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SUMMARY

Many real-world data contain internal relationships. Efficient analysis of these rela-

tionship data is crucial for important problems including genome alignment, network vul-

nerability analysis, ranking web pages, among others. Such relationship data is frequently

sparse and analysis on it is called sparse computation. We demonstrate that the important

technique of data tiling is more powerful than previously known by broadening its appli-

cation space. We focus on three important sparse computation areas: graph analysis, linear

algebra, and bioinformatics. We demonstrate data tiling’s power by addressing key issues

and providing significant improvements—to both runtime and solution quality—in each

area. For graph analysis, we focus on fast data tiling techniques that can produce well-

structured tiles and demonstrate theoretical hardness results. These tiles are suitable for

graph problems as they reduce data movement and ultimately improve end-to-end runtime

performance. For linear algebra, we introduce a new cache-aware tiling technique and ap-

ply it to the key kernel of sparse matrix by sparse matrix multiplication. This technique tiles

the second input matrix and then uses a small, summary matrix to guide access to the tiles

during computation. Our approach results in the fastest known implementation across three

distinct CPU architectures. In bioinformatics, we develop a tiling based de novo genome

assembly pipeline. We start with reads and develop either a graph or hypergraph that cap-

tures internal relationships between reads. This is then tiled to minimize connections while

maintaining balance. We then treat each resulting tile independently as the input to an ex-

isting, shared-memory assembler. Our pipeline improves existing state-of-the-art de novo

genome assemblers and brings both runtime and quality improvements to them on both

real-world and simulated datasets.
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CHAPTER 1

INTRODUCTION

As technology advances and its use increases, today’s datasets are experiencing dramatic

increases in size. Much of this data consist of relationships between entities [130]. Effi-

cient analysis of these relationships is key to understanding and making decisions on areas

including genome alignment [87], finding shortest paths [156], mining communities [2],

ranking web pages [117] and more [14, 19, 3].

Given n entities, the number of possible relationships is n2 or more. However, in nu-

merous cases the actual number of known or non-trivial relationships is much less than n2.

This type of data is known as sparse and analysis on it is called sparse computation. In

this dissertation, we bring significant improvements through data tiling to three important

areas of sparse computation: graph analysis, linear algebra, and bioinformatics, showing

that data tiling is more powerful than previously known. In graph analysis, we theoreti-

cally enable heuristics for a data tiling technique that is well-suited for graph algorithms.

The enabled techniques provide fast heuristics to perform the tiling which bring end-to-end

runtime improvements to kernels such as triangle counting. In linear algebra, we propose a

cache-aware data tiling approach which uses a small summary matrix to guide tile access.

We show that this provides the fastest known sparse matrix multiplication algorithm on

CPUs. In bioinformatics, we develop a de novo genome assembler pipeline that uses data

tiling to group together input data, and each tile is then passed to an independent assem-

bler. This pipeline provides both runtime improvements, as each assembler operates on

a reduced amount of data, as well as solution quality improvements, as each tile contains

input data that is easier to assemble and so improves the independent assemblers’ results.

In the following, we first describe the three key areas that we address, then describe

data tiling, and finally introduce our work.

1



1.1 Sparse Computational Issues

1.1.1 Graph Analysis

Given relationship data, graph analysis forms a graph with entities mapped to vertices

and relationships between entities mapped to edges and then extracts information from the

graph using graph algorithms and theories [49]. Efficient graph algorithm implementations

have been widely studied [62, 153, 21, 45, 149]. Recently, it has been shown that tile-based

formulations of graph algorithms can reduce data movement which then increases runtime

performance [153, 21, 147, 149]. In a tile-based approach, the computation of graph algo-

rithms can be partitioned into independent tasks where each task requires a limited amount

of memory. This becomes a natural fit to heterogeneous architectures, which are increas-

ingly popular, for example with a compute node on a cluster equipped with both CPUs and

GPUs. Tile-based approaches that build on symmetric rectilinear tiling are effective as they

limit communication between tiles for a variety of graph algorithms [152, 150]. However,

there was a lack of effective and efficient symmetric rectilinear tiling algorithms. A more

general problem, the rectilinear tiling problem, has been shown to be NP-hard [64], but

the asymptotic complexity class of the symmetric rectilinear tiling problem was previously

unknown, resulting in a split focus between developing exact and developing heuristic al-

gorithms.

1.1.2 Sparse Linear Algebra

Sparse linear algebra treats the relationship data as matrices with rows and columns rep-

resenting entities and non-zeros in the matrix representing relationships, and applies linear

algebraic operations to uncover information about the data. A powerful part of linear al-

gebraic approaches is that many complex operations can be carried out by the combined

applications of only a few computational kernels. We focus on the fundamental kernel of

matrix multiplication. Given the irregular memory access patterns, it is valuable to sepa-

2



rate multiplication out into different problems based on the sparsity and dimensions of the

inputs: sparse matrix and dense vector is known as SpMV, sparse matrix and dense matrix

is SpMM, and sparse matrix and sparse matrix is SpGEMM.

We focus on SpGEMM, as it is particularly challenging involving two sparse matrices

and frequently becomes the performance bottleneck for its applications, including alge-

braic multigrid methods [11] and Markov clustering algorithms [8]. The challenges in

SpGEMM has motivated continuous study towards its parallel optimization [118, 41, 99,

41, 20, 39]. Existing parallel SpGEMM algorithms on CPUs largely build on Gustavson’s

algorithm [67] which avoids unnecessary multiplications that would involve zero elements.

Gustavson’s algorithm achieves an asymptotic complexity of the number of non-trivial mul-

tiplications in the algorithm.

In Gustavson’s algorithm, the key operation is merging multiple sparse rows from the

second input matrix. To merge, either an array of the row’s length [67, 41] or a hash

map [41, 110] is used. The former, also called a dense accumulator [41], performs better

than hash maps, due to the reduced overhead, but it suffers from high memory use and

cache misses when the matrix size grows or the matrix is highly sparse. The latter, called a

sparse accumulator [41], can scale but is slowed down by expensive collision operations.

A solution that doesn’t require high memory use and doesn’t suffer from expensive collision

operation is needed to further optimize SpGEMM performance.

1.1.3 Bioinformatics

Genome assembly is the bedrock of modern biology [61]. Genome assembly consists of

reconstructing a genome from a set of smaller sequenced fragments. Numerous biological

phenomena can be explained or discovered through this process, such as genetic disor-

ders [29, 33], complex proteome generation [103], functions of gene products [143], and

biological evolution [127]. Genome assembly can be classified as de novo genome assem-

bly and reference-guided assembly [61]. De novo genome assembly is a more difficult

3



problem since it starts from scratch while reference-guided assembly assembles reads with

the guidance of the reference genome. Many de novo genome assemblers have been de-

veloped [120, 31, 80, 94, 141]. All known assemblers start by generating relationship

data—commonly represented as graphs—and then produce longer genome fragments us-

ing the relationships. The small sequenced input fragments, which are called reads, are

unordered, which is the primary reason for the problem’s challenge. Different de novo

genome assemblers vary in part based on how they use information about reads ordering

and orientation along the target genome (henceforth abbreviated as OO), and at what stages

of their algorithm they try to infer this information. Eulerean assemblers [32, 105, 121] are

built based on de Bruijn graphs. In a de Bruijn graph, each vertex is a k-mer—a k-length

fragment of an input read—and two vertices connected if the corresponding k-mers are

overlapped by a (k − 1) length sequence. Only until the end of the assembly pipeline, the

reads OO information is inferred. The more traditional overlap-layout-consensus (OLC)

assemblers [97, 105, 125] are more explicit in trying to generate the OO information. In

the overlap phase, reads are aligned against each other to generate a read layout. However,

the overlap phase is the most expensive step in OLC assemblers, so the OO information

tends to not be available until the later stages of the assembly. The effect of having a partial

ordering of reads available in the early stage of or before assembling is still unknown.

In this dissertation, we address these three problems with data tiling to produce state-

of-the-art results, either in runtime performance or solution quality.

1.2 Data Tiling on Sparse Matrices

Sparse matrices are matrices where most elements in the matrix are zero. Many relationship

data can be represented as sparse matrices. For example, graphs can be represented as

sparse matrices where rows and columns represent the vertices and non-zeros represent

edges between vertices. Figure 1.1a and Figure 1.1b show the graph and sparse matrix

form for the neural connection data of the Drosophila fly respectively. In the graph form,
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(a) Graph form (b) Sparse matrix form

Figure 1.1: Drosophila neural connection data

data elements are typically shown as circles and relationships as lines between them, and

in the matrix form each data element is either a row or a column and a non-empty spot at

the intersection of a row and column represents the relationship. Note that the ‘line’ in the

middle of the matrix in Figure 1.1b maps to a vertex connecting with a large number of

vertices. These forms are identical, and it is useful to move between the two depending

on the situation: for example, with data tiling, a matrix representation is typically more

intuitive.

Data tiling is an assignment of data into different partitions. More specifically, in a

matrix, a tile is defined as the intersection of two intervals, one of row and one of columns

as shown with an example in Figure 1.2a. Data tiling is partitioning the matrix into tiles;

that is, each pair of tiles is disjoint, and the union of all tiles covers the entire matrix, as

shown in Figure 1.2b.

There are two primary categories of data tiling approaches: ones without relabeling or

reordering of the matrix and ones with. Tiling without allowing for reordering is called

spatial tiling and tiling with reordering is called general tiling. We introduce each in more

details in the following.
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(a) An example of a tile (b) Tiling

Figure 1.2: An example of tiling

(a) 1D Uniform (b) 2D Uniform (c) 2D Rectilinear (d) 2D Jagged

Figure 1.3: Spatial tiling examples

1.2.1 Spatial Tiling

Spatial tiling divides a matrix into tiles, which are regions of the matrix that are an inter-

section of a row interval and a column interval. The full matrix is not modified, e.g., no

reordering occurs. Figure 1.3 shows four example spatial tiling approaches. Figure 1.3a

and Figure 1.3b are 1D and 2D uniform/Cartesian tiling, where rows and columns are par-

titioned evenly such that all tiles formed are the same size (supposing the matrix is evenly

divisible). Figure 1.3c shows rectilinear tiling, where rows and columns are partitioned but

without any restrictions, such as being uniform. In Jagged tiling, as shown in Figure 1.3d,

the matrix is first partitioned along one dimension and then each part is partitioned inde-

pendently along the another dimension.
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(b) General

Figure 1.4: By tiling on the Tina AskCog matrix, we compare spatial tiling and general
tiling in terms of load imbalance minimization. The dotted lines represent the partition of
rows and columns. The goal is to minimize the maximum number of non-zeros among all
tiles which can be used for minimizing load imbalance. Spatial tiling and general tiling
achieve that as 10 and 9 (optimal) respectively.

1.2.2 General Tiling

In general tiling, the matrix can be relabeled during the tiling process. Note that this differs

from relabeling the matrix as a pre-processing step before tiling. By allowing relabeling,

more flexibility is given for general tiling and thus better results and more complex goals

can be achieved.

Comparing with spatial tiling

We show the advantages of general tiling over spatial tiling through tiling on an example

matrix in Figure 1.4 and Figure 1.5. In both cases, we tile the sparse matrix, Tina AskCog,

which stores the communication interactions between ministers and advisers at the Univer-

sity in Ljubljana [52] and contains 11 rows and columns and 36 non-zeros entries (interac-

tions).

First, we show that better tiling results can be achieved through general tiling in Fig-

ure 1.4. For a fair comparison both spatial tiling and general tiling tile the matrix rectilin-

early into 2 × 2 tiles. A common optimization goal of tiling is to minimize the maximum

7



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

1 2 3 4 5 6 7 8 9 10 11 

(a) Spatial

2 
4 
6 
7 
8 
11 
1 
3 
5 
9 

10 

4 6 7 8 9 11 1 2 3 5 10 

(b) General

Figure 1.5: By tiling on the Tina AskCog matrix, we compare spatial tiling and general
tiling in communication minimization. The goal here is to minimize the maximum number
of rows that have non-zeros across different tiles while maintaining the balance of non-
zeros among tiles which can be used for minimizing communication cost. While keeping
the tiles balanced, the number of such rows in spatial tiling and general tiling are 9 and 4
respectively .

number of non-zeros among all tiles, which in practice can then be used to produce compu-

tationally load balanced tiles [152, 150, 113]. Figure 1.4a shows the optimal spatial tiling

tiling, which has a maximum non-zero count of 10 as both the top two tiles have 10 non-

zeros and the bottom two tiles have 8 non-zeros. Figure 1.4b shows that general tiling can

achieve the optimal result with all tiles containing 9 non-zeros. It achieves this by tiling the

matrix as in Figure 1.4a, but moving the 2nd row down (highlighted in red).

Then we show that general tiling can work effectively for more complicated optimiza-

tion tasks in Figure 1.5. Here, we partition the matrix into 1 × 2 tiles. The goal is to

minimize the number of rows that have non-zeros in both tiles, while also maintaining the

balance of the numbers of non-zeros among column partitions. This problem simulates

the communication minimization while balancing the computational load for distributed

sparse matrix dense vector multiplication [27]. In this problem, given the tiling result, each

tile of the matrix is assigned to a different machine, elements in the input dense vector

are assigned to machines based on the assignment of the according columns, and elements

in the output dense vector are assigned to any of the machines where the corresponding
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rows of the matrix have non-zeros. After tiling, each row has non-zeros in t different tiles

which represents the communication of t − 1 data elements. Each non-zero represents a

multiplication of two values. Figure 1.5a shows spatial tiling results. It achieves the goal

of balancing the computation cost (as both tiles have 18 non-zeros), but the communica-

tion cost is 10. In Figure 1.5b, tiling with general tiling, we have a communication cost

of only 4 and the numbers of multiplications on the two tiles are also balanced. This gen-

eral tiling result is achieved through a important kind of general tiling, connectivity-based

tiling, which is also the focus of this dissertation for general tiling.

Connectivity-based tiling

For connectivity-based tiling, the sparse matrix is treated as a graph or hypergraph or bipar-

tite graph [70, 142, 25]. It partitions the rows or/and columns with non-zeros representing

the connections between rows and columns. Rows and columns that are more connected

tend to be partitioned into same part as connectivity-based tiling optimizes to reduce the

connections among different parts. Figure 1.5b shows a tiling result from a connectivity-

based tiling tool PaToH [24]. In this example, columns are partitioned and the rows repre-

sent the connections among columns. While maintaining the number of non-zeros in each

column part balanced, PaToH optimizes to reduce the number of rows that connects both

column parts, which are 4 in this case, including rows {5, 6, 8, 9}.

1.2.3 Data Tiling Applications

Spatial tiling preserves the natural order of matrices and thus the inherent locality of the

original matrix can be kept. Compared with connectivity-based tiling, spatial tiling is also

computational inexpensive, for example, uniform tiling only takes O(1). Spatial tiling has

been widely used for parallel load-balancing of dense linear algebra [93, 72, 140], graph

analysis [152, 150], and applications requiring geometric locality of data (particle methods,

crash simulations) [40].
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Compared with spatial tiling, connectivity-based tiling is more computational intensive

but has more flexibility and thus more powerful expressive ability. It can be directly used to

speedup graph algorithms, for example by increasing graph algorithms’ memory accessing

locality [144]. It can also be used to model and solve problems, such as clustering [135,

43], reducing data replication [36, 23], computational balance and communication mini-

mization of sparse matrix dense vector multiplication [27, 16], data aggregation operations

on scientific datasets [28], and SpGEMM [10, 1].

Data tiling has been a important technique for high performance computing as it in-

creases data locality, limits data communication, and balances load/data [93, 72, 140].

However, applying tiling on sparse computation stays a difficult problem due to the irreg-

ularity of sparse matrices. There have been fewer successes in applying tiling on sparse

computation compared with applying tiling on dense computations [93, 72, 140]. In this

dissertation, with careful choices and design, we take advantage of the power of data tiling

to achieve state-of-the-art results on sparse computation problems.

1.3 Dissertation Overview

In this dissertation, we focus on solve sparse computation problems with data tiling. We

first prove the complexity of a spatial tiling problem, symmetric rectilinear tiling, and come

up with effective and efficient heuristics for it [151]; we then use spatial tiling and gen-

eral tiling techniques on SpGEMM [4] and de novo genome assembly [60] respectively to

achieve start-of-the-art results on both problems.

1.3.1 Symmetric Rectilinear Tiling

Symmetric rectilinear tiling is a special case of rectilinear tiling (shown in Figure 1.3c),

where the partitionings on rows and cols are restricted to be the same (hence symmet-

ric). Symmetric rectilinear tiling has shown to be well suited for graph analysis [152,

150]. The optimal rectilinear tiling problem was shown to be NP-hard by Grigni and
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Manne [64] but the complexity of symmetric rectilinear matrix tiling was unknown prior to

this work. In this dissertation, we show that the optimal symmetric rectilinear tiling prob-

lem is also NP-hard. We define two variants of the symmetric rectilinear tiling problem

and we propose refinement-based and probe-based tiling heuristics to solve these prob-

lems. Refinement-based heuristics [101, 113] apply a dimension reduction technique to

map the two-dimensional problem to one dimension and compute a partition vector on one-

dimensional data by running an optimal partitioning algorithm [113, 123]. Probe-based al-

gorithms compute the partition vector by seeking the best cut for each point. Experiments

on a dataset of small sparse matrices show that our heuristics achieve optimal results in

80% of the cases. An extensive performance evaluation of the proposed algorithms in dif-

ferent settings, on more than six hundred real-world matrices, shows the effectiveness of

our heuristics. See Chapter 3 for more details.

1.3.2 CSeg

Utilizing spatial tiling, we propose a new SpGEMM algorithm, CSeg, standing for Column-

Segmented SpGEMM. CSeg is the first SpGEMM algorithm that doesn’t require high

memory use or expensive collision operations for the core SpGEMM operation, sparse

rows merging. For an SpGEMM operation C = A×B, the main idea of CSeg is to evenly

partition the columns of B so that the merging operations for rows of B can be done on a

array that requires low memory use and doesn’t have collisions. In particular, we do the

following. First, we evenly partition the columns ofB, such that the array used for merging

for each partition can fit in cache. The partitioned structure of B is stored in a new sparse

matrix, which we denote as S. In S, each nonzero represents the existence of a partition

in a given row of B, which we call a segment. While merging rows of B, we first merge

rows of S to identify which segments are to be merged in B. We then merge each such seg-

ment separately with a small array. Extensive experiments show that our algorithm is the

state-of-art SpGEMM algorithm on CPUs. Chapter 4 introduces this work more in details.
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1.3.3 BOA

With input reads partitioned through general tiling, we explore the affect of having a partial

ordering of reads available before assembly for the genome assembler.

The core hypothesis is that with a carefully designed partitioner, reads that are closer

together in the reference genome have higher chance to be partitioned into the same part.

We introduce a parallel assembly framework, BOA, that makes use of general tiling. In

the BOA framework, reads are partitioned with a (hyper)graph partitioner, and each indi-

vidual part is then independently assembled. This allows the use of any standalone (off-

the-shelf) assembler of choice. With reads partitioned through a (hyper)graph partitioner

before the assembly process, we make the partial ordering of reads available and enable the

parallelism of assembling on the parts. Experimental results shows that our tiling-based

implementation can not only bring runtime performance improvements for the standalone

assemblers but also increases the assembly quality consistently under several qualitative

measures. BOA is further described in Chapter 5.

Genome assembling has been relying on short-reads, 100bp to 350bp and BOA is also

developed for short-reads. However, given the limited length, short-reads assembly cannot

resolve certain structural issues, such as repeats. With the advancements of read sequencing

technologies, long-reads (> 10Kbp) are available and help reduce the assembly challenge

by bringing more structural information. In this dissertation, we also explore the effect

of tiling on noisy long-reads genome assembly. We do so by tiling simulated long-reads

into parts based on where the reads are sampled from. Then each part is assembled inde-

pendently. We evaluate this in both the quality and runtime, against assembly directly on

the full read set. Experiments show that for quality, there are improvements when there is

enough space to improve upon from assembly from the full read set directly, for example,

when the largest alignment is not very close to the largest chromosome. For runtime, a lin-

ear assembly runtime speedup is observed in the experiments as the read set size decreases.
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1.4 Dissertation Outline

In this dissertation we show that the important technique of data tiling is more power-

ful than previously known by broadening its application space. We demonstrate this on

three key issues on important sparse computation areas: graph analysis, linear algebra, and

bioinformatics. We show that tiling can provide significant improvements—to runtime and

solution quality.

The remainder of this dissertation is structured as follows. In Chapter 2, we introduce

the preliminaries used throughout the work, and provide an overview of data tiling. In

Chapter 3, we fill out the missing methodologies on a spatial tiling, symmetric rectilinear

tiling. In Chapter 4 we apply spatial tiling on sparse matrix sparse matrix computation. In,

Chapter 5 we apply general tiling on de novo genome assembly. Finally, in Chapter 6 we

conclude this dissertation.
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CHAPTER 2

PRELIMINARIES AND NOTATIONS

In this chapter, we introduce the preliminaries and notations used in this dissertation. We

first describe sparse matrix and graph, the common storage format and the importance

and challenges of sparse computation. Then, we introduce the two data tiling categories.

Finally, we introduce the applications we focus on in this dissertation.

2.1 Sparse Matrix and Graph

2.1.1 Graph

Graph is an intuitive way of representing relationship data. Classic problems have evolved

from graphs, such as travel sales man problem, shortest path, community detections and

more. A long history of theory and algorithm developments have done on graphs [136, 13,

15, 117, 145, 49, 85, 68, 17].

Formally, a undirected graph G = (V , E) is defined by a set of vertices V and a set of

edges E . An edge ei,j is a pair of distinct vertices, i.e. eij = {vi, vj} , vi, vj ∈ V , i 6= j. The

degree di of a vertex vi is defined as the number of edges incident to that vertex. Figure 2.1a

shows an example graph.

2.1.2 Sparse Matrix

Sparse Matrices are matrices with most of its values as zero. It naturally represents relation-

ship between entities. Graphs can be represented as sparse matrices as well. Figure 2.1a

shows an example graph and a matrix form of this graph is shown in Figure 2.1b, where

different colored edges represent different type of connections. Note that a graph can have

|2V|! different sparse matrices representation based on how vertices are mapped to the
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Table 2.1: Sparse Matrix and Storage Symbols

Symbols Definitions

A(i, :) the ith row of matrix A
A(:, j) the jth column of matrix A
|A(i, :)| the number of nonzeros in the ith row of A
4 (A) the maximum number of nonzeros in a row of matrix A, i.e.,

maxi |A(i, :)|
A(i, j) the value at ith row and jth column in A

Symbols for the CSR format

A.n the number of rows
A.m the number of columns
A.z the number of nonzeros

A.rowI A.n+1 length, storing beginning position for each row inA.cols,A.vals
A.cols A.z length, column indices for each nonzero
A.vals A.z length, values on each nonzero

1 3

4

2

5

(a) An example graph

1
2
3
4
5

1 2 3 4 5

(b) The sparse matrix

0 2 5 8 8 10

3 2 1 5 3 5 2 1 2 3

(c) The CSR storage

Figure 2.1: An example graph with its sparse matrix form and its CSR storage

rows/columns. Represented as sparse matrices, graphs can have linear algebra operations

applied for high performance computation, such as sparse matrix vector multiplication can

be then used for shorted path problem, pagerank and other algorithms.

In this dissertation, we use symbols, A,B,C, to represent a sparse matrix. We use A.n,

A.m and A.z to represent the number of rows, columns and nonzeros, respectively, for the

matrix A. An element in the i-th row and j-th column of the sparse matrix A is represented

as A(i, j). A(i, :) and A(:, j) represent the i-th row and the j-th column of B respectively.

The symbols for the sparse matrix is summarised in Table 2.1.
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2.1.3 Storage Format

Compressed sparse row format, CSR, is a commonly used sparse matrix storage format.

A A.n × A.m sparse matrix with A.z nonzeros is stored using an array of size A.n + 1

(A.rowI) and two arrays of size A.z (A.cols, A.vals). Figure 2.1c shows the CSR format

of the example matrix in Figure 2.1c. In CSR format, non-zeros are partially ordered by

row indices and stored in A.cols, A.vals. A.cols and A.vals store the non-zeros’ column

index and the non-zero values respectively. A.rowI stores the starting and ending position

for each row in A.cols, A.vals as shown with pointers in Figure 2.1c. Table 2.1 lists the

symbols used in this work to present CSR. In this work, if not mentioned otherwise, all

sparse matrices are stored in CSR, format.

2.1.4 Sparse Computation

A recent survey founds out that sparse matrices become more and more common, espe-

cially ones with billions of non-zeros [130], such as transaction graphs [126], and social

network [109]. Analysis on these sparse matrices can give important insight. Examples

are: cycle detections on transactions has been used for fraudulent activities detection [126];

sparse matrix sparse matrix multiplication has shown to be a key operation in genome anal-

ysis [48] and a classic approach for link prediction [102].

Compared with dense matrix computation, more challenges appear in the sparse one

due to the structure irregularity:

• Irregular memory access: a common pattern of sparse computation is accessing unad-

jacent rows, which are frequently far from each other. This irregular memory access

causes cache misses and inefficient memory loading in shared memory system and

high communication cost in distributed system.

• Computation imbalance: in sparse matrices, the number of non-zeros among rows,

or tiles can vary and the differences change based on the type of matrices. This leads

16



to the imbalance of parallel computation. Dynamic scheduling is frequently used but

it comes with extra overhead and won’t solve the issues when extreme imbalance

appears.

• Communication overhead: due the structure irregularity, it is difficult to partition data

to minimize and balance communication while keeping the computation balanced in

distributed environments. Carefully designed partitioning tools are needed in this

case to minimize communication. However, those tools can be expensive and the

cost of partitioning is not always amortized.

Those challenges have attracted numerous and continuous attention in academia to high

performance sparse computation [22, 40, 129, 152, 51, 55]. This thesis focus on extending

data tiling methodologies and applying data tiling for faster sparse computations.

2.2 Data Tiling

In the following, we first formally define tile and data tiling on matrices. Then we introduce

the two types of data tiling approaches: spatial tiling and general tiling.

2.2.1 Tile and Data Tiling

A tile in a matrix is a rectangular region in the matrix that is intersected by a interval of

rows and a interval of columns. That is, for a matrix A, a tile, T , defined as:

T (A([i . . . j] , :), A(:, [k . . . w])) = A([i . . . j] , :) ∩ A(:, [k . . . w])

Then data tiling is splitting the matrix space into a set of disjoint tiles. Data tiling is different

with data partitioning. The later is more generate, not necessary forming tiles with the

partitioning. A data tiling T on a matrix A is defined as

T = {T0, . . . , Tp} , s.t.∀i, j ∈ [0 . . . p] , Ti ∩ Tj = ∅, and, T0 ∪ · · · ∪ Tp = A′ (2.1)
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Where, A′ can be A or columns/rows reordered A depends on whether data tiling is done

without reordering or with. Ones without reordering, are called spatial tiling, and ones with

reordering are called general tiling.

2.2.2 Spatial Tiling

Spatial tiling divides a matrix into tiles directly without permuting the matrix. That is,

data tiling is defined in Eqn. 2.1 with A′ = A. In spatial tiling, The matrix is treated as a

two-dimensional domain and neighboring elements will be in the same part or neighboring

parts. There are various kind of spatial tiling, such as uniform tiling, rectilinear tiling [64],

and Jagged [139, 133]. Examples of them are shown in Figure 1.3.

Spatial tiling doesn’t consider the connection information, instead only focus on the

balance of the non-zeros in each part. Thus, spatial tiling is normally computational light

weighted. For example, uniform tiling only takesO(1). Spatial tiling also preserves the nat-

ural order of matrices and thus the inherent locality of the original matrix can be kept. It’s

useful for load balancing for dynamic applications where rebalancing of load is needed, and

applications requiring geometric locality of data (particle methods, crash simulations) [40].

In this dissertation, we focus on a most commonly used spatial tiling, rectilinear tiling.

In this section, we first introduce rectilinear tiling and its important two variants, symmetric

rectilinear tiling and uniform tiling. Then we discuss load imbalance, which is commonly

used to evaluate spatial tiling.

Rectilinear Tiling

Rectilinear tiling, or generalized block distribution, partitions the matrix along row or/and

column while keeps the ordering of rows and columns, as shown with an example in Fig-

ure 2.2a. Among all the spatial tiling strategies, rectilinear tiling is most frequently used.

Thus it is our focus in this dissertation. Rectilinear tiling is useful because its tiling results

can fit in a 2-D grid, a common mesh structure of processors. This helps limiting the to-
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tal number of messages on distributed settings and allows many potential allocations. It

also allows efficient mapping from row and column index to the tile index. Thus, it has

been widely used for parallel load-balancing of both dense linear algebra [93, 72, 140], and

sparse linear algebra [22, 129].

Rectilinear tiling can be formally defined as following.

Definition 2.1. Given two integers p, and n, where 1 ≤ p ≤ n. A vectorC = 〈c0, c1, . . . , cp〉

is called a partition vector on n if c0, c1, . . . , cp are all integers and 0 ≤ c0 < c1 · · · < cp =

n. Then C defines a partition of the integer interval [0 . . . n− 1] into p integer intervals,

[ci . . . ci+1) , 0 ≤ i < p.

Definition 2.2. Given a n by m matrix, and the number of parts needed along rows and

columns p, q, rectilinear tiling returns two partition vectors Cr and Cc on n and on m

respectively. |Cr| = p+ 1 and |Cc| = q+ 1. Then Cr and Cc partition the matrix into p× q

non-overlapping contiguous tiles.

Definition 2.3. Symmetric rectilinear tiling is the rectilinear tiling with a restriction that

the matrix should be symmetric and the row and column partition vectors should be the

same.

Definition 2.4. Uniform tiling is the rectilinear tiling with a restriction that both the rows

and columns are partitioned uniformly.

Figure 2.2a shows an example of rectilinear tiling. In this example, A.n = A.m = 9,

p = q = 3, and the row partition vector Cr = 〈0, 2, 5, 9〉, the column partition vector

Cc = 〈0, 3, 5, 9〉 An example of symmetric rectilinear tiling on the same matrix is shown

in Figure 2.2b, in which Cr = Cc = 〈0, 3, 5, 9〉. Figure 2.2c is uniform tiling on the same

matrix, where Cr = Cc = 〈0, 3, 6, 9〉.
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(a) Rectilinear (b) Symmetric (c) Uniform

Figure 2.2: Comparing rectilinear tiling, symmetric rectilinear tiling, and uniform tiling.
The dotted lines represent the partitions. The numbers outside of the matrix show the size
of the according part.

Table 2.2: Rectilinear Tiling Symbols and Definitions

Symbols Definitions

C = 〈c0, c1, . . . , cp〉 a partition vector of size p+ 1
Cr the partition vector on the rows of a matrix
Cc the partition vector on the columns of a matrix

With the matrix rectilinearly tiled into p× q tiles

Ti,j the tile at the ith row and jth column
φi,j the load of Ti,j
Lmax the maximum load, maxi,j φi,j

Lavg the average load,
∑

i,j φi,j

p×q

Load Imbalance

Like the rest of spatial tiling approaches, rectilinear tiling doesn’t directly consider connec-

tion information and instead, focus on the load balance among the tiles.

Load imbalance is commonly used to evaluate spatial tiling, and generally defined as

the ratio between the maximum load and the average load after tiling. Below we define

load imbalance formally in the context of rectilinear tiling.

With a matrix A, being partitioned by Cr, Cc into p by q tiles, we use Ti,j, 0 ≤ i <

p, 0 ≤ j < q to represent the tile in the ith row and jth column, and φi,j to represent its
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load. There are various way of defining the load for a tile. In this work, we consider φi,j

as the sum of all the non-zeros in Ti,j . Given Lmax = maxi,j φi,j, Lavg =
∑

i,j φi,j

p×q , the load

imbalance, λ, is defined as:

λ =
Lmax
Lavg

(2.2)

Rectilinear Tiling Problem

Definition 2.5. Given a matrix and the numbers of partitions needed along rows and

columns, find the rectilinear tiling that has lowest load imbalance. This problem is called

rectilinear tiling problem.

In Figure 2.2, given the example matrix and the number of partitions along rows and

columns as 3, the dotted line in Figure 2.2a shows the optimal solution for the rectilinear

tiling problem. With no restriction on the rows and columns partition vector, the load

imbalance achieved is 9
7
, with Lmax = 3 and Lavg = 7

3
.

As proven in 1996 by Grigni and Manne [64], the rectilinear tiling problem is NP-hard.

In fact, their proof shows that the problem is NP-hard to approximate within any factor less

than 2. Khanna et al. [86] have shown the optimal solution can be approximated in constant-

factors. Independently, Nicol [113] and Manne and Sø revik [101] proposed a heuristic

algorithm to solve this problem. The algorithm is based on a observation that: if one of the

partition vector is fixed, a polynomial dynamic algorithm can be used to find the optimal

result for the another partition vector. This algorithm starts with one partition vector on

rows or columns fixed, then use the dynamic algorithm to find the optimal partition vector

on columns or rows; then alternating between row and column, and iterate this process

until the load imbalance converges. Convergence is guaranteed in this algorithm but there

is no guaranteed approximation bound. Improvements from this work and approximation

guarantees are achieved in later work [5, 86, 5, 59, 108].
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For uniform tiling problem it returns the exact tiling if given the matrix and the number

of tiles needed. Thus, it only takes O(1) to get the partitioning vectors for uniform tiling.

However, the downside is higher load imbalance, as it doesn’t consider the non-zero distri-

bution of the matrix. On the same partitioning problem as Figure 2.2a, the uniform tiling

has Lmax = 5 as shown in Figure 2.2c. Thus, uniform tiling is used when the non-zeros of

the matrix is known to be uniformly distributed, such as dense matrix [140], sparse matri-

ces that are know to have evenly distributed non-zeros [129] or any sparse matrices that are

preprocessed with random reordering [22].

For symmetric rectilinear tiling problem it sits in between rectilinear tiling, and uni-

form tiling in terms of ability to generate load balanced tiles. It imposes the restriction that

the rows and columns partition vectors should be the same but not necessary uniform. With

this restriction, the possible choices are less and thus smaller searching space compared

with rectilinear tiling. That means, given the matrix and the partition vector size required,

symmetric rectilinear tiling will do worse than rectilinear tiling in load imbalance, but can

do better than uniform tiling, as shown in Figure 2.2b in which the optimal symmetric rec-

tilinear tiling has Lmax = 4. It also means that it is harder than uniform tiling, but should

be easier than rectilinear tiling to find the best symmetric rectilinear tiling. However, prior

our work, the complexity of it is unknown. We show in Section 3 that symmetric rectilinear

tiling problem is also NP-hard.

2.2.3 General Tiling

General tiling allows reordering of the matrix for tiling. That is, data tiling is defined in

Eqn. 2.1 with A′ as rows or/and columns reordered A. The reordering is done during the

tiling processes, which is different from using reordering as a preprocessing step before

tiling. By allowing reordering, general tiling has more flexibility compared with spatial

tiling. As discussed in Section 1.2.2, general tiling can achieve better results compared
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with spatial tiling, and it can also effectively solve complex problems.

One widely used general tiling is connectivity-based tiling, which is our focus for gen-

eral tiling and we introduce it in more details in the following.

Connectivity-Based Tiling

In a connectivity-based tiling, the sparse matrix is treated as a graph or hypergraph or

bipartite graph and then a graph or hypergraph partitioning tool are used accordingly to

partition the rows or/and columns of the matrix [70, 142, 25]. Based on the partitioning

of rows or/and columns, the matrix will be reordered and then tiled rectilinearly. Such an

example is shown in Figure 1.5b.

Taking advantage of powerful graph and hypergraph partitioning tools, connectivity-

based tiling can achieve complex tasks such as, communication minimizations while bal-

ancing the load. Since it’s modeled as graphs or hypergraphs, general tiling can be directly

used to speedup graph or hypergraph algorithms, for example increasing graph algorithms’

memory accessing locality [144]. Due to the powerful expressive ability of graphs and

hypergraphs, various problems can be modeled as and solved effectively by general tiling,

such as, clustering problem [135, 43], data replication reduction [36, 23], computation

balancing and communication minimization of sparse matrix dense vector multiplication,

SpMV [27, 16], data aggregation operations on out-of-core scientific datasets [28] and

SpGEMM [10, 1]. However, It’s more computational intensive. It is suitable as prepro-

cessing for expensive or iterative computations where the partition cost can be amortized.

In the following, we introduce the partitioning tools used for connectivity-based tiling:

graph partitioning and hypergraph partitioning.

Graph Partitioning

As defined in Section 2.1.1, a undirected graph, G, consists of vertices V and edges E ,

Weights and costs can be assigned to vertices and edges. W is used to represent the weight
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Table 2.3: Graph and Hypergraph Partitioning Symbols

Symbols Definitions

Graph Partitioning

G = (V , E) a undirected graph consists of a set of vertices V , and a set of edges E
vi a vertex in V
di the degree of the vertex vi
eij a edge in E connecting vi and vj
W the weight assignment for vertices, and wi is the weight for the vertex

vi ∈ V
C the cost assignment for edges, where cij is the cost for the edge eij ∈ E
Π a K-way partition includes K parts of a set of vertices V , Π =

{P1, · · · PK} and P i ∩ Pj = ∅,∀1 ≤ i 6= j ≤ K, and
⋃

1≤i≤K P i = V .
EE the set of all external edges. External edges are ones connecting vertices

from different parts
χ(Π) the cost (or cutsize) of Π, χ(Π) =

∑
eij∈EE cij

Wavg the average weight of K parts of V , Wavg =
(∑

vj∈V wj

)
/K

ε the maximum imbalance ratio

Hypergraph Partitioning

H = (V ,N ) a hypergraph contains a set of vertices, V , and a set of nets (hyperedges),
N

ni a net in N , and it’s a subset of vertices V
pins[ni] the vertices in the net ni, called pins
nets[vi] the set of nets containing the vertex vi

Λj the connectivity set of net nj , that is all the parts that that net connects to
λj the size of Λj

NE the set of all external nets for a partition Π

assignment for vertices, where wi is the weight for the vertex vi ∈ V . C is the cost assign-

ment for edges, where cij represents the cost for the edge eij ∈ E .

A K-way partition of a graph G = (V , E), Π = {P1, · · · PK}, places each vertex of the

graph into a part. More concretely, Π is a K-way partition if each part P i is a non-empty

subset of V , each pair of parts is disjoint, i.e., P i ∩ Pj = ∅ for all 1 ≤ i 6= j ≤ K, and the

union of all parts recovers V , that is
⋃

1≤i≤K P i = V . A K-way partition Π of a graph is

also called a bipartition if K = 2, and a multiway partition if K > 2.

For a K-way partition Π, a vertex v is called a border vertex if it connects vertices
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belong to a different part than the one it belongs to. An edge eij = {vi, vj} is called

external (or cut) if it connects two different parts, that is vi ∈ Pa, vj ∈ Pb and a 6= b.

Otherwise the edge is called internal (or uncut). EE is used to represent the set of all

external edges. The cost (or cutsize) χ of Π is defined as:

χ(Π) =
∑
eij∈EE

cij (2.3)

A K-way partition, Π, is called balanced if the following holds:

∀i ∈ {1, . . . , K} ,
∑
vj∈Pi

wj ≤ (1 + ε)Wavg (2.4)

where, Wavg =
(∑

vj∈V wj

)
/K, and ε is a given maximum imbalance ratio.

Definition 2.6. Graph partitioning problem: given a graph G = (V , E), vertex weight and

edge cost assignmentsW and C, a part number requirement K, and the maximum allowed

imbalance ratio ε, find a balanced K-way partitioning that minimizes the cost.

The graph partitioning problem is known to be NP-hard [57], even for seemingly easier

problems such as uniform weighted bipartitioning [58]. A successful multilevel heuristic

has been proposed and implemented for graph partitioning on both shared memory sys-

tems [91, 82] and distributed systems [84]. There are three steps involved in the methodol-

ogy: coarsening, initial partitioning, uncoarsening:

• In the coarsening step, in multiple steps, vertices are coalesced forming supernodes.

A much smaller graph builds based on these supernodes.

• Then in the initial partitioning step, a partitioning algorithm that achieves high quality

but is expensive is applied on this smaller graph.

• In the uncoarsening stage, each supernode is expanded gradually in multiple steps as

in the coarsening step. During then, the partitioning will be finely turned. Test and
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Figure 2.3

potentially move border supernodes/vertices (supernodes/vertices which connect to

supernode/vertices that doesn’t belong to the same part) to different parts.

Hypergraph Partitioning

Below, we start with the definition of a hypergraph, and then come to hypergraph partition-

ing.

A hypergraphH = (V ,N ) contains a set of vertices, V , and a set of nets (hyperedges),

N . Hypergraph is a generalization of graph where each hyperedge can connect more than

two vertices, i.e., a net ni ∈ N is a subset of vertices V . The vertices in a net are called

its pins, represented by pins[ni]; and the size of the net is the number of its pins. A vertex

may be part of one or more nets. The set of nets incident on a vertex vi is represented

by nets[vi]; The number of nets incident on vi is the vertex degree, represented by di ,

i.e. di = |nets[vi]|. Similar with graphs, we use W and C as vertex weight and net cost

assignments, wi to represent the weight of a vertex vi ∈ V and cj to represent the cost of a

net nj ∈ N . Figure 2.3a is the hypergraph form of the example matrix used in Figure 1.5.
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The K-way partitioning of a hypergraph is similar to that of a standard graph. The

main difference comes from the definition of partitioning cost. A net is connected to a part

if at least one of its pins is in that part. The connectivity set Λj of net nj is all the parts

that the net connects to. The size of Λj is denoted λj , i.e. λj = |Λj|. A net nj is external

(or cut), if it connects to more than one part, i.e. λj > 1, otherwise, the net is called

internal (or uncut). The set of all external nets for a partition Π is represented as NE .

There are multiple definitions of cost χ of a partitioning Π: Figure 2.3b shows a partitioned

result of Figure 2.3a, where the vertices are partitioned into two sets {4, 6, 7, 8, 9} and

{1, 2, 3, 5, 10, 11}. Hyperedges {2, 4, 7, 11} and {1, 3, 10} are internal hyperedges for these

two sets of vertices respectively. Hyperedges {6, 8, 5, 9} are external hyperedges.

χ(Π) =
∑

nj∈NE

cj (2.5)

χ(Π) =
∑

nj∈NE

cj × (λj − 1) (2.6)

In this work, we will use the Eqn. 2.6, and it is called connectivity−1 metric. The Eqn. 2.6

can more accurately represent the cost of external nets in domains such as parallel comput-

ing, where hypergraphs are concerned with communication costs.

Definition 2.7. Hypergraph partitioning problem: given a hypergraphH = (V ,N ), vertex

weight and net cost assignmentsW and C, the number of parts required K, and the maxi-

mum imbalance ratio allowed ε, find a balanced (Eqn. 2.4)K-way partition that minimizes

the partitioning cost (Eqn. 2.6).

The hypergraph partitioning problem is known to be NP-hard as well [92]. Similar as

in graph partitioning, the multilevel methodology has been successfully applied in both

shared memory system [24] and distributed system [42].
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2.3 Sparse Applications

In the following, we introduce the sparse applications that this dissertation focuses.

2.3.1 Tile-Based Graph Algorithms

Tile-based graph algorithms can significantly reduce data movement and increases runtime

performance [153, 21, 147, 149]. A tile-based graph algorithm partitions the computation

into tasks where each task only takes limited number of tiles. It contradicts with the tradi-

tional form, where each task still needs to access the whole graph. Symmetric rectilinear

tiling is a natural fit to tile-based graph algorithms [152, 150]. In adjacency matrices (ma-

trices format of graphs), both rows and columns represent vertices. By partitioning the

rows and columns the same, symmetric rectilinear tiling treats vertices consistently, and

has shown to be effective at limiting communication between tiles, and for reasoning about

the graph algorithms. We use triangle counting as an example graph kernel to demonstrate

that.

Triangle counting algorithm counts the total number of triangles, 3-cliques, in the

graph. In triangle counting algorithms, if the adjacency matrix is partitioned with sym-

metric rectilinear tiling, computation can be separated to tasks where each task only reads

at most three tiles of the input sparse matrix, as shown with an example in Figure 2.4. The

left side shows an example graph with three triangles formed by vertices (1, 2, 6), (2, 3, 6),

and (4, 5, 6). In this example graph, vertices are partitioned into 4 group g1 = {1, 2},

g2 = {3}, g3 = {4} and g4 = {5, 6} as highlighted with different color. Accordingly, on

the right side, the adjacency matrix of the matrix is tiled into 4× 4 tiles. Note that triangle

counting algorithms ignores half of the matrix to avoid counting a triangle multiple times.

The three tiles highlighted with red maps to the solid edges in the example graph, which

include all edges, between g1 to g2, g1 to g4, and g2 to g4. By reading and counting triangles

within these three tiles, any triangles formed with the three vertices from g1, g2 and g4 re-
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Figure 2.4: Tiled Triangle Counting. Figure 2.4a shows an example graph with three
triangles. Colors of the vertices are used to represent partitioning of the vertices: {1, 2},
{3}, {4}, and {5, 6}, Figure 2.4b shows the upper triangle of the adjacency matrix. The
matrix is tiled based on the partitioning of the vertices. The solid line in the graph are
edges mapping the non-zeros in the three tiles highlighted. That is, with the three tiles
highlighted, the triangle (2, 3, 6) can be counted.

spectively can be counted. In this case, triangle (2, 3, 6) will be counted. Instead of always

requiring the whole matrix, tile-based triangle counting localizes the data which then leads

to start-of-art performance [152].

2.3.2 SpGEMM

Sparse general matrix-matrix multiplication, SpGEMM, computes C = A × B, where

A, B, and C are all sparse matrices. For multiplication, we need to have A.m = B.n,

A.n = C.n, and B.m = C.m. As shown in Figure 2.5, an element in the i-th row and j-th

column of C, C(i, j), is equal to A(i, :) ·B(:, j) where A(i, :) represents the i-th row of A,

B(:, j) the j-th column of B, and · the dot product.

SpGEMM is one of the most fundamental yet challenging sparse computation kernels.

It is commonly used in graph applications, such as link prediction [131, 102], graph com-

pression[112], and scientific computations [128, 98]. Due to its high complexity and ir-

regular computation pattern, SpGEMM frequently becomes the performance bottleneck in
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Figure 2.5: Inner product for SpGEMM

many scientific applications, such as algebraic multigrid methods [11], Markov cluster-

ing algorithms [8], and graph analytics [112]. Thus there has been continuous interests in

optimizing SpGEMM in both shared memory and distributed systems [20, 99, 41, 39, 90].

Data tiling techniques have been applied to SpGEMM on distributed systems. SUMMA-

SpGEMM [20], inspired by the original dense SUMMA [140], is one of the most com-

monly used technique for distributed memory systems. In SUMMA, the result matrix’s

computation is tiled rectilinearly, and each processor in a 2D virtual processor grid cal-

culates a part. By iteratively generating partial results, space needed for each process is

limited to a constant number of parts of matrices. General tiling [1, 39] is also applied to

distributed SpGEMM to minimize communication cost.

There has not been much such exploration of data tiling on shared memory systems

SpGEMM. Due to SpGEMM itself is relative light weighted, compared with the cost comes

with general tilingapproaches, we apply spatial tiling on this problem and more details are

found in Chapter 4.

2.3.3 De novo genome assembly

Various methods have been developed to extract the nucleotides sequence in DNA. Differ-

ent length of DNA can be read for different methods and then assembly is used to recover
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the genome. De novo genome assembly is a strategy that assemble a novel genome from

a set of DNA sequences (or reads) assuming no prior knowledge of the source DNA se-

quence length, layout, or composition. Such lack of information, especially the relative

ordering of the reads along the target genome, makes de novo genome assembly one of the

most difficult problems in computational molecular biology and the assembling process

considerably taking longer than the time to obtain actual sequences. Continuous attentions

have been put into research on this topic [157, 9, 141].
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CHAPTER 3

SYMMETRIC RECTILINEAR TILING

We are witnessing an enormous growth in the volume of generated data after advances in

social networks and the rise of web interactions. A large portion of this data remains sparse

and irregular, and is stored as graphs or sparse matrices. Due to the growing size, low

memory access and computation ratio, and irregular data access pattern with poor local-

ity, analyzing these sparse data is challenging [100, 50, 54]. Therefore, high-performance

processing of this irregular data is an important research problem [56, 72, 74, 16, 38, 44].

In many sparse and irregular data applications, a balanced partitioning (distribution) of

computation and data to processors is the crux of better performance, and we can broadly

divide balanced partitioning techniques in the literature into two categories: connectivity-

based (e.g., [83, 27, 71, 25]) and spatial/geometric (e.g., [12, 101, 139, 122, 133]). In

general, connectivity-based methods produce better partitions by modeling the computa-

tion and communication explicitly and allowing data permutation, but it comes with much

higher computation cost. On the other hand, spatial methods are lightweight and preserve

the natural ordering, and are also natural fit when interactions are bounded by distance, such

as particle-in-cell simulations [124, 81] that are implementations of the classical mean-field

approximation of the many-body problems in physics. In this work, we focus on a spatial

tiling, Symmetric Rectilinear Tiling Problem, on two-dimensional sparse matrices 1 To the

best of our knowledge, this work is the first work that intensively tackles that problem in

both theoretical and practical aspects. Note that, symmetric rectilinear tiling is a restricted

case of rectilinear tiling [113, 101] and initially defined by Grigni and Manne [64].

Given a two-dimensional matrix, in symmetric rectilinear tiling we align the same par-

1We will use integer indices for coordinates through out the work but our implementation also works with
real-valued coordinates.
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Figure 3.1: Gather/scatter in symmetric rectilinear tiling

tition vector to rows and columns and tile the matrix in a way that diagonal blocks are

squares, as shown in Figure 3.1a. Such layout is very useful for many graph applications

and iterative computations for three reasons: gathering information and scattering compu-

tation results, reasoning graph algorithms, and conformality.

Gathering information from the in-edges of the vertices, computing on those and then

scattering the result to all the processors that has the outer-edges is a common communica-

tion pattern in graph analysis, such as BFS [6], and PageRank [132]. Mapping to symmetric

rectilinear tiling, the communication can be represented as in Figure 3.1b. In Figure 3.1b,

the diagonal blocks are ones gathering and scattering information for the according rows

and columns. For symmetric rectilinear tiling, it only needs to gather from blocks in the

same column and scatter to blocks in the same row.

In the context of graphs, each block can be visualized as sub-graphs where diagonal

tiles are the owners of the vertex meta-data and any other tile represents the edges between

two sub-graphs. This type of tiling becomes highly useful to reason about graph algo-

rithms. For instance, in a concurrent work, we have leveraged the symmetric rectilinear

tiling for developing a block-based triangle counting formulation [152] that reduces data

movement, during both sequential and parallel execution, and is also naturally suitable for

heterogeneous architectures.

We can define a tiling as conformal when connecting row and column lengths of dif-

ferent tiles match. Conformal tiling is very crucial for many graph applications that access
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neighbors of neighbors or tiled matrix-matrix multiplication based operations. Because,

for those kind of applications if one does not use a conformal tiling for inputs and outputs,

converting outputs of the previous iteration to inputs of next iteration would require addi-

tional communication. By its nature, symmetric rectilinear tiling is a conformal tiling and

it is suitable for those applications.

Spatial tiling is a well-studied research problem and there exist different techniques [12,

139, 64, 101, 133]. Please refer to Section 3.2 for additional information about them. The

optimal rectilinear tiling problem was shown to be NP-hard by Grigni and Manne [64].

Even though symmetric rectilinear tiling appeared to be simpler than the rectilinear tiling,

yet until our work its complexity was unknown. In this work, we show that the optimal

symmetric rectilinear tiling problem is also NP-hard. We define two variants of the sym-

metric rectilinear tiling problem and we propose refinement-based and probe-based tiling

heuristics to solve these problems. Refinement-based heuristics [101, 113] apply a di-

mension reduction technique to map the two-dimensional problem into one dimension and

compute a partition vector on one-dimensional data by running an optimal partitioning al-

gorithm [113, 123]. Probe-based algorithms compute the partitioning vector by seeking for

the best cut for each point. We combine lightweight symmetric rectilinear tiling techniques

with simple heuristics. Contributions of this work are as follows:

• We present two formulations for the symmetric rectilinear tiling problem: MIN-

LOADIMBAL (MLI), MINNUMCUTS (MNC), which are dual problems of each other

(Section 3.1).

• We prove that optimal symmetric rectilinear tiling is NP-hard (Section 3.3).

• We propose efficient and effective heuristics for the symmetric rectilinear tiling prob-

lem (Section 3.4).

• We present an extensive performance evaluation of the proposed algorithms in dif-

ferent settings, on more than six hundred real-world matrices (Section 3.5).
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3.1 Symmetric Rectilinear Tiling Problems

Symmetric rectilinear tiling applies same partitioning on rows and columns of the matrix

while keeps the ordering of rows and columns, as shown with an example in Figure ??. It

is formally defined in Def. 2.3. In the context of this work, we consider two symmetric

rectilinear tiling problems; MINLOADIMBAL and MINNUMCUTS. These two problems are

the dual of each other.

Definition 3.1. MINLOADIMBAL (MLI) Problem. Given a matrix A and an integer p, the

MLI problem consists in finding the optimal partition vector, C, of size p that minimizes the

load imbalance:

MLI(A, p) = min
C
λ(A,C,C)

Definition 3.2. MINNUMCUTS (MNC ) Problem. Given a matrix A and a maximum load

limit Z, the MNC problem consists of finding the minimum number of intervals p that will

tile the matrix A so that the sum of nonzeros in all tiles are bounded by Z.

MNC(A,Z) = min
C
|C|, s.t. Lmax(A,C,C) ≤ Z

3.2 Related Work

Two-dimensional matrix distributions have been widely used in dense linear algebra [72,

93]. A uniform Cartesian [72] tiling (see Figure 1.3b) where the uniform partitioning vec-

tor is used to partition rows and columns are widely used. This is due to the tiled matrix

naturally mapping onto a two-dimensional mesh of processors. This kind of tiling becomes

highly useful to limit the total number of messages on distributed settings. Dense matrices

or well structured sparse matrices can be easily partitioned with Cartesian tiling. However,

for sparse and irregular problems finding a good vector that can be aligned with both di-
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mensions is a hard problem. Therefore, many non-Cartesian two-dimensional matrix tiling

methods have been proposed [12, 104, 113, 101, 139, 133] for sparse and irregular prob-

lems. As a class of shapes, rectangles implicitly minimize communication, allow many

potential allocations, and can be implemented efficiently with simple operations and data

structures. For these reasons, they are the main preferred shape. For instance, recursive

coordinate bisection (RCB) [12] is a widely used technique that rely on a recursive decom-

position of the domain. Another widely used technique is called jagged tiling [139, 133]

which can be simply achieved by first partitioning the matrix into one-dimensional (1D)

row-wise or column-wise partitioning, then independently partitioning in each part (see

Figure 1.3d).

One way to overcome the hardness of proposing one partition vector for rows and

columns is to use rectilinear tiling. However, rectilinear tiling may still cause high load-

imbalance due to generalization. Jagged tiling [139] (also called Semi Generalized Block

Distribution [64]) tries to overcome this problem by distinguishing between the main di-

mension and the auxiliary dimension (see Figure 1.3d). The main dimension is split into

p intervals and each of these intervals partition into q rectangles in the auxiliary dimen-

sion. Each rectangle of the solution must have its main dimension matching one of these

intervals. The auxiliary dimension of each rectangle is arbitrary. We refer readers to Saule

et al. [133] which presents multiple variants and generalization of jagged tiling, and also

detailed comparisons of various 2D tiling techniques.

3.3 NP-hard Proof

We first define the decision problem of the symmetric rectilinear tiling for the proof.

Definition 3.3. Decision Problem of the Symmetric Rectilinear Tiling (SRTP). Given a

matrix A, the number of intervals p, and a value Z, decide whether there is a partition

vector of size p+ 1 such that the sum of the nonzero values in any tile is bounded by Z.
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Figure 3.2: An example for VC (K = 2) and its equivalent SRTP instance (Z = 1, p = 10)

It’s clear SRTP is in NP. We show that it is NP-complete by reducing a well-known

NP-complete problem, vertex cover problem(VC), to SRTP.

Definition 3.4. Vertex Cover Problem (VC). Given an undirected graph G = (V,E) and

an integer K, VC is to decide whether there exist a subset V ′ of the vertices of size K such

that at least one end point of every edge is in V ′, i.e., ∀(u, v) ∈ E, either u ∈ V ′ or v ∈ V ′.

Figure 3.2a illustrates a toy example for VC. In this example the graph consists of 6

vertices and 7 edges. For K = 2, V ′ = {v3, v5} is a solution, so VC returns true.

We extend Grigni and Manne’s [64] input reduction techniques to reduce VC to SRTP.

Note that in the following, we assign values of elements in the matrix as 1/0, however, the

weighted case where values of elements are real numbers, is represented as well because
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the weighted case is more general, and includes 1/0 assignments.

Given a graph G = (V,E), V = {v1, v2, . . . , vn}, its adjacency matrix A (see Fig-

ure 3.2b), and an integer K we apply the following transformation steps. First, we create

a new square binary matrix, A′ (as shown in Figure 3.2c), of size (2n + 2) × (2n + 2),

initialize it with all zeros and then initial the first two rows and columns as following: we

set A′(0, 0) = 1, then in first row and column we put two 1s followed by two 0s, until the

end of row or column. Similarly, starting A′(1, 1) position in second row and column, we

now first put two 0s followed by two 1s. Second, we limit the sum of nonzeros in each

result tile to be at most one (Z = 1). This limitation allows us to enforce cuts by plac-

ing nonzeros at adjacent positions in the matrix. For instance, in Figure 3.2c, consequent

nonzeros at A′(0, 1) and A′(0, 2) enforce a cut between the column 1 and the column 2.

Two sample cuts are highlighted in Figure 3.2c. With all cuts forced from the first two

rows and columns, the rest of the A′ matrix is tiled as n × n tiles of sizes 2 × 2 (see Fig-

ure 3.2c). Here, let Bi,j represent the 2× 2 tile located at position A′(2i, 2j) in the matrix,

where i, j ∈ [1 . . . n]. Third, we initialize each Bi,j with an identity matrix of size two (I2)

if A(i, j) = 1 (see Figure 3.2d). Since we limit the number of nonzero elements in each

result tile to be at most one, an identity matrix has to be cut by at least one horizontal or

vertical cut. Last, we set the number of intervals, p, as n + 2 + K, thus, n + 3 + K cuts

will be sought. With the enforced n + 1 cuts from the first two steps and the 2 cuts at the

beginning and the end, possible cuts left are only in between of each row (and column) of

the 2× 2 tiles and there are only n of them. Thus the problem becomes, choosing K rows

(columns) of 2× 2 tiles to be cut, among n possible cuts, s.t., all 2× 2 identity matrices are

covered.

The equivalence between the constructed SRTP instance and the VC comes from both

about choosing rows and columns to cover the nonzero elements. They only differ in

choosing elements, the former is a 2 × 2 matrix, and the latter is 1 × 1 matrix, as shown

with the example in Figure 3.2d and Figure 3.2b. The formal proof shows there is a solution
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for one instance if and only if there is for the other, as follows.

Proof. NP-Completeness Proof of SRTP. Let C denote the partition vector. Let a set S0

contains the trivial cuts inC, i.e., 〈0, 2n+ 2〉, set S1 contains the forced cuts, i.e., {1}∪{2i |

i ∈ [1, n]}, and S2 contains the remainder cuts in C.

⇒ Suppose V ′ is a solution to the VC instance. Then, let S2 = {2i+ 1|vi ∈ V ′}. Since

|S0 ∪ S1| = 3 + n, and |S2| = K, we have |C| = n+ 3 +K = p+ 1.

The tiles in first two rows and columns all have a load of at most 1 after the forced cuts.

For the rest of the 2× 2 nonzero tiles Bi,j , we have the following:

Bi,j is an identity matrix =⇒ A(i, j) 6= 0

=⇒ vi ∈ V ′ or vj ∈ V ′

=⇒ 2i+ 1 ∈ S2 or 2j + 1 ∈ S2

All nonzero Bi,j are cut by S2 such that the load is at most 1 for tiles, showing C is

valid.

⇐ a similar logic can be applied in the reverse order to complete the proof. We are

omitting for the sake of brevity.

3.4 Algorithms for Symmetric Rectilinear Tiling

We propose two algorithms for the MLI problem (Definition. 3.1) and two algorithms for

the MNC problem (Definition. 3.2). At a high level, those algorithms can be classified as

refinement-based and probe-based. In this section, we explain how these algorithms are

designed.

3.4.1 MINLOADIMBAL (MLI)

We propose two algorithms for the MLI problem. One of those algorithms, Refine a cut

(RAC) adopts previously defined refinement technique (see Algorithm 3.1) into the sym-
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metric rectilinear tiling problem. Note that the RAC algorithm has no convergence guaran-

tee. The second algorithm, Bound a cut (BAC), implements a generic algorithm that takes

an algorithm which solves the MNC problem as input and solves the MLI problem.

Algorithm 3.1: REFINEMENT(A,Cc, p)
. P is a n× p matrix to store interval sums for each row

1 P (i, j)← 0, for i ∈ [0 . . . n] and j ∈ [0 . . . p− 1]
2 for i = 0 to n− 1 do
3 for each j, where A(i, j) 6= 0 do
4 k ← 0 . Interval index
5 while j ≥ Cc(k + 1) do
6 k ← k + 1 . Find the interval
7 P (i+ 1, k)← P (i+ 1, k) +A(i+ 1, j)
. Compute p prefix sums for each interval

8 for j = 0 to p− 1 do
9 for i = 1 to n do

10 P (i, j)← P (i, j) + P (i− 1, j)
. Return the optimal partitioning on rows of P

11 return OPTIMAL1DPARTITION(P )

Refine a cut (RAC)

RAC algorithm first applies the refinement on rows, and then on columns independently.

Then it computes the load imbalances for the generated partition vectors. The RAC al-

gorithm chooses the direction (row or column) that gives a better load imbalance. Then,

iteratively applies the refinement algorithm only in this direction until it reaches the itera-

tion limit (τ ). This procedure is presented in the Algorithm 3.2.

The primary advantage of this algorithm is its simplicity. This algorithm can be eas-

ily parallelized as shown in [101, 113]. However, choosing a direction at the beginning

may result in a missed opportunity to converge to a better partition vector using the other

direction.
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Algorithm 3.2: RAC(A, p, τ )
. Current (C) and previous (C ′) partition vectors

1 C(0)← 0; C(j)← n, for 1 ≤ j ≤ p
. Apply 1D partitioning refinement

2 Cr ← REFINEMENT(A,C, p) . Row based
3 Cc ← REFINEMENT(AT , C, p) . Column based
. Aligning same partition vector for rows and columns

4 Lr ← λ(A,Cr, Cr) . Row based imbalance
5 Lc ← λ(A,Cc, Cc) . Column based imbalance
6 if Lr < Lc then
7 C ← Cr
8 else
9 C ← Cc

10 A← AT

11 i← 0
12 while i < τ do
13 C ← REFINEMENT(A,C, p)
14 i← i+ 1

15 return C

Bound a cut (BAC)

BAC algorithm solves the MLI problem given an algorithm that solves the MNC problem.

Given a matrix A and an integer p, the BAC algorithm seeks for the minimal load size,

B, such that MNC algorithm returns a partition vector of size p + 1. In this approach, the

BAC algorithm does a binary search over the range starting from 0 to the sum of nonzeros.

In each iteration of the binary search, it runs MNC algorithm with the middle target load

between lower and upper bounds, and halves the search space. This procedure is presented

in the Algorithm 3.3. Note that binary searching on the exponent first and then on the

fraction can enable efficient float value binary search in order to deal with the machine

precision of real values.

3.4.2 MINNUMCUTS (MNC)

Given a matrix, A, and an integer, Z, the MNC problem aims to output a partition vector,

C, with the minimum number of intervals, p, where the maximum load of a tile in the
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Algorithm 3.3: BAC(A, p)
. Initialize temporary partition vector

1 C(0)← 0; C(j)← n, for 1 ≤ j ≤ p+ 1
2 l← 0
3 r ←

∑
0≤u,v<nA(u, v)

. Probe in binary search fashion
4 while l < r do
5 B ← (l + r)/2
6 C ← MNC (A,B)
7 if |C| ≤ p+ 1 then
8 r ← B
9 else

10 l← B + 1

11 return MNC (A, l)

corresponding tiling is less than Z, i.e., max0≤i,j≤p φ(Ti,j) ≤ Z.

Algorithm 3.4: PAL(A,Z)
1 C(0)← 0 . Initially we do not know partition vector’s size
2 i← 1
3 while C(i− 1) 6= n do
4 C(i)← β(A,C, i, Z)
5 i← i+ 1

6 return C

Probe a load (PAL)

Compared to our refinement based algorithm (RAC) which does not have any convergence

guarantee, the PAL algorithm guarantees outputting a partition vector at the local optimal

in the sense that removal or moving forward of any of the cuts will increase the maxi-

mum load. That’s why the PAL algorithm is more stable and usually performs better than

the RAC algorithm. PAL is illustrated in Algorithm 3.4. The elements of C are found

through binary search, β, on the matrix. In this algorithm, β(A,C, i, Z), searches A in the

[C[i− 1] . . . n] to compute the largest ith cut point such that max0≤j,k≤t{φ(Tj,k)} ≤ Z.

Note that the PAL algorithm considers more cases in a two-dimensional fashion.
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Bound a load (BAL)

One can solve the MNC problem using any algorithm that is proposed for solving the MLI

problem, using binary searches over the possible number of cuts. We call this procedure

as bounding a load (BAL), displayed in Algorithm 3.5. This approach can be improved in

certain cases by bounding the search space of the candidate number of cuts to decrease the

number of iterations. For instance, when the given matrix is binary, the search space can be

initialized as [1, d n
d
√
Zee], where the upper bound is derived by considering the dimension

d
√
Ze of the smallest matrix that can contain Z nonzeros.

Algorithm 3.5: BAL(A,Z)
. l and u are the upper and lower bounds

1 l← 1 . At least 1 cut
2 u← n . Number of rows
3 while l < u do
4 p← (l + u)/2
5 C ← MLI (A, p)
6 Z ′ ← Lmax(A,C,C)
7 if Z ′ < Z then
8 u← p
9 else

10 l← p+ 1

11 return MLI (A, l)

3.5 Experimental Evaluation

3.5.1 Experiment Setup

Implementation

We implemented our algorithms using C++ standard 17 and compile our code-base with

GCC version 9.2. We have collected all of our implementations in a library we named

SpatiAl Rectilinear Matrix pArtitioning (SARMA). Source code of SARMA is publicly

available at http://github.com/GT-TDAlab/SARMA via a BSD-license. C++ added support

for parallel algorithms to the standard library by integrating Intel’s TBB library starting
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from the standard 17. Note that, in this work our goal is not parallelizing the tiling frame-

work, but simply, to provide better performance with the minimal work. Therefore, in our

code-base we simply enabled parallel execution policy of the standard library functions and

parallelized pleasingly parallel loops wherever it is possible. With parallelization, SARMA

achieves up-to 17 times speedup on 24 cores [151]. Most of the algorithms we present re-

quire querying the load in a rectangular tile and this problem is known as the dominance

counting problem in the literature [77]. We implemented that through a sparse prefix sum

data structure as introduced in [151].

Platforms

We ran our experiments on a 416-node cluster owned by the Partnership for an Advanced

Computing Environment (PACE) of Georgia Institute of Technology equipped with 2× 12

cores 2.7 GHz Intel Xeon 6226 CPUs, 192 GB of RAM and at least 512 GB of local storage.

We used the Moab scheduler along with the Torque resource manager that runs every tiling

algorithm one-by-one on a matrix on one of the available nodes.

Dataset

We evaluated our algorithms on real-world and synthetic graphs from the SuiteSparse Ma-

trix Collection [37]. We excluded non-square matrices and matrices that have less than 1

million or more than 2 billion nonzeros. There were 687 matrices satisfying these proper-

ties (there were a total of 2, 856 matrices at the time of this experimentation).

Performance Profile

We present some of our results using performance profiles [46]. The performance profile

plots are useful to evaluate the overall performance of different methods on a large dataset.

x-axis, θ, starting from value one, is the percentage relative to the best performed. y-axis, ρ,

is the percentage of the instances tested. For example, (x = 1, y = 60%), means: the given
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Figure 3.3: Comparison with the optimal solutions using a performance profile.

library achieves the best in 60% of the instances tested, and (x = 1.2, y = 80%) means

having no worse then 1.2× of the best performing one in 80% of the instances. Hence, the

higher and closer a plot is to the y-axis, the better the method is.

3.5.2 Comparison with the Optimal Solution

To the best of our knowledge, this is the first work that tackles the symmetric rectilinear

tiling problem. Hence, we do not have a fair baseline. To better evaluate the quality of the

tiling algorithms, in this experiment we compare BAC (PAL) algorithm’s load imbalance

with the optimal solution. Since finding the optimal solution is computationally expen-

sive, and takes significant amount of time using our dataset, in addition to our dataset, we

downloaded 375 small graphs from SuiteSparse matrix collection [37] that have less than

9, 000 nonzeros. We partition those graphs into 8 × 8 (p = 8) tiles. Figure 3.3 illustrates

the performance profile for the load-imbalance between the optimal solution and the BAC

(PAL) algorithm. We observe that BAC (PAL) algorithm achieves the optimal solution on

67% of the test instances and give nearly the optimal solution on 80% of the test instances.

At the worst case, the BAC (PAL) algorithm outputs at most 1.9 times worse results than

the optimal case.

45



3.5.3 MLI

Below, we evaluate both quality and runtime of proposed algorithms for MLI, including

BAC (PAL) and RAC, comparing against uniform tiling UNI.

Recall that in MLI, we are given the matrix, and the number of parts needed along

rows/columns, p, and the optimization goal is the load imbalance, λ. Thus, we evaluate

the quality of MLI algorithms through λ. In the following experiments, we evaluate MLI

algorithms on the selected 687 matrices with p = 4, 16. Results are shown in Figure 3.4

with Figure 3.4a and Figure 3.4b on λ and Figure 3.4c and Figure 3.4d on the runtime.

Quality

We evaluate relative load imbalance performances of BAC (PAL), RAC and UNI algo-

rithms. The aim is to illustrate the efficiency of the proposed algorithms with respect to the

UNI algorithm. In this experiment, In almost all test instances, BAC (PAL) algorithm gives

the best performance. RAC algorithm is the second-best algorithm and in the worst case,

it outputs a partition vector that gives less than 2 times worse load-imbalance when p = 4

with respect to the best algorithm. When p is increased, the RAC algorithm’s relative per-

formance gets slightly worse. We observe that the PAL algorithm is more robust to bigger

p values.

Runtime

We evaluate relative executions times of BAC (PAL) and RAC algorithms, shown in Fig-

ure 3.4c and Figure 3.4d. RAC algorithm gives significant better runtime performance than

BAC (PAL) and the difference increases as p increases. We exclude UNI in this comparison

as it takes constant time and would make the performance profile figure less informative.
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(a) Load imbalance comparison with p = 4

1.0 1.5 2.0 2.5 3.0
Proximity to the best performing method ( )

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

nu
m

be
r o

f t
es

t i
ns

ta
nc

es
 (

)

BaC(PaL)
RaC
Uni

(b) Load imbalance comparison with p = 16
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(c) Runtime comparison with p = 4
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(d) Runtime comparison with p = 16

Figure 3.4: MLI algorithms comparison

3.5.4 MNC

Below, we evaluate both quality and runtime of proposed algorithms for MNC, including

PAL and BAL (RAC), comparing against uniform tiling with BAL (UNI).

Recall that, given the matrix, and the maximum load limit in the resulting tiling, MNC,

finds the minimum number of parts needed along rows/columns, p. Thus, we evaluate the

quality of MNC algorithms through p in the resulting tiling. We run MNC algorithms on

the selected matrices with z = m/4,m/16, where m represent the number nonzeros in the

sparse matrices. Results are shown in Figure 3.5 with Figure 3.5a and Figure 3.5b on p and

Figure 3.5c and Figure 3.5d on the runtime.
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(b) p comparison with z = m/16
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Figure 3.5: MNC algorithms comparison

Quality

Figure 3.5a and Figure 3.5b shows the quality comparison of MNC algorithms with differ-

ent maximum load limitation, z. In both cases, PAL performs the best with BAL (RAC)

being the second. When z is large, there are more flexibility for MNC algorithms, which

means more algorithm can achieve good performance as shown in Figure 3.5a, where all

three algorithms perform well, and the second best (BAL (RAC)) is really close to the best

(PAL). The differences among algorithms increase with z is small, as shown in Figure 3.5b.
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Runtime

Figure 3.5c and Figure 3.5d shows the result on runtime. BAL (UNI) runs the fastest as

it’s based on UNI. Then PAL runs the second fastest. As z decrease, PAL gets close to the

runtime performance of BAL (RAC).

3.6 Summary

In this work, we show that finding the optimal solution to the symmetric rectilinear tiling

problem is NP-Hard, and propose algorithms to two variants of this problem. Our experi-

mental evaluation shows that our proposed algorithms are very efficient to find good-quality

solutions, such that we achieve a nearly optimal solution on 80% instances of 375 small

graphs.
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CHAPTER 4

COLUMN-SEGMENTED SPARSE MATRIX-MATRIX MULTIPLICATION

Matrix multiplication is a fundamental operation in linear algebra, as such, a significant

amount of work, both theoretical and practical, has gone into quickly solving dense [34,

154] and sparse [67, 90] matrix multiplication. Sparse matrices are widely used to rep-

resent data from many fields including metabolic networks [128], web data [117], path

problems [53], and others [130]. Fundamental and important sparse matrices computations

include sparse matrix and dense vector multiplication (SpMV) [148], sparse matrix and

dense matrix multiplication (SpMM) [79, 89], and sparse matrix and sparse matrix multi-

plication (SpGEMM) [41, 146]. All are challenging due to sparse and irregular memory

access patterns, but SpGEMM is particularly challenging as it involves two sparse matri-

ces. Hence, SpGEMM frequently becomes the performance bottleneck for its applications,

such as algebraic multigrid methods [11], Markov clustering algorithms [8], and graph an-

alytics [112]. This has led to continuous attention towards optimizing parallel SpGEMM

on CPUs [118, 41], GPUs [99, 41] and distributed systems [20, 39].

Existing parallel SpGEMM algorithms on CPUs are mostly based on Gustavson’s algo-

rithm [67] as it completely avoids the multiplication among zero elements in the matrices.

This lets it and its variants achieve asymptotic complexity of the number of nonzeros mul-

tiplied. In Gustavson’s algorithm, the key operation is merging multiple sparse rows from

the second input matrix. To merge, either an array of the row’s length [67, 41] or a hash

map [41, 110] is used. The former, also called a dense accumulator [41], performs better

than hash maps, due to the reduced overhead, but it suffers from high memory use and

cache misses when the matrix size grows or the matrix is highly sparse. The latter, called a

sparse accumulator [41], can scale but is slowed down by expensive collision operations.

In this work, we bring the benefits of the dense accumulator approach to larger ma-
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trices, resulting in state-of-the-art SpGEMM performance. For an SpGEMM operation

C = A × B, we achieve this by the following. First, we evenly partition the columns of

the second matrix, B, such that the dense accumulator for each partition can fit in cache.

The partitioned structure of B is stored in a new sparse matrix, which we denote S. In S,

each nonzero represents the existence of a partition in a given row of B, which we call a

segment. During merging rows of B, we first merge rows of S to identify which segments

to be merged in B, and then merge each such segment separately with a small dense accu-

mulator. By separating the merging operation into two steps, we significantly reduce the

memory required for the dense accumulator, including in the cases when the matrices are

extremely sparse or large.

We perform extensive experiments over hundreds of various matrices from the SuiteS-

parse Matrix Collection [37] and across three CPU architectures. We compare against the

prior state-of-the-art work, namely Patwary et al. algorithm [118], Kokkos [41], Hash/HashVec-

tor/Heap [110], MKL [76] and an outer product based approach [65]. Experimental results

shows that our algorithm achieve the best overall performance for each platform, without

requiring any low-level CPU or architecture optimizations.

4.1 Related Work

There are two main parallel SpGEMM algorithms that are used on CPU systems: Gus-

tavson’s algorithm and the outer product based algorithm. Gustavson’s algorithm [67] is

the most commonly used [118, 41, 110] and it achieves the best time complexity, O(M),

while requiring low additional memory. Our approach is based on Gustavson’s as well.

Hence we first will first present sequential Gustavson’s algorithm then present its parallel

variants and finally the outer product algorithm.
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4.1.1 Gustavson’s Algorithm

Gustavson’s SpGEMM algorithm has two phases: symbolic and numeric. The symbolic

phase computes the sizes for each row of C (which is unknown before-hand), in order to ef-

ficiently allocate memory. Then the numeric phase computes the multiplication results and

saves them into the newly allocated space in C. The two phases are similar, as shown in Al-

gorithm 4.1. For each row i of A, A(i, :)×B is conducted to generate C(i, :). A(i, :)×B

is computed by merging multiple rows of B selected by each nonzero in A(i, :), as shown

in Figure 4.1a. The merging is achieved by inserting to and reading from H , an array of

size O(B.m), called a dense accumulator and used in both phases. In the symbolic phase,

H stores a binary value showing existence of the key (line 6), resulting in the number of

non-zeros to allocate (line 10). In the numeric phase, H increases each time it is visited by

the numeric value (line 8), resulting in the output values of C(i, :) (line 12).

Algorithm 4.1: Gustavson’s SpGEMM Algorithm for Symbolic and Numeric phases.
1 init H . H is an array of size O(B.m)

2 foreach row i ∈ A do
3 foreach j ∈ A(i, :) do . A(i, :)×B
4 foreach k ∈ B(j, :) do
5 if Symbolic then
6 H[k]← 1 . Insert a key to the accumulator
7 else
8 H[k]← H[k] + A(i, j)×B(j, k)

9 if Symbolic then
10 allocate C(i, :) of size |H.read()|
11 else
12 C(i, :)← H.read()
13 H.reset()

We usemi to represent the number of nonzero multiplications needed to compute C(i, :

) = A(i, :)×B using Gustavson’s algorithm. Let j ∈ A(i, :) denote the indices of nonzeros
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Figure 4.1: Different parallel schemes are shown, row-wise [41, 110], Patwary et al. [118]
and our approach: CSeg. Highlighted parts are the inputs from A and B along with the
output at C for a single task. Such tasks then are distributed among threads. The width of
each part in B determine the size of possible key values for merging rows of B. For 4.1a,
it’s B.m and for 4.1b, 4.1c, it’s w. To compute C(i, :), Patwary et al. needs to read A(i, ; )
B.m
w

times (3 here) whereas 4.1c only reads once. In 4.1c, the column segments are merged
separately, shown in different colors.

in ith row of A, and let |B(j, :)| denote the number of nonzeros in jth row of B. Then,

mi =
∑

j∈A(i,:)

|B(j, :)|. (4.1)

Letm′ = maxi∈[0,C.n)mi. Note this value is frequently used as the upper bound for memory

access to compute a row of C in hash map variants of Gustavson’s algorithm. Then, let

M =
∑

i∈[0,C.n)

mi (4.2)

be the number of nonzero multiplications performed. This is the time complexity of Gus-

tavson’s algorithm and its variants. The main steps and their complexities in Gustavson’s

are:

• reading A: O(A.z)

• reading B: O(M) (see Eqn. 4.2)

• inserting to the dense accumulator H: O(M)
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• reading from H to allocate/write to C: O(C.n) for the symbolic phase, O(C.z) for

the numeric phase

• resetting H: O(C.z) or O(C.n), implementation specific.

Assuming C.n ≤ A.z ≤ C.z ≤M , which holds in many matrices and is guaranteed when

there are no empty rows in both A and B, the time complexity is O(M) for both phases.

4.1.2 Parallel Gustavson’s Algorithm Variants

The outer for loop in Algorithm 4.1 can be parallelized by each thread holding a private

accumulator, known as row-wise parallelism (Figure 4.1a). Variants of row-wise parallel

algorithms differ in the accumulators applied e.g., dense accumulators, linked list based

hash maps [41], linear probing based hash maps [110] or heaps [110, 7].

As shown previously [118, 41], dense accumulators perform well when B.m is small.

However, as B.m becomes larger, which is increasingly common [130], cache misses in-

crease leading to low GFlops and performance.

One solution is to apply hash maps instead, which allocate and operate on smaller

amounts of memory. These normally operate within O(m′) and use hash functions such

as f(x) = x mod m′. Collisions are handled through linked list structures [41] or linear

probing [110]. Hash maps increase memory access locality, but suffer from expensive

collision handling, and only perform better than dense accumulators when B.m is large.

Thus, Deveci et al. [41] switch between dense and sparse accumulators based on B.m.

If both input and output matrices have sorted elements inside each row, one can use a

different approach that leverages heaps [110, 7] as smaller accumulators. In this approach,

to generate C(i, :), an |A(i, :)| sized heap is used to find which row among the |A(i, :)|

rows fromB contains the minimum column index to update C(i, ; ). Heap has good writing

locality to the accumulator, however, it suffers from scattered reading of B and increased

complexity updating the accumulator.
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Patwary et al. [118] proposed another solution for multiplying matrices when B.m is

large by partitioning the columns of B into equal parts (of widths w) and then multiplying

each part withA separately. Figure 4.1b shows the main idea of this approach. The width of

each part, w, is chosen to be small enough so that the dense accumulator can be efficiently

applied during multiplication, resulting in better cache utilization. This approach performs

better on small matrices than either a dense or sparse accumulator. However, as we will

demonstrate in Section 4.3, the performance drops significantly with larger matrices. In

particular, its complexity increases to O(B.m
w
× A.z + M). As w is a constant number

based on L2 cache size, the complexity equals O(B.m× A.z + M). Note that A needs to

be fully read once (costing O(A.z)) for each partition of the columns of B, and there are

B.m
w

parts, resulting in a runtime of O(B.m
w
× A.z). For a large or highly sparse matrices

(where B.m
w
� M

A.z
), the runtime O(B.m

w
× A.z) becomes dominant.

4.1.3 Outer Product Based Approach

Gu et al. [65] show the efficiency of outer product based approaches for SpGEMM on

CPUs. In this approach, given the system memory bandwidth they achieve a performance

close to the roofline model. However, the maximum possible performance of an outer

product based approach is lower than Gustavson’s algorithm. The difference grows as M
C.z

increases. Furthermore, as it uses significantly more memory, it is better suited for systems

highly tuned for memory bandwidth, such as GPUs [90], rather than CPUs.

4.2 Column-Segmented SpGEMM

Our proposed algorithm, Column-Segmented SpGEMM (CSeg), like many of the previous

work on parallel SpGEMM (e.g., [118, 41, 110]) is based on Gustavson’s algorithm [67].

The main novelty of our algorithm is the use of an additional high-level, summary sparse

matrix, S, which stores a column-segmented version of the second matrix. Given A and B

in CSR format, the main steps of our CSeg algorithm are:
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(a) CSR format of B
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0 2 4 5 6 9 11 13 14

(b) S generated from B in Figure 4.2a

Figure 4.2: An example of B and S. B.n = 6, B.m = 9, B.z = 15 and w = 3. The
number of nonzeros in S is 9.

• Generate a new sparse matrix S: this matrix represents the column segment structure

of B.

• Symbolic phase: compute the number of nonzeros for each row in C. For each row

i, first do A(i, :) × S, finding the parts to merge and the corresponding nonempty

column segments for each part; then, merge each part separately and accumulate

results, generating |A(i, :)×B|.

• Allocation phase: output matrix’s C.rowI and C.z are computed and C.cols and

C.vals are allocated, enabling parallel writes to C.cols and C.vals.

• Numeric phase: this is similar to the symbolic phase, but also writes to C.cols and

C.vals.

Figure 4.1c shows a high-level overview of our approach. In the following we present

the details of our algorithm.
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Algorithm 4.2: Generate S (assuming cols in each row sorted.)
input : B (CSR), w
output: S, B′.cols, B′.vals)

1 S.n← B.n, S.m←
⌈
B.m
w

⌉
2 S.rowI ← malloc(S.n+ 1), S.rowI[0]← 0
3 for i← 0 to B.n− 1 do . Calculate row sizes
4 S.rowI[i+ 1]← 0
5 hprevious ← −1
6 for j ← B.rowI[i] to B.rowI[i+ 1]− 1 do
7 h← B.cols[j]/w
8 if h 6= hprevious then
9 S.rowI[i+ 1]← S.rowI[i+ 1] + 1

10 hprevious ← h

11 prefixSum(S.rowI)
12 S.z ← S.rowI[S.n]
13 S.cols← malloc(S.z), S.vals← malloc(S.z)
14 B′.cols← malloc(B.z), B′.vals← B.vals
15 for i← 0 to B.n− 1 do . Get cols, vals, cols′, vals′

16 k ← S.rowI[i]
17 for j ← B.rowI[i] to B.rowI[i+ 1]− 1 do
18 h← B.cols[j]/w
19 hprevious ← −1
20 if h 6= hprevious then
21 S.cols[k]← h
22 S.vals[k + +]← j
23 hprevious ← h

24 B′.cols← B.cols[j]%w

4.2.1 Generating S

We partition the columns of B into equally sized parts and store the resulting high-level

summary of this partitioning in S. Figure 4.2 depicts a toy example, where we partition B

into three column parts, represented by different colors, and within each part there are 3

columns. A row within each column part is called a column-segment, and is indexed by its

row and column part id. In Figure 4.2, nonzero elements at B(0, 0) = a and B(0, 2) = b

are in the (0, 0)-th column segment. Each nonzero in S, S(i, j), represents a nonempty

(i, j)-th column segment. As the (0, 0)-th column segment in B is not empty, S(0, 0) is

nonzero and represented with a blue box. If w is the width of each column part, then in
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total there are
⌈
B.m
w

⌉
column parts. We have S.n = B.n and S.m =

⌈
B.m
w

⌉
, and S.z is the

total number of nonempty column-segments in B.

To access data in each column-segment together, we also generate partially sorted ver-

sions of the B.cols and B.vals arrays (B′.cols and B′.vals) storing respective elements in

each column-segments together. The value for each nonzero of S, denoted S.val, stores

the beginning location in B′.cols and B′.vals for the corresponding nonempty column-

segment. To reduce storage, B′.col only stores the relative index within each column seg-

ment. For example, in Figure 4.2, the nonzero at B(0, 6) = e is stored at location 4 in

B′.cols as 0 since it is the first element inside the (0, 2)-th column-segment. Note that,

B′.vals = B.vals, if B.cols and B.vals are sorted within each row. To complete the

information needed to recover B from S and B′, we store w as S.w.

Selection of w: For computational efficiency, w is always chosen as a power of 2. For

better cache utilization, w is also chosen so a dense accumulator of width w can fit into the

L2 cache. If possible, w is set so that S.cols or B′.cols, or both, could fit into a smaller

data type such as uint8 or uint16. This is performed at runtime with a constant cost.

Algorithm 4.2 shows the pseudo code for generating S given B and w. Independent of

whether column indices are sorted, the time complexity is O(B.z), as we need to iterate

through B’s nonzeros at most twice. Each row in S is independent, and so the process can

be parallelized by rows.

4.2.2 Symbolic Phase

The structure of the output matrix C is not known apriori. A sequential algorithm can

discover the structure row-by-row, but for efficient parallel execution, one needs to avoid

merging variable size rows. The symbolic phase computes the entries of C.rowI so that

numeric computations can directly store the results in C. Algorithm 4.3 shows the pseudo

code for the symbolic phase. For each row i in A, we first perform A(i, :) × S, which

finds the nonempty column-segments of B which will be merged (line 4). We then group
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Algorithm 4.3: Symbolic Phase
input : A, S
output: C

1 initialize H1 and H2 . H1 and H2 are accumulators
2 foreach row i ∈ A do
3 c← 0
4 foreach j ∈ A(i, :) do . A(i, :)× S
5 foreach k ∈ [S.rowI[j], S.rowI[j + 1]) do
6 H1[S.cols[k]].append (k)
7 foreach existing key k in H1 do . A(i, :)×B
8 foreach value v for key k in H1 do
9 foreach j ∈ [S.vals[v], S.vals[v + 1]) do

10 H2[B′.cols[j]]← 1

11 c← c+ number of existing keys in H2
12 H2.reset()
13 C.rowI[i]← c
14 H1.reset()

them by their column part index. Next, we perform A(u, :)× B by merging each group of

column segments separately with a small dense accumulator (line 7). Finally, we combine

the results from each group (line 11).

We show an example in Figure 4.3. Here, i = 0 and A(i, :) has nonzeros at A(0, 0) =

x,A(0, 3) = y, A(0, 5) = z. Thus, the 0th, 3rd, and 5th row of B are to be merged to

generate C(i, :). The two steps in this example are: first, we access the rows 0, 3, and 5 of

S. While accessing them, we group the nonzeros into three groups based on their column

index,

{S(0, 0), S(3, 0), S(5, 0)} , {S(0, 1)} , {S(0, 2), S(5, 2)} .

Second, within each group, we use an accumulator of sizew to merge the group. A nonzero

here represents a nonempty column in B, and all the corresponding nonempty column

segments in the same group have the same column part index.

In the example given in Figures 4.2–4.3, we merge the three groups with a dense ac-

cumulator (H2) of size 3 separately and return the number of existing keys in each group

as 3, 2, 2 respectively. They are summed together (line 11), resulting in 7 as the number of
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Figure 4.3: An example of the accumulator H1 after the algorithm visits A(0, :), given
by (0, x), (3, y), (5, z). In S, the values indicate the edge id, which can be used for finding
both the start and end position of a column segment in col′ (Figure 4.2b.)

non-zeros C(0, :).

Details of the two accumulators are given as follows.

For H1: the key is the column index in S and the value is the nonzero id for S (which

is then used for looking up for the location of the according column segments). Figure 4.3

shows an example of the keys and values in this accumulator. During insertion different

values will be stored explicitly for each key. There are at most S.m keys, and so a dense

array can be used to check for a key’s existence. When multiple values are given for the

same key any hash collision strategy, such as a linked list, can be used. Hence, we consider

this accumulator as sparse. It takes O(S.m) to initialize, and O(1) to insert and read. By

storing the unique keys given while inserting, the resets of H1 take O((A × S).z). For

memory, H1 takes O(S.m+m′(A× S)), O(S.m) to check existence, and O(m′(A× S))

to store the key-value pairs.

For H2: the key is the compressed column index in col′, and the value is a boolean

type. There are at most w keys (recall this is limited to fit in the L2 cache), and so a dense

array can be used. The accumulation operator is the boolean operator OR. H2 takes O(w)

to initialize and O(w) memory.

The number of times H1 will be inserted into is the number of multiplications for

A × S. Compared to B, S has the same or a fewer nonzero count for any row, and so
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O(M) insertions are needed. With H2, M insertions are needed in total. Reseting H2

takes O(C.z), resetting H1 takes O((A× S).z) = O(C.z), and so the total complexity for

the symbolic phase is O(M).

The memory complexity for the hash maps is O(S.m+m′+w), and the cost of writing

row sizes to C is O(C.n). In the parallel case, given p threads, O(p × (S.m + m′ + w) +

C.n) memory will be used. If we consider w as a small constant number, since w will be

dependent on L2 cache size, the memory complexity can be rewritten as O(p × (B.m +

m′) + C.n). In practice, S.m+ w � B.m.

4.2.3 Numeric Phase

The numeric phase is similar with the symbolic phase, except that the values of the matrix

are involved in the operations and results need to be written to C.

For the first hash map (H1), the value of the hash map becomes a pair of nonzero ids,

and the value of the nonzero in A. The insertion step for H1 in line 6 of Alg. 4.3 will be

changed to value = (k,A(i, j)) instead of value = k. Figure 4.3 shows the difference of

H1 for symbolic and numeric phases.

For the second hash map (H2), the value of the hash map becomes the nonzero value

type in the three matrices. The insertion inserts the multiplied value and the accumulation

operator becomes +. Line 13 of Alg. 4.3 changes to reading the existing (key, value)

pairs and writing to C, which take O(C.z) in total. These changes do not impact the time

complexity, and so the numeric phase remains at O(M).

4.2.4 Computational Complexity

Our proposed method utilizes dense accumulators for matrices with all sizes by doing the

accumulation in a hierarchical way. Inspired by Patwary et al.[118], we also partition

the columns of B to equal sized parts based on the L2 cache size. However, instead of

multiplying each part of columns ofB independently, we directly use row-wise parallelism.
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For each row of C, each column part is merged separately by first deciding the parts of

columns that need to be merged and then merging each such part separately. With only

a small amount of extra overhead (reported in § 4.3), our approach does not increase the

complexity yet applies dense accumulators—even in large matrices. Table 4.1 compares

the computational complexity of the existing approaches with this work.
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Table 4.1: Comparison on this work and others; ‘extra memory complexity’ is memory required beyond the input and output matrices. †

nbins is a input parameter adjusting loads between expand and sort.

approach names hash map hash map size time complexity extra memory complexity

Gustavson [67] dense O(B.m) O(M) O(p×B.m)
Patwary et al. [118] dense O(w) O(B.m

w
A.z +M) O(pw + B.m

w
(B.n+ C.n) +B.z + C.z)

Kokkos [41] dense or sparse(link list) O(B.m) or O(m′) O(M) O(p×B.m) or O(p×m′)
Hash [110] sparse(linear probing) O(m′) O(M) O(p×m′)

Heap [7, 110] - - O(M log4 (A)) O(p×4 (A))
Outer [65] - - O(M) O(p× nbins+M) †

Our method: CSeg dense O(w + B.m
w

+m′) O(M) O(p(w + B.m
w

+m′) + S.n+ S.z)
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4.3 Experiments

4.3.1 Experiments Setup

Implementation Details

We implemented our approach in C++ with OpenMP1. We did not include any platform

specific or low-level optimizations. We use dynamic scheduling in both the symbolic and

numeric phases along with the construction of S. We set the chunk size such that on

average 30 tasks will be assigned to a thread for in both the symbolic and numeric phases,

allowing for load to be sufficiently balanced. We use all available threads or hyperthreads,

if available on the architecture. We do not perform thread or NUMA node pinning.

Many scientific matrices form clusters when represented in their natural order, which is

well suited for compression [41]. Due to this, we adopt the compression scheme introduced

in Kokkos [41] using uint32 to represent 32 continuous locations in a row. We apply this

in the symbolic phase, reducing both insertions into the accumulator and memory accesses

for B. We compute how compressible the matrix is during the construction of S, with no

asymptotic increase in work. Similar to Kokkos, we use a threshold to toggle compression.

CSeg naturally compresses by using small integers for B′.cols and so we use a higher

compression threshold than Kokkos.

Platforms

We evaluated on three platforms: an Intel Broadwell, an IBM POWER9, and an ARM

A64FX. We did not optimize our code for any of the architectures beyond adjusting the L2

cache size parameter for S. Details on the platforms are shown in Table 4.2.

1Available at https://github.com/GT-TDAlab/cseg{}.
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Table 4.2: Machines Used for Runtime Evaluation

Arch Intel Broadwell IBM POWER9 ARM A64FX
CPU Xeon E5-2683 v4 PowerNV Fujitsu A64FX
S/C 2/16 @ 2.1 Hz 2/16 @ 3.8 GHz 4/12 @ 2.0 GHz
L1 64KB 32KB 64KB
L2 256KB 512KB 8MB
L3 4MB 10MB N/A

Mem 512GB DDR4 316GB DDR4 32GB HBM2e

Preliminaries

All code are compiled with -O3 option using the same compiler on each platform. On the

Broadwell, we use ICPC 2021.2.0 as MKL is recommended for use with the Intel compiler.

On the POWER9, we use GCC 7.4.0. On the A64FX, we use GCC 8.3.1. Each runtime

data point is the median of 20 runs of the algorithm. Our runtime variation is better than

the others. For example, the geometric mean of coefficient of variation on Intel are 3.6×,

2.4×, and 1.4× lower than Kokkos, Patwary, and MKL respectively.

We used performance profiles [46] to compare different algorithms (see Figures 4.6–

4.7). In these figures, the y-axis shows the fraction of instances, and the x-axis shows θ,

the factor that a result is worse than the best result. A point at (x, y) for an algorithm

represents the following: for y fraction of instances, the algorithm’s performance was no

worse than x times the best result for that instance across all algorithms. Using such a

figure, the overall performance across a variety of different inputs on a large dataset can

be more easily understood. Any algorithm that results in points with low θ values at high

probabilities, that is in the upper left corner, do the best. In each case, our algorithm is in

this corner.

Dataset

We used two matrix datasets composed of square matrices. In our experiments we com-

pute A2, as is common for evaluation [41, 110]. We are not aware of a public evaluation
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Figure 4.4: Properties of the full dataset, 476 matrices in total. x-axis are matrix IDs and
matrices are sorted by the average number of nonzeros in a row; y-axes show the aver-
age number of nonzeros in a row, the total number of nonzeros, and the GFlops achieved
by MKL (not the inspector-executor, which is used in other experiments) on Broadwell,
respectively.
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dataset for non-square multiplications, and square multiplications are common in graph

problems [112]. The first dataset is the same as in [110] and we report individual absolute

performance results for each data. Table 4.3 shows details of each matrix of the 26 matrices

in the first dataset. For brevity, we shorten the name of the matrices from their SuiteSparse

Matrix Collection [37] name while keeping them identifiable. In Table 4.3, the matrices

are ordered by their M(A2) value, which is the number of multiplications needed for A2

in Gustavson’s algorithm. This is also the complexity of the all the algorithms evaluated

except Patwary et al., which is higher. M(A × S)/M(A2) shows the ratio of additional

computational overheads compared with not using S. We also include S.z/B.z, which

shows the memory overhead of S.

The second dataset is a much larger dataset used to understand and evaluate our overall

performance. We included all matrices from SuiteSparse that satisfy the following: square

matrices; structure are either symmetric or general (non-symmetric); number of nonzeros

is between 0.5 million and 100 million. Among them, 32 matrices are excluded because

their result matrices are too big to fit in any of our platforms, which results in 476 matrices

used in this dataset. In Figure 4.4, we show the dataset statistics. In Figure 4.4, matrices are

sorted by the average number of nonzeros per row in non-decreasing order and indexed by

this order. Figure 4.4a shows the number of nonzeros per row varying from 1 up to almost

1000, with the majority (78%) between 5 to 100. Figure 4.4b shows that the total number of

nonzeros for the matrices are mostly (76%) within 15 million, with all matrices distributed

nearly evenly on the number of nonzeros per row. Figure 4.4c shows the GFlops achieved

by MKL on Broadwell. In this figure, we are using MKL instead of MKL’s inspector-

executor as it’s less optimized and impacted more directly by the structure of the matrix.

For data points with similar x-axis values, we see the GFlops scattered widely, indicating

the structural diversity in this dataset. We also observe that with an increasing number

of nonzeros per row (x-axis), the overall GFlops achieved are increasing. This can be

attributed to the increasing ratio of computation to memory load.
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Table 4.3: 26 Matrices used for detailed comparison. In the first four columns, numbers
are in millions. Considering C = A2, A.n is equal to A.m. We sorted the list by M(A2).

matrix A.n A.z M(A2) A2.z S.z
B.z

M(A×S)
M(A2)

patents.. 0.24 0.56 2.60 2.28 0.91 0.86
m133-b3 0.20 0.80 3.20 3.18 0.65 0.65
mac ec.. 0.21 1.27 7.56 6.70 0.22 0.23
mc2depi 0.53 2.10 8.39 5.25 0.29 0.29
scircuit 0.17 0.96 8.68 5.22 0.40 0.31
poi..Da 0.01 0.35 11.77 2.96 0.76 0.72

mario002 0.39 2.10 12.83 6.45 0.62 0.62
major.. 0.16 1.75 19.18 8.24 0.31 0.31
2cubes.. 0.10 1.65 27.45 8.97 0.20 0.19
cage12 0.13 2.03 34.61 15.23 0.48 0.46

webb..M 1.00 3.11 69.52 51.11 0.68 0.12
offshore 0.26 4.24 71.34 23.36 0.25 0.24
conf..05 0.05 1.92 74.76 10.91 0.12 0.12
cop2.. 0.12 2.62 79.88 18.71 0.34 0.33

filter3D 0.11 2.71 85.96 20.16 0.26 0.24
rma10 0.05 2.37 156.48 7.90 0.05 0.05
mono.. 0.17 5.04 204.03 41.38 0.30 0.25

cant 0.06 4.01 269.49 17.44 0.05 0.05
shipsec1 0.14 7.81 450.64 24.09 0.07 0.07
consph 0.08 6.01 463.85 26.54 0.05 0.05

pdb1HYS 0.04 4.34 555.32 19.59 0.03 0.03
hood 0.22 10.77 562.03 34.24 0.09 0.09
pwtk 0.22 11.63 626.05 32.77 0.03 0.03

dela..n24 16.78 100.66 633.91 347.32 0.34 0.33
wb-edu 9.85 57.16 1559.58 630.08 0.15 0.04
cage15 5.15 99.20 2078.63 929.02 0.31 0.29
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Figure 4.5: Total (end-to-end) runtime comparison (in log scale) on the three platforms
tested shown in stages. Top is pre/post-processing, if any, middle is symbolic phase, and
bottom is numeric phase.

Baselines

We compare our algorithm CSeg against prior state-of-the-art, namely Patwary et al. [118],

Kokkos [41], Hash [110], Intel oneAPI Math Kernel Library v2021.2 inspector-executor

(MKL) [76], and Outer [65].

As there is no existing public implementation of Patwary et al. [118], we implemented

one. Similar to the implementation of our algorithm, we use C++, OpenMP, and dynamic

scheduling. In Patwary, there is both pre-processing and post-processing, in addition to

the symbolic phase and numeric phases. In pre-processing, the partitioned column-parts

69



of B are converted and stored separately. In post-processing, the column-parts of C are

combined, as they are generated separately. In our implementation, the post-processing

frequently exceeds other runtimes. To compare more clearly, we show the runtime by

stages (shown later in Figure 4.5) and compare the symbolic and numeric only (shown

later in Figure 4.6).

For Kokkos, we configure it for each platform through option KOKKOS ARCHS and

run it with the --dynamic option for scheduling. For Hash [110], there are 3 different

algorithms: Hash; HashVector; and Heap. In our experiments, HashVector performs the

best of the three in most cases, and so we pick HashVector for our comparisons. Due to

its use of architecture-specific low-level optimizations, Hash only runs on our Broadwell

system. For the outer product based approach [65], we use the existing implementation and

run it using its provided scripts. For MKL, it runs only on Broadwell. We run and measure

both MKL and MKL’s inspector-executor. MKL’s inspector-executor reliably outperforms

MKL thus we report only MKL’s inspector-executor. Outer, similar to Hash and MKL, can

only run on Broadwell. There are two hyper parameters for Outer: the number of blocks

and the width of the blocks. We use the parameters given in the scripts and as suggested in

the paper, {1024, 2048} and {32, 64}. All 4 combinations of the parameters are evaluated

for each matrix and then the best results are reported for Outer. As mentioned in the [65]

and observed in our experiment as well, Outer achieves better performance with single

socket mainly due to the high dependency on bandwidth, and so we use numactl to run

Outer on single socket during the experiment.

4.3.2 Runtime Analysis

In Figure 4.5, we show the total runtime for all algorithms on three platforms with the first

dataset. We use a log scale so that all of the runtime can be included, as the matrices vary

in scale. To compare the runtime of different stages, each runtime is split to the stages for

the algorithms. For our algorithm and Patwary algorithm, there is an additional processing
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time (on top), a symbolic time (in the middle), and a numeric time (in the bottom). For

our algorithm (CSeg), the extra processing time consists of constructing S. For Patwary,

it includes all pre- and post-processing. Both Kokkos, Hash and MKL only have symbolic

and numeric. For Outer, there is no stage separation and so we just show the total runtimes.

In Figure 4.5, the matrices are in the x-axis and sorted based on their M(A2) val-

ues as shown in Table 4.3. As the overall trend of the timing grows smoothly as M(A2)

increases. The structural differences between matrices causes runtime spikes. For exam-

ple webbase-1M and delaunay n24. While Patwary algorithm performs well on the

smaller matrices, it is especially sensitive to such structural variance.

The webbase-1M and delaunay n24 matrices are relatively sparse compared with

other matrices: the average number of nonzeros in a row are 3 and 6 respectively, while

the corresponding average value in this dataset is 28; the average number of multiplication

needed for a row are 70 and 38 respectively, while the corresponding average value in this

dataset is 1670. delaunay n24 is also the matrix with the highest number of rows. The

high sparsity makes the extra overhead O(B.m × A.z) in Patwary algorithm becomes the

bottleneck. Patwary algorithm also performs worse than the others for other large matrices,

due to the same reason.

As the only approach using dense accumulators for those cases, we avoided these spikes

and achieve comparable or better performance compared with hash map based approaches.

Performance of Outer becomes significantly worse than the others, from rmat10 to

pwtk. For those matrices, M(A2) has significant growth compared to the matrices before

it, and most of them have anM(A2) to (A2).z ratio above 20 and up to 28 (while the overall

average is 7). These factors result in Outer using significantly more memory than the others

which is a known reason leading Outer to poor performance [65].

Hash is competitive on many small matrices, for example it is the fastest on mc2depi.

Unfortunately, the performance does not continue as the matrices become larger. Similarly,

MKL is competitive on smaller matrices, such as mac econ fwd500, and mario002
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but that does not carry through to larger matrices.

Kokkos tends to have much higher overhead for small matrices but it is not significant

when the matrices get large. It performs within the top two on the three largest matri-

ces, delaunay n24, wb-edu and cage15, across the three platforms. However our

approach is still able to achieve average 1.3 times speedup over Kokkos on these three

large matrices. For wb-edu, our approach is consistently better across all three plat-

forms. Table 4.3 helps show why. The additional overhead with our approach are given

by S.z/B.z and M(A× S)/M(A2). Those values are very low for wb-edu, especially

compared with the other two large ones, which means it can fully take advantage of the

small dense accumulator. For some cases we perform slightly worse, such as on Power9

with delaunay n24 and cage15. Due to the structure of the input, when access to the

accumulator is already localized (e.g., mostly banded matrices), the Hash based approaches

can also use a small amount of memory with less conflict. In such cases, our code could

underperform because of the extra cost of generating and multiplying S.
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Figure 4.6: Performance profile on runtime of symbolic and numeric phases on the three platforms. θ is the multiplicative factor a result
is worse than the best result and ρ is the fraction of total instances. The farther in the upper left corner, the better.
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Figure 4.7: Performance profile on total runtime on the three platform tested.
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4.3.3 Evaluation on Larger Dataset

To compare overall performance for all approaches, we used the second dataset which

includes 476 matrices. The results are presented in Figure 4.6 and Figure 4.7. As mentioned

earlier, we excluded matrices that resulted in output sizes too large to fit into memory on

our machines. Due to its small memory, there are an additional 3 such matrices on the

ARM A64FX that do not fit, and so we excluded those in the results for that machine.

We set 10 minutes as the timeout for each program. We also observed that the baseline

codes failed on some of the instances. For instances that execution timed out or failed, we

set their runtime as 10 times worse than the best runtime. The number of those cases for

Kokkos, Patwary, Hash, MKL and Outer on the Broadwell are: 13, 0, 66, 13, 68. Kokkos,

and Patwary on Power9, A64FX are: 13, 0; and 13, 19, respectively. For Patwary, as it

requires more memory and A64FX has the least memory, it failed more on A64FX.

It can be helpful to only consider the symbolic and numeric phases, especially as ad-

ditional processing times are not the focus of implementations or optimizations and those

parts can be amortized out in iterative processes. For that reason, we consider the sym-

bolic and numeric phases in Figure 4.6. In this case, Patwary improves as compared with

Figure 4.7, but our approach CSeg remains consistently at the top. As seen in Figure 4.7,

even when all pre-processing overhead included, our CSeg algorithm achieves best results

in 66% of the instances on Broadwell, 80% on Power9, and 67% on A64FX, and it is

never more than 2.1, 2.6, and 2.7 times worse than any algorithm on Broadwell, Power9,

or A64FX.

We further compared our speedups against MKL and Kokkos after sorting based on

their sparsity (not shown for brevity). Our speedups remain relatively uniform against

Kokkos yet increase against MKL as sparsity increases, showing our approach is well suited

for highly sparse matrices.

Overall, among all three platforms, we achieve the best performance among the algo-

rithms and our average speedups (excluding cases where baselines failed or timed out) are
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Figure 4.8: Runtime comparison between web-google and wb-edu

1.93×, 3.28×, 1.63×, 3.03×, and 31.87×, to Kokkos, Patwary, MKL, Hash, and Outer,

respectively.

4.3.4 Hybrid CSeg

As shown in Figure 4.6 and Figure 4.7, there are instances where CSeg doesn’t perform

best. Some of them are because CSeg is not specifically optimized to handle. For example,

for Chebyshev4, MKL is 2× faster than CSeg and Chebyshev4 is among the dense

matrices with 68, 122 rows and 5, 377, 761 non-zeros.

Some other instances when CSeg does not perform best are caused by the extra over-

head of constructing S and computing A × S. For example, for web-google, CSeg

is 1.3× and 1.4× slower than Kokkos and Hash respectively and the values of S.z/B.z

and M(A× S)/M(A2) are close to one, 0.97 and 0.95 respectively, which means A × S

is almost as expensive as A × B. As a comparison, we list the detailed runtime for

web-google, and wb-edu in Figure 4.8. For the later, CSeg does perform the best

and the size of S is much smaller than B.

Here, we investigate more on the second case by creating a hybrid CSeg called, CSeg*.

First, we wrote a new SpGEMM implementation, which uses the traditional accumulators,

dense accumulator and hash map, called CSeg0. In CSeg0, we switch between the two

accumulators based on the width of B. Like Kokkos, we use 250K as the threshold, and
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when the width of B is smaller than 250K, we use the dense accumulator and otherwise

use the hash map. Second, we add CSeg0 into CSeg, and only use CSeg0 if the size of

S is close (95%) to that of B. In Figure 4.8a, we show the detailed runtime of CSeg* on

web-google. The preprocessing time is much less than CSeg because it only counts

the number of non-zeros in S and won’t actually create S. The runtime for symbolic and

numeric stages are similar with that of Hash.

Then we evaluate whether CSeg* can actually shorten the tail for CSeg without de-

crease overall performance in performance profile. We present the results in Figure 4.9. It

shows the total runtime results in performance profile on Broadwell with CSeg* included,

represented as the pink line. CSeg and CSeg* are close together. However, compared

with CSeg, CSeg* is slightly more towards the top left and tail is also slightly shorter, and

ends at x = 2.06, instead of x = 2.26. That means, there are smaller amount of cases for

CSeg* to perform worse than other, and the maximum slow down for CSeg* is less than

CSeg. Thus, CSeg* clearly helps performance of CSeg.

The results with CSeg* suggest that due to the high characteristics variance in the

sparse matrices, a hybird SpGEMM would have strong potential in further improve SpGEMM

performance. More carefully designed, and efficient heuristics algorithm or other ap-

proaches can be developed in future work to select different SpGEMM algorithms based

on input and platform characteristics.

In Figure 4.9, we also add the result for directly running CSeg0, represented by a

grey line, as an extra baseline. The overall performance of CSeg0 is similar with other

approaches, not at top left and has long tails in the performance profile. The approach used

in CSeg0 is similar with Kokkos’s but without optimizations such as multi-level hash map.

Comparing with Kokkos, CSeg0 performs better in more cases but performs worse when

they are not close to the best. The reason for CSeg0 performing better in more cases are

Kokkos performs worse in extra small matrices which might be caused by the overhead

of the framework it’s developed upon. We also looked into cases when CSeg0 performs
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Figure 4.9: Performance profile on total runtime on Broadwell including a hybrid CSeg
(CSeg*) and our implementation of using dense accumulator and hash map (CSeg0)

worse than Kokkos, and we found most of them to be ones with larger computational cost.

The reason for that could be that the multi-level hash map table in Kokkos significantly

helps the performance as the computation gets intensive.

4.3.5 Performance comparison on computational intensive ones

Speedup on matrices that are more computational intensive is more meaningful considering

the total time saved. However, among the matrices tested, most of them can be finished

really quickly. On Broadwell, for 65% of the matrices, CSeg finishes within 0.01 second;

97% of the matrices are finished within 1 second. Here, we focus only on matrices that take

more than 1 second and show the overall performance of all libraries on them.

In Figure 4.10, we show the total runtime on those matrices on Broadwell. We include

matrices that CSeg will take more than 1, 2 and 3 seconds. There are 34, 19 and 10 such

matrices respectively. As the computation gets more expensive, CSeg and CSeg* are more

towards the top left. That is, as computation gets expensive, CSeg and CSeg* performance
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even better compared with others. The long tail still exists in the other libraries. That

means, there are huge runtime differences between CSeg (CSeg*) and the others when

the computation gets expensive.

4.4 Summary

We present a new approach to improve runtime on the SpGEMM problem on CPUs. We

build on Gustavson’s row-by-row approach. Instead of using either sparse or dense accu-

mulators, we introduce a new sparse and compressed matrix that allows for small dense

accumulators to be used. This brings the performance of dense accumulators to matrices

that otherwise are either too sparse or too large. We partition the space so that the small

dense accumulator can fit into L2 cache. We perform extensive experiments and through

performance profiles we show that our approach is state-of-the-art across three CPU archi-

tectures.
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CHAPTER 5

BOA: A PARTITIONED VIEW OF DE NOVO GENOME ASSEMBLY

Various methods have been developed to extract the nucleotides sequence in DNA. How-

ever, none of them can yet obtain long enough read lengths covering the full genome, e.g.

the human genome. Thus assembly is required. De novo genome assembly is a strategy

that assemble a novel genome from a set of DNA sequences (or reads) assuming no prior

knowledge of the source DNA sequence length, layout, or composition. Such lack of infor-

mation, especially the relative ordering of the reads along the target genome, is the primary

contributors to the problem complexity. If the ordering and orientation of the reads are

known before assembly, the assembly process would become simply pairwise alignments

between adjacent reads.

Different assembly approaches vary on how much they rely on the information of reads

ordering and orientation along the target genome (henceforth abbreviated as OO for sim-

plicity), and at what stages of their algorithm they try to infer this information. Eulerean

assemblers [32, 105, 121] are built based on de Bruijn graphs. De Bruijn graphs are formed

from k-mers which are fixed-length and shorter sequences from reads. Only until the end of

the assembly pipeline, the reads OO information is inferred. The more traditional overlap-

layout-consensus (OLC) assemblers [97, 105, 125] are more explicit in trying to generate

the OO information. In the overlap phase, reads are aligned against each other to generate

a read layout. However, the overlap phase is the most expensive step in OLC assemblers,

so the OO information tends to not be available until the later stages of the assembly.

In this work, through reads partitioning, we explore the affect of having partial ordering

of reads available before assembling. The notion of partial order is used to imply the

relative ordering for a subset of read pairs (on the other hand, the ordering of reads is the

relative ordering for all read pairs).
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We introduce a parallel reads assembly framework that makes use of (hyper) graph

partitioning. Partitioning on (hyper)graphs is a classical problem and has application under

numerous contexts including in the parallel processing of graph workloads [71], as well as

partitioning assembly graphs [119] and read datasets [115, 78]. This problem aims to find

a partition of the set of vertices that minimize the interconnections among the parts while

keeps the size of each part balanced. The optimal solution has been proven to be NP-hard to

find [57, 92] and numerous effective heuristics have been come up with and mature toolkits

have been developed [91, 82, 84, 24, 42].

In our parallel assembly framework, we construct (hyper)graphs by connecting short-

reads based on their common k-mers. Then partition the reads with (hyper)graph partition-

ing tools. Once reads are partitioned, each individual part can be independently assembled.

Any standalone (off-the-shelf) assembler of choice can be applied in this step. With reads

partitioned through (hyper)graph partitioning before the assembly process, we form a par-

tial ordering of reads and make it available before assembly. Such partial ordering also

enables the parallelism of assembling on the parts. We observe improvements in both as-

sembly quality and runtime compared with standalone short-reads assemblers.

More specifically, our contributions are:

• We propose a parallel assembly framework called BOA, which stands for bucket,

order and assemble.

• We cast the assembly problem in two forms: a) one that uses graph partitioning, and

b) another that uses hypergraph partitioning.

• We propose a light-weight bucketing algorithm that extracts k-mer s from the reads,

which is then used on generating the graph/hypergraph from reads.

• Two implementations (i.e., concrete instantiations) of this framework are presented

and evaluated—one that uses a graph partitioner (ParMETIS [84]) and another that

uses a hypergraph partitioner (Zoltan [42]).
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• To comparatively assess the assembly efficacy of the partitioning-based approach,

we also construct a theoretical benchmark assembly workflow, referred as Oracle,

where the read ordering from sequencing simulators are given before assembling.

The design and implementation of de novo genome assembly algorithms are directly

impacted by the properties of input reads. Thus we conduct experiments on both accurate

short-reads (< 1% error rate with length range from 50bp to 300bp) and noisy long-reads

(∼ 10% error rates with length length around 10Kbp) to explore the affect of partial order-

ing.

With short-reads Experimental results on simulated and real-word datasets show that

our partitioning-based implementation can effectively enable the parallel instantiation of a

standalone assembler bringing end-to-end runtime improvements. It further increases the

assembly quality consistently, under several qualitative measures. In fact, on the simulated

data, the partitioning-based approaches yield results that come closest in terms of quality

to the Oracle assemblies produced, where the partial ordering of the reads are available

before the assembling.

With long-reads As BOA is developed for short-reads de novo genome assembly, we

evaluate the affect of the partial ordering for long-reads de novo genome assembly through

the Oracle pipelines. In Oracle, the simulated reads are sorted based on where they are

originated from and then they are partitioned into even sized blocks. We evaluate both the

quality and runtime of Oracle against the according standalone long-reads assembler. The

results suggest that:

Quality wise since the long-read assembler combines the advantage of long-read lengths

with sophisticated repeat characterization and error-prone algorithms, the assembly quality

on the full read set is already really accurate. For example, for C. elegans, the largest align-

ment achieved is 83% of the largest chromosome. Thus, generating the partial ordering by

partitioning the reads set doesn’t help with the quality, instead adds the risk of separating
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reads for the same chromosome. However, Oracle does help when the long-read assem-

bler didn’t achieve such accurate results. As shown in the results for Maize chr 10, when

running the long-reads assembler with the whole simulated read set, the largest alignment

achieved is about 2.8% of the chromosome size. In this case, Oracle increases the largest

alignment 1.8×, and both NGA50 and N50 are increased 2.1×.

Runtime wise, there are limited high-level parallelism can be introduced during assem-

bly as long-reads assemblers can generate contigs that have length close to the length of a

whole chromosome. Such, there is limited number of partitions can be applied which then

limited high level parallelism of our framework. However, runtime improvement can still

be achieved. Linear speedup is observed in the experiments as the read set size decreases.

Additionally, we hypotheses that in the long-read assembly case, the extra runtime cost

from partitioning can be reduced because of the reduced number of reads (thus, reduced

hypergraph/graph sizes).

5.1 Symbols and Notations

In the following, we introduce the symbols and notations used in this work. The notions of

the graph and (hyper)graph partitioning are defined in details in Section 2.2.3.

String A string, s, is an ordered list of characters from an alphabet. We use |s| to

represent the length of the string, s. s[i] represents the ith character of s, i ∈ [1 . . . |s|].

s[i : j] denotes the substring of s starting from index i and ending at index j.

Reads The input of genome assembly is a list of n reads, represented byR. Each read r

is a length l string over alphabet Σ = {a, c, g, t}. We use ri to represent the ith read, where

i ∈ [1 . . . n]. Note that, in real world data set, the Σ could be {a, c, g, t, N}, where Ns in

the reads are introduced through errors during sequencing. In Section 5.3, we introduce

how Ns are handle in BOA.

k-mer We call a length k substring of a read as k-mer. A read contains a k-mer if the

k-mer is a substring of the read. We use k-mer(r) to represent all k-mers contained by the
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read r, and k-mer(R) to represent all k-mers contained by reads inR.

5.2 The BOA Assembly Framework Overview

BOA framework hinges on the idea that (hyper)graph partitioning can group the reads to

part so that within each part, reads are from continues regions along the (unknown) target

genome. The partitioning forms this partial ordering of the reads that then is utilized by the

assembler by assembling each part independently. The combined set of contigs assembled

from each part is the final output.

This partitioning-based strategy has several advantages:

• The assembly quality could be improved if the partitioning results is faithful to the

partial ordering of reads along the target genome. That is, neighboring reads are

partitioned to the same part and distanced reads are kept in separated parts.

• With the assumption that different part contains reads from different regions of the

genome, each part can be assembled independently thus providing another level of

parallelism.

• With independent and smaller tasks for the assembling process, the assembling com-

plexity is reduced, which could again benefit the final assembly quality.

• Finally, the BOA framework can combine with any standalone assembler for the as-

sembling of each part. Thus, new advances in assemblers can be easily updated to

BOA framework.

The BOA framework includes three steps: bucketing, ordering (partitioning), and then

assembling. The bucketing phase extracts k-mers from the reads. Partitioning phase: build

the connections between reads through k-mer: reads that have common k-mer(s) are con-

nected. Reads and these connections form a graph or hypergraph. We assume that reads

in same regions in the target genome will be more closely connected through k-mer. So
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Figure 5.1: Schematic illustration of the BOA framework.

we partition the reads through the graph or hypergraph partitioner, which try to minimize

the connections between reads among different part. In the last step, reads in each part are

assembled independently through a standalone assembler. Figure 5.1 illustrates the BOA

framework.

In the following, we introduce BOA in more details. The assembling step only involves

calling other assemblers, thus we omit that below and instead focus on the bucketing in

Section 5.3 and partitioning step in Section 5.4.

5.3 Bucketing

In the bucketing phase, we extract k-mers from reads, and then create a bucket for each

k-mer found. Within each bucket, there are the list of reads, represented by the read IDs,

that contain the according k-mer. We use B to represent the set of buckets created in this

step. There can be up to |Σ|k buckets and each length l read can be in up to l − k − 1

different buckets simultaneously.
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5.3.1 Bi-directionality

Considering the bi-directionality of reads, k-mer has bi-directionality as well. That is, a k-

mer and its compliment can from the reads that are compliment of each other and represent

same sequencing information. Thus, we take the lexicographically smaller variant of each

k-mer. That is when we assign a read into a bucket, we compare the lexicographical values

of the k-merand the reverse of the k-mer, and among these two buckets, we add that read

to the bucket that has k-mer with smaller lexicographical value. This ensures that we only

have the read in the bucket corresponding to the k-mer in its direct form or its reverse

complemented form but not both. Experiments show that taking the bi-directionality into

consideration, the duplication ratio of the assembly results can be reduced from 2 into 1

without really affecting other metrics.

5.3.2 Processing Reads Containing ‘N ’

In real world data sets, reads frequently contains N instead of only a/t/g/c due to errors.

In this work, when we iterate k-mers from each read, we omit ones that contain ’N ’. We

use 3 bits to represent a character for read, as we want to be able to pass the N correctly to

the assembler. But to reduce memory use, we use 2 bits to represent a character in a k-mer

as there won’t be N in k-mers. When generating k-mers from a read, we use a queue of

size k to store the current k-mer. We iterate the characters in the read and add each such

character to the end of the queue. A k-mer is produced after k characters have been added

into the queue and after that, each time a new character is added to the end of the queue.

We omit k-mers containing N by: add a counter cnt with initial value as 0; while iterating

the characters in the read, set cnt as k when the character isN (indicating the next k k-mers

would be invalid), minus one to cnt if the current character is not N and cnt is not equal

to 0; each time when produce a k-mer, we check if cnt is equal to zero, and produce that

k-mer is so and not otherwise.
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5.3.3 With Paired-end Information

Paired-end sequencing technology has shown to be a key factor in improving assembly

quality [114]. With paired-end sequencing, reads are sequenced pair by pair. Within each

pair, one read is from the forward DNA strand, called the forward read and the other is

from the reverse DNA strand, called the reverse read. The distance between where these

two reads are sequenced from is constrained and normally within hundreds of base pairs.

Compared with each read, paired-end reads form a longer total length, which is really

helpful in solving repeats. In this work, we observe that with paired-end reads information

available, the assembly quality improves in average 18% in the assembly quality (largest

alignment) and up to 33% for a genome with a lot repeats.

With ri representing the ith read from the input reads set, when paired-end information

available, we use r2i−1 and r2i are a pair, where i ∈
[
1 . . . n

2

]
.

When given paired-end information, we need to make sure the two reads of any pair are

partitioned into same part, to have such information available during the assembling phase.

Thus we merge each pair of reads before partitioning by: after bucketing the reads, for all

read IDs in all buckets, we conduct ceiling operation after dividing it by two so that for

each pair of reads, same read ID is used.

In the following, for simplicity, we introduce as if there is no paired-end information.

The content applies directly to the case with paired-end information by changing reads to

pairs of reads.

5.4 Partitioning

In the partitioning phase, we are given the set of buckets B with each bucket mapping

to a unique k-mer and storing the set of reads that contains the according k-mer, and we

generate a partitioning of reads. During then, we first extract the connections between the

input readsR from the set of buckets B. Two reads are connected if they are in at least one
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common bucket. We represent the connections between reads in two form: hypergraph and

graph. We call these two cases as: Hyper-BOA and Graph-BOA. With the hypergraph

or graph generated, we construct the hypergraph/graph partitioning problem as defined in

Def. 2.7 and Def. 2.6. The partitioning problem is then tackled by the according partitioning

tool, Zoltan and ParMETIS.

The partitioning problem partitions the reads to minimum the amount of connections

across different parts while making sure that the number of reads in each part is similar. The

hypothesis is that minimizing connections to other parts is a necessary–but not sufficient–

condition for reads originating in the same region of the target genome.

In the following of this section, we first introduce the constructions of hypergraph and

graph, and then the construction of the partitioning problem. At the end, we compare

Hyper-BOA and Graph-BOA.

5.4.1 Hypergraph Construction in Hyper-BOA

Hypergraph fits naturally to represent reads and their connections (k-mer). Recall the defi-

nition of hypergraph in Section 2.2.3, a hypergraph H = (V ,N ) contains a set of vertices,

V , and a set of nets (hyperedges), N , and each net ni ∈ N is a subset of vertices V . Two

vertices are connected if they are in at least one common net.

Thus in Hyper-BOA, we construct such hypergraph:

• the set of vertices is the set of input reads, V = R.

• the set of nets is the set of buckets, V = B.

Note that with the given inputs from bucketing phase, there is no extra computation

needed to construct the hypergraph.
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5.4.2 Graph Construction in Graph-BOA

The notation of connected reads is the same in both Hyper-BOA and Graph-BOA: reads

that in at least one common bucket are connected. In Graph-BOA, such connections are

modeled directly with edges in the graph.

Recall the definition of graphs in Section 2.2.3, a undirected graph G = (V , E) contains

a set of vertices V and a set of edges E . Each edge ei,j ∈ E is a pair of distinct vertices in

V . In Graph-BOA. We construct a graph G as following:

• the set of vertices is the set of input reads, V = R.

• the set of edges is E :

E = {{ri, rj} |∃b ∈ B, s.t., ri ∈ B and rj ∈ B} (5.1)

Unlike Hyper-BOA, extra computation is needed to generate E . Given the set of buck-

ets, a straight forward way of generating E is enumerating all pairs of reads in each bucket

independently as edges (a bucket containing m unique reads will produce
(
m
2

)
pairs) and

then removing duplicated edges among all pairs generated. During this process, when two

reads share more than one common k-mer, duplicated edges will be generated. Figure 5.2

shows two such cases. In Figure 5.2a, multiple common k-mers are formed due to a shared

substring that is longer than the length of k-mer. In Figure 5.2b, multiple common k-mers

are found but there isn’t a longer shared substring. Large amount of duplications can sig-

nificantly affect performance because of increased memory use, communication and com-

putation cost. In this work, we reduce the duplicated edges by avoiding the duplications

caused by longer shared substrings, as shown in Figure 5.2a.

Duplication reduction We achieve so by only adding a edge if the prefixes in the reads of

the common k-mer are different or there is no prefix for any of them. In this work, we call

the prefix as Lchar, representing the left most character of the k-mer appearance. There
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c a g c c a t t

a g c c a c g c

(a) Long shared substring

c c g a a a g c

c c g t c a a g
(b) Multiple common k-mers that are not from
long shared substring

Figure 5.2: Two cases of two reads sharing multiple common k-mers with examples. In
both examples, the read length is 8 and the k-mer length is 3. In Figure 5.2a, the two reads
are: cagccatt and agccacgc. They have a length 5 shared substring, agcca, which forms 3
common k-mer among the tow reads, agc, gcc, and cca. In Figure 5.2b, the two reads have
two common k-mers, however, there is no shared substring that is longer than the length of
k-mer. Multiple common k-mers in two reads will produce duplicated edges when generate
E for G in Graph-BOA.

are 5 possible value for a Lchar: a, t, c, g and B. Among them a, t, c, and g are from the

alphabet Σ of the reads. B is used to indicate the beginning of the reads and for k-mers

that doesn’t have left most characters. For example, the Lchar for k-mer agc in the read

cagc is c. By only skipping the edges between reads that have common k-mer but the same

Lchar, we avoid adding edges from k-mers that are not first k-mer in the shared substring

thus reducing edge duplications.

For example, in the example in Figure 5.2a, there are two reads r1 = cagccatt and

r2 = agccacgc, and they have three common k-mers: agc, gcc and cca. But the edge is

only created in the bucket agc. For agc, the Lchar for read r1 is c, and the Lchar for read

r2 is B, which means the beginning of the read. Thus the edge between these two reads

will be created by the bucket agc. For the bucket gcc, the Lchar for both reads are a, thus

the edge won’t be created. It’s similar with the bucket cca.

We achieve this object by keeping track of the Lchars. We create 5 sub-buckets within

each bucket, and each sub-bucket maps to a different Lchar, in a, t, c, g, B. When we add

a read into a bucket, we also look as the Lchar and put into the according sub-buckets. As

shown in Figure 5.3, in the bucket agc, we put r1 into the sub-bucket with Lchar as c and

we put r2 into the sub-bucket with Lchar as B. When creating edges, within each bucket,
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a t

agccacgc
B

cagccatt
c g

agc

cagccatt 
agccacgc

a t

B

c g

gcc

a t

B

c
cagccatt 
agccacgc

cca

g

Figure 5.3: Showing how duplicated edges are removed in the example in Figure 5.2a.
The two reads have shared substring agcca and three common k-mers are formed between
them. In this figure, we show only these two reads and only the buckets for their three
common k-mers. Within each bucket, there are 5 sub-buckets, showing different prefixes:
a, t, c, g, and B. B means the beginning of reads. Within a bucket, edges are only formed
on between reads from different sub-buckets and reads in the sub-bucket B as shown in the
orange line connecting the sub-buckets. Thus, among the three buckets, only agc produces
the edge between the two reads.

we only create edges between reads that are from different sub-buckets or between reads

from the B sub-bucket. We show such relationship between the sub-buckets in Figure 5.3

with the same example in Figure 5.2a. Each rectangle represents a sub-bucket and only the

reads from two ends (two sub-buckets) of a orange line will form edges. In this way, we

make sure that the Lchars are different or any of the reads do not have a Lchar for the

common k-mer for two reads when generating the edge. Thus, we can then avoid adding

duplicated edges for a shared substring that is longer than k-mer. In Figure 5.3, we are able

to avoid adding edges created by k-mers gcc and cca. Note that, during then, a read inside

a bucket can be in multiple sub-buckets. But during edges generation, we avoid self loop.
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Considering bi-directionality in duplication reduction The duplication reduction al-

gorithm above relies on the definition of the prefix for the k-mer appearance. If two k-mer

appearances share the same prefix, then we treat that as the duplicated ones and skip that

for edge generation. As noted in Section 5.3.1, k-mers are indexed by their lexicographi-

cally smaller variant to account for bi-directionality. If a given k-mer in a read r is not in

its lexicographically smaller form, we define the prefix based on the reverse complement

of the read. That is we use character following the k-mer in its complemented form as the

prefix. For example, if the read r = tccttt and the k-mer is cct. Because cct is lexico-

graphically smaller than its reverse complement agg, thus, the prefix is defined based on

the read’s reverse complement, which is aaagga and the prefix is a.

In Figure 5.4, we show another example of our duplication reduction algorithm consid-

ering bi-directionality. In this example, we shows two maximal matches (accgc and aagg)

appearing among four reads. As highlighted in the orange, r1, r2 and r3 share the maxi-

mum matching accgc. This match contains multiple 3-mers: acc, ccg and cgc, and therefore

the corresponding reads will appear in all those buckets (shown in orange colored buckets

in the table). On the top of each bucket, we show the k-mer and its reverse compliment,

with the lexicographically smaller one high-lighted. The rows show the left character lists

(Lchar) that each read will appear within a given bucket. Pairs generated from each bucket

are shown in the bottom panel. The second maximal match in the example aagg (in green),

shows a case where the pairing could happen between a read and the reverse complement of

another read. In this example, reads r3 and the reverse complement of r4 share the maximal

match aagg, and therefore will be generated from the bucket corresponding to aag that is

the lexicographically smaller of the two variants (aag, ctt).

BOA has an optional modification dealing with a specific boundary case where edges

may be missed between reads, at a cost of increased memory and runtime. Specifically,

consider when:

• The maximum matching α has length > k.
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bucketing

a c c g c t a a g g g
a c c g c 
t t a c c g c g

t c c t t t

B
a
c
g
t

a c c
g g t

c c g 
c g g

c g c 
g c g

a a g 
c  t  tLchar

Buckets 
(3-mer)

Read pairs
generated from

each bucket

Figure 5.4: Duplicated edges reduction considering bi-directionality in Graph-BOA. An
illustrative example of our edge generation algorithm with duplication reduction and bi-
directionality considered. On the left are shown four reads and two maximal matches
shared among them (shown underlined). Let k=3. The right panel shows a selected subset
of buckets relevant to the maximal matches (along each column), and the division of the
respective read sets across the different left character sets Lchar (along each row). The
pairs generated from each bucket are shown in the bottom panel.

• The leftmost k-mer in α is lexicographically larger than its reverse complement.

• The rightmost k-mer in α is lexicographically smaller than its reverse complement.

In this case, for the k-mers in both ends, the Lchar recorded for the corresponding k-

mer in the read is a character within the maximum matching α. BOA does not look outside

of the maximum matching in the read to be able to recognize the end of the maximum

matching and generate the read pair. For example, given r1 = r2 = ctac and k = 2. Read

r1 will be in the following buckets: ag, ta, ac with leftmost character as t, c, t respectively.

The assignment is the same with r2. Thus, the baseline algorithm would miss detecting the

pair (r1, r2).

The algorithm can be easily modified to avoid this boundary case. More specifically,

the method can store both the leftmost and rightmost characters for each k-mer in the fol-

lowing way: each bucket has two groups of sub-buckets: a−, t−, g−, c−, B− for leftmost

character and−a,−t,−g,−c,−B for rightmost character. Edges are generated only within

each group of sub-buckets and not among the groups. Note that this solution comes with

a slight increase in cost: each length k or greater maximum matching between two reads
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will produce two of the same read pairs even if the length of the maximum matching is k.

For this reason and as BOA is a heuristic, we have not implemented this change in practice

but note that in theory we can address it.

5.4.3 Partitioning Problem Construction

Given the hypergraph/graph, to construct the partitioning problem (see Def. 2.7 and Def. 2.6),

we need to set vertex weight assignmentW , edge cost assignment C, the number of parts

required K, and the maximum imbalance ratio allowed ε.

W and C In both Hyper-BOA and Graph-BOA, vertices are unit weighted, as we

treats reads equally. For edges/nets weight, one can use a cost function to represent impor-

tance of a connection/k-mer, but for this initial work we simply treat each connection/k-mer

equally and thus assign unit costs to each edges/net.

Partitioning criterias

• In this work, we decide on K based on the number of reads we expect for each part,

denoted by ρ. ρ shouldn’t be too small to limit the contig length (or fragment the

assembly). It also shouldn’t be too long to increase the chance of including reads

from far regions of genome into a same part or to have low parallelism. We set

the longest length of contigs produced by state-of-the-art short-read assemblers as a

lower-bound and use a constant factor of that as ρ. In this work, we choose K = 400

to have each part include around half million reads.

• As defined in Eqn. 2.4, (1 + ε)Wavg defines the maximum total vertices weight al-

lowed in a part. In this work, vertices unit weighted, so Wavg = |V|
K

. ε should

be small enough to ensure load balance in the assembling phase. However, keep-

ing these very tight will reduce the flexibility given to the partitioner, causing un-

necessary splitting of related reads. Another consideration is if ε ≥ 1
K−1 , then

(K−1)×(1+ε)Wavg ≥ K×Wavg = |V |. Then there is a possibility thatK−1 non-

empty parts produced after partitioning. As ε getting bigger, this possibility increases
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and the partitioner also turns to reduce the number of parts produced if possible to

optimize to toward reduced inter-part connections. In this work, we set ε = 1%.

With partitioning problem constructed, we use Zoltan for the hypergraph partitioning in

Hyper-BOA and ParMETIS for the graph partitioning in Graph-BOA.

5.4.4 Comparison of Graph-BOA and Hyper-BOA

Below, we compare and discuss the similarities and differences between the Graph-BOA

and Hyper-BOA.

Both Graph-BOA and Hyper-BOA are similar to the OLC assembler model: reads

are vertices and connections between reads indicate shared substrings. However, in the

OLC assembler model, reads are connected if they overlap while in Graph-BOA and

Hyper-BOA, reads are connected as long as there is a shared k-mer. This allows Graph-BOA

and Hyper-BOA building the graph and hypergraph with with lightweight computations as

described in the bucketing phase Section 5.3 and the graph construction step Section 5.4.2.

In Hyper-BOA, with each k-mer uniquely represented by a net, connections between

reads are represented more accurately. Reads having multiple common k-mers will be con-

nected through multiple nets representing the according k-mers. While in Graph-BOA,

the relation between reads are binary, connected or not connected. For a pair of connected

reads, there is no information on how many k-mer s connect them because edge dupli-

cations are reduced during creation to reduce memory use. There is also no information

on whether the k-mers shared by the two reads are common or uncommon (the number of

reads having this k-mer). With the connections between reads more accurately represented,

Hyper-BOA achieves better partitioning result, which lead to higher quality assembling

result as shown in Section 5.6.3.

In terms of computational complexity, Graph-BOA is lighter as shown in the Sec-

tion 5.6.3. Graph-BOA and Hyper-BOA are the same during bucketing and assembling

phase. They differ in partitioning phase in two respective: graph or hypergraph construc-
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tion; partitioning. Graph-BOA takes extra computation to construct the graph while in

Hyper-BOA, the result from the bucketing phase can be directly used to construct the

hypergraph. However, in BOA, the partitioning step is the performance bottleneck, and

the hypergraph partitioning is more expensive than the graph partitioning. Thus, in total,

Hyper-BOA is more expensive than Graph-BOA.

In terms of memory complexity, Hyper-BOA is lighter. For Hyper-BOA, every

bucket with m distinct reads in it maps to a net with m pins. Whereas, in Graph-BOA, a

bucket withm reads contributes
(
m
2

)
edges. This leads to higher memory use for Graph-BOA.

For example, to assemble the genome C. elegans, the maximum memory use per MPI rank

for Graph-BOA is 8.3 GBytes while it’s 5.3 GBytes for Hyper-BOA.

5.5 Parallelization

The BOA pipeline is comprised of three phases: bucketing, partitioning and assembling. In

the following, we describe details on parallelization of each phase.

5.5.1 Bucketing

Given a list of input readsR in FASTA file(s) and the number of processes p, we parallelize

the bucketing phase with following steps:

reads loading To support variable read length, we use MPI File seek and MPI File read

to read the reads file in parallel for three times. We first split the file to chunks evenly

by size among the p ranks. In the first time, each rank finds their first newline in

its chunk. Then, each rank shares the position of its first newline with its neighbor

backwards to determine the real file starting and ending position for each rank, which

determines what we call as the real chunk. In the second time, each rank computes

the sizes of reads within its real chunk. Then each rank allocates the memory needed

for storing the its reads. Finally, each rank reads the file in parallel for the third time,

to load the read content.
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After the first time of reading the reads file in parallel, the real starting and ending

position for each rank is decided in the following way:

• Real starting point: if rank 0, the beginning of the file; otherwise, first newline

found in its initial chunk; if no newline found, then no assigned real chunk

(empty rank).

• Real ending point: if last rank, the end of the file; otherwise, first newline after

current rank’s initial chunk’s ending position.

In the following, we use {R0,R1, . . . ,Rp−1} to represent the set of reads inside of

the p ranks.

k-mer extracting Process i extracts k-mers for each read in Ri by sliding a window of

length k = 31 as distributed in Section 5.3. That is generating k-mer(r) (as defined

in Section 5.1) for each read r inRi.

local k-mer buckets generation Within each process i, go through all the k-mers found in

each reads and union all k-mers found. Then create a bucket for each unique k-mer

found. For each bucket, add all reads inRi that contain the according k-mer.

global k-mer buckets generation first, we create a hash function mapping k-mers to pro-

cesses. In this work, we choose a minimizer based approach [30]. The minimizer

is also called l-mer, a shorter substring compared with k-mer. In this work, we use

length 8 substring as l-mer. In this minimizer based approach, we map each k-mer

to a process in this way: in each k-mer, find the least frequent occurring l-mer in

all k-mers, and then hash the least frequently l-mer to a process. This reason of us-

ing minimizer, instead of directly hashing each k-mer to a process, is to increase the

chance of adjacent k-mer s in a read being assigned to the same process so that the

communication volume can be minimized. Second, using MPI Alltoallv prim-

itive [107], each process sends its local buckets to the according process and then
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each process merge the local buckets received generating (global) buckets.

5.5.2 Partitioning

In this phase, we first construct the graph/hypergraph, then construct the partitioning prob-

lem, and finally call the according partitioner.

Hypergraph Partitioning

Hypergraph can be constructed by directly mapping the reads to vertices and the buckets

to nets, thus no extra computation is needed. Each process will have non-intersect set of

vertices and nets. After the partitioning problem constructed in constant time (as described

Section 5.4.3), the partitioner Zoltan can be directly called and partition the hypergraph

in parallel.

Graph Partitioning

Graph-BOA works similarly as Hyper-BOA except the construction of the graph, in

which, unlike constructing hypergraph, extra computation is needed to generate the set of

edges E .

To generate the edges, each process enumerates all pairs of reads as described in Sec-

tion 5.4.2. To access edges from both vertices, each edge is stored in both direction. That

is eij = {ri, rj} is stored as (ri, rj) and (rj, ri), Then within each process, edges are

sorted by their first read IDs. After edges are organized by their first vertex IDs, each pro-

cess sends edges to the processors that are responsible to them with the MPI Alltoallv

primitive. That is, edges of (ri, ∗) will be sent to the processor that loads ri as described

in Section 5.5.1. Each process i then receives all edges generated by all processes that

{(ri, rj) |ri ∈ Ri}. Each process then merges and sort edges received by their first read

IDs. In this way, the distributed CSR format of the graph is generated as the input for the

graph partitioner ParMETIS.
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Assembling

In the final phase, given the K-way partitioning of the set of reads, a standalone assembler

is launched concurrently for each part.

5.6 Experiments

In this section, we present our experiments on exploring the affect of having partial order-

ing available before assembling through reads partitioning. As the assembler design and

assembly results are directly impacted by the properties of the input reads, we explore such

affect in two ways: on accurate short-reads (< 1% error rate with length range from 50bp

to 300bp) and on noisy long-reads (∼ 10% error rate with length ∼10Kbp).

On short-reads, we evaluate BOA in both quality and runtime on simulated and real

world reads. For simulated reads, we compare BOA with start-of-art assemblers and a

theoretical benchmark, Oracle, which generates the real partial ordering from the simulator

and makes it available before assembling. For real world reads, we compare BOAwith start-

of-art assemblers only.

On long-reads, as BOA is currently developed for short-reads, we compare Oracle with

the start-of-art assembler to answer the question of whether reads partitioning will help or

not.

In the following, we show the experiment setup and results in detail.

5.6.1 Experiment Setup

Platform Experiments are conducted on the NERSC Cori machine (Cray XC40), where

each node has dual 16-core 2.3 GHz Intel Haswell processors with 128GB DDR4 memory

and the nodes are interconnected with the Cray Aries network using a Dragonfly topology,

running SUSE Linux 15.
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Table 5.1: Genomes Evaluated for Short-Reads Experiments
Genome Size (bp) No. short-reads (=V) No. buckets No. pins (=N ) No. edges (=E)

C. elegans 100,286,401 100,286,100 409,957,423 6,389,329,498 9,342,286,308
D. melanogaster 143,726,002 142,426,015 555,183,926 8,250,921,240 11,757,427,193
Human chr 7 160,567,423 160,567,400 620,586,298 9,651,040,529 16,009,424,797
Human chr 8 146,259,322 146,259,300 574,127,869 8,923,132,914 13,977,225,241
Human chr 10 134,758,122 134,758,100 527,306,188 8,211,994,915 13,248,263,074
Maize chr 10 152,435,371 152,313,178 469,060,854 5,869,048,129 14,305,585,805
Betta splendens 456,232,186 394,258,510 400,110,669 25,105,195,932 36,509,423,159

Datasets Various genome inputs are evaluated, covering model organisms to human and

plant chromosomal DNA as listed in Table 5.1. These genomes are downloaded from NCBI

Genbank [47].

For short-reads, starting from these reference genomes, the ART [73] sequencing sim-

ulator [73] is used to generate short-reads with the average read length as 100bp, coverage

as 100×, and with paired information. For the Betta splendens, the ART sequencing run

resulted in 86× coverage. The reason is that higher ratio (∼ 10%) of invalid characters

compared with others (< 1%). Table 5.1 lists more statics on the reads, including No.

buckets (number the unique k-mers), No.pins (the hypergraph size), and No.edges (the

graph size).

For long-reads, we use the PBSIM2 [116] to generate the simulated data. Simulated

long-reads’ statistics are shown in Table 5.2. We use the model-based simulation with

P6C4.model. The coverage for this simulation is 20. To have a stable simulation result, we

set the seed, as 1. Similar with using ART, for each simulated read, there are data on where

each read is sequenced from in the reference genome. More specifically, it includes which

chromosome the read is sampled from, whether it’s from reverse strand or forward strand

and what is the location the read starts from in the according strand.

Quality Evaluations The QUAST tool [66] is used to assess the quality of the output as-

semblies. We evaluate various metrics including, NGA50, N50, largest alignment, genome

coverage, missassemblies and duplication ratio.
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Table 5.2: Genomes Evaluated for Long-reads Oracle. The maximum chromosome size is
added, where C. elegans and D. melanogaster have 12 and 8 chromosomes. Human chr 8
and Maize chr 10 represent one chromosome of Human and Maize respectively.

Genome Size (bp) Largest chromosome (bp) No. long-reads Avg. read length (bp)

C. elegans 100,286,401 20,924,180 222,893 8,820
D. melanogaster 143,726,002 32,079,331 352,391 7,995
Human chr 8 146,259,322 146,259,322 325,388 8,811
Maize chr 10 152,435,371 152,435,371 338,492 8,828

BOA Implementation and Configurations BOA is implemented in C++ and MPI and

compiled with g++ 8.3.0 and CRAY MPICH version 7.7.10 (ANL base 3.2). Our code is

available at https://github.com/GT-TDAlab/BOA.

We run BOAwith each 8 MPI processors on a node with 32 cores to increase the memory

per process. 256 MPI processors are used for all inputs except Betta splendens. Betta

splendens has more than doubled input size compared with the rest of the inputs, and thus

we use 512 for it.

Both Hyper-BOA and Graph-BOA are implemented to support with and without

pair information. In the bucketing phase, the lengths of k-mer and l-mer are set as 31

and 8 respectively. In the partitioning phase, the latest version of ParMETIS [84] and

Zoltan [42] are used at graph and hypergraph partitioner respectively. In the assembling

phase, any standalone assembler can be used. To show that the improvement from BOA is

independent from the assembler, we experiment with three assemblers: MEGAHIT [94],

Minia [31] and IDBA-UD [120].

Number of parts For short-reads, it is chosen as 400 for all inputs except Betta splendens

with the target number, ρ, as 500K. We use 1024 number of partitions for Betta splendens

due to its larger genome size.

For long-reads, similar as with short-reads, we set the maximum number of parts so that

if partitioned evenly, the largest possible contig within each part is more than the largest

contig that can be produced. We also want to explore the affect of different number of
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partitions and we use powers of 2 for different partition numbers. For example, for C.

elegans, the largest alignment without partitioning the read is 17M and the total genome

size is 100M . Thus the maximum number of parts is 5. Then, we choose 1, 2 and 4

to evaluate on, where 1 means running the long-reads assembler on the whole reads set

directly.

5.6.2 Baselines

Short-Reads

There are two types of baseline we use to evaluate the quality and runtime performance of

BOA.

• MEGAHIT, Minia and IDBA-UD are state-of-the-art standalone assemblers. Run-

ning each directly on the whole read set are used to evaluate the partitioning based

approach in both quality and runtime.

• Oracle for the quality evaluation: it’s similar with BOA except the real partial read

ordering, called oracle order here, is given as the partitioning. The oracle ordering is

generated as following. Given the reads simulated, we can find where each read is

sequenced from in the reference genome: each read is given with which chromosome

it is sampled from, whether it’s from reverse strand or forward strand and what is the

location the read starts from in the according strand; The chromosome sizes can be

obtained through the ‘dataformat‘ tool from NIH [69]. Then we generate the position

by first prefixing sum the chromosome sizes to give the starting locations for reads

from different chromosomes; then if the read is in forward strand, the final position

of the read is the starting position of its chromosome plus its location inside of this

chromosome, otherwise, it’s the starting position of its chromosome plus the size

of current chromosome minus its location inside of the chromosome. After getting

the position for each read, we sort the reads based on the position and then split the
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sorted reads evenly into continues parts. Within each part, the ordering of the reads

is the same as in the input read set so that the random ordering of reads are preserved.

The number of parts is selected the same as in BOA.

Note that the Oracle assembly is not realizable in practice and it’s just used as a

theoretical benchmark for quality evaluation.

Long-Reads

For long-reads experiment, we compare Oracle with directly running the assembly on the

whole reads set to answer the question whether partitioning on reads will help or not.

We tried out two assemblers: Flye [88] and miniasm [95]. Even though Flye is

much slower, we select Flye as our final assembler, as it’s more up-to-date (miniasm

is last updated in 2017, while Flye is developed at 2020 and stayed maintained up to

when the experiment was done) and Flye also achieved way better assembly quality

in our experiments. We tried two different options with Flye, --pacbio-raw and

--pacbio-corr as for the input read type. --pacbio-corr assumes some extent

of error corrections has been done, while --pacbio-raw assumes the inputs are the

original pacbio noisy long-reads. This two options results sometime significant different

quality results. With --pacbio-corr, the experiment is able to finished faster (might be

due to less error correction cost). It achieves better and more stable quality assembly qual-

ity results compared to use --pacbio-raw. Thus we discuss and report the experiment

result with --pacbio-corr for Flye. All assembly here is done with --thread 32

option for parallelization.

5.6.3 Short-Reads Result

Qualitative Evaluation

We report various metrics for qualitative measures, including NGA50, N50, largest align-

ment (in bp), genome coverage (in %), number of misassemblies, and the duplication ratio.
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Among them, NGA50, N50, largest alignment (in bp), and genome coverage (in %) are the

higher the better and the number of misassemblies and the duplication ratio are the lower

the better. The results are detailed in Table 5.3.

Hyper-BOA vs. Graph-BOA To compare the graph and hypergraph partitioner, we

report Graph-BOA (Minia) to compare with Hyper-BOA (Minia) on C. elegans

and D. melanogaster in Table 5.3. As mentioned in Section 5.4.4, Hyper-BOA can model

the connections between reads more accurately, thus as the results suggest, Hyper-BOA

is significant better than Graph-BOA on all metrics.

MEGAHIT, Minia, and IDBA-UD After partitioning, BOA can use any standalone as-

sembler to assemble each part. To show that BOA’s partitioning strategy brings improve-

ment independent of the assembler used, we experimented on three standalone assemblers

MEGAHIT, Minia, and IDBA-UD.

The results of running these three assemblers directly on the inputs are shown as MEGAHIT,

Minia and IDBA-UD, in Table 5.3. Among them, MEGAHIT performs the best across all

metrics. Thus it’s the main assembler that we use for evaluating BOA.
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Table 5.3: Quality metrics for all our test inputs across multiple short-reads assemblers. The best values among the different assemblers
is highlighted in boldface. × shows the improvements of Hyper-BOA (megahit) compared with MEGAHIT.

Input Assembler NGA50 N50
Largest

Alignment (bp)

Genome

Coverage %
Missassemblies

Duplication

Ratio

C. elegans Oracle (minia) 11,162 14,172 153,394 91.65 10 1.002

Oracle (megahit) 11,979 14,189 157,192 91.49 1.005

Minia 4,155 5,924 75,229 83.26 37 1.002

IDBA-UD 4,387 6,026 75,229 83.14 0 1.002

MEGAHIT 4,464 6,276 108,538 83.71 1 1.002

Graph-BOA (Minia) 7,829 9,028 143,663 85.83 49 1.013

Hyper-BOA (Minia) 11,977 12,715 158,433 89.96 19 1.013

Hyper-BOA (IDBA-UD) 11,116 13,404 158,433 89.91 5 1.014

Hyper-BOA (megahit) (2.5×)11,246 (1.2×)12,673 (1.3×)143,817 92.10 11 1.026

D. melanogaster Oracle (minia) 41,283 55,104 356,760 88.81 41 1.005

Oracle (megahit) 46,516 57,037 356,561 88.51 13 1.006

Minia 13,229 19,551 162,262 78.79 37 1.002

MEGAHIT 16,397 24,312 190,107 78.97 0 1.001

Graph-BOA (Minia) 19,421 24,136 201,618 83.78 328 1.106

Hyper-BOA (Minia) 38,923 42,048 295,288 86.16 299 1.081

Hyper-BOA (megahit) (2.4×)40,101 (1.7×)41,729 (1.8×)343,434 87.81 225 1.124
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Table 5.3 continued

Input Assembler NGA50 N50
Largest

Alignment (bp)

Genome

Coverage %
Missassemblies

Duplication

Ratio

Human chr 7 Oracle (minia) 3,350 4,564 39,858 84.26 40 1.003

Oracle (megahit) 3,558 4,569 39,858 84.21 40 1.124

Minia 1,544 2,793 36,845 68.10 88 1.002

IDBA-UD 1,599 2,834 24,503 67.98 0 1.002

MEGAHIT 1,638 2,904 36,845 68.95 0 1.002

Hyper-BOA (Minia) 4,124 4,385 39,314 79.54 58 1.008

Hyper-BOA (IDBA-UD) 3,285 4,585 39,352 79.87 0 1.010

Hyper-BOA (megahit) (2.0×)3,331 (1.5×)4,316 (1.2×)43,498 83.30 10 1.018

Human chr 8 Oracle (minia) 3,944 4,869 42,828 88.44 34 1.003

Oracle (megahit) 4,194 4,883 56,943 88.40 1 1.005

Minia 1,877 2,784 27,427 74.28 76 1.002

MEGAHIT 1,987 2,893 31,115 75.27 0 1.002

Hyper-BOA (Minia) 4,379 4,569 37,028 86.02 29 1.010

Hyper-BOA (megahit) (2.0×)4,044 (1.6×)4,604 (1.5×)46,122 88.92 4 1.020

Human chr 10 Oracle (minia) 3,462 4,392 37,537 87.12 28 1.003

Oracle (megahit) 3,685 4,395 37,429 87.10 1 1.005

Minia 1,672 2,654 33,773 71.73 78 1.002
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Table 5.3 continued

Input Assembler NGA50 N50
Largest

Alignment (bp)

Genome

Coverage %
Missassemblies

Duplication

Ratio

MEGAHIT 1,766 2,755 33,773 72.59 0 1.002

Hyper-BOA (Minia) 3,942 4,149 42,959 83.02 41 1.007

Hyper-BOA (megahit) (1.9×)3,428 (1.5×)4,125 (1.3×)44,604 86.46 1 1.017

Maize chr 10 Oracle (minia) 841 3,906 35,657 56.33 4 1.003

Oracle (megahit) 904 3,903 35,657 56.33 0 1.005

Minia - 2,058 15,644 17.08 29 1.003

MEGAHIT - 2,134 15,645 17.34 0 1.003

Hyper-BOA (Minia) - 3,629 30,306 34.23 178 1.056

Hyper-BOA (megahit) - (1.2×)2,559 (2.0×)30,664 39.64 86 1.102

Betta splendens Oracle (megahit) 5,551 7,830 84,290 89.58 1,132 1.005

Minia 3,425 5,571 59,787 81.85 878 1.002

MEGAHIT 4,235 5,765 59,789 82.05 676 1.002

Graph-BOA (megahit) 4,253 6,516 76,575 84.13 916 1.010

Hyper-BOA (Minia) 5,362 7,458 96,553 88.75 1,254 1.012

Hyper-BOA (megahit) (1.28×)5,427 (1.34×) 7,725 (1.70×) 101,570 88.13 1,052 1.010
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The quality improvements from BOA are consistent among all three assemblers. We

show that by comparing Hyper-BOA (megahit)with MEGAHIT, Hyper-BOA (Minia)

with Minia and Hyper-BOA (IDBA-UD) with IDBA-UD. For example, compared

with MEGAHIT, Hyper-BOA (megahit) consistently improves the NGA50 by an av-

erage of 2×, and up to 2.5×; improves N50 values by an average of 1.7× and up to 2.1×;

and the largest alignment length improves 1.5× on average and up to 1.9×. Hyper-BOA

(Minia) improves the assembly quality of Minia by similar margins.

Oracle As a theoretical benchmark, Oracle performs the best on almost all inputs

and all metrics. This shows that blocking the reads based on the partial ordering does help

guiding the assembly and thus improve assembly quality.

Compared with all other non-theoretical results, Hyper-BOA (megahit) is closest

to the best Oracle result, Oracle (megahit). In fact, on average, it achieves 93%

of the Oracle (megahit) result in NGA50. This indicates that partitioning results

of Hyper-BOA effectively recover the real partial ordering, thus bring the benefits of the

partial ordering into Hyper-BOA.

Unexpectedly, in Human chr 7, Human chr 10 and Betta splendens, Hyper-BOA

(megahit) achieves longer largest alignment. The reason could be that Hyper-BOA

have favored longer growth of the longest contig during partitioning.

Overall, the results show that BOA helps close the gap toward the theoretical best per-

formance of partial ordering aware short assemblies.

Runtime Evaluation

Table 5.4 shows the runtime performance for Hyper-BOA and Graph-BOA, and the stan-

dalone Minia and MEGAHIT. Minia and MEGAHIT are run with 32 threads. The run-

time for BOA pipeline is broken into three parts: parallel bucketing, parallel partitioning,

and assembly. In parallel bucketing and partitioning, 256 MPI processes are used and the
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maximum runtime among processes is reported. To increase the memory per process, each

node we only assign 8 processes, thus 32 nodes are used. For assembly phase, we run

the assembling of the 400 parts in parallel and report the average runtime due to the high

variance of assembly runtime. Due to the large size, for Betta splendens, we use 512 MPI

processes instead (64 nodes) and partition the reads into 1024 parts.

By enabling parallel instantiation of standalone assemblers on the partitioned reads

from a genome, we observe that the Hyper-BOA consistently improves time-to-solution

between 3 and 7× compared with calling the according standalone assemblers directly on

the whole set of input reads.

Memory Evaluation

To the evaluate memory use of BOA, we experimented with three different memory profiling

tools: malloc count [138], mimalloc [106], and CrayPat [35]. The reason for such

selection is that lighter weighted profilers are preferred due to the high computational cost

in BOA. Thus, more powerful tools like, Intel VTune [75], were not among our options.

Among the three options we investigate, malloc count is the only tool that supports

generating the memory use through time which can then be utilized as shown in [138].

malloc count replaces all malloc calls with a rewritten malloc function, where

extra bytes are allocated in the beginning of the memory space to record the size of memory

allocated and in the end of the memory space as sentinels to verify the correctness. When

freeing the memory, memory use is counted and the correctness is verified. With MPI,

each thread has a private variable to count the memory use through out the time. However,

this library has not been updated since 2013 and couldn’t work correctly with modern

C++ and works with certain MPI implementation, eg. OpenMPI and not others, eg. cray-

mpich. Thus, we couldn’t incorporate malloc count into BOA successfully. However,

this motives a light weighted memory profiling tool with simple and effective design, like

malloc count that works with modern C++ and MPI.
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Table 5.4: Runtime performance of the different short-reads assemblers for assembling all
inputs. The BOA implementations run on the NERSC Cori machine with 256 cores (i.e. on
32 nodes with 8 processes per node) and partition the reads to 400 parts. Betta splendens
runs with 512 cores and partitions the reads to 1024 parts due to the extra large input size.
The standalone Minia and MEGAHIT baseline run in multithreaded mode on a single node
with 32 cores. All times reported are in seconds.

Input Assembler
Parallel

bucketing
(sec): max

Parallel
partitioning
(sec): max

Assembly
(sec): avg

Total time
(sec)

C. elegans
Graph-BOA (Minia) 51 180 150 381
Hyper-BOA (Minia) 33 536 39 608
Hyper-BOA (megahit) 33 536 13 582
Minia 1,364
MEGAHIT 2,000

D. melanogaster
Graph-BOA (Minia) 81 195 51 327
Hyper-BOA (Minia) 57 867 39 963
Hyper-BOA (megahit) 57 867 18 942
Minia 2,444
MEGAHIT 2,845

Human chr 7
Hyper-BOA (Minia) 70 967 86 1,123
Hyper-BOA (megahit) 70 967 16 1,053
Minia 2,569
MEGAHIT 3,377

Human chr 8
Hyper-BOA (Minia) 67 826 61 954
Hyper-BOA (megahit) 67 826 26 919
Minia 2,518
MEGAHIT 3,134

Human chr 10
Hyper-BOA (Minia) 61 844 115 1,020
Hyper-BOA (megahit) 61 844 18 923
Minia 2,027
MEGAHIT 2,970

Maize chr 10
Hyper-BOA (Minia) 51 745 220 1,016
Hyper-BOA (megahit) 51 745 19 815
Minia 3,625
MEGAHIT 3,670

Betta splendens
Hyper-BOA (Minia) 81 1,689 389 2,159
Hyper-BOA (megahit) 81 1689 21 1,791
Minia 5,415
MEGAHIT 10,313
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Figure 5.5: Comparing mimalloc and CrayPat. Running Hyper-BOA with 8 MPI
ranks on a 2× 16 node with both mimalloc and CrayPat.

mimalloc is a well-maintained general purpose allocator and also offers memory use

counting. It is efficient and helps reducing memory use in the applications. CrayPat is a

performance analysis tool developed by Cray for the XC platform [35]. Both mimalloc

and CrayPat can be used without updating the program. As CrayPat is developed

specifically for Cray systems, which is the system primarily running on, we use CrayPat

as our final choice for memory evaluation. We run BOA with both on the chromosome 4 of

D. melanogaster to ensure the memory use measurement is consistent between these two

tools. This experiment runs Hyper-BOA with 8 MPI ranks on the dual socket node and

the results showing in Figure 5.5. As shown in the figure, the peak memory use among two

tools are relatively consistent, differing at most 10%. Most of the time, mimalloc shows

less memory use(4% in average) which might be due to the memory use optimization from

mimalloc while CrayPat only does profiling.

Figure 5.6 shows the peak memory use for all 256 MPI ranks measured by CrayPat

when running Hyper-BOA and Graph-BOA on C. elegans. The MPI ranks are sorted by

the peak memory use for a clean presentation. Comparing Figure 5.6a and Figure 5.6b, we

notice that:

• Graph-BOA’s peak memory use is higher than Hyper-BOA, 1.9× higher in aver-

age across all 256 processes. As mentioned in Section 5.4.4, the reason for that is
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Figure 5.6: Memory use for all 256 MPI ranks when running Hyper-BOA and
Graph-BOA with C. elegans. Axis-x represents the different MPI ranks, and they are
sorted based on the peak memory use.

the size of the graph in Graph-BOA is much larger than Hyper-BOA, 1.5× for C.

elegans.

• Hyper-BOA’s peak memory use varies higher than Graph-BOA. For Hyper-BOA,

the variance of peak memory use among MPI ranks is 1.4× of that Graph-BOA. Es-

pecially, for Hyper-BOA, the difference between the highest and the second highest

memory use among MPI ranks is 20%. In Hyper-BOA, each MPI rank has about

same number of buckets and the high imbalance of memory use from Hyper-BOA

could be caused by the size differences among the buckets.

Real world experiment

We evaluated Hyper-BOA with real world data. More specifically, we ran Hyper-BOA

(megahit) and MEGAHIT on a D. melanogaster read set (SRA accession SRX13859210)

and compared the results. This is an Illumina HiSeq 4000 data set (average read length

150bp), containing 40.4M paired-end reads with total size as 6.1Gbp. Similar to previ-

ous studies with real world data sets [94, 31], we retained only the reads that align to

the reference genome. We used minimap2 [96] for the alignment. Following this step,

31M reads with total size as 4.6G are left. The setting of Hyper-BOA (megahit) is

the same as running on the simulated D. melanogaster dataset. The results in Table 5.5
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Table 5.5: Short-reads assembly quality and runtime performance for the real world read
set (SRA accession SRX13859210). Parallel bucketing and partitioning was performed
across 256 cores of NERSC Cori (32 nodes x 8 cores per node) with 400 partitions. The
runs for baseline (standalone) MEGAHIT were executed on a shared memory node with 32
cores.
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MEGAHIT 1,566 2,651 82,462 74.29 22 1.001 1,498
Hyper-BOA (megahit) 2,147 2,668 79,365 78.62 226 1.124 227 233

show Hyper-BOA (megahit) generated an assembly comparable to the standalone

MEGAHIT in N50 length and largest alignment length, while achieving 1.4× improvement

in NGA50 length and 7× improvement in runtime performance.

5.6.4 Long-Reads Result

For long-reads experiment, we compare Oracle with directly running the assembly on the

whole reads set to answer the question whether partitioning on reads will help or not.

Quality

We evaluated the quality from six different metrics across different number of partitions

(No.Parts). As shown in Table 5.6, genome coverage, missassemblies, and duplication

ratio stay about the same across different number of partitions. Thus, in the following

discussion, we focus on the NGA50, N50, and largest alignment instead. For the genomes

experimented on, except Maize chr 10, there are quality decreases. Thus, we will first

discuss the results on genome C. elegans, D. melanogaster, and Human chr 8 together, and

then discuss the result for Maize chr 10 separately.

For C. elegans, D. melanogaster, and Human chr 8, the numbers of parts tested are all

1, 2 and 4. The reason for such a small number of parts is that directly assembly on the read
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set already generates the largest alignments as 17%, 16%, and 22% of the whole genome

size. To retain the possibility of generating largest alignment these sizes, the maximum

numbers of parts are limited as 5, 6, 4. Thus we pick 2, 4 and the number of parts to evaluate

Oracle.

For these three genomes, the general trend for quality is that it might see improvements

when No.Parts = 2 but otherwise drops as the number of parts increases. The reason for

the quality decrease is because directly assembly on the whole read set already generates

contigs that are close to the largest possible contig, which is the largest chromosome. For

C. elegans, the largest alignment is 84% of the largest chromosome; for D. melanogaster

and Human chr 8, it’s 73% and 22% respectively. Thus, there is little space for quality

improvement. Instead, partitioning the reads adds the risk of separating the set of reads that

could form long contigs.

Now we look at the quality results for each individual chromosome. For D. melanogaster,

when No.Parts is equal to 2, we see most improvement over directly assembling on the

whole read set. We hypotheses the reason as: among these three genomes, when directly

assembly on the whole read set, D. melanogaster performances relatively the worst, which

leaves more space for improvement by better taking advantage of partitioned reads. For ex-

ample, D. melanogaster’s NGA50 is lowest percentage of the largest chromosome is 18%

and the NGA50 of the another genome that contains multiple chromosome, C. elegans,

NGA50 is 30%. Both C. elegans and Human chr 8 follows the general trend, which is

quality drops as the number of partitions increases.

For Maize chr 10, when directly assembly on the whole read set, the largest alignment is

2.7% of the genome size. Thus, the maximum number of parts can be used is 37. Directly

using the same or close to the maximum number of parts could lead to high chance of

breaking the longest contig apart. Thus we use 2, 4, 8, 16 and 32 as the number of parts

experimented.

Across different parts, the general trend is the quality improves significantly from 1 ∼
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16, and starts decreases at 32. As shown in Table 5.6, NGA50, N50 and largest alignment

are improved up to 2.1×, 2.1×, and 1.8× respectively. The reason for the such quality

improvement is the same with that of why we can partition the reads to larger number

of parts. Directly assembly on the full read set of Maize chr 10 could not achieve high

quality contigs like the other three. Thus, sufficient room is left for improvement. Since

the contigs are relatively short in this case, there is lower chance of separating reads that

could have form a long contig during partitioning. That is, the risk of hurting the quality

with partitioning is lower. Thus, we observe quality improvement up till when the number

of partitions get close the maximum number of partitions.

Thus, for long reads, if the long-reads assembly on the full read set already achieves

high quality results, then the partial ordering won’t bring improvement and it actually hurts

the quality as it divides up reads that could have form long contigs. However, if the long-

reads assembly on the full read set fails to generate high quality result, then the partial

ordering could even increase the quality results by 2×.

Runtime

We evaluate the runtime across different number of partitions for each genome. All as-

sembly is done with 32 threads. Same conclusion can be drawn from them: the runtime

decreases close to linear as the number of partitions increases. This gives the motivation

of partitioning the reads for performance reasons. It’s especially the case when directly

assembly couldn’t achieve high quality results. Because in that case, higher number of

parts will be available during partitioning, and then more and smaller assembly tasks can

be done in parallel.

115



Table 5.6: Long-Reads Oracle Experiment Results. All assembly is done with Flye (--pacbio-corr option and --threads
32). For each genome, various number of partitions are used (No. Parts). When it is 1, it’s to assembly the whole read set directly. The
best value is bold.

Input No. Parts NGA50 N50
Largest

Alignment (bp)

Genome

Coverage %
Missassemblies

Duplication

Ratio

Runtime

(secs) (Avg.)

Runtime

(secs) (Max.)

C. elegans 1 6,275,689 10,721,636 17,472,203 99.74 9 1.001 1,091 1,091

2 6,211,754 10,717,895 17,483,401 99.71 10 1.001 621 647

4 6,175,747 9,948,167 17,483,528 99.72 12 1.001 352 369

D. melanogaster 1 5,826,742 8,360,096 23,409,853 95.71 90 1.002 1,851 1,851

2 5,893,217 9,218,144 27,961,735 95.73 73 1.003 967 999

4 5,646,197 5,835,018 18,357,891 96.16 92 1.003 526 608

Human chr 8 1 28,466,996 28,479,791 32,309,708 96.86 0 1.000 1,629 1,629

2 27,007,743 27,017,466 32,309,479 96.94 1 1.001 897 976

4 21,077,842 21,088,824 32,309,644 96.91 1 1.000 535 564

Maize chr 10 1 1,119,085 1,237,979 4,215,953 99.18 25 1.004 3,674 3,674

2 1,364,126 1,675,697 4,017,356 99.20 33 1.003 1,569 1,713

4 1,774,049 1,872,771 5,136,184 99.33 27 1.004 733 753

8 2,362,355 2,571,393 6,065,945 99.34 26 1.003 429 493

16 2,145,972 2,596,766 7,573,434 99.41 29 1.004 281 347

32 2,070,450 2,486,385 4,791,776 99.39 30 1.007 182 250
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5.7 Summary

We show that providing partial ordering of short-reads to the assembler by partitioning the

reads to parts and then assembling each part independently not only improves the perfor-

mance of the assembler, but also increases the assembly quality. We present a parallel

assembly framework BOA that: initially constructs a graph/hypergraph on the short-reads;

next partitions the reads with graph/hypergraph partitioner to enforce a partial ordering

of the input reads; and finally, uses any standalone assembler to assembler each part in

parallel.

Experiments on eight different short-reads inputs show that BOA, using either the graph

or hypergraph form, can significantly improve both the assembly end-to-end runtime per-

formance and quality of the output compared with running the standalone assembler. We

evaluated with three different standalone assemblers to show that such improvements are

independent of the standalone assembler used. Experiments also show that compared to

BOA with graphs, BOA with hypergraphs achieves consistently better assembly quality as it

represents the relationship between reads more accurately. In terms of performance, it uses

less memory but runs longer compared to BOA with graphs.

We also explore the effect of providing partial ordering of long-reads to the assembler

through a theoretical benchmark Oracle, which generates the real partial ordering from the

simulator and makes it available before assembling. The experiments show that quality

improvement potential varies among the genomes but assembly runtime can be reduced

linearly as the number of parts increases.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

6.1 Conclusion

In this dissertation we focus on data tiling as applied to sparse computation. We look at

three important areas of sparse computation: graph analysis, linear algebra, and bioinfor-

matics. We solve key issues in these three areas with data tiling.

First, in graph analysis, we focus on the runtime of important kernels. We study sym-

metric rectilinear tiling to improve runtime. A key performance issue in graph analysis is

random data access. It has been shown that tile-based formulations of graph algorithms can

limit random data access and reduce data movement, which then increases runtime perfor-

mance [153, 21, 147, 149]. Tile-based formation of graph algorithms forming tiles in the

adjacency matrix that are used for computation. Data tiling approaches such as symmetric

rectilinear tiling are natural fits for graph analysis [152, 150] as the tiles can align rows and

columns for computation, matching vertices in adjacency matrices. However the asymp-

totic complexity class of the symmetric rectilinear tiling problem was previously unknown.

In this dissertation, we prove that the symmetric rectilinear tiling problem is NP-hard and

come up with effective and efficient heuristics, which then can be used to improve the

end-to-end runtime for graph analysis.

Second, in linear algebra, we focus on the important kernel of sparse matrix sparse

matrix multiplication, SpGEMM. SpGEMM, is a challenging kernel due to the irregular

structure of both input matrices as well as the output matrix. Prior parallel SpGEMM algo-

rithms either don’t scale as the matrix size increases (due to high memory use or increased

complexity) or suffer from expensive hash collisions. In this work, we come up with a

new parallel SpGEMM algorithm that avoids both issues and achieves a new state-of-art
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performance across multiple different processors and architectures.

Finally, in bioinformatics, we work on genome assembly, which is the bedrock of mod-

ern biology [61]. We study de novo genome assembly, which is a more difficult form as

it starts from scratch without the reference assembly. We hypotheses that a sophisticate

data tiling tool can partition the input reads effectively based on their closeness, and then

we can assemble each part of reads independently. Such increased parallelism can directly

help the assembler’s runtime performance. By handing smaller tasks to the assemblers, we

also hypotheses that this could reduce noise caused by reads that are far away which then

helps the quality of results. Following this hypothesis, we build a pipeline, BOA, which first

constructs a graph/hypergraph on the input reads; then partitions the reads with graph/hy-

pergraph partitioner; finally, it uses any standalone assembler to assembler each part in

parallel. As shown in our experiments, our pipeline (both graph and hypergraph partitioner

based) improve existing state-of-the-art de novo genome assemblers and through both run-

time and quality improvements across real-world and simulated datasets. Among the two

forms supported, hypergraph based form generates better assembly quality and uses less

memory, whereas the graph based form based runs faster.

Overall, we demonstrate the importance of data tiling and show that it continues to

provide state-of-the-art results for both runtime performance and quality across several

application spaces.

6.2 Future Directions

In spatial tiling, the approximation bound of existing heuristics have not been well studied.

For example, none of the existing symmetric rectilinear tiling heuristics have a approxi-

mation bound. That is, there is no theoretical guarantee on how much worse results of the

algorithms could get compared with the optimal results. To avoid the uncertainty, such

bound should be proven for existing algorithms or new heuristics with low approximation

bounds should be come up with. Similar situations appear in rectilinear tiling as well. Ex-
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isting rectilinear tiling algorithms either doesn’t have a approximation bound [113, 5], or

too expensive to run [59, 86], or ineffective in practice [108].

Some spatial tiling approaches have exact polynomial algorithms, such as Jagged [40]

and recursive coordinate bisection [134]. However, the polynomial algorithms are still too

expensive as a processing step for fast computations, such as triangle counting. Faster lin-

ear algorithms or heuristics can be developed instead to expand the usability of them. For

example, before computation, sparsification can be applied, which has been shown to sig-

nificantly improve runtime performance while maintaining the partitioning quality [151].

In general tiling, effective application specific connectivity-based tiling algorithms take

significant amount of effort to design and develop. Like BOA, most existing approaches

that utilize connectivity-based tiling will first map their problem space to a (hyper)graph

partitioning problem, and then solve it with a general partitioner [155, 1, 39]. The problems

of directly using a general partitioner include: first, it couldn’t take advantage of the appli-

cation specific information, such as in BOA the read sequence; second, general partitioners

are both memory and computational expensive and the partitioning phase is frequently its

applications’ performance bottleneck, for example, in BOA, partitioning takes v 92% of the

end-to-end runtime. New (hyper)graph partitioning methodologies or frameworks should

be designed. So that application specific partitioner that both takes advantage of applica-

tion specific information and requires less resources can be easily modified to, developed

and optimized for.

Another exciting areas in general tiling, are streaming (hyper)graph partitioning algo-

rithms. A streaming (hyper)graph partitioning algorithm processes (hyper)graphs that are

too big to be kept in the memory, instead only constant times of the number of vertices

and tiles can be stored in memory; and it determines the partitioning of vertices or (hy-

per)edges as it receives the vertices or (hyper)edges in a sequential order [26]. Streaming

(hyper)graph partitioning is important because real world relationship data is constantly

increasing in sizes, a streaming model can keep up with the growth by being able to make
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decisions with only the partial data. However existing streaming algorithms are either ef-

fective but too slow [18, 63] or fast but so ineffective [137]. Methods in between are needed

to make streaming (hyper)graph partitioning more practical.

In CSeg, the tile size is selected based on knowledge of the architecture, more specifi-

cally, the L2 cache size. In our future work, we can improve CSeg by developing heuristics

and other techniques to decide the tile size automatically based on the input matrix’s spar-

sity structure and architecture details. Further, we can include the option of not using

CSeg when S has similar size of B, in which case, the extra cost in CSeg, A × S, would

be significant. Instead, we can choose among traditional approaches, such as using a dense

accumulator, hash map, or heap, using potentially another heuristics.

Another promising extension for CSeg is the migration to GPUs. GPUs have been a

crucial platform for high performance computing. With sparse computation it is partic-

ularly challenging to take advantage of a GPU’s computational power. Similar to CPUs,

there is a small cache on GPUs called shared memory. The difference is that shared memory

can be controlled directly by programmers. To take advantage of the shared memory, dif-

ferent GPU SpGEMM approaches have been developed to have the accumulation (the main

computation of SpGEMM) finish in the shared memory [146, 41, 111]. One approach uses

a multi-level accumulator so that the accumulation operation only reaches global memory

when necessary [41]. Another characterizes rows before the accumulation so that rows

that can have accumulation done in the shared memory can be selected to do so. Similar

to CPUs, with CSeg, we can tile the second input matrix so that the accumulation can be

guaranteed to happen in the shared memory across the whole computation, thus fully taking

advantage of the shared memory.

We can also explore using a light-weight matrix ordering algorithm as a pre-processing

step for CSeg to group columns that are similar close together in B. By doing so, we

can localize the non-zeros in column segments thus reducing the size of S. This then will

reduce the extra cost of A × S, and improve the overall runtime performance. This could

121



be particularly useful when S has a similar size as B. It could also be helpful for the

SpGEMM algorithm with the traditional dense accumulator, as it localizes the updates in

the accumulator.

BOA has opened up many research avenues for future exploration towards further qual-

ity, runtime, and usability improvements.

One important direction to improve BOA’s runtime is investigating alternative partition-

ing strategies. As mentioned earlier in this section, BOA’s performance bottleneck is the

partitioning phase, which is currently using a general and expensive partitioner. A BOA

specific partitioner can be designed instead that takes less resources also leverages appli-

cation domain specific constraints and information (e.g., sequence). One optimization that

can be done for the partitioner is adding a new coarsening step before partitioning. In

such coarsening steps, reads that are found to be close together will be merged. For exam-

ple, we can look at the k-mers that only appear in a couple reads and merge those reads

based on their sequence information. A new partitioner can also be designed considering

the structure of the connections. As the reads are uniformly randomly sequenced from a

long string—the reference genome—the connections could be seen as a long path along the

reference genome.

Another direction for improving BOA is to explore the effect of variable block sizes for

reads, or the number of partitions. During our experiments for BOA on short reads, we

choose the number of partitions so that if balanced, each part of reads will not lose the

chance of generating the same length contig compared to directly assembling on the whole

read set. We preserve this by setting the number of partitions as the division between

the genome size and the largest alignment generated by assembly across the whole read

set. However, we have not focused our experiments on the impact of a different number of

partitions. As the number of partitions gets larger, both the amount of partial ordering infor-

mation given to the assembler and the parallelism during the assembly phase are increased,

but this comes with a cost of breaking apart reads that could have formed long contigs.
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Finding a sweet point for the number of partitions could push forward the improvement

from BOA even further in both runtime and quality.

In BOA, each part of the reads is assembled independently. Contigs are only generated

within each part. However, contigs between parts, or connecting contigs between parts are

not yet considered. A ordering of each part could be useful to generate contigs that fall be-

tween parts. One possible way to generate an ordering of the parts is using a vertex ordering

algorithm on the high-level graph from the partitioner, where each part is a vertex. Once

BOA can generate or merge contigs in between parts, we can explore multi-level contigs

generation, in which, we first partition the reads to a large number of partitions; assembly

each part independently; then, based on the partitioning results with smaller number of

parts, we can bridge contigs among parts. This process can continues until no meaningful

merges among contigs appear or we hit a time limit.

A exciting extension of BOA is to support and optimize for long reads assembly. The

long reads assembly experiment results with Oracle shows that for some genomes, e.g.

Maize chr 10, the introduction of partial ordering can help both assembly quality and run-

time. It would be exciting to realize such improvements in BOA. A different graph or

hypergraph model might be needed due to the long and high variance length and the low

accuracy of the reads. A different k-mer, potentially even support for varying k-mer sizes,

could be another important improvement.

BOA is also a natural fit for metagenomic assembly, which analyzes sequences from

combined genomes of multiple organisms. The partial ordering in this cases implies the

separation of sequences from different genomes. However, to realize this, a significant

number of changes would be needed. One interesting property is that the load balancing

might not be as important due to the variable genome sizes. Another is deciding the number

of partitions as the number of different genomes is unknown a priori. Thus, a clustering

algorithm could be used instead, in which the number of partitions is not given beforehand

and instead it is determined by the algorithm and the reads.
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[27] Ü. V. Çatalyürek and C. Aykanat, “Hypergraph-partitioning based decomposition
for parallel sparse-matrix vector multiplication,” IEEE Transactions on Parallel
and Distributed Systems, vol. 10, no. 7, pp. 673–693, 1999.
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[46] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with perfor-
mance profiles,” Mathematical programming, vol. 91, no. 2, pp. 201–213, 2002.

[47] Duke University School of Medicine, NCBI GenBank, Last date accessed: Novem-
ber 2021, https://www.ncbi.nlm.nih.gov/genbank/.

127

https://docs.nersc.gov/tools/performance/craypat/
https://www.ncbi.nlm.nih.gov/genbank/
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