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rank, Ŝ whose M2 value is close to 1, and M3 value is close to 0. Also note
that it chooses a model whose mis-classification rate is close to 0. A number
in the parentheses represents the rank of L̂ estimated from (γHNCV, δHNCV),
(γAIC, δAIC) and (γBIC, δBIC) for each case. . . . . . . . . . . . . . . . . . . 20

1.2 A list of top 10 blogs that received the most links from blogs in the opposite
party. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 Top 4 edges corresponding with the pairs of papers from different commu-
nities. Authors and years of publication for the papers in each pair are also
presented. In the first pair, a paper from functional analysis topic cites a
paper from variable selection topic for borrowing a mathematical represen-
tation to build a theorem. But they are not related in terms of topic. . . . . . 35

1.4 Grid settings for implementation of HNCV method and running times of
the algorithm on each dataset. We repeat (a) and (b) of Step 2 ten times for
Karate club, political book, and citation network datasets, and five times
for political blog dataset. Maximum, minimum, and average computational
times over the grid, G, are recorded. Interestingly, as the number of nodes
grows, it turns out that running time is sensitive to the choice of tuning
parameter. See Political Blog dataset. . . . . . . . . . . . . . . . . . . . . . 36

2.1 Specific choices of the constants in the order of hN = Θ(N− 1
7 ) and wM =

Θ(M− 1
7 ) for the experiments on Viscous Burgers equation and KdV equa-

tion are presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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5 ∈ R162×5. Note that

nodes classified as “Mixed Topics” are highly clustered around origin in a
L2 sense. Recall that the definition of ÊK is in Subsection 7.3. . . . . . . . 149
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SUMMARY

The phenomenal advancements in modern computational infrastructure enable the mas-

sive amounts of data acquisition in high-dimensional feature space possible. To put it more

specific, the largest datasets available in the industry which often involve up to billions of

samples and millions of features. The nature of datasets arising in modern science and

engineering are sometimes even larger, often with the dimension of the same order as, or

possibly even larger than, the sample size.

The cornerstone of modern statistics and machine learning has been a precise char-

acterization of how well we can estimate the objects of interests under these huge high-

dimensional datasets. While it remains impossible to consistently estimate in such a high-

dimensional regime in general, a large body of research has investigated various structural

assumptions under which statistical recovery is possible even in these seemingly ill-posed

scenarios. Examples include a large line of works on sparsity [1, 2, 3, 4], low-rank assump-

tions [5], and more abstract generalizations of these [6, 7]. These structural assumptions on

signals are often realized through specially designed norms; i.e., for inducing sparsity of

either vector or matrix, entry-wise ℓ1-norm is used; for inducing low-rank matrix, nuclear

norm is used. Not only in parametric, but in non-parametric models, high-dimensional

dataset is common in real world applications. A deep neural network, one of the most suc-

cessful models in modern machine learning in various tasks, is a primary example of non-

parametric model for function estimations. Tasks such as image classification or speech

recognition often require a dataset in high-dimensional space. For the accurate function es-

timation avoiding the commonly known curse of dimensionality phenomena, some special

structural assumptions on regression functions are imposed i.e., [8, 9].

Under some specific structural assumptions imposed on problems, the main emphasis

in this thesis proposal is on exploring how various regularizing penalties can be utilized for

estimating parameters and functions in parametric and non-parametric statistical problems.
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Specifically, our main focus will be the problems in network science, PDE identification,

and neural network. In the following, we describe motivations and relevant literature of

each problems in detail.

Chapter 1: Network data modeling via Low rank + Sparse matrices : My first pub-

lication is about the network data modeling. While many existing community detection

algorithms [10, 11, 12, 13] have focused on clustering the nodes in the network within the

same communities, our model enables simultaneous inferences on the node label in the

network and the ad-hoc edges that connect nodes between clusters. For instance, suppose

there is a statistician who wants to find some papers that study theoretical relationships be-

tween kernel regression and neural network. Given a citation network with most recently

published papers in statistical journals, models proposed in the above literature can cluster

the papers on kernel regression and neural network respectively, but cannot give the statis-

tician a satisfactory answer. The model can serve the right purpose for this statistician. We

design the statistical model that can accommodate two types of dependencies encoded in

the adjacency matrix of the given network: (1) Majority of the edges are generated due to

the latent factors that are commonly shared among the nodes in the network; (2) Addition-

ally, there still exist ad-hoc edges in the network that cannot be captured by the commonly

shared factors, and they are relatively less common. Through a proper model parameteri-

zations, the latent factors in the first component can be characterized through a low rank

matrix, and the ad-hoc edges in the second component can be represented as the a sparse

matrix. Along with this idea, the problem can be translated into decomposing model pa-

rameter into the two types of matrices; that is, a low rank matrix and a sparse matrix. Our

model proves its effectiveness on various real network datasets including karate network

data, political book data, and statisticians’ citation network data. This work was published

in Statistical Analysis and Data Mining, 2020.
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Chapter 2: PDE Identification via ℓ1-regularization : Many natural phenomena and en-

gineering problems can be described through various Partial Differential Equation (PDE)

models. (i.e., Navier-Stokes Eq, Schrödinger Eq, etc.) With the advancements in modern

computing power, the acquisition of noisy dataset from the solution of these PDE models

becomes accessible. My second work focuses on variable selection problem for identifying

the correct PDE models that govern the data-generating process. Given the noisy observa-

tions from a certain dynamic function defined over a spatial-temporal domain, it is assumed

that the dynamic function is the solution of the certain PDE model. The main goal of our

work is to correctly identify the ground-truth PDE model under the noisy observations out

of many possible candidate models. We prove that a minimizer from ℓ1-penalized least-

square problem can have model selection consistency guarantees for the ground-truth PDE

model under three sufficient conditions on the design matrix and true signal β⋆; that is,

(1) Incoherence condition, (2) Minimum eigen-value condition and (3) β⋆
min-condition.

These three conditions also can be found in statistical literature [14, 4] where they study the

model selection consistency of LASSO estimator for sparse linear regression model. This

is the first work which gives the theoretical understandings on why ℓ1-regularization works

for PDE identification from the statistical viewpoint. This work is to appear in SIAM/ASA

Journal on Uncertainty Quantification, 2022.

Chapter 3: Low-rank matrix estimation via weighted nuclear norm : Many estimators

from the penalized methods suffer from biases induced from the regularizers. Researchers

have put enormous efforts for reducing such biases under various statistical settings. For

instance, see [15]. In my fourth work, I consider the estimation problem of low-rank matrix

under the multivariate linear regression setting; that is, we consider the problem of recov-

ering an unknown coefficient matrix Θ⋆ ∈ Rd1×d2 from n observations of the response

vector yi ∈ Rd2 , 1 ≤ i ≤ n, and predictor xi ∈ Rd1 , where the ground truth model is as

xviii



follows:

Y = XΘ⋆ +E, (1)

where Y = (y1, . . . , yn)
⊤ is an n × d2 matrix, X = (x1, . . . , xn)

⊤ is an n × d1 matrix,

and E = (e1, . . . , en)
⊤ is an n× d2 regression noise matrix. In my work, weighted nuclear

norm (WNN) is used for reducing the biases in singular values of the estimated matrix.

The main idea for employing WNN is to put large enough weights on the small singular

values, and to put small enough weights on the large singular values of the matrix; that is,

0 ≤ ω1 ≤ ω2 ≤ · · · ≤ ωp for σ⋆
1(Θ

⋆) ≥ σ⋆
2(Θ

⋆) ≥ · · · ≥ σ⋆
p(Θ

⋆), where ωj is the j th

weight, which corresponds to the j th singular value of the ground-truth matrix Θ⋆ denoted

as σ⋆
j (Θ

⋆) for 1 ≤ j ≤ p = min(d1, d2). Then, WNN is defined as
∑p

j=1 ωjσ
⋆
j (Θ

⋆).

However, solving the following WNN penalized least square problem (3.2) is difficult,

since WNN is a non-convex function in matrix parameter space when weights are non-

decreasing order. See [16].

Θ̂ := argmin
Θ∈Rd1×d2

{
1

2n
∥Y −XΘ∥2F + λn ∥Θ∥ω,⋆

}
. (2)

I develop an efficient ADMM-type algorithm solving (3.2) despite its non-convexity (named

as WMVR-ADMM), and study the statistical properties of Θ̂ in (3.2) under the orthogonal

and random Gaussian design matrices X, respectively. Panels in Figure 1. show the results

of singular values of Θ̂ (i.e., σ̂j) versus those of Θ⋆ (i.e, σ⋆
j ) under Gaussian design X. The

first two panels (A) and (B) are results from WMVR-ADMM algorithm with one weight

update iteration under n = 250. The panel (C) exhibits the result when the estimator is

obtained from standard nuclear norm (SNN) (i.e., ω1 = ω2 = · · · = ωp = 1) penalized

least squares under n = 1000. The result shows that our method achieves a satisfactory

de-biasing result within two iterations of loop with only sample size n = 250 (Panels (A)

and (B)), whereas there is still a slight bias on the estimated singular value from SNN with

n = 1000 (Panel (C)).
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Chapter 4: Minimax Rate of deep ReLU net through ℓ2-regularization : Theoretical

studies on neural network models are notoriously difficult, because of its non-convex land-

scape of loss function in the parameter spaces. However, networks learned through noisy

dataset show the good generalization abilities for the unseen data. In my third work, I stud-

ied the generalization properties of the overparameterized deep neural network (DNN) with

Rectified Linear Unit (ReLU) activations. Under the non-parametric regression framework,

it is assumed that the ground-truth function is from a reproducing kernel Hilbert space

(RKHS) induced by a neural tangent kernel (NTK) of ReLU DNN, and a dataset is given

with the noises. Without a delicate adoption of early stopping, we prove that the over-

parametrized DNN trained by vanilla gradient descent does not recover the ground-truth

function. It turns out that the estimated DNN’s L2 prediction error is bounded away from

0. As a complement of the above result, we show that the ℓ2-regularized gradient descent

enables the overparametrized DNN to achieve the minimax optimal convergence rate of

the L2 prediction error, without early stopping. Notably, the rate we obtained is faster than

O(n−1/2) known in the literature. This work is recently published in International Confer-

ence on Learning Representation (ICLR), 2022.

Chapter 5: Approximation and non-parametric estimation of functions in high di-

mensional spheres via deep ReLU network : In this chapter, We develop a new approx-

imation and statistical estimation analysis of deep feed-forward neural networks (FNNs)

with the Rectified Linear Unit (ReLU) activation. The functions of interests for the ap-

proximation and estimation are assumed to be from Sobolev spaces defined over the d-

dimensional unit sphere with smoothness index r > 0. In the regime where r is in the

constant order (i.e., r = O(1)), it is shown that at most dd active parameters are required

for getting d−C approximation rate for some constant C > 0. In the regime where the

index r grows in the order of d (i.e., r = O(d)) asymptotically, we prove the approxima-

xx



tion error decays in the rate d−dβ with 0 < β < 1 up to some constant factor independent

of d. The required number of active parameters in the networks for the approximation in-

creases polynomially in d as d → ∞. It is also shown that bound on the excess risk has

a dd factor, when r = O(1), whereas it has dO(1) factor, when r = O(d). We emphasize

our findings by making comparisons to the results on approximation and estimation errors

of deep ReLU FNN when functions are from Sobolev spaces defined over d-dimensional

cube. Here, we show that with the current state-of-the-art result, dd factor remain both in

the approximation and estimation errors, regardless of the order of r.
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CHAPTER 1

A NETWORK MODEL THAT COMBINES LATENT FACTORS AND SPARSE

GRAPHS

1.1 Introduction

Many state-of-the-art community detection algorithms only focus on clustering nodes that

share some common characteristics in a given network. The community labels in the net-

work are unknown and the main interest is to estimate them [10, 11, 17, 18, 19, 12, 13, 20].

However, there are some cases where we need more than the label information of each node

in the network. Suppose there is a statistician who wants to find some papers that study

theoretical relationships between kernel regression and neural network. Given a citation

network with most recently published papers in statistical journals, algorithms proposed in

above literature can cluster the papers on kernel regression and papers on neural network

with good statistical accuracy and reasonable computational complexity. But none of them

can give a satisfactory answer to the statistician. Motivated from this idea, the present paper

develops a new model that enables simultaneous inferences on node labels in the network

and ad-hoc edges that connect nodes between clusters.

We review the relevant literature here. Several attempts have been made to capture

interesting characteristics of networks such as degree heterogeneity, transitivity, homophily,

and so on [18, 21, 22, 23]. See Wasserman and Faust [24] for more on common structures

for network data. An interesting line of work in network modeling is to adopt a latent space,

seeing a seminal work by Hoff et al. [25]. The key idea of the latent space model is that

each node i in the network can be represented as a vector fi in a low-dimensional latent

space, which sometimes is referred as the social space in the literature [26, 25]. Nodes

that are “close” in the social space are highly likely to have links among them. Many
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other papers generalized this approach, such as accommodating clustering effect or node

homogeneity in the networks, treating the latent variables fi’s as random effects [27, 26],

and many more.

To extend the latent space model, we introduce a statistical model that can accommo-

date pairs of connected nodes in the network, even though they are not close in latent space.

More precisely, suppose that we observe a large undirected network represented by a sym-

metric adjacency matrix X on n nodes with Xij = Xji = 1 if nodes i and j are connected

and zero otherwise. (We do not allow the self-loop, so we set the diagonal elements of

the matrix X to be zero, i.e., Xii = 0.) We design a model that can accommodate two

types of dependencies encoded in the aforementioned binary matrix: (1) Majority of the

edges are generated due to the latent factors that are commonly shared among the nodes in

the network; (2) Additionally, there still exist ad-hoc edges in the network that cannot be

captured by the commonly shared factors, and they are relatively less common.

We give more details on our statistical model. Let the observed n-by-n adjacency matrix

be X ∈ Rn×n. The model that we are considering can be written in the following form: for

any 0 < i < j ≤ n,

Xij = Xji ∼ Bernoulli(Pij), with logit(Pij) = α + fT
i Dfj + Sij, (1.1)

where Pij is the parameter in the Bernoulli distribution, logit(x) = log[x/(1− x)], for any

x ∈ (0, 1), α, Sij ∈ R are scalars, vectors fi, fj ∈ Rk are k dimensional (k is a positive in-

teger), and diagonal matrix D ∈ Rk×k has nonnegative entries. Entries of X are Bernoulli

random variables that are assumed to be independent. The positively weighted inner prod-

uct of latent factors fi and fj (i.e., fT
i Dfj) corresponds to the factor model. The sparse

graphical component is reflected by the presence of Sij . Note that we will require that a

very few of Sij’s to have non-zero values (that is the matrix S = (Sij)i,j=1,...,n is sparse)

so that they can capture the ad-hoc dependencies of nodes in the network. Our model is
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named Combined latent Factors and Sparse Graphs model, which can be abbreviated

as CFSG.

For the proposed model, we provide a general oracle-type inequality for the estimation

error. The result is non-asymptotic; the error upper bound is a function of the number of

nodes in the network. Interestingly, the result can be applied to cases when the ground-

truth latent matrix in the network is either exactly or approximately low rank. Another

interesting point is that we do not impose any incoherence condition [28] on the singular

vectors of the factor matrix, instead we assume a milder condition called “Spikiness” on

the matrix that is associated with the factor variables [29, 30]. The effectiveness of our

model is demonstrated in some real-data examples.

The rest of the paper is organized as follows. Some related works are reviewed and

discussed in Section 1.2. In Section 1.3, we present our model, which can encode both

the latent dependent structure due to the common factors and the remaining sparse ad-

hoc dependent structure. In Section 1.4, we will discuss the assumptions imposed in our

model and the penalization on the likelihood function. In Section 1.5, we provide a non-

asymptotic error bound of the estimator. In Section 1.6, we will present numerical exper-

iments with synthetic data to verify the effectiveness of our method and to validate the

theoretical results that are presented in Section 1.5. In Section 1.7, our model is applied

to four real network datasets. We finally conclude this work in Section 1.8; some possible

directions of future research are discussed as well.

Remark 1.1.1 To make the body of this Chapter concise and to the point, we put several

parts to Appendix A. In Appendix A, we provide detailed procedures on (1) how the ADMM

algorithm can be employed to solve the optimization problem suggested in Section 1.4, (2)

how to generate synthetic network data introduced in Subsection 1.6.1, (3) proof of the

Theorem 1.5.4 presented in Section 1.5, and (4) detailed discussions on “Mixed Topics”

cluster in Subsection 1.7.4.

Remark 1.1.2 We create a GitHub repository (https://github.com/namjoonsuh/Network-
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CFSG) to distribute R codes with documentation. The results in Section 1.6 and Section

1.7 can be reproduced by running this software.

1.2 Related Work

We describe three related works in the following, including

1. another fused latent and graphical model (Section 1.2.1), however it has very dif-

ferent mathematical details in formulation and analysis compared to the proposed

CFSG model;

2. an exemplary extension of the factor-based model (Section 1.2.2), which incorporates

additional external variates, however there is no sparse graph component, and

3. the large literature on matrix decomposition in general (Section 1.2.3) while our in-

novative contribution is to adapt the matrix decomposition strategy into the statistical

modeling of network data.

1.2.1 Fused Latent and Graphical (FLaG) Model

Our work is relevant with a recent work named Fused Latent and Graphical (FLaG) model

(Chen et al, 2016, [31]). FLaG is built to analyze the Eyesenck’s Personality Questionnaire

[32] that consists of questions designed to measure three aspects of human personality:

Psychoticism (P), Extraversion (E) and Neuroticism (N). Questions in the questionnaire

are considered as random variables, and (P), (E) and (N) are assumed to be latent attributes

that are shared among the questions. Additionally, sparse graphical structure complements

dependence among the questions that are not attributable to these latent factors. Thus, the

resulting model contains a low-dimensional latent vector and a sparse conditional graph.

Though our model (recall it is named CFSG) may seem similar to FLaG in terms of the

matrix decomposition into a low-rank matrix and a sparse matrix, we work on a different

model formulation in several aspects. We summarize the differences as follows.
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1. In FLaG model, a collection of binary responses for each question in the question-

naire follows a joint distribution, which is a combination of the Item Response The-

ory (IRT) model [33] and the Ising model [34]. In CFSG, the edges in the network

are modeled as random variables, whose dependent structure is characterized by the

combination of the Latent Factor Analysis model and the Sparse Graphical model.

2. In FLaG, there are p questions that need to be answered, and if there are n respon-

dents to questions, they have n independent data generated from the same distribu-

tion. In CFSG, the observed citation network can be thought of as one realization of

a random graph.

3. FLaG approximates the original likelihood through constructing pseudo-likelihood

function by taking advantage of conditional independence among the nodes. In

CFSG, likelihood function is directly accessible due to the conditional independence

among the edges.

1.2.2 An Extension of the Factor-based Model

Based upon the latent space modeling framework, Ma et al.[22] suggest a model that can

incorporate additional features Z other than the edge information in the network. The

additional features Zij can indicate whether the ith entity and j th entity of the network share

the common attributes, for instance, gender. This also can be easily applied in our model

by adding βZij on the right-hand side of logistic regression model in (1.1). Here, a positive

regression coefficient β reflects that if the two entities share the common attributes, the

two nodes are likely to be connected. In the present paper, we choose not to pursue in this

direction. It could be an interesting future work.
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1.2.3 Matrix Decomposition

The proposed modeling framework is also related with the analysis of decomposing a ma-

trix into low-rank and sparse components ([29, 28, 35, 36]). Specifically, paper [35] stud-

ies statistical inference of a multivariate Gaussian model whose precision matrix admits

the form of a low-rank matrix plus a sparse matrix. The inference and optimization of the

current model are different from the aforementioned cases. We will construct a regularized-

likelihood function, based on what estimator will be proposed for simultaneous model

selection and parameter estimation. The objective function in the optimization problem

for the regularized estimator is convex, for which we will develop an efficient algorithm

through the alternating direction method of multiplier (ADMM, [37, 38, 39]).

1.3 Model Formulation

Associated with a pair of nodes i and j in the network, we denote a binary random variable

Xij , where 1 ≤ i, j ≤ n and n is the total number of nodes. We have Xij = 1 if and only

if node i has a link with node j; otherwise Xij = 0. For each node i, we assume that there

is an associated binary vector fi ∈ RK , such that the kth entry of fi, fik = 1, if and only if

node i is related to factor k, 1 ≤ k ≤ K. Here K is the total number of underlying factors.

We assume a logistic model for Xij’s: for 1 ≤ i, j ≤ n, the model is formally defined as:

P(Xij | α, fi, fj, D) :=
eXij(α+fT

i Dfj)

1 + eα+fT
i Dfj

, (1.2)

where α ∈ R is a parameter and D ∈ RK×K is a diagonal matrix: D = diag{d1, d2, . . . , dK}.

We assume di > 0 for 1 ≤ i ≤ K. Another way to put (1.2) is

P(Xij = 1 | α, fi, fj, D) =
exp

(
α +

∑K
k=1 fikfjkdk

)
1 + exp

(
α +

∑K
k=1 fikfjkdk

) . (1.3)
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A justification of the above model is that when both node i and node j belong to factor

k, they have a higher chance to have a link one way or the other. We have assumed a

common strength coefficient dk (1 ≤ k ≤ K) for factor k, despite different nodes. We

denote a matrix F = {f1, f2, . . . , fn} ∈ RK×n. Each column i in matrix F contains the

factor loadings associated with the node i (1 ≤ i ≤ n). Given the diagonal matrix D and

the factor loading matrix F , we assume that Xij’s are independent; therefore we have the

total conditional probability function as follows:

P({Xij, 1 ≤ i, j ≤ n} | α, F,D) =
∏

1≤i<j≤n

P(Xij | α, fi, fj, D) =
∏

1≤i<j≤n

eXij(α+fT
i Dfj)

1 + eα+fT
i Dfj

,

(1.4)

where P(Xij) is given in (1.3). The last equation holds because Xij only takes binary

(i.e., 0 or 1) values. Recall that the dot product of two matrices with same dimensionality,

A,B ∈ Ra×b, is defined as A •B = trace(ATB) =
∑a

i=1

∑b
j=1 aijbij . The above (1.4) can

be further rewritten as

P({Xij, 1 ≤ i < j ≤ n} | α, F,D) =
exp

(
α
∑

1≤i<j≤nXij +
1
2
X • (F TDF )

)
∏

1≤i<j≤n 1 + eα+fT
i Dfj

, (1.5)

where we assume Xii = 0 for all i (1 ≤ i ≤ n) and Xij = Xji for all i and j (1 ≤ i, j ≤ n),

i.e., the matrix X is symmetric. The above delivers a factor analysis model. Various linear

and nonlinear latent variable models have been studied extensively in the literature (e.g.,

[40, 41, 42, 43, 44, 45]).

The above specifies a latent model (or equivalently a factor model). We now describe

a graphical model as follows. The graphical model will complement the latent model by

characterizing links that are not interpretable via common factors. For the aforementioned

binary random variable Xij , 1 ≤ i, j ≤ n, similarly with (1.2), we define

P(Xij | α′, Sij) :=
eXij(α

′+Sij)

1 + eα′+Sij
, (1.6)
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where Sij ∈ R, for 1 ≤ i, j ≤ n, denotes the relation between nodes i and j. Note that

the matrix S is introduced to capture the ad-hoc links in the graph. If we have Sij ≤ 0,

then it is less likely to have a citational relationship between nodes i and j. On the other

hand, if Sij > 0, then it is more likely to have a citation link between nodes i and j.

Here parameter α′ ∈ R plays the same role as parameter α does in model (1.2). Denote

the matrix S = {Sij, 1 ≤ i, j ≤ n} ∈ Rn×n. Assume that given the matrix S, the

binary random variables Xij’s are independent; consequently, we have the total conditional

probability function as follows:

P({Xij, 1 ≤ i, j ≤ n} | α′, S) =
∏

1≤i<j≤n

P(Xij | α′, Sij) =
∏

1≤i<j≤n

eXij(α
′+Sij)

1 + eα′+Sij

=
exp

(
α′∑

1≤i<j≤nXij +
1
2
X • S

)
∏

1≤i<j≤n 1 + eα′+Sij
. (1.7)

Recall that we have assumed that Xii = 0 for all i (1 ≤ i ≤ n) and Xij = Xji for all i

and j (1 ≤ i, j ≤ n), i.e., the matrix X is symmetric. In the combined model, we integrate

(1.5) and (1.7) to render the joint conditional probability function as follows:

P(X | α, F,D, S) =
∏

1≤i<j≤n

eXij(α+Sij+fT
i Dfj)

1 + eα+Sij+fT
i Dfj

=
exp

(
α
∑

1≤i<j≤nXij +
1
2
X • (F TDF ) + 1

2
X • S

)
∏

1≤i<j≤n

(
1 + eα+fT

i Dfj+Sij
) . (1.8)

1.4 Estimation

Note that in the model (1.8), the log-likelihood function has the form as follows:

L(α, F,D, S;X) = α
∑

1≤i<j≤n

Xij +
1

2
X • (F TDF ) +

1

2
X • S (1.9)

−
∑

1≤i<j≤n

log
(
1 + eα+fT

i Dfj+Sij

)
.
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If we consider maximizing the above log-likelihood function, we will encounter several

technical issues that are listed below.

1. We would like the matrix S ∈ Rn×n to have as many zero entries as possible; i.e.,

matrix S is sparse.

2. There is an identifiability issue with the formation F TDF . More specifically, let P ∈

RK×K be a signed permutation matrix, then we have P TP = In, where In ∈ RK×K

is the identity matrix. Notice that matrix F ′ = PF is also a factor loading matrix,

and matrix D′ = PDP T is still a diagonal matrix; we have

F TDF = F TP TPDP TPF = (F ′)TD′F ′,

i.e., the choice of F and D is not unique.

3. We would like the number of nonzeros in each column of F to be small, reflecting

that each node is associated with a small number of underlying topics.

4. Overall, the rank of matrix F TDF cannot be larger than min{n,K}. With the ap-

plication that we have in mind, in this paper, we assume that K is much smaller than

n.

5. Following the approaches that were mentioned in the Introduction, we propose to re-

lax F TDF to L, where L is a low rank matrix. Furthermore, to ensure the separation

of matrices α11T and an arbitrary matrix L, we assume that the eigen-vector of L is

centered, that is,

JLJ = L where J = In −
1

n
11T , (1.10)

where 1 denotes a n-dimensional vector whose entries are all 1’s. Since we have

L = F TDF , this condition uniquely identifies F up to a common orthogonal trans-

formation of its columns.
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Directly maximizing the objective function in (1.9) is not going to be an easy task.

Consequently, the log-likelihood function in (1.9) can be rewritten as

Ln(α,L, S;X) = α
∑

1≤i<j≤n

Xij +
1

2
X • L+

1

2
X • S (1.11)

−
∑

1≤i<j≤n

log
(
1 + eα+Lij+Sij

)
.

We propose a penalized likelihood estimation approach as follows:

(α̂, L̂, Ŝ) = arg minα,L,S

{
− 1

n
Ln(α,L, S;X) + γ∥S∥1 + δ∥L∥∗

}
, (1.12)

where γ > 0 and δ > 0 are algorithmic parameters whose values will be discussed later

(Section 1.6.2), the L1 norm of matrix S is defined as ∥S∥1 =
∑

i ̸=j |Sij| (Note that we

do not penalize the diagonal entries of S), and nuclear norm of matrix L is defined as

∥L∥∗ = trace
√

(LTL). Recall that both S and L are symmetric matrices. The entries of

matrix S can either be positive or negative. Note that we have imposed the diagonal entries

of the matrix X to be zeros. Given that L = F TDF where matrix D is diagonal with

nonnegative diagonal entries, it is easy to see that matrix L is positive semidefinite; which

consequently leads to ∥L∥∗ = trace(L), which is a linear functional to the matrix L. The

nuclear norm of L mimicks the number of nonzero eigenvalues of L, which is the same as

the rank of L. The regularization based on the nuclear norm was proposed in [46] and its

statistical properties are studied in [47].

After we have obtained Ŝ in (1.12), we can uncover the graphical model by investigating

non-zero entries in Ŝ. On the other hand, when we have calculated L̂, we may not be able

to find binary matrix F and nonnegative diagonal matrix D such that L̂ = F TDF. This is

the price we have to pay for an amenable computational approach. The rank of estimated

L̂ will be our estimate of the number of factors (i.e., the number of underlying common

factors). We will discuss the issue on assigning the topic membership of each node i later
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in Subsection 1.6.3. Detailed description on the ADMM algorithm that we employed for

optimizing (1.12) can be found in the Appendix A.1.

1.5 Non-asymptotic error bound of the estimator

In this section, we focus on investigating the behaviour of non-asymptotic error bound of

our estimator in the context where the number of nodes in a network is explicitly tracked.

Recall that we are interested in solving the following optimization problem:

min
α∈R,S=ST

L≽0

− 1

n
log

∏
1≤i,j≤n

exp (Xij (α + Lij + Sij))

1 + exp (α + Lij + Sij)
+ δ∥L∥∗ + γ∥S∥1. (1.13)

For the convenience of theoretical investigation, we slightly modify the first term in the

objective function summing over all (i, j) pairs. After scaling, due to symmetry of X , L,

and S, the only difference between (1.12) and (1.13) is in the inclusion of terms in diagonal

pairs (i, i),∀i = 1, . . . , n. We borrow the idea of this modification from the work of [22],

where they also consider the latent factor model in analyzing the embedded topics in the

network but without the sparse component. Not only do this modification simplify the

theoretical investigation of the estimator, but also it makes no differences in quality of the

estimator, as will be demonstrated in Subsection 1.6.4.

Let (α̂, L̂, Ŝ) be the solution to (1.13), and (α∗, L∗, S∗) be the ground truth, which gov-

erns the data generating process. Let Θ̂ and Θ∗ be defined respectively as Θ̂ = α̂11T+L̂+Ŝ

and Θ∗ = α∗11T + L∗ + S∗. And denote the error term for each parameter as ∆̂Θ =

Θ̂ − Θ∗, ∆̂α = α̂ − α∗, ∆̂L = L̂ − L∗, ∆̂S = Ŝ − S∗. Throughout the discussion, let

P ∗ =

{
exp(Θ∗

ij)

1+exp(Θ∗
ij)

}
1≤i,j≤n

∈ Rn×n. We describe several assumptions before establishing

the theoretical guarantees of our estimator.

Assumption 1.5.1 (Strong convexity) For any Θ ∈ Rn×n, define the log-likelihood in

(1.13):

h(Θ) = − 1

n

∑
i,j

{
XijΘij − log(1 + exp(Θij))

}
.
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We assume that h(Θ) is τ -strongly convex in a sense that lowest eigenvalue of Hessian

matrix of the log-likelihood function is bounded away from zero (τ > 0):

∇2h(Θ) = diag
(

vec
( 1
n

exp(Θ)

(1 + exp(Θ))2

))
≽ τIn2×n2 .

For any vector a, diag(a) is the diagonal matrix with elements of a on its diagonal. For any

matrix B = [b1, . . . , bn] ∈ Rn×n, vec(B) ∈ Rn2
is obtained by stacking b1, . . . , bn in order.

For any square matrix A and B, we have A ≽ B if and only if matrix A − B is positive

semi-definite.

Assumption 1.5.2 (Identifiability of α11T and L) To ensure the separation between α11T

and L, we assume that the latent variables are centered, that is JL = L, where J =

In − 1
n
11T , where 1 denotes an all one vector in Rn.

Assumption 1.5.3 (Spikiness of L and Constraint on α) We impose a spikiness condition

∥L∥∞ ≤ κ√
n×n

on L, to ensure the separation of L and matrix S [29]. We would also like

to note that the constraint |α| ≤ Cκ, for an absolute constant C, is included partially for

obtaining theoretical guarantees.

Under these assumptions, we present the behavior of non-asymptotic error bound of

our estimator through the following theorem. In our result, we measure error using squared

Frobenius norm summed across three matrices:

e2
(
α̂11T , L̂, Ŝ

)
:=
∥∥∆̂α11T

∥∥2
F
+
∥∥∆̂L

∥∥2
F
+
∥∥∆̂S

∥∥2
F
. (1.14)

Theorem 1.5.4 Under the Assumptions 1.5.1, 1.5.2 and 1.5.3, if we solve the convex prob-

lem (1.13) with a pair of regularization parameter (δ, γ) satisfying

δ ≥ 2

∥∥∥∥ 1n(X − P ∗)

∥∥∥∥
op

and γ ≥ 2

∥∥∥∥ 1n(X − P ∗)

∥∥∥∥
∞
+ 4κτ

(
Cn+ 1

n

)
, (1.15)
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where ∥ ∗ ∥op stands for the matrix operator norm (i.e., the largest singular value of the

matrix), then there exist universal constants cj , j = 1, 2, 3, for all integers k = 1, 2, ..., n,

and s = 1, 2, ..., n2, and we have the following upper bound of e2
(
α̂11T , L̂, Ŝ

)
:

e2
(
α̂11T , L̂, Ŝ

)
≤ c1

δ2

τ 2︸︷︷︸
Kα∗

+ c2
δ2

τ 2

{
k +

τ

δ

n∑
j=k+1

σj(L
∗)

}
︸ ︷︷ ︸

KL∗

+ c3
γ2

τ 2

{
s+

τ

γ

∑
(i,j)/∈M

|S∗
ij|
}

︸ ︷︷ ︸
KS∗

,

(1.16)

where M is an arbitrary subset of matrix indices of cardinality at most s.

We would first like to note that the result presented in Theorem 1.5.4 can be thought

of as an extension of Theorem 1 presented in paper [29] to a generalized linear model.

Specifically, our work considers a logistic loss function whose parameter is characterized

by a sparse matrix plus a low rank matrix, whereas Agarwal, et al. [29] work on a general

linear observation model whose parameter is also characterized by a sum of a low rank

matrix and a sparse matrix.

Astute readers might have noticed that the upper bound in (1.16) consists of three dif-

ferent terms, where we denote them as Kα∗ , KL∗ and KS∗ . Each respective term is involved

with estimating three model parameters: α,L and S. To be more specific, both KL∗ and

KS∗ have two types of error: 1) The first one is called as an “estimation error.” This error

represents the statistical cost of estimating parameters that belong to the model subspace.

2) Another quantity is referred as “approximation error.” This error occurs when we only

focus on estimating parameters within the model subspace, and it shrinks as the model

subspace becomes large.

The result of the Theorem 1.5.4 provides a family of upper-bounds, one for each in-

dexed by a specific choice of model subspace M , and rank parameter k. In other words,

this means that the subset M and the target rank k can be adaptively chosen so as to obtain

the tightest upper bound. In an ideal case where L∗ is an exact low rank matrix with rank

13



k
(
i.e., rank(L∗) = k

)
and S∗ is a sparse matrix, whose support lies within the model

subspace M
(
i.e., supp(S∗) ⊂ M

)
, we can easily see “approximation error” terms in KL∗(

i.e., δ
∑n

j=k+1 σj(L
∗)
)

and in KS∗
(
i.e., γ

∑
(i,j)/∈M |S∗

ij|
)

disappear, giving us Frobenius

error bound as follows:

e2(α̂11T , L̂, Ŝ) ≲ δ2(k + 1) + γ2s.

Here we use the notation X ≲ Y to denote the fact that there exists a universal absolute

constant C such that X ≤ CY .

However, in a realistic setting, we can rarely observe network data with both the exact

low rank matrix L∗ and the exact sparse matrix S∗. The beauty of Theorem 1.5.4 lies on the

characterization of the estimation error bound in this situation as well. Suppose a tuple of

network parameters,
(
α̂, L̂, Ŝ

)
, is obtained from a specific choice of tuning parameter pair

(γ, δ). Provided that the rank of L̂ is k(< n), then L̂ is a rank k approximation of L∗ matrix.

In KL∗ , the term δ
∑n

j=k+1 σj(L
∗) corresponds to the approximation error associated with

the representing L∗ matrix, which possibly is a full rank matrix. A similar interpretation

can be applied to the terms in KS∗ as well.

1.6 Numerical experiments with synthetic data

We present our numerical experiments here. First, in Subsection 1.6.1, we introduce two

synthetic scenarios that we want to explore. In Subsection 1.6.2, we describe three model

selection criteria and four evaluation metrics for the selected model. Subsequently, we elab-

orate experimental results from the synthetic networks and several interesting findings from

those results in Subsection 1.6.3. In Subection 1.6.4, a numerical experiment is presented

to validate the theoretical properties that are introduced in Section 1.5. Lastly, a simple

numerical experiment on running time of our algorithm is presented in Subsection 1.6.5.

All numerical experiments presented in this paper are performed via statistical software R
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in an Intel(R) Core(TM) i7-8700 3.20GHz computer with 16 GB Ram.

1.6.1 Synthetic Setting

In this Subsection, we describe two synthetic scenarios that will be adopted in Subsections

1.6.2 and 1.6.3. Readers can refer to the Appendix A.2. for the detailed steps on the network

data generation, together with the setting for the ground truth parameters α∗, F ∗, D∗ and

S∗. We put astroid in the superscripts of parameters to indicate that they are the ground

truth.

In each scenario, we generate three synthetic networks as follows.

1. In the first scenario, we consider three networks, in which each of them consists of

nodes with only one topic. Specifically, we consider three networks

{(n(i), n
(i)
1 , K(i), |S∗|(i))}3i=1 = {(30, 30, 3, 9), (80, 80, 4, 18), (120, 120, 5, 30)}.

For example, the notation (n(1), n
(1)
1 , K(1), |S∗|(1)) = (30, 30, 3, 9) means that we

generate a network with 30 nodes. All the 30 nodes correspond to a single hidden

factor (correspondingly, n(1)
1 = 30). There are 3 factors embedded in the network,

and 9 random ad-hoc links connect the 3 clusters of papers.

2. In the second scenario, we consider three networks, in which each of them has some

nodes that can be associated with more than one factor. Particularly, we consider

{(n(i), n
(i)
2 , n

(i)
3 , K(i), |S∗|(i))}6i=4

= {(120, 0, 10, 3, 18), (210, 50, 0, 3, 18), (210, 10, 10, 3, 18)}.

For example in the third case, we have a network with 210 nodes in total. There are 3

factors commonly shared across the network. Among 210 nodes, 10 nodes randomly

share 2 factors out of 3, other 10 nodes have 3 mixed factors, whereas the remaining
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190 nodes only relate to 1 factor. The 3 clusters from these 190 nodes are connected

through 18 random ad-hoc links.

All six networks that are elaborated in scenario 1 and 2 are visualized in Figure 1.1. In

the first three cases, the nodes that share the common factors are clustered, and the cross

clustered links (green ones) are the ad-hoc edges. In the case 4 to 6, due to the presence of

nodes with multiplicity, the clustering pattern become less clear. The red edges are not the

ad-hoc ones; they suppose to be within cluster edges. However due to the multiplicity and

the change of the general pattern, they appear like inter-cluster edges.

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Figure 1.1: Graphical illustrations of six synthetic networks. Nodes that share the common
factors are clustered. The cross cluster links are ad-hoc Citations. All the graphs are drawn
based on the algorithm in [48].

1.6.2 Choosing the tuning parameters and evaluation criteria

Heuristic Network Cross-Validation. We present a two-step procedure for choosing a

good pair of tuning parameters (γ, δ), which are critical in implementing the method in

(1.12). The first step is to get a proper range of a grid to search over using the scree-plot

analysis; the second step is to select a pair of tuning parameters using the network cross-

validation. Specific procedure is elaborated as follows:

16



1. First Step. Following the scree-plot approach in Ji and Jin [49], we plot the largest

15 eigenvalues of the adjacency matrix X , and find an “elbow” point where the eigen-

values seem to level off. An index of the point, which is to the left of this elbow point,

is considered as the number of the communities embedded in the network. (We will

denote this number as K̂Scree.) We want to note that the scree-plot analysis serves as

a good approach for determining the range of grids to search over. With the estimate

of the number of communities in the network in mind, we record the rank(L̂γ,δ) for

each tuning parameter pair on a given grid. We need to go through several itera-

tions of this recording procedure to find a proper range of grid, in which we can get

rank(L̂γ,δ) = K̂Scree. Here, we denote G as the grid obtained in this step. We set the

grid size |G| as 10×10 for numerical experiments presented in Subsections 1.6.3 and

1.6.4. For more detailed information on the grid range for each of network dataset,

readers can refer the provided code.

2. Second Step. Given G, following the idea presented in [50, 22, 51], we suggest to

use network cross-validation for choosing a proper pair of tuning parameters (γ, δ).

For each pair of tuning parameters (γ, δ) on the grid, G, we do following three steps

sequentially:

(a) Randomly partition n nodes in the network into I1 and I2 with |I1| = ⌊n
2
⌋ and

|I2| = n− ⌊n
2
⌋, where | · | denotes the cardinality of a set.

(b) Optimization problem (1.12) is solved with the n× n graph X̃ = {X̃ij}ni,j=1 in

place of X , where

X̃ij =


0 if i, j ∈ I2

Xij otherwise.

Then test the fitted models with edges in {(i, j) : i ∈ I2 and j ∈ I2} by calcu-

lating mis-classification rate.

(c) Repeat (a) and (b) 10 times and take the average of 10 mis-classification rates.
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We choose a pair of parameters whose averaged mis-classification rate is minimal

over a set of pairs {(γ, δ) ∈ G : rank(L̂γ,δ) = K̂Scree}. The chosen pair of tuning pa-

rameters is denoted as (γHNCV , δHNCV ), where HNCV stands for Heuristic Network

Cross-Validation.

BIC and AIC. One might wonder how the traditional model selection methods, such as the

Bayes Information Criterion (BIC [52]) and the Akaike information criterion (AIC), work.

Recall that BIC and AIC are defined as follows:

BIC(M) = −2Ln(β̂(M)) + |M | log
(
n(n− 1)

2

)
,

and

AIC(M) = −2Ln(β̂(M)) + 2|M |.

Here M indicates the current model, which is implicitly understood that the model is ob-

tained from certain tuning parameter pair (γ, δ). We use Ln(β̂(M)) to denote the maximal

log-likelihood for a given model M , and |M | is the number of free parameters in M , which

is determined by the number of non-zeros in Ŝγ,δ and the low-rank matrix L̂γ,δ. In detail,

if we have rank(L̂γ,δ) = K, we can establish the following

|M | =
∑
i<j

1{Sij ̸=0} + nK − K(K − 1)

2
+ 1;

since the number of free parameters in L̂γ,δ is K plus nK − K(K + 1)/2, which is the

number of free parameters in determining K orth-normal vectors. Additional 1 in the last

term is due to α̂. We want to find a pair (γ, δ), which minimizes BIC(M ) or AIC(M ) as a

function of (γ, δ), respectively, where we denote them as follows:

(γBIC , δBIC) := arg minγ,δBIC(M), (γAIC , δBIC) := arg minγ,δAIC(M).
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Evaluation. We evaluate the models that are selected via our heuristic approach, BIC, and

AIC by using the following four evaluation metrics:

M1 = 1
{

rank(L̂) = rank(L∗)
}
,

M2 =

∣∣∣{(i, j) : i < j : S∗
i,j ̸= 0 & Ŝi,j ̸= 0

}∣∣∣∣∣{(i, j) : i < j : S∗
i,j ̸= 0

}∣∣ ,

M3 =
∣∣∣{(i, j) : i < j : S∗

i,j = 0 & Ŝi,j ̸= 0
}∣∣∣ ,

M4 =

∣∣{Mis-classified Nodes
}∣∣

n
,

where M1 is a metric on whether the selected model recovers the true low rank structure of

network, M2 evaluates the positive selection rate of the sparse ad-hoc structure in network,

M3 evaluates the false discoveries of ad-hoc edges, and M4 calculates the proportion of

mis-classified nodes to the entire nodes in the network. With properly selected tuning

parameter, M1 will be 1, M2 will be close to 1, and M3 and M4 will get close to 0. We

present the evaluation results on the six networks created in Subsection 1.6.1 via the four

criteria, M1,M2,M3 and M4 in Table. 1.1.

1.6.3 Several Observations

We set the Truncated-SVD parameter as r = 15 for all experiments performed in this

Subsections 1.6.2 and 1.6.3.

1. Node Membership. After fitting the model with a proper pair of tuning parameters,

(γ, δ), we need to determine whether the ith node relates to the kth factor or not. We

denote rank of matrix L̂ as K. Let L̂ = UDUT denote its eigenvalue-decomposition

(EVD), where the columns of unitary matrix U = [u1, . . . , uK ] ∈ Rn×K contain the

eigen-vectors, and diagonal matrix D = diag(λ1, . . . , λK) ∈ RK×K stores the eigen-

values arranged in decreasing order. We apply simple K-means clustering algorithm

on ÊK := U
√
D ∈ Rn×K treating each row of the matrix ÊK as a new data point.
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Table 1.1: For two scenarios, our heuristic method chooses the model with L̂ with true
rank, Ŝ whose M2 value is close to 1, and M3 value is close to 0. Also note that it chooses
a model whose mis-classification rate is close to 0. A number in the parentheses represents
the rank of L̂ estimated from (γHNCV, δHNCV), (γAIC, δAIC) and (γBIC, δBIC) for each case.

Scenario 1
Case 1 Case 2 Case 3

HNCV AIC BIC HNCV AIC BIC HNCV AIC BIC
M1 1 (3) 0 (2) 0 (2) 1 (4) 0 (3) 0 (3) 1 (5) 0 (4) 0 (4)
M2 9/9 0/9 0/9 17/18 0/18 0/18 30/30 30/30 30/30
M3 4 0 0 0 0 0 0 0 0
M4 0 0 0 0 20/80 20/80 0 24/120 24/120

Scenario 2
Case 4 Case 5 Case 6

HNCV AIC BIC HNCV AIC BIC HNCV AIC BIC
M1 1 (3) 0 (2) 0 (2) 1 (3) 1 (3) 1 (3) 1 (3) 1 (3) 1 (3)
M2 17/18 0/18 0/18 18/18 0/18 0/18 18/18 0/18 0/18
M3 0 0 0 0 0 0 6 0 0
M4 0 47/120 47/120 0 0 0 1/210 1/210 1/210

Figure 1.2: Scree plots for six synthetic Networks. K̂Scree recovers the number of topics
in the network correctly for all six cases.
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2. Model Selection. Choosing a good pair of tuning parameters is critical when it

comes to making a good statistical inference on data. As presented in Table. 1.1,

both BIC and AIC, which are well known for their model selection consistency in

asymptotic setting, appear to under-estimate both the number of communities and

the number of ad-hoc links in the networks in our synthetic settings. This may be

caused by the fact that these traditional methods take the sample size into account,

and therefore penalizes the model complexity too harshly. On the other hand, HNCV

approach performs relatively better than AIC and BIC in terms of evaluation metrics

M1 and M2. In the HNCV, scree-plot plays an important role when it comes to re-

covering the number of communities, and this strategy leads to good model selection

results for 6 cases considered in two scenarios. See Figure 1.2.

3. Clustering patterns on latent space. It is interesting to observe that clustering

patterns of nodes are clearly displayed on the plot of the first two leading eigenvector

of L̂HNCV. See Figure 1.3. Additionally, for cases 4, 5, and 6, it is noticed that the

nodes with mixed memberships can be identified distinctly as separate clusters on the

plane. In Figure 1.3, we distinguish clusters of nodes assigned by K-means algorithm

with different colors. For cases 1 to 3, when applying K-means algorithm, we set the

number of clusters to be detected as KHNCV = rank(L̂HNCV), KAIC = rank(L̂AIC), and

KBIC = rank(L̂HNCV), respectively. For cases 4 to 6, we count the number of distinct

clusters plotted on the plane, and set it as the number of clusters to be identified.

Subsequently, we run the K ′-means algorithm on ÊK . For instance, in case 4, K ′ is

set as 4, and K ′-means algorithm is performed on Ê3, where we use HNCV approach

for model selection. Among three approaches suggested in Subsection 1.6.2, HNCV

approach gives the most satisfactory results for the six cases in terms of the M4

metric, seeing Table. 1.1.
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Figure 1.3: Case 1 to 6: Plots of rows based on the two leading eigenvectors of L̂HNCV.

1.6.4 Estimation Error

In Section 1.5, we see that the estimation error — e2(α̂11T , L̂, Ŝ) in (1.14) — increases

linearly with the rank of L∗ matrix and the cardinality of S∗ matrix, where we denote

them as k and s respectively (i.e., rank(L∗) = k and |S∗| = s). In order to demonstrate

the agreement between these theoretical predictions and the behaviour of the estimator in

practice, two sets of experiments are designed as follows:

1. With the number of nodes and the sparsity of network being fixed as n = 100 and

|S∗| = 50, we generate four networks with rank parameter k = 4, 5, 6, 7.

2. With the number of nodes and the rank of L∗ being fixed as n = 100 and rank(L∗) =

4, we generate four networks with sparsity |S∗| = 18, 30, 42, 54.

All the eight networks described above are independently generated through a 5-step pro-

cedure described in Section 1.6.1. Note that we don’t allow the mixed membership of

each node in the networks. We normalize columns of L̂ and L∗ to make them satisfy the

spikiness condition imposed in the theoretical analysis. We define ∆̂L
N = L̂N − L∗

N and

calculate ∥∆̂L
N∥2F . Also, recall ∆̂S = Ŝ − S∗. All eight models are selected through the

HNCV approach. In Figure 1.4, we can observe linear growth of ∥∆̂L
N∥2F and ∥∆̂S∥2F on
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the rank parameter k and sparsity s in the two scenarios. Additionally, we refer to the algo-

rithms for obtaining minimizers of optimization problems (1.12) and (1.13) as Estimator 1

and Estimator 2, respectively. Estimator 2 can be easily obtained by optimizing the objec-

tive function (A.1) in Appendix A.1 over the whole indices 1 ≤ i, j ≤ n. We can see no

differences in quantities of ∥∆̂L
N∥2F and ∥∆̂S∥2F when the they are obtained from these two

estimators.
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Figure 1.4: We can observe linear growth of
∥∆̂L

N∥2F and ∥∆̂S∥2F on the rank parameter k
(panel A) and sparsity s (panel B) for the two re-
spective scenarios. Also note that there are no dif-
ferences in quantities of ∥∆̂L

N∥2F and ∥∆̂S∥2F when
they are obtained from Estimator 1 and Estimator
2.
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Figure 1.5: Plot of the compu-
tational runtime (in seconds) of
ADMM algorithm using the HNCV
approach.

1.6.5 Computation Time

To test the scalability of the proposed ADMM algorithm, we record the runtimes of sim-

ulations for different sizes of network and different dimensions of the latent vectors. We

record the computation time of Step 2 of HNCV from start through finish for one pair

(γ, δ). In this experiment, we simply put (γ, δ) = (0, 0), and stopping criteria of the algo-

rithm as 10−4. (See Section 1 in Appendix A.1 for the definition of stopping criteria.) For

computational convenience, we repeat (a) and (b) of Step 2 five times, instead of ten times.

Two sets of networks are generated where the latent dimensions are k = 2 and k = 4 with

varying network size n = 200, 500, 1000, 1500, 2000, respectively, and set |S∗| = 50 for

all created networks. As Figure 1.5 indicates, the runtime of algorithm do not seem to be

sensitive on the latent dimensions of data. We can also observe that the algorithm can deal
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with networks that have around 500 to 1000 nodes within a reasonable amount of time.

1.7 Applications in Real Dataset

In this section, CFSG is applied to four network datasets : Zachary’s karate club data, U.S.

political book network data, U.S. political blog data, and Citation network of statisticians.

Remark 1.7.1 We set the Truncated-SVD parameter as r = 4 for all experiments that are

performed in this Section. HNCV method is used for model selection. Table 1.4 and its

caption include detailed grid settings for implementation of HNCV method and running

times of the algorithm on each dataset.

Remark 1.7.2 Note that there’s a discrepancy in running time per a pair of tuning param-

eter for the network with 1000 nodes presented in Subsection.1.6.5 (around 50 mins) and

that for the political blog dataset (around 2 hours). This is because of the difference in set-

ting on stopping criteria of the algorithm, where we denote it as ε. We set ε = 10−4 for the

numerical experiment in Subsection 1.6.5 and set ε = 6 × 10−5 for remaining numerical

experiments including real data analysis in Section 6 and Section 7.

1.7.1 Zachary’s karate club network

In this subsection, we apply our model CFSG to the well-known Zachary’s karate club

dataset that was originally introduced in paper [53]. This dataset contains 34 nodes where

each of them represents a member of university karate club. It is reported that at some point,

those 34 members split into two communities, one led by “Mr. Hi” and the other led by

“John A”. We set the number of communities as K = 2 and select a proper model through

HNCV method proposed in Subsection 1.6.2. The model selected at a tuning parameter

pair, (γHNCV, δHNCV) = (0.0126, 0.048), is visualized in the left panel of Figure 1.7. Nodes

that are classified as “H” group are colored in orange and those classified as “A” group

are colored in lightblue. Additionally, edges colored in green represent the ad-hoc edges
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estimated through CFSG. Since true labels of nodes in the network are recorded, qualities

of selected model can be measured through evaluation metrics in Subsection 1.6.2. It is

interesting to see that M1 = 1,M2 = 10
10
,M3 = 0,M4 = 0. For membership assignments

of nodes in the network, see left panel of Figure 1.6 on how K-means algorithm works on

Ê2 for detecting communities.
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Figure 1.6: Plots of the first column versus the second column of Ê2 on Karate (Left), Po-
litical Book (Middle), and Political Blog Network datasets (Right). The number of clusters
is set as K = 2 and K-means clustering algorithm is applied on Ê2 for the three datasets.
Detected memberships of each node via K-means algorithm are colored in blue or red.

1.7.2 U.S. political book network

U.S. political book dataset consists of 105 political books sold by an online bookseller in the

year of 2004. Nodes in the network represent books and they are connected through edges

if they are frequently co-purchased by the same buyers. Original network was compiled by

V. Krebs (http://www.orgnet.com) and labels of books were manually assigned by M. E. J.

Newman. It is known that Newman labeled the books into three categories (liberal, conser-

vative, and neutral) based on the reviews and descriptions of the books [54]. However, it

is pointed out by several researchers that label assignments for some nodes in the network

may not be accurate (seeing [54, 55, 56]). In our work, we simply view the network as

having K = 2 communities (liberal and conservative). A selected model from the HNCV

method with a tuning parameter pair (γHNCV, δHNCV) = (0.004388, 0.035) is illustrated in

the right panel of Figure 1.7. Nodes classified as “conservative” party are colored in orange
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and those classified as “liberal” party are colored in light blue. Estimated ad-hoc edges in

Ŝ are colored in green. It is interesting to observe that CFSG recovers all the 23 edges

between estimated communities but for one edge (between 52th and 70th nodes) through the

estimated Ŝ matrix. To measure the quality of our selected model, we set the ground-truth

labels of nodes in the network as suggested in the paper [55]. Ignoring the books they

assigned as “Neurtral” (i.e. Node number : 1, 5, 7, 8, 49, 52, 70) and “Not a political book”

(i.e. Node number : 19), we found membership assignments of books estimated by CFSG

are perfectly consistent with those estimated by [55]. Our model mis-classified one book,

“The Bushes” (Node number: 50), as one belonging to liberal party. See middle panel of

Figure 1.6 on how K-means algorithm works on Ê2 for detecting communities.
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Figure 1.7: From left to right : Topologies of Karate club network data and U.S. political
book network data. In Karate club data, node 1 represents “Mr. Hi” and node 34 represents
“John A”. For Karate club data, nodes that are classified as “Hi” group are colored in
orange and those classified as “John A” group are colored in lightblue. For political book
dataset, nodes classified as “conservative” party are colored in orange and those classified
as “liberal” party are colored in light blue. In both dataset, color coding of ad-hoc edges
corresponds to any Ŝij > 0 in respective fitted model.
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1.7.3 Social Network of U.S. Political Blog

We apply our model to the well-known political network dataset, collected by [57] shortly

before the 2004 U.S. presidential election. Each node of the network is a web blog about

U.S. politics and each edge indicates a hyperlink between them. (we neglect the direction

of edges so that the graph is undirected.) It is believed that the blogs in the network share

some common political leanings: liberal and conservative. The political leanings between

two communities are significantly different, whereas are not significantly different among

the nodes in the same topic. Out of 1494 blogs in the original network, we focus on the

largest connected component, (i.e., a collection of nodes with non-zero degrees), which

contains 1222 blogs and 16714 edges. Node numbers from 1 to 586 are labeled as “liberal”

and remaining nodes are labeled as “conservative”. We denote XPol as the adjacency ma-

trix of the political blog network with 1222 nodes. We use the HNCV approach for model

selection. A pair of tuning parameters, (γHNCV, δHNCV) = (0.00041, 0.012), gives us L̂ with

rank(L̂) = 2 and Ŝ with |Ŝ| = 1755. The resultant mis-classification rate of nodes for the

blog dataset is 441
1222

(i.e., M4 = 441
1222

). See the right panel of Figure 1.6 on how K-means

algorithm performs on Ê2 of blog dataset. We make a short comment on this seemingly

unsatisfactory performance of node classification on Section 1.8, which can be extended as

another line of interesting future research direction.

Goodness of fit. Following the idea presented in [31], we investigate the goodness of fit of

the model to the dataset via the parametric bootstrap. We denote (α̂HNCV, L̂HNCV, ŜHNCV)

as the minimizer of (1.12) evaluated at (γHNCV, δHNCV), and generate 1000 independent

adjacency matrix
{
Xb

}1000
b=1

from the minimizer, (α̂HNCV, L̂HNCV, ŜHNCV). Here, we use

Xb to denote the bth bootstrapped network’s adjacency matrix. For each bootstrap sam-

ple, Xb, we evaluate the log-likelihood function defined in (1.11) under the parameters

(α̂HNCV, L̂HNCV, ŜHNCV), and denote it as ℓHNCV
b = Ln(α̂

HNCV, L̂HNCV, ŜHNCV;Xb). The

empirical distribution of (ℓHNCV
1 , ℓHNCV

2 , . . . , ℓHNCV
1000 ) is compared with the observed one:
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ℓCFSG
Pol = Ln(α̂

HNCV, L̂HNCV, ŜHNCV;XPol). The histogram of (ℓHNCV
1 , ℓHNCV

2 , . . . , ℓHNCV
1000 ) is

shown in the left panel of 1.8, and the observed log-likelihood ℓCFSG
Pol = −80012.57 is

marked by red dotted line with the p-value = 49.85% suggesting that the model fits the

data reasonably well.

Figure 1.8: Parametric bootstrap to check the goodness of fit of CFSG model (left panel)
and Inner Product model (right panel). Red dotted line is an observed likelihood of CFSG
model, whereas the observed likelihood of Inner Product model is not appeared on the
histogram.

For comparison purpose, we adopt the Inner-product model proposed by [22]. The

paper also studies the largest connected component of political blog dataset, and fit the

dataset to a following model:

Xij = Xji ∼ Bernoulli(Pij), with logit(Pij) = αi + αj + fT
i fj + βZij. (1.17)

Here, αi,∀i ≤ 1222, are parameters modeling degree heterogeneity, fT
i fj is an inner-

product between latent vectors, where fi denotes ith row of matrix F ∈ R1222×2. Lastly, as

mentioned in Section 1.2.2, β is the coefficient for the observed information. We set β = 0

and obtain the local-minimizer (α̂, F̂ ) of log-likelihood function of
{
Xij

}1222
i,j=1

through pro-

jected gradient descent algorithm. For more detailed inference procedure, readers can refer

to [22]. After fitting the model, we check the goodness of fit of the Inner-product model

via the same parametric procedure, based on 1000 bootstrap sample. The observed log-

likelihood is ℓInn-Pr
Pol = −214969.3, and corresponding bootstrap distribution is shown in the
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right panel of 1.8. We obtain p-value = 0, and this suggests that the Inner-product model

may not fit the data well.

Ad-hoc Edges in Ŝ. The selected model has 1755 ad-hoc edges. All non-zero entries of Ŝ

are positive. Among 1755 edges, True Positive (TP) of Ŝ is 864. (i.e., |{(i, j) : 1 ≤ i ≤

586, 587 ≤ j ≤ 1222, XPol,ij = 1 & Ŝij ̸= 0}| = 864), where the number of true ad-hoc

edges is 1575. (i.e., |{(i, j) : 1 ≤ i ≤ 586, 587 ≤ j ≤ 1222, XPol,ij = 1}| = 1575.)

Also, False Positive (FP) is 0, which means that the selected model does not empha-

size the wrong connections between blogs. (i.e., |{(i, j) : 1 ≤ i ≤ 586, 587 ≤ j ≤

1222, XPol,ij = 0 & Ŝij ̸= 0}| = 0.) Among the blogs which form the 864 edges, we list

top 10 which have the most links from the opposite party in Table 1.2. Aside from blogs

which act principally as message boards or ranking sites (i.e., truthlaidbear.com, demo-

craticunderground.com, nationalreview.com), it is noted that individual bloggers such as

“andrewsullivan” and “wonkette” had the across board appeal at the period of 2004 U.S.

presidential election. Our result agrees well with the observations in the original paper of

the dataset [57]. It is not surprising that “Daily Kos”, a popular liberal blog, and “Instapun-

dit”, a popular conservative blog, received a lot of attention from the opposite parties. An

even closer look at the blogs in the list tells us what specific topics drew the attentions from

both parties. One of the listed conservative blogs, “powerline.com”, broke the story on

the CBS news’ credibility over the memos of unsubstantiated allegations about the former

U.S. president, George W. Bush’s service on Texas Air National Guard in years 1972-3.

Reports from powerline blog launched a flurry of discussions across the political blogs to

both conservative and liberal leanings and beyond.

1.7.4 Citation network for statisticians

Recently, Ji and Jin [49] published an interesting dataset on citation network of papers from

statistics journals. Specifically, this dataset is based upon all papers published from 2003 to
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Table 1.2: A list of top 10 blogs that received the most links from blogs in the opposite
party.

Blog URL Political Party Number of Links
truthlaidbear.com “Cons” 40

dailykos.com “Lib” 40
andrewsullivan.com “Cons” 33

talkingpointsmemo.com “Lib” 33
democraticunderground.com “Lib” 31

instapundit.com “Cons” 30
drudgereport.com “Cons” 29

nationalreview.com/thecorner “Cons” 20
powerlineblog.com “Cons” 18

wonkette.com “Lib” 18

the first half of 2012, from the four top statistical journals: Annals of Statistics, Biometrika,

Journal of American Statistical Association (JASA), and Journal of Royal Statistical So-

ciety (Series B) (JRSS-B). Citational relationships of 3248 papers are given in the form of

adjacency matrix. In our analysis, for computational convenience, we focus our attentions

on the papers that have greater than or equal to 10 citational edges in the network of Ji

and Jin [49]. After collecting papers with greater than or equal to 10 citational edges and

eliminating those that have no connecting edges from the rest, we have 232 papers in total.

Figure 1.9: From left to right : Scree plots of the adjacency matrix Xorig and Xsub.

We denote the adjacency matrix of these 232 papers as Xorig. Elbow points of the

scree plot from Xorig may be at the 3rd, 5th, or 9th largest eigenvalue, suggesting that there

are from 2 to 8 embedded topics in the network (Figure 1.9). In light of this, we conduct

the analysis in the following two steps:
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1. First, following the approach suggested in [49], we assume that the network Xorig

has 2 distinct topics and one giant mixed-component, which has a sub-network struc-

ture. Under this assumption, we set K̂scree as 3, and select a proper model via

HNCV. Then, we perform K-means algorithm on matrix Ê3 treating each row of the

matrix as one data point.

2. Next, we restrict the network to the giant component ignoring all the edges to/from

outside and obtain a subnetwork. We denote the adjacency matrix of this subnetwork

as Xsub. We set K̂scree as 5, and also select a proper model through HNCV. Here,

we run K-means algorithm on Ê5 setting the number of clusters as 5.

In the first step, a pair of parameters, (γHNCV, δHNCV) = (0.00208, 0.0188), gives us

L̂ with rank 3, and Ŝ with |Ŝ| = 23. First topic studies on variable selection with high-

dimensional data (VarSel). Second topic discusses controlling false discovery rate in var-

ious statistical settings (MulT). Third group, which consists of 162 papers, is hard to in-

terpret and appears to have sub-network structures. For further investigation, we set this

group as a giant component in the network, and denote corresponding component’s adja-

cency matrix as Xsub. We perform a model selection as described in aforementione Step 2.

A pair of tuning parameters, (γHNCV, δHNCV) = (0.00296, 0.0160), gives us the model with

L̂ with rank 5, and Ŝ with |Ŝ| = 151, and we can obtain five sub-communities as follows:

From the sub-network Xsub, we got four meaningful topics: Bayesian Statistics (Bayes),

Functional/Longitudinal Data Analysis (FuncAn), Dimension Reduction (DimRed), and

High-dimensional Covariance Estimation (CovEst). Due to the small volume of each topic,

we could manually check that the false discovery for each topic is all zero. A full list of

papers for each topic is provided in webpage. 1 Lastly, the sub-network Xsub has a big

collection of papers that we refer it as “Mixed Topics” cluster (Mixed). We provide a fur-

ther inspection on this cluster with interesting observations in Appendix A.4.

Ad-hoc Edges in Ŝ. Non-zero components of Ŝ capture the citational relationships among
1https://sites.google.com/site/namjoonsuh/publications
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papers that are not attributable to the common topics. The selected model at Step 1 has 23

sparse edges. Among them, we provide 4 pairs of papers which have the largest estimated

Ŝorig
ij in Table A.1. All the 4 edges come from the pairs of papers with different topics. For

instance, first pair of papers comes from Functional analysis topic and Variable selection

topic. The paper from Functional analysis topic cites the paper from Variable selection for

borrowing a mathematical representation to build a theorem. Though it is an essential step

for building a theorem in their paper, we cannot say that two papers are closely related in

terms of topic. The second pair of papers comes from Bayesian statistics topic and Vari-

able selection topic, respectively. Specifically, authors in the paper from Bayesian statistics

topic study variable selection problem under Non-parametric Bayesian framework, and

compare their method with the “Adaptive Lasso”. Interested readers can find a full list of

papers which form the 23 ad-hoc edges in the webpage. 1

1.8 Discussion

In this Section, we mention several directions to be explored based upon the model we

propose in this work.

1. We can incorporate important characteristics such as degree heterogeneity or ho-

mophily of the network data in our model. Many researchers have been working on

building interesting models to capture these characteristics [22, 23]. Following their

approaches, we can easily incorporate these characteristics in our model as follows:

Xij = Xji ∼ Bernoulli(Pij), with logit(Pij) = αi+αj +Lij +Sij +βZij, (1.18)

where αi ∀i ∈ {1, 2, . . . , n}, allows us to model every node in the network has

different node degree and positive β denotes the regression coefficient, reflecting the

fact that if the entities of the network have identical attributes in common, they are

more likely to be connected. For instance, in citation network, if ith paper cites jth
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paper 5 times, or vice versa, we can set Zij = 5. It would be interesting to measure

whether the goodness of fit of the data increase if we incorporate these terms.

2. To assign membership of each node, we adopt the K-means clustering algorithm

on the weighted latent vectors of nodes in the network. The reason why we initially

adopt K-means clustering algorithm is because of its simplicity. Furthermore, simple

K-means clustering is widely used for clustering nodes in the community detection

problem, which shows great successes in many applications, [19, 22, 58]. On the

other hand, we found that the conventional K-means algorithm doesn’t cluster nodes

well for the blog dataset. (i.e., Subsection 1.7.3.) Similar to the discussion in Sub-

section 1.6. of paper [19], we conjecture that this is due to the presence of serious

degree heterogeneity in the network, the weighted latent vectors are highly centered

around the origin. Nonetheless, with ground-truth label, we found the weighted la-

tent vectors of the blog dataset exhibit an interesting “EigenSpokes” pattern [59],

wherein they have a clear, separate line that neatly aligns along the vertical line cen-

tered in the origin. We can observe this phenomenon for Karate club and political

book dataset. (See Figure 1.6.) Paper [59] observed this “EigenSpokes” phenomenon

on eigenvector versus eigenvector plot of the adjacency matrix. They employed the

so-called “Chipping off” technique for detecting communities instead of using the

K-means algorithm. Based upon these observations, we can explore the questions

on “when” and “why” we observe the EigenSpokes phenonmenon on the weighted

latent space in CFSG.

3. Taking into account the directions of edges in the graph is an important issue, and

this may result in a completely different modeling approach, algorithm, and inference

result from this in the present paper. For instance, based upon the idea of latent

variable model, we can extend CFSG as follows :

Xij ∼ Bernoulli(Pij), with logit(Pij) = αi + αj + uT
i Dvj + Sij,
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where αi, αj ∀i, j ∈ {1, 2, . . . , n}, allow us to model every node in the network

has different node degree, ui and vj denote two different latent factors, and sparse

matrix S needs not to be symmetric. Given that we know the number of embedded

communities K in the network, this formulation results in non-convex optimization

problem with ℓ1 penalization on the S matrix. We conjecture that this problem can

be solved via the projected-subgradient descent with a good initialization. A similar

formulation has been studied by [22], where they also solve a non-convex optimiza-

tion problem based upon the latent variable model. But they work with undirected

graph considering the same latent factors ui. Moreover, instead of a sparse compo-

nent S, they incorporate the term βZ that characterizes the homophily of a network.

This direction can lead to a promising future research.

4. In Theorem 1.5.4, we assume strong convexity assumption on the likelihood function,

given that there exists τ > 0. (See Assumption 1.5.1 in Section 1.5.) However,

in many high-dimensional statistical models, this assumption is violated. See an

example in [7]. In our model, we also observe this assumption is violated especially

when the size of network, n, grows large enough, and the entries of the ground truth

of the parameter, Θ∗, are large enough. This results in very small τ , and leads to

a loose bound in (1.16). (Note that the bound in (1.16) is involved with 1
τ2

.) In

order to remedy this, a notion of restricted strong convexity (RSC) can be imposed,

assuming that the likelihood function is strongly convex over a certain subset of

parameter space. In order to establish the RSC condition on a generalized linear

model, truncation argument needs to be employed, [6, 7]. This topic is left as a

future research task.
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Table 1.3: Top 4 edges corresponding with the pairs of papers from different communities. Authors and years of publication for the
papers in each pair are also presented. In the first pair, a paper from functional analysis topic cites a paper from variable selection topic
for borrowing a mathematical representation to build a theorem. But they are not related in terms of topic.

Pair topic Title
1 FuncAn Properties of principal component methods for functional and longitudinal data analysis

VarSel Nonconcave penalized likelihood with a diverging number of parameters
2 VarSel The adaptive lasso and its oracle properties

Bayes Nonparametric Bayes conditional distribution modeling with variable selection
3 DimRed Contour projected dimension reduction

VarSel Factor profiled sure independence screening
4 VarSel Factor profiled sure independence screening

DimRed Sliced regression for dimension reduction

Pair 1 Pair 2 Pair 3 Pair 4
P. Hall, et al. 2006
J. Fan, et al. 2004

H. Zou. 2006
Y. Chung, et al. 2009

R. Luo, et al. 2009
H. Wang. 2012

H. Wang. 2012
H. Wang, et al. 2012
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Table 1.4: Grid settings for implementation of HNCV method and running times of the algorithm on each dataset. We repeat (a) and (b)
of Step 2 ten times for Karate club, political book, and citation network datasets, and five times for political blog dataset. Maximum,
minimum, and average computational times over the grid, G, are recorded. Interestingly, as the number of nodes grows, it turns out that
running time is sensitive to the choice of tuning parameter. See Political Blog dataset.

Karate
Club

Political
Book

Political
Blog

Citation Network
Xorig XSub

Node
Number 34 105 1222 232 162

Grid
Size 30 30 9 30 30

Grid
Range

γ ∈ [0.012, 0.0128]
δ ∈ [0.04, 0.05]

[0.004386, 0.00439]
[0.035, 0.04]

[0.00040, 0.00042]
[0.011, 0.013]

[0.00205, 0.0021]
[0.0186, 0.019]

[0.00296, 0.003]
[0.016, 0.0165]

Selected
Parameter

γHNCV = 0.0126
δHNCV = 0.048

0.004388
0.035

0.000411
0.012

0.00208
0.0188

0.00296
0.0160

Max
(sec) 67.74 136.65 15322.15 222.80 131.37

Min
(sec) 21.61 72.82 5533.924 203.03 123.29

Avg
(sec) 45.21 106.84 10072.12 210.52 125.93
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CHAPTER 2

ASYMPTOTIC THEORY OF ℓ1-REGULARIZED PDE IDENTIFICATION FROM

A SINGLE NOISY TRAJECTORY

2.1 Introduction

Differential equations are widely used to describe many interesting phenomena arising in

scientific fields, including physics [60], social sciences [61], biomedical sciences [62], and

economics [63], just to name a few. The forward problem of solving equations or simulat-

ing state variables for differential models has been extensively studied either theoretically

or numerically in literature. We consider an inverse problem of learning a Partial Differen-

tial Equations (PDE) model.

More specifically, we assume that the governing PDE is a multi-variate polynomial of

a subset of a prescribed dictionary containing different differential terms. Let u(x, t) :

R × [0,+∞) → R be a real-valued function, where x be the spatial and t be the tempo-

ral variables. Suppose that within a bounded region of R × [0,+∞), u(x, t) satisfies an

evolutionary PDE:

∂tu =F(u, ∂xu, ∂
2
xu, . . . , ), ∀(x, t) ∈ Ω ⊆ R× [0,+∞). (2.1)

Here, ∂tu (or ut) denotes the partial derivative of u with respect to temporal variable, t;

for p = 0, 1, 2, . . . , ∂p
xu denotes the p-th order partial derivative of u with respect to spa-

tial variable, x; F is an unknown polynomial mapping, and Ω is a bounded open sub-

set of space-time domain. This format encloses various important classes of PDEs, e.g.,

advection-diffusion-decay equation characterizing pollutant distribution in fluid, Burgers’

equation modeling the traffic flow [64], Kolmogorov-Petrovsky-Piskunov equation describ-

ing phase transitions [65], and Korteweg-de-Vries equation simulating the shallow water
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dynamics [66].

In our work, F is assumed to be a linear map, parameterized by a sparse vector β∗ ∈

RK : that is, ut is represented as a linear combination of the degree 2 polynomials of ar-

guments in F , and only a few from a large set of potential functions are assumed to be

relevant with ut. Our goal is to estimate the correct non-zero indices of β∗, given a single

noisy trajectory of the function u(x, t). Readers can refer to Subsection 2.3.1 for more

detailed descriptions on the structural assumptions on F , β∗, and noisy trajectory. This

problem setting naturally leads us to develop a two-stage method for the PDE identifica-

tion based on Local-Polynomial smoothing and the ℓ1-regularized Pseudo Least Squares

(ℓ1-PsLS) method. In the first stage, from a given noisy observation, we propose to esti-

mate the underlying bi-variate function u(x, t) and its partial derivatives with respect to its

spatial and temporal dimensions via the Local-Polynomial fitting [67, 68]. In the second

stage, with the constructed functions through Local-Polynomial regression, we propose to

identify the correct differential terms and estimate model parameters via an ℓ1-regularized

Pseudo Least-Squares method.

We note that the two-stage method with Local-Polynomial regression has been applied

in the Ordinary Differential Equations (ODE) setting. Specifically, the paper [69] estab-

lished the consistency and asymptotic normality of the pseudo least squares estimator in

the ODE setting, where they used Local-Polynomial regression to estimate the state vari-

ables from the noisy data. Similarly, [70, 71] studied the parameter estimation of ODE

models with varying coefficients. However, these literature focused on estimating model

parameters, rather than on selecting correct differential models. In the context of PDE, [72]

studied PDE identification problems, using two-stage method. Authors of the paper mod-

eled unknown PDEs using multivariate polynomials of sufficiently high order, and the best

fit was chosen by minimizing the least squares error of the polynomial approximation.

Nonetheless, ℓ1 penalization for model selection was not used, and theoretical justification

for their method remains underdeveloped.
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From the theoretical point of view, our paper is the first work to propose the method,

ℓ1-PsLS, with a provable guarantee in the PDE recovery problem. Our main theoretical

contribution is to establish sufficient conditions for signed-support recovery of the pro-

posed ℓ1-PsLS in PDE identification problems. It is worth noting that the signed-support

recovery is a slightly stronger criterion than the support recovery, where its primary goal

is not limited to finding the non-zero indices of β∗, but also aims at recovering the correct

signs of the selected coefficients. Ensuring the correct signed-support recovery of govern-

ing dynamical system has an important practical implication since many PDEs are sensitive

to the signs of coefficients. For example, changing the sign of the advection term in the

transport equation reverses the moving direction, and in —ing the sign of the Laplacian

term of heat equation leads to instability of the system of interest.

Our theorem states that following three main conditions are sufficient for the signed-

support recovery of ℓ1-PsLS: ( i ) minimum eigenvalue condition among the arguments of

the map F supported on non-zero indices of β∗, and ( ii ) mutual incoherence condition

among the arguments of the map F , and ( iii ) β∗
min-condition on β∗. The first condition in-

dicates that relevant feature functions should be linearly independent. The second condition

states that a large number of irrelevant predictors cannot exhibit an overly strong influence

on the subset of relevant predictors. The third condition says that the minimum absolute

value of non-zero entries of β∗ should be greater than a certain threshold. These conditions

appear in the statistical literature on the signed-support/support recovery of LASSO [3, 4,

73, 74] in linear regression problems, and our work rigorously shows that these are also

essential for the signed-support recovery of PDE identification problems.

We employ Primal-Dual Witness (PDW) construction [4] as the main proof technique

for the theorem. PDW construction is a popular mathematical technique for certifying

variable-selection consistency of ℓ1-penalized M-estimation problems including LASSO.

See [75, 76, 77, 78, 79, 80]. For reader’s convenience, we provide a brief introduction of

the technique in the Appendix B.1. However, we want to emphasize that our Theorem is
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not a direct result of the trivial application of the PDW construction. Our problem settings

are different from those of the work [4] in two aspects, which add some delicacies to our

proof:

• As will be detailed in Subsection 2.3.3, the distribution of residual vector τ is un-

known, and neither mean 0 nor independent in our setting. On the contrary, in the

work of [4], each entry of the residual vector is assumed to follow centered Gaussian

with σ2 > 0 variance and independent with the others.

• In the ℓ1-PsLS method, the feature matrix obtained via Local-Polynomial fitting from

noisy data is always random and has dependent rows uniquely determined through

the underlying PDE. On the other hand, [4] divided their analysis into two cases,

where the feature matrix F is either deterministic or random. When F is random,

it is assumed to be a Gaussian ensemble with independent rows, whose covariance

matrix satisfies mutual incoherence condition.

Organization. The remainder of the paper is organized as follows. Some related literature

with our work are reviewed in Section 2.2. In Section 2.3, we formally define our problem

by imposing some specific structural assumptions on F and propose a ℓ1-PsLS method for

PDE identification. In Section 2.4, the main theorem of our work is given on the signed-

support recovery of ℓ1-PsLS with the mutual incoherence assumption on the feature matrix

F, and we provide a high-level outline of the proof. Section 2.5 is devoted to provide a

similar result with that of the one in the main theorem in Section 2.4 under milder assump-

tion: that is, mutual incoherence assumption is imposed on the estimated feature matrix

F̂; an overview of proof is furnished. Related technical difficulties for the proof and main

technical contribution of the paper are also given. Section 2.6 provides two lemmas for

completing the proof of the main theorem by linking the mutual incoherence assumption

with the ground-truth F to its sampled version. In Section 2.7, we show various numerical

examples to validate and demonstrate different aspects of our method. We conclude this
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paper in Section 2.8 with some discussion.

Notation. For sufficiently large n, we write f(n) = O(g(n)), if there exists a constant

K > 0 such that f(n) ≤ Kg(n), and f(n) = Ω(g(n)) if f(n) ≥ K ′g(n) for some constant

K ′ > 0. The notation f(n) = Θ(g(n)) means that f(n) = O(g(n)) and f(n) = Ω(g(n)).

We adopt bold lower-case letters for vectors and bold upper-case letters for matrices. For

a vector v ∈ Rn, ∥v∥1 :=
∑n

i=1|vi|, ∥v∥2 :=
√∑n

i=1 v
2
i , and ∥v∥∞ := max

1≤i≤n
|vi|. For

a matrix A ∈ Rn×m, AT denotes its transpose, ∥A∥2 := max∀∥x∥2=1 ∥Ax∥2, ∥A∥∞ :=

max
1≤i≤n

∑m
j=1 |Ai,j|, ∥A∥∞,∞ := max

1≤i≤n,1≤j≤m
|Ai,j|, and ∥A∥F :=

√∑n
i=1

∑m
j=1A

2
i,j .

2.2 Related Works

Our work is relevant to various topics in applied mathematics and statistics. Among them,

we provide two most closely related topics: ( i ) Regression-based framework for PDE

identification, and ( ii ) Some theoretical results of support-recovery of LASSO [3] in lin-

ear regression setting. In this Section, we denote K as the problem dimension, s as the

number of non-zero entries of model parameter, and n as the number of observations.

Regression-based Methods. Recently, various regression-based frameworks have been

developed and applied for model selection and parameter estimation of dynamic data. A

sparsity-promoting method was proposed in [81] for extracting the governing dynamical

system, by comparing the computed velocity to a large set of potential trial functions. Un-

der the over-determined systems of linear equations (i.e., n ≫ k), the authors developed

a sequential-thresholded least-squares method to select the correct nonlinear functions. In

the follow-up study, [82] devised a weighted-ℓ1-regularized least squares solver for im-

proving the accuracy and robustness of the approach introduced by [81] in the presence

of state-measurement noise. Several papers [83, 84, 85] also suggested sparse regression

frameworks for PDE identification problems over spatial-temporal data. Specifically, [84]
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studied the model selection problem via LASSO under the PDE context. The author empir-

ically showed that the method works well in various important equations such as Burgers’

equation, Navier-Stokes equation, Swift-Hohenberg equation. Recently, [83] considered

PDE identification problem using numerical time evolution. The authors utilized LASSO

to select candidate monomials, then proposed the time evolution error to select the under-

lying true model. Unlike the previously mentioned literature, which was mostly empir-

ical, [86] provided a provable guarantee on the usage of ℓ1-norm for PDE identification

problems, based upon the theoretical results from compressive sensing. Interestingly, this

work imposed the incoherence property on the feature matrix and employed the Legendre-

transform on the columns of the matrix to ensure that the property holds for every PDE

recovery problem of interest. Our work imposes mutual incoherence assumption on the

feature matrix, which is an analogous notion of the incoherence property. However, the

important difference between our paper and [86] is that our work only allows a single

trajectory, whereas [86]’s theorem requires Ω(s logK) bursts of noisy trajectories for the

exact recovery of the underlying PDE.

Support Recovery in Statistics. Support recovery or variable selection problems of LASSO

have a long history in the statistical literature. In the noiseless setting, many researchers [87,

1, 2, 88, 89, 90] established sufficient conditions for either the deterministic or random pre-

dictors for the support recovery problems of linear systems via the ℓ1-norm.

Since our work falls into the category of noisy setting, we focus more on reviewing the

body of work in the noisy setting. In [91], authors studied the asymptotic behavior of the

LASSO-type estimator with fixed dimension K under the general centered i.i.d. noises with

variance σ2 > 0. Both [92] and [2] independently developed sufficient conditions for the

support of LASSO estimator to be contained within true support of the sparse model. Under

a more general setting, when the exterior noise is i.i.d. with finite moments, [93] showed

that the Irrepresentable Condition [94] is almost necessary and sufficient for LASSO’s
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signed-support recovery for fixed K and s. Furthermore, under the Gaussian noise as-

sumption, they showed that LASSO can still achieve signed-support recovery when K is

allowed to grow exponentially faster than n. In a non-asymptotic setting, [4] established

the sharp relationship of n, K, and s, required for the exact sign consistency of LASSO,

where K and s are allowed to grow as n increases under mutual incoherence condition.

Using a similar technique in [4], the paper [73] studied LASSO under Poisson-like model

with heteroscedastic noise and show that irrepresentable condition can serve as a neces-

sary and sufficient condition for signed-support recovery in their setting. In the context of

graphical model, [95, 14] analyzed the model selection consistency of Gaussian graphical

models, and [75] showed the signed-support recovery of Ising models. See [96] for a more

comprehensive overview on this topic.

Remark 2.2.1 Our work is of asymptotic nature with fixed K and s, while the number of

grid points of the observed trajectory tends to infinity in both space and time.

2.3 PDE Identification via ℓ1-PsLS

In Subsection 2.3.1, we provide concrete problem settings on the governing PDE of (2.1)

and the observed trajectory. Then, specific settings of the Local-Polynomial regression for

the estimations of state variables in our paper are provided in Subsection 2.3.2. Lastly, we

propose a two-stage ℓ1-regularized Pseudo Least Squares method for PDE identification in

Subsection 2.3.3.

2.3.1 Problem Setting and Notations

Based on the general form (2.1), we take (x, t) ∈ [0, Xmax) × [0, Tmax) for some finite

constants 0 < Xmax, Tmax < ∞. It is assumed that the underlying mapping F is a degree 2

polynomial in terms of u and its partial derivatives ∂p
xu for 0 ≤ p ≤ Pmax, 1 parameterized

1It should be noted that our setting can be generalized to higher-degrees of polynomials and functions
with multiple spatial dimensions.

43



by a coefficient vector β∗ = (β∗
0 , β

∗
1 , . . . , β

∗
p,q, . . . ) with real entries; that is,

ut(x, t) = β∗
0 + β∗

1u+ β∗
2∂xu+ β∗

3∂
2
xu+ · · ·+ β∗

p,q∂
p
xu∂

q
xu+ . . . . (2.2)

We call the monomials in the right-hand side of (2.2) as feature variables. We set a finite

integer upper-bound, Pmax > 0, for the possible orders of the partial derivatives of u with

respect to x in (2.2). Hence, we assume that β∗ ∈ RK , with K = 1+2(Pmax+1)+
(
Pmax+1

2

)
;

consequently, constant and any term of the form ∂p
xu or ∂p

xu∂
q
xu, for 0 ≤ p, q ≤ Pmax, are

contained in (2.2). Notice that many entries of β∗ can be zero. We denote S(β∗) := {0 ≤

j ≤ K | β∗
j ̸= 0}, or simply S, as the support of the coefficient vector β∗, i.e., the set of

indices of the non-zero entries. Additionally, we denote s as the cardinality of the set S,

i.e., s := |S|.

The given data D = {
(
Xi, tn, U

n
i

)
| i = 0, . . . ,M − 1;n = 0, . . . , N − 1} ⊆ Ω × R

consists of M × N data, where M,N ∈ R, M,N ≥ 1. Each (Xi, tn) ∈ Ω represents a

space-time point, and Un
i is a representation of u(Xi, tn) contaminated by additive Gaus-

sian noise:

Un
i = u(Xi, tn) + νn

i , νn
i

i.i.d.∼ N (0, σ2) ,

whose second moment is uniformly bounded as follows: supN,M∈R maxn,i E |Un
i |

2 :=

η2 < ∞. Here N (0, σ2) denotes the centered normal distribution with variance σ2 > 0.

2.3.2 Local-Polynomial Regression Estimators for Derivatives

Given data {(Xi, tn, U
n
i )} with i = 0, 1, . . . ,M − 1 and n = 0, 1, . . . , N − 1, we employ

a local quadratic regression to estimate ut(Xi, ·) for each fixed space point Xi and use a

Local-Polynomial with degree p + 1 to estimate ∂p
xu(·, tn) at each temporal point tn, for

each degree p = 0, 1, . . . , Pmax. More specifically, we solve the following optimization
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problems:

{
b̂j(Xi, t)

}
j=0,1,2

= argmin
bj(t)∈R,0≤j≤2

N−1∑
n=0

(
Un
i −

2∑
j=0

bj(t)(tn − t)j
)2

KhN

(
tn − t

)
,

for i = 0, 1, . . . ,M − 1 ; (2.3){
ĉpj(x, tn)

}
j=0,1,...,p+1

= argmin
cj(t)∈R,0≤j≤p+1

M−1∑
i=0

(
Un
i −

p+1∑
j=0

cpj(t)(Xi − x)j
)2

KwM

(
Xi − x

)
,

for n = 0, 1, . . . , N − 1 and p = 0, 1, . . . , Pmax. (2.4)

and set ût(Xi, t) = b̂1(Xi, t) and ∂̂p
xu(x, tn) = p!ĉpp(x, tn). Here hN and wp,M denote

the bandwidth parameters, and Kw(z) := K(z/w)/w for some kernel function K with

bandwidth w > 0. Specific choices of the order of polynomial fit for the functions ût and

∂̂p
xu are to strike the balance between modeling bias and variance. See Subsections 3.1 and

3.3 of Fan and Gijbels [67] for more rigorous treatments on this topic. Also the kernel K

is assumed to be uniformly continuous and absolutely integrable with respect to Lebesgue

measure on the real-line; K(z) → 0 as |z| → +∞; and
∫
|z ln |z||1/2|dK(z)| < +∞.

Optimization problems (2.3) and (2.4) have closed-form solutions in the form of weighted

least squares estimator. See Appendix B.2. However, for theoretical investigation, we em-

ploy the notion of equivalent kernel [67, 68] to write the solutions as follows: for any fixed

spatial point Xi, i = 0, 1, . . . ,M − 1, ût(Xi, t) can be written as:

ût(Xi, t) =
1

Nh2
N

N−1∑
n=0

K∗
2

(
tn − t

hN

)
Un
i

{
1 + oP(1)

}
. (2.5)

Similarly, for any fixed temporal point tn, n = 0, 1, . . . , N − 1, the estimation for the p-th

order partial derivative takes the form:

∂̂p
xu(x, tn) =

p!

Mwp+1
M

M∑
i=1

K∗
p

(
Xi − x

wM

)
Un
i

{
1 + oP(1)

}
. (2.6)
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Here, K∗
j (z) = e⊤j S

−1(1, z, . . . , zp)⊤K(z) is called an equivalent kernel, where ej denotes

a unit vector with 1 on the j th position; S = (
∫
zl+sK(z)dz)0≤l,s≤p is the moment matrix

associated with kernel K; and oP(1) denotes a random quantity tending to zero as either N

or M tends to infinity. From here, we will omit the dependency on j for the simplicity of

notation when using the equivalent kernel.

Remark 2.3.1 The most important reason for using Local-Polynomial fitting for the esti-

mation of state variables and their derivatives is due to its rich literature on asymptotic

properties and uniform convergence of the estimator [67, 97, 98, 68]. Specifically, these

results allow us to explore the behavior of tail-probability of the measurement error τ ,

which is essential for the analysis of the ℓ1-PsLS estimator. See Subsection 2.5.2 for more

information.

2.3.3 ℓ1-regularized Pseudo Least Squares Model

First, we introduce matrix-vector notations for compact expressions of the problem. We let

ut ∈ RNM denote the vectorization of {ut(Xi, tn)}n=0,...,N−1
i=0,...,M−1 in a dictionary order prioritiz-

ing the spatial dimension; that is, uT
t =

[
ut(X0, t0) ut(X1, t0) · · ·

]
. Define the feature

matrix, F ∈ RNM×K , as the collection of values of feature variables organized as follows:

F :=



1 u(X0, t0) ∂xu(X0, t0) · · · ∂p
xu(X0, t0)∂

q
xu(X0, t0) · · ·

1 u(X1, t0) ∂xu(X1, t0) · · · ∂p
xu(X1, t0)∂

q
xu(X1, t0) · · ·

...
...

... . . . ... · · ·

1 u(XM−1, t0) ∂xu(XM−1, t0) · · · ∂p
xu(XM−1, t0)∂

q
xu(XM−1, t0) · · ·

1 u(X0, t1) ∂xu(X0, t1) · · · ∂p
xu(X0, t1)∂

q
xu(X0, t1) · · ·

...
...

... . . . ... · · ·

1 u(XM−1, tN−1) ∂xu(XM−1, tN−1) · · · ∂p
xu(XM−1, tN−1)∂

q
xu(XM−1, tN−1) · · ·



.

With these notations, ground-truth PDE models (2.2) evaluated at the data points on the

grid can be succinctly written as ut = Fβ∗. Note that before estimating the correct signed-
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support of β∗, ut and F need to be estimated. Conventional regression techniques such as

Local-Polynomial regression, smoothing spline, among others, can be used to estimate ut

and columns of F. As previously mentioned, we employ the Local-Polynomial approach.

We denote ût ∈ RNM and F̂ ∈ RNM×K by replacing the entries of ut and F respectively

with those of corresponding estimators. (i.e., (̂ut)ni , (̂∂p
xu)ni , and (̂∂p

xu)ni (̂∂
q
xu)ni .)

Let ∆ut = ût−ut, ∆F = F̂−F denote the difference between the obtained estimators

ût and F̂ via Local-Polynomial regression and their ground-truth counterparts. With these

notations, we formally obtain a regression model

ût = F̂β∗ + τ , where τ = ∆Fβ∗ −∆ut . (2.7)

The natural extension for inducing sparsity of the parameter of interest is to add positively

weighted ℓ1-penalty term ∥β∥1 to the squared loss ∥ût − F̂β∥22, leading to an estimator:

β̂λ ∈ arg min
β∈RK

{
1

2NM

∥∥∥ût − F̂β
∥∥∥2
2
+ λN ∥β∥1

}
, (2.8)

where λN > 0 is a regularization hyper-parameter. Note that we normalize the columns of

F̂ such that 1√
NM

maxj=1,...,K ∥F̂j∥2 ≤ 1 while solving (2.8).

Observe that (2.8) is formally identical to LASSO [3] for high-dimensional sparsity

recovery. Meanwhile, we should also emphasize that β̂λ is not a true ℓ1-least squares

estimator, but a minimizer of the ℓ1-least squares fit with the estimated ût and F̂, instead

of the ground-truth ut and F. Hence, we use the word “pseudo” as in [69] to emphasize

the approximations of the solutions and derivatives of measurements, and call our method

ℓ1-Pseudo Least Squares method.

Additionally, the residual vector τ violates conventional assumptions on residuals in

linear regression, where the entries of residuals are commonly assumed to be i.i.d. centered

random variables with finite variance. See [93, 4, 91]. Note that, since Local-Polynomial

estimator is biased, τ is not a mean zero random vector. Furthermore, there is no guarantee
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that entries of τ are independent with each other. This arises from the fact that rows of F

and entries of ut are uniquely characterized by the underlying PDE model. Lastly, the un-

known signal β∗ makes the distribution of τ completely inaccessible. These complexities

make the study of the proposed estimator β̂λ challenging.

2.4 Recovery Theory for ℓ1-PsLS based PDE Identification

In subsection 2.4.1, we formally describe a signed-support recovery problem. In subsection

2.4.2, two regularity assumptions on feature matrix F are given for the proof of the main

theorem. Then, the main theorem of this work is presented with some important remarks

in subsection 2.4.3. Lastly, we provide a proof sketch of the main theorem in subsection

2.4.4.

2.4.1 Signed-Support Recovery

The main goal of this paper is to provide provable guarantees that the proposed ℓ1-PsLS

method gives asymptotically consistent estimator of β∗ in the sense of signed-support re-

covery. We can formally state this problem with the adoption of S±(β) notation, that is:

for any vector β ∈ RK , we define its extended sign vector, whose each entry is written as:

S±(βi) :=


+1 if βi > 0

−1 if βi < 0

0 if βi = 0,

for i ∈ {1, . . . , K}. This notation encodes the signed-support of the vector β. Denote β̂λ

as the unique solution of ℓ1-PsLS. Under some regularity conditions on F, we will show,

P
[
S±(β̂

λ) = S±(β
∗)
]
→ 1 as N,M → +∞,
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where N and M denote the grid size of temporal and spatial dimensions, respectively.

2.4.2 Assumptions

We introduce two sufficient conditions frequently assumed in ℓ1- regularized regression

models for the signed-support recovery of the true signal β∗.

1. Minimal eigenvalue condition. There exists some constant Cmin > 0 such that:

Λmin

(
1

NM
F⊤

SFS

)
≥ Cmin. (A1)

Here Λmin(A) denotes the minimal eigenvalue of a square matrix A ∈ Rn×n, and FS

is made of columns of F when the column index is in the support set S. Note that

if this condition is violated, the columns of FS would be linearly dependent, and it

would be impossible to estimate the true signal β∗ even in the “oracle case” when the

support set S is known a priori.

2. Mutual incoherence condition. For some incoherence parameter µ ∈ (0, 1]:

∥∥∥(F⊤
ScFS

)(
F⊤

SFS
)−1
∥∥∥
∞

≤ 1− µ. (A2)

This condition states that the irrelevant predictors cannot exhibit an overly strong

influence on the relevant predictors. More specifically, for each index j ∈ Sc, the

vector (FT
SFS)

−1FT
SFj is the regression coefficient of Fj on FS , thus, it is a measure

of how well the column Fj aligns with the columns of FS . A large µ close to 1

indicates that the columns {Fj, j ∈ Sc} are nearly orthogonal to the columns of FS ,

which is desirable for support recovery.

For future reference, we define Q∗ :=
(
F⊤

ScFS
)(
F⊤

SFS
)−1, and name it as population

incoherence matrix. Also, define its estimated counterpart as Q̂N :=
(
F̂⊤

ScF̂S
)(
F̂⊤

S F̂S
)−1,

49



and call it sample incoherence matrix. Note that the dependence of the support set S on

quantities Q∗ and Q̂N is suppressed for notational simplicity.

2.4.3 Statement of Main Result

Theorem 2.4.1 Given the observed data set D whose spatial resolution is related to the

temporal resolution via M = Θ(N
2Pmax+5

7 ), we take the bandwidths of the kernels in (2.3)

and (2.4) as hN = Θ(N− 1
7 ), wM = Θ(M− 1

7 ), respectively. Under the assumptions (A1)

and (A2) imposed on the ground-truth feature matrix F, suppose that the sequence of

regularization hyper-parameters {λN} satisfies λN = Ω

(√
K lnN

µN2/7−c

)
for some constant 0 <

c < 2
7

independent of N . Then, the following properties hold with probability greater than

1−O
(
N

2Pmax+5
7 exp

(
− 1

6
N c
))

→ 1 as N → ∞:

1. The ℓ1-PsLS method (2.8) has a unique minimizer β̂λ ∈ RK with its support con-

tained within the true support, that is S(β̂λ) ⊆ S(β∗), and the estimator satisfies the

ℓ∞ bound:

∥∥∥β̂λ
S − β∗

S

∥∥∥
∞

≤ K3/2Cmin (oN(1) + λN) . (2.9)

2. Additionally, if the minimum value of the model parameters supported on S is greater

than the upper-bound of (2.9), that is min1≤i≤s |(β∗
S)i| > K3/2Cmin (oN(1) + λN),

then β̂λ has a correct signed-support. i.e., S±(β̂
λ) = S±(β

∗).

The overall proof sketch of Theorem 2.4.1 is described in the Subsection 2.4.4, and

relevant technical propositions and Lemmas are further provided in Sections 2.4 and 2.5.

Here, we give some important remarks about Theorem 2.4.1.

1. The uniqueness claim of β̂λ in ( i ) seems trivial since the objective function in (2.8)

is strictly convex in the regime of K being fixed and NM → ∞. However, we

need to ensure that the minimal eigenvalue condition hold over the estimated feature
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matrix F̂, given the assumption (A1) for some Cmin > 0. We defer this statement as

Lemma 2.6.2 in Section 2.6 with the detailed proof.

2. The item ( i ) claims that ℓ1-PsLS does not select the arguments that are not in the

support of β∗. The item ( ii ) is a consequence of the sup-norm bound from (2.9):

as long as |β∗
i | over indices i ∈ S is not small, ℓ1-PsLS is signed-support recovery

consistent.

3. The asymptotic orders of M , hN , and wM are specifically chosen for simplicity. Al-

though there is certain flexibility, the spatial resolution M and the temporal resolution

N (as well as hN and wM ) need to be coordinated well to guarantee the support re-

covery property. This was expected in practice since we need sufficient sampling

frequencies both in temporal and space to estimate the underlying dynamics. Here,

the Theorem 2.4.1 present a rigorous justification for a combination of these resolu-

tions which is sufficient for the support recovery.

4. The quantity c is derived from the Tusnády’s strong approximation [98] where the er-

ror of an empirical distribution is compared with a Brownian bridge in tail probabil-

ity. See Appendix B.3.1. With a larger value of c, the regularization hyper-parameter

λN needs to remain relatively large, but the convergence is faster. Whereas for a

smaller value of c, we can relax the regularization in the cost of a slower probability

convergence rate.

5. The threshold of λN in the statement of the Theorem shows that when the number of

data increases, there is more flexibility in tuning this parameter. If the incoherence

parameter µ is small, or equivalently, the group of correct feature variables and the

group of the others are similar, to guarantee that the support of the estimated coef-

ficient vector is contained in the correct one, it suffices to use a large value of λN .

Such behavior of the threshold is consistent with that described in Theorem 1 of [4].
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6. The upper-bound for the ℓ∞-norm of the coefficient error in (2.9) consists of two

components. The first term oN(1) denotes a deterministic sequence converging to

0 as N increases to ∞. We want to note that this term is involved with the un-

derlying function u as well as the choice of regression kernels and independent

with the choice of feature variables selected by ℓ1-PsLS. The second component

is simple: K3/2CminλN . When N increases, this part does not vary. This indicates

that asymptotically, ℓ1-PsLS recovers signed-support of governing PDE, as long as

min1≤i≤s |(β∗
S)i| > K3/2CminλN .

2.4.4 Proof Strategy of Theorem 2.3.1

The analysis for the proof of Theorem 2.4.1 is naturally divided into two steps as follows:

In the first step, we prove a result analogous to that of the Theorem 2.4.1 by imposing

incoherence assumption on the estimated feature matrix F̂. Specifically, since F̂ is a ran-

dom matrix, we assume that for some µ ∈ (0, 1], the event, {
∥∥∥Q̂N

∥∥∥
∞

≤ 1 − µ}, holds

with some probability at least Pµ, for some Pµ ∈ (0, 1]. Under this assumption, we prove

that the success probability of signed-support recovery of ℓ1-PsLS converges to Pµ with an

exponential decay rate. This is formally stated as Proposition 2.5.1 in Subsection 2.5.1.

In the second step, we show that the success probability Pµ goes to 1, given that the

ground-truth matrix F satisfies assumptions (A1) and (A2). This is equivalent to proving

that, given the assumptions (A1) and (A2) for F for some Cmin > 0 and µ ∈ (0, 1], the

same assumptions hold for the estimated F̂ in probability. We state these results formally

in Lemmas 2.6.2 and 2.6.3 in Section 2.6.

2.5 Analysis Under Sample Incoherence Matrix Assumptions

In this section, we provide a proof overview of Proposition 2.5.1 and the key technical

contribution of our paper. All the detailed statements and proofs of the Proposition 2.5.1

and its relevant Lemmas are relegated to the Appendix for the conciseness.
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2.5.1 Statement of Proposition

We establish the signed-support consistency of ℓ1-PsLS estimator when the assumptions

are directly imposed on the estimated feature matrix F̂, instead on the ground-truth feature

matrix F. More specifically, we assume that there exist some constants µ ∈ (0, 1] and

Cmin > 0, such that the followings hold:

P
[ ∥∥∥Q̂N

∥∥∥
∞

≤ 1− µ

]
≥ Pµ and Λmin

( 1

NM
F̂T

S F̂S

)
≥ Cmin almost surely . (A3)

Here, Pµ ∈ [0, 1] denotes some probability that Q̂N satisfies the incoherence assumption.

Equipped with this assumption, we have the following proposition:

Proposition 2.5.1 Given the observed data set D, where the spatial resolution is related

to the temporal resolution via M = Θ(N
2Pmax+5

7 ), we take the bandwidths of the kernels

in (2.3) and (2.4) as hN = Θ(N− 1
7 ), wM = Θ(M− 1

7 ), respectively. Under the assumptions

in (A3) imposed on the estimated feature matrix F̂, suppose that the sequence of regular-

ization hyper-parameters {λN} satisfies λN = Ω

(√
K lnN

µN2/7−c

)
for some constant 0 < c < 2

7

independent of N . Then, the following properties hold :

1. With probability greater than Pµ −O
(
N

2Pmax+5
7 exp

(
− 1

6
N c
))

→ Pµ as N → ∞,

the ℓ1-PsLS method (2.8) has a unique minimizer β̂λ ∈ RK with its support contained

within the true support, that is S(β̂λ) ⊆ S(β∗).

2. With probability greater than 1−O
(
N

2Pmax+5
7 exp

(
− 1

6
N c
))

→ 1 as N → ∞, β̂λ

satisfies the ℓ∞ bound:

∥∥∥β̂λ
S − β∗

S

∥∥∥
∞

≤ K3/2Cmin (oN(1) + λN) . (2.10)

3. Additionally, if the minimum value of model parameter supported on S is greater

than the upper-bound of (2.10), that is min1≤i≤s |(β∗
S)i| > K3/2Cmin (oN(1) + λN),
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then β̂λ has a correct signed-support. (i.e., S±(β̂
λ) = S±(β

∗))

We remark that the first item ( i ) in Proposition 2.5.1 holds with probability Pµ ≤ 1

asymptotically, while the second item ( ii ) holds with probability 1 asymptotically. They

are not contradictory, since ( i ) describes the support recovery of the coefficient vector over

all indices, whereas ( ii ) focuses on the estimation errors on entries within the true support

S. Technically speaking, proof of ( i ) is involved with mutual incoherence condition in

(A3), whereas ( ii ) is involved with minimum-eigen value condition on F̂ in (A3).

2.5.2 Proof Overview of Proposition 2.4.1

Readers can find the proof of (2.10) in the Appendix B.3.6. Here, we focus on providing

the high-level idea on the proof of ( i ) of Propostion 2.5.1. The most important ingredient

for the success of PDW construction is to establish the strict dual feasibility of the dual

vector ẑ, when ẑ ∈ ∂∥β̂λ∥1, where ∂∥β̂λ∥1 is a sub-differential set of ∥·∥1 evaluated at β̂λ.

In other words, we need to ensure that ∥ẑSc∥∞ < 1 with high probability. (See Appendix

B.1.) Through Karush–Kuhn–Tucker (KKT) condition of the optimal pair (β̂λ, ẑ) of (2.8)

and settings of PDW construction, we can explicitly derive the expression of the dual vector

ẑ supported on the complement of the support set S as follows:

ẑSc = F̂T
ScF̂S(F̂

T
S F̂S)

−1ẑS +
1

λNMN
F̂T

ScΠS⊥(∆ut −∆FSβ
∗
S)︸ ︷︷ ︸

:=Z̃Sc

, (2.11)

where ΠS⊥ is an orthogonal projection operator on the column space of F̂S . By the mu-

tual incoherence condition in (A3), the first term of the right-hand side in (2.11) is upper-

bounded by 1 − µ for some µ ∈ (0, 1], with some probability Pµ ∈ [0, 1]. The remaining

task is to control the tail probability of Z̃j for j ∈ Sc: that is to ensure P
[
maxj∈Sc |Z̃j| ≥

µ
]
→ 0 with some exponential decay rate. With the help of Lemma B.3.1 in the Appendix,

controlling the probability P
[
∥Z̃Sc∥∞ ≥ µ

]
reduces to controlling P

[
∥∆FSβ

∗
S−∆ut∥∞ ≥
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µ λN√
K

]
. Controlling the bound on P

[
∥τ∥∞ ≥ ε

]
for some ε > 0 is challenging, since the

exact form of the residual distribution τ is unknown. (Note that since β∗
Sc = 0 ∈ RK−s,

τ = ∆FSβ
∗
S −∆ut.)

We circumvent this difficulty by using the following inequality: for some thresholds

εN > 0 and εM > 0, both of which go to 0 as N and M tend to ∞, we have,

P
[
∥τ∥∞ ≥ εN + εM

]
≤ P

[
max

0≤i≤M−1
sup

t∈[0,Tmax)

|∆ut(Xi, t)| ≥ εN

]
+ P

[
max
1≤k≤s

0≤n≤N−1

sup
x∈[0,Xmax)

|∆Fk(x, tn)| ≥
εM

s∥β∗∥∞

]
≤ M · P

[
sup

t∈[0,Tmax)

|∆ut(Xi, t)| ≥ εN

]
+ sN · P

[
sup

x∈[0,Xmax)

|∆Fk(x, tn)| ≥
εM

s∥β∗∥∞

]
.

The above inequality leads us to study the uniform convergence of Local-Polynomial es-

timator to its ground-truth function of interest. Say, for sufficiently large enough grid

size of temporal dimension N , for some εN ≥ 0 that is hN -dependent threshold and

Xi ∈ [0, Xmax), we will achieve

P

[
sup

t∈[0,Tmax)

|ût(Xi, t)− ut(Xi, t)| > εN

]
→ 0, (2.12)

with an exponential decay rate. As for obtaining the exponential decay rate in (2.12), we

defer the detailed explanation with some intuitions in the following Subsection. It turns out

that thresholds εN and εM are functions of bandwidth parameters hN and wM in (2.5) and

(2.6). We choose correct orders of hN and wM so that we can ensure that the thresholds

εN and εM go to zero. Then, with the proper choice on the order of λN together with

P
[
∥τ∥∞ ≥ µ λN√

K

]
→ 0 as N → ∞, we conclude the proof.

2.5.3 Technical Contribution

Several researchers have tried to achieve uniform convergence of Local-Polynomial or ker-

nel smoothing estimators in almost sure sense. See the works [99] and [100]. However,
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to the best of the authors’ knowledge, uniform convergence of Local-Polynomial estimator

with an explicit decaying probability rate has not been studied in the literature. We provide

it as a technical contribution of the present paper. Readers can find the exact statements

of these results for the estimators ût and ∂̂p
xu for 0 ≤ p ≤ Pmax in the Appendix stated as

Lemma B.3.2 and Lemma B.3.3, respectively.

Here, we provide a high-level idea of the proof of Lemma B.3.2. First, we observe

that the higher-order Local-Polynomial smoothing is asymptotically equivalent to higher-

order kernel smoothing through equivalent kernel theory [67]. See (2.5) and (2.6) for their

equivalences in mathematical form with kernel smoothing estimators. Second, we employ

the truncation idea in [97] on the Local-Polynomial estimator and decompose ût(Xi, t) −

ut(Xi, t) into three parts as follows:

ût − ut =

(
ût − ût

B′
N − E

(
ût − ût

B
′
N
))

︸ ︷︷ ︸
Asymptotic deviation of truncation error

+

(
ût

B
′
N − Eût

B
′
N

)
︸ ︷︷ ︸

Asymptotic deviation of
truncated estimator

+

(
Eût − ut

)
︸ ︷︷ ︸
Asymptotic bias of

Local-Polynomial estimator

,

where B′
N is some increasing sequence in N , and ût

B′
N denotes the truncated Local-

Polynomial estimator of ut. We control the sup over t ∈ [0, Tmax) on each of the three

components. The last component, Asymptotic bias of ût can be obtained through the clas-

sical result from [67, 68]. The exponential decay rate comes from the first two components

as follows:

1. Asymptotic deviation of truncation error can be decomposed into two parts. The first

part, which is ût − ût
B′

N , can be easily controlled via Chernoff bound of Gaussian

random variable. by using the definition of truncated estimator ût
B′

N . The second

part, which is the expected difference E
(
ût − ût

B
′
N
)
, can be bounded by some de-

terministic function of B′
N and hN using the similar arguments in Proposition 1 of

[97].

2. Asymptotic deviation of truncated estimator is decomposed into two components as
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well: ( i ) Brownian bridge and ( ii ) difference between some two-dimensional em-

pirical process and the Brownian bridge. ( i ) can be controlled via uniform conver-

gence of Gaussian Process using the arguments similar to [101], together with simple

Markov inequality. ( ii ) can be controlled via Tusnády’s strong uniform approxima-

tion theory [97, 98], stating that the two-dimensional empirical process can be well

approximated by a certain solution path of two-dimensional Brownian bridge.

Same ideas can be employed for the uniform convergence of (̂∂p
xu)ni to (∂p

xu)
n
i and of

(̂∂p
xu)ni (̂∂

q
xu)ni to (∂p

xu)
n
i (∂

q
xu)

n
i for 0 ≤ p, q ≤ Pmax.

2.6 Uniform Convergence of Sample Incoherence Matrix

In this section, we provide two Lemmas 2.6.2 and 2.6.3 that can complete the proof of

Theorem 2.4.1. Here, the minimum-eigenvalue and incoherence assumptions are imposed

on the ground-truth feature matrix F, instead on the estimated feature matrix F̂. See (A1)

and (A2). That is, there exist Cmin > 0 and µ ∈ (0, 1] such that the followings hold for the

unknown support set S:

Λmin

( 1

NM
FT

SFS

)
≥ Cmin and ∥Q∗∥∞ ≤ 1− µ.

Equipped with the above assumptions, we can formally show that success probability of

the sample incoherence condition Pµ in (A3) tends to 1 as N → ∞.

The key step of the proofs in the following Lemmas is to control the tail probability

of difference between inner-product of two arbitrary columns of F̂ and inner-product of

the two corresponding columns of ground-truth F. This problem is challenging even if

the exact distribution of any entries of F̂ is known, since the distribution of
∑NM

k=1 F̂kiF̂kj

needs to be derived. In order to circumvent this problem, we take the advantage of the

uniform convergence result of (̂∂p
xu)ni for any 0 ≤ p ≤ Pmax proved in Lemma B.3.3. Addi-

tionally, we need the uniform convergence results of (̂∂p
xu)ni (̂∂

q
xu)ni , (̂∂p

xu)ni (̂∂
q
xu)ni (̂∂

k
xu)

n
i ,
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and (̂∂p
xu)ni (̂∂

q
xu)ni (̂∂

k
xu)

n
i (̂∂

l
xu)

n
i for 0 ≤ p, q, k, l ≤ Pmax. These convergence results are

explicitly stated as Corollaries B.3.7, B.4.1, and B.4.2, with proofs in the Appendix.

Equipped with the uniform convergence results, we introduce a following Lemma stat-

ing that the distance between the matrices F̂⊤
ScF̂S and F⊤

ScFS are close enough under oper-

ator norm for large enough grid sizes.

Lemma 2.6.1 Let ε∗M , ε∗∗M , ε∗∗∗M , ε∗∗∗∗M be the thresholds defined in B.3.3, B.3.7, B.4.1, and

B.4.2. Then for any εmax
′

M such that

εmax
′

M >
√

s(K − s)max

{
ε∗M , ε∗∗M , ε∗∗∗M , ε∗∗∗∗M

}
,

then, for 0 < c < 2
7
, and for sufficiently large enough N , we have

P

[
1

NM

∥∥∥F̂⊤
ScF̂S − F⊤

ScFS

∥∥∥
2
> εmax

′

M

]
≤ O

(
N exp

(
− 1

6
N c
))

.

Now, we are ready to prove our main claims, Lemmas 2.6.2 and 2.6.3. We first state and

prove the Lemma 2.6.2 asserting that if there exists Cmin > 0 such that the minimum eigen-

value condition holds for FS , then the sample minimum eigen-value condition holds with

probability converging to 1 with an exponential decay rate.

Lemma 2.6.2 Suppose that the assumption (A1) holds with some constant Cmin > 0 and

0 < c < 2
7
, then with probability at least 1−O(N exp(−1

6
N c)) → 1 as N → ∞, we have,

Λmin

( 1

NM
F̂T

S F̂S

)
≥ Cmin .

Proof. Observe that we can write:

Λmin

(
1

NM
F⊤

SFS

)
=

1

NM
min

∥x∥2=1

{
x⊤
(
F̂⊤

S F̂S

)
x+ x⊤

(
F⊤

SFS − F̂⊤
S F̂S

)
x

}
≤ 1

NM

{
y⊤
(
F̂⊤

S F̂S

)
y + y⊤

(
F⊤

SFS − F̂⊤
S F̂S

)
y

}
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where y ∈ RK is a unit-norm minimal eigen-vector of 1
NM

F⊤
SFS . Therefore, we can write,

Λmin

(
1

NM
F̂⊤

S F̂S

)
≥ Λmin

(
1

NM
F⊤

SFS

)
− 1

NM

∥∥∥F⊤
SFS − F̂⊤

S F̂S

∥∥∥
2

≥ Cmin −
1

NM

∥∥∥F̂⊤
S F̂S − F⊤

SFS

∥∥∥
2
.

By using a similar argument used in Lemma 2.6.1, we can prove 1
NM

∥∥∥F̂⊤
S F̂S − F⊤

SFS

∥∥∥
2
→

0 with high-probability as N → ∞. For any εmax
M such that,

εmax
M > smax

{
ε∗M , ε∗∗M , ε∗∗∗M , ε∗∗∗∗M

}
, (2.13)

Then, we can bound the probability as follows:

P

[
1

NM

∥∥∥F̂⊤
S F̂S − F⊤

SFS

∥∥∥
2
> εmax

M

]

≤ P

[∥∥∥F̂⊤
S F̂S − F⊤

SFS

∥∥∥
F
> NMεmax

M

]
≤ P

[(
NMs) ·

∥∥∥F̂⊤
S F̂S − F⊤

SFS

∥∥∥
∞,∞

> NMεmax
M

]

≤ P

[
max

n=0,...,N−1
sup

x∈[0,Xmax)

∣∣∣F̂i(x, tn)F̂j(x, tn)− Fi(x, tn)Fj(x, tn)
∣∣∣ > εmax

M

s

]

≤
N−1∑
n=0

P

[
sup

x∈[0,Xmax)

∣∣∣F̂i(x, tn)F̂j(x, tn)− Fi(x, tn)Fj(x, tn)
∣∣∣ > εmax

M

s

]

≤ O
(
N exp

(
− 1

6
N c
))

.

With the help of Lemma 2.6.2, we can show that the sample incoherence condition holds

with high probability, given that there exists µ ∈ (0, 1] for the ground-truth version of (A2).

Lemma 2.6.3 Suppose that the assumption (A2) holds with some constant µ ∈ (0, 1] and

0 < c < 2
7
, then with probability at least 1−O(N exp(−1

6
N c)) → 1 as N → ∞, we have,

∥∥∥Q̂N

∥∥∥
∞

≤ 1− µ .
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Proof. Motviated from [75], we begin the proof by decomposing the matrix
(
F̂⊤

ScF̂S
)(
F̂⊤

S F̂S
)−1

into four parts:

(
F̂⊤

ScF̂S
)(
F̂⊤

S F̂S
)−1

= F⊤
ScFS

((
F̂⊤

S F̂S
)−1 −

(
F⊤

SFS
)−1
)

︸ ︷︷ ︸
:=T1

+

(
F̂⊤

ScF̂S − F⊤
ScFS

)(
F⊤

SFS
)−1

︸ ︷︷ ︸
:=T2

+

(
F̂⊤

ScF̂S − F⊤
ScFS

)((
F̂⊤

S F̂S
)−1 −

(
F⊤

SFS
)−1
)

︸ ︷︷ ︸
:=T3

+
(
F⊤

ScFS
)(
F⊤

SFS
)−1︸ ︷︷ ︸

:=T4

.

Since we know ∥T4∥∞ ≤ 1− µ for some µ ∈ (0, 1], the decomposition reduces the proof

showing ∥Ti∥∞ → 0 with probability 1−O(N exp(−1
6
N c)) for i = 1, 2, 3.

1. Control of T1: Observe that we can re-factorize T1 as follows:

T1 =
(
F⊤

ScFS
)(
F⊤

SFS
)−1[

F⊤
SFS − F̂⊤

S F̂S
](
F̂⊤

S F̂S
)−1

.

Then, by taking the advantage of sub-multiplicative property ∥AB∥∞ ≤ ∥A∥∞∥B∥∞ and

the fact ∥T4∥∞ ≤ 1− µ and ∥C∥∞ ≤
√
N∥C∥2 for C ∈ RM×N , we can bound ∥T1∥∞ as

follows:

∥T1∥∞ ≤
∥∥∥(F⊤

ScFS
)(
F⊤

SFS
)−1
∥∥∥
∞

∥∥∥F⊤
SFS − F̂⊤

S F̂S

∥∥∥
∞

∥∥∥(F̂⊤
S F̂S

)−1
∥∥∥
∞

≤ s(1− µ)

(
1

NM

∥∥∥F⊤
SFS − F̂⊤

S F̂S

∥∥∥
2

)(
NM

∥∥∥(F̂⊤
S F̂S

)−1
∥∥∥
2

)
≤ s(1− µ)

Cmin

(
1

NM

∥∥∥F⊤
SFS − F̂⊤

S F̂S

∥∥∥
2

)
.

Note that we use ∥
(
F̂⊤

S F̂S
)−1∥2 ≤ 1

NMCmin
with probability 1−O(N exp(−1

6
N c)) in the

last inequality from Lemma 6.1.
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2. Control of T2: With similar techniques employed for controlling ∥T1∥∞, we can bound

∥T2∥∞ as follows:

∥T2∥∞ ≤
∥∥∥F̂⊤

ScF̂S − F⊤
ScFS

∥∥∥
∞

∥∥∥(F⊤
SFS

)−1
∥∥∥
∞

≤ s
∥∥∥F̂⊤

ScF̂S − F⊤
ScFS

∥∥∥
2

∥∥∥(F⊤
SFS

)−1
∥∥∥
2

= s

(
1

NM

∥∥∥F̂⊤
ScF̂S − F⊤

ScFS

∥∥∥
2

)(
NM

∥∥∥(F̂⊤
S F̂S

)−1
∥∥∥
2

)
≤ s

Cmin

(
1

NM

∥∥∥F̂⊤
ScF̂S − F⊤

ScFS

∥∥∥
2

)
.

3. Control of T3: To bound ∥T3∥∞, we re-factorize the second argument of product in

T3: (
F̂⊤

S F̂S
)−1 −

(
F⊤

SFS
)−1

=
(
F⊤

SFS
)−1[(

F⊤
SFS

)
−
(
F̂⊤

S F̂S
)](

F̂⊤
S F̂S

)−1

With the factorization, we bound ∥
(
F̂⊤

S F̂S
)−1 −

(
F⊤

SFS
)−1∥∞ by using sub-multiplicative

property and the fact ∥C∥∞ ≤
√
N∥C∥2 for any C ∈ RM×N again:

∥∥∥(F̂⊤
S F̂S

)−1 −
(
F⊤

SFS
)−1
∥∥∥
∞

=
∥∥∥(F⊤

SFS
)−1[(

F⊤
SFS

)
−
(
F̂⊤

S F̂S
)](

F̂⊤
S F̂S

)−1
∥∥∥
∞

≤
√
s
∥∥∥(F⊤

SFS
)−1[(

F⊤
SFS

)
−
(
F̂⊤

S F̂S
)](

F̂⊤
S F̂S

)−1
∥∥∥
2

≤
√
s
∥∥∥(F⊤

SFS
)−1
∥∥∥
2

∥∥∥[(F⊤
SFS

)
−
(
F̂⊤

S F̂S
)]∥∥∥

2

∥∥∥(F̂⊤
S F̂S

)−1
∥∥∥
2

≤
√
s

NMC2
min

(
1

NM

∥∥∥F⊤
SFS − F̂⊤

S F̂S

∥∥∥
2

)
. (2.14)

In the last inequality, we use the result of Lemma 6.1. Now we can bound ∥T3∥∞ as

follows:

∥T3∥∞ =

∥∥∥∥(F̂⊤
ScF̂S − F⊤

ScFS

)((
F̂⊤

S F̂S
)−1 −

(
F⊤

SFS
)−1
)∥∥∥∥

∞

≤
∥∥∥F̂⊤

ScF̂S − F⊤
ScFS

∥∥∥
∞

∥∥∥(F̂⊤
S F̂S

)−1 −
(
F⊤

SFS
)−1
∥∥∥
∞

≤ s

Cmin

(
1

NM

∥∥∥F̂⊤
ScF̂S − F⊤

ScFS

∥∥∥
2

)(
1

NM

∥∥∥F⊤
SFS − F̂⊤

S F̂S

∥∥∥
2

)
,
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where in the last inequality, we use (2.14) and ∥C∥∞ ≤
√
N∥C∥2 for any C ∈ RM×N .

Take εmax
′′

M such that,

εmax
′′

M > max

{
Cmin

s(1− µ)
εmax
M ,

Cmin

s
εmax

′

M

}
,

with εmax
M in (2.13) and with εmax′

M in Lemma 2.6.1, respectively. Then, we have

P

[
∀i = 1, 2, 3 : ∥Ti∥∞ > εmax

′′

M

]
≤ O

(
N exp

(
− 1

6
N c
))

.

Verification of Lemma 2.6.3 automatically leads to the complete proof of Theorem

2.4.1, together with Proposition 2.5.1. Therefore, as long as the two assumptions (A1)

and (A2) hold for F, with sufficiently fine-grained grid points over the function u(X, t),

ℓ1-PsLS can always find the correct signed-support of the given PDE model, with the min-

imum absolute value of β∗
S not too close to zero.

2.7 Numerical Experiments

In the first subsection, two PDE models and data-generating processes of respective models

are introduced. In the next subsection, we verify the main statements of the Theorem 2.4.1

through numerical experiments over the PDE models described in Subsection 2.7.1. The

impact of β∗
min-condition in the signed-support recovery of ℓ1-PsLS is numerically explored

in subsection 2.7.3.

2.7.1 Experimental Setting

In this subsection, we provide detailed descriptions on ( i ) two popular PDE models that

we are going to work on throughout the Section 2.7, and on ( ii ) how to generate the data

from respective models, and ( iii ) how to design the regression problem for the experiments
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to be presented.

Model Specification and Data Generation

Viscous Burgers’ equation is a fundamental second-order semilinear PDE which is fre-

quently employed to model physical phenomena in fluid dynamics [102] and nonlinear

acoustic in dissipative media [103]. Its general form is

ut = −u∂xu+ ν∂2
xu

where ν > 0 is the diffusion coefficient which characterizes physical quantities such as

viscosity of fluid. Specifically, when ν = 0, it becomes an inviscid Burgers’ equation,

which is a conservative system that can form shock waves. Here we consider the following

viscous Burgers’ equation:

ut = −u∂xu+ ν∂2
xu , 0 < x < 1, 0 < t < 0.1 (2.15)

u(x, 0) = sin2(2πx) + cos3(3πx) , 0 ≤ x ≤ 1 , u(0, t) = u(1, t) , 0 ≤ t ≤ 0.1.

Korteweg–de Vries equation is well known for its solution that demonstrates the phe-

nomenon of superposition of nonlinear waves [104], and for modeling fluid dynamics of

shallow water surfaces in long and narrow channels [105]. Its dimensionless form is given

ut + ∂3
xu+ 6u∂xu = 0 . (2.16)

In this Section, we consider the form of (2.16), whose initial solution is as follows:

u(x, 0) = 3.5 sin3(4πx) + 1.5 exp
(
− sin(2πx)(1− x)

)
,

0 ≤ x ≤ 1 , u(0, t) = u(1, t) , 0 ≤ t ≤ 0.1.
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Data Generation For N -size sampling in the temporal dimension, by Theorem 2.4.1, we

take M = ⌊N (2×Pmax+5)/7⌋ sample size in the space dimension. We numerically solve

Viscous Burgers’ equation (2.15) by the Lax-Wendroff scheme on a grid with interval width

δt = 0.1/(100N) in temporal and δx = 1/M in space, then we downsampled the data in

the temporal dimension by a factor of 100; thus the resulted clean data is distributed over

a grid with N nodes in time and M nodes in space. Lastly, we added i.i.d. Gaussian noise

with standard deviation σ = 0.25 to the data. i.e., νn
i

i.i.d.∼ N (0, 0.252). As for solving

the KdV equation (2.16), the same approaches with Viscous Burger’s equation are applied,

with i.i.d. Gaussian noises with standard deviation σ = 0.025.

Constructions of Regression Problems

We employ the Local-Polynomial smoothing for estimating ût and F̂ as described in Sub-

section 2.3.2. Regarding a choice of kernel for constructing ût and F̂, we use the Epanech-

nikov kernel defined by:

K(z) =
3

4
(1− z2)+ , z ∈ R ,

where (·)+ := max(0, ·). Bandwidth parameters hN and wM in (2.3) and (2.4) are chosen

in the order of hN = Θ(N− 1
7 ) and wM = Θ(M− 1

7 ), respectively. As displayed in Table 2.1,

for the experiments presented in this Section, we choose specific constant factors in the or-

der expressions of hN and wM for Viscous Burgers equation and KdV equation. Regarding

more detailed issues on the choices of these constants, readers can refer to Section 2.8.

It is also worth noting that we do not use (2.5) and (2.6) as solutions of the optimization

problems (2.3) and (2.4) for the experiments, since the expressions in (2.5) and (2.6) are

derived in asymptotic settings. For the reader’s convenience, We provide the closed form

solutions of (2.5) and (2.6) in Appendix B.2.

For Viscous Burgers’ equation with noisy data, Local-Polynomial fitting with Pmax = 2
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Table 2.1: Specific choices of the constants in the order of hN = Θ(N− 1
7 ) and wM =

Θ(M− 1
7 ) for the experiments on Viscous Burgers equation and KdV equation are presented.

wM hN

Viscous Burgers 0.75M− 1
7 0.25N− 1

7

KdV 0.1M− 1
7 0.01N− 1

7

is applied to construct ût and F̂. Our goal is to identify the fifth and the sixth coefficients,

β5 and β6, of a following linear measurement via the proposed ℓ1-PsLS model (2.8): Here,

we denote ûx := ∂̂xu and ûxx := ∂̂2
xu.

ût = β0 + β1û+ β2û
2 + β3ûx + β4û

2
x + β5ûûx + β6ûxx + β7û

2
xx + β8ûxûxx + β9ûûxx.

For KdV equation, after generating the data-points, ût and F̂ are fitted through Local-

Polynomial with Pmax = 3. We want ℓ1-PsLS to select β5 and β10 as non-zero coefficients

in a following linear measurement: Here, denote ûxxx := ∂̂3
xu.

ût = β0 + β1û+ β2û
2 + β3ûx + β4û

2
x + β5ûûx + β6ûxx + β7û

2
xx + β8ûxûxx + β9ûûxx

+ β10ûxxx + β11û
2
xxx + β12ûxûxxx + β13ûxxûxxx + β14ûûxxx.

2.7.2 Numerical Verifications of Main Statements

In this subsection, we design an experiment to numerically verify following two main state-

ments of this paper. 2

1. Under assumptions (A1) and (A2), and with large enough data points, there exist

some λN ≥ 0 such that ℓ1-PsLS model (2.8) recovers a signed-support
(
S±(β̂

λ) =

S±(β
∗)
)

of an unique PDE that admits the underlying function as a solution in prob-

ability.

2Results provided in Subsections 2.7.2 and 2.7.3 can be reproduced via MATLAB codes in
https://github.com/namjoonsuh/PDE-identification.
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2. Given assumption (A2) for some µ ∈ (0, 1], sampled incoherence parameter µ′ con-

verges to ground-truth µ in probability with large enough data points.

The experiment is conducted over two PDE models, Viscous Burgers’ equation and

KdV equation introduced in Subsection 2.7.1. We generate the data by setting ν = 0.03 in

(2.15). In Figure 2.1, the probability of signed-support recovery P[S±(β̂) = S±(β
∗)] versus

the grid size of temporal dimension N , and ∥ẑSc∥∞ versus N are recorded on the same plot

for respective models. Each point on each curve, which represents P[S±(β̂) = S±(β
∗)],

in (a) and (b) corresponds to the average over 100 trials. For each iteration, the hyper-

parameter λN is chosen in an “optimal” way: we used the value yielding the correct number

of nonzero coefficient. With the chosen λN , ẑSc is calculated as given in (2.11). Note that

(2.11) can be calculated only when the ℓ1-PsLS finds λN that gives the minimizer of (2.8)

β̂λ such that β̂λ
Sc = 0 and S(β̂λ) ⊆ S(β∗). For this reason, boxplots of ∥ẑSc∥∞ in (a)

and (b) are drawn from the point when ℓ1-PsLS starts to find such λN . For both models,

P[S±(β̂) = S±(β
∗)] goes to 1, as we observe more data points on finer grid. Furthermore,

it is worth noting that the strict dual feasibility condition (i.e., ∥ẑSc∥∞ < 1) holds for both

cases. In Figure 2.2, boxplots of ∥Q̂N∥∞ versus N are displayed for Viscous Burgers’

equation and kDV equation respectively. A dotted horizontal line in each panel represents

1 − µ calculated from the ground-truth feature matrix F. Notice that as the number of

observed data gets larger, the sampled incoherence parameter goes below the dotted lines

for both models.

2.7.3 Impact of β∗
min in Signed-Support Recovery of ℓ1-PsLS

Theorem 2.4.1 states that as long as β∗
min := mini∈S |β∗

i | is beyond certain threshold, ℓ1-

PsLS is signed-support recovery consistent. In this subsection, we design an experiment

to numerically confirm this claim. The experiment is performed over Viscous Burgers’

equation by varying the coefficient ν in (2.15) : we set ν = 0.03, 0.02, 0.01, 0.005 The
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Figure 2.1: Probability of signed-support recovery P[S±(β̂) = S±(β
∗)] versus the grid size

of temporal dimension N , and ∥ẑSc∥∞ versus N are recorded on the same plot for Viscous
Burger’s equation in panel (a) and for KdV equation in panel (b), respectively.

(a) Viscous Burgers (b) KdV
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Figure 2.2: Boxplots of ∥Q̂N∥∞ versus N are displayed for Viscous Burgers’ equation in
panel (a) and KdV equation in panel (b), respectively.
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Figure 2.3: Left panel (a) displays the curves representing P[S±(β̂) = S±(β
∗)] versus N ,

when ν = 0.03, 0.02, 0.01, 0.005. Right panel (b) exhibits the range of λN for which ℓ1-
PsLS gives the solution β̂λ such that S(β̂λ) ⊆ S(β∗) with respect to N , when ν is set as
0.005.

Figure 2.3 (a) displays the curves representing P[S±(β̂) = S±(β
∗)] versus N for each of

the four cases. Each point on each curve represents the average over 100 trials. The Figure

2.3 (b) exhibits the range of λN for which ℓ1-PsLS finds the support of β̂λ that is contained

within the true support, when ν is set as 0.005. More specifically, boxplots in (b) record

the range of λN that picks ûxx as the selected argument. In (a), we can check that, as the

magnitude of mini∈S |β∗
i | decreases from 0.03 to 0.01, ℓ1-PsLS requires more data-points

for the signed-support recovery, and when mini∈S |β∗
i | drops to 0.005, ℓ1-PsLS fails to

recover the governing PDE. On the other hand, (b) says that there exists a range of λN for

which ℓ1-PsLS can still recover a subset of β∗, while the perfect signed-support recovery

is difficult.

2.8 Discussion

We present future directions that can be further explored based on our ℓ1-PsLS method.

1. Recall that our theory utilizes the equivalent kernel theory for Local-Polynomial re-

gression [67], stating that the higher-order Local-Polynomial smoothing is asymp-
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totically equivalent to higher-order kernel smoothing. Due to this construction, our

theory cannot characterize the convergence behavior of signed-support recovery of

ℓ1-PsLS, when the number of observations is small. We conjecture that the uniform

convergence rate of the Local-Polynomial estimator with exponential decay can be

obtained in a non-asymptotic sense, by using a similar technique employed in [106].

They impose an assumption that the regression function belongs to the Hölder class.

They manipulate the closed-form solution of the Local-Polynomial estimator so that

the difference of the estimator and the regression function has a special form that

can be controlled by the Bernstein’s inequality. It would be an interesting research

direction to see whether this technique can be employed in our setting.

2. The choice of the bandwidth parameter is essential in Local-Polynomial fitting, thereby

having a significant impact on support recovery of PDE problem via ℓ1-PsLS. It

is worth noting that [69] employed the substitution method in [107] based on the

asymptotic Mean Integrated Squared Error for the specific choices of the constant

factors of the bandwidth parameter. However, the method is only limited to the local-

quadratic estimator and is not applicable to our setting, which requires a higher-order

smoothing estimator. In our numerical experiments, we choose the constant factors

of bandwidth parameters hN and wM manually. It only provides an ad-hoc guidance

of bandwidth selection. Developing a data-driven bandwidth selection procedure for

ℓ1-PsLS is a worthy topic for future research.

3. In practice, we need to set Pmax large so as to avoid the model misspecification.

Specifically, when Pmax is set to be very large, the dimension of columns of F̂ can

be approximated as K ≈
(
Pmax + 1

)2 in our problem setting. (Recall that we set

K = 1 + 2(Pmax + 1) +
(
Pmax+1

2

)
.) Under finite grid size NM , it is a possible

scenario in which we have K ≫ NM . Can we reduce the computational burdens

in this case? As one possible direction, we can think of using the Sure Indepen-
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dence Screening (SIS) process [108] before solving ℓ1-PsLS in (3.7). SIS is a dimen-

sion reduction technique before implementing variable selection algorithms, such as

LASSO, SCAD, LARS, etc. In our case, for implementing SIS, we need to compute

the marginal correlation between the response vector ut and columns in F̂, denoted

as ω = F̂⊤ût ∈ RK . The paper [108] proved that with a certain choice of d, it is

guaranteed that all the relevant predictors in F̂ with ût are included under regularity

conditions on F̂. Then, we may choose the largest d entries of the vector |ω|, such

that K ≫ NM ≫ d. The computational complexities of solving (3.7) via the well-

known LARS algorithm [109] is known to be in the order of O
(
NMp·min(NM, p)

)
,

where p is set to be K before implementing the SIS and d after implementing the SIS.

However, we need further studies on whether SIS will work well in the PDE identi-

fication problem, with theoretical guarantees. We leave this as a future work.

4. As one of the referees mentioned, the Theorem 2.4.1 cannot provide a guideline in

practice, whether the selected model excludes crucial terms or even includes the ir-

relevant terms. To the best of the our knowledge, this is largely an open problem in

the PDE identification context. From statisticians’ viewpoint, we can suggest con-

structing a hypothesis testing, for j ∈ {1, 2, . . . , K}, H0 : β̂λ
j = 0 v.s. H1 : β̂λ

j ̸= 0.

However, this is a challenging problem since we need to derive the distribution of the

estimated coefficient β̂λ
j for each j ∈ {1, . . . , K}. We are aware of the work [110] on

constructing the confidence intervals of the LASSO estimator β̂λ
j under the classical

i.i.d. centered normal error distribution. Nonetheless, this assumption is not applica-

ble in our problem setting, and requires further investigations. We leave this problem

as a future work.

5. It is worth noting that our paper is about model selection consistency of PDEs un-

der noisy data and we consider the study on the estimation accuracy of the selected

model is beyond the scope of our work. Nevertheless, it is still of importance to in-
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vestigate whether the regression-based PDEs give a solution that closely resembles

the original one. In practice, we suggest using the least-squares estimate with the the

selected features through ℓ1-PsLS; that is, given that the ℓ1-PsLS selects the true sup-

port set S , then the least-squares estimate has a form: β̂LS :=
(
F̂⊤

S F̂S
)−1

F̂⊤
S ût. Note

that β̂LS can avoid the bias introduced from λN and gives the consistent estimate

than ℓ1-PsLS. Although not reported in the paper, we verify that the least-squares

estimate β̂LS works pretty well for the cases of KdV and viscous Burger’s equations

in Section 2.7 in terms of estimation. We leave the study on the theoretical properties

of this estimator as the future work. For more specific application with smaller data,

there are related works with more refined model selection procedure, including [83]

and [111]. We refer the readers these works and references therein.
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CHAPTER 3

HIGH-DIMENSIONAL MULTIVARIATE LINEAR REGRESSION WITH

WEIGHTED NUCLEAR NORM REGULARIZATION

3.1 Introduction

We consider the problem of recovering an unknown coefficient matrix Θ⋆ ∈ Rd1×d2 from

n observations of the response vector yi ∈ Rd2 , 1 ≤ i ≤ n, and predictor xi ∈ Rd1 , where

the ground truth model is as follows:

Y = XΘ⋆ +E, (3.1)

where Y = (y1, . . . , yn)
⊤ is an n× d2 matrix, X = (x1, . . . , xn)

⊤ is an n× d1 matrix, and

E = (e1, . . . , en)
⊤ is an n× d2 regression noise matrix. The vectors {ej}nj=1 are indepen-

dently sampled from N (0, σ2 · Id2×d2) with variance parameter σ2 > 0. Throughout the

paper, we write p := min(d1, d2), r⋆ := rank(Θ⋆) and Im×m as an m×m identity matrix.

The observational model (3.1) is referred to as a multivariate linear regression model in the

statistics literature. This model is particularly attractive when there exists a dependence

structure in the multivariate response, where the response matrix Y can be represented

with a linear combination of only a small number of linearly transformed predictors. The

situation is induced from the assumption that the coefficient matrix Θ⋆ has a low rank, that

is r⋆ ≪ p.

To estimate Θ⋆ with a low rank structure, given the noisy measurement pair (X,Y ),

previous research has incorporated weighted nuclear norm (WNN) penalization with least

square method for various applications, such as in computer vision ([112, 113, 114, 115]),

biogenesis ([116]), and wireless system ([117]), but we are not aware of papers that develop

estimation properties for penalized least square estimator with WNN penalty, which can be
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expressed as

Θ̂ := argmin
Θ∈Rd1×d2

{
1

2n
∥Y −XΘ∥2F + λn ∥Θ∥ω,⋆

}
(3.2)

with the weighted nuclear norm

∥Θ∥ω,⋆ =

p∑
j=1

ωjσj(Θ), (3.3)

where σj(Θ) means the j th largest singular value of a matrix Θ ∈ Rd1×d2 ,ω = (ω1, ..., ωp),

ωj is a non-negative weight assigned to σj(Θ), λn ≥ 0 is a hyper-parameter, and ∥ · ∥F :=√∑p
j=1 σj(·)2 is the Frobenius norm.

On the other hand, there are a myriad of papers that studied the statistical properties of

estimators related to standard nuclear norm (SNN) penalization, which is a special case of

WNN with ω1 = · · · = ωp = 1. Among them, [118] studied the least-squares problem

with SNN penalization. Other literature studied the SNN under a more general model

than multivariate linear regression (3.1) called trace regression ([47], [119], [5], [120]).

Additionally, [121] investigated the SNN problem under a generalized trace regression

problems for categorical responses, and [122] worked on obtaining the same minimax rate

of a trace regression problem with [5] under the heavy-tail assumption on the design matrix

and observational noise. The estimators from these SNN methods may still suffer higher

bias than the estimator from the WNN method and generally has an estimator associated

with higher rank. To support this observation, we demonstrate a simulation example that

compares our WNN method with the SNN method ((3.2) with ω1 = · · · = ωp = 1 in (3.3))

for estimating the singular values of Θ⋆. The simulation setting is described in details in

Section 5.1. The result is summarized in Figure 1, and shows that our method achieves

a satisfactory result within two iterations of loop with sample size n = 250 (Panel (A)),

whereas there is still a slight bias on each of the estimated singular value from SNN with

n = 250 (Panel B) and even with n = 1000 (Panel (C)). Such phenomenon is observed

because WNN possesses flexibility to put the small weights on large singular values to
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Figure 3.1: Three panels display the plots of estimated sigular values versus ground truth
singular values σ⋆

j . The first two panels (A) and (B) are results from WMVR-ADMM
algorithm with one weight update iteration under n = 250. The panel (C) exhibits the
result when the estimator is obtained from SNN penalized least squares under n = 1000.

reduce the bias and to put the large weights on small singular values to encourage the

estimated matrix to have a low rank.

Developing theoretical properties for the estimator from optimization problem (3.2)

with (3.3) is non-trivial because finding the estimator is a non-convex problem under the

desirable weights 0 ≤ ω1 ≤ ω2 ≤ · · · ≤ ωp. This makes the problem quite different from

the adaptive lasso ([15]) in the context of sparse linear regression, which is always a convex

optimization problem once the weights are fixed. [16] may be most related to our paper but

they considered the WNN penalization on XΘ instead of directly on Θ, which still does

not provide the statistical properties for (3.2) with (3.3). Their theoretical analysis of [16]

is focused on the behavior of prediction error, not like the estimation error developed in

this paper.

Our contribution can be summarized into threefolds. First, we extend the classical

alternative direction method of multipliers (ADMM) algorithm [37] to solve (3.2) with

(3.3) and show that the sequence of tuples generated from the suggested algorithm con-

verges uniquely to a stationary point of the augmented Lagrangain function. Furthermore,

several estimation proprieties of the proposed estimator is derived, which provides more

insights in understanding the proposed estimator from WMVR-ADMM algorithm. In this

perspecitve, our paper provides a theoretical explanation on the role of weights for estimat-
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ing the ground-truth coefficient matrix, and provide a non-asymptotic convergence rate of

its singular values to its ground-truth counterparts. To be more specific, the result shows

that the smaller weights compared to 2σ are desirable for estimating the non-zero σj(Θ
⋆)s,

whereas the larger weights than 2σ are required for estimating zero σj(Θ
⋆)s under a proper

choice of λn. Under a Gaussian random design setting, we derive the minimax rate of the

estimation error by adopting the technique used by [5] under high-dimensional regime (i.e.,

n ≪ d1d2). Finally, we develop a data-driven method for choosing the value of the tuning

weights parameters w1, · · · , wp and the penalty parameter λn in (3.2) for practical use.

The rest of the paper is organized as follows. In Section 3.2, we introduce the details

of WMVR-ADMM and provide a theorem on the algorithm’s convergence guarantees. In

Section 3.3, statistical properties of the estimator are provided. First, in the orthogonal de-

sign setting, the non-asymptotic convergence rate of the singular values from the proposed

estimator, {σj

(
Θ̂
)
}pj=1, is provided. Second, under a Gaussian random design, we obtain

the minimax rate of the estimation error. In Section 3.4, a two-stage data-driven method for

updating weights and choosing the regularization parameter is detailed. In Section 3.5, we

compare the performance of our estimator with SNN and an estimator from [16] in terms of

estimation error under various model parameter settings, and apply our algorithm to a real

data set to demonstrate the validity of WMVR-ADMM in practice. Finally, we conclude

our paper with the discussion section.

3.2 WMVR-ADMM and Convergence Analysis

To develop an algorithm for solving the non-convex optimization problem (3.2), we start

with reformulating (3.2) as follows:

min
Θ,Γ

{
f(Θ) + g(Γ)

}
s.t. Θ = Γ ∈ Rd1×d2 , (3.4)
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by letting f(Θ) := λn∥Θ∥ω,⋆ and g(Γ) = 1
2n
∥Y − XΓ∥2F. This reformulation naturally

leads to the construction of an augmented lagrangian function Lρ

(
Θ,Γ,Λ

)
: For any ρ > 0

and dual variable Λ ∈ Rd1×d2 , we define,

Lρ

(
Θ,Γ,Λ

)
:= f(Θ) + g(Γ) + tr

(
Λ⊤(Θ− Γ

))
+

ρ

2
∥Θ− Γ∥2F. (3.5)

Then, we solve the following three optimization problems repeatedly until primal and dual

feasibility condition hold; that is, repeat Steps 1-3,

Step 1. Θ(k+1) = argmin
Θ∈Rd1×d2

Lρ

(
Θ,Γ(k),Λ(k)

)
,

Step 2. Γ(k+1) = argmin
Γ∈Rd1×d2

Lρ

(
Θ(k+1),Γ,Λ(k)

)
,

Step 3. Λ(k+1) = Λ(k) + ρ
(
Θ(k+1) − Γ(k+1)

)
,

until ∥Θ(k+1) − Γ(k+1)∥F ≤ 10−7 and ∥Γ(k+1) − Γ(k)∥F ≤ 10−7. Here, we denote the tuple

(Θ(k),Γ(k),Λ(k)) as the updated parameters at kth iteration of the algorithm. Note that the

non-convexity of the landscape of the objective function in Step 1 arises from the WNN

( i.e., ∥ · ∥ω,⋆) over Θ with fixed Γ(k),Λ(k), whereas the objective function in Step 2 is a

simple quadratic function of Γ with fixed Θ(k+1),Λ(k).

The algorithm is conducted by initializing Θ(0) = Γ(0) = Λ(0) = 0 ∈ Rd1×d2 . Next,

the key of our algorithm is that a closed-form solution of Step 1 can be obtained, even if

it is a non-convex problem. We state the result in Lemma 3.2.1 whose proof is deferred in

Section A of Supplemental Material.

Lemma 3.2.1 Let Θ(k+1) be the minimizer of Step 1. Denote B(k) := −Λ(k)+ ρ ·Γ(k) and
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its SVD as UBDB
(
V B
)⊤. Then, for any fixed λn, ρ ≥ 0 and 0 ≤ ω1 ≤ · · · ≤ ωp,

Θ(k+1) = UBSλnω

(
DB)(V B)⊤,

Sλnω

(
DB) = diag

{
max

{
1

ρ

(
σj(B

(k)
)
− λnwj

)
, 0

}
, j = 1, . . . , p

}
.

Furthermore, if all the non-zero singular values of B(k) are distinct, then the solution

Θ(k+1) is unique.

For the optimization problem in Step 2, it can be rewritten and solved as follows:

Γ(k+1) = argmin
Γ∈Rd1×d2

Lρ

(
Θ(k+1),Γ,Λ(k)

)
= argmin

Γ∈Rd1×d2

{
tr
(
Γ⊤
(

1

2n
X⊤X +

ρ

2
· Id1×d1

)
Γ−

(
1

n
Y ⊤X + ρ ·Θ(k+1) +Λ(k)

)⊤

Γ

)}
(3.6)

=

(
1

n
X⊤X + ρ · Id1×d1

)−1(
1

n
Y ⊤X + ρ ·Θ(k+1) +Λ(k)

)
. (3.7)

Note that the quadratic equation (3.6) always has an unique minimizer (3.7) as long as ρ >

0. With the updated Θ(k+1) and Γ(k+1) from Steps 1, 2, we can easily update Λ(k) to Λ(k+1)

through Step 3. The final output of WMVR-ADMM is a minimizer of Lρ

(
Θ,Γ(T −1),Λ(T −1)

)
in Step 1, where T denotes the last iteration index of the algorithm. Therefore, as long as

all the non-zero singular values of B(T ) are distinct, then the results estimator from re-

peating Steps 1-3 has an unique solution. The entire implementation is summarized in

Algorithm 1 and named Weighted Multi-Variate-Regression-ADMM (WMVR-ADMM)

algorithm. Note that WMVR-ADMM algorithm can be easily extended to trace regres-

sion model, which is a general model of multivariate linear regression model.1 In order

for the concise presentation of the paper, we defer the detailed descriptions of the extended

algorithm to trace regression model in the Section G of Supplemental Material.

1Refer [5] for checking how to translate MVLR to trace regression model.
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Input : A measurement pair
(
X,Y

)
, λn ≥ 0 and weights 0 ≤ ω1 ≤ · · · ≤ ωp.

Initialization : Θ(0) = Γ(0) = Λ(0) = 0 ∈ Rd1×d2 .
Repeat the following Steps :

Step 1. Let B(k) := −Λ(k) + ρ · Γ(k). B(k) = UBDB
(
V B
)⊤.

Set Sλnω

(
DB
)
= diag

{
max

{
1
ρ

(
σj(B

(k)
)
− λnwj

)
, 0

}
for

j = 1, . . . , p

}
.

Θ(k+1) = UBSλnω

(
DB
)(
V B
)⊤

Step 2. Γ(k+1) =
(
1
n
X⊤X + ρ · Id1×d1

)−1( 1
n
Y ⊤X + ρ ·Θ(k+1) +Λ(k)

)
.

Step 3. Λ(k+1) = Λ(k) + ρ
(
Θ(k+1) − Γ(k+1)

)
.

Until ∥Θ(k+1) − Γ(k+1)∥F ≤ 10−7 and ∥Γ(k+1) − Γ(k)∥F ≤ 10−7.
Output : Θ̂ = Θ(k+1).

Algorithm 1: ADMM for Weighted Multi-Variate Regression. (WMVR-ADMM)

The convergence of the proposed algorithm is shown in Theorem 3.2.2 with its proof

given in Section B of Supplemental Material. The proof is motivated from [123] and [115].

Theorem 3.2.2 Set ρ > 2L∇g with L∇g := σ1

(
1
n
X⊤X

)
. The sequence {(Θ(k),Γ(k),Λ(k))}k≥1

from WMVR-ADMM converges globally to the unique stationary point of Lρ(Θ,Γ,Λ).

The threshold for penalty parameter ρ can be computed from data. In the theorem, “glob-

ally” means regardless of where the initial point under non-convex landscape of (3.5). The-

orem 3.2.2 is verified numerically in Section 3.5.1. The uniqueness claim is due from the

fact that the augmented lagrangian function (3.5) is a Kurdyka-Lojasiewicz (KL) function.

This is further elaborated in Section B of Supplemental Material with relevant references.

3.3 Statistical Properties of the Estimator

3.3.1 Statistical Properties of Θ̂ under the Orthogonal Design

We first study the convergent rate of the estimated eigenvalues under orthogonal design

setting is studied, which sheds lights on understanding the role of weights on the estimation

of singular values. The result is summarized in the following proposition.
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Proposition 3.3.1 Let Û LSD̂LS
(
V̂ LS

)⊤ be SVD of the least-squares estimator Θ̂LS :=(
X⊤X

)−1
X⊤Y . Then, under the orthogonal design (i.e., X⊤X = nId1×d1), SVD of

the minimizer of (3.2) has the following closed-form solution: Θ̂ := Û LSD̂
(
V̂ LS

)⊤, where

the diagonal entry of D̂ is: σj

(
Θ̂
)
= max

(
σj

(
Θ̂LS

)
−λnωj, 0

)
for j = 1, . . . , p. Further-

more, suppose λn =
√

d1+d2
n

. Then, with probability at least 1−2 exp(−(
√
d1+

√
d2)

2/2),

we have,

∣∣∣σj

(
Θ̂
)
− σj

(
Θ⋆
)∣∣∣ ≤ max

(
4σ, 2ωj

)
·
√

d1 + d2
n

, (3.8)

for j such that σj

(
Θ⋆
)
> 0. With the same probability bound, we have,

∣∣∣σj

(
Θ̂
)∣∣∣ ≤ min

(
2σ, ωj

)
·
√

d1 + d2
n

, (3.9)

for j such that σj

(
Θ⋆
)
= 0.

The proof of Proposition 3.3.1 can be found in Section C of Supplemental Material.

Based on the closed-form solution of Θ̂ in Proposition 3.3.1, under the orthogonal design

assumption, each estimated singular value has a form max
(
σj

(
Θ̂LS

)
− λnωj, 0

)
for j ∈

{1, . . . , p}. Then, for the fixed λn, it is easy to see that the large weights for small singular

values of Θ̂LS can induce the sparsity among the singular values of Θ̂. Furthermore, the

proposition states that with an appropriate choice of tuning parameter λn, the singular

values of the Θ̂ are consistently estimated. Bounds in (3.8) and (3.9) provide us with

the guideline for the choices of weights. That is, for the set of indices of σj

(
Θ⋆
)
> 0,

the corresponding weights ωjs need to be set lower than the twice of variance size of the

measurement error σ, whereas, for the set of indices whose σj

(
Θ⋆
)
= 0, the corresponding

weights can be set even higher than 2σ. This is consistent with our intuition that we need

small weights for estimating non-zero singular values of Θ⋆, whereas large weights are

required for the consistent estimation of zero singular values of Θ⋆.
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3.3.2 Estimation Error under Random Design

We further study the estimation error under a random design assumption in the Frobenius

norm (i.e., ∥Θ̂−Θ⋆∥2F). Proving the main results requires extra technical assumptions: (I)

A design matrix X is assumed to be random, whose rows are independently sampled from

d1-variate N (0,Σ) distribution for some positive definite covariance matrix Σ ∈ Rd1×d1 ,

and (II) The exact low rank assumption of Θ⋆ is relaxed to a nearly low-rank matrix by

requiring that the {σj

(
Θ⋆
)
}pj=1 decays fast enough. Specifically, for a parameter q ∈ [0, 1]

and a radius r⋆, we assume that

Θ⋆ ∈ Bq(r
⋆) :=

{
Θ ∈ Rd1×d2 :

p∑
j=1

∣∣σj

(
Θ⋆
)∣∣q ≤ r⋆

}
.

Note that when q = 0, the set Bq(r
⋆) becomes the set of matrices with rank at most r⋆, and

(III) Θ̂ is a global minimizer of (3.2).

Additionally, we also need to define two extra technical terminology to understand

more insights of the estimation errors: (I) restricted strong convexity of the cost function

Ln(Θ) := 1
2n

∥Y −XΘ∥2F around Θ⋆ and (II) the characterization of set where the asso-

ciated error matrix ∆̂ = Θ̂ −Θ⋆ belongs. In high-dimensional setting where n ≪ d1d2,

although the function Ln(Θ) might be curved in some directions, there are
(
d1d2 − n

)
directions where it is flat up to second order. We hope that the associated error matrix ∆̂

lies in some directions C ⊆ Rd1×d2 where the Ln(Θ) is curved. This notion is expressed as

follows: for some positive constant κ > 0,

En
(
∆̂) ≥ κ∥∆̂∥2F for all ∆̂ ∈ C, (3.10)

where En
(
∆̂) denotes the first order Taylor-expansion error of Ln(·) around Θ⋆. In other

words, we call En
(
∆̂) succeeds “restricted strong convexity” (RSC) over the set C if there

exists κ > 0. Fortunately, we can prove that the RSC condition indeed holds with κ =
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σmin(Σ)
18

in high probability over Rd1×d2 under multivariate regression model with Gaussian

ensemble 2, where σmin(Σ) denotes a minimum eigenvalue of Σ.

Before we formally state the lemma that characterizes the set C, let us introduce relevant

notation. Denote U ⋆ and V ⋆ as the left and right singular matrices of Θ⋆. The Mr

(
U ,V

)
(

resp. M⊥
r

(
U ,V

)
) corresponds to subspace of matrices with non-zero left and right singular

vectors associated with the first r ( resp. remaining (p− r) ) columns of U ⋆ and V ⋆. That

is, for any given integer r ≤ p, we have

Mr

(
U ,V

)
=
{
Θ ∈ Rd1×d2 : colspan(Θ) ⊆ U , rowspan(Θ) ⊆ V

}
M⊥

r

(
U ,V

)
=
{
Θ ∈ Rd1×d2 : colspan(Θ) ⊆ U⊥, rowspan(Θ) ⊆ V⊥}.

Then, U and V are the r-dimensional subspaces of vectors from the first r columns of

matrices U ⋆ and V ⋆. Moreover, U⊥ and V⊥ denote the subspaces orthogonal to U and V ,

respectively, and colspan(Θ) and rowspan(Θ) denote the column space and row space of

Θ. Hereafter, we will omit U and V from the notations, if they are clear from the context.

The notation can be used to characterize the set C as shown in the lemma below:

Lemma 3.3.2 Suppose Θ̂ is an global minimizer of the (3.2) obtained from WMVR-ADMM,

with the associated matrix ∆̂ = Θ̂−Θ⋆. Set the weights 1
2
< ω1 ≤ · · · ≤ ωp and suppose

regularization parameter is chosen such that λn ≥ 2
n

∥∥X⊤E
∥∥

op. Let ∥ · ∥⋆ :=
∑p

j=1 σj(·).

Then, for a positive integer r ≤ p, we have

C
(
ω; r; δ

)
:=

{
∆̂ ∈ Rd1×d2 : ∥∆̂′′∥⋆ ≤

2wp

w1 − 1
2

p∑
j=r+1

σj

(
Θ⋆
)
+

2wp − w1 +
1
2

w1 − 1
2

· ∥∆̂′∥⋆
}
,

(3.11)

where ∆̂′′ ∈ ΠM⊥
r

(
∆̂
)

and ∆̂′ = ∆̂− ∆̂′′. Let ΠM⊥
r

denote the projection operator onto

the subspace M⊥
r .

2See Lemma 2 in [5] and Section E of Supplemental Material.

81



A detailed proof of Lemma 3.3.2 is deferred in Section D of Supplemental Material. The

lemma shows that the subset C corresponds to the matrices ∆̂ for which the quantity ∥∆̂′′∥⋆

is relatively small compared to the weighted sum of ∥∆̂′∥⋆ and (p − r) remaining singu-

lar values of Θ⋆. The weights put in ∥∆̂′∥⋆ and
∑p

j=r+1 σj

(
Θ⋆
)

are functions of a pair

(ω1, ωp), and this pair characterizes size of the subset C. We restrict the case ω1 > 1
2

for a

technical reason. The closer ω1 gets to 1
2

and the larger ωp we have, the bigger the size of

C becomes. Also, Lemma 3.3.2 shows that plugging in ω1 = · · · = ωp = 1 recovers one of

constraints that are used to define the set in Lemma 1 of [5]. A notable difference between

the set in (3.11) and the set defined in [5] is the existence of the constraint, ∥∆̂∥F ≥ δ,

where δ > 0 is a tolerance parameter. This constraint is used to eliminate the open ball

that is contained within the set C, to ensure RSC condition holds over C, even when En
(
∆̂)

fails strong convexity in a global sense. Nonetheless, as previously mentioned, since strong

convexity o Ln(Θ) holds globally in our problem setting, the constraint ∥∆̂∥F ≥ δ is not

required.

With the RSC condition and Lemma 3.3.2, we can further show that the estimation

error converges to 0 at a minimax rate, whose proof is given in Section E of Supplemental

Material.

Theorem 3.3.3 The regularization parameter is chosen such that λn = 10σ∥Σ∥op

√
d1+d2

n

and weights are set as 1
2
< ω1 ≤ · · · ≤ ωp. Define W :=

wp

(
2wp−w1+

1
2

)
w1− 1

2

. Then, there

are universal constants {ci, i = 1, 2, 3} such that any minimizer Θ̂ of (3.2) satisfies the

following bound:

∥∥∥Θ̂−Θ⋆
∥∥∥2

F
≤ c1W2

(
σ2∥Σ∥2op

σ2
min(Σ)

)1−q/2

· r⋆
(
d1 + d2

n

)1−q/2

. (3.12)

with probability at least 1− c2 exp(−c3(d1 + d2)).

Here, ∥Σ∥op denotes the spectral norm of the matrix Σ. Notably, when Θ⋆ ∈ Bq(r
⋆) is an

exact rank r⋆ matrix (i.e., q = 0) and Σ = Id1×d1 , convergence rate of the estimation error
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becomes O
(
W2 σ

2r⋆(d1+d2)
n

)
up to a constant factor. The quantity r⋆(d1 + d2) counts the

degrees of freedom in the model, and the rate is known to be minimax optimal for estimat-

ing a d1 × d2 matrix with rank r⋆. See [5, 120, 124]. It is worth noting that the information

on weights is solely encoded in factor W . This factor allows a natural comparison of esti-

mation rates between SNN and WNN, and we defer the discussion on this comparison to

Section 3.6.

3.4 Data-driven Model Selections

3.4.1 Surrogate Estimator Θ̂SR for the GCV statistic

A surrogate estimator Θ̂SR is developed for approximating the estimator Θ̂. From Propo-

sition 3.3.1, we know Θ̂ := ÛLSD̂
(
V̂ LS

)⊤, where the diagonal entry of D̂ is: σj

(
Θ̂
)
=

max
(
σj

(
Θ̂LS

)
− λnωj, 0

)
for j ∈ {1, . . . , p}. Hereafter, for the convenience of nota-

tion, we denote d̂j := σj

(
Θ̂
)
, for j ∈ {1, . . . , p}. Then, we define the following matrix

K ∈ Rd1×d1:

K := ÛLSD̂K(ÛLS)⊤ :=
r̂∑

j=1

ωj

d̂j
ÛLS

j

(
ÛLS

j

)⊤
, (3.13)

where r̂ denotes the cardinality of a set {j : d̂j > 0}. We provide the following proposition,

whose proof is deferred in Section F of Supplemental Material.

Proposition 3.4.1 For a fixed K that is defined in (3.13), we denote Θ̂SR as the minimizer

of the following surrogate optimization problem :

Θ̂SR := argmin
Θ∈Rd1×d2

{
1

2n
∥Y −XΘ∥2F +

λn

2
tr
(
Θ⊤KΘ

)}
. (3.14)
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Then, under orthogonal design (i.e., X⊤X = nId1×d1), Θ̂SR = Û LSD̂SR
(
V̂ LS

)⊤, where

D̂SR
jj =


d̂j j = 1, 2, . . . , r̂,

σj

(
Θ̂LS

)
j = r̂ + 1, . . . , p.

Note that as long as Θ̂LS is a full-rank, Θ̂SR is a full-rank matrix whose first r̂ singular

values are identical to those of Θ̂, and remaining (p − r̂) singular values are equal to the

corresponding singular values of Θ̂LS. Although the result of Proposition 3.4.1 is stated

under orthogonal design assumption, we also empirically demonstrate that the same results

hold under non-orthogonal design in Figure 3.2. Specifically, under the same experimental

setting of Figure 3.1, Θ̂ is a minimizer of (3.2) obtained via WMVR-ADMM with the

weight updating scheme, which will be defined later. In this experiment, the minimum

absolute off-diagonal entry of X⊤X is 0.00157, which implies X is a non-orthogonal

design. The result in Figure 3.2 is consistent with the statement in Proposition 3.4.1.
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Figure 3.2: Under non-orthogonal X , panel (A) displays the plot of the first 50 singular
values of Θ̂ versus Θ̂SR. Panel (B) exhibits the plot of the remaining 200 singular values
of Θ̂LS versus Θ̂SR.
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3.4.2 GCV Statistic and Weight Updates

The closed form solution of the surrogate estimator (3.4.1) can be used to tune the hy-

perparameters λn and weights ω1, · · · , ωp in (3.2) with (3.3). We divide the process for

tuning the parameters into two procedures. In the first procedure, we propose the following

iterative algorithm that alternates between estimating Θ⋆ and updating weights.

(I) Set the iteration count ℓ to 0 and weights ω(0)
1 = · · · = ω

(0)
p = 1.

(II) For the fixed λn, solve (3.2) via WMVR-ADMM with the weights {ω(ℓ)
j }pj=1, and

denote the solution as Θ̂(ℓ).

(III) Update weights : for each j ∈ {1, . . . , p},

ω
(ℓ+1)
j =

1

σj(Θ̂(ℓ)) + ϵ
. (3.15)

(IV) Terminate until convergence or when ℓ attains a pre-specified maximum number of

iterations. Otherwise, increment ℓ and go to step (II).

The introduced parameter ϵ > 0 in step (III) guarantees that, for any j ∈ {1, . . . , p},

the (ℓ + 1)th updated weight ω(ℓ+1)
j is computable, even when σj(Θ̂

(ℓ)) = 0. The recovery

process of Θ⋆ is reasonably robust to the choice of ϵ, and we set ϵ = 10−3 hereafter.

The choice ϵ = 10−3 may appear a little bit arbitrary, but works well in practice. The

resulting estimator from the first procedure is denoted by W(λn). We use a superscript

W in Θ̂W(λn) to indicate that the estimator is a converged solution from weight updating

procedure introduced above, and use λn to denote the estimator is obtained from a fixed

hyper-tuning parameter λn.

The second procedure is designed for choosing parameter λn. We develop a GCV type

of statistic [125], which is more computationally efficient than the ordinary CV (Cross Vali-

dation) method, especially in large scale problems. This can be done by using the surrogate
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estimator Θ̂SR for approximating the degrees of freedom of Θ̂W(λn) from the first proce-

dure. That is, given Θ̂W(λn), we can construct KW from (3.13). Then, by proposition

3.4.1, we can define the projection matrix (hat matrix) for the regression problem (3.14) by

X
(
X⊤X + λnnK

W
)−1

X⊤ and approximate the degrees of freedom of Θ̂W(λn) as

df(λn) ≈ d2tr
(
X
(
X⊤X + λnnK

W)−1
X⊤). (3.16)

Thus, the GCV score for Θ̂W(λn) is given by

GCV(λn) :=
tr
((
Y −XΘ̂W(λn)

)(
Y −XΘ̂W(λn)

)⊤)
d1d2 − df(λn)

, (3.17)

and the optimal λ⋆
n for which GCV(λn) is obtained by minimizing the GCV score (3.17)

over the search range λn ∈ [0, T ].

3.5 Numerical Experiments

3.5.1 Convergence of WMVR-ADMM

To demonstrate the convergence of the proposed algorithm WMVR-ADMM through some

simulation studies, we note that the convergences of the algorithm can be observed through

the following two quantities:

1. For checking the Primal residual convergence (i.e., Θ(k)−Γ(k) → 0 as k → ∞), and

Γ(k) convergence (i.e., Γ(k+1) − Γ(k) → 0 as k → ∞), we consider

R(k) := ∥Θ(k) − Γ(k)∥2F + ∥Γ(k+1) − Γ(k)∥2F.

2. For checking the objective convergence, we consider

O(k) :=
1

2n

∥∥Y −XΘ(k)
∥∥2

F + λn

∥∥Θ(k)
∥∥
ω,⋆

.
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The coefficient matrix of the simulation setting is generated from Θ⋆ = AB⊤ ∈

R250×50, where A,B ∈ R250×50 with each entry from N (0, 1). Each entry of X ∈ Rn×d1

is sampled from N (0, 1), and the noise matrix E are independently chosen from another

N (0, Id2×d2). Variance parameter σ is set as 1 with hyper-tuning parameter λn is set as

5
√

d1+d2
n

, where d1 = d2 = 250. Under the simulation setting with n = 250, we vary

the initialized tuple matrix values (Θ(0),Γ(0),Λ(0)) of WMVR-ADMM in Algorithm 1.

Entries of three matrices are sampled from N (0, ν2), where ν = {0, 0.1, 0.2, 0.5, 1, 1.5}.

Weights {ωj}pj=1 are updated once, and with the updated weights, R(k) and O(k) are calcu-

lated with the same data set (X,Y ) over all simulation scenarios. The resulting R(k) and

O(k) values are demonstrated in Figure 3.3, and the figure shows that both R(k) and O(k)

converge to 0 as k increases, regardless of the initializations of algorithm. This observation

is consistent with the claims in Theorem 3.2.2, and implies that the the converged solu-

tions from WMVR-ADMM have the same objective value on the non-convex landscape of

problem (3.2).
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Figure 3.3: Convergences of R(k) (panel (A)) and O(k) (panel (B)) over the algorithm
iteration index k. Regardless of random initializations, R(k) and O(k) converge to 0 and to
a same objective function value, respectively.
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3.5.2 Comparisons of Estimation Error with Other Methods

The simulation setting is following the setting in previous subsection with is d1 = 25,

d2 = 25, and the value r⋆ is the rank of the ground truth matrix and is chosen to be 2, 5, 8,

and 11. The sample sizes n are set to be 30, 300, and 3000, and the simulation is re-

peated 100 times. The estimation errors of the proposed method are recorded in terms

of the root mean squared errors (RMSE) between the estimated coefficient matrix and

the ground-truth matrix for each simulation. The results are compared with those from

SNN and ANN methods ([16]). Recall SNN estimator is equivalent to the model (3.1)

with {ωj}pj=1. As for ANN estimator, let ÛXLSD̂XLS
(
V̂ XLS

)⊤ be SVD of the matrix

XΘ̂LS := X
(
X⊤X

)−1
X⊤Y . Then, the estimator from Corollary 1 in [16] has a closed-

form solution as:

Θ̂ANN = Θ̂LSV̂ XLS(D̂XLS)−1Sλnω

(
D̂XLS)(V̂ XLS)⊤, (3.18)

where Sλnω

(
D̂XLS

)
= diag

{
max

{
σj(D̂

XLS) − λnwj, 0

}
for j = 1, . . . , p

}
. The three

methods WMVR-ADMM, SNN, and ANN include parameters needed to be tuned, and we

use the GCV tuning method from Section 4 for the tuning.

All results are demonstrated in Figure 3.4. The first row of Figure 3.4 shows the per-

formance of all methods under the case whose ground-truth matrix is rank 2 (r⋆ = 2),

and we observe that the averages of RMSEs from the WMVR-ADMM method are smaller

than those from other methods for all sample size cases. The second to fourth rows of

Figures 3.4 presents the RMSE results from rank r⋆ = 5, 8, and 11 cases, and the proposed

methods are still better than other methods in almost all cases. Additionally, the panels

in Figure 3.4 demonstrate that the RMSEs from the proposed estimator decrease to 0 as

the sample size increases. This shows the consistency property of the proposed estimator

empirically.

To show the effectiveness of the proposed weight updating scheme in Section 3.4, we
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Figure 3.4: The plots demonstrates the comparisons of estimation errors in terms of RMSEs
from the proposed method with ANN and SNN methods under different simulation settings.
The three figures in the first row (A) ∼ (C) are the comparison results from sample size 30,
300, and 3000, respectively, under the true rank r⋆ = 2. Analogously, Figures (D) ∼ (F)
(second row) are the results from r⋆ = 5, Figures (G) ∼ (I) (third row) are the results from
r⋆ = 8, and Figures (J) ∼ (L) (fourth row) are the results from r⋆ = 11.
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compare the weight setting suggested in [16] with our method. For comparison, we revisit

the synthetic setting used in Figure 3.1. Let Θ̂(1) be the SNN estimator, and denote ωWNN

and ωANN be the weight settings introduced in (3.15) and [16], which means

ωWNN
j =

(
σj(Θ̂

(1)) + 10−3
)−1

, ωANN
j = σj

(
XΘ̂LS)−2

, j = 1, . . . , 250. (3.19)

The two types of weights is implemented in Algorithm 1 to evaluate RMSEs. The

results are recorded in Figure 3.5: Panel (A) shows the two sequences of averaged weights

{ωj}250j=1 in (3.19) used for the estimation in logarithmic scale, and panel (B) exhibits 100

RMSEs with the respective weight scheme. While the difference of the first 50 weights

between two weight schemes is negligible, the effect of WNN-weight scheme is dramatized

for penalizing the remaining 200 singular values in comparison to ANN-weight scheme,

and this results in lower RMSEs in panel (B).

3.5.3 Application to A Real Dataset

The proposed method is applied to an important application in this section. The application

is about a study of Polycyclic Aromatic Hydrocarbons (PAHs) from Section 2.2.2 of [126].
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Figure 3.5: Two sequences of weights in (3.19) used for the estimation (panel (A)) and the
resulting RMSEs (panel (B)). Low RMSEs of WNN weights arise from the high penaliza-
tion on the remaining 200 singular values, when they are compared with RMSEs of ANN
weights.
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PAHs are ubiquitous environmental contaminants generated primarily during the incom-

plete combustion of some organic substances, such as coal, oil, rubbish, and wood. They

are linked with the causes of tumors and their effects on reproduction. PAHs are widely

used in industry or medicines to make dyes, plastics, and pesticides.

The dataset includes 10 PAHs, which is pyrene (Py), acenaphthene (Ace), anthracene

(Anth), acenaphthylene (Acy), chrysene (Chry), benzanthracene (Benz), fluoranthene (Flu-

ora), fluorene (Fluore), naphthalene (Nap), and phenanthracene (Phen), and 25 complex

mixtures of certain concentrations (with unit milligrams per liter) of these PAHs were

recorded, which indicates n = 25 and d1 = 10 in model (3.1). The mean and range values

of these mixtures of certain concentrations are plotted in Panel (A) of Figure 3.6. From

each of these mixtures, an electronic absorption spectrum is computed, The spectrum are

digitized at 5 nm intervals 27 wavelength channels from 220 nm to 350 nm, as shown in in

Panel (B) of Figure 3.6. This means there are 27 columns for X2 in model (3.1) (d2 = 27).

More details about the dataset can be found in Section 5.1.2 of [127] and Section 2.2.2 of

[126].

Figure 3.6: Demonstration of the mixture components of the PAHs (Y ) and the electronic
absorption spectrum of the 25 samples (X)
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Figure 3.7: (A) GCV Score Versus Tuning Parameters λ, (B) Solution Path, (C) Estimated
Coefficient Matrix.

We are mainly interested in using WMVR-ADMM to understand the association be-

tween the concentrations from PAHs (Figure 3.6 (A)) and the electronic absorption spec-

trum (Figure 3.6 (B)) through model (3.1). The method is conducted by following Algo-

rithm 1, and the optimal tuning parameter λn and weights w are selected by the proposed

GCV criterion described in Section 4. The resulting GCV scores are plotted in Figure 3.7

(A) with respect to value λn, showing the selected λn is around 0.039. The estimated

eigenvalues with respect to λn are plotted in Figure 3.7 (B), and under the optimal λn

and weights from the GCV criterion, the estimated coefficient matrix is rank 5. The esti-

mated coefficients are demonstrated in a heatmap as shown in Figure 3.7 (C). The figure

shows that for each PAH, only a few important channels can be used to determine the con-

centrations because only some coefficients are relatively large. Additionally, these larger

coefficients are usually from smaller column numbers in the heatmap. Thus,this shows the
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channels with smaller wavelengths are more important than larger wavelength channels.

3.6 Conclusion and Discussion

We propose an ADMM-based method for solving the multivariate regression problem with

WNN penalty. Under non-decreasing order of weights, the WNN is a non-convex function,

and induce non-convexity of WNN penalized least-squares problem in (3.1) over the pa-

rameter space. The provided algorithm is shown to converge uniquely to one of stationary

points of augmented Lagrangian function. The statistical properties of the estimator are

investigated under orthogonal design, providing some insights on the choices of weights

for the estimation. Furthermore, the minimax convergence rate of the estimation error

is derived under random Gaussian design setting. In simulation studies, we demonstrate

followings: (I) under random initializations, solutions of (3.2) via WMVR-ADMM al-

gorithm converge to a certain estimator whose objective values are same (II) the WNN

method outperforms SNN [118] and ANN [16] under synthetic settings, (III) the effect of

our suggested weight updating scheme is verified through the comparison with the weight

setting by [16]. Lastly the application to the real data set shows the effectiveness of our

method. Nonetheless, there are several remaining open questions which require further

investigations in the future. We summarize them as follows.

1. A question on whether the non-convex ADMM can achieve the global minimizer

of (3.2) is a well-known open question. Although empirical results on the conver-

gence of WMVR-ADMM are provided in Section 3.5, they still cannot verify the

converged solution is a global minimizer of (3.2). We leave both empirical and the-

oretical justifications on this issue as important open problems. Under SNN setting,

it is proved that there exists a primal-dual pair of (3.2) which satisfies the strong du-

ality [128]. Therefore, the existence of saddle point on L0 can be ensured, so that

the global minimizer of (3.2) can be proved through the classical techniques in [37].
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Figure 3.8: Panel (A) exhibits the intersected region of W ≤ 3 and 1
2
< ω1 ≤ · · · ≤ ωp.

Panel (B) magnifies the intersected region on grid (ω1, ωp) ∈ [1, 1.5]× [1, 1.5].

Nonetheless, we need further investigation whether these conditions can be used un-

der our WNN setting with non-decreasing weights.

2. As previously mentioned in the remark of Theorem 3.3.3, W := wp

(
2wp − w1 +

1
2

)
/(w1 − 1

2
) is a sole factor that accounts for the effects of weights in the conver-

gence rate of (3.12). This result naturally leads us to ask the question; “Under which

pair of (ω1, ωp), does the estimator from WNN have a faster convergence rate than

the one from SNN?”. Under the same choices of tuning parameter λn, a naive way

for the comparison is to plug ω1 = ωp = 1 in W . That is, we want to find a pair

of (ω1, ωp) for which W ≤ 3 and 1
2
< ω1 ≤ · · · ≤ ωp. The intersected region is

illustrated in Figure 3.8. From our empirical experiences, the region of (ω1, ωp), for

which WNN is superior than SNN in terms of estimation, is much larger than it is

presented in Figure 3.8. This problem arises from the tightness of the subset C we

derive in Lemma 3.3.2. In order to avoid this problem, we suspect that the differ-

ent approach from using RSC condition of cost function is needed. A paper [129],

recently appeared on arXiv, introduces a technique which takes the advantage of con-

trolling the covering number of projection operators corresponding to the subspaces

spanned by the design. They consider a problem of solving nuclear norm penal-
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ized least squares problem, and their technique is independent from RSC condition.

It would be an interesting open problem if their technique can be employed in our

problem for obtaining a bigger intersected region than that in Figure 3.8.
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CHAPTER 4

A NON-PARAMETRIC REGRESSION VIEWPOINT : GENERALIZATION OF

OVERPARAMETRIZED DEEP RELU NETWORK UNDER NOISY

OBSERVATIONS

4.1 Introduction

Over the past few years, Neural Tangent Kernel (NTK) [130, 131, 132, 133] has been one

of the most seminal discoveries in the theory of neural network. The underpinning idea of

the NTK-type theory comes from the observation that in a wide-enough neural net, model

parameters updated by gradient descent (GD) stay close to their initializations during the

training, so that the dynamics of the networks can be approximated by the first-order Tay-

lor expansion with respect to its parameters at initialization. The linearization of learning

dynamics on neural networks has been helpful in showing the linear convergence of the

training error on both overparametrized shallow [134, 135] and deep neural networks [136,

137, 138], as well as the characterizations of generalization error on both models [139,

140]. These findings clearly lead to the equivalence between learning dynamics of neural

networks and the kernel methods in reproducing kernel Hilbert spaces (RKHS) associated

with NTK. 1 Specifically, [139] provided the O(n−1/2) generalization bound of shallow

neural network, where n denotes the training sample size.

Recently, in the context of nonparametric regression, two papers, [141] and [142], showed

that neural network can obtain the convergence rate faster than O(n−1/2) by specifying

the complexities of target function and hypothesis space. Specifically, [141] showed that

the shallow neural network with smoothly approximated ReLU (swish, see [143]) activa-

1Henceforth, we denote HNTK
1 and HNTK

L as RKHSs induced from NTK of shallow L = 1 and deep neural
networks L ≥ 2 with ReLU activations, respecitvely.
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tion trained via ℓ2-regularized averaged stochastic gradient descent (SGD) can recover the

target function from RKHSs induced from NTK with swish activation. Similarly, [142]

showed that a shallow neural network with ReLU activation trained via ℓ2-regularized GD

can generalize well, when the target function (i.e., f ⋆
ρ ) is from HNTK

1 . Notably, the rate

that the papers [141] and [142] obtained is minimax optimal, meaning that no estimators

perform substantially better than the ℓ2-regularized GD or averaged SGD algorithms for

recovering functions from respective function spaces. Nevertheless, these results are re-

stricted to shallow neural networks, and cannot explain the generalization abilities of deep

neural network (DNN). Similarly with [139], [140] obtained the O(n−1/2) generalization

bound, showing that the SGD generalize well for f ⋆
ρ ∈ HNTK

L , when f ⋆
ρ has a bounded

RKHS norm. However, the rate they obtained is slower than the minimax rate we can ac-

tually achieve. Furthermore, their results become vacuous under the presence of additive

noises on the data set. Motivated from these observations, the fundamental question in this

study is as follows:

When the noisy dataset is generated from a function from HNTK
L , does the

overparametrized DNN obtained via (ℓ2-regularized) GD provably generalize well the

unseen data?

We consider a neural network that has L ≥ 2 hidden layers with width m ≫ n. (i.e.,

overparametrized deep neural network.) We focus on the least-squares loss and assume

that the activation function is ReLU. A positivity assumption of NTK from ReLU DNN

is imposed, meaning that λ∞ > 0, where λ∞ denotes the minimum eigenvalue of the

NTK. We give a more formal mathematical definition of ReLU DNN in the following

Subsection 4.2.2. Under these settings, we provide an affirmative answer to the above

question by investigating the behavior of L2-prediction error of the obtained neural network

with respect to GD iterations.
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4.1.1 Contributions

Our derivations of algorithm-dependent prediction risk bound require the analysis on train-

ing dynamics of the estimated neural network through (regularized) GD algorithm. We

include these results as the contributions of our paper, which can be of independent inter-

ests as well.

• In an unregulaized case, under the assumption λ∞ > 0, we show that the training

loss converges to 0 at a linear rate. As will be detailed in subsection 4.3.3, this is

the different result from the seminal work of [136], where they also prove a linear

convergence of training loss of ReLU DNN, but under different data distribution

assumption.

• We show that the DNN updated via vanilla GD does not recover the ground truth

function f ⋆
ρ ∈ HNTK

L under noisy observations, if the DNN is trained for either too

short or too long: that is, the prediction error is bounded away from 0 by some

constant as n goes to infinity.

• In regularized case, we prove the mean-squared error (MSE) of DNN is upper bounded

by some positive constant. Additionally, we proved the dynamics of the estimated

neural network get close to the solution of kernel ridge regression associated with

NTK from ReLU DNN.

• We show that the ℓ2-regularization can be helpful in achieving the minimax optimal

rate of the prediction risk for recovering f ⋆
ρ ∈ HNTK

L under the noisy data. Specifi-

cally, it is shown that after some iterations of ℓ2-regularized GD, the minimax optimal

rate (which is O
(
n− d

2d−1

)
, where d is a feature dimension.) can be achieved.

Note that our paper is an extension of [142] to DNN model, showing that the ℓ2-regularized

DNN can achieve a minimax optimal rate of prediction error for recovering f ⋆
ρ ∈ HNTK

L .

However, we would like to emphasize that our work is not a trivial application of their
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work from at least two technical aspects. These aspects are more detailed in the following

subsection.

4.1.2 Technical Comparisons with [142]

Firstly, in the analysis of training loss of regularized shallow neural-net, [142] begin the

proof by decomposing the difference between two individual predictions into two terms:

one that is related with the gram matrix evaluated at each iteration of the algorithm and the

perturbation term. Henceforth, we name this decompostion as “Gram+Pert” decomposi-

tion. This decomposition can be checked with the equality (E.2) in the supplementary PDF

of [142]. The key ingredients for the decomposition are (1) the simple gradient structure of

the shallow neural net, and (2) the partitioning of the nodes in the hidden-layer into two sets:

a set of nodes whose activation patterns change from their initializations during training,

and the complement of the set. This construction of the sets peels off the ReLU activation

in the difference so that the GD algorithm can be involved in the analysis. However, be-

cause of the compositional structure of the network, the same nodes partitioning technique

cannot be applied for obtaining the decomposition in the DNN setting with ReLU activa-

tion. To avoid this difficulty, we employ a specially designed diagonal matrix Σ̃ and this

matrix can peel off the ReLU function for each layer of the network. (See the definition of

Σ̃ in the proof of Theorem 2.4.1 in the Appendix.) Recursive applications of this diagonal

matrix across the entire hidden layers enable the Gram+Pert decomposition in our setting.

It should be noted that the diagnoal matrix Σ̃ had been employed in [138], which analyzed

the behavior of training loss of classification problem via ReLU DNN under logistic loss.

However, since their result is dependent on different data distribution assumption under the

different loss function from ours, they didn’t employ the Gram+Pert decomposition. Thus

their technical approaches are different from ours.

Secondly, [142] directly penalized the weight parameter W by adding ∥W∥2F to the ob-
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jective function. The ℓ2-regularization solely on the W has an effect of pushing the weight

towards the origin. This makes ∥W(k) − W(0)∥2 ≤ O
(
1
)

2, allowing most activation

patterns of the nodes in the hidden layer can change during the training, even in over-

parametrized setting. Here, W(k) denotes the updated weight parameter at kth itertaion of

algorithm, and ∥ · ∥2 denotes the spectral norm of the matrix. Nonetheless, this doesn’t

affect the analysis on obtaining the upper-bound of MSE in shallow neural net, since the

network has only a single hidden layer. In contrast, in the DNN setting, we allow the non-

convex interactions of parameters across the hidden layers. To the best of our knowledge,

a technique for controlling the size of ℓ2-norm of network gradient has not been developed

under this setting, yet. We circumvent this difficulty by regularizing the distance between

the updated and the initialized parameter, instead by directly regularizing the updated pa-

rameter. This ensures that the updated parameter by ℓ2-regularized GD stays in a close

neighborhood to its initialization, so that with heavy over-parametrization, the dynamics of

network becomes linearized in parameter and we can ignore the non-convex interactions of

parameters across the hidden layers. Specifically, under suitable model parameter setting,

we prove that ∥W(k)
ℓ − W

(0)
ℓ ∥2 ≤ ÕP

(
1√
m

)
over all ℓ ∈ {1, . . . , L}. Here, ÕP(·) hides

the dependencies on the model parameters; L, ω, and n. This result allows us to adopt

the so-called “Forward Stability” argument developed by [136], and eventually leads to the

control of network gradient under ℓ2 sense.

4.1.3 Additional Related works

There has been another line of work trying to characterize the generalizabilities of DNN

under noisy observation settings. Specifically, it has been shown that the neural network

model can achieve minimax style optimal convergence rates of L2-prediction risk both in

regression [145, 146, 8] and classification [147] problems. Nonetheless, a limitation of the

aforementioned papers is that they assume an adequate minimizer of the empirical risk can

2This was empirically shown to be true in paper [144]. See Figure 3 in their paper. We provide a brief
mathematical explanation on why this result is hard to be shown in Appendix D.3.
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be obtained. In other words, the mathematical proofs of their theorems do not correspond

to implementable algortihms.

Recently, several papers, which study the generalization properties of neural network with

algorithmic guarantees, appear online. Specifically, [148] showed that the data interpolants

obtained through DNN by vanilla GD is inconsistent. This result is consistent with our re-

sult, but they consider the overparametrized DNN that is a linear combination of Ω(n10d2)

smaller neural network, and the activation function they consider is sigmoid function,

which is smooth and differentiable. Along this line of research, [149] (regression) and [150]

(classification) showed that when training overparametrized shallow neural network, early

stopping of vanilla GD enables us to obtain consistent estimators.

Notation. We use the following notation for asymptotics: For sufficiently large n, we write

f(n) = O(g(n)), if there exists a constant K > 0 such that f(n) ≤ Kg(n), and f(n) =

Ω(g(n)) if f(n) ≥ K ′g(n) for some constant K ′ > 0. The notation f(n) = Θ(g(n))

means that f(n) = O(g(n)) and f(n) = Ω(g(n)). Let ⟨A,B⟩Tr := Tr(A⊤B) for the two

matrices A,B ∈ Rd1×d2 . We adopt the shorthand notation denoting [n] := {1, 2, . . . , n}

for n ∈ N.

4.2 Problem Formulation

4.2.1 Non-parametric Regression

Let X ⊂ Rd and Y ⊂ R be the measureable feature space and output space. We denote

ρ as a joint probability measure on the product space X × Y , and let ρX be the marginal

distribution of the feature space X . We assume that the noisy data-set D := {(xi,yi)}ni=1

are generated from the non-parametric regression model yi = f ⋆
ρ (xi) + εi, where εi

i.i.d.∼

N (0, 12) for i = 1, . . . , n. Let f̂W (k)(·) be the value of neural network evaluated with the

parameters W at the k-th iterations of GD update rule. At k = 0, we randomly initialize the

weight parameters in the model following He initialization [151] with a slight modification.
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Then, the L2 prediction risk is defined as the difference between two expected risks (i.e.,

excess risk) R(f̂W (k)) := Eρ∼(x,y)[
(
y− f̂W (k)(x)

)2
] and R(f ⋆

ρ ) := Eρ∼(x,y)[
(
y− f ⋆

ρ (x)
)2
],

where f ⋆
ρ (x) := E[y|x]. Then, we can easily show the prediction risk has a following form:

R
(
f̂k, f

⋆
ρ

)
:= R

(
f̂W (k)

)
−R

(
f ⋆
)
= Eρx,ε

[(
f̂W (k)(x)− f ⋆

ρ (x)
)2]

. (4.1)

Note that the expectation is taken over the marginal probability measure of feature space,

ρx, and the noise of the data, ε. However, the (4.1) is still a random quantity due to the

randomness of the initialized parameters
(
W

(0)
ℓ

)
ℓ=1,...,L

.

4.2.2 Deep Neural Network with ReLU activation

Following the setting introduced in [136], we consider a fully-connected deep neural net-

works with L hidden layers and m network width. For L ≥ 2, the output of the network

fW(·) ∈ R with input data x ∈ X can be formally written as follows:

fW(x) =
√
m · vTσ

(
WLσ

(
WL−1 · · · σ

(
W1x

)
· · ·
))
, (4.2)

where Sd−1 is a unit sphere in d-dimensional euclidean space, σ(·) is an entry-wise activa-

tion function, W1 ∈ Rm×d, W2, . . . ,WL ∈ Rm×m denote the weight matrices for hidden

layers and v ∈ Rm×1 denote the weight vector for the output layer. Following the existing

literature, we will consider ReLU activation function σ(x) = max(x, 0), which is the most

commonly used activation function by practitioners.

Random Initialization. Each entries of weight matrices in hidden layers are assumed to be

generated from
(
Wi,j

)
ℓ=1,...,L

∼ N (0, 2
m
), and entries of the output layer are drawn from

vj ∼ N (0, ω
m
). This initialization scheme helps the forward propagation neither explode

nor vanish at the initialization, seeing [136, 137, 138]. Note that we initialize the parame-

ters in the last layer with variance ω
m

, where ω ≤ 1 is a model parameter to be chosen later
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for technical convenience.

Unregularized GD update rule. We solve a following ℓ2-loss function with the given

dataset D:

LS

(
W
)
=

1

2

n∑
i=1

(
yi − fW(xi)

)2
. (4.3)

Let W(0)
1 , . . . ,W

(0)
L be the initialized weight matrices introduced above, and we consider

a following gradient descent update rule:

W
(k)
ℓ = W

(k−1)
ℓ − η∇Wℓ

(
LS(W

(k−1)
ℓ )

)
, ℓ ∈ [L], k ≥ 1, (4.4)

where ∇Wℓ

(
LS(·)

)
is a partial gradient of the loss function LS(·) with respect to the ℓ-th

layer parameters Wℓ, and η > 0 is the learning rate of the gradient descent.

ℓ2-regularized GD update rule. The estimator is obtained by minimizing a ℓ2-regularized

function;

ΦD(W) := LS

(
WD

)
+

µ

2

L∑
ℓ=1

∥∥∥WD,ℓ −W
(0)
D,ℓ

∥∥∥2
F
. (4.5)

Naturally, we update the model parameters
{
WD,ℓ

}
ℓ=1,...,L

via modified GD update rule:

W
(k)
D,ℓ =

(
1− η2µ

)
W

(k−1)
D,ℓ − η1∇Wℓ

[
LS

(
W

(k−1)
D

)]
+ η2µW

(0)
D,ℓ, ∀ℓ ∈ [L], ∀k ≥ 1.

(4.6)

The notations η1, η2 are step sizes, and µ > 0 is a tuning parameter on regularization. We

adopt the different step sizes for the partial gradient and regularized term for the theoretical

conveniences. Furthermore, we add the additional subscript D to the update rule (4.6) to

denote the variables are under the regularized GD update rule. Recall that the W
(0)
D,ℓ are
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initialized parameters same with the unregularized case. For simplicity, we fix the output

layer, and train L hidden layers for both unregularized and regularized cases.

4.3 Main Theory

First, we describe the neural tangent kernel (NTK) matrix of (4.2), which is first proposed

by [131] and further studied by [130, 152, 132, 153]. NTK matrix of DNN is a L-times

recursively defined n × n kernel matrix, whose entries are the infinite-width limit of the

gram matrix. Let ∇Wℓ

[
fW(0)(·)

]
be the gradient of the ReLU DNN (4.2) with respect to

the weight matrix in the ℓth hidden layer at random initialization. Note that when ℓ = 1,

∇Wℓ

[
fW(0)(·)

]
∈ Rm×d and when ℓ ∈ {2, . . . , L}, ∇Wℓ

[
fW(0)(·)

]
∈ Rm×m. Then, as

m → ∞,

H(0) :=

(
1

m

L∑
ℓ=1

〈
∇Wℓ

[
fW(0)(xi)

]
,∇Wℓ

[
fW(0)(xj)

]〉
Tr

)
n×n

→ H∞
L , (4.7)

where H∞
L :=

{
Ker(xi,xj)

}n
i,j=1

. Here, Ker(·, ·) denotes a NTK function of (4.2) to be

defined as follows:

Definition 4.3.1 (NTK function of (4.2)). For any x,x′ ∈ X and ℓ ∈ [L], define

Φ(0)(x,x′) = ⟨x,x′⟩ ,

Θ(ℓ)(x,x′) =

Φ(ℓ−1)(x,x) Φ(ℓ−1)(x,x′)

Φ(ℓ−1)(x′,x) Φ(ℓ−1)(x′,x′)

 ∈ R2×2,

Φ(ℓ)(x,x′) = 2 · E
(u,v)∼N (0,Θ(ℓ))

[
σ(u) · σ(v)

]
, and

Φ̇(ℓ)(x,x′) = 2 · E
(u,v)∼N (0,Θ(ℓ))

[
σ̇(u) · σ̇(v)

]
,

where σ̇(u) = 1
(
u ≥ 0

)
. Then, we can derive the final expression of NTK function of (4.2)
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as follows:

Ker(x,x′) =
ω

2
·

L∑
ℓ=1

(
Φ(ℓ−1)(x,x′) ·

L∏
ℓ′=ℓ

Φ̇(ℓ′)(x,x′)

)
. (4.8)

The expression in (4.8) is adapted from [140]. As remarked in [140], a coefficient 2

in Φ(ℓ) and Φ̇(ℓ) remove the exponential dependence on the network depth L in the NTK

function. However, when compared with the NTK formula in [140], (4.8) is different from

two aspects: (1) An additional factor ω in (4.8)) comes from the difference in initialization

settings of the output layer, in which [140] considers vj ∼ N (0, 1
m
), whereas we consider

vj ∼ N (0, ω
m
). (2) Φ(L) is not added in the final expression of (4.8)), whereas it is added in

the definition provided in [140]. This is because we only train the L hidden layers but fix

the output layer, while [140] train the entire layers of the network including the output layer.

As already been pointed by several papers, [154] and [131], it can be proved that the NTK

function (4.8) is a positive semi-definite kernel function. Furthermore, [154] prove that the

expectations in Φ and Φ̇ have closed form solutions, when the covariance matrices have the

form ( 1 t
t 1 ) with |t| ≤ 1:

E
(u,v)∼N (0,Θ(ℓ))

[
σ(u) · σ(v)

]
=

1

2π

(
t · (π − arccos(t)) +

√
1− t2

)
,

E
(u,v)∼N (0,Θ(ℓ))

[
σ̇(u) · σ̇(v)

]
=

1

2π

(
π − arccos(t)

)
.

(4.9)

Clearly, (4.8) is symmetric and continuous on the product space X × X , from which it

can be implied that Ker(·, ·) is a Mercer kernel inducing an unique RKHS. Following [155],

we define the RKHS induced by (4.8) as:

Definition 4.3.2 (NTK induced RKHS). For some integer p ∈ N, set of points {x̃j}pj=1 ⊂

X , and weight vector α := {α1, . . . , αp} ∈ Rp, define a complete vector space of functions,
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f : X → R,

HNTK
L := cl

({
f(·) =

p∑
j=1

αjKer(·, x̃j)

})
, (4.10)

where cl(·) denotes closure.

In the remaining of our work, we assume the regression function f ⋆
ρ (x) := E[y|x]

belongs to HNTK
L .

4.3.1 Assumptions.

In this subsection, we state the assumptions imposed on the data distribution with some

remarks.

(A1) ρX is an uniform distribution on Sd−1 := {x ∈ Rd | ∥x∥2 = 1}, and noisy observa-

tions are assumed to be bounded. (i.e., ρx ∼ Unif
(
Sd−1

)
, yi = O(1), ∀i ∈ [n].)

(A2) Draw n i.i.d. samples {xi, f
⋆
ρ (xi)}ni=1 from the joint measure ρ. Then, with probabil-

ity at least 1− δ, we have λmin
(
H∞

L

)
= λ∞ > 0.

Remark 4.3.3

• When the feature space is restricted on the unit sphere, the NTK function in (4.8)

becomes rotationally invariant zonal kernel. This setting allows to adopt the results of

spectral decay of (4.8) in the basis of spherical harmonic polynomials for measuring

the complexity of hypothesis space, HNTK
L . See the subsection 4.3.2 and references

therein.

• Assumption (A2) is commonly employed in NTK related literature for proving global

convergence of training error and generalization error of both deep and shallow neu-

ral network, [135, 152, 139]. Note that the (A2) holds as long as no two xi and xj

are parallel to each other, which is true for most of the real-world distributions. See

the proof of this claim in [152].
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4.3.2 Minimax rate for recovering f ⋆
ρ ∈ HNTK

L

The obtainable minimax rate of L2-prediction error is directly related with the complexity

of function space of interest. In our setting, the complexity of RKHS HNTK
L can be char-

acterized by the eigen-decay rate of the NTK function. Since Ker(x,x′) is defined on the

sphere, the decomposition can be given in the basis of spherical harmonics as follows:

Ker(x,x′) =
∞∑
k=0

µk

N(d,k)∑
j=1

Yk,j(x)Yk,j(x
′),

where Yk,j, j = 1, . . . , N(d, k) are spherical harmonic polynomials of degree k and {µk}∞k=0

are non-negative eigenvalues. Recently, several researchers, both empirically [156] and the-

oretically [157, 158, 159], showed that, for large enough harmonic function frequency k,

the decay rate of the eigenvalues µk is in the order of Θ
(
k−d
)

3. Given this result and the fact

N(d, k) = 2k+d−3
k

(
k+d−3
d−2

)
grows as kd−2 for large k, it can be easily shown λj = Θ

(
j−

d
d−1

)
,

when Ker(x,x′) =
∑∞

j=1 λjϕj(x)ϕj(x
′), for eigen-values λ1 ≥ λ2 ≥ · · · ≥ 0 and or-

thonormal basis {ϕj}∞j=1. Furthermore, it is a well known fact that if the eigenvalues decay

at the rate λj = Θ(j−2ν), then the corresponding minimax rate for estimating function in

RKHS is O
(
n− 2ν

2ν+1

)
, [161, 162, 142]. By setting 2ν = d

d−1
, we can see the minimax rate

for recovering f ⋆
ρ ∈ HNTK

L is O
(
n− d

2d−1

)
.

Remark 4.3.4 We defer all the technical proofs of the Theorems in subsections 4.3.3 and

4.3.4 in the Appendix for conciseness of the paper. We also provide numerical experiments

which can corroborate our theoretical findings in the Appendix D.1.
3In shallow neural network with ReLU activation without bias terms, it is shown that µk satisfy µ0,

µ1 > 0, µk = 0 if k = 2j+1 with j ≥ 1, and otherwise µk = Θ
(
k−d

)
. See [160]. However, in ReLU DNN,

it is shown that these parity constraints can be removed even without bias terms and µk achieves Θ
(
k−d

)
decay rate for large enough k. Readers can refer [159] for this result.
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4.3.3 Analysis of Unregularized DNN

In this subsection, we provide the results on the training loss of DNN estimator obtained via

minimizing unregularized ℓ2-loss (4.3) and on the corresponding estimator’s L2-prediction

risk R
(
f̂k, f

⋆
ρ

)
.

Theorem 4.3.5 (Optimization) For some δ ∈ [0, 1], set the width of the network as m
log3(m)

≥

Ω
(
ω7n8L18

λ8
∞δ2

)
, and set the step-size of gradient descent as η = O

(
λ∞

n2L2m

)
. Then, with prob-

ability at least 1 − δ over the randomness of initialized parameters W(0) :=
{
W

(0)
ℓ

}L+1

ℓ=1

with W
(0)
L+1 = v, we have for k = 0, 1, 2, . . . ,

LS

(
W(k)

)
≤
(
1− ηmλ∞

2

)k

LS

(
W(0)

)
. (4.11)

In other words, the training loss drops to 0 at a linear rate.

We acknowledge a series of past works [136, 152] have similar spirits with those in

Theorem 4.3.5. However, it is worth noting that their results are not applicable in our prob-

lem settings and data assumptions. Specifically, the result of [152] is based on the smooth

and differentiable activation function, whereas the Theorem 4.3.5 is about the training er-

ror of ReLU activation function, which is not differentiable at 0. Furthermore, the result

of [136] relies on ϕ-separateness assumption stating that the every pair of feature vectors{
xi,xj

}n
i ̸=j

is apart from each other by some constant ϕ > 0 in a Euclidean norm. In our

work, the positivity assumption on the minimum eigenvalue of the NTK is imposed (i.e.,

λ∞ > 0).

Remark 4.3.6 Reducing the order of network width is definitely another line of interesting

research direction. We are aware of some works in literature, but we chose not to adopt

the techniques since this can make the analysis overly complicated. To the best of our

knowledge, the paper that most neatly summarizes this line of literature is [163]. See the
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table in page 3 in their paper. The order of width they obtained is Ω
(
n8L12

ϕ8

)
, where they

impose ϕ-separateness assumption.

Remark 4.3.7 There has been an attempt to make a connection between the positivity

and ϕ-separateness assumptions. Recently, [163] proved the relation λ∞ = Ω
(
ϕn−2

)
4

in a shallow-neural net setting. See Proposition 3.6. of their work. However, it is still

an open question on whether this relation holds in DNN setting as well. The results in

Theorem 4.3.5 suggest a positive conjecture on this question. Indeed, plugging the relation

λ∞ = Ω
(
ϕn−2

)
in (4.11) and in the η = O

(
λ∞

n2L2m

)
yield the discount factor

(
1−Ω

(
ηmϕ
n2

))k
and step-size η = O

(
ϕ

n4L2m

)
, which are exactly the same orders as presented in [136]. See

Theorem 1 of their ArXiv version paper for the clear comparison. We leave the proof of

this conjecture as a future work.

Theorem 4.3.8 (Generalization) Let f ⋆
ρ ∈ HNTK

L . Fix a failure probability δ ∈ [0, 1]. Set

the width of the network as m
log3(m)

≥ Ω
(
ω7n8L18

λ8
∞δ2

)
, the step-size of gradient descent as

η = O
(

λ∞
n2L2m

)
, and the variance parameter ω ≤ O

((
λ∞δ
n

)2/3). Then, if the GD iteration

k ≥ Ω
( log(n)
ηmλ∞

)
or k ≤ O

(
1

ηmωL

)
, with probability at least 1 − δ over the randomness of

initialized parameters W(0), we have

R
(
f̂k, f

⋆
ρ

)
= Ω(1).

This theorem states that if the network is trained for too long or too short, the L2-

prediction error of f̂W(k) is bounded away from 0 by some constant factor. Specifically,

the former scenario indicates that the overfitting can be harmful for recovering f ⋆
ρ ∈ HNTK

L

given the noisy observations.

Remark 4.3.9 Readers should note that the Theorem 3.3.3 does not consider if the GD al-

gorithm can achieve low prediction risk R
(
f̂k, f

⋆
ρ

)
over the range of iterations (ηmωL)−1 ≲

4We conjecture that this is not the tightest lower bound on λ∞. Recently, [164] proves that λ∞ ≳ d/n in
shallow neural net setting. See Lemma 5.3 in their paper.
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k ≲ (ηmλ∞)−1 log(n). In the numerical experiment to be followed in Appendix D.1, we ob-

serve that for some algorithm iterations k∗, the risk indeed decreases to the same minimum

as low as the ℓ2-regularized algorithm can achieve, and increases again. This observation

implies that the unregularized algorithm can achieve the minimax rate of prediction risk.

However, analytically deriving a data-dependent stopping time k∗ in our scenario requires

further studies, since we need a sharp characterization of eigen-distribution of NTK matrix

of ReLU DNN, denoted as H∞
L in this paper. Readers can refer the Theorem 4.2. of [142]

in shallow-neural network and equation (6) in [161] in kernel regression context on how

to compute k⋆ with the given eigen-values of the associated kernel matrices.

4.3.4 Analysis of ℓ2-regularized DNN

In this subsection, we study the training dynamics of ℓ2-regularized DNN and the effects

of the regularization for obtaining the minimax optimal convergence rate of L2-prediction

risk. In the results to be followed, we set the orders of model parameters µ, η1, η2 in (4.6),

and a variance parameter of output layer, ω as follows:

µ = Θ

(
n

d−1
2d−1

)
, η1 = Θ

(
1

m
n− 3d−2

2d−1

)
, η2 = Θ

(
1

L
n− 3d−2

2d−1

)
, ω = O

(
1

L3/2
n− 5d−2

2d−1

)
.

(4.12)

Theorem 4.3.10 (Optimization) Suppose we minimize ℓ2-regularized objective function (4.5)

via modified GD (4.6). Set the network width m
log3(m)

≥ Ω
(
L20n24

δ2

)
and model parameters

as in (4.12). Then, with probability at least 1− δ, the mean-squared error follows

LS

(
W(k)

D

)
/n ≤

(
1− η2µL

)k

· LS

(
W(0)

D

)
/n+OP(1), (4.13)

for k ≥ 0. Additionally, after k ≥ Ω
(
(η2µL)

−1 log(n3/2)
)

iterations of (4.6), for some
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constant C > 0, we have

∥∥∥∥∥uD(k)−H∞
L

(
Cµ · I +H∞

L

)−1

y

∥∥∥∥∥
2

≤ OP

(
1

n

)
, (4.14)

where we denote uD(k) := [f̂
W

(k)
D
(x1), . . . , f̂W(k)

D
(xn)]

⊤.

Several comments are in sequel. Theorem 4.3.10 is, to our knowledge, the first re-

sult that rigorously shows the training dynamics of ℓ2-regularized ReLU DNN in over-

parametrized setting. Observe that the first term on the right-hand side of the inequal-

ity (4.13) converges linearly to 0, and the second term is some positive constant that is

bounded away from 0. This implies that the MSE of regularized DNN is upper-bounded

by some positive constant. Note that we only provide the upper bound, but the results of

our numerical experiments indicate that the MSE is lower-bounded by OP(1) as well. We

leave the proof of this conjecture for the future work.

The inequality (4.14) states that the trained dynamics of the regularized neural network

can approximate the optimal solution (denoted as g⋆µ) of the following kernel ridge regres-

sion problem:

min
f∈HNTK

{
1

2

n∑
i=1

(
yi − f(xi)

)2
+

Cµ

2
∥f∥2HNTK

L

}
, (4.15)

where ∥ · ∥HNTK
L

denotes a NTK-induced RKHS norm. Note that the optimization problem

in (4.15) is not normalized by sample size n. The inequality (4.14) states that after approx-

imately (η2µL)
−1 iterations of (4.6), the error rate becomes OP

(
1
n

)
. The approximation

error is computed at the training data points under ℓ2 norm. This should be compared with

the Theorem 5.1 of [142], where they showed that the similar approximation holds “within”

a certain range of algorithm in shallow neural network setting. In contrast, we show that

the approximation holds “after” k ≥ Ω
(
(η2µL)

−1 log(n3/2)) in deep neural network. It
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should be noted that the difference of results comes from the regularization scheme, where

we penalize the
∑L

ℓ=1 ∥Wℓ −W
(0)
ℓ ∥2F , whereas [142] regularized the term ∥W1∥2F .

As another important comparison, [165] showed the equivalence of a solution of kernel

ridge regression associated with NTK and the first order Taylor expansion of the regu-

larized neural network dynamics; note, however, that the uD(k) in (4.14) is a full neural

network dynamics. Let R(f̂
W

(k)
D
, f ⋆

ρ ) be the L2-prediction risk of the regularized estimator

f̂
W

(k)
D

via modified GD (4.6). Next theorem states the result of generalization ability of

f̂
W

(k)
D

.

Theorem 4.3.11 (Generalization) Let f ⋆
ρ ∈ HNTK

L . Suppose the network width m
log3(m)

≥

Ω
(
L20n24

δ2

)
and model parameters are set as suggested in (4.12). Then, with probability

tending to 1, we have

R
(
f̂
W

(k)
D
, f ⋆

ρ

)
= OP

(
n− d

2d−1

)
.

The resulting convergence rate is O
(
n− d

2d−1

)
with respect to the training sample size n.

Note that the rate is always faster than O
(
n−1/2

)
and turns out to be the minimax opti-

mal [166, 167] for recovering f ⋆
ρ ∈ HNTK

L in the following sense:

lim
r→0

lim inf
n→∞

inf
f̂
sup
ρ

P
[
R
(
f̂ , f ⋆

ρ

)
> rn− d

2d−1

]
= 1, (4.16)

where ρ is a data distribution class satisfying the Assumptions (A1), (A2) and f ⋆
ρ ∈ HNTK

L ,

and infimum is taken over all estimators D → f̂ . It is worth noting that the minimax rate

in (4.16) is same with the minimax rate for recovering f ⋆
ρ ∈ HNTK

1 . (i.e., [142]) This result

can be derived from the recent discovery of the equivalence between two function spaces ,

HNTK
1 = HNTK

L . See [158] and [157].

Remark 4.3.12 A particular choice of µ = Θ
(
n

d−1
2d−1

)
in (4.12) is for obtaining an optimal
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minimax rate for prediction error in Theorem 4.3.11. Specifically, the order of µ determines

the L2 distance between the f ⋆
ρ and the kernel regressor g⋆µ. That is, ∥f ⋆

ρ − g⋆µ∥22 = OP(
µ
n
).

With the result HNTK
1 = HNTK

L , the same proof of Lemma D.2. in [142] can be applied for

proving this result.

4.4 Conclusion

We analyze the convergence rate of L2-prediction error of both the unregularized and the

regularized gradient descent for overparameterized DNN with ReLU activation for a regres-

sion problem. Under a positivity assumption of NTK, we show that without the adoption

of early stopping, the L2-prediction error of the estimated DNN via vanilla GD is bounded

away from 0 (Theorem 2.4.1), whereas the prediction error of the DNN via ℓ2-regularized

GD achieves the optimal minimax rate (Theorem 4.3.11). The minimax rate O
(
n− d

2d−1

)
is

faster than the O(n−1/2) by specifying the complexities of target function and hypothesis

space.
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CHAPTER 5

APPROXIMATION AND NON-PARAMETRIC ESTIMATION OF FUNCTIONS

OVER HIGH-DIMENSIONAL SPHERES VIA DEEP RELU NETWORKS

Neural networks have demonstrated tremendous success in the tasks of image classification

[168, 169], pattern recognition [170], natural language processing [171, 172, 173], etc. The

datasets used in these real world applications frequently lie in high-dimensional spaces [7],

In this chapter, we try to understand the fundamental limits of neural network in the high-

dimensional regime through the lens of its approximation power and its generalization

error.

Both approximation power and generalization error of neural network can be analyzed

through specifying the target function’s property such as its smoothness index r > 0 and

the input space X . In particular, deep feed-forward neural networks (FNNs) with Rectified

Linear Unit (ReLU) have been extensively studied when they are used for approximating

and estimating functions from general function class such as Sobolev class defined on d-

dimensional cube (i.e., X := Cd), denoted as W r
p (Cd) for 1 ≤ p ≤ ∞. However, in

practice, signals on spherical surface (i.e., X := Sd−1 = {x ∈ Rd : ∥x∥2 = 1}) rather

than in Euclidean spaces often arise in various situations, such as astrophysics [174, 175],

computer vision [176], and medical imaging [177].

Motivated from this, we focus our attention in the cases where deep ReLU FNNs are

used for function approximators and estimators, when functions are assumed to be from

the Sobolev spaces defined over Sd−1; that is f ∈ W r
∞(Sd−1). Under this setting, our

analysis focuses on how the input dimension d explicitly affects the approximation and

estimation rates of f ∈ W r
∞(Sd−1). And, at the same time, we show how the scalability

of deep ReLU FNNs grows in the high-dimensional regime. Here, the scalability is mainly

measured through the three metrics: (1) the width denoted as W , (2) the depth, denoted
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Table 5.1: Notation Õ(·) hide the logarithmic factor in n. Note that the upper-bounds for N
in Theorem 5.3.3 (i.e., N = O(Md)) are from Theorem 5.2.1 with choices M = ⌈n

3d
3d+4r ⌉

and n ≪ d.

Theorem 5.3.3 Theorem 5.3.4
Function class W r

∞(Sd−1) W r
∞([0, 1]d)

Smoothness r O(d) O(1) ∀r > 0
Upper-bound on N O(d2) O(d2) O((d+ r)d)

Estimation error rate Õ
(
dC · n− 4r

4r+3d

)
Õ
((

6
πe

) d
2dd · n− 4r

4r+3d

)
Õ
(
(d+ r)d · n− 2r

2r+d

)

as L, and (3) the number of active parameters, denoted as N of the network, [178]. It

should be emphasized that we find there exists an interaction with smoothness index r > 0

and dimension d, whereas we cannot find one for the case when f ∈ W r
∞(Cd). We further

summarize our detailed findings in the following subsection.

5.0.1 Chapter Road map and Contributions

In Theorem 5.2.1, we provide an approximation bound of deep ReLU FNN (i.e., f̃ ) for ap-

proximating the target functions in Sobolev spaces defined over sphere (i.e., f ∈ W r
∞(Sd−1)).

Notably, in the bound, we track the explicit dependence on data dimension d allowing it

tend to infinity. This tracking enables how the three components of network architecture,

width (W), depth (L), and the number of active parameters (N ), should change as d

increases, for obtaining the good approximation error rate.

As a Corollary of Theorem 5.2.1, we show how the order of function smoothness r

can have the effect on the scale of network in terms of d. Specifically, when the function

smoothness r = O(1), we show that the constructed network, f̃ , requires W = O(dd),

L = O(dγ log2 d) for 0 < γ < 1, and N = O(dd+1) for obtaining d−O(1) approximation

error up to some constant factors independent with d. Furthermore, when r = O(d), we

show that only W = O(dα), L = O(dγ log2 d), and at most N = O(d2) are required for

obtaining the sharp approximation rate O(d−dβ) for 0 < α, β < 1. See Corollary 5.2.3 for

the detailed statement of the result.

115



Our result implies that for approximating f ∈ W r
∞(Sd−1), the larger the smoothness

index r is, the narrower the width of the network should be enough, while the depth of

the network can be fixed. Moreover, when r is in the same order of d, the network can

avoid the curse of dimensionality requiring only O(d2) number of active parameters. It is

interesting to note that the function smoothness index can affect the design of the network,

specifically on width, while it has little effect on the design of depth. Admittedly, the

condition r = O(d) is restrictive in a sense that it makes the function space W r
∞(Sd−1)

small.

Nonetheless, to the best of our knowledge, this finding is not observed in the current

approximation theory of neural network literature when f ∈ W r
∞(Cd) where Cd denotes

some d-dimensional cubes, and f̃ is a deep ReLU FNN. Out of the long list of literature to

be introduced shortly, we choose the result from [8] for the comparison as it also has the

explicit dependence on d in their approximation bound. From their result, it can be seen

that the curse cannot be avoided, even when r = O(d). The width of their constructed

network is lower bounded by Ω(rd ∨ ed) and the number of active parameters is upper-

bounded by O((r + d)d). 1 Note that the bounds on both components grow exponentially

in d as r increases. See subsection 5.2.1 for the detailed comparisons.

We further make the comparisons between estimating functions f ∈ W r
∞(Sd−1) (The-

orems 5.3.3) versus f ∈ W r
∞(Cd) (Theorems 5.3.4) via deep ReLU FNNs under the non-

parametric regression framework. Given n noisy samples, the two Theorems suggest the

specific orders of W , L and N in terms of n, d and r, for which they give the tightest

bound on excess risk of respective function estimator from Proposition 5.3.2. Under the

high-dimensional setting where n = O(dq) for 0 < q < 1, when r = O(1), it is shown that

the excess risk upper-bounds of both function estimators have dd in the constant factors. In

contrast, when r = O(d), estimating functions f ∈ W r
∞(Sd−1) has at most dO(1) factor in

the bound, whereas the bound for function estimator of f ∈ W r
∞(Cd) has dd. See Table 5.1

1Interested readers can find the intuitive technical reason for having the exponential dependence in d on
width W and active parameters N in the Appendix E.1.
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and Subsection 5.3.2 for detailed comparisons.

5.0.2 Related works

In this subsection, to aid readers have more clear understandings on the contributions of

our paper, we provide the list of relevant works with comparisons on how these works are

different from ours.

Approximation of f ∈ W r
∞(Sd−1) via deep CNN. For the approximation theory of f ∈

W r
∞(Sd−1), we must refer readers [179] and [180]. But in their works, the convolutional

neural network (CNN) is used for the function approximator under fixed d setting.

Approximation of f ∈ W r
∞(Cd) via deep ReLU FNN. Approximation theory of deep ReLU

FNN for functions f ∈ W r
∞(Cd) has a lengthy history in the literature. Representa-

tively, [181] showed that f can be approximated uniformly within ε-approximation ac-

curacy with a 1-layer neural network of O(ε−d/r) neurons and an infinitely differentiable

activation function. Later, for deep ReLU networks, [182] showed that the number of ac-

tive parameters (N ) in networks is bounded by O(ε−d/r log
(
1
ε

)
), and the depth has the

order O(log(1
ε
)). He further proved that N is lower-bounded by the order O(ε−d/r), which

is backed up by the result in [183]. For f ∈ W r
p (Cd) with 1 ≤ p ≤ ∞, [184] showed

that there exists a deep ReLU network with bounded and quantized weight parameters,

with O(ε−d/r) network size, and with ε-independent depth for achieving the ε-accuracy in

the Lp norm. For approximating functions f ∈ W r
∞(Cd), [8] proved that a network of size

O(ε−d/r) with bounded weight parameters achieves ε-approximation error in the L∞ norm.

Function spaces with special structures. The result of [182] implies that deep ReLU net

cannot escape the curse of dimensionality for approximating f ∈ W r
∞(Cd). Many papers

have demonstrated that the effects of dimension can be either avoided or lessened by con-

sidering function spaces different from Sobolev spaces, but defined over Cd. Just to name

a few, [185] studied that a function with a compositional structure with regularity r can be

approximated by neural network with O(ε−2/r) neurons within ε accuracy. [186] proved
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the deep ReLU network with O(ε−1/r) neurons can avoid the curse for approximating func-

tions in mixed smooth Besov spaces. [187] showed the network size scales as O(ε−D/r)

for approximating Cr functions, when they are defined on a Riemannian manifold isomet-

rically embedded in Rd with manifold dimension D with D ≪ d. [188] and [189] showed

respectively the deep and shallow ReLU network break the curse for Korobov spaces.

Estimation rates of excess risk under non-parametric framework. Many researchers also

have tried to tackle how the neural networks avoid the curse by considering specially de-

signed function spaces under the non-parametric regression framework. We only provide

the incomplete list of them. Such structures include additive ridge functions [9], composite

function spaces with hierarchical structures [8, 190], mixed-Besov spaces [186], Hölder

spaces defined over a lower-dimensional manifold embedded in Rd [191]. They all showed

the function estimators with neural network architectures can lessen the curse by show-

ing the excess risks of the estimators are bounded by O(n−2r/(2r+D′)), where n denotes

the size of a noisy dataset, and D′ ≪ d is an intrinsic dimension uniquely determined

through the characteristics of function spaces, when they are compared with the minimax

risk O(n−2r/(2r+d)) [192] for f ∈ W r
∞(Cd).

Comparisons. The aforementioned works mainly focused on the approximation and es-

timation of functions defined on Cd, not Sd−1, for the fixed d. Moreover, the introduced

papers on approximation theory, except the work of [8], hide the dependence on d in the

Big-O notation of N in ε-accuracy, even for papers where they consider the function spaces

with special structures. Thus, it is not clear how the d affects the approximation bound and

the scale of the provided network architecture. Introduced papers on estimation rate for

excess risk also follow the same philosophy with papers on approximation theory, as they

work on the fixed d setting. In contrast, we work on the Sd−1 input space, track the explicit

dependence on d in the error bound, and describe how d affects the scale of deep ReLU

FNN as d → ∞ with its interactions with function smoothness r > 0. Our paper focuses

on tracking the dependence on d in the constant factor hidden in the Big-O notations both
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in approximation and estimation error rates, rather than paying attentions on reducing the

exponential dependence of d with base ε in N or with base n in excess risk bound.

5.1 Preliminary Definitions

In this section, we provide the mathematical definitions of deep ReLU FNN and Sobolev

function spaces on unit sphere.

5.1.1 Definition of Deep ReLU network

For defining the deep ReLU network mathematically, we adopt the notation used in [8].

For v = (v1, . . . ,vr) ∈ Rr, let σv : Rr → Rr be the shifted ReLU (Rectified Linear Units)

activation function as σv((y1, . . . , yr)
⊤) := σ((y1 − v1, . . . , yr − vr)

⊤), where σ(x) =

max(x, 0).

With this notation, the network architecture (L,p) consists of a positive integer L,

called the number of hidden layers, and a width vector p := (p0, . . . ,pL+1) ∈ NL+2. A

deep ReLU network with architecture (L,p) considered in this work is then any function

of the form

f̃ : Sd−1 → R, x → f(x) = WLσvL
WL−1σvL−1

. . . σv1W1x, (5.1)

where Wi ∈ Rpi+1×pi is a weight matrix with p0 = d, pL+1 = 1 and vi ∈ Rpi is a shift

vector. Network functions are built by alternating matrix-vector multiplications with the

action of the nonlinear activation function σ.

Let ∥Wj∥0 and |vj|0 be the number of nonzero entries of Wj and vj in the j th hidden

layer. The final form of neural network we consider in this paper is given by

F(L,p,N ) :=

{
f̃ of the form (5.1) :

L∑
j=1

∥Wj∥0 + |vj|0 ≤ N
}
. (5.2)
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The main advantage of using this notation comes from its convenience for tracking the

construction process of network f̃ for approximating f ∈ W r
∞(Sd−1). See Section E.2.2 in

the Appendix. Now, we define the Sobolev spaces over sphere in the next subsection.

5.1.2 Definition of Sobolev Spaces over Sphere

For 1 ≤ p ≤ ∞, we denote Lp(Sd−1) = Lp(Sd−1, ρX ) as the Lp-function space de-

fined with respect to the normalized Lebesgue measure ρX on Sd−1, with norm ∥g∥p :=( ∫
Sd−1 |g(x)|pρX (dx)

)1/p.

Let Hd
k be the space of homogeneous harmonic polynomials of total degree k ∈ Z+

restricted on Sd−1 ⊂ Rd. In [193, 194], its dimension for k ∈ N is found to be

N (k, d) =
2k + d− 2

k

(
k + d− 3

k − 1

)
. (5.3)

Note that L2(Sd−1) is a Hilbert space with inner product ⟨f, g⟩L2(Sd−1) :=
∫
Sd−1 f(x)g(x)ρX (x)

for f, g ∈ L2(Sd−1). The spaces Hd
k, for k ∈ Z+, of spherical harmonics are mutually or-

thogonal with respect to the inner product of L2(Sd−1). Since the space of spherical poly-

nomials is dense in L2(Sd−1), every f ∈ L2(Sd−1) has a spherical harmonic expansion

f =
∞∑
k=0

Projk(f) =
∞∑
k=0

N (k,d)∑
ℓ=1

f̂k,ℓYk,ℓ (5.4)

converging in the L2(Sd−1) norm. Hereafter,
{
Yk,ℓ

}N (k,d)

ℓ=1
denotes an orthonormal basis of

Hd
k, f̂k,ℓ is the Fourier coefficients of f given by

f̂k,ℓ := ⟨f,Yk,ℓ⟩L2(Sd−1) :=

∫
Sd−1

f(x)Yk,ℓ(x)ρX (dx),

and Projk(f) denotes the orthogonal projection of L2(Sd−1) onto Hd
k, which has an integral

120



representation

Projk(f)(x) :=
∫
Sd−1

f(y)Zk(x,y)ρX (dy), ∀x ∈ Sd−1,

where

Zk(x,y) :=

N (k,d)∑
ℓ=1

Yk,ℓ(x)Yk,ℓ(y), ∀x,y ∈ Sd−1.

We know that Zk(x,y) is a reproducing kernel of Hd
k, independent of the choice of

{
Yk,ℓ

}N (k,d)

ℓ=1
,

and with λG = d−2
2

,

Zk(x,y) :=
N + λG

λG
GλG
k

(
⟨x,y⟩

)
, ∀x,y ∈ Sd−1 (5.5)

where GλG
k is the Gegenbauer polynomial of degree k with parameter λG > −1

2
, see for

instance [193]. Denote u := ⟨x,y⟩, the exact expression of GλG
k

(
u
)

is given in terms of the

Gamma function by

GλG
k

(
u
)
:=

⌊ k
2
⌋∑

ℓ=0

(−1)ℓ
Γ
(
k − ℓ+ λG

)
Γ
(
λG
)
ℓ!
(
k − 2ℓ

)
!

(
2u
)k−2ℓ

. (5.6)

The space of Hd
k of spherical harmonics can also be characterized as eigenfunction spaces

of the Laplace-Beltrami operator ∆Sd−1 on Sd−1. Indeed,

Hd
k =

{
f ∈ C2

(
Sd−1

)
: ∆Sd−1f = −λkf

}
,

where λk = k(k+d−2) and C2
(
Sd−1

)
denotes the space of all twice continuously differen-

tiable functions on Sd−1. In fact, with the identity operator I, we may define the fractional

power of
(
− ∆Sd−1 + I

)α of the operator
(
− ∆Sd−1 + I

)
in a distributional sense for
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α ∈ R:

Projk
((

−∆Sd−1 + I
)α
f
)
=
(
1 + λk

)αProjk
(
f
)
.

Now, we define the Sobolev space W r
p (Sd−1) to be the subspace of Lp(Sd−1) for 1 ≤ p ≤

∞, r > 0, with the finite norm

∥f∥W r
p (Sd−1) =

∥∥∥∥∥
(
−∆Sd−1 + I

)r/2

f

∥∥∥∥∥
p

< ∞. (5.7)

The sphere Sd−1 is a smooth Riemannian manifold without boundary. Its nice Laplace-

Beltrami operator (i.e.,∆Sd−1) acting as a Hessian operator of functions on the sphere gives

the natural definition of Sobolev spaces W r
∞(Sd−1) in (5.7); that is, the Sobolev space is

a collection of continuous functions defined on sphere Sd−1 whose generalized (distribu-

tional) derivatives up to order r are essentially bounded. See Equations (16) in [195], (3.4)

in [179], (16) in [180], (5.1.9) in [196] for more detailed treatments on W r
∞(Sd−1). Read-

ers can also refer the definition of W r
∞(Cd) in the Appendix E.1, when Cd = [0, 1]d, for

comparison with W r
∞(Sd−1) and later use in Subsection 5.2.1.

5.2 Approximation error

Now, we present our Theorem on approximating functions f ∈ W r
∞(Sd−1) via F(L,p,N )

in (5.2).

Theorem 5.2.1 Let 0 < α < 1,m,N,M ∈ N with 1 ≤ N ≤ dα + 1. For any function

f ∈ W r
∞(Sd−1) with r > 0, there exists a network

f̃ ∈ F
(
L,
(
d, 22NM, . . . , 22NM, 1

)
,N
)

(5.8)

with depth L = (m+4)⌈log2(2N)⌉ and number of parameters N ≤ M(2d+404N · (m+
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3) + 2N + 4) + 1 such that

∥∥∥f − f̃
∥∥∥
∞

≤ C
′′

η ∥f∥W r
∞(Sd−1) ×

max

{
N−r,

(
6
πe

) d
4dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

,d2N
(
log2(2N)

)2
2−2m

}
, (5.9)

where C
′′
η is a constant dependent on η, and independent on d, r,N,M or f .

The proof of Theorem 5.2.1 is lengthy and technical. We provide the detailed proof ideas

with technical remarks for the Lemmas and Proposition used for the proof of Theorem 5.2.1

in the Appendix E.2. The detailed technical proofs of those Lemmas and Proposition are

provided in the Appendix E.3. Here, for conciseness, we provide some important remarks

on the Theorem and a simple proof sketch, where it starts with a simple triangle inequality:

∥∥∥f − f̃
∥∥∥
∞

≤ ∥f − LN(f)∥∞ +
∥∥∥LN(f)− L̂y

N,M(f)
∥∥∥
∞
+
∥∥∥L̂y

N,M(f)− f̃
∥∥∥
∞
. (5.10)

Three error terms in (5.9) correspond to the bounds on three terms of right-hand side in the

inequality (5.10). We want to emphasize that the constant C ′′
η > 0 in (5.9) is independent

of d. Furthermore, we track how the bound is explicitly dependent on d allowing it to tend

to infinity.

For first term, note that any f ∈ W r
∞(Sd−1) is approximated by a weighted sum of

Projk(f) for 0 ≤ k ≤ 2N , denoted as LN(f). The corresponding approximation error is

small for large enough N and r. Here, importantly, we set the N = ⌈dα⌉ for 0 < α < 1, so

that the input dimension d grows faster than N .

For second term, notice that the definition of LN(f) is involved with the integral over

the sphere, and the key for approximating the function is to discretize this integral by M

random samples y = {y1, . . . ,yM} independently drawn from ρX . The discretized version

of LN(f) is denoted as L̂y
N,M(f). As observed in the error bound, the higher degree N the

LN(f) has, the more sampled points M the approximation requires. However, the require-
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ment is ameliorated as r increases. Similar effect can be observed in the constant factor in

d. The higher the data dimension d is, the more the sampled point M is required for good

approximation, but the requirement is alleviated as the smoothness index r increases. If r

increases up to order d, the factor 2 decays exponentially fast as d → ∞, eventually letting

M ≥ 1 to be any integer. This phenomena is further investigated in the Corollary 5.2.3.

The last term corresponds to the error of the neural network f̃ approximating L̂y
N,M(f).

For any point x ∈ Sd−1, the evaluated function value L̂y
N,M(f)(x) is simply a weighted

average of ξN,r(⟨x,yi⟩), for the sampled y = {y1, . . . ,yM}. Here, ξN,r(⟨x,yi⟩) is a linear

combination of GλG
k

(
⟨x,yi⟩

)
in (5.6) for 0 ≤ k ≤ 2N . Thus, it is sum of univariate polyno-

mials of degree up to 2N . We construct sub-networks approximating ξN,r(⟨x,yi⟩) for each

i ∈ [M ]. This explains the width of f̃ is proportional to NM . The corresponding error

bound is dependent on d2N , where it comes from the applications of Stirling’s formula on

the coefficient factors in GλG
k

(
⟨x,yi⟩

)
. The error,

(
log2(2N)

)2
2−2m, comes from approxi-

mating ⟨x,yi⟩k for 0 ≤ k ≤ 2N via neural networks. The larger the m is, the deeper the

network becomes as L = O(m), and the error gets smaller.

5.2.1 Comparison with [8]

In this subsection, we compare the result from Theorem 5.2.1 with the result from [8],

where they consider the approximation of f ∈ W r
∞([0, 1]d) via deep ReLU FNN. The

Theorem is stated as follows:

Theorem 5.2.2 [Theorem 5 of [8]] For any function f ∈ W r
∞([0, 1]d) and let K > 0 be

the radius of Hölder ball. Then, for any integers m ≥ 1 and NH ≥ (r + 1)d ∨ (K + 1)ed,

there exists a network

f̃H ∈ FH
(
L, (d, 6(d+ ⌈r⌉)NH , . . . , 6(d+ ⌈r⌉)NH , 1),NH

)
(5.11)

2If r = O(d), the factor becomes
(

6
πe

) d
4 d⌈d

α⌉ for 0 < α < 1. Here, the exponential decay term
(

6
πe

) d
4 is

derived from Sobolev embedding Lemma. See Proposition E.2.3 in Appendix E.2.
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with depth L = 8 + (m + 5)
(
1 + ⌈log2(d ∨ r)⌉

)
and the number of parameters NH ≤

141(1 + d+ r)3+dNH(m+ 6), such that

∥∥∥f − f̃H
∥∥∥
∞

≤ (2K + 1)(1 + d2 + r2)6d
(
NH
)
2−m +K3r

(
NH
)− r

d . (5.12)

To avoid the confusion with the notations used in Theorem 5.2.1, we put the superscript

H to a parameter that determines width of the network (i.e., NH), to the total number of

parameters in the network (i.e., NH), and to the network class (i.e., FH). It is interesting to

note that the exponential growth of the network size in d is observed in the construction of

FH , whereas there exists a flexibility in F dependent on the choice of M . Specifically, the

width of the network in FH is exponentially dependent on d as NH = Ω(rd ∨ ed), whereas

the width of the network in F is dependent on two parameters N = o(d) and any integers

M ≥ 1. For the total number of network parameters, we have NH = O((d+ r)d), whereas

N = O(Md+Nmd).

Analogously, the bound on the approximation error of f̃H in (5.12) is dependent on d

exponentially, but this exponential dependence in d can be avoided in the error bound of f̃

in (5.9) under two scenarios: (1) r = O(d) and any integer M ≥ 1 or (2) r = O(1) and

M = O(dd). In the Corollary presented in the next subsection, we further specify the two

scenarios, and describe how the approximation error bound in each scenario converges to

0 in terms of d.

5.2.2 Fast Approximation error in terms of d

Corollary 5.2.3 Let 0 < α, β, γ < 1 with γ > max{α, β} and N ∈ N with 1 ≤ N ≤

dα + 1. For any f ∈ W r
∞(Sd−1) with r > 0, we have:

(I) For 3d−2
4

− C1 ≤ r ≤ 3d−2
4

with some constant C1 ≥ 0 independent of d, there exists

a network

f̃ (1) ∈ F (L, (d, 66N, 66N, . . . , 66N, 1) ,N )

125



with depth L = O (dγ log2 d) and the number of active parameters N = O
(
dmax{α+γ,1}),

such that
∥∥∥f − f̃ (1)

∥∥∥
∞

≤ C ′
η,α,β,γ∥f∥W r

∞(Sd−1)d
−dβ , where C ′

η,α,β,γ is a constant de-

pending only on C1, η, α, β and γ.

(II) For r = O(1) and M = O
(
9dd

9
4
d
)

, there exists a network

f̃ (2) ∈ F
(
L,
(
d, 22NM, . . . , 22NM, 1

)
,N
)

with depth L = O (dγ log2 d) and the number of active parameters N = O
(
9dd

13
4
d
)

such that
∥∥∥f − f̃ (2)

∥∥∥
∞

≤ C ′
η,α,β,γ∥f∥W r

∞(Sd−1)d
−αr, where C ′

η,α,β,γ is a constant de-

pending only on η, α, β and γ.

The detailed proof on Corollary 5.2.3 is deferred in the Appendix E.3.6. The approx-

imation error in scenario (1) decays at a rate d−dβ for 0 < β < 1, while the required

number of active parameters N is at most O(d2). Here, the construction of network f̃ (1) is

independent with the choice of M , and we simply choose M = 3. In scenario (2), since

r = O(1) and 0 < α < 1, the approximation error decays to 0 at d−O(1) rate, which can

be slower than d−dβ for β close to 1. The width of f̃ (2) grows exponentially in d requir-

ing M = O(dd). Interestingly, in both scenarios, the depth L has the same order in d as

O (dγ log2 d) for 0 < γ < 1.

5.3 Statistical risk bound

Let X := Sd−1 and Y ⊂ R be the measureable feature space and output space. We denote ρ

as a joint probability measure on the product space Z := X ×Y , and let ρX be the marginal

distribution of the feature space X . We assume that the noisy data set D := {(xi,yi)}ni=1

are generated from the non-parametric regression model

yi = fρ(xi) + εi, i = 1, 2, . . . , n, (5.13)
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where the noise εi is assumed to be centered sub-gaussian random variable and E(εi|xi) =

0. Our goal is to estimate the regression function fρ(x) with the given noisy data set

D. Specifically, it is assumed that the regression function belongs to Sobolev space on

d-dimensional sphere; that is fρ ∈ W r
∞(Sd−1). It is easy to see regression function fρ :=

E(y|x) is a minimizer of the following population risk E(f) defined as:

E(f) = E(x,y)∼ρ

[(
y − f(x)

)2]
.

However, since the joint distribution ρ is unknown, we cannot find fρ directly. Instead, we

solve a following empirical risk minimization problem induced from the dataset D:

f̂n = argmin
f∈F(L,p,N )

ED(f) := argmin
f∈F(L,p,N )

{
1

n

n∑
i=1

(
yi − f(xi)

)2}
. (5.14)

Note that the function estimator is taken from the feedforward neural network hypothesis

space F(L,p,N )3 defined in (5.2), and we denote the empirical minimizer of (5.14) as f̂n.

It is assumed that |y| ≤ B almost everywhere and we have |fρ(x)| ≤ B. We project the

output function f : Sd−1 → R onto the interval [−B,B] by a projection operator

πBf(x) =


f(x), if −B ≤ f(x) ≤ B,

B, if f(x) > B,

−B, if f(x) < −B.

(5.15)

We consider the clipped estimator πB f̂n for recovering the regression function fρ. Note

that the clipped estimator has been widely used in statistical learning papers [186, 9, 197].

The quality of πB f̂n is measured through the difference between two expected risks (i.e.,

excess risk) defined as E
(
πB f̂n

)
− E

(
fρ
)
.

3Henceforth, we will use a shorthand notation of F(L,p,N ) as F . Dependence on (L,p,N ) should be
implicitly understood.
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5.3.1 Upper-bound on excess risk

In this Subsection, we provide the upper-bound on the excess risk of the clipped estimator

πB(f̂n) with respect to the pseudo-dimension (i.e., Pdim(F)) and the approximation error

(i.e., ∥f − fρ∥∞). Before presenting the bound, the definition of Pdim(F) is presented.

Definition 5.3.1 Denote by Pdim(F), the pseudo-dimension of F , which is the largest

integer ℓ, for which there exists (ξ1, . . . , ξℓ, η1, . . . , ηℓ) ∈ X ℓ × Rℓ such that for any

(a1, . . . , aℓ) ∈ {0, 1}ℓ, there is some f ∈ F satisfying

∀i : f(ξi) > ηi ⇐⇒ ai = 1.

For more comprehensive exploration on Pdim(F) can be found in references [178, 198].

We provide the first theorem on the excess risk.

Proposition 5.3.2 Set δ ∈ (0, 1). Then, with probability at least 1− δ, we have

E
(
πB f̂n

)
− E

(
fρ
)
≤ CB,δ,f ·

(
Pdim(F) · log(n)

n
+

∥f − fρ∥∞√
n

+ ∥f − fρ∥2∞
)
, (5.16)

where CB,δ,f is an absolute constant dependent on B, δ, f independent on n, r, d.

A detailed proof of Proposition 5.3.2 is deferred in the Appendix. The excess risk E
(
πB f̂n

)
−

E
(
fρ
)

is a random quantity over the estimator f̂n and the statement in the Theorem holds

with probability at least 1 − δ. The failure probability δ ∈ (0, 1) is hidden in the constant

CB,δ,f logarithmically, i.e., log(1
δ
). In the bound, it should be noted that there is a trade-off

between the “approximation error” (i.e., ∥f − fρ∥∞) term and the combinatorial “com-

plexity measure” term of a neural network class F (i.e., Pdim(F) · log(n)/n); that is, the

richer the network hypothesis space F becomes, the finer the approximation result we get.

Nonetheless, the arbitrary increase in the hypothesis space F eventually leads the increase

of the bound in excess risk. In the following subsection, we will show how the specifica-
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tions (i.e., the choices of (L,p,N )) of the network architecture affect the tension between

these two terms.

5.3.2 Convergence Rate of Excess Risk

Now we are ready to formally state bounds on the excess risks of πM f̂n when fρ ∈

W r
∞(Sd−1) (i.e., Theorem 5.3.3) and fρ ∈ W r

∞([0, 1]d) (i.e., Theorem 5.3.4), respectively.

Theorem 5.3.3 Suppose fρ ∈ W r
∞(Sd−1) with r > 0. A network f̂n from (5.8) with choices

N = ⌈n
2

3d+4r ⌉, M = ⌈n
3d

3d+4r ⌉, and m = ⌈ r
3d+4r

log2(n)⌉ yield the bound on the excess risk

with probability at least 1− δ as follows:

E
(
πM f̂n

)
− E

(
fρ
)

≤ CB,η,δ,f ·max

{
1,

6rd

(3d+ 4r)2
(log2(n))

4,
( 6

πe

) d
2d2N+ 3d−4r−2

4 , d4N
}
· n− 2r

2r+1.5d , (5.17)

where CB,η,δ,f depends on B, η, δ, f and independent on d, r and n.

Theorem 5.3.4 Suppose fρ ∈ W r
∞([0, 1]d) with r > 0. A network f̂n from (5.11) with

choices NH = ⌈n
d

2d+r ⌉, and mH = ⌈ d+r
d+2r

log2(n)⌉ yield the bound on the excess risk with

probability at least 1− δ as follows:

E
(
πM f̂n

)
− E

(
fρ
)

(5.18)

≤ CB,η,δ,K ·max

{
⌈log2(d+ ⌈r⌉)⌉2(d+ r)d · (log2(n))3,

(
1 + r2 + d2

)2
62d + 32r

}
· n− 2r

2r+d ,

where CB,η,δ,K depends on B, η, δ, K and independent on d, r and n.

Detailed proofs on Theorems 5.3.3 and 5.3.4 are deferred in the Appendix E.4.2 and E.4.3.

Both proofs are simple applications of Proposition 5.3.2 with results from Theorem 5.2.1

and 5.2.2. For both cases, Pdim(F) can be easily computed from Lemma E.5.1 in the Ap-

pendix. The parameters that determine the network architectures, N,M,m and NH ,mH
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in two Theorems are chosen in a way that the bound in (5.16) is tight in terms of sample

size n. Constant factors CB,η,δ,f and CB,η,δ,K are dependent on δ ∈ (0, 1) as log(1
δ
). The

bound in Theorem 5.3.3, Od(n
− 2r

2r+1.5d ), is sub-optimal in a minimax sense for estimating

functions fρ ∈ W r
∞(Sd−1), where Od hides the constant factor in d. The extra 0.5d factor in

the denominator of exponent comes from the Sobolev embedding Lemma (Lemma E.2.3)

and discretization Lemma (Lemma E.2.4). For the constant factor in d, when r = O(1), the

exponential dependence on d can be observed. However, when r = O(d), the excess bound

in (5.17) reduces to E
(
πM f̂n

)
− E

(
fρ
)
≤ CB,η,δ,f ·max

{
(log2(n))

4, d4N
}
· n− 2r

2r+1.5d , with

N = ⌈n
2

3d+4r ⌉. Specifically, in high-dimensional setting where n = O(dq) for 0 < q < 1,

the constant in d becomes dd
2q

3d+4r . Then, as d, r → ∞, the constant d4N becomes dO(1). In

contrast, in (E.44) for estimating functions fρ ∈ W r
∞([0, 1]d), the rate n− 2r

2r+d is minimax

optimal, but we cannot observe the interactions between r and d as we observe in (5.17).

Remark 5.3.5 From the technical point of view, the result in Theorem 5.3.3 should be com-

pared with the results in the existing literature, i.e., [8, 191, 186], in a sense that our result

doesn’t require the boundedness of the weight parameters in the network construction. The

detailed readings of their proofs reveal that they require the bound on the uniform covering

number of F and it can be bounded by the Lipschitzness of the network output with respect

to the weight parameters. Naturally, for the discretizations of the parameter space, the

boundedness assumption is required. In contrast, in our result, due from the [198] (See

Lemma E.5.1), bounding the complexity measure Pdim(F) doesn’t require the parameter

boundedness assumption.

5.4 An Open Question

In this paper, we prove when r = O(d), deep ReLU FNNs only require at most N = O(d2)

parameters to get a sharp approximation rate. However, this condition seems restrictive,

and needs further investigation whether it is a necessary and sufficient condition to avoid

the curse of dimensionality for approximating f ∈ W r
∞(Sd−1). To answer this question, it
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is essential to study the lower bound of N with a similar approximation error as stated in

Theorem 5.2.1, and see if it has the matching order with the upper-bound we get in d. We

conjecture obtaining this result is possible by combining the ideas of using VC-dimension

of deep ReLU FNNs [198, 182] and of constructing the packing set on the sphere through

the spherical cap [195], while tracking the d-dependency in the constant factor carefully.

We leave this for the future research.
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Appendices



APPENDIX A

A NETWORK MODEL THAT COMBINES LATENT FACTORS AND SPARSE

GRAPHS

A.1 Computation

For the convenience of readers, we rewrite the optimization problem that we want to solve:

min
α∈R,S=ST

L≽0

− 1

n
log

∏
1≤i<j≤n

exp (Xij (α + Lij + Sij))

1 + exp (α + Lij + Sij)
+ δ∥L∥∗ + γ∥S∥1. (A.1)

We propose a method that takes advantage of the special structure of the L1 and the

nuclear norm by means of the alternating direction method of multiplier (ADMM), which

is a method that has recently gained momentum. An examination of the objective function

in (A.1) unvails that terms

α
∑

1≤i<j≤n

Xij +
1

2
X • L+

1

2
X • S

are linear in α,L, and S. The term

∑
1≤i<j≤n

log
(
1 + eα+Lij+Sij

)

is convex with respect to α,L, and S. Functions ∥S∥1 and ∥L∥∗ are known to be con-

vex functions. Therefore, the objective function in (A.1) is convex. The above convex

optimization problem can be solved via ADMM as follows.
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A.1.1 ADMM approach

We give a review of the alternating direction method of multiplier (ADMM). Consider two

closed convex functions

f : χf → R and g : χg → R,

where the domain χf and χg of functions f and g are closed convex subsets of Rd, and

χf

⋂
χg is nonempty. Both f and g are possibly non-differentiable. The alternating direc-

tion method of multiplier is an iterative algorithm that solves the following generic opti-

mization problem:

min
x∈χf

⋂
χg

{f(x) + g(x)} ,

or equivalently

min
x∈χf ,z∈χg

{f(x) + g(z)} , (A.2)

subject to x = z.

To describe the algorithm, we will need the following proximal operators

• Pλ,f : Rd → χf as

Pλ,f (v) = arg minx∈χf

{
f(x) +

1

2λ
∥x− v∥22

}
,

• and Pλ,g : R
d → χg as

Pλ,g(v) = arg minx∈χg

{
g(x) +

1

2λ
∥x− v∥22

}
,

where ∥ · ∥2 is the usual Euclidean norm on Rd and λ is a scale parameter that is a

fixed positive constant.

The algorithm starts with some initial values x0 ∈ χf , z
0 ∈ χg, u

0(= λy0) ∈ Rd. At
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the (m + 1)th iteration, (xm, zm, um) is updated according to the following steps until

convergence

• Step 1: xm+1 = Pλ,f (z
m − um),

• Step 2: zm+1 = Pλ,g(x
m+1 + um),

• Step 3: um+1 = um + xm+1 − zm+1.

The convergence properties of the algorithm are summarized in the following result as in

[37]. Let p∗ be the minimal value in (A.2).

Theorem A.1.1 (Boyd et al., 2011) Assume functions f : χf → R and g : χg → R are

closed convex functions, whose domains χf and χg are closed convex subsets of Rd and

χf

⋂
χg ̸= ∅. Assume the Lagrangian of (A.2)

L(x, z, y) = f(x) + g(z) + yT (x− z)

has a saddle point, that is, there exists (x∗, z∗, y∗) (not necessarily unique) that x∗ ∈ χf

and z∗ ∈ χg, for which

L(x∗, z∗, y) ≤ L(x∗, z∗, y∗) ≤ L(x, z, y∗), ∀x, z, y ∈ Rd.

Then the ADMM has the following convergence properties.

1. Residual convergence. xm − zm → 0 as m → ∞; i.e., the iterates approach feasi-

bility.

2. Objective convergence. f(xm)+ g(zm) → p∗ as m → ∞; i.e., the objective function

of the iterates approaches the optimal value.

3. Dual variable convergence. ym → y∗ as m → ∞, where y∗ is a dual optimal point.
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Now we describe how ADMM can be adopted to solve for our penalized likelihood

estimation problem in (A.1). We reparameterize M = L + S and let x = (α,M,L, S)

(viewed as a vector). We define the following:

χf = {(α,M,L, S) : α ∈ R,M,L, S ∈ Rn×n, L is positive semidefinite, S is symmetric},

f(x) = −α

n

∑
1≤i<j≤n

Xij −
1

2n
X •M +

1

n

∑
1≤i<j≤n

log
(
1 + eα+Mij

)
+ γ∥S∥1 + δ∥L∥∗,

χg = {(α,M,L, S) : α ∈ R,M,L, S ∈ Rn×n,M is symmetric and M = L+ S}, and

g(x) = 0, for x ∈ χg.

One can verify that (A.1) can be written as

min
x∈χf

⋂
χg

{f(x) + g(x)} .

We now present each of the three steps of the ADMM algorithm and show that the

proximal operators Pλ,f and Pλ,g are easy to evaluate. Let

xm = (xm
α , x

m
M , xm

L , x
m
S ), zm = (zmα , zmM , zmL , zmS ), um = (um

α , u
m
M , um

L , u
m
S ).

Step 1. We solve xm+1 = Pλ,f (z
m−um). Due to the special structure of f(·), xm+1

α , xm+1
M , xm+1

L ,

and xm+1
S can be updated separately. More precisely, we have

xm+1
α , xm+1

M = arg minα,M − α

n

∑
1≤i<j≤n

Xij −
1

2n
X •M +

1

n

∑
1≤i<j≤n

log
(
1 + eα+Mij

)
+

1

2λ
[α− (zmα − um

α )]
2 +

1

2λ
∥M − (zmM − um

M)∥2F , (A.3)

xm+1
L = arg minL δ∥L∥∗ +

1

2λ
∥L− (zmL − um

L )∥2F , (A.4)

subject to L is positive semidefinite;

xm+1
S = arg minS γ∥S∥1 +

1

2λ
∥S − (zmS − um

S )∥2F , (A.5)

subject to S is symmetric,
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where ∥ · ∥F is the matrix Frobenius norm, defined as ∥M∥2F =
∑

i,j m
2
ij for a matrix

M = {(mij)}ni,j=1. The problem in (A.3) may not have a closed-form solution. We use a

simple gradient descent to solve in this step, setting the step size equal to 0.05 and stopping

criteria as max
(
|x(t+1)

α,m −x
(t)
α,m|, ∥x(t+1)

M,m −x
(t)
M,m∥∞

)
≤ 10−7. Note that there are closed-form

solutions to (A.4) and (A.5), while (A.3) is a unconstrained convex optimization problem.

More specifically, in (A.4), suppose the eigenvalue decomposition of the symmetric matrix

(zmL − um
L ) can be written as

zmL − um
L = TΛT T ,

where T is orthogonal (TT T = In). Then, for J = In − 1
n
11T , we have

xm+1
L = J

(
Tdiag(Λ− λδ

)
+
T T )JT ,

and diag(Λ− λδ)+ is a diagonal matrix with the jth diagonal entry being

(Λjj − λδ)+ =

 0, if Λjj < λδ,

Λjj − λδ, if Λjj ≥ λδ.

Updating xm
L requires full eigen-decomposition in each iteration, and this can be compu-

tationally expensive step when n is large. We adopt truncated-SVD to speed up this step

performing eigen-decomposition for the first r ≪ n eigen-vectors of matrix (zmL −um
L ). The

adoption of truncated-SVD reduces the computational complexity from O(n3) to O(rn2)

in this step.

In (A.5), we have, for i ̸= j,

Sij =


0, if |(zmS − um

S )ij| < λγ,

(zmS − um
S )ij − λγ, if (zmS − um

S )ij > λγ,

(zmS − um
S )ij + λγ, if (zmS − um

S )ij < −λγ.
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Step 2. We solve zm+1 = Pλ,g(x
m+1 + um). A closed-form solution exists here. Denote

ᾱ = xm+1
α + um

α , M̄ = xm+1
M + um

M , L̄ = xm+1
L + um

L , and S̄ = xm+1
S + um

S , then evaluating

Pλ,g(x
m+1 + um) becomes

min
α,M,L,S

1
2
[α− ᾱ]2 + 1

2
∥M − M̄∥2F + 1

2
∥L− L̄∥2F + 1

2
∥S − S̄∥2F

subject to M is symmetric and M = L+ S.

The above optimization problem has a close-form solution, which is as follows:

zm+1
α = ᾱ,

zm+1
M =

1

3
M̄ +

1

3
M̄T +

1

3
L̄+

1

3
S̄,

zm+1
L =

1

6
M̄ +

1

6
M̄T +

2

3
L̄− 1

3
S̄, and

zm+1
S =

1

6
M̄ +

1

6
M̄T − 1

3
L̄+

2

3
S̄.

Step 3. We solve um+1 = um + xm+1 − zm+1, which is a simple arithmetic.

The most important implementation details of this algorithm are the choice of λ and

stopping criterion. In this work, we simply choose λ = 0.5. We terminate the algorithm

when in the mth iteration, we have ∥xm
M − xm

L − xm
S ∥F ≤ ε, with ε = 5× 10−6.

Remark A.1.2 The convexity and separability of the objective function of the proposed

model allow ADMM to be efficient. Consequently, we can apply our model to large size

datasets, seeing Subsection 7.3. In some examples in the previous literature (e.g., in [27,

26], where the latent variables are treated as random effects and the MCMC method

are used for parameter estimation), significant improvement in numerical efficiency is ob-

served.
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A.2 Synthetic Setting

We describe a set of steps for setting the model parameters, α∗, F ∗, D∗ and S∗ sequentially.

We put astroids in the superscripts of parameters to indicate that they are the ground truth.

Readers can refer the meaning of each parameter in the model in Section 1 and 3.

1. We draw an intercept term α∗ in the logistic regression model from the uniform

distribution that is supported on [-11,-10]. In this way, we can make α∗ have the least

effects in creating edges in the network.

2. Recall that the binary factor loading matrix F ∗ encodes the relation between factors

and nodes (i.e., if ith node has kth factor, then we have F ∗
ki = 1, otherwise F ∗

ki = 0).

First, we assume that there are n nodes in the network, and K factors are embedded

in it. Each of them consists of roughly n
K

nodes. This can be expressed in F ∗ as

follows:

F ∗ =



1 · · · 1︸ ︷︷ ︸
n/K 1 · · · 1︸ ︷︷ ︸

n/K
. . .

1 · · · 1︸ ︷︷ ︸
n/K


∈ RK×n,

where each row of F ∗ has n
K

1’s and each column has only one 1. Note that the

remaining entries of the matrix are filled with zeros.

3. In the aforementioned matrix F ∗, each node is associated with only one factor. In

this situation, a “perfect” clustering is possible, as each cluster corresponds to one

hidden factor. On the other hand, we would like to consider the situation where one

node may be related to multiple factors. If a node is associated with l factors, we say

that this node has the multiplicity l. For simplicity, we consider only two possible
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multiplicity l and m (1 < l < m ≤ K). We assume that nl nodes share l factors and

nm nodes share m factors. This can be incorporated in the aforementioned F ∗ in the

following steps:

(a) Pick distinct nl indices randomly from {1, 2, . . . , n}. We will denote the set of

the indices as Ωl.

(b) Choose nm indices from the set {1, 2, . . . , n} \ Ωl and denote the set of those

indices as Ωm.

(c) Make the columns of F ∗ with corresponding indices in set Ωl ∪ Ωm zeros. We

use a notation f ∗
j to denote the jth column of the matrix F ∗. Fill arbitrary l

entries of f ∗
j for j ∈ Ωl with 1’s, and also fill arbitrary m entries of f ∗

j for

j ∈ Ωm with 1’s.

Lastly, we set F ∗ = JF ∗ where J = In− 1
n
11T . This is due to the discussion around

the equation 10 in the paper.

4. Generate the weight coefficients of the factors D∗
ii from the uniform distribution that

is supported on [19, 20], ∀1 ≤ i ≤ K. In this way, we can force the nodes that are

associated with the same factor cluster together.

5. Recall that the positive entries of S∗ can characterize the links in the network, which

cannot be accounted by the common factors. We assume that there are |S∗|
(K2 )

edges

between any two clusters, where |S∗| denotes the number of non-zero entries of the

upper-triangular part of the matrix S∗. This can be implemented via the following

steps:
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(a) We construct K sets C∗
1 , . . . , C

∗
K that are defined as follows:

C∗
1 ⊆

{
1, 2, . . . ,

n

K

}
\
{
Ωl ∪ Ωm

}
C∗

2 ⊆
{

n

K
+ 1, . . . ,

2n

K

}
\
{
Ωl ∪ Ωm

}
...

C∗
K ⊆

{
(K − 1)n

K
+ 1, . . . , n

}
\
{
Ωl ∪ Ωm

}
where each of them has arbitrary |S∗|

(K2 )
elements.

(b) Create a set IS∗ whose elements are pairs of indices such that

IS∗ =
⋃

1≤p<q≤K

{
(ip,qr , jp,qr ) : ir ∈ C∗

p , jr ∈ C∗
q , r = 1, 2, . . . ,

|S∗|(
K
2

)} ,

where (ip,qr , jp,qr ) is the rth edge that connects a node in C∗
p and a node in C∗

q .

Set IS∗ contains the edges that connect nodes in two different clusters.

(c) Draw S∗
ij ∼ Unif[19, 20],∀(i, j) ∈ IS∗ .

(d) Lastly, make it symmetric by setting S∗
ji = S∗

ij,∀1 ≤ i < j ≤ n.

6. Create an upper-triangular part of the adjacency matrix X whose each entry Xij

follows Bernoulli distribution. The distribution’s parameter is parametrized by a

probability, P ∗
ij =

exp(α∗+f∗T
i D∗f∗

j +S∗
ij)

1+exp(α∗+f∗T
i D∗f∗

j +S∗
ij)

. After drawing all the entries of X in the

upper-triangular part, then make the matrix symmetric by setting Xji = Xij,∀1 ≤

i < j ≤ n.

A.3 Proof Theorem 1.

We briefly introduce several notations, including a notion on the decomposability of reg-

ularizer, and a useful lemma that is proved in the work [29] (SubsectionA.3.1). Then, we

present Lemma A.3.3 and its proof (Subsection A.3.2). Finally, we present the proof of our
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Theorem 1 (Subsection A.3.3).

A.3.1 Preliminary

Throughout the proof, we adopt the convenient short-hand notation on projection of matrix

P on subspace M as PM . We use ⟨A,B⟩ to denote the trace inner product of two matrices

A and B
(
i.e.,⟨A,B⟩ = tr

(
ATB

))
. We use ∥A∥∞ to denote the maximum absolute entry

of matrix A, and use ∥B∥op to denote the largest singular value of matrix B. And we will

use the notion of decomposability of L1 norm with respect to a pair of subspace (M,M⊥).

Given an arbitrary subset S ⊆ {1, 2, . . . , n}×{1, 2, . . . , n} of matrix indices, M is defined

as follows:

M(S) := {U ∈ Rn×n|Uij = 0,∀(i, j) ∈ S}

and M⊥(S) := (M(S))⊥. With this in mind, we recall the formal definition of the decom-

posability of L1 norm as follows:

Definition A.3.1 Given a subspace M ⊂ Rn×n and its orthogonal complement M⊥, an

elementwise L1 norm is decomposable with respect to (M,M⊥) if

∥A+B∥1 = ∥A∥1 + ∥B∥1, ∀A ∈ M and B ∈ M⊥.

The notion of decomposability is used to penalize the perturbation from the model subspace

M , and to obtain the tightest bound the L1 norm can achieve. We will also use two results

in our proof, which are presented and proved in [29]. For the convenience of readers, we

present them here:

Lemma A.3.2 (Agarwal, et al [29]) For any k = 1, 2, . . . , n, there is a decomposition

∆̂L = ∆̂L
A + ∆̂L

B such that:

1. The decomposition satisfies

rank
(
∆̂L

A

)
≤ 2k, and

(
∆̂L

A

)T
∆̂L

B =
(
∆̂L

B

)T
∆̂L

A = 0 (A.6)
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2. The differenceQ
(
L∗, S∗)−Q(∆̂L + L∗, ∆̂S + S∗) is upper-bounded by

Q
(
∆̂L

A, ∆̂
S
M

)
−Q

(
∆̂L

B, ∆̂
S
M⊥

)
+ 2

n∑
j=k+1

σj

(
L∗)+ 2

γ

δ
∥S∗

M⊥∥1 , (A.7)

where the notationQ(L, S) is defined as the weighted combination of the two regularizers

for any pair of positive tuning parameters (γ, δ):

Q (L, S) := ∥L∥∗ +
γ

δ
∥S∥1 .

A.3.2 Lemma A.3.3

Lemma A.3.3 If a pair of regularization parameters (δ, γ) satisfies condition (15) in the

paper, then forQ
(
∆̂L

B, ∆̂
S
M⊥

)
, we have

Q
(
∆̂L

B, ∆̂
S
M⊥

)
≤
∥∥∥∆̂α11T

∥∥∥
F
+ 3Q

(
∆̂L

A, ∆̂
S
M

)
+ 4

n∑
j=k+1

σj

(
L∗)+ 4

γ

δ
∥S∗

M⊥∥1 .

Proof. Through the application of basic inequality by using optimality of Θ̂ and feasibility

of Θ∗ to convex program (A.1), we have

h
(
Θ̂
)
− h
(
Θ∗) ≤ δQ

(
L∗, S∗)− δQ

(
∆̂L + L∗, ∆̂S + S∗). (A.8)

By using convexity of h(Θ), we can write

h
(
Θ̂
)
− h
(
Θ∗) ≥ 〈∇Θh(Θ

∗), Θ̂−Θ∗〉 = −
〈 1
n
(X − P ∗), ∆̂α11T + ∆̂L + ∆̂S

〉
≥ − 1

n
∥X − P ∗∥op

(∥∥∆̂α11T
∥∥
∗ +

∥∥∆̂L
∥∥
∗

)
− 1

n
∥X − P ∗∥∞

∥∥∆̂S
∥∥
1

≥ −δ

2

(∥∥∆̂α11T
∥∥
F
+
∥∥∆̂L

A

∥∥
∗ +

∥∥∆̂L
B

∥∥
∗

)
− γ

2

(∥∥∆̂S
M

∥∥
1
+
∥∥∆̂S

M⊥

∥∥
1

)
.

(A.9)
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An application of Agarwal et al [29]’s second element of lemma A.3.2, we can get an upper

bound of differenceQ
(
L∗, S∗)−Q(∆̂L + L∗, ∆̂S + S∗) as follows:

Q
(
∆̂L

A, ∆̂
S
M

)
−Q

(
∆̂L

B, ∆̂
S
M⊥

)
+ 2

n∑
j=k+1

σj

(
L∗)+ 2

γ

δ

∥∥S∗
M⊥

∥∥
1
. (A.10)

By combining inequalities (A.8), (A.9) and (A.10), we can get the upper bound ofQ
(
∆̂L

B, ∆̂
S
M⊥

)
:

Q
(
∆̂L

B, ∆̂
S
M⊥

)
≤
∥∥∆̂α11T

∥∥
F
+ 3Q

(
∆̂L

A, ∆̂
S
M

)
+ 4

n∑
j=k+1

σj

(
L∗)+ 4

γ

δ

∥∥S∗
M⊥

∥∥
1
.

A.3.3 Main proof of Theorem 1

Proof. Since Θ̂ and Θ∗ are optimal minimizer and feasible solution respectively for the

convex program (A.1), we have

h
(
Θ̂
)
+ δ
∥∥L̂∥∥∗ + γ

∥∥Ŝ∥∥
1
≤ h

(
Θ∗)+ δ

∥∥L∗∥∥
∗ + γ

∥∥S∗∥∥
1
. (A.11)

Through the assumption of strong convexity on h(Θ), and by the Taylor expansion, we

can get a following lower bound on the term h
(
Θ̂
)
− h
(
Θ∗) :

h
(
Θ̂
)
− h
(
Θ∗) ≥ 〈∇Θh

(
Θ∗), Θ̂−Θ∗〉 +

τ

2

∥∥∆̂Θ
∥∥2
F
.

By rearranging the term in (A.11) and plugging in above inequality relation, we get:

τ

2

∥∥∆̂Θ
∥∥2
F
≤ −

〈
∇Θh(Θ

∗), Θ̂−Θ∗〉 + δ
∥∥L∗∥∥

∗ + γ
∥∥S∗∥∥

1
− δ
∥∥L̂∥∥∗ − γ

∥∥Ŝ∥∥
1
. (A.12)
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Through the definition ofQ, we can rewrite (A.12) as follows:

τ

2

∥∥∆̂Θ
∥∥2
F
≤ −

〈
∇Θh

(
Θ∗), Θ̂−Θ∗〉 + δQ

(
L∗, S∗)− δQ

(
∆̂L + L∗, ∆̂S + S∗). (A.13)

According to Agarwal et al [29]’s second element of lemma A.3.2, the difference

Q
(
L∗, S∗)−Q(∆̂L + L∗, ∆̂S + S∗) is upper-bounded by

Q
(
∆̂L

A, ∆̂
S
M

)
−Q

(
∆̂L

B, ∆̂
S
M⊥

)
+ 2

n∑
j=k+1

σj

(
L∗)+ 2

γ

δ

∥∥S∗
M⊥

∥∥
1
. (A.14)

First, we want to control upper bound of the term −
〈
∇Θh(Θ

∗), Θ̂−Θ∗〉 in (A.13).

−
〈
∇Θh(Θ

∗), Θ̂−Θ∗〉 =
〈 1
n
(X − P ∗), ∆̂α11T + ∆̂L + ∆̂S

〉
(A.15)

≤ 1

n
∥X − P ∗∥op

(∥∥∆̂α11T
∥∥
∗ +

∥∥∆̂L
∥∥
∗

)
+

1

n
∥X − P ∗∥∞

∥∥∆̂S
∥∥
1

≤ 1

n
∥X − P ∗∥op

(∥∥∥∆̂α11T
∥∥∥
F
+
∥∥∥∆̂L

A

∥∥∥
∗
+
∥∥∥∆̂L

B

∥∥∥
∗

)
+

1

n
∥X − P ∗∥∞

(∥∥∥∆̂S
M

∥∥∥
1
+
∥∥∥∆̂S

M⊥

∥∥∥
1

)
≤ δ

2

(∥∥∆̂α11T
∥∥
F
+
∥∥∆̂L

A

∥∥
∗ +

∥∥∆̂L
B

∥∥
∗

)
+

γ

2

(∥∥∥∆̂S
M

∥∥∥
1
+
∥∥∥∆̂S

M⊥

∥∥∥
1

)
. (A.16)

Combining the inequalities (A.14) and (A.16), we can obtain the upper bound of RHS

in (A.13) as follows:

τ

2

∥∥∆̂Θ
∥∥2
F
≤ δ

2

∥∥∆̂α11T
∥∥
F
+

3δ

2
Q
(
∆̂L

A, ∆̂
S
M

)
+ 2δ

n∑
j=k+1

σj

(
L∗)+ 2γ

∥∥S∗
M⊥

∥∥
1
. (A.17)

Second, we wish to control the lower bound of the term τ
2

∥∥∆̂Θ
∥∥2
F

with respect to ∆̂α, ∆̂L, ∆̂S .

∥∥∆̂Θ
∥∥2
F
=
∥∥Θ̂−Θ∗∥∥2

F
=
∥∥∆̂α11T + ∆̂L + ∆̂S

∥∥2
F

=
∥∥∆̂α11T

∥∥2
F
+
∥∥∆̂L + ∆̂S

∥∥2
F
+ 2
〈
∆̂L + ∆̂S, ∆̂α11T

〉
=
∥∥∆̂α11T

∥∥2
F
+
∥∥∆̂L

∥∥2
F
+
∥∥∆̂S

∥∥2
F
+ 2
〈
∆̂L + ∆̂S, ∆̂α11T

〉
+ 2
〈
∆̂L, ∆̂S

〉
.

(A.18)
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We want to get the further lower bound on trace inner product terms,
〈
∆̂L+∆̂S, ∆̂α11T

〉
,〈

∆̂L, ∆̂S
〉

. To control the first trace inner product term, we use the relation ∆̂L1 = 0, ap-

ply the definition of dual norm on inner product term, apply triangular inequality on ∆̂α,

and lastly we apply the constraint imposed on |α| stated in Assumption 2. We have

∣∣〈 ∆̂L + ∆̂S, ∆̂α11T
〉 ∣∣ = ∣∣〈 ∆̂S, ∆̂α11T

〉 ∣∣
≤
∥∥∆̂α11T

∥∥
∞

∥∥∆̂S
∥∥
1

≤
(∣∣α̂∣∣+ ∣∣α∗∣∣)∥∥∆̂S

∥∥
1

≤ 2Cκ
∥∥∆̂S

∥∥
1
. (A.19)

To control the term
〈
∆̂L, ∆̂S

〉
, we first apply the definition of dual norm on trace inner

product term, then apply triangular inequality on ∆̂L and spikiness condition. We have

∣∣〈 ∆̂L, ∆̂S
〉 ∣∣ ≤ ∥∥∆̂L

∥∥
∞

∥∥∆̂S
∥∥
1

≤
(∥∥L̂∥∥∞ +

∥∥L∗∥∥
∞

)∥∥∆̂S
∥∥
1

≤
(
2κ

n

)∥∥∆̂S
∥∥
1
. (A.20)

We can combine the inequality (A.18), (A.19) and (A.20). Then applying the assump-

tion on regularization parameter γ, and the fact
∥∥∆̂L

∥∥
∗ ≥ 0 sequentially, we can get the

following,

τ

2

∥∥∆̂Θ
∥∥2
F
≥ τ

2

∥∥∆̂α11T
∥∥2
F
+

τ

2

∥∥∆̂L
∥∥2
F
+

τ

2

∥∥∆̂S
∥∥2
F
− κτ

(
Cn+ 1

n

)∥∥∆̂S
∥∥
1

≥ τ

2

∥∥∆̂α11T
∥∥2
F
+

τ

2

∥∥∆̂L
∥∥2
F
+

τ

2

∥∥∆̂S
∥∥2
F
− γ

2

∥∥∆̂S
∥∥
1

≥ τ

2

∥∥∆̂α11T
∥∥2
F
+

τ

2

∥∥∆̂L
∥∥2
F
+

τ

2

∥∥∆̂S
∥∥2
F
− δ

2
Q
(
∆̂L, ∆̂S

)
. (A.21)

By combining the relations (A.17) and (A.21), applying triangular inequality,Q
(
∆̂L, ∆̂S

)
≤
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Q
(
∆̂L

A, ∆̂
S
M

)
+Q

(
∆̂L

B, ∆̂
S
M⊥

)
, and rearranging the term, we can get following inequality,

τ

2

∥∥∆̂α11T
∥∥2
F
+

τ

2

∥∥∆̂L
∥∥2
F
+

τ

2

∥∥∆̂S
∥∥2
F

≤ δ

2

∥∥∆̂α11T
∥∥
F
+ 2Q

(
∆̂L

A, ∆̂
S
M

)
+

δ

2
Q
(
∆̂L

B, ∆̂
S
M⊥

)
+ 2δ

n∑
j=k+1

σj

(
L∗)+ 2γ

∥∥S∗
M⊥

∥∥
1
.

Further, by plugging in Lemma 1 to get an upper bound on Q(∆̂L
B, ∆̂

S
M⊥), we can

rewrite the above inequality as follows:

τ

2

∥∥∆̂α11T
∥∥2
F
+

τ

2

∥∥∆̂L
∥∥2
F
+

τ

2

∥∥∆̂S
∥∥2
F
− δ

2

∥∥∆̂α11T
∥∥
F

(A.22)

≤ 7δ

2
Q
(
∆̂L

A, ∆̂
S
M

)
+ 4δ

n∑
j=k+1

σj

(
L∗)+ 4γ

∥∥S∗
M⊥

∥∥
1
. (A.23)

Noting that ∆̂L
A has rank at most 2k and that ∆̂S

M lies in the model space M , we find that

δQ
(
∆̂L

A, ∆̂
S
M

)
≤

√
2kδ
∥∥∆̂L

A

∥∥
F
+Ψ(M)γ

∥∥∆̂S
M

∥∥
F

≤
√
2kδ
∥∥∆̂L

∥∥
F
+Ψ(M)γ

∥∥∆̂S
∥∥
F
. (A.24)

Here Ψ(M) measures the compatibility between Frobenius norm and component-wise L1

regularizer, where M is an arbitrary subset of matrix indices of cardinality at most s. We

have

Ψ(M) := sup
U∈M,U ̸=0

∥U∥1
∥U∥F

.

Using Cauchy-Schwarz inequality, we can easily check the quantity Ψ(M) is bounded by

at most
√
s. Plugging in the relation (A.24) into (A.23) and rearranging the term relevant

with e2
(
α̂11T , L̂, Ŝ

)
yield the claim.
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A.4 Discussions on “Mixed Topics” cluster in Subsection 7.4.

Mixed Topics. The sub-network structure estimated in Step 2 in Subsection 7.4. has a big

collection of papers that we refer it as “Mixed Topics” cluster (Mixed). In the cluster, we

can see papers with topics on Statistical learning theory, Non-parametric/Semi-parametric

statistics, Spatial statistics, Theoretical machine learning, which does not seem to belong to

any of the five communities listed above. Additionally, we can identify papers with com-

bination of two or three topics. Papers such as ‘The Bayesian Lasso’ (T. Park, et al. 2008),

‘Coordinate-independent sparse sufficient dimension reduction and variable selection’ (X.

Chen, et al. 2010), can be taken as examples. It is also interesting to think about reasons

for why papers that seem to have obvious membership in one of aforementioned 5 com-

munities other than Mixed Topic are classified as Mixed Topic. For instance, the paper,

‘On the “degrees of freedom” on the LASSO’ (H. Zou, et al. 2007), is classified as Mixed

Topic paper. We can conjecture variable selection has lots of applications in other topics,

so it might either cite or have been cited by many papers in other communities. Actually,

among 232 papers in the network, the paper has 11 citational relationships with papers from

4 different communities. (i.e., VarSel, Bayes, CovEst, Mixed)

Ad-hoc Edges of “Mixed Topics”. The selected model in Step 2 in Subsection 7.4. has 151

ad-hoc edges. Among those 151 ad-hoc citational relationships, 118 of them are formed

by pairs of papers from “Mixed Community”. This result is unexpected since our model is

designed to capture ad-hoc edges whose corresponding nodes belong to different commu-

nities. One possible explanation on this phenomenon is as follows: we observe that latent

vectors of papers classified as “Mixed Topics” are clustered around origin in an L2 sense.

See Figure. A.1 and its caption for details. Roughly speaking, this leads L̂sub
ij to have small

value so that the edges within “Mixed Topic” cluster are captured via positive entries Ŝsub
ij ,

where i, j are indices of papers clustered as “Mixed Topics”. Also note that the remaining
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31 ad-hoc edges (except for the 2 pairs of papers from “FuncAn-FuncAn”) are formed by

pairs of papers with different communities. (See Table. A.1.) A full list of papers which

form the 151 ad-hoc edges is provided in the webpage1.

Figure A.1: Distribution of ∥ei∥2 where ei is the ith row of Êsub
5 ∈ R162×5. Note that nodes

classified as “Mixed Topics” are highly clustered around origin in a L2 sense. Recall that
the definition of ÊK is in Subsection 7.3.

Community - Community Number of citations
“Mixed - Mixed” 118
“Mixed - CovEst” 12
“Mixed - FuncAn” 8
“Mixed - Bayes” 7

“Mixed - DimRed” 3
“FuncAn - CovEst” 1
“FuncAn - FuncAn” 2

Total 151

Table A.1: Among the 151 ad-hoc citational relationships, 118 of them are formed by pairs
of papers from “Mixed Community”. Remaining 31 ad-hoc edges (except for the 2 pairs of
papers from “FuncAn-FunAc”) are formed by pairs of papers with different communities.

1https://sites.google.com/site/namjoonsuh/publications
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APPENDIX B

ASYMPTOTIC THEORY OF ℓ1-REGULARIZED PDE IDENTIFICATION FROM

A SINGLE NOISY TRAJECTORY

B.1 Primal-Dual Witness construction

In this section, we briefly rephrase the explanation of PDW construction in the book [199]

for reader’s convenience. A primal-dual pair (β̂, ẑ) ∈ RK×K is said to be optimal if β̂ is

a minimizer of (3.7) and ẑ ∈ ∂∥β̂∥1, where ∂∥β̂∥1 denotes a sub-differential set of ∥ · ∥1

evaluated at β̂. Any such pair must satisfy the zero-subgradient condition of (3.7), which

is as follows:

− 1

NM
F̂T (ût − F̂β̂) + λN ẑ = 0 , for ẑ ∈ ∂∥β̂∥1 . (B.1)

Recall that we denote the ground-truth support of β∗ as S, and suppose that we know S

apriori. For the ground-truth support set S and its complement set Sc, PDW is said to be

successful if the constructed tuple, (β̂S , β̂Sc , ẑS , ẑSc), is primal-dual optimal, and act as a

witness for the fact that the LASSO finds the unique optimal solution with correct support

set. We construct the tuple through the following three steps.

1. Set β̂Sc = 0.

2. Find (β̂S , ẑS) by solving the s-dimensional oracle sub-problem

β̂S ∈ argmin
βS∈Rs

{
1

2NM

∥∥∥ût − F̂SβS

∥∥∥
2
+ λN∥βS∥1

}
,

where s is the cardinality of the set S. Thus ẑS ∈ ∂∥β̂S∥1 satisfies the relation

− 1
NM

F̂T
S (ût − F̂Sβ̂S) + λN ẑS = 0.
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3. Solve for ẑSc through the zero-subgradient equation (B.1), and check whether or not

the strict dual feasibility condition ∥ẑS∥∞ < 1 holds.

B.2 Local-Polynomial estimator : Closed-form solutions

Recall that we want to solve following two optimization problems for constructing ût and

F̂, given the noisy observation D = {
(
Xi, tn, U

n
i

)
| i = 0, . . . ,M − 1;n = 0, . . . , N − 1}.

{
b̂j(Xi, t)

}
j=0,1,2

= argmin
bj(t)∈R,0≤j≤2

N−1∑
n=0

(
Un
i −

2∑
j=0

bj(t)(tn − t)j
)2

KhN

(
tn − t

)
,

for i = 0, 1, . . . ,M − 1 ; (B.2){
ĉpj(x, tn)

}
j=0,1,...,p+1

= argmin
cj(t)∈R,0≤j≤p+1

M−1∑
i=0

(
Un
i −

p+1∑
j=0

cpj(t)(Xi − x)j
)2

KwM

(
Xi − x

)
for n = 0, 1, . . . , N − 1 and p = 0, 1, . . . , Pmax. (B.3)

and set ût(Xi, t) = b̂1(Xi, t) and ∂̂p
xu(x, tn) = p!ĉpp(x, tn). Then, the standard weighted

least-square theory leads to the solutions of (B.2) and (B.3), respectively:

ût(Xi, t) = ξT1
(
T1

TWtT1

)−1
T1

TWtUi, ∀i = 0, 1, . . . ,M − 1,

∂̂p
xu(x, tn) = p!ξTp,x

(
Xp

TWxXp

)−1
Xp

TWxU
n, ∀p = 0, 1, . . . , Pmax, ∀n = 0, 1, . . . , N − 1,

where Ui = [U0
i , . . . , U

N−1
i ]T and Un = [Un

0 , . . . , U
n
M−1]

T, and

T1 :=



1 t0 − t
(
t0 − t

)2
1 t1 − t

(
t1 − t

)2
...

...
...

1 tN−1 − t
(
tN−1 − t

)2


, Xp :=



1 X0 − x · · ·
(
X0 − x

)p+1

1 X1 − x · · ·
(
X1 − x

)p+1

...
...

...
...

1 XM−1 − x · · ·
(
XM−1 − x

)p+1


,
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for p = 0, . . . , Pmax, and

Wt := diag
{
KhN

(t0 − t), . . . ,KhN
(tN−1 − t)

}
,

Wx := diag
{
KwM

(X0 − x), . . . ,KwM
(XM−1 − x)

}
,

are N × N and M × M diagonal matrices of kernel weights, and ξ2 is the 3 × 1 vector

having 1 in the 2nd entry and zeros in the other entries, and ξp,x is the (p + 1) × 1 vector

having 1 in the pth entry and zeros in the other entries.

B.3 Proof of Proposition 5.1

By the KKT-condition, any minimizer β̌ of (3.7) satisfies:

− 1

NM
F̂T (ût − F̂β̌) + λN ž = 0 , for ž ∈ ∂∥β̌∥1 . (B.4)

Recall that ∆ut = ût−ut, ∆F = F̂−F denote the error terms. By using the ground-truth

PDE ut = Fβ∗ and definitions of ∆ut and ∆F, we have ût = F̂β∗ −∆Fβ∗ +∆ut. Thus

from (B.4), we get

F̂T F̂(β̌ − β∗) + F̂T (∆Fβ∗ −∆ut) + λNNMz = 0 . (B.5)

We decompose (B.5) as follows:

 F̂T
S F̂S F̂T

S F̂Sc

F̂T
ScF̂S F̂T

ScF̂Sc


β̌S − β∗

S

0

+

 F̂T
S

F̂T
Sc

 (∆FSβ
∗
S −∆ut) + λNNM

 žS

žSc

 =

0
0

 ,

(B.6)
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where we used the fact β∗
Sc = 0 and β̌Sc = 0 via PDW construction. Solving (B.6), we

have following two equalities:

F̂T
S F̂S

(
β̌S − β∗

S
)
+ F̂T

S (∆FSβ
∗
S −∆ut) + λNNM žS = 0 (B.7)

F̂T
ScF̂S

(
β̌S − β∗

S
)
+ F̂T

Sc(∆FSβ
∗
S −∆ut) + λNNM žSc = 0 (B.8)

Using the minimum eigen-value condition in the assumption (A3), from (B.7), we have

β̌S − β∗
S =

(
F̂T

S F̂S
)−1
(
F̂T

S (∆ut −∆FSβ
∗
S)− λNNM žS

)
. (B.9)

Plugging (B.9) into (B.8) gives:

žSc = F̂T
ScF̂S(F̂

T
S F̂S)

−1zS +
1

λNMN
F̂T

ScΠS⊥(∆ut −∆FSβ
∗
S) ,

where ΠS⊥ = I − F̂S(F̂
T
S F̂S)

−1F̂T
S is an orthogonal projection operator on the column

space of F̂S . By the complementary slackness condition, for j ∈ Sc, |žj| < 1 implies

β̌j = 0, which guarantees the proper support recovery. i.e., S(β̌) ⊆ S(β∗). Now, we

can focus on proving that, as N,M → ∞, for µ in (A3), P
[
maxj∈Sc |Z̃j| ≥ µ

]
→ 0, for

Z̃j = [F̂Sc ]Tj ΠS⊥
∆ut−∆FSβ

∗
S

λNNM
, [F̂Sc ]j is the j-th column of F̂Sc . By the following lemma,

we claim that to prove ( i ) of Proposition 1, it suffices to bound ℓ∞-norm of the PDE

estimation error τ .

Lemma B.3.1 For any ε > 0:

P
[
max
j∈Sc

∣∣∣Z̃j

∣∣∣ ≥ ε

]
≤ P

[
∥τ∥∞ ≥ λNε√

K

]
.
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Proof.

P

[∥∥∥∥F̂T
ScΠS⊥

τ

λNNM

∥∥∥∥
∞

≥ ε

]
≤ P

[∥∥∥∥F̂TΠS⊥
τ

λNNM

∥∥∥∥
2

≥ ε

]

≤ P

[∥∥∥ΠS⊥
(
F̂
)∥∥∥

2

∥∥∥∥ τ

λNNM

∥∥∥∥
2

≥ ε

]

≤ P

[∥∥∥F̂∥∥∥
F

∥∥∥∥ τ

λNNM

∥∥∥∥
2

≥ ε

]

≤ P

[
∥τ∥2 ≥ λNε

√
NM

K

]

≤ P

[
∥τ∥∞ ≥ λNε√

K

]
.

In the second inequality, we use the definition of spectral norm of matrix, and in the

third inequality, we use the fact ∥ΠS⊥∥2 = 1. In the fourth inequality, the condition

1√
NM

maxj=1,...,K ∥F̂j∥2 ≤ 1 is used, giving us ∥F̂∥F ≤
√
KNM . In the last inequality,

we use ∥τ∥2 ≤
√
NM∥τ∥∞.

B.3.1 Sufficient conditions for bounding ût − ut

Lemma B.3.2 Let K∗
max = ∥K∗∥∞, BN be an arbitrary increasing sequence BN → ∞ as

N → ∞, and B
′
N = BN + ∥u∥L∞(Ω). For any i = 0, 1, . . . ,M and arbitrary real r, there

exist finite positive constants A(Xi), C
∗(Xi), a0, b0, c0, and d0(Xi) which do not depend on

the temporal sample size N , such that for any α > 1 and

ε∗N(Xi, r, α) >

max

{
3|C∗(Xi)|h2

N ,
6K∗

maxB
′
N

Nh2
N

, 6
A(Xi)

(
B

′
N

)−1

hN

,
6B

′
NK∗

max(a0 lnN + r) lnN

h2
NN

,

12
√
αd0(Xi)

√
ln 1/hN

h3
NN

}
,
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as long as N is sufficiently large, we have:

P
[
sup

t∈[0,T ]

|∆ut(Xi, t)| > ε∗N(Xi, r, α)
]
< 2N exp

(
− B2

N

2σ2

)
+ b0 exp

(
− c0r

)
+ 4

√
2η4hα

N .

Proof. In the following argument, we fix some i = 0, · · · ,M − 1 and omit the dependence

on Xi in the notations. Let B′
N = BN + ∥u∥L∞(Ω) with BN being a sequence of increasing

positive numbers such that BN → ∞ as N → ∞, then define the truncated estimate

ût
B

′
N (Xi, t) =

1

Nh2
N

N−1∑
n=0

K∗
(
tn − t

hN

)
Un
i I{|Un

i | < B
′

N} (B.10)

=
1

h2
N

∫∫
|y|<B

′
N

K∗
(
z − t

hN

)
y dfN(z, y),

where fN(·, ·) := fN(·, ·|Xi) is the empirical distribution of (tn, Un
i ) conditioned on the

space Xi. For any (Xi, t), decomposing the estimation error of the temporal partial deriva-

tive as follows

ût − ut =

(
ût − ût

B′
N − E

(
ût − ût

B
′
N
))

︸ ︷︷ ︸
Asymptotic deviation on the truncation error

+

(
ût

B
′
N − Eût

B
′
N

)
︸ ︷︷ ︸

Asymptotic deviation of
truncated estimator

+

(
Eût − ut

)
︸ ︷︷ ︸
Asymptotic bias of

Local-Polynomial estimator

,

we will prove that the error is bounded (in probability) by showing each component is

bounded.

Component 1. Asymptotic deviation on the truncation error: For any ε0,N ≥ K∗
maxB

′
N

Nh2
N

:

P
[
sup
t

|ût − ût
B

′
N | > ε0,N

]
= P

[
sup
t

∣∣∣∣∣ 1

Nh2
N

N−1∑
n=0

K∗
(
tn − t

hN

)
Un
i I{|Un

i | ≥ B
′

N}

∣∣∣∣∣ > ε0,N

]
≤ P

[K∗
max

Nh2
N

N−1∑
n=0

|Un
i |I{|Un

i | ≥ B
′

N} > ε0,N

]
≤ P

[
∃n = 0, 1, · · · , N − 1, |Un

i | ≥ B′
N

]
= P

[
max

n=0,1,··· ,N−1
|Un

i | ≥ B′
N

]
≤ P

[
max

n=0,1,··· ,N−1
|Un

i − un
i | ≥ BN

]
≤ 2N exp

(
− B2

N

2σ2

)
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where σ denotes the standard deviation of the Gaussian noise added on the data. On the

other hand, from Proposition 1 of [97]:

E|ût − ût
B

′
N | ≤

A
(
B

′
N

)−1

hN

.

for A =
∫
|K(ζ)| dζ×supt

∫
|y|f(t, y|Xi) dy with f(·, ·|Xi) as the distribution of (t, U(Xi, t));

hence for any ε1,N ≥ 2max{K∗
maxBN

Nh2
N

,
A
(
B

′
N

)−1

hN
}, we have:

P
[
sup
t

|ût(Xi, t)− ût
B

′
N (Xi, t)− (E(ût(Xi, t)− ût

B
′
N (Xi, t)))| > ε1,N

]
≤ 2N exp

(
− B2

N

2σ2

)
.

Component 2. Asymptotic deviation of truncated estimator: Observe that

ût
B

′
N − E

(
ût

B
′
N
)
=

1√
Nh2

N

∫
z∈R

∫
|y|≤B

′
N

K∗
(
z − t

hN

)
ydzdy

(√
N(fN(z, y)− f(z, y))

)
︸ ︷︷ ︸

:=ZN (z,y)

=
1√
Nh2

N

∫
z∈R

K∗
(
z − t

hN

)
dzU

B
′
N (z), (B.11)

where UB
′
N (z) is defined by

UB′
N (z) :=

∫
|y|≤B

′
N

ydyZN(z, y).

Let T : R2 → [0, 1]2 be the Rosenblatt transformation [200], defined as,

T (x, y) =

(
FX(x), FY |X(y|x)

)
,

and define B as the 2-dimensional solution path of the Brownian bridge which takes the

transformed T (z, y) as an argument; then we have

UB′
N (z) :=

∫
|y|≤B

′
N

ydy
{
ZN(z, y)− B(T (z, y))

}
+

∫
|y|≤B

′
N

ydyB(T (z, y)). (B.12)
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Plug in (B.12) to (B.11), we get

ût
B

′
N − E

(
ût

B
′
N
)
=

1√
Nh2

N

∫
z∈R

K∗
(
z − t

hN

)
dz

∫
|y|≤B

′
N

ydy
{
ZN(z, y)− B(T (z, y))

}
︸ ︷︷ ︸

γN (t)

+
1√
N

1

h2
N

∫
z∈R

∫
|y|≤B

′
N

K∗
(
z − t

hN

)
ydzdyB(T (z, y))︸ ︷︷ ︸

ρN (t)

= γN(t) +
1√
N
ρN(t).

In the following, we bound γN and ρN(t)/
√
N respectively.

1. Bound for γN(t): Since K∗ has compact support, applying integration by parts on

γN(t) gives

γN(t) = − 1√
Nh2

N

∫
z∈R

∫
|y|≤B

′
N

ydy
{
ZN(z, y)− B(T (z, y))

}
dzK∗

(
z − t

hN

)
≤ 2B

′
NK∗

max√
Nh2

N

sup
z,y

∣∣∣∣ZN(z, y)− B(T (z, y))

∣∣∣∣. (B.13)

By Tusnady’s strong approximation result [98], there exist absolute positive constants

a0, b0 and c0 such that

P
[
sup
z,y

∣∣∣∣ZN(z, y)− B(T (z, y))

∣∣∣∣ >
(
a0 lnN + r

)
lnN

√
N

]
< b0 exp(−c0r) (B.14)

holds for any real r. Therefore, if we take ε′2,N(r) =
2B

′
NK∗

max(a0 lnN+r) lnN

Nh2
N

, combin-

ing (B.13) and (B.14) gives

P
[
sup
t
|γN(t)| > ε′2,N(r)

]
< b0 exp(−c0r). (B.15)
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2. Bound for ρN(t)/
√
N : Similarly to (7) of [97], we have

h
3/2
N supt |ρN(t)|√

ln 1
hN

≤ 16(lnV )1/2S1/2
(
ln

1

hN

)−1/2
∫

|ζ|1/2 |dK∗(ζ)|︸ ︷︷ ︸
:=Q1,N

+ 16
√
2h

−1/2
N

(
ln

1

hN

)−1/2
∫

q(ShN |ζ|) |dK∗(ζ)|︸ ︷︷ ︸
:=Q2,N

,

where V is a random variable satisfyingEV ≤ 4
√
2η4 (recall that η2 := max

i,n
E(Un

i )
2),

q(r) :=
∫ r

0
1
2
( 1
y
ln 1

y
)1/2 dy, S := supz

∫
y2f(z, y) dy. Let d0 = 16

√
2S1/2

∫
|ζ|1/2|dK∗(ζ)|,

which is a positive number independent of either N or M . Consider the following

inequality for an arbitrary ε

P

(
h
3/2
N supt |ρN(t)|√

ln 1
hN

≥ ε

)
≤ P

(
Q1,N ≥ ε

2

)
+ P

(
Q2,N ≥ ε

2

)

≤ P

((
lnV

)1/2 ≥ ε
(
ln 1

hN

)1/2
2d0

)
+ P

(
Q2,N ≥ ε

2

)

≤ 4
√
2η4 exp

(
−

ε2
(
ln 1

hN

)
4d20

)
+ P

(
Q2,N ≥ ε

2

)
,

(B.16)

where the Markov Inequality is used in the last inequality. Setting ε′′2,N = ε

√
ln 1

hN

Nh3
N

gives

P

(
supt |ρN(t)|√

N
≥ ε′′2,N

)
≤ 4

√
2η4 exp

(
−

ε2
(
ln 1

hN

)
4d20

)
+ P

(
Q2,N ≥ ε

2

)
.

Notice that Q2,N converges to d0 by Silverman [101]. For any arbitrary α > 1, if

ε = 2
√
αd0, there exists a positive integer N(α) such that as long as N > N(α), we

have Q2,N <
√
αd0; hence the second probability in (B.16) becomes 0. Considering

that ε′′2,N now depends on α, we write it as ε′′2,N(α), and for sufficiently large N
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(N > N(α)), we obtain

P

(
supt |ρN(t)|√

N
≥ ε′′2,N(α)

)
≤ 4

√
2η4hα

N . (B.17)

Now if we take ε2,N(r, α) = 2max{ε′2,N(r), ε′′2,N(α)} and combine (B.15) with (B.17),

we have

P
(
sup
t

|ût
B

′
N − E

(
ût

B
′
N
)
| > ε2,N(r, α)

)
< b0 exp(−c0r) + 4

√
2η4hα

N

Component 3. Asymptotic bias: From [67], the asymptotic bias of the estimator directly

follows

E
(
ût

)
− ut = C∗h2

N .

for some constant C∗ independent of N . Specifically, since we fit a degree 2 polynomial

to obtain ût(Xi, ·), we plug p = 2 and ν = 1 in the expression of asymptotic bias of the

estimator. See page 83 of the paper [67] for the expression. Taking ε3,N = |C∗|h2
N , we

have P
(
|E
(
ût

)
− ut| > ε3,N

)
= 0.

Combining all the three components above and taking ε∗N(r, α) > 3max{ε1,N , ε2,N(r, α), ε3,N}

gives the desired result.

B.3.2 Sufficient conditions for bounding (F̂− F)β∗

For the p-th order partial derivative estimators with respect to x, we have results similarly

to Lemma B.3.2.

Lemma B.3.3 Fix an order p ≥ 0, and let BM be an arbitrary increasing sequence BM →

∞ as M → ∞, and B
′
M = BM + ∥u∥L∞(Ω). For any n = 0, 1, . . . , N − 1 and arbitrary

r, there exist finite positive constants Ap(tn), C
∗(tn), a0, b0, c0, and d0(tn) which do not
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depend on the spacial sample size M , such that for any α > 1 and

ε∗M,p(tn, r, α) >

max

{
3|C∗(tn)|w2

M ,
6p!K∗

maxB
′
M

Mw1+p
M

, 6
p!Ap(tn)(B

′
M)−1

wp
M

,
6p!B

′
M(a0 lnM + r) lnM

w1+p
M M

,

12p!
√
αd0(tn)

√
ln 1/wM

w2p+1
M M

}
,

as long as M > M(α) for some positive integer M(α), we have:

P
[

sup
x∈[0,Xmax)

|∂̂p
xu(x, tn)− ∂p

xu(x, tn)| > ε∗M,p

]
<

2M exp

(
− B2

M

2σ2

)
+ b0 exp(−c0r) + 4

√
2η4wα

M .

Proof. Notice that for any fixed temporal point tn, n = 0, 1, . . . , N − 1, the estimation for

the p-th order partial derivative takes the form

∂̂p
xu(x, tn) =

p!

Mwp+1
M

M∑
i=1

K∗
(
Xi − x

wM

)
Un
i (B.18)

with probability 1 [68]. Hence, we can prove the desired result by substituting h2
N with

wp+1
M /p! in (B.10) and follow the proof of Lemma B.3.2 and keeping in mind that the

constants now depend on tn and not on M . Notice that the kernel K used for the spacial

dimension may be different from that used for the temporal; this can be addressed by

taking K∗
max to be the larger value between their ℓ∞-norms. Finally, given any fixed tn, the

asymptotic bias takes the form

E
(
∂̂p
xu
)
− ∂p

xu = C∗
pw

2
M

where C∗
p ≤ maxp=0,1,...,Pmax

{ ∫
zp+1K∗

p(z) dz
}

p!
(p+2)!

∂p+1
x u := C∗ for any 0 ≤ p ≤ Pmax.

Here, since we fit the Local-Polynomial with degree ℓ+1 to obtain ∂̂ℓ
xu, we plug p = ℓ+1
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and ν = ℓ in the expression of asymptotic bias in [67].

As for the product terms:

Lemma B.3.4 Fix any two orders p, q ≥ 0, and let BM be an arbitrary increasing se-

quence BM → ∞ as M → ∞, and B
′
M = BM + ∥u∥L∞(Ω). For any n = 0, 1, . . . , N − 1

and arbitrary r, there exist finite positive constants A(tn), C
∗(tn), a0, b0, c0, and d0(tn)

which do not depend on the spacial sample size M , such that for any α > 1 and

ε∗∗M,p,q > max{3∥∂p
xu(·, tn)∥∞ε∗M,p, 3∥∂q

xu(·, tn)∥∞ε∗M,q, 3(ε
∗
M,p)

2, 3(ε∗M,q)
2}

as long as M > M(α) for some positive integer M(α), we have:

1

4
P
[

sup
x∈[0,Xmax)

|∂̂p
xu(x, tn)∂̂

q
xu(x, tn)− ∂p

xu(x, tn)∂
q
xu(x, tn)| > ε∗∗M,p,q

]
< 2M exp(−B2

M

2σ2
) + b0 exp(−c0r) + 4

√
2η4wα

M ,

Here ε∗M,p and ε∗M,q (depending on B′
M ) are the thresholds in Lemma B.3.3 for the sup-norm

bound of the estimator ∂̂p
xu and ∂̂q

xu, respectively,

Proof. Notice that for any ε > 0, we can bound the probability:

P
[

sup
x∈[0,Xmax)

|∂̂p
xu(x, tn)∂̂

q
xu(x, tn)− ∂p

xu(x, tn)∂
q
xu(x, tn)| > ε

]
≤ P

[
∥∂p

xu(·, tn)∥∞ sup
x∈[0,Xmax)

|∆∂q
xu(x, tn)| > ε/3

]
+ P

[
∥∂q

xu(·, tn)∥∞ sup
x∈[0,Xmax)

|∆∂p
xu(x, tn)| > ε/3

]
+ P

[
sup

x∈[0,Xmax)

|∆∂p
xu(x, tn)| >

√
ε

3

]
+ P

[
sup

x∈[0,Xmax)

|∆∂q
xu(x, tn)| >

√
ε

3

]
,

hence the results follow from Lemma B.3.3.

As for higher degree terms, we can take the similar approach to obtain general results but
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with more complicated notations. In this work, we focus on demonstrating the essence

without involving more indices.

B.3.3 Simplification on the Probability Bounds

Before proceeding further, we simplify the expressions for ε∗N as well as the probability

bounds in Lemma B.3.2 by considering the window width hN and the diverging sequence

BN as follows

hN =
1

Na
, BN = N b .

Here a, b > 0 are positive coefficients to be determined.

Consequently, we update the expressions of the five terms whose maximum defines the

threshold ε∗N

E1(N) =
3|C∗(Xi)|

N2a
, E2(N) =

6K∗
max(N

b + ∥u∥L∞(Ω))

N1−2a
, E3(N) =

6A(Xi)

N−a
(
N b + ∥u∥L∞(Ω)

)
E4(N) =

6K∗
max(N

b + ∥u∥L∞(Ω))(a0 lnN + r) lnN

N1−2a
, E5(N) = 12

√
αd0(Xi)

√
a lnN

N1−3a
.

When N is sufficiently large, to determine ε∗N , we only need to focus on comparing the

powers of N in Ei(N), i = 1, 2, · · · , 5; this immediately leads to:

E2(N) = O (E4(N)) ,

hence it’s sufficient to only consider E1(N), E2(N), E4(N), and E5(N). The optimal
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choice of a and b is determined by requiring


2a = 1− b− 2a

2a = 1−3a
2

=⇒


a = 1

7

b = 3
7

To summarize the discussion above, we have

Corollary B.3.5 Let hN = N−1/7. For any i = 0, 1, . . . ,M and arbitrary real r, there

exist finite positive constants C∗(Xi), a0, b0, c0, and d0(Xi) which do not depend on the

temporal sample size N , such that for N sufficiently large, any α > 1, and

ε∗N(Xi, r, α) > N− 2
7 max

{
3|C∗(Xi)|, 6(a0 lnN + r) lnN, 12

√
αd0(Xi)

√
lnN

7

}
,

we have:

P
[
sup

t∈[0,T ]

|∆ut(Xi, t)| > ε∗N(Xi, r, α)
]
< 2N exp

(
−N6/7

2σ2

)
+ b0 exp(−c0r) + 4

√
2η4N−α/7 ,

Similarly, we can obtain optimal wM = M−1/(2p+5) and BM = M (p+2)/(2p+5) for the

estimation of p-th partial derivative of u. Consequently, the threshold lower bound in

Lemma B.3.3 becomes

ε∗M,p(tn, r, α) > M−2/(2p+5)max

{
3|C∗(tn)|, 6p!(a0 lnM + r) lnM, 12p!

√
αd0(tn)

√
lnM

2p+ 5

}
.

Notice that the right hand side of the inequality above is non-decreasing with respect to p ≥

0. Moreover, note that for sufficiently large M , if the probability bound in Lemma B.3.3

holds for some wM , then it holds for any smaller window width w′
M < wM . Therefore, we

have the following simplified result

Corollary B.3.6 Let wM = M−1/7. For any n = 0, 1, . . . , N−1 and arbitrary r, there exist

finite positive constants C∗(tn), a0, b0, c0, and d0(tn) which do not depend on the spacial
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sample size M , such that for M sufficiently large, any α > 1, and

ε∗M(tn, r, α) >

M− 2
2Pmax+5 max

{
3|C∗(tn)|, 6Pmax!(a0 lnM+r) lnM, 12Pmax!

√
αd0(tn)

√
lnM

2Pmax + 5

}
,

we have:

P
[

sup
x∈[0,Xmax)

|∂̂p
xu(x, tn)− ∂p

xu(x, tn)| > ε∗M

]
< 2M exp

(
− M (2Pmax+4)/(2Pmax+5)

2σ2

)
+ b0 exp(−c0r) + 4

√
2η4M−α/(2Pmax+5)

for any order 0 ≤ p ≤ Pmax.

Similarly, for the product terms, we have

Corollary B.3.7 Let wM = M−1/7. For any n = 0, 1, . . . , N−1 and arbitrary r, there exist

finite positive constants C∗(tn), a0, b0, c0, and d0(tn) which do not depend on the spacial

sample size M , such that for M sufficiently large, any α > 1, and

ε∗∗M > max{3∥u(·, tn)∥Pmax,∞ε∗M , 3(ε∗M)2}

where ∥u(·, tn)∥Pmax,∞ =
∑

0≤k≤Pmax
∥∂k

xu(·, tn)∥∞, we have

1

4
P
[

sup
x∈[0,Xmax)

|∂̂p
xu(x, tn)∂̂

q
xu(x, tn)− ∂p

xu(x, tn)∂
q
xu(x, tn)| > ε∗∗M

]
< 2M exp

(
− M (2Pmax+4)/(2Pmax+5)

2σ2

)
+ b0 exp(−c0r) + 4

√
2η4M−α/(2Pmax+5)

for any orders 0 ≤ p, q ≤ Pmax.
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B.3.4 ℓ∞ Bound for the PDE Estimation Error τ

Notice that in the previous results, although the constants C∗(Xi) and d0(Xi) are indepen-

dent of N , they show dependence on the spacial point Xi. Similarly, C∗(tn) and d0(tn)

are independent of M , yet their values may depend on N . To guarantee that as both

N,M → ∞, these constants are uniformly bounded, we prove the following lemma.

Lemma B.3.8 For any integer M ≥ 1, and any i = 0, 1, · · · ,M − 1, |C∗(Xi)| and d0(Xi)

in Corollary B.3.5 are bounded by constants that are independent of M . That is, there exist

constants C∗, d0 > 0 such that for any M ≥ 1

max
i=0,··· ,M−1

|C∗(Xi)| ≤ C∗∥∂3
t u∥∞, and max

i=0,··· ,M−1
d0(Xi) ≤ d0 .

Proof. From (3.7) in the Theorem 3.1 of [68], we have

|C∗(Xi)| ≤ C∗∥∂3
t u∥∞ < ∞

where C∗ only depends on the choice of the kernel function and the order of the Local-

Polynomial. Recalling that d0(Xi) = 16S1/2
∫
|ζ|1/2|dK∗(ζ)| where S = supz

∫
y2f(z, y|Xi) dy.

For a general real number s, we know that

sup
z∈[0,Tmax]

∫
|y|sf(z, y|Xi) dy = sup

z∈[0,Tmax]

∫
|y|s 1√

2πσ2
exp

(
− (y − u(Xi, z))

2

2σ2

)
dy

= sup
z∈[0,Tmax]

σs2s/2
Γ
(
1+s
2

)
√
π

1F1

(
− s

2
,
1

2
,−1

2

(u(Xi, z)

σ

)2)

where 1F1(p, q, w) is Kummer’s confluent hyper-geometric function of w ∈ C with param-

eters p, q ∈ C (See, e.g.[201]) and Γ is the Gamma function. Since 1F1(− s
2
, 1
2
, ·) is an
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entire function for fixed parameters,

sup
z∈[0,Tmax]

∫
|y|sf(z, y|Xi) dy ≤

sup
z∈[0,Tmax]

σs2s/2
Γ
(
1+s
2

)
√
π

sup

w∈[−maxx∈Ω u2(x,z)

2σ2 ,−minx∈Ω u2(x,z)

2σ2 ]

1F1(−
s

2
,
1

2
, w) < ∞

which clearly does not depend on M . Taking s = 2, we can obtain that d0(Xi) ≤ d0 for

some d0 that only depends on the choice of kernel K, underlying function ∥u∥L∞(Ω), and

noise level σ.

Note that the same proof can derive that the constants in Lemma B.3.3 and Lemma B.3.4

are also bounded by N -independent constants. This technical lemma allows us to state

Proposition B.3.9 Take hN = N−1/7 in the temporal direction and wM = M−1/7 in the

space direction. There exist constants C, a0, b0, and c0 which do not depend on N nor M

such that for N and M sufficiently large, any r, α > 1, and

εN,M(r, α) >

Cmax

{
(a0 lnN + r) lnN

N2/7
,

√
α lnN

N2/7
,
(a0 lnM + r) lnM

M2/(2Pmax+5)
,

√
α lnM

(2Pmax + 5)M4/(2Pmax+5)

}

we have

P
[
∥τ∥∞ > εN,M

]
<

2NM exp

(
−N6/7

2σ2

)
+ b0 exp(−c0r)M + 4

√
2η4MN−α/7+

8sNM exp

(
− M (2Pmax+4)/(2Pmax+5)

2σ2

)
+ 4sb0 exp(−c0r)N + 16

√
2η4sNM−α/(2Pmax+5)

Here K is the number of feature variables in the dictionary.

Proof. By triangle inequality, the ℓ∞-norm of PDE estimation error τ (3.6) can be bounded
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by

∥τ∥∞ ≤ ∥∆Fβ∗∥∞ + ∥∆ut∥∞ .

By Corollary B.3.5 and Lemma B.3.8, there exists a constant C1 independent of N and

M such that with sufficiently large N and any εN(r, α) > C1N
−2/7max{(a0 lnN +

r) lnN,
√
α lnN}, we have

P
[
∥∆ut∥∞ > εN(r, α)

]
≤ P

[
max

i=0,1,··· ,M−1
sup

t∈[0,Tmax]

|∆ut(Xi, t)| > εN(r, α)
]

≤
M−1∑
i=0

P
[

sup
t∈[0,Tmax]

|∆ut(Xi, t)| > εN(r, α)
]

< 2NM exp

(
−N6/7

2σ2

)
+ b0 exp(−c0r)M + 4

√
2η4MN−α/7 .

On the other hand, if we denote ∆Fk(x, t) as the approximation error of the k-th feature

variable at time t and space x, we have

∥∆Fβ∗∥∞ ≤ max
n=0,1,··· ,N

∥β∗∥∞ sup
x∈[0,Xmax)

s∑
k=1

|∆Fk(x, tn)| .

By Corollary B.3.6 and B.3.7, there exists a constant C2 independent of N and M such that

with sufficiently large M and any εK,M(r, α) > C2Pmax!K∥β∗∥∞M−2/(2Pmax+5) max{(a0 lnM+

r) lnM,
√

α lnM
2Pmax+5

}, we have

P
[
∥∆Fβ∗∥∞ > εM(r, α)

]
≤

N−1∑
n=0

s∑
k=1

P
[

sup
x∈[0,Xmax)

|∆Fk(x, tn)| >
εM(r, α)

s∥β∗∥∞

]
< 8NMs exp

(
− M (2Pmax+4)/(2Pmax+5)

2σ2

)
+ 4b0 exp(−c0r)Ns+ 16

√
2η4NsM−α/(2Pmax+5) .

Taking C = max{2C1, 2s∥β∗∥∞C2Pmax!} proves the theorem.
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B.3.5 Further Simplification

We further simplify our result by taking M = N b for some coefficient b > 0. Since r and

α are arbitrary, we can vary them as we increase M,N by taking r = N c and α = Nd for

some positive coefficients c > 0 and d > 0, respectively. Consequently, we have the lower

bound for εN,M in Proposition B.3.9 becoming

εN,M(r, α) >

Cmax

{
(a0 lnN +N c) lnN

N2/7
,

√
lnN

N2/7−d/2
,
b(a0b lnN +N c) lnN

N2b/(2Pmax+5)
,

√
b lnN

(2Pmax + 5)N4b/(2Pmax+5)−d

}
,

(B.19)

To guarantee that the lower bound (B.19) converges to 0 as N → ∞, we have the following

constraints on positive coefficients b, c, and d



0 < c < 2/7

2/7− d/2 > 0

c < 2b/(2Pmax + 5)

4b/(2Pmax + 5)− d > 0

Furthermore, we take d = 2c so that

√
lnN

N2/7−d/2
= O

(
(a0 lnN +N c) lnN

N2/7

)
,

√
b lnN

N4b/(2Pmax+5)−d
= O

(
b(a0b lnN +N c) lnN

N2b/(2Pmax+5)

)
.

and we can focus on the second and fourth term in (B.19). As a result, the optimal choice

for b is computed by 2/7 = 2b/(2Pmax+5) =⇒ b = (2Pmax+5)/7. Based on the set-ups

above, we obtain that for N sufficiently large, with

εN(c) > C
lnN

N2/7−c
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for any 0 < c < 2/7, we have

P
[
∥τ∥∞ > εN(c)

]
<

2N (2Pmax+12)/7 exp

(
−N6/7

2σ2

)
+ b0 exp(−c0N

c)N (2Pmax+5)/7 + 4
√
2η4N−N2c/7+

8N (2Pmax+12)/7K exp

(
−N (2Pmax+5)/7

2σ2

)
+ 4b0 exp(−c0N

c)NK + 16
√
2η4KN−N2c/7

= O
(
N

2Pmax+5
7 exp

(
− 1

6
N c

))
,

where in the last equality, we plug b0 = 2 and c0 = 1
6

from [202]. Combining this with

Lemma B.3.1 proves the first part of the Proposition 1.

B.3.6 Proof of ℓ∞ bound in (4.1)

Recall that in (B.9), we have

β̌S − β∗
S =

(
F̂T

S F̂S
)−1
(
F̂T

S (∆ut −∆FSβ
∗
S)− λNNM žS

)
.

Now, we are ready to bound the
∥∥∥β̂λ

S − β∗
S

∥∥∥
∞

bound in (4.1) as follows:

max
k∈S

|βk − β∗
k| ≤

∥∥∥∥(F̂T
S F̂S

)−1
∥∥∥∥
2

∥F̂T
Sτ∥∞ + λNNM

∥∥∥∥(F̂T
S F̂S

)−1
∥∥∥∥
2

≤
∥∥∥∥(F̂T

S F̂S/(NM)
)−1
∥∥∥∥
2

(
∥F̂T

Sτ∥∞/(NM) + λN

)
(A3)
≤

√
KCmin

(
∥F̂T

Sτ∥∞/(NM) + λN

)

≤
√
KCmin

(
∥τ∥∞

∥∥∥F̂S

∥∥∥
∞,∞

NM
+ λN

)

≤
√
KCmin

(
∥τ∥∞

∥∥∥F̂∥∥∥
F√

NM
+ λN

)
≤

√
KCmin

(
K∥τ∥∞ + λN

)
,

where we use normalized columns of F̂ in the last inequality. Following the set-ups from

Proposition 1 gives the desired result.
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B.4 Proofs of Corollaries B.4.1, B.4.2, and Lemma 6.1

Corollary B.4.1 Fix any four orders p, q, k ≥ 0, and let BM be an arbitrary increasing

sequence BM → ∞ as M → ∞, and B
′
M = BM +∥u∥L∞(Ω). For any n = 0, 1, . . . , N −1

and arbitrary r, there exist finite positive constants A(tn), C
∗(tn), a0, b0, c0, and d0(tn)

which do not depend on the spacial sample size M , such that for any α > 1 and

ε∗∗∗M,p,q,k > max

{
3∥∂k

xu(·, tn)∥∞ε∗∗M,p,q, 3∥∂p
xu(·, tn)∂q

xu(·, tn)∥∞ε∗∗M,k, 3(ε
∗∗
M,p,q)

2, 3(ε∗∗M,k)
2

}

as long as M > M(α) for some positive integer M(α), we have:

1

4
P

[
sup

x∈[0,Xmax)

∣∣∣∂̂p
xu(x, tn)∂̂

q
xu(x, tn)∂̂k

xu(x, tn)− ∂p
xu(x, tn)∂

q
xu(x, tn)∂

k
xu(x, tn)

∣∣∣ > ε∗∗∗M,p,q,k

]

< 8M exp

(
− M (2Pmax+4)/(2Pmax+5)

2σ2

)
+ 4b0 exp(−c0r) + 16

√
2η4M−α/(2Pmax+5) ,

Here ε∗∗M,p,q and ε∗∗M,k,l (depending on B′
M ) are the thresholds in Corollary B.3.7 for the

sup-norm bound of the estimator ∂̂p
xu∂̂

q
xu and ∂̂k

xu∂̂
l
xu, respectively,

Proof. Notice that for any ε > 0, we can bound the probability:

P

[
sup

x∈[0,Xmax)

∣∣∣∂̂p
xu(x, tn)∂̂

q
xu(x, tn)∂̂k

xu(x, tn)− ∂p
xu(x, tn)∂

q
xu(x, tn)∂

k
xu(x, tn)

∣∣∣ > ε

]

≤ P

[
∥∂k

xu(·, tn)∥∞ sup
x∈[0,Xmax)

∣∣∣∂̂p
xu(x, tn)∂̂

q
xu(x, tn)− ∂p

xu(x, tn)∂
q
xu(x, tn)

∣∣∣ > ε/3

]

+ P

[
∥∂p

xu(·, tn)∂q
xu(·, tn)∥∞ sup

x∈[0,Xmax)

∣∣∣∂̂k
xu(x, tn)− ∂k

xu(x, tn)
∣∣∣ > ε/3

]

+ P
[

sup
x∈[0,Xmax)

∣∣∣∂̂p
xu(x, tn)∂̂

q
xu(x, tn)− ∂p

xu(x, tn)∂
q
xu(x, tn)

∣∣∣ >√ε

3

]
+ P

[
sup

x∈[0,Xmax)

∣∣∣∂̂k
xu(x, tn)− ∂k

xu(x, tn)
∣∣∣ >√ε

3

]
,

hence the results follow from corolloary B.3.7.
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Corollary B.4.2 Fix any four orders p, q, k, l ≥ 0, and let BM be an arbitrary increasing

sequence BM → ∞ as M → ∞, and B
′
M = BM +∥u∥L∞(Ω). For any n = 0, 1, . . . , N −1

and arbitrary r, there exist finite positive constants A(tn), C
∗(tn), a0, b0, c0, and d0(tn)

which do not depend on the spacial sample size M , such that for any α > 1 and

ε∗∗∗∗M,p,q,k,l >

max

{
3∥∂p

xu(·, tn)∂q
xu(·, tn)∥∞ε∗∗M,p,q, 3∥∂k

xu(·, tn)∂l
xu(·, tn)∥∞ε∗∗M,k,l, 3(ε

∗∗
M,p,q)

2, 3(ε∗∗M,k,l)
2

}

as long as M > M(α) for some positive integer M(α), we have:

1

4
P

[
sup

x∈[0,Xmax)

∣∣∣∂̂p
xu(x, tn)∂̂

q
xu(x, tn)∂̂k

xu(x, tn)∂̂
l
xu(x, tn)

−∂p
xu(x, tn)∂

q
xu(x, tn)∂

k
xu(x, tn)∂

l
xu(x, tn)

∣∣ > ε∗∗∗∗M,p,q,k,l

]

< 8M exp

(
− M (2Pmax+4)/(2Pmax+5)

2σ2

)
+ 4b0 exp(−c0r) + 16

√
2η4M−α/(2Pmax+5) ,

Here ε∗∗M,p,q and ε∗∗M,k,l (depending on B′
M ) are the thresholds in Corollary B.3.7 for the

sup-norm bound of the estimator ∂̂p
xu∂̂

q
xu and ∂̂k

xu∂̂
l
xu, respectively,

Proof. Proof of this Corollary is similar with that of the Corollary B.4.1. We omit the proof

for simplicity.

Lemma B.4.3 (Lemma 2.6.1 in the main paper) Let ε∗M , ε∗∗M , ε∗∗∗M , ε∗∗∗∗M be the thresholds

defined in corollaries B.3.6, B.3.7, B.4.1, and B.4.2. Then for any εmax
′

M such that

εmax
′

M >
√
s(K − s)max

{
ε∗M , ε∗∗M , ε∗∗∗M , ε∗∗∗∗M

}
,

then, for 0 < c < 2
7
, and for sufficiently large enough N , we have

P

[
1

NM

∥∥∥F̂T
ScF̂S − FT

ScFS

∥∥∥
2
> εmax

′

M

]
≤ O

(
N exp

(
− 1

6
N c
))

.
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Proof.

P

[
1

NM

∥∥∥F̂T
ScF̂S − FT

ScFS

∥∥∥
2
> εmax

′

M

]

≤ P

[∥∥∥F̂T
ScF̂S − FT

ScFS

∥∥∥
F
> NMεmax

′

M

]

≤ P

[∥∥∥F̂T
ScF̂S − FT

ScFS

∥∥∥
∞,∞

> NM
εmax

′

M√
s(K − s)

]

≤ P

[
max

n=0,...,N−1
sup

x∈[0,Xmax)

∣∣∣F̂i(x, tn)F̂j(x, tn)− Fi(x, tn)Fj(x, tn)
∣∣∣ > εmax

′

M√
s(K − s)

]

≤
N−1∑
n=0

P

[
sup

x∈[0,Xmax)

∣∣∣F̂i(x, tn)F̂j(x, tn)− Fi(x, tn)Fj(x, tn)
∣∣∣ > εmax

′

M√
s(K − s)

]

≤ O
(
N exp

(
− 1

6
N c
))

,

where we use the results from corollaries B.3.6, B.3.7, B.4.1, and B.4.2, and simplication

argument used in the B.3.5 in the last inequality.

B.4.1 Proof of Lemma 6.1

Proof. Observe that we can write:

Λmin

(
1

NM
FT

SFS

)
:=

1

NM
min

∥x∥2=1
xT

(
FT

SFS

)
x

=
1

NM
min

∥x∥2=1

{
xT

(
F̂T

S F̂S

)
x+ xT

(
FT

SFS − F̂T
S F̂S

)
x

}
≤ 1

NM

{
yT
(
F̂T

S F̂S

)
y + yT

(
FT

SFS − F̂T
S F̂S

)
y

}

where y ∈ RK is a unit-norm minimal eigen-vector of 1
NM

FT
SFS . Therefore, we can write,

Λmin

(
1

NM
F̂T

S F̂S

)
≥ Λmin

(
1

NM
FT

SFS

)
− 1

NM

∥∥∥FT
SFS − F̂T

S F̂S

∥∥∥
2

≥ Cmin −
1

NM

∥∥∥F̂T
S F̂S − FT

SFS

∥∥∥
2
.
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By using a similar argument used in Lemma 2.6.1, we can prove 1
NM

∥∥∥F̂T
S F̂S − FT

SFS

∥∥∥
2
→

0 with high-probability as N → ∞. For any εmax
M such that,

εmax
M > smax

{
ε∗M , ε∗∗M , ε∗∗∗M , ε∗∗∗∗M

}
,

Then, we can bound the probability as follows:

P

[
1

NM

∥∥∥F̂T
S F̂S − FT

SFS

∥∥∥
2
> εmax

M

]

≤ P

[∥∥∥F̂T
S F̂S − FT

SFS

∥∥∥
F
> NMεmax

M

]
≤ P

[∥∥∥F̂T
S F̂S − FT

SFS

∥∥∥
∞,∞

> NM
εmax
M

s

]

≤ P

[
max

n=0,...,N−1
sup

x∈[0,Xmax)

∣∣∣F̂i(x, tn)F̂j(x, tn)− Fi(x, tn)Fj(x, tn)
∣∣∣ > εmax

M

s

]

≤
N−1∑
n=0

P

[
sup

x∈[0,Xmax)

∣∣∣F̂i(x, tn)F̂j(x, tn)− Fi(x, tn)Fj(x, tn)
∣∣∣ > εmax

M

s

]

≤ O
(
N exp

(
− 1

6
N c
))

.

B.4.2 Proof of Lemma 6.2

Proof. Motviated from [75], we begin the proof by decomposing the matrix
(
F̂T

ScF̂S
)(
F̂T

S F̂S
)−1

into four parts:

(
F̂T

ScF̂S
)(
F̂T

S F̂S
)−1

= FT
ScFS

((
F̂T

S F̂S
)−1 −

(
FT

SFS
)−1
)

︸ ︷︷ ︸
:=T1

+

(
F̂T

ScF̂S − FT
ScFS

)(
FT

SFS
)−1

︸ ︷︷ ︸
:=T2

+

(
F̂T

ScF̂S − FT
ScFS

)((
F̂T

S F̂S
)−1 −

(
FT

SFS
)−1
)

︸ ︷︷ ︸
:=T3

+
(
FT

ScFS
)(
FT

SFS
)−1︸ ︷︷ ︸

:=T4

.
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Since we know ∥T4∥∞ ≤ 1− µ for some µ ∈ (0, 1], the decomposition reduces the proof

showing ∥Ti∥∞ → 0 with probability 1−O(N exp(−1
6
N c)) for i = 1, 2, 3.

1. Control of T1: Observe that we can re-factorize T1 as follows:

T1 =
(
FT

ScFS
)(
FT

SFS
)−1[

FT
SFS − F̂T

S F̂S
](
F̂T

S F̂S
)−1

.

Then, by taking the advantage of sub-multiplicative property ∥AB∥∞ ≤ ∥A∥∞∥B∥∞ and

the fact ∥T4∥∞ ≤ 1− µ and ∥C∥∞ ≤
√
N∥C∥2 for C ∈ RM×N , we can bound ∥T1∥∞ as

follows:

∥T1∥∞ ≤
∥∥∥(FT

ScFS
)(
FT

SFS
)−1
∥∥∥
∞

∥∥∥FT
SFS − F̂T

S F̂S

∥∥∥
∞

∥∥∥(F̂T
S F̂S

)−1
∥∥∥
∞

≤ s(1− µ)

(
1

NM

∥∥∥FT
SFS − F̂T

S F̂S

∥∥∥
2

)(
NM

∥∥∥(F̂T
S F̂S

)−1
∥∥∥
2

)
≤ s(1− µ)

Cmin

(
1

NM

∥∥∥FT
SFS − F̂T

S F̂S

∥∥∥
2

)
.

Note that we use ∥
(
F̂T

S F̂S
)−1∥2 ≤ 1

NMCmin
with probability 1 −O(N exp(−1

6
N c)) in the

last inequality from Lemma 6.1.

2. Control of T2: With similar techniques employed for controlling ∥T1∥∞, we can bound

∥T2∥∞ as follows:

∥T2∥∞ ≤
∥∥∥F̂T

ScF̂S − FT
ScFS

∥∥∥
∞

∥∥∥(FT
SFS

)−1
∥∥∥
∞

≤ s
∥∥∥F̂T

ScF̂S − FT
ScFS

∥∥∥
2

∥∥∥(FT
SFS

)−1
∥∥∥
2

= s

(
1

NM

∥∥∥F̂T
ScF̂S − FT

ScFS

∥∥∥
2

)(
NM

∥∥∥(F̂T
S F̂S

)−1
∥∥∥
2

)
≤ s

Cmin

(
1

NM

∥∥∥F̂T
ScF̂S − FT

ScFS

∥∥∥
2

)
.
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3. Control of T3: To bound ∥T3∥∞, we re-factorize the second argument of product in

T3: (
F̂T

S F̂S
)−1 −

(
FT

SFS
)−1

=
(
FT

SFS
)−1[(

FT
SFS

)
−
(
F̂T

S F̂S
)](

F̂T
S F̂S

)−1

With the factorization, we bound ∥
(
F̂T

S F̂S
)−1 −

(
FT

SFS
)−1∥∞ by using sub-multiplicative

property and the fact ∥C∥∞ ≤
√
N∥C∥2 for any C ∈ RM×N again:

∥∥∥(F̂T
S F̂S

)−1 −
(
FT

SFS
)−1
∥∥∥
∞

=
∥∥∥(FT

SFS
)−1[(

FT
SFS

)
−
(
F̂T

S F̂S
)](

F̂T
S F̂S

)−1
∥∥∥
∞

≤
√
s
∥∥∥(FT

SFS
)−1[(

FT
SFS

)
−
(
F̂T

S F̂S
)](

F̂T
S F̂S

)−1
∥∥∥
2

≤
√
s
∥∥∥(FT

SFS
)−1
∥∥∥
2

∥∥∥[(FT
SFS

)
−
(
F̂T

S F̂S
)]∥∥∥

2

∥∥∥(F̂T
S F̂S

)−1
∥∥∥
2

≤
√
s

NMC2
min

(
1

NM

∥∥∥FT
SFS − F̂T

S F̂S

∥∥∥
2

)
. (B.20)

In the last inequality, we use the result of Lemma 6.1. Now we can bound ∥T3∥∞ as

follows:

∥T3∥∞ =

∥∥∥∥(F̂T
ScF̂S − FT

ScFS

)((
F̂T

S F̂S
)−1 −

(
FT

SFS
)−1
)∥∥∥∥

∞

≤
∥∥∥F̂T

ScF̂S − FT
ScFS

∥∥∥
∞

∥∥∥(F̂T
S F̂S

)−1 −
(
FT

SFS
)−1
∥∥∥
∞

≤ s

Cmin

(
1

NM

∥∥∥F̂T
ScF̂S − FT

ScFS

∥∥∥
2

)(
1

NM

∥∥∥FT
SFS − F̂T

S F̂S

∥∥∥
2

)
,

where in the last inequality, we use (2.14) and ∥C∥∞ ≤
√
N∥C∥2 for any C ∈ RM×N .

Take εmax
′′

M such that, for εmax′
M and εmax

M in Lemma 2.6.1 and Lemma 6.1 respectively:

εmax
′′

M > max

{
Cmin

s(1−µ)
εmax
M , Cmin

s
εmax

′

M

}
, for large enough N , we have

P

[
∀i = 1, 2, 3 : ∥Ti∥∞ > εmax

′′

M

]
≤ O

(
N exp

(
− 1

6
N c
))

.
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APPENDIX C

HIGH-DIMENSIONAL MULTIVARIATE LINEAR REGRESSION WITH

WEIGHTED NUCLEAR NORM REGULARIZATION

This appendix provides the technical details for the main paper. Sections C.1 to C.6 pro-

vides the proofs of Lemma 3.2.1, Theorem 3.2.2, Proposition 3.3.1, Lemma 3.3.2, Theorem

3.3.3, and Proposition 3.4.1. Section C.7 shows an extension of the proposed WMVR-

ADMM algorithm for solving trace regression problem with weighted nuclear norm penal-

ization.

C.1 Proof of Lemma 3.2.1

For simplicity, denote B(k) := −Λ(k)+ρ·Γ(k), then we can solve the optimization problem

in Step 1 as follows:

Θ(k+1) = argmin
Θ∈Rd1×d2

Lρ

(
Θ,Γ(k),Λ(k)

)
= argmin

Θ∈Rd1×d2

{
f(Θ) + tr

(
Λ(k)⊤Θ

)
+

ρ

2
∥Θ− Γ(k)∥2F

}
= argmin

Θ∈Rd1×d2

{ p∑
j=1

(
ρ

2
σj(Θ)2 + λnωj · σj(Θ)

)
− tr

(
B(k)⊤Θ

)}
. (C.1)

We plugged-in f(Θ) = λn∥Θ∥ω,⋆, used tr
(
ΘΘ⊤) =

∑p
j=1 σj

(
Θ
)2 and the definition

of B(k) for deriving the last equality. For further convenience of notation, let {dj}pj=1 :=

{σj

(
Θ
)
}pj=1 and denote Θ = UDV ⊤ where U and V are the left and right singular

matrices of Θ and D := diag
(
{d1, d2, . . . , dp}

)
. Note that the entries in D are in non-

increasing order. ( i.e. d1 ≥ d2 · · · ≥ dp ≥ 0) Then, we can rewrite the optimization
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problem in (C.1) of WMVR-ADMM algorithm as follows:

Θ(k+1) = argmin
d1≥d2≥···≥dp≥0

{ p∑
j=1

(
ρ

2
d2j + λnωjdj

)
− max

U⊤U=Id1 ,V
⊤V =Id2

tr
(
B(k)⊤Θ

)}
(C.2)

The maximum of second term in (C.2) can be achieved when U and V coincide with

left and right singular matrices of B(k) respectively, giving us the maximized value as∑p
j=1 σj(B

(k))dj . This is a well-known Von Neumann’s trace inequality. See [203, 204].

Then, the final form of the optimization problem (C.2) reduces to obtaining the diagonal

entries of the matrix D by minimizing the following :

min
d1≥d2≥···≥dp≥0

{ p∑
j=1

(
ρ

2
d2j +

(
λnωj − σj(B

(k))
)
dj

)}
. (C.3)

The objective function (C.3) is completely decompsable coordinate-wise and is minimized

at dj = max
{

1
ρ

(
σj(B

(k)
)
−λnωj

)
, 0
}

for j = 1, . . . , p. Since σ1(B
(k)) ≥ σ2(B

(k)) · · · ≥

σp(B
(k)) and 0 ≤ ω1 ≤ ω2 ≤ · · · ≤ ωp, the solution is feasible. Furthermore, we have an

unique minimizer due to the equality condition of von-Neumann’s trace inequality when

B(k) has distinct non-zero singular values, and the uniqueness of strict convex optimization

of (C.3) in dj for j = 1, . . . , p. 2

C.2 Proof of Theorem 3.2.2

To prove Theorem 3.2.2 in the main paper about the convergence of WMVR-ADMM algo-

rithm converges globally, we need to use the following two lemmas whose proofs are given

subsequently.

Lemma C.2.1 Set ρ > 2L∇g with L∇g := σ1

(
1
n
X⊤X

)
. Then, the iterates {(Θ(k),Γ(k),Λ(k))}k≥1

generated from WMVR-ADMM satisfy the following conditions:

a. Lρ

(
Θ(k),Γ(k),Λ(k)

)
is lower-bounded and non-increasing over k ≥ 1.

177



b. {(Θ(k),Γ(k),Λ(k))}k≥1 is bounded.

c.
∥∥Θ(k) − Γ(k)

∥∥
F → 0 and

∥∥Γ(k+1) − Γ(k)
∥∥

F → 0, as k → ∞.

Proof of Lemma B.1: By the result of Lemma 2.1 in the main paper, we have

Lρ

(
Θ(k),Γ(k),Λ(k)

)
− Lρ

(
Θ(k+1),Γ(k),Λ(k)

)
≥ 0. (C.4)

Now, we control the following difference term.

Lρ

(
Θ(k+1),Γ(k),Λ(k)

)
− Lρ

(
Θ(k+1),Γ(k+1),Λ(k)

)
= g(Γ(k))− g(Γ(k+1))− tr

(
Λ(k)⊤(Γ(k) − Γ(k+1)

))
− ρ · tr

((
Θ(k+1) − Γ(k+1)

)⊤(
Γ(k) − Γ(k+1)

))
+

ρ

2

∥∥Γ(k) − Γ(k+1)
∥∥2
F

= g(Γ(k))− g(Γ(k+1))− tr
(
Λ(k+1)⊤(Γ(k) − Γ(k+1)

))
+

ρ

2

∥∥Γ(k) − Γ(k+1)
∥∥2
F
.

(C.5)

Note that we use Λ(k+1) = Λ(k) + ρ
(
Θ(k+1) − Γ(k+1)

)
in the last equality. Recall the

definition of Lρ

(
Θ(k),Γ(k),Λ(k)

)
from equation (5) in the main paper and Λ(k+1) = Λ(k)+

ρ
(
Θ(k+1) − Γ(k+1)

)
. Then, we have

Lρ

(
Θ(k+1),Γ(k+1),Λ(k)

)
− Lρ

(
Θ(k+1),Γ(k+1),Λ(k+1)

)
= −1

ρ

∥∥Λ(k) −Λ(k+1)
∥∥2
F
. (C.6)

By combining (C.5) and (C.6), we have

Lρ

(
Θ(k+1),Γ(k),Λ(k)

)
− Lρ

(
Θ(k+1),Γ(k+1),Λ(k+1)

)
= g(Γ(k))− g(Γ(k+1))− tr

(
Λ(k+1)⊤(Γ(k) − Γ(k+1)

))
+

ρ

2

∥∥Γ(k) − Γ(k+1)
∥∥2
F
− 1

ρ

∥∥Λ(k) −Λ(k+1)
∥∥2
F
.

(C.7)
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Recall the definition of Γ(k+1) from Step 2 of WMVR-ADMM Algorithm.

Γ(k+1) = argmin
Γ∈Rd1×d2

{
g(Γ)− tr

(
Λ(k)⊤Γ

)
+

ρ

2

∥∥Γ−Θ(k+1)
∥∥2
F

}
.

Since Γ(k+1) is a stationary point of the above optimization problem, we have

∇g
(
Γ(k+1)

)
= Λ(k) + ρ

(
Θ(k+1) − Γ(k+1)

)
= Λ(k+1),

where ∇g(·) is a gradient of g. Likewise, we get ∇g
(
Γ(k)

)
= Λ(k). Recall the definition

of g(·), then we can easily have

∥∥Λ(k+1) −Λ(k)
∥∥
F
=
∥∥∇g

(
Γ(k+1)

)
−∇g

(
Γ(k)

)∥∥
F
≤ σ1

(
1

n
X⊤X

)
·
∥∥Γ(k+1) − Γ(k)

∥∥
F
.

(C.8)

Function g is Lipschitz smooth with constant L∇g := σ1

(
1
n
X⊤X

)
. Then, we have

g(Γ(k))− g(Γ(k+1))− tr
(
∇g
(
Γ(k+1)

)⊤(
Γ(k) − Γ(k+1)

))
≥ −L∇g

2

∥∥Γ(k+1) − Γ(k)
∥∥2
F
.

(C.9)

Recall ∇g
(
Γ(k+1)

)
= Λ(k+1), combining (C.4), (C.7), (C.8), and (C.9) yields

Lρ

(
Θ(k),Γ(k),Λ(k)

)
− Lρ

(
Θ(k+1),Γ(k+1),Λ(k+1)

)
≥
(
− L∇g

2
− 1

ρ
L2
∇g +

ρ

2

)
·
∥∥Γ(k+1) − Γ(k)

∥∥2
F
.

Setting ρ > 2L∇g makes C1 := −L∇g

2
−1

ρ
L2
∇g+

ρ
2
> 0, which implies that Lρ

(
Θ(k),Γ(k),Λ(k)

)
is non-increasing over k ∈ R ∪ {0}. Now, we will prove Lρ

(
Θ(k),Γ(k),Λ(k)

)
is bounded
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below over k ∈ N ∪ {0}.

Lρ

(
Θ(k),Γ(k),Λ(k)

)
= f(Θ(k)) + g(Γ(k)) + tr

(
Λ(k)⊤(Θ(k) − Γ(k)

))
+

ρ

2
∥Θ(k) − Γ(k)∥2F

= f(Θ(k)) + g(Γ(k)) + tr
(
∇g(Γ(k))⊤

(
Θ(k) − Γ(k)

))
+

ρ

2
∥Θ(k) − Γ(k)∥2F

≥ g(Γ(k)) + tr
(
∇g(Γ(k))⊤

(
Θ(k) − Γ(k)

))
+

ρ

2
∥Θ(k) − Γ(k)∥2F

≥ g(Θ(k))− L∇g

2
∥Θ(k) − Γ(k)∥2F +

ρ

2
∥Θ(k) − Γ(k)∥2F

≥ g(Θ(k)) :=
1

2n

∥∥Y −XΘ(k)
∥∥2

F .

In the first inequality, f(Θ(k)) ≥ 0 is used. In the second inequality, Lipschitz smoothness

of g with constant L∇g is used, and in the last inequality, the choice on ρ > 2L∇g is used.

It is obvious that g(Θ(k)) is bounded below from 0.

As long as {(Θ(0),Γ(0),Λ(0))} is bounded, it is easy to see the generated sequence {Θ(k),Γ(k),Λ(k)}k≥1

is bounded as well. Since the minimizers of Step 1. and Step 2. of WMVR-ADMM Algo-

rithm have explicit closed form solution, the pair {Θ(1),Γ(1)} is bounded, and by Step 3.

of WMVR-ADMM algorithm, the boundedness of Λ(1) is automatically ensured. Applying

the same logic over the k ≥ 2 yields the claim. 2

Lemma C.2.2 For k ≥ 1, there exist a constant C2 > 0 and p(k+1) ∈ ∂Lρ

(
Θ(k+1),Γ(k+1),Λ(k+1)

)
such that ∥p(k+1)∥F ≤ C2∥Γ(k+1) − Γ(k)∥F.

Proof of Lemma B.2: Let us define the partial derivative of Lρ

(
Θ(k+1),Γ(k+1),Λ(k+1)

)
as

∂Lρ

(
Θ(k+1),Γ(k+1),Λ(k+1)

)
:=
(
∂ΘLρ,∇ΓLρ,∇ΛLρ

)(
Θ(k+1),Γ(k+1),Λ(k+1)

)
.
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for technical convenience. It is easy to see followings:

∇ΓLρ

(
Θ(k+1),Γ(k+1),Λ(k+1)

)
= Λ(k+1) −Λ(k)

∇ΛLρ

(
Θ(k+1),Γ(k+1),Λ(k+1)

)
=

1

ρ

(
Λ(k+1) −Λ(k)

)
.

Since Θ(k+1) is a minimizer of Step 1., it satisfies the following stationary condition.

0 ∈ ∂f(Θ(k+1)) +Λ(k) + ρ(Θ(k+1) − Γ(k)). (C.10)

Then, we are interested in getting a subdifferential of Lρ

(
Θ(k+1),Γ(k+1),Λ(k+1)

)
with re-

spect to Θ, which can be calculated as follows:

∂ΘLρ

(
Θ(k+1),Γ(k+1),Λ(k+1)

)
= ∂f(Θ(k+1)) +Λ(k+1) + ρ(Θ(k+1) − Γ(k+1))

= ∂f(Θ(k+1)) +Λ(k) + ρ(Θ(k+1) − Γ(k)) + (Λ(k+1) −Λ(k)) + ρ(Γ(k) − Γ(k+1)).

Then, by (C.10), we have

(Λ(k+1) −Λ(k)) + ρ(Γ(k) − Γ(k+1)) ∈ ∂ΘLρ

(
Θ(k+1),Γ(k+1),Λ(k+1)

)
.

If we define p(k+1) as

p(k+1) :=

(
(Λ(k+1) −Λ(k)) + ρ(Γ(k) − Γ(k+1)),Λ(k+1) −Λ(k),

1

ρ

(
Λ(k+1) −Λ(k)

))
,

(C.11)

then p(k+1) ∈ ∂Lρ

(
Θ(k+1),Γ(k+1),Λ(k+1)

)
. Furthermore, its Frobenious norm can be
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bounded by combining (C.8) and (C.11) as follows:

∥∥p(k+1)
∥∥

F ≤
(
ρ+

(
2 +

1

ρ

)
L∇g

)
·
∥∥Γ(k+1) − Γ(k)

∥∥
F .

Setting C2 := ρ+
(
2+1

ρ

)
L∇g completes the proof of Lemma B.2. 2

Main Proof of Theorem 3.2.2: By Bolzano-Weierstrass threorem, we know the bounded

sequence {Θ(k),Γ(k),Λ(k)}k≥0 has a convergent subsequence {Θ(ks),Γ(ks),Λ(ks)}s≥1, and

denote its limit point as (Θ∗,Γ∗,Λ∗). From Lemma B.1, we know the augmented la-

grangian function Lρ

(
Θ(k),Γ(k),Λ(k)

)
is non-increasing and bounded from below. This

implies the sequence {Lρ

(
Θ(k),Γ(k),Λ(k)

)
}k≥0 converges. By continuity of Lρ

(
Θ(k),Γ(k),Λ(k)

)
and results from Step 1 and Step 2 of WMVR-ADMM algorithm in the main paper, we

have

lim
k→∞

Lρ

(
Θ(k),Γ(k),Λ(k)

)
= lim

s→∞
Lρ

(
Θ(ks),Γ(ks),Λ(ks)

)
= Lρ

(
Θ∗,Γ∗,Λ∗).

By the result of Lemma B.2, there exists p(k+1) ∈ ∂Lρ

(
Θ(k+1),Γ(k+1),Λ(k+1)

)
such that∥∥p(k+1)

∥∥
F → 0 as k → ∞. Consequently, we conclude the following:

p(k+1) ∈ ∂Lρ

(
Θ(k+1),Γ(k+1),Λ(k+1)

)
→ 0 ∈ ∂Lρ

(
Θ∗,Γ∗,Λ∗), ask → ∞.

It remains to prove Lρ is a Kurdyka-Lojasiewicz (KL) function [205] for ensuring the

generated sequence {(Θ(k),Γ(k),Λ(k))}k≥0 converges globally to the unique point {Θ∗,Γ∗,Λ∗}.

This can be proved by applying Proposition 2 in [123] and Theorem 2.9 in [205]: If a func-

tion is semi-algebraic [206], then it is known to be a KL function. Since 1
2n

∥Y −XΓ∥2F +

tr
(
Λ⊤(Θ − Γ

))
is a real-polynomial function, it is semi-algebraic. Since the finite sum

of semi-algebraic functions are semi-algebraic [205], it remains to prove λn∥Θ∥ω,∗ is a

semi-algebraic. In proposition 3 of [206], it is proved that each singular value of the ma-

trix Θ, σj(Θ), is a semi-algebraic. Therefore, the weighted singular value ωjσj(Θ) is
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also a semi-algebraic function, and finally, summing rule gives that λn∥Θ∥ω,∗ is a semi-

algebraic function, so Lρ is a KL function, which completes the proof of Theorem 2.2.

2

C.3 Proof of Proposition 3.3.1

The derivation on the closed-form solution of Θ̂ is exactly same with that of Lemma 1

in [118], under the orthogonal design assumption. So we omit the proof. We only focus

on controlling the distance between singular values of Θ̂ and Θ⋆. With the equality Y =

XΘ⋆ +E and X⊤X = nId1×d1 , we have

Θ̂LS =
(
X⊤X

)−1
X⊤Y = Θ⋆ +

X⊤E

n
. (C.12)

By the corollary of Weyl’s Theorem and the equality (C.12), inequality

max
j=1,...,p

∣∣∣σj

(
Θ̂LS)− σj

(
Θ⋆
)∣∣∣ ≤ σ1

(
X⊤E

n

)
. (C.13)

can be obtained. Recall from our problem setting that the rows of E are independent

from N (0, σ2Id2×d2). Therefore, we know each entry of X⊤E/σ
√
n follows N (0, 1)

and is independent with each other. Following Chapter 6 in [7], with probability at least

1− 2 exp(−(
√
d1 +

√
d2)

2/2), the right hand side of (C.13) satisfies

σ1

(
X⊤E

n

)
≤ 2σ

√
d1 + d2

n
. (C.14)
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Because σj

(
Θ̂
)
= σj

(
Θ̂LS

)
−λnwj > 0 for j = 1, . . . , r̂, with further combing (C.13) and

(C.14), we know for j ∈ {1, . . . , r̂}

∣∣∣σj

(
Θ̂
)
− σj

(
Θ⋆
)∣∣∣ = ∣∣∣σj

(
Θ̂LS)− λnωj − σj

(
Θ⋆
)∣∣∣

≤
∣∣∣σj

(
Θ̂LS)− σj

(
Θ⋆
)∣∣∣+ λnωj

≤ σ1

(
X⊤E

n

)
+ λnωj ≤ max

(
4σ, 2ωj

)
·
√

d1 + d2
n

,

where in the last inequality, we use (C.14) and choose λn =
√

d1+d2
n

. For j ∈ {r̂+1, . . . , p}

such that σj

(
Θ⋆
)
> 0, the following inequalities hold

∣∣∣σj

(
Θ̂
)
− σj

(
Θ⋆
)∣∣∣ ≤ ∣∣∣σj

(
Θ̂LS)− σj

(
Θ⋆
)∣∣∣+ ∣∣∣σj

(
Θ̂LS)∣∣∣

≤ σ1

(
X⊤E

n

)
+ λnωj ≤ max

(
4σ, 2ωj

)
·
√

d1 + d2
n

,

where in the second inequality, we use (C.13) and |σj

(
Θ̂LS

)
| ≤ λnωj for j ∈ {r̂+1, . . . , p}.

For j ∈ {r̂ + 1, . . . , p} such that σj

(
Θ⋆
)
= 0, we have the following result:

∣∣∣σj

(
Θ̂
)
− σj

(
Θ⋆
)∣∣∣ ≤ ∣∣∣σj

(
Θ̂LS)∣∣∣ ≤ λnωj. (C.15)

Using that the three inequalities (C.13), (C.14), and (C.15) should hold at the same time,

we can conclude the proof. 2

C.4 Proof of Lemma 3.3.2

Since Θ̂ is a minimizer and Θ⋆ is a feasible solution of the optimization problem in equa-

tion (2) in the main paper, we have the following basic inequality:

1

2n

∥∥∥Y −XΘ̂
∥∥∥2

F
+ λn∥Θ̂∥w,⋆ ≤

1

2n
∥Y −XΘ⋆∥2F + λn∥Θ⋆∥w,⋆. (C.16)
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Plugging in Y = XΘ⋆ +E in the (C.16) yields

1

2n

∥∥∥X(Θ⋆ − Θ̂
)∥∥∥2

F
≤ 1

n
tr
(
(Θ̂−Θ⋆)⊤X⊤E

)
+ λn

(
∥Θ⋆∥w,⋆ − ∥Θ̂∥w,⋆

)
. (C.17)

By denoting ∆̂ ≡ Θ̂−Θ⋆ and since left-hand side of (C.17) is ≥ 0, we have

0 ≤ 1

n
tr
(
∆̂⊤X⊤E

)
+ λn

(
∥Θ⋆∥w,⋆ − ∥∆̂+Θ⋆∥w,⋆

)
. (C.18)

First, we will control the upper-bound on the second term of the (C.18). By the definition

of the weighted nuclear norm, we can re-write the term as follows:

∥Θ⋆∥w,⋆ − ∥∆̂+Θ⋆∥w,⋆ =

p∑
j=1

wjσj

(
Θ⋆
)
−

p∑
j=1

wjσj

(
∆̂+Θ⋆

)
=

[
wp

p∑
j=1

σj

(
Θ⋆
)
−

p∑
j=1

(wp − wj)σj

(
Θ⋆
)]

−

[
wp

p∑
j=1

σj

(
∆̂+Θ⋆

)
−

p∑
j=1

(wp − wj)σj

(
∆̂+Θ⋆

)]

= wp

[
p∑

j=1

σj

(
Θ⋆
)
−

p∑
j=1

σj

(
∆̂+Θ⋆

)]
+

[
p∑

j=1

(wp − wj)
{
σj

(
∆̂+Θ⋆

)
− σj

(
Θ⋆
)}]

= wp

(
∥Θ⋆∥⋆ − ∥∆̂+Θ⋆∥⋆

)︸ ︷︷ ︸
:=I

+
(
∥∆̂+Θ⋆∥wp−w,⋆ − ∥Θ⋆∥wp−w,⋆

)︸ ︷︷ ︸
:=II

, (C.19)

where ∥Θ∥wp−w,⋆ =
∑p

j=1(wp − wj)σj(Θ).

Recall the definitions of the two subspaces Mr and M⊥
r in subsection 3.2. For any r ≤ p,

we have

Θ⋆ = ΠMr

(
Θ⋆
)
+ΠM⊥

r

(
Θ⋆
)
. (C.20)

Recall that ∆̂′′ ∈ ΠM⊥
r

(
∆̂
)

and ∆̂′ = ∆̂−∆̂′′. Then, we can control the term ∥∆̂+Θ⋆∥⋆
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as follows:

∥∆̂+Θ⋆∥⋆ = ∥∆̂′ + ∆̂′′ +ΠMr(Θ
⋆) + ΠM⊥

r
(Θ⋆)∥⋆

≥ ∥∆̂′′ +ΠMr(Θ
⋆)∥⋆ − {∥∆̂′∥⋆ + ∥ΠM⊥

r
(Θ⋆)∥⋆}

= ∥∆̂′′∥⋆ + ∥ΠMr(Θ
⋆)∥⋆ − {∥∆̂′∥⋆ + ∥ΠM⊥

r
(Θ⋆)∥⋆}, (C.21)

where in the first inequality, we used the triangle inequality of ∥ · ∥⋆ and in the last equal-

ity, the decomposability of ∥ · ∥⋆ with respect to a pair of subspaces (Mr,M
⊥
r ) is used.

With (C.21), we are ready to control the term I in (C.19).

wp

(
∥Θ⋆∥⋆ − ∥∆̂+Θ⋆∥⋆

)

≤ wp ·

{(
∥ΠMr(Θ

⋆)∥⋆ + ∥ΠM⊥
r
(Θ⋆)∥⋆

)
−
(
∥∆̂′′∥⋆ + ∥ΠMr(Θ

⋆)∥⋆ − {∥∆̂′∥⋆ + ∥ΠM⊥
r
(Θ⋆)∥⋆}

)}

= wp ·
{
2∥ΠM⊥

r
(Θ⋆)∥⋆ + ∥∆̂′∥⋆ − ∥∆̂′′∥⋆

}
(C.22)

Note that the equality ∥Θ⋆∥⋆ = ∥ΠMr(Θ
⋆)∥⋆+∥ΠM⊥

r
(Θ⋆)∥⋆ is used in the first inequality

due to (C.20).

Now the term II in (C.19) needs to be controlled. First, we need to see the norm ∥ ·

∥wp−w,⋆ =
∑p

j=1(wp−wj)σj

(
·
)

with respect to any pair of matrices: (A,B) ∈ (Mr,M
⊥
r )

satisfies the decomposability, meaning ∥A + B∥wp−w,⋆ = ∥A∥wp−w,⋆ + ∥B∥wp−w,⋆. By

definition of the subspace pair (Mr,M
⊥
r ), we can write A and B as

A = U

 T1,1 0r×(p−r)

0(p−r)×r 0(p−r)×(p−r)

V ⊤, B = U

 0r×r 0r×(p−r)

0(p−r)×r T2,2

V ⊤,

where T1,1 ∈ Rr×r and T2,2 ∈ R(p−r)×(p−r) are arbitrary matrices. Define two diagonal
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matrices W1 := diag(wp − w1, . . . , wp − wr) and W2 := diag(wp − wr+1, . . . , wp − wp).

Then, we have

∥A+B∥wp−w,⋆ =

∥∥∥∥∥∥∥
W1T1,1 0r×(p−r)

0(p−r)×r 0(p−r)×(p−r)

+

 0r×r 0r×(p−r)

0(p−r)×r W2T2,2


∥∥∥∥∥∥∥
⋆

=

∥∥∥∥∥∥∥
W1T1,1 0r×(p−r)

0(p−r)×r 0(p−r)×(p−r)


∥∥∥∥∥∥∥
⋆

+

∥∥∥∥∥∥∥
 0r×r 0r×(p−r)

0(p−r)×r W2T2,2


∥∥∥∥∥∥∥
⋆

= ∥A∥wp−w,⋆ + ∥B∥wp−w,⋆.

In the first equality, the definition of ∥ · ∥wp−w,⋆ and the invariance of the nuclear norm to

orthogonal transformation to multiplication by the matrices U ⋆ and V ⋆ are used.

Using this fact, similarly with (C.21) and (C.22), we get the upper-bound on II in the

equality (C.19):

∥∆̂+Θ⋆∥wp−w,⋆ − ∥Θ⋆∥wp−w,⋆

⇔ ∥ΠMr(Θ
⋆) + ΠM⊥

r
(Θ⋆) + ∆̂′ + ∆̂′′∥wp−w,⋆ − ∥Θ⋆∥wp−w,⋆

≤ ∥ΠMr(Θ
⋆) + ∆̂′′∥wp−w,⋆ + ∥ΠM⊥

r
(Θ⋆)∥wp−w,⋆ + ∥∆̂′∥wp−w,⋆ − ∥Θ⋆∥wp−w,⋆

=

{
∥ΠMr(Θ

⋆)∥wp−w,⋆ + ∥∆̂′′∥wp−w,⋆ + ∥ΠM⊥
r
(Θ⋆)∥wp−w,⋆+

∥∆̂′∥wp−w,⋆

}
−
{
∥ΠMr(Θ

⋆)∥wp−w,⋆ + ∥ΠM⊥
r
(Θ⋆)∥wp−w,⋆

}
= ∥∆̂′′∥wp−w,⋆ + ∥∆̂′∥wp−w,⋆. (C.23)

By combining the inequalities (C.22) and (C.23), we can obtain an upper-bound on the
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Eq. (C.19);

∥Θ⋆∥w,⋆ − ∥∆̂+Θ⋆∥w,⋆

= wp(∥Θ⋆∥⋆ − ∥∆̂+Θ⋆∥⋆) + (∥∆̂+Θ⋆∥wp−w,⋆ − ∥Θ⋆∥wp−w,⋆)

≤ wp

{
2∥ΠM⊥

r
(Θ⋆)∥⋆ + ∥∆̂′∥⋆ − ∥∆̂′′∥⋆

}
+
{
∥∆̂′′∥wp−w,⋆ + ∥∆̂′∥wp−w,⋆

}
.

Now, we control the first term of right-hand side in (C.18) as follows:

∣∣∣∣ 1n tr
(
∆̂⊤X⊤E

)∣∣∣∣ ≤ ∥∥∥∥ 1nX⊤E

∥∥∥∥
op
∥∆̂∥⋆ ≤

λn

2
∥∆̂∥⋆. (C.24)

In the first inequality, we used Hölder’s inequality and in the second inequality the condition

λn ≥ 2
n

∥∥X⊤E
∥∥

op is used. Combining everything, we finally have a bound on Eq. (C.18):

0 ≤ 1

n
tr
(
∆̂⊤X⊤E

)
+ λn

{
∥Θ⋆∥w,⋆ − ∥∆̂+Θ⋆∥w,⋆

}
≤ λn

{
1

2
∥∆̂∥⋆ + wp

{
2∥ΠM⊥

r
(Θ⋆)∥⋆ + ∥∆̂′∥⋆ − ∥∆̂′′∥⋆

}
+
{
∥∆̂′′∥wp−w,⋆ + ∥∆̂′∥wp−w,⋆

}}

≤ λn

{
1

2
∥∆̂′∥⋆ +

1

2
∥∆̂′′∥⋆ + wp

{
2∥ΠM⊥

r
(Θ⋆)∥⋆ + ∥∆̂′∥⋆ − ∥∆̂′′∥⋆

}
(C.25)

+
{
∥∆̂′′∥wp−w,⋆ + ∥∆̂′∥wp−w,⋆

}}

= λn

{
2wp∥ΠM⊥

r
(Θ⋆)∥⋆ + ∥∆̂′∥2wp−w+ 1

2
,⋆ − ∥∆̂′′∥w− 1

2
,⋆

}
. (C.26)

Note the norm denotes ∥ ·∥2wp−w+ 1
2
,⋆ :=

∑p
j=1(2wp−wj+

1
2
)σj

(
·
)
. The inequality (C.26)

implies

p∑
j=1

(
wj −

1

2

)
σj

(
∆̂′′) ≤ 2wp · ∥ΠM⊥

r
(Θ⋆)∥⋆ +

2r∑
j=1

(
2wp − wj +

1

2

)
σj

(
∆̂′). (C.27)

In (C.27), we use the fact rank(∆̂′
) ≤ 2r. See the proof of Lemma 1 in [5]. Because

(w1 − 1
2
)
∑p

j=1 σj

(
∆̂′′) ≤

∑p
j=1

(
wj − 1

2

)
σj

(
∆̂′′), and similarly,

∑2r
j=1

(
2wp − wj +
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1
2

)
σj

(
∆̂′) ≤ (2wp − w1 +

1
2
)
∑2r

j=1 σj(∆̂
′), the inequality (C.27) implies

∥∆̂′′∥⋆ ≤
2wp

w1 − 1
2

p∑
j=r+1

σj

(
Θ⋆
)
+

2wp − w1 +
1
2

w1 − 1
2

· ∥∆̂′∥⋆. (C.28)

2

C.5 Proof of Theorem 3.3.3

First, recall the basic inequality (C.17), transformation of weighted nuclear norm (C.19)

and duality of operator and nuclear norm (C.24). Then, we have

1

2n

∥∥∥X∆̂
∥∥∥2

F
≤ 1

n
tr
(
∆̂⊤X⊤E

)
+ λn

(
∥Θ⋆∥w,⋆ − ∥Θ̂∥w,⋆

)
≤ λn

{
1

2
∥∆̂′∥⋆ +

1

2
∥∆̂′′∥⋆ + wp

(
∥Θ⋆∥⋆ − ∥∆̂+Θ⋆∥⋆

)
+
(
∥∆̂+Θ⋆∥wp−w,⋆ − ∥Θ⋆∥wp−w,⋆

)}
≤ λn

{
1

2
∥∆̂′∥⋆ +

1

2
∥∆̂′′∥⋆ + wp

(
∥∆̂′∥⋆ + ∥∆̂′′∥⋆

)
+
(
∥∆̂′∥wp−w,⋆ + ∥∆̂′′∥wp−w,⋆

)}
= λn

{ 2r∑
j=1

(
2wp − wj +

1

2

)
σj

(
∆̂′)+ p∑

j=1

(
2wp − wj +

1

2

)
σj

(
∆̂′′)}

≤ λn

(
2wp − w1 +

1

2

)(∥∥∥∆̂′
∥∥∥
⋆
+
∥∥∥∆̂′′

∥∥∥
⋆

)
, (C.29)

where in the third inequality, triangle inequality of norms ∥·∥⋆ and ∥·∥wp−w,⋆ is applied

twice. In the last inequality, we used
∑2r

j=1

(
2wp − wj +

1
2

)
σj

(
∆̂′) ≤

(
2wp − w1 +

1
2

)∑2r
j=1 σj

(
∆̂′) and

∑p
j=1

(
2wp − wj +

1
2

)
σj

(
∆̂′′) ≤ (2wp − w1 +

1
2

)∑p
j=1 σj

(
∆̂′′).

By the RSC condition, there exists a constant κ > 0 such that κ∥∆̂∥2F ≤ 1
2n

∥∥∥X∆̂
∥∥∥2

F
.
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Then, by (C.27) and (C.29), with some straightforward calculations, we have

κ∥∆̂∥2F ≤ λn

2wp

(
2wp − w1 +

1
2

)
w1 − 1

2

·
(∥∥∥∆̂′

∥∥∥
⋆
+

p∑
j=r+1

σj

(
Θ⋆
))

≤ λn

2wp

(
2wp − w1 +

1
2

)
w1 − 1

2

·
(
2
√
r
∥∥∥∆̂∥∥∥

F
+

p∑
j=r+1

σj

(
Θ⋆
))

≤ λn

wp

(
2wp − w1 +

1
2

)
w1 − 1

2

·max

{
8
√
r
∥∥∥∆̂∥∥∥

F
, 4

p∑
j=r+1

σj

(
Θ⋆
)}

,

where in the second inequality, we used the fact ∥∆̂′∥⋆ ≤
√
2r∥∆̂′∥F ≤ 2

√
r∥∆̂∥F , and in

the last inequality, the inequality a + b ≤ max{2a, 2b} for a, b ≥ 0 is used. Let us denote

W :=
wp

(
2wp−w1+

1
2

)
w1− 1

2

. Then, we obtain the final bound:

∥∥∥Θ̂−Θ⋆
∥∥∥

F
≤ max

{
8W · λn

√
r

κ
,

[
4W ·

λn

∑p
j=r+1 σj

(
Θ⋆
)

κ

]1/2}
. (C.30)

Let us construct a set of indices whose corresponding eigenvalues are greater than a thresh-

old τ > 0, and denote it as K and its complement as Kc.

K :=

{
j ∈ {1, . . . , p} : σj

(
Θ⋆
)
> τ

}
, Kc :=

{
j ∈ {1, . . . , p} : σj

(
Θ⋆
)
≤ τ

}
.

Since it is assumed that Θ⋆ ∈ Bq(r
⋆), for q ∈ [0, 1], we have the following inequality:

r⋆ ≥
p∑

j=1

∣∣σj

(
Θ⋆
)∣∣q ≥ |K| · τ q, (C.31)

where |K| denotes a cardinality of the set K. Similarly, by using the definition of set Kc,

for q ∈ [0, 1], we have the following inequality:

∑
j∈Kc

σj

(
Θ⋆
)
= τ

p∑
j=|K|+1

σj

(
Θ⋆
)

τ
≤ τ

p∑
j=|K|+1

(
σj

(
Θ⋆
)

τ

)q

≤ r⋆ ·
(
τ 1−q

)
. (C.32)
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Set r = |K| and plugging (C.31) and (C.32) in (C.30) yields:

∥∥∥Θ̂−Θ⋆
∥∥∥

F
≤ max

{
8W ·

λn

√
r⋆ ·

(
τ−q/2

)
κ

,

[
4W ·

λnr
⋆ ·
(
τ 1−q

)
κ

]1/2}
. (C.33)

Setting τ = λn/κ yields that

∥∥∥Θ̂−Θ⋆
∥∥∥

F
≤ 8W ·

√
r⋆
(
λn

κ

)1−q/2

. (C.34)

Recall that we choose λn such that λn ≥ 2
n

∥∥X⊤E
∥∥

op. [5] proved that 2
n

∥∥X⊤E
∥∥

op ≤

10σ∥Σ∥op

√
d1+d2

n
holds with high probability in Lemma 3 of their paper. We formally

re-state the Lemma in the following.

Lemma C.5.1 [Negahban and Wainwright [2011]] There are universal constants c1, c2 >

0 such that

P

{∣∣∣∣ 1n ∥∥X⊤E
∥∥

op

∣∣∣∣ ≥ 5σ∥Σ∥op

√
d1 + d2

n

}
≤ c1 exp

(
− c2

(
d1 + d2

))
.

Then, it remains us to determine the constant term κ, which satisfies the RSC property.

Readers can refer Lemma 2 in [5] for the following result.

Lemma C.5.2 [Negahban and Wainwright [2011]] Let X ∈ Rn×d1 be a random matrix

with i.i.d. rows sampled from a d1- variate N (0,Σ) distribution. Then for n ≥ 2d1, we

have

P

{
σmin

(
1

n
X⊤X

)
≥ σmin(Σ)

9

}
≥ 1− 4 exp

(
− n

2

)
.

With the result from Lemma E.2, some algebra shows that we can easily establish the lower
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bound on the quantity 1
2n

∥∥∥X∆̂
∥∥∥2

F
as follows:

1

2n

∥∥∥X∆̂
∥∥∥2

F
=

1

2n

d2∑
j=1

∥∥∥(X∆̂
)
j

∥∥∥2
2
≥ 1

2n
σmin

(
X⊤X

) ∥∥∥∆̂∥∥∥2
F
≥ σmin(Σ)

18

∥∥∥∆̂∥∥∥2
F
.

This shows that the RSC property holds with probability at least 1− 4 exp(−n/2) with the

constant κ = σmin(Σ)
18

. Plugging λn = 10σ∥Σ∥op

√
d1+d2

n
and κ = σmin(Σ)

18
in (C.34) yields

the following inequality:

∥∥∥Θ̂−Θ⋆
∥∥∥2

F
≤ 64W2 · r⋆

(
10σ∥Σ∥op

√
d1 + d2

n

18

σmin(Σ)

)2−q

= c1W2

(
σ2∥Σ∥2op

σ2
min(Σ)

)1−q/2

r⋆

(
d1 + d2

n

)1−q/2

.

2

C.6 Proof of Proposition 3.4.1

Let Θ = UDV ⊤ be the SVD of Θ. Then, we have

tr
(
Θ⊤KΘ

)
= tr

(
V DU⊤KUDV ⊤) = tr

(
D2U⊤KU

)
= tr

(
UD2U⊤K

)
.

Let A := UD2U⊤ and B := K. As proved in [207], for two positive-semi definite

matrices A and B, we have

tr
(
A⊤B

)
≥

p∑
j=1

σj

(
A
)
σp+1−j

(
B
)
, (C.35)
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where σ1

(
·
)
≥ σ2

(
·
)
≥ · · · ≥ σp

(
·
)
≥ 0. Denote dj := σj

(
Θ
)

for j ∈ {1, . . . , p}.

Given 0 ≤ ω1 ≤ ω2 ≤ · · · ≤ ωp, it is easy to see that

p∑
j=1

σj

(
A
)
σp+1−j

(
B
)
=

r̂∑
j=1

ωj

d̂j
d2j . (C.36)

Recalling the assumption X⊤X = nId1×d1 and a simple fact
(
Y −XΘ̂LS

)⊤
X = 0, we

can rewrite the cost function in equation (14) of the main paper as follows:

1

2n
∥Y −XΘ∥2F =

1

2n
tr
((
Y −XΘ̂LS)⊤(Y −XΘ̂LS))+ 1

2
tr
((
Θ̂LS −Θ

)⊤(
Θ̂LS −Θ

))
.

(C.37)

By combining (C.36) and (C.37), we can obtain the lower bound of the objective function

(14) in the main paper as follows:

1

2n
∥Y −XΘ∥2F +

λn

2
tr
(
Θ⊤KΘ

)
≥ 1

2

p∑
j=1

d2j −
p∑

j=1

σj

(
Θ̂LS)dj + λn

2

r̂∑
j=1

ωj

d̂j
d2j .

We use the equality tr
(
Θ⊤Θ

)
=
∑p

j=1 d
2
j and the inequality (C.35) to get a lower bound.

It also should be noted that the equality in the above lower bound holds when U = ÛLS

and V = V̂ LS. Solving the quadratic equation yields the followings:

D̂SR
jj =


d̂jσj

(
Θ̂LS
)

d̂j+λnωj
j = 1, . . . , r̂,

σj

(
Θ̂LS

)
j = r̂ + 1, . . . , p.

(C.38)

Recall that d̂j = σj

(
Θ̂LS

)
−λnωj for j = 1, . . . , r̂, and plugging this equality in (C.38) for

j ∈ {1, . . . , r̂} yields the claim. 2
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C.7 Extension of WMVR-ADMM to Trace Regression Model

let us consider the following trace regression problem : yi = tr(XT
i Θ

⋆)+εi , i = 1, · · · , n,

where Xi ∈ Rd1×d2 is a known measurement matrix for i = 1, · · · , n and
{
εi
}n
i=1

i.i.d∼

N
(
0, σ2

)
. In this section, we present an extension of WMVR-ADMM algorithm for solv-

ing the following optimization problem.

min
Θ

{
1

2n

n∑
i=1

(yi − tr(XT
i Θ))2 + λn∥Θ∥ω,⋆

}
.

First, let v(M) ∈ Rd1d2 be the vectorized version of matrix M concatenating columns of

M ∈ Rd1×d2 into one column vector, and let us also define an inverse operator Mat
[
v(M)

]
:=

M . With this notation, the algorithm is summarized in the Algorithm 2. The presented al-

Input :
{
Xi, yi

}n
i=1

, λn ≥ 0.
Prelimiaries : Myx :=

∑n
i=1 yiXi, and

A := 1
n

∑n
i=1 v(Xi)v(Xi)

⊤ + ρ · Id1d2×d1d2 .
Initialization : Θ(0) = 0, Γ(0) = 0, Λ(0) = 0 ∈ Rd1×d2 .

Repeat following Steps :
Step 1. Let B(k) := 1

n
Myx−Λ(k) + ρ · Γ(k).

B(k) = UBDB
(
V B
)⊤. (SVD)

Set Sλnω

(
DB
)
= diag

{
max

{
1
ρ

(
σj(B

(k)
)
− λnwj

)
, 0

}
for

j = 1, . . . , p

}
.

Θ(k+1) = UBSλnω

(
DB
)(
V B
)⊤.

Step 2. Γ(k+1) = Mat
[
A−1

(
ρv(Θ(k+1))− v(Λ(k))

)]
.

Step 3. Λ(k+1) = Λ(k) + ρ
(
Θ(k+1) − Γ(k+1)

)
.

Until ∥Θ(k+1) − Γ(k+1)∥F ≤ 10−7 and ∥Γ(k+1) − Γ(k)∥F ≤ 10−7.
Output : Θ̂ = Θ(k+1).

Algorithm 2: ADMM for weighted Trace Regression. (WTR-ADMM)

gorithm can be derived easily by using exactly the same techniques employed in Section

2.1 of the main paper by plugging f(Θ) := − 1
n

tr
((∑n

j=1 yiXi

)⊤
Θ
)
+ λn∥Θ∥ω,⋆ and

g(Γ) = 1
2n

∑n
j=1 tr

(
X⊤

i Γ
)2 in equation (4) of the main paper.
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APPENDIX D

A NON-PARAMETRIC REGRESSION VIEWPOINT : GENERALIZATION OF

OVERPARAMETRIZED DEEP RELU NETWORK UNDER NOISY

OBSERVATIONS

D.1 Numerical illustrations
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Figure D.1: Results on synthetic data.

In this section, we use synthetic data to corroborate our theoretical findings. We use the

He initialization [151] and employ (ℓ2-regularized) GD as introduced in subsection 4.2.2.

For the experiments, we run 1000 epochs of GD and use a fixed step size, setting η1 = η2 =

0.001. We uniformly generate n feature data xi
train from Sd−1 with d = 2 and generate yi

from f ⋆
ρ (x

train
i ) with εi ∼ N (0, 1). To create a function f ⋆

ρ ∈ HNTK
L , we use the definition

in (4.10) with α ∈ Unif(Sp−1) and with p fixed points {x̃j}pj=1 ⊂ Unif(Sd−1), where p

is simply set as 1. Note that Ker(·, ·) in (4.10) can be calculated via the formulas (4.8)

and (4.9) with specified network depth L. We consider a scenario where we have a network

with depth L = 8 and width m = 2000. The variance parameter of the output layer (ω) is

set as 1 for unregularized and 0.001 for regularized cases.

In Figure D.1.(a), we record the training errors of regularized networks over the GD epochs
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k ≤ 1000, where we have n ∈ {100, 300, 500, 1000, 5000} training samples. This aims to

verify the inequality (4.13) that the MSE of regularized network is bounded away from 0 by

some constant. In Figure D.1.(b), the prediction risks of both unregularized and regularized

networks are displayed. We approximate the risk with 1
500

∑500
j=1

(
f̂k(x

test
j )−f ⋆

ρ (x
test
j )
)2 with

a new test data set {xtest
j , f ⋆

ρ (x
test
j )}500j=1 over k ≤ 1000 for both unregularized and regular-

ized cases. In both cases, they reach the same minimal risks, but the risk of unregularized

network increase after it hits the minimal point, whereas the risk of regularized network

stays stable. Theorem 4.3.8 tells us that for the iteration less than the order O
(

1
ηmωL

)
, the

prediction error is bounded away from 0. In the experiment for unregularized case, we set

η = 0.01, m = 2000, L = 8, and ω = 1. Plugging in these parameters in the bound

says that the minimum can be achieved within a very few iterations. Note that the optimal

risk is non-zero as long as we have finite sample sizes n, but converges to 0 at the rate

O
(
n− d

2d−1

)
. In Figure D.1.(c), we verify that the more training sample sizes we have, the

closer the risks of the regularized networks get to 0. The risk is evaluated at the sample

sizes n = {100, 300, 500, 1000, 5000}.

We have to acknowledge that there is a discrepancy between our experiment setting and

theory. Specifically, due to the limited computing power, we could not run the experiment

under the regime of width m
log3(m)

≥ Ω
(
ω7n8L18

λ8
∞δ2

)
. But the prediction risk behaves similarly

as expected by our theorems, which can be a partial evidence that the statement in theorems

still holds in the narrower width of the network.

D.2 Preliminary Notations

Before presenting the formal proofs of Lemmas and main results, we introduce several

notations used frequently throughout the proofs. First, we denote xℓ,i the output of the ℓth
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hidden layer with the input data xi after applying entry-wise ReLU activation function.

xℓ,i = σ
(
Wℓσ

(
Wℓ−1 · · · σ

(
W1xi

)
· · ·
))
.

Denote fW(k)(x) a value of neural network (4.2) evaluated at the collection of network pa-

rameters W(k) :=
{
W

(k)
ℓ

}
ℓ=1,...,L

and W
(k)
ℓ denotes the ℓth hidden layer parameter updated

by kth GD iterations.

Partial gradient of fW(k)(x). We employ the following matrix product notation which

was used in several other papers [137, 140]:

ℓ2∏
r=ℓ1

Ar :=


Aℓ2Aℓ2−1 · · ·Aℓ1 if ℓ1 ≤ ℓ2,

I otherwise.
(D.1)

Then, the partial gradient of fW(k)(x) with respect to W
(k)
ℓ for 1 ≤ ℓ ≤ L has a following

form: for i ∈ {1, . . . , n},

∇Wℓ

[
fW(k)(xi)

]
=

√
m ·
[
x
(k)
ℓ−1,iv

T
( L∏

r=ℓ+1

Σ
(k)
r,i W

(k)
r

)
Σ

(k)
ℓ,i

]⊤
, ℓ ∈ [L],

where Σ
(k)
ℓ,i := Diag

(
1
(
⟨w(k)

ℓ,1 ,x
(k)
ℓ−1,i⟩ ≥ 0

)
, . . . ,1

(
⟨w(k)

ℓ,m,x
(k)
ℓ−1,i⟩ ≥ 0

))
∈ Rm×m and w

(k)
ℓ,j

denotes jth column of the matrix W
(k)
ℓ .

Gram matrix H(k). Each entries of empirical gram matrix evaluated at the kth GD up-

date are defined as follows:

Hi,j(k) =
1

m

L∑
ℓ=1

〈
∇Wℓ

[
fW(k)(xi)

]
,∇Wℓ

[
fW(k)(xj)

]〉
Tr .
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Note that H(0) → H∞
L as m → ∞ which is proved in [131, 153, 132, 130].

Perturbation region of weight matrices. Consider a collection of weight matrices W̃ ={
W̃ℓ

}
ℓ=1,...,L

such that

W̃ ∈ B
(
W(0), τ

)
:=

{
W̃ℓ : ∥W̃ℓ −W

(0)
ℓ ∥2 ≤ τ, ∀ℓ ∈ [L]

}
. (D.2)

For all i ∈ {1, . . . , n} and ℓ = 1, . . . , L, we denote xℓ,i and x̃ℓ,i as the outputs of the

ℓ-th layer of the neural network with weight matrices W(0) and W̃, and Σℓ,i and Σ̃ℓ,i are

diagonal matrices with
(
Σℓ,i

)
jj
= 1

(
⟨w(0)

ℓ,j ,xℓ−1,i⟩ ≥ 0
)

and
(
Σ̃ℓ,i

)
jj
= 1

(
⟨w̃ℓ,j, x̃ℓ−1,i⟩ ≥

0
)
, respectively.

D.3 Why is it hard to prove ∥W(k)
D,ℓ −W

(0)
D,ℓ∥2 ≤ O

(
1
)
?

In this subsection, we provide a heuristic argument on why it is hard to prove ∥W(k)
D,ℓ −

W
(0)
D,ℓ∥2 ≤ O

(
1
)
, where W

(k)
D,ℓ is the model parameter of ℓth layer in kth iteration of

algorithm. Here, we regularize solely on the model parameter, instead on the relative to the

initialization. In this case, we can write the update rule as follows :

W
(k)
D,ℓ =

(
1− η2µ

)
W

(k−1)
D,ℓ − η1∇Wℓ

[
LS

(
W

(k−1)
D

)]
, ∀1 ≤ ℓ ≤ L and ∀k ≥ 1.

(D.3)

By recursively applying above equation (4.3), we can write W
(k)
D,ℓ with respect to W

(0)
D,ℓ as

follows:

W
(k)
D,ℓ = (1− η2µ)

kW
(0)
D,ℓ − η1

k−1∑
ℓ=0

(1− η2µ)
ℓ∇Wℓ

[
LS

(
W

(k−ℓ−1)
D

)]
.
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Then, we can control the bound as follows:

∥W(k)
D,ℓ −W

(0)
D,ℓ∥2 ≤

(
1−

(
1− η2µ

)k)∥∥∥W(0)
D,ℓ

∥∥∥
2
+

η1
η2µ

max
ℓ=0,...,k−1

∥∥∥∇Wℓ

[
LS

(
W

(k−ℓ−1)
D

)]∥∥∥
2
.

We know under the initialization setting in our paper, ∥W(k)
D,ℓ∥2 ≤ O(1) with high-probability

(see [208]), and as long as we can prove the ℓ2-norm of gradient is bounded, then we can

conclude ∥W(k)
D,ℓ −W

(0)
D,ℓ∥2 ≤ O

(
1
)
. However, we are not aware of works in which they

control the size of ∥∇Wℓ

[
LS

(
W

(k−ℓ−1)
D

)]
∥2 where the non-convex interactions between

model parameters across the hidden layers are allowed. To the best of our knowledge, we

know the work [209] deals with the three layer case under this setting. But we need fur-

ther investigations on whether the techniques employed in their paper can be generalized

to arbitrary L-hidden layer setting.

D.4 Useful Lemmas

A simple fact. Suppose vj
i.i.d∼ N (0, ω

m
) for j ∈ [m]. Then, with probability at least 1 −

exp [−Ω(m)], ∥v∥22 ≤ O(ω).

Proof. Since
∥∥v2

j

∥∥
Ψ1

≤ O
(
ω
m

)
for j ∈ [m], where ∥ · ∥Ψ1 denotes a sub-exponential

norm, Bernstein’s inequality for i.i.d. centered sub-exponential random variables can be

employed : For any t ≥ 0,

P
( ∣∣∣∣∣

m∑
j=1

(
v2
j −

ω

m

)∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− cmin

(
t2∑m

j=1

∥∥v2
j

∥∥2
Ψ1

,
t

maxj
∥∥v2

j

∥∥
Ψ1

))
,

(D.4)

where c > 0 is an absolute constant. Note that we used the fact centering does not hurt the

sub-exponentiality of random variable. Choosing t = O
(
ω
)

concludes the proof.

Lemma D.4.1 (Lemma 7.1. [136]) With probability at least 1−O(nL) · exp[−Ω(m/L)],

3/4 ≤ ∥x(0)
ℓ,i ∥2 ≤ 5/4 for all i ∈ {1, . . . , n} and ℓ ∈ {1, . . . , L}.
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Lemma D.4.2 (Lemma B.1. [140]) If τ ≤ O
(
L−9/2[log(m)]−3

)
, then with probability at

least 1 − O(nL) · exp[−Ω(mτ 2/3L)], 1/2 ≤ ∥x̃ℓ,i∥2 ≤ 3/2 for all W̃ ∈ B
(
W(0), τ

)
,

i ∈ {1, . . . , n} and ℓ ∈ {1, . . . , L}.

Lemma D.4.3 ( [136]) Uniformly over i ∈ {1, . . . , n} and 1 ≤ ℓ1 ≤ ℓ2 ≤ L, the following

results hold:

1. (Lemma.7.3, [136]) Suppose m ≥ Ω(nL log(nL)), then with probability at least,

1−O
(
nL2

)
· exp[−Ω(mτ 2/3L)],

∥∥∥∥∥
ℓ2∏

r=ℓ1

Σ
(0)
r,i W

(0)
r

∥∥∥∥∥
2

≤ O
(√

L
)
.

2. (Lemma.7.4, [136]) Suppose m ≥ Ω(nL log(nL)), then with probability at least,

1−O
(
nL
)
· exp[−Ω(m/L)],

∥∥∥∥∥v⊤
( L∏

r=ℓ1

Σ
(0)
r,i W

(0)
r

)∥∥∥∥∥
2

≤ O
(√

w
)
.

3. (Lemma.8.2, [136]) Suppose τ ≤ O
(
L−9/2[log(m)]−3

)
. For all W̃ ∈ B

(
W(0), τ

)
,

with probability at least, 1−O
(
nL2

)
· exp[−Ω(mτ 2/3L)],

∥∥∥x̃ℓ1,i − x
(0)
ℓ1,i

∥∥∥
2
≤ O

(
τL5/2

√
log(m)

)
.

4. (Corollary.8.4, [136]) Suppose τ ≤ O
(
L−9/2[log(m)]−3

)
, then with probability at

least, 1−O
(
nL2

)
· exp[−Ω(mτ 2/3L)],

∥∥∥Σ̃ℓ1,i −Σ
(0)
ℓ1,i

∥∥∥
0
≤ O

(
mτ 2/3L

)
.

5. (Lemma.8.7, [136]) For all ℓ ∈ [L], let Σ′′
ℓ,i ∈ [−3, 3]m×m be the diagonal matrices

with at most s = O(mτ 2/3L) non-zero entries. For all W̃ ∈ B
(
W(0), τ

)
, where
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τ = O
(

1
L1.5

)
, with probability at least 1−O

(
nL
)
· exp[−Ω(s log(m))],

∥∥∥∥∥vT

( L∏
r=ℓ1+1

(Σ′′
r,i +Σ

(0)
r,i

)
W̃r,i

)(
Σ′′

ℓ1,i
+Σ

(0)
r,i

)
− vT

( L∏
r=ℓ1+1

Σ
(0)
r,i W

(0)
r,i

)
Σ

(0)
ℓ1,i

∥∥∥∥∥
2

≤ O
(
τ 1/3L2

√
ω log(m)

)
.

Lemma D.4.4 (Lemma B.3. [140]) There exists an absolute constant κ such that, with

probability at least 1−O
(
nL2

)
· exp[−Ω(mτ 2/3L)], i ∈ 1, . . . , n and ℓ ∈ 1, . . . , L and for

all W̃ ∈ B
(
W(0), τ

)
, with τ ≤ κL−6[log(m)]−3, it holds uniformly that

∥∥∇Wℓ

[
fW̃(xi)

]∥∥
2
≤ O

(√
ωm
)
.

Lemma D.4.5 Suppose W̃ ∈ B
(
W(0), τ

)
and τ ≤ O

(
L−9/2[log(m)]−3

)
. For all u ∈ Rm

with a cardinality ∥u∥0 ≤ s, for any 1 ≤ ℓ ≤ L and i ∈ {1, . . . , n}, with probability at

least 1−O(nL) · exp
(
− Ω(s log(m))

)
−O(nL) · exp

(
− Ω(mτ 2/3L)

)
,

∣∣∣∣∣v⊤
( L∏

r=ℓ

Σ̃r,iW̃r,i

)
u

∣∣∣∣∣ ≤
√

ωs log(m)

m
· O
(
∥u∥2

)
.

Proof. Recall Lemma D.4.2. For any fixed vector u ∈ Rm, with probability at least 1 −

O(nL) · exp[−Ω(mτ 2/3L)] for τ ≤ O
(
L−9/2[log(m)]−3

)
, for any 1 ≤ ℓ ≤ L and i ∈

{1, . . . , n}, we have the event T ,

∥∥∥∥∥
( L∏

r=ℓ

Σ̃r,iW̃r,i

)
u

∥∥∥∥∥
2

≤ 3 ∥u∥2 . (D.5)

Conditioned on this event happens, it is easy to see the random variable v⊤(∏L
r=a Σ̃r,iW̃r,i

)
u ∼
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SG
(
9ω
m
∥u∥22

)
. Based on this observation, we have the probability,

P
( ∣∣∣∣∣v⊤

( L∏
r=ℓ

Σ̃r,iW̃r,i

)
u

∣∣∣∣∣ ≥
√

ωs log(m)

m
· O
(
∥u∥2

))

≤ P
( ∣∣∣∣∣v⊤

( L∏
r=ℓ

Σ̃r,iW̃r,i

)
u

∣∣∣∣∣ ≥
√

ωs log(m)

m
· O
(
∥u∥2

) ∣∣∣ T )+ P
(
T c
)

≤ O(nL) · exp
(
− Ω(s log(m))

)
+O(nL) · exp

(
− Ω(mτ 2/3L)

)
,

where in the last inequality, union bounds over the indices ℓ and i, and over the vector

u ∈ Rm with ∥u∥0 ≤ s are taken.

Lemma D.4.6 Suppose τ ≤ 1
CL9/2[log(m)]3

for some constant C > 0. Then, for all i ∈ [n]

and ℓ ∈ [L], with probability at least 1−O
(
nL
)
· exp[−Ω(mτ 2/3L)], we have

∥∥∇Wℓ

[
fW(k)(xi)

]
−∇Wℓ

[
fW(0)(xi)

]∥∥
2
≤ O

(
τ 1/3L2

√
ωm log(m)

)
.

Proof. By using the results from Lemma D.4.3, we can control the term :

∥∇Wℓ

[
fW(k)(xi)

]
−∇Wℓ

[
fW(0)(xi)

]
∥2

=
√
m ·

∥∥∥∥∥x(k)
ℓ−1v

T
( L∏

r=ℓ+1

Σ(k)
r W(k)

r

)
Σ

(k)
ℓ − x

(0)
ℓ−1v

T
( L∏

r=ℓ+1

Σ(0)
r W(0)

r

)
Σ

(0)
ℓ

∥∥∥∥∥
2

≤
√
m · ∥x(k)

ℓ−1 − x
(0)
ℓ−1 ∥2︸ ︷︷ ︸

≤O(τL5/2
√

log(m))

·

∥∥∥∥∥vT
( L∏

r=ℓ+1

Σ(k)
r W(k)

r

)
Σ

(k)
ℓ

∥∥∥∥∥
2︸ ︷︷ ︸

≤O(
√
ω)

+
√
m ·
∥∥∥x(0)

ℓ−1

∥∥∥
2︸ ︷︷ ︸

≤O(1)

·

∥∥∥∥∥vT
( L∏

r=ℓ+1

Σ(k)
r W(k)

r

)
Σ

(k)
ℓ − vT

( L∏
r=ℓ+1

Σ(0)
r W(0)

r

)
Σ

(0)
ℓ

∥∥∥∥∥
2︸ ︷︷ ︸

≤O(τ1/3L2
√

ω log(m))

≤ O
(
τ 1/3L2

√
ωm log(m)

)
,

where, in the last inequality, we used the condition on τ ≤ 1
CL9/2[log(m)]3

< 1.
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Remark D.4.7 Note that the results in Lemmas 6.3 (second and fifth items), 6.4, 6.5, 6.6

are in the setting of vj ∼ N (0, ω
m
) for j ∈ [m].

For the notational convenience, in following Lemmas we denote fW(k)(xi) as ui(k) and

let u(k) := [u1(k), . . . ,un(k)]
⊤ for k ≥ 0.

Lemma D.4.8 For some δ ∈ [0, 1], if m ≥ Ω
(
L log(nL/δ)

)
, then with probability at least

1− δ, ∥u(k)∥2 ≤ O
(√

nω
δ

)
for any k ≥ 0.

Proof. Recall the Lemma D.4.2 stating that
∥∥∥x(k)

L,i

∥∥∥
2
= O(1) for any input data xi for

i ∈ [n]. Also recall that vj ∼ N (0, ω
m
) for j ∈ [m], xL,i ∈ Rm and ui(k) =

√
mv⊤xL,i ∼

N
(
0,O(ω)

)
. Then, we have a following via simple Markov inequality: for any t ≥ 0,

P
(
∥u(k)∥2 ≥ t

)
≤

E
[
∥u(k)∥2

]
t

≤

√
E
[
∥u(k)∥22

]
t

≤
O
(√

nω
)

t
.

Lemma D.4.9 For some δ ∈ [0, 1], if m ≥ Ω
(
L log(nL/δ)

)
, then with probability at least

1− δ, we have

∥u(0)− y∥2 ≤ O
(√

n

δ

)
.

Proof. By Markov’s inequality, for any t ≥ 0,

P
(
∥u(0)− y∥2 ≥ t

)
≤

Eε,W(0),v

[
∥u(0)− y∥22

]
t2

. (D.6)

Note that the expectation in the nominator of (D.6) is taken over the random noise ε and

initialized parameter W(0), v. We can expand the nominator as follows:

Eε,W(0),v

[
∥u(0)− y∥22

]
= EW(0),v∥u(0)∥22 + Eε∥y∥22 − 2Eε,W(0),v

[
y⊤u(0)

]
. (D.7)
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For the convenience of notation, let y∗ := [f ⋆
ρ (x1), . . . , f

⋆
ρ (xn)]

⊤ and ε := [ε1, . . . , εn]
⊤.

Recall that we have y = y∗ + ε, and ∥y∗∥22 = O(n). Also note that by Lemma D.4.1, with

probability at least 1 − O(nL) · exp[−Ω(m/L)], for any i = 1, . . . , n, ∥x(0)
L,i∥22 = O(1).

Then, we have a random variable ui(0) =
√
mv⊤xL,i ∼ N (0,O(ω)). Now, we are ready to

derive the orders of three terms on the RHS of (D.7). EW(0),v∥u(0)∥22 = O(n),Eε∥y∥22 =

Eε

[
∥y∗∥22 + ∥ε∥22 − 2y⊤ε

]
= O(n),Eε,W(0),v

[
y⊤u(0)

]
= Eε,W(0),v

[(
y∗ + ε

)⊤
u(0)

]
= 0.

Combining the above three equalities, we conclude the proof.

Lemma D.4.10 Suppose τ = O
(

n
√
ω√

mδλ∞

)
. For some δ ∈ [0, 1] such that δ ≥ O(nL) ·

exp[−Ω(mτ 2/3L)], then with probability at least 1− δ, we have

∥H(k)−H(0)∥2 ≤ O

(
ω7/6n4/3L3 6

√
log3(m)

mδλ2
∞

)
.

Proof. By the definition of gram matrix Hi,j(k) for any k ≥ 0, we have

|Hi,j(k)−Hi,j(0)|

=

∣∣∣∣∣ 1m
L∑

ℓ=1

〈
∇Wℓ

[
fW(k)(xi)

]
,∇Wℓ

[
fW(k)(xj)

]〉
Tr
−
〈
∇Wℓ

[
fW(0)(xi)

]
,∇Wℓ

[
fW(0)(xj)

]〉
Tr

∣∣∣∣∣
≤ 1

m

L∑
ℓ=1

{∣∣∣∣〈∇Wℓ

[
fW(k)(xi)

]
,∇Wℓ

[
fW(k)(xj)

]
−∇Wℓ

[
fW(0)(xj)

]〉
Tr

∣∣∣∣
+

∣∣∣∣〈∇Wℓ

[
fW(0)(xj)

]
,∇Wℓ

[
fW(k)(xi)

]
−∇Wℓ

[
fW(0)(xi)

]〉
Tr

∣∣∣∣
}

≤ 1

m

L∑
ℓ=1

{∥∥∇Wℓ

[
fW(k)(xi)

]∥∥
2︸ ︷︷ ︸

≤O
(√

ωm
) ·

∥∥∇Wℓ

[
fW(k)(xj)

]
−∇Wℓ

[
fW(0)(xj)

]∥∥
2︸ ︷︷ ︸

≤O
(
τ1/3L2

√
ωm log(m)

)
+
∥∥∇Wℓ

[
fW(0)(xj)

]∥∥
2︸ ︷︷ ︸

≤O
(√

ωm
) ·

∥∥∇Wℓ

[
fW(k)(xi)

]
−∇Wℓ

[
fW(0)(xi)

]∥∥
2︸ ︷︷ ︸

≤O
(
τ1/3L2

√
ωm log(m)

)
}

≤ O

(
ω7/6n1/3L3 6

√
log3(m)

mδλ2
∞

)
.
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In the second inequality, Lemmas D.4.4 and D.4.6 are used, and in the last inequality,

τ = O
(

n
√
ω√

mδλ∞

)
is plugged in. With this, using the fact that Frobenius norm of a matrix is

bigger than the operator norm, we bound the term ∥H(k)−H(0)∥2 as follows:

∥H(k)−H(0)∥2 ≤ ∥H(k)−H(0)∥F ≤ O

(
ω7/6n4/3L3 6

√
log3(m)

mδλ2
∞

)
.

Lemma D.4.11 For some δ ∈ [0, 1], with probability at least 1− δ,

∥H∞
L −H(0)∥2 ≤ O

(
ωnL5/2 4

√
log(nL/δ)

m

)

Proof. For some δ
′ ∈ [0, 1], set ε = L3/2

4
√

log(L/δ
′
)

m
from Theorem 3.1. of [130]. For any

fixed i, j ∈ [n], we have

P
[∣∣H∞

i,j −Hi,j(0)
∣∣ ≤ O

(
ωL5/2

4
√

log(L/δ
′
)

m

)]
≥ 1− δ

′
.

After applying the union bound over all i, j ∈ [n], setting δ = δ
′

n2 , and using the fact that

Frobenius norm of a matrix is bigger than the operator norm, we conclude the proof.

For two positive semi-definite matrices A and B, if we write A ⪰ B, then it means

A−B is positive semi-definite matrix. Similarly, if we write A ≻ B, then it means A−B

is positive definite matrix. With these notations, we introduce a following Lemma.

Lemma D.4.12 (Lemma D.6. [142]) For two positive semi-definite matrices A and B,

1. Suppose A is non-singular, then A ⪰ B ⇐⇒ λmax(BA−1) ≤ 1 and A ≻ B ⇐⇒

λmax(BA−1) < 1, where λmax(·) denotes the maximum eigenvalue of the input matrix.

2. Suppose A, B and Q are positive definite matrices, A and B are exchangeable, then

A ⪰ B =⇒ AQA ⪰ BQB.
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D.5 Proof of Theorem 4.3.5

Denote ui(k) = fW(k)(xi) and let u(k) =
[
u1(k), u2(k), . . . , un(k)

]⊤. In order to achieve

linear convergence rate of the training error, ∥u(k)− y∥22, we decompose the term as fol-

lows:

∥u(k + 1)− y∥22 =
∥∥u(k)− y +

(
u(k + 1)− u(k)

)∥∥2
2

= ∥u(k)− y∥22 − 2
(
u(k)− y

)⊤(
u(k + 1)− u(k)

)
+ ∥u(k + 1)− u(k)∥22 .

Equipped with this decomposition, the proof consists of the following steps:

1. Similarly with [152], a term
(
u(k+1)−u(k)

)
is decomposed into two terms, where

we denote them as I(k)1 and I
(k)
2 , respectively. We note that the first term I

(k)
1 is related

with a gram matrix H(k) and a second term I
(k)
2 can be controlled small enough in

ℓ2 sense with proper choices of the step size and the width of network.

2. A term ∥u(k + 1)− u(k)∥22 needs to be controlled small enough to ensure 2
(
u(k)−

y
)⊤(

u(k + 1)− u(k)
)
> ∥u(k + 1)− u(k)∥22 so that the loss decreases.

3. It is shown that the distance between the gram matrix H(k) and the NTK matrix H∞
L

is close enough in terms of operator norm.

4. Lastly, we inductively show that the weights generated from gradient descent stay

within a perturbation region B
(
W(0), τ

)
, irrespective with the number of iterations

of algorithm,

We start the proof by analyzing the term u(k + 1)− u(k).

Step 1. Control on u(k+ 1) − u(k). Recall
(
Σ

(k)
ℓ,i

)
jj

= 1
(
⟨w(k)

ℓ,j ,x
(k)
ℓ−1,i⟩ ≥ 0

)
and

206



we introduce a diagonal matrix Σ̃
(k)
ℓ,i , whose jth entry is defined as follows:

(
Σ̃

(k)
ℓ,i

)
jj
=
(
Σ

(k+1)
ℓ,i −Σ

(k)
ℓ,i

)
jj
·

⟨w(k+1)
ℓ,j ,x

(k+1)
ℓ−1,i ⟩

⟨w(k+1)
ℓ,j ,x

(k+1)
ℓ−1,i ⟩ − ⟨w(k)

ℓ,j ,x
(k)
ℓ−1,i⟩

.

With this notation, the difference x(k+1)
L,i −x

(k)
L,i can be rewritten via the recursive applications

of Σ̃(k)
ℓ,i :

x
(k+1)
L,i − x

(k)
L,i =

(
Σ

(k)
L,i + Σ̃

(k)
L,i

)(
W

(k+1)
L x

(k+1)
L−1,i −W

(k)
L x

(k)
L−1,i

)
=
(
Σ

(k)
L,i + Σ̃

(k)
L,i

)
W

(k+1)
L

(
x
(k+1)
L−1,i − x

(k)
L−1,i

)
+
(
Σ

(k)
L,i + Σ̃

(k)
L,i

)(
W

(k+1)
L −W

(k)
L

)
x
(k)
L−1,i

=
L∑

ℓ=1

( L∏
r=ℓ+1

(
Σ

(k)
r,i + Σ̃

(k)
r,i

)
W(k+1)

r

)(
Σ

(k)
ℓ,i + Σ̃

(k)
ℓ,i

)(
W

(k+1)
ℓ −W

(k)
ℓ

)
x
(k)
ℓ−1,i

(D.8)

Then, we introduce following notations :

D
(k)
ℓ,i =

( L∏
r=ℓ+1

Σ
(k)
r,i W

(k)
r

)
Σ

(k)
ℓ,i , D̃

(k)
ℓ,i =

( L∏
r=ℓ+1

(
Σ

(k)
r,i + Σ̃

(k)
r,i

)
W(k+1)

r

)(
Σ

(k)
ℓ,i + Σ̃

(k)
ℓ,i

)
.

Now, we can write ui(k + 1)− ui(k) by noting that ui(k) =
√
m · vTx

(k)
L,i:

ui(k + 1)− ui(k) =
√
m · vT(x(k+1)

L,i − x
(k)
L,i

)
=

√
m · vT

L∑
ℓ=1

D̃
(k)
ℓ,i

(
W

(k+1)
ℓ −W

(k)
ℓ

)
x
(k)
ℓ−1,i (D.9)

= −η
√
m · vT

L∑
ℓ=1

D
(k)
ℓ,i ∇Wℓ

[
LS

(
W(k)

)]
x
(k)
ℓ−1,i︸ ︷︷ ︸

I
(k)
1,i

−η
√
m · vT

L∑
ℓ=1

(
D̃

(k)
ℓ,i −D

(k)
ℓ,i

)
∇Wℓ

[
LS

(
W(k)

)]
x
(k)
ℓ−1,i︸ ︷︷ ︸

I
(k)
2,i
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Here, I(k)1,i can be rewritten as follows:

I
(k)
1,i = −η

√
m · vT

L∑
ℓ=1

D
(k)
ℓ,i

n∑
j=1

(
uj(k)− yj

)
∇Wℓ

[
fW(k)(xj)

]
x
(k)
ℓ−1,i

= −η ·
n∑

j=1

(
uj(k)− yj

)
·
(√

m

L∑
ℓ=1

vTD
(k)
ℓ,i ∇Wℓ

[
fW(k)(xj)

]
x
(k)
ℓ−1,i

)

= −mη ·
n∑

j=1

(
uj(k)− yj

)
· 1

m

L∑
ℓ=1

〈
∇Wℓ

[
fW(k)(xi)

]
,∇Wℓ

[
fW(k)(xj)

]〉
Tr

= −mη ·
n∑

j=1

(
uj(k)− yj

)
·Hi,j(k).

For I(k)2,i , we need a more careful control. First, we pay our attention on bounding the term

∥v⊤(D̃
(k)
ℓ,i −D

(k)
ℓ,i )∥2 as follows: By triangle inequality, we have

∥∥∥∥v⊤
(
D̃

(k)
ℓ,i −D

(k)
ℓ,i

)∥∥∥∥
2

≤
∥∥∥∥v⊤

(
D

(k)
ℓ,i −D

(0)
ℓ,i

)∥∥∥∥
2

+

∥∥∥∥v⊤
(
D̃

(k)
ℓ,i −D

(0)
ℓ,i

)∥∥∥∥
2

. (D.10)

We control the first term of the right-hand side (R.H.S) in (D.10). By the fourth item of

the Lemma D.4.3, we know ∥Σ(k)
r,i − Σ

(0)
r,i ∥0 ≤ O

(
mτ 2/3L

)
and |

(
Σ

(k)
r,i − Σ

(0)
r,i

)
j,j
| ≤

1 for j ∈ [m]. Then, we can plug Σ′′
r,i = Σ

(k)
r,i − Σ

(0)
r,i in the inequality of the fifth

item of Lemma D.4.3. So, the first term of the R.H.S in (D.10) can be bounded by

O
(
τ 1/3L2

√
ω log(m)

)
.

The second term of the R.H.S in (D.10) can be similarly controlled as the first term. Ob-

serve that |
(
Σ

(k)
r,i + Σ̃

(k)
r,i

)
jj
| ≤ 1, then we have |

(
Σ

(k)
r,i + Σ̃

(k)
r,i − Σ

(0)
r,i

)
j,j
| ≤ 2 for all

j ∈ [m]. Note that by the definition of Σ̃(k)
r,i , we have ∥Σ̃(k)

r,i ∥0 = ∥Σ(k+1)
r,i − Σ

(k)
r,i ∥0 ≤

∥Σ(k+1)
r,i − Σ

(0)
r,i ∥0 + ∥Σ(k)

r,i − Σ
(0)
r,i ∥0 ≤ O

(
mτ 2/3L

)
. Thus, by the triangle inequality,

we have ∥Σ(k)
r,i + Σ̃

(k)
r,i − Σ

(0)
r,i ∥0 ≤ O

(
mτ 2/3L

)
. These observations enable us to plug

Σ′′
r,i = Σ

(k)
r,i + Σ̃

(k)
r,i −Σ

(0)
r,i in the inequality of the fifth item of Lemma D.4.3, and give the

bound on the second term as O
(
τ 1/3L2

√
ω log(m)

)
.
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We have ∥v⊤(D̃(k)
ℓ,i − D

(k)
ℓ,i

)
∥2 ≤ O

(
τ 1/3L2

√
ω log(m)

)
. Now, we control the ℓ2-norm

of the I
(k)
2 as follows:

∥∥∥I(k)2

∥∥∥
2
≤

n∑
i=1

∣∣∣I(k)2,i

∣∣∣
≤ η

√
m ·

n∑
i=1

[
L∑

ℓ=1

∥∥∥∥v⊤
(
D̃

(k)
ℓ,i −D

(k)
ℓ,i

)∥∥∥∥
2︸ ︷︷ ︸

≤O(L2τ1/3
√

ω log(m))

·
∥∥∇Wℓ

[
LS

(
W(k)

)]∥∥
2
·

∥∥∥x(k)
ℓ−1,i

∥∥∥
2︸ ︷︷ ︸

≤O(1) : Lemma D.4.2

]

≤ O
(
ηnL2τ 1/3

√
ωm log(m)

) L∑
ℓ=1

∥∥∇Wℓ

[
LS

(
W(k)

)]∥∥
2

≤ O
(
ηnL5/2τ 1/3

√
ωm log(m)

)√√√√ L∑
ℓ=1

∥∥∇Wℓ

[
LS

(
W(k)

)]∥∥2
F

≤ O
(
ηnL5/2τ 1/3

√
ωm log(m)

)√√√√ n∑
j=1

(
uj(k)− yj

)2 L∑
ℓ=1

∥∥∇Wℓ

[
fW(k)(xj)

]∥∥2
F

≤ O
(
ηnL3τ 1/3ωm

√
log(m)

)
∥u(k)− y∥2 . (D.11)

Step 2. Control on ∥u(k+ 1)− u(k)∥22. Recall that by (D.9), x(k+1)
L,i − x

(k)
L,i can be written

as follows:

x
(k+1)
L,i − x

(k)
L,i =

L∑
ℓ=1

D̃
(k)
ℓ,i

(
W

(k+1)
ℓ −W

(k)
ℓ

)
x
(k)
ℓ−1,i = −η ·

L∑
ℓ=1

D̃
(k)
ℓ,i ∇Wℓ

[
LS

(
W(k)

)]
x
(k)
ℓ−1,i.

It is worth noting that,

∥∥∇Wℓ

[
LS

(
W(k)

)]∥∥2
2
=

∥∥∥∥∥
n∑

j=1

(
uj(k)− yj

)
∇Wℓ

[
fW(k)(xj)

]∥∥∥∥∥
2

2

≤
n∑

j=1

(
uj(k)− yj

)2 n∑
j=1

∥∥∇Wℓ

[
fW(k)(xj)

]∥∥2
2

≤ O(nmω) ∥u(k)− y∥22 . (D.12)
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Also, observe that |
(
Σ

(k)
r,i + Σ̃

(k)
r,i

)
jj
| ≤ 1 for all j ∈ [m], so by Lemma A.3 of [138], we

know ∥D̃(k)
ℓ,i ∥2 ≤ O

(√
L
)
. Combining all the facts, we can conclude:

∥u(k + 1)− u(k)∥22 = m ·
n∑

i=1

(
vTx

(k+1)
L,i − vTx

(k)
L,i

)2

≤ m · ∥v∥22
n∑

i=1

∥∥∥x(k+1)
L,i − x

(k)
L,i

∥∥∥2
2

≤ η2m · ∥v∥22
n∑

i=1

[
L∑

ℓ=1

∥∥∥D̃(k)
ℓ,i

∥∥∥2
2
·
∥∥∇Wℓ

[
LS

(
W(k)

)]∥∥2
2
·
∥∥∥x(k)

ℓ−1,i

∥∥∥2
2

]

≤ O
(
η2n2L2m2ω2

)
∥u(k)− y∥22

≤ O
(
η2n2L2m2

)
∥u(k)− y∥22 , (D.13)

where in the third inequality, we additionally used the fact ∥v∥22 = O(ω) with probability

at least 1 − exp(−Ω(m)), and the inequality (D.12). In the last inequality, we used the

assumption ω ≤ 1.

Step 3. λmin
(
H(k)

)
≥ λ∞

2
with sufficiently large m. Denote ρ(A) as a sprectral radius

of a matrix A. Then, we have

∥H(k)−H∞
L ∥2 ≥ ρ

(
H(k)−H∞

L

)
≥ −λmin

(
H(k)−H∞

L

)
≥ λmin

(
H∞

L

)
− λmin

(
H(k)

)
≥ λ∞ − λmin

(
H(k)

)
, (D.14)

where, in the second inequality, we used a triangle inequality, λmin
(
H(k)−H∞

L

)
+λmin

(
H∞

L

)
≤

λmin
(
H(k)

)
. By Lemmas D.4.10 and D.4.11, let m ≥ Ω

(
ω7n8L18 log

3(m)
λ8
∞δ

)
and Õ

(
λ
4/3
∞ δ1/3

n4/3L4

)
≤
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ω ≤ 1, we have

∥H(k)−H∞
L ∥2 ≤ ∥H(k)−H(0)∥2 + ∥H(0)−H∞

L ∥2

≤ O

(
ω7/6n4/3L3 6

√
log3(m)

mδλ2
∞

)
+O

(
ωn2L5/2

4

√
log(nL/δ)

m

)

≤ O

(
ω7/6n4/3L3 6

√
log3(m)

mδλ2
∞

)

≤ λ∞

2
. (D.15)

Thus, combining (D.14) and (D.15) yields that λmin
(
H(k)

)
≥ λ∞

2
.

Step 4. Concluding the proof. Recall that I(k)1 = −mη · H(k)(u(k) − y). Then observe

that

(u(k)− y)⊤I
(k)
1 = −ηm · (u(k)− y)⊤H(k)(u(k)− y)

≤ −ηm · λmin
(
H(k)

)
∥u(k)− y∥22

≤ −ηm · λ∞

2
∥u(k)− y∥22 . (D.16)

We set the step size η, radius of perturbation region τ and network width m as follows,

η = Ω

(
λ∞

n2L2m

)
,

τ = O
(

n
√
ω√

mδλ∞

)
,

m ≥ Ω

(
ω7n8L18 log

3(m)

λ8
∞δ

)
.

With the above settings, we can control the ∥u(k + 1) − y∥22 by combining (E.16), (E.10)
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and (E.12) as follows,

∥u(k + 1)− y∥22

=
∥∥u(k)− y +

(
u(k + 1)− u(k)

)∥∥2
2

= ∥u(k)− y∥22 − 2ηm ·
(
u(k)− y

)⊤
H(k)

(
u(k)− y

)
−
(
u(k)− y

)⊤
I
(k)
2 + ∥u(k + 1)− u(k)∥22

≤
(
1− ηmλ∞ +O

(
ηnL3τ 1/3mω

√
log(m)

)
+O

(
η2n2L2m2

))
∥u(k)− y∥22

≤
(
1− ηmλ∞

2

)
∥u(k)− y∥22 .

So far, we have shown from Step 1 to Step 4 that given the radius of perturbation region τ

has the order O
(

n
√
ω√

mδλ∞

)
, then we can show the training error drops linearly to 0 with the

discount factor (1− ηmλ∞
2

) along with the proper choices of η and m. It remains us to prove

the iterates W(k)
ℓ for all ℓ ∈ [L] generated by GD algorithm indeed stay in the perturbation

region B
(
W(0), τ

)
over k ≥ 0 with τ = O

(
n
√
ω√

mδλ∞

)
.

Step 5. The order of the radius of perturbation region. We employ the induction pro-

cess for the proof. The induction hypothesis is : ∀s ∈ [k + 1],

∥∥∥W(s)
ℓ −W

(0)
ℓ

∥∥∥
2
≤ ηO

(
n

√
mω

δ

) s−1∑
t=0

(
1− ηmλ∞

2

) t
2

≤ O
(

n
√
ω√

mδλ∞

)
. (D.17)

First, it is easy to see it holds for s = 0. Now, suppose it holds for s = 0, . . . , k, we

consider s = k + 1.

∥∥∥W(k+1)
ℓ −W

(k)
ℓ

∥∥∥
2
≤ η · O

(√
nmω

)√
2LS

(
W(k)

)
≤ η · O

(√
nmω

)(
1− ηmλ∞

2

) k
2

O
(√

n

δ

)
, (D.18)

where in the third inequality, we used Lemmas D.4.4. Note that since it is assumed that
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W
(k)
ℓ ∈ B

(
W(0), τ

)
, the Lemma is applicable with m ≥ Ω

(
ω7n8L18 log

3(m)
λ8
∞δ

)
. Simi-

larly, since it is assumed that the induction hypothesis holds for s = 0, . . . , k, we can see

∥u(k)− y∥22 ≤
(
1− ηmλ∞

2

)k∥u(0)− y∥22. This inequality is plugged in the last inequality

with Lemma D.4.9.

By combining the inequalities (D.17) for s ∈ [k] and (D.18), and triangle inequality, we

conclude the proof:

∥∥∥W(k+1)
ℓ −W

(0)
ℓ

∥∥∥
2
≤ η · O

(√
nmω

) k∑
t=0

(
1− ηmλ∞

2

) t
2

O
(√

n

δ

)
≤ O

(
n
√
ω√

mδλ∞

)
.

Proposition D.5.1 Let δ ∈ [0, 1], set the width of the network as m ≥ Ω
(
ω7n8L18 log

3(m)
λ8
∞δ2

)
,

and the step-size of gradient descent as η = O
(

λ∞
n2L2m

)
. Then, with probability at least

1− δ over the randomness of initialized parameters W(0), we have for k = 0, 1, 2, . . . ,

u(k)− y =
(
I− ηmH∞

L

)k(
u(0)− y

)
+ ξ(k),

where

∥ξ(k)∥2 = k

(
1− ηmλ∞

2

)k−1

O

(
ηm · ω7/6n4/3L3 6

√
log3(m)

mλ2
∞δ

)
∥y − u(0)∥2 .

Proof. Define ui(k) := fW(k)(xi), then we have

u(k + 1)− u(k) = −ηm ·H(k)
(
u(k)− y

)
+ I

(k)
1

= −ηm ·H∞
L

(
u(k)− y

)
− ηm ·

(
H(k)−H∞

L

)(
u(k)− y

)
+ I

(k)
1

= −ηm ·H∞
L

(
u(k)− y

)
+ e(k).
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By recursively applying the above equality, we can easily derive a following for any k ≥ 0,

u(k)− y =
(
I− ηmH∞

L

)k(
u(0)− y

)
+

k−1∑
t=0

(
I− ηmH∞

L

)t
e(k − 1− t)︸ ︷︷ ︸

=ξ(k)

. (D.19)

Now, we want to show ξ(k) can be controlled in arbitrarily small number. First, e(k) needs

to be bounded in an ℓ2 norm:

∥e(k)∥2 ≤ ηm ∥H∞
L −H(k)∥2 ∥u(k)− y∥2 +

∥∥∥I(k)2

∥∥∥
2

≤ ηm · O

(
ω7/6n4/3L3 6

√
log3(m)

mλ2
∞δ

)
∥u(k)− y∥2 ,

where, in the second inequality, τ = O
(

n
√
ω√

mδλ∞

)
is plugged in (E.16). Equipped with the

bound on ∥e(k)∥2, we can easily bound the ∥ξ(k)∥2 as follows:

∥∥∥∥∥
k−1∑
t=0

(
I− ηmH∞

L

)t
e(k − 1− t)

∥∥∥∥∥
2

≤
k−1∑
t=0

∥I− ηmH∞
L ∥t2 ∥e(k − 1− t)∥2

≤
k−1∑
t=0

(
1− ηmλ∞

)t

O

(
ηm · ω7/6n4/3L3 6

√
log3(m)

mλ2
∞δ

)
∥u(k − 1− t)− y∥2

≤
k−1∑
t=0

(
1− ηmλ∞

)t

O

(
ηm · ω7/6n4/3L3 6

√
log3(m)

mλ2
∞δ

)(
1− ηmλ∞

2

)k−1−t

∥u(0)− y∥2

= k

(
1− ηmλ∞

2

)k−1

O

(
ηm · ω7/6n4/3L3 6

√
log3(m)

mλ2
∞δ2

)
∥u(0)− y∥2 . (D.20)

Note that in the third inequality, we used the result from Theorem 1.
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D.6 Proof of Theorem 4.3.8

We begin the proof by decomposing the error f̂W(k)(x)−f ∗(x) for any fixed x ∈ Unif(Sd−1)

into two terms as follows:

f̂W(k)(x)− f ∗(x) =
(
f̂W(k)(x)− g∗(x)

)︸ ︷︷ ︸
∆1

+
(
g∗(x)− f ∗(x)

)︸ ︷︷ ︸
∆2

. (D.21)

Here, we denote the solution of kernel regression with kernel H∞
L as g∗(x), which is a

minimum RKHS norm interpolant of the noise-free data set {xi, f
⋆
ρ (xi)}ni=1. To avoid the

confusion of the notation, we write Ker(x,X) =
(
H∞

L (x,x1), . . . ,H
∞
L (x,xn)

)n
i=1

∈ Rn

and let y∗ = [f ⋆
ρ (x1), . . . , f

⋆
ρ (xn)]

⊤. Then, we have a following closed form solution g∗(x)

as, g∗(x) := Ker(x,X)
(
H∞

L

)−1
y∗.

With the decomposition (D.21), the proof sketch of Theorem 3.3.3 is as follows.

1. Note that for any ℓ ∈ [L], we have f̂W(k)(x) = ⟨vec
(
∇Wℓ

[
fW(k)(x)

])
, vec

(
W

(k)
ℓ

)
⟩.

We can write the term vec
(
W

(k)
ℓ

)
with respect to vec

(
W

(0)
ℓ

)
, H∞

L and the residual

term via recursive applications of GD update rule and the result from proposition 2.1.

Readers can refer (D.22). Using the equality (D.22), we can further decompose ∆1

into three terms. That is, ∆1 = ∆11 + ∆12 + ∆13. Then, using the boundedness of

ℓ2-norm of network gradient and the fact that the size of ∥ξ(k)∥2 can be controlled

with wide enough network, we can control the size of ∥∆12∥2 and ∥∆13∥2 aribtarily

small.

2. In the term ∆2, the g⋆ is an interpolant based on noiseless data. For large enough

data points, g⋆ converges fastly to f ⋆ at the rate OP(
1√
n
).

3. Lastly, the ∆11 is the only term that is involved with random error ε, and we show

that ∥∆11∥2 is bounded away from 0 for small and large GD iteration index k.

Step 1. Control on ∆1. For n data points
(
x1, . . . ,xn

)
and for the kth updated parameter
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W(k), denote:

∇Wℓ

[
fW(k)(X)

]
=

[
vec
(
∇Wℓ

[
fW(k)(x1)

])
, · · · , vec

(
∇Wℓ

[
fW(k)(xn)

])]
.

Note that when ℓ = 1, ∇Wℓ

[
fW(k)(X)

]
∈ Rmd×n and when ℓ = 2, . . . , L, ∇Wℓ

[
fW(k)(X)

]
∈

Rm2×n. With this notation, we can rewrite the Gradient Descent update rule as vec
(
W

(k+1)
ℓ

)
=

vec
(
W

(k)
ℓ

)
− η∇Wℓ

[
fW(k)(X)

](
u(k)−y

)
, k ≥ 0. Applying Proposition 3.3.3, we get :

vec
(
W

(k)
ℓ

)
− vec

(
W

(0)
ℓ

)
= −η ·

k−1∑
j=0

∇Wℓ

[
fW(j)(X)

](
u(j)− y

)
= η ·

k−1∑
j=0

∇Wℓ

[
fW(j)(X)

](
I− ηmH∞

L

)j(
y − u(0)

)
− η ·

k−1∑
j=0

∇Wℓ

[
fW(k)(X)

]
ξ(j)

= η ·
k−1∑
j=0

∇Wℓ

[
fW(0)(X)

](
I− ηmH∞

L

)j(
y − u(0)

)
− η ·

k−1∑
j=0

∇Wℓ

[
fW(k)(X)

]
ξ(j)

+ η ·
k−1∑
j=0

([
∇Wℓ

[
fW(j)(X)

]
−∇Wℓ

[
fW(0)(X)

]](
I− ηmH∞

L

)j(
y − u(0)

))

= η ·
k−1∑
j=0

∇Wℓ

[
fW(0)(X)

](
I− ηmH∞

L

)j(
y − u(0)

)
+ ξ

′
(k). (D.22)

First, we control ℓ2-norm of the first term of ξ′
(k) as follows: Note that ∥∇Wℓ

[
fW(j)(X)

]
∥F ≤

O
(√

nmω
)

by Lemma D.4.4 for 0 ≤ j ≤ k − 1. Then, we have

∥∥∥∥∥η ·
k−1∑
j=0

∇Wℓ

[
fW(j)(X)

]
ξ(j)

∥∥∥∥∥
2

≤
k−1∑
j=0

O
(
η
√
nmω

)
O

(
j

(
1− ηmλ∞

2

)j−1
)
O

(
ηm · ω7/6n4/3L3 6

√
log3(m)

mλ2
∞δ

)
∥y − u(0)∥2

≤ O
(

n11/6L3ω5/3

m2/3λ
7/3
∞ δ1/6

√
log(m)

)
∥y − u(0)∥2 . (D.23)

In the second inequality,
∑∞

j=1 j
(
1 − ηmλ∞

2

)j
= O

(
1

η2m2λ2
∞

)
is used. Then, we control
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ℓ2-norm of the second term of ξ′
(k) as follows:

∥∥∥∥∥η ·
k−1∑
j=0

[
∇Wℓ

[
fW(j)(X)

]
−∇Wℓ

[
fW(0)(X)

]](
I− ηmH∞

L

)j(
y − u(0)

)∥∥∥∥∥
2

≤
k−1∑
j=0

η ∥I− ηmH∞
L ∥j2 ∥y − u(0)∥2

√√√√ n∑
i=1

∥∥∇Wℓ

[
fW(j)(xi)

]
−∇Wℓ

[
fW(0)(xi)

]∥∥2
2

≤
k−1∑
j=0

η
(
1− ηmλ∞

)jO(n1/3m1/3L2ω2/3

λ
1/3
∞ δ1/6

√
log(m)

)
O
(√

n
)
∥y − u(0)∥2

≤ O
(

n5/6L2ω2/3

m2/3λ
4/3
∞ δ1/6

√
log(m)

)
∥y − u(0)∥2 , (D.24)

where in the second inequality, we used Lemmas D.4.6 with τ = O
(

n
√
ω√

mδλ∞

)
.

Now, we are ready to control ∆1 term. By using the equality (D.22), we can decompose

the term ∆1 as follows: Let us denote Gk =
∑k−1

j=0 ηm
(
I − ηmH∞

L

)j . Note that for any

ℓ ∈ [L], f̂W(k)(x) = ⟨vec
(
∇Wℓ

[
fW(k)(x)

])
, vec

(
W

(k)
ℓ

)
⟩ and recall that y = y∗ + ε. Then,

for any fixed ℓ
′ ∈ [L], we have:

∆1 =

[
Ker(x,X)

[
Gk −

(
H∞

L

)−1]
y∗ + Ker(x,X)Gkε

]
︸ ︷︷ ︸

=∆11

+

[
1

m

L∑
ℓ=1

vec
(
∇Wℓ

[
fW(k)(x)

])⊤∇Wℓ

[
fW(0)(X)

]
− Ker(x,X)

]
Gky

− 1

m

∑
ℓ:ℓ̸=ℓ′

vec
(
∇Wℓ

[
fW(k)(x)

])⊤∇Wℓ

[
fW(0)(X)

]
Gky︸ ︷︷ ︸

=∆12

+

[〈
vec
(
∇W

ℓ
′

[
fW(k)(x)

])
, vec

(
W

(0)

ℓ
′

)〉
+ vec

(
∇W

ℓ
′

[
fW(k)(x)

])⊤
ξ
′
(k)

− 1

m
vec
(
∇W

ℓ
′

[
fW(k)(x)

])⊤∇W
ℓ
′

[
fW(0)(X)

]
Gku(0)

]
.︸ ︷︷ ︸

=∆13

(D.25)

Our goal in this step is to control ∥∆12∥2 and ∥∆13∥2. Then, in the third step, we will
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show ∥∆11∥2 is the term, which governs the behavior of the prediction risk with respect to

algorithm iteration k. First, we bound the ℓ2 norm of the first term in ∆12 as:

∥∥∥∥∥
[
1

m

L∑
ℓ=1

vec
(
∇Wℓ

[
fW(k)(x)

])⊤∇Wℓ

[
fW(0)(X)

]
− Ker(x,X)

]
Gky

∥∥∥∥∥
2

≤ 1

mL

L∑
ℓ=1

∥∥vec
(
∇Wℓ

[
fW(k)(x)

])
− vec

(
∇Wℓ

[
fW(0)(x)

])∥∥
2︸ ︷︷ ︸

≤O
(
τ1/3L2

√
ωm log(m)

)
: Lemma D.4.6

∥∥∇Wℓ

[
fW(0)(X)

]∥∥
F︸ ︷︷ ︸

≤O
(√

ωnm
)

: Lemma D.4.4

∥Gky∥2

+
1

L

√√√√ n∑
i=1

(
1

m

L∑
ℓ=1

〈
∇Wℓ

[
fW(0)(x)

]
,∇Wℓ

[
fW(0)(xi)

]〉
Tr − Ker(x,xi)

)2

∥Gky∥2

≤

{
O
(

n5/6L2ω7/6

m1/6δ1/6λ
1/3
∞

√
log(m)

)
+O

(
ωn1/2L3/2 4

√
log(nL/δ)

m

)}
∥Gk∥2 ∥y∥2

≤ O
(

n5/6L2ω7/6

m1/6δ1/6λ
4/3
∞

√
log(m) · ∥y∥2

)
+O

(
ωn1/2L3/2

λ∞

4
√

log(nL/δ)
m

· ∥y∥2
)
,

(D.26)

where, in the second inequality, we plugged τ = O
(

n
√
ω√

mδλ∞

)
in the result of Lemma D.4.6

and used Lemma D.4.11. In the last inequality, we used ∥Gk∥2 ≤ O
(

1
λ∞

)
. Similarly, we

can control the ℓ2 norm of the second term in ∆12 as follows:

∥∥∥∥∥∥ 1

m

∑
ℓ:ℓ̸=ℓ′

vec
(
∇Wℓ

[
fW(k)(x)

])⊤∇Wℓ

[
fW(0)(X)

]
Gky

∥∥∥∥∥∥
2

≤ 1

m

∑
ℓ:ℓ̸=ℓ′

∥vec
(
∇Wℓ

[
fW(k)(x)

])
∥2︸ ︷︷ ︸

≤O
(√

ωm
) · ∥∇Wℓ

[
fW(0)(X)

]
∥F︸ ︷︷ ︸

≤O
(√

ωmn
) · ∥Gk∥2︸ ︷︷ ︸

≤O
(

1
λ∞

) ∥y∥2
≤ O

(
ωL

√
n

λ∞

)
· ∥y∥2. (D.27)

We turn our attention to controlling ∥∆13∥2. The first term in ∆13;

Recall that
∥∥∥vec

(
∇W

ℓ
′

[
fW(k)(x)

])∥∥∥
2
≤ O

(√
mω
)

by Lemma D.4.4. Then, the random

variable vec
(
∇Wℓ

[
fW(k)(x)

])⊤vec
(
W

(0)
ℓ

)
is simply a N

(
0,O(ω)

)
for 1 ≤ ℓ ≤ L. A

straightforward application of Chernoff bound for normal random variable and taking union
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bound over the layer 1 ≤ ℓ ≤ L yield that: with probability at least 1− δ,

∣∣∣vec
(
∇W

ℓ
′

[
fW(k)(x)

])⊤vec
(
W

(0)

ℓ′

)∣∣∣ ≤ O

(√
ω log

(
L

δ

))
. (D.28)

The ℓ2 norm of the third term in ∆13 can be bounded as follows:

∥∥∥∥ 1

m
vec
(
∇W

ℓ
′

[
fW(k)(x)

])⊤∇W
ℓ
′

[
fW(0)(X)

]
Gku(0)

∥∥∥∥
2

≤ 1

m

∥∥∥vec
(
∇W

ℓ
′

[
fW(k)(x)

])∥∥∥
2︸ ︷︷ ︸

≤O
(√

mω
)

∥∥∥∇W
ℓ
′

[
fW(0)(X)

]∥∥∥
F︸ ︷︷ ︸

≤O
(√

ωmn
) ∥Gku(0)∥2︸ ︷︷ ︸

≤O
(√

nω
λ∞δ

) ≤ O
(
nω3/2

λ∞δ

)
.

(D.29)

In the last inequality, we used the Lemma D.4.8 and ∥Gk∥2 ≤ O
(

1
λ∞

)
. By combin-

ing (D.23), (D.24), (D.28), (D.29) with
∥∥∥∇W

ℓ
′

[
fW(0)(x)

]∥∥∥
F

≤ O
(√

mω
)
, we have a

following :

∥∆13∥2 ≤
∥∥∥〈vec

(
∇W

ℓ
′

[
fW(k)(x)

])
, vec

(
W

(0)

ℓ′

)〉∥∥∥
2
+
∥∥∥(vec

(
∇W

ℓ
′

[
fW(0)(x)

]))⊤
ξ′(k)

∥∥∥
2

+

∥∥∥∥ 1

m

(
vec
(
∇W

ℓ
′

[
fW(0)(x)

])⊤∇W
ℓ
′

[
fW(0)(X)

]
Gku(0)

∥∥∥∥
2

≤ O

(√
ω log

(
L

δ

))
+O

(
n11/6L3ω13/6 ∥y − u(0)∥2

m1/6λ
4/3
∞ δ1/6

√
log(m)

)

+O

(
n5/6L2ω7/6 ∥y − u(0)∥2

m1/6λ
7/3
∞ δ1/6

√
log(m)

)
+O

(
nω3/2

λ∞δ

)

= O

(
n11/6L3ω13/6 ∥y − u(0)∥2

m1/6λ
4/3
∞ δ1/6

√
log(m)

)
+O

(
n5/6L2ω7/6 ∥y − u(0)∥2

m1/6λ
7/3
∞ δ1/6

√
log(m)

)

+O

(
nω3/2

λ∞δ

)
. (D.30)

Step 2. Control on ∆2. First, note that there is a recent finding that the reproducing kernel

Hilbert spaces of NTKs with any number of layers (i.e., L ≥ 1) have the same set of

functions, if kernels are defined on Sd−1. See [157]. Along with this result, we can apply
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the proof used in Lemma.D.2. in [142] for proving a following :

∥∆2∥2 = OP

(
1√
n

)
. (D.31)

Step 3. The behavior of L2 risk is characterized by the term ∆11. Recall the decomposi-

tions (D.21) and (D.25), then we have:

f̂W(k)(x)− f ∗(x) = ∆11 +
(
∆12 +∆13 +∆2

)
:= ∆11 +Θ. (D.32)

Our goal in this step is mainly two-folded: (1) Control Eε ∥Θ∥22 arbitrarily small with proper

choices of step-size of GD η and width of the network m. (2) Show that how Eε ∥∆11∥22

affect the behavior of prediction risk over the GD iterations k. First, note that we have

Eε ∥y∥22 = Eε ∥y∗ + ε∥22 ≤ 2
(
y∗)⊤y∗ + 2Eε ∥ε∥22 = O(n). (D.33)

Second, recall Lemma D.4.9 and note that over the random initialization, with probability

at least 1 − δ, Eε ∥y − u(0)∥22 ≤ O
(

n
δ

)
. Now, by combining the bounds (D.26), (D.30)

and (D.31), we have

Eε ∥Θ∥22 ≤ 3Eε

(
∥∆12∥22 + ∥∆13∥22 + ∥∆2∥22

)
≤ Eε

[
O

(
n5/3L4ω7/3

m1/3λ
8/3
∞ δ1/3

log(m) · ∥y∥22

)
+O

(
ω2nL3

λ2
∞

√
log(nL/δ)

m
· ∥y∥22

)

+O

(
n11/3L6ω13/3 ∥y − u(0)∥22

m1/3λ
8/3
∞ δ1/3

log(m)

)

+O

(
n5/3L4ω7/3 ∥y − u(0)∥22

m1/3λ
14/3
∞ δ1/3

log(m)

)]
+O

(
n2ω3

λ2
∞δ2

)
+O

(
1

n

)

≤ O
(
ω2n2L3

λ2
∞

√
log(nL/δ)

m

)
+O

(
n14/3L6ω13/3

m1/3λ
8/3
∞ δ4/3

log(m)

)
+O

(
n8/3L4ω7/3

m1/3λ
14/3
∞ δ4/3

log(m)

)

+O

(
n2ω3

λ2
∞δ2

)
+O

(
1

n

)
, (D.34)
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where in the third inequality, we used (D.33) and (D.6).

Case 1. When k is large, the L2 risk is bounded away from zero by some constant.

Now we control Eε ∥∆11∥22. Recall the definitions ∥f∥22 :=
∫
x∈Sd−1 |f(x)|2dx and Gk =∑k−1

j=0 ηm
(
I− ηmH∞

L

)j . Let us denote S = y∗y∗⊤. Then, we have

Eε ∥∆11∥22 =
∫
x∈Sd−1

Ker(x,X)

[(
Gk −

(
H∞

L

)−1
)
y∗y∗⊤

(
Gk −

(
H∞

L

)−1
)
+G2

k

]
Ker(X, x)dx

=

∫
x∈Sd−1

Ker(x,X)
(
H∞

L

)−1
Mk

(
H∞

L

)−1Ker(X, x)dx

where

Mk =
(
I− ηmH∞

L

)k
S
(
I− ηmH∞

L

)k
+
(
I−

(
I− ηmH∞

L

)k)2
=
[(
I− ηmH∞

L

)k − (S+ I
)−1](

S+ I
)[(

I− ηmH∞
L

)k − (S+ I
)−1]

+ I −
(
S+ I

)−1
.

For the algorithm iterations k ≥
( log(n)
ηmλ∞

)
C0 with some constant C0 > 1, we have

(
I − ηmH∞

L

)k ⪯ (1− ηmλ∞
)k · I ⪯ exp(−ηmλ∞k) · I ⪯ exp(−C0 log(n)) =

1

nC0
· I.

Since 1 + ∥y∥22 ≤ C1n for some constant C1, we have

λmax

(
1

nC0
·
(
S+ I

))
=

1 + ∥y∥22
nC0

≤ C1

nC0−1
< 1. (D.35)

Using the first item of Lemma (D.4.12) with the inequality (D.35), we have

(
I − ηmH∞

L

)k ⪯ 1

nC0
· I ≺

(
S+ I

)−1
. (D.36)
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The above inequality (D.36) lead to a following result :

(
S+ I

)−1 −
(
I − ηmH∞

L

)k ⪰ (S+ I
)−1 − 1

nC0
· I. (D.37)

It is obvious that both
(
S + I

)−1 −
(
I − ηmH∞

L

)k and
(
S + I

)−1 − 1
nC0

· I are positive

definite matrices due to (D.37), and it is also easy to see that they are exchangeable. By

using the second item of Lemma (D.4.12), we have

Mk =
[(
I− ηmH∞

L

)k − (S+ I
)−1](

S+ I
)[(

I− ηmH∞
L

)k − (S+ I
)−1]

+ I −
(
S+ I

)−1

⪰
[(
S+ I

)−1 − 1

nC0
· I
](
S+ I

)[(
S+ I

)−1 − 1

nC0
· I
]
+ I −

(
S+ I

)−1

=
1

n2C0
S+

(
1− 1

nC0

)2

· I.

Then, we have Eε ∥∆11∥22 ⪰
1

n2C0
A+

(
1− 1

nC0

)2

B ⪰ c0B, where c0 ∈ (0, 1) is a constant

and

A =

∫
x∈Sd−1

[
Ker(x,X)

(
H∞

L

)−1
y∗]2dx, and B =

∫
x∈Sd−1

[
Ker(x,X)

(
H∞

L

)−1]2
dx.

(D.38)

By triangle inequality with the decomposition (D.32) and the bound on Eε ∥Θ∥22 in (D.34),

we have:

Eε

∥∥∥f̂W(k) − f ∗
∥∥∥2
2
= Eε ∥∆11 +Θ∥22

≥ 1

2
Eε ∥∆11∥2 − Eε ∥Θ∥22

≥ c0
2
B −O

(
1

n

)
−O

(
n2ω3

λ2
∞δ2

)
− Õ

(
1

m1/3
poly

(
ω, n, L,

1

λ∞
,
1

δ

))
.

(D.39)

For the third term in (D.39), we can choose ω ≤ C2

(
λ∞δ
n

)2/3 for some constant C2 >
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0 such that the term can be bounded by c0
8

∥∥∥Ker(·,X)
(
H∞

L

)−1
∥∥∥2
2
. Similarly, the width

m can be chosen large enough such that the fourth term in (D.39) is upper-bounded by

c0
8
∥Ker(·,X)

(
H∞

L

)−1∥22. Using the above choices of k, ω, and m, we can further bound (D.39):

Eε

∥∥fW(k) − f ∗∥∥2
2
≥ c0

4

∥∥∥Ker(·,X)
(
H∞

L

)−1
∥∥∥2
2
−O

(
1

n

)
. (D.40)

Note that Eε∥f̂∞ − g∗∥22 = ∥Ker(·,X)
(
H∞

L

)−1∥22 where g∗ := 0 and f̂∞ denotes the noise

interpolator. Then, by Theorem 4.2. of [142], we know that Eε∥f̂∞ − g∗∥22 ≥ c1 for some

constant c1 > 0. Then, we can take n large enough such that the term O
(
1
n

)
is upper-

bounded by c0c1
8

, and finish the proof.

Case 2. When k is small, the L2 risk is bounded away from zero by some constant.

Recall the definition of ∆11 in the decomposition (D.25),

∆11 := Ker(x,X)Gk

[
y∗ + ε

]
− Ker(x,X)H∞

L y∗

:= ∆∗
11 − Ker(x,X)H∞

L y∗. (D.41)

We denote the eigen-decomposition of the matrix H∞
L :=

∑n
i=1 λivivi

⊤, then we can easily

see a following:

Gk = ηm
k−1∑
j=0

( n∑
i=1

(1− ηmλi)
jvivi

⊤
)

⪯ ηm
k−1∑
j=0

n∑
i=1

vivi
⊤ ⪯ ηmk · I.

By using the above inequality, we have

Eε ∥∆∗
11∥

2
2 =

∫
x∈Sd−1

Ker(x,X)Gk

(
S+ I

)
GkKer(X, x)dx

≤ η2m2k2

(∫
x∈Sd−1

[
Ker(x,X)y∗]2dx+ ∥Ker(·,X)∥22

)
= O

(
η2m2k2ω2n2L2

)
.
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Recall the decompositions (D.21) and (D.25), then we have:

Eε

∥∥∥f̂W(k) − f ∗
∥∥∥2
2
= Eε ∥∆∗

11 +Θ− Ker(·,X)H∞
L y∗∥22

≥ 1

2
∥Ker(·,X)H∞

L y∗∥22 − Eε ∥∆∗
11 +Θ∥22

≥ 1

2
∥Ker(·,X)H∞

L y∗∥22 − 2Eε ∥∆∗
11∥

2
2 − 2Eε ∥Θ∥22

≥ 1

2
∥Ker(·,X)H∞

L y∗∥22 −O
(
η2m2k2ω2n2L2

)
−O

(
1

n

)
−O

(
n2ω3

λ2
∞δ2

)
− Õ

(
1

m1/3
poly

(
ω, n, L,

1

λ∞
,
1

δ

))
. (D.42)

For some constant C ′
1 > 0, let k ≤ C

′
1

(
1

ηmnωL

)
such that the second term in the bound (D.42)

can be bounded by 1
8
∥Ker(·,X)

(
H∞

L

)−1
y∗∥22. For the fourth term in (D.42), we can choose

ω ≤ C
′
2

(
λ∞δ
n

)2/3 for some constant C ′
2 > 0 such that the term can be bounded by 1

8∥∥∥Ker(·,X)
(
H∞

L

)−1
y∗
∥∥∥2
2
. Similarly, the width m can be chosen large enough such that

the fifth term in (D.42) is upper-bounded by 1
8
∥Ker(·,X)

(
H∞

L

)−1
y∗∥22. Using the above

choices of k, ω, and m, we can further bound (D.42):

Eε

∥∥fW(k) − f ∗∥∥2
2
≥ 1

4

∥∥∥Ker(·,X)
(
H∞

L

)−1
y∗
∥∥∥2
2
−O

(
1

n

)
≥ C

′

3

∥∥f ⋆
ρ

∥∥2
2
−O

(
1

n

)
.

(D.43)

In the second inequality, we used (D.31) with triangle inequality. In the third inequality, we

can take n large enough such that the term O
(
1
n

)
is upper-bounded by C

′
3

2

∥∥f ⋆
ρ

∥∥2
2
. Lastly, by

using the assumption that f ⋆
ρ is a square-integrable function, we finish the proof.
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D.7 Proof of Theorem 4.3.10-Training error

Denote uD,i(k) = f
W

(k)
D
(xi) and let uD(k) =

[
u1,D(k), . . . , un,D(k)

]⊤. In order to analyze

the training error of ℓ2-regularized estimator, ∥uD(k)− y∥22, we decompose the term as

follows:

∥uD(k + 1)− y∥22 (D.44)

= ∥uD(k + 1)− (1− η2µL)uD(k)∥22 + ∥(1− η2µL)uD(k)− y∥22

− 2
(
y − (1− η2µL)uD(k)

)⊤(
uD(k + 1)− (1− η2µL)uD(k)

)
(D.45)

Equipped with this decomposition, the proof consists of the following steps:

1. We decompose the decayed prediction difference uD(k + 1) − (1 − η2µL)uD(k)

into two terms. We note that the first term is related with a gram matrix HD(k) and

denote a second term as I(k)D .

2. The term I
(k)
D can be further decomposed into three terms, where we denote them as

I
(k)
2,D, I(k)3,D and I

(k)
5,D. The crux for controlling the ℓ2-norm of the above three terms

is to utilize the results from the Appendix D.4. The applications of Lemmas in the

Appendix D.4 is possible, since we can inductively guarantee that ∥W (k)
D,ℓ −W

(0)
D,ℓ∥2

is sufficiently small enough for large enough m.

3. Given the decomposition (D.44), we further decompose it into four terms as follows:

(D.44) = ∥(1− η2µL)uD(k)− y∥22︸ ︷︷ ︸
:=T1

+ ∥uD(k + 1)− (1− η2µL)uD(k)∥22︸ ︷︷ ︸
:=T2

+ 2mη1
(
y − (1− η2µL)uD(k)

)⊤
HD(k)

(
uD(k)− y

)︸ ︷︷ ︸
:=T3

−2
(
y − (1− η2µL)uD(k)

)⊤
I
(k)
D︸ ︷︷ ︸

:=T4

. (D.46)

225



In this step, we obtain the upper-bound of ∥Ti∥2 for i = 1, 2, 3, 4 obtained in Step 4.

4. We combine the upper-bounds of ∥Ti∥2 for i = 1, 2, 3, 4 in step 3 and obtain the

bound on ∥uD(k + 1)− y∥22 with respect to ∥uD(k)− y∥22 and ∥y∥2.

5. Lastly, we inductively show that the weights generated from regularized gradient

descent stay within a perturbation region B
(
W(0), τ

)
, irrespective with the number

of iterations of algorithm.

We start the proof by analyzing the term u(k + 1)− (1− η2µL)u(k).

Step 1. Dynamics of uD(k+ 1)−(1−η2µL)·uD(k). Recall
(
Σ

(k)
D,ℓ,i

)
jj
= 1

(
⟨w(k)

D,ℓ,j,x
(k)
D,ℓ−1,i⟩ ≥

0
)

and we introduce a diagonal matrix Σ̃
(k)
D,ℓ,i, whose jth entry is defined as follows:

(
Σ̃

(k)
D,ℓ,i

)
jj
=
(
Σ

(k+1)
D,ℓ,i −Σ

(k)
D,ℓ,i

)
jj
·

⟨w(k+1)
D,ℓ,j ,x

(k+1)
D,ℓ−1,i⟩

⟨w(k+1)
D,ℓ,j ,x

(k+1)
D,ℓ−1,i⟩ − ⟨w(k)

D,ℓ,j,x
(k)
D,ℓ−1,i⟩

.

With this notation, the difference x
(k+1)
D,L,i − x

(k)
D,L,i can be rewritten via the recursive

applications of Σ̃(k)
D,ℓ,i: Then, we introduce following notations :

D
(k)
D,ℓ,i =

( L∏
r=ℓ+1

Σ
(k)
D,r,iW

(k)
D,r

)
Σ

(k)
D,ℓ,i,

D̃
(k)
D,ℓ,i =

( L∏
r=ℓ+1

(
Σ

(k)
D,r,i + Σ̃

(k)
D,r,i

)
W

(k+1)
D,r

)(
Σ

(k)
D,ℓ,i + Σ̃

(k)
D,ℓ,i

)
.
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Now, we can write uD,i(k + 1)− uD,i(k) by noting that uD,i(k) =
√
m · vTx

(k)
D,L,i:

uD,i(k + 1)− uD,i(k)

=
√
m · vT(x(k+1)

D,L,i − x
(k)
D,L,i

)
=

√
m · vT

L∑
ℓ=1

D̃
(k)
D,ℓ,i

(
W

(k+1)
D,ℓ −W

(k)
D,ℓ

)
x
(k)
D,ℓ−1,i

=
√
m · vT

L∑
ℓ=1

D̃
(k)
D,ℓ,i

(
− η1∇Wℓ

[
LS

(
W

(k)
D

)]
− η2µW

(k)
D,ℓ + η2µW

(0)
D,ℓ

)
x
(k)
D,ℓ−1,i

= −η1
√
m · vT

L∑
ℓ=1

D
(k)
D,ℓ,i∇Wℓ

[
LS

(
W

(k)
D

)]
x
(k)
D,ℓ−1,i︸ ︷︷ ︸

I
(k)
1,D,i

−η1
√
m · vT

L∑
ℓ=1

(
D̃

(k)
D,ℓ,i −D

(k)
D,ℓ,i

)
∇Wℓ

[
LS

(
W

(k)
D

)]
x
(k)
D,ℓ−1,i︸ ︷︷ ︸

I
(k)
2,D,i

−η2µ
√
m · vT

L∑
ℓ=1

(
D̃

(k)
D,ℓ,i −D

(k)
D,ℓ,i

)(
W

(k)
D,ℓ −W

(0)
D,ℓ

)
x
(k)
D,ℓ−1,i︸ ︷︷ ︸

I
(k)
3,D,i

−η2µ
√
m · vT

L∑
ℓ=1

D
(k)
D,ℓ,iW

(k)
D,ℓx

(k)
D,ℓ−1,i︸ ︷︷ ︸

I
(k)
4,D,i

+η2µ
√
m · vT

L∑
ℓ=1

D
(k)
D,ℓ,iW

(0)
D,ℓx

(k)
D,ℓ−1,i︸ ︷︷ ︸

I
(k)
5,D,i

(D.47)

where in the second equality, we used the recursive relation (D.8), and in the third equality,

modified GD update rule (4.6) is applied.
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Furthermore, I(k)1,D,i can be rewritten as follows:

I
(k)
1,D,i = −η1

√
m · vT

L∑
ℓ=1

D
(k)
D,ℓ,i

n∑
j=1

(
uD,j(k)− yj

)
∇Wℓ

[
f
W

(k)
D
(xj)

]
x
(k)
D,ℓ−1,i

= −η1 ·
n∑

j=1

(
uD,j(k)− yj

)
·
(√

m
L∑

ℓ=1

vTD
(k)
D,ℓ,i∇Wℓ

[
f
W

(k)
D
(xj)

]
x
(k)
D,ℓ−1,i

)

= −mη1 ·
n∑

j=1

(
uD,j(k)− yj

)
· 1

m

L∑
ℓ=1

〈
∇Wℓ

[
f
W

(k)
D
(xi)

]
,∇Wℓ

[
f
W

(k)
D
(xj)

]〉
Tr

= −mη1 ·
n∑

j=1

(
uD,j(k)− yj

)
·HD,i,j(k). (D.48)

With I
(k)
4,i = (−η2µL) · uD,i(k) and (D.48), we can rewrite (D.47) as follows:

uD,i(k + 1)− (1− η2µL)uD,i(k) = −mη1 ·
n∑

j=1

(
uD,j(k)− yj

)
·HD,i,j(k) + I

(k)
2,D,i + I

(k)
3,D,i + I

(k)
5,D,i.

(D.49)

Step 2. Control of the size
∥∥∥I(k)D

∥∥∥
2
.

Let I(k)D = [I
(k)
2,D,1 + I

(k)
3,D,1 + I

(k)
5,D,1, . . . , I

(k)
2,D,n + I

(k)
3,D,n + I

(k)
5,D,1]

⊤. Now, we control the

bound on the
∥∥∥I(k)D

∥∥∥2
2
. Recall that in Eq. (E.16), we have

∥∥∥I(k)2,D

∥∥∥
2
≤ O

(
η1nL

3τ 1/3ωm
√
log(m)

)
∥uD(k)− y∥2 . (D.50)

Similarly,
∥∥∥I(k)3,D

∥∥∥
2

can be bounded:

∥∥∥I(k)3,D

∥∥∥
2
≤

n∑
i=1

∣∣∣I(k)3,D,i

∣∣∣ ≤ η2µ
√
m ·

n∑
i=1

[
L∑

ℓ=1

∥∥∥∥v⊤
(
D̃

(k)
D,ℓ,i −D

(k)
D,ℓ,i

)∥∥∥∥
2︸ ︷︷ ︸

≤O
(
L2τ1/3

√
ω log(m)

) ·
∥∥∥W(k)

D,ℓ −W
(0)
D,ℓ

∥∥∥
2︸ ︷︷ ︸

≤τ

·
∥∥∥x(k)

D,ℓ−1,i

∥∥∥
2︸ ︷︷ ︸

≤O(1)

]

≤ O
(
η2µnL

3τ 4/3
√
ωm log(m)

)
. (D.51)
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Lastly
∥∥∥I(k)5,D

∥∥∥
2

can be bounded:

∥∥∥I(k)5,D

∥∥∥
2
≤

n∑
i=1

∣∣∣I(k)5,D,i

∣∣∣
≤

n∑
i=1

∣∣∣∣∣η2µ√m · vT
L∑

ℓ=1

D
(k)
D,ℓ,iW

(k)
D,ℓx

(k)
D,ℓ−1,i

∣∣∣∣∣+
n∑

i=1

∣∣∣∣∣η2µ√m · vT
L∑

ℓ=1

D
(k)
D,ℓ,i

(
W

(k)
D,ℓ −W

(0)
D,ℓ

)
x
(k)
D,ℓ−1,i

∣∣∣∣∣
≤ η2µL ·

n∑
i=1

|ui,D(k)|+ η2µ
√
m ·

n∑
i=1

[
L∑

ℓ=1

∥v∥2︸︷︷︸
≤O(

√
ω)

·
∥∥∥D(k)

D,ℓ,i

∥∥∥
2︸ ︷︷ ︸

≤O(
√
L)

·
∥∥∥W(k)

D,ℓ −W
(0)
D,ℓ

∥∥∥
2︸ ︷︷ ︸

≤τ

·
∥∥∥x(k)

D,ℓ−1,i

∥∥∥
2︸ ︷︷ ︸

≤O(1)

]

≤ O
(
η2µnL

√
ω log(L/δ)

)
+O

(
η2µnL

3/2τ
√
mω

)
, (D.52)

where in the last inequality, we employed the same logic used in (D.28) with the Lemma D.4.2

to obtain the upper-bound on the |ui,D(k)|. We set the orders of the parameters µ, η1, η2, τ ,

and ω as follows:

µ = Θ

(
n

d−1
2d−1

)
, η1 = Θ

(
1

m
n− 3d−2

2d−1

)
, η2 = Θ

(
1

L
n− 3d−2

2d−1

)
,

τ = O
(
L
√
ω√

mδ
n

d
2d−1

)
, ω = O

(
1

L3/2
n− 5d−2

2d−1

)
. (D.53)

Plugging the choices of parameters (D.53) with sufficiently large m in (D.50), (D.51)

and (D.52) yields

∥∥∥I(k)D

∥∥∥
2
≤ O

(
L37/12n− 9d−8

12d−6

√
log(m)

m1/6δ1/3

)
· ∥uD(k)− y∥2 +OP

(
1

n2

)
. (D.54)
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Step 3. Upper-bound of ∥Ti∥2 on i = 1, 2, 3, 4.

First, we work on getting the upper-bound on λmax
(
HD(k)

)
. By the Gershgorin’s circle

theorem [210], we know the maximum eigenvalue of symmetric positive semi-definite ma-

trix is upper-bounded by the maximum absolute column sum of the matrix. Using this fact,

we can bound the λmax

(
HD(k)

)
as :

λmax

(
HD(k)

)
≤ max

i=1,...,n

n∑
j=1

|HD,i,j(k)|

≤ max
i=1,...,n

n∑
j=1

∣∣∣∣∣ 1m
L∑

ℓ=1

〈
∇Wℓ

[
f
W

(k)
D
(xi)

]
,∇Wℓ

[
f
W

(k)
D
(xj)

]〉
Tr

∣∣∣∣∣
≤ max

i=1,...,n

n∑
j=1

1

m

L∑
ℓ=1

∥∥∥∇Wℓ

[
f
W

(k)
D
(xi)

]∥∥∥
F︸ ︷︷ ︸

≤O(
√
mω)

∥∥∥∇Wℓ

[
f
W

(k)
D
(xj)

]∥∥∥
F︸ ︷︷ ︸

≤O(
√
mω)

≤ O
(
nLω

)
. (D.55)

Recall the decomposition (D.46). Our goal is to obtain the upper-bound on Ti for i =

1, 2, 3, 4.

Control on T1. By using the inequality 2η2µL(1− η2µL)y
⊤(y − uD(k)

)
≤ η2µL ∥y∥22 +

η2µL(1− η2µL)
2 ∥y − uD(k)∥22, we have

∥y − (1− η2µL)uD(k)∥22

=
∥∥(1− η2µL)

(
y − uD(k)

)
+ η2µLy

∥∥2
2

= (1− η2µL)
2 ∥y − uD(k)∥22 + η22µ

2L2 ∥y∥22

+ 2η2µL(1− η2µL)y
⊤(y − uD(k)

)
≤ (η2µL+ η22µ

2L2) ∥y∥22 +
(
1 + η2µL

)(
1− η2µL

)2 ∥y − uD(k)∥22 . (D.56)
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Control on T2. Recall the equality (D.49). Then, through applications of the Young’s

inequality ∥a+ b∥22 ≤ 2 ∥a∥22 + 2 ∥b∥22 for a, b ∈ Rn, we have

∥uD(k + 1)− (1− η2µL)uD(k)∥22 =
∥∥∥−mη1 ·HD(k)

(
uD(k)− y

)
+ I

(k)
D

∥∥∥2
2

≤ 2m2η21λmax
(
HD(k)

)2 ∥y − uD(k)∥22 + 2
∥∥∥I(k)D

∥∥∥2
2
.

(D.57)

Similarly with T1 and T2, we can control T3 and T4 as follows:

Control on T3. Recall HD(k) is a Gram matrix by definition. Then, by using the fact

λmin
(
HD(k)

)
≥ 0 and Cauchy-Schwarz inequality, we have

2mη1
(
y − (1− η2µL)uD(k)

)⊤
HD(k)

(
uD(k)− y

)
= −2mη1(1− η2µL)

(
y − uD(k)

)⊤
HD(k)

(
y − uD(k)

)
+
(
2mη1η2µL

)
· y⊤HD(k)

(
uD(k)− y

)
≤
(
2mη1η2µL

)
· λmax

(
HD(k)

)
∥y − uD(k)∥22

+
(
2mη1η2µL

)
·
(
λmax

(
HD(k)

)
∥y∥2 ∥y − uD(k)∥2

)
− 2mη1λmin

(
HD(k)

)
∥y − uD(k)∥22

=
(
4mη1η2µL

)
· λmax

(
HD(k)

)
∥y − uD(k)∥22 +

(
4mη1η2µL

)
· λmax

(
HD(k)

)
∥y∥22 .

(D.58)

Control on T4. By a simple Cauchy-Schwarz and Young’s inequality, we have

− 2
(
y − (1− η2µL)uD(k)

)⊤
I
(k)
D

= −2(1− η2µL)
(
y − uD(k)

)⊤
I
(k)
D + 2η2µL · y⊤ID(k)

≤ 2
(
1− η2µL

)
∥y − uD(k)∥2

∥∥∥I(k)D

∥∥∥
2
+ η2µL ∥y∥22 + η2µL

∥∥∥I(k)D

∥∥∥2
2

(D.59)
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Step 4. Upper-bound of the decomposition on training error (D.46).

Before getting the upper bound of the decomposition (D.46), we first work on obtaining

the bound of (D.60). Set κ = O
(

1
n2

)
and notice η2µL = O

(
1
n

)
by (D.53), then we have

2
∥∥∥I(k)D

∥∥∥2
2
+ 2
(
1− η2µL

)
∥y − uD(k)∥2

∥∥∥I(k)D

∥∥∥
2
+ η2µL

∥∥∥I(k)D

∥∥∥2
2

(D.60)

≤
(
2 + η2µL+

1

κ2

)∥∥∥I(k)D

∥∥∥2
2
+ κ2

(
1− η2µL

)2 ∥y − uD(k)∥22

=
1

κ2
·
∥∥∥I(k)D

∥∥∥2
2
+ κ2

(
1− η2µL

)2 ∥y − uD(k)∥22

≤

{
1

κ2
· O
(
L37/6n− 9d−8

6d−3
log(m)

m1/3δ2/3

)
+ κ2

(
1− η2µL

)2} · ∥y − uD(k)∥22 +
1

κ2
· OP

(
1

n4

)
≤
(
η2µL

)4(
1− η2µL

)2 · ∥y − uD(k)∥22 + η2µL · ∥y∥22, (D.61)

where in the second inequality, the Eq. (D.54) is used with (a + b)2 ≤ 2a2 + 2b2 for

a, b ∈ R, and in the last inequality, we used ∥y∥22 = O(n) and the sufficiently large m to

control the order of the coefficient terms of ∥y − uD(k)∥22. Specifically, we choose m ≥

Ω
(
L19n20 log

3(m)
δ2

)
. Now, by combining the inequalities (D.56), (D.57), (D.58), (D.59), (D.55)

and (D.61), we obtain the upper-bound on the decomposition (D.46);

∥uD(k + 1)− y∥22

≤

{
3η2µL+ η22µ

2L2 +O
(
ωmnη1η2µL

2

)}
· ∥y∥22

+

{(
1 + η2µL+ η42µ

4L4
)(
1− η2µL

)2
+O

(
ω2m2n2η21L

2

)
+O

(
ωmnη1η2µL

2

)}

· ∥y − uD(k)∥22

:= A · ∥y∥22 + (1− B) · ∥y − uD(k)∥22 . (D.62)

232



With the order choices of µ, η1 and η2 as in (D.53), it is easy to see the leading terms of both

A and B are same as η2µL = o( 1
n
). Then, by recursively applying the inequality (D.62),

we can get the upper-bound on the training error.

∥y − uD(k + 1)∥22 ≤ A · ∥y∥22 + (1− B) · ∥y − uD(k)∥22

≤ A∥y∥22 ·
( k∑

j=0

(1− B)j
)
+ (1− B)k+1 · ∥y − uD(0)∥22

≤ A
B

· ∥y∥22 + (1− B)k+1 · ∥y − uD(0)∥22

≤ O
(
n
)
+ (1− η2µL)

k+1 · ∥y − uD(0)∥22 . (D.63)

In the last inequality, we used A
B = o(1), B ≥ η2µL and ∥y∥22 = O(n).

Step 5. The order of the radius of perturbation region. It remains us to prove the radius

of perturbation region τ has the order OP

(
L
√
ω√
m
n

d
2d−1

)
. First, recall that the ℓ2-regularized

GD update rule is as:

W
(k)
D,ℓ =

(
1− η2µ

)
W

(k−1)
D,ℓ − η1∇Wℓ

[
LS

(
W

(k−1)
D

)]
+ η2µW

(0)
D,ℓ, ∀1 ≤ ℓ ≤ L and ∀k ≥ 1.

(D.64)

Similarly with the proof in the Theorem 2.4.1, we employ the induction process for the

proof. The induction hypothesis is

∥∥∥W(s)
D,ℓ −W

(0)
D,ℓ

∥∥∥
2
≤ O

(
η1n

√
mω√

δη2µ

)
, ∀s ∈ [k + 1]. (D.65)

It is easy to see it holds for s = 0, and suppose it holds for s = 0, 1, . . . , k, we consider
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k + 1. Using the update rule (D.64), we have

∥∥∥W(k+1)
D,ℓ −W

(k)
D,ℓ

∥∥∥
2
≤ η2µ

∥∥∥W(k)
D,ℓ −W

(0)
D,ℓ

∥∥∥
2
+ η1

∥∥∥∇Wℓ

[
LS

(
W

(k)
D

)]∥∥∥
2

= η2µ
∥∥∥W(k)

D,ℓ −W
(0)
D,ℓ

∥∥∥
2
+ η1

∥∥∥∥∥
n∑

i=1

(
yi − uD,i(k)

)
∇Wℓ

[
fWD(k)(xi)

]∥∥∥∥∥
2

≤ O
(
η1n

√
mω√
δ

)
+O

(
η1
√
nmω

)
· ∥y − uD(k)∥2

≤ O
(
η1n

√
mω√
δ

)
+O

(
η1
√
nmω

)
·
{
O
(√

n
)
+ (1− η2µL)

k
2O
(√

n

δ

)}
≤ O

(
η1n

√
mω√

δη2µ

)
.

In the first inequality, we use the induction hypothesis for s = k, and Lemma D.4.4. In

the second inequality, since the induction hypothesis holds for s = 0, 1, . . . , k, we employ

∥y − uD(k)∥2 ≤ O
(√

n
)
+ (1− η2µL)

k
2 ∥y − uD(0)∥2 with the Lemma D.4.9. In the last

inequality, we use η2µ < 1. By triangle inequality, the induction holds for s = k + 1.

Plugging the proper choices of η1, η2 and µ as suggested in (D.53) to O
(

η1n
√
mω√

δη2µ

)
yields

∥W(k)
D,ℓ −W

(0)
D,ℓ∥2 ≤ OP

(
L
√
ω√
m
n

d
2d−1

)
.

D.8 Proof of Theorem 4.3.10-Kernel ridge regressor approximation

We present a following proof sketch on the approximation of regularized DNN estimator

to kernel ridge regressor.

1. The key idea for proving the second result in Theorem 3.8 is to write the distance

between ui,D(k) (where D is to denote the prediction is obtained from regularized

GD rule) and kernel regressor B := H∞
L

(
Cµ · I +H∞

L

)−1
y in terms of NTK matrix

H∞
L , which is as follows:

uD(k)−B =

((
1− η2µL

)
· I −mη1H

∞
L

)k(
uD(0)−B

)
+ eD(k).
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Above equality describes how the regularized estimator evolves to fit the kernel re-

gressor as iteration of algorithm goes by.

2. We can bound the ℓ2-norm of residual term eD(k) as O(1/n), and show that the ℓ2

norm of the first term on the RHS of equation (4.3) decays at the rate O
(√

n
(
1 −

η2µL
)k). Here the

√
n comes from the bound ∥B∥2 ≤ O(

√
n), since we know

∥u(0)∥2 has O(
√
nω) with small ω ≤ 1. This yields the claim.

Recall the equality (D.49). Then, we have

uD(k + 1)− (1− η2µL)uD(k)

= −mη1 ·HD(k)
(
uD(k)− y

)
+ I

(k)
2,D + I

(k)
3,D + I

(k)
5,D

= −mη1 ·H∞
L

(
uD(k)− y

)
−mη1 ·

(
HD(k)−H∞

L

)(
uD(k)− y

)
+ I

(k)
2,D + I

(k)
3,D + I

(k)
5,D

= −mη1 ·H∞
L

(
uD(k)− y

)
+ ξD(k). (D.66)

With τ = O
(

L
√
ω√

mδ
n

d
2d−1

)
, similarly with Lemma D.4.10 and a direct employment of the

result from Lemma D.4.11, we can control the distance from HD(k) to H∞
L under operator

norm as follows:

∥HD(k)−H∞
L ∥2 ≤ ∥HD(k)−H(0)∥2 + ∥H(0)−H∞

L ∥2

≤ O

(
ω7/6L10/3n

7d−3
6d−3

6

√
log3(m)

mδ2

)
+O

(
ωL5/2n

4

√
log(nL/δ)

m

)

≤ O

(
L19/12n− 21d−8

12d−6

6

√
log3(m)

mδ2

)
+O

(
Ln− 18d−6

12d−6
4

√
log(nL/δ)

m

)

≤ O

(
L19/12n− 21d−8

12d−6

6

√
log3(m)

mδ2

)
, (D.67)

where in the third inequality, ω = O
(

1
L3/2n

− 5d−2
2d−1

)
is plugged-in. The last inequality holds
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with d ≥ 2 with large enough n and the condition on width m ≥ Ω
(
L19n20 log

3(m)
δ2

)
. Then,

the ℓ2 norm of ξD(k) can be bounded as:

∥ξD(k)∥2 ≤ mη1 · ∥H∞
L −HD(k)∥2 ∥uD(k)− y∥2 +

∥∥∥I(k)D

∥∥∥
2

≤ O

(
L19/12n− 12d−5

6d−3

√
log(m)

m1/6δ1/3

)
· ∥uD(k)− y∥2︸ ︷︷ ︸

≤O(
√

n/δ)

+OP

(
1

n2

)

≤ O
(
L19/12n− 18d−7

12d−6

√
log(m)

m1/6δ5/6

)
+OP

(
1

n2

)
= OP

(
1

n2

)
, (D.68)

where in the second inequality, we used (D.67) with η1 = O
(

1
m
n− 3d−2

2d−1

)
to control the

first term and employed Eq. (D.54) to control the second term. In the last equality, we used

m ≥ Ω
(
L19n20 log

3(m)
δ2

)
. Now, by setting B :=

(
η2µL
η1m

I + H∞
L

)−1

H∞
L y, we can easily

convert the equality (D.66) as follows: for k ≥ 1,

uD(k)−B =

((
1− η2µL

)
· I −mη1H

∞
L

)(
uD(k − 1)−B

)
+ ξD(k − 1). (D.69)

The recursive applications of the equality (D.69) yields

uD(k)−B =

((
1− η2µL

)
· I −mη1H

∞
L

)k(
uD(0)−B

)
+

k∑
j=0

((
1− η2µL

)
· I −mη1H

∞
L

)j

ξD(k − j − 1)

=

((
1− η2µL

)
· I −mη1H

∞
L

)k(
uD(0)−B

)
+ eD(k). (D.70)
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Now, we bound the ℓ2 norm of eD(k) in (D.70):

∥eD(k)∥2 =

∥∥∥∥∥
k∑

j=0

((
1− η2µL

)
· I −mη1H

∞
L

)j

ξD(k − j − 1)

∥∥∥∥∥
2

≤
k∑

j=0

∥∥(1− η2µL
)
· I −mη1H

∞
L

∥∥j
2
∥ξD(k − j − 1)∥2

≤
k∑

j=0

(
1− η2µL

)j ∥ξD(k − j − 1)∥2 = O
(
1

n

)
, (D.71)

in the last inequality, we used η2µL = O
(
1
n

)
and Eq. (D.68). Now, we control the ℓ2-norm

of the first term in (D.70) as:

∥∥∥∥∥
((

1− η2µL
)
· I −mη1H

∞
L

)k(
uD(0)−B

)∥∥∥∥∥
2

≤
(
1− η2µL

)k ∥uD(0)−B∥2

≤ O
(√

n
(
1− η2µL

)k)
, (D.72)

where in the second inequality, we used ∥uD(0)∥2 ≤ O(
√
nω/δ) and the fact that

∥B∥2 ≤

∥∥∥∥∥
(
η2µL

η1m
I +H∞

L

)−1

H∞
L

∥∥∥∥∥
2

· ∥y∥2 ≤ O(
√
n).

By combining (D.71) and (E.4) and using a fact (1−η2µL)
k ≤ exp(−η2µLk), we conclude

that after k ≥ Ω
(
(η2µL)

−1 log(n3/2)
)
, the error ∥uD(k)−B∥2 decays at the rate O

(
1
n

)
.

D.9 Proof of Theorem 4.3.11

We begin the proof by decomposing the error f̂
W

(k)
D
(x)−f ∗(x) for any fixed x ∈ Unif(Sd−1)

into two terms as follows:

f̂
W

(k)
D
(x)− f ∗(x) =

(
f̂
W

(k)
D
(x)− g∗µ(x)

)︸ ︷︷ ︸
∆D,1

+
(
g∗µ(x)− f ∗(x)

)︸ ︷︷ ︸
∆D,2

. (D.73)
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Here, we devise a solution of kernel ridge regression g∗µ(x) in the decomposition (D.73):

g∗µ(x) := Ker(x,X)
(
Cµ · I +H∞

L

)−1
y,

for some constant C > 0. Specifically, in the proof to follow, we choose η1 and η2 such that

C = η2L
η1m

for the theoretical convenience. Our goal is to show that all the terms ∥∆D,1∥22,

and ∥∆D,2∥22 have the order either equal to or smaller than O
(
n− d

2d−1

)
with the proper

choices on m, µ, η1 and η2. Since the high-level proof idea is similar with that of The-

orem 3.3.3, we omit the step-by-step proof sketch of Theorem 4.3.11. The most notable

difference between the proof strategies of the two theorems is that the regularized DNN

approximate the kernel ridge regressor of noisy data, whereas in Theorem 3.3.3, unregular-

ized DNN approximate the interpolant based on noiseless data.

Step 1. Control on ∆D,2. First, note that there is a recent finding that the reproducing

kernel Hilbert spaces induced from NTKs with any number of layers (i.e., L ≥ 1) have the

same set of functions, if kernels are defined on Sd−1. See [157]. Along with this result,

under the choice of model parameters as suggested in (D.53), we can apply exactly the

same proof used in Theorem.3.2 in [142] for proving a following :

∥∆D,2∥22 :=
∥∥g∗µ − f ∗∥∥2

2
= OP

(
n− d

2d−1

)
,

∥∥g∗µ∥∥2H = OP(1). (D.74)

Step 2. Control on ∆D,1. For n data points
(
x1, . . . ,xn

)
and for the kth updated parameter

W
(k)
D , denote:

∇Wℓ

[
f
W

(k)
D
(X)

]
=

[
vec
(
∇Wℓ

[
f
W

(k)
D
(x1)

])
, · · · , vec

(
∇Wℓ

[
f
W

(k)
D
(xn)

])]
.

Note that when ℓ = 1, ∇Wℓ

[
f
W

(k)
D
(X)

]
∈ Rmd×n and when ℓ = 2, . . . , L, ∇Wℓ

[
f
W

(k)
D
(X)

]
∈

Rm2×n.
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With this notation, we can write the vectorized version of the update rule (D.64) as:

vec
(
W

(k)
D,ℓ

)
= vec

(
W

(0)
D,ℓ

)
− η1

k−1∑
j=0

(
1− η2µ)

j∇Wℓ

[
fWD(k−j−1)(X)

](
uD(k − j − 1)− y

)
,

∀1 ≤ ℓ ≤ L and ∀k ≥ 1. Using the equality, we can get the decomposition :

vec
(
W

(k)
D,ℓ

)
= vec

(
W

(0)
D,ℓ

)︸ ︷︷ ︸
:=E1

−η1∇Wℓ

[
fWD(0)(X)

] k−1∑
j=0

(
1− η2µ)

j

(
uD(k − j − 1)− y

)
︸ ︷︷ ︸

:=E2

−η1

k−1∑
j=0

(
1− η2µ)

j

[
∇Wℓ

[
fWD(k−j−1)(X)

]
−∇Wℓ

[
fWD(0)(X)

]](
uD(k − j − 1)− y

)
.︸ ︷︷ ︸

:=E3

(D.75)

Let zD,k(x) := vec
(
∇Wℓ

[
f
W

(k)
D
(x)
])

, and note that f
W

(k)
D
(x) = ⟨zD,k(x), vec

(
W

(k)
D,ℓ

)
⟩.

Then, by the definition of ∆D,1 and the decomposition (D.75), we have

∆D,1 =
1

L

L∑
ℓ=1

⟨zD,k(x),E1 + E2 + E3⟩ − Ker(x,X)

(
η2µL

η1m
I +H∞

L

)−1

y

=
1

L

L∑
ℓ=1

⟨zD,k(x),E1⟩+
1

L

L∑
ℓ=1

⟨zD,k(x),E3⟩

+
1

L

L∑
ℓ=1

⟨zD,k(x),E2⟩ − Ker(x,X)

(
η2µL

η1m
I +H∞

L

)−1

y︸ ︷︷ ︸
:=C

(D.76)

First, we focus on controlling the ℓ2 bound on the first two terms in (D.76). Observe that

the first term can be bounded as:

∣∣∣∣∣ 1L
L∑

ℓ=1

⟨zD,k(x),E1⟩

∣∣∣∣∣
2

≤ 1

L

L∑
ℓ=1

|⟨zD,k(x),E1⟩|2 . (D.77)

Recall that ∥zD,k(x)∥2 ≤ O
(√

mω
)

by Lemma D.4.4. Then, the random variable zD,k(x)
⊤
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vec
(
W

(0)
D,ℓ

)
| zD,k(x) is simply a N

(
0,O(ω)

)
for 1 ≤ ℓ ≤ L. A straightforward application

of Chernoff bound for normal random variable and taking union bound over the layer 1 ≤

ℓ ≤ L yield that: with probability at least 1− δ,

1

L

L∑
ℓ=1

∣∣∣zD,k(x)
⊤vec

(
W

(0)
D,ℓ

)∣∣∣2 ≤ O

(
ω log

(
L

δ

))
. (D.78)

The ℓ2 norm of the second term in (D.76) can be similarly bounded as (D.77) in addition

with the Cauchy-Schwarz inequality:

∣∣∣∣∣ 1L
L∑

ℓ=1

⟨zD,k(x),E3⟩

∣∣∣∣∣
2

≤ 1

L

L∑
ℓ=1

|⟨zD,k(x),E3⟩|2 ≤
1

L

L∑
ℓ=1

∥zD,k(x)∥22 ∥E3∥22 . (D.79)

The ∥E3∥2 is bounded as :

∥E3∥2 =

∥∥∥∥∥η1
k−1∑
j=0

(
1− η2µ)

j

[
∇Wℓ

[
fWD(k−j−1)(X)

]
−∇Wℓ

[
fWD(0)(X)

]](
uD(k − j − 1)− y

)∥∥∥∥∥
2

≤ η1

k−1∑
j=0

(
1− η2µ)

j ·
∥∥∇Wℓ

[
fWD(k−j−1)(X)

]
−∇Wℓ

[
fWD(0)(X)

]∥∥
2
∥uD(k − j − 1)− y∥2

≤ η1

k−1∑
j=0

(
1− η2µ)

j ·
∥∥∇Wℓ

[
fWD(k−j−1)(X)

]
−∇Wℓ

[
fWD(0)(X)

]∥∥
F
∥uD(k − j − 1)− y∥2

= η1

k−1∑
j=0

(
1− η2µ)

j ·

√√√√ n∑
i=1

∥∥∇Wℓ

[
fWD(k−j−1)(xi)

]
−∇Wℓ

[
fWD(0)(xi)

]∥∥2
F
∥uD(k − j − 1)− y∥2

≤ η1

k−1∑
j=0

(
1− η2µ)

j ·

√√√√2
n∑

i=1

∥∥∇Wℓ

[
fWD(k−j−1)(xi)

]
−∇Wℓ

[
fWD(0)(xi)

]∥∥2
2
∥uD(k − j − 1)− y∥2

≤ η1
η2µ

· O
(
τ 1/3L2

√
ωmn log(m)

)
· O
(√

n
)
≤ O

(
L10/3ω1/6

m2/3δ1/3
n

4d
6d−3

√
log(m)

)
.

(D.80)

In the first, second and third inequalities, we used a simple fact that for the matrix A ∈

Rd1×d2 with rank r, then ∥A∥2 ≤ ∥A∥F ≤
√
r∥A∥2. Recall that the rank of the matrix

∇Wℓ

[
fWD(k−j−1)(x)

]
−∇Wℓ

[
fWD(0)(x)

]
is at most 2. In the second to the last inequality,
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we use the result of Lemma D.4.6 and the ∥uD(i) − y∥2 ≤ O(
√
n) for any i ≥ 1. In the

last inequality, we plug the correct orders as set in (D.53) to τ , η1, η2 and µ. Back to the

inequality (D.79), using the ∥zD,k(x)∥2 ≤ O
(√

mω
)

and (D.80), we can get

1

L

L∑
ℓ=1

∥zD,k(x)∥22 ∥E3∥22 ≤ OP

(
L20/3ω4/3

m1/3
n

8d
6d−3 log(m)

)
. (D.81)

Before controlling the ℓ2 norm of C in (D.76), recall that we set B :=

(
η2µL
η1m

I+H∞
L

)−1

H∞
L y

and the dynamics of uD(k)−B can be expressed in terms of H∞
L as follows: For any k ≥ 1,

uD(k)−B =

((
1− η2µL

)
· I −mη1H

∞
L

)k(
uD(0)−B

)
+ eD(k), (D.82)

with ∥eD(k)∥2 ≤ O
(
1
n

)
. Using (D.82), we can further decompose the term E2 in (D.75)

as:

E2 := −η1∇Wℓ

[
fWD(0)(X)

] k−1∑
j=0

(
1− η2µ)

j

(
uD(k − j − 1)− y

)

= η1∇Wℓ

[
fWD(0)(X)

] k−1∑
j=0

(
1− η2µ)

j

((
1− η2µL

)
· I −mη1H

∞
L

)k−j−1

B

− η1∇Wℓ

[
fWD(0)(X)

] k−1∑
j=0

(
1− η2µ)

j

((
1− η2µL

)
· I −mη1H

∞
L

)k−j−1

uD(0)

− η1∇Wℓ

[
fWD(0)(X)

] k−1∑
j=0

(
1− η2µ)

jeD(k − j − 1)

− η1∇Wℓ

[
fWD(0)(X)

] k−1∑
j=0

(
1− η2µ)

j

(
B− y

)
= E2,1 + E2,2 + E2,3 + E2,4. (D.83)
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Then, we can re-write the error term C in (D.76) as:

C =
1

L

L∑
ℓ=1

⟨zD,k(x),E2,1⟩+
1

L

L∑
ℓ=1

⟨zD,k(x),E2,2⟩+
1

L

L∑
ℓ=1

⟨zD,k(x),E2,3⟩

+

{
1

L

L∑
ℓ=1

⟨zD,k(x),E2,4⟩ − Ker(x,X)

(
η2µL

η1m
I +H∞

L

)−1

y

}
︸ ︷︷ ︸

:=D

. (D.84)

Our goal is to control the ℓ2 norm of each summand in the equality (D.84). For the first

three terms in (D.84), a simple Cauchy-Schwarz inequality can be applied: for i = 1, 2, 3:

∣∣∣∣∣ 1L
L∑

ℓ=1

⟨zD,k(x),E2,i⟩

∣∣∣∣∣
2

≤ 1

L

L∑
ℓ=1

|⟨zD,k(x),E2,i⟩|2 ≤
1

L

L∑
ℓ=1

∥zD,k(x)∥22 · ∥E2,i∥22 .

We work on obtaining the bound of
∑L

ℓ=1 ∥E2,1∥22. Let Tk be defined as

Tk :=
k−1∑
j=0

(
1− η2µ)

j

((
1− η2µL

)
· I −mη1H

∞
L

)k−j−1

.

Then, we have

L∑
ℓ=1

∥E2,1∥22 = η21

L∑
ℓ=1

(
B⊤T ⊤

k ∇Wℓ

[
fWD(0)(X)

]⊤∇Wℓ

[
fWD(0)(X)

]
TkB

)
= mη21B

⊤T ⊤
k H(0)TkB

= mη21B
⊤T ⊤

k

(
H(0)−H∞

L

)
TkB+mη21B

⊤T ⊤
k H∞

L TkB

≤ mη21 ∥H(0)−H∞
L ∥2 ·B

⊤T 2
k B+mη21B

⊤T ⊤
k H∞

L TkB. (D.85)

To obtain the upper-bound on (D.85), we need to control the terms T ⊤
k H∞

L Tk and B⊤T 2
k B.

Let us denote H∞
L =

∑n
i=1 λiviv

⊤
i be the eigen-decomposition of H∞

L . Using 1− η2µL ≤
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1− η2µ, note that

Tk =
k−1∑
j=0

(
1− η2µ

)j(
1− η2µL

)k−j−1
(
I − mη1

1− η2µL
H∞

L

)k−j−1

⪯
(
1− η2µ

)k−1
k−1∑
i=0

(
I − mη1

1− η2µ
H∞

L

)i

=
(
1− η2µ

)k−1
n∑

j=0

(
1−

(
1− mη1

1−η2µ
λj

)k
mη1

1−η2µ
λj

)
vjv

⊤
j ⪯

(
1− η2µ

)k
mη1λ∞

· I. (D.86)

A similar logic can be applied to bound T ⊤
k H∞

L Tk:

T ⊤
k H∞

L Tk ⪯
(
1− η2µ

)k−1
n∑

j=0

(
1−

(
1− mη1

1−η2µ
λj

)k
mη1

1−η2µ
λj

)2

λjvjv
⊤
j

⪯
(
1− η2µ

)2k
m2η21

·
(
H∞

L

)−1
. (D.87)

Recall the definition of the notation B := H∞
L

(
η2µL
η1m

I + H∞
L

)−1

y. Then, we can bound

the term B⊤T ⊤
k H∞

L TkB:

B⊤T ⊤
k H∞

L TkB ≤
(
1− η2µ

)2k
m2η21

·B⊤(H∞
L

)−1
B

=

(
1− η2µ

)2k
m2η21

· y⊤
(
η2µL

η1m
I +H∞

L

)−1

H∞
L

(
η2µL

η1m
I +H∞

L

)−1

y

= O
((

1− η2µ
)2k

m2η21

)
, (D.88)

where in the last equality, we used
∥∥g∗µ∥∥2H = OP(1) in (D.74). Now we turn our attention

to bound the term B⊤T 2
k B,

B⊤T 2
k B ≤

(
1− η2µ

)2k
m2η21λ

2
∞

y⊤
(
η2µL

η1m
I +H∞

L

)−1(
H∞

L

)2(
η2µL

η1m
I +H∞

L

)−1

y

= O
((

1− η2µ
)2k

n

m2η21λ
2
∞

)
, (D.89)
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where we used ∥y∥22 = O(n) in the last inequality. Combining the bounds (D.88), (D.89)

and the result from Lemma D.4.11, we can further bound (D.85) and have:

L∑
ℓ=1

∥E2,1∥22 ≤ O
(
ω

(
1− η2µ

)2k
mλ2

∞
n2L5/2 4

√
log(nL/δ)

m
+

(
1− η2µ

)2k
m

)
≤ O

((
1− η2µ

)2k
m

)
,

(D.90)

where in the second inequality, we used m ≥ Ω

(
L19n20 log

3(m)
δ2

)
. Similarly, we can bound∑L

ℓ=1 ∥E2,2∥22:

L∑
ℓ=1

∥E2,2∥22 = η21

L∑
ℓ=1

(
uD(0)

⊤T ⊤
k ∇Wℓ

[
fWD(0)(X)

]⊤∇Wℓ

[
fWD(0)(X)

]
TkuD(0)

)
= mη21uD(0)

⊤T ⊤
k H(0)TkuD(0)

= mη21uD(0)
⊤T ⊤

k

(
H(0)−H∞

L

)
TkuD(0) +mη21uD(0)

⊤T ⊤
k H∞

L TkuD(0)

≤ mη21 ∥H(0)−H∞
L ∥2 · uD(0)

⊤T 2
k uD(0) +mη21uD(0)

⊤T ⊤
k H∞

L TkuD(0)

≤ mη21

(
1− η2µ

)2k
m2η21λ

2
∞

O
(
ωnL5/2 4

√
log(nL/δ)

m

)
∥uD(0)∥22

+mη21

(
1− η2µ

)2k
m2η21

uD(0)
⊤(H∞

L

)−1
uD(0)

≤ O
((

1− η2µ
)2k

n2ω2L5/2

mλ2
∞δ2

4
√

log(nL/δ)
m

+
nω
(
1− η2µ

)2k
mλ∞δ2

)
= OP

(
nω
(
1− η2µ

)2k
mλ∞

)
. (D.91)

Here, in the second inequality, we used the inequalities (D.86) and (D.87) and Lemma D.4.11.

In the third inequality, we used the Lemma D.4.8, ∥u(0)∥2 = O
(√

nω
δ

)
with probability at

least 1− δ. In the last equality, we used m ≥ Ω

(
L19n20 log

3(m)
δ2

)
.
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Next, we bound
∑L

ℓ=1 ∥E2,3∥22 as:

L∑
ℓ=1

∥E2,3∥22 = mη21 ·
( k−1∑

j=0

(
1− η2µ

)j(
ek−j−1

))⊤

HD(0)

( k−1∑
j=0

(
1− η2µ

)j(
ek−j−1

))
≤ mη21

η22µ
2
· λmax

(
HD(k)

)
· ∥ek−j−1∥22 ≤

mη21
η22µ

2
· O
(
ωnL

)
· O
(

1

n2

)
= O

(
L3

m
ω · n− 4d−3

2d−1

)
.

(D.92)

Now, we focus on obtaining the ℓ2 norm bound on D in (D.84). Recall the definition of the

notation B := H∞
L

(
η2µL
η1m

I +H∞
L

)−1

y. A simple calculation yields that

B− y = H∞
L

(
η2µL

η1m
I +H∞

L

)−1

y − y = −η2µL

mη1

(
η2µL

η1m
I +H∞

L

)−1

y.

Then, we can re-write the expression of the D as :

D :=

(
η2µL

mη1

)
· η1

1

L

L∑
ℓ=1

〈
zD,k(x),∇Wℓ

[
fWD(0)(X)

]〉 k−1∑
j=0

(
1− η2µ)

j

(
η2µL

η1m
I +H∞

L

)−1

y

− Ker(x,X)

(
η2µL

η1m
I +H∞

L

)−1

y

=

(
1

m

L∑
ℓ=1

〈
zD,k(x),∇Wℓ

[
fWD(0)(X)

]〉
− Ker(x,X)

)(
η2µL

η1m
I +H∞

L

)−1

y

−
(
1− η2µ

)k 1

m

L∑
ℓ=1

〈
zD,k(x),∇Wℓ

[
fWD(0)(X)

]〉(η2µL

η1m
I +H∞

L

)−1

y

=

(
1

m

L∑
ℓ=1

〈
z0,k(x),∇Wℓ

[
fWD(0)(X)

]〉
− Ker(x,X)

)(
η2µL

η1m
I +H∞

L

)−1

y

−
(
1− η2µ

)k 1

m

L∑
ℓ=1

〈
z0,k(x),∇Wℓ

[
fWD(0)(X)

]〉(η2µL

η1m
I +H∞

L

)−1

y

+
(
1−

(
1− η2µ

)k)( 1

m

L∑
ℓ=1

〈
zD,k(x)− zD,0(x),∇Wℓ

[
fWD(0)(X)

]〉)(η2µL

η1m
I +H∞

L

)−1

y,

(D.93)

where in the second equality,
∑k−1

j=0(1 − η2µ)
j = 1−(1−η2µ)k

η2µ
is used. The ℓ2 norm of first
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term in the (D.93) can be bounded as:

∥∥∥∥∥
(

1

m

L∑
ℓ=1

〈
zD,k(x),∇Wℓ

[
fWD(0)(X)

]〉
− Ker(x,X)

)(
η2µL

η1m
I +H∞

L

)−1

y

∥∥∥∥∥
2

≤

∥∥∥∥∥
(

1

m

L∑
ℓ=1

〈
zD,k(x),∇Wℓ

[
fWD(0)(X)

]〉
− Ker(x,X)

)∥∥∥∥∥
2

·

∥∥∥∥∥
(
η2µL

η1m
I +H∞

L

)−1

y

∥∥∥∥∥
2

=

√√√√ n∑
i=1

(
1

m

L∑
ℓ=1

〈
z0(x),∇Wℓ

[
fWD(0)(xi)

]〉
− Ker(x,xi)

)2

·

∥∥∥∥∥
(
η2µL

η1m
I +H∞

L

)−1

y

∥∥∥∥∥
2

≤ O
(
ωη1mn

η2µL
L5/2 4

√
log(nL/δ)

m

)
= O

(
ωL5/2n

d
2d−1

4
√

log(nL/δ)
m

)
, (D.94)

where, in the second inequality, we used Lemma D.4.11, and also we used

∥∥∥∥∥
(
η2µL

η1m
I +H∞

L

)−1

y

∥∥∥∥∥
2

≤

√
y⊤
(
η2µL

η1m
I +H∞

L

)−2

y ≤

√
η21m

2

η22µ
2L2

· ∥y∥22 = O
(

η1m

η2µL

√
n

)
.

(D.95)

The ℓ2 norm of the second term in (D.93) can be easily bounded as:

∥∥∥∥∥(1− η2µ
)k 1

m

L∑
ℓ=1

〈
z0(x),∇Wℓ

[
fWD(0)(X)

]〉(η2µL

η1m
I +H∞

L

)−1

y

∥∥∥∥∥
2

≤

∥∥∥∥∥(1− η2µ
)k( 1

m

L∑
ℓ=1

〈
z0(x),∇Wℓ

[
fWD(0)(X)

]〉
− Ker(x,X)

)(
η2µL

η1m
I +H∞

L

)−1

y

∥∥∥∥∥
2

+

∥∥∥∥∥(1− η2µ
)kKer(x,X)

(
η2µL

η1m
I +H∞

L

)−1

y

∥∥∥∥∥
2

≤
(
1− η2µ

)k ∥∥∥∥∥ 1

m

L∑
ℓ=1

〈
z0(x),∇Wℓ

[
fWD(0)(X)

]〉
− Ker(x,X)

∥∥∥∥∥
2

·

∥∥∥∥∥
(
η2µL

η1m
I +H∞

L

)−1

y

∥∥∥∥∥
2

+
(
1− η2µ

)k ∥∥∥∥∥Ker(x,X)

(
η2µL

η1m
I +H∞

L

)−1

y

∥∥∥∥∥
2

≤
(
1− η2µ

)k · O(ω√nL3/2 4
√

log(nL/δ)
m

)
· O
(

η1m

η2µL

√
n

)
+O

((
1− η2µ

)k)
≤
(
1− η2µ

)k · O(ωL3/2n
d

2d−1
4
√

log(nL/δ)
m

)
+O

((
1− η2µ

)k)
. (D.96)
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Lastly, the ℓ2 norm of the third term in (D.93) is bounded as:

∥∥∥∥∥(1− (1− η2µ
)k)( 1

m

L∑
ℓ=1

〈
zD,k(x)− zD,0(x),∇Wℓ

[
fWD(0)(X)

]〉)(η2µL

η1m
I +H∞

L

)−1

y

∥∥∥∥∥
2

≤
(
1−

(
1− η2µ

)k) · ∥∥∥∥∥ 1

m

L∑
ℓ=1

〈
zD,k(x)− zD,0(x),∇Wℓ

[
fWD(0)(X)

]〉∥∥∥∥∥
2

·

∥∥∥∥∥
(
η2µL

η1m
I +H∞

L

)−1

y

∥∥∥∥∥
2

≤
(
1−

(
1− η2µ

)k) · ( 1

m

L∑
ℓ=1

∥zD,k(x)− zD,0(x)∥F
∥∥∇Wℓ

[
fWD(0)(X)

]∥∥
F

)
(D.97)

·

∥∥∥∥∥
(
η2µL

η1m
I +H∞

L

)−1

y

∥∥∥∥∥
2

≤
(
1−

(
1− η2µ

)k) · (L

m
O
(
τ 1/3L2

√
ωm log(m)

)
· O
(√

ωmn
))

· O
(

η1m

η2µL

√
n

)
≤
(
1−

(
1− η2µ

)k) · O(ω7/6L10/3n
4d

6d−3

√
log(m)

m1/6δ1/3

)
(D.98)

≤ O
(
ω7/6L10/3n

4d
6d−3

√
log(m)

m1/6δ1/3

)
, (D.99)

where in the fourth inequality, τ = OP

(
L
√
ω√
m
n

d
2d−1

)
is plugged in. Combining the inequal-

ities (D.94), (D.96) and (D.99), we get the bound on ∥D∥2 in (D.93):

∥D∥22 ≤ O
(
ω2L5n

2d
2d−1

√
log(nL/δ)

m

)
+
(
1− η2µ

)2kO(ω2L3n
2d

2d−1

√
log(nL/δ)

m

)
(D.100)

+O
((

1− η2µ
)2k)

+O
(
ω7/3L20/3n

8d
6d−3

log(m)

m1/3δ2/3

)
≤ O

(
ω7/3L20/3n

8d
6d−3

log(m)

m1/3δ2/3

)
+O

((
1− η2µ

)2k)
. (D.101)

Step 3. Combining all pieces. Recall ∥zD,k(x)∥2 ≤ O
(√

mω
)
. With this fact, combining
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the bounds (D.78), (D.81), (D.90), (D.91), (D.92) and (D.101), we can bound the ∥∆D,1∥22
via the decomposition (D.76) as follows:

∥∆D,1∥22 ≤
1

L

L∑
ℓ=1

∣∣∣zD,k(x)
⊤vec

(
W

(0)
D,ℓ

)∣∣∣2 + 1

L

L∑
ℓ=1

∥zD,k(x)∥22 ∥E3∥22

+
1

L

L∑
ℓ=1

∥zD,k(x)∥22 ∥E2,1∥22 +
1

L

L∑
ℓ=1

∥zD,k(x)∥22 ∥E2,2∥22

+
1

L

L∑
ℓ=1

∥zD,k(x)∥22 ∥E2.3∥22

+

∥∥∥∥∥ 1L
L∑

ℓ=1

⟨zD,k(x),E2,4⟩ − Ker(x,X)

(
η2µL

η1m
I +H∞

L

)−1

y

∥∥∥∥∥
2

2

≤ O

(
ω log

(
L

δ

))
+OP

(
L20/3ω4/3

m1/3
n

8d
6d−3 log(m)

)

+OP

(
ω
(
1− η2µ

)2k
L

)
+OP

(
nω2

(
1− η2µ

)2k
Lλ∞

)
+OP

(
L2

m
ω · n− 4d−3

2d−1

)

+O

(
ω7/3L20/3n

8d
6d−3

log(m)

m1/3δ2/3

)
+OP

((
1− η2µ

)2k)

≤ OP

(
n− d

2d−1

)
.
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APPENDIX E

APPROXIMATION AND NON-PARAMETRIC ESTIMATION OF FUNCTIONS

OVER HIGH-DIMENSIONAL SPHERES VIA DEEP RELU NETWORKS

E.1 dd-dependent constant in N for approximating f ∈ W r
∞([0, 1]d)

First, we define the function space W r
∞([0, 1]d) on the d-dimensional unit cube. For r =

n+ σ where n ∈ N0 and σ ∈ (0, 1], a function has Hölder smoothness index r if all partial

derivatives up to order n exist and are bounded and the partial derivatives of order n are σ

Hölder. Formally, the ball of r-Hölder functions with radius Q is then defined as

W r
∞([0, 1]d) ={
f : [0, 1]d → R :

∑
α:|α|≤n

∥∂αf∥∞ +
∑

α:|α|=n

sup
x,y∈[0,1]d

x̸=y

|∂αf(x)− ∂αf(y)|
|x− y|σ∞

≤ Q
}
.

where ∂αf := ∂|α|

∂α1 ...∂αd
f for the multi-index notation, α := (α1, . . . , αd).

The fundamental ideas for approximating functions f ∈ W r
∞([0, 1]d) in the existing

literature rely on a local Taylor approximation technique. The technique dicretizes d-

dimensional input cube into a sub-cube set whose size is (K + 1)d where (K + 1) is the

grid size of each coordinate. For any x in the input cube, the function f is approximated

by using the closest 2d grid points to x via Taylor expansion of f up to the degree ⌊r⌋,

where we denote the largest integer less than or equal to u > 0 as ⌊u⌋. Therefore, the total

number of active parameters for the net is at least more than the total number of coefficients

of partial derivatives ∂αf := ∂|α|

∂α1 ...∂αd
f for |α| = |α1| + · · · + |αd| ≤ ⌊r⌋. This yields the

lower bound on the active parameters for the network via local Taylor approximation as

(K + 1)d ·
∑⌊r⌋

i=0

(
d+i−1

d

)
.
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E.2 Roadmaps for proof of Theorem 5.2.1

In this section of the Appendix, we provide the definitions of LN(f) and L̂y
N,M(f) along

with the overall picture for the proof of Theorem 5.2.1. Recall we have the following

decomposition:

∥∥∥f − f̃
∥∥∥
∞

≤ ∥f − LN(f)∥∞︸ ︷︷ ︸
:=(I)

+
∥∥∥LN(f)− L̂y

N,M(f)
∥∥∥
∞︸ ︷︷ ︸

:=(II)

+
∥∥∥L̂y

N,M(f)− f̃
∥∥∥
∞︸ ︷︷ ︸

:=(III)

. (E.1)

In Subsection B.1, we provide the idea for bounding (I) and (II). In Subsection B.2, the

construction of neural network f̃ for approximating L̂y
N,M(f) is described. In this section,

no proofs on Propositions and Lemmas are included, but only key ideas for the proofs

and technical comparisons with other literature are provided. All the detailed proofs of

technical statements in this section are deferred in the Appendix C.1.

E.2.1 Error bounds for (I) and (II)

A function f ∈ W r
∞(Sd−1) is approximated by a linear scheme LN defined as follows.

Definition E.2.1 Given a C∞([0,∞]) function η with η(t) = 1 for 0 ≤ t ≤ 1 and η(t) = 0

for t ≥ 2, we define a sequence of linear operator LN , N ∈ N, on Lp(Sd−1) with 1 ≤ p ≤

∞ by

LN(f)(x) :=
2N∑
k=0

η

(
k

N

)
Projk(f)(x) =

∫
Sd−1

f(y)ℓk,d(⟨x,y⟩)ρX (dy), x ∈ Sd−1,

(E.2)

where with λG = d−2
2

, ℓN,d is a kernel given by

ℓN,d(t) :=
2N∑
k=0

η

(
k

N

)
k + λG

λG
GλG
k

(
t
)
, t ∈ [−1, 1]. (E.3)
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It can be found in [193] (Chapter 4) that LN is near best, achieving the order of best ap-

proximation for f ∈ W r
p (Sd−1).

Lemma E.2.2 (Lemma 1 in [179]) For N ∈ N, 1 ≤ p ≤ ∞, r > 0, and f ∈ W r
p (Sd−1),

there holds

∥f − LN(f)∥p ≤ CηN
−r · ∥f∥W r

∞(Sd−1) , (E.4)

where Cη is a constant depending only on the function η in defining LN .

Note that
(
−∆Sd−1+I

)r/2 is a self-adjoint operator. For x ∈ Sd−1, recalling the definition

of LN(f), we have

LN(f)(x) = ⟨f, ℓN,d(⟨x, ·⟩)⟩L2(Sd−1)

=

〈(
−∆Sd−1 + I

)r/2
f,
(
−∆Sd−1 + I

)−r/2
ℓN,d(⟨x, ·⟩)

〉
L2(Sd−1)

=

∫
Sd−1

Fr(y) · ξN,r(⟨x,y⟩)ρX (dy). (E.5)

Hereafter, we denote Fr =
(
−∆Sd−1+I

)r/2
f and ξN,r(⟨x, ·⟩) =

(
−∆Sd−1+I

)−r/2
ℓN,d(⟨x, ·⟩).

By the fractional power of the operator
(
−∆Sd−1 +I

)−r/2 in a distributional sense, ξN,r(·)

is a polynomial of degree at most 2N written as:

ξN,r(t) =
2N∑
k=0

(
1 + λk

)−r/2
η

(
k

N

)
k + λG

λG
GλG
k

(
t
)
, t ∈ [−1, 1]. (E.6)

The fractional power of (−∆Sd−1 + I) caused by the regularity f ∈ W r
∞(Sd−1) enables

r-dependent error bound for discretizing LN(f): the larger the regularity r becomes, the

smaller the bound for approximation error gets.

Following [179], the key idea for a constructing neural network that approximates

LN(f) is to discretize the integral form (E.5) by M random samples y = {y1, . . . ,yM}
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independently drawn from ρX . We write the discretized version of (E.5) as :

L̂y
N,M(f)(x) =

1

M

M∑
i=1

Fr(yi) · ξN,r(⟨x,yi⟩), ∀x ∈ Sd−1. (E.7)

Before estimating the distance between LN(f) and L̂y
N,M(f), we need a Sobolev embed-

ding property.

Proposition E.2.3 For d ≥ 5, 1 ≤ p ≤ ∞, and s ≥ 3d−2
4

, the Sobolev space W s
p (Sd−1)

is continuously embedded into C(Sd−1), the space of continuous functions on Sd−1, which

implies

∥f∥∞ ≤ c0

(
6

πe

) d
4

· ∥f∥W s
p (Sd−1) , f ∈ W s

p (Sd−1),

where c0 is an absolute constant independent of r, d, s, and f .

Proposition E.2.3 is motivated from Eq.(14) in [195], where they proved ∥f∥∞ ≤ Cs,d ∥f∥W s
p (Sd−1),

f ∈ W s
p (Sd−1) for s ≥ d−1

2
. The constant obtained in [195] is Cs,d :=

(
1
ωd

∑∞
k=0

N (k,d)

(k+ d−2
2

)2s

)1/2,

where ωd is the surface of d-dimensional sphere. For large enough d, (1/ωd)
1/2 grows in

the order of O
((

d
2πe

)d/4). Then, by choosing s ≥ 3d−2
4

, (1/ωd)
1/2 can be absorbed into the

infinite sum making the constant Cs,d converge in an asymptotic regime of d. It should be

noted that the threshold on smoothness index (i.e., s ≥ 3d−2
4

) is larger than that from [195]

(i.e., s ≥ d−1
2
), where they consider the fixed d. See Appendix E.3.1 for the proof. Next,

we state the discretization lemma which provides a probabilistic bound on the difference

LN(f)− L̂y
N,M(f).

Lemma E.2.4 Let r ≤ 3d−2
4

and 0 < α < 1. If f ∈ W r
∞(Sd−1), then for any M ∈ N and

1 ≤ N ≤ dα + 1, there exist y = {y1, y2, . . . , yM} ⊂ Sd−1 such that

∥∥∥LN(f)− L̂y
N,M(f)

∥∥∥
∞

≤
6 · C ′′( 6

πe

) d
4 ∥f∥W r

∞(Sd−1) d
N+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

,
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where C
′′
> 0 is a constant depending on α but independent of r, f , N , M , and d.

Lemma E.2.4 is motivated by Lemma 2 in [179]. The main framework of the proof is based

on the Sobolev embedding property in Proposition E.2.3 and the concentration inequality

for random variables with values in a Hilbert space, which can be found in [211]. For the

application of the concentration inequality, the random variable ξ(yi) := Fr(yi)ξN,r(⟨x,yi⟩)

in (E.7) needs to be bounded in ∥ · ∥W s
2 (Sd−1) norm for s ≥ 3d−2

4
. See Appendix E.3.2 for

the proof of the Lemma.

When compared with the technical proof of Lemma 2 from [179], the most notable

difference comes from tracking the explicit dependency on d in the constant factor. Specif-

ically, under the fixed d setting, [179] did not explicitly express how the constant cs,r,d (see

the statement in their Lemma) depends on d. However, in our paper, since the main focus

is how the approximation error behaves under d → ∞, we need to keep tracking on how d

explicitly affects the bound. The result of Proposition 4.1 in our paper serves as an impor-

tant role for this tracking. Note that the constant c0 is independent of s, d, r, f in the bound

of Proposition 4.1, and we obtain the bound decays at the rate
(

6
πe

)d/4. However, in [179],

they utilized the result from [195]; that is, ∥f∥∞ ≤ Cs,d∥f∥W s
p (Sd−1), f ∈ W s

p (Sd−1) for

s ≥ d−1
2

. Here, note that the constant Cs,d is a function of d, and since they work under the

fixed d setting, they didn’t pay much attention to the dependency. Of course, since we are in

an asymptotic setting, we use the Stirling’s formula to see behaviors of N (k, d) as d → ∞,

whereas [179] just used a simple calculation N (k, d) ≤ c′dk
d−2, for some c′d dependent on

d.

E.2.2 Construction of Deep ReLU Networks : Error bound for (III)

In this section, several useful tools for the construction of neural network for approximating

function L̂y
N,M(f) are introduced. Then, the full proof of our main theorem is presented.

The first key lemma is from [182] wherein the neural network that approximates the

quadratic function x2 for x ∈ [0, 1] is constructed.
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Lemma E.2.5 (Proposition 2 in [182]) For any positive integer m ≥ 1, there exists a deep

ReLU network

f̃m ∈ F
(
m,
(
1, 5, . . . , 5, 1

))
,

such that f̃m ∈ [0, 1] and
∣∣∣f̃m(x)− x2

∣∣∣ ≤ 2−2m−2, for all x ∈ [0, 1].

The main idea of Lemma E.2.5 is to approximate the quadratic function via f̃m(x) :=

x−
∑m

s=1
gs(x)
22s

. Here, gs(x) is a s-compositions of sawtooth functions defined as

g(x) = 2σ(x)− 4σ(x− 1/2) + 2σ(x− 1).

Note that g(x) can be implemented by a single layer ReLU network. Then, we can easily

construct a ReLU network f̃m, which belongs to F(m, (1, 5, . . . , 5, 1)).

Next lemma states that we can construct a neural network that can implement the mul-

tiplication operator.

Lemma E.2.6 For any positive integer m ≥ 1, there exists a deep ReLU network

Multm ∈ F
(
m+ 3,

(
2, 10, . . . , 10, 1

))
,

such that Multm(x, y) ∈ [0, 1] and

|Multm(x, y)− xy| ≤ 2−2m−1,

for all x, y ∈ [0, 1]. Moreover, Multm(x, 0) = Multm(0, y) = 0.

The key idea for constructing Multm(x, y) is to invoke the identity xy = 1
4
((x + y)2 −

(x − y)2). The first two hidden layers in the network are used to compute |x+y
2
| ∈ [0, 1]

and |x−y
2
| ∈ [0, 1] via |x| = σ(x) + σ(−x). Given the values |x+y

2
| and |x−y

2
| as inputs, f̃m
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in Lemma E.2.5 is used for approximating 1
4
(x + y)2 and 1

4
(x − y)2 in the identity. See

Appendix E.3.3 for the detailed proof.

The final key ingredient is to construct a deep ReLU network that approximates uni-

variate polynomial functions of degree k ∈ N, that is xk for x ∈ [0, 1].

Lemma E.2.7 For any positive integer m ≥ 1, N ≥ 2 and for P = ⌈log2(N)⌉, there exists

a deep ReLU network

Poly{N}
m ∈ F

(
L,
(
1, 11N, . . . , 11N, 2P

)
,N
)
,

with the depth L = m + (m + 4)
(
⌈log2(N)⌉ − 1

)
and the number of parameters N ≤

202N · (m+ 3) such that Poly{N}
m (x) ∈ [0, 1]2

P
and

∣∣Polyjm(x)− xj
∣∣ ≤ P 2 · 2−2m−1 for all j ∈ {1, . . . , 2p}

for all x ∈ [0, 1].

Note that the network Poly{N}
m (x) := {Poly1

m(x), . . . ,Poly2P

m (x)} with P = log2(N)⌉ pro-

vides approximations to monomials xj of degree up to 2N for x ∈ [0, 1] at its final output.

The key idea for the construction is to employ a tree structure; that is, the width of the

network at ((m+1)+ (m+4) · j)th hidden layer is doubled from that at ((m+1)+ (m+

4) · (j − 1))th hidden layer for j ∈ {1, . . . , p− 1} as

{
Poly1

m(x), . . . ,Poly2j−1

m (x)
}︸ ︷︷ ︸

((m+1)+(m+4)·(j−1))thlayer

→
{

Poly1
m(x), . . . ,Poly2j−1

m (x),Multm(x,Poly2j−1

m (x)), . . . , f̃m
(
Poly2j−1

m (x)
)}︸ ︷︷ ︸

((m+1)+(m+4)·j)th layer

.

(E.8)

The first 2j−1 input values in ((m+1)+(m+4)·j)th hidden layer is exactly copied from in-

put values at the ((m+1)+(m+4)·(j−1))th hidden layer. The remaining 2j−1 input values
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in ((m+1)+(m+4)·j)th hidden layer approximates monomials {x2j−1+1, . . . , x2j} through

f̃m and Multm operations in Lemmas E.2.5 and E.2.6. The approximation error can be ob-

tained via proof by induction. Readers can find the detailed proof in the Appendix E.3.4

with the exact descriptions on the construction of Poly{N}
m .

Finally, we are ready to state Proposition E.2.8 on the construction of network f̃ which

approximates L̂y
N,M(f).

Proposition E.2.8 Let 0 < α < 1,m,N,M ∈ N with 1 ≤ N ≤ dα + 1. For any function

f ∈ W r
∞(Sd−1) with r > 0, define L̂y

N,M(f) in (E.7). Then, there exists a network

f̃ ∈ F
(
L,
(
d, 22NM, . . . , 22NM, 1

)
,N
)

with depth L = (m+4)⌈log2(2N)⌉ and number of parameters N ≤ M(2d+404N · (m+

3) + 2N + 4) + 1 such that

∥∥∥L̂y
N,M(f)− f̃

∥∥∥
∞

≤ C
′

η · ∥f∥W r
∞(Sd−1) d

2N
(
log2(2N)

)2
2−2m, (E.9)

where C
′
η is a positive constant depending on η and α, but not on d, r,m,N,M or f .

A detailed proof for Proposition E.2.8 is deferred in the Appendix E.3.5.

Given the input data x ∈ Sd−1, recall the definition of L̂y
N,M(f)(x) in (E.7). The

crux of the whole construction procedure of our network is to build the sub-network which

approximates ξN,r(⟨x,yi⟩) for each i ∈ [M ]. The key observation is that ξN,r(⟨x,yi⟩) is

the weighted sum of univariate polynomials of degree up to 2N . Let ui = ⟨x,yi⟩. With the

properly defined constant αi,q (see its definition in the Appendix E.3.5), ξN,r(⟨x,yi⟩) can

be re-written as ξN,r(ui) :=
∑2N

q=0 αi,q|ui|q. Since |ui| ∈ [0, 1], with the help of network

constructed in Lemma E.2.7 with P = ⌈log2(2N)⌉, the sub-network that approximates

ξN,r(ui) is easily constructed. Recall this is enabled through the reproducing property of

the kernel of Hd
k for 0 ≤ K ≤ 2N .
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E.3 Proofs of Statements in Appendix B and Corollary 5.2.3

E.3.1 Proof of Proposition E.2.3

Proposition E.3.1 For d ≥ 5, 1 ≤ p ≤ ∞, and s ≥ 3d−2
4

, the Sobolev space W s
p (Sd−1)

is continuously embedded into C(Sd−1), the space of continuous functions on Sd−1, which

implies

∥f∥∞ ≤ c0

(
6

πe

) d
4

· ∥f∥W s
p (Sd−1) , f ∈ W s

p (Sd−1),

where c0 is an absolute constant independent of r, d, s, and f .

Proof. For f ∈ W s
p (Sd−1), by Sobolev embedding Lemma (see [195] Eq. 14, p. 420), the

infinity norm can be bounded by the Sobolev norm as

∥f∥∞ ≤ Cs,d · ∥f∥W s
2 (Sd−1) , (E.10)

where the constant Cs,d is defined with its square as

C2
s,d :=

1

ωd

∞∑
k=0

N (k, d)

(k + d−2
2
)2s

(E.11)

with ωd = 2π
d
2 /Γ
(
d
2

)
. Recalling (5.3), it is easy to see that by Stirling’s formula, for large

d, N (k, d) = (k + d−2
2
)d−2

(
1 +O

(
1
d

))
. Also, we have

Γ

(
d

2

)
=

2

d
Γ

(
d

2
+ 1

)
= 2

√
π

d

(
d

2e

) d
2
(
1 +O

(
1

d

))
. (E.12)

When s > d−1
2

, we have

∞∑
k=0

(
k +

d− 2

2

)d−2−2s

≤
∫ ∞

d−2
2

−1

td−2−2sdt =
1

2s+ 1− d

(
d− 2

2
− 1

)d−1−2s

.
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Observe that d ≥ 5, we have d−2
2
−1 ≥ d

12
. Thus, when s ≥ 3d−2

4
, we have 2s+1−d ≥ d/2

and thereby (E.11) is bounded as

C2
s,d ≤

√
π

d

(
d

2πe

) d
2 2

d

(
d

12

)− d
2
(
1 +O

(
1

d

))
=

2
√
π

d
√
d

(
6

πe

) d
2
(
1 +O

(
1

d

))
.

Then, there exists an absolute constant c0 such that

C2
s,d ≤ c20

(
6

πe

) d
2

, ∀d ≥ 5.

This yields the claim.

E.3.2 Proof of Lemma E.2.4

Lemma E.3.2 Let 0 < r ≤ 3d−2
4

and 0 < α < 1. If f ∈ W r
∞(Sd−1), then for any M ∈ N

and 1 ≤ N ≤ dα + 1, there exist y = {y1, y2, . . . , yM} ⊂ Sd−1 such that

∥∥∥LN(f)− L̂y
N,M(f)

∥∥∥
∞

≤
6 · C ′′( 6

πe

) d
4 ∥f∥W r

∞(Sd−1) d
N+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

,

where C
′′
> 0 is a constant depending on α but independent of r, f , N , M , and d.

Proof. We recall the following probability inequality for random variables with values in a

Hilbert space which can be found in [211].

Lemma E.3.3 Let (H, ∥·∥) be a Hilbert space and ξ be a random variable on (Y, ρX ) with

values in H . Assume ∥ξ∥ ≤ M < ∞ almost surely. Denote σ2(ξ) = E(∥ξ∥2). Let {yi}Mi=1

be independent samples from ρX . Then for any 0 < δ < 1, we have with probability at

least 1− δ,

∥∥∥∥∥ 1

M

M∑
i=1

ξ(yi)− E(ξ)

∥∥∥∥∥
H

≤
2M log

(
2
δ

)
M

+

√
2σ2(ξ) log

(
2
δ

)
M

. (E.13)
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Let us define the random variable ξ on (Sd−1, ρX ) with values in H given by

ξ(y) = Fr(y)
2N∑
k=0

(1 + λk)
−r/2η

(
k

N

)
Zk(y, ·), y ∈ Sd−1. (E.14)

To bound the norm ∥ξ∥ = ∥ξ(y)∥2W s
2
, we set s = 3d−2

4
and recall the norm of W s

2 (Sd−1)

given with p = 2 and for y ∈ Sd−1,

∥ξ(y)∥W s
2 (Sd−1) =

∥∥∥∥∥Fr(y)
2N∑
k=0

(1 + λk)
s−r
2 η

(
k

N

)
Zk(y, ·)

∥∥∥∥∥
L2(Sd−1)

. (E.15)

Recall λk = k(k + d − 2). Then, for 0 ≤ k ≤ 2N , d ≥ 3, we have k2 < 1 + λk ≤ dk2.

We find (1 + λk)
s−r ≤ ds−rk2(s−r) by s = 3d−2

4
≥ r (∵ s− r ≥ 0). Also note that

0 ≤ η(t) ≤ 1 for t ∈ [0, 2]. Employing Stirling’s formula d! =
√
2πd

(
d
e

)d(
1 +O(1/d)

)
in

the expression (5.3) for N (k, d) yields N (k, d) ≤ Cdk for 0 ≤ k ≤ 2N and some constant

C depending on α but independent of d. By using the identity Zk(y, y) = N (k, d) (see

Corollary 1.2.7. in [193]), ∥ξ∥2
W s

2 (Sd−1)
can be bounded as

Fr(y)
2 ·

2N∑
k=0

(
1 + λk

)s−r
η2
(

k

N

)
N (k, d) = Fr(y)

2 ·
(
1 +

2N∑
k=1

(
1 + λk

)s−r
η2
(

k

N

)
N (k, d)

)

≤ Fr(y)
2 ·
(
1 + C · ds−r ·

2N∑
k=1

k2(s−r)dk
)

≤ Fr(y)
2 ·
(
1 + C · d2N+s−r ·

2N∑
k=1

k2(s−r)

)
,

while the term
∑2N

k=1 k
2(s−r) with s− r ≥ 0 can be bounded as

2N∑
k=1

k2(s−r) ≤
∫ 2N+1

1

x2(s−r)dx ≤ 1

2(s− r) + 1
(2N + 1)2(s−r)+1.

Combining this with the definitions of the norm ∥f∥W r
∞(Sd−1), we know that ∥ξ(y)∥2W s

2
can
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be bounded as

∥ξ(y)∥2W s
2
≤ C ′2 ∥f∥2W r

∞(Sd−1) · d
2N+s−r(2N + 1)2(s−r)+1,

where C ′ is a constant depending on α but independent of r, s, f , N , and d. Thus the

random variable ξ satisfies the condition ∥ξ∥ ≤ M < ∞ in Lemma E.3.3 with M =

C ′ ∥f∥W r
∞(Sd−1) d

N+ s−r
2 (2N + 1)(s−r)+ 1

2 . So by Lemma E.3.3, with δ = 1
2

and σ2(ξ) ≤

M2, we know from the positive measure of the sample set that there exists a set of points

y = {yi}Mi=1 ∈ Sd−1 such that

∥∥∥∥∥ 1

M

M∑
i=1

ξ(yi)− E(ξ)

∥∥∥∥∥
H

=
∥∥∥LN(f)− L̂y

N,M(f)
∥∥∥
W s

2 (Sd−1)

≤
6 · C ′ ∥f∥W r

∞(Sd−1) d
N+ s−r

2 (2N + 1)(s−r)+ 1
2

√
M

. (E.16)

Since s = 3d−2
4

, combining the result from Proposition E.2.3 with (E.16) yields

∥∥∥LN(f)− L̂y
N,M(f)

∥∥∥
∞

≤
6 · C ′′( 6

πe

) d
4 ∥f∥W r

∞(Sd−1) d
N+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

,

where C
′′
> 0 is a constant depending on α but independent of r, f , N , M , and d.

E.3.3 Proof of Lemma E.2.6

Lemma E.3.4 For any positive integer m ≥ 1, there exists a deep ReLU network

Multm ∈ F
(
m+ 3,

(
2, 10, . . . , 10, 1

))
,

such that Multm(x, y) ∈ [0, 1] and

|Multm(x, y)− xy| ≤ 2−2m−1,
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for all x, y ∈ [0, 1]. Moreover, Multm(x, 0) = Multm(0, y) = 0.

Proof. Given input (x, y), the network Multm(x, y) computes in the first hidden layer

(x, y) →
{
σ

(
x+ y

2

)
, σ

(
−
(
x+ y

2

))
, σ

(
x− y

2

)
, σ

(
−
(
x− y

2

))}
.

By using the equality |x| = σ(x) + σ(−x) for x ∈ [0, 1], the network computes in the

second hidden layer

(x, y) →
{
σ

( ∣∣∣∣x+ y

2

∣∣∣∣ ), σ( ∣∣∣∣x− y

2

∣∣∣∣ )}.
Note σ

( ∣∣x+y
2

∣∣ ), σ( ∣∣x−y
2

∣∣ ) ∈ [0, 1], and σ
( ∣∣x+y

2

∣∣ ) = ∣∣x+y
2

∣∣ , σ( ∣∣x−y
2

∣∣ ) = ∣∣x−y
2

∣∣. We apply

the network f̃m on the two components respectively. This gives a network of (m + 2)

hidden layers with width vector (2, 10, . . . , 10, 2) that computes

(x, y) →
{
σ

(
f̃m

( ∣∣∣∣x+ y

2

∣∣∣∣ )), σ(f̃m( ∣∣∣∣x− y

2

∣∣∣∣ ))}. (E.17)

The network Multm computes (E.17) in the (m + 3)th hidden layer. Since f̃m ∈ [0, 1],

σ
(
f̃m(x)

)
= f̃m(x). In the output layer, the network value is computed as

Multm(x, y) := f̃m

( ∣∣∣∣x+ y

2

∣∣∣∣ )− f̃m

( ∣∣∣∣x− y

2

∣∣∣∣ ). (E.18)

Since f̃m is an increasing function in argument, Multm(x, y) ≥ 0, and since f̃m ∈ [0, 1],

Multm(x, y) ≤ 1. By identity, xy =
∣∣x+y

2

∣∣2 −
∣∣x−y

2

∣∣2, and Lemma E.2.5, the error is

computed as follows:

|Multm(x, y)− xy| ≤

∣∣∣∣∣f̃m
( ∣∣∣∣x+ y

2

∣∣∣∣ )−
( ∣∣∣∣x+ y

2

∣∣∣∣ )2
∣∣∣∣∣+
∣∣∣∣∣f̃m
( ∣∣∣∣x− y

2

∣∣∣∣ )−
( ∣∣∣∣x− y

2

∣∣∣∣ )2
∣∣∣∣∣

≤ 2−2m−1.
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If either x = 0 or y = 0, by the definition of (E.18), we have Multm(x, 0) = Multm(0, y) =

0.

E.3.4 Proof of Lemma E.2.7

Lemma E.3.5 For any positive integer m ≥ 1, N ≥ 2 and for P = ⌈log2(N)⌉, there exists

a deep ReLU network

Poly{N}
m ∈ F

(
L,
(
1, 11N, . . . , 11N, 2P

)
,N
)
,

with the depth L = m + (m + 4)
(
⌈log2(N)⌉ − 1

)
and the number of parameters N ≤

202N · (m+ 3) such that Poly{N}
m (x) ∈ [0, 1]2

P
and

∣∣Polyjm(x)− xj
∣∣ ≤ P 2 · 2−2m−1 for all j ∈ {1, . . . , 2P}

for all x ∈ [0, 1].

Proof. Let us describe the construction of the network Poly{N}
m . With the application of

Lemma E.2.5, in the (m+ 1)th hidden layer, the network computes

x →
{
σ(x), σ(f̃m(x))

}
with the width p = (1, 5, . . . , 5, 2). For approximating x3, the network Multm is applied

on the pair (σ(x), σ(f̃m(x))), and for approximating x4, the network f̃m is applied on the

σ(f̃m(x)). Therefore, in the {(m + 1) + (m + 4)}th hidden layer, the network Poly{N}
m

computes

x →
{
σ(x), σ(f̃m(x)), σ

(
Multm(x, f̃m(x))

)
, σ
(
f̃m
(
f̃m(x)

))}
. (E.19)

Note that each component in the hidden layer is in [0, 1] by Lemmas E.2.5 and E.3.4. This
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procedure is continued until a following vector is in the final output layer,

x →
{

Poly1
m(x), . . . ,Poly2P−1

m (x),Multm(x,Poly2P−1

m (x)), . . . , f̃m
(
f̃m . . .

(
f̃m(x)

))}
∈ [0, 1]2

P

.

The resulting network is referred as Poly{N}
m and has m+ (m+ 4)

(
⌈log2(N)⌉ − 1

)
hidden

layers. Recall P = ⌈log2(N)⌉. By the construction procedure of the network, we can

compute the upper bound of maximum width as,

2⌈log2(N)⌉−1 +

{
10 ·

(
2⌈log2(N)⌉−1 − 1

)
+ 5

}
≤ 11 · 2⌈log2(N)⌉−1 ≤ 11N, (E.20)

where we use ⌈log2(N)⌉ ≤ log2(N) + 1 in the second inequality. Now, we need to count

the number of active parameters in the network. For k ∈ {1, . . . , ⌈log2(N)⌉}, we compute

the upper bound on the total number of active parameters in-between following hidden

layers:

{
Poly1

m(x), . . . ,Poly2k−1

m (x)

}
→
{

Poly1
m(x), . . . ,Poly2k−1

m (x),Poly2k−1+1
m (x), . . . ,Poly2k

m (x)

}
.

(E.21)

Think of a network which takes the hidden layer in the left hand side of (E.21) as an input,

and gives the hidden layer in the right hand side of (E.21) as an output. It is easy to count

the number of active parameters in input, hidden, and output layers, separately as follows:



Input layer : 2k−1 + 1 + 2 ·
(
2k−1 − 1

)
= 3 · 2k−1 − 1.

Hidden layers : (m+ 2) · 2k−1 + 100 · (m+ 2) · (2k−1 − 1) + 25 · (m+ 2)

= (m+ 2)(101 · 2k−1 − 75).

Output layer : 2k−1 + 10 · (2k−1 − 1) + 5 = 11 · 2k−1 − 5.

Since the k runs over {1, . . . , ⌈log2(N)⌉}, the total number of active parameters can be
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bounded as:

⌈log2(N)∑
k=1

{(
m+ 2

)(
101 · 2k−1 − 75

)
+

(
14 · 2k−1 − 6

)}

≤ (m+ 2) · 101
⌈log2(N)∑

k=1

2k−1 + 14 ·
⌈log2(N)∑

k=1

2k−1

≤ 202N · (m+ 3).

The approximation error is proved via induction on the number of iterated multiplications

P = ⌈log2(N). For P = 1, that is N = 2, we have

∣∣∣x2 − f̃m(x)
∣∣∣ ≤ 2−2m−1

by Lemma E.2.5. For the convenience of notation, denote x̃a := Polya
m(x) for some posi-

tive integer a. For P = k − 1, assume a following holds

∣∣xj − x̃j
∣∣ ≤ 3k−2 · 2−2m−1 for j ∈ {1, . . . , 2k−1}.

Then, for P = k, we want to prove

∣∣xj − x̃j
∣∣ ≤ 3k−1 · 2−2m−1 for j ∈ {1, . . . , 2k}.

By the construction of neural network and induction assumption, for j ∈ {1, . . . , 2k−1},

we have |xj − x̃j| ≤ 3k−2 · 2−2m−1 ≤ 3k−1 · 2−2m−1. For any j ∈ {2k−1 + 1, . . . , 2k}, find

any a, b ∈ {1, . . . , 2k−1} such that j = a+ b. Then, for x ∈ [0, 1],

∣∣xa+b − Multm
(
x̃a, x̃b

)∣∣ ≤ ∣∣xa+b − x̃a · x̃b
∣∣+ ∣∣x̃a · x̃b − Multm

(
x̃a, x̃b

)∣∣
≤ xa

∣∣xb − x̃b
∣∣+ x̃b |xa − x̃a|+

∣∣x̃a · x̃b − Multm
(
x̃a, x̃b

)∣∣
≤ 3k−2 · 2−2m−1 + 3k−2 · 2−2m−1 + 2−2m−1 ≤ 3k−1 · 2−2m−1.
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By using the fact log2(3) < 2, we can deduce 3k−1 < P 2 and conclude the proof.

E.3.5 Proof of Proposition E.2.8

Proposition E.3.6 Let 0 < α < 1,m,N,M ∈ N with 1 ≤ N ≤ dα + 1. For any function

f ∈ W r
∞(Sd−1) with r > 0, define L̂y

N,M(f) in (E.7). Then, there exists a network

f̃ ∈ F
(
L,
(
d, 22NM, . . . , 22NM, 1

)
,N
)

with depth L = (m+ 4)⌈log2(2N) and number of parameters N ≤ M(2d+ 404N · (m+

3) + 2N + 4) + 1 such that

∥∥∥L̂y
N,M(f)− f̃

∥∥∥
∞

≤ C
′

η · ∥f∥W r
∞(Sd−1) d

2N
(
log2(2N)

)2
2−2m, (E.22)

where C
′
η is a positive constant depending on η and α, but not on d, r,m,N,M or f .

Proof. We adopt the shorthand notation denoting [n] := {1, 2, . . . , n} and [n]0 := {0, 1, . . . , n}

for n ∈ N in the proof.

Given the input data x ∈ Sd−1, recall the definition of L̂y
N,M(f)(x) in (E.7). The crux

of the whole construction procedure is to build the the sub-network which approximates

ξN,r(⟨x,yi⟩) for each i ∈ [M ]. First, observe that, by (5.6) and (E.6), ξN,r(ui) can be

written as:

ξN,r(ui) =
2N∑
k=0

(1 + λk)
− r

2η

(
k

N

){
k + λG

λG

⌊ k
2
⌋∑

ℓ=0

(−1)ℓ
Γ
(
k − ℓ+ λG

)
Γ
(
λG
)
ℓ!
(
k − 2ℓ

)
!

(
2ui

)k−2ℓ
}
,

(E.23)

for i ∈ [M ]. The key observation is that Eq. (E.23) is the weighted sum of univariate
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polynomials of degree up to 2N . We define a constant ck,ℓ,η,λk,r,d as

ck,ℓ,η,λk,r,d := (1 + λk)
− r

2η

(
k

N

)
k + λG

λG

(−1)ℓΓ
(
k − ℓ+ λG

)
2k−2ℓ

Γ
(
λG
)
ℓ!
(
k − 2ℓ

)
!

. (E.24)

For i ∈ {1, . . . ,M}, set αi,q as

αi,q =


∑

(k,ℓ)∈Aq

(
− ck,ℓ,η,λk,r,d

)
if ui < 0 and q is odd,∑

(k,ℓ)∈Aq

(
ck,ℓ,η,λk,r,d

)
otherwise,

(E.25)

where for each q ∈ {0, . . . , 2N}, the set Aq is given by Aq := {(k, ℓ) ∈ [2N ]0 × [⌊k/2⌋]0 :

k − 2ℓ = q}. Then, (E.23) can be re-written as ξN,r(ui) :=
∑2N

q=0 αi,q|ui|q.

1. The Network Construction. Now, we are ready for the construction of f̃ . Through

Lemma E.2.4, we know that there exists y = {y1, . . . ,yM} that satisfies the bound (E.2.4).

Then, for each i ∈ [M ], we put yi ∈ Sd−1 as a weight vector that connects input x

to the (2i − 1)th and (2i)th nodes in the first hidden layer. Through this, f̃ computes in

its first hidden layer x →
{
σ
(
⟨x,y1⟩

)
, σ
(
− ⟨x,y1⟩

)
, . . . , σ

(
⟨x,yM⟩

)
, σ
(
− ⟨x,yM⟩

)}
∈

[0, 1]2M . Then, by the identity |x| = σ(x) + σ(−x) for x ∈ R, the network computes

in its second hidden layer x →
{
σ
(
|u1|

)
, σ
(
|u2|

)
, . . . , σ

(
|uM |

)}
∈ [0, 1]M , where

ui := ⟨x,yi⟩ ∈ [−1, 1] for i ∈ [M ]. Since σ(|ui|) = |ui| ∈ [0, 1], Poly{2N}
m with

P = ⌈log2(2N) is applicable for each {|ui|}Mi=1, and it generates Polyq
m(|ui|) with q

at most 4N . Set Bmax := maxi=1,...,M

∣∣∣∑2N
q=0 αi,q · Polyq

m(|ui|)
∣∣∣. Using the definition

of the constant αi,q, the network f̃ computes in the (m + 4)⌈log2(2N)th hidden layer

{σ(
∑2N

q=0 α1,qPolyq
m(|u1|) + 2Bmax), . . . , σ(

∑2N
q=0 αM,qPolyq

m(|uM |) + 2Bmax)} ∈ RM . By

the definition of Bmax, it is easy to see each component in the hidden layer is positive. Set the

weight of output layer as { 1
M
Fr(yi)}Mi=1. Define L(|ui|) :=

∑2N
q=0 αi,q·Polyq

m(|ui|)+2·Bmax.

Then, given the data y = {y1, . . . ,yM}, the network f̃ computes its final output as

f̃(x) = 1
M

∑M
j=1 Fr(yj) ·

(
L(|⟨x,yj⟩|)− 2Bmax

)
:= 1

M

∑M
i=1 Fr(yi) · L

(
ξN,r

)(
⟨x,yi⟩

)
.

2. The Width and Number of Active Parameters of f̃ . By the construction of net-

266



work f̃ and the result of Lemma E.2.7, it is easy to see the maximum width of the network

is 22NM . Now, we work on counting the number of active parameters in the network as


From Input to 2nd hidden layer : 2Md+ 2M.

From 2nd to
(
(m+ 4)⌈log2(2N)− 1

)th hidden layer : 404NM · (m+ 3).

From
(
(m+ 4)⌈log2(2N)− 1

)th hidden layer to output layer : (2N + 1)M +M + 1.

Summing up the total number yields the desired result.

3. Approximation Error Computation. A remaining thing is to calculate the approx-

imation error:

∥∥∥L̂y
N,M(f)− f̃

∥∥∥
∞

= sup
x∈Sd−1

∣∣∣∣∣ 1M
M∑
i=1

Fr(yi) · ξN,r(⟨x,yi⟩)−
1

M

M∑
i=1

Fr(yi) · L
(
ξN,r

)(
⟨x,yi⟩

)∣∣∣∣∣
≤ ∥f∥W r

∞(Sd−1) ·
∥∥ξN,r − L

(
ξN,r

)∥∥
∞ . (E.26)

Recall the definition of αi,q in (E.25). Using Stirling’s Formula, Γ(n+1) =
√
2πn

(
n
e

)n
(1+

O(1/n)), we observe the behavior of Gegenbauer coefficient in (5.6) where λG = d−2
2

≫

dα +1 ≥ N , and find that it can be bounded as C · λk−ℓ
G · 2k−2ℓ(1 +O(1/d)), where C > 0

is a constant independent of d.

For k ∈ {0, 1, . . . , 2N}, combining the facts (1 + λk)
− r

2 < 1, η(·) ≤ 1, k+λG
λG

≤ 2 for

k ≤ 2N ≤ 2(dα + 1) with λG = d−2
2

yields

∣∣ck,ℓ,η,λk,r,d

∣∣ ≤ C
′

η · 2−ℓ · dk−ℓ, (E.27)

where C
′
η > 0 is a constant dependent on α and η. Recall L

(
ξN,r

)(
⟨x,yj⟩

)
:=
∑2N

q=0 αj,q ·
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Polyq
m(|⟨x,yj⟩|) and note that

∑2N
q=0 |αj,q| =

∑2N
k=0

∑⌊ k
2
⌋

ℓ=0

∣∣ck,ℓ,η,λk,r,d

∣∣. Then, we have

∥∥ξN,r − L
(
ξN,r

)∥∥
∞ ≤

( 2N∑
k=0

⌊ k
2
⌋∑

ℓ=0

∣∣ck,ℓ,η,λk,r,d

∣∣) ·
(

sup
u∈[0,1]

max
q∈{0,...,2N}

|uq − Polyq
m(u)|

)

≤ C
′

η ·
( 2N∑

k=0

dk
⌊ k
2
⌋∑

ℓ=0

1

(2d)ℓ

)
·
((

log2(2N)
)2 · 2−2m−1

)

where we used the result from Lemma E.2.7 and (E.27) in the second inequality. Using∑⌊ k
2
⌋

ℓ=0
1

(2d)ℓ
≤ 2 in the last inequality yields the claim.

E.3.6 Proof of Corollary 5.2.3

Corollary E.3.7 Let 0 < α, β, γ < 1 with γ > max{α, β} and N ∈ N with 1 ≤ N ≤

dα + 1. For any f ∈ W r
∞(Sd−1) with r > 0, we have :

(I) For 3d−2
4

− C1 ≤ r ≤ 3d−2
4

with some constant C1 ≥ 0 independent of d, there exists

a network

f̃ (I) ∈ F (L, (d, 66N, 66N, . . . , 66N, 1) ,N )

with depth L = O (dγ log2 d) and the number of active parameters N = O
(
dmax{α+γ,1}),

such that
∥∥∥f − f̃ (I)

∥∥∥
∞

≤ C ′
η,α,β,γ∥f∥W r

∞(Sd−1)d
−dβ , where C ′

η,α,β,γ is a constant de-

pending only on C1, η, α, β, γ.

(II) For r = O(1) and M = O
(
9dd

9
4
d
)

, there exists a network

f̃ (II) ∈ F
(
L,
(
d, 22NM, . . . , 22NM, 1

)
,N
)

with depth L = O (dγ log2 d) and the number of active parameters N = O
(
9dd

13
4
d
)

such that
∥∥∥f − f̃ (II)

∥∥∥
∞

≤ C ′
η,α,β,γ∥f∥W r

∞(Sd−1)d
−αr, where C ′

η,α,β,γ is a constant

depending only on η, α, β, γ.

Proof. By the results of Theorem 5.2.1, for 1 ≤ N ≤ dα + 1, we have the following
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inequality on the approximation error

∥∥∥f̃ − f
∥∥∥
∞

≤ C
′′

η ∥f∥W r
∞(Sd−1) ×

max

{
N−r,

(
6
πe

) d
4dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

,d2N
(
log2(2N)

)2
2−2m

}
,

(E.28)

where C
′′
η is a constant dependent on η, and independent on d, r,N,M or f . We divide the

proof into two cases.

(I) r = O(d) and any integer M ≥ 1

For the first term in (E.28), since N = ⌈dα, we know that N−r = O(d−αr) = O(d−dβ)

with any 0 < β < 1. This is due to the assumption that 3d−2
4

− C1 ≤ r ≤ 3d−2
4

, which

implies d = O(r) and dβ = o(r).

For the second term in (E.28), since N = ⌈dα with 0 < α < 1, we know that it is

bounded by

(
6
πe

) d
4dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

≤
(

6
πe

) d
4dd

α+ 3d−4r+6
8 (3dα)

3d−4r
4

√
M

. (E.29)

As 3d−2
4

−C1 ≤ r ≤ 3d−2
4

, we know the term on the right hand side of (E.29) can be written

as
(

6
πe

) d
4dd

α+O(1)3O(1)/
√
M . To show that the bound is of order O(d−dβ), we multiply the

bound by dd
β , take the logarithm, and find that for any 0 < α, β < 1,

log

((
6

πe

) d
4

dd
α+dβ+O(1)

)
≤ d

4
log

(
6

πe

)
+
(
dα + dβ +O(1)

)
log(d) → −∞,

as d → ∞. Hence, there exists a constant Cα,β > 0 depending only on C1, α, β such that

(
6
πe

) d
4dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

≤ Cα,βd
−dβ ,

for any fixed M ∈ N. In our proof, we simply choose M = 3. For the third term in (E.28),
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take m = ⌈dγ⌉ with max{α, β} < γ < 1, then there exists a constant Cα,β,γ depending on

α, β, γ such that

d2N
(
log2(2N)

)2
2−2m < d2d

α+2
(
2 + log2(d)

)2
2−2m ≤ d3d

α

2−2m ≤ Cα,β,γd
−dβ ,

where log2(2d
α + 2) ≤ log2(4d

α) < 2 + log2(d) is used in the first inequality, and the last

inequality follows from the same argument as above, of multiplying with dd
β and taking

the logarithm. Combining all the analysis above, we have

∥∥∥f̃ − f
∥∥∥
∞

≤ C ′
η,α,β,γ∥f∥W r

∞(Sd−1)d
−dβ ,

where C ′
η,α,β,γ > 0 is a constant dependent on η, α, β, γ, and C1.

Recall from Proposition E.2.8, f̃ is a network with depth L = (m+ 4)⌈log2(2N)⌉ and

number of parameters N ≤ M(2d+404N · (m+3)+2N +4)+1. By simply plugging-in

m = ⌈dγ⌉, N = ⌈dα⌉ and M = 3, we have L = O(dγ log2(d)) and N = O
(
dmax{α+γ,1}).

(II) r = O(1) and M = O(dd).

For the first term in (E.28), since N = ⌈dα⌉, we know that N−r = O(d−αr).

For the second term in (E.28), since N = ⌈dα⌉ with 0 < α < 1, we know that it is

bounded by

(
6
πe

) d
4dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

≤
(

6
πe

) d
4dd

α+ 3d−4r+6
8 (3dα)

3d−4r
4

√
M

≤
(

6
πe

) d
4dd

α+ 9
8
d3d

√
M

.

(E.30)

Take M = O(9dd
9
4
d), multiply the bound (E.30) by dd

β , take the logarithm, and find that

for any 0 < α, β < 1,

log

((
6

πe

) d
4

dd
α+dβ+O(1)

)
≤ d

4
log

(
6

πe

)
+
(
dα + dβ +O(1)

)
log(d) → −∞,
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as d → ∞. Hence, there exists a constant Cα,β > 0 depending only on C1, α, β such that

(
6
πe

) d
4dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

≤ Cα,βd
−dβ ≤ Cα,βd

−αr,

for M = O(9dd
9
4
d). For the third term in (E.28), take m = ⌈dγ⌉ with max{α, β} < γ < 1,

then there exists a constant Cα,β,γ depending on α, β, γ such that

d2N
(
log2(2N)

)2
2−2m < d2d

α+2
(
2 + log2(d)

)2
2−2m ≤ d3d

α

2−2m ≤ Cα,β,γd
−dβ ≤ Cα,β,γd

−αr,

where log2(2d
α + 2) ≤ log2(4d

α) < 2 + log2(d) is used in the first inequality, and the last

inequality follows from the same argument as above, of multiplying with dd
β and taking

the logarithm. Combining all the analysis above, we have

∥∥∥f̃ − f
∥∥∥
∞

≤ C ′
η,α,β,γ∥f∥W r

∞(Sd−1)d
−αr,

where C ′
η,α,β,γ > 0 is a constant dependent on η, α, β, γ, and C1.

Recall from Proposition E.2.8, f̃ is a network with depth L = (m + 4)⌈log2(2N)⌉

and number of parameters N ≤ M(2d + 404N · (m + 3) + 2N + 4) + 1. By simply

plugging-in m = ⌈dγ⌉, N = ⌈dα⌉ and M = O(9dd
9
4
d), we have L = O(dγ log2(d)) and

N = O
(
9dd

13
4
d
)

.

E.4 Proofs of Proposition 5.3.2, Theorem 5.3.3 and Theorem 5.3.4

E.4.1 Proof of Proposition 5.3.2

Proposition E.4.1 Set δ ∈ (0, 1). Then, with probability at least 1− δ, we have

E
(
πB f̂n

)
− E

(
fρ
)
≤ CB,δ,f ·

(
Pdim(F) · log(n)

n
+

∥f − fρ∥∞√
n

+ ∥f − fρ∥2∞
)
, (E.31)

where CB,δ,f is an absolute constant dependent on B, δ, f independent on n, r, d.
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Proof. Since f̂n is an empirical risk minimizer in (5.14), we have ED(f̂n) ≤ ED(f) for any

fixed f ∈ F and ED(πB f̂n) ≤ ED(f̂n). Then, we have a following decomposition:

E
(
πB f̂n

)
− E

(
fρ
)
=

({
E
(
πB f̂n

)
− E

(
fρ
)}

−
{
ED
(
πB f̂n

)
− ED

(
fρ
)})

+

({
ED
(
πB f̂n

)
− ED

(
fρ
)}

−
{
ED
(
f
)
− ED

(
fρ
)})

+

({
ED
(
f
)
− ED

(
fρ
)}

−
{
E
(
f
)
− E

(
fρ
)})

+

(
E
(
f
)
− E

(
fρ
))

≤
({

E
(
πB f̂n

)
− E

(
fρ
)}

−
{
ED
(
πB f̂n

)
− ED

(
fρ
)})

(E.32)

+

({
ED
(
f
)
− ED

(
fρ
)}

−
{
E
(
f
)
− E

(
fρ
)})

+

(
E
(
f
)
− E

(
fρ
))

.

Let FB := {πBf : ∀f ∈ F} and define two quantities:

S1(n,FB) :=
{
E
(
f
)
− E

(
fρ
)}

−
{
ED
(
f
)
− ED

(
fρ
)}

∀f ∈ FB,

S2(n,F) :=
{
ED
(
f
)
− ED

(
fρ
)}

−
{
E
(
f
)
− E

(
fρ
)}

∀f ∈ F .

Step 1 : Control S1(n,FB). The following concentration inequality is needed for control-

ling the term.

Lemma E.4.2 [Theorem 11.4 of [212]] Assume |y| ≤ B almost surely and B ≥ 1. Let

α, β > 0 and 0 < ε ≤ 1/2. If F ′
is a set of functions f : Rd → [−B,B], then for any

f ∈ F ′
, we have

P
(
S1(n,F

′
) ≤ ε(α + β + E(f)− E(fρ))

)
≥ 1− sup

D
N
(

βε

20B
,F ′

, ∥ · ∥L1(D)

)
exp

(
− ε2(1− ε)αn

214(1 + ε)B4

)
.

Lemma E.4.3 [Theorem 6 of [213]] Let B > 0 and F ′
be a set of functions f : X →
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[−B,B]. Then for any ε ∈ (0, B], there holds

M(ε,F ′
, ∥ · ∥L1(D))) ≤ 2

(
2eB

ε
log

2eB

ε

)Pdim
(
F ′
)
. (E.33)

Recall a classical relation between ε-packing number and ε-covering number that as-

serts

M(2ε,F , ∥ · ∥L1(D))) ≤ N (ε,F , ∥ · ∥L1(D))) ≤ M(ε,F , ∥ · ∥L1(D))), (E.34)

for any ε > 0. Combining (E.33), (E.34), the facts log x < x, ∀x > 0, and Pdim(FB) ≤

Pdim(F) (See [214], page 297), we have the upper-bound on N (ε,FB, ∥ · ∥L1(D))) as

follows:

N (ε,FB, ∥ · ∥L1(D))) ≤ 2

(
2eB

ε
log

2eB

ε

)Pdim
(
FB

)
≤ 2

(
2eB

ε

)2Pdim
(
F
)
. (E.35)

Then, taking ε = 1
2
, β = 1

n
in Lemma E.4.2, using the upper-bound on covering number

in (E.35) yields the lower bound for the confidence level in Lemma (E.4.2) as follows:

1− sup
D

N
(

1

40Bn
,FB, ∥ · ∥L1(D)

)
exp

(
− αn

2568B4

)
≥ 1− CB · exp

(
2 · Pdim(F) · log(n)− αn

2568B4

)
, (E.36)

where CB > 0 is some absolute constants dependent on B. Choosing α in (E.36) such that

α = CB,δ ·
Pdim(F) · log(n)

n

with a properly chosen CB,δ > 0 absolute constant dependent on B and δ yields the proba-
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bility of following event is at least 1− δ
2
:

S1(n,FB) ≤
1

2

(
CB,δ ·

Pdim(F) · log(n)
n

+
1

n
+ E(πB f̂n)− E(fρ)

)
. (E.37)

Step 2 : Control S2(n,F). Define a random variable η on Z = X × Y to be

η(z) = (y − f(x))2 − (y − fρ(x))
2.

Since |η(z)| ≤ (3B + ∥f∥∞)2, then |η(z)− E[η(z)]| ≤ 2(3B + ∥f∥∞)2. It is also easy to

see σ2 ≤ E
[
η2
]
≤
(
3B+∥f∥∞

)2 ∥f − fρ∥2∞. Then, by the one-side Bernstein’s inequality

(see Lemma E.5.2), we have

P
(
S2(n,F) < ε

)
≥ 1− exp

{
− nε2

2
(
3B + ∥f∥∞

)2( ∥f − fρ∥2∞ + 2
3
ε
)}.

Taking δ
2
= exp

{
− nε2

2
(
3B+∥f∥∞

)2(
∥f−fρ∥2∞+ 2

3
ε
)}, A := 2(3B + ∥f∥∞)2, B := ∥f − fρ∥2∞

and solving the quadratic equation with respect to ε yield the following inequalities with

some absolute constant C ′′
0 > 0 :

ε =
A log

(
2
δ

)
+
√

A2 log
(
2
δ

)
+ 9nAB log

(
2
δ

)
3n

≤
2A log

(
2
δ

)
3n

+

√
AB ·

log
(
2
δ

)
n

≤ CB,f,δ ·
∥f − fρ∥∞√

n
,

where in the first inequality, the facts
√
a+ b ≤

√
a +

√
b for a, b > 0 is used, and CB,f,δ

is a constant dependent on C,B and f . Then, with probability at least 1− δ
2
, we have

S2(n,F) ≤ CB,f,δ ·
∥f − fρ∥∞√

n
. (E.38)
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Step 3 : Combining Everything. Note E
(
f
)
−E
(
fρ
)
= ∥f − fρ∥2ρX ≤ ∥f − fρ∥2∞. Then,

plugging the (E.37) and (E.38) in (E.32) yields the claim.

E.4.2 Proof of Theorem 5.3.3

Theorem E.4.4 Suppose fρ ∈ W r
∞(Sd−1) with r > 0. A network f̂n from (5.8) with

choices N = ⌈n
2

3d+4r ⌉, M = ⌈n
3d

3d+4r ⌉, and m = ⌈ r
3d+4r

log2(n)⌉ yield the bound on the

excess risk with probability at least 1− δ as follows:

E
(
πM f̂n

)
− E

(
fρ
)

≤ CB,η,δ,f ·max

{
1,

6rd

(3d+ 4r)2
(log2(n))

4,
( 6

πe

) d
2d2N+ 3d−4r−2

4 , d4N
}
· n− 2r

2r+1.5d , (E.39)

where CB,η,δ,f depends on B, η, δ, f and independent on d, r and n.

Proof. Let 0 < α < 1,m,N,M ∈ N with 1 ≤ N ≤ dα + 1. Then, for fρ ∈ W r
∞(Sd−1),

recall from Theorem E.2.8 that there exists a network

f̃ ∈ F
(
L,
(
d, 22NM, . . . , 22NM, 1

)
,N
)

(E.40)

with depth L = (m+4)⌈log2(2N)⌉ and number of parameters N ≤ M(2d+404N · (m+

3) + 2N + 4) + 1 such that the corresponding network’s approximation error is bounded

as:

∥∥∥f̃ − fρ

∥∥∥
∞

≤ C
′′

η ∥f∥W r
∞(Sd−1)×

max

{
N−r,

(
6
πe

) d
4dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

,d2N
(
log2(2N)

)2
2−2m

}
,

(E.41)

where C
′′
η is a constant dependent on η, and independent on d, r,N,M and f . Since the

network width is 22NM , the total number of units across the L-hidden layers (i.e., U) of f̃
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is bounded as

U ≤ 22NM · (m+ 4)⌈log2(2N)⌉.

If Nm = o(d), it is easy to see N ≤ O(Md). Recall from the result of Lemma E.5.1, the

pseudo-dimension of function class F in (E.40) is bounded as follows: for some universal

constants C > 0:

Pdim(F) ≤ C ·
(
mMd · ⌈log2(N)⌉ · log

(
mMN⌈log2(N)⌉

))
. (E.42)

Plug the (E.41), (E.42) in (E.31) from Proposition 5.3.2.

E
(
πM f̂n

)
− E

(
fρ
)
≤ CB,η,δ,f×{
mMd

n
log(n) · ⌈log2(N)⌉ · log

(
mMN⌈log2(N)⌉

)︸ ︷︷ ︸
Bound for Pdim(F)·log(n)/n

+max

{
N−r,

(
6
πe

) d
4dN+ 3d−4r−2

8 (2N + 1)
3d−4r

4

√
M

,d2N
(
log2(2N)

)2
2−2m

}
/
√
n︸ ︷︷ ︸

Bound for ∥f̃−fρ∥∞
/
√
n

+max

{
N−2r,

(
6
πe

) d
2d2N+ 3d−4r−2

4 (2N + 1)
3d−4r

2

M
,d4N

(
log2(2N)

)4
2−4m

}
︸ ︷︷ ︸

Bound for ∥f̃−fρ∥2

∞

}
,

(E.43)

where CB,η,δ,f depends on B, η, δ, f and independent on d, r and n. Then, under the regime

1 ≤ N ≤ dα + 1 for some 0 < α < 1 and n ≪ d, choices of m = ⌈ r
3d+4r

log2(n)⌉,

N = ⌈n
2

3d+4r ⌉ and M = ⌈n
3d

3d+4r ⌉ make the fraction of the first term in (E.43) simple as
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follows:

⌈log2(N) · log
(
mMN⌈log2(N)⌉

)
≤ 2

3d+ 4r
log2(n) log

(
log2(n)n

3d+2
3d+4r

2r

(3d+ 4r)2
⌈log2(n)⌉

)
≤ 6

3d+ 4r

(
log2(n)

)2
.

Then, with the same choices of m,N,M as above, we obtain the bound on the excess risk

as :

E
(
πM f̂n

)
− E

(
fρ
)

≤ CB,η,δ,f ·max

{
1,

6rd

(3d+ 4r)2
(log2(n))

4,
( 6

πe

) d
2d2N+ 3d−4r−2

4 , d4N
}
· n− 4r

4r+3d .

This conlcudes the proof.

E.4.3 Proof of Theorem 5.3.4

Theorem E.4.5 Suppose fρ ∈ W r
∞([0, 1]d) with r > 0. A network f̂n from (5.11) with

choices NH = ⌈n
d

2d+r ⌉, and mH = ⌈ d+r
d+2r

log2(n)⌉ yield the bound on the excess risk with

probability at least 1− δ as follows:

E
(
πM f̂n

)
− E

(
fρ
)

(E.44)

≤ CB,η,δ,K ·max

{
⌈log2(d+ ⌈r⌉)⌉2(d+ r)d · (log2(n))3,

(
1 + r2 + d2

)2
62d + 32r

}
· n− 2r

2r+d ,

where CB,η,δ,K depends on B, η, δ, K and independent on d, r and n.

Proof. From Theorem 5 of [8], for any function fρ ∈ Cr
d([0, 1]

d, K) and any integers m ≥ 1

and N ≥ (r + 1)d ∨ (K + 1)ed, there exists a network

f̃ ∈ F
(
L, (d, 6(d+ ⌈r⌉)N, . . . , 6(d+ ⌈r⌉)N, 1),N ,∞

)
(E.45)

with depth L = 8 + (m + 5)
(
1 + ⌈log2(d ∨ r)⌉

)
and the number of parameters N ≤
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141(1 + d+ r)3+dN(m+ 6), such that

∥∥∥f̃ − fρ

∥∥∥
∞

≤ (2K + 1)(1 + d2 + r2)6dN2−m +K3rN− r
d . (E.46)

Then, similarly with the proof in Theorem 5.3.3, by the result of Lemma E.5.1, the pseudo-

dimension of F in (E.45) can be bounded as

Pdim(F) ≤ C ·
(
m2N(d+ r)d⌈log2(d ∨ r)⌉ log

(
(d+ ⌈r⌉)mN⌈log2(d ∨ r)⌉

))
, (E.47)

for some universal constants C > 0.

Plug the (E.46) and (E.47) in (E.31) from Proposition 5.3.2. Then, we obtain the bound

on the excess risk as follows:

E
(
πM f̂n

)
− E

(
fρ
)
≤ CB,δ,K×{
m2N

n
log(n) · (d+ r)d⌈log2(d ∨ r)⌉ log

(
(d+ ⌈r⌉)mN⌈log2(d ∨ r)⌉

)︸ ︷︷ ︸
Bound for Pdim(F)·log(n)/n

+
(
(1 + d2 + r2)6dN2−m + 3rN− r

d

)
/
√
n︸ ︷︷ ︸

Bound for ∥f̃−fρ∥∞
/
√
n

+
(
(1 + d2 + r2)262dN22−2m + 32rN− 2r

d

)︸ ︷︷ ︸
Bound for ∥f̃−fρ∥2

∞

}
, (E.48)

where CB,δ,K depends on B, δ, K and independent on d, r and n. Note that we use (a+b)2 ≤

2a2+2b2 for all a, b ∈ R for getting the bound on
∥∥∥f̃ − fρ

∥∥∥2
∞

. We choose the N = ⌈n
d

2r+d ⌉

and m = ⌈ d+r
2r+d

log2(n)⌉. Then, a fraction of the first term in (E.48) can be bounded as:

log

(
(d+ ⌈r⌉) · d+ r

2r + d
· log2(n) · n

d
2r+d · log2(d ∨ r)

)
≤ log2

(
(d+ ⌈r⌉)2n2

)
≤ 4 · ⌈log2(d+ ⌈r⌉)⌉,
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where n ≪ d is used in the second inequality. Then, we obtain the bound on the excess

risk as :

E
(
πM f̂n

)
− E

(
fρ
)

≤ CB,η,δ,K ·max

{
⌈log2(d+ ⌈r⌉)⌉2(d+ r)d · (log2(n))3,

(
1 + r2 + d2

)2
62d + 32r

}
· n− 2r

2r+d .

This conlcudes the proof.

E.5 Useful Lemmas

Lemma E.5.1 [Theorem 6 of [198]] Consider the function class F computed by a feed-

forward neural network architecture with N parameters and U computation units arranged

across L layers. Suppose that all non-ouput units have piecewise-polynomial activation

functions with p+ 1 pieces and degree no more than d, and the output unit has the identity

function as its activation function. Then the VC-dimension and pseudo-dimension of class

F is upper bounded by

VCdim(F),Pdim(F) ≤ C ·
(
LN log(p · U) + L2N log(d)

)
,

with some universal constants C > 0.

Lemma E.5.2 [Theorem 2.8.4 of [208]] Let η be a random variable on a probability space

Z with mean E(η) = µ, variance σ2(η) = σ2, and satisfying |η(z)−E(η)| ≤ Bη for almost

z ∈ Z . Then, for any ε > 0,

P

{
1

n

n∑
i=1

η(zi)− µ < ε

}
≥ 1− exp

{
− nε2

2
(
σ2 + 1

3
Bηε

)}.
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