrated model to 

train a network may work, but adds additional steps, including the time-intensive task of 
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creating a detailed model that is properly calibrated, and possibility for errors when the 

trained network is used with actual building information.  

In terms of fault detection for buildings using neural networks, there are generally 

two kinds of fault detection. One approach is data driven-based methods that rely on 

large amounts of training and faulty data. While these data driven neural networks can 

obtain high fault detection accuracy, they cannot extrapolate fault conditions beyond the 

levels of training, according to Zhao, et. al.. Zhao’s artificial intelligence fault detection 

review continues to discuss knowledge-based methods, the other kind of artificial 

intelligence fault detection. It is stated that while knowledge-based methods are capable 

of reasoning with different kinds of diagnostic information, they rely too heavily on 

expert knowledge . Given the drawbacks presented for fault detection, it is of no surprise 

that a separate neural network review discovered that HVAC and analysis of heating and 

cooling loads had the fewest attention by researchers while electrical energy use 

prediction for industrial work was the most researched .  

To explore the two main kinds of neural network fault detection two separate 

approaches are explored: time series and decision trees. Time series neural networks take 

training data and constructs a network that, ideally, can be used to predict outputs. 

Diverse fields from economics to hydrology have seen successful implementation and 

time series data is present in almost all human processes. However, most network 

specifications and results still need to be created and analyzed by a trained modeler . 

While it is true that time series networks do automatically generate a prediction model, it 

is not an effortless task to have said model be effective.  

Decision trees are different from time series neural networks in that trees classify 
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data, rather than predict values. Pattern recognition and feature discovery from large data 

sets while maintaining an intuitive nature have contributed to their use for over two 

decades. Another benefit to decision trees is their relatively short construction time when 

compared to other neural network methods. A potential shortcoming of decision trees is 

that they require data for normal and faulty operation to effectively classify data. 

Additionally, training algorithms tend towards overfitting data when the number of data 

points is fewer than the algorithm, while more data points tend towards generalization. 

Despite the inherent difficulties of neural network decision trees, the successful 

implementation of these types of systems, along with their straightforward methodology, 

provides a perfect candidate for fault identification comparison for the SPBM.  

Given the amount of potential promise discussed thus far, it may raise questions 

as to why neural networks are not the standard modeling technique used for energy 

modeling. While it is true that neural networks have a lot of promise, they also have 

unique drawbacks that put them at a disadvantage in some circumstances when compared 

to traditional modeling techniques. One potential problem of neural networks is 

overfitting, or when input/output relations become fitted to noise instead of underlying 

data . However, the most prominent problem with neural networks is systematic to their 

operation: parts of the model cannot be tweaked, but rather tricks and parameter tuning 

need to be performed by an experienced person to generate a useable model. Model 

tuning is further set back by the recommended method for simulation optimization being 

to try the maximum number of potential configurations, compare results using various 

metrics, to try and discern a pattern, and pick the ‘best’ result. The need for large sets of 

data for accurate training also means that either a building needs to operate in a faulty 
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condition over long periods of time or a high-fidelity model of a building needs to be 

constructed in order to provide enough data to train a neural network. Given the nuance 

and data requirements that are necessary for neural networks, it is obvious that machine 

learning is not a simple and self-generating modeling technique. 

2.7    Uncertainty Analysis and Model Calibration 

 Models that represent reality have uncertainty in their results. It is usually 

important to understand how different inputs to a model will affect the output values. For 

automatic fault detection devices, knowing the range of outputs based on reasonable 

changes to inputs may help avoid false positives in detection. Additionally, uncertainty 

analysis could be used after automatic calibration to test parameters and identify what 

could be the cause of a possible fault. Uncertainty analysis is also used to determine 

which parameters have the largest effect on building loads .  

 There are usually several parameters that are common across different models 

when testing uncertainty in calibration. These typically include wall and window unit 

conductance values, lighting power, plug load power, and occupant count . Physical 

parameters will often be estimated through construction documents or in conjunction 

with on-site measurements. Initial work on the SPBM has utilized Nelder-Mead in 

conjunction with a sum squared error to find parameter values. The equation-based 

modeling system used for SPBM calibration has built-in sensitivity analysis, so parameter 

values can be found and tested for sensitivity using the same program. Additionally, 

uncertainty analysis of load prediction during faulty building operation allows for a 

numerical comparison between parameters and model results. 

 Probably the most simplistic way to calibrate a model is to compare outputs of a 
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simulation to metered data. While automated methods for calibration have been explored 

, manual calibration of detailed simulations is possible, although rely heavily on the 

experience of the modeler. The process of calibrating detailed models often involved 

gathering construction plans and HVAC information from drawing data and using 

standard input values for internal loads based on what activities zones would be used. 

Metered data and simulated data are compared, and manual tweaking of parameters 

would be made until the model was in sufficient agreement. Because of this need for a 

skilled person to manually construct a detailed model, simplified building modeling for 

automatic fault identification has been investigated.  

2.8    Fault Detection 

 There are numerous methods for fault detection in buildings: rule based, logic 

trees, complex modeling, group modeling, and manual inspection to name a few. 

Automatic fault detection devices are primarily focusing on individual component faults . 

Most of the current AFDDs focus specifically on AHU or component faults.  

 While automatic fault detection in HVAC components has been explored, fault 

detection usually requires extensive use of sensors coupled with simulations of a specific 

component . Currently some research and actual applications are done based on creating 

rules for a program along with sensor data to determine if components are not behaving 

properly ; some methods rely on pattern recognition of existing sensors to determine 

faults . Additionally, some model the HVAC system or individual component to see if 

overall performance, and component performance, is similar to actual energy use . 

Practical applications of automatic fault detection are not perfect but are a useful tool for 

building evaluations.  
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 There is some work using building models and incorporating the data and weather 

files into EnergyPlus to compare the results between the simulated results and actual 

performance . This method requires a detailed model and knowledge of the existing 

building to effectively compare a model with real building results. While this method is 

effective for determining if a building is operating as planned, it still requires making an 

accurate model that is calibrated to the building. This type of building evaluation is being 

done through Continuous Monitoring, Metering, and Evaluation (CMME). The process 

involved making a detailed model (such as with EnergyPlus) that replicated the desired 

building as closely as possible. Any available metering was fed into the complex model 

to be used as internal load data and custom weather files were generated so that the model 

operated in the same conditions as the real building . Then, modeled and metered data 

was compared to try and determine if there was a problem. If modeled and metered data 

did not align, individual components were examined to attempt to find the cause of 

energy divergence. While effective, CMME is a time intensive method to detect faults 

because someone needs to create a detailed model, evaluate multiple points of 

comparison, and check performance of a real building.  

 NNs are another method for AFDD. This method requires a NN be trained to 

understand input/output dynamics of a building. The issue with this method is that NNs 

are susceptible to dramatic changes in output if the inputs are not the same as the training 

conditions . For fault detection, this may be a desired trait such as output deviation from 

normal or may be undesirable because outputs may be artificially amplified but because 

NN structure is unknown and poorly extrapolates. However, if deviation as such, NNs 

may be good programs for alarms but are not easily adapted to changing conditions 
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without retraining.  

2.9    Patent Investigation 

 Due to the industrial nature of HVAC, an extensive look into patents was 

conducted. Both predictive control and automatic fault detection were investigated. The 

majority of patents appeared to be in the area of predictive control, specifically adjusting 

temperature setpoints to either take advantage of “free” cooling at night , predict how 

HVAC settings will change zone temperatures before switching modes , and identify if 

areas are occupied to change setpoints . These patents reflect the academic papers 

investigated earlier and together give insight to the current work on predictive control.  

 Fault detection patents were fewer in number but also matched the ideas discussed 

in the academic paper reviews: mainly with modeling individual components and 

comparing real performance data or using detailed on-site information in conjunction 

with a model to estimate load or temperature in a room  . None of the patents revealed a 

way in which a model or method would be used to identify faults, only that a model of a 

room could be used to identify faults. Considering the vagueness of patents, and how 

recently they were posted, using an automatically calibrated SPBM in conjunction with 

limited building metered data, and comparing the performance to  neural networks, is a 

novel and useful area of research.  

2.10  Overview 

 After evaluating the history of fault detection and building modeling techniques, 

there does not appear to be a thorough investigation on what type of procedure for 

automatic fault detection is the most accurate for limited building information. Recent 
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developments show that automatic fault detection is an increasing priority for different 

researchers and private companies. Understanding what sensors are necessary, and how 

limited information can be used for fault detection, would have far reaching benefits. The 

scope of this research will be limited to physics-based modeling and neural networks as 

they are at opposite ends of computer-based modeling techniques.  
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CHAPTER 3.       ENVELOPE REPRESENTATIONS 

Heat transfer into a building is inherently transient. Consequently, the thermal 

resistance and capacity of the various layers in the opaque building envelope determine 

the amount and timing of a large fraction of the heat gain or loss, and these features are 

determined in a non-trivial way by the properties, thickness, and placement of the 

structural and insulating materials. Obviously, envelope construction greatly affects how 

much and when a building will experience heating and cooling demand; therefore, 

adequately modeling the opaque walls of a building from design data or by inferring the 

parameters from observed data is necessary for effective fault detection and similar 

applications. Opaque wall models in the SPBM for fault detection must be simple enough 

for efficient computer implementation and parameter estimation while being 

sophisticated enough to realistically model a multiple layer thermally massive wall 

without introducing so many adjustable parameters that implementation of automatic 

calibration will be difficult or impossible. Generally, there are three types of opaque wall 

constructions: one when most of the mass is on the exterior with insulation on the 

interior, another where a majority of mass on the interior with insulation on the exterior, 

and walls with distributed mass and insulation. The model must be compatible with all 

three kinds of constructions and be able to automatically estimate parameters when given 

minimal information. The purpose of this chapter is to demonstrate the process of 

identifying possible envelope heat transfer representations, evaluating and comparing 

these models, and finally selecting an adequate but not overly complex opaque envelope 
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model for the SPBM. Ultimately, a suitable relatively simple model is successfully 

identified and demonstrated. 

3.1    History of Envelope Conduction Modeling 

 Transient envelope conduction modeling was utilized for over fifty years of 

building energy modeling . However, accounting for transient envelope heat conduction 

relied on manual calculation methods such as CLTD, Radiant Time series Cooling Load 

Calculation Procedure (RTS), or a thermal time constant . These methods often relied on 

extensive calculations to be able to simplify the conduction equation for the period being 

investigated. However, for when the material properties are unknown, or many hundreds 

of wall configurations are being tested, this approach requires a lot of work in order to set 

up each wall representation.  

  A transfer function heat transfer model, such as the one used for CLTD, 

was explored for the sake of completeness. The equations to determine the constants of 

the material are not excessively difficult to compute but do require knowledge of the wall 

structure and materials to process the equations . If the construction and wall properties 

are known, then a time series method of evaluating conduction loads is an attractive 

choice. However, due to the assumption that wall construction and material properties are 

unknown, the time series method, and others like it, have significant disadvantages. The 

primary disadvantage of time series type methods is having to estimate the number of 

wall materials, and the properties of each material. While an R-C wall representation can 

assume bulk wall properties, a time series method would need to calculate the number of 

different materials, material thickness, density, conductivity, and specific heat. These 

additional properties would add significantly more challenge to the process of automatic 
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calibration and any computational speed benefit is lost from the additional steps in 

determining wall properties. 

 Modern programs have different options for calculating conduction heat transfer. 

A common method is finite difference and finite element estimation which is reliable for 

most cases and produce accurate results. The main drawback to these methods is the 

limitation of the program timestep and how it relates to stability . For very thin or 

conductive materials, the stability of the finite estimation often requires a short timestep 

which can dramatically increase simulation time. The short timestep is due to the 

dependence of material Fourier number as shown in Equation (1).  

 Fo =
𝛼𝑡

𝑙2       where Fo < 0.5 for 2D finite difference (1) 

However, iterative solving as utilized by the SPBM has been found to be more 

stable than typical forward difference calculations. Nevertheless, the finite difference 

method has many similarities to the R-C method used by the SPBM and discussed in 

depth in this chapter. 

3.2    Initial Testing  

 A primary objective of the SPBM is to model a complex wall, or any wall, with a 

minimum number of independent nodes and inputs. This model was tested numerically 

by comparing the results from different constructions in EnergyPlus, a complex, highly 

developed, and well-verified model, which can be assumed to generate accurate wall 

conduction loads , to the results gathered from various simplified wall models 

implemented in the equation-based modeling system. EnergyPlus was chosen for its high 

level of accuracy and its open-source nature . Additionally, testing wall constructions and 
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conduction performance with real-world data was not feasible for the scope of the 

investigation.  

To test the model the conductive load through the wall was represented by 

calculating the heat transferred to the interior zone through convection and comparing 

values generated by EnergyPlus. The convective heat load was compared to both 

EnergyPlus and Time series method solutions at first to validate both external models . 

The transfer function uses a set of constant values with previous hour sol-air temperature 

and conduction load and is explained in greater detail after Equation (2). While 

EnergyPlus is a dynamic simulation, ASHRAE uses a time series solution that assumes a 

constant interior temperature, external heat transfer coefficient, and internal heat transfer 

coefficient. The interior temperature was held constant for comparing the SPBM to the 

time series method, however, the complete SPBM normally operates with a full interior 

air and moisture model with internal air temperature fluctuations. 

Generally, the models were compared using TMY3 Atlanta weather for a week in 

January and a week in July. TMY data is a typical meteorological year derived from 

National Solar Radiation Data Base . This weather data was chosen for its typical 

performance and consistent data; while on-site weather is available, it has inconsistencies 

and missing information associated with a small weather station. Equation (2), which 

gives an hourly heat gain through a surface, requires previous values for 𝑇𝑒,𝜏−𝑛Δ (external 

sol-air temperature) and heat through the wall (𝑄̇𝑒,𝜏) at time 𝜏 − 𝑛Δ where the time is n 

hours behind the current time. For reference, the sol-air temperature is an adjusted 

outdoor air temperature to account for thermal radiation and solar radiation on external 

surfaces. 
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𝑄̇𝑒,𝜏 = 𝐴 (∑ 𝑏𝑛𝑇𝑒,𝜏−𝑛Δ −  ∑

𝑑𝑛𝑄̇𝑒,𝜏−𝑛Δ

𝐴
−  𝑇𝑟𝑐 ∑ 𝑐𝑛

𝑛=0
𝑛=1

𝑛=0

) (2) 

The sol-air temperature, Equation (3), takes the outdoor air temperature, adds the 

solar irradiation, and subtracts the total emitted thermal radiation and divides the sum of 

radiation by the external convection heat transfer coefficient.  

 Tsol−air = TOA + (𝛼𝐼 − 𝑄̇𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛)/ℎ𝑂  (3) 

The transfer function equation relies on previous values of 𝑄̇𝑒,𝜏 and therefore the 

evaluated day must be repeated several times until a periodic steady-state solution is 

found as initial conditions have a high impact on starting results. The amount of thermal 

mass and the placement of thermal mass in conjunction with thermal resistance increases 

the number of repeated days until a periodic response forms. Likewise, the value of n, or 

the number of previous inputs that impact the current heat flux also increases for walls 

with more thermal delay. For example, ASHRAE wall 102, a relatively massive wall with 

brick on the exterior, concrete block with foam interior, and insulation interior , Equation 

(1) requires six values for the summation and five days of analysis to generate a periodic 

function; walls with less extreme thermal flywheel effects require fewer values. While a 

time series solution is computationally efficient once the constants are known, 

determining the number of previous values needed and the constant for those previous 

values is a non-trivial task. Because wall material properties are unknown, trying to 

determine not only the value of n, but the values for the transfer function coefficients b, c, 

and d for each value of n was deemed unreasonable for an automatic calibration method. 

However, other methods for numerical modeling that are thermodynamically rigorous 

may be explored to decrease computational time. 
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The initial design for simplification of wall and roof models was to have one outer 

layer of high-resistance, low-thermal-capacitance material and one inner layer with low 

thermal resistance but high thermal capacity. This simplification is based on the 1985 

ASHRAE 32 wall construction and was desirable as there would only be two variables: 

the insulation thickness and thermal mass thickness. However, it failed when evaluating 

more massive walls such as those in Figure 1. The material properties of the 1985 

ASHRAE 32 wall were used, and the thickness of each layer was changed to match the 

performance. Early problems arose with using thickness because while each of the two 

layers had different kinds of materials, increasing the resistive layer would also increase 

thermal capacity and vice versa. This method leads to low accuracy and an inability to 

use materials other than the ones specified as each layer contained both thermal 

resistance and thermal capacitance.  

                          

                        5cm         10cm                                        30cm         3.5cm    10cm              

Figure 1: Cross section of ASHRAE 32 type layer wall and a heavy wall such as 

ASHRAE 102 

The SPBM was changed so that each layer has a resistance, or R value, and 

capacitance, or C value, which is adjusted independently. A diagram of the new design 

can be seen in Figure 2. The new model removed the unnecessary dependence on 

thickness and allows for an equivalent resistance or capacitance using any material 
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desired. This design has an additional benefit of requiring fewer inputs while allowing for 

simulation of any material combination and allowing for any number of nodes or 

“layers”. Different wall constructions require different number of nodes to accurately 

model conduction loads; the paper covers different wall constructions and required 

number of nodes later in this section.  

 

Figure 2: Simplified model node network for SPBM showing 2 layers, where each 

layer has independent properties. 

It was discovered that the internal and external air heat transfer coefficient being 

used in the simplified model, and time series method, was much higher than the 

calculated heat transfer coefficient generated by EnergyPlus. ASHRAE reference 

provides an external heat transfer coefficient of 17 [W/m2k] and internal heat transfer 

coefficient of 8.5 [W/m2k] ; while EnergyPlus calculates a heat transfer coefficient that 

averages 5 [W/m2k] for the exterior and 1.7 [W/m2k] for the interior. However, 

EnergyPlus convection heat transfer coefficient values do not appear to change 

dramatically for vertical surfaces while horizontal surfaces appear to have two primary 

values depending on the surface temperature and the air temperature. The model was 

tested to see if one interior and one exterior heat transfer coefficient could be used for an 

accurate model. The roof was used as a benchmark as that surface goes through the 

largest change in level of energy gain, energy loss, and surface temperature in a day. The 

test resulted in a constant heat transfer coefficient that had less than 1% error when 

compared to the imported heat transfer coefficient version. One value could be given for 
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vertical surfaces and two for horizontal (one with surface hotter than air and one with 

surface colder than air). However, calculating convection heat transfer coefficients 

improves accuracy while reducing unknown parameters at the expense of computation 

time. To summarize, a constant convection heat transfer coefficient can be used but 

requires calibration; a calculated coefficient is more computationally intensive but does 

not require calibration. 

3.3    Development of Weather Correlations  

 A critical objective of the SPBM is to only require widely available weather 

information: solar intensity, temperature, humidity ratio, wind speed, and wind direction. 

This data is often available for many locations and provides all necessary information for 

external envelope loading required for any practical building energy model. Correlations 

for solar, and convection heat transfer coefficients were used to estimate the load on the 

different surfaces.  

3.3.1    Radiation Load 

 Testing revealed that one of the most influential loads on a building comes from 

the heat gained from the sun and lost to long wave infrared radiation. However, those 

loads are often easy to estimate with a few basic equations. Solar loading is affected by 

the beam normal radiation rate, diffuse solar radiation, cosine angle0 the surface makes 

with the sun, and the absorptivity of the outer most material. It is important to find 

reference information for the absorptivity of the exterior material as different materials 

have varying radiation properties depending on wavelength. Equation (4) relates the 

direct radiation (𝐺̇direct), the diffuse radiation (𝐺̇diffuse), the cosine angle the sun makes 
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with a surface (cos(𝜃)), solar altitude (sin(𝛼𝑆𝑜𝑙)), the ground reflectance (𝑅Ω), the view 

factor a surface has to the sky (𝐹sky), solar absorptivity(𝛼) to determine the total solar 

load on any particular surface. While determining the absorptivity of a surface can be 

difficult, most building surfaces have an estimate of solar absorptivity. 

 𝑄̇solar = 𝛼𝐴 (𝐺̇direct (cos(𝜃) + 𝑅Ω sin(𝛼𝑆𝑜𝑙)) + 𝐺̇diffuse(𝐹sky + 𝑅Ω)) (4) 

 Solar radiation is not the only kind of substantial radiation load on external 

surfaces, long wave infrared radiation emitted by surfaces provides a not insignificant 

level of cooling. As with solar absorptivity, longwave radiation emissivity values for 

common construction equipment are similar to each other and have established estimated 

values that produce respectable levels of accuracy . Due to infrared radiation heat transfer 

rate being a function of two different surface temperatures, Equation (5) for calculating 

the emission rate is slightly more complicated. It is important to note that the equation 

below assumes that the ground surface temperature and the air temperature are similar 

enough to be combined into one view factor and temperature. 

 𝑄̇𝑟𝑎𝑑 = 𝜖𝜎𝐴 (𝐹𝑠𝑘𝑦(𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒
4 − 𝑇𝑠𝑘𝑦

4 ) + 𝐹𝑔𝑟𝑜𝑢𝑛𝑑(𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒
4 − 𝑇𝑔𝑟𝑜𝑢𝑛𝑑

4 )) (5) 

 Internal radiation has been grouped into exchange between fenestration and the 

floor, which absorbs all solar radiation transmitted through fenestration and emits that 

thermal energy through convection into the zone air or through radiation exchange with 

fenestration. Results show that incorporating the internal heat capacity into a generalized 

and directly irradiated “floor” is an adequate model as simple physical reasoning would 

indicate. 

Radiation exchange between the floor and windows is calculated using the same basic 

equation as for external radiation exchange although there is the added calculation of 
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determining the view factor of the window to the floor. Luckily, there are a number of 

built-in view factor calculators for different geometries.  

3.3.2    Convection Heat Transfer Coefficients 

 There are a number of different external convection heat transfer coefficient 

correlations available for building energy modeling. The most simplistic being a fixed 

heat transfer coefficient for all weather and surface temperature conditions. Conversely, 

there are many computationally intensive calculations that attempt to account for 

complex fluid dynamics. More advanced convection heat transfer coefficient correlations 

can provide a higher level of accuracy at the cost of increased computation time, but at a 

point diminishing returns needs to be evaluated. Meters on the buildings that measure 

heating and cooling load are not very precise, nor is the weather instrumentation. As 

such, it was deemed unnecessary to attempt to match high precision convection heat 

transfer coefficient calculations as later testing revealed a constant term could be 

sufficient. 

 It was decided to test BLAST (Building Loads Analysis and System 

Thermodynamics) heat transfer coefficient correlation for its simple correlation yet 

relatively high accuracy . BLAST was selected for the relatively simple set of equations, 

shown below, and high accuracy. For example, a study found that for a multi-story 

building error averaged less than 5% for total daily load.  

 BLAST uses two distinct calculations, one for forced convection (Equation (6)), 

and one for natural convection (Equation (7)), then combines the two (Equation (8)). 

Neither equation is dimensionally consistent, require SI units, and produce a value with 

units of w/m2-C. h is the convection heat transfer coefficient with units of W/m2-C. W is a 
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dimensionless factor that is 1 if the angle of wind is within 55 degrees of the surface and 

0.5 if the wind is leeward. R is a dimensionless roughness constant. P and A represent 

wall perimeter in meters and area in square meters respectively. V is air velocity is m/s.  

 𝐻𝑓 = 2.537𝑊𝑓𝑅𝑓√𝑃𝑊𝑉𝑊/𝐴 (6) 

For natural convection, the temperature difference between the interior zone air 

temperature and the interior wall surface temperature is used to get an approximate value. 

 𝐻𝑛 = 1.31|Δ𝑇|1/3 (7) 

 Forced and natural convection heat transfer coefficients are added together for a 

reasonably accurate total coefficient value. 

 𝐻 = 𝐻𝑓 + 𝐻𝑛 (8) 

 Upon further development of the SPBM, it was discovered that the wind speed 

modifier to account for the ground boundary layer became more significant. The value V 

in Equation (6) refers to the wind at the surface height and not necessarily the wind speed 

at the height measured. Obviously, as wind speed increases, the convection heat transfer 

coefficient also increases . For walls with less thermal resistance the convection heat 

transfer coefficient plays a more significant factor in conduction loss. The difference in 

energy transmission due to the convection heat transfer coefficient can be significant if a 

significant wind speed difference exists. However, for moderate walls, such as those 

tested in the example buildings in this thesis, the difference between purely natural 

convection and extremely high forced convection heat transfer coefficient could be as 

little as 10% difference. Therefore, both natural and forced convection terms are 

calculated for the SPBM. 
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 For the purpose of further simplification, an investigation was conducted to see if 

part, or all, of the external heat transfer coefficient correlation could be set to a constant 

value. Computational time is spent calculating the different coefficients and if an 

insignificant loss in accuracy can be exchanged for a significant time savings, then the 

SPBM could proceed without detailed convection calculations. The test first compared 

six months of convection load from the south wall from BLAST, calculating the forced 

natural convection but having a fixed natural convection term, and a completely fixed 

heat transfer coefficient. The results were promising showing at most 2.5% loss in 

average accuracy and at most 0.16% loss in accuracy over the six-month test period – as 

shown in Table 1. Which could potentially lead to a reduction in simulation time while 

maintaining sufficient accuracy for all weather conditions.  

Table 1: Numerical comparison between the three tested convection heat transfer 

coefficient correlation methods 

 BLAST [MJ]

Fixed heat transfer 

coefficient

Fixed natural 

convection

Sum of conduction load -494 -572 -608

Average %  difference from BLAST - 0.72% 2.52%

%  difference for total load - 0.16% 0.06%  

 Next, the results from convection load for the south wall, as calculated by 

EnergyPlus, was compared with the SPBM convection load, BLAST with a fixed natural 

convection heat transfer coefficient term, and a completely fixed convection heat transfer 

coefficient term. Figure 3 shows the monthly sum of convection loads through the south 

wall. All the methods of calculating the convection heat transfer coefficient were 

reasonably close to each other; while the SPBM/BLAST equation is closest to 

EnergyPlus. 
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Figure 3: Comparison of the four different convection heat transfer coefficient 

correlation monthly convection load from the south wall 

For every case, there is a small gain in accuracy for total convection load (R2 

greater than 0.99 for all cases) for the computational cost associated with the correlations. 

However, a decrease in computational time and complexity comes at the cost of 

calibrating these convection coefficient constants. While constant values showed 

promise, reducing the number of parameters was given a greater priority so as not hinder 

automatic calibration. 

 Fenestration has a slightly more complex relation between radiation exchange and 

convection because windows are assumed to not have significant thermal mass. 

Neglecting thermal mass means that fenestration acts like a heat balance between 

absorbed radiation from external and internal sources as well as internal and external 

convection. Due to the heat balance like performance of fenestration, the interior surface 

can get much hotter or colder than an opaque surface with the same external weather 

conditions. As a result of the greater temperature difference between surfaces and air, the 

convection heat transfer coefficient has more impact on the accuracy of fenestration load 

-1500

-1000

-500

0

500

1000

Jan Feb May Apr May June July

Monthly Convection Load Comparison

High-fidelity model

Fixed heat transfer coefficient

BLAST with fixed natural convection coefficient

BLAST



37 

 

into the zone than opaque surfaces. For double and triple pane glass there is a simple 

resistive element between the internal and external surface temperatures. Also, 

fenestration convection heat transfer coefficients are estimated using ISO 15099. 

 

Figure 4: Representation of radiation and conduction load modeling for fenestration 

 Instead of calculating the convection heat transfer coefficient for every floor of a 

building, a study was performed on the relative difference between the loads on the first 

and second floor of a simple building. This investigation would see if the computational 

time for calculating convection heat transfer coefficients was necessary or if each 

cardinal direction could be calculated once and used multiple times. For more than one 

level buildings, the convection load was examined to see how different floor 

temperatures affected the convection load from the fenestration. There was less than a 5% 

difference in annual convection load between the two windows over a year, the results 

can be seen below in Figure 5.  
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Figure 5: Comparison between north window convection load difference on level 1 

and level 2 

 For the above and all subsequent comparisons between loads in this chapter the 

absolute error was plotted as to give a better representation of the divergence between the 

compared data sets. Other methods of comparison were investigated such as percent error 

and weighted percent error. These methods were deemed impractical due to the data 

having averages near zero as well as substantial portion of the data having values near 

zero. Division by zero, and other problems associated with values close to zero lead to 

the choice to stay in a dimensional, yet normalized comparison between data. As such, an 

XY scatter plot to show correlation, as in Figure 6, is also included when comparing 

different methods. 
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Figure 6: Scatter plot showing the correlation between the north window convection 

load from level 1 and level 2 

 The divergence in Figure 7 for the south wall appears to have a similar level of 

agreement as the fenestration convection load. While the scatter plot of Figure 8 shows 

divergence, it is around the zero-load value, which has minimal impact on building 

performance, meaning a fixed convection coefficient may be suitable. 
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Figure 7: Comparison between south wall convection load difference on level 1 and 

level 2 

 

Figure 8: Scatter plot showing the correlation between the south wall convection 

load from level 2 and level 1 

 To reduce differences in internal temperature, both zones were specified to 

maintain a 0.25C° deadband about 22.5C and the results for the fenestration and wall 

convection were compared again in Figure 9 through Figure 12. Wall and fenestration 

divergences were significantly reduced by keeping zones the same temperature. This 
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experiment was only to see how different indoor air temperatures affect conduction load 

and if modeling one floor for the entire building would be possible. However, results 

were not promising and the complete SPBM will include independent air temperatures 

with a deadband.  

 

Figure 9: Comparison between north window convection load difference on level 1 

and level 2 

 

Figure 10: Scatter plot showing the correlation between the north window 

convection load from level 2 and level 1 when zone temperature is held constant 
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Figure 11: Comparison between south wall convection load difference on level 1 and 

level 2 

 

Figure 12: Scatter plot showing the correlation between the south wall convection 

load from level 2 and level 1 when zone temperature is held constant 

 As another point of comparison, the floor temperature was analyzed to see how it 

may impact loading. The surface of the LV2 floor was approximately 2C° colder than the 

ground floor surface temperature due to it being able to conduct heat to the LV1 zone air. 

However, the test floor used was simply a thin slab of concrete with no insulation, so a 

-1

-0.5

0

0.5

1

1.5

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

W
/m

2

Month

Comparison Between Level 1 and Level 2 South Wall Convection 

Load

South Wall LV1 24hr Moving Average South Wall LV2 24hr Moving Average

Error



43 

 

real-world floor with insulation would not be as susceptible to heat dissipation through 

the bottom. Additionally, the LV1 floor has an adiabatic outside surface boundary 

condition which confines all absorbed thermal energy to LV1 unlike the LV2 floor.  

 The second level floor was replaced with a floor comprised of an outer layer of 

concrete and 6 inches of insulation. This was done to thermally isolate the two zones to 

better understand how the conduction load between floors behaves with less coupling. 

Conduction load for the south wall was analyzed to see if a multiplication factor could be 

applied to minimize the error between floor convection loads. A multiplication factor of 

1.05 was able to bring the two convection loads in close agreement for the part of the 

year with the biggest load. The multiplication factor was found by minimizing the sum 

squared error between a correlation using the convection load for lv1, the zone 

temperatures, and a constant. The constant “a” settled around 1.05 while b and c went to 

0. While there is some difference during the summer months, the difference is relatively 

small in Figure 13 as the convection load is small. Again, the majority of the divergence 

in Figure 14 is around small convection values that doesn’t greatly impact the building 

load.    

 
𝑄̇2 = 𝑄̇1𝑎 (

𝑇2

𝑇1
)

𝑏

+ 𝑐 (9) 
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Figure 13: Comparison between south wall convection load difference on level 2 and 

level 1 when using a correction factor 

 

Figure 14: Scatter plot showing the correlation between the south wall convection 

load from level 2 and level 1 when adjusting the load using a correction factor 

 The use of a correction factor for different floors is a substantial decrease in 

computational time. The difference is small enough that the accuracy gained from 

simulating all the floors is outweighed by the associated decrease in computational time . 
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Figure 15: Comparison between north window internal radiation load difference on 

level 2 and level 1 

 

Figure 16: Scatter plot showing the correlation between the north window internal 

radiation exchange load from level 2 and level 1 

 In addition to the correlation presented above, other correlations between floor 

loads were investigated. These ranged from using the surface sol-air temperature, internal 

air temperature, and just the outdoor air temperature. These attempts did not lend 
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themselves to any greater level of agreement and often lead to issues when the factor 

would approach zero values and often required arbitrary constraints. The only real 

difference between floors is the internal air temperature and the slight change of forced 

convection heat transfer due to different distances from the ground (and higher floors 

being less susceptible to the ground boundary layer effect).  

 Lastly, the heat transfer coefficient was plotted against the delta between a wall 

surface temperature and the zone temperature. The profile is exponential, as expected, 

and would make a fixed value for HTC difficult to estimate. This profile does fit the 

complex HTC estimation correlation used. The profile of the convection heat transfer 

coefficient means that it would be possible to calculate the conduction load through all 

the surfaces without needing to recalculate external or internal heat transfer coefficients.  

 To conclude this section, it has been demonstrated that a simple multiplication 

factor for higher floors is sufficient. The greatest level of accuracy for the conduction 

load was when the load was most extreme in the heating season. This method of adapting 

the load from one level to multiple levels will dramatically reduce the computational time 

of the model, as every level can be expected to add the same amount of time. However, if 

desired, every surface could calculate its own convection heat transfer coefficient terms, 

but this section demonstrated that for most cases this is an unnecessary process. 

3.4    Internal Loads 

 Internal loads and accurate associated use schedules are vital to model accuracy 

yet also are significant sources of uncertainty . These kinds of loads are often difficult to 

analyze on a level necessary to account for natural variations throughout the days. To 

combat the irregular nature of internal loads, the electrical meter data, shown below in 



47 

 

Figure 17, for Whitehead was used. The meter does not distinguish between different 

internal loads (such as HVAC, lighting, or plug) so a factor is applied to the total energy 

consumption to estimate what fraction of the real load is internal and what part is HVAC 

electricity consumption. In addition to providing the internal load information, the nature 

of the electrical data provides a useful metric to determine if the building is occupied. 

The other building being analyzed, Old Civil Engineering, also displays a similar pattern 

of a steady baseline load and peaks during occupied hours in Figure 18. A simple if-then 

command was implemented to say that if electrical load was a significant portion over 

baseline/night use then the building is occupied and allowed for automatic workday 

detection. 
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Figure 17: Annual hourly electrical load for Whitehead Building (top) and for one 

day (bottom) 
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Figure 18: Annual hourly electrical load for Old CE 

 Electrical data gathered from the building can also serve as a way to distinguish 

between occupied and unoccupied times. Rather than implementing a strict schedule, any 

time building electrical use is a significant percent more than the base/night load then the 

building can be assumed to be occupied. Using electrical load to predict occupancy has 

been studied and deemed to be an accurate way of estimating occupancy levels . Not 

relying on a strict schedule for occupancy also has benefits in buildings with variable 

occupancy such as institutional, government, and commercial locations as there are many 

days where a building may be closed that are not official holidays or that change on a 

year-to-year basis as these changes appear as a reduced electrical demand for that day.  

 Occupants present a unique load to a building when compared to electric loads. 

While electric loads are purely sensible, people both heat their environment, and produce 

water vapor and CO2. Both water vapor and CO2 need to be removed from internal zones 

to satisfy occupant comfort and safety. Removing internal contaminates is often done by 
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supplying enough outdoor air to the building to ventilate spaces; details of HVAC and air 

handling will be discussed in a later section. 

3.5    Testing Property Estimation of Simplified Walls 

Once the model of the wall construction was operational, testing of property 

estimation was done before trying to analyze complex walls. 1985 ASHRAE 32 wall 

material properties was used as a baseline and the conductive load through the south wall 

was gathered. Both the R and C values for the two layers were decreased by 20% and the 

new conductive load was recorded. Error minimization through Nelder-Mead 

minimization of sum squared error (SSE) was utilized to determine if overall conductive 

load could be used to regain the initial material properties. Figure 19 showcases how 

different parameter values alter conductive load through surfaces and also how SSE-

based minimization can be utilized by the SPBM to arrive at a unique solution.  

 

Figure 19: Results of wall parameter estimation showcasing unique solutions with 

convergence towards the same parameter values despite different initial conditions 
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The results converged on the original values and are displayed in Table 2; the first 

layer was within 5%, the second layer had less than 1% difference. The total conductive 

load error dropped seven orders of magnitude from the 20% material difference to a 

negligible difference in total conductive load. The test was performed again with a 20% 

increase in material properties and the results were even better with a maximum material 

property difference of -0.12% from baseline values.  

Table 2: Analysis of how parameter values are improved through sum squared 

error minimization to regain original values after initially being lowered by 20% 

from control. 

 

Layer 1 R           

[C/W] 

Layer 1 C 

[J/C] 

Layer 2 R             

[C/W] 

Layer 2 C 

[J/C] SSE    [W2] 

Control 12.6 361 0.631 17700 0.00E+00 

20% decrease 10.1 285 0.504 14200 1.92E+07 

Post analysis 13.1 380 0.571 18200 5.24+E00 
Percent off 

control 3.30% 2.74% -9.61% 2.85% 0.00% 

Given the high level of accuracy parameter estimation with simple constructions, 

testing of the model with complex walls was the next step. While the objective of the 

SPBM is not to get exact property values, the accuracy of the estimated values gives 

some confidence in the method of calibration. 

3.6    Complex Wall Modeling 

 Initial comparisons of modeling a two-layer-two-parameter wall were met with 

success, but problems began to arise when trying to fit heavy or distributed mass walls. 

To test the SPBM with a variety of constructions, several ASHRAE standard walls were 

examined including 1991 ASHRAE wall 01 (steel siding with four inches of insulation), 

wall 13 (face brick, four inches of heavyweight concrete, and 0.61 inches of insulation, 

and wall 34 (face brick, twelve inches of heavyweight concrete and 1.36 inches 
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insulation. These walls were chosen as a representation of different kinds of wall 

constructions available. To demonstrate the amount of thermal load delay that is 

available, below in Figure 20 are the time series method solution and corresponding R-C 

results for those three different walls. The model shows how construction can drastically 

change peak load time and daily loading. The lightweight wall (Wall 01) has the load 

coincide with the external sol-air temperature. The medium wall (Wall 13) has a peak 

approximately eight hours after external sol-air peak. The heavy wall (Wall 34) has a 

peak approximately 12 hours after external peak load (Figure 20 shows that Wall 34 has 

the minimum load when the external load has the highest load, showing the 12-hour 

phase shift). Figure 20 also demonstrates how different constructions require different 

number of nodes for R-C analysis: a lightweight wall only needs one node, a medium 

weight wall provides better agreement with two nodes, and heavyweight walls generally 

require three nodes to achieve sufficient accuracy.   

 

Figure 20: Comparison between the accuracy of a R-C conduction model to Time 

series method. Three different weights of walls were used to demonstrate the effect 

of material property placement and scale 

 To further explore the importance of placement of thermal mass and thermal 

resistance a simple study was conducted. The same 1985 ASHRAE 32 test wall (wall 
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with two inches of exterior foam insulation and four inches of heavyweight concrete) was 

analyzed in ‘standard’ configuration (when the concrete was on the interior and the foam 

on the exterior) in a ‘flipped’ configuration (where the foam was on the interior and 

concrete on the exterior), and when the concrete and foam was ‘mixed’ together to create 

a homogenized material (illustrations of the different construction are in Figure 21). All 

the walls have identical thickness, U-value (thermal resistance), mass, and thermal 

capacity. EnergyPlus was used for model validation because of its accuracy and internal 

air temperature control. 

 
Figure 21: Illustrations of the three different constructions used to demonstrate 

importance of material placement 

The R-C model was able to match the performance of EnergyPlus with two or three 

nodes. ‘R-C standard’ and ‘R-C flipped’ are both modeled with two nodes while ‘R-C 

distributed’ is modeled with three nodes, as demonstrated in Figure 22. While each wall 

has the same overall bulk properties, all three R-C models have differing values to create 

an optimum fit. In addition to different total conduction loads, the test wall demonstrates 

the importance of proper construction properties and that, generally, more nodes are 

required when a wall has substantial thermal delay.  
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Figure 22: Comparison between how material placement in a wall changes 

conduction load while bulk wall properties remain constant. EnergyPlus and r-c 

models are used to demonstrate accuracy of two-node R-C system.  

The test wall demonstrates the importance of accurate construction properties and 

material placement in models. All wall constructions have the same total weight, thermal 

capacitance, thermal resistance, and thickness; all that was changed is the placement of 

thermal mass and thermal capacitance. Properly accounting for different constructions is 

difficult and cannot be determined only by bulk properties, but the R-C model can 

replicate any reasonable conduction load profile. Identifying and accurately modeling the 

energy use associated with different construction materials and material placement is 

vital for any kind of building model, and something the R-C model can do. 

3.7    Fenestration 

 Fenestration is more complicated than opaque surfaces in some ways but simpler 

than others. For instance, a common simplification of fenestration is to ignores the 

thermal mass of glass which makes conduction heat transfer simpler to calculate. 

However, fenestration is transparent to solar radiation yet opaque to long wave radiation; 
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meaning there are more parameters to account for both visible and long wave radiation.  

Using ISO 15099 specifications, the window does not contain thermal mass. While the 

importance of thermal mass is demonstrated to be important with most opaque surfaces, 

the thinness, high thermal conductivity, and small mass of glass means it cannot store a 

substantial amount of thermal energy to be released later.  

 The fenestration has the option to model panes of glass by treating the window as 

a solid piece with an effective resistance. The “center” of the glass is where the visible 

light is absorbed (shown in white in Figure 23, with hotter temperatures to the left and 

colder temperatures to the right, as the case would be during the day in summer). 

Convection and long wave radiation exchange is calculated from the two surface 

temperatures. There is assumed to be a linear temperature gradient between the two 

surface temperatures with the slope determined by the overall R value. All temperature 

and energy calculations are assumed to be instantaneous which greatly simplifies the 

process. 

 

Figure 23: Representation of the temperature gradient from the outdoor air 

temperature, through the fenestration, to the indoor air temperature 

 Fenestration presents a challenge by transmitting solar energy to the interior. 

Solar transmittance is not a constant, but rather changes depending on the angle in which 
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solar energy arrives at the surface of glass, optical properties of the glass, and how many 

panels are present . Keeping with the simplification desired, the SPBM utilizes a lookup 

table for transmissivity; absorptivity is roughly constant for all but extreme angles, and 

reflectivity is simply one minus transmissivity and absorptivity . Additionally, multiple 

pieces of glass are accounted for by approximating changes in overall transmissivity, 

such as decreased transmittance due to multiple reflections. Combining the above 

strategies results in a fenestration model that is within 40[w/m2], or 8%, in the most 

extreme solar loading. 

3.8    Conclusion  

 Envelope dynamics is a complicated and critical portion of building simulation 

and vital to accurate fault detection. The SPBM showed the ability to match complex 

wall conduction loads with similar accuracy to EnergyPlus and Time series method. In 

addition to matching the results of complex simulation tools the SPBM can automatically 

estimate property values, a task complex modeling procedures have difficulty 

performing. This chapter has demonstrated that a R-C model is able to replicate wall and 

fenestration dynamics accurately and efficiently with a minimal number of variables and 

complexity. Faithful reproductions of building envelope thermal energy transfer lay a 

foundation in which internal loads can be reliably estimated and fault identification can 

be performed. 
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CHAPTER 4.  FURTHER DEVELOPMENT OF SPBM AND NN 

FOR ENTIRE BUILDING 

 Having established a method for modeling opaque surfaces, the next step for 

creating a fully functioning SPBM would be to account for internal loads. Modeling the 

internal workings of a building presents new challenges because precise information 

about internal loads is often unknown. Few buildings have occupant counting or 

sufficient submetering to know where in a building electricity is being used. The 

buildings that use extensive metering present another problem in the form of 

malfunctioning systems, such as occupant sensors reading false positives; a fault that 

usually is only detected at night when the building is unoccupied. Consequently, some 

assumptions on occupancy, lighting, and plug load need to be made in the form of 

presumed schedules and peak values. Because of the uncertain nature of internal loads, 

machine learning may recognize patterns and more accurately predict loads than the 

SPBM, but that is explored in Chapter 7 and 8. This section explores the process in which 

the components necessary to model a building are created in a SPBM and NN. 

Additionally, the benefits and disadvantages of both model types will be discussed for 

which system may perform better for fault detection.  

4.1    Weather Information  

 To make a clear comparison of model performance, it was decided to run a high 

temperature and clear sky solar load summer design day. The use of tables was 

unavoidable for some properties such as exterior dry bulb temperature, humidity ratio, 
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and solar load as the inputs for weather conditions. Interior air temperature was held 

constant for testing wall convection loading instead of the HVAC system at this point. 

However, the SPBM normally models interior temperature drift.  

 Local weather information is available for this test, including temperature, 

humidity, multiple solar meters, rain, wind speed and direction. While most locations do 

not have a weather station on site, local weather can usually be gathered from a nearby 

airport or university agriculture department weather station. Even weather websites often 

have enough information for the SPBM or NN training. For example, hourly temperature 

and humidity are typically available and solar load can be estimated through cloud cover 

and rain percent.  

4.2    Rigorous Zone Temperature Equation Derivation 

 Beginning from first principles guarantees thermodynamic completeness in terms 

of conservation of mass and energy. Only by starting with a rigorous equation and 

working through the derivation can the final zone temperature equation be used with 

confidence. For reference, superscripts denote dry air (D), moist air (M), and water vapor 

(V). Subscripts denote location or source of the variable i.e., zone (Z), supply (S), 

infiltration (I), exfiltration (E), return (R), and generated (G).   

 Beginning with the energy and mass balance for the zone (control volume) leads 

to equation (10). 
 
 𝑑𝑈𝑍

𝑀

𝑑𝑡
= 𝑄̇S + 𝑚̇S

DℎS
M + 𝑚̇I

DℎI
M − 𝑚̇E

DℎZ
M − 𝑚̇R

DℎZ
M + 𝑚̇G

VℎG
G (10) 

 Internal energy is then broken into its discrete variables of specific internal energy 

and mass. Note that the moist air internal energy is also broken into dry air and water 

vapor in equation (11).  
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𝑑𝑡
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V
𝑑𝑢Z

V

𝑑𝑡
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D
𝑑𝑚Z

D

𝑑𝑡
+ 𝑢Z

V
𝑑𝑚Z

V

𝑑𝑡
= 𝑄̇S + 𝑚̇S

DℎS
M + 𝑚̇I

DℎI
M − 𝑚̇E

DℎZ
M − 𝑚̇R

DℎZ
M + 𝑚̇G

VℎG
G 

(11) 

Some simplifications are necessary to generate an equation that has a solvable 

closed form solution. This comes from the realistic assumption that the mass flow rate of 

infiltration is roughly equal to the mass flow rate of exfiltration. However, the mass flow 

rate of dry air entering through the HVAC may not be identical to the amount of dry air 

leaving. Therefore, equation (12) shows the supply dry air mass flow rate being equal to 

the return dry air mass flow rate in addition to any change in mass of dry air in the zone.   

 
𝑚𝑍

𝐷
𝑑𝑢Z

D

𝑑𝑡
+ 𝑚Z

V
𝑑𝑢Z

V

𝑑𝑡
+ 𝑢Z

D
𝑑𝑚Z

D

𝑑𝑡
+ 𝑢Z

V
𝑑𝑚Z

V

𝑑𝑡

= 𝑄̇S + 𝑚̇S
D(ℎS

M − ℎZ
M) + 𝑚̇I

D(ℎI
M − ℎZ

M) +
𝑑𝑚Z

D

𝑑𝑡
ℎZ
M + 𝑚̇G

VℎG
G 

(12) 

 Realizing that moist air enthalpy is comprised of dry air enthalpy and water vapor 

components, it is possible to replace ℎZ
M on the right side of equation (12) and combine 

that term with 𝑢Z
D to give equation (13). 

 
𝑚𝑍

𝐷
𝑑𝑢Z

D

𝑑𝑡
+ 𝑚Z

V
𝑑𝑢Z

V

𝑑𝑡
+ (𝑢Z

D − ℎZ
D − 𝑊ZℎZ

V)
𝑑𝑚Z

D

𝑑𝑡
+ 𝑢Z

V
𝑑𝑚Z

V

𝑑𝑡
−

= 𝑄̇S + 𝑚̇S
D(ℎS

M − ℎZ
M) + 𝑚̇I

D(ℎI
M − ℎZ

M) + 𝑚̇G
VℎG

G 

(13) 

Next, the ideal gas law relating pressure and volume to mass, density, and 

temperature is used to rewrite some of the rate of change of mass terms. Additionally, 

relating specific internal energy with enthalpy, gas constant (R), and temperature allows 

for additional substitutions leading to equation (14): 
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𝑉
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V
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M − ℎZ
M) + 𝑚̇I

D(ℎI
M − ℎZ

M) + 𝑚̇G
VℎG

G 

(14) 

Note that the right side of equation (14) will be represented as “RHS” in the 

below equations. Some additional assumptions are applied at this point, namely that the 

zone pressure does not change substantially. Keeping a constant total zone pressure 

allows the relation between the partial pressure of dry air and water vapor; namely that 

the rate at which one partial pressure increases is the same rate at which the other 

decreases. The other assumption being that the specific heat at constant pressure and 

volume do not substantially change. This assumption is made due to the limited 

temperature and pressure changes that a building zone will experience; typically, less 

than 10°C swing in a year. Applying the above assumptions in addition to the ideal gas 

law results in equation (15).  

 
(𝑚Z

𝐷𝐶𝑣
D + 𝑚Z

V𝐶𝑣
𝑉 + 𝑚Z

D𝑅D + 𝑚Z
V𝑅V)

𝑑𝑇Z

𝑑𝑡
− (

𝑅𝐶
D𝑇Z𝑚Z

D

𝑃Z
−

𝑅𝐶
V𝑇Z𝑚Z

𝑉

𝑃Z
)

𝑑𝑃Z
D

𝑑𝑡
− 𝑊ZℎZ

V
𝑑𝑚Z

D

𝑑𝑡
+ ℎZ

V
𝑑𝑚Z

V

𝑑𝑡

= RHS 

(15) 

 Applying the ideal gas laws and relation between the specific heats of a gas 

allows for the following rearrangement within equation (16). 

 
(𝑚Z

𝐷𝐶𝑝
D + 𝑚Z

V𝐶𝑝
𝑉)

𝑑𝑇Z

𝑑𝑡
− (𝑉Z − 𝑉Z)

𝑑𝑃Z
D

𝑑𝑡
− 𝑊ZℎZ

V
𝑑𝑚Z

D

𝑑𝑡
+ ℎZ

V
𝑑𝑚Z

V

𝑑𝑡
= RHS 

(16) 

 Equation (17) has the rate of change of the mass of water vapor in the zone is 

adjusted and rearranged. 

 𝑑𝑚Z
V

𝑑𝑡
− 𝑊Z

D
𝑑𝑚Z

D

𝑑𝑡
= 𝑚̇S

D(𝑊S − 𝑊Z) + 𝑚̇I
D(𝑊I − 𝑊Z) + 𝑚̇G

V (17) 
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 Substituting the above equation in to the into the previous total energy equation 

and adding in the unchanged right-hand side of the equation results in: 

 
(𝑚Z

𝐷𝐶𝑝
D + 𝑚Z

V𝐶𝑝
𝑉)

𝑑𝑇Z

𝑑𝑡
+ ℎZ

V(𝑚̇S
D(𝑊S − 𝑊Z) + 𝑚̇I

D(𝑊I − 𝑊Z) + 𝑚̇G
V )

= 𝑄̇S + 𝑚̇S
D(ℎS

M − ℎZ
M) + 𝑚̇I

D(ℎI
M − ℎZ

M) + 𝑚̇G
VℎG

G 

(18) 

 Finally, after rearranging and removing the terms that cancel out, we are left with 

the complete zone temperature equation (19). It is important to note that room sources 

term include thermal energy exchange from water either as a liquid or vapor. 

 
𝑚Z

D𝐶𝑝
𝐷

𝑑𝑇Z

𝑑𝑡
= 𝑄̇S + 𝑚̇S

D (ℎS
D − ℎZ

𝐷 + ℎZ
V(𝑊S − 𝑊Z))

+ 𝑚̇I
D (ℎI

D − ℎZ
D + ℎZ

V(𝑊I − 𝑊Z)) 

(19) 

 Comparisons between the EnergyPlus and SPBM zone air temperature equation. 

A subtle difference exists between the two models; how external and inter-zone 

infiltration energy transfer is calculated. Equation (20) is used for calculating zone 

temperature change that is used by EnergyPlus . EnergyPlus and SPBM zone temperature 

change calculations differ in how thermal energy of air entering or leaving a zone is 

calculated. Below, zone air specific heat and a temperature difference between the zone 

and the source of infiltrating or exfiltrating air is used to determine energy transfer. 

Conversely, Equation (19), used by the SCBM, calculates enthalpy values for zone air 

and infiltration/exfiltration air as well as humidity ratio differences. Inclusion of humidity 

differences increases accuracy as differences in humidity can have a significant influence 

on thermal energy exchange. Nevertheless, these zone energy equations are very similar  

 

𝐶𝑍
𝑀

𝑑𝑇Z

𝑑𝑡
= 𝑄̇S + 𝑚̇𝐼𝐶𝑝

𝑀(𝑇𝑂𝐴 − 𝑇𝑍) + ∑ 𝑚̇𝑖𝐶𝑝
𝑀(𝑇𝑧𝑖 − 𝑇𝑍)

𝑁_𝑍𝑜𝑛𝑒𝑠

𝑖=1

 
(20) 

The above derivation demonstrates the thermodynamic completeness of the 

SPBM model. By starting from first principles, it is possible to ensure conservation of 

mass and energy is maintained. Additionally, a thermodynamically consistent model 
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allows for humidity and other contaminant analysis through conservation of mass and 

energy. The rigor and complete thermodynamic modeling of a building while maintaining 

minimal parameters allows for this simplified model to be uniquely suited for model-

based fault detection.  

 

 

 

4.3    Assumptions and Justifications 

Due to the emphasis on simplicity, it was decided to have as few zones as 

possible. This resulted in having one zone per floor and averaging loads out throughout 

the zone. This assumption was done on the idea that in most buildings there would not be 

one occupied area with an extensively high loading when compared to the rest of the 

floor and that averaging loading throughout the zone would not greatly impact the overall 

accuracy of the model especially with respect to overall energy use. Additionally, fewer 

zones obviously lead to fewer difficult to estimate or infer zone-dependent parameters 

such as occupant count and electrical use. 

In keeping with the theme of simplicity, the floor is a single layer constructed 

from the same concrete as the walls and roof and the outside boundary condition of the 

floor is assumed to be adiabatic, which is a common simplification and shown to be 

reasonably accurate in other R-C models .  

 Because the SPBM was being directly compared to EnergyPlus, some variables 

were imported from the EnergyPlus results into equation-based modeling system in the 

form of a lookup table. These variables were those that did not have an explicit closed 
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form solution, such as turbulent natural convection coefficient. These values are normally 

calculated within the SPBM using reliable approximation equations, but the goal of this 

testing was to determine maximum accuracy to the EnergyPlus model. The SPBM was 

attempting to replicate EnergyPlus, using the same independent variables as EnergyPlus 

allowed for easier direct comparison with less ambiguity as to what was causing the 

differences between the SPBM and EnergyPlus.  

 Fenestration is unique to other surface types as it absorbs and radiates far infrared 

energy quite well while being transparent to visible light. Modern buildings have two or 

more layers of glass with a gas gap between panes. EnergyPlus uses two different 

methods: for advanced simulations it uses WINDOW 5 algorithm and for simple 

simulations it uses an effective U-value (or measure of effective conductivity, usually 

energy transmission rate per unit area ) and solar heat gain coefficient . Due to the 

complexity of fenestration the SPBM shares many properties with WINDOW 5 such as 

isothermal surfaces, no thermal capacity, opacity to long wave radiation, and absorptance 

and transmittance dependence on incidence angle. The simplifications used are: one layer 

of glass with an equivalent U-value that can represent air gaps present in multi-layer 

fenestrations, transmittance depending on the number of panes of glass in the actual 

building, transmitted solar energy is only absorbed by the floor (which is the same 

assumption as in EnergyPlus when using ‘Full Exterior’ model), and negligible 

conduction to the surrounding wall. This simple model could represent the complex 
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model within a reasonable degree of accuracy. Preliminary investigations show good 

agreement between the SPBM and WINDOW 5 values. 

 For multiple windows facing the same direction, the total surface area of the glass 

is combined to create one surface window. In the case where different wall directions 

(e.g., south and north walls have fenestration) the fenestration interacts with the floor but 

not directly with each window. The justification for not having windows directly 

interacting with each other is derived from buildings often having significant distances 

between windows of different directions and the presence of obstructions between 

windows. If windows are unable to see each other or have such a great distance between 

them such that the view factor is extremely small, then the interactions can safely be 

assumed to be insignificant.  

 To justify the above simplifications, a north and east window was placed on the 

test building; the fenestration takes up 80% of the north and east wall surface area. The 

load from the two windows were compared with a baseline high-fidelity model. Over a 

week period the total load difference was less than two percent, acceptable for a 

simplified model. Considering the normal level of deviation between the SPBM and 

high-fidelity model, and the lack of circumstances in which two large windows would 

have an unobstructed view of each other, the agreement presented in the test is deemed 

sufficient.  

While internal radiation exchange calculations may be important for detailed 

accuracy or for radiative zone conditioning, at this time its inclusion only serves to slow 

down calculation time for overall energy analysis. For the SPBM the floor is assumed to 

be the only surface that absorbs solar energy (this assumption mimics the EnergyPlus 
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method for dealing with transmitted solar energy), and the other surfaces are assumed to 

have no significant energy gain or loss through longwave internal radiation transfer. This 

assumption was justified by numerical simulation by running EnergyPlus with walls as 

black, completely absorbing, surfaces and again as completely reflective surfaces. The 

total difference in cooling demand over a summer design day for the simple one floor 

model was 79.5[MJ], a change of 4.5%.  The difficulty of determining view factors for 

complex geometries and the small gain in accuracy lead to the decision to remove 

internal reradiation from the SPBM.  

 

4.4    Internal Load Analysis 

 Most buildings have internal energy loading sources; these range from lights, 

electric equipment, people, infiltration, and more. To keep in line with the minimal 

parameter approach, internal loads were grouped into two groups: electric equipment, and 

occupant loads. Aside from very few buildings, most internal loads operate on a similar 

pattern, especially commercial and institutional buildings. The simplest, and most often 

used method for analyzing internal loads is to create an hourly schedule for weekdays and 

another for vacation days as there are broad patterns for everyday life. The most 

convenient method for implementing a schedule is to create a fractional hourly schedule; 

this means that each hour has a value between 0 and 1 which represents the fraction of 

the maximum value for that load. For instance, if the maximum possible occupancy is 

100 and from 1200 to 1500 hours and the fractional value was 0.9, that would mean 90 

people were in that zone from 1200 to 1500 hours; this approach gives a convenient 

single factor to identify. 
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A fractional schedule was gathered from NREL and reflects an average trend in 

what is described as a medium office building. In addition to simply adding heating loads 

to the interior space, some interior loads effect other parameters other than cooling 

demand. ASHRAE specifies 0.21 cubic meters of outdoor air per minute per person and 

additional 0.0187 cubic meters per minute outside air per square meter of floor area. 

Additionally, people generate a latent load and carbon dioxide through breathing, so the 

HVAC system needs to be able to cope with removing water vapor, thermal energy, and 

contaminates from the air and zone.  

Initial parameter identification testing for interior loads began with an EnergyPlus 

model containing people and lights on a fractional schedule. The same fractional 

schedule was imported into equation-based modeling system but the multiplier for the 

schedule was left as an unknown parameter. Because only cooling load would be known 

for the actual building calibration, error minimization was based on cooling demand. The 

SPBM was able to estimate the multiplier for internal loads with reasonable accuracy and 

was also able to identify internal load and material parameters at the same time. 

While a fractional schedule of the different internal loads of a real building will 

probably not be available, it may be possible to combine different fractional schedules 

each with a separate multiplier. For instance, there could be a constant baseline load, 

additional load during working hours, and a smaller increase above baseline load in the 

evening or weekend. Another method would be to evaluate building electrical load and 

investigate if power levels correspond to occupancy hours. Evaluation of building use 

and corresponding load data can provide insight to minute details that may otherwise go 

unnoticed.  
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4.5    Results of Investigations 

 A SPBM can represent the overall performance of a reasonably complex building 

accurately and can be used as shown in Chapter 5 to correctly independently identify 

constructions and internal loads. The success of the simplified model matching so well to 

a rigorous EnergyPlus model gives confidence that a SPBM could be used for overall 

energy evaluation on a realistic building. Additionally, the accuracy would possibly allow 

a SPBM to be used in the development stage of a new building to aid in optimizing 

constructions early in the design phase resulting in the most efficient building through 

controlling thermal lag. 

4.6    Modeling an Example Test Case Building (Whitehead Building) 

 Real representative buildings were needed to compare the SPBM and NN model 

and see if faults can be detected with real data. Initial comparisons were done with the 

Whitehead Building because it has limited metered information, has state of the art 

construction, and has a repeatable and constant weekly schedule for occupancy and other 

internal loads. Old CE is also examined later and is the opposite of Whitehead with 

legacy construction, has multiple AHUs with energy recovery, and fluctuating internal 

loads. Both buildings are tested to see how different buildings work with automatic fault 

detection and also to increase testing rigor.  

4.6.1    Example Building Analysis  

For the analysis of the Whitehead Building, a substantial amount of data was 

collected including shape, layout, environmental factors, HVAC setpoints, operational 

schedules, wall and roof materials, and construction. The goal of obtaining this much 
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information is to see how well a SPBM can compare to an actual building. The 

Whitehead Building was picked for its relatively simple construction, standard use, and 

having easy access to all information about the building. Most institutional buildings are 

mixed-use and often have large lecture halls, labs, or classrooms. These factors help in 

constructing a building model and demonstrating a proof-of-concept simulation. In 

person inspections of the Whitehead building were conducted on the exterior and interior. 

The building experiences a similar occupancy pattern every weekday and has minimal to 

no staff on weekends and holidays. Surrounding buildings and structures were analyzed 

to determine the magnitude of the shadows cast on the Whitehead building. It was 

determined that most of the shade would be very early in the morning and late at night 

when solar energy is at the weakest. This level of analysis can easily be done to any 

building and is representative of the baseline evaluation done when creating any model of 

a building. 

 Both example buildings are located in Atlanta, which has a climate with a mean 

air temperature above 10°C for at least 8 months of the year and a substantial humidity 

load. High relative humidity inside buildings has numerous impacts on a building 

including decreased occupant comfort, accelerated mold growth, and is a violation of 

ASHRAE 2016b. To combat humidity levels inside buildings, the tactic used by many 

engineers is to cool supply air to 13°C to dehumidify supply air. This makes the relative 

humidity at 13°C between 90 and 100% on humid days; but when the air gets to the zone 

and warms up to room temperature, 24°C, the relative humidity will be 55%.  

 Inspecting the metered data from the Whitehead building revealed that direct 

cooling data, total electrical use, and steam condensate flow was available. Initially, 
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matching the cooling load was the initial focus because it is the higher energy consumer 

in Atlanta when compared to heating load. Additionally, the cooling load data has a much 

higher resolution than the heating data. The heating data appeared relatively constant 

with a slight increase in winter. Likewise, the electrical data appears relatively constant 

throughout the year. The low resolution of some of the data, and the erratic loading 

patterns may prove to benefit SPBM or NN-based FD.  

4.6.2    Neural Network 

 MATLAB was used for neural network training due to the program’s ease of use 

and reliability. The main options available for creating a NN are the number of neurons in 

the hidden layer and the ‘number of delays’ or how far in the past inputs can affect 

outputs. Training data was January through July of 2016 and the whole year was used to 

test the network. Different combinations of neurons and delays were investigated 

although some combinations resulted in unreasonably long computational time. The 15-

minute interval was changed to an hourly interval and for cooling data, 10 nodes and 2 

delays was sufficient to achieve a R2 of 0.986 in testing. Two different kinds of time-

series neural networks were evaluated: non-linear and non-linear autoregressive network 

with exogenous inputs (NARX). The difference in these models is feedback, or if output 

data of the system the network is being trained to replicate will be available when the NN 

is deployed . Analysis of these different kinds of time-series neural networks in relation 

to fault detection performance is explored later. 

Both methods of time series neural networks agreed well with the training data 

(less than 5% deviation in average difference and annual load), but the NARX method 

appeared cleaner and more tightly fit when comparing the percent difference charts. This 
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is to be expected as NARX is a more accurate model and is recommended when output 

data is available  . It is important to point out that the large percent deviations are mostly 

from inaccurate real data values rather than a failure of the NN. The overall agreement of 

both methods instill confidence that either method should be able to be used to identify 

faults via simulation deviations.  

Heating data for the building is based on steam condensate while cooling load 

information is gathered from campus supply chilled water temperature difference and 

flow rate. Heating data is somewhat unreliable as condensate is measured in roughly 4L 

increments. Measurement occurs when a holding container for condensate is full, tips 

over, and sends a signal that 4L of liquid water has been condensed. In periods of low 

demand, sparse “ticks” of heating occur which making fine-tuning a model difficult. 

Cooling load is more precise as a 10°C temperature change in liquid water has 

significantly less thermal energy that 4L of latent energy.   

Due to the problems with metered data discussed above, creating a network for 

heating data was met with less success than cooling information. The data itself was 

noisy and does not appear to corollate well with outdoor conditions. A different training 

method was used to try and compensate for the poor quality of the data, the Bayesian 

Regularization. Bayesian training requires more time but is better for noisy/difficult data 

sets . A training set similar to the cooling data was established (50 node, 36 delay) and 

took over 24 hours to train on an I7-6700 CPU at 3.4GHz. An attempt to train at 200 

nodes and 12 delay values was made but was only 10% of the way through training at 24 

hours. If it is discovered that a more accurate network is needed for fault detection, then a 

request will be made to use a computing cluster.  
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4.6.3    Simplified physics-based model 

 Unlike neural networks that uses data for training, the SPBM uses data for 

calibration. As such, SPBM accuracy is not as dependent on data resolution because only 

a limited number of parameter values are adjusted for calibration. Reasonably accurate 

data is still required for both SPBM and NN models as building faults need to cause 

enough of a change to energy meters to be detected and so that fault identification can be 

performed. Model sensitivity of the SPBM has already been demonstrated and fault 

detection sensitivity for both the SPBM and NN are discussed later.  

Overall, both the SPBM and NN models of real-world whitehead data was able to 

be performed. Evaluating performance of real data was done to determine the viability of 

both models to be calibrated to data not artificially generated. However, calibrated high-

fidelity model data will still be used for fault detection and identification tests as that is 

the only financially viable method for testing different faults over long periods of time on 

a complex structure.   

4.7    HVAC System: 

 The most vital component to keeping a building comfortable is the heating, 

ventilation, and air conditioning (HVAC) system, which uses 44% of energy in 

commercial buildings in the US . While the designs are numerous, a popular system is 

having a large air processing area somewhere in the building that sends air to the rest of 

the zones. Some reasonable assumptions were made to remove unnecessary computation 

and simplify the parameters. Return air was assumed to have the same thermal properties 

and be at the same temperature and humidity as the zone. Additionally, zone air was 
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assumed to be relatively well mixed, and mass was increased by several times to account 

for various lightweight objects in the zone that maintain equilibrium with the zone air 

temperature. Increasing air mass allows for a more controlled temperature oscillation as 

more energy is required to change the zone temperature. Increasing mass does not 

diminish from rigor, in fact, slower temperature changes reduce small errors brought 

about by the temperature control procedure. These assumptions were justified based on 

the layout not having areas of excessively hot or humid loads when compared to the rest 

of the floor, and load averaging being common assumptions in other energy modeling 

programs.  

 

Figure 24: HVAC system and internal load diagram to demonstrate how air flow 

and air cooling and heating is performed before entering a zone as well as how air is 

circulated 

 To quickly review the basics of air handling units, the outdoor air is first brought 

into a mixing box with return air from the building. This mixed air is first passed over 

heating coils to prevent freezing of the cooling coils later in the HVAC system. Cooling 

coils chill the air to 13°C, and in the process, lowers the humidity ratio to a maximum of 

0.08 [kg water/kg air]. Air then enters the supply fan and is distributed to different floors. 
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If a zone does not need cooling but requires air to meet the outside air flow requirement 

or to remove CO2 and humidity, then heating coils in the zone air supply unit heats air 

entering the zone (a process called reheat). As CO2 monitoring becomes more common, 

concentration levels and patterns can be used to more accurately determine occupant 

count and air flow rate faults. Other zone conditioning approaches are similar or may 

have small changes such as dedicated heating and cooling in individual zones, but the 

SPBM is flexible and can easily accommodate these demands while the NN can be 

trained using the basic data from any building. 

Usually, the minimum amount of outdoor air needed to meet ventilation 

requirements is used because outdoor air typically requires more energy to condition than 

return air . However, sometimes outdoor air is used exclusively when the outdoor air is 

within the right temperature and humidity conditions are met . A SPBM accounts for 

outdoor air control depending on the type of control used in the real building. The model 

can also include heat recovery or economizers such as with the Old CE model. 

Two different methods for indoor temperature control were evaluated: a fixed, 

average internal temperature for the entire run period, and a complex system based on 

maximum and minimum temperature setpoints that can be adjusted based on time of day. 

The simplified method achieved success in initial calibration with the high-fidelity model 

reference. Addition of setpoint based systems allows for time-of-day based temperature 

ranges so that cooling or heating energy is not needlessly being used during unoccupied 

hours. The complex system is also able to more accurately calculate convection loads as 

the inside air temperature fluctuates and which would reduce additional load into the 

space. However, the setpoint-based system introduces up to six parameters per zone: 
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maximum occupied temperature, minimum occupied temperature, maximum unoccupied 

temperature, minimum unoccupied temperature, time where system switches from 

unoccupied to occupied, and time when system switches back to unoccupied setpoints. 

OSHA recommends a temperature band of 20-24°C with humidity between 20-60% ; so, 

if the building occupancy schedule is unknown the detailed control system may add 

unnecessary complexity. Therefore, it is only necessary to use the complex settings if the 

building is known to use setback setpoints or has a wide temperature deadband. Either 

way, the SPBM can accommodate any zone temperature setting schedule while the NN 

can use a ‘time of day’ variable to predict high and low energy demand periods.  

Implementation of building AHUs has many significant benefits in addition to 

differentiating the SPBM from other simplified models. As discussed throughout the 

above sections, modeling zone loads and AHU components concurrently allows for 

accurate representation of building load dynamics. Additionally, zone contamination in 

the forms of water vapor and CO2 can be modeled for accurate loads, demand control 

ventilation, occupancy prediction, and fault detection. The following section covers the 

implementation and benefits of simplified dynamic physics-based building energy 

modeling.  

4.8    Advanced HVAC Development  

 Implementing advanced features such as CO2 control or drifting interior air 

temperature is possible for buildings with modern metering and sensor technology. 

Additionally, these features proved useful when faults produced a small change in energy 

demand. 
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4.8.1    CO2 Control 

 Being able to model CO2 based outdoor air control is vital for fault detection in 

buildings that implement such technology. The process used is quite eloquent as the 

SPBM assigns a value of CO2 production per person and accounts for activity level. By 

roughly accounting for activities in the building, CO2 metering leads to a more precise 

level of air flow control and contamination monitoring. It has been demonstrated that 

simplified transient models are more than sufficient for modeling CO2 within the errors 

of CO2 sensors . 

 Demand control ventilation is one potential benefit of CO2 monitoring in 

buildings, which can provide electrical savings of almost 30% to conventional air 

delivery methods . Considering the cost of monitoring air flow and CO2 of return and 

supply HVAC components can be done for less than $1000 per AHU, the potential 

energy and economic savings would appear to easily justify the prevalence of demand 

control ventilation . Additionally, this technology is already implemented in some net-

zero/living buildings . 

 The use of a simultaneous equation solver did bring a few challenges for 

implementing CO2 levels. A CO2 level that is dependent on current-value air flow rates 

that also affects air flow rates causes two potentially correct values for the simulation (a 

high CO2 value where air flow rate remains low and a low CO2 value when air flow has 

increased to lower CO2 levels). As such, Equation (21) demonstrates the differential 

approach was taken to determine the change in CO2 that would have been experienced 

over the previous timestep.  
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 𝑑𝐶𝑂2

𝑑𝑡
= ((𝐶𝑂2𝑆 − 𝐶𝑂2𝑅)𝑚̇𝑆+𝐶𝑂2𝐺)|𝑡−1 (21) 

 The above equation shows how the level of CO2 will change from the previous 

hour to the current time value. This can easily be rearranged into Equation (22) that a 

computer program can use. 

 
𝐶𝑂2|𝑡 = (

(𝐶𝑂2𝑆 − 𝐶𝑂2𝑅)𝑚̇𝑆+𝐶𝑂2𝐺)|𝑡−1

m𝑍
) Δt (22) 

 While Equation (22) is stable for large zone air mass, or low supply air mass flow 

rate, it becomes unstable when either of those conditions are not met. Artificially raising 

the zone air mass would work but would eventually dampen out the changes and make 

detecting changes in CO2 or humidity difficult. As a result, the Taylor Series was used to 

dampen the rate of change without altering zone properties. A third order Taylor series 

representation of a first derivative is more stable and more accurate without increasing 

computational time, the form of the Taylor series is represented in equation (23). Using 

more than one term in calculating the derivative increases stability in the overall humidity 

calculation .  

 
𝐹′(𝑥) ≈ (

11𝐹(𝑥)

6
− 3𝐹(𝑡 − 𝛿𝑡) +

3

2
𝐹(𝑡 − 2𝛿𝑡) −

𝐹(𝑡 − 3𝛿𝑡)

3
) /𝛿𝑡 (23) 

 Implementing the Taylor series with infiltration results in Equation (24).  

 𝐶𝑂2𝑧
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=
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−
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−
𝑚̇𝑆

𝑚𝑍
−
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𝑚𝑧
−

11
6

 
(24) 

 By using previous timestep values and predicting the CO2 level for current 

timestep allows for simultaneous equation solving within the limitations of two possible 
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correct values. This technique can also be applied to other control logic such as zone 

temperature control.  

4.8.2    Humidity Modeling 

 Humidity is a significant variable for modeling HVAC systems as the cooling coil 

not only cools air but removes water vapor. In the cooling season, removing water vapor 

from supply air it consumes a considerable amount of energy. For example, to cool air 

from 21°C at 90% relative humidity to 13°C at 90% relative humidity takes three times as 

much energy to cool than dry air for the same temperature change. Because of this 

increased energy cost, it was deemed necessary to include zone humidity modeling to the 

SPBM. 

 Humidity modeling was approached with the same simplistic numerical derivative 

based approach as CO2. While the below equation was stable in low air mass flow rates it 

became unstable as the air flow rate increased. An option for increasing the stability of 

this kind of finite difference equation would be to increase the mass of the zone. 

However, increasing the mass of the zone would effectively dampen out changes from 

humidity. To increase stability, a new method of calculating the derivative was used. 

 
𝑚𝑧

𝑑𝑊𝑧

𝑑𝑡
|𝑡 = ((𝑊𝑆 − 𝑊𝑧)𝑚̇𝑆+𝑊𝐺)|𝑡−1 (25) 

 Using the above approximation for the derivative, a new equation could be crafted 

to represent the humidity per level. Equation (26) represents the humidity level per floor 

and could be used to represent the humidity for the entire building. By using a 

mathematical derivative representation that is only dependent on previous values means 

that the simulation time is not greatly affected with increased iterations. Additionally, this 



78 

 

same approach can be applied to any situation that uses a finite difference method for 

derivatives to increase stability should the need arise.  

 

𝑊𝑧
𝑡 =
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−
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 (26) 

4.8.3    Deadband Zone Temperature Control 

 Zone temperature control for variable air valve (VAV) systems is very similar to 

CO2 based demand control ventilation. The main difference is that temperature is 

bounded with a maximum and minimum temperature rather than just a maximum. 

Additionally, the HVAC unit behaves differently depending on if the zone requires 

heating or cooling. In most non-residential buildings, when heating is required the air 

flow rate is kept at a minimum value, but the zone supply duct uses some form of 

mechanism to heat the air (usually electrical resistance or hot water coils). Conversely, 

when a zone requires cooling, the air flow is increased as there is usually not a way to 

further cool supply air in the supply duct. Lastly, the duct has three possible modes: 1) 

minimum air flow rate at AHU supply conditions, 2) minimum air flow rate with the duct 

increasing supply temperature, and 3) greater than minimum air flow rate at AHU supply 

conditions. This section will explore the logic for how deadband temperature control was 

achieved.  

 The default operation for VAVs is to supply a minimum air flow at the AHU 

supply conditions. For the modeled buildings in this paper the AHU supply condition is 

supposed to be 13C. It is important to account for this minimum air flow rate because it 

means there is a constant supply of cold air into the zone. This cold air may need to be 
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heated to maintain the minimum zone temperature setpoint, but not so much that the 

supply temperature exceeds the minimum zone temperature setpoint; e.g., VAV warms 

supply air to 17C to keep the zone at 21C due to the small heating load on the space not 

being sufficient to overcome the cooling effect from 13C air. 

 In a zone heating operation, the VAV supplies air above the AHU supply air 

temperature while keeping air flow rate at the minimum flow setting. To vary the amount 

of heating, the VAV increases heating energy supplied until 100% heating capacity is 

met. 

 The final mode of operation is cooling mode which involves increasing the air 

flow rate into the zone. When accounting for zone humidity or CO2 increasing the 

cooling rate can also affect the supply rates into the zone. Depending on how the AHU is 

configured, increased cooling air flow can lead to an increase in outdoor air flow if the 

AHU is running a fixed percentage of outdoor air. Conversely, if the AHU supplies a 

fixed amount of outdoor air, then recirculation would increase instead. Figure 25 

demonstrates the ability to maintain temperatures within the deadband for a simple proof 

of concept test. 
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Figure 25: Plot of annual zone temperature while maintaining temperature between 

21 and 24C. Winter has zone temperatures near minimum while summer zone 

temperatures remain at the maximum; spring and fall demonstrate that zone 

temperatures fluctuate between maximum and minimum temperature depending on 

external load. 

 Implementation of a deadband required some clever optimization to get this kind 

of control in a simultaneous equation solver. However, given the prevalence of deadband 

control and temperature setback design it was deemed necessary to include. Due to using 

previous timestep values in calculations the program did not see a large increase in 

computation time and greatly increased the potential accuracy. Additionally, a non-

functioning temperature setback is a common fault for buildings on the test campus and 

being able to evaluate such a common and energy saving fault is invaluable.  

4.9    Calibration of SPBM 

 Due to the nature of a SPBM, both heating and cooling loads were calibrated at 

the same time. This is because the SPBM is attempting to represent an actual building 

and having two different sets of parameter values for heating and cooling (and 

subsequently having two different output sets). The primary condition that would lead to 
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a cooling and heating load at the same time would be a large amount of reheat - or 

cooling outside air and then heating the air as it enters the zone. Some buildings need to 

have a large amount of reheat if they have high air change rate demand, but excessive 

reheat can also be an indicator of faulty control logic or system performance. The 

dynamic nature of the model compares loads on an hourly basis with cooling load during 

the day, and heating loads during unoccupied times.  

4.10    SPBM Improvements 

As the SPBM grew in complexity, so too did the computational time to perform a 

simulation. Initially, all the procedure-based calculations were put into one procedure. 

Additionally, some correlations and AHU specifications were calculated in real time. To 

see if program optimization could be performed, different arrangements of program 

layout was tested.  

Engineering Equation Solver (EES) is a simultaneous equation solver, not a 

traditional program script. As such, EES attempts to solve for all the variables at the same 

time through iteration. Iterative solving is normally acceptable but slowed as calculations 

that rely on the same variable were added. For instance, the external surface convection 

heat transfer coefficient affects the heat into the wall nodes, internal surface temperature, 

and load into the zone, among others. The load into the zone has significant coupling as 

all surfaces simultaneously contribute to it; and the zone load affects the HVAC controls 

which determines the air into the zone, outdoor air flow rate, and all related calculations. 

Coupling of all these variables dramatically slows computations as EES attempts to 

iterate values that satisfy all the equations simultaneously. Because of this coupling, 

reducing parameters that are linked together substantially decreases run time. 



82 

 

 Before beginning the optimization, a simple, one level, model was simulated to 

get a run time. A 72hr simulation took 22.03 seconds to complete for a one level model 

with all calculations and correlations. Changing the external convection heat transfer 

coefficient correlation for one wall to use the external wall temperature of the previous 

hour saw a decrease in time to 20.84 seconds (5% improvement). Changing all the walls 

to use the previous hour external surface for external convection heat transfer coefficient 

calculations had a reduction to 13.95 seconds (37% improvement). The difference for 

moving all interior walls to the previous hour value only saw a reduction to 12.69 

seconds (42% total improvement). Using the previous value for convection heat transfer 

coefficients did not have an appreciable effect on total zone loading (less than 5% change 

in total load just from convection). As such, a 42% decrease in computation time for an 

insignificant loss in accuracy is well worth the compromise.    

 At this point all the calculations that are run in a traditional programming method 

are all clustered in to one procedure.  It was hypothesized that EES runs the entire 

procedure for each time it calls a variable. The south wall was placed into its own 

procedure to see how the number of calls changed with further reduction. Having outside 

and inside air convection heat transfer coefficient correlations and the solar load 

calculations in their own procedures lead to a total of 1722 calls for the south wall. Total 

number of calls was reduced to 1068 by isolating the inside convection heat transfer 

coefficient, external convection heat transfer coefficient, and solar loading. Separating all 

wall correlations into their own procedure led to a total reduction in time to 0.89 seconds 

(96% reduction in computation time). While these improvements are substantial, there 

are still some model improvements that could be done by moving the code to a more 
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streamlined program. However, the simultaneous equation solving of the current program 

allows for more flexibility while providing a reasonably fast simulation.  

4.11    Conclusion  

 Evaluation of the Whitehead and Old CE buildings reveal ideal buildings to test 

the SPBM and comparison to a NN. Both buildings have different internal uses but have 

a repeating daily use pattern, removing unnecessary early-stage complexity. Preliminary 

evaluation of both modeling methods shows a capacity for reasonable accuracy for 

building modeling and promising results for use in fault detection with successful fault 

identification occurring with as little as 1% change in demand.  
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CHAPTER 5.  UNCERTAINTY 

 Before final evaluation of the models presented in this paper, it is important to 

remember that models are a representation of a complex system. As such, modeling real-

world systems is inherently flawed and results should not be expected to be identical. 

Due to the complex nature of buildings, uncertainty is approximated by comparing 

metered energy use to modeled energy use. Conducting analysis of variance about the 

linear regression line between metered and modeled energy results in an approximate 

normal distribution and therefore, approximate confidence intervals can be drawn from 

this analysis.   

In any useful model it is important to carefully calibrate parameters using 

available observations. Parameter estimation can be seen as constrained optimization 

where the constraints are placed based on easily obtainable information gathered from 

building drawings or in-person inspections. Based on the listed information it is 

reasonable to approach parameter estimation as an inverse problem with values limited 

by known quantities; while the goal is to generate unique parameter values that result in 

model output to match that of data not used for calibration. That being said, it is 

important to remember that parameter estimation is attempting to find parameter values 

that are approximations which result in the desired model performance, not the exact real 

world parameter value – a task that is impossible. 

  Due to the nature of the systems being modeled and that the SPBM is using 

thermodynamically consistent modeling equations, it is reasonable to constrain 

parameters to reasonable values and also undergo optimization for different parameters 
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separately. Additionally, it is important to remember it is not possible to quantify a “best 

model” when it comes to inverse problems for parameter estimation. As such, best 

practice for evaluating complex models is by breaking down complex systems into 

individual components and individually compare a high-fidelity model or system with the 

proposed model to reveal the discrepancies between the two models.  

 Due to a lack of a definitive method for determining if the model is “best” and 

that the objective of the model is to be used as a tool for fault detection and not 

determining real world property values, model-to-model comparisons, model alignment 

factor, and analysis of result differences due to different parameter values are used to 

determine “goodness of fit”. To add some degree of qualitative measure to the model 

uncertainty, sum squared error-based model result analysis will be performed on 

parameters after being fit.  

X.1 Uncertainty analysis of building envelope 

 As stated earlier, it is recommended to start at broad model analysis and work 

towards the complete system. As such, this section will describe the process used to 

calibrate the SPBM to the Whitehead Building. As before, the analysis began by 

determining the affect wall parameters played on heating and cooling load. Heating data 

for two weeks in January for Whitehead while unoccupied and running 100% recirculated 

air was used for model calibration. Being winter, the cooling load is near 0 and therefore 

is not plotted. Figure 26 visually shows the high level of agreement between the baseline 

heating rate and SPBM rate while Figure 27 shows the alignment factor for the two 

heating rates as well as the R2 of the SPBM. 
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Figure 26: Comparison between baseline and calibrated SPBM heating rate 

 

Figure 27: Alignment factor for calibrated SPBM with baseline heating rate 

 For the purpose of fault detection, uncertainty analysis was performed on the four 

parameters for wall construction: external node resistance and capacitance values (R1 and 

C1) as well as the interior node resistance and capacitance values (R2 and C2). The 

uncertainty of the system the envelope parameters are defined by Equation (27) but 

represent a general process for any number of parameters. 
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𝑈𝐴 = √(
𝛿𝑄

𝛿𝑅1
𝑈𝑅1)

2

+ (
𝛿𝑄

𝛿𝑅2
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2

+ (
𝛿𝑄

𝛿𝐶1
𝑈𝐶1)

2

+ (
𝛿𝑄

𝛿𝐶2
𝑈𝐶2)

2

 (27) 

 The change of total heat (Q) was, unsurprisingly, more affected by the resistance 

than the capacitance by several orders of magnitude. Total heat energy being strongly 

coupled with the resistance is not surprising as the resistance affects the amount of 

thermal transfer while the capacitance affects the amplitude of thermal transfer. To 

determine 𝑈𝐴the capacitance terms were dropped as their contribution was statistically 

insignificant. Additionally, the uncertainty of the resistance was combined due to having 

a statistically similar change in heat per change in resistance. Therefore, 𝑈𝐴 for cooling 

and heating was approximated using equations (28) and (29). 

 

𝑈𝐴,𝑐𝑜𝑜𝑙𝑖𝑛𝑔 ≈ √(
𝛿𝑄𝑐𝑜𝑜𝑙

𝛿𝑅
𝑈𝑅)

2

 

(28) 

 

𝑈𝐴,ℎ𝑒𝑎𝑡𝑖𝑛𝑔 ≈ √(
𝛿𝑄ℎ𝑒𝑎𝑡

𝛿𝑅
𝑈𝑅)

2

 (29) 

  Equation (30) details the process for determining 𝑈𝐴 and 𝑆𝑆𝐸 is simply the sum 

squared error between the baseline and modeled heat rate; ℎ𝑐 is considered to be 2 due to 

the large number or points (336). The resulting plot demonstrating the heating rate with 

the associated uncertainty is shown in Figure 28 and demonstrates an acceptable level of 

uncertainty.  

 
𝑈𝐴 = ℎ𝑐 (

𝑆𝑆𝐸

𝑁 − 𝑁𝑃
) (30) 
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Figure 28: Plot of SPBM heat rate with uncertainty along with baseline heat rate 

 Initial uncertainty analysis for this simplest-case model reveals that fundamentals 

of SPBM development allow for unique solutions. Further uncertainty and uniqueness 

analysis for fault identification and identification are presented later in the paper. 

5.1    Envelope Uncertainty with Internal Loads 

 The above demonstration was done with no internal loads or infiltration. The 

same envelope uncertainty procedure was repeated while the building was subjected to 

realistic internal loads and infiltration to see if the inclusion of these variables would 

decrease or increase the uncertainty of the envelope parameter estimation. Additionally, 

the time of the year was moved to June to have both a heating and cooling load.  

 A problem with using one zone per floor is the loss of per-room granularity. Even 

in real buildings not every room has a thermostat and, as a result, individual rooms can 
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experience different temperatures from the room with the thermostat. Figure 29 through 

Figure 32 demonstrate the high level of agreement possible with the SPBM when 

accounting for lighting load, plug load, occupancy, infiltration, outside air, and humidity.  

 As demonstrated in the following set of figures, the SPBM cooling rate is more 

aligned with baseline data than the heating rate from the SPBM is aligned with the 

baseline heating rate. Greater agreement with cooling load as opposed to heating load is 

expected because June in Atlanta is a cooling load dominated time of the year and only 

loads with minimal internal load will have heat demand. Heating rate does not necessarily 

mean that the output temperature from the VAV is above room temperature, but rather 

the temperature of air into the zone is required to be higher than the temperature of air 

from the cooling coil in order to maintain a zone temperature within the temperature 

deadband (21°C to 24°C in this example).  

 
Figure 29: July cooling rate data from baseline and SPBM, uncertainty remains 

reasonable even when internal loads are incorporated 
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Figure 30: Alignment factor between SPBM and baseline cooling rate 

demonstrating high degree of agreement and low uncertainty  

 The heating rate has a similar profile and overall agreement and has a strong 

linear relationship when looking at the alignment factor between SPBM and baseline 

heating rates. The primary differentiator between the SPBM and baseline information is 

the low heating rate (<100MJ/hr) in the baseline model while the SPBM reads 0MJ/hr. 

This is due to the SPBM being slower to react and not having small rooms, such as 

conference or break rooms, which may require some level of heating all the time and 

cannot be faithfully represented in a one zone per floor physics-based model. 
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Figure 31: July heating rate data from baseline and SPBM with slightly higher 

uncertainty due to low load and abrupt change in demand 

 

Figure 32: Alignment factor between SPBM and baseline heating rate 
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 While summer heating demand may initially appear to have an unacceptable level 

of uncertainty, it is important to note how relatively small heating demand is when 

compared to cooling. For instance, a majority of testing does not have any heating 

demand at all and there is only a short window when zone temperature setpoints are 

adjusted at the beginning of the day when heating demand spikes. As such, a relatively 

high uncertainty is still capable of detecting faults due to any increase in demand being 

noticeable. 

5.2    Sensitivity of Envelope for Heating and Cooling Load 

 Given the relative uncertainty of the heating and cooling load when analyzing the 

envelope, a brief investigation on how changing the envelope properties results in 

changing of heating and cooling loads was conducted. Envelope properties were adjusted 

by +/-10% and +100%/-50%. Analyzing these scenarios provides useful insight for when 

parameter estimation-based fault detection occurs in a later section.  

 Beginning with bulk wall resistance, an increase in bulk wall thermal resistance 

resulted in an increase in heating demand and decrease in cooling demand as shown in 

Figure 33. Such a tradeoff is expected as the total load from the interior is constant and 

less external thermal energy can make it into the zone. Likewise, with a decrease in bulk 

wall thermal resistance the cooling load increased, and heating load decreased. Given the 

relatively low thermal resistance of the baseline wall, a 10% change in resistance is a 

relatively minor adjustment and well within error of construction.  
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Figure 33: Results of bulk wall resistance alteration to demonstrate relative change 

in heating and cooling rates 

For bulk wall heat capacity, a similar trend was experienced. Although similar, 

there was less of a divergence than for resistance. While the change on total heating and 

cooling load was statistically insignificant when compared to thermal resistance, the 

change in thermal capacity has a similar change on the alignment factor. This is because 

heat capacity changes the peak and amplitude of conducted thermal energy and not the 

total thermal energy entering or leaving a building.  
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Figure 34: Alignment factor of SPBM and SPBM with altered bulk wall heat 

capacity 

 A severe alteration to the bulk wall properties was conducted to show how the 

envelope would behave if parameter estimation was severely off calibration. The bulk 

wall resistance was tested by doubling and halving total thermal resistance to evaluate 

sensitivity of energy demand. The overprediction was more noticeable than the 10% 

change but not nearly as much as Figure 35 demonstrates with the loss of thermal 

resistance. When a building has internal loads and a relatively high air flow rate, there is 

only so much the wall thermal resistance can do to lower cooling load; as demonstrated 

in the alignment factor in the following figure. However, underprediction of bulk wall 

thermal resistance shows how thermal bridging would cause significant deviation in both 

heating and cooling loads. 
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Figure 35: Alignment factor of SPBM and SPBM with bulk wall thermal resistance 

 Altering the wall bulk thermal capacitance had the expected effect of either 

damping the cooling rate by increasing capacitance or exaggerating the cooling rate by 

lowering capacitance. Again, thermal capacitance influences the profile of conducted 

thermal energy, not the average thermal energy that is transmitted. The linear regression 

trendline equations in Figure 36 show that increasing the capacitance increased the 

baseline cooling rate (b in Equation (31)) while lowering the impact dynamic changes 

had (m in Equation (31)). 

 𝑦 = 𝑚𝑥 + 𝑏 (31) 
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Figure 36: Alignment factors of SPBM and SPBM with altered bulk wall thermal 

capacitance 

 In conclusion of envelope uncertainty, analysis of bulk wall material values 

produced the expected results of needing to be broadly accurate but extreme precision is 

not vital to model integrity. Large deviations from baseline values have distinct results 

but only until a certain point; diminishing returns dictates that by increasing thermal 

resistance or capacitance from 2x over to 3x would produce a significantly smaller 

change in cooling load than a change from 1x values to 2x over. However, 

underprediction of bulk wall properties has noticeable and distinct effects on cooling and 

heating rate alignment. As such, the interior loads will also be examined to see how the 
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SPBM reacts to alterations within the building and if the model is more sensitive to 

interior load sources.  

5.3    Sensitivity and Uncertainty of Outdoor Air 

 Determining the amount of outdoor air is vital to properly estimating the heating 

and cooling demand of a building. Even if outdoor and return air temperatures are the 

same, an increase of relative humidity from 20% to 40% can increase the enthalpy of the 

air by almost 30%. Whitehead operates at a fixed outdoor air flow rate and excessive 

outdoor air is a significant source of wasted energy, and therefore is a fault desired to be 

detected . 

 Excessive outdoor air affects the load on a building in different ways depending 

on the season. In winter, excessive outdoor air increases the amount of preheat required 

while in summer it increases the amount of cooling. The outdoor air sensitivity analysis 

took place in June, just as the envelope sensitivity analysis, to see how different aspects 

of unknown variables affect model sensitivity. As expected, altering the outdoor air 

percentage did not change the heating requirements but increased the cooling load in a 

typical fashion, as shown in Figure 37.  
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Figure 37: Alignment factors of SPBM and SPBM with altered outdoor air 

percentage 

Increasing outdoor air in summer increased the cooling load as return air was, on 

average, hotter and more humid. Conversely, lowering outdoor air lowered return air 

temperature and humidity. Behavior such as this where only one of two metrics are 

affected is useful to know when performing outdoor air fault detection. Additionally, 

CO2 monitoring can also be used for outdoor air fault detection and will be explored in 

the fault detection portion of the paper.  
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5.4    Evaluations of Interior Loads 

 The interior loads placed by people and electric equipment affect the heating and 

cooling demand on a building’s HVAC system. Internal loads can create a cooling 

demand even when outdoor conditions are cool. Considering one of the faults for 

automatic detection is malfunctioning occupancy sensors, being confidant on the internal 

loads in a building is vital for fault detection.  

 Three metrics were evaluated for interior loads: 1) unoccupied, or base, fraction 

of metered electricity used inside the building for lighting and other electric equipment. 

2) fraction of metered electricity used inside the building when occupied. And 3) the 

number of occupants in the building. Unoccupied electrical use is the electricity used by 

the buildings overnight when the building is mostly vacant. This value dictates heating 

load during winter and should not affect cooling load as the building should be at 

minimum air temperature setpoint. Figure 38 demonstrates this expectation with a 

minimal change to cooling load and increase in heating load when electrical use is 

decreased and vice versa.  
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Figure 38: Alignment factors of SPBM and SPBM with altered base electrical use 

 Peak electrical use refers to the amount of electricity that is used while the 

building is occupied as this is when lights and equipment such as computers are used. 

Altering occupied electrical use should reduce heating demand and increase cooling 

demand. As expected, Figure 39 demonstrates the expected change in loading associated 

with the alteration of occupied electrical use. 
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Figure 39: Alignment factor of SPBM compared to SPBM with altered peak 

electrical use 

 Lastly, the number of occupied people was examined to determine its 

characteristic impact on building dynamics. Both occupancy and occupied electrical use 

take place over the same timeframe but unlike electrical use, occupants produce both 

CO2 and latent energy (water vapor). While CO2 will be explored in another section, the 

latent impact of occupants produces an increase in cooling load at all times of the year by 

increasing the humidity of air going through the cooling coils. However, this latent 

fraction of heating load does not lower heating demand as it does not increase the 

temperature inside a room. Therefore, occupants should increase cooling load while not 
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increasing the air flow demand as much as a pure sensible load would; this result is 

shown in Figure 40 with the R2 change for cooling load being significantly more than the 

change for heating load. Additionally, during winter the same results are expected where 

an increase in cooling coil load would occur even if the zones remained in heating mode. 

 

Figure 40: Alignment factors of SPBM compared to SPBM with altered occupancy 

levels 

 Overall, sensitivity for a number of different parameters was tested and results 

suggest that the SPBM is more sensitive to some parameters over others. If automatic 
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would need to be altered by a non-insignificant amount to be detected. However, if a fault 

does not noticeably alter energy demand, then it is possible that building operators would 

choose not to fix a fault that is not causing problems. 

X.4 Discussion of results 

 The SPBM was able to demonstrate a high level of convergence with a highly 

detailed model. For all examined parameters the resulting variable uncertainty was less 

than 1%. While this uncertainty value does not mean that variable values are within 1% 

of real-world representations, it does mean the overall process and system representing 

building dynamics is not overly sensitive to small parameter adjustments but that small 

changes are still noticed. In addition, alterations in parameter values produced an 

expected and realistic response associated with each variable. The following section will 

examine how uncertainty and the system effect of individual components can be used for 

automatic fault detection.  
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CHAPTER 6.  PARAMETER ESTIMATION 

 Parameter estimation is the cornerstone of the SPBM’s fault detection method. 

However, it is important to note that the goal of parameter value estimation is not to 

determine the true value of parameters in the real world but rather to determine how 

changes in parameter values over time corollate to different building faults. Afterall, a 

model is considered calibrated when it has an acceptable fit and fits within data parameter 

values . So once the SPBM is calibrated with parameter values within a reasonable 

window then any real-world deviation from the model could potentially be seen as a 

system fault; and any significant change in parameter value could shine a light on the 

real-world cause of the error.  

6.1    High-Fidelity Test Models 

 Given the extensive number of different faults that were desired to be induced, 

and the inability to induce faults in occupied buildings, a high-fidelity building model 

was constructed in EnergyPlus, a leading open-source building energy simulation 

program. Using detailed building blueprints and design specifications a calibrated high-

fidelity EnergyPlus model was able to accurately replicate energy use based on building 

metered data.  

6.1.1    Whitehead 

 Use of building blueprints allowed for detailed envelope, zoning, and HVAC 

specifications. Based on Figure 41, the wall is constructed with an exterior brick surface, 

small air gap, insulation, water barrier, and drywall. The roof has an impermeable top 
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followed by 9mm of insulation and a drop ceiling. AHU specifications are relatively 

simple with no energy saving measures, providing a unique structure to Old CE. 

   
Figure 41: Building drawings of exterior wall and roof (left) AHU specifications 

(right) 

 Below are figures demonstrating the HVAC layout for Whitehead level 1 and 2 

for illustration and reference. The information was used to construct an identical layout in 

EnergyPlus and assign the proper interior loads based on the specifications for each zone.  
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Figure 42: Design drawings of Whitehead level 1 

 
Figure 43: Drawing documents of Whitehead level 2 

 Beginning with such a high level of resemblance to the real building resulted in 

initial performance of the high-fidelity model to not be significantly off of from metered 
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data. However, it is important to note that a high-fidelity model will not be an exact 

match as it is impossible to catch every small detail that affects a building’s load.  

 
Figure 44: Monthly heating load demand for Whitehead metered from 2016 and 

2017 

 

Figure 45: Monthly cooling load demand for Whitehead metered from 2016 and 

2017 

 While the monthly loads displayed in Figure 44 and Figure 45 are similar, the 

hourly loads displayed below demonstrate how volatile small changes in exterior 

environmental and interior loads can have a dramatic change in specific demand.  
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Figure 46: Plots and alignment factor of metered heating and cooling rates from 

Whitehead over 2016 and 2017 

 While the heating meter not reporting for the summer months is a factor in the 

low alignment factor between the two years, there was a noticeable difference in outdoor 

air temperature between 2016 and 2017 as shown in Figure 47. 
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Figure 47: Plot and alignment factor of outdoor air drybulb temperature for 2016 

and 2017, demonstrating low year-to-year consistently and importance of weather 

information  

 Like any model, the high-fidelity model required calibration. For model 

calibration, 2016 weather data was used because it had the highest level of accuracy as it 

came from an official source while interior load profiles were gathered from UK NCM, 

the same source as DesignBuilder. While building metered data for heating rate is 
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missing over the summer, it is generally a low demand time of the year and would not 

deviate much from the data that is there.  

 At this point, interior loads are still based on schedules but were replaced with 

electricity meter data fed in to EnergyPlus. Figure 17 shows the electrical use for the year 

of 2016 and was fed in to EnergyPlus as the fractional load for the interior lighting and 

equipment. As stated by Yang-Seon Kim, using electrical metered data to estimate 

occupancy leads to increased accuracy over a strict schedule . It is simple to see when 

building energy is used, and due to the relatively steady occupancy of Whitehead, can be 

used as a method for providing occupancy fractional schedule different from the schedule 

used by lighting and plug loads.  

Based on interviews with Georgia Tech Facilities staff and intuition, the following 

changes were made to reflect real problems in Whitehead or see if similar problems 

across Georgia Tech campus also occurred at Whitehead. 1)  Excessive heating in winter 

2) increased air flow 3) increased outdoor air flow 4) not entering temperature setback. 

Electrical and occupancy data was not changed because metered electrical data was fed in 

to EnergyPlus to use as the fractional schedule for interior plug loads and occupancy data 

was based on specifications from DesignBuilder.  

 A common fault is when the preheat coil temperature setpoint is overridden in 

winter months as a quick fix to prevent AHU automatic shutdown to prevent cooling 

coils to freeze. Overriding the preheat coil temperature to be higher than13°C is usually 

due to improper air temperature sensor placement and calibration that results in the 

sensors reading an artificially low temperature; this fault causes a complete system 

shutdown to prevent freezing the cooling coils that follow the preheat coils . As such, to 
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prevent system shutdown the preheat coils are set to a higher temperature; but this is 

wasteful as air is heated for no reason and then immediately cooled by the cooling coils. 

Excessive preheat is easy to spot by looking at the cooling load and seeing if the cooling 

demand follows a similar profile as the heating demand. Additionally, there will be a 

non-zero minimum cooling load. None of the usual symptoms of an elevated preheat coil 

temperature setpoint were noticed, so this was ruled out for calibration.  

Whitehead drawings specifies a minimum of 2.3 m3/s and maximum of 18.9 m3/s 

for outdoor air, however, as expected, the actual flow rate was higher than the minimum 

designed. Although the minimum air flow applies to unoccupied minimum air flow 

setting and the model uses 3.5 m3/s outdoor air and 8.3m3/s of total air flow as a 

minimum. This airflow is well within normal operating flow rates and was determined to 

be a major contributor to the difference in calibration; especially once evening 

temperature setback was removed.  

Lastly, not entering unoccupied temperature setback is a common problem on 

campus . Temperature setback results in a more spread out minimum and maximum load 

and also a sharp increase in demand when temperature setpoints change to occupied 

settings. This too was not present in the calibration data and the EnergyPlus model had a 

noticeable increase in minimum and maximum load.  

Below, there are figures showing the monthly heating and cooling loads for the 

building meter, high-fidelity model before calibration, and model results post calibration. 

Additionally, there are plots detailing the hourly heating and cooling rates of the building 

meter and calibrated model as well as the alignment factor of the model. Note that for the 
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hourly data the modeled rates are semi-transparent which allows one to view both the 

metered and modeled rates simulations.  

 

Figure 48: Monthly heating load for Whitehead as well as the calibrated and 

uncalibrated EnergyPlus model 

 

Figure 49: Monthly heating load for Whitehead as well as the calibrated and 

uncalibrated EnergyPlus model 

 As shown, a calibrated model dramatically improves the accuracy of a building 

energy model while learning about current problems with building operations. However, 
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this process takes considerable time and skill on the part of the person doing the 

calibration. Also, note that the difference in heating load over the summer months is due 

to a meter malfunction resulting in a loss of data.  

 

Figure 50: Hourly heating rate comparison between meter and calibrated heating 

rate 

 

Figure 51: Alignment factor of calibrated and metered heating rates 
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Figure 52: Hourly heating rate comparison between meter and calibrated cooling 

rate 

 

Figure 53: Alignment factor of calibrated and metered cooling rates 

Overall, the alignment of the model with metered data is acceptable for this level 

of analysis based on the information that was available. Considering the variation in loads 

between just one year of use, the model’s alignment and representation of a system as 

complex as a building is acceptable.  
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6.1.2    SPBM Calibration for Whitehead 

The SPBM is able to replicate the same level of accuracy as a high-fidelity model 

while using far fewer inputs and greatly simplifying the design of the modeled layout. 

Additionally, this level of accuracy will be shown to be sufficient for auto-calibration of 

model parameters in addition to being able to detect faults within the building. Reliability 

and processes of automatic fault detection of the SPBM is discussed as it compares to 

machine learning is also discussed. Accuracy predicted heating and cooling loads from 

the SPBM were in agreement with metered data as well as the calibrated high-fidelity 

EnergyPlus model (henceforth referred to as ‘high-fidelity reference data’).  For the sake 

of readable data, results have been separated into winter (January and February) and 

summer (June and July); no parameter values were changed between runs. Winter and 

summer demonstrations were chosen because that is when building energy losses due to 

faults are most severe. 

Calibration was first performed on Whitehead during winter weather. As shown in 

Figure 54 and Figure 55, heating is the primary demand but there is also a non-negligible 

cooling load as well. The SPBM is capable of replicating both heating and cooling 

demand with a high level of precision and accuracy. Both hourly plot and alignment 

factor figures are provided as hourly plots convey system dynamics and the alignment 

factor is often used as a quick visual aid to demonstrate the “goodness of fit” of a model.  



116 

 

 

 

Figure 54: Whitehead winter cooling load comparison and alignment factor, 

demonstrating excellent initial calibration 

 Figure 55 shows the overall dynamic accuracy of the SPBM and its ability to 

respond accordingly to internal and external loading during high cooling demand periods. 

Heating demand for Whitehead building also includes brief peaks of demand as 

temperature setpoints move from the lower unoccupied value to occupied settings.  

 

-1.00E+08

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

1 Jan 8 Jan 15 Jan 22 Jan 29 Jan

C
o

o
li

n
g
 R

at
e 

(J
/h

r)

Whitehead January Cooling Demand Comparison

Modeled Cooling High-Fidelity Reference Cooling Cooling Difference

R² = 0.981

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

0.00E+00 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08

M
o

d
el

ed
 C

o
o

li
n
g
 R

at
e 

(J
/h

r)

High-Fidelity Cooling Rate (J/hr)

January and February Cooling Demand 

Alignment Factor



117 

 

 

Figure 55: Whitehead winter heating load comparison and alignment factor 

 During June and July, cooling demand becomes the dominate load for the AHU. 

As such, Figure 56 demonstrates that the SPBM is able to replicate this change in demand 

as well as the increased humidity from outside air as well as heightened air flow 

requirements brought by increased cooling load. 
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Figure 56: Whitehead summer cooling load comparison and alignment factor 
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in summer, the alignment factor shows that the SPBM does respond with heat demand as 

the AHU switches from a low temperature zone setpoint to a higher occupied zone 

setpoint temperature, the heating demand only lasts for an hour. Given that the SPBM 
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demonstrated has proven to be more than sufficient in automatic fault detection; the 

purpose of the SPBM’s creation.  

 

 
Figure 57: Whitehead summer heating load comparison and alignment factor 

 Again, it is important to note that while the alignment factor of heating in 

Summer appears to not be in line with reference data, the heating demand is so low and 

so brief that it does not represent a sizeable impact on building energy demand. However, 

the demonstrated level of accuracy and precision will prove to be sufficient for automatic 

fault detection and identification discussed later. 
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6.1.3    Old CE 

 A similar level of calibration was applied to Old CE, which resulted in often 

under 15% error for cooling and electrical data (heating load data was nonsensical). For 

this building, an in-person walkthrough of the entire building was conducted which 

allowed a room-by-room analysis of lighting fixture makes, high-load electrical items 

such as computers or personal heaters, occupants per zone, and VAV occupied and 

unoccupied flow rates. Recorded information was used in EnergyPlus, along with model 

tuning based on observed and theorized faults.  

 Old CE has more outdoor air control systems available than Whitehead and 

therefore required some additional tuning of the SPBM. Most notably, Old CE has a heat 

recovery system, economizer, and scheduled air flow rates. Heat recovery was not 

implemented at Whitehead due to the possibility of contamination from exhaust carrying 

contaminates from the medical rooms  . Implementing these energy conservation features 

was not difficult and demonstrates the ease of use with the SPBM.  

 Heat recovery is a process of exchanging sensible and latent heat between exhaust 

and incoming outdoor air, often through a heat exchanger in the form of a heat wheel or 

runaround pipe. By transferring latent and sensible heat between exhaust and incoming 

outdoor air, the incoming air can either increase in humidity and temperature (as is the 

case in winter) or decrease in humidity and temperature (as is the case in summer). 

Exchanging energy in Old CE occurs with a rotating large metal wheel that is coated in 

desiccant; heat and humidity from whatever air stream is higher will be absorbed by the 

wheel and be absorbed when the wheel spins to the other air stream. This presents a low-

cost system to reduce energy consumption on outdoor air and a vital component to model 
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correctly to ensure accuracy.  

 HVAC Economizer mode is when a higher proportion of outdoor air than is 

necessary for minimum ventilation requirements . Typically, outdoor air requires more 

conditioning than return air because the temperature of outdoor air is hotter than room 

temperature in summer and colder than room temperature in winter. However, cold 

outdoor air can be used advantageously if it is closer to supply air specifications than 

return air. Old CE has a supply temperature setting of 12.8°C and when the outdoor air 

temperature is between 18.3°C and 7.2°C outdoor air is used so reduce the cooling load . 

 Lastly, Old CE has scheduled minimum air flow rates that lower during 

unoccupied times. Reducing air flow rates decreases the amount of energy required to 

condition supply air by lowering the amount of air that is cycled. Coupling the lower air 

flow with a zone temperature setback would alleviate problems with an insufficient air 

flow being unable to keep a zone within occupied temperature setpoints as well as further 

lowering energy demand. 

 The heating load, shown in Figure 58, shows four dramatically different and 

implausible loads. For instance, 2018 shows peak load from March through July and then 

a demand in December that is 2.5x the load in January, typically the highest demand load 

in Atlanta. Another anomaly is that all four years have identical loads for January which 

should not happen, especially considering the difference shown in Figure 46 for 

Whitehead between 2016 and 2017. Due to the lack of reliable heating data, accurate 

heating demand calibration was impossible.  



122 

 

 

Figure 58: Monthly heating load of Old CE from 2015 through 2018 as well as the 

modeled heating load showcasing the poor metered data for heating load demand 

 Unlike the heating loads, the cooling load is more in line with what is typical for a 

building in Atlanta. Additionally, all four years are similar to each other in profile and 

demand.  

 

Figure 59: Monthly cooling load of Old CE from 2015 through 2018 as well as the 

modeled cooling load displaying high year to year agreement in cooling load 
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 Electrical use is the most consistent across the four years with all years 

overlapping with no major divergence. Figure 60 has a subtle but important dip in load 

during summer months when there are fewer students on campus but also when the 

building would have an increased electrical load due to the increase in HVAC cooling 

demand. The dip in electrical load coupled with the increased cooling demand means that 

there is actually less interior load than there appears by just observing the figure as the 

AHU would be using more electricity to cool the building.  

 

Figure 60: Monthly electricity consumption of Old CE from 2015 through 2018 as 

well as the modeled heating load 

 Lastly, a pie chart in Figure 61 was made to show an estimated breakdown of 

interior cooling demand based on the calibrated model. Envelope heat gain only accounts 

for thermal energy transferred into the building, not thermal energy leaving the building. 

Occupant, light, and plug loads all are a direct load on the system and the loads are easily 

calculated by EnergyPlus. Lastly, ventilation requirement cooling represents excessive 

cooling on the building in addition to necessary demand for dehumidification.  
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Figure 61: Estimated percentage of cooling load based on demand subcategory 

 Given the agreement of electrical and cooling loads for four years of metered 

results, it is safe to say that Old CE has a repeatable and steady use. Additionally, 

EnergyPlus was able to recreate the typical energy profile when using real weather and 

internal load data from 2016.  

 Both Old CE and Whitehead went through the same development process, but 

systems were developed and tested with Whitehead then adapted for Old CE. Using 

Whitehead as the development basis is due to the simpler operation, size, and layout. 

However, each system was verified with Old CE data before continuing and a resulting 

model comparison between Whitehead high-fidelity and SPBM will be included. 

6.1.4    SPBM Calibration for Old CE 

Having demonstrated the proficiency of the SPBM with Whitehead building, the 

focus turns to Old CE. Unlike Whitehead, Old CE is a legacy building that experiences 
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different loading characteristics and has a more complex AHU system and design. Also 

of note is envelope properties are unknown because of the age of the building. Despite 

the increased challenges of Old CE, the cooling load as represented in Figure 62 

demonstrates high accuracy and the ability to model heat recovery, schedule-based air 

flow demand, and complex internal loading. 

 

 

Figure 62: Old CE winter cooling load comparison and alignment factor displays 

the slight lag associated with sudden changes in demand 
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 Similar to Whitehead, heating is the primary demand in winter. Additionally, the 

SPBM demonstrates similar levels of proficiency in representing heating demand, as 

shown in Figure 63, that has been demonstrated before. 

 

 

Figure 63: Old CE winter heating load comparison and alignment factor 

 Summer for Old CE again demonstrates high levels of accuracy for a simplified 

modeling program. Figure 64 shows a slight underprediction of cooling load at peak time 

as well as deviation when setpoints change from occupied to unoccupied.   
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Figure 64: Old CE summer cooling load comparison and alignment factor 

As with Whitehead heating demand in summer, Figure 65 demonstrates the inability of 

the SPBM to capture small, brief periods of demand as temperature setpoints change. 
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Figure 65: Old CE summer heating load comparison and alignment factor 

 Overall performance of the SPBM to capture building load profile for all weather 

and for significantly different buildings and loading conditions has been proven to be 

more than adequate. More importantly, the ability to be sensitive enough to building 

faults makes the SPBM sufficient for automatic building model calibration and fault 

detection.  
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6.2    Outdoor Air 

Controlling the amount of outdoor air in a building is critical to occupant comfort 

and health, as well as minimizing energy consumption. Some of the more popular options 

for outdoor air control is a fixed minimum flow rate of outdoor air or a fixed outdoor air 

fraction of total supply air. The primary method of controlling outdoor air flow 

percentage is done with a system of dampers and fans ; however, building modeling 

programs tend to specify the amount or fraction of outdoor air explicitly. These two 

methods for controlling outdoor air in a building were implemented in the building 

model.  

In general, most HVAC systems have a minimum flow rate that is higher than the 

minimum amount of outdoor air. Due to dampers not being precision instruments and 

errors that accumulate over time, determining the actual amount of outdoor air entering 

the system is difficult to pinpoint and a common point for a fault. However, by inspecting 

the heating, cooling, and electrical demand, it may be possible to determine if the amount 

of outdoor air being used by the building is within a reasonable level of control.  

 For practical purposes, a sample model was made in EnergyPlus. Initial tests of 

the outdoor air system showed consistent results comparable to those from EnergyPlus. 

For fault detection via parameter estimation, the envelope properties were adjusted while 

the air handling unit remained unchanged. Six variables were assigned as “unknown”, 

and a minimum finding technique was used to attempt to detect changes in envelope 

properties while finding no change in HVAC specifications. The six variables were: layer 

1 thermal resistance, layer 1 thermal capacity, layer 2 thermal resistance, layer 2 thermal 

capacity, outdoor air fraction, and minimum outdoor air flow rate. The thermal resistance, 
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outdoor air fraction, and outdoor air flow rate were all within 10% error of the metered 

variable values. Thermal capacitance had a slightly higher percent error at about 25% but 

this is mostly due to the way thermal capacitance alters when thermal energy is 

transmitted rather than how much energy is transferred.  

 For testing the outdoor air system, multi-variable parameter estimation was not as 

successful. The proposed variables were outdoor air flow rate, additional air outdoor air 

percentage, level 1 minimum supply air flow rate, and level 2 minimum supply air flow 

rate. These variables are all coupled together, and lead to some cases in automatic 

minimum finding where the values would exceed bounds and cause an error. More 

sophisticated techniques were developed to add AHU specifications while removing 

conflicting variables. 

One variable at a time resulted in near perfect (>99%) accuracy but is somewhat 

limited as changes elsewhere in the building may falsely alter parameter values through 

error minimization. However, Chapter 7 Automatic Fault Detection shows that an overall 

global minimum can be found through careful analysis and testing of error minimization. 

Additionally, the section shows that the SPBM can detect changes in error from minimal 

changes in outdoor air flow and differentiate between AHU outdoor air and infiltration.  

 With the more sophisticated multi-parameter estimation such as inclusion of CO2, 

the outdoor air fault detection methods were able to be more reliable. Understanding the 

outdoor air system and changes in energy consumption that accompany critical 

parameters is vital for successful fault detection. 

 

6.3    Developmental Stages for Whitehead Parameter Estimation  
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 Having established the fundamentals of SPBM development and modeling, this 

section will explore how the model was developed to accurately depict a complex 

building such as Whitehead. Due to the complexity and layout of the Whitehead building, 

and for diligent testing of the SPBM, it was decided to test parameter estimation in 

stages. As before, initial testing was conducted to see if a rectangular shape could 

represent curved surfaces, especially curved windows. Once the model was calibrated for 

the envelope, the interior zones were added to the detailed baseline to see how the 

loading on the building would change. Lastly, interior loads were added to see to what 

degree the SPBM can calibrate to a highly detailed baseline.  

 The exterior of Whitehead has full windows on the north with shaded windows on 

the east; the west and south faces have minimal windows as represented by Figure 66. 

Due to complex geometry and resulting solar load through the windows, it was theorized 

that perhaps the cooling or heating load would be substantially different with a four-sided 

rectangle due to how wind and solar loads interact with faces at varying angles. However, 

no significant difference in envelope loading due to shape was found during testing.  

 

Figure 66: High-fidelity model render of Whitehead looking at the north windows 
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and shaded east windows 

 An unexpected difference in loads was initially found due to how the external 

convection heat transfer coefficient is calculated. The high-fidelity model uses an 

equation which employs a correction factor to account for differences in wind speed 

between the height of the surface and the height of the station where the wind speed 

reading was recorded. This value is not difficult to determine, but very important in 

generating accurate convection heat transfer coefficient values.   

 After accounting for the difference in surface heigh, the heating load was used to 

automatically calibrate the SPBM to the baseline. The heating load during January was 

chosen because the cooling load depends only on the air flow rate as increases in heating 

demand results in increased zone supply air temperature rather than increased air flow 

rate. During the heating season, air flow tends to be at the minimum air flow rate because 

heating occurs at the minimum air flow rate for the AHU design within this building. As 

such, without a cooling demand the cooling coil load is simply the minimum air flow rate 

and the difference in enthalpy between the return and the setpoint for air temperature 

after the cooling coil. Additionally, the heating season was chosen because there is 

typically a greater temperature difference between indoor air temperatures and the 

external air temperature which increases model sensitivity to conduction.  

 After giving the SPBM time to settle from the initial conditions, the match 

between the SPBM and the baseline is in excess of 95%. The below figures were 

generated by comparing the total heating load and total cooling load from the baseline, 

much like the heating and cooling load data would be gathered from a building’s meter. 

Both the baseline and SPBM used a fraction of outdoor air, so the AHU portion of the 

SPBM is working as desired.  
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Figure 67: Hourly heating demand for Whitehead without internal loads or outdoor 

air time series (above) and alignment factor (below) 

 Accurate envelope representation was considered important in order to maintain a 

desirable level of predicted energy load validity for reasons already mentioned. The 

following sections examines how minimum error finding works and how such a process 

is useful both for calibration and for fault detection.  
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6.3.1    Minimization Finding 

 Having established the validity of the SPBM, the problem became one of data 

driven model calibration. The SPBM relies on parameter values to model input/output 

relations and does require calibration based on data to operate effectively – this chapter 

will briefly cover the process used for the SPBM calibration. 

The initial test of the simplified system was one where the parameter values of an 

existing building are unknown, and a reasonably accurate model of an existing building is 

required. Due to the nature of the system, data driven error minimization was introduced 

to test how well the simulation would be able to converge when specifics of the building 

materials and interior loads were unknown. Sum squared error minimization was used to 

quantify error between modeled and metered heating and cooling demand. Fault 

identification and detection for the SPBM works by automatically adjusting parameter 

values until predicted loads result in a minimum sum squared error when compared to 

metered data. Then, a fault is considered detected either if parameter values or expected 

building loads fall outside a specified range. 

While being able to identify real-world parameters may not be possible, having a 

rough value that makes sense in context helps in understanding if the SPBM is calibrating 

properly or if the building is behaving correctly. The most evident drawback to Nelder-

Mead is that is loses effectiveness with more variables . Preliminary research has shown 

that around 10 parameters might be sufficient to calibrate the SPBM. These parameters 

include four unknowns for walls, two for fenestration, three for internal loads, and two or 

more for the HVAC system. If it turns out more parameters are needed, other search 

algorithms, such as genetic method, may be used that are slower but are more robust.  
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While other methods exist for minimizing error in calibration, a trusted method is 

sum squared error minimization. Comparing final total sum squared error or root mean 

square error is a proven method for building model tuning . Sum squared error allows for 

the use of any desired granularity in available data and the desired result. This is useful 

for people who may not have hourly performance data of their building. A daily, weekly, 

monthly, or annual data points can possibly be used with sum squared data error 

minimization. The more granular the data being evaluated, the more accurate the 

calibration may become; but the program should still be able to provide useful 

information about the building with equivalent clarity to the data being analyzed.  

There are numerous minimization algorithms available but one of the most 

common and effective is Nelder-Mead simplex algorithm, even if the function is in 

multiple dimensions or contains multiple parameters.  Nelder-Mead is a useful tool as a 

minimum finding program did not need to be constructed while providing a system that 

allows for a number of parameters to be minimized. Additional methods for minimum 

error finding were used, such as bootstrapping for comparing error sensitivity, but 

Nelder-Mead allows for the most simplistic automatic minimum finding tool that was 

available. The number of points of the simplex is n+1 where n is the number of 

dimensions being minimized. The algorithm works by analyzing a simplex and flipping 

the highest point of the simplex to the other side of the shape created by linking points of 

the simplex: The process of flipping the highest point is also referred to as a downhill 

method and is useful when gradients are not available. The algorithm can find the 

minimum by adjusting the distance of the changed point based on how the new point 

compares to the pre-flip point. If the new point (xr) is closer to the solution than the old 
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point (xh) the distance from the line connecting the points upon the flip occurred (xs, xl) 

then the distance of xr increases to that of xe. Conversely, the opposite happens and the 

distance of the flip decreases if xr is further away from the solution than xh but still closer 

than xs or xl. 

 

 

 

 

 

Figure 68: Visual representation of how Nelder-Mead algorithm flips the point that 

is furthest away from the minimum while increasing distance if change leads to a 

greater decrease in value 

Nelder-Mead algorithms can calibrate the SPBM with reliability for limited 

number of variables. For equation-based modeling system initial guesses have a chance 

to impact parameter values if a local minimum is far enough away from the absolute 

minimum. However, realistic initial guesses resulted in finding correct values when 

testing parameter identification. If more variables are needed, or a more accurate 

calibration is desired, a genetic search method may be used; the downside to this search 

method is that it typically takes substantially longer to solve due to a significant increase 

in iterations. However, unlike Nelder-Mead algorithms, genetic algorithm results are not 

constrained to local minima and often produce results close to the global minimum error.   
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 To test the automatic calibration, simple changes were made to the building 

model such as flipping building constructions, having different lighting and occupancy 

schedules, and outdoor air changes. Then, error minimization was conducted with the 

original model to see if the differences could be spotted. By using error minimization, the 

SPBM was able to calibrate to original data even with multiple unknown variables. 

Reliability and accuracy achieved during these preliminary investigations will be 

explored in later sections when evaluating complex parameter estimation.  

6.3.2    Fault Detection Test Case Evaluation 

 A test of the SPBM to detect thermal bridging was conducted to evaluate the 

performance of fault detection in the simplest form. The south and west walls, along with 

the roof, were constructed with an external four inches of concrete followed by two 

inches of insulation (ASHRAE standard wall 32). To simulate thermal bridging the 

insulation was reduced by half to one inch. Initial surface properties resulted in a total 

resistance of 1.23[m2-°C/W] and thermal capacitance of 194[kJ/m-°C] while the reduced 

insulation resulted in a total resistance of 0.62 [m2-°C/W] and total thermal capacitance 

of 192[kJ/m-°C]. Testing was conducted from January 1 through July 31 to capture both 

a heating and cooling season. Figure 69 demonstrates how thermal bridging increases 

both heating and cooling demand and how primary demand changes over time. The 

objective was to see if the SPBM could automatically calibrate wall property parameters 

to match the desired heating and cooling output of the EnergyPlus models. Internal loads 

(plug, lighting, and occupancy) remained constant between the two models. Additionally, 

the HVAC heat and moisture system (including outdoor air mixing with return air) was 

modeled to get heating and cooling coil loads for comparison.  
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Figure 69: Nominal and reduced insulation heating and cooling loads. Reduced 

insulation results in both increased heating and cooling demand when compared to 

nominal insulation loads.  

 The SPBM was first calibrated to the nominal heating and cooling values. The 

parameters that were being calibrated were: layer 1 thermal resistance, layer 1 thermal 

capacitance, layer 2 thermal resistance, and layer 2 thermal capacitance. The exclusion of 

other parameters is due, in part, to demonstrate the sensitivity of the model and because 

different days will be gathered to test parameters independently. For example, a Saturday 

with high outdoor temperature and solar load would be ideal for testing envelope faults 

while a workday in winter could be used for outdoor air analysis.  

Determining values for the SPBM was done by minimizing the sum squared error 

between heating and cooling loads. On the standard insulation, the SPBM had an overall 

resistance of 1.20[m2-°C/W] and thermal capacitance of 147[kJ/m-°C] (2.9% error on 

insulation and 24% error on capacitance). Capacitance error is to be expected as that 

value is more of a way for the SPBM to delay heat entering a zone rather limiting the 

total amount of transmitted thermal energy. However, Figure 70 reveals how thermal 

capacitance has a much smaller impact on overall model demand accuracy when 
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compared to thermal resistance but influences timing of conducted load.  

 

Figure 70: SPBM after automatic parameter calibration to nominal heating and 

cooling data. SPBM has great agreement with nominal EnergyPlus loads aside from 

slight underprediction of cooling demand lower bounds.  

Optimization was again performed with the data from the reduced insulation 

EnergyPlus model. Resilience and accuracy of the SPBM thermal energy transport 

modeling can be tested by adjusting metered data to be from the same reference model 

but only with alternative envelope insulation. By only changing metered and modeled 

envelope parameters and arriving at a similar result for all test cases verified that thermal 

energy transport was adequately represented by the SPBM.  
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Figure 71: SPBM after automatic parameter calibration to simulated thermal 

bridging heating and cooling data 

This preliminary test demonstrates the ability of the SPBM to detect faulty 

insulation successfully. Additional testing of the other important components of a 

physics-based building energy model will be tested in the following sections.  

6.3.3.    Advanced Whitehead SPBM Development 

 Now that it has been demonstrated that envelope thermal energy transfer can be 

reliably represented by the SPBM, the interior zones were added to see how subdividing 

zones would change load requirements. The primary concern is that many of the interior 

zones do not have exposure to the sun, so there may be a significant change in demand 

due to the high number of interior areas, a layout of level one can be seen in the figure 

below. Additionally, the solar load is primarily in the lobby area, so possibly having a 

smaller floor area to absorb the transmitted solar energy would have a dramatic effect on 

the overall load profile. However, SPBM results were all within a desired range. 
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Figure 72: Layout of Whitehead LV1 zones for high-fidelity model 

 Representing multiple small zones with a single zone per floor induces changes to 

zone temperature dynamics. A zone will have less thermal capacitance when compared to 

the entirety of a building level and therefore will react different to loads. Discrete zones 

also allow for discrete zone temperature controls and air flow demand, meaning a single 

zone representation may be less sensitive to discrete loads. These concerns were 

addressed through analysis of zone temperature, AHU loading, and return air properties 

which resulted in results sufficient for fault detection and identification.  

6.3.4 Internal Loads 

 Once the envelope has been shown to be easily automatically calibrated, the focus 

turned to interior loads. Automatic calibration for the interior loads was first tested with a 

more complicated method to see if the SPBM can specify loading per floor. For 

simplicity and ease of calibration, metered electrical data from the building will be fed 
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into the SPBM to determine occupancy and internal loads. Using metered electrical data 

will only require two variables for calibration: unoccupied hours HVAC electrical 

fraction, and occupied hours HVAC electrical fraction. As there is no submeter for 

lighting, plug, or HVAC loads, there is an average fraction of the electrical load that is 

used during unoccupied hours and a different average fraction for occupied hours. 

However, for initial testing there were four variables: level 1 unoccupied hours load, 

level 1 occupied hours load, level 2 unoccupied hours load, and level 2 occupied hours 

load. These variables were chosen to see what chance there was of being able to pinpoint 

level-specific use problems. 

  Lighting load inherently tends to be a more consistent power draw with a 

minimal load for weekends and a higher constant value for occupied hours. Lighting is 

sometimes automated with timers or motion sensors. While automating lighting systems 

have the potential to save energy, it is possible for sensors to fail and negate any potential 

energy savings. Unoccupied lighting is a fault that can present itself and may be difficult 

to detect due to the problem occurring when nobody is in the building to observe the 

fault. As such, being able to calibrate to lighting load is an important test for the SPBM. 

Once lighting was able to be successfully calibrated, the logical progression 

would be to include equipment, or plug load. The same kind of calibration was conducted 

by attempting to specify an unoccupied and occupied load value. With the addition of 

plug load, there were zones in the baseline model that required cooling while other zones 

required heating. The SPBM was able to successfully calibrate to the interior loads while 

accounting for the heating and cooling demands of different zones.  
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Lastly, building electrical meter was used as an input for internal load. This 

reduced the number of variables to occupied hours electrical HVAC fraction, unoccupied 

hours electrical HVAC fraction, and level 1 power fraction. For each level, the fractional 

load reduces the number of variables by one. Additionally, using actual building 

electrical load leads to a more accurate plug, and by extension, occupancy schedule. The 

following figure shows the total interior load from both the high-fidelity model and the 

SPBM when the models use Whitehead’s true electrical meter as inputs.  

 
Figure 73: Hourly interior load from high-fidelity model and SPBM when using 

Whitehead’s electrical meter for load input 

 Being able to use commonly available real-world metered data as inputs 

significantly reduces guesswork required during calibration. Unfortunately, not all inputs 

are as easily implemented. Determining the number of occupants in a building when no 

occupant counter is available requires estimation of both occupant number and activity 

level as discussed in the following section with favorable results.  

6.3.5    Occupancy 

 Occupants are unique to interior loading as they produce both latent, sensible, and 

CO2 loads. Due to the latent and sensible load produced by occupants, it was discovered 
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that cooling load calibration was more reliable than heating load calibration. Using 

results from the previous envelope and internal sensible load calibrations, a calibration of 

occupancy count and occupancy level split was attempted.  

 Occupancy calibration was conducted during two weeks in March for the purpose 

of seeing how a less intense envelope load and higher humidity ratio would play into 

occupancy calibration. The values being calibrated were total building occupancy and 

occupancy level split (number of occupants on LV1 and LV2). Building occupancy for 

the high-fidelity model begins at 08:00 with 80 occupants and reaches a peak of 320 at 

11:00 where an hour-long lunch break occurs; the peak of 320 occupants continues until 

17:00 where the number of people dwindles to 0 at 24:00. For this test, the SPBM only 

has one value for occupancy and assumes the building is occupied when the electrical 

load is higher than the evening level, although an occupancy schedule similar to plug or 

lighting demand can easily be implemented. Calibration resulted in an occupied value of 

300 people with a 50/50 split for level occupancy, similar to those from the high-fidelity 

model. While the baseline value averaged 225 during all occupied hours, a peak of 320 

for five hours makes the calibration value more accurate. Below are figures for cooling 

load as well as return air humidity ratio and CO2 concentration to show that the SPBM is 

capable of accurately modeling humidity and contamination.  
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Figure 74: Whitehead SPBM occupancy test showing return air humidity and CO2 

concentration 

 The preceding tests have all demonstrated the competency of the SPBM in regard 

to individual component parameter estimation. However, multiple parameters need to be 

calibrated to be sure that a model is in agreement with metered data. The next section 

reviews how multiple parameter calibration is implemented. 

6.3.6    Combined Internal Load Testing 

 After demonstrating the success of individual component calibration, the SPBM 

was tested to see how it performed when attempting to calibrate multiple variables at the 

same time. Occupancy level and occupied electrical use was used as the first test to 
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determine what methods were best for distinguishing between purely sensible and loads 

with sensible and latent components.  

 Two weeks in March was used to calibrate internal loads. As stated above, March 

provides less external envelope loading on the structure due to the temperate climate 

environment. At first, considering cooling load alone did not lead to a high level of 

success, however, minimizing both heating and cooling load error proved to be a more 

fruitful venture. Being able to accurately match and detect the difference between 

occupants and plug load demonstrates the resolution of the SPBM. 

 With minimum finding, it is often a concern that the solution is not unique. Figure 

75 helps to demonstrate how some bulk building values only have one minimum error 

associated with its value. Additionally, several minimum finding sessions were 

conducted, all with random initial values, and they converged on a similar value. Due to 

the complexity of the data fit, cooling rate and heating rate data was also provided by 

Figure 76 through Figure 77 for a visualization on the level of fit achieved by the SPBM.  
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Figure 75: Plot showing relation between error (SSE), plug load occupied fraction, 

and occupancy level and how error reduces towards a unique solution at the 

expected parameter values 

 In addition to finding the minimum error associated with calibrating a group of 

parameters, it is also vital that the resulting heating and cooling demand are 

representative of metered demand. Cooling demand hourly results and alignment factor 

are plotted in Figure 76 and again show the slightly slower response of the SPBM but 

also the overall great agreement.  
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Figure 76: Comparison between high-fidelity model and SPBM cooling demand 

with time plot and alignment factor 

 Figure 77 shows how heating demand disappears during occupied hours when 

internal loads are sufficient for maintaining zone temperature. However, the heating 

demand alignment factor reveals more deviation than from the cooling load as sudden 

changes in demand are difficult to model with a single-zone system. However, later 

discussions on fault detection and identification results are unhindered by these small 

differentiation between predicted and metered energy consumption.   
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Figure 77: Comparison between high-fidelity model and SPBM heating demand 

with time plot and alignment factor. Alignment factor has some points far removed 

from 1:1 alignment, but those are points of sudden demand change as hourly load 

comparison demonstrates agreement.  

Overall, this section has shown that the SPBM is able to automatically and 

simultaneously find the minimum error associated with multiple parameters. More in 

depth analysis of multiple parameter error minimization will be extensively detailed in 

the fault detection and identification sections.  

6.3.7    Infiltration 

 The last variable for parameter estimation, and the one where no real-world value 

can easily be assessed, is air infiltration. Infiltration is often measured by determining the 

amount of air flow required to uniformly pressurize a building or by measuring trace gas 

and even after this measurement, model prediction was found to be at most 60% accurate 

. There are many different methods for accounting for infiltration in buildings, including, 

constant air change rate, velocity dependent, terrain and building dependent, and CFD 

models. However, many advanced infiltration modeling techniques, while potentially 

more accurate, require an abundance of difficulty to obtain data and are computationally 
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taxing . As keeping with the minimalist approach of the SPBM, a proportional wind 

speed-based infiltration simulation technique was used that is in accordance with DOE2, 

a proven and simple method.  

 While both infiltration and occupancy affect internal humidity, and subsequently, 

zone air enthalpy, infiltration has a direct correlation to wind speed. The coupling of 

infiltration to wind speed and occupants to electricity usage allows for a separation of 

these two parameters.  

 When testing infiltration calibration, there was originally a wide trough of similar 

infiltration values that resulted in a relatively low minimum, as seen in Figure 78. Seeing 

how infiltration values affect the sensitivity of the model, a wide range of values can be 

used for fault detection; meaning fault identification tests would only declare a suspected 

detected fault if infiltration parameter values were outside of an allowable range. By 

providing an acceptable width of possible parameter values for a high infiltration building 

fault, a reasonable deviation could be allowed considering how rapidly the error diverges. 

While the overall error minimization was successful, a wind speed-based error 

minimization approach was desired.  
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Figure 78: Infiltration parameter identification based on cooling load reveals 

significant convergence towards singular unique solution 

 Because infiltration is dependent on wind speed, error minimization was 

attempted over a longer period of time and where error was only added when wind speed 

was above a significant threshold. In addition to using heating, cooling, and wind data, a 

longer period of three months was used. The longer period was necessary to get a 

substantial set of time with high wind speed and to make sure outdoor air was cold 

enough to increase heating load and also hot enough to increase cooling load. Figure 79 

shows the dramatic improvement in parameter estimation from simply using cooling load 

over a two-week period. It is important to note that both Figure 78 and Figure 79 

converge to the same unique infiltration parameter value; meaning that changes in error 

are being affected by changes in predicted load due to infiltration while increasing fault 

sensitivity. In addition to a more defined minimum error value, the percent change in 

error went from 3% from minimum to maximum error to 700% difference in minimum to 

maximum. While this weather and time dependent error minimization will be discussed 

more in the following section on fault detection, a brief introduction was included here to 

demonstrate the promise of this kind of approach.   
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Figure 79: Infiltration parameter estimation based on both heating and cooling 

error when wind speed is used to limit error collection to periods of significant wind 

speed displays even more significant convergence to a solution. 

 Infiltration demonstrates how different approaches to parameter estimation can 

result in increased model sensitivity while maintaining accuracy.  

6.3.8    Occupancy and Infiltration 

 Automatic calibration on infiltration and occupancy at the same time was tested 

due to the similar increase in humidity that comes from both sources. When just 

calibrating on the cooling load in March, a false solution was found, even though the 

solution was the global minimum, as shown in Figure 80. While the cooling load was 

similar to the baseline data, the heating load had significant deviation; sometimes over 

100% error. As such, automatic calibration of both data sets using combined heating and 

cooling error as well as calibrating infiltration alone only when wind speeds were 

significant was attempted but did not lead to a change of a minimum error at 500 

occupants (200 more than baseline model). With the success of high wind speed-based 

calibration of infiltration, a single optimization of occupancy when wind speed was low 

was attempted.  

0.00E+00

2.00E+10

4.00E+10

6.00E+10

8.00E+10

1.00E+11

1.20E+11

1.40E+11

1.60E+11

1.80E+11

0 0.2 0.4 0.6 0.8 1

S
S

E

Infiltration coefficient

Wind speed based infiltration error minimization



153 

 

 

Figure 80: Sum squared error of cooling load based on infiltration and occupancy 

level displayed in 3D with low point aligning with unique solution 

 Limiting error minimization of occupancy to periods of low wind would limit the 

infiltration component of altered zone humidity. However, this was not sufficient to 

reliably detect occupancy values within a satisfactory error percentage. Additional 

limiting factors were added, such as using cooler months to decrease indoor humidity and 

only searching for error during occupied hours. Both of these factors lead to a much more 

distinct error minimum for parameter estimation as shown in Figure 81. 
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Figure 81: Occupancy parameter estimation with both increased air flow based on 

return air temperature and normal operation 

 Evaluating occupancy with infiltration shows that the importance of specifying 

conditions for error minimization. While this test shows that multiple low-sensitivity 

parameters are able to be calibrated, the sensitivity of each parameter must be high 

enough to produce a noticeable change in heating or cooling demand. 

6.3.9    CO2 Occupancy Estimation 

 Using CO2 levels for estimating occupancy levels have been shown to be broadly 

accurate . With the dramatic potential for energy savings with CO2-based demand control 

ventilation, potentially up to 45% in savings, it is not difficult to imagine that CO2 

sensors will become more prevalent in future buildings and renovations . As such, 
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exploring the effectiveness of CO2-based occupancy estimation provides several benefits 

while not hampering the SPBM or requiring excessive metering from buildings.  

As with internal loads, the building is assumed to be either occupied or 

unoccupied when modeling CO2 generation with the SPBM. However, the number of 

people within the building follows a more natural progression throughout the day, is 

based on UK NCM, and can be seen in Figure 82. Using an occupancy profile that is 

designed to replicate typical use could increase accuracy while not impacting simulation 

time. 

 

Figure 82: hourly occupant count profile used by EnergyPlus 

By using return air CO2 levels, occupant level was estimated to the same level as 

using low wind speed cooling load, but the percent difference between maximum and 

minimum error went from 110% for cooling load-based error to 320% for return air CO2-

based error. Figure 83 clearly demonstrates how using CO2 for error minimization 

directly correlates with occupancy. Given the cheap cost of instillation along with a 
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potential for significant reduction in energy costs, modeling CO2 and using it for 

parameter estimation and fault detection is an obvious choice.  

 

Figure 83: return air CO2 based occupancy estimation demonstrates how multiple 

meters can be used for calibration of same parameter 

 CO2 for occupancy parameter estimation showcases how adaptability and 

interconnectivity of model components can be utilized to cross-calibrate this SPBM. 

Because occupants produce latent heat, sensible heat, and CO2, all three loads can be 

used for error minimization and calibration.  

6.4    Unexpected Results of Building Calibration 

 A test was done to see how zones with different zone temperature setpoints 

behave. Some zones that are not normally occupied, such as storage, were given a wider 

zone temperature deadband. While these kinds of low use zones are often unconditioned, 

it was tested to see how these zones would affect heating and cooling demand if 

conditioned. While the SPBM generated similar heating and cooling demand profiles 

when compared to metered data, they were often not able to exactly match the metered 
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performance. That being said, the model was still able to calibrate performance to this 

kind of zone layout. More advanced buildings and interior setpoint configuration could 

lend itself well to postdoc work or further research opportunities.  

 Having a mix of zone loads and temperatures naturally results in different heating 

and cooling demands throughout the building. Varying air flow demands across zones 

was attempted to be solved via an increase in air flow rate depending on how much 

higher the return air temperature was above the minimum air flow rate. While not perfect, 

and somewhat dependent on an arbitrary factor, it does appear to solve the issue of 

accounting for increased air flow in parts of the building with increased demand.  

6.5    Conclusion 

 With the impressive abilities shown by the SPBM with parameter estimation it is 

important to remember that parameter estimation is not attempting to find the exact value 

that perfectly replicates the real world; but rather is using parameter estimation to detect 

possible changes. For instance, if the occupancy value changed from 300 to 100, that may 

not directly correlate with an exact drop in occupancy of exactly 200 people, but rather 

that a building change occurred that resulted in a change of 200 people with parameter 

estimation. The change of estimated parameter values is what can be used for fault 

detection. 
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CHAPTER 7.  AUTOMATIC FAULT DETECTION 

 Implementation of automatic fault detection is not a trivial task; for rigor, variable 

sensitivity and percent confidence will be assessed to determine the quality of the SPBM 

and NN for determining faults. Faults for observation are 1) Excessive infiltration, 2) 

Unnecessary/excessive preheat, 3) Malfunctioning occupancy sensors and, 4) 

Malfunctioning outdoor air control system. The above system faults were chosen due to 

their high associated energy cost, likelihood of occurring, prevalence in NREL’s list of 

common energy faults, experience detecting these faults using alternative methods, or 

potential impact on occupant health .  

 To determine what (if any) fault is occurring, parameter values were adjusted and 

the corresponding change in error was analyzed. By observing how error values change 

in relation to parameter values, it is possible to arrive at a conclusive minimum error 

value. The minimum error value is then used as justification for detecting that fault. For 

neural networks, fault detection and classification are handled with time series neural 

networks and decision trees. Time series neural networks are unable to classify a fault but 

have the advantage of not needing data of faulty operation. Decision trees can both detect 

and identify a fault but require information of all building states (faulty and normal 

operation) in order to classify data.  

7.1    Automatic Fault Detection and Classification for One Degree of Freedom Tests 

 Evaluating the sensitivity and percent confidence of the variables that are being 

evaluated for fault detection can aid in the fault detection process. There is no perfect tool 
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for evaluating model performance, even deep neural networks can display high (greater 

than 70% confidence) for the wrong image when only a pixel is changed . Regardless, 

some quantitative value for parameter estimation and fault detection is necessary. For the 

purpose of this thesis, variable sensitivity and overall evaluation of error with estimated 

variables are provided and a fault will be considered “identified” when error values are at 

a minimum. This decision was made because practical results were considered sufficient 

and due to complex computer science quantitative data evaluation is beyond the scope of 

a mechanical engineering topic.  

 A multi-pronged approach was used when analyzing the potential fault in relation 

to model performance and detection First, individual faults were evaluated to determine if 

the SPBM was sensitive enough to estimate a parameter value associated with each fault. 

One at a time, four fault conditions were evaluated by adjusting parameter values for the 

four potential faults to see if a unique global minimum error exists for all faulty states. 

Multiple simultaneous faults were tested by altering the four fault parameter values in 

search of a global minimum where both fault parameter values aligned with test values. 

The described approach allows for a step-by-step verification of model and testing 

results. 

7.1.1    Excessive Infiltration 

 Infiltration is a building fault that does not have an associated system component 

such as fan speed or a setpoint. Infiltration is typically modeled through estimation of 

cracks which also depend on wind direction and speed, or a set number of air changes per 

hour . The SPBM approaches infiltration with an air change rate that is dependent on 

wind speed to mimic the approach used by DOE2. As such, deviations in load are 
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expected to strongly correlate with wind speed and the difference between indoor and 

outdoor air temperature. With one zone per floor, a wind speed dependence does not 

affect different locations in the building separately like it would in the baseline model.  

 Testing occurred by increasing the infiltration coefficient in the baseline high-

fidelity model and exporting the heating, cooling, and building electrical use information. 

Only using the updated metered information, the SPBM used that information to first 

automatically calibrate to the new infiltration coefficient using the wind speed-based sum 

squared error minimization method as discussed in 6.3.7 Infiltration. Results as displayed 

in Figure 85 and Figure 86 show the automatic calibration of the SPBM; cooling 

information is not displayed as it is a flat line (constant cooling).  

 

Figure 84: Error minimization results for 1DOF excessive infiltration, fit converges 

towards same value while demonstrating significant error reduction 

 Heating and cooling results from infiltration fault identification in Figure 85 and 

Figure 86 showcase how adaptable the SPBM is to data outside nominal calibration 

settings.  
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Figure 85: hourly heating rate of SPBM and metered data with excessive infiltration 

fault occurring, Modeled results follow metered demand almost exactly 

 

Figure 86: Alignment factor of SPBM and metered heating rate with high 

infiltration, again demonstrating the high degree of agreement between modeled 

and metered loads 

 One degree of freedom minimization is useful as a quick check of model integrity, 

but more rigorous tests were performed. Electrical use, minimum air flow, and infiltration 

were set to unknown to determine model parameter convergence. The above parameters 

are often unknown when calibrating a building and provide an ample test for quick model 
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sensitivity which will be further tested with multiple degree of freedom fits and fault 

pattern analysis.  

 For three degrees of freedom analysis, infiltration, electrical use, and minimum air 

flow rate were fit and then a sensitivity analysis was performed. Due to influence of 

guess values, the calibrated parameter values for a non-malfunctioning building were 

entered as a starting point. As with the 1DOF method, error was only recorded when 

wind speed was above a specified threshold and, therefore, would have noticeable impact 

on the load of the building. Estimation of all three parameters was successful with a 

highly-accurate model being adjusted and parameter values adjusted accordingly, as 

demonstrated in Figure 87, Figure 88, and Table 3.  

 

Figure 87: hourly heating rate of SPBM and metered data with high infiltration 

fault while also automatically calibrating minimum air flow rate and peak electrical 

fraction 
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Figure 88: Alignment factor of SPBM and metered heating rate with high 

infiltration 

 Table 3 displays results for a sensitivity test in relation to both total load 

(δQ/δvar) and sum squared error (δSSE/δvar) with respect to each variable. Sensitivity 

analysis revealed that while infiltration has a relatively small impact on total building 

load, the SPBM is most sensitive to infiltration when compared to the other tested 

variables.   

Table 3: Results of 3DOF infiltration fault automatic parameter estimation 
 

𝜹𝑸/𝜹𝒗𝒂𝒓 𝜹𝑺𝑺𝑬
/𝜹𝒗𝒂𝒓 

INFILTRATION 1.59E+11 -4.31E+17 
MINIMUM AIR 
FLOW RATE 4.98E+09 3.28E+16 
PEAK 
ELECTRICAL 
FRACTION -6.96E+09 -5.82E+16 

 Results from infiltration fault testing reveal both excellent model accuracy and 

high error sensitivity to infiltration. Confidence and accuracy displayed for infiltration 
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was expected from an understanding of how a physics-based model reacts to different 

parameters which was discussed in earlier sections. 

 

7.1.2    Excessive Preheat 

 Excessive preheat is described in this paper as the use of an unnecessarily high 

preheat temperature setpoint as a quick and dirty solution to an underlying HVAC design 

problem. Namely, poorly designed mixed air inlet or cooling coil air inlet temperature 

sensor. Typically, a high preheat value is set by an operator so that air temperature 

sensors which are located before the cooling coil do not read a temperature below 7°C 

and have the AHU system trigger an emergency stop to prevent coil freeze. Therefore, a 

technician will manually override the preheat coil temperature from 13°C to 27°C; while 

this prevents false AHU shutdowns, it creates an immense amount of energy waste that is 

often forgotten once outside temperatures increase beyond the freeze warning threshold. 

Additionally, this sort of fault can also occur due to a leaking preheat valve.  

 A one degree of freedom minimization was tested first just to determine the 

accuracy of parameter estimation in relation to the overall change of the preheat 

temperature setpoint. The SPBM was able to get within half a degree of the setpoint 

which is more than adequate for fault detection. Results of the 1DOF fit are shown in 

Figure 89 through Figure 91 and display almost no error when compared to results for 

just five degrees divergence from actual settings. Additionally, the uncertainty of the 

result is well below a noticeable threshold of control (0.1°C).  
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Figure 89: Error minimization results for 1DOF excessive preheat fit converges 

towards same value while demonstrating significant error reduction 

 

Figure 90: 1DOF excessive preheat hourly heating rate of SPBM and metered data 

with high infiltration fault 
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Figure 91:1DOF excessive preheat Alignment factor of SPBM and metered heating 

rate 

 As with the 1 and 3DOF model analysis of infiltration, excessive preheat had a 

similarly high level of convergence. As demonstrated in Figure 92, Figure 93, and Table 

4, the SPBM was able to accurately replicate the fault state and associated parameter 

values.  

 
Figure 92: 3DOF analysis of excessive preheat fault detection while also 

automatically calibrating minimum air flow rate and peak electrical fraction 

y = 0.9933x + 1E+07

R² = 0.939

0

400

800

1200

0 400 800 1200

M
o

d
el

ed
 h

ea
ti

n
g
 r

at
e 

[M
J/

h
r]

Metered heating rate [MJ/hr]

Alignment Factor of SPBM with Excessive Preheat 

Metered Heating Rate

0

200

400

600

800

1000

1200

1400

1600

1800

4-Feb 5-Feb 6-Feb 7-Feb 8-Feb 8-Feb 9-Feb 10-Feb 11-Feb 12-Feb

H
ea

ti
n
g
 r

at
e 

(M
J/

h
r)

Date

Excessive preheat 3DOF heating rate comparison

Modeled heat Metered heat



167 

 

 

Figure 93: 3DOF alignment factor of hourly heating rate when testing excessive 

preheat fault detection displays high degree of SPBM accuracy despite no model 

calibration aside from preheat temperature being performed at such an extreme 

deviation from nominal operation  

Table 4: Results of various variables tested for excessive preheat fault detection 

 𝜹𝑸/𝜹𝒗𝒂𝒓 U𝐀 U𝐯𝐚𝐫 𝜹𝑺𝑺𝑬/𝜹𝒗𝒂𝒓 
Preheat 

temperature 1.16E+10 1.70E+17 6.22E-04 1.09E+17 
Minimum 

air flow 

rate 1.72E+10 1.70E+17 4.19E-04 1.78E+17 
Peak 

electrical 

fraction -1.37E+10 1.70E+17 
-5.27E-
04 -1.21E+17 

So far, the SPBM has been able to replicate the level of parameter estimation 

demonstrated in earlier calibration tests. The level of alignment is also noteworthy as a 

high alignment factor as well as visual trend inspection demonstrates the capabilities of a 

simplified physics-based model for fault detection.  

7.1.3    Malfunctioning Occupancy Sensors 

 Unlike previous tests, calibration of Whitehead revealed that the building does not 
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enter temperature setback. Therefore, the baseline high-fidelity model needs to be 

adjusted away from the real building fit in order to establish a working version of the 

fault to compare against. Therefore, instead of using the high-fidelity model to generate 

faulty data, it was used to generate heating and cooling demands that are representative of 

how Whitehead should operate.  

From analyzing multiple building performance characteristics, it was discovered 

that temperature setback is often noticeable with high heating demand spikes when the 

temperature setpoint changes early in the morning and the AHU needs to warm zones. A 

heating demand spike occurs because setback temperature and occupied temperature 

differ by typically 4 or 5 °C. Additionally, failure to enter unoccupied setback would 

cause both heating and cooling demand to elevate during unoccupied periods when 

compared to a functioning system. 

 While results for the 1DOF fit are similar to other fits with regards to uniqueness 

with error minimization, there was a slight decrease in model alignment when compared 

to other fault results. However, this difference in performance is more than likely due to 

the lower air flow rate brought about by the auto sizing in EnergyPlus requiring less 

heating energy at night which can be seen in the lower heating rates in Figure 95 and 

Figure 96 (minimum air flow was made constant for all faults when evaluating 4DOF and 

NN FD). Regardless, minimum finding was still successful as the error behaved 

predictably, as shown in Figure 94. Given the additional complexity and more aggressive 

changes in heating demand fault detection and identification was successful.  
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Figure 94: Error minimization results for 1DOF malfunctioning occupancy sensor 

fit 

 

Figure 95: 1DOF excessive preheat hourly heating rate of SPBM and metered data 

with malfunctioning occupancy fault, although SPBM does demonstrate some 

overprediction  
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Figure 96:1DOF malfunctioning occupancy sensor fault fit alignment factor of 

SPBM and metered heating rate 

 While the results of determining the evening temperature setpoint were 

successful, a more realistic test would simply be between if unoccupied value ever 

switched from off ‘0’ to on ‘1’. As such, this will be the base of future 4DOF tests 

between all the faults being examined. Additionally, to keep the tests consistent, all four 

faults were run with the same 3DOF additional parameters: peak electrical load fraction 

and minimum air flow. However, unoccupied temperature setback occurs in between 

peak loading. As such, this particular test was still able to achieve high alignment and 

minimal parameter error of 5% for the temperature setback (17.1°C instead of 18°C) as 

demonstrated in Table 5.  
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Figure 97: 3DOF excessive preheat hourly heating rate of SPBM and metered data 

with malfunctioning occupancy fault 

 
Figure 98:3DOF malfunctioning occupancy sensor fault fit alignment factor of 

SPBM and metered heating rate 
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For actual fault detection between the proposed faults, a more rigorous set of 

parameters can be used to determine if evening temperature setback is occurring as well 

as adding evening lighting load to simulate the problems that arise from malfunctioning 

occupancy sensors resulting in a false positive occupancy.  

7.1.4    Malfunctioning Outdoor Air Damper 

 Lastly, outdoor air flow rate control can either fault high or low. Too much 

outdoor air is delivered, which while improving occupant comfort, would increase energy 

consumption. Likewise, too little outdoor air can lead to poor indoor air quality either 

through excessive CO2 or other contaminants that can negatively affect occupant comfort 

and performance . 

 As a malfunctioning outdoor air damper has two fault states, a test for excess 

outdoor air was conducted first with a follow-up of too little outdoor air. Outdoor air has 

an immediate alteration on the AHU load as well as altering CO2 and humidity levels. 

Unlike infiltration, which is linked closely with air speed, outdoor air dampers have a 

constant change on mixed air properties arriving at heating and cooling coils in the AHU. 

If CO2 metering is added to heating and cooling load metering, the ability to detect 

outdoor air dampers increases in reliability.  

 Initial 1DOF fault testing revealed a strong relation between outdoor air flow rate 

and severity of fault. Figure 99 shows nearly an order of magnitude increase in SSE when 

compared to the true air flow rate.  
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Figure 99: Error minimization results for 1DOF excessive outdoor air fit. While not 

as extended on the upper bound as other fault detection tests, the maximum air flow 

value evaluated represents the physical limitation of the Whitehead AHU. 

 

Figure 100: 1DOF excessive preheat hourly heating rate of SPBM and metered data 

with excessive outdoor air fault 
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Figure 101:1DOF excessive outdoor air fault fit alignment factor of SPBM and 

metered heating rate 

 As with 1DOF fits, the accompanying 3DOF results in an adequate fit with 

reliable variable parameters.  

 

Figure 102: 3DOF excessive preheat hourly heating rate of SPBM and metered data 

with excessive outdoor air fault. 
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Figure 103: 3DOF excessive outdoor air fault fit alignment factor of SPBM and 

metered heating rate 

Table 6: Results of various variables tested with excessive outdoor air fault detection 

 𝜹𝑸/𝜹𝒗𝒂𝒓 U𝐯𝐚𝐫 𝜹𝑺𝑺𝑬/𝜹𝒗𝒂𝒓 
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air flow 
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unknown values, it was time to test the faults against themselves. For this series of tests, 

there are six possible answers for each test: 1) Excessive infiltration, 2) Malfunctioning 

occupancy sensors 3) Unnecessary/excessive preheat and, 4) Malfunctioning outdoor air 

control system such as a faulty outdoor air damper. Unlike the previous tests, parameters 

for error and time of year for fault testing will be adjusted to suit each fault and minimize 

false reports.  

7.2.1    Whitehead Four Degree of Freedom Fault Identification and Detection 

 Identifying faults within Whitehead was met with the same level of success that 

has been shown throughout this paper. Faults were found using sum squared error 

minimization and by adjusting fault parameters between correct operation and 100% 

failure. By utilizing both an error minimization search as well as predetermined values 

for the four different faults, true absolute minimum and uniqueness of model error can be 

tested.  

 No-fault performance was analyzed first to give baseline performance of the 

SPBM. Due to the complex nature of building energy modeling, and the established 

practice of using prediction intervals for model uncertainty for time series data, 95% 

prediction interval was used to evaluate how well faulty SPBM energy prediction 

compares to calibrated baseline performance. Ideally, a linear regression of metered and 

predicted energy use would result in a perfect 1:1 slope and no divergence; meaning that 

the model can perfectly replicate metered data for a given input.  By comparing how well 

predicted loads fall within no-fault prediction intervals, this method allows for 

comparisons between different results by analyzing how many points fall within 

uncertainty bounds while 4DOF relative error changes can be used to approximate fault 
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identification confidence. Additionally, analysis of the number of points outside of 95% 

prediction interval was used to determine if a time series NN identified a fault. Results of 

SPBM calibration and prediction interval analysis of heating and cooling demand for 

Whitehead during winter and summer conditions are depicted below in  Figure104 and 

Figure 105. 

  

Figure 104A: Hourly heating demand represented as transient plot and alignment 

factor which demonstrates the high degree of accuracy of predicted load by the 

SPBM 
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Figure 104B: Alignment factor of hourly heating demand represented as transient 

plot and alignment factor which demonstrates the high degree of accuracy of 

predicted load by the SPBM 

  
Figure 104C: Hourly cooling demand represented as transient plot and alignment 

factor which demonstrates the high degree of accuracy of predicted load by the 

SPBM 
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Figure 104D: Alignment factor of hourly cooling demand represented as transient 

plot and alignment factor which demonstrates the high degree of accuracy of 

predicted load by the SPBM 

   
Figure 105A: No-fault heating demand for Whitehead for summer loading 

conditions 

Brief spike in 

heating demand 

as zone 

temperature 

setpoint changes 
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Figure 105B: No-fault heating demand for one day to more easily see how heating 

demand occurs during a brief spike for Whitehead during summer loading 

conditions 

  
Figure 105C: Alignment factor of no-fault heating demand for Whitehead for 

summer loading conditions 
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Figure 105D: No-fault cooling demand for Whitehead for summer loading 

conditions 

 
Figure 105E: Alignment factor of no-fault cooling demand for Whitehead for 

summer loading conditions 
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 To better visualize changes in error in relation to changes in parameter values, 

Figure 106 demonstrates how altering values of the four potential fault parameters affects 

the sum squared error. All parameters are normalized to themselves, meaning a value of 1 

corresponds to the value when no fault is occurring. For example, the infiltration 

coefficient under normal operation is 0.2 and would be represented as a relative value of 

1 on the figure. If infiltration were to double (infiltration coefficient of 0.4), that would 

correspond with a relative value of 2. Notice on Figure 106 that when the relative 

parameter value of infiltration is 2, the relative error value is approximately 8. This 

means that doubling infiltration results in nearly eight times increase in sum squared 

error. While the below figure may be slightly enigmatic at first, it becomes extremely 

useful when discussing results of parameter identification.  

 
Figure 106: Visual representation of how relative changes in parameter values 

change error when no fault is occurring. Values represent multiples of no-fault 

parameter values and error; meaning changes along the vertical axis represents the 

multiple of error while changes along the horizontal axis represent multiples of 

parameter values 
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 By comparing relative change in error to relative change in parameter also allows 

for visualization of model sensitivity to changes in different parameters. Increasing 

preheat temperature has the greatest change in error for a given change in parameter 

value while infiltration has the least sensitivity.  

7.2.2    Excessive Infiltration 

 Infiltration is often a subtle source of error within the SPBM model. As discussed 

earlier in section 1.6 Infiltration, limiting error accumulation to periods of substantial 

wind speed allows for a more noticeable global minimum due to an increase in parameter 

sensitivity. Figure 107 through Figure 110 demonstrate the high degree of alignment that 

the SPBM is able to replicate after undergoing error minimization. Table 19 provides 

numerical values for errors associated with each of the possible causes of failure. The 

table lists a range of values for each fault to see how the error changes for each value 

while Figure 111 is a visual representation of how the error changes in relation to 

different failure values; here the error and potential failure values are represented 

fractionally, meaning an error of 1 is the error associated when the model is using 

parameter values that are associated with no-fault (as designed) operation. Additionally, a 

parameter value of 1 means the value is that of no-fault (as designed) operation. 

Likewise, an error value of ½ indicates that error has halved while an infiltration 

coefficient of 1.5 means that 50% more infiltration is occurring. For high infiltration, the 

high-fidelity model used a 1.4x increase in infiltration. By observing Figure 111 and 

Table 19, it is possible to see that the only parameter change that resulted in a lower error 

was infiltration. While the infiltration coefficient value was not the same as the high-

fidelity model, finding the “true” value is not the objective of the SPBM, but rather 
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determining which of four possible faults may have caused the error. Therefore, in regard 

to model sensitivity, solution uniqueness, and fault detection, the SPBM demonstrates its 

aptitude for fault detection.  

 

Figure 107: Hourly cooling rate for winter weather comparing SPBM and reference 

data when the building is experiencing a fault of excessive infiltration 
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Figure 108: Hourly cooling rate alignment factor for Whitehead model experiencing 

excessive infiltration during winter weather 

 
Figure 109: Hourly heating rate for winter weather comparing SPBM and reference 

data when the building is experiencing a fault of excessive infiltration 
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Figure 110: Hourly heating rate alignment factor for Whitehead model experiencing 

excessive infiltration during winter weather 

 

Figure 111: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. Excessive infiltration fault is being 

tested for automatic detection for Whitehead building during winter  
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 Figure 111 shows how increasing infiltration from the nominal value (X value of 

1 on the figure) decreases error to a point but then error increases. This is demonstrating 

that by increasing the SPBM infiltration parameter to that of the high-fidelity model 

value decreases error, but also that error begins to increase once modeled infiltration 

exceeds that of the reference data.  

 Continuing the investigation of excessive infiltration to the summer weather 

further demonstrates the versatility of the SPBM. While Figure 107 through Figure 111 

demonstrate the heating-load driven fault detection abilities,  Figure 112 through Figure 

116 reveal that the SPBM is still achieving a more than acceptable level of model 

accuracy despite being subjected to completely different external load factors and 

primary energy demand. Unlike for winter weather, Figure 116 and Table 20 displays 

that insufficient outdoor air was not the only fault that caused a reduction in model error. 

However, the error reduction by the infiltration coefficient is over three times more 

significant than that of unoccupied setback fault. Additionally, error is only accounted for 

by monitoring the relative difference in heating and cooling load demand and not 

entering setback would increase the heating and cooling demand in a similar way to 

summer infiltration that occurs in the evening and weekends. Considering the objective 

of using the SPBM for automatic fault detection is not to determine the exact real-world 

value of the fault, but rather evaluate a spectrum of potential faults and use the results 

from these evaluation methods to suggest a possible cause of the fault.   



188 

 

 
Figure 112: Hourly cooling rate for summer weather comparing SPBM and 

reference data when the building is experiencing a fault of excessive infiltration 

 
Figure 113: Hourly cooling rate alignment factor for Whitehead model experiencing 

excessive infiltration during summer weather 
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Figure 114: Hourly heating rate for summer weather comparing SPBM and 

reference data when the building is experiencing a fault of excessive infiltration 

 
Figure 115: Hourly heating rate alignment factor for Whitehead model experiencing 

excessive infiltration during summer weather 
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Figure 116: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. Excessive infiltration fault is being 

tested for automatic detection for Whitehead building during summer 

 Like with winter data, summer infiltration testing shows that error decreases as 

infiltration increases, but only to a point. Setback failure fault does show a slight 

reduction in error due to the low impact of infiltration in summer and because setback 

failure will increase energy demand, therefore lowering error. 

 Excessive infiltration presents the least impact on heating and cooling demand 

among the four faults that are being analyzed while also being the most difficult to detect 

in a real building. Old CE was discovered to have less significant infiltration load than 

Whitehead in addition to having a more complex AHU design. Therefore, analyzing how 
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0.5

1

2

4

8

16

32

64

128

256

0 0.5 1 1.5 2 2.5 3

R
el

at
iv

e 
er

ro
r

Relative fault value

Relative error value in relation to relative fault error

Infiltration coefficient Minimum outdoor air

Preheat temperature Setback failure coefficient

Error remains somewhat constant as setback 

failure and preheat have a similar effect on 

load as infiltration 

 

Parameter value most 

closely associated with 

high-fidelity model 

 



191 

 

other faults furthers the understanding of how simplified building fault detection 

programs behave. 

7.2.3    No Setback 

 As explained earlier, setback is the action of widening the temperature setpoint 

during periods of building vacancy. While this fault can stem from numerous causes, the 

most likely cause experienced was from malfunctioning occupancy sensors. 

Malfunctioning occupancy sensors also keep lights on in zones where sensors detect (or 

believe to detect) occupants. Therefore, occupancy sensor fault adjusts both the 

temperature setpoint and internal load amount.  

 Figure 117 through Figure 121 again demonstrates how well the SPBM is able to 

align with a high-fidelity model. Figure 121 and displays the visual relative error 

associated with each of the four faults that are being evaluated while Table 21 lists 

numerical results from the tests. Just as with infiltration, only one parameter shows a 

decrease in error. However, the reduction in error here is over 85% between no-fault 

parameter values and full failure of temperature setback. Such a decisive reduction in 

error from only one parameter along with high modeled load alignment demonstrates 

both unique solutions and adaptability of the SPBM. 
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Figure 117: Hourly cooling rate for winter weather comparing SPBM and reference 

data when the building is experiencing a fault of not entering unoccupied setback 

 
Figure 118: Hourly cooling rate alignment factor for Whitehead model experiencing 

no unoccupied setback fault during winter weather 
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Figure 119: Hourly heating rate for winter weather comparing SPBM and reference 

data when the building is experiencing a fault of not entering unoccupied setback 

 
Figure 120: Hourly heating rate alignment factor for Whitehead model experiencing 

no unoccupied setback fault during winter weather 
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Figure 121: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. The fault of not entering 

unoccupied setback being tested for automatic detection for Whitehead building 

during winter 

Unoccupied setback failure shows a clear decrease in error as the SPBM 

approaches a complete failure to enter setback. Error increase from other faults is 

decreased due to faults that increase load during unoccupied periods reducing error 

during that time. 

 Failure to enter setback during summer weather would increase cooling and 
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accommodated these conditions, shown in Figure 126 and Table 22. However, reduction 

in error from not entering setback had the most noticeable and dramatic reduction in error 

of the tested faults. Given that not entering setback was the only fault that showed a 

reduction in error for both winter and summer loading conditions, it would be a safe 

assumption that automatic fault detection was successful for this fault test.     

 
Figure 122: Hourly cooling rate for summer weather comparing SPBM and 

reference data when the building is experiencing a fault of not entering unoccupied 

setback 
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Figure 123: Hourly cooling rate alignment factor for Whitehead model experiencing 

no unoccupied setback fault during summer weather 

 
Figure 124: Hourly heating rate for summer weather comparing SPBM and 

reference data when the building is experiencing a fault of not entering unoccupied 

setback 
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Figure 125: Hourly heating rate alignment factor for Whitehead model experiencing 

no unoccupied setback fault during summer weather 

 
Figure 126: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. The fault of not entering 

unoccupied setback being tested for automatic detection for Whitehead building 

during summer 
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 Unoccupied setback failure shows a greater reduction in error due to the increase 

in cooling demand required during summer. Infiltration and preheat faults also increase 

heating and cooling demand, so those faults also show a slight decrease in error, although 

a global minimum error still occurs for setback fault.  

 Failure to enter unoccupied setback and excessive infiltration both occur during 

different periods of the day. Likewise, fault detection can be limited to times in which 

faults are expected to occur in order to increase identification sensitivity. However, both 

excessive preheat and insufficient outdoor air faults occur at all times of operation, and 

therefore require different methods of ensuring confidence of fault identification.   

7.2.4    Excessive Preheat 

 Excessive preheat is by far the most energy intensive fault being tested. To briefly 

review what excessive preheat entails, it means that the preheat temperature, which is 

usually set to the same desired supply temperature as the cooling coils, is set far above 

that specified supply temperature in an effort to prevent AHU cooling coils from 

freezing. While appropriate in extreme cases, high preheat setpoints are sometimes used 

as a solution to prevent overly sensitive or poorly designed AHUs from entering a false 

shutdown or from a leaking valve .  

 Examining the cooling and heating rates for winter weather that are displayed in 

Figure 127 through Figure 131 and Table 23 reveal overall less agreeable results from the 

SPBM when comparing to the high-fidelity reference model. However, considering the 

magnitude of both heating and cooling demand increase, the SPBM was still able to find 

an optimal solution and identify excessive preheat as a possible cause of building fault. 

Again, while other evaluated potential faults did demonstrate a reduction in error, any 
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fault that caused an increase in both heating and cooling load demand would lower the 

error. Due to this fault typically only existing during winter weather, it would be easy to 

confirm by looking at historical building energy consumption and looking for a sharp 

spike in heating and cooling demand sometime around winter. Additionally, excessive 

preheat has the highest increase in error when it is not the fault being evaluated, so 

comparing model results to a different period in time while keeping model parameters 

static would help rule out any potential false fault recommendations.  

 
Figure 127: Hourly cooling rate for winter weather comparing SPBM and reference 

data when the building is experiencing a fault of excessive preheat 

Same uncertainty bound as nominal 

operation; perceived decrease in 

bound comes from increase in 

heating demand from fault 
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Figure 128: Hourly cooling rate alignment factor for Whitehead model experiencing 

excessive preheat fault during winter weather 

 
Figure 129: Hourly heating rate for winter weather comparing SPBM and reference 

data when the building is experiencing a fault of excessive preheat 
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Figure 130: Hourly heating rate alignment factor for Whitehead model experiencing 

excessive preheat fault during winter weather 

 
Figure 131: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. The fault of excessive preheat is 

being tested for automatic detection for Whitehead building during summer 
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 Preheat fault has a dramatic impact on building load and an equally significant 

error. Due to the constant increase in both heating and cooling load, any fault that results 

in additional demand will lower error. 

 While excessive preheat fault should not be initiated in summer weather, it is 

possible that excessive preheat could occur from a leaking hot water valve. This scenario 

could result in a number of different preheat temperatures, but the test was conducted 

using the same parameters as the winter test for the sake of consistency between runs. 

Results for summer loading reveal similar results to that for winter. Figure 132 through 

Figure 135 visually show how the SPBM does have periods of over and under prediction, 

but the fault test results displayed in Figure 136 and Table 24 confirm the ability to 

estimate which of the potential faults may be causing the increase in energy consumption 

in the high-fidelity reference model.  

 
Figure 132: Hourly cooling rate for summer weather comparing SPBM and 

reference data when the building is experiencing a fault of excessive preheat 
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Figure 133: Hourly cooling rate alignment factor for Whitehead model experiencing 

excessive preheat fault during summer weather 

 
Figure 134: Hourly heating rate for summer weather comparing SPBM and 

reference data when the building is experiencing a fault of excessive preheat 
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Figure 135: Hourly heating rate alignment factor for Whitehead model experiencing 

excessive preheat fault during summer weather 

 
Figure 136: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. The fault of excessive preheating is 

being tested for automatic detection for Whitehead building during summer 
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 Similar to winter conditions, excessive preheat in summer still has a large error 

from increased load yet a clear global minimum is still found.  

 Excessive preheat is by far the most energy intensive fault being analyzed for 

automatic fault detection and identification. While some of the results from automatic 

calibration had a significant number of data points fall outside the prediction interval 

established by the no-fault calibration, this was due to the no-fault data being nearly 

constant and the SPBM being in close alignment. However, the alignment factor between 

the SPBM and metered data remained excellent. While prediction interval data may raise 

suspicion, analysis of relative fault changes with respect to all the faults being analyzed 

revealed that excessive preheat had the most significant and consistent reduction in error.  

7.2.5    Insufficient Outdoor Air 

 Insufficient outdoor air presents a unique challenge as testing has revealed that 

lowering outdoor air flow rates often appear as a reduction in cooling and heating load 

demand. However, low outdoor air flow rates may have negative health results on 

occupants . Given the global impact of COVID-19, it is not unreasonable to assume that 

prioritizing occupant health and disease prevention will become a higher priority for 

building managers and designers.  

 Evaluation of automatic fault detection results reveal an overall good performance 

of cooling load alignment, as demonstrated in Figure 137 and Figure 138. Even though 

less than 80% of data was within uncertainty bounds, the relatively low alignment was a 

result of a tight uncertainty under nominal conditions due to there being a near constant 

cooling demand while insufficient outdoor air resulted in increases in cooling load during 
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occupied periods. However, Figure 139 and Figure 140 demonstrate accuracy similar to 

nominal performance. Error reduction results presented in Figure 141 and Table 25 

 reveal a high degree of model sensitivity to lower outdoor air fault results. Evaluation of 

winter model results is perhaps the most representative result for SPBM automatic fault 

detection; the “true” value of outdoor air flow rate is not important, but rather the growth 

of error for every tested parameter aside from outdoor air flow rate for both winter and 

summer loading conditions.  

 
Figure 137: Hourly cooling rate for winter weather comparing SPBM and reference 

data when the building is experiencing a fault of insufficient outdoor air 
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Figure 138: Hourly cooling rate alignment factor for Whitehead model experiencing 

insufficient outdoor air fault during winter weather 

 
Figure 139: Hourly heating rate for winter weather comparing SPBM and reference 

data when the building is experiencing a fault of insufficient outdoor air 
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Figure 140: Hourly heating rate alignment factor for Whitehead model experiencing 

insufficient outdoor air fault during winter weather 

 
Figure 141: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. The fault of insufficient outdoor air 

is being tested for automatic detection for Whitehead building during winter 
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 Insufficient outdoor air is unique among the four tested faults as it is the only fault 

that reduces load; therefore, other faults will show an increase in error as demand rises. 

 As stated for winter loading conditions, the SPBM displays adequate modeling 

ability when comparing to a high-fidelity reference model. Figure 142 through Figure 

145 reflect previous summer loading results as well as the high level of agreement 

displayed for winter loading. Additionally, Figure 146 and Table 26 show the best 

summer loading results for automatic fault detection with only one of the four tested 

faults resulting in a reduction of error. These results are attributed to the reduction in 

heating and cooling demand that insufficient outdoor air provides while the other faults 

tend to display an increase in load demand when present.  

 
Figure 142: Hourly cooling rate for summer weather comparing SPBM and 

reference data when the building is experiencing a fault of insufficient outdoor air 
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Figure 143: Hourly cooling rate alignment factor for Whitehead model experiencing 

insufficient outdoor air fault during summer weather 

 
Figure 144: Hourly heating rate for summer weather comparing SPBM and 

reference data when the building is experiencing a fault of insufficient outdoor air 
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Figure 145: Hourly heating rate alignment factor for Whitehead model experiencing 

insufficient outdoor air fault during summer weather 

 
Figure 146: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. The fault of insufficient outdoor air 

is being tested for automatic detection for Whitehead building during summer 
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 The increase in error from setback failure and infiltration is minimal as nominal 

parameter values already results in overprediction of loading. Nevertheless, minimum 

outdoor air fault was still successfully identified and classified.  

  As demonstrated above, the SPBM was able to replicate loading results of 

a high-fidelity reference model for all of the tested faults. Additionally, results 

demonstrated the uniqueness of how faults alter heating and cooling demands in a unique 

manner. As stated previously, Whitehead Building is being treated as a representation of 

a typical office building that experiences a similar internal load all year. However, Old 

CE is representative of a typical university classroom and office building with varying 

loads depending on the year. The following section will evaluate Old CE and see if the 

SPBM is capable of producing similar results for automatic fault detection that 

Whitehead Building demonstrated.  

7.3    Old CE Automatic Fault Detection 

 To quickly review, Old CE is a legacy building that houses academic offices, 

classrooms that vary in use depending on the time of year, and a small library.  

Additionally, the HVAC configuration of Old CE is more complex than that of 

Whitehead’s in that the building uses three separate air handling units, two total energy 

wheels, scheduled air flow rates, and outdoor air economizers. Despite an increase in 

complexity, the following analysis reveals that the SPBM more than capable of modeling 

this building. Nominal operation of Old CE for winter and summer is depicted in Figure 

147; note how demand changes abruptly when the building switches between occupied 

and unoccupied states.  
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Figure 147A: SPBM cooling load accuracy during nominal operation of Old CE for 

winter weather 

 
 Figure 147B: SPBM heating load accuracy during nominal operation of Old CE for 

winter weather 

Sudden changes in load due to 

unoccupied setback air flow rate 

changes and economizer utilization 

Greatest heating demand at 

start of day and then tapers off 
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Figure 147C: SPBM cooling load accuracy during nominal operation of Old CE for 

summer weather 

 
Figure 147D: SPBM heating load accuracy during nominal operation of Old CE for 

summer weather 
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It is theorized that the building, and therefore metered loads, experience a greater 

change in heating and cooling demand percent change per unit variance in HVAC 

system. The greater building sensitivity also makes automatic calibration easier and on 

average required fewer iterations to converge on a solution when compared to Whitehead 

automatic calibration. Old CE will be experiencing the same fault tests as Whitehead: 

excessive infiltration, not entering unoccupied setback, excessive preheat, and 

insufficient outdoor air.  

7.3.1    Old CE Infiltration 

 Infiltration, as stated before, is when outdoor air enters through the building 

envelope. For purposes of model evaluation, and based on experience with building 

energy consumption analysis and the US Department of Energy, it is assumed that 

infiltration correlates with wind speed. It should be noted that determining the actual 

infiltration of a building is difficult without conducting field measurements.  

 Old CE demonstrated in the figures below and Table 27 that the building HVAC 

system is not as sensitive to infiltration as Whitehead while showing greater increase in 

error when testing the other faults. The reduction in sensitivity to infiltration is attributed 

to there being a basement level and much of the perimeter zones on higher levels being 

unoccupied providing less access for outdoor air to enter the building.  
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Figure 148: Hourly cooling rate for winter weather comparing SPBM and reference 

data when the building is experiencing a fault of excessive infiltration 

  
Figure 149: Hourly cooling rate alignment factor for Whitehead model experiencing 

excessive infiltration fault during winter weather 

Sudden changes in load 

come from air flow and 

zone temperature 

unoccupied setback 

control 
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Figure 150: Hourly heating rate for winter weather comparing SPBM and reference 

data when the building is experiencing a fault of excessive infiltration 

 
Figure 151: Hourly heating rate alignment factor for Whitehead model experiencing 

excessive infiltration fault during winter weather 
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Figure 152: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. The fault of excessive infiltration is 

being tested for automatic detection for Old CE during winter 

 The error reduction for infiltration during winter weather is wider and shallower 

when compared to Whitehead. The broader error profile is due to there being less overall 

infiltration and the faulty infiltration high-fidelity parameter being twice that of nominal 

conditions (0.1 instead of 0.05 for nominal condition). 

 Modeled performance, as shown in Figure 153 through Figure 157, for excessive 

infiltration during summer weather for Old CE produced acceptable model accuracy. 

However, Figure 157 and Table 28 reveal that parameter estimation was less definitive 

than during winter weather, a trend mirrored during Whitehead testing. This reduced 

difference in error was due to Old CE not having a substantial amount of infiltration 

based on calibration efforts (a velocity wind speed coefficient for Old CE was less than 
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half the DOE2 recommended coefficient of 0.224). Additionally, wind speeds in summer 

were lower than in winter and often lower than the 5 m/s reference speed used by DOE2. 

However, given that CO2 monitoring in AHUs is not expensive and knowing the benefits 

of occupant health associated with outdoor air flow, infiltration error will be tested also 

using CO2 monitoring to see if any improvement can be made.  

 
Figure 153: Hourly cooling rate for summer weather comparing SPBM and 

reference data when the building is experiencing a fault of excessive infiltration 
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Figure 154: Hourly cooling rate alignment factor for Whitehead model experiencing 

excessive infiltration fault during summer weather 

 
Figure 155: Hourly heating rate for summer weather comparing SPBM and 

reference data when the building is experiencing a fault of excessive infiltration 
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Figure 156: Hourly heating rate alignment factor for Whitehead model experiencing 

excessive infiltration fault during summer weather 

 
Figure 157: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. The fault associated with cooling 

load when testing excessive infiltration is being tested for automatic detection for 

Old CE during summer 
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 Evaluation of Old CE with excessive infiltration using CO2 analysis resulted in a 

clear and unique result. Unoccupied setback and preheat failure do not affect air flow or 

zone CO2 contamination rates and therefore error remains unchanged for all parameter 

values, as shown in Figure 160 and Table 29. Reducing outdoor air flow rate increases 

CO2 concentration while infiltration lowers zone contaminate levels through increased 

outdoor air.  

 

Figure 158: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. The fault associated with CO2 when 

testing excessive infiltration is being tested for automatic detection for Old CE 

during summer 

 SPBM results can be self-checking by keeping model parameters constant but 

evaluating error of multiple data points. Different error parameters can also be used with 

neural networks, but as stated before, a neural network has one output and would require 

a different NN for each parameter being tested.  
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7.3.2    Old CE no Unoccupied Setback 

 Failure to enter unoccupied setback has a more severe impact on energy use when 

compared to Whitehead. While Whitehead only altered zone temperature setpoints with 

unoccupied periods, Old CE implements a reduction in air flow rate in addition to 

widening zone temperature setpoints. On average, minimum air flow to zones is halved 

for unoccupied periods. Failure to reduce air flow not only increases both heating and 

cooling demand, but also produces a noticeable increase in heating load while 

simultaneously maintaining a constant cooling demand, as demonstrated in Figure 161 

and Figure 159 respectively.  

 Increase in heating demand during unoccupied periods is caused from supply air 

at 13°C maintaining the same flow rate as during occupied periods without 

environmental or internal heating loads. Additionally, zone temperature setpoints during 

occupied periods are wider than during occupied periods, with the minimum air 

temperature being maintained at 21°C for occupied periods and 16.5°C for unoccupied 

periods.  

 Conversely, cooling demand remains nearly constant during winter weather when 

there is a failure to enter unoccupied setback. While one may expect a change in cooling 

demand during evenings, it is important to remember that zone temperatures often remain 

at their minimum setpoint during winter weather. Therefore, temperature of the retuning 

air does not fluctuate substantially throughout the day. Energy recovery wheels also 

dampen fluctuations of outdoor air temperatures which further reduces variations in 

cooling demand. Regardless of the challenges associated with modeling an energy 
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conscious building, there can sometimes be a benefit when it comes to automatic 

calibration and fault detection. As shown from Figure 159 through Figure 163, the SPBM 

demonstrated excellent cooling demand modeling performance and acceptable heating 

demand results. These results lead to a clear solution when evaluating fault identification 

in Figure 163 and Table 30.  

  
Figure 159: Hourly cooling rate for winter weather comparing SPBM and reference 

data when the building is experiencing a fault of not entering unoccupied setback 

Overall flatter load than when 

setback occurs; sudden changes are 

due to system utilization of 

economizer 
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Figure 160: Hourly cooling rate alignment factor for Whitehead model not entering 

unoccupied setback fault during winter weather 

 
Figure 161: Hourly heating rate for winter weather comparing SPBM and reference 

data when the building is experiencing a fault of not entering unoccupied setback 
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Figure 162: Hourly heating rate alignment factor for Whitehead model not entering 

unoccupied setback fault during winter weather 

 
Figure 163: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. The fault of not entering 

unoccupied setback is being tested for automatic detection for Old CE during winter 
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 Unlike infiltration, setback failure has a more significant impact on total building 

loading because both air flow rate and zone temperature changes during unoccupied 

periods.  

 Failure to enter unoccupied setback during summer weather displays similar 

performance to winter loading conditions. Cooling load is nearly constant as there is a 

diminished internal load due to fewer students and professors being on campus during 

summer semester. Heating demand during unoccupied periods still rises as occupants 

leave and internal equipment load is reduced; however, there is a more noticeable slope 

up in demand throughout unoccupied periods than was displayed during winter weather. 

It is theorized that the legacy construction of Old CE, with heavy brick, concrete, and 

relatively few windows made envelope thermal capacity have a greater impact on 

evening heating demand than the modern construction of Whitehead. Evaluating fault 

detection results in Figure 168 and in Table 31 reveal the largest reduction in error with a 

reduction of over 99%. Cooling load rate, as shown in Figure 164 and Figure 165, repeat 

the excellent agreement displayed earlier for Old CE when undergoing a failure to enter 

unoccupied setback for winter weather. Heating load rate shows acceptable agreement 

with a bias towards over prediction of demand, as demonstrated in Figure 166 and Figure 

167.  
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Figure 164: Hourly cooling rate for summer weather comparing SPBM and 

reference data when the building is experiencing a fault of not entering unoccupied 

setback 

 
Figure 165: Hourly cooling rate alignment factor for Whitehead model not entering 

unoccupied setback fault during summer weather 
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Figure 166: Hourly heating rate for summer weather comparing SPBM and 

reference data when the building is experiencing a fault of not entering unoccupied 

setback 

 
Figure 167: Hourly heating rate alignment factor for Whitehead model not entering 

unoccupied setback fault during summer weather 
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Figure 168: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. The fault of not entering 

unoccupied setback is being tested for automatic detection for Old CE during 

summer 

 Failure to enter unoccupied setback increases both heating and cooling demand, 

therefore faults such as excessive preheat which also increase heating and cooling 

demand will show a slight reduction in error too. Infiltration and outdoor air flow rate 

appear to not have a significant impact on error as the change in loading from unoccupied 

setback is so great. 

As with all loads that depend on independent interior zones, a simplified building 

energy model can miss the minutia involved with small zones that experience either high 

or minimal amounts of environmental loading. Regardless, the SPBM has again 

demonstrated a reliable method for arriving at a unique solution for a potential fault.  
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7.3.3    Old CE Excessive Preheat 

 Excessive preheat, as discussed earlier, is most common during winter weather. 

An equal increase in heating and cooling demand is expected at all times when excessive 

preheat fault is occurring. Testing for excessive preheat fault employed the same tactic of 

comparing total heating and cooling demand and determining which fault reduced error 

the most. Figure 169 demonstrates that cooling rate increases during occupied times as air 

flow rate increases while Figure 170 highlights the overprediction in cooling rate for 

occupied periods and the excellent agreement for unoccupied periods. Again, Figure 171 

and Figure 172 show heating rate spikes as occupied periods and internal loads rapidly 

shift.  Even a broad fault search resulted in a clear and unique solution for minimum 

error, shown in Figure 173 and Table 32 , for a building with legacy construction and 

HVAC setup.  
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Figure 169: Hourly cooling rate for winter weather comparing SPBM and reference 

data when the building is experiencing a fault of excessive preheat 

 
Figure 170: Hourly cooling rate alignment factor for Whitehead model experiencing 

excessive preheat fault during winter weather 
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Figure 171: Hourly heating rate for winter weather comparing SPBM and reference 

data when the building is experiencing a fault of excessive preheat 

 
Figure 172: Hourly heating rate alignment factor for Whitehead model experiencing 

excessive preheat fault during winter weather 
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Figure 173: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. The fault of excessive preheat is 

being tested for automatic detection for Old CE during winter 

 Excessive preheat fault also has a dramatic impact on total building heating and 

cooling demand. Due to the loading characteristics of both excessive preheating and 

unoccupied setback failure, these two faults both show a reduction in error in each other’s 

relative error analysis, though not nearly as great as the fault being tested.  

 Continuing off the success of excessive preheat of Old CE for winter weather, 

summer excessive preheating demonstrates a similar level of agreement. Overprediction 

in cooling demand, as represented by Figure 174 and Figure 175, are due to the preheat 

temperature with minimum error being slightly greater than the value used within the 

high-fidelity reference model. Similarly, Figure 176 and Figure 177 reveal a bias of 

higher heating demand from the SPBM. These biases towards overcooling and 
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overheating when compared to reference data is simply the product of not having the 

exact same preheat setpoint temperature. Analysis was done by using ‘as designed’ 

setpoints and using evenly spaced steps along a range of possible values. Figure 178 and 

Table 33  shows that the minimum error occurred on run 30 with a preheat temperature of 

27.5°C, which is 0.5°C above the value used by the high-fidelity reference model. 

However, a clear minimum error is associated with excessive preheating is obtained, 

meaning that the intended purpose of fault detection and identification is successful even 

without a perfect load prediction. 

 
Figure 174: Hourly cooling rate for summer weather comparing SPBM and 

reference data when the building is experiencing a fault of excessive preheat 
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Figure 175: Hourly cooling rate alignment factor for Whitehead model experiencing 

excessive preheat fault during summer weather 

 
Figure 176: Hourly heating rate for summer weather comparing SPBM and 

reference data when the building is experiencing a fault of excessive preheat 
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Figure 177: Hourly heating rate alignment factor for Whitehead model experiencing 

excessive preheat fault during summer weather 

 
Figure 178: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. The fault of excessive preheat is 

being tested for automatic detection for Old CE during summer 
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 Load impact from excessive preheating is less severe in summer as the air 

temperature entering the heating coils is of a higher temperature in summer than in 

winter, and therefore requires less preheating to match the same temperature setpoint.  

 As with Whitehead, relative error analysis revealed a clear and unique solution for 

minimum error and fault identification. Additionally, SPBM energy demand prediction 

alignment factors for all loading conditions were in strong agreement, further 

demonstrating simplified physics-based energy modeling as a reliable and predictable 

method of demand prediction.  

7.3.4    Old CE Insufficient Outdoor Air 

 Insufficient outdoor air presents a unique kind of fault for building modeling. Due 

to outdoor air often being hotter than return air during the summer, and colder than return 

air for winter, supplying excessive amounts of outdoor air can sometimes come at a cost 

of increased cooling or heating load. Therefore, it has been advisable to supply the 

minimum amount of outdoor air required depending on the needs of a zone or building . 

However, elevated CO2 levels from insufficient outdoor air can be significant enough to 

impact occupant concentration. Additionally, insufficient outdoor air can potentially lead 

to viral infections. Therefore, insufficient outdoor air would have the potential to reduce 

energy consumption at the expense of occupant health. It is for the safety of the 

occupants that insufficient outdoor air fault is monitored.  

 Cooling performance is as to be expected with increases in demand during 

occupied periods and lowered demand during periods in which outdoor air economizer 

can operate (seen as sudden drops in demand in Figure 179). Figure 180 demonstrates a 

strong alignment factor over a wide range of operating conditions. Likewise, Figure 181 
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and Figure 182 continue the pattern of agreement with the high-fidelity reference model. 

Additionally, Figure 183 and Table 34 continue the other pattern of strong bias towards a 

unique solution for fault detection.  

 
Figure 179: Hourly cooling rate for winter weather comparing SPBM and reference 

data when the building is experiencing a fault of insufficient outdoor air 
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Figure 180: Hourly cooling rate alignment factor for Whitehead model experiencing 

insufficient outdoor air fault during winter weather 

 
Figure 181: Hourly heating rate for winter weather comparing SPBM and reference 

data when the building is experiencing a fault of insufficient outdoor air 
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Figure 182: Hourly heating rate alignment factor for Whitehead model experiencing 

insufficient outdoor air fault during winter weather 

 
Figure 183: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. The fault of insufficient outdoor air 

is being tested for automatic detection for Old CE during winter and reveals a 

global minimum error associated when half the nominal outdoor air is testes, the 

same value as the high-fidelity model 
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 Minimum outdoor air fault is similar to Whitehead as reducing outdoor air 

lowered energy demand. Therefore, any fault that increases loading would increase error.  

 Insufficient outdoor fault for summer weather for Old CE presents a unique series 

of results. However, load response, as featured in Figure 184 through Figure 187, again 

demonstrates the SPBM’s energy modeling prowess. Figure 188 and Table 35 exposes 

that there was little to no reduction in error from any adjustments to fault parameters. A 

high degree of model accuracy while maintaining a near-constant error means that the 

SPBM is not sensitive enough to detect minute changes in load from different outdoor air 

flow rates. Initial tests used an extremely efficient (95%) total enthalpy wheel, but when 

evaluating a more realistic (70% efficiency) fault detection again provided conclusive 

and unique minimum error values. Additionally, testing the 95% efficient energy 

recovery while also monitoring CO2 provided an unambiguous result as to which 

potential fault was occurring.  
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Figure 184: Hourly cooling rate for summer weather comparing SPBM and 

reference data when the building is experiencing a fault of insufficient outdoor air 

 
Figure 185: Hourly cooling rate alignment factor for Whitehead model experiencing 

insufficient outdoor air fault during summer weather 
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Figure 186: Hourly heating rate for summer weather comparing SPBM and 

reference data when the building is experiencing a fault of insufficient outdoor air 

 
Figure 187: Hourly cooling rate alignment factor for Whitehead model experiencing 

insufficient outdoor air fault during summer weather 
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Figure 188: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. The fault of insufficient outdoor air 

is being tested for automatic detection for Old CE during summer 

 Changing outdoor air had little effect on error rates because heat recovery 

transferred nearly all of the thermal and latent energy from entering outdoor air to 

exhausting return air. Therefore, there was little change in building load between any 

outdoor air flow rate. This pattern was not seen in winter as Old CE utilizes an 

economizer that can bypass heat recovery when outdoor air has less enthalpy than return 

air. 

 Due to unrealistically high efficiency energy recovery in previous tests, there was 

no significant change in heating or cooling demand from changing outdoor air flow. 

However, a small decrease in total energy recovery efficiency to more realistic values 
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resulted in a clear and unique solution to error minimization as depicted in Figure 190 

and Table 36. 

 

Figure 189: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults. The fault of insufficient outdoor air 

is being tested for automatic detection for Old CE during summer 

 Being a physics-based model, more than one method of error minimization can be 

used to cross-check results. Figure 190 and Table 37 confirms error minimization results 

from previous tests by having the same parameter value produce the minimum value 

when using CO2 error minimization, an independent value from heating or cooling 

demand. 
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Figure 190: Visual representation of how magnitude of error changes when 

monitoring CO2 levels from return and supply air across different magnitudes of 

the four possible faults. The fault of insufficient outdoor air is being tested for 

automatic detection for Old CE during summer 

 Old CE proved to be a more challenging building to represent with a simplified 

physics-based model, but both energy demand prediction, fault detection, and fault 

identification tests were successful. Given the level of accuracy that parameter estimation 

has shown thus far, multiple simultaneous faults will be examined to determine how 

energy demand prediction and fault identification error minimization techniques compare 

to neural network-based fault detection and identification.  
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7.4 Multiple Simultaneous Faults 

 While individual faults occurring within a building has been shown to be well 

within the realm of ability of the SPBM, there is a possibility that multiple faults could 

simultaneously occur. Multiple fault analysis will focus on combining faults that both 

produced a reduction in error, such as excessive preheat combined with not entering 

unoccupied setback. By combining faults that both produced a reduction in error when 

individually analyzed, it will be possible to further explore uniqueness of detection and 

diagnosis of the SPBM.  

 Due to limitations in displaying higher-dimensional objects, a 4D plot was 

used where three parameter values (infiltration coefficient, preheat temperature setpoint, 

and minimum outdoor air) are along the axis while the size and color of the sphere at the 

corresponding XYZ location represents the error (larger meaning more error). The square 

root of error is plotted because the wide range of error values would make it difficult to 

discern the differences between similar parameter values. Old CE multi-fault analysis 

altered all four potential fault parameters so there will be three plots for each of the 

setback values (full setback, partial setback, and no setback. 

7.4.1    Whitehead Excessive Preheat and Not Entering Setback 

 When either excessive preheating or a failure to enter unoccupied setback 

occurred, Whitehead experienced a dramatic increase in both heating and cooling load 

when compared to baseline operation. Therefore, it was theorized that both faults 

simultaneously occurring may lead to inconclusive results in terms of correct fault 

identification. However, evaluation of this set of combined faults resulted in a smooth 
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reduction in error towards a global minimum. For displaying error associated with 

multiple simultaneous faults, each of the three axes represent one of three potential faults 

(failure to enter unoccupied setback, excessive preheat, and excessive infiltration) while 

the size and color of the sphere at the vertex of the parameter values denotes error. 

Meaning that the direction of reduced error is the vector that points towards the smallest 

sphere, as seen in Figure 191. Analysis of these three faults revealed full unoccupied 

setback failure and excessive preheat of 30C° (same as the fault level in the high-fidelity 

model) resulted in the lowest error by two orders of magnitude compared to adjusting 

faults outside the two suspected faults.  

  

Figure 191A: Whitehead error plot during winter while experiencing two faults; 

excessive preheat and not entering setback. X, Y, and Z axis represent parameter 

values while size and color of spheres represent error associated with parameter 

values at the vertex of (X, Y, Z) parameter values 

Error decreases towards global 

minimum 
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Figure 191B: Whitehead error plot during summer while experiencing two faults; 

excessive preheat and not entering setback. X, Y, and Z axis represent parameter 

values while size and color of spheres represent error associated with parameter 

values at the vertex of (X, Y, Z) parameter values 

 While winter and summer had differing values for infiltration associated with 

minimum error, excessive preheat and unoccupied setback fault parameter values 

associated with minimum error remained the same across both weather conditions. 

Additionally, infiltration has the least impact on energy demand while excessive preheat 

and unoccupied setback failure are the most energy intensive. Following tests will 

examine error minimization and fault identification with a high-intensity fault occurring 

along with infiltration. 
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7.4.2    Whitehead Excessive Preheat and Excessive Infiltration 

 As with not entering setback, excessive infiltration also produced a reduction in 

error when Whitehead was only experiencing excessive preheat. Due to the high energy 

demand of excessive preheat, error minimization is dominated by the temperature of the 

AHU heating coils. Figure 192 does demonstrate that increasing filtration while 

maintaining a normal preheat setpoint of 12°C lowers the error. However, when the 

preheat setpoint temperature matches that of the fault value, increasing infiltration 

beyond 0.32 (value used in high-fidelity model) significantly increases error. The 

discussed error result behavior reflects what is to be expected from multiple fault 

behavior and further enforces SPBM’s ability to model realistic physical behavior.  

  

Figure 192A: Whitehead error plot while experiencing two faults; excessive preheat 

and not entering setback during winter 
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Figure 192B: Whitehead error plot while experiencing two faults; excessive preheat 

and not entering setback during summer 

 As with excessive preheat and failure to enter unoccupied setback, minimum error 

for winter and summer had slightly different infiltration coefficient values. As a 

reminder, the SPBM is not attempting to exactly match real-world parameter values but 

rather evaluate how altering parameter values changes relative error.  

7.4.3    Whitehead Excessive Infiltration and Failure to Enter Unoccupied Setback 

 Excessive infiltration and a failure to enter unoccupied setback has demonstrated 

a convergence towards no setback and higher infiltration values. While Figure 193 shows 

different infiltration coefficient values for minimum error, the gradient of the error 
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converges towards excessive infiltration and setback failure. As such, results from error 

minimization still show a convergence towards increased infiltration and a failure to enter 

unoccupied setback. 

  

Figure 193A: Whitehead error plot while experiencing two faults; excessive 

infiltration and not entering setback during winter 
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Figure 193B: Whitehead error plot while experiencing two faults; excessive 

infiltration and not entering setback during summer 

 Overall, a convergence towards a unique minimum error is attained by adjusting 

parameter values towards those of the high-fidelity model. In all cases, “as calibrated” 

parameter values produced significant error and would be representative of fault 

detection while error convergence is validation of fault identification.  

7.4.4    Old CE Excessive Preheating and Failure to Enter Unoccupied Setback 

 Two different sets of multi-fault combinations were used when evaluating Old 

CE: excessive preheating with a failure to enter unoccupied setback, and excessive 

infiltration with insufficient outdoor air flow. All four fault parameters were adjusted for 

both of the two-fault conditions. By analyzing all four parameter values, it will be 

possible to determine if a global minimum error exists and if the SPBM converges 
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towards that minimum error. 

 Excessive preheat and unoccupied setback failure both produced sizable errors 

when evaluated separately and continue to have significant error variation when 

combined. Due to the four-parameter variations, different stages of occupied setback 

failure (full setback in Figure 194, partial setback in Figure 195, and setback failure in 

Figure 196) were plotted separately. As such, the minimum value on the error bar 

represents the minimum error for each plot and is important to note when comparing 

different stages of setback failure. For instance, minimum plotted error value (square root 

of true error) for full setback during winter is approximately 4.5E9[J/hr] in Figure 194 

while full setback failure is less than 1E9[J/hr] in Figure 196. As such, the error scale 

represents minimum error for each plot and the lowest error scale represents the lowest 

overall error for each multi-fault test. 

  

Figure 194A: Error associated with full setback when both excessive preheating and 

a failure to enter setback is occurring under winter environmental conditions 
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Figure 194B: Error associated with full setback when both excessive preheating and 

a failure to enter setback is occurring under summer environmental conditions 

 Partial setback refers to unoccupied temperature setpoint and air flow rates being 

halfway between occupied and full setback values. Both partial setback failure and 

complete setback failure have a minimum error associated with the maximum infiltration 

coefficient due to infiltration increasing load during unoccupied periods in addition to 

occupied periods.  
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Figure 195A: Error associated with partial setback failure when both excessive 

preheating and a failure to enter setback is occurring under winter environmental 

conditions 

 
Figure 195B: Error associated with partial setback failure when both excessive 

preheating and a failure to enter setback is occurring under summer environmental 

conditions 
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 Both winter and summer converge towards the same minimum error with 

associated parameters lining up with that of the high-fidelity test model.  

     
Figure 196A: Error associated with full setback failure when both excessive 

preheating and a failure to enter setback is occurring under winter environmental 

conditions 

Different minimum error for 

setback fault condition than 

when some setback was tested 
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Figure 196B: Error associated with full setback failure when both excessive 

preheating and a failure to enter setback is occurring under summer environmental 

conditions 

 Both winter and summer tests of excessive preheating with failure to enter 

unoccupied setback converged towards the same parameter value as the high-fidelity 

reference model, which shows a clear and unique solution to this multi-fault 

identification test. Infiltration coefficient values for partial and full setback are the 

maximum value evaluated due to infiltration increasing heating and cooling demand.  

7.4.5    Old CE Excessive Infiltration and Insufficient Outdoor Air 

 Excessive infiltration causes an increase in outdoor air entering building zones 

while insufficient outdoor air reduces fresh air to the AHUs. Additionally, both of these 

faults were subtle in their change to energy load error-based fault identification. 

Regardless of the expected difficulties, both winter and summer fault identification 

converged towards parameter values that are closest to those in the high-fidelity model; 
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as shown in Figure 197.  

  
Figure 197A: Error associated with no setback failure when both excessive 

infiltration and insufficient outdoor air is occurring during winter 

 
Figure 197B: Error associated with no setback failure when both excessive 

infiltration and insufficient outdoor air is occurring during winter  
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 Partial setback results in Figure 198 no longer converge towards the same 

minimum outdoor air flow or infiltration coefficient due to the intensity of error 

associated with partial setback. For example, the minimum error when partial setback 

failure is occurring is more than double that of no setback failure.  

  
Figure 198A: Error associated with partial setback failure when both excessive 

infiltration and insufficient outdoor air is occurring under winter environmental 

conditions 



262 

 

  
Figure 198B: Error associated with partial setback failure when both excessive 

infiltration and insufficient outdoor air is occurring under summer environmental 

conditions 

 A similar non-convergence of parameter values is observed when no setback 

occurs due to having such a severe error that it exceeds that from infiltration and 

insufficient outdoor air. However, Figure 199 has the same minimum occurring at the 

same outdoor air and infiltration parameter values as partial setback for both winter and 

summer. Different minimum error values when partial and no setback conditions were 

evaluated stems from the severity of failing to enter setback is greater than infiltration or 

insufficient outdoor air. While a local minimum for each setback condition exists, a clear 

global minimum lies at the expected parameter values. Also of note is that minimum 

error when entering setback does not occur (Figure 199) is double that of partial setback 

(Figure 198) and four times that of full setback (Figure 197). The plotted error is the 

square root of the total sum squared error, so the minimum error of full setback failure is 

16 times that of no setback fault. 
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Figure 199A: Error associated with full setback failure when both excessive 

infiltration and insufficient outdoor air is occurring under winter environmental 

conditions 

 
Figure 199B: Error associated with full setback failure when both excessive 

infiltration and insufficient outdoor air is occurring under summer environmental 

conditions 
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 Both Whitehead and Old CE displayed convergence towards parameter values 

associated with the values of the high-fidelity reference model. Additionally, all single 

and multi-fault tests have shown a clear optimal value and predictable error. As such, it 

can be said that the SPBM is capable of detecting and identifying unique parameter 

values associated with different kinds of faults.   
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CHAPTER 8.  NEURAL NETWORK FAULT DETECTION 

 Much of this paper has focused on a physics-based simulation approach to fault 

detection and building modeling due to flexibility, ease of calibration, and that the SPBM 

model required unique development. However, another simplified technique for 

modeling buildings comes from neural networks. Some research has shown that it is 

possible to achieve a higher accuracy with energy consumption prediction with a neural 

network than a high-fidelity model in some instances. Additionally, neural networks can 

be successfully used for automatic fault detection . However, neural networks require 

data to train and learn the input/output relations. Requiring training data for faults is 

problematic because it requires either artificial fault data gathered from a detailed model 

or operating a building under fault conditions.  

 Fault detection by neural networks will employ two different techniques: 1) train 

a neural network to predict heating and cooling loads and determine when and how a 

divergence occurs when under a fault condition 2) train a neural network under normal 

and fault conditions in order for it to classify input data as either no fault or one of four 

faults. These two methods of evaluation will allow for analysis of neural networks as a 

standalone building fault detection solution and as a supplement to already existing high-

fidelity models.  

 Before continuing, it is important to remember that there is a difference between 

fault detection and fault identification. Fault detection can be achieved by noting 

significant and sustained deviations from expected energy consumption levels while fault 

identification attempts to categorize deviations into potential causes. Both methods will 
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be explored in this section, beginning with establishing to what degree faults cause 

deviations in results and then using networks to diagnose building behavior. Comparing 

these two states of the art fault detection and diagnosis methods with results from the 

SPBM will provide a practical baseline for result evaluation.     

8.1    Time Series Neural Network Fault Detection 

 Time series neural network fault detection is based on deviation from expected 

input and output pattern relations . Inputs for time series networks include time, outdoor 

air temperature, outdoor air humidity, direct solar radiation, diffuse solar radiation, wind 

speed, wind direction, and building electrical load. Using the above inputs, a network is 

trained using Bayesian Regularization with either heating or cooling load data as the 

output. Bayesian Regularization was chosen for being robust, less susceptible to 

overfitting, and better suited to noisy or difficult data sets when compared to the other 

available options of Levenberg-Marquardt or Scaled Conjugate Gradient.  For this paper, 

a fault is considered detected when heating or cooling load significantly deviate from 

expected input/output relations that are generated by the time series NN linear regression 

line and uncertainty bounds that were calculated under nominal conditions. 

 Two different input/ouput relations were tested for time series neural networks. 

NARX (Nonlinear Autoregressive with External (Exogenous) Input), where the predicted 

value relies on weather, metered electrical data, as well as metered heating and cooling 

loads. While the other method, NIO (Nonlinear Input-Output), only relies on weather and 

metered electrical data for predicting loads. Testing showed that NARX had better 

accuracy while NIO has better divergence when faulty data is used for load prediction. 
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 Initial results using NARX resulted in excellent fit with an R2 value of 

approximately 0.99. Heating and cooling model results for both winter and summer 

conditions in Figure 200 helps visualize the high level of accuracy. However, this 

network type did not significantly deviate from expected outputs for insufficient outdoor 

air, excessive infiltration, and not entering setback for winter weather. Excessive preheat 

fault and not entering setback during summer weather did produce some deviance. While 

not deviating from metered loads may appear to be a sign of good modeling, further 

testing resulted in no fault being detected aside from excessive preheat or not entering 

setback during summer weather.     

  

Figure 200A: NARX 10 neurons and 12 delay neural network heating load 

prediction for Whitehead during winter. While model accuracy is exceptional, the 

NN is incapable of divergence for tested faults 
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Figure 200B: NARX 10 neurons and 12 delay neural network cooling load 

prediction for Whitehead during winter. While model accuracy is exceptional, the 

NN is incapable of divergence for tested faults 

 

Figure 200C: NARX 10 neurons and 12 delay neural network heating load 

prediction for Whitehead during summer. While model accuracy is exceptional, the 

NN is incapable of divergence for tested faults 
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Figure 200D: NARX 10 neurons and 12 delay neural network cooling load 

prediction for Whitehead. While model accuracy is exceptional, the NN is incapable 

of divergence for tested faults 

 Moving away from NARX time series energy modeling did maintain excellent 

energy prediction (R2 greater than 0.98) and resulted in some deviation for fault 

parameters. The excellent fitting of NARX neural networks for all faults might explain 

why energy prediction research is so popular while neural network fault detection is least 

popular as neural networks are adept at pattern recognition but poor at extrapolation . 

However, deviation displayed by nonlinear input/output raises the question if there is an 

ideal number of hidden neurons and delays that would produce a best-case network. 

While it is possible that optimum specifications exist, it is impossible to know what that 

case is unless tested .  
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Figure 201A: Nonlinear 10 neurons and 12 delay neural network heating load 

prediction for Whitehead during winter. Time series NN displays excellent 

agreement with metered load, though not to the same degree as NARX. 

  
Figure 201B: Nonlinear 10 neurons and 12 delay neural network heating load 

alignment factor for Whitehead during winter. Time series NN displays excellent 

agreement with metered load, though not to the same degree as NARX. 
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Figure 201C: Nonlinear 10 neurons and 12 delay neural network cooling load 

prediction for Whitehead during winter. Time series NN displays excellent 

agreement with metered load, though not to the same degree as NARX. 

  
Figure 201D: Nonlinear 10 neurons and 12 delay neural network cooling load 

alignment factor for Whitehead during winter. Time series NN displays excellent 

agreement with metered load, though not to the same degree as NARX. 

Truncation occurs 

because air from the 

preheat coil is slightly 

warmer that of the 

cooling coil by a near-

constant amount 
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 Winter time series NN displays the overall load matching expected of a well 

trained system for heating load but random noise for cooling load prediction in Figure 

201. The noise comes from random variations that the network learned during training 

that allows it to respond to increases in load and deviations under fault conditions. 

  
Figure 202A: Nonlinear 10 neurons and 12 delay neural network heating load 

prediction for Whitehead during summer. Time series NN displays excellent 

agreement with metered load, though not to the same degree as NARX. 
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Figure 202B: Nonlinear 10 neurons and 12 delay neural network heating load 

alignment factor for Whitehead during summer. Time series NN displays excellent 

agreement with metered load, though not to the same degree as NARX. 

  
Figure 202C: Nonlinear 10 neurons and 12 delay neural network cooling load 

prediction for Whitehead during summer. Time series NN displays excellent 

agreement with metered load, though not to the same degree as NARX. 
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Figure 202D: Nonlinear 10 neurons and 12 delay neural network cooling load 

alignment factor for Whitehead during summer. Time series NN displays excellent 

agreement with metered load, though not to the same degree as NARX. 

 Neural network time series have been used for fault detection by observing 

deviations away from expected outputs for given inputs. Therefore, using time series will 

not necessarily identify which fault is occurring. However, given that building loads are 

physical, it may be possible to see how and where deviations from expected results occur 

and use that information to piece together a plausible fault.  

8.1.1    Whitehead Excessive Infiltration 

 Excessive infiltration is a fault that one would expect to align strongly with 

outdoor air wind speed and outdoor air temperature. However, no strong correlation 

between excessive deviation of predicted load and wind speed were observed for time 

series neural network testing. It is possible that an increase in electrical use due to an 
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increase in HVAC demand is what caused the deviation from metered data. As mentioned 

before, analyzing the structure of a neural network does not bring insightful information 

on how the network changes for particular inputs. Regardless, Figure 203 and Figure 204 

displays the deviation from predicted load that would be expected during occurrence of a 

fault in the form of increased demand from the dominate loads for each season. 

  
Figure 203A: Predicted heating load for Whitehead while experiencing excessive 

infiltration fault condition during winter 
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Figure 203B: Alignment factor for heating load for Whitehead while experiencing 

excessive infiltration fault condition during winter  

 
Figure 203C: Predicted cooling load for Whitehead while experiencing excessive 

infiltration fault condition during winter 

Underprediction from NN 

not being influenced by 

infiltration 

Uncertainty bounds are based 

on how NN performed under 

nominal conditions 
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Figure 203D: Cooling load alignment factor for Whitehead while experiencing 

excessive infiltration fault condition during winter 

 Figure 203 shows nearly the same cooling load prediction as nominal conditions 

because winter weather infiltration would not increase cooling demand within zones. 

However, heating load is underpredicted as the trained network is not anticipating an 

elevated level of outdoor air entering zones. Figure 204 reveals that infiltration tends to 

alter the primary load as heating demand in summer is relatively unchanged while 

cooling demand increased in metered data.  
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Figure 204A: Predicted heating load for Whitehead while experiencing excessive 

infiltration fault condition during summer  

  
Figure 204B: Alignment factor of heating load for Whitehead while experiencing 

excessive infiltration fault condition during summer 
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Figure 204C: Predicted cooling load for Whitehead while experiencing excessive 

infiltration fault condition during summer 

  

Figure 204D: Alignment factor of heating load for Whitehead while experiencing 

excessive infiltration fault condition during summer 
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 Winter heating demand displayed a characteristic divergence from 1:1 alignment 

and a significant number of points outside the prediction interval. However, no 

divergence was observed from cooling demand prediction due to infiltration not having a 

significant impact on cooling performance. Summer demand for winter and summer 

conditions shows no statistically significant change from metered data. While NNs are 

faster and less complicated to calibrate than a SPBM, there is a downside in that 

parameters cannot be adjusted once the model is trained to check for how different faults 

alter error values like the SPBM did for relative error analysis. This drawback becomes 

more apparent for low sensitivity faults such as infiltration where fault identification 

finds a minimum error value by adjusting parameter values and where there is a small 

change in energy demand between no-fault and faulty metered data.  

8.1.2    Whitehead Not Entering Unoccupied Setback 

Not entering setback is a fault that should only present itself during unoccupied 

hours, a perfect example of how automated fault detection could be utilized. Figure 205 

reveals some periods of agreement during occupied hours with the heating load during 

winter. However, cooling load prediction deviation occurs for multiple days during a 

period of time in which the building was in occupied mode. Summer demand prediction 

was less definitive than winter loading but still within detection range. Heating demand 

during summer loading showed significant deviation when non-zero demand occurred 

while cooling demand displayed a clear bias towards overprediction. Overall, analysis of 

setback fault results in clear identification of a system error regardless of season.  



281 

 

   
Figure 205A: Predicted heating load for Whitehead while not entering unoccupied 

setback during winter 

  
Figure 205B: Alignment factor of heating load for Whitehead while not entering 

unoccupied setback during winter 

Significant divergence 

during periods of 

unoccupied setback 
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Figure 205C: Predicted cooling load for Whitehead while not entering unoccupied 

setback during winter 

  
Figure 205D: Alignment factor of cooling load for Whitehead while not entering 

unoccupied setback during winter 



283 

 

 Both Figure 205 for winter and Figure 206 for summer have divergence for 

heating load prediction. The difference between predicted and metered loads comes from 

the increase in heating demand that unoccupied setback failure causes by requiring zones 

to essentially warm the 14C° supply air to the minimum zone temperature of 21C°. 

  
Figure 206A: Predicted heating load for Whitehead while not entering unoccupied 

setback during summer 
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Figure 206B: Alignment factor of cooling load for Whitehead while not entering 

unoccupied setback during summer 

  
Figure 206C: Predicted cooling load for Whitehead while not entering unoccupied 

setback during summer 
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Figure 206D: Alignment factor of cooling load for Whitehead while not entering 

unoccupied setback during summer 

 Failure to enter unoccupied setback is a fault that can be difficult to detect due to 

the fault occurring when the building is vacant. However, model-based fault detection 

and identification methods tested have all proven to be able to correctly identify this 

fault. Further research could include determining minimum training periods required for 

NNs to detect faults. Due to the simplistic and low energy demand associated with failure 

to enter unoccupied setback, it may be possible for a building operator to purposefully 

induce this fault so that a NN can be trained with metered data. 

8.1.3    Whitehead Excessive Preheat 

 Excessive preheat is the most extreme load fault being investigated, and Figure 

208 displays the vast energy waste associated with this fault. Severity of the lost energy is 
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reflected in the magnitude of the deviation from metered data that was estimated by the 

neural network time series. For winter, a near constant increase in heating and cooling 

load was observed due to cooling coils needing to continuously lower supply air by 15°C 

from the preheat coils as shown in Figure 207. For this fault, it appears that both the 

SPBM and a time series neural network are equally adept at detecting changes in load 

demand. 

  
Figure 207A: Predicted heating load for Whitehead while experiencing excessive 

preheat fault condition during winter  

Near constant difference in predicted 

vs metered loads due to near 

constant change in temperature of air 

leaving heating coil 
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Figure 207B: Alignment factor of heating load for Whitehead while experiencing 

excessive preheat fault condition during winter  

  
Figure 207C: Predicted cooling load for Whitehead while experiencing excessive 

preheat fault condition during winter 

No metered data falls 

within expected range 

established during 

nominal conditions 
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Figure 207D: Alignment factor of cooling load for Whitehead while experiencing 

excessive preheat fault condition during winter 

 During winter, excessive preheating causes a near-constant increase in both 

heating and cooling demand. Summer loading is not as constant due to mixed air 

temperature being hotter and more humid than during winter and the excessive preheat 

temperature setpoint of 28°C sometimes being matched by the temperature of air 

supplied to the AHU as depicted in Figure 208. 

Metered data appears bounded 

because near-constant 15°C 

temperature difference between 

preheat coil and cooling coil 

temperature requires elevated 

cooling load 
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Figure 208A: Predicted heating load for Whitehead while experiencing excessive 

preheat fault condition during summer 

 

   
Figure 208B: Alignment factor of heating load for Whitehead while experiencing 

excessive preheat fault condition during summer 
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Figure 208C: Predicted cooling load for Whitehead while experiencing excessive 

preheat fault condition during summer 

 
Figure 208D: Alignment factor of cooling load for Whitehead while experiencing 

excessive preheat fault condition during summer 
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 Using the prediction interval from no-fault data resulted in no points falling 

within range of metered data during winter and a statistically insignificant portion of data 

during summer. Given that excessive preheating causes such a significant alteration of 

both heating and cooling demand, and therefore conditions well outside the trained data 

set, it is expected that a time series NN would not extrapolate well. 

8.1.4    Whitehead Insufficient Outdoor Air 

 Insufficient outdoor air fault presents a unique deviation from the other faults as, 

typically, reducing outdoor air lowers load demand. As shown in Figure 209 and Figure 

210, metered loads are consistently lower than those predicted by the time series neural 

network. Lower energy consumption than expected due to insufficient outdoor air may 

result in lower energy costs but at potential harm to building occupants. Given that this 

fault is the only one that has a direct impact on the health of building occupants, reduced 

building heating and cooling demand should be a red flag for building operators.  
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Figure 209A: Predicted heating load for Whitehead experiencing insufficient 

outdoor air flow fault during winter 

 
Figure 209B: Alignment factor of heating load for Whitehead experiencing 

insufficient outdoor air flow fault during winter 

Overprediction due to 

reduced outdoor air 

usually lowering load  
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Figure 209C: Predicted cooling load for Whitehead experiencing insufficient 

outdoor air flow fault during winter 

 
Figure 209D: Alignment factor of cooling load for Whitehead experiencing 

insufficient outdoor air flow fault during winter 
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 Summer load analysis reveals that metered data is significantly lower than that 

from predicted loads. As with winter, reducing outdoor air decreases energy use but can 

potentially impact occupant health.  

 
Figure 210A: Predicted heating load for Whitehead experiencing insufficient 

outdoor air flow fault during summer 
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Figure 210B: Alignment factor of heating load for Whitehead experiencing 

insufficient outdoor air flow fault during summer 

  
Figure 210C: Predicted cooling load for Whitehead experiencing insufficient 

outdoor air flow fault during summer 
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Figure 210D: Alignment factor of cooling load for Whitehead experiencing 

insufficient outdoor air flow fault during summer 

 Insufficient outdoor air fault test reveals a benefit to model-based fault detection 

and identification. Energy demand is lower for fault conditions, and one may assume this 

building experienced lower load demand rather than from a fault occurring. This test 

highlights the importance of automatic fault detection as some faults such as insufficient 

outdoor air may not result in complaints from occupants or may be missed by energy use 

assessment.  

8.1.5    Whitehead Multiple Faults: Excessive Preheat and Not Entering Unoccupied 

Setback 

 Multiple simultaneous faults are evaluated to determine how compounding 

alterations in load affect predicted load deviations. Given that a time series neural 
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network is bound by the inputs and outputs used while training, it is not possible for the 

neural network to produce a definitive answer for what fault is occurring. Despite this 

limitation, it is still possible to detect a fault due to divergence from metered data. While 

one might expect an enhanced deviation from multiple simultaneous faults, Figure 211 

reveals that concurrent faults produce an additive deviation. On their own, excessive 

preheat and a failure to enter unoccupied setback both produced dramatic deviations from 

predicted load levels; therefore, it comes as no surprise that combining two high-impact 

faults would produce an even greater deviation from metered values.  

   
Figure 211A: Predicted heating load for Whitehead experiencing both excessive 

preheat and a failure to enter unoccupied setback during winter 
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Figure 211B: Alignment factor of heating load for Whitehead experiencing both 

excessive preheat and a failure to enter unoccupied setback during winter 

   
Figure 211C: Predicted cooling load for Whitehead experiencing both excessive 

preheat and a failure to enter unoccupied setback during winter 

Preheat and setback faults 

cause such a severe load 

discrepancy that none fall 

within uncertainty 
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Figure 211D: Alignment factor of cooling load for Whitehead experiencing both 

excessive preheat and a failure to enter unoccupied setback during winter 

 Summer fault detection testing also has a definitive result when both preheat and 

unoccupied setback faults are present. Both of these faults increase heating and cooling 

demand, therefore it is expected that the trained NN would underpredict loading. 
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Figure 212A: Predicted heating load for Whitehead experiencing both excessive 

preheat and a failure to enter unoccupied setback during summer 

  
Figure 212B: Alignment factor of heating load for Whitehead experiencing both 

excessive preheat and a failure to enter unoccupied setback during summer 
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Figure 212C: Predicted cooling load for Whitehead experiencing both excessive 

preheat and a failure to enter unoccupied setback during summer 

 
Figure 212D: Alignment factor of cooling load for Whitehead experiencing both 

excessive preheat and a failure to enter unoccupied setback during summer 
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 Combining multiple high-energy deviation faults reveals how time series NNs are 

only capable of detecting faults, not classification. Figure 211 and Figure 212 may appear 

similar to Figure 207 and Figure 208, but there are two severe faults occurring in this 

most recent test.  

8.1.6    Whitehead Multiple Faults: Excessive Preheat and Excessive Infiltration 

 Excessive preheating and infiltration show additive deviation in Figure 213 

similar to when excessive preheating was coupled with a failure to enter unoccupied 

setback as shown in Figure 211. Additionally, predicted loads were substantially different 

from metered loads, as was the case in the previous section. The final test for Whitehead 

involves two subtle faults, a failure to enter unoccupied setback concurrent with 

excessive infiltration fault. Section 8.1.7 Whitehead multiple faults: excessive infiltration 

and failure to enter unoccupied setback explores how the apparent additive divergence 

can aid in finding multiple points of failure when faults are potentially too subtle to 

individually notice. 
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Figure 213A: Predicted heating load for Whitehead experiencing both excessive 

preheat and excessive infiltration during winter 

  
Figure 213B: Alignment factor of heating load for Whitehead experiencing both 

excessive preheat and excessive infiltration during winter 

Preheat fault dominates and 

alignment factor resembles 

that of just preheat fault 
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Figure 213C: Predicted cooling load for Whitehead experiencing both excessive 

preheat and excessive infiltration during winter 

  
Figure 213D: Alignment factor of cooling load for Whitehead experiencing both 

excessive preheat and excessive infiltration during winter 
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 Both winter and summer analysis reveal how time series NNs tend to “add 

together” the faults that are occurring. 

  
Figure 214A: Predicted heating load for Whitehead experiencing both excessive 

preheat and excessive infiltration during summer 
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Figure 214B: Alignment factor of heating load for Whitehead experiencing both 

excessive preheat and excessive infiltration during summer 

  
Figure 214C: Predicted cooling load for Whitehead experiencing both excessive 

preheat and excessive infiltration during summer 
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Figure 214D: Alignment factor of cooling load for Whitehead experiencing both 

excessive preheat and excessive infiltration during summer 

 Combining excessive preheat with infiltration again produced results similar to 

Figure 208, which only identifies that a fault is occurring. The next section will examine 

how combining two subtle faults may alter time series NN energy prediction. 

Additionally, multiple fault analysis will be conducted by decision tree NN as a method 

of using machine learning to classify and identify faults.  

8.1.7    Whitehead Multiple Faults: Excessive Infiltration and Failure to Enter 

Unoccupied Setback 

 While the previous compound faults have involved excessive preheat, a fault with 

a pronounced increase in load demand, the last combination will involve excessive 

infiltration and a failure to enter unoccupied setback which both produced subtle 
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alterations to loading. When comparing the predicted and metered loads, winter demand 

appears dominated by a failure to enter unoccupied setback, which is evident by the 

sustained underestimation of heating loads during evening and weekend periods as seen 

in Figure 215.  

  
Figure 215A: Predicted heating load for Whitehead experiencing both excessive 

infiltration and a failure to enter unoccupied setback during winter 
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Figure 215B: Alignment factor of heating load for Whitehead experiencing both 

excessive infiltration and a failure to enter unoccupied setback during winter 

  
Figure 215C: Predicted cooling load for Whitehead experiencing both excessive 

infiltration and a failure to enter unoccupied setback during winter 

Majority of divergence 

occurs during 

unoccupied periods 
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Figure 215D: Alignment factor of cooling load for Whitehead experiencing both 

excessive infiltration and a failure to enter unoccupied setback during winter 

Loads deviation during summer in Figure 216 have both excessive heating, which is 

similar to Figure 206, and elevated cooling as depicted in Figure 204 meaning that 

multiple faults tend to act in an additive manner.  
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Figure 216A: Predicted heating load for Whitehead experiencing both excessive 

infiltration and a failure to enter unoccupied setback during summer 

  
Figure 216B: Alignment factor of heating load for Whitehead experiencing both 

excessive infiltration and a failure to enter unoccupied setback during summer 
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Figure 216C: Predicted cooling load for Whitehead experiencing both excessive 

infiltration and a failure to enter unoccupied setback during summer 

 
Figure 216D: Alignment factor of cooling load for Whitehead experiencing both 

excessive infiltration and a failure to enter unoccupied setback during summer 
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Again, it is not possible for a time series neural network to extrapolate the cause 

of a fault without given information about component status and being trained on that 

data. However, fault identification with neural networks will be explored in section 8.3 

Deep learning data classification. 

8.2    Old CE Times Series Fault Detection 

 Old CE presents a more complicated pattern and therefore less accurate neural 

network energy prediction. While NARX neural networks was able to produce excellent 

accuracy on trained data (R2 over 0.98 for heating and cooling load) results for untrained 

weather was less than ideal. Despite a less than desirable result for no-fault data, NARX 

neural network deviation was so small as to be almost imperceivable for all faults aside 

from not entering setback during winter weather. Comparing R2 between faults revealed 

that all but insufficient outdoor air had a higher R2 value for heating load comparison 

than the training data. Cooling meter data was better with only excessive infiltration 

being marginally better fit (0.83 as opposed to 0.81 for no-fault data). These results were 

not satisfactory and therefore more iterations of neural networks for Old CE were 

evaluated.  

 A lack of satisfactory results is a common problem with neural networks; they 

require analysis to determine if a model is adequate. As stated earlier, it is impossible to 

know what the optimal configuration of a network is before comparing the outcomes of 

different models. Numerous different configurations of neurons and delays were tested 

until a configuration was found that had acceptable load prediction when no fault was 

occurring while also displaying significant deviation during faulty operation.  
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 Reducing the number of neurons and delays for nonlinear neural networks did 

slightly increase deviation for the fault of not entering setback and excessive preheat but 

did not substantially increase deviation for infiltration or insufficient outdoor air. Further 

reducing neurons and delays did exacerbate deviation for fault conditions but also 

reduced energy prediction accuracy when no fault was occurring, which left the results 

indistinguishable between no fault and a fault of insufficient outdoor air or excessive 

infiltration occurring. Dramatically increasing node and delay count resulted in no 

statistically significant change in no-fault energy prediction while also not demonstrating 

an increase in deviation when excessive infiltration or insufficient outdoor faults were 

present. While it is possible that an extreme number of nodes and lookback samples may 

have the desired results, 40 nodes with 20 lookback points already took over 8 hours to 

train using parallel computing on over 4000 cores.  

 To simplify comparisons, a 10 neuron and 12 lookback nonlinear input-output 

neural network was used for analysis to more easily compare neural network results to 

those of Whitehead. Results were acceptable but with more deviation than occurred when 

calibrating to Whitehead metered data. Additionally, fault detection tests for all faults but 

insufficient outdoor air were successful.  
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Figure 217A: Hourly heating load comparison of 10 neuron and 12 delay time series 

neural network for Old CE during winter 

  
Figure 217B: Alignment factor of heating load comparison of 10 neuron and 12 

delay time series neural network for Old CE during winter 
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Figure 217C: Hourly cooling load comparison of 10 neuron and 12 delay time series 

neural network for Old CE during winter 

  
Figure 217D: Alignment factor of hourly cooling load comparison of 10 neuron and 

12 delay time series neural network for Old CE during winter 
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 Winter and summer analysis, in Figure 217 and Figure 218 respectively, reveals 

time series NN load prediction demonstrates a broad level agreement with metered data 

while missing on some seemingly random spikes in load. As with Whitehead time series 

NN testing, a balance needed to be found between nominal load accuracy and faulty 

operation deviation. 

  
Figure 218A: Hourly heating load comparison of 10 neuron and 12 delay time series 

neural network for Old CE 
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Figure 218B: Alignment factor of hourly heating load comparison of 10 neuron and 

12 delay time series neural network for Old CE 

  
Figure 218C: Hourly cooling load comparison of 10 neuron and 12 delay time series 

neural network for Old CE 
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Figure 218D: Alignment factor of hourly cooling load comparison of 10 neuron and 

12 delay time series neural network for Old CE 

 Analysis of time series predicted load results depict heating and cooling demands 

that are largely representative of metered data but with some periods of significant 

deviation. NN calibration for fault detection requires a balance of no-fault accuracy and 

limited prediction interval while also not overfitting such that faults are not differentiable 

from no-fault performance.   

8.2.1    Old CE Excessive Infiltration 

 Excessive infiltration was a subtle load to detect in Whitehead, a building without 

evening air flow setback and energy recovery systems. As such, a renovated, low load, 

and energy conscious building such as Old CE is primarily impacted by infiltration by 

altering zone load demand rather than through altering return air properties. Figure 219 
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reveals a decrease in predicted heating demand when compared to metered data for 

winter weather. In section 5.3.1. Old CE Infiltration, revealed that infiltration was a 

subtle but detectable fault when using physics-based simulation, but results are more 

difficult to find exclusively through time series deviation from metered data. 

 

  

Figure 219A: Predicted heating loads for Old CE while experiencing excessive 

infiltration fault condition during winter 
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Figure 219B: Alignment factor of predicted heating load for Old CE while 

experiencing excessive infiltration fault condition during winter 

   
Figure 219C: Predicted cooling load for Old CE while experiencing excessive 

infiltration fault condition during winter 

High divergence due to 

tight uncertainty bounds 

for nominal conditions 
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Figure 219D: Alignment factor of predicted cooling load for Old CE while 

experiencing excessive infiltration fault condition during winter 

 While winter testing has a noticeable deviation in heating load, no statistically 

significant change can be found for summer conditions in Figure 220. Infiltration has a 

relatively low impact on building loads during summer as wind speeds and temperature 

difference between indoor and outdoor air is reduced.  
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Figure 220A: Predicted heating load for Old CE while experiencing excessive 

infiltration fault condition during summer 

  
Figure 220B: Alignment factor of predicted heating load for Old CE while 

experiencing excessive infiltration fault condition during summer 
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Figure 220C: Predicted cooling load for Old CE while experiencing excessive 

infiltration fault condition during summer 

 
Figure 220D: Alignment factor of predicted cooling load for Old CE while 

experiencing excessive infiltration fault condition during summer 
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 Predicted energy demand during an excessive infiltration fault reflected results 

from the SPBM test. Winter conditions produced noticeable deviation from metered data 

while summer results were statistically indistinguishable. It is theorized that winter 

conditions produce more significant demands on zone heating as zone temperature is 

often near the minimum setpoint and that outdoor air would be significantly cooler and 

less humid than interior conditions. Summer outdoor air can be hotter and more humid 

than interior zone temperatures but rarely was a zone at the maximum setpoint 

temperature, so increased infiltration did not produce additional zone cooling demand and 

infiltration therefore would only slightly increase demand at cooling coils. 

8.2.2    Old CE Not Entering Unoccupied Setback 

 Failure to enter unoccupied setback displays significant deviation from metered 

load data. Heating load comparison for winter in Figure 221 revealed an alignment slope 

for linear regression far different from the ideal 1:1 relation.  
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Figure 221A: Predicted heating load for Old CE while a failure to enter unoccupied 

setback fault is occurring during winter 

  
Figure 221B: Alignment factor of predicted heating load for Old CE while a failure 

to enter unoccupied setback fault is occurring during winter 

Clear lack of demand 

from NN time series 

during unoccupied periods 
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Figure 221C: Predicted cooling load for Old CE while a failure to enter unoccupied 

setback fault is occurring during winter 

  
Figure 221D: Alignment factor of predicted cooling loads for Old CE while a failure 

to enter unoccupied setback fault is occurring during winter 

Elevated metered data due to 

increased return air 

temperature and flow rate 

from not entering setback 

Elevated metered data due 

to increased return air 

temperature and flow rate 

from not entering setback 
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 Summer heating alignment factor in Figure 222 has nearly a 1:10 slope, which is 

indicative of modeled underprediction. Because the time series NN was trained under 

nominal conditions, there only difference between training data and unoccupied setback 

data would be changes in electrical use during nights and weekends. Therefore, the NN 

may interpret this change as an increase in cooling demand rather than a need for 

additional heating.  

  
Figure 222A: Predicted heating load for Old CE while a failure to enter unoccupied 

setback fault is occurring during summer 
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Figure 222B: Alignment factor of predicted heating load for Old CE while a failure 

to enter unoccupied setback fault is occurring during summer 

  
Figure 222C: Predicted cooling load for Old CE while a failure to enter unoccupied 

setback fault is occurring during summer 
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Figure 222D: Alignment factor of predicted cooling load for Old CE while a failure 

to enter unoccupied setback fault is occurring during summer 

 Such a significant change in predicted load is attributed to a lack of drop of both 

heating and cooling demand that is associated with unoccupied setback. The NN was 

trained with ‘time of day’ and ‘day of week’ information, so it is possible that the 

network reduced demand during those periods.  

8.2.3    Old CE Excessive Preheat 

 Unsurprisingly, excessive preheating fault has the most significant deviation from 

predicted load demand. Due to the efficiency of Old CE and its HVAC system, both 

heating and cooling loads are noticeably altered from those predicted by the neural 

network for winter test periods in Figure 223. A noticeable shift in cooling and heating 

load occurs when air flow rates increase for occupied times; both heating and cooling 
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demand changes because the 16°C temperature change between preheated air and cooled 

air remains nearly constant while air flow rate substantially increases for occupied 

periods. Noticing differences in how predicted and metered energy behave in relation to 

each other is important when using these results to deduce a plausible fault that may be 

responsible for these changes. 

   
Figure 223A: Predicted heating load for Old CE while experiencing excessive 

preheat fault condition during winter 

Near constant load deviation 

caused by preheat 

temperature setpoint failure 
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Figure 223B: Alignment factor of predicted heating load for Old CE while 

experiencing excessive preheat fault condition during winter 

  
Figure 223C: Predicted cooling load for Old CE while experiencing excessive 

preheat fault condition during winter 
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Figure 223D: Alignment factor of predicted cooling loads for Old CE while 

experiencing excessive preheat fault condition during winter 

 Figure 224 maintains the increase in demand from metered data that was evident 

during winter conditions. As with setback failure testing, the only change to input data for 

the NN would be whatever electrical increase occurs from higher hot and chilled water 

pumping; yet it is impossible to understand how this trained network may interpret this 

change in data due to the nature of neural network structures.  
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Figure 224A: Predicted heating load for Old CE while experiencing excessive 

preheat fault condition during summer 

  
Figure 224B: Alignment factor of predicted heating load for Old CE while 

experiencing excessive preheat fault condition during summer 
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Figure 224C: Predicted cooling load for Old CE while experiencing excessive 

preheat fault condition during summer 

 
Figure 224D: Alignment factor of predicted cooling loads for Old CE while 

experiencing excessive preheat fault condition during summer 
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  The above figures demonstrate how excessive preheating only affects AHU 

heating and cooling demand. NN predicted loads appear to follow a similar transient 

profile as metered data but reduced by a constant value. This behavior is due to preheat 

coils within the AHU heating air well above supply temperature and then cooling coils 

needing to remove the thermal energy that was just added to the supply air. Excessive 

preheat only affecting AHU demand also means that occupants would not be 

uncomfortable and would not file maintenance requests as they might with other faults.  

8.2.4    Old CE Insufficient Outdoor Air 

 Insufficient outdoor air presented a challenge for physics-based fault detection in 

section 5.3.4. Old CE Insufficient Outdoor Air during summer loading with no 

conclusive results being identified while high-efficiency heat recovery was occurring. 

Similar results were displayed in Figure 225 and Figure 226 by the time series neural 

network even though heat recover efficiency was reduced. There is a slight 

underprediction for cooling load, but no confidence of a fault can exist when 92% of data 

points fall within uncertainty bands. While time series neural networks may be unable to 

statistically determine when some faults are occurring, decision trees have been shown to 

be suitable for fault identification and are explored in section 8.3 Deep learning data 

classification. 
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Figure 225A: Predicted heating load for Old CE while experiencing insufficient 

outdoor air fault condition during winter 

  
Figure 225B: Alignment factor of predicted heating load for Old CE while 

experiencing insufficient outdoor air fault condition during winter 

No significant deviation 

due to undetectable 

change in load by NN 
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Figure 225C: Predicted cooling load for Old CE while experiencing insufficient 

outdoor air fault condition during winter 

  
Figure 225D: Alignment factor of predicted cooling load for Old CE while 

experiencing insufficient outdoor air fault condition during winter 
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 As stated above, there is almost no change in metered or predicted loads when 

there is insufficient outdoor air simply due to the high efficiency of the heat recovery 

system that was utilized in the high-fidelity model.  

  
Figure 226A: Predicted heating load for Old CE while experiencing insufficient 

outdoor air fault condition during summer 
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Figure 226B: Alignment factor of predicted heating load for Old CE while 

experiencing insufficient outdoor air fault condition during summer 

  
Figure 226C: Predicted cooling load for Old CE while experiencing insufficient 

outdoor air fault condition during summer 



341 

 

 
Figure 226D: Alignment factor of predicted cooling load for Old CE while 

experiencing insufficient outdoor air fault condition during summer 

 Old CE demonstrated how reliance on deviation from predicted energy demand 

may not always be successful. Additionally, if faulty data is not available in which to test 

a time series neural network, it may be difficult to know if and when a trained NN has 

been overfitted and not deviating when faults are occurring. Future research on time 

series neural networks for building fault detection could include analysis of parameter 

sensitivity manipulation to increase the possibility of divergence for specific faults. 

8.2.5    Old CE Multiple Faults: Excessive Preheating and Failure to Enter Unoccupied 

Setback 

 Combining a failure to enter unoccupied setback with excessive preheat depicts 

the additive property of fault deviation. Continuously elevated loading stems from 

excessive preheat fault while significant changes in load come from the fault of failing to 
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enter unoccupied setback. Figure 223 and Figure 224 displays a near-uniform increase in 

heating demand over predicted load values, which is expected from an excessive preheat 

fault failure. Failure to enter evening setback produces significant deviation from metered 

values only during unoccupied periods, as demonstrated in Figure 221 and Figure 222. 

As expected, both excessive preheating while also not entering unoccupied setback 

produces results that encapsulates the near-constant deviation produced by excessive 

preheating while also demonstrating a more pronounced deviation during unoccupied 

hours, as seen in Figure 227 and Figure 228. 

 

   
Figure 227A: Predicted heating load for Old CE while a failure to enter unoccupied 

setback in addition to excessive preheat faults are occurring during winter 

Metered loads are elevated above 

nominal conditions due to 

preheat fault. Increased 

divergence during unoccupied 

period when compared to NN is 

from setback failure 
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Figure 227B: Alignment factor of predicted heating load for Old CE while a failure 

to enter unoccupied setback in addition to excessive preheat faults are occurring 

during winter 

  
Figure 227C: Predicted cooling load for Old CE while a failure to enter unoccupied 

setback in addition to excessive preheat faults are occurring during winter 
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Figure 227D: Alignment factor of predicted cooling load for Old CE while a failure 

to enter unoccupied setback in addition to excessive preheat faults are occurring 

during winter 

 Similar to Whitehead time series NN multi-fault analysis, Old CE time series NNs 

behave in an additive manner when dealing with multiple faults. Meaning that deviation 

magnitude from each fault combine when multiple faults are present.  
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Figure 228A: Predicted heating load for Old CE while a failure to enter unoccupied 

setback in addition to excessive preheat faults are occurring during summer 

  
Figure 228B: Alignment factor of predicted heating load for Old CE while a failure 

to enter unoccupied setback in addition to excessive preheat faults are occurring 

during summer 
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Figure 228C: Predicted cooling load for Old CE while a failure to enter unoccupied 

setback in addition to excessive preheat faults are occurring during summer 

 
Figure 228D: Alignment factor of predicted cooling load for Old CE while a failure 

to enter unoccupied setback in addition to excessive preheat faults are occurring 

during summer 
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 Combining two faults that each produce significant deviation of predicted demand 

from metered energy, unsurprisingly, resulted in significant portions of predicted demand 

to fall outside metered prediction windows.  Therefore, it is evident that more significant 

changes in metered demand from no-fault training data causes the most severe deviation 

of NN predicted loads. 

8.2.5    Old CE Multiple Faults: Insufficient Outdoor Air and Excessive Infiltration 

Insufficient outdoor air and excessive infiltration both induced subtle alterations 

in differences between predicted and metered loads. Figure 229 displays a similar heating 

rate prediction deviation as Figure 219 displays for excessive infiltration. Likewise, 

winter cooling prediction deviation in Figure 229  matches that of insufficient outdoor 

air, as depicted in Figure 225.  

  
Figure 229A: Predicted heating load for Old CE while experiencing insufficient 

outdoor air in addition to excessive infiltration during winter 
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Figure 229B: Alignment factor of predicted heating load for Old CE while 

experiencing insufficient outdoor air in addition to excessive infiltration during 

winter 

  
Figure 229C: Predicted cooling load for Old CE while experiencing insufficient 

outdoor air in addition to excessive infiltration during winter 

Divergence detected 

despite relatively small 

load impact 
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Figure 229D: Alignment factor of predicted cooling load for Old CE while 

experiencing insufficient outdoor air in addition to excessive infiltration during 

winter 

Summer load prediction deviation in Figure 230 remains statistically insignificant 

despite two faults simultaneously occurring which suggests that load deviation from 

nominal performance needs to be of sufficient magnitude to be detected.  
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Figure 230A: Predicted heating load for Old CE while experiencing insufficient 

outdoor air in addition to excessive infiltration during summer 

  
Figure 230B: Alignment factor of predicted heating load for Old CE while 

experiencing insufficient outdoor air in addition to excessive infiltration during 

summer 
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Figure 230C: Predicted cooling load for Old CE while experiencing insufficient 

outdoor air in addition to excessive infiltration during summer 

 
Figure 230D: Alignment factor of predicted cooling load for Old CE while 

experiencing insufficient outdoor air in addition to excessive infiltration during 

summer 
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 Time series neural networks have demonstrated that they are capable of excellent 

energy use prediction, even during periods and conditions where the network was not 

trained. However, adaptability to suit different occasions is a detriment when fault 

detection is desired; because it is difficult to detect a fault given the limited amount of 

input/output data if modeled loading always closely matches metered results. However, 

time series are not the only use for neural networks; deep learning decision trees have 

been implemented for fault identification in some circumstances. Therefore, trees will be 

investigated to see if they offer an acceptable source of fault detection using neural 

networks.  

8.3    Deep Learning Data Classification 

 While time series NIO neural networks thus far have been shown to be adept at 

energy use modeling, they have struggled with fault detection in some situations. 

However, deep learning decision trees have been shown to be a promising method of 

implementing fault identification through simplified modeling . While time series NNs 

can be used to compare metered and predicted loading to detect faults, decision trees sort 

data to identify faults. The objective of this section is to explore how well decision trees 

worked in comparison to time series neural networks and to SPBM fault identification 

and classification.  

 As stated in the literature review, decision trees can be used to discover patterns 

in data as well as data classification. Time series neural networks and deep learning 

decision trees were trained on a year of data that omitted two weeks from winter and 

summer that are used for testing. Omitting testing periods from training data was done to 

not give an advantage to decision trees by testing faults with the same data that the tree 
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was trained with and was the same time period used for fault detection and identification 

by the SPBM. However, the decision trees were trained with all four potential faults in 

addition to data gathered while no faults were occurring.  

 To understand the process of decision trees, first they are trained on data for all 

operating modes (all four faults as well as non-faulty operation). After training, the NNs 

are fed data for two weeks in winter and two weeks in summer where either one of four 

faults is occurring, or the building is operating as intended. The NN then sorts each hour 

of data into the five potential outcomes and the result with the highest number is 

considered to be the state in which the building is operating. Because two weeks of 

hourly data is being used, a perfect score is 337 (where all 337 discrete hours of operation 

land in the same sorted bin).  

 Whitehead performed rather well in decision tree fault classification test. Winter 

months displayed slightly more convergence towards being identified as the state of the 

building being tested. When comparing the results of summer testing from Table 8 to 

winter testing in Table 7, it is apparent that decision tree fault identification is well suited 

to this level of building complexity. Unfortunately, results from classifying faults from 

Old CE were not as definitive. As a note, it is often desirable to compare results of this 

nature with a confusion matrix which displays classification tests as columns and test 

results in rows; meaning correct classifications fall along the main diagonal of the matrix 

while incorrect classifications fall outside the main diagonal.  
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Table 7: Whitehead winter test fault identification neural network decision tree 

confusion matrix classification. Columns represent different fault identification tests 

while rows show results from tests. The main diagonal of the matrix is where the 

tested fault and predicted fault match (correct data sort) 

 

Test: no 
fault 

Test: 
excessive 
infiltration 

Test: 
failure to 
enter 
unoccupied 
setback 

Test: 
excessive 
preheat 

Test: 
insufficient 
outdoor 
air 

Prediction: no fault 263 33 10 0 31 

Prediction: excessive infiltration 21 275 7 0 6 

Prediction: failure to enter 
setback 20 13 310 0 3 

Prediction: excessive preheat 0 0 0 337 0 

Prediction:  insufficient outdoor 
air 33 16 10 0 297 

 

Table 8: Whitehead summer test fault identification neural network decision tree 

confusion matrix classification 

 

Test: 
no 
fault 

Test: 
excessive 
infiltration 

Test: 
failure to 
enter 
unoccupied 
setback 

Test: 
excessive 
preheat 

Test: 
insufficient 
outdoor 
air 

Prediction: no fault 188 88 10 0 29 

Prediction: excessive infiltration 89 201 3 0 9 

Prediction: failure to enter 
setback 25 17 310 0 12 

Prediction: excessive preheat 0 0 0 337 0 

Prediction:  insufficient outdoor 
air 35 31 14 0 287 

 Multiple simultaneous faults were also analyzed to see how a fault classification 

neural network would handle data outside of its training set. While the fault classification 

tree was trained with all faults individually occurring, multiple simultaneous faults were 
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not part of training. Ideally, either both faults or the most energy-intensive fault would be 

selected. Winter testing resulted in one successful identification when excessive 

infiltration and a failure to enter unoccupied setback occurred, as recorded in Table 9. 

Summer testing in Table 10 was partially successful with at least one of the occurring 

faults being identified for all tests. Additionally, multi-fault testing results suggests that 

whatever fault produces a more significant deviation from nominal load will be given 

classification priority. 

Table 9: Whitehead winter test fault identification neural network decision tree 

confusion matrix classification for multiple simultaneous faults 

 

Test: Excessive 
preheat and not 
entering 
setback 

Test: Excessive 
preheat and 
infiltration 

Test: Excessive 
infiltration and 
failure to enter 
setback 

Prediction: no fault 0 40 23 

Prediction: excessive infiltration 0 9 124 

Prediction: failure to enter 
setback 6 3 179 

Prediction: excessive preheat 95 92 0 

Prediction:  insufficient outdoor 
air 236 194 11 
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Table 10: Whitehead winter test fault identification neural network decision tree 

confusion matrix classification for multiple simultaneous faults 

 

Test: 
Excessive 
preheat and 
not entering 
setback 

Test: 
Excessive 
preheat and 
infiltration 

Test: Excessive 
infiltration and 
failure to enter 
setback 

Prediction: no fault 0 0 17 

Prediction: excessive infiltration 0 0 6 

Prediction: failure to enter 
setback 0 0 290 

Prediction: excessive preheat 337 337 0 

Prediction:  insufficient outdoor 
air 0 0 24 

While Whitehead was able to identify individual faults and some simultaneous 

faults with high accuracy, classification of faults for Old CE resulted in misclassifications 

to exceed correct identifications. Multiple techniques were used to attempt to find an 

optimal solution including principal command analysis, using different data inputs, 

multiple optimization criteria, various misclassification indices, and optimizing past 1000 

iterations. As with SPBM and time series testing, winter data did produce four out of five 

correct results while summer correctly classified three out of five faults: shown in Table 

11 and Table 12 respectively.  
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Table 11: Old CE winter test fault identification neural network decision tree 

confusion matrix classification 

 

Test: no 
fault 

Test: 
excessive 
infiltration 

Test: 
failure to 
enter 
unoccupied 
setback 

Test: 
excessive 
preheat 

Test: 
insufficient 
outdoor 
air 

Prediction: no fault 248 175 25 0 100 

Prediction: excessive infiltration 55 136 1 0 19 

Prediction: failure to enter 
setback 9 0 310 0 4 

Prediction: excessive preheat 0 0 0 337 0 

Prediction:  insufficient outdoor 
air 25 26 1 0 214 

 

Table 12: Old CE winter test fault identification neural network decision tree 

confusion matrix classification 

 

Test: 
no 
fault 

Test: 
excessive 
infiltration 

Test: 
failure to 
enter 
unoccupied 
setback 

Test: 
excessive 
preheat 

Test: 
insufficient 
outdoor 
air 

Prediction: no fault 296 284 1 0 273 

Prediction: excessive infiltration 9 42 0 0 1 

Prediction: failure to enter setback 0 1 336 0 1 

Prediction: excessive preheat 0 0 0 337 0 

Prediction:  insufficient outdoor air 32 10 0 0 62 
 Less efficient heat recovery was tested to see if results were improved similar to 

SPBM fault identification. Overall, results were improved, especially for summer 
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conditions. Table 13 does display a slight decrease in accuracy when no fault is 

occurring, which is accompanied by an increase in false classifications as an excessive 

infiltration fault. However, correct classification when excessive infiltration is occurring 

went up considerably. Table 14 shows 173 of 337 (51%) correct classifications for 

excessive infiltration during summer conditions, a substantial increase of 12% correct 

classifications in Table 12 before heat recovery was adjusted. Similar to the increase in 

accuracy from excessive infiltration, insufficient outdoor air was correctly classified at an 

almost perfect rate of 94%. Both insufficient outdoor air and excessive infiltration are 

primarily low-impact faults that are seen through subtle changes in AHU heating and 

cooling loads. 

Infiltration is a subtle fault to detect as changes to zone demand and return air 

conditions noticeably occur when exterior air conditions are substantially different from 

indoor air conditions and can often be misidentified as an increase in building usage. 

During high-fidelity model calibration, it was identified that Old CE has a relatively low 

level of infiltration; combine an efficient AHU system and detecting a subtle fault 

becomes even more difficult. Although parameter-specific adjustments are not possible 

with a neural network, this demonstrates that a decision tree is capable of being correct in 

a majority of situations when enough training data is available.  

Insufficient outdoor air is an energy load that exclusively affects AHU energy 

demand and has no impact on zone loads for the AHU systems being explored in this 

paper. Whitehead and Old CE do not have CO2 demand control ventilation or dedicated 

outdoor air units; so, the only influence outdoor air flow rate has on energy consumption 

is by altering the mixed air temperature and humidity. Obviously, incoming outdoor air 
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enthalpy approaches that of return air as energy recovery system approaches perfect 

efficiency. At 95% efficiency, there is almost no difference between air leaving energy 

recovery and return air. SPBM fault identification faced similar difficulty during summer 

insufficient outdoor air conditions. Regardless, decision tree neural network was able to 

correctly identify low outdoor air for both winter and summer loading when heat 

recovery was lowered to a more realistic 70%. 

Table 13: Old CE with less efficient heat recovery winter test fault identification 

neural network decision tree confusion matrix classification 

 

Test: 
no 
fault 

Test: 
excessive 
infiltration 

Test: 
failure to 
enter 
unoccupied 
setback 

Test: 
excessive 
preheat 

Test: 
insufficient 
outdoor 
air 

Prediction: no fault 190 104 3 0 11 

Prediction: excessive infiltration 129 221 8 0 9 

Prediction: failure to enter setback 7 0 324 0 0 

Prediction: excessive preheat 0 0 0 337 0 

Prediction:  insufficient outdoor air 11 12 2 0 317 
Table 14: Old CE with less efficient heat recovery summer test fault identification 

neural network decision tree confusion matrix classification 

 

Test: 
no 
fault 

Test: 
excessive 
infiltration 

Test: 
failure to 
enter 
unoccupied 
setback 

Test: 
excessive 
preheat 

Test: 
insufficient 
outdoor 
air 

Prediction: no fault 123 60 1 0 12 

Prediction: excessive infiltration 85 173 0 0 7 

Prediction: failure to enter setback 4 2 336 0 4 

Prediction: excessive preheat 0 0 0 337 0 

Prediction:  insufficient outdoor air 125 102 0 0 314 
 Multiple simultaneous faults for Old CE resulted in classification of whichever 

fault has a higher energy impact. Winter tests resulted in a minimum correct classification 
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percentage of 98.5% while summer was correct at least 87%. When comparing results 

from Table 15 and Table 16 to those of single-fault classifications, it appears that the 

neural network struggles with identifying excessive infiltration but excels at the other 

three faults and will default to whichever of those three faults have the greatest change 

from normal operation.  

Table 15: Old CE with less efficient heat recovery with multiple simultaneous fault 

winter identification neural network decision tree confusion matrix classification 

 

Excessive infiltration and 
insufficient outdoor air 

Test: Excessive preheat and 
failure to enter unoccupied 
setback 

Prediction: no fault 5 0 

Prediction: excessive infiltration 21 0 

Prediction: failure to enter 
setback 0 0 

Prediction: excessive preheat 0 337 

Prediction:  insufficient outdoor 
air 311 0 

 

Table 16: Old CE with less efficient heat recovery with multiple simultaneous fault 

summer identification neural network decision tree confusion matrix classification 

 

Excessive infiltration 
and insufficient 
outdoor air 

Test: Excessive preheat and 
failure to enter unoccupied 
setback 

Prediction: no fault 42 0 

Prediction: excessive infiltration 39 0 

Prediction: failure to enter setback 3 0 

Prediction: excessive preheat 0 337 

Prediction:  insufficient outdoor air 253 0 
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 To conclude the classification tree section, neural network-based fault 

classification is an effective and efficient method of classifying faults for buildings that 

are able to record data under faulty operation. As mentioned before, neural networks are 

poor at extrapolation and because decision trees classify data into bins, classification 

trees require training data for faults that wish to be identified. However, if reliable data 

for faulty operations are available, then decision tree neural networks are a reasonably 

accurate method of fault classification.    

8.4    Conclusion  

 Analysis conducted in this chapter covered how two different time series neural 

networks and a decision tree can be used for automatic fault detection and identification. 

NARX time series demonstrated excellent load prediction but was unable to detect most 

tested faults. NIO time series had similar fault detection results to the SPBM but lacked 

an ability to classify data. Conversely, decision trees are capable of classifying data by 

faults in some situations but require data from faulty building operation in order to be 

properly trained. Therefore, it is recommended that future research investigate combining 

NIO, decision trees, and the SPBM for a potentially all-encompassing fault detection and 

identification package. 
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CHAPTER 9.  NOISE AND IMPERFECT REFERENCE DATA IN 

FAULT DETECTION  

 Given the exact nature of high-fidelity models, a concern that would arise is how 

natural variation from using real-world meters would change comparisons between 

SPBM and reference data. To test variation in metered data, a random ±5% change was 

applied to each point of hourly heating and cooling reference data. Excessive infiltration 

fault identification was chosen for this test as it was the fault with the least amount of 

energy use deviation from normal operation, and therefore, the most difficult fault to 

identify. Figure 231 and Figure 232 reveals no change in parameter identification results. 

While error increased for all test values (which is to be expected), the overall heating and 

cooling reference data still followed an overall pattern of increased load associated with 

increased infiltration. While there may be a point in which sensor or meter miscalibration 

or noise may result in reference data that is no longer useful in fault identification, this 

test demonstrates that the SPBM does not require “prefect” reference data to correctly 

identify a building fault. 
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Figure 231: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults when reference data is noisy. 

Excessive infiltration fault is being tested for automatic detection for Whitehead 

building during winter. 

 

Figure 232: Visual representation of how magnitude of error changes across 

different magnitudes of the four possible faults when reference data is noisy. 

Excessive infiltration fault is being tested for automatic detection for Whitehead 

building during winter 

 Analysis of noisy infiltration data on time series neural network fault detection 

revealed that the primary demand load (heating during winter, cooling during summer) 
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experienced noticeable deviation away from 2σ bounds established for training data. 

Even so, summer deviation was minimal with more than 90% of data falling within 

uncertainty limits, as shown in Figure 233 to Figure 236. Winter deviation of heating load 

demand prediction was more conclusive with nearly 24% of data outside 2σ bands.  

 

Figure 233: Hourly time series neural network predicted heating load and modeled 

heating load for winter while experiencing high infiltration fault and noisy data 
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Figure 234: Scatter plot of time series neural network predicted heating demand 

compared against noisy metered infiltration fault data for winter 

 
Figure 235: Hourly time series neural network predicted heating load and modeled 

cooling load for summer while experiencing high infiltration fault and noisy data 



366 

 

 

 

 
Figure 236: Scatter plot of time series neural network predicted cooling demand 

compared against noisy metered infiltration fault data for summer 

 Fault classification using a neural network with noisy data had significantly 

reduced accuracy when compared to non-noisy training. Winter fault identification failed 

to correctly distinguish between no fault and excessive infiltration fault even 50% of the 

time, results listed below in Table 17. Summer testing resulted in 53% correct prediction 

when infiltration was occurring, but 42% accuracy was achieved under no-fault 

conductions. By evaluating the SPBM fault identification results from Figure 232, neural 

network time series scatter plot from Figure 236, and neural network classification tree 

results in Table 18, it appears that random noise made the decision tree less sensitive to a 

specific infiltration parameter value. As such, a wider range of data can “fall in” to 

infiltration classification.  
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Table 17: Fault classification of noisy no-fault and excessive infiltration fault data 

for wintertime period 

 Test: no fault Test: excessive infiltration 

Prediction: no fault 162 140 

Prediction: excessive infiltration 86 135 

Prediction: failure to enter 
setback 45 33 

Prediction: excessive preheat 0 0 

Prediction:  insufficient outdoor 
air 44 29 

Table 18: Fault classification of noisy no-fault and excessive infiltration fault data 

for wintertime period 

 Test: no fault Test: excessive infiltration 

Prediction: no fault 140 96 

Prediction: excessive infiltration 117 179 

Prediction: failure to enter 
setback 22 14 

Prediction: excessive preheat 0 0 

Prediction:  insufficient outdoor 
air 58 48 
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 All the methods explored were able to either detect or classify a subtle fault using 

building energy data comparison and training. Sensors required to calculate liquid 

thermal energy transfer are easily available with less than 1% variance while air flow 

meters can have an accuracy variance of 3%. Given the above results for the most 

sensitive fault to detect and how fault classification and detection was possible, these 

tests provide reasonable confidence that all tested fault detection and identification 

methods in this paper will be sufficiently able to handle noise with more energy intensive 

faults.  
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CHAPTER 10.  CONCLUSION AND FUTURE PLANS 

 This paper, as proposed, has set out to demonstrate the capabilities of a simplified 

physics-based building energy model in terms of its ability to accurately replicate heating 

and cooling load demand of more sophisticated high-fidelity models. As a similar all-

encompassing simplified physics-based model developed for fault detection does not 

exist for comparison, it was also compared against neural networks, a popular tool for 

minimal parameter building energy prediction and fault detection. By comparing results 

from a high-fidelity model, neural networks, and the SPBM, it was possible to evaluate 

the strengths and weaknesses of the different modeling techniques.  

This thesis set out to answer a number of questions:  

1) Can a SPBM be calibrated to match building performance?  

To briefly summarize, this paper demonstrated that the SPBM is capable of accurate 

building energy load modeling and can obtain similar performance to a high-fidelity 

model once fitted.  

2) Can a neural network also be tuned to match building performance?  

Neural networks are also capable of being trained such that predicted energy demand is 

similar to metered data.  

3) Can either a SPBM or neural network identify building and system faults?  

Fault detection and fault identification of one fault can be achieved by the SPBM and 

NNs as long as there is a sufficient change in metered data.  
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4) Can multiple faults be identified?  

The SPBM and NNs are capable of detecting multiple simultaneous faults. However, 

only the SPBM was able to identify multiple simultaneous faults.  

5) and in which situations are either a SPBM or neural network more suitable? 

Fault detection with a neural network requires a noticeable deviation from nominal 

heating or cooling demand, while also maintaining acceptable accuracy when no fault is 

occurring. Therefore, a SPBM is more suited to general cases when a high-fidelity model 

or metered data under faulty conditions is not available because it is able to mimic 

thermodynamic responses of a building. However, a time series neural network can be 

effective if nominal performance data is available and only fault detection is desired.  

 Future works could explore a number of different topics for SPBM applications 

and improvements. Given the prowess for fault identification and transient response, it 

seems that demand control prediction would be a simple yet effective implementation. 

An improvement to the current SPBM could be a way to further increase computation 

speed. Some promising work was done to dramatically increase simulation speed, but the 

program used for coding (EES) is not suitable for product release. Improvements for 

neural networks could be use of more advanced or custom-made algorithms with 

different parameters or weightings. Research on combining the SPBM with NNs 

presented in this paper for use in increasing fault detection and identification accuracy 

and confidence will also be explored. 

 To summarize, a simplified physics-based building energy model is uniquely able 

to sufficiently represent building energy demands, detect faults, and identify which faults 

are occurring without needing data on how a building reacts when in a faulty situation. 
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While a neural network can accomplish some of the tasks of the SPBM, and at a fraction 

of the time, a reliance on an abundance of training data under different conditions makes 

machine learning an unsuitable replacement for physics-based modeling but rather a 

fantastic supplementation when the training data is available.  

 Overall, the proposed research was conducted with uniform success. The SPBM 

demonstrated an ability to match performance of both real buildings and high-fidelity 

models. Additionally, single faults and multiple simultaneous faults, were able to be 

detected and identified for cases in which a statistically significant change in load 

occured. Likewise, neural network time series and decision tree testing resulted in 

detection or identification of individual and simultaneous faults when sufficient alteration 

of metered load was present. Therefore, it can be said that the results presented in this 

paper achieved the stated goals with sufficient academic rigor.   
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APPENDIX 

A.1    Completed Tasks 

Task  Task title Task description Results and 

expectations 

1 Investigate models 

for opaque walls 

and roofs 

Compared simplified models with existing 

detailed models and identified component 

models that can adequately represent actual 

thermally capacitive walls and roofs. 

Determined required 

inputs to achieve 

acceptable 

agreement with 

sophisticated models 

2 Preliminary 

investigation of 

parameter 

estimation 

methods for 

conductive loads 

Conducted parameter estimation exercise 

for each proposed wall or roof model. 

Found parameters giving least SSE for each 

simplified model when compared with 

detailed model for representative design 

cooling day. 

Discovered that two 

node R-C system is 

sufficient and 

capacitance 

distribution is 

critical 

3 Investigate models 

for fenestration 

Compared simplified models with reflection 

and absorption with existing detailed 

models and identify an adequate 

fenestration model; all solar heat assumed to 

be absorbed in the floor. 

Created acceptable 

radiation model 

4 Develop simplified 

HVAC model  

Incorporated ventilation load, VAV for 

capacity control; coolant modulation to 

maintain specific SA temperature, and 

specified supply air temperature and 

humidity to represent expected 

dehumidification performance for moist air. 

Created baseline 

HVAC system with 

basic temperature 

and humidity control 

5 Thermodynamic 

modeling 

Developed rigorous thermodynamic model 

for building spaces and HVAC systems 

allowing consistent treatment of energy and 

mass conservation and transient effects. 

Confirmed and 

agreement with 

modern models 

6 Include internal 

equipment, 

lighting, and 

people loads 

Internal load modeled based on fractional 

schedules. 

Demonstrated 

adequate internal 

load simplification 

7 Further 

investigation of 

parameter 

estimation 

methods 

Automatically calibrated multiple parameter 

values simultaneously. Using only heating 

and cooling values, parameter value 

estimation was done on HVAC setpoints, 

envelope material properties, maximum 

internal load, and maximum occupancy.  

Successful with 

available algorithm 

and software 
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8 Develop Neural 

Networks with real 

building data 

Trained multiple neural networks with 

various conditions and input parameters to 

find a set of networks that respond well to 

training and output response 

Created a set of 

networks for use in 

building modeling 

 

A.2    Completed Tasks for Presented Thesis 

Task Title Description Results 

1 Create 

detailed 

DesignBuilder 

model of two 

representative 

buildings 

Apply knowledge of schedules and 

internal loads to DesignBuilder 

models. After calibrating the 

DesignBuilder models, outputs will be 

gathered so that the SPBM and NN 

can be trained on this data set.  

 

Models were able to replicate 

heating and cooling metered 

data within 10% error 

2 Simulate 

faults of two 

representative 

buildings with 

DesignBuilder 

models 

Operate DesignBuilder model under 

numerous different faults and fault 

conditions. 

 

Data was generated to mimic 

results expected when buildings 

operate under faulty conditions 

 

3 Refine 

interior air 

and moisture 

model 

Add adjustable internal air 

temperature setpoints to allow for 

internal air temperature changes. 

Explore internal sources of internal 

water vapor and contamination (CO2) 

generation.  

Realistic temperature deadband, 

CO2, and humidity modeling 

for all parts of AHU system  

4 Test SPBM 

fault-

modeling  

Evaluate fault-modeling for fault 

detection effectiveness and impact. 

Develop specifications for optimal 

fault detection methods. 

Methods for detecting and 

identifying faults was 

demonstrated such that a unique 

solution could be found 
5 Identify 

effectiveness 

of NN fault 

detection 

Creation and evaluation of multiple 

NN systems to determine how 

parameters change outputs when a 

building operates with a fault. 

  

Both time series and decision 

tree neural networks were 

evaluated. Results showed that 

these methods are broadly able 

to detect or identify faults in 

conditions where sufficient 

change in loading occurs 
6 Identify 

effectiveness 

of detecting 

multiple 

simultaneous 

faults 

Create multiple faults, possibly 

starting at different times, to see 

which model is better suited for 

identifying multiple simultaneous 

faults. 

All methods were able to detect 

that a fault was occurring when 

multiple simultaneous faults 

were evaluated. However, only 

the SPBM was capable of 
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converging towards a solution 

that identified both faults 
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A.3    Tables  

Table 19: Values for error associated with a corresponding potential fault values 

when running a high-infiltration test for winter weather for Whitehead 

ERROR INFILTRATION 
COEFFICIENT 

MINIMUM 
OUTDOOR 
AIR [kg/s] 

PREHEAT 
TEMPERATURE 

SETBACK 
FAILURE 
COEFFICIENT 

7.48E+17 0.224 4.4 14.1 0.001 

5.68E+17 0.2489 4.4 14.1 0.001 

4.77E+17 0.2738 4.4 14.1 0.001 

4.73E+17 0.2987 4.4 14.1 0.001 

5.59E+17 0.3236 4.4 14.1 0.001 

7.31E+17 0.3484 4.4 14.1 0.001 

9.93E+17 0.3733 4.4 14.1 0.001 

1.34E+18 0.3982 4.4 14.1 0.001 

1.78E+18 0.4231 4.4 14.1 0.001 

2.31E+18 0.448 4.4 14.1 0.001 

1.03E+18 0.224 4.033 14.1 0.001 

1.40E+18 0.224 3.667 14.1 0.001 

1.84E+18 0.224 3.3 14.1 0.001 

2.31E+18 0.224 2.933 14.1 0.001 

2.76E+18 0.224 2.567 14.1 0.001 

2.82E+18 0.224 2.2 14.1 0.001 

2.63E+18 0.224 1.833 14.1 0.001 

2.33E+18 0.224 1.467 14.1 0.001 

1.94E+18 0.224 1.1 14.1 0.001 

8.61E+17 0.224 4.4 16.42 0.001 

3.73E+18 0.224 4.4 18.74 0.001 

9.68E+18 0.224 4.4 21.07 0.001 

1.88E+19 0.224 4.4 23.39 0.001 

3.10E+19 0.224 4.4 25.71 0.001 

4.65E+19 0.224 4.4 28.03 0.001 

6.51E+19 0.224 4.4 30.36 0.001 

8.69E+19 0.224 4.4 32.68 0.001 

1.12E+20 0.224 4.4 35 0.001 

8.67E+17 0.224 4.4 14.1 0.2008 

1.08E+18 0.224 4.4 14.1 0.4006 

1.36E+18 0.224 4.4 14.1 0.6004 

1.72E+18 0.224 4.4 14.1 0.8002 

2.17E+18 0.224 4.4 14.1 1 
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Table 20: Values for error associated with a corresponding potential fault values 

when running a high-infiltration test for summer weather for Whitehead 

SUM 
SQUARED 
ERROR 

INFILTRATION 
COEFFICIENT 

MINIMUM 
OUTDOOR 
AIR [kg/s] 

PREHEAT 
TEMPERATURE 

SETBACK 
FAILURE 
COEFFICIENT 

1.09E+17 0.224 4.4 14.1 0.001 

9.39E+16 0.2489 4.4 14.1 0.001 

8.09E+16 0.2738 4.4 14.1 0.001 

7.47E+16 0.2987 4.4 14.1 0.001 

7.48E+16 0.3236 4.4 14.1 0.001 

7.99E+16 0.3484 4.4 14.1 0.001 

9.11E+16 0.3733 4.4 14.1 0.001 

1.08E+17 0.3982 4.4 14.1 0.001 

1.29E+17 0.4231 4.4 14.1 0.001 

1.58E+17 0.448 4.4 14.1 0.001 

2.02E+17 0.224 4.033 14.1 0.001 

3.45E+17 0.224 3.667 14.1 0.001 

5.40E+17 0.224 3.3 14.1 0.001 

7.85E+17 0.224 2.933 14.1 0.001 

1.08E+18 0.224 2.567 14.1 0.001 

1.43E+18 0.224 2.2 14.1 0.001 

1.83E+18 0.224 1.833 14.1 0.001 

2.28E+18 0.224 1.467 14.1 0.001 

2.78E+18 0.224 1.1 14.1 0.001 

1.09E+17 0.224 4.4 16.42 0.001 

1.09E+17 0.224 4.4 18.74 0.001 

1.11E+17 0.224 4.4 21.07 0.001 

1.90E+17 0.224 4.4 23.39 0.001 

7.59E+17 0.224 4.4 25.71 0.001 

2.12E+18 0.224 4.4 28.03 0.001 

4.66E+18 0.224 4.4 30.36 0.001 

8.60E+18 0.224 4.4 32.68 0.001 

1.40E+19 0.224 4.4 35 0.001 

1.08E+17 0.224 4.4 14.1 0.2008 

1.08E+17 0.224 4.4 14.1 0.4006 

1.07E+17 0.224 4.4 14.1 0.6004 

9.94E+16 0.224 4.4 14.1 0.8002 

9.50E+16 0.224 4.4 14.1 1 
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Table 21: Values for error associated with a corresponding potential fault values 

when running a failure to enter setback test for winter weather for Whitehead 

SUM 
SQUARED 
ERROR 

INFILTRATION 
COEFFICIENT 

MINIMUM 
OUTDOOR 
AIR [kg/s] 

PREHEAT 
TEMPERATURE 

SETBACK 
FAILURE 
COEFFICIENT 

4.12E+18 0.224 4.4 14.1 0.001 

4.07E+18 0.2489 4.4 14.1 0.001 

4.11E+18 0.2738 4.4 14.1 0.001 

4.21E+18 0.2987 4.4 14.1 0.001 

4.38E+18 0.3236 4.4 14.1 0.001 

4.61E+18 0.3484 4.4 14.1 0.001 

4.89E+18 0.3733 4.4 14.1 0.001 

5.25E+18 0.3982 4.4 14.1 0.001 

5.68E+18 0.4231 4.4 14.1 0.001 

6.17E+18 0.448 4.4 14.1 0.001 

4.29E+18 0.224 4.033 14.1 0.001 

4.59E+18 0.224 3.667 14.1 0.001 

5.06E+18 0.224 3.3 14.1 0.001 

5.66E+18 0.224 2.933 14.1 0.001 

6.32E+18 0.224 2.567 14.1 0.001 

6.87E+18 0.224 2.2 14.1 0.001 

7.22E+18 0.224 1.833 14.1 0.001 

7.10E+18 0.224 1.467 14.1 0.001 

6.76E+18 0.224 1.1 14.1 0.001 

4.99E+18 0.224 4.4 16.42 0.001 

1.28E+19 0.224 4.4 18.74 0.001 

2.91E+19 0.224 4.4 21.07 0.001 

5.46E+19 0.224 4.4 23.39 0.001 

8.93E+19 0.224 4.4 25.71 0.001 

1.33E+20 0.224 4.4 28.03 0.001 

1.87E+20 0.224 4.4 30.36 0.001 

2.49E+20 0.224 4.4 32.68 0.001 

3.21E+20 0.224 4.4 35 0.001 

2.90E+18 0.224 4.4 14.1 0.2008 

1.94E+18 0.224 4.4 14.1 0.4006 

1.25E+18 0.224 4.4 14.1 0.6004 

7.70E+17 0.224 4.4 14.1 0.8002 

5.49E+17 0.224 4.4 14.1 1 
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Table 22: Values for error associated with a corresponding potential fault values 

when running a failure to enter setback test for summer weather for Whitehead 

SUM 
SQUARED 
ERROR 

INFILTRATION 
COEFFICIENT 

MINIMUM 
OUTDOOR 
AIR [kg/s] 

PREHEAT 
TEMPERATURE 

SETBACK 
FAILURE 
COEFFICIENT 

4.66E+18 0.224 4.4 14.1 0.001 

4.60E+18 0.2489 4.4 14.1 0.001 

4.54E+18 0.2738 4.4 14.1 0.001 

4.49E+18 0.2987 4.4 14.1 0.001 

4.44E+18 0.3236 4.4 14.1 0.001 

4.40E+18 0.3484 4.4 14.1 0.001 

4.36E+18 0.3733 4.4 14.1 0.001 

4.32E+18 0.3982 4.4 14.1 0.001 

4.29E+18 0.4231 4.4 14.1 0.001 

4.25E+18 0.448 4.4 14.1 0.001 

5.25E+18 0.224 4.033 14.1 0.001 

5.95E+18 0.224 3.667 14.1 0.001 

6.75E+18 0.224 3.3 14.1 0.001 

7.65E+18 0.224 2.933 14.1 0.001 

8.66E+18 0.224 2.567 14.1 0.001 

9.78E+18 0.224 2.2 14.1 0.001 

1.10E+19 0.224 1.833 14.1 0.001 

1.23E+19 0.224 1.467 14.1 0.001 

1.38E+19 0.224 1.1 14.1 0.001 

4.66E+18 0.224 4.4 16.42 0.001 

3.60E+18 0.224 4.4 18.74 0.001 

1.80E+18 0.224 4.4 21.07 0.001 

5.84E+18 0.224 4.4 23.39 0.001 

1.79E+19 0.224 4.4 25.71 0.001 

3.94E+19 0.224 4.4 28.03 0.001 

7.05E+19 0.224 4.4 30.36 0.001 

1.11E+20 0.224 4.4 32.68 0.001 

1.61E+20 0.224 4.4 35 0.001 

3.40E+18 0.224 4.4 14.1 0.2008 

2.22E+18 0.224 4.4 14.1 0.4006 

1.20E+18 0.224 4.4 14.1 0.6004 

4.87E+17 0.224 4.4 14.1 0.8002 

1.66E+17 0.224 4.4 14.1 1 
  



380 

 

Table 23: Values for error associated with a corresponding potential fault values 

when an excessive preheat temperature failure test for winter weather for 

Whitehead 

SUM 
SQUARED 
ERROR 

INFILTRATION 
COEFFICIENT 

MINIMUM 
OUTDOOR 
AIR [kg/s] 

PREHEAT 
TEMPERATURE 

SETBACK 
FAILURE 
COEFFICIENT 

2.52E+19 0.224 4.4 14.1 0.001 

2.47E+19 0.2489 4.4 14.1 0.001 

2.43E+19 0.2738 4.4 14.1 0.001 

2.39E+19 0.2987 4.4 14.1 0.001 

2.35E+19 0.3236 4.4 14.1 0.001 

2.32E+19 0.3484 4.4 14.1 0.001 

2.29E+19 0.3733 4.4 14.1 0.001 

2.26E+19 0.3982 4.4 14.1 0.001 

2.23E+19 0.4231 4.4 14.1 0.001 

2.20E+19 0.448 4.4 14.1 0.001 

2.86E+19 0.224 4.033 14.1 0.001 

3.24E+19 0.224 3.667 14.1 0.001 

3.64E+19 0.224 3.3 14.1 0.001 

4.07E+19 0.224 2.933 14.1 0.001 

4.54E+19 0.224 2.567 14.1 0.001 

5.03E+19 0.224 2.2 14.1 0.001 

5.56E+19 0.224 1.833 14.1 0.001 

6.11E+19 0.224 1.467 14.1 0.001 

6.70E+19 0.224 1.1 14.1 0.001 

2.52E+19 0.224 4.4 16.42 0.001 

2.52E+19 0.224 4.4 18.74 0.001 

2.48E+19 0.224 4.4 21.07 0.001 

1.80E+19 0.224 4.4 23.39 0.001 

9.39E+18 0.224 4.4 25.71 0.001 

2.91E+18 0.224 4.4 28.03 0.001 

6.99E+17 0.224 4.4 30.36 0.001 

5.14E+18 0.224 4.4 32.68 0.001 

1.65E+19 0.224 4.4 35 0.001 

2.51E+19 0.224 4.4 14.1 0.2008 

2.49E+19 0.224 4.4 14.1 0.4006 

2.48E+19 0.224 4.4 14.1 0.6004 

2.44E+19 0.224 4.4 14.1 0.8002 

2.34E+19 0.224 4.4 14.1 1 
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Table 24: Values for error associated with a corresponding potential fault values 

when running an excessive preheat temperature fault test for summer weather for 

Whitehead 

SUM 
SQUARED 
ERROR 

INFILTRATION 
COEFFICIENT 

MINIMUM 
OUTDOOR 
AIR [kg/s] 

PREHEAT 
TEMPERATURE 

SETBACK 
FAILURE 
COEFFICIENT 

5.91E+19 0.224 4.4 14.1 0.001 

5.87E+19 0.2489 4.4 14.1 0.001 

5.83E+19 0.2738 4.4 14.1 0.001 

5.80E+19 0.2987 4.4 14.1 0.001 

5.76E+19 0.3236 4.4 14.1 0.001 

5.73E+19 0.3484 4.4 14.1 0.001 

5.70E+19 0.3733 4.4 14.1 0.001 

5.66E+19 0.3982 4.4 14.1 0.001 

5.63E+19 0.4231 4.4 14.1 0.001 

5.60E+19 0.448 4.4 14.1 0.001 

6.20E+19 0.224 4.033 14.1 0.001 

6.50E+19 0.224 3.667 14.1 0.001 

6.82E+19 0.224 3.3 14.1 0.001 

7.15E+19 0.224 2.933 14.1 0.001 

7.49E+19 0.224 2.567 14.1 0.001 

7.84E+19 0.224 2.2 14.1 0.001 

8.20E+19 0.224 1.833 14.1 0.001 

8.58E+19 0.224 1.467 14.1 0.001 

8.97E+19 0.224 1.1 14.1 0.001 

5.91E+19 0.224 4.4 16.42 0.001 

5.62E+19 0.224 4.4 18.74 0.001 

4.40E+19 0.224 4.4 21.07 0.001 

2.81E+19 0.224 4.4 23.39 0.001 

1.40E+19 0.224 4.4 25.71 0.001 

4.13E+18 0.224 4.4 28.03 0.001 

1.26E+18 0.224 4.4 30.36 0.001 

6.04E+18 0.224 4.4 32.68 0.001 

1.85E+19 0.224 4.4 35 0.001 

5.83E+19 0.224 4.4 14.1 0.2008 

5.69E+19 0.224 4.4 14.1 0.4006 

5.52E+19 0.224 4.4 14.1 0.6004 

5.30E+19 0.224 4.4 14.1 0.8002 

5.08E+19 0.224 4.4 14.1 1 
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 Table 25: Values for error associated with a corresponding potential fault values 

when running an insufficient outdoor air fault test for winter weather for 

Whitehead 

SUM 
SQUARED 
ERROR 

INFILTRATION 
COEFFICIENT 

MINIMUM 
OUTDOOR 
AIR [kg/s] 

PREHEAT 
TEMPERATURE 

SETBACK 
FAILURE 
COEFFICIENT 

5.34E+18 0.224 4.4 14.1 0.001 
6.34E+18 0.2489 4.4 14.1 0.001 

7.46E+18 0.2738 4.4 14.1 0.001 
8.70E+18 0.2987 4.4 14.1 0.001 
1.01E+19 0.3236 4.4 14.1 0.001 
1.15E+19 0.3484 4.4 14.1 0.001 
1.31E+19 0.3733 4.4 14.1 0.001 
1.49E+19 0.3982 4.4 14.1 0.001 
1.67E+19 0.4231 4.4 14.1 0.001 
1.86E+19 0.448 4.4 14.1 0.001 
4.09E+18 0.224 4.033 14.1 0.001 
3.03E+18 0.224 3.667 14.1 0.001 

2.18E+18 0.224 3.3 14.1 0.001 
1.54E+18 0.224 2.933 14.1 0.001 
1.07E+18 0.224 2.567 14.1 0.001 
7.99E+17 0.224 2.2 14.1 0.001 
7.38E+17 0.224 1.833 14.1 0.001 
8.74E+17 0.224 1.467 14.1 0.001 
1.18E+18 0.224 1.1 14.1 0.001 
9.12E+18 0.224 4.4 16.42 0.001 
1.55E+19 0.224 4.4 18.74 0.001 
2.50E+19 0.224 4.4 21.07 0.001 

3.74E+19 0.224 4.4 23.39 0.001 
5.29E+19 0.224 4.4 25.71 0.001 
7.15E+19 0.224 4.4 28.03 0.001 
9.33E+19 0.224 4.4 30.36 0.001 
1.18E+20 0.224 4.4 32.68 0.001 
1.46E+20 0.224 4.4 35 0.001 
5.80E+18 0.224 4.4 14.1 0.2008 
6.47E+18 0.224 4.4 14.1 0.4006 
7.25E+18 0.224 4.4 14.1 0.6004 
8.21E+18 0.224 4.4 14.1 0.8002 
9.40E+18 0.224 4.4 14.1 1 
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Table 26: Values for error associated with a corresponding potential fault values 

when running an insufficient outdoor air fault test for summer weather for 

Whitehead 

SUM 
SQUARED 
ERROR 

INFILTRATION 
COEFFICIENT 

MINIMUM 
OUTDOOR 
AIR [kg/s] 

PREHEAT 
TEMPERATURE 

SETBACK 
FAILURE 
COEFFICIENT 

3.33E+18 0.224 4.4 14.1 0.001 
3.41E+18 0.2489 4.4 14.1 0.001 
3.49E+18 0.2738 4.4 14.1 0.001 
3.57E+18 0.2987 4.4 14.1 0.001 

3.65E+18 0.3236 4.4 14.1 0.001 
3.72E+18 0.3484 4.4 14.1 0.001 
3.81E+18 0.3733 4.4 14.1 0.001 
3.89E+18 0.3982 4.4 14.1 0.001 
3.97E+18 0.4231 4.4 14.1 0.001 
4.05E+18 0.448 4.4 14.1 0.001 
2.66E+18 0.224 4.033 14.1 0.001 
2.10E+18 0.224 3.667 14.1 0.001 
1.65E+18 0.224 3.3 14.1 0.001 
1.32E+18 0.224 2.933 14.1 0.001 

1.11E+18 0.224 2.567 14.1 0.001 
1.01E+18 0.224 2.2 14.1 0.001 
1.03E+18 0.224 1.833 14.1 0.001 
1.17E+18 0.224 1.467 14.1 0.001 
1.42E+18 0.224 1.1 14.1 0.001 
3.33E+18 0.224 4.4 16.42 0.001 
3.43E+18 0.224 4.4 18.74 0.001 
4.72E+18 0.224 4.4 21.07 0.001 
8.45E+18 0.224 4.4 23.39 0.001 
1.50E+19 0.224 4.4 25.71 0.001 

2.49E+19 0.224 4.4 28.03 0.001 
3.81E+19 0.224 4.4 30.36 0.001 
5.44E+19 0.224 4.4 32.68 0.001 
7.39E+19 0.224 4.4 35 0.001 
3.32E+18 0.224 4.4 14.1 0.2008 
3.35E+18 0.224 4.4 14.1 0.4006 
3.48E+18 0.224 4.4 14.1 0.6004 
3.76E+18 0.224 4.4 14.1 0.8002 
4.21E+18 0.224 4.4 14.1 1 
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 Table 27: Values for error associated with a corresponding potential fault values 

when running an excessive infiltration fault test during winter weather for Old CE 

SUM 
SQUARED 
ERROR 

INFILTRATION UNOCCUPIED 
SETBACK 
COEFFICIENT 

PREHEAT 
TEMPERATURE 

MINIMUM 
OUTDOOR 
AIR [kg/hr] 

8.08E+16 0.018 1 12.78 9108 
1.23E+17 0.018 0.8 12.78 9108 
3.38E+17 0.018 0.6 12.78 9108 
8.12E+17 0.018 0.4 12.78 9108 
1.61E+18 0.018 0.2 12.78 9108 

2.84E+18 0.018 0 12.78 9108 
8.08E+16 0.018 1 12.78 9108 
7.31E+16 0.0216 1 12.78 9108 
6.66E+16 0.0252 1 12.78 9108 
6.31E+16 0.0288 1 12.78 9108 
6.29E+16 0.0324 1 12.78 9108 
6.56E+16 0.036 1 12.78 9108 
7.14E+16 0.0396 1 12.78 9108 
8.03E+16 0.0432 1 12.78 9108 
9.22E+16 0.0468 1 12.78 9108 

1.07E+17 0.0504 1 12.78 9108 
1.27E+17 0.054 1 12.78 9108 
8.05E+16 0.018 1 12.78 7950 
8.06E+16 0.018 1 12.78 6791 
7.98E+16 0.018 1 12.78 5633 
7.88E+16 0.018 1 12.78 4475 
7.73E+16 0.018 1 12.78 3317 
7.55E+16 0.018 1 12.78 2158 
7.49E+16 0.018 1 12.78 1000 

9.46E+16 0.018 1 15.24 9108 

1.44E+17 0.018 1 17.7 9108 
1.10E+18 0.018 1 20.16 9108 
2.49E+18 0.018 1 22.62 9108 
4.64E+18 0.018 1 25.08 9108 
7.54E+18 0.018 1 27.54 9108 
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Table 28: Values for cooling demand error associated with a corresponding 

potential fault values when running an excessive infiltration fault test during 

summer weather for Old CE 

SUM 
SQUARED 
ERROR 

INFILTRATION UNOCCUPIED 
SETBACK 
COEFFICIENT 

PREHEAT 
TEMPERATURE 

MINIMUM 
OUTDOOR 
AIR [kg/hr] 

1.19E+17 0.018 1 12.78 9108 
1.05E+17 0.018 0.8 12.78 9108 
1.05E+17 0.018 0.6 12.78 9108 
2.24E+17 0.018 0.4 12.78 9108 
5.60E+17 0.018 0.2 12.78 9108 
1.19E+17 0.018 0 12.78 9108 
1.16E+17 0.018 1 12.78 9108 
1.14E+17 0.0216 1 12.78 9108 
1.11E+17 0.0252 1 12.78 9108 
1.11E+17 0.0288 1 12.78 9108 
1.11E+17 0.0324 1 12.78 9108 
1.12E+17 0.036 1 12.78 9108 
1.14E+17 0.0396 1 12.78 9108 
1.15E+17 0.0432 1 12.78 9108 
1.18E+17 0.0468 1 12.78 9108 
1.19E+17 0.0504 1 12.78 9108 
1.19E+17 0.054 1 12.78 9108 
1.20E+17 0.018 1 12.78 7950 
1.22E+17 0.018 1 12.78 6791 
1.25E+17 0.018 1 12.78 5633 
1.28E+17 0.018 1 12.78 4475 
1.32E+17 0.018 1 12.78 3317 
1.19E+17 0.018 1 12.78 2158 
1.13E+17 0.018 1 12.78 1000 
1.14E+17 0.018 1 15.24 9108 
2.43E+17 0.018 1 17.7 9108 
1.04E+18 0.018 1 20.16 9108 
2.59E+18 0.018 1 22.62 9108 
4.90E+18 0.018 1 25.08 9108 
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Table 29: Values associated CO2-based error minimization for Old CE experiencing 

excessive infiltration during summer weather 

SUM 
SQUARED 
ERROR 

INFILTRATION UNOCCUPIED 
SETBACK 
COEFFICIENT 

PREHEAT 
TEMPERATURE 

MINIMUM 
OUTDOOR 
AIR [kg/hr] 

1.56E+03 0.018 1 12.78 9108 
1.54E+03 0.018 0.8 12.78 9108 
1.53E+03 0.018 0.6 12.78 9108 
1.52E+03 0.018 0.4 12.78 9108 
1.52E+03 0.018 0.2 12.78 9108 

1.52E+03 0.018 0 12.78 9108 
1.56E+03 0.018 1 12.78 9108 
1.18E+03 0.0216 1 12.78 9108 
9.75E+02 0.0252 1 12.78 9108 
9.20E+02 0.0288 1 12.78 9108 
9.98E+02 0.0324 1 12.78 9108 
1.17E+03 0.036 1 12.78 9108 
1.49E+03 0.0396 1 12.78 9108 
1.87E+03 0.0432 1 12.78 9108 
2.33E+03 0.0468 1 12.78 9108 

2.87E+03 0.0504 1 12.78 9108 
3.46E+03 0.054 1 12.78 9108 
1.02E+04 0.018 1 12.78 7950 
3.51E+04 0.018 1 12.78 6791 
9.06E+04 0.018 1 12.78 5633 
2.06E+05 0.018 1 12.78 4475 
4.51E+05 0.018 1 12.78 3317 
1.03E+06 0.018 1 12.78 2158 
2.92E+06 0.018 1 12.78 1000 

1.56E+03 0.018 1 15.24 9108 

1.56E+03 0.018 1 17.7 9108 
1.56E+03 0.018 1 20.16 9108 
1.56E+03 0.018 1 22.62 9108 
1.56E+03 0.018 1 25.08 9108 
1.56E+03 0.018 1 27.54 9108 
1.56E+03 0.018 1 30 9108 
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Table 30: Values for error associated with a corresponding potential fault values 

when running a fault test for not entering unoccupied setback for winter for Old CE 

SUM 
SQUARED 
ERROR 

INFILTRATION UNOCCUPIED 
SETBACK 
COEFFICIENT 

PREHEAT 
TEMPERATURE 

MINIMUM 
OUTDOOR 
AIR [kg/hr] 

1.51E+19 0.018 1 12.78 9108 
1.19E+19 0.018 0.8 12.78 9108 
7.67E+18 0.018 0.6 12.78 9108 

3.86E+18 0.018 0.4 12.78 9108 
1.27E+18 0.018 0.2 12.78 9108 
2.59E+17 0.018 0 12.78 9108 
1.51E+19 0.018 1 12.78 9108 
1.50E+19 0.0216 1 12.78 9108 
1.50E+19 0.0252 1 12.78 9108 
1.50E+19 0.0288 1 12.78 9108 
1.49E+19 0.0324 1 12.78 9108 
1.49E+19 0.036 1 12.78 9108 
1.48E+19 0.0396 1 12.78 9108 

1.47E+19 0.0432 1 12.78 9108 
1.47E+19 0.0468 1 12.78 9108 
1.46E+19 0.0504 1 12.78 9108 
1.45E+19 0.054 1 12.78 9108 
1.51E+19 0.018 1 12.78 7950 
1.51E+19 0.018 1 12.78 6791 
1.51E+19 0.018 1 12.78 5633 
1.51E+19 0.018 1 12.78 4475 
1.51E+19 0.018 1 12.78 3317 

1.51E+19 0.018 1 12.78 2158 

1.51E+19 0.018 1 12.78 1000 
1.51E+19 0.018 1 15.24 9108 
1.50E+19 0.018 1 17.7 9108 
1.45E+19 0.018 1 20.16 9108 
1.31E+19 0.018 1 22.62 9108 
1.70E+19 0.018 1 25.08 9108 
2.77E+19 0.018 1 27.54 9108 
4.53E+19 0.018 1 30 9108 
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Table 31: Values for error associated with a corresponding potential fault values 

when running a fault test for not entering unoccupied setback for summer for Old 

CE 

SUM 
SQUARED 
ERROR 

INFILTRATION UNOCCUPIED 
SETBACK 
COEFFICIENT 

PREHEAT 
TEMPERATURE 

MINIMUM 
OUTDOOR 
AIR [kg/hr] 

8.37E+18 0.018 1 12.78 9108 
6.66E+18 0.018 0.8 12.78 9108 
5.16E+18 0.018 0.6 12.78 9108 
3.41E+18 0.018 0.4 12.78 9108 

1.10E+18 0.018 0.2 12.78 9108 
5.67E+16 0.018 0 12.78 9108 
8.37E+18 0.018 1 12.78 9108 
8.37E+18 0.0216 1 12.78 9108 
8.37E+18 0.0252 1 12.78 9108 
8.38E+18 0.0288 1 12.78 9108 
8.38E+18 0.0324 1 12.78 9108 
8.38E+18 0.036 1 12.78 9108 
8.38E+18 0.0396 1 12.78 9108 
8.38E+18 0.0432 1 12.78 9108 

8.39E+18 0.0468 1 12.78 9108 
8.39E+18 0.0504 1 12.78 9108 
8.39E+18 0.054 1 12.78 9108 
8.37E+18 0.018 1 12.78 7950 
8.37E+18 0.018 1 12.78 6791 
8.37E+18 0.018 1 12.78 5633 
8.37E+18 0.018 1 12.78 4475 
8.37E+18 0.018 1 12.78 3317 
8.37E+18 0.018 1 12.78 2158 
8.37E+18 0.018 1 12.78 1000 

8.37E+18 0.018 1 15.24 9108 
8.37E+18 0.018 1 17.7 9108 
8.27E+18 0.018 1 20.16 9108 
5.62E+18 0.018 1 22.62 9108 
7.52E+18 0.018 1 25.08 9108 
1.64E+19 0.018 1 27.54 9108 
3.21E+19 0.018 1 30 9108 
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Table 32: Values for error associated with a corresponding potential fault values 

when running a fault test for excessive preheat during winter weather for Old CE 

SUM 
SQUARED 
ERROR 

INFILTRATION UNOCCUPIED 
SETBACK 
COEFFICIENT 

PREHEAT 
TEMPERATURE 

MINIMUM 
OUTDOOR 
AIR [kg/hr] 

4.16E+19 0.018 1 12.78 9108 
3.71E+19 0.018 0.8 12.78 9108 
3.23E+19 0.018 0.6 12.78 9108 
2.82E+19 0.018 0.4 12.78 9108 
2.57E+19 0.018 0.2 12.78 9108 

2.56E+19 0.018 0 12.78 9108 
4.16E+19 0.018 1 12.78 9108 
4.11E+19 0.0216 1 12.78 9108 
4.06E+19 0.0252 1 12.78 9108 
4.02E+19 0.0288 1 12.78 9108 
3.98E+19 0.0324 1 12.78 9108 
3.94E+19 0.036 1 12.78 9108 
3.90E+19 0.0396 1 12.78 9108 
3.86E+19 0.0432 1 12.78 9108 
3.82E+19 0.0468 1 12.78 9108 

3.78E+19 0.0504 1 12.78 9108 
3.73E+19 0.054 1 12.78 9108 
4.10E+19 0.018 1 12.78 7950 
4.03E+19 0.018 1 12.78 6791 
3.95E+19 0.018 1 12.78 5633 
3.87E+19 0.018 1 12.78 4475 
3.78E+19 0.018 1 12.78 3317 
3.70E+19 0.018 1 12.78 2158 
3.62E+19 0.018 1 12.78 1000 

4.00E+19 0.018 1 15.24 9108 

3.45E+19 0.018 1 17.7 9108 
2.35E+19 0.018 1 20.16 9108 
1.01E+19 0.018 1 22.62 9108 
1.91E+18 0.018 1 25.08 9108 
5.78E+17 0.018 1 27.54 9108 
6.09E+18 0.018 1 30 9108 
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Table 33: Values for error associated with a corresponding potential fault values 

when running an excessive preheat temperature fault test during summer weather 

for Old CE 

SUM 
SQUARED 
ERROR 

INFILTRATION UNOCCUPIED 
SETBACK 
COEFFICIENT 

PREHEAT 
TEMPERATURE 

MINIMUM 
OUTDOOR 
AIR [kg/hr] 

2.40E+19 0.018 1 12.78 9108 
2.26E+19 0.018 0.8 12.78 9108 
2.12E+19 0.018 0.6 12.78 9108 
1.79E+19 0.018 0.4 12.78 9108 

1.40E+19 0.018 0.2 12.78 9108 
2.40E+19 0.018 0 12.78 9108 
2.38E+19 0.018 1 12.78 9108 
2.37E+19 0.0216 1 12.78 9108 
2.36E+19 0.0252 1 12.78 9108 
2.35E+19 0.0288 1 12.78 9108 
2.34E+19 0.0324 1 12.78 9108 
2.32E+19 0.036 1 12.78 9108 
2.31E+19 0.0396 1 12.78 9108 
2.30E+19 0.0432 1 12.78 9108 

2.29E+19 0.0468 1 12.78 9108 
2.28E+19 0.0504 1 12.78 9108 
2.42E+19 0.054 1 12.78 9108 
2.45E+19 0.018 1 12.78 7950 
2.47E+19 0.018 1 12.78 6791 
2.50E+19 0.018 1 12.78 5633 
2.53E+19 0.018 1 12.78 4475 
2.56E+19 0.018 1 12.78 3317 
2.59E+19 0.018 1 12.78 2158 
2.40E+19 0.018 1 12.78 1000 

2.39E+19 0.018 1 15.24 9108 
2.17E+19 0.018 1 17.7 9108 
1.15E+19 0.018 1 20.16 9108 
3.82E+18 0.018 1 22.62 9108 
3.07E+18 0.018 1 25.08 9108 
9.26E+18 0.018 1 27.54 9108 
2.40E+19 0.018 1 30 9108 
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Table 34: Values for error associated with a corresponding potential fault values 

when running an insufficient outdoor air fault test during winter weather for Old 

CE 

SUM 
SQUARED 
ERROR 

INFILTRATION UNOCCUPIED 
SETBACK 
COEFFICIENT 

PREHEAT 
TEMPERATURE 

MINIMUM 
OUTDOOR 
AIR [kg/hr] 

2.40E+19 0.018 1 12.78 9108 
2.26E+19 0.018 0.8 12.78 9108 
2.12E+19 0.018 0.6 12.78 9108 
1.79E+19 0.018 0.4 12.78 9108 
1.40E+19 0.018 0.2 12.78 9108 
2.40E+19 0.018 0 12.78 9108 
2.38E+19 0.018 1 12.78 9108 
2.37E+19 0.0216 1 12.78 9108 
2.36E+19 0.0252 1 12.78 9108 
2.35E+19 0.0288 1 12.78 9108 
2.34E+19 0.0324 1 12.78 9108 
2.32E+19 0.036 1 12.78 9108 
2.31E+19 0.0396 1 12.78 9108 
2.30E+19 0.0432 1 12.78 9108 
2.29E+19 0.0468 1 12.78 9108 
2.28E+19 0.0504 1 12.78 9108 
2.42E+19 0.054 1 12.78 9108 
2.45E+19 0.018 1 12.78 7950 
2.47E+19 0.018 1 12.78 6791 
2.50E+19 0.018 1 12.78 5633 
2.53E+19 0.018 1 12.78 4475 
2.56E+19 0.018 1 12.78 3317 
2.59E+19 0.018 1 12.78 2158 
2.40E+19 0.018 1 12.78 1000 
2.39E+19 0.018 1 15.24 9108 
2.17E+19 0.018 1 17.7 9108 
1.15E+19 0.018 1 20.16 9108 
3.82E+18 0.018 1 22.62 9108 
3.07E+18 0.018 1 25.08 9108 
9.26E+18 0.018 1 27.54 9108 

 0.018 1 30 9108 
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Table 35: Values for error associated with a corresponding potential fault values 

when running an insufficient outdoor air fault test during summer weather for Old 

CE 

SUM 
SQUARED 
ERROR 

INFILTRATION UNOCCUPIED 
SETBACK 
COEFFICIENT 

PREHEAT 
TEMPERATURE 

MINIMUM 
OUTDOOR 
AIR [kg/hr] 

3.23E+17 0.018 1 12.78 9108 
5.84E+17 0.018 0.8 12.78 9108 
2.14E+18 0.018 0.6 12.78 9108 
5.81E+18 0.018 0.4 12.78 9108 
1.23E+19 0.018 0.2 12.78 9108 
2.27E+19 0.018 0 12.78 9108 
3.23E+17 0.018 1 12.78 9108 
3.19E+17 0.0216 1 12.78 9108 
3.19E+17 0.0252 1 12.78 9108 
3.23E+17 0.0288 1 12.78 9108 
3.33E+17 0.0324 1 12.78 9108 
3.47E+17 0.036 1 12.78 9108 
0.00E+00 0.0396 1 12.78 9108 
3.88E+17 0.0432 1 12.78 9108 
4.16E+17 0.0468 1 12.78 9108 
4.43E+17 0.0504 1 12.78 9108 
4.80E+17 0.054 1 12.78 9108 
2.90E+17 0.018 1 12.78 7950 
2.62E+17 0.018 1 12.78 6791 
2.40E+17 0.018 1 12.78 5633 
2.32E+17 0.018 1 12.78 4475 
2.43E+17 0.018 1 12.78 3317 
2.71E+17 0.018 1 12.78 2158 
3.16E+17 0.018 1 12.78 1000 
3.31E+17 0.018 1 15.24 9108 
7.87E+17 0.018 1 17.7 9108 
3.26E+18 0.018 1 20.16 9108 
1.05E+19 0.018 1 22.62 9108 
2.44E+19 0.018 1 25.08 9108 
4.52E+19 0.018 1 27.54 9108 
7.27E+19 0.018 1 30 9108 

 

  



393 

 

Table 36: Values for error associated with a corresponding potential fault values 

when running an insufficient outdoor air fault test with a less efficient energy 

recovery system during summer weather for Old CE 

SUM 
SQUARED 
ERROR 

INFILTRATION UNOCCUPIED 
SETBACK 
COEFFICIENT 

PREHEAT 
TEMPERATURE 

MINIMUM 
OUTDOOR 
AIR [kg/hr] 

1.10E+18 0.018 1 12.78 9108 
1.15E+18 0.018 0.8 12.78 9108 
1.25E+18 0.018 0.6 12.78 9108 
1.50E+18 0.018 0.4 12.78 9108 

9.51E+18 0.018 0 12.78 9108 
1.10E+18 0.018 1 12.78 9108 
1.11E+18 0.0216 1 12.78 9108 
1.13E+18 0.0252 1 12.78 9108 
1.15E+18 0.0288 1 12.78 9108 
1.17E+18 0.0324 1 12.78 9108 
1.19E+18 0.036 1 12.78 9108 
1.21E+18 0.0396 1 12.78 9108 
1.25E+18 0.0468 1 12.78 9108 
1.27E+18 0.0504 1 12.78 9108 

1.30E+18 0.054 1 12.78 9108 
9.73E+17 0.018 1 12.78 7950 
8.84E+17 0.018 1 12.78 6791 
8.32E+17 0.018 1 12.78 5633 
8.16E+17 0.018 1 12.78 4475 
8.36E+17 0.018 1 12.78 3317 
8.92E+17 0.018 1 12.78 2158 
9.84E+17 0.018 1 12.78 1000 
1.08E+18 0.018 1 15.24 9108 
9.64E+17 0.018 1 17.7 9108 

1.05E+18 0.018 1 20.16 9108 
2.70E+18 0.018 1 22.62 9108 
1.05E+19 0.018 1 25.08 9108 
2.52E+19 0.018 1 27.54 9108 
4.68E+19 0.018 1 30 9108 

 

 

 

 



394 

 

 

Table 37: Values for error associated with a corresponding potential fault values 

when running an insufficient outdoor air fault test while monitoring changes in CO2 

during summer weather for Old CE 

SUM 
SQUARED 
ERROR 

INFILTRATION UNOCCUPIED 
SETBACK 
COEFFICIENT 

PREHEAT 
TEMPERATURE 

MINIMUM 
OUTDOOR 
AIR [kg/hr] 

8.96E+17 0.018 1 12.78 9108 
8.21E+17 0.018 0.8 12.78 9108 

7.99E+17 0.018 0.6 12.78 9108 
8.57E+17 0.018 0.4 12.78 9108 
2.65E+18 0.018 0.2 12.78 9108 

8.02E+18 0.018 0 12.78 9108 
8.96E+17 0.018 1 12.78 9108 
8.96E+17 0.0216 1 12.78 9108 
8.97E+17 0.0252 1 12.78 9108 
9.00E+17 0.0288 1 12.78 9108 
9.04E+17 0.0324 1 12.78 9108 
9.09E+17 0.036 1 12.78 9108 

9.15E+17 0.0396 1 12.78 9108 
9.21E+17 0.0432 1 12.78 9108 
9.29E+17 0.0468 1 12.78 9108 
9.38E+17 0.0504 1 12.78 9108 
9.47E+17 0.054 1 12.78 9108 
8.73E+17 0.018 1 12.78 7950 
8.53E+17 0.018 1 12.78 6791 
8.38E+17 0.018 1 12.78 5633 
8.26E+17 0.018 1 12.78 4475 
8.18E+17 0.018 1 12.78 3317 

8.13E+17 0.018 1 12.78 2158 
8.11E+17 0.018 1 12.78 1000 
8.82E+17 0.018 1 15.24 9108 
7.61E+17 0.018 1 17.7 9108 
8.43E+17 0.018 1 20.16 9108 
2.64E+18 0.018 1 22.62 9108 
1.08E+19 0.018 1 25.08 9108 
2.58E+19 0.018 1 27.54 9108 
4.78E+19 0.018 1 30 9108 
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