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SUMMARY 

 
A practical, accurate, robust, and generalizable system for monitoring tool condition during 

a machining process would enable advancements in manufacturing process automation, cost 

reduction, and efficiency improvement. Previously proposed systems using various individual 

machine learning (ML) models and other analysis techniques have struggled with low 

generalizability to new machining and environmental conditions, as well as a common reliance on 

expensive or intrusive sensory equipment which hinders their industry adoption. While ensemble 

ML techniques offer significant advantages over individual models in terms of performance, 

overfitting reduction, and generalizability improvement, they have only begun to see limited 

applications within the field of tool condition monitoring (TCM). 

To address the research gaps which currently surround TCM system generalizability and 

optimal ensemble model configuration for this application, nine ML model types, including five 

heterogeneous and homogeneous ensemble models, are employed for tool wear classification. 

Sound, spindle power, and axial load signals are utilized through the sensor fusion of practical 

external and internal machine sensors. This original experimental process data is collected through 

tool wear experiments using a variety of machining conditions. Four feature selection methods and 

multiple tool wear classification resolution values are compared for this application, and the 

performance of the ML models is compared across metrics including k-fold cross validation and 

leave-one-group-out cross validation. The generalizability of the models to data from unseen 

experiments and machining conditions is evaluated, and a method of improving the 

generalizability levels using noisy training data is examined. T-tests are used to measure the 

significance of model performance differences. The extra-trees ensemble ML method, which had 

never before been applied to signal-based TCM, shows the best performance of the nine models.  



1 

CHAPTER 1: INTRODUCTION 

 

Amid constant industry demand for manufacturers to increase their production and 

efficiency, many businesses are turning to automation, cyber-physical systems, and cloud 

computing methods to remain competitive. This trend, known as Industry 4.0 or the fourth 

industrial revolution, requires the exchange of increasing amounts of data in order for 

advantageous process decisions to be made automatically. Industrial Internet of Things (IIoT), the 

technology which allows production data from a network of connected sensors and machines to 

be monitored continuously, can be used to gain valuable insight into manufacturing process 

conditions, issues, and efficiency improvement opportunities.  

 

1.1 Motivation 

Tool condition monitoring (TCM) has been an area of interest for decades due to demands 

like these [1-8]. For a variety of metal manufacturing processes, worn tools are known to result in 

parts with poor surface finish, dimensional inaccuracy, decreased fatigue strength, and altered 

material properties [1, 2, 9-13]. The continued use of worn tools also increases power 

consumption, process temperatures, and machine vibration [12]. Finally, tools at the end of their 

lives can cause expensive damage to machines and workpieces, unexpected downtime for repairs, 

and danger to machine operators, when they eventually fail catastrophically [3, 6, 8, 12, 14-16]. 

Tool failure alone has been reported to cause 7 – 20% [8, 17] of machine downtime. 

Currently, businesses attempt to avoid these negative effects by changing their tools out 

after a very conservative number of parts set by the machine operator [7, 9, 18-20]. However, this 

practice also has negative consequences: it decreases productivity and significantly increases the 
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overall tooling cost [2]. For the milling operation, for example, tools and tool changes have been 

found to account for 3-12% of the total processing cost [21]. In addition, individual tools’ lifetimes 

can vary greatly due the complexity of machining processes and a variety of relatively random 

factors [20]. As a result, some tools may still fail early even with conservative practices employed 

[19]. Some experienced operators are able to get an idea of when a tool is nearing the end of its 

life by identifying changes in its cutting sound [22-24]. However, this technique is highly 

subjective and is a roadblock for increased process automation. If instead, a tool’s wear level could 

be reliably and automatically monitored during the manufacturing process, tools could be used for 

longer periods while avoiding detrimental wear levels, fewer tools would need to be purchased, 

manufacturing productivity could be increased, downtime could be decreased, and machining costs 

could be reduced by as much as 10-40% [3, 9, 11, 25, 26]. 

 

1.2 Gaps in Research 

While several research groups have studied this issue and employed various methods to 

address turning, milling, drilling, and grinding processes, a practical and reliable TCM system for 

industry machining has yet to be offered [5, 7, 19, 27, 28]. This is due to several factors, including 

the high levels of noise and vibration on shop floors; the wide range of cutting conditions used for 

industrial production; machining processes’ time-variant nature; the nonlinear relationships 

between measured features and tool wear; and laboratory sensory equipment that is too expensive 

or intrusive to be implemented commercially [19, 22, 23, 28-31]. While it is recognized that 

previously developed systems have generally performed poorly in production environments like 

these, the generalizability of TCM systems is not well understood [19, 32]. Specifically, the 

generalizability of TCM classification models to data from unseen experiments with specific 
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machining condition changes has not been evaluated or compared. In addition, the “noisy training” 

technique, which has been shown to improve neural network generalizability to new conditions in 

other fields [33-35], has never been applied to TCM applications.  

The methods applied to TCM have varied greatly, ranging from the use of tool life 

equations [36-39], remaining useful life predictions [26, 40, 41], and process signal frequency 

spectrum analysis [13, 14, 22, 29, 42-44], to the more recent application of machine learning (ML) 

techniques [2, 4, 5, 12, 18, 22, 29, 45-47]. While different machine learning model types, such as 

decision trees, support vector machines, k-nearest neighbors, and artificial neural networks have 

presented various advantages for TCM, it remains difficult for any one model to achieve high 

classification accuracies while also avoiding over-fitting and keeping generalization ability high 

[28-48]. Ensemble machine learning, a technique which combines multiple base models to create 

an improved final model, has recently been shown in limited cases to improve tool wear 

classification performance through the analysis of surface texture images [49], spindle motor 

current and power [14], vibration [50], acoustic emission [51], and cutting force [48, 52]. However, 

despite several researchers’ findings showing significant feasibility and performance advantages 

of sound signals over other process data types for machine learning TCM [2, 3, 22, 23, 29, 30, 43, 

53], sound’s effectiveness when combined with ensemble ML techniques has yet to be studied. In 

addition, certain ensemble ML types such as the soft ensemble voting and extremely randomized 

trees methods have never been studied for signal-based TCM. 

Sensor fusion, a technique in which the signals and unique patterns from multiple types of 

sensors are utilized within one algorithm, has also been shown to improve machine learning model 

performance and generalization ability for TCM [2, 4, 5, 7, 28, 32, 53]. However, it has rarely been 

combined with the advantages of ensemble ML for tool wear classification and often relies on 
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expensive or intrusive sensors [6, 13, 54]. Specifically, the performance of an ensemble machine 

learning TCM model utilizing the fusion of sound signals with data from other sensors has never 

been evaluated.  

 

1.3 Problem Statement 

In order to fill the research gaps surrounding TCM model generalizability, ensemble ML 

techniques, and sensor fusion using practical sensors, this study explores new tool wear 

classification methods through the application of various ensemble machine learning techniques, 

cost-effective and non-intrusive sensors, and methods of model generalizability improvement. 

Through this, the objectives of the study are to understand how the configuration of ensemble 

machine learning models affect their classification performance for TCM, as well as how 

variability in machining and environmental conditions may impact or be used to improve the 

generalizability of TCM models like these. To accomplish this, end milling experiments are 

conducted in which sound, spindle power, 3-dimensional axial load, and tool wear images are 

collected and analyzed along the entire useful lives of 8 tools.  

Machine learning techniques are employed to classify the tool’s current wear condition 

between three wear levels. While nine classification machine learning models were evaluated, 

three overall ML techniques were studied: individual or “base” models, heterogeneous ensemble 

models, and homogeneous ensemble models. The four base models evaluated were the decision 

tree, support vector machine, k-nearest neighbors, and artificial neural network algorithms. The 

three heterogeneous ensemble models; hard voting, soft voting, and stacked generalization 

techniques; were each built upon the four base models. Finally, the two homogeneous ensemble 



 5 

models, the random forest and extremely randomized trees (or “extra-trees”) techniques, were both 

formed from collections of decision trees.  

The generalizability of the models to new machining conditions and specific condition 

changes was evaluated using experiments of various spindle speeds and feed rates. To identify if 

the noisy training technique can increase model generalizability for TCM and the ML algorithms 

investigated, the results of models trained on various levels and combinations of additive White 

Gaussian noise were assessed. Several performance metrics including repeated 10-fold cross 

validation and Leave-One-Group-Out cross validation (LOGO-CV) were also employed to 

quantify the stability and reliability of the models, as well as to prevent over-fitting. Finally, 

statistical t-tests and 95% confidence intervals were used to assess the significance of model 

performance differences. 

 

1.4 Structure 

The thesis paper is organized as follows: In Chapter 2, the background research in the tool 

condition monitoring field will be discussed with respect to tool wear patterns, the signals used for 

tool wear classification, and the conventional and machine learning analysis methods which have 

been applied to TCM. Chapter 3 will then focus on the experimental and analysis methods used 

for this study. Chapter 4 will assess the initial experimental, feature selection, and machine 

learning results. Chapter 5 will discuss the main impacts of the research, including the comparison 

of model performance across individual and ensemble ML types, the effect of tool wear resolution 

on model performance, the study of machining condition changes’ effect on model performance 

and generalizability, and the impact of noisy training on TCM system generalizability to data from 
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new experiments. Finally, in Chapter 6, the main contributions of the study will be presented, its 

assumptions and limitations will be discussed, and areas for future research will be identified.   
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CHAPTER 2: BACKGROUND 

  

The recognized need within the manufacturing industry for a practical, reliable, and 

accurate tool condition monitoring system has driven efforts across a wide range of expertise areas 

to make this a reality. Several sensors, data streams, and analysis methods have been designed, 

tested, and built upon to make up the body of research currently available. This chapter reviews 

the data types and analysis frameworks which have contributed to the current state of TCM 

research.  

 

2.1 Tool Wear Progression 

 While several types of wear can occur during machining processes, including flank wear, 

face wear, crater wear, chipping, and cracking [55], flank wear (VB) has been found to be the 

predominant wear mode for commonly used conditions, as well as the mode which most highly 

affects final product quality [19, 22, 56]. As a result, it is considered the most commonly accepted 

measure of tool wear [2, 22, 55]. As shown for an end mill in Figure 2.1 from tool life testing 

standard ISO8688-2 [55], the flank wear is measured as the distance from the tool’s original cutting 

edge to the end of the abrasive wear region on the flank surface.  
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Figure 2.1: End mill flank wear [55]. Uniform flank wear (VB1), non-uniform flank wear 
(VB2), and localized flank wear (VB3) are shown. 

 

This type of wear occurs gradually due to the friction between the workpiece and the flank surface 

of the tool, which causes small particles of the tool’s material to adhere to the workpiece and then 

be sheared off [56].  

It has been established that a machining tool’s flank wear generally follows a path of three 

stages: the initial wear stage, the normal wear stage, and the severe wear stage [57-59]. During the 

relatively short initial wear stage, also known as the break-in stage, the tool’s cutting edge radius 

changes quickly and a significant portion of any outer layer is worn away. Then, during the normal 

or steady state wear stage, the tool wears at a fairly constant rate for a longer period of time. 

Finally, a level of wear is reached which makes the process no longer sustainable and the severe 

wear stage is entered. During this wear stage, the tool’s wear accelerates rapidly until catastrophic 
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failure eventually occurs. While it is the level, or measurement, of tool wear which most directly 

affects the production quality and is generally used to determine optimal tool change times, an 

understanding of the wear stages provides insight into the process mechanics [2, 19, 56]. 

 

2.2 Signals used for TCM 

 Many types of sensors and data have been applied to the tool condition monitoring effort 

over the last several decades. In TCM, these methods used to determine tool wear are generally 

categorized into “direct” and “indirect” measurement techniques. In order for many early TCM 

methods to be satisfactory, they relied on direct techniques which require interrupting the 

machining process to measure the wear itself. These techniques, such as visual inspection, optical 

sensors, workpiece size measurements, electrical resistance, and radioactive isotopes, decrease 

productivity significantly, often require a tool’s removal from the machine, and may be negatively 

affected by common conditions like the presence of coolant, cutting chips, and built-up edges [7, 

14, 28, 43]. This generally makes them impractical for production applications [5, 6, 12, 14, 22, 

28, 43].    

 Indirect measurement techniques, on the other hand, can be carried out without stopping 

the operation, and can be lower cost and less intrusive on machining processes [5, 6, 12, 22, 50, 

60]. However, as indirect techniques measure signals that are related to the tool wear instead of 

the wear itself, they generally require high precision and stability from the analysis algorithms 

[50]. Commonly studied indirect process signals include cutting force, motor current and power, 

vibration, acoustic emission, and sound [6, 7, 12, 14, 52].  
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2.2.1 Cutting Forces 

 Machining forces, including the main cutting force as well as feed and axial forces, have 

been shown to have strong correlations to tool wear due to the increase in contact surface and 

abrasion between the tool and the workpiece as a tool’s cutting edge becomes dulled [7, 30, 61-

65]. These force signals are frequently chosen for research studies due to the signals’ high levels 

of stability and sensitivity to the wear level [40, 66]. Cutting forces are often measured during 

cutting processes using a sensor called a dynamometer [6, 15, 30, 40-42, 60, 67-68]. These sensors 

have several advantages including high measurement accuracy, robustness, and fast response time 

[40]. However, they are also expensive, invasive, difficult to mount, have limited frequency 

ranges, and cause a reduction of the local machine stiffness [19, 20, 28]. These drawbacks 

unfortunately make their application to production settings relatively impractical [20, 29, 31].  

 

2.2.2 Motor Current & Power 

A few alternative methods of measuring or estimating the process forces more discreetly 

and efficiently have gained attention for these reasons. Over the years, several research groups 

have effectively measured axial cutting forces indirectly through the use of feed drive motor 

current sensors, which are much lower-cost and easier to install than dynamometers [30, 69, 70]. 

These signals are directly dependent on a process’ cutting forces because as a tool wears and its 

cutting forces increase, more power, and therefore more current, is drawn to the spindle and axial 

drive motors in order to continue the machining process [12]. Ghosh et al. [27] confirmed this by 

showing that for their face milling experiments, the measured spindle power closely follows the 

same pattern as the cutting force. As a result, these current sensors can serve as more cost-effective 
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and practical alternatives to direct force sensors with only a slight decrease in sensitivity to tool 

wear [7, 12, 28, 71-73].  

In addition to these advantages, motor current and power sensors are increasingly being 

included in computer numerically controlled (CNC) machines for process feedback, quality 

control, and error debugging [31]. This development also allows these signals to be utilized by 

researchers without additional sensor installation or intrusion on the cutting process. For example, 

Farias et al. [16] employed these convenient machine control sensors to address TCM through the 

use of the communication protocol MTConnect. By monitoring the machine’s spindle motor load, 

the x-axis motor load, the z-axis motor load, and the spindle power signals, their team was able to 

determine on a binary basis if flank wear levels of 0 mm or 0.3 mm were present. While their study 

was limited by a low sampling rate of 1 Hz and the lack of intermediate wear stages, this 

convenient measurement system showed promising advantages for busy and cost-conscious 

production environments. Through the use of the similar MQTT IoT messaging protocol, Xi et al. 

[20] also avoided the use of expensive equipment for their TCM study by estimating their process’ 

cutting forces using the measured tool position values from both motor and linear encoders present 

within their CNC machine, as well as calculated system stiffness characteristics. Their team’s work 

shows a strong and clear correlation between the axial load in the z-direction and the level of tool 

wear present.  

 

2.2.3 Vibration 

Vibration is another signal which has been commonly used for TCM applications in past 

research. During machining processes, cyclic movements like tool or workpiece rotations cause 

vibration which can decrease part quality, increase tool wear, and produce excessive sound [12]. 
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However, these signals also show a high sensitivity to changes in tool wear, and can be used to 

monitor it [20, 74]. Unlike dynamometers, accelerometers are generally very cost effective and 

easy to install within a machine [14, 60]. The downsides to vibration-based TCM are that they are 

very sensitive to their placement location, as well as subject to high levels of signal noise due to 

toolpath changes, entering or exiting a workpiece, chip fracture, use of coolant, and general 

machine vibration [14, 20].  

 

2.2.4 Acoustic Emission 

Acoustic emission (AE), or the elastic stress waves created through a material during the 

rearrangement of its internal structure as a tool passes through it, is also a common measurement 

technique used for TCM [2, 7, 12, 13, 22, 51]. This signal can provide useful information about a 

wide variety of process conditions including tool wear, and shows a higher frequency range than 

those of vibration and sound [12, 23]. However, it has the disadvantages that it is more sensitive 

to signal noise and machining conditions than it is to the tool condition, leading some to say that 

it is not suitable for use on its own, as well as being fairly intrusive for the process [23]. 

 

2.2.5 Sound 

 Sound is also a promising signal to be used for TCM, although it has been studied to a 

lesser extent by the research community [23, 29, 43]. The sound signals are created by friction 

between the cutting tool and the workpiece during cutting, and therefore are significantly affected 

by the dulling of the tool’s edge and the resulting increase in contact surface area when a tool 

becomes worn [43, 75]. The microphones used for it are considered some of the most cost-effective 

sensor options and are significantly easier to set up, more flexible in their positioning, and less 
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intrusive on cutting processes than options like dynamometers and acoustic emission sensors [5, 

23, 28]. While sound has a longer reaction time than acoustic emission which could lead to a 

slightly later detection of a tool failure [5], and its sensitivity to signal noise can make it less 

accurate than other signals initially [23], its features in the time and frequency domains correspond 

strongly to tool wear and several research groups have confirmed its effectiveness for TCM [1, 7, 

22, 23, 28-30, 43, 53].  

Achyuth Kothuru, for example, thoroughly compared the strengths and weaknesses of the 

most common signals used for TCM, and rated sound three out of three stars for cost efficiency, 

flexibility, non-intrusiveness, and reliability—every category that was assessed except for 

“accuracy”, thereby scoring the highest overall out of the eight signal types evaluated [23]. This 

one weakness on the accuracy scale presents a valuable opportunity for new advanced analysis 

techniques to potentially make a significant impact on the current body of TCM research by 

improving the accuracy that can be achieved using sound. Zhao et al. [43] support Kothuru’s 

evaluation, stating that sound signals are the most appropriate TCM signal for use in production 

environments due to their low sensor cost and practicality advantages As a wide variety of TCM 

techniques have proved effective in laboratory environments but no reliable systems have made it 

to the industrial market [5, 7, 19, 23, 27, 28], a focus should be made on designing future systems 

for that specific end use. Therefore, the holes which currently exist in the TCM research body with 

respect to sound signal processing and analysis should be addressed.   

 

2.2.6 Other Indirect Sensors for TCM 

 A few other sensor types are used less frequently for TCM applications. Process 

temperatures, for example, raise with the increases in friction caused by progressively dulling tool 
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edges [9, 12, 18]. This increase in temperature also contributes to the eventual failure of the tool, 

when high temperatures at the tool tip worsen its mechanical properties [9, 12]. These cutting 

temperatures can be monitored using tool thermocouples, tool-work thermocouples, radiation 

techniques, and thermo-chemical reactions [7, 76-78]. Finally, workpiece surface roughness has 

been found to increase with tool wear, decreasing part quality but also making more data available 

for TCM [5, 7, 9, 12]. This can be measured using needle-point probe devices, optical devices 

using a laser or light diffusion, or 3D graphics techniques [5, 7, 12]. However, these methods can 

be time-consuming and negatively effected by common process conditions such as the use of 

coolant and the presence of machining chips [7, 43].  

 

2.2.7 Sensor Fusion 

As tool wear is a complex phenomenon influenced by many variables, and each process 

signal type described above has its own advantages and disadvantages, researchers have begun to 

utilize multiple sensors for TCM through sensor fusion [2, 7, 13, 42, 60, 79, 80]. The aim of this 

technique is to harness a larger amount of the available process information through the calculation 

of features from several signals which may complement, reinforce, or introduce new perspectives 

to each other [2, 13, 79]. In recent years and with the help of faster data processing methods, sensor 

fusion has shown advantages in the TCM field by reducing uncertainty, reducing sensitivity to 

sensor noise, and improving algorithm performance [2, 4, 7, 13, 20, 28, 42, 51, 81].  

 With the goal of developing a TCM model which would be best suited for adoption by the 

manufacturing industry, the cost effectiveness, intrusiveness, flexibility, and ease of installation of 

any sensors used must be heavily considered [7]. As production environments have high levels of 

machining and environmental variability, a sensor fusion technique is selected in order to 
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maximize the generalization ability of the final models when presented to new unseen conditions 

[28]. To balance these economic, practicality, and performance considerations, five indirect, cost-

effective, and easy to implement process signals were chosen for the following TCM analysis: 

sound, spindle power, x-axis drive load, y-axis drive load, and z-axis drive load.  

 

2.3 TCM Conventional Analysis Approaches 

A wide range of analysis techniques have been applied to the problem of tool condition 

monitoring over the past several decades, with varying results.  

 

2.3.1 Cutting Parameter Analysis 

The relationship between the cutting parameters used for a machining process, such as the 

cutting speed, chip load, and depth of cut, and the approximate life of a tool has been studied for 

over 100 years [7, 12, 36, 37]. Researchers have found that while an increase in any of these three 

parameters will cause an overall decrease in the average tool life across a large number of tool 

samples, the cutting speed holds the most influence, and the depth of cut holds the least [2, 5, 82-

84]. Equations for the cutting speed and chip load in the milling process are given by Equations 

2.1 and 2.2, in which N is the spindle speed in RPM, D is the tool diameter, and Z is the number 

of flutes.  

𝑐𝑢𝑡𝑡𝑖𝑛𝑔	𝑠𝑝𝑒𝑒𝑑 = 	
𝜋 ∗ 𝐷 ∗ 𝑁
1000

		 (2.1) 

 

𝑐ℎ𝑖𝑝	𝑙𝑜𝑎𝑑 = 	
𝑓𝑒𝑒𝑑	𝑟𝑎𝑡𝑒
𝑁 ∗ 𝑍

	 (2.2) 
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Several formulas have been proposed to quantify these effects, perhaps the most well-

known of which is F. W. Taylor’s tool-life formula [36]: 

 

𝑽𝑻𝒏 = 𝑪	 (2. 𝟑) 

where V is the cutting speed, T is the tool life, n is the Taylor exponent, and C is a constant related 

to the cutting speed which would produce a tool life of one minute. While this estimation provides 

valuable insight into the effect of the cutting speed on tool life and is helpful for many practical 

applications, it ignores the significant impact of chip load on tool life, it does not apply to low 

cutting speeds or to the initial and final stages of a tool’s wear, it does not account for variations 

in the Taylor exponent n, and it requires many experiments in order to determine model constants 

[2, 26, 37].  

Several researchers have since presented alternative tool-life formulas, seeking to better 

estimate a machining tool’s life based on a variety of parameters [37-39]. However, with the high 

levels of tool life variance that are present even when the same cutting conditions and tooling are 

used, and the many random variables which can have large effects on a tool’s life, tool wear does 

not lend itself well to a priori tool life prediction [2, 19, 20, 26]. Even very small inconsistencies 

between tests, such as slight differences in material properties between two workpieces of the same 

material, inclusion types and locations within a material, and the angle that the tool contacts 

material edges or irregularities at, can cause significant differences in the immediate and future 

tool wear rates [2]. For these reasons, immediately accessible information about a tool’s current 

wear level during a machining process could be invaluable for this application [2, 3, 9, 11, 25, 26].  

To address this need using only the process’ cutting speed, feed rate, and depth of cut, 

Okokpujie et al. [80] conducted 27 experiments with varying parameters and analyzed the resulting 
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tool wear patterns using the least squares method [85]. Through this they were able to develop a 

mathematical model relating each of the three cutting parameters with a tool’s wear measurement 

after a set number of turning passes, which showed itself to be effective at wear measurement 

prediction under these specific conditions. However, a mathematical model like this would need 

to be expanded extensively in order to be evaluated for dynamic practical applications. For 

accurate tool wear qualification to be possible during machining and across the conditions seen in 

manufacturing centers, it is likely that additional sensor data will be required [4].  

 

2.3.2 Raw Signal Analysis 

Many of the first works in the field focused on identifying patterns between signal raw data 

values and tool wear, and using cutoff values to directly determine levels of wear [7, 62-64]. Using 

feed and thrust force sensors in 1976, Langhammer showed regimes in which the patterns between 

the two forces and the tool wear measurement were approximately linear [64]. Soon after, Uehara 

et al. [60] identified a strong correlation between tool condition and the relationship between feed 

force and chip load. Colwell compared axial force signals to their corresponding power signals, 

and found that the ratio of the two was highly dependent on tool wear [86].  

 

2.3.3 Time Domain Analysis 

A wide variety of features have been extracted from signals in the time domain to provide 

greater insight into processes and tool deterioration. Using an acoustic emission signal, as well as 

the calculation of its root mean square (RMS), skewness, and kurtosis features in the time domain, 

Kannatey-Asibu and Dornfeld [87] were able to identify significant correlations to tool wear with 

high levels of sensitivity. Lan and Dornfeld [88] also calculated the RMS of AE signals during 
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tool wear progression and noticed that at the moment of tool catastrophic failure, a peak RMS 

signal can be observed in the AE data. Diei and Dornfeld [89] then built upon this research by 

proposing a formula to relate this peak AE RMS value to the fractured area and the cutting force 

at failure.  

Binsaeid et al. [13] utilized 135 features from the time and frequency domains of their 

force, vibration, acoustic emission, and spindle power signals, in order to predict three classes of 

tool flank wear up to a high level of 0.6 mm. These time-domain features included the mean, RMS, 

variance, skewness, kurtosis, signal power, peak-to-peak amplitude, crest factor, and the burst rate. 

Other researchers have confirmed the usefulness of these features, as well as others such as the 

median, standard deviation, maximum, and clearance factor, through related studies [2, 14, 15, 28, 

29, 42, 43, 51, 54, 60, 81, 90]. Time-domain features appear to be the most useful for force and 

force-related signals such as spindle power [12].  

 

2.3.4 Frequency Domain Analysis 

For some signal types such as acoustic emission, sound, and vibration signals, analysis in 

the frequency domain can be the most informative for TCM [7, 12]. To do this, researchers use the 

Discrete Fourier Transform (DFT) to convert a sampled time-domain signal into a frequency 

spectrum of amplitudes representing the original signal [2, 5, 12, 13]. For example, Emel et al. 

[91] found that the AE power within the 400-700 kHz frequency range increased with tool wear 

progression. Differences were also found between this identified frequency range and that of a tool 

which had failed catastrophically, and these were used to detect catastrophic tool failure with an 

accuracy of 84-94%. While Inasaki et al. [92] also identified a gradual increase in AE signal 
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amplitude with tool wear, they determined the significant peaks to be at frequencies of about 120, 

170, and 210 kHz.  

Frequency analysis can similarly be a very useful tool for TCM using sound signals, 

although the relevant frequencies are identified at much lower values than those seen in AE spectra 

[3, 7, 22, 93, 94]. Through the analysis of turning experiments run on a lathe, Sadat and Raman’s 

study [93] found significant increases in the sound energy contained within frequencies 2.75–3.75 

kHz in the initial stages of tool wear. As these peaks were able be minimized by increasing the 

cutting speed, it was hypothesized that the frequency region’s energy increase with tool wear was 

due to the dulling of the edge and the resultant increase in friction during cutting. L. C. Lee [94] 

identified a similar characteristic frequency range of 4-6 kHz for a variety of workpiece materials 

and cutting conditions in turning. Others have found lower frequency ranges, including the milling 

spindle frequency and its harmonics, to be significant for tool wear [29].  

Weller et al. [1] identified a considerable increase in high-frequency vibration energy as 

turning tools become more worn, and utilized a ratio between the signals’ low-frequency (0-4 kHz) 

and high-frequency (4-8 kHz) energy to detect tool wear. Later, Xiao et al. [95] confirmed this 

result for the first two stages of wear, but also showed that the ratio then decreased during the 

severe wear stage. Other features extracted from process signals’ frequency domain (FD) which 

have shown value for TCM applications include the FD mean amplitude, FD frequency center, FD 

variance, FD standard deviation, FD maximum amplitude, FD RMS, FD skewness, FD kurtosis, 

FD amplitude sum over a certain frequency range, FD stabilization ratio, and FD crest factor [13, 

14, 22, 29, 42- 44].    
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2.4 Machine Learning Analysis 

In the last few decades, machine learning (ML) has proved to be a valuable tool for many 

areas within manufacturing analytics such as process optimization, fault diagnosis, and TCM [2, 

4, 5, 12, 18, 22, 26, 28-30, 42, 43, 45-47, 53, 60, 96-98]. Its advantages in large-scale data 

processing, autonomous nonlinear pattern recognition, and multivariate analysis have enabled the 

significant improvement of TCM systems’ performance, automatization, and adaptability to new 

conditions [3, 4, 12, 23, 42]. However, among many ML strategies and model variations studied, 

a consensus has yet to be reached concerning the optimal configuration of such a ML TCM system 

[14, 48, 49]. The current research related to several distinct ML strategies will be discussed. 

Machine learning models can be split into several descriptive categories. Supervised 

learning models are generally used for applications in which a label or true value for the ground 

truth is to be predicted, and the researcher has access to these labels for a training dataset. Using 

these true labels, the ML model may learn a mapping function which best maps the input data or 

features to the output labels, and then use this function to predict the labels for new data [23]. 

Unsupervised learning models, on the other hand, are often used when correct labels for data either 

don’t exist for an application or are not available. In this case, the goal is instead to identify any 

interesting patterns which relate the samples or features to each other. As a result, this problem is 

much less defined and its performance is much more difficult to evaluate [23, 99]. Supervised 

learning is almost exclusively used for TCM applications, as the goals are to accurately predict a 

distinct metric such as the tool’s wear level, wear measurement, or remaining useful life [5, 12, 

15, 23, 40, 43, 49, 100]. Research has shown that using calculated features as the input data for a 

TCM ML model achieves superior results when compared to running a model on the raw signal 

data in either the time or frequency domain [60, 101].  
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2.4.1 TCM with Individual ML Models 

Several individual supervised learning model types have been evaluated for TCM, 

including decision tree [49, 50, 96, 102-104], support vector machine [3, 29, 30, 48, 97, 103, 105-

107], k-nearest neighbors [29, 103, 108, 109], and artificial neural network [4, 16, 18, 19, 25, 26, 

28, 42, 60, 80, 103]. Each of these has shown promising results, along with unique advantages and 

disadvantages.  

 

2.4.1.1 Decision Tree  

The decision tree (DT) algorithm is one of the simplest machine learning models to 

understand, with a structure similar to that of a flowchart or “tree” [102, 103, 110]. At each node 

in the tree, the data to be evaluated is split based on a feature condition which is determined during 

the model’s training. The first node, called the root node, is where new data enters the model, and 

the last level of nodes, called the leaf nodes, gives the predicted classification [102, 103]. As a 

non-parametric ML model, the DT avoids making any initial assumptions about the data’s patterns, 

and instead is fully open to any patterns which may arise during its training [102].  

Decision tree models have been shown to be quite effective for TCM [49, 50, 96, 102-104]. 

Shurrab et al. [98], for example, compared the performance of six ML model types after they were 

each trained to identify the binary presence or absence of tool wear in a wax milling study. The 

decision tree achieved the highest classification accuracy, reported at 99.2%, while the other 

models to be discussed here, the neural network, k-nearest neighbors, and support vector machine, 

achieved the 2nd, 3rd, and 4th-best scores at 94.3%, 90.6%, and 87.6% respectively. For the related 

application of image-based workpiece wear classification, Castejón-Limas et al. [104] found that 
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out of the DT, k-nearest neighbors, neural network, and Naïve Bayes techniques, the DT model 

performed best. Elangovan et al. [102] also evaluated the performance of a DT-based TCM model 

for the turning process, this time with vibration signals. Using simulated wear with measurements 

of 0.0 mm, 0.3 mm, and 0.6 mm, as well as the unique addition of a “tool tip loose” condition, 

their model achieved a 10-fold cross validation mean accuracy score of 77.2% between the four 

tool conditions.  

 

2.4.1.2 Support Vector Machine 

The support vector machine (SVM) [111, 112] is also effective for TCM applications, and 

has been more frequently studied in this context than the DT [3, 29, 30, 48, 57, 97, 103, 105-107, 

113]. It takes a different approach to classification, by attempting to identify the optimal set of 

hyperplanes and support vectors necessary to split up data in a feature space into regions based on 

the classification labels [97, 103]. After training, these regions determine the label predictions for 

input test data. For non-linear data such as that which is related to tool wear, a kernel function can 

be selected to transform the input data into a higher-dimensional space and improve the model’s 

classification performance [43, 103]. SVMs have been found to have an advantage over other ML 

techniques such as neural networks when classifying and generalizing small-scale samples [14]. 

The value of SVM techniques for TCM has been proven repeatedly. For example, as part 

of their force-based TCM ML study, Wang et al. [48] found that their SVM model using a Gaussian 

kernel function performed better than both the hidden Markov model (HMM) and the radius basis 

function network, showing a 4-level wear classification accuracy of 93.9% when tested on 

experiment data from using the same cutting parameters. Kothuru et al. [3] chose an SVM model 

as the decision-making algorithm for their study on multiple microphone sound signal TCM. They 
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identified quite interesting results, with the combination of multiple microphone signals improving 

the SVM classification accuracy from about 89.1% for one microphone, to 97.0% for 3 

microphones for 6 wear levels up to 0.15 mm flank wear. However, it is likely that this addition 

of more microphones within the machine would significantly reduce the practicality benefits of 

using a sound signal over force and other more invasive signal options. Zhou et al. [43] recently 

proposed a novel SVM-based strategy to overcome the high levels of signal noise often found in 

milling process sound signals. By only utilizing a small number of calculated signal features and 

a unique 2-layer network structure, they were able to improve the model’s learning ability for the 

complex nonlinear relationships between tool wear and sound signal features, and improve TCM 

performance. 

 

2.4.1.3 K-Nearest Neighbors 

While k-nearest neighbor (kNN) strategies have been less thoroughly studied for TCM than 

SVMs, they have also shown promising results [4, 16, 18, 19, 25, 26, 28, 42, 60, 80, 103]. Their 

classification process works simply by assessing the location of each testing data point in a feature 

space and comparing it to the locations of previous training data points [103, 108]. The user-

prescribed parameter ‘k’ then determines the number of closest training data points which 

contribute to a majority voting process for the final class prediction decision. As the kNN technique 

does not require a model to be built during the training phase, computation time can be reduced 

[103, 108].   

 Li et al. [28] built upon the research by Kothuru et al. [3], described previously, by applying 

the blind source separation technique to identify a single source signal from the 3 microphone 

signals, as well as by comparing the performance of kNN, SVM, random forest, and DT 
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classification models for TCM. Using a training set size of 50%, the SVM and kNN achieved the 

highest overall classification accuracies at 98.5% and 97.8% respectively. The optimal k-value for 

this dataset was determined to be k=15. Jegorowa et al. [108] applied k-nearest neighbors to 

monitor the condition of drill bits between 3 wear levels, while cutting particleboard. Several 

signals were collected including feed force, cutting torque, vibration, sound, and acoustic emission. 

Using a selected value of 12, the kNN model achieved an overall accuracy of 76%.  

 

2.4.1.4 Artificial Neural Network 

Artificial neural networks (ANN) are a commonly studied ML technique used for TCM [4, 

16, 18, 19, 25, 26, 28, 42, 52, 60, 80, 103]. These networks are designed based on the human brain, 

and attempt to identify patterns within complex data in a similar manner [5, 103]. They are made 

up of interconnected layers of nodes, with an initial input layer representing the input features, a 

final output layer representing the number of final classes, and a number of hidden layers between 

the two which use non-linear activation functions for decision-making [4, 5, 103]. Model 

performance varies greatly depending on the number of hidden layers selected, as well as the 

numbers of neurons designated for each hidden layer [4, 5]. Although many variations of ANNs 

exist, Sick et al. [4] found that about 70% of the neural network research in TCM studied a 

feedforward paradigm called the multilayer perceptron (MLP), designed by Frank Rosenblatt in 

1958 [114]. While neural networks provide high levels of fault tolerance, adaptability, and noise 

suppression capability [115], they can appear to be underfitting or overfitting if the sample size is 

insufficient or if the sample noise is high [14]. 
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 Artificial neural networks have been applied to TCM in various ways. Mannan et al. [53], 

for example, trained a neural network to classify tool condition between 3 wide flank wear levels 

during steel turning based on both images of machined surface texture and sound signals. 

Hsieh et. al. [60] used a neural network and accelerometers to analyze features extracted from 

mico-milling vibration signals’ time and frequency domains, distinguish “worn” from “unworn” 

tool signals, and study the effect of signal bandwidth on classification results. Ghosh et al. [28] 

used a neural network, along with sensor fusion of force, vibration, spindle current, and sound 

signals, to predict tool wear measurements during the milling process. They also assessed 

correlation patterns between the different process signal types and found a high level of correlation 

between the spindle power and cutting force signals, as well as a “fair” correlation between the 

sound and cutting force signals. By analyzing the effect of sensor fusion for multiple sensor 

groupings, it was found that while combining the two axial forces, the spindle motor current, and 

the spindle motor voltage provided the best results, a combination of only two signals, the spindle 

motor current and the sound pressure level, also performed very well. As a significantly more 

practical option for manufacturing centers than the use of expensive force dynamometers, these 

results were promising.  

 

2.4.1.5 Other Individual ML Models 

A few other machine learning model types have been applied to address the tool condition 

monitoring problem, as well. Using force signals, Wang et al. [40] studied how the Hidden Markov 

Model, developed for speech recognition and now spreading to manufacturing insight applications 

[6], could be used to predict the state of tool wear. Kannatey-Asibu et al. [51], Wang et al. [106], 

and Wang et al. [116] also showed that Hidden Markov Models can be effective for TCM. 
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However, Wang et al. [48] showed that both SVM and ANN models performed better than a 

Hidden Markov Model for TCM.  

Regression analysis has also been investigated, with mixed results. While one study [40] 

concluded that Gaussian Regression had potential for remaining tool life prediction in milling 

based on a small number of samples, and Korkut et al. [100] found that both regression analysis 

and ANN techniques performed adequately for predicting the temperature at a tool-chip interface, 

the linear regression model investigated by Shurrab et al. [103] performed the worst out of six ML 

model types compared for tool wear level classification. By distinguishing between local and 

global linear regression analysis, however, Wu et al. [15] found that the Saucer’s local linear model 

showed better results than both the global linear model, and a neural network. While regression 

can be used to gain a higher level of resolution on a tool’s wear, and updating a model’s 

information mid-process can help it achieve strong results, the re-training required for this 

technique makes it less practical for TCM than classification models due to in-process computation 

time limitations [16].  

 

2.4.2 TCM with Ensemble Machine Learning 

Ensemble machine learning methods are a technique in which multiple base learners are 

combined to achieve superior performance by leveraging “the wisdom of the crowd” [49, 117]. 

They utilize the collective knowledge and insights generated by the multiple base learners, and 

therefore can benefit from each base algorithm’s individual advantages in different situations 

[118]. As a result, and across many applications, ensemble models generally outperform individual 

methods by improving model robustness and accuracy, as well as reducing variance [49, 117-120]. 

The individual learners that make up the ensemble may use completely different decision models, 
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or they may be identical to each other but trained on different subsets of data [49, 119]. Ensemble 

models using these distinct strategies are known as heterogeneous or homogeneous ensembles, 

respectively.  

In recent years and with technological advancements to decrease computation time, a few 

researchers have begun to assess the effectiveness of ensemble machine learning techniques for 

TCM [6, 13, 14, 48-52]. However, the current research is limited and there remains much to be 

uncovered. 

 

2.4.2.1 Heterogeneous Ensemble Machine Learning 

Heterogeneous ensemble ML is a type of ensemble machine learning strategy in which 

multiple unique base models are combined. It is generally beneficial for these base models to be 

substantially different from each other, so that the ensemble model can draw from as many insights 

and individual advantages as possible [13, 50]. The main groups of heterogeneous models include 

voting schemes and stacking classifiers.  

 

2.4.2.1.1 Hard Voting 

Ensemble Hard Voting (EHV), sometimes called “Majority Voting,” is one of the most 

commonly studied heterogeneous ML techniques due to its simplicity, robustness, and stability 

[13, 40, 51, 121, 122]. In this strategy, each of the unique base models is trained on the same 

training dataset, and each base model’s classification output is used to determine the ensemble 

model’s final classification. For Hard Voting, each model gets one “vote” for its output 

classification, and the class with the largest number of votes will be the ensemble model’s final 

classification [13, 123].  
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Using HMM, Bayesian Rule, Gaussian Mixture, and K-Means base models, Kannatey-

Asibu et al. [51] studied how Hard Voting might be applied to TCM and found that the ensemble 

model’s performance could be improved by configuring multiple types of weightings based on the 

individual models’ classification performance. Acoustic emission signals were used for this 

research. Wang et al. [48] utilized a Hard Voting ensemble model and force signals to classify tool 

wear into 4 levels based on SVM, HMM, and radial basis function (RBF) neural network base 

models. Based on their data from one tool run to failure, the Hard Voting ensemble was found to 

perform better than any of the individual base models, but slightly less well than the stacking 

ensemble model also studied. With SVM, ANN, and RBF neural network base models, Cho et al. 

[122] and Binsaeid et al. [13] also confirmed the improvement in TCM classification performance 

when Hard Voting is used compared to when the individual ML models are used. However, with 

only these studies into the application of Hard Voting for TCM having been reported currently, 

there remain several questions about the optimal base model selections and the generalization 

ability of TCM Hard Voting models to new environmental or machining conditions.   

 

2.4.2.1.2 Soft Voting  

For the ensemble Soft Voting (ESV) strategy, however, it is not the base models’ output 

classifications, but rather each one’s estimations of individual class probabilities, which are 

averaged and considered by the final ensemble classifier [124-126]. This of course relies on each 

base model calculating a probability metric which can be used, which is something that not all 

model types do [124]. When applicable, this Soft Voting strategy is considered to have better 

flexibility and generalization than Hard Voting, and is recommended over Hard Voting for well-

calibrated base models [121, 123].  
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While Soft Voting has been successful in various other fields such as medical diagnosis 

[127], online emotion classification [128], semiconductor manufacturing defect detection [129], 

and bearing fault detection [126], it has not yet been studied within TCM. In the semiconductor 

manufacturing defect study, Saqlain et al. [129] found that a Soft Voting ensemble classifier 

performed better than not only the base models, but also better than the Hard Voting ensemble 

classifier. In perhaps the most closely related study, Li et al. [126] used vibration signals to classify 

between four distinct bearing fault types, and assessed the impact of Soft Voting on fault 

classification accuracy and stability. Across signals augmented with eight levels of additive white 

Gaussian noise (AWGN) to simulate a variety of environmental conditions, the use of Soft Voting 

dramatically improved the bearing fault classification accuracy for all 8 conditions. In addition, it 

improved the prediction stability for all 5 noise levels with sound-to-noise (SNR) ratios above 0, 

but not the 3 which were at or below 0, suggesting that while Soft Voting generally improves 

prediction stability, “when there is too much noise, the [base classifiers are] not certain about [their 

predictions] and aggregating multiple predictions does not help to increase this certainty” [126]. 

Based on its success in various fields, including an application which is closely related to TCM, 

the Soft Voting ensemble method is a promising technique for TCM, and a significant research 

gap.  

 

2.4.2.1.3 Stacked Generalization 

The stacked generalization, or “stacking” method introduced in 1992 by David H. Wolpert 

[130], is a different type of heterogeneous ensemble ML method in which the output classifications 

given by the base models are then fed into a higher level ML model, or “meta-learner,” as effective 

training or testing features [13, 50]. With this method, the meta-learner has the opportunity to 
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identify significant patterns between the outputs of different base learners, and potentially improve 

the overall classification accuracy [50]. While stacking meta-learners are typically based on SVM, 

logistic regression, or random forest techniques [120], only SVM-based stacking has been applied 

to TCM.  

This type of heterogeneous ensemble ML has only begun to be studied for the TCM 

application. In 2014, Wang et al. [43] created a stacked ensemble model based on SVM, HMM, 

and RBF base models, as well as an SVM meta-learner. They then compared its results for tool 

wear classification to those of a Hard Voting ensemble model and three homogeneous ensemble 

models based on SVMs, HMMs, and RBFs, to find that the stacked ensemble model achieved the 

best average accuracy and classification stability among all five ensemble models and three base 

models studied. However, these results were based on data from only one experiment, and 

therefore lack generalization capability to machining or environmental condition variations. Hui 

et al. [50] then compared the performance of a stacked ensemble model to Bagging-SVM and 

AdaBoost-SVM homogeneous ensemble models, as well as ANN and SVM individual models. 

Using SVM, DT, and naïve Bayes base models, as well as an SVM meta-learner, they found that 

for their one experiment, the stacked SVM model achieved the best accuracy and stability when 

trained on 80% of the experiment’s data and tested on the other 20%.  

Finally, Binsaeid et al. [13] ran eight milling experiments with different depth of cut, 

cutting speed, and chip load machining parameters to evaluate the prediction of a tool’s wear level 

between three levels from 0 to 0.6 mm flank wear. A stacked ensemble model using an SVM meta-

learner and SVM, ANN, and RBF base learners was shown to perform better than a Hard Voting 

ensemble technique as well as the individual models. 10x-repeated 10-fold cross validation was 

used for performance evaluation, and four sensor types were also evaluated with force achieving 
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the best results. Due to the machining parameter variation study and the 10-fold CV performance 

metric, these results give a good idea of different models’ performance across a range of machining 

conditions and allows the model techniques to be compared. However, they do not provide insight 

into the models’ performance for individual machining parameter values or specific parameter 

changes. As a result, the transferability of a stacking ensemble TCM model to specific cutting 

parameter variations still has yet to be evaluated.  

 

2.4.2.2 Homogeneous Ensemble Machine Learning 

Homogeneous ensemble machine learning is a type of ensemble ML technique in which 

multiple base models of identical structures are combined. These base learners’ initiation 

parameters, weight values, or training data subsets may be very different, however [48, 49]. This 

allows several variations of the base algorithm to be run, and their results to be combined, to 

generally achieve superior results than through the use of just one base model [48, 49].  

 

2.4.2.2.1 Random Forest 

Along with Hard Voting, random forest (RF) is another commonly studied ensemble ML 

method in other industries, and it has seen a few previous applications to TCM [14, 29, 49, 54, 

113]. It is a homogeneous ensemble method, created in 2001 by Leo Breiman [131] and made up 

of several decision trees trained on different randomized subsets of the overall training dataset 

using sampling with replacement. This process is called bootstrap aggregation, or “bagging” and 

helps reduce overfitting [54]. As decision trees are very sensitive to their specific training dataset, 

this process results in many decision trees of different configurations. The diversity of the trees’ 

designs is also further randomized by limiting each DT node’s possible feature choices to a random 
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subset. The random forest then takes the mode of the individual trees’ class predictions as its final 

prediction [49]. It has become a well-known ensemble ML method due to its high accuracy, its 

efficiency for processing large datasets and feature numbers, its tendency to avoid overfitting, its 

tolerance to outliers and noise, its high generalization ability, and its effectiveness for unbalanced 

class sizes [14, 54]. 

The random forest algorithm has been shown to be effective for TCM in a limited range of 

studies. Riego et al. [49], for example, used computer vision and multiple ML algorithms including 

a random forest to assess a milled holes’ surface texture and classify a tool as “worn” or “unworn”. 

Wu et al. [54] applied a random forest to tool wear progression analysis using dynamometer, 

accelerometer, and acoustic emission data from one tool life experiment and one set of 

experimental conditions. They found that for a random forest of 10,000 trees, sufficiently accurate 

tool wear measurement predictions could be obtained. Yuan et al. [14] applied a RF to TCM using 

a spindle current signal and a larger set of machining conditions. They found that for a large wear 

range of over 0.5 mm, a random forest could be used to effectively classify the wear into three 

levels, as well as perform better than both an SVM and an ANN. However, as the models were 

always trained and tested on data from the same experiment each time, the transferability of the 

RF to new specific machining conditions or individual tools was not assessed, and this remains a 

research gap. 

 

2.4.2.2.2 Extremely Randomized Trees  

Extremely Randomized Trees, or “Extra Trees” (ET), an algorithm proposed by Pierre 

Geurts in 2006 [132], builds off of the random forest design, with the adaptation that instead of 

letting each decision tree node identify the optimal feature threshold for splitting, these thresholds 
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are now assigned random values [49]. This increases the randomness of the individual DT 

formations, improves the overall model’s ability to avoid overfitting, increases the generalization 

ability, and reduces model computational complexity [49, 133].  

The Extra-Trees algorithm has only been applied to TCM by one research group 

previously: Riego et al. [49], in 2020, included it in their study of nine machine learning 

algorithms, including a RF, three ensemble boosting algorithms, a DT, a SVM, and a “dumb 

classifier,” for surface quality assessment and indirect TCM. Based on workpiece hole surface 

images and with the aim of automatically identifying substandard workpiece surface quality 

caused by tool wear, their team found that the Extra-Trees model achieved the highest accuracy 

and F1 scores out of all nine ML models implemented. The results of this study, along with the 

successes of the similar RF algorithm, showcase the potential for the ET model to be highly 

effective for TCM. Furthermore, the effectiveness of ET models for similar manufacturing 

monitoring tasks such as wireless sensor network fault diagnosis [134], wind turbine generator 

fault diagnosis [133, 135], and additive manufacturing temperature profile prediction [136], which 

many times surpasses the effectiveness of individual models [134, 135] and other ensemble models 

[133, 134], further supports this point. With Extra-Trees having only ever been applied to TCM 

indirectly using surface image data, there remain many opportunities for increased study.  

 

2.4.3 Model Generalizability 

For industrial manufacturing processes, including the especially adaptable milling process, 

machining conditions are frequently changed in order to suit the shapes, materials, and part quality 

required of a finished product. In addition, a shop’s environmental conditions such as background 

noise also change significantly based on other machines being run, the time of day, and many 
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effectively random environmental variations. The previously proposed TCM solutions’ lack of 

adequate generalizability to these various machining and environmental conditions is a main 

reason for their lack of adoption by industry manufacturers [19, 22, 23, 28-30, 32]. For these 

reasons, it is important to understand how a trained TCM system’s performance may change when 

the system is transferred to new unseen conditions.  

 

2.4.3.1 Study of Model Generalizability in TCM 

While it is agreed upon that the previously developed TCM solutions generally perform 

significantly worse in real-world production settings than they do in laboratory experiments, and 

that variations in cutting and environmental conditions play a role in this, the specifics of this effect 

are not well understood [19, 22, 23, 28, 29, 30, 32]. Many studies in the field of TCM collect data 

from only one experiment, and draw conclusions based on the performance of ML models that are 

trained, tested, and validated all on data from one individual tool’s life [32]. These results do not 

account for the significant variability in wear rates and patterns that occur even under the same 

machining settings and therefore lack generalizability to other experiments [32, 19].  

In order to improve the systems’ generalizability to new machining conditions, several 

research groups have also trained TCM models on signal data from tool wear experiments using a 

variety of different cutting parameters [3, 6, 9, 13-15, 19, 22, 43, 74, 94]. However, this data is 

often then aggregated and split into training and testing sets without regard to which data came 

from which parameter sets or experiments. While this makes the models more generalizable to 

new conditions than if only one experiment’s data were used, it does not allow the effects of 

individual condition changes on model performance to be studied. In addition, previous research 

has very rarely reported data for repetitions of parameter sets [2], and as a result there is little 
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understanding of how ML TCM models perform on data from new experiments which were 

conducted using the same parameters.  

Several other strategies for increasing TCM model generalizability have also been 

investigated, including through sensor fusion as discussed in Section 2.2.7, by filtering out high or 

low frequency signal components to reduce noise [2, 137], and by using multiple of the same 

sensor type in different locations to better identify the source signal [3, 22, 23, 29]. As discussed 

previously, the combination of signals from multiple sensor types, called sensor fusion, has been 

shown by several research groups to improve model generalizability and reduce their sensitivity 

to noise [2, 4, 7, 13, 20, 28, 42, 51, 81]. The use of a low-pass filter to remove high-frequency 

signal components in an attempt to reduce noise, however, is not as optimal. According to Larry 

P. Heck, “While relatively easy to implement, these techniques have proven to be generally 

ineffective at reducing the noise and tend to remove information necessary for proper tool wear 

classification” [137]. Finally, the use of multiple sensors of the same type has also been 

investigated for TCM. Kothuru et al. [3], for example, used three microphones located in different 

positions relative to the milling process to study how well a SVM-based TCM model trained on 

data from certain individual microphones was able to transfer to signals from a new microphone. 

It was found that training the model on data from two microphones’ data always performed better 

when tested on the third microphone, than when the model was trained on data from only one 

microphone. This showed that increasing the number of sensors used can improve model 

generalizability even when they are of the same type. Li et al. [29] then built on this with the aim 

of reducing noise in a signal through blind source separation, and found the technique capable of 

improving TCM performance. While several methods have been presented for noise removal from 

process signals for TCM, with mixed results [2, 29, 30, 137-139], there has been little study of the 
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effect of noise addition, and no analysis of if it can be used to improve TCM model 

generalizability.  

 

2.4.3.2 Noise-Based Dataset Augmentation 

In various other research areas, additive noise has begun to be studied as a method of data 

augmentation for the improvement of machine learning generalization to data which is different 

from the original training data.  

For neural networks, especially, several studies have shown that the addition of noise, or 

“noise injection,” to training dataset signals or features can reduce model overfitting and improve 

generalization ability to new data [34, 35, 140-144]. According to Bishop, “heuristically, we might 

expect that the noise will ‘smear out’ each data point and make it difficult for the network to fit 

individual data points precisely, and hence will reduce over-fitting. In practice, it has been 

demonstrated that training with noise can indeed lead to improvements in network generalization” 

[140]. Specifically, it has been concluded that ANN training with noise is equivalent to a form of 

regularization with an extra term in the error function [34, 144]. Guozhong An [35] studied how 

noise added to the inputs, outputs, and weights of an artificial neural network during 

backpropogation training affected its objective functions and testing outputs. It was found that 

while output noise had no effect on the network’s generalization ability, both input noise and 

weight noise smoothed the ANN output functions, weight noise improved model generalization 

for the classification problem, and input noise improved generalization for both the classification 

and regression problems. Audhkhasi, Kosco, and Osoba have also showed that additive noise can 

speed up algorithm convergence during the training of multilayer ANNs [145, 146].  
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While training ANNs on datasets with additive noise, also known as the “noisy training” 

approach, has been a known tool in the neural computing community for decades, it has only 

recently begun to be studied for direct industrial applications [33-35]. In 2015, for example, Yin 

et al. [144] investigated multiple types of additive noise and their relation to deep neural network 

speech recognition performance. They found that white noise injection into training datasets not 

only dramatically improved the speech recognition results when the model was tested on other 

white noise-augmented data; it also successfully improved model generalizability to various other 

noise conditions when the level of white noise used for training was low. The use of a combination 

of no-noise data, injected white noise, and either cafeteria or car noise for training set injection 

also significantly improved the model performance for many other noise conditions. The use of 

combinations of sound levels in the training dataset was also shown to improve model 

generalizability. These results were a significant step forward in speech recognition model 

development, and highlighted a promising opportunity for model generalizability analysis in other 

areas such as tool condition monitoring. 

This noisy training approach has been studied for other ML model types to a much lesser 

extent than for ANNs. In 2021, Xing et al. [145] showed that through asymptotic regret analysis, 

noise injection into training datasets for a K-Nearest Neighbors model does not significantly 

change its predictive performance on new data, as this algorithm is already relatively robust to 

small variations in its samples. In fields outside of TCM, some of the ML algorithms addressed in 

this study, DT, SVM, kNN, EHV, and RF, have been evaluated in terms of their robustness to 

noise in either the testing or training datasets, when the training and testing groups were sampled 

from the same dataset [147-151]. In all of these cases, however, the models’ generalization ability 

was not fully measured as there was no significant difference between the original training and 
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testing sets, and as a result the addition of noise to the training datasets generally had a negative 

effect on model performance [148, 149]. No studies have been found in any field which apply the 

noisy training approach of injecting noise into a training dataset with the aim of improving a 

model’s generalizability to significantly different data using DT, SVM, EHV, ESV, Stacked SVM, 

RF, or ET models [152]. In addition, this noisy training approach has never been studied in the 

field of TCM using any ML model type.  

 

2.5 Summary of Research Gaps  

Several gaps currently remain in the research surrounding tool condition monitoring, and 

contribute to the industry’s lack of access to a reliable, economical, and adaptable solution [19, 22, 

23, 28-30]. Ensemble machine learning is a promising technological advancement which has 

shown substantial robustness, stability, and accuracy advantages for classification problems in 

related fields, but has only been applied to a limited extent within TCM [31, 108-111]. Specifically, 

Soft Voting has never been applied to TCM, and Extra-Trees has never been applied using process 

signals of any kind, despite both models showing significant reliability and generalization 

advantages over individual models and previously studied ensemble methods. In addition, it is not 

well understood how the various ML techniques and configurations, including individual, 

heterogeneous ensemble, and homogeneous ensemble methods, compare for tool wear 

classification.  

In addition, the sound signal, which has been identified as one of the best process signals 

for practical application due to its low cost, ease of installation, and lack of process interference 

[5, 23, 28], has never been studied using ensemble ML for TCM. While its lower accuracy 

compared to other process signals has limited its application before [23], it is not currently 
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understood how more reliable algorithms such as ensemble ML techniques, in combination with 

the advantages of sensor fusion, may affect this metric.  

Previous systems’ inability to adapt to the highly variable machining and environmental 

conditions present on shop floors has also been a great hindrance to their industrial adoption, and 

these generalizability effects are still not well understood [19, 22, 23, 28-30, 32]. While a few 

ensemble ML-based TCM algorithms have been trained using data from multiple cutting 

conditions, the their generalizability across specific cutting parameter changes has not been 

evaluated or compared [6, 13, 14]. In addition, the noise injection method of improving ML model 

generalizability to new environmental conditions by training on noise-augmented data, has never 

been studied for TCM. Each of these research gaps, if addressed, would advance the current TCM 

knowledge base and further enable a practical TCM solution.  
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CHAPTER 3: METHODS 

 

In order to evaluate the research questions and fill these research gaps, a milling tool wear 

experiment was designed in order to collect a diverse original dataset to be used for the TCM 

model evaluation.  

 

3.1 Experimental Design 

The experiments for this study were run using an EMCOMILL E350 3-axis vertical CNC 

machine with a maximum spindle speed of 10,000 RPM, which is equipped with a Siemens 

Sinumerik 828D controller. A combination of internal and external sensors were used for the 

analysis. The spindle power and the x, y, and z-dimension axial load signals could be extracted 

directly from the Siemens controller, as these are automatically monitored for the machine’s real-

time dynamic control. Using the controller’s Trace function, these signals were recorded at a 

sampling frequency of 166 Hz and extracted at specific times during each experiment. While the 

spindle power was extracted directly in units of W, and the axial loads were initially reported in 

terms of % of the machine’s maximum axial loads. Given the machine’s maximum loads of 3000, 

3000, and 4000 N in the x, y, and z directions respectively, these values could be converted to 

direct force measurements [20, 153]. 

Two external sensors, a PCB Piezotronics model 130F20 ICP electret array microphone 

and a Dino-Lite AF3113T microscope were also used. The microphone was attached 2.5 feet away 

from the machining process, in the top-left region of the machine and far from any potential 

machining processes. The robust microphone design, the easy and secure installation, and the non-

intrusive location were selected for their high practicality for industrial applications. The 
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microphone was sampled at a frequency of 44.1 kHz using a Model 485B39 Digital ICP USB 

signal conditioner and the MATLAB Audio Labeler application. In addition, an analog sound 

calibrator was used to check the accuracy of the collected sound signals. Given the microphone’s 

sensitivity of 45 mV / Pa, the output voltage values could be converted to sound pressure values 

in Pascals. 

The Dino-Lite AF3113T microscope was used for tool wear imaging after each set of three 

machining passes. With a resolution of 640 x 480 pixels and a magnification of 20x – 50x, it was 

able to capture clear and measurable images of the flank wear’s progression. A calibration scale 

was also used to confirm image dimensions during the wear measurement. At the magnification 

and positioning used, an image resolution of 44.5 pixels per mm was obtained which, especially 

considering the grouping of wear into distinct classification groups, is appropriate for this 

application. An enclosure was used to protect the microscope from the coolant used during cutting. 

The machine enclosure was set up as shown in Figure 3.1 for the experimentation.  

 

 
Figure 3.1: Machine layout for experimentation. The (a) microphone position and (b) tool 

position for imaging are shown 
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A 6 x 1 x 2 inch (15.24 x 2.54 x 5.08 cm) block of annealed D2 tool steel was used as the workpiece. 

This high-carbon, high-chromium tool steel is used for applications such as dies, punches, forming 

rolls, and shear blades, and has a Rockwell hardness rating of B95 in the annealed condition. This 

material was chosen in order to achieve reasonably short tool lives for all experiments run, and the 

annealed condition was chosen to match the state which is most commonly used for machining D2 

in industrial applications. Coolant was also used in order to match real-world conditions, to target 

regular abrasive wear instead of thermal cracking, and to ensure that the final ML models are 

robust to signal noise caused by its use.  

End milling passes were run across the workpiece along its longest dimension in the x 

direction, and the tool was positioned for wear imaging after each group of three machining passes. 

The tool was wiped down before each image to remove coolant and chips which could interfere 

with wear measurement. The tooling used for the experiments were 0.5-inch diameter 1-flute 

Kennametal KICR end mill bodies equipped with square-shaped TiAlN-PVD-coated carbide 

Kennametal KIPR inserts designed for milling steel. 

 Eight experiments were run, under the four machining conditions shown in Tables 3.1 and 

3.2. In order to assess how the TCM models performed under specific parameter changes, both the 

spindle speed and feed rate were varied between high and low conditions. All four of these 

resulting parameter sets were within the manufacturer’s recommended range of operating 

conditions. The axial depth of cut, radial depth of cut, and coolant use were kept constant for all 

tests. Each parameter set is repeated twice in order to better account for and study tool wear’s 

inherent variability when machining conditions are unchanged. 
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Table 3.1: Experimental overview 

 
 
 

Table 3.2: Experiment cutting conditions 

 
 

Each experiment is continued until a maximum flank wear of 0.3 mm is reached, in 

accordance with the international standard for tool life testing in milling, ISO8688-2 [55], as well 

as several previous works [16, 26, 68, 154, 155]. Although some studies have found the third stage 

of wear, severe wear, to start at flank wear measurements above 0.3 mm under certain conditions 

[28, 43, 57], the use of a tool past approximately 0.3 mm will begin to cause inadequate 

dimensioning and low part quality for most applications, no matter which wear stage it is at, so the 

tool should be changed by this level [55, 68, 154, 155]. In addition, a TCM model which could 

achieve high classification accuracy without relying on the signal changes from significantly 

higher wear levels than those at which a tool should be used, or a third wear stage which may occur 
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at varying wear measurements, would be especially beneficial. For these reasons, the 0 – 0.3 mm 

wear range is chosen as the focus for this study.  

The data will then be labeled based on which range of wear values its measurement falls 

into. For a wear resolution of three levels, the data will be split according to Table 3.3.  

 
 

Table 3.3: Tool wear ranges for 3 classes 

 
 
 

These wear levels will be the classes which the TCM ML models will aim to predict.   
 

3.2 Data Pre-Processing 

The data collected from the eight experiments were then processed on a laptop computer 

using the Python IDE PyCharm to become usable as training and testing data for the machine 

learning algorithms. To do this, first the relevant machining data for each signal type must be 

separated from the microphone and controller process signals in which machining was not being 

done. In addition, the first one and the last two passes of each layer of the workpiece are also 

excluded, as they showed consistent variations in the process signals which were unrelated to tool 

wear. Similarly, the tool’s entry and exit times from the workpiece are also excluded, as during 

those times the tool is not consistently engaged with the workpiece and process mechanics are 

changed. The time required for the tool to travel one radius in or out of the material is calculated 

for each of the two feed rates used, and this time is excluded from both sides of each included 

machining pass signal. From the remaining machining time for each pass, 9 seconds of data are 

taken for experiments with a feed rate of 34 inches per minute, and 13 seconds of data are taken 
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for a feed rate of 24 IPM. Then, the corresponding one-second segments from each of the five 

signal types are linked to form one ML sample. This data segmentation method produces a large 

number of samples to be assessed independently for the machine learning analyses, and is 

reasonable due to the machining signals’ relatively time-invariant nature when evaluated on the 

order of seconds under the consistent operating conditions described [2, 22, 23, 29, 30, 48].  

As the tool’s wear is only measured after each 3 passes (either 27 or 39 1-second ML 

samples, depending on the feed rate used) and abrasive flank wear is considered a gradual process, 

the wear was assumed to increase linearly between each pair of wear measurements. Therefore, 

the wear level cutoffs may be crossed at any time and is not held constant between images.  

79 features are then extracted from the signals of each one-second ML sample, based on 

features found to be highly correlated to tool wear or related conditions by previous works [2, 13-

15, 22, 28, 29, 42-44, 51, 60, 81, 90, 93, 94]. As features from both the time domain (TD) and the 

frequency domain (FD) have been shown previously to be strong predictors for tool wear, both 

analysis techniques were employed for this study. The full list of extracted features is displayed in 

Table 3.4, with 19 features being extracted from the sound signal and 15 being extracted from each 

of the four controller signals. The relevant feature formulas are shown in Table 3.5. As the sound 

signal is symmetric about a value of 0 Pa, the absolute value was taken of each sound pressure 

reading prior to time-domain feature extraction.  
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Table 3.4: Extracted features 

 

 

Table 3.5: Feature formulas 

 

 

Sound Features:
Controller Signal Features             
(spindle power & axial loads):

TD mean TD mean
TD standard deviation TD median
TD kurtosis TD standard deviation
TD skewness TD kurtosis
TD maximum TD skewness
TD median TD maximum
TD RMS TD RMS 
TD range TD range
TD crest factor TD crest factor
TD clearance factor TD clearance factor
FD maximum amplitude FD maximum amplitude
FD peak at spindle frequency FD peak at spindle frequency
FD peak at 2x spindle frequency FD amplitude sum 0-83Hz
FD amplitude sum 0-500Hz FD frequency center
FD amplitude sum 0-9000Hz FD frequency standard deviation
FD amplitude sum 4-6kHz
FD amplitude sum 2.75-3.75kHz
FD frequency center
FD frequency standard deviation
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For the time domain feature calculation, all data points in a signal’s 1-second segment are 

used to calculate a feature directly. In order to calculate the frequency domain features, however, 

a Discrete Fourier Transform must first be applied to convert the data from a time domain signal 

to a frequency domain amplitude spectrum showing the various frequency components which 

make up the time domain source signal. From there, the frequency domain spectrum can be used 

to calculate the relevant frequency-based features. As a frequency component can only be 

accurately sampled if the frequency is below the Nyquist frequency, or half the sampling 

frequency, this frequency spectrum only spans up to half the sampling frequency. As a result, the 

sound signal’s frequency spectrum can be assessed up to about 9 kHz due to the signal 

conditioner’s maximum sampling frequency of 20.7 kHz +/- 5%. The spindle power and axial load 

signals, sampled at 166 Hz, can be assessed up to a frequency of 83 Hz, which is high enough to 

measure and track the spindle frequency peak with respect to tool wear.  

After all 79 features are calculated, their distributions are standardized. This is an important 

preprocessing step to ensure that the large differences in original feature ranges and mean values 

do not allow some features to overpower others in distance-based algorithms such as kNN and 

SVM. This step has also been shown to significantly shorten the training convergence time for 

ANNs [156]. Finally, with this combination of standardized time-domain and frequency-domain 

features from the five different signal types, a wide range of process information is made available 

for TCM analysis.  

To create the simulated process signals for the noisy training study, the data from 

Experiments 2B and 3C is replicated four times before features extraction, and different levels of 

White Gaussian noise signals are additively combined with it to create noisy signals. Five levels 

of noise are to be assessed, including the unaltered data, and are listed in Table 3.6.  
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Table 3.6 Additive white Gaussian noise levels 

 

 

The levels of noise added are determined by Signal-to-Noise-Ratio (SNR) values, which are 

selected based on successful noisy training studies conducted in the speech recognition field using 

sound [33, 157]. After the new signals are created, the 79 ML features can then be extracted for 

ML analysis. 

 

3.3 Feature Selection 

Although access to a large number of features can make more information available to a 

ML algorithm, it can also distract it from the most important features and hurt the prediction 

performance [13, 32, 50]. This effect depends on the ML model being used, as well as the specific 

features’ levels of redundancy, dependence on each other, and correlation to the target variable 

[13, 32]. In addition, calculating and processing a higher number of features increases a TCM 

system’s computation time, and as a result, reduces its feasibility for in-process monitoring.  

To determine the optimal number and subset of variables to be used for the analysis, four 

feature selection techniques are evaluated, including two supervised and two unsupervised feature 

selection methods. A supervised feature selection method, such as the Recursive Feature 

Elimination technique used with both SVM and a RF models for this study, takes a ML algorithm’s 

performance changes into account as it searches for the optimal feature subset. Unsupervised 

Dataset Label
L0
L1
L2
L3
L4

AWGN - SNR25
AWGN - SNR20
AWGN - SNR15
AWGN - SNR10

Description
Original data only (no noise added)
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feature selection methods, such as the Mutual Information and correlation techniques assessed 

here, select features without knowledge of a ML model’s performance.  

The Recursive Feature Elimination (RFE) technique selects an optimal feature subset size, 

as well as the features to be used, by initially running a ML model using all features available, and 

recursively eliminating the next least-important feature and repeating the process [158]. RFE using 

the ML model’s cross validation score for performance evaluation during the process is known as 

RFECV. Using RFECV, the combination of features which achieves the highest CV score is given 

as the final feature selection result [159]. RFE can only be run using a ML model which calculates 

feature rankings, weights, or another measure of feature importance. RFECV using a SVM model 

(SVM-RFECV) can be done using the algorithm’s calculated feature weights, while RFECV using 

a random forest model (RF-RFECV) can be done using importances based on node impurities and 

the probability of reaching each node.  

The Mutual Information (MI) method [160] calculates the mutual information coefficient, 

also known as the information gain, for each feature compared to the target variable (in this case, 

the tool wear level). This MI coefficient represents the uncertainty reduction for one feature when 

the other feature’s value is known, and can take into account several types of potential relationships 

between features such as patterns between their means, variances, or higher moments [161]. The 

features with the highest MI coefficients are selected for use, and the number of features to be 

selected must be input by the user.  

Finally, the Correlation-based Feature Selection method (CFS) [162] is also applied, in 

which a coefficient is calculated based on both the correlation between a feature and the target 

variable, as well as the intercorrelations between the feature and the other features under 

consideration. A high correlation to the target variable and low correlations to the other features 
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will result in the feature being selected for the final feature subset [13]. Generally, the cutoff value 

for the correlation coefficient is input by the user.  

As SVM-RFECV [50, 158, 159], RF-RFECV [163], MI [158, 164], and CFS [13, 165] 

have all been shown to be promising for TCM feature selection, all four methods will be conducted 

using the nine ML methods investigated. Through this, it will be assessed how the various ML 

feature selection method options affect TCM system performance, including that of the ensemble 

ML systems, for which the feature selection methods have not been compared previously.  

 

3.4 ML Model Evaluation 

In order to answer the research questions, the nine selected ML models (DT, SVM, kNN, 

ANN, EHV, ESV, Stacked SVM, RF, and ET) are evaluated by multiple performance metrics, and 

are run using several training – testing combinations.  

 

3.4.1 ML Performance Metrics 

In order to evaluate the ML models’ performance effectively, several metrics are measured.  

 

3.4.1.1 Direct ML Performance Metrics 

For the transferability studies, the models’ training and testing is repeated 20 times and the 

classifications’ mean accuracy (equal to the weighted recall), accuracy standard deviation, macro-

averaged recall, weighted precision, macro-averaged precision, weighted F1 score, and macro-

averaged F1 score are recorded. The formulas for the accuracy, recall, precision, and F1 score for 

each class are shown in Equations 3.1 – 3.4, and depend on that class’ true positive (TP), false 

positive (FP), true negative (TN), and false negative (FN) values.  
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𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 	
𝑻𝑷 + 𝑭𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵 + 𝑭𝑵	
(3. 1) 

𝑹𝒆𝒄𝒂𝒍𝒍 = 	
𝑻𝑷

𝑻𝑷 + 𝑭𝑵	
(3. 2) 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 	
𝑻𝑷

𝑻𝑷 + 𝑭𝑷	
(3. 3) 

𝑭𝟏	𝑺𝒄𝒐𝒓𝒆 = 𝟐 ∗	
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍	

(3. 4) 

 

Each of these metrics measures a different aspect of a model’s performance for each class: 

accuracy measures the proportion of all samples the algorithm classifies correctly; recall measures 

the proportion of actual positives which are classified correctly; precision measures the proportion 

of predicted positives which are classified correctly; and the F1 score combines the recall and 

precision into a single metric. 

For multi-class ML classification problems, there are multiple ways of averaging the 

performance metrics for the different classes in order to get a single value. Weighted averaging 

gives each ML sample an equal impact on the final performance metric, by averaging the metric 

for each class using a weight based on the number of samples in that class. Macro averaging, on 

the other hand, directly averages the classes’ metric values without any weighting. If the class sizes 

are imbalanced, this results in the impact of the smaller classes being raised to equal that of the 

larger classes. In this study, both averaging results for the recall, precision, and F1 score are 

evaluated.  
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3.4.1.2 Cross Validation Metrics 

 Two other performance metrics are also examined in this study, in order to get a quick 

overview of a model’s performance across a group of data. K-Fold Cross Validation is a commonly 

applied metric for TCM ML analysis and hyperparameter tuning, and it has shown several 

advantages [13, 25, 54, 106, 107, 166-168]. As it requires several ML runs to be conducted using 

different subsets of an overall dataset, it can achieve more accurate performance predictions than 

through the use of only one training and one testing set. The final K-Fold CV score, the average 

score for these k ML runs, generally achieves a lower variance than other direct metrics, especially 

when the number of folds is increased. In addition, the changing training and testing sets helps K-

Fold CV detect overfitting in a developed model, as well as evaluate overfit models more 

accurately than with other metrics. This measure provides a good estimate of how well a ML model 

would perform when trained and tested on random non-overlapping subsets of a dataset.  

 However, this approach has a significant disadvantage for some TCM applications: it 

considers each ML sample to be completely independent from other samples, and therefore it does 

not take relationships between the samples into account during the k folds’ selection. For TCM 

studies in which multiple distinct machining or environmental conditions are used for experiments 

and the data is combined for CV, the use of K-Fold CV results in training and testing being done 

using different samples from the same experiment. This would not be done in realistic tool 

condition classification applications, where a model would be pre-trained before an experiment 

starts [16, 169]. Due to the significant differences in tool wear rates and patterns between 

experiments even if the same experimental parameters are used [19, 20], the inclusion of samples 

from one experiment in both the training and testing datasets is likely to provide artificially high 

model performance measures [32, 170]. 
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 The Leave-One-Group-Out Cross Validation (LOGO-CV) technique, also known as 

Leave-One-Cluster-Out CV, is designed to address this issue: instead of selecting the groups to be 

used for model training and testing based on the individual samples, this algorithm allows samples 

to be labeled and grouped together according to relationships between them [171- 173]. As a result, 

for this application each tool life experiment can be considered its own group, preventing samples 

from one experiment from being present in both the training and testing groups at any point in the 

CV process. Used in this manner, LOGO-CV provides an averaged measure of how well a model 

performs when it is trained on data from all available experiments except for one, and then tested 

on the remaining experiment. While this technique has been shown to be a better measure of model 

performance than other CV methods in fields such as material discovery [170, 172, 173], it has not 

previously been applied to TCM. In this study it will be employed in order to gain a better 

understanding of model performance across different TCM experiments, through the use of more 

realistic training-testing sets for these situations. However, as k-fold CV has the advantage of being 

able to split the overall dataset into completely different variations each time it is run, while due 

to a limited number of groups LOGO-CV is limited in this respect, 10-fold CV will also be used.  

 

3.4.1.3 Model Performance Comparison Metrics 

Finally, once the models have been evaluated individually, their performance in relation to 

each other will be compared. Several metrics are reported for this, including the models’ accuracy 

score standard deviation, the 95% confidence interval of the accuracy mean, bar graphs showing 

the full range of accuracy scores, and statistical t-test results.  

For the measurement of statistical significance of any model performance differences, 

student’s t-tests will be employed using the scores from 20x-repeated 10-fold CV. This is in 
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agreement with Bouckaert and Frank’s study [174] on the optimal methods for comparing ML 

model performance, which recommended 10x-repeated 10-fold CV due to its low Type 1 error, 

low Type 2 error, and high replicability scores. The significance of any 20x-repeated LOGO-CV 

score distribution differences will also be assessed using t-tests.   

 

3.4.2 ML Training, Validation, and Testing Sets 

A total of 4,916 original ML samples from the 8 experiments were collected to be used for 

the TCM analysis. After feature extraction, each ML sample included 79 feature values from its 

original 1-second-long sound, spindle power, and axial load signals. After the noise-based data 

augmentation of Experiments 2B and 3C, 4,580 noisy samples were also made available for 

analysis. For each experiment, ½ of its samples are set aside for the validation dataset, and the 

other ½ are used for model evaluation. The models’ hyperparameter tuning is completed using 5x-

repeated 10-fold CV on the entire validation dataset, including data from all 8 experiments. The 

evaluation dataset is then split into training and testing groups based on the relevant experimental 

data for each analysis. 
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CHAPTER 4: RESULTS 

 

The results from the collected process signals, the extracted features, the feature selection 

techniques, and the developed machine learning models are detailed in this chapter. A summary 

of the experimental results is given by Table 4.1.  

 

Table 4.1: Overview of experimental results 

 

 

It is noted that for each of the experiments, significantly fewer samples were collected for wear 

level 1 than for wear levels 2 and 3. As shown in Figure 4.7 and discussed in Section 2.1, this is 

due to the higher wear rates which are expected in the initial stage of tool wear as the cutting edge 

dulls to form a more sustainable shape. As this imbalance in class sizes is common in TCM due to 

wear rate variations, it is important that TCM models are effective for unbalanced datasets. 

 

Experiment 
Label

# Passes to 
0.3mm Flank 

Wear
Total Material 

Removed (mm^3)

Total 
Machining 
Time (min)

Total # ML 
Samples 

Used

Samples 
in Wear 
Level 1

Samples 
in Wear 
Level 2

Samples 
in Wear 
Level 3

1A 54 19910 9.5 468 36 126 306
2B 49 18067 12.3 614 64 269 281
3C 59 21754 10.4 526 54 304 168
4D 63 23229 15.8 801 78 406 317
5D 73 26916 18.3 924 76 439 409
6C 47 17329 8.3 422 34 229 159
7B 48 17698 12.0 604 99 256 249
8A 59 21754 10.4 527 40 250 237
Total 452 166657 96.9 4886 481 2279 2126
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4.1 Process Signals 

The collected sound, spindle power, and axial load signals from the eight tool wear 

experiments are first pre-processed as described in Section 3.2. For Experiment 8A, the sound 

signal’s raw data from the combined machining pass regions is shown in Figure 4.1.  

 

 

Figure 4.1: Sound pressure data from Experiment 8A 

 

These signals can be viewed in more detail in Figure 4.2, where 0.5-second sound signals are 

shown at machining times within each of the three tool wear levels. At 5 seconds of machining 

time (t = 5 sec), VBmax = 0.047 mm; at t = 265, VBmax = 0.180 mm; and at t = 530, VBmax = 

0.293 mm.  
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Figure 4.2: Sound signals from Experiment 8A at wear levels (a) 1, (b) 2, and (c) 3, with 1 

spindle rotation period (T) displayed for scale 

 

Noticeable increases in the sound signal amplitude can be observed as the tool wear progresses 

between the three levels, especially at frequencies related to the spindle frequency.  

Similarly, the spindle power (SP), x-axis load (XL), y-axis load (YL), and z-axis load (ZL) 

data, all collected from the machine controller and sampled at 166 Hz, are shown in Figure 4.3 and 

Figure 4.4. For all five signals collected, peaks at each spindle rotation can be identified, and an 

increase in amplitude can be observed as the tool becomes more worn.  
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Figure 4.3: Combined machining pass (a) spindle power,  (b) x-axis drive load, (c) y-axis 

drive load, and (d) z-axis drive load data from Experiment 8A 
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Figure 4.4: Experiment 8A SP signals at wear levels (a) 1, (b) 2, and (c) 3; XL signals at 
wear levels (d) 1, € 2, and (f) 3; YL signals at wear levels (g) 1, (h) 2, and (i) 3; and ZL 

signals at wear levels (j) 1, (k) 2, and (l) 3 

 

Figure 4.5 shows the sound signal when converted to the frequency domain using a Discrete 

Fourier Transform. The same three machining time segments are shown as above, from within 

each of the three wear levels. There are clear peaks at the spindle frequency and its harmonics, 

with an increase in those peaks’ amplitudes as the tool’s wear progresses.  
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Figure 4.5: DFT of Experiment 8A sound data from within tool wear levels 1 (t = 5 sec), 2 (t 

= 265 sec), and 3 (t = 530 sec) 

  

Example wear images from the three wear levels are shown in Figure 4.6. Their material 

removed (MR) values are also listed for reference. The wear progression was observed to be fairly 

gradual and consistent across the cutting edge for most of each experiment. Near the end of each 

experiment, the lower cutting edge region began to wear more rapidly than the upper cutting edge, 

which is consistent with expectations according to ISO8688-2 [55]. No significant chips were 

identified in any of the 8 experiments at or before the 0.3 mm flank wear cutoff. 

 

 
Figure 4.6: Tool condition deterioration during Experiment 6C. The insert is shown at (a) 
MR = 940 mm3 and VBmax = 0.075 mm, (b) MR = 8,460 mm3 and VBmax = 0.189 mm, and 

(c) MR = 14,100 mm3 and VBmax = 0.284 mm 
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Figure 4.7 shows the flank wear paths followed by each of the 8 tools used. While all of 

the wear paths appeared to show clear initial wear stages from about 0-0.10 mm VB, and less 

uniform normal wear stages from approximately 0.10 mm to between 0.25 and 0.30 mm VB, not 

all of the tools entered the severe wear stage before reaching the 0.3 mm cutoff. This is consistent 

with previous research, in which the beginning of the severe wear stage can vary widely based on 

machining conditions and other factors [57, 154, 43, 28].  

 

 
Figure 4.7: Tool flank wear progression for all 8 experiments 

 

Figure 4.7 also shows a few interesting patterns between the cutting parameters used and 

the tool’s overall lifetime from 0–0.3 mm VB. Experiments 4D and 5D, which used the low spindle 

speed (N) and low feed rate (FR), achieved the longest lifetimes both in terms of machining time 

and material removed. This is consistent with previous studies which have shown both cutting 

speed and chip load to be positively correlated to tool wear rates, with cutting speed having the 

largest effect [2, 5, 82-84]. In addition, the shortest tool lives were observed for parameter set B, 
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which used a high spindle speed and a low feed rate. This is also consistent with industry 

knowledge, as this combination of cutting parameters results in the lowest chip load, which can 

give a high wear rate when the chip load is low enough to result in increased tool rubbing and 

abrasion on each tool rotation instead of clean cuts into the workpiece. Outside of this rubbing 

condition, increases in chip load between the other three levels results in increasing wear rates as 

expected.  

 

4.2 Signal Features 

The 79 extracted features show interesting results. Figure 4.8 compares the mean values of 

all five process signals from Experiment 4D, as well as the tool’s wear progression pattern. As 

with all of the features to be extracted and used for ML, these mean values were calculated from 

each 1-second segment of collected signal data. In agreement with Experiment 8A, all five process 

signals showed increases in their mean values as the tool flank wear increased. The sound and 

spindle power signal mean values even showed similar changes in slope to that of the wear pattern 

at approximately MR = 2000 mm3, when the tool transitioned from stage 1 to stage 2 wear.   
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Figure 4.8: Experiment 4D (a) tool flank wear, (b) mean axial load, (c) mean sound 

pressure amplitude, and (d) mean spindle power experimental results 

 

Several other extracted features also show value increases with the progression of tool 

wear, although their magnitudes and pattern details may vary between individual experiments. 

Some of the features which aligned best between the different experiments and were therefore 

more suitable options for machine learning analysis, are shown in Figure 4.9 and Figure 4.10. 
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Figure 4.9: All experiments’ (a) mean sound signal amplitude, (b) sound signal standard 

deviation, (c) mean SP, and (d) SP root-mean-square (RMS) 
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Figure 4.10: All experiments’ (a) XL standard deviation, (b) mean YL, (c) YL DFT peak at 

the spindle frequency, and (d) ZL RMS 

 

In the frequency domain, several frequency bands and individual peaks were evaluated for 

correlation to tool wear as well as consistency across experiments. For the signals sampled by the 

machine controller, including the SP and axial loads, the sampling rate of 166 Hz allowed the 

spindle frequency to be monitored but was not high enough to evaluate its harmonics or any higher 

frequency bands. However, the DFT amplitude at the spindle frequency showed strong correlation 

to tool wear in the SP, YL, and ZL signals. For example, Figure 4.10 € shows the patterns followed 

by the spindle frequency peak amplitude in the y-axis load signals during different experiments, 

which all increase with wear and overlap significantly.  
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As the sound signal was sampled at a much higher rate, its frequency bands can be assessed in 

more depth. From the sound signals, two frequency peaks and four frequency ranges were 

monitored: the spindle frequency and its second harmonic, the full DFT range (0-9 kHz), a 0-500 

Hz low frequency band which encompasses several spindle rotation harmonics, a 4-6 kHz band 

based on L. C. Lee’s characteristic frequency range [94], and a 2.75-3.75 kHz frequency band 

based on Sadat and Raman’s work [93]. The clearest of these were the 0-500 Hz frequency range 

amplitude sum and the spindle frequency peak amplitude, both shown in Figure 4.11. However, 

the spindle frequency peak amplitude appears to be highly dependent on the spindle speed (N) 

used, as the four experiments with N=4400 RPM (parameter sets A & B) follow a separate path 

from the four which used N=3700 RPM (parameter sets C & D).  

 

 
Figure 4.11: All experiments’ sound DFT (a) 0-500 Hz amplitude sum, and (b) amplitude at 

the spindle frequency 

 

Although peaks in the 4-6 kHz range were observed in the sound signals, and both the 4-6 kHz 

and 2.75-3.75 kHz frequency ranges saw increases in amplitude sum for some individual tools’ 

lives, no clear pattern across all cutting parameters used was found for either band. This is not 

surprising due to the differences between the cutting processes used. On the other hand, the 0-9 
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kHz amplitude sum and the 2nd harmonic of the spindle frequency showed similar increases and 

correlations to tool wear as those in Figure 4.11, although less clearly defined. These strong 

correlations to the spindle frequency harmonics at lower frequency values are more expected for 

milling processes [29]. All of these calculated features were made available to the feature selection 

algorithms. 

 

4.3 Feature Selection Results 

The four feature selection methods, SVM-RFECV, RF-RFECV, MI, and CFS, run on the 

validation dataset which includes data from all eight experiments, resulted in the selection of 14, 

3, 36, and 20 features respectively. The features selected by each method are listed in Table A.1, 

as well as summarized by signal type in Table 4.2 below. The features extracted from the z-axis 

load signals were selected the most frequently overall by the feature selection methods, and the x-

axis load signal’s features were selected the least.  

 

Table 4.2: Overview of feature selection results 

 

 

The most frequently selected individual features are also listed in Table 4.3 for reference. This list 

gives an idea of the features which are the most highly correlated to tool wear, as well as the least 

dependent on, or correlated to, the other signal features.  

Feature Selection Method Used:

No Feature 
Selection SVM-RFECV RF-RFECV MI CFS

Total Number of Features Selected: 79 14 3 36 20

# Features Selected from Sound Signal 19 5 0 5 0 13.70%

# Features Selected from Spindle Power Signal 15 2 1 9 4 21.92%

# Features Selected from X-Load Signal 15 2 0 4 1 9.59%

# Features Selected from Y-Load Signal 15 3 0 9 7 26.03%

# Features Selected from Z-Load Signal 15 2 2 9 8 28.77%

Features Selected by various Selection Methods % Features Selected 

from each Signal, 

across all 4 Feature 

Selection Methods 
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Table 4.3: Most frequently selected features 

 

 

 Figure 4.12 shows the recursive feature elimination process followed by the SVM- and RF-

based feature selection methods. As described in Section 3.3, the process begins on the right end 

of the plots, with all 79 features used for cross validation scoring, and moves toward the left as 

one feature at a time is eliminated.  

 

Most Commonly Selected 

Features:

Number of 

Occurrances:

SP TD mean 4

SP TD RMS 3

XL TD standard deviation 3

YL TD mean 3

YL TD maximum 3

ZL TD mean 3

ZL TD standard deviation 3

ZL TD RMS 3

Sound TD mean 2

Sound TD standard deviation 2

Sound FD amplitude sum 0-9kHz 2

SP FD maximum amplitude 2

SP FD peak at spindle frequency 2

YL TD standard deviation 2

YL TD RMS 2

YL TD range 2

YL FD maximum amplitude 2

YL FD peak at spindle frequency 2

ZL TD median 2

ZL TD maximum 2

ZL TD range 2

ZL FD maximum amplitude 2

ZL FD peak at spindle frequency 2

ZL FD amplitude sum 0-83Hz 2
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Figure 4.12: RFECV feature selection process, using (a) SVM, and (b) RF models for 

evaluation 

 

 The effect of the different feature selection (FS) methods on the performance of the nine 

machine learning algorithms studied in this work are shown in Figure 4.13. Both 10-fold cross 

validation and LOGO-CV performance metrics are used in order to get an idea of how well each 

set of features performs on the dataset as a whole, as well as how the feature selection methods 

impact model transferability to data from new unseen experiments.  

 

 
Figure 4.13: Feature selection methods’ impact on model performance. Average accuracy 
scores for both (a) 20x-repeated 10-fold CV, and (b) 20x-repeated LOGO-CV are shown, 

with error bars depicting the 95% confidence interval ranges 
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The SVM-RFECV method results in the highest average LOGO-CV score across the nine models, 

at 91.7%, as well as a 10-fold CV average score of 97.9% which is tied as the top score with No 

FS. Table 4.4 shows the statistical analysis results for the feature selection comparison.  

  

Table 4.4: Statistical analysis of FS method scores 

 

 

While there is not a significant difference between the 10-fold CV scores when the SVM-RFECV 

and the No FS feature selection methods are used, the SVM-RFECV technique resulted in 

significantly higher scores than all FS methods in every other measure. This is consistent with Li 

et al.’s study [158], in which SVM-RFE was found to result in higher TCM accuracy scores than 

both MI and a Fisher Score technique when combined with a least-squares SVM classification 

model. For these reasons, SVM-RFECV is selected for feature selection and its subset of 14 

features are used for the remainder of the study.  

 

4.4 Developed ML Models 

Using the feature subset selected through SVM-RFECV, the nine ML models are then 

optimized by tuning their hyperparameters to fit this application. This process and the models’ 

FS Method 1: Chosen Method
FS Method 2: Comparison Method No FS SVM- RF-RFECV MI CFS

t-value: -1.19 158.27 3.21 18.18
p-value: 2.53E-01 3.56E-24 6.25E-03 3.90E-11
p-value < 0.05 ? No  Yes Yes Yes

FS Method 1: Chosen Method
FS Method 2: Comparison Method No FS

SVM-
RFECV RF-RFECV MI CFS

t-value: 33.74 40.00 8.15 10.32
p-value: 8.22E-15 7.76E-16 1.10E-06 6.33E-08
p-value < 0.05 ? Yes Yes Yes Yes

Using 20x-
Repeated 
LOGO-CV 

Scores

SVM-RFECV

SVM-RFECV

Using 20x-
Repeated 
10-fold CV 

Scores
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initial results are presented in Sections 4.4.1 and 4.4.2. The developed models’ computation times 

are also assessed in Section 4.4.3. 

 

4.4.1 Model Hyperparameter Optimization 

The nine ML models’ hyperparameters are tuned to adjust the algorithms to the TCM 

application, using a combination of parameter grid searches, 5x repeated 10-fold CV, and 5x 

repeated LOGO-CV all run on the entire validation data subset. 10-fold CV is generally a good 

performance metric for hyperparameter tuning since its several unique training and testing 

groupings, especially when run and averaged five times, help prevent models from becoming 

overfit on any specific training sets.  For the decision tree model, Figure 4.14 shows the tuning 

process for two hyperparameters: the maximum number of features considered at a time, and the 

minimum number of samples needed for an internal node to split. Values of “None” and 2 were 

selected for these parameters, no maximum tree depth was set, and a Gini impurity criterion was 

selected for measuring the node split quality. 

 

 
Figure 4.14: Tuning of DT (a) max. features and (b) min. samples to split hyperparameters 
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As direct SVM classification algorithms are designed for binary classification, a one-vs-

one scheme is used for this application in order to classify between the multiple wear levels. A 

radial basis function kernel is selected for the SVM using a grid search, and Figure 4.15 shows the 

process of optimizing the regularization parameter C. As this parameter controls the model’s 

penalty for misclassifications in the training data, it must be selected correctly in order to balance 

the model’s prediction accuracy for data very similar to the training data, with the model’s 

generalizability to new and different data. For these reasons, both 10-fold CV and LOGO-CV are 

used to tune this parameter, and an optimal value of C = 5 is selected.  

 

 
Figure 4.15: Tuning of SVM C regularization parameter, using (a) 10-fold CV, and (b) 

LOGO-CV 

 

Figure 4.16 shows the vector regions calculated by the tuned SVM classifier when it is 

trained on the evaluation data for Experiments 1-4. The data points shown are this Experiment 1-

4 data, colored by the samples’ true wear classes to show how closely the regions fit the training 

dataset. For visualization, only two features’ data were assessed at a time. It is observed that while 

some of the features have fairly clear cutoffs between the wear levels, such as the mean SP and 

the ZL standard deviation (SD), others, such as the XL SD and the sound signal mean, are less 
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clear. Overall, however, the model appears to fit the regions to the data well and without 

overfitting.  

 

 
Figure 4.16: SVM vector region plots, using only (a) the mean sound signal and the YL 

maximum, (b) the XL SD and the SP DFT amplitude at the spindle frequency, (c) the mean 
SP and the ZL SD, and (d) the ZL RMS and the sound SD 

 

Figure 4.17 shows the optimization process for two kNN and RF hyperparameters, which 

results in the number of neighbors (“k”) for the kNN being set to 3, and the minimum number of 

samples at each leaf node for the RF being set to 1. Other settings chosen for the kNN included 

Euclidean distance measures and uniform sample weights. A “forest” of 100 trees is used for the 

RF, and the other selected parameters match those described for the individual DT model. The 

extra-trees algorithm also uses 100 trees and this same hyperparameter set. 
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Figure 4.17: Tuning of (a) the kNN number of neighbors used, and (b) the RF minimum 

leaf size 

 

The other models are tuned similarly. To tune the multilayer perceptron neural network, 

several intricate grid searches were utilized to find the optimal activation function, weight 

optimization solver, L2 regularization parameter, and hidden layer sizes. For these 

hyperparameters, a rectified linear unit function, a stochastic gradient-based optimizer, a value of 

0.0001, and hidden layer sizes of 6, 30, and 37 were found to give the best repeated 10-fold CV 

results.  

For the EHV and ESV ensemble models, the base classifier weights were set according to 

the base models’ 10-fold CV scores using the training data. This allows ties between the four base 

models’ votes to be avoided, and gives slightly more weight to better-performing base models. 

The DT, SVM, kNN, and ANN algorithms were used as base models. The stacked generalization 

SVM ensemble method used a data splitting strategy similar to 10-fold CV for determining the 

training sets for the base models and the SVM meta-learner, as they should not be trained on the 

same data. While the stacked SVM model was based on the same four base learners as the two 

voting ensembles, no classifier weights were used for this ensemble method. The SVM meta-



 75 

learner’s C regularization parameter was set to 1. The use of these nine ML techniques’ sets of 

optimized hyperparameters helps the models better fit the specific TCM application, as well as 

achieve higher prediction accuracy scores.  

 

4.4.2 ML Initial Results 

Using data from all 8 experiments, the overall performances of each ML model are 

displayed as box plots in Figure 4.18 in terms of their 10-fold CV and LOGO-CV scores. As 

shown, the homogeneous ensemble models performed the best in both metrics. The statistical 

significance of the performance differences between these top-ranking models and the other 

models is assessed in Table 4.5 using t-tests. It is determined that the extra-trees model performs 

significantly better than all other models in 10-fold CV, and that the random forest performs 

significantly better in the LOGO-CV analysis than all models except for ET. The decision tree and 

the neural network show the highest score variability, especially in the LOGO-CV scores. The 

stacked generalization SVM ensemble model also showed relatively high variability in its 10-fold 

CV scores.  
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Figure 4.18: Box plots for all ML models, using 20x-repeated (a) 10-fold CV and (b) 

LOGO-CV 

 

Table 4.5: Statistical analysis of model performance differences 

 

 

The results from the machining conditions transferability study are shown in Table A.2 and 

discussed in more detail in Section 5.2. Confusion matrices are shown for each of the individual 

ML models in Figure 4.19, as well as for the ensemble ML models in Figure 4.20, for the runs in 

which they were trained on data from Experiments 1-4 and tested on data from Experiments 5-8.  

Model 1: 5x2CV Best-Performing Model

Model 2: Comparison Model DT SVM kNN ANN EHV ESV
Stacked 

SVM RF ET
t-value: 34.30 108.61 10.42 36.87 15.77 18.96 38.17 12.08
p-value: 1.52E-22 5.82E-35 5.68E-12 5.79E-22 7.96E-14 1.55E-15 6.92E-21 1.28E-12
p-value < 0.05 ? Yes Yes Yes Yes Yes Yes Yes Yes

Model 1: LOGO Best-Performing Model

Model 2: Comparison Model DT SVM kNN ANN EHV ESV
Stacked 

SVM RF ET
t-value: 9.03 16.52 39.05 2.55 8.66 7.61 12.72 1.91
p-value: 2.409E-09 5.798E-15 3.335E-29 1.807E-02 1.061E-08 9.896E-08 2.467E-11 6.653E-02
p-value < 0.05 ? Yes Yes Yes Yes Yes Yes Yes No

Extra-Trees (ET)
Using 20x-
Repeated 
10-fold CV 

Scores

Using 20x-
Repeated 
LOGO-CV 

Scores

Random Forest (RF)
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Figure 4.19: Confusion matrices for (a) DT, (b) SVM, (c) kNN, and (d) ANN when trained 
on data from Experiments 1-4 and tested on data from Experiments 5-8 
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Figure 4.20: Confusion matrices for (a) EHV, (b) ESV, (c) Stacked SVM, (d) RF, and € ET 
when trained on data from Experiments 1-4 and tested on data from Experiments 5-8 

 

The percentages shown in the confusion matrices are the percentages of the total true samples for 

each wear level which are predicted to be at the specified level. Notably, the percentages shown 

along the downward diagonal give the models’ prediction accuracies for each of the three wear 

classes. Overall, the models can be observed to perform better on the second and third wear levels 

than they do on the first wear level. This is a fairly consistent pattern across the various ML runs 

and training/testing sets. However, the ensemble methods generally achieve much higher 

prediction accuracies for the first wear level than the individual models do, showing that the 

ensemble models have higher robustness to unbalanced datasets. The differences in model 

performance between the individual models and the ensemble models will be discussed in more 

detail in Section 5.1.1.2. 
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4.4.3 Computation Time 

The computation times for each model were compared as well, and are shown in Table 4.6. 

These model classification times ranged from 0.0006 ms per ML sample for the decision tree, up 

to 0.1184 ms per sample for the hard voting ensemble classifier. While it is expected that the 

ensemble models will require more classification computation time due to their more complex 

structures, four out of the five ensemble models achieved lower computation times than the kNN 

individual model. These results are all based on the 14-feature subset chosen by the SVM-RFECV 

feature selection method. 

 

Table 4.6: Feature extraction and classification computation times per ML sample 

 

 

Any of these model classification times only make up a small fraction of the amount of 

computation time necessary for full in-process tool wear monitoring using the proposed system, 

however. As shown in Table 4.6, the computation time required for the sound signal’s feature 

extraction makes up the majority of the total computation time required, due to the high sampling 

rate used. However, the calculated total time is still far below the feasibility requirement, which is 

that the total time to process and classify one ML sample must be less than one second, as each 

ML sample spans one second of process data. Even if the EHV model is used, the total computation 

ML Model

Time to Calculate 
Sound Features 
(ms)

Time to Calculate 
Controller 
Features (ms)

Average ML 
Classification 
Time (ms)

Total Computation 
Time during Process, 
per Sample  (ms)

DT 195.4545 0.9567 0.0006 196.4118
SVM 195.4545 0.9567 0.0211 196.4323
kNN 195.4545 0.9567 0.0732 196.4844
ANN 195.4545 0.9567 0.0025 196.4137
EHV 195.4545 0.9567 0.1184 196.5296
ESV 195.4545 0.9567 0.0488 196.4600
Stacked SVM 195.4545 0.9567 0.0656 196.4768
RF 195.4545 0.9567 0.0316 196.4428
ET 195.4545 0.9567 0.0323 196.4435
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time for each ML sample comes out to only 0.197 seconds, which is much less than 1 second and 

is therefore acceptable for in-process TCM. These results demonstrate the suitability of the 

proposed systems for TCM, as well as show that the increased complexity of ensemble ML 

techniques is not a hindrance to TCM system feasibility. 
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CHAPTER 5: DISCUSSION 

 

Despite high industry demand, for a TCM system to be adopted by manufacturers it must 

meet stringent practicality, accuracy, and generalizability requirements. While the proposed TCM 

system meets these practicality requirements by utilizing only cost-effective, non-intrusive, and 

easy-to-install sensors and equipment, the effects of the selected ensemble ML algorithms and 

configurations on a system’s accuracy, and generalizability are to be assessed in this section. In 

addition, the noisy training method of improving model generalization in situations with limited 

training data will be investigated.  

 

5.1 ML Optimal Configuration  

In order to determine the optimal ML model configurations and settings to be used for this 

specific TCM application, the nine model types, the effects of heterogeneous and homogeneous 

ensemble ML configurations, and the impact of different tool wear classification resolutions are 

evaluated.  

 

5.1.1 Model Performance Comparison 

5.1.1.1 Evaluation of All Models 

Figure 4.13 and Figure 4.18, discussed earlier, show the 10-fold CV and LOGO-CV scores 

for each of the nine ML models using data from all eight experiments. In Figure 4.13, it is observed 

that across the different feature subsets which are investigated, the two homogeneous ensemble 

models, RF and ET, fairly consistently achieve the highest 10-fold CV and LOGO-CV 

performance metrics. The two ensemble voting schemes, EHV and ESV, also generally perform 
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well compared to the remaining models. Figure 4.18 confirms these results for the selected SVM-

RFECV-based subset of features, although it also shows the kNN achieving comparable 10-fold 

CV scores, and the ANN achieving comparable LOGO-CV scores. The stacked SVM ensemble 

model gives the lowest 10-fold CV scores and mid-range LOGO-CV scores. 

Table A.2, Figure 4.19, and Figure 4.20 give detailed results for each model when they are 

trained and tested on various experimental subsets of data. From the experimental generalizability 

runs in Table A.2, the results of which are summarized in Table 5.1, it is observed that on average, 

the stacked SVM ensemble achieved the highest accuracy scores, with the two voting ensembles 

and the kNN next. However, across all of the other performance metrics, the top scores are always 

achieved by the ET or the RF, except for the weighted F1 score which is calculated directly from 

the weighted recall score. Since the Stacked SVM, on average across the experiment 

generalizability tests, achieved the highest weighted recall score but a relatively low macro-

averaged recall score, this suggests that it usually performed sub-optimally on the data from tool 

wear level 1, as this level contained the smallest number of true samples. As macro-averaging 

equalizes the weights of the wear classes, this would increase the importance of the first wear 

level’s data in the recall metric and have the observed effect. In addition, for almost every metric 

in which the ET model did not score the highest, it scored the second-highest. Overall, when all 

performance metrics are considered, including the 10-fold CV scores, the LOGO-CV scores, the 

generalizability results, the models’ effectiveness for unbalanced datasets, and the computation 

times, the extra-trees algorithm was determined to be the best model for this application.  
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Table 5.1: Summarized performance results for all models, with highest scores highlighted 

 

 

Across all nine models, the 10-fold CV scores are observed to fall close to the high 

accuracy scores for models which are trained and tested on separate data from the same 

experiment, and relatively far from the lower LOGO-CV and experiment generalizability runs in 

which models were tested on experiments which they had not seen before. This is likely due to the 

high variability in tool wear rates and patterns which exist under even the most controlled 

conditions [19, 20, 30]. As a TCM classification model to be used in industry applications would 

be trained prior to any experiments in which it would be applied, these results confirm the need 

for the LOGO-CV performance metric or similar model generalizability tests to be used in order 

for a TCM model’s performance to be evaluated realistically. 

 

5.1.1.2 Model Type Evaluation 

To study the effect of the novel ensemble ML techniques on TCM performance, as well as 

the effects of the heterogeneous and homogeneous ensemble configuration types, the average 

performance metrics across these groups are evaluated and compared to those for the averaged 

base models. A summary of these results is shown in Table 5.2, and Table 5.3 evaluates the 

Performance Metric: DT SVM kNN ANN EHV ESV
Stacked 

SVM RF ET
Average Accuracy (Weighted Recall) Score: 0.8362 0.8576 0.8792 0.8532 0.8789 0.8798 0.8835 0.8626 0.8731
Standard Deviation of Accuracy Score: 0.0391 0.0000 0.0000 0.0444 0.0225 0.0154 0.0175 0.0064 0.0055
95% Confidence Interval of Accuracy Mean: 0.0242 0.0000 0.0000 0.0275 0.0139 0.0096 0.0109 0.0040 0.0034
Macro-Averaged Recall Score: 0.7694 0.7781 0.7678 0.7844 0.7739 0.7679 0.7740 0.8068 0.7940
Weighted Precision Score: 0.8699 0.8981 0.8813 0.8871 0.8918 0.8945 0.8995 0.8971 0.9099
Macro-Averaged Precision Score: 0.8119 0.8748 0.7768 0.8155 0.8268 0.8403 0.8542 0.8571 0.8912
Weighted F1 Score: 0.8271 0.8297 0.8678 0.8386 0.8636 0.8641 0.8729 0.8528 0.8612
Macro-Averaged F1 Score: 0.8119 0.8748 0.7768 0.8155 0.8268 0.8403 0.8840 0.8571 0.8912
10-Fold CV Mean Score: 0.9747 0.9660 0.9869 0.9721 0.9854 0.9846 0.9654 0.9866 0.9895
10-Fold CV Score Standard Deviation: 0.0018 0.0007 0.0008 0.0015 0.0006 0.0006 0.0022 0.0006 0.0006
LOGO-CV Mean Score: 0.9014 0.9167 0.9095 0.9222 0.9190 0.9194 0.9156 0.9255 0.9240
LOGO-CV Score Standard Deviation: 0.0068 0.0000 0.0000 0.0065 0.0018 0.0020 0.0015 0.0018 0.0024
Average Accuracy for Same Experiment: 0.9736 0.9689 0.9803 0.9757 0.9812 0.9808 0.9712 0.9833 0.9883
Same Experiment Accuracy SD: 0.0026 0.0000 0.0000 0.0075 0.0041 0.0033 0.0051 0.0021 0.0021

ML Model

Experiment 
Generalizability 
Study Averages

CV Scores using 
all Experiments

Tests within 1 
Experiment
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significance of the 10-fold CV and LOGO-CV score differences between the groups. It is clear 

that the ensemble ML techniques show strong advantages over individual learners, as the averaged 

ensemble group scored better than the individual model group in every performance metric 

measured. A statistical t-test comparing the average individual models’ and average ensemble 

models’ 10-fold CV and LOGO-CV scores gives p-values of 1.40e-14 and 1.89e-7 respectively, 

which confirms the strong statistical significance of these differences. The ensemble group also 

showed lower score variance than the base model group in every area except for one. These 

improvements in model performance and prediction stability due to the implementation of 

advanced ensemble machine learning techniques are consistent with the results from the few 

existing ensemble ML studies in TCM [6, 13, 14, 48-52]. However, the presented evaluation dives 

deeper than previous studies by studying a wider range of ensemble and base models, including 

the ESV and ET models which had not been applied to signal-based TCM before, as well as by 

evaluating the models’ generalizability to data from experiments which they were not trained on.  

 

Table 5.2: Summarized performance results for model groups 

 

Base ML Models All Ensembles
Heterogeneous 

Ensembles
Homogeneous 

Ensembles

ML Models Averaged:
DT, SVM, kNN, & 

ANN
EHV, ESV, 

Stacked SVM, RF, 
EHV, ESV, & 

Stacked SVM RF & ET
Average Accuracy (Weighted Recall) Score: 0.8565 0.8756 0.8807 0.8678
Standard Deviation of Accuracy Score: 0.0209 0.0135 0.0185 0.0060
95% Confidence Interval of Accuracy Mean: 0.0129 0.0084 0.0114 0.0037
Macro-Averaged Recall Score: 0.7749 0.7833 0.7719 0.8004
Weighted Precision Score: 0.8841 0.8986 0.8953 0.9035
Macro-Averaged Precision Score: 0.8198 0.8539 0.8404 0.8742
Weighted F1 Score: 0.8408 0.8629 0.8669 0.8570
Macro-Averaged F1 Score: 0.8198 0.8599 0.8504 0.8742
10-Fold CV Mean Score: 0.9751 0.9823 0.9785 0.9880
10-Fold CV Score Standard Deviation: 0.0012 0.0009 0.0011 0.0006
LOGO-CV Mean Score: 0.9122 0.9207 0.9180 0.9248
LOGO-CV Score Standard Deviation: 0.0032 0.0019 0.0018 0.0021
Average Accuracy for Same Experiment: 0.9746 0.9810 0.9777 0.9858
Same Experiment Accuracy SD: 0.0025 0.0033 0.0042 0.0021

Experiment 
Generalizability 
Study Averages

CV Scores using 
all Experiments

Tests within 1 
Experiment
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Table 5.3: Statistical analysis of model group performance differences 

 

 

Within the group of ensemble ML models, the performances of the heterogeneous and 

homogeneous configurations were also compared. It was found that, similar to the stacked SVM 

results, the heterogeneous ensemble group performed the best in the accuracy and weighted F1 

scores, and the homogeneous group did better in all of the remaining metrics.  The homogeneous 

ensemble group also generally achieved higher prediction stability than the heterogeneous group. 

These results are likely due to the RF and ET models’ much larger numbers of base models to 

draw information from (100, compared to 4), as well as their high generalization ability and 

effectiveness for unbalanced datasets [14, 54].  

 In summary, across the diverse range of performance metrics and model generalization 

studies presented, the ensemble methods showed clear performance advantages over the individual 

models, the homogeneous ensemble group performed better than the heterogeneous group, and the 

extra-trees algorithm was shown to be the best-performing model for this application.  

 

5.1.2 Effect of Classification Resolution 

The choice of a TCM system’s tool wear classification resolution is important, as it 

balances prediction accuracy with output precision. The choice may also depend on project-

Model 1: Best-Performing Group

Model 2: Comparison Group
Base 
Models

Ensemble 
Models 

Heterogeneous 
Models

Homogeneous 
Models

t-value: 68.89 25.04 32.79
p-value: 3.76E-28 4.01E-17 1.60E-19
p-value < 0.05 ? Yes Yes Yes

Model 1: Best-Performing Group

Model 2: Comparison Group
Base 
Models

Ensemble 
Models 

Heterogeneous 
Models

Homogeneous 
Models

t-value: 15.10 7.33 11.68
p-value: 1.98E-13 3.22E-07 1.19E-10
p-value < 0.05 ? Yes Yes Yes

Using 20x-
Repeated 
LOGO-CV 

Scores

Homogeneous Ensemble Models

Using 20x-
Repeated 
10-fold CV 

Scores

Homogeneous Ensemble Models
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specific variables such as the wear measurement or range of measurements at which a tool should 

be changed to ensure product quality, or the amount of time to be allotted between a wear 

notification and when an operator can be expected to change the tool. To study the effect of tool 

wear classification precision on the different models’ performance, the ML samples were re-

labeled according to Table 5.4. The resulting model 10-fold CV and LOGO-CV scores are shown 

in Figure 5.1. 

 

Table 5.4: Tool wear classification resolutions studied 

 

 

 
Figure 5.1: Effect of classification resolution on model (a) 10-fold CV, and (b) LOGO-CV 

scores 

  

These results show that as the number of tool wear classes is reduced, the models’ prediction 

accuracy generally increases. The largest increase in both 10-fold CV and LOGO-CV scores 

Wear Resolution: 1-6 1-5 1-4 1-3 1-2
Wear Level

1 0.00-0.05 0.00-0.10 0.00-0.15 0.00-0.10 0.00-0.15
2 0.05-0.10 0.10-0.15 0.15-0.20 0.10-0.20 0.15-0.30
3 0.10-0.15 0.15-0.20 0.20-0.25 0.20-0.30
4 0.15-0.20 0.20-0.25 0.25-0.30
5 0.20-0.25 0.25-0.30
6 0.25-0.30

VB Range (mm)
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occurs between wear resolutions 1-4 and 1-3, and the lowest difference is from 1-3 to 1-2. Based 

on this, as well as the high scores across both metrics and all model types, a classification 

resolution of three wear levels from 0.0 – 0.3 mm flank wear is shown to be a good balance of 

model prediction resolution and precision for TCM. The ET model’s high scores across all of the 

wear resolution options shows a high level of model flexibility, and supports its selection for TCM 

applications in Section 5.1.1.  

 However, if a higher level of wear resolution is desired, this can be achieved satisfactorily 

by using the higher classification ranges presented. For example, the confusion matrices for four 

models are shown in Figure 5.2 after they were each trained on data from Experiments 1-4 and 

tested on data from Experiments 5-8 using a classification resolution of 6 wear levels.  

  



 88 

 

Figure 5.2: Confusion matrices for (a) DT, (b) SVM, (c) Stacked SVM, and (d) ET models 
when trained on data from Experiments 1-4 and tested on Experiment 5-8 using a 

classification resolution of 6 levels 

 

Impressively, even for all nine models and such a high level of resolution, almost no samples were 

misclassified by more than one wear level—this only occurred for the DT and a small number of 

samples between wear levels 1 and 3 as shown. For the classification resolution of 6 levels, the 

accuracy scores ranged from 79.0% for the DT, to 84.0% for the EHV, with the ensemble models 

generally achieving higher accuracy scores than the individual models. In agreement with the 
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results discussed in Section 4.4.2, the predictions for the lowest numbered wear classes, which had 

the least true samples available, were improved the most by the application of ensemble ML 

techniques.  

 Through the presented TCM system configuration studies presented here and in Section 

4.3, it is found that a system’s classification performance can be optimized through the use of the 

SVM-RFECV feature selection method, a homogeneous ensemble ML analysis technique such as 

the especially strong extra-trees ensemble model, and a wear classification resolution of 3 levels. 

In addition, 6 classes of wear resolution also gives impressive results if a higher level of process 

visibility is desired. 

 

5.2 Machining Condition Generalizability Study  

To build an understanding of TCM system generalizability to new machining conditions, 

each ML model is evaluated on a variety of different experiments and cutting parameter sets. As 

shown in Table A.2, ML runs are set up to test model generalizability to data from new experiments 

which used the same cutting conditions as the training set, which used a different feed rate or 

spindle speed compared to the training set, or which used both a different feed rate and a different 

spindle speed compared to the training set. Models were also trained on various experiment 

combinations in order to assess how increased machining condition variability in training sets 

affects model generalization performance. None of these ML runs included data from any one 

experiment in both the training and testing sets, ensuring the validity of the results for practical 

TCM applications. However, the results of four runs in which models are trained and tested on 

different subsets of the same experiment’s data are shown in Table A.3 for comparison.  
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Figure 5.3 shows each model’s average TCM performance across various cutting condition 

or experiment changes. Each ML test is run 20 times and the accuracy scores are averaged across 

these runs and across the other ML tests with the same process changes. The error bars give the 

95% confidence intervals of these mean values.   

 

 
Figure 5.3: Effects of machining condition changes on model performance 

 

As expected, it is observed that the models all achieved their highest classification accuracy 

scores when they were trained and tested on different subsets of data from the same experiment. 

While commonly applied in TCM literature when more data is not available, this case demonstrates 

the lowest possible level of machining condition variability and is a problematic measure of TCM 

model effectiveness due to its low applicability to real-world situations when classification 

systems must be pre-trained [16, 169].  

The next level of machining condition variability is assessed by training the models on data 

from one experiment (i.e. 1A), and testing them on a different experiment which used the same 
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cutting parameters (i.e. 8A). Due to the high levels of variability in tool wear rates, patterns, and 

process signals between individual experiments due to the large number of effectively random 

variables involved in metal milling processes [19, 20], the models’ accuracies all dropped 

significantly compared to the previous test. 

 While individual ML model results differ more for the studies in which cutting parameters 

are changed, it is observed that overall, changes in feed rate show little effect on model 

performance, while changes in spindle speed caused dramatic performance changes. This 

correlates to previous literature in which machining tool wear rates have been found to depend 

much more on cutting speed settings than on the feed rates or chip loads used [2, 5, 36, 82-84]. 

For this study the impacts of the cutting speed on model performance are effectively the same as 

those of the spindle speed, due to the constant tool diameter. 

The final ML test set shown in Figure 5.3 assesses how well the models perform when they 

are trained on Experiments 1-4 and tested on Experiments 5-8. As each of these experiment groups 

includes one experiment from each of the four cutting parameter sets, the model performances 

from this analysis can be compared to those in which the models were trained on one experiment 

and tested on a new experiment which used the same cutting parameters. This comparison shows 

that an increase in machining condition variability in the training set can significantly improve 

model generalizability to data from new experiments, which is an important quality for practical 

TCM systems [19, 28]. This result is found to be consistent across all nine machine learning models 

applied in this study. 

 Figure 5.4 shows a more detailed view of how different experiments’ chip load values can 

affect TCM model performance. As the chip load parameter is based on both the spindle speed and 
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the feed rate in milling processes, as described in Equation 2.2, the results from four chip load 

values can be evaluated for this study. 

 

 
Figure 5.4: Model performance at different chip loads when trained and tested on different 

experiments of the same cutting parameter set 

 

It is observed that an increase in the chip load used for a set of experiments results in fairly 

consistent decreases in model generalizability from one experiment to another. The differences in 

model performance can be large—the DT model, for example, decreased in mean accuracy from 

96.1% to 78.3% across the range of chip loads studied, while even the least-affected models’ 

accuracies decreased by at least 7% and had wide gaps between their 95% confidence intervals. 

As a higher chip load is correlated to increased tool wear rates, although to a lesser extent than 

cutting speed is [2, 5, 82-84], the results of the ML analyses summarized in both Figure 5.3 and 

Figure 5.4 suggest that TCM model performance and generalizability may be inversely correlated 

with milling tool wear rates. A comparison of these results with the experiments’ sample sizes, 

listed in Table 4.1, does not find any sampling patterns which would cause this effect.  
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 Through this analysis of TCM system generalizability to new machining conditions and 

individual experiments, the importance of evaluating models on unseen experiments, the 

advantages of training models on data from various machining conditions, and a possible inverse 

relationship between tool wear rates and model performance are identified. 

 

5.3 Environmental Noise Generalizability Improvement Study 

Finally, the effect of the noisy training technique on TCM model generalizability is studied 

for the first time. To do this, the nine ML model types are each trained on various levels and 

combinations of white Gaussian noise-augmented datasets, and their generalization ability to data 

from an unseen experiment is evaluated. Each model type, several values for the percentage of the 

training dataset which is made up of noise-augmented data, and 4 injected noise levels are 

investigated. Two sets of experimental data are noise-augmented for this study. First, the original 

data from Experiment 3C is injected with artificial noise and the ML models trained on 

combinations of noisy and original data are tested on the Experiment 6C original data. Second, the 

original data from Experiment 2B is injected with artificial noise and these trained ML models are 

tested on the Experiment 7B original data. The levels of AWGN added to the 3C and 2B datasets 

are listed in Table 3.6. The artificial noise at each level is added to duplicates of the entire 

experiment’s dataset each time, effectively generating large amounts of new data for training the 

models. Two tool wear classification resolutions are also investigated: 3 wear levels and 6 wear 

levels. The training and testing set layouts for this noisy training study are detailed in Table 5.5. 

Each test is repeated 20 times for each ML model, and the resulting mean scores and 95% 

confidence intervals of the means are shown below. 
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Table 5.5: Noisy training study layout 

 

 

Based on promising results from the neural computing and speech recognition communities 

surrounding the use of noisy training for neural networks [33-35, 140-144], it is expected that the 

ANN model, at least, will see reduced overfitting and improved generalizability for low levels of 

AWGN included in the training sets. However, noise levels which are too high have previously 

focused the models’ training on the noise patterns too much and hurt their performance overall 

[33]. Therefore, it is important to determine the correct groups and levels of noise to be added, 

based on the specific data and application.  

Testing Dataset

Test 
Number

Wear 
Resolution Analysis

Percentage of 
Training Samples 
which are Noise-

augmented
L0 (no added 

noise) L1 L2 L3 L4

L0 (no added 
noise)

1 0% 3C 6C
2 50% 3C 3C 6C
3 67% 3C 3C 3C 6C
4 75% 3C 3C 3C 3C 6C
5 80% 3C 3C 3C 3C 3C 6C
1 0% 3C 6C
2 50% 3C 3C 6C
6 50% 3C 3C 6C
7 50% 3C 3C 6C
8 50% 3C 3C 6C

9 0% 3C 6C
10 50% 3C 3C 6C
11 67% 3C 3C 3C 6C
12 75% 3C 3C 3C 3C 6C
13 80% 3C 3C 3C 3C 3C 6C
9 0% 3C 6C

10 50% 3C 3C 6C
14 50% 3C 3C 6C
15 50% 3C 3C 6C
16 50% 3C 3C 6C

17 0% 2B 7B
18 50% 2B 2B 7B
19 67% 2B 2B 2B 7B
20 75% 2B 2B 2B 2B 7B
21 80% 2B 2B 2B 2B 2B 7B
17 0% 2B 7B
18 50% 2B 2B 7B
22 50% 2B 2B 7B
23 50% 2B 2B 7B
24 50% 2B 2B 7B

6 Wear 
Levels

Percentage of 
Training Set 

which is 
Augmented

Injected Noise 
SNR Level

Training Dataset

Percentage of 
Training Set 

which is 
Augmented

3 Wear 
Levels

6 Wear 
Levels

Injected Noise 
SNR Level

Injected Noise 
SNR Level

Percentage of 
Training Set 

which is 
Augmented
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The results of the 3C noisy training study using a wear classification resolution of 3 levels 

(tests 1-8 in Table 5.5) are detailed in Table A.4. The error reduction percentages are also shown 

for all nine models in Figure 5.5. In addition, the results are shown more clearly for the average 

effects across models, as well as the most significantly affected models, in Figure 5.6. In these 

figures, the error reduction percentages are calculated based on the models’ prediction accuracies 

when they are first trained on the original, unaltered Experiment 3C data and tested on the original 

6C data (test 1).  

 

 
Figure 5.5: Wear 1-3 classification error reduction with noisy training technique, using (a) 

various combinations of noisy datasets added to the 3C original data, and (b) various 
AWGN SNR levels for one dataset added to the 3C original data 
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Figure 5.6: Summary of wear 1-3 classification error reduction with noisy training, using 
(a) various combinations of noisy datasets added to the 3C original data, and (b) various 

AWGN SNR levels for one dataset added to the 3C original data 

 

From Figure 5.5 it is observed that 7 out of the 9 ML models saw fairly consistent accuracy 

improvements in the first few categories studied, especially for the combination of L0 and L1 (the 

original and SNR25 noise) datasets in the training set. These results are found for both the various 

combinations of noisy datasets used to train the models, and the different levels of noise injected 

into just one additional dataset. After these model generalizability improvements at the lowest 

levels of noise, the models’ accuracies drop for higher noise levels, which is expected based on 

past neural network studies [33].  

The t-tests summarized in Table 5.6 assess the statistical significance of the models’ 

performance differences when they are trained on the L0 and L1 datasets (test 2), compared to 

when no noise-augmented datasets are used (test 1). Of the seven improved models, six of the 

results are shown to be statistically significant using a p-value of 0.05. Only the decision tree’s 

accuracy increase is found to be insignificant, as its original model variance is too high to prove 

that the recorded performance improvement does not occur randomly.  



 97 

 

Table 5.6: Statistical analysis of noisy training generalization effects 

 

 

The stacked generalization SVM ensemble method is the only technique which is shown 

to be severely negatively affected by the noise augmentation in its training datasets. The kNN 

model is only slightly affected by the noisy training, which is consistent with Xing et al.’s findings 

that kNN models are already highly robust to noisy samples and therefore do not respond to the 

noisy training technique [152].  

 In order to evaluate the validity and robustness of these model generalization 

improvements due to the noisy training technique, the tests are repeated for Experiments 3C and 

6C, as well as for 2B and 7B, both using wear classification resolutions of 6 wear levels. The 

summarized results of these studies are shown in Figure 5.7 and Figure 5.8 respectively. 

 

Comparison 1: 
Comparison 2: 

ML Model DT SVM kNN ANN EHV ESV
Stacked 
SVM RF ET

t-value: -1.86 -3.67E+13 2.45E+13 -2.11 -5.36 -2.57 2.47 -4.22 -2.47
p-value: 0.074 0.00E+00 0.00E+00 0.049 4.24E-05 0.019 0.027 5.20E-04 0.024
p-value < 0.05 ? No Yes Yes Yes Yes Yes Yes Yes Yes

Trained on only 3C L0 (original data) & Tested on 6C original data
Trained on 3C L0 + L1 data & Tested on 6C original data
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Figure 5.7: Summary of wear 1-6 classification error reduction with noisy training, using 
(a) various combinations of noisy datasets added to the 3C original data, and (b) various 

AWGN SNR levels for one dataset added to the 3C original data 

 

The results for the 3C vs. 6C noisy training study using a wear resolution of 6 levels (tests 9-16) 

confirm the conclusions drawn for 3 wear levels, with optimal model generalizability to the new 

experiment’s data being seen when the models are trained on the L0 and L1 datasets together.  

 

 
Figure 5.8: Summary of wear 1-6 classification error reduction with noisy training 

technique, using (a) various combinations of noisy datasets added to the 2B original data, 
and (b) various AWGN levels for one dataset added to the 2B original data 
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The third noisy training study, in which the new 2B and 7B experimental data is used (tests 

17-24), shows similar results and large reductions in original prediction error through the use of 

the L0 and L3 datasets for training the models (test 23). After this optimal level of noise, as 

observed for the parameter set C studies, the prediction accuracies decrease.  

Overall, the results from the three noisy training analyses are fairly consistent in that they 

all enable significant increases in model generalizability to data from a new and different dataset 

for certain injected noise SNR ranges. While an SNR value of 25 was found to be optimal for the 

3C vs. 6C studies using wear resolutions of either 3 or 6, an SNR value of 15 performed better for 

the 2B vs. 7B study. Using these training datasets, the average tool wear classification errors are 

reduced by 17.5%, 19.7%, and 17.5% compared to when no noise augmentation is used. Based on 

these results, the optimal level of injected noise is dependent on the specific datasets used within 

TCM, but is independent of the classification resolution applied.  

In addition, for all three studies, the highest error reduction was achieved with the addition 

of only one noisy dataset and therefore a percentage of noisy training data of 50%, suggesting that 

adding larger numbers of noisy samples to the training dataset past this level decreases the model’s 

ability to focus on important TCM process information extracted from the original data. These 

results demonstrate not only that the noisy training technique can be applied effectively to other 

ML models besides neural networks, such as DT, SVM, EHV, ESV, stacked SVM, RF, and ET, 

but also that this could be a promising method of significantly reducing TCM classification error 

and improving generalizability, especially in situations where limited original data is available for 

model training. 
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CHAPTER 6: CONCLUSION 

 

This study aimed to help fill the research gaps surrounding tool condition monitoring 

system generalizability, ensemble machine learning techniques, and practical sensor fusion. To do 

this, nine ML models were investigated, including five ensemble ML methods, based on indirect 

signals from practical external and internal machine sensors. Several feature selection and 

classification resolution options were also evaluated for this application. Finally, using original 

experimental data from milling tool life experiments conducted across various machining 

conditions, as well as simulated data using various levels of injected noise, the models’ 

generalizability is assessed and methods of improving it are evaluated. 

 

6.1 Contributions 

By addressing the significant research gaps, this study presents several contributions to the 

TCM research body. These include: 

• Several ensemble ML methods were applied to this field for the first time, or were 

investigated for TCM applications outside the few which had been addressed previously. 

Overall, the ensemble models performed significantly better than the individual models in 

every performance metric, and the homogeneous ensemble models generally performed 

better than the heterogeneous models.  

• The extra-trees ensemble method, which had never before been studied for signal-based 

TCM, performed the best out of all nine ML models studied. With its high levels of 

accuracy, generalizability to new conditions, effectiveness for unbalanced datasets, and 

classification speed, it is a viable option for in-process tool condition monitoring.  
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• Five signal feature selection methods were studied across multiple ML models and 

performance metrics. The SVM-based recursive feature elimination method was found to 

achieve the best results for TCM. 

• LOGO-CV scores were found to be a better measure of model generalizability and 

performance for industrial use than k-fold CV scores, even when both use data from various 

machining conditions. The extra-trees ensemble ML model achieved mean LOGO-CV and 

10-fold CV accuracy scores of 92.4% and 99.0%, respectively. 

• A method of developing and evaluating TCM systems in a way which is more realistic for 

predicting commercial results is presented, and its use may help future models be compared 

more easily. 

• Through the analysis of ML model generalizability across changes in experiments’ spindle 

speed, feed rate, and chip load, an inverse relationship between a tool’s wear rate and 

classification performance is identified. Specifically, changes in spindle speed had a large 

effect on model performance, the chip load had some effect, and the feed rate had little 

effect. It is also found that increasing machining condition variability in the training dataset 

can improve model generalizability. 

• The noisy training method was found to be successful at significantly improving model 

generalizability for the SVM, ANN, EHV, ESV, RF, and ET models. Averaged across all 

nine models, the mean error reduction at the identified optimal SNR values ranged from 

17.5% to 19.7%. This technique had not been evaluated for generalizability improvement 

in TCM previously, and addresses the industry’s need for more generalizable models. 

 



 102 

6.2 Assumptions and Limitations 

Several assumptions have been made during the completion of this study, and its 

conclusions are not without limitations. First, it is assumed that the 1-second segments of data 

along each machining pass do not differ significantly for reasons unrelated to tool wear, and that 

therefore the machining pass signals’ segmentation into 1-second segments for analysis is 

appropriate. The evaluated models do not take process parameters such as the position of the tool 

in the material or the distance between the tool and the microphone into account, and assume that 

changes in the signals’ extracted features are a result of a tool’s wear level. While this assumption 

is common in existing literature [2, 22, 23, 29, 30, 48] and allows more process information to be 

extracted by ML algorithms, it also causes the TCM system to be more reliant on the machining 

paths and conditions remaining relatively constant during each pass. However, the generalizability 

improvement methods studied in this research aim to reduce this reliance.  

Similarly, as the feature extraction methods calculate only one feature value from the 1-

second segments of each process signal, it is assumed that the signals and their features do not 

significantly change over the span of one segment. If a signal does significantly change mid-

segment due to process condition changes, environmental changes, or tool chipping, this may 

result in an inaccurate wear measurement prediction.  

A few other limitations result from the fact that only eight tool life experiments were run, 

using four machining conditions. While the spindle speed and feed rate were varied between two 

levels each, the tool, the toolpath, the machine, and the other process parameters were kept 

constant. Due to this, the generalizability of the models to other parameter changes or toolpaths 

cannot be assessed without more experimental data. 
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In addition, for the noisy training analysis, the conclusions are limited by the number of 

noise SNR levels which were studied. While the specific levels were chosen based on previous 

related studies [33, 157] and the results appear to show the model generalizability improvements 

at low noise levels and decreases at high noise levels which were expected, the analysis of more 

noise levels would allow the optimal SNR values and any relevant model performance patterns to 

be more accurately identified.  

 

6.3 Future Work 

While this study helps fill several significant research gaps in TCM, it also presents new 

opportunities for further research. While the extra-trees ML model showed the best tool wear 

classification performance for this combination of process signals, it would be beneficial to 

evaluate it for other sensor fusion combinations to better understand its advantages for TCM. In 

addition, as the heterogeneous ensemble models studied in this research were always based on one 

group of four base models, a study in which several heterogeneous ensemble models were studied 

based on a variety of different base model combinations would better evaluate any possible 

advantages of heterogeneous ensembles over homogeneous ensembles for TCM.  

In addition, a larger number of tool life experiments conducted across a wider range of 

machining parameters would allow the effects of spindle speed, cutting speed, feed rate, and chip 

load on tool wear classification performance to be further evaluated, and for the identified potential 

inverse correlation between wear rate and model performance to be further examined. The effects 

of other machining parameters on model performance could also be assessed. An analysis of the 

noisy training technique using a larger number of SNR values and more original data would also 

help identify the capabilities and limitations of this effect. As different optimal training noise levels 
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were identified based on the datasets applied in this study, any potential methods of selecting or 

automatically calculating the optimal noise levels to be used without conducting these extensive 

experiments would be particularly beneficial. Through the ensemble model configuration and 

generalizability advancements presented in this study, as well as to be seen in future works like 

these, the TCM roadblock to the implementation of smart factories could be overcome. 
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APPENDIX A    
 
 
 

Table A.1: Feature selection results 
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Table A.2: Analysis of model transferability to new machining conditions  

 

Both using all 
cutting 

parameter sets
Training Data: 1A 2B 3C 4D 2B, 7B 4D, 5D 3C, 6C 4D, 5D 1A, 8A 2B, 7B 1A, 2B, 3C, & 4D

Model: Testing Data: 8A 7B 6C 5D 1A, 8A 3C, 6C 1A, 8A 2B, 7B 4D, 5D 3C, 6C 5D, 6C, 7B, & 8A
Average Accuracy (Weighted Recall) Score: 0.8823 0.9608 0.7834 0.9417 0.9204 0.8266 0.7242 0.7050 0.6865 0.8392 0.9277 0.8362
Standard Deviation of Accuracy Score: 0.0473 0.0105 0.0966 0.0037 0.0339 0.0100 0.0809 0.0094 0.1244 0.0074 0.0063 0.0391
95% Confidence Interval of Accuracy Mean: 0.0293 0.0065 0.0598 0.0023 0.0210 0.0062 0.0501 0.0058 0.0771 0.0046 0.0039 0.0242
Macro-Averaged Recall Score: 0.6719 0.9624 0.5577 0.9621 0.8020 0.8081 0.7455 0.7751 0.6395 0.6576 0.8811 0.7694
Weighted Precision Score: 0.8854 0.9706 0.7807 0.9617 0.9344 0.8522 0.8972 0.7918 0.7244 0.8430 0.9277 0.8699
Macro-Averaged Precision Score: 0.9173 0.9765 0.5655 0.8650 0.9262 0.7546 0.8139 0.7500 0.6216 0.8485 0.8915 0.8119
Weighted F1 Score: 0.8636 0.9682 0.7437 0.9489 0.9009 0.8370 0.7281 0.6993 0.6630 0.8174 0.9277 0.8271
Macro-Averaged F1 Score: 0.9173 0.9765 0.5655 0.8650 0.9262 0.7546 0.8139 0.7500 0.6216 0.8485 0.8915 0.8119

Average Accuracy (Weighted Recall) Score: 0.8872 0.9768 0.8758 0.9589 0.9031 0.9064 0.8177 0.5460 0.8133 0.7911 0.9571 0.8576
Standard Deviation of Accuracy Score: 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
95% Confidence Interval of Accuracy Mean: 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Macro-Averaged Recall Score: 0.7955 0.9723 0.6293 0.9712 0.6626 0.6607 0.8505 0.6608 0.8114 0.5968 0.9479 0.7781
Weighted Precision Score: 0.8936 0.9773 0.8273 0.9677 0.9150 0.9153 0.9869 0.7791 0.8443 0.8148 0.9578 0.8981
Macro-Averaged Precision Score: 0.9159 0.9820 0.5981 0.8905 0.9126 0.9426 0.9681 0.8288 0.7858 0.8625 0.9353 0.8748
Weighted F1 Score: 0.8818 0.9769 0.8444 0.9610 0.8755 0.8713 0.7901 0.4002 0.8082 0.7604 0.9571 0.8297
Macro-Averaged F1 Score: 0.9159 0.9820 0.5981 0.8905 0.9126 0.9426 0.9681 0.8288 0.7858 0.8625 0.9353 0.8748

Average Accuracy (Weighted Recall) Score: 0.8609 0.9735 0.8998 0.9340 0.9425 0.8975 0.7576 0.9179 0.7959 0.7507 0.9405 0.8792
Standard Deviation of Accuracy Score: 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
95% Confidence Interval of Accuracy Mean: 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Macro-Averaged Recall Score: 0.7466 0.9466 0.6538 0.9460 0.6798 0.6888 0.7341 0.8884 0.6917 0.5528 0.9170 0.7678
Weighted Precision Score: 0.8756 0.9704 0.8521 0.9456 0.9020 0.8697 0.9043 0.9328 0.8003 0.7012 0.9406 0.8813
Macro-Averaged Precision Score: 0.9177 0.9764 0.6233 0.8587 0.6276 0.7240 0.7942 0.9125 0.6954 0.5028 0.9127 0.7768
Weighted F1 Score: 0.8584 0.9683 0.8685 0.9367 0.9191 0.8796 0.7660 0.9190 0.7818 0.7079 0.9403 0.8678
Macro-Averaged F1 Score: 0.9177 0.9764 0.6233 0.8587 0.6276 0.7240 0.7942 0.9125 0.6954 0.5028 0.9127 0.7768

Average Accuracy (Weighted Recall) Score: 0.8598 0.9714 0.8455 0.9390 0.8337 0.9106 0.7105 0.7563 0.7580 0.8600 0.9407 0.8532
Standard Deviation of Accuracy Score: 0.0201 0.0073 0.0370 0.0290 0.0347 0.0164 0.1136 0.1091 0.0602 0.0511 0.0097 0.0444
95% Confidence Interval of Accuracy Mean: 0.0125 0.0045 0.0230 0.0180 0.0215 0.0102 0.0704 0.0676 0.0373 0.0317 0.0060 0.0275
Macro-Averaged Recall Score: 0.7501 0.9649 0.6126 0.9669 0.6699 0.7680 0.6807 0.7963 0.6685 0.8121 0.9381 0.7844
Weighted Precision Score: 0.8741 0.9732 0.8197 0.9636 0.8293 0.9022 0.9345 0.8209 0.8136 0.8783 0.9488 0.8871
Macro-Averaged Precision Score: 0.8981 0.9712 0.6421 0.8844 0.6905 0.8221 0.8083 0.8627 0.7096 0.7698 0.9121 0.8155
Weighted F1 Score: 0.8542 0.9721 0.8102 0.9555 0.8219 0.8802 0.6578 0.7521 0.7226 0.8517 0.9468 0.8386
Macro-Averaged F1 Score: 0.8981 0.9712 0.6421 0.8844 0.6905 0.8221 0.8083 0.8627 0.7096 0.7698 0.9121 0.8155

Average Accuracy (Weighted Recall) Score: 0.8845 0.9763 0.8775 0.9442 0.9104 0.9119 0.7973 0.7909 0.7913 0.8331 0.9502 0.8789
Standard Deviation of Accuracy Score: 0.0079 0.0043 0.0200 0.0041 0.0317 0.0040 0.0268 0.1067 0.0219 0.0166 0.0033 0.0225
95% Confidence Interval of Accuracy Mean: 0.0049 0.0027 0.0124 0.0025 0.0196 0.0025 0.0166 0.0661 0.0136 0.0103 0.0021 0.0139
Macro-Averaged Recall Score: 0.7776 0.9557 0.6224 0.9694 0.7124 0.6834 0.7600 0.8100 0.6839 0.6265 0.9113 0.7739
Weighted Precision Score: 0.8809 0.9730 0.8220 0.9696 0.9145 0.8653 0.9675 0.8463 0.8102 0.8185 0.9422 0.8918
Macro-Averaged Precision Score: 0.9234 0.9785 0.5944 0.8773 0.8738 0.7201 0.9070 0.8407 0.7043 0.7614 0.9134 0.8268
Weighted F1 Score: 0.8615 0.9714 0.8355 0.9591 0.8958 0.8751 0.8006 0.7857 0.7732 0.7992 0.9422 0.8636
Macro-Averaged F1 Score: 0.9234 0.9785 0.5944 0.8773 0.8738 0.7201 0.9072 0.8407 0.7043 0.7614 0.9134 0.8268

Average Accuracy (Weighted Recall) Score: 0.8698 0.9719 0.8716 0.9538 0.9161 0.9097 0.8054 0.8160 0.7904 0.8242 0.9486 0.8798
Standard Deviation of Accuracy Score: 0.0110 0.0059 0.0238 0.0043 0.0197 0.0089 0.0167 0.0393 0.0221 0.0155 0.0023 0.0154
95% Confidence Interval of Accuracy Mean: 0.0068 0.0037 0.0147 0.0026 0.0122 0.0055 0.0104 0.0244 0.0137 0.0096 0.0014 0.0096
Macro-Averaged Recall Score: 0.7136 0.9532 0.6120 0.9721 0.6709 0.6896 0.7435 0.8404 0.7019 0.6337 0.9155 0.7679
Weighted Precision Score: 0.8737 0.9719 0.8138 0.9725 0.9143 0.8679 0.9731 0.8559 0.8200 0.8314 0.9452 0.8945
Macro-Averaged Precision Score: 0.9141 0.9776 0.5887 0.8822 0.8623 0.7316 0.9498 0.8512 0.7279 0.8411 0.9169 0.8403
Weighted F1 Score: 0.8566 0.9701 0.8220 0.9627 0.8953 0.8763 0.8047 0.7980 0.7801 0.7942 0.9451 0.8641
Macro-Averaged F1 Score: 0.9141 0.9776 0.5887 0.8822 0.8623 0.7316 0.9498 0.8512 0.7279 0.8411 0.9169 0.8403

Average Accuracy (Weighted Recall) Score: 0.8641 0.9647 0.8943 0.9556 0.8926 0.8961 0.7889 0.9205 0.7566 0.8367 0.9483 0.8835
Standard Deviation of Accuracy Score: 0.0086 0.0065 0.0106 0.0063 0.0406 0.0102 0.0322 0.0149 0.0353 0.0241 0.0035 0.0175
95% Confidence Interval of Accuracy Mean: 0.0053 0.0040 0.0066 0.0039 0.0252 0.0063 0.0200 0.0092 0.0219 0.0149 0.0021 0.0109
Macro-Averaged Recall Score: 0.7194 0.9367 0.6541 0.9656 0.6920 0.7219 0.6524 0.9254 0.6415 0.6734 0.9320 0.7740
Weighted Precision Score: 0.8690 0.9638 0.8502 0.9627 0.8928 0.8930 0.9477 0.9364 0.7827 0.8463 0.9503 0.8995
Macro-Averaged Precision Score: 0.9120 0.9709 0.6421 0.8776 0.7906 0.8528 0.8814 0.9500 0.7713 0.8288 0.9189 0.8542
Weighted F1 Score: 0.8505 0.9604 0.8691 0.9538 0.8815 0.8785 0.7807 0.9251 0.7422 0.8105 0.9495 0.8729
Macro-Averaged F1 Score: 0.9120 0.9709 0.6421 0.8776 0.9308 0.9440 0.8953 0.9374 0.8072 0.8882 0.9189 0.8840

Average Accuracy (Weighted Recall) Score: 0.8635 0.9716 0.8141 0.9420 0.9460 0.8939 0.7883 0.7133 0.7965 0.8154 0.9442 0.8626
Standard Deviation of Accuracy Score: 0.0051 0.0031 0.0241 0.0018 0.0014 0.0080 0.0032 0.0075 0.0052 0.0083 0.0030 0.0064
95% Confidence Interval of Accuracy Mean: 0.0032 0.0019 0.0150 0.0011 0.0009 0.0050 0.0020 0.0046 0.0032 0.0052 0.0019 0.0040
Macro-Averaged Recall Score: 0.7500 0.9568 0.6109 0.9591 0.7621 0.7636 0.8355 0.7855 0.8604 0.6503 0.9402 0.8068
Weighted Precision Score: 0.8732 0.9720 0.8237 0.9616 0.9536 0.8864 0.9658 0.7989 0.8533 0.8301 0.9490 0.8971
Macro-Averaged Precision Score: 0.9168 0.9777 0.7097 0.8545 0.9220 0.8052 0.9022 0.7710 0.8106 0.8624 0.8964 0.8571
Weighted F1 Score: 0.8545 0.9701 0.7888 0.9456 0.9310 0.8859 0.7806 0.6987 0.7870 0.7926 0.9457 0.8528
Macro-Averaged F1 Score: 0.9168 0.9777 0.7097 0.8545 0.9220 0.8052 0.9022 0.7710 0.8106 0.8624 0.8964 0.8571

Average Accuracy (Weighted Recall) Score: 0.8597 0.9677 0.8710 0.9499 0.9456 0.9178 0.7865 0.7562 0.8025 0.7959 0.9511 0.8731
Standard Deviation of Accuracy Score: 0.0055 0.0014 0.0161 0.0015 0.0049 0.0068 0.0038 0.0093 0.0076 0.0028 0.0011 0.0055
95% Confidence Interval of Accuracy Mean: 0.0034 0.0009 0.0100 0.0009 0.0030 0.0042 0.0023 0.0057 0.0047 0.0017 0.0007 0.0034
Macro-Averaged Recall Score: 0.7482 0.9471 0.6631 0.9652 0.7153 0.7185 0.7526 0.8223 0.8369 0.6215 0.9438 0.7940
Weighted Precision Score: 0.8718 0.9688 0.8794 0.9692 0.9614 0.9084 0.9987 0.8294 0.8478 0.8208 0.9530 0.9099
Macro-Averaged Precision Score: 0.9159 0.9752 0.8347 0.8626 0.9576 0.8834 0.9688 0.8115 0.8099 0.8665 0.9171 0.8912
Weighted F1 Score: 0.8521 0.9671 0.8484 0.9546 0.9281 0.8955 0.7607 0.7473 0.7947 0.7733 0.9512 0.8612
Macro-Averaged F1 Score: 0.9159 0.9752 0.8347 0.8626 0.9576 0.8834 0.9688 0.8115 0.8099 0.8665 0.9171 0.8912

New feed rate & 
spindle speed

Score 
Average:

DT

SVM

Feed rate increased
Spindle speed 

increasedSame feed rate & spindle speed

ET

kNN

ANN

EHV

ESV

Stacked 
SVM

RF
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Table A.3: Model results when trained and tested on data from the same experiment 

 

Training Data: 1A Set 1 2B Set 1 3C Set 1 4D Set 1
ML Model: Testing Data: 1A Set 2 2B Set 2 3C Set 2 4D Set 2

Average Accuracy (Weighted Recall) Score: 0.9923 0.9785 0.9304 0.9931 0.9736
Standard Deviation of Accuracy Score: 0.0037 0.0032 0.0024 0.0011 0.0026
95% Confidence Interval of Accuracy Mean: 0.0023 0.0020 0.0015 0.0007 0.0016
Macro-Averaged Recall Score: 0.9930 0.9841 0.8667 0.9896 0.9584
Weighted Precision Score: 0.9923 0.9785 0.9304 0.9931 0.9736
Macro-Averaged Precision Score: 0.9736 0.9848 0.8457 0.9872 0.9478
Weighted F1 Score: 0.9923 0.9785 0.9304 0.9931 0.9736
Macro-Averaged F1 Score: 0.9736 0.9848 0.8457 0.9872 0.9478

Average Accuracy (Weighted Recall) Score: 0.9829 0.9674 0.9353 0.9900 0.9689
Standard Deviation of Accuracy Score: 0.0000 0.0000 0.0000 0.0000 0.0000
95% Confidence Interval of Accuracy Mean: 0.0000 0.0000 0.0000 0.0000 0.0000
Macro-Averaged Recall Score: 0.9788 0.9763 0.7760 0.9926 0.9309
Weighted Precision Score: 0.9829 0.9674 0.9353 0.9900 0.9689
Macro-Averaged Precision Score: 0.9259 0.9569 0.9601 0.9854 0.9571
Weighted F1 Score: 0.9829 0.9674 0.9353 0.9900 0.9689
Macro-Averaged F1 Score: 0.9259 0.9569 0.9601 0.9854 0.9571

Average Accuracy (Weighted Recall) Score: 0.9915 0.9902 0.9496 0.9900 0.9803
Standard Deviation of Accuracy Score: 0.0000 0.0000 0.0000 0.0000 0.0000
95% Confidence Interval of Accuracy Mean: 0.0000 0.0000 0.0000 0.0000 0.0000
Macro-Averaged Recall Score: 0.9958 0.9928 0.9068 0.9777 0.9683
Weighted Precision Score: 0.9915 0.9902 0.9496 0.9900 0.9803
Macro-Averaged Precision Score: 0.9897 0.9930 0.8841 0.9849 0.9629
Weighted F1 Score: 0.9915 0.9902 0.9496 0.9900 0.9803
Macro-Averaged F1 Score: 0.9897 0.9930 0.8841 0.9849 0.9629

Average Accuracy (Weighted Recall) Score: 0.9869 0.9828 0.9475 0.9855 0.9757
Standard Deviation of Accuracy Score: 0.0145 0.0025 0.0094 0.0036 0.0075
95% Confidence Interval of Accuracy Mean: 0.0090 0.0016 0.0058 0.0022 0.0046
Macro-Averaged Recall Score: 0.9638 0.9853 0.8851 0.9810 0.9538
Weighted Precision Score: 0.9869 0.9828 0.9475 0.9855 0.9757
Macro-Averaged Precision Score: 0.9402 0.9684 0.8956 0.9757 0.9450
Weighted F1 Score: 0.9869 0.9828 0.9475 0.9855 0.9757
Macro-Averaged F1 Score: 0.9402 0.9684 0.8956 0.9757 0.9450

Average Accuracy (Weighted Recall) Score: 0.9946 0.9900 0.9451 0.9950 0.9812
Standard Deviation of Accuracy Score: 0.0019 0.0040 0.0090 0.0013 0.0041
95% Confidence Interval of Accuracy Mean: 0.0012 0.0025 0.0056 0.0008 0.0025
Macro-Averaged Recall Score: 0.9941 0.9927 0.8900 0.9957 0.9681
Weighted Precision Score: 0.9946 0.9900 0.9451 0.9950 0.9812
Macro-Averaged Precision Score: 0.9764 0.9897 0.8777 0.9896 0.9584
Weighted F1 Score: 0.9946 0.9900 0.9451 0.9950 0.9812
Macro-Averaged F1 Score: 0.9764 0.9897 0.8777 0.9896 0.9584

Average Accuracy (Weighted Recall) Score: 0.9966 0.9904 0.9448 0.9912 0.9808
Standard Deviation of Accuracy Score: 0.0028 0.0033 0.0057 0.0015 0.0033
95% Confidence Interval of Accuracy Mean: 0.0017 0.0020 0.0035 0.0010 0.0021
Macro-Averaged Recall Score: 0.9968 0.9930 0.8973 0.9822 0.9673
Weighted Precision Score: 0.9966 0.9904 0.9448 0.9912 0.9808
Macro-Averaged Precision Score: 0.9879 0.9931 0.8771 0.9858 0.9610
Weighted F1 Score: 0.9966 0.9904 0.9448 0.9912 0.9808
Macro-Averaged F1 Score: 0.9879 0.9931 0.8771 0.9858 0.9610

Average Accuracy (Weighted Recall) Score: 0.9883 0.9798 0.9300 0.9868 0.9712
Standard Deviation of Accuracy Score: 0.0050 0.0038 0.0039 0.0076 0.0051
95% Confidence Interval of Accuracy Mean: 0.0031 0.0024 0.0024 0.0047 0.0032
Macro-Averaged Recall Score: 0.9855 0.9851 0.8696 0.9840 0.9560
Weighted Precision Score: 0.9883 0.9798 0.9300 0.9868 0.9712
Macro-Averaged Precision Score: 0.9470 0.9857 0.8459 0.9849 0.9409
Weighted F1 Score: 0.9883 0.9798 0.9300 0.9868 0.9712
Macro-Averaged F1 Score: 0.9470 0.9857 0.8459 0.9849 0.9409

Average Accuracy (Weighted Recall) Score: 0.9957 0.9881 0.9550 0.9944 0.9833
Standard Deviation of Accuracy Score: 0.0000 0.0016 0.0046 0.0022 0.0021
95% Confidence Interval of Accuracy Mean: 0.0000 0.0010 0.0029 0.0014 0.0013
Macro-Averaged Recall Score: 0.9947 0.9913 0.9137 0.9926 0.9731
Weighted Precision Score: 0.9957 0.9881 0.9550 0.9944 0.9833
Macro-Averaged Precision Score: 0.9778 0.9914 0.9022 0.9924 0.9659
Weighted F1 Score: 0.9957 0.9881 0.9550 0.9944 0.9833
Macro-Averaged F1 Score: 0.9778 0.9914 0.9022 0.9924 0.9659

Average Accuracy (Weighted Recall) Score: 0.9959 0.9925 0.9701 0.9948 0.9883
Standard Deviation of Accuracy Score: 0.0009 0.0015 0.0053 0.0007 0.0021
95% Confidence Interval of Accuracy Mean: 0.0006 0.0009 0.0033 0.0005 0.0013
Macro-Averaged Recall Score: 0.9950 0.9945 0.9543 0.9958 0.9849
Weighted Precision Score: 0.9959 0.9925 0.9701 0.9948 0.9883
Macro-Averaged Precision Score: 0.9789 0.9946 0.9316 0.9885 0.9734
Weighted F1 Score: 0.9959 0.9925 0.9701 0.9948 0.9883
Macro-Averaged F1 Score: 0.9789 0.9946 0.9316 0.9885 0.9734

Average:

EHV

ESV

Stacked 
SVM

RF

ET

DT

SVM

kNN

ANN
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Table A.4: Noisy training model generalizability analysis 

 

Training Data: 3C L0 3C L0 - L1 3C L0 - L2 3C L0 - L3 3C L0 - L4 3C L0 & L2 3C L0 & L3 3C L0 & L4
ML Model: Testing Data: 6C L0 6C L0 6C L0 6C L0 6C L0 6C L0 6C L0 6C L0

Average Accuracy Score: 0.7834 0.8649 0.8649 0.7712 0.8176 0.8649 0.8283 0.8283
Standard Deviation of Accuracy Score: 0.0976 0.0000 0.0000 0.0000 0.0391 0.0000 0.0058 0.0401
95% Confidence Interval of Accuracy Mean Score: 0.0605 0.0000 0.0000 0.0000 0.0242 0.0000 0.0036 0.0249
Average Error: 0.2166 0.1351 0.1351 0.2288 0.1824 0.1351 0.1717 0.1717
Average Error Reduction %: 0.00 37.63 37.63 -5.63 15.79 37.63 20.72 20.72
Error Reduction % Standard Deviation: 42.27 0.00 0.00 0.00 18.06 0.00 2.69 18.53
95% Confidence Interval of Error Reduction Avg: 26.20 0.00 0.00 0.00 11.19 0.00 1.67 11.48

Average Accuracy Score: 0.8758 0.8780 0.8780 0.9063 0.8867 0.8780 0.8758 0.8758
Standard Deviation of Accuracy Score: 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
95% Confidence Interval of Accuracy Mean Score: 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Average Error: 0.1242 0.1220 0.1220 0.0937 0.1133 0.1220 0.1242 0.1242
Average Error Reduction %: 0.00 1.75 1.75 24.56 8.77 1.75 0.00 0.00
Error Reduction % Standard Deviation: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
95% Confidence Interval of Error Reduction Avg: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average Accuracy Score: 0.8998 0.8976 0.8954 0.8954 0.8932 0.8976 0.8976 0.8998
Standard Deviation of Accuracy Score: 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
95% Confidence Interval of Accuracy Mean Score: 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Average Error: 0.1002 0.1024 0.1046 0.1046 0.1068 0.1024 0.1024 0.1002
Average Error Reduction %: 0.00 -2.17 -4.35 -4.35 -6.52 -2.17 -2.17 0.00
Error Reduction % Standard Deviation: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
95% Confidence Interval of Error Reduction Avg: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average Accuracy Score: 0.8455 0.8904 0.8656 0.8895 0.8667 0.8660 0.8586 0.8623
Standard Deviation of Accuracy Score: 0.0334 0.0346 0.0259 0.0272 0.0261 0.0514 0.0317 0.0320
95% Confidence Interval of Accuracy Mean Score: 0.0207 0.0214 0.0161 0.0169 0.0162 0.0319 0.0196 0.0198
Average Error: 0.1545 0.1096 0.1344 0.1105 0.1333 0.1340 0.1414 0.1377
Average Error Reduction %: 0.00 29.06 12.98 28.49 13.68 13.26 8.46 10.86
Error Reduction % Standard Deviation: 27.61 22.39 16.77 17.63 16.92 33.31 20.52 20.72
95% Confidence Interval of Error Reduction Avg: 17.11 13.88 10.40 10.93 10.49 20.64 12.72 12.84

Average Accuracy Score: 0.8641 0.9048 0.9065 0.8841 0.8856 0.9046 0.8619 0.8582
Standard Deviation of Accuracy Score: 0.0180 0.0165 0.0177 0.0150 0.0113 0.0128 0.0207 0.0171
95% Confidence Interval of Accuracy Mean Score: 0.0112 0.0102 0.0110 0.0093 0.0070 0.0079 0.0128 0.0106
Average Error: 0.1359 0.0952 0.0935 0.1159 0.1144 0.0954 0.1381 0.1418
Average Error Reduction %: 0.00 29.97 31.25 14.74 15.87 29.81 -1.60 -4.33
Error Reduction % Standard Deviation: 14.35 12.12 13.03 11.03 8.30 9.42 15.24 12.61
95% Confidence Interval of Error Reduction Avg: 8.89 7.51 8.07 6.84 5.15 5.84 9.45 7.81

Average Accuracy Score: 0.8658 0.8906 0.8952 0.8887 0.8826 0.8847 0.8608 0.8534
Standard Deviation of Accuracy Score: 0.0194 0.0175 0.0250 0.0218 0.0229 0.0139 0.0102 0.0141
95% Confidence Interval of Accuracy Mean Score: 0.0120 0.0108 0.0155 0.0135 0.0142 0.0086 0.0063 0.0087
Average Error: 0.1342 0.1094 0.1048 0.1113 0.1174 0.1153 0.1392 0.1466
Average Error Reduction %: 0.00 18.50 21.91 17.04 12.50 14.12 -3.74 -9.26
Error Reduction % Standard Deviation: 18.60 13.04 18.66 16.21 17.06 10.33 7.63 10.47
95% Confidence Interval of Error Reduction Avg: 11.53 8.08 11.56 10.05 10.58 6.40 4.73 6.49

Average Accuracy Score: 0.8918 0.8630 0.8577 0.7712 0.8828 0.8634 0.8519 0.8285
Standard Deviation of Accuracy Score: 0.0158 0.0359 0.0164 0.0000 0.0155 0.0076 0.0088 0.0516
95% Confidence Interval of Accuracy Mean Score: 0.0098 0.0223 0.0102 0.0000 0.0096 0.0047 0.0055 0.0320
Average Error: 0.1082 0.1370 0.1423 0.2288 0.1172 0.1366 0.1481 0.1715
Average Error Reduction %: 0.00 -26.69 -31.52 -111.48 -8.36 -26.28 -36.96 -58.51
Error Reduction % Standard Deviation: 27.24 33.21 15.18 0.00 14.29 6.98 8.16 47.72
95% Confidence Interval of Error Reduction Avg: 16.88 20.58 9.41 0.00 8.86 4.33 5.06 29.58

Average Accuracy Score: 0.8136 0.9100 0.9112 0.9252 0.8671 0.9194 0.8501 0.8369
Standard Deviation of Accuracy Score: 0.0336 0.0293 0.0317 0.0223 0.0125 0.0264 0.0308 0.0117
95% Confidence Interval of Accuracy Mean Score: 0.0208 0.0181 0.0196 0.0139 0.0078 0.0164 0.0191 0.0072
Average Error: 0.1864 0.0900 0.0888 0.0748 0.1329 0.0806 0.1499 0.1631
Average Error Reduction %: 0.00 51.73 52.37 59.85 28.70 56.75 19.59 12.52
Error Reduction % Standard Deviation: 15.86 15.70 16.98 11.99 6.71 14.18 16.51 6.26
95% Confidence Interval of Error Reduction Avg: 9.83 9.73 10.53 7.43 4.16 8.79 10.23 3.88

Average Accuracy Score: 0.8660 0.8850 0.8798 0.8792 0.8638 0.8837 0.8681 0.8461
Standard Deviation of Accuracy Score: 0.0184 0.0225 0.0165 0.0151 0.0122 0.0213 0.0191 0.0143
95% Confidence Interval of Accuracy Mean Score: 0.0114 0.0139 0.0103 0.0094 0.0075 0.0132 0.0118 0.0089
Average Error: 0.1340 0.1150 0.1202 0.1208 0.1362 0.1163 0.1319 0.1539
Average Error Reduction %: 0.00 14.15 10.33 9.84 -1.63 13.17 1.54 -14.88
Error Reduction % Standard Deviation: 9.53 16.79 12.34 11.28 9.08 15.92 14.25 10.69
95% Confidence Interval of Error Reduction Avg: 5.91 10.40 7.65 6.99 5.62 9.87 8.83 6.63

Average Accuracy Score: 0.8634 0.8873 0.8832 0.8680 0.8725 0.8856 0.8623 0.8554
Standard Deviation of Accuracy Score: 0.0105 0.0085 0.0052 0.0053 0.0075 0.0068 0.0066 0.0090
95% Confidence Interval of Accuracy Mean Score: 0.0065 0.0052 0.0032 0.0033 0.0046 0.0042 0.0041 0.0056
Average Error: 0.1366 0.1127 0.1168 0.1320 0.1275 0.1144 0.1377 0.1446
Average Error Reduction %: 0.00 17.48 14.50 3.33 6.63 16.27 -0.85 -5.85
Error Reduction % Standard Deviation: 7.72 6.19 3.82 3.89 5.48 4.99 4.84 6.56
95% Confidence Interval of Error Reduction Avg: 4.79 3.84 2.37 2.41 3.40 3.09 3.00 4.07

DT

Stacking 
SVM

SVM

kNN

ANN

EVH

EVS

RF

ET

Average of 
All Models
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