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SUMMARY

Dynamic pricing and idle vehicle relocation are important tools for addressing demand-

supply imbalance that frequently arises in the ride-hailing markets. Although interrelated,

pricing and relocation have largely been studied independently in the literature. Moreover,

the current mainstream methodologies, optimization and reinforcement learning (RL), suf-

fer from significant computational limitations. The optimization needs to be solved in

real-time and often trades off model fidelity (hence solution quality) for computational ef-

ficiency. Reinforcement learning requires a large number of samples to be trained offline,

and often struggles to achieve full coordination among the fleet. This thesis expands the

research horizon and addresses the limitations of existing approaches.

Chapter 4 designs an optimization model for computing both pricing and relocation

decisions. The model ensures reasonable waiting time for the riders by reducing or post-

poning the demand that is beyond the service capacity. The postponement is by giving out

discounts to riders who are willing to wait longer in the system, thus leveling off the peak

without pricing out riders. Experiments show that the model ensures short waiting time for

the riders without compromising the benefits (revenue and total rides served) of the plat-

form. The postponement helps serve more riders during mild imbalances when there are

enough vehicles to serve postponed riders after the peak.

Chapter 5 presents a machine learning framework to tackle the computational com-

plexity of optimization-based approaches. Specifically, it replaces the optimization with

an optimization-proxy: a machine learning model which predicts its optimal solutions. To

tackle sparsity and high-dimensionality, the proxy first predicts the optimal solutions on

the aggregated level and disaggregates the predictions via a polynomial-time transporta-

tion optimization. As a consequence, the typical NP-Hard optimization is reduced to a

polynomial-time procedure of prediction and disaggregation. This allows the optimization

model to be considered at higher fidelity since it can be solved and learned offline. Ex-

xii



periments show that the learning + optimization approach is computationally efficient and

outperforms the original optimization due to its higher fidelity.

Chapter 6 extends one step further from Chapter 5, refining the optimization-proxy by

reinforcement learning (RL). Specifically, RL starts from the optimization-proxy and im-

proves its performance by interacting with the system dynamics and capturing long-term

effects that are beyond the capabilities of the optimization approach. In addition, RL be-

comes far easier to train starting from a good initial policy. This hybrid approach is compu-

tationally efficient in both online deployment and offline training stages, and outperforms

optimization and RL by combining the strengths of both approaches. It is the first Rein-

forcement Learning from Expert Demonstration (RLED) framework applied to the pricing

and relocation problems and one of the few RL models with a fully-centralized policy.
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CHAPTER 1

INTRODUCTION

The rapid growth of ride-hailing markets has transformed urban mobility, offering on-

demand mobility services via mobile applications. While major ride-hailing platforms

such as Uber and Didi leverage centralized dispatching algorithms to find good match-

ing between drivers and riders, operational challenges persist due to imbalance between

demand and supply. Consider morning rush hours as an example: most trips originate from

residential areas to business districts where a large number of vehicles accumulate and re-

main idle. Relocating these vehicles back to the demand area is thus crucial to maintaining

quality of service and income for the drivers. In the event that demand significantly exceeds

supply, dynamic pricing is needed to ensure that the system does not admit more demand

than its service capacity.

The impact of demand-supply imbalance on a ride-hailing market is highlighted by Hall

et al. using Uber data in 2015 [1]. When surge pricing was deactivated during New Year’s

Eve, rider waiting time and driver enroute time (the time between a driver departs to pick

up a request and the time the request is picked up) increased significantly and trip com-

pletion rate dropped dramatically (Figure 1.1). This phenomenon was further studied by

Castillo et al. who modeled the ride-hailing system as a steady-state queuing network [2].

The authors demonstrated that, when demand exceeds supply capacity, drivers from distant

areas are dispatched, resulting in long enroute time and low utilization rates (aka the Wild

Goose Chase phenomenon). Several solutions have been introduced to partially mitigate

the problem. Ride-sharing services (UberPool, Lyft Shared rides, etc.) enable drivers to

serve multiple requests simultaneously [3, 4], increasing the service capacity of the fleet.

However, it is not always sufficient to address severe imbalances. Adding more vehicles

before or during the imbalance is another possibility. Bringing in new vehicles, however,
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Figure 1.1: The Impact of Demand Surge on Estimated Time of Arrival (ETA) and Trip
Completion Rate (Proportion of Requests Fulfilled). The Left Denotes ETA in Minutes.
The Shaded Area Represents the Period When Surge Pricing Was Deactivated on New
Year’s Eve [1].

takes time and increases operational costs; hence it is not always feasible. Predicting the

imbalance is also challenging as real-time demand depends on various factors including

weather, traffic conditions, special events (concerts, sports games, conferences), and avail-

ability of other travel modes. To address the imbalance in its entirety, the ability to control

the demand by pricing is indispensable.

This thesis is dedicated to developing systematic approaches to address demand-supply

imbalance using idle vehicle relocation and dynamic pricing. Relocation and pricing are

studied together due to their inter-dependency - where the vehicles relocate depends on de-

mand which is shaped by the pricing decisions. They are also decided at a similar frequency

in real-time (typically every 5 - 20 minutes), in contrast to matching which is decided at a

much higher frequency (typically every 10 - 60 seconds).

Although there has been abundant research on pricing and relocation, there are still

significant research gaps to be addressed. First, the existing literature has largely modeled

pricing and relocation independently, although considering them together is far more inter-

esting and realistic as the ride-hailing market is a dynamic interplay between demand and

supply shaped by relocation and pricing. The joint modeling however, makes the problem

2



exponentially more complex, thus requiring new methodological and computational con-

tributions. Second, the current mainstream methodologies for pricing and relocation suffer

from significant computational limitations. Existing approaches fit broadly into two cat-

egories: model-based and model-free approaches. Model-based approaches, e.g., Model

Predictive Control (MPC), repeatedly solve an optimization problem over a future horizon

to derive the best control decisions. Model-free approaches (predominantly Reinforcement

Learning (RL)) train a state-based decision policy by interacting with the environment and

observing the rewards. While both approaches have demonstrated promising performance

in simulation and (in some cases) real-world deployment [5], they have evident drawbacks:

the optimization needs to be solved in real time and often trades off model fidelity (hence

solution quality) for computational efficiency. Reinforcement learning does not have a

model but needs a large number of samples to be trained offline. Consequently, most RL

models simplify the problem (e.g., by restricting relocations to nearby regions and/or lim-

iting coordination among the fleet) to reduce computational complexity.

This thesis aims to expand the research horizon and tackle the drawbacks of these exist-

ing approaches. Chapter 4 presents an optimization model for computing both pricing and

relocation decisions. The model ensures reasonable waiting time for the riders by reducing

or postponing the demand that is beyond the service capacity. To resolve the computational

issues of the existing approaches, Chapter 5 and Chapter 6 design a Reinforcement Learn-

ing from Expert Demonstration (RLED) framework. Chapter 5 applies machine learning

(ML) to approximate a pricing and relocation optimization model (expert), and Chapter 6

refines the ML policy in Chapter 5 by a policy gradient method (RL). As a consequence, the

final policy is computationally efficient, runs in polynomial-time, and requires much fewer

samples to train than traditional RL. Moreover, The policy achieves better performance

than optimization and RL alone by combining the strengths of both approaches.

To limit the scope of the study, this thesis focuses on a centralized ride-hailing system

where drivers follow the platform’s instructions exactly. Specifically, this means that

3



1. The drivers follow the platform’s routing and relocation instructions exactly.

2. The drivers’ willingness to work is not affected by the trip fares or the routing and

relocation decisions.

These assumptions hold for a fleet of autonomous vehicles or human drivers who are con-

tracted to follow the platform’s decisions (they are paid a fixed rate per time, for example).

Although most existing ride-hailing services employ human drivers who can choose to de-

cline the platform’s instructions, the study of a centralized system still brings tremendous

insights to the system operators and may become a reality in the future with the rapid

development of autonomous driving technologies.

The thesis is organized as follows. Chapter 2 covers the background material. Chapter 3

reviews the related work and summarizes the research gap. Chapter 4 presents the pricing

and relocation optimization model. Chapter 5 designs a machine learning framework to

imitate a pricing and relocation optimization model. Chapter 6 combines reinforcement

learning with the machine learning framework in Chapter 5 to refine the imitated policy.

Chapter 7 concludes the thesis and outlines directions for future work.

Part of the thesis has been published in various journals/venues. Chapter 4 has been

published in [6]. Chapter 5 and part of Chapter 6 have been published in [7].
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CHAPTER 2

BACKGROUND

2.1 Real-Time Ride-Hailing System

A real-time ride-hailing system has three key components: vehicle routing, idle vehicle

relocation, and dynamic pricing (Figure 2.1). The vehicle routing algorithm matches re-

quests to vehicles and chooses the vehicle routes. It operates at the individual request level

with high frequency (e.g., every 10 − 60 seconds). Because of the tight time constraints

and the large number of requests, the routing algorithm is usually myopic, taking only the

current demand and supply into account. Idle vehicle relocation and dynamic pricing, on

the other hand, are forward-looking in nature. Idle vehicle relocation repositions the ve-

hicles preemptively to anticipate demand, and dynamic pricing balances expected demand

and supply in a future horizon. Vehicle relocation and pricing also take place at a lower

frequency (e.g., every 5− 20 minutes).

The three components are interdependent. Take vehicle relocation as an example:

where the vehicles should relocate to depends on future demand as well as how the re-

quests will be served, which are determined by the vehicle routing and pricing algorithms.

Since vehicle relocation and dynamic pricing are both forward-looking and take place at

lower frequency than vehicle routing, this thesis studies them together and abstracts away

the routing component.

2.2 Model Predictive Control

MPC is an online control procedure that repeatedly solves an optimization problem over

a moving time window to find the best control actions. System dynamics, i.e., the in-

terplay between demand and supply, are explicitly modeled as mathematical constraints.

5
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Figure 2.1: The Real-Time Ride-Hailing Operations.

Specifically, time is discretized into epochs of equal length and, during each epoch, the

MPC performs three tasks: (1) it predicts state of the system for the next T epochs; (2)

it optimizes decisions over these epochs; and (3) it implements the decisions of the first

epoch. As time reaches the next epoch, it repeats the same procedure using information

that has become available in the latest epoch (Figure 2.2). Due to real-time computational

constraints, almost all the MPC models in the literature work at discrete spatial-temporal

scale (dispatch area partitioned into zones, time into epochs) and use a relatively coarse

granularity (see Chapter 3 for an overview of the literature).

2.3 Reinforcement Learning

Reinforcement learning, on the contrary, does not explicitly model the system dynamics.

It considers the problem as an Markov decision process (MDP) which is characterized

by a state space S, an action space A, a reward function r(s, a), a probability transition

function P (s′|s, a), and a discount factor γ ∈ [0, 1]. At each time step t in the decision

horizon, the agent observes the environment state st, takes an action at, receives immediate

reward r(st, at), and transitions to the next state st+1 according to the (unknown) transition

function P (·|st, at) (illustrated in Figure 2.3). The goal is to find a deterministic policy

π : S → A or a stochastic policy π : S → P(A), where P(A) denotes the space of

6



Figure 2.2: Model Predictive Control.

probability distributions over A, to maximize total expected reward

J(π) = EP,π

[
∞∑
t=0

γtr(st, at)

]

where γ ∈ [0, 1] is a discount factor. Value function approximation and policy gradient are

two main methods for finding π.

2.3.1 Value Function Approximation

Let action-value function

Qπ(s, a) = EP,π

[
∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]

denote the expected total reward starting from state s and action a under policy π. Let

Q∗ denote the action-value function corresponding to the optimal policy π∗. By Bellman

optimality condition [8], the optimal policy satisfies

Q∗(s, a) = r(s, a) + γEP

[
max
a′∈A

Q∗(s′, a′)

]
, ∀s, s′ ∈ S, a, a′ ∈ A. (2.1)

7



Figure 2.3: Reinforcement Learning.

where s′ is the next state following (s, a). In practice, computing the expectation is in-

tractable since the transition probability function P is unknown. The Q-values can instead

be learned iteratively by stochastic approximation (Temporal Difference [9], SARSA [8],

etc.), which is guaranteed to converge to the optimal Q-values if the state and action spaces

are finite and each (s, a) is visited infinitely many times. In practice, the Q-value is often

parametrized by a differentiable function (e.g., by a deep neural network (DQN)). Once the

optimal Q-values are found, the optimal policy is given by π∗(s) = argmaxa∈A Q∗(s, a).

Similarly, the state-value function V π(s) := EP,π [
∑∞

t=0 γ
tr(st, at)|s0 = s] can be learned

to derive the optimal policy.

2.3.2 Policy Gradient

Alternatively, a policy can be found directly by policy gradient method. Let π : S → P(A)

be a stochastic decision policy parametrized by θ and let π be differentiable with respect to

θ. By Policy Gradient Theorem [8],

∇θJ(π) = EP,π

[
G(τ)

T∑
t=0

∇θ logPπ(at|st)

]
(2.2)

8



where

G(τ) =
T∑
t=0

γtr(st, at) (2.3)

is the total (discounted) reward of the trajectory τ = (s0, a0, r(s0, a0)..., sT , aT , r(sT , aT ))

and Pπ(st, at) is the probability of taking at in st under policy π. In reality, computing the

expectation in (2.2) is intractable since P is unknown. Instead, it can be approximated by

Monte Carlo Sampling

∇θJ(π) ≈
1

N

N∑
i=1

G(τi)
T∑
t=0

∇θ logPπ(at,i|st,i) (2.4)

where τ1, τ2, ..., τN are trajectories sampled by applying π in the environment. The policy

can be updated by gradient ascent

θ ← θ + α∇θJ(π) (2.5)

for a chosen stepsize α.

2.3.3 Paradigms of RL

RL can be divided into three paradigms: single-agent RL, decentralized multi-agent RL,

and centralized multi-agent RL. The single-agent framework maximizes the reward of an

individual agent, while the multi-agent frameworks maximize the collective rewards when

there are multiple agents in the environment. In decentralized multi-agent RL, each agent

follows its own policy with some extent of state/objective sharing. In centralized multi-

agent RL, all the agents share their state information and plan their actions together to

optimize group-level benefits.

A main challenge of RL is training complexity since the state and action spaces are typ-

ically high-dimensional (often infinite-dimensional) due to the complex system dynamics.

Sampling in high-dimensional spaces makes the training computationally expensive and
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unstable. Another challenge is promoting coordination among a large number of agents

(vehicles). Both the single-agent framework and decentralized multi-agent framework

consider group-level benefits only in a limited fashion. Centralized multi-agent frame-

work could potentially lead to full cooperation but further increases the dimensionality of

the state-action space. Consequently, most work in the literature follows the single-agent

or decentralized multi-agent paradigms and makes simplifying assumptions to reduce the

training complexity (see Section 3.2 and Section 3.3 for details).

2.4 Multi-layer Perceptron

Multi-layer Perceptron (MLP) is the most basic form of artificial neural networks (ANN). It

is composed of three types of layers: input layer, hidden layer, and output layer (Figure 2.4).

The input layer contains the input data. Each hidden layer takes the previous layer’s output

h, performs a linear transformation Ah, and applies an element-wise nonlinear activation

function σ to produce its output σ(Ah). Commonly-used activation functions include the

Sigmoid function, Rectified Linear Unit (ReLU), and hyperbolic tangent (tanh) function.

The output layer takes the last hidden layer’s output, performs a linear transformation, and

applies a linear/nonlinear activation function to produce the final output.

The weights of the MLP (linear operators) are trained by backward propagation. Given

a data input, MLP first calculates the prediction by going through the input, hidden, and

output layers (a forward pass), then computes the prediction error and derives its gradient

with respect to each layer’s weights in a backward fashion. The weights are then updated

by taking a gradient step toward the direction that reduces the error. Typically the MLP is

updated based on the gradient of one or a few data points in the data set at a time (stochastic

gradient descent/ batched stochastic gradient descent [10]).
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Figure 2.4: Multi-Layer Perceptron.

2.5 The Vehicle Routing Algorithm

The simulation experiments in the thesis use the routing algorithm in [4]. The algorithm

batches requests into a time window and optimizes every 30 seconds. Its objective is to min-

imize a weighted sum of passenger waiting times and penalties for unserved requests. Each

time a request is not scheduled by the routing optimization, its penalty is increased in the

next time window giving the request a higher priority. The routing algorithm is solved by

column generation: it iterates between solving a restricted master problem (RMP), which

assigns a route (sequence of pickups and dropoffs) to each vehicle, and a pricing subprob-

lem, which generates feasible routes for the vehicles. The RMP is depicted below.

min
∑
r∈R

cryr +
∑
i∈P

pizi (2.6a)

s.t.

(∑
r∈R

yra
r
i

)
+ zi = 1 ∀i ∈ P (2.6b)

∑
r∈Rv

yr = 1 ∀v ∈ V (2.6c)

zi ∈ N ∀i ∈ P (2.6d)

yr ∈ {0, 1} ∀r ∈ R (2.6e)
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R denotes the set of routes. V the set of vehicles, and P the set of passengers. Rv denotes

the subset of feasible routes for vehicle v. A route is feasible for a vehicle if it does not

exceed the vehicle capacity and does not incur too much of a detour for its passengers due

to ride-sharing. cr represents the wait times incurred by all customers served by route r.

pi is the penalty of not scheduling request i, and ari = 1 iff request i is served by route

r. Decision variable yr ∈ [0, 1] is 1 iff route r is selected and zi ∈ [0, 1] is 1 iff request i

is not served by any of the selected routes. The objective function minimizes the waiting

times of the served customers and the penalties for the unserved customers. Constraint

(2.6b) ensures that zi is set to 1 if request i is not served by any of the selected routes and

constraint (2.6c) ensures that only one route is selected per vehicle. The column generation

process terminates when the pricing subproblem cannot generate new routes to improve the

solution of the RMP or the solution time limit is met.
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CHAPTER 3

RELATED WORK

Prior work on real-time idle vehicle relocation and pricing problems fits broadly into two

categories: model predictive control (MPC) and reinforcement learning (RL).

3.1 MPC for Relocation

The MPC optimization for the relocation problem can be formulated on either the indi-

vidual vehicle/driver level or the zone level. [11] optimized the staff(driver) activities in

a car-sharing network to balance demand-supply of vehicles. [12] modeled each electric

vehicle’s dispatching and relocation decisions while considering the battery usage. The

drawback of the vehicle-level MPC is scalability since the model size increases with the

number of vehicles in the system. On the other hand, MPC can be formulated on the zone

level: the dispatch area is partitioned into a set of zones and relocation decisions are made

on the zone-to-zone level (number of vehicles to relocate between each zone). Hence the

model size only depends on the spatial partition and not the fleet size. [13] formulated

a zone-level model to balance the supply-demand ratio of each zone. [14] investigated

the stochastic demand setting and optimized for the worst-case scenario. [15] designed a

model to minimize passenger waiting time and relocation costs and [16] extended it to the

stochastic setting and solved it by sample average approximation. [17] extended [15] to the

ride-sharing setting by introducing a ride-share ratio.

Although different in underlying assumptions, the zone-level MPC models follow sim-

ilar formulations and the model in [15] is presented here as an illustration. Let T =

{1, 2, .., T} denote the MPC model’s planning horizon and N the set of zones. Decision

variables xr
ijt denote number of vehicles relocating from zone i to zone j at time t. Auxil-

iary variables xp
ijt denote number of vehicles carrying passengers from zone i to zone j at
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time t. Auxiliary variables wijt denote number of outstanding passengers waiting to travel

from zone i to zone j at time t. Auxiliary variables dijt denote the expected demand of

passengers wanting to travel from i to j departing at time t that will remain unsatisfied.

Input λ̂ij denotes the expected number of passengers traveling from i to j at time t. τij

denote number of time periods to travel from i to j. sit denote expected number of idle

vehicles in zone i at time t.

min
∑
i,j,t

crijtx
r
ijt + cwijtwijt + cdijtdijt (3.1)

s.t. xp
ijt + dijt − wijt = λ̂ij, ∀i, j ∈ N, t ∈ T (3.2)∑
j∈N

xp
ijt + xr

ijt = sit +
∑
j∈N

xp
jit−τji

+ xr
jit−τji

, ∀i ∈ N, t ∈ T (3.3)

∑
t∈T

wijt = λij0, ∀i, j ∈ N (3.4)

xp
ijt, x

r
ijt, wijt, dijt ∈ N, ∀i, j ∈ N, t ∈ T (3.5)

The objective minimizes relocation costs and penalty for leaving customers unserved or

waiting. Constraint (3.2) and Constraint (3.3) are the passenger and vehicle continuity

constraints. Constraint (3.4) ensures that all outstanding passengers at the beginning of

the planning horizon are served. Similar to this model, most zone-level MPC models are

mixed integer linear programs (MILP) and are difficult to solve at high spatio-temporal

granularity. Consequently, they are forced to use a small number of zones or a short time

horizon [13, 14, 15, 16, 17].

3.2 RL for Relocation

There have been numerous applications of RL to the vehicle relocation problem. Each

vehicle is considered an agent in the environment. The state space of a vehicle typically

includes the global contextual supply-demand information (number of orders and vehicles
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in each zone) as well as the vehicle’s location and time. To reduce the dimension of the

state-action space, most prior work makes the following assumptions:

1. The vehicles are considered homogeneous and share the same value function and

decision policy in the single-agent and decentralized multi-agent paradigms [18, 19,

20, 21, 22, 23, 5].

2. The vehicle’s relocation destination is restricted to neighboring zones that can be

reached before the next decision epoch [18, 19, 20, 21, 22, 5].

3.2.1 Single-Agent RL

[18] trained a Deep-Q Network (DQN) based on the trajectory of an individual vehicle

(agent). The reward function considers reduction in rider wait time (compared to no relo-

cation) as well as relocation cost. Once the DQN is trained, it is used to guide the relocation

movements of all the vehicles. Consequently, there is no coordination among the fleet since

each vehicle is optimizing its own performance. Simulation studies show that this approach

reduces rider waiting time compared to no relocation, but the performance is inferior to an

optimization baseline.

3.2.2 Decentralized Multi-Agent RL

The decentralized multi-agent approach trains a shared decision policy for the vehicles us-

ing trajectories of the whole fleet. [20] proposed a scheme where vehicles make decisions

sequentially ordered by the time they become idle, and each vehicle incorporates the pre-

vious vehicles’ decisions into its state information. This prompts coordination among the

agents but in a limited fashion. In [22], vehicles take actions simultaneously. The reward

is computed as the average profit of all the vehicles arriving at the same relocation desti-

nation to promote coordination. This approach outperforms the single agent approach in

the experiments. [23] applied centralized planning on top of the decentralized training. To

find the best action for each vehicle, a centralized linear program involving the Q-values of
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Figure 3.1: The Comparison of Different RL Paradigms. TDCP is the Decentralized Ap-
proach with Centralized Planning. DQN and A2C are Single-Agent Approaches. MF-DQN
and MF-A2C are Decentralized Multi-Agent Approaches. Greedy and Near are Heuristics.
The Figure is from [23].

individual vehicles is formulated and solved via value function decomposition. Due to the

centralized action planning, this approach achieves better performance than the decentral-

ized frameworks as well as the single-agent framework, as highlighted in Figure 3.1.

3.2.3 Centralized Multi-Agent RL

[24] is the only paper using a fully centralized formulation. It models each zone instead of a

vehicle as an agent and employs the policy gradient method (A2C) to learn the zone-to-zone

level dispatching and relocation decisions. The state contains supply and demand informa-

tion in each zone and the action decides number of vehicles to relocate between each zone.

Due to the high dimensionality of the state and action spaces, the trained algorithm was

demonstrated in a simplified setting with a small number of zones.
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3.3 Pricing

In contrast to the extensive literature on real-time vehicle relocation, most literature on pric-

ing focuses on long-term market equilibrium and is not developed for a real-time setting

[25, 26, 27, 28, 29, 30]. To the best of the author’s knowledge, the few papers on real-

time pricing are all decentralized RL approaches. [31] considered a profit-maximizing firm

offering single and shared trip services. The company posts a price for each mode when-

ever a new request arises, and the riders choose one of the modes or reject the ride. The

problem is solved by policy parameterisation. [32] modeled both the dispatching and pric-

ing decisions of the platform. The dispatching solves a bipartite matching problem using

state-value functions of the vehicles while the pricing selects a surge multiplier whenever

a new request arrives. The state-value functions are trained by temporal-difference (TD)

learning and the pricing is modeled as a contextual bandit. The two components are trained

in a mutual bootstrapping manner. [33] modeled the interplay between path-based pric-

ing and customer’s choice (whether to use the service and if so, which path to take) as a

Stackelberg leader-follower game. The original multi-period bilevel program was recast as

an MDP problem via KKT conditions and solved by value function approximation. Ex-

periments show that the model earns more revenue than a baseline model that does not

change the price. Of the three papers, only [33] considered both the pricing and relocation

decisions, and none used a centralized RL formulation.

3.4 Research Gap

In spite of the vast amount of existing literature, there is still significant research gap that

needs to be explored. First, most work has focused on vehicle relocation and few has fo-

cused on pricing or the combination of the two, even though they are interrelated. Second,

the two mainstream methodologies, optimization and RL, suffer from obvious computa-

tional drawbacks. Optimization models need to be solved in real-time and often trades off
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model fidelity (hence quality of solutions) for computational efficiency. RL suffers from

curse of dimensionality and is difficult to achieve full coordination among the fleet. Third,

the developments of optimization and RL methods have largely been disjoint. Although the

two methodologies seem fundamentally different - one is model-based and the other model-

free; one is data-independent and the other data-dependent - combining the two could yield

immense benefits as they complement each other. This thesis address the research gap by

exploring these directions.

18



CHAPTER 4

REAL-TIME PRICING AND RELOCATION OPTIMIZATION FOR QUALITY

OF SERVICE

Transportation Network Companies (TNCs) like Uber and Lyft have fundamentally trans-

formed mobility in many cities, providing new mobility options for a range of customers.

Meanwhile, they are also facing many operational challenges. This work considers one of

these critical challenges: how to address an imbalance between demand and supply due to

a surge in the number of requests. When such an imbalance is present, riders often experi-

ence long waiting times. This hurts both the platform and riders: potential riders incur an

opportunity cost by waiting and the platform receives poor customer reviews. Idle vehicle

relocation (e.g., [15, 34, 35, 36, 17]) is one way to alleviate this issue: empty vehicles are

relocated preemptively to places where they will be most needed to reduce waiting times.

Another way to tackle the imbalance is to build mobility systems that utilize ride-sharing

systematically. A study by Alonso-Mora et al. showed that systematic ride-sharing may

significantly reduce the number of vehicles needed to serve requests [3]. Their results in-

dicate that 98% of the historic demand for taxi services in NYC could be served with a

much smaller taxi fleet while maintaining short wait times. However, vehicle relocation

and ride-sharing on their own are not always sufficient to address the imbalance. Consider

a state-of-the-art ride-sharing framework A-RTRS when applied to a 90-minute Yellow

Taxi instance in New York City [17, 37]. A-RTRS routes and dispatches vehicles every

30 seconds, and it uses a model-predictive control algorithm to perform vehicle relocation

every 5 minutes. Table 4.1 reports the average waiting times when a 30-minute peak with

17%, 24%, 31%, and 38% more requests is inserted into the instance. The results show that

average waiting times rise dramatically as the peak becomes stronger.

Pricing is also commonly used to address demand and supply imbalances. For instance,
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Table 4.1: Waiting Times in Minutes Under Various Demand Peaks

Peak Demand Percentage
17% 24% 31% 38%

Avg Waiting Time 7.86 10.70 13.93 15.34
Standard Deviation 3.75 6.30 8.24 8.45

Uber’s surge pricing and Lyft’s Prime time pricing both raise prices to curtail excessive

demand. While this may upset some customers, empirical evidence shows that it is effective

at restoring demand-supply balance in the market [1]. It is not clear, however, how these

pricing schemes affect average waiting times and whether they introduce unfairness in

quality of service for various regions.

This work is a first step in understanding the relationship between demand and supply

imbalances, pricing, average waiting times, and geographical quality of service. It extends

A-RTRS with a real-time spatio-temporal pricing mechanism to restore service quality

during peak times. The goal of the proposed framework, called AP-RTRS, is to decrease

or postpone the demand to ensure that each rider is served within a reasonable amount of

time and, ideally, that there are no significant regional differences in quality of service.

More specifically, AP-RTRS features a novel optimization model for its Model Predictive

Control (MPC) component that jointly optimizes price and relocation over time. The AP-

RTRS framework makes three key contributions. First, while extensive work explores the

effect of pricing in the long term (e.g., at market equilibrium), very few studies examine its

real-time consequences when demand fluctuates both spatially and temporally. This work

thus provides a detailed analysis of the real-time effects of pricing when integrated into

an end-to-end ride-sharing framework. Second, while many papers study trip throughput

rate, revenue, and buyer/seller surplus, to our knowledge, AP-RTRS is the first pricing

framework that focuses on controlling waiting times and request completion rate. Third,

AP-RTRS includes a novel dynamic pricing mechanism that also encourages riders to use

the service at a later time through discounting. Discounting is appealing as it enables AP-
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RTRS to level small peaks off without pricing out customers. These benefits of AP-RTRS

are demonstrated on large-scale NYC taxi instances.

4.1 Problem Definition

Operating a real-time ride-sharing system requires the solving of large-scale dial-a-ride and

pricing problems. Each request corresponds to a trip for a number of riders from an origin

to a destination that must take place after a specified pickup time. In addition, riders are

only willing to wait for a certain period of time after which they seek another mode of

transportation. The goal of AP-RTRS is to regulate demand with pricing so that all riders

choosing to use the service are picked up in a given time span. The platforms studied in

this work either use a fixed fleet of autonomous vehicles or their own pool of drivers who

follow the platform’s instructions exactly. The system can thus relocate the vehicles at will

in order to anticipate demand. It is assumed that significant historical data is available and

can be used to forecast demand.

4.2 Prior Work

Among the vast literature on dynamic pricing, many papers study optimality of different

pricing policies and their impact on revenue and trip throughput rates. However, most of

the discussions are restricted to a simplified setting where demand is homogeneous over

time (e.g., [25, 27, 28, 26, 29]), or both time and space (e.g., [2, 30]). In comparison,

relatively few papers focus on a real-time setting where demand fluctuates both spatially

and temporally (reviewed in Chapter 3). Although these few papers are developed in a real-

time setting, there is no explicit control of the waiting times or the request completion rate.

The MPC optimization proposed in this work guarantees service quality, distinguishing it

from prior work. The most related work is the A-RTRS framework of [17] where an MPC

model is developed to relocate idle vehicles in real-time. AP-RTRS replaces the MPC

component of A-RTRS with a new optimization model that jointly decides idle vehicle
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relocation and pricing for each region over the MPC time horizon. Because of pricing, the

demand becomes a variable in AP-RTRS. Moreover, the MPC model in AP-RTRS keeps

track of waiting times to capture the behaviour of riders and discounting.

4.3 Pricing and Relocation Optimization

The MPC for pricing and relocation operates over a rolling time horizon and optimizes

the decisions over a fixed time window for every epoch. Specifically, time is discretized

into epochs of equal length and, during each epoch, the MPC performs three tasks: (1) it

predicts the demand and supply for the next T epochs; (2) it optimizes decisions over these

epochs; and (3) it implements the decisions of the first epoch. Due to potentially large

number of vehicles and riders in real-time, deriving pricing and relocation decisions on the

individual level is computationally challenging. The MPC operates at a coarser temporal

and spatial granularity: it partitions the geographical area into zones (not necessarily of

equal size or shape) and considers pricing/relocation decisions on the zone-to-zone level.

The resulting model is scale-invariant with respect to the number of individual riders and

vehicles.

Terminology and Notations The time when a rider connects to the platform and observes

the price is called the emerging time. The time selected by a rider to use the service is called

the realization time. It is either the emerging time or a later time selected by a rider due to

discounting. The realization time is also when the platform starts to schedule the request.

The service time is the time when a rider is picked up. The difference between realization

time and service time is the waiting time. A rider not served after s epochs from her

realization time is called a dropout (she will cancel the request and seek alternative modes

of transportation). The length of one epoch is denoted by l and the set of epochs in the

MPC time horizon T = {1, ..., T}. The set of zones is denoted by Z .
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Price Offers and Price/Demand Feedback At each epoch t ∈ T , AP-RTRS determines

the price offers (p̄ijtt, p̄ijt(t+1), ..., p̄ijtT ) of requests between zone i and zone j for all epochs

in [t, T ]. A rider emerging at epoch t (i.e., between [(t − 1)l, tl]) observes the price offer,

and decides whether and when to use the service. If the rider decides not to use the service,

she is assumed to exit the market and does not return. Otherwise, she reveals the realization

time to the platform which commits to the price. For instance, a rider traveling from i to

j, emerging at t, and deciding to use the service at τ will be charged p̄ijtτ , even though the

price for τ may vary between epoch [t, τ ]. Note that τ is the epoch when the rider starts

to be scheduled and not necessarily the epoch in which she is picked up. Given a price

offer p⃗ijt = (p̄ijtt, p̄ijt(t+1), ..., p̄ijtT ), the platform can estimate the corresponding demand

pattern, i.e., the expected demand D⃗ijt = (Dijtt, Dijt(t+1), ..., DijtT ) between epoch [t, τ ].

The focus of this work is not on how to estimate the demand pattern from historical data;

rather the work describes how to select the optimal demand pattern in the MPC.

Service Constraints In the MPC, vehicles only pick up riders in the same zone. Once a

vehicle starts to serve riders or relocate, it must finish the trip before taking another assign-

ment. These assumptions are chosen so that the MPC approximates how the underlying

routing/dispatch algorithm works, but the dispatch algorithm does not necessarily obey

these constraints.

4.3.1 The MPC Model Formulation

The overarching goal of the MPC model is to regulate demand such that all riders who

choose to use the mobility system are served in the given waiting time. One way to meet

this goal is to constrain all such riders to be served in the MPC time horizon. However, this

might be impossible since those arriving near the end would have little flexibility. For this

reason, the MPC focuses on serving those riders emerging in the first T − s + 1 epochs:

these riders have at least s epochs available to be served if not postponed. The goal of the
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MPC model is thus to choose a demand pattern for each zone and epoch to meet these

service guarantees. When there are multiple (combination of) demand patterns to achieve

this goal, the MPC model selects the combination serving the most people. This is the

fundamental design philosophy behind the MPC model.

The optimization model is presented in Figure 4.1. In the model, i, j denote zones and

t, τ, ρ epochs. The model inputs are as follows. Vit is the number of vehicles that will

become idle in zone i during epoch t: those vehicles may be busy now but will become

available in t. {D⃗k
ijt}

Nij

k=1 is the set of available demand patterns for O-D pair (i, j) at

t, where Nij is the number of demand patterns that can be selected. Wij is ride-sharing

coefficient: it represents the average number of passengers traveling from i to j that a

vehicle typically carries accounting for the fact that a request may have multiple passengers

and that a vehicle may pick up multiple requests. ηij is the travel time from i to j in seconds,

and λij is the same travel time but in epochs. Inputs ηij and λij depend on traffic conditions

and can be estimated in real-time. In addition, the optimization model uses qp(t, τ, ρ) to

weight a customer served at ρ who emerges at t and decides to use the service at τ . This

weight is chosen to drive the model to serve people as early as possible - qp should be

decreasing in ρ. Riders who emerge and realize early should carry larger rewards since

uncertainty about the future grows over time. qr(t) is the per-second relocation penalty for

epoch t and should be decreasing in t for the same reason.

Decision variable pkijt captures the pricing decision: it is a binary variable indicating

whether demand pattern k, D⃗k
ijt, of O-D pair (i, j) and epoch t is selected. Decision variable

xr
ijt captures the other important decision: it denotes the number of vehicles starting to

relocate from i to j during epoch t. Auxiliary variable xp
ijtτρ denotes the number of vehicles

that start to serve riders from i to j in ρ who emerge at t and decide to use the service in

τ . Auxiliary variable vijtτ denotes the number of vehicles needed to serve all expected

passengers traveling from i to j who emerge in t and decide to use the service in τ . The

model only implements the first epoch’s decisions pij1 and xr
ij1; the other variables serve to
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max
∑
i,j

∑
t,τ,ρ

qp(t, τ, ρ)Wijx
p
ijtτρ −

∑
i,j

∑
t

qr(t)ηijx
r
ijt

s.t.

Nij∑
k=1

pkijt = 1 ∀i, j, t (4.1a)

vijtτ =

Nij∑
k=1

Dk
ijtτp

k
ijt ∀i, j, t, τ (4.1b)∑

ρ

xpijtτρ = vijtτ ∀i, j, t ≤ T − s+ 1, τ

(4.1c)∑
ρ

xpijtτρ ≤ vijtτ ∀i, j, t > T − s+ 1, τ

(4.1d)∑
j,te,τ

xpijteτt +
∑
j

xrijt =
∑
j,te,τ

xpjiteτ(t−λji)
+
∑
j

xrji(t−λji)
+ Vit ∀i, t (4.1e)

xpijtτρ, x
r
ijt, vijtτ ∈ Z+ ∀i, j, t, τ, ρ (4.1f)

pkijt ∈ {0, 1} ∀i, j, t (4.1g)

Figure 4.1: The MPC Optimization with Pricing and Relocation.

provide an approximation of the future.

It is important to mention that the variables are only defined for a subset of the sub-

scripts given that riders drop out if not served in reasonable time. In particular, the valid

subscripts for variables xp
ijtτρ must satisfy the constraint 1 ≤ t ≤ τ ≤ ρ ≤ min(T, τ +

s− 1). Similar considerations apply to vijtτ . These conditions are implicit in the model for

simplicity.

The model is a mixed integer linear program (MILP). Its objective maximizes the

weighted sum of customers served and minimizes the relocation cost. Constraint (4.1a)

ensures that the model selects exactly one price offer (and hence one demand pattern) for

each O-D pair and epoch. Constraint (4.1b) derives the number of vehicles needed to serve

the demand from i to j emerging at t and realized at τ as a function of the price selected

(captured by variable pkijt). Constraint (4.1c) enforces the service guarantees: it makes sure

that passengers emerging in the first (T − s + 1) epochs are served in the time horizon,
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regardless of their realization time. Constraint (4.1d) makes sure that served demand does

not exceed the true demand. Constraint (4.1e) is the flow balance constraint for each zone

and epoch: it makes sure that, at every epoch t, the number of outgoing vehicles in zone

i is equal to the number of incoming vehicles plus the number of idle vehicles. Note that

vehicles need to depart from zone j in t − λji to arrive at zone i in t. Constraint (4.1f)

and Constraint (4.1g) specify range of the variables. The model is always feasible when

demand vijtτ can be reduced to 0.

Discussion The formulation assumes that the platform can postpone customers to any

epoch within the time horizon. If the horizon is long, the platform may choose to postpone

only a few epochs by restricting the range of τ to [t, t+ u] in the variables xp
ijtτρ and uijtτρ,

where u is the maximum number of epochs a rider can be postponed. The case u = 0

corresponds to surge pricing which only assigns a price to the current epoch. The learn-

ing frameworks in Chapter 5 and Chapter 6 work with the surge pricing setting. Another

important consideration is model complexity. In theory, longer time window and more de-

mand patterns enable finer control and yield better results. However, they also increase the

size of the model which needs to be solved in real-time. The user thus needs to strike a

balance between model fidelity and computational efficiency in practice.

4.4 Simulation Study

The performance of AP-RTRS is evaluated using Yellow Taxi trip data in Manhattan, New

York City [37]. The Manhattan area is partitioned into a grid of cells of 200 squared me-

ter, and each cell represents a pickup/dropoff location. Travel times between the cells are

queried from [38]. The fleet is fixed to be 1500 vehicles with capacity 4, distributed ran-

domly among the cells at the beginning of the simulation. The test data is generated based

on Yellow Taxi trip data on 12/30/2015, 7:00am to 8:00am, scaled up proportionally to

the number of requests between each Origin-Destination (O-D) cells to contain on average
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1400 requests per 5 minutes. Peaks of various kinds are inserted into the instance as dis-

cussed later on, in order to test the AP-RTRS’s ability to enforce the service guarantees

and serve riders in reasonable time.

Simulation Environment. The end-to-end simulation to evaluate AP-RTRS is based on

[17]. It has two modules: the vehicle routing algorithm reviewed in Section 2.5 and an

MPC module for pricing and relocation. The vehicle routing algorithm batches riders into

a time window and optimizes every 30 seconds. The MPC module has two components:

the pricing/relocation model and a vehicle assignment model. The pricing/relocation model

(Figure 4.1) is run every 5 minutes and given 30 seconds of solving time (it needs to output

relocation decisions before the next dispatch). The pricing decisions are implemented in

terms of percentages instead of absolute magnitude. For example, if the model decides to

postpone 20 expected customers out of 50, the simulation will randomly select 40% ob-

served requests in the next epoch to be postponed. The reason is that the model works with

predicted demand and there may not be 20 customers in the next epoch. The relocation

decisions are implemented by the vehicle assignment optimization, which is run immedi-

ately after the pricing/relocation model. It determines which actual vehicles to relocate by

minimizing total traveling distances [17]. Each request in the simulation is given a maxi-

mum scheduling time of 5 minutes and a maximum waiting time of 15 minutes. A request

for which one of these deadlines is not met is considered a dropout and removed from the

simulation.

Configuration of The Pricing Model. The Manhattan area is partitioned into |Z| = 73

zones and each cell is assigned to the closest zone. The travel times λij (in epochs) between

the zones are computed by averaging travel times between all cell pairs in the two zones.

Time is discretized into epochs of l = 5 minutes. The pricing model is run every 5 minutes

and has a time horizon of T = 4 epochs. Demand predictions for each O-D pair in each

epoch is generated by adding white noise to the true demand. The white noise is normally
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distributed with zero mean and a standard deviation equal to 2.5% of the true demand.

The forecasting module is agnostic about the peak until the second epoch of the peak and

agnostic about the end of the peak until the second epoch after the peak. This captures

the fact that peaks cannot always be anticipated. The number of idle vehicles in each

epoch is estimated by the simulator based on current route of each individual vehicle and

the travel times. Ride-sharing ratio is set to be Wij = 1.4 for all i, j ∈ Z . Service

weight and relocation penalty functions are as follows: qp(t, τ, ρ) = 0.5t0.75τ−t0.67ρ−τ ,

and qr(t) = 0.001 ∗ 0.5t. The model is solved (optimally or near optimally) by Gurobi 9.0

in 30 seconds with 32 cores of 2.1 GHz Intel Skylake Xeon CPU [39].

Tested Models. The experiments compare three MPC models: RELOCATION, SURGE,

and SURGE+POSTPONE. RELOCATION is the baseline and has no pricing component: it

implements the formulation in Figure 4.1 with demand fixed to the predicted demand and

without requiring that the demand emerging in the first T −s+1 epochs be served. SURGE

is the MPC optimization where price is only determined for one epoch. This is similar

to the strategy adopted by TNCs in practice where the platform increases the price for

the current epoch and customers either take the ride or leave the platform. Five demand

patterns {D0
ijt, 0.9D

0
ijt, 0.8D

0
ijt, 0.5D

0
ijt, 0} are available for each O-D pair (i, j) and epoch

t, where D0
ijt is the predicted demand between i and j in epoch t under the base price. The

factors {1.0, 0.9, 0.8, 0.5, 0.0} are demand multipliers decided at the zone level, i.e., they

act on the demand for O-D pairs with the same origin and emerging epoch. In other words,

the demand multiplier is based on the trip origin only and does not discriminate against

destinations. SURGE+POSTPONE adds to these demand patterns the option of discounting

prices in future epochs to postpone riders. The experiments assume that 20%/30%/40%

of the riders can be postponed for 2 or 3 epochs for each O-D pair (i, j) and epoch t. The

demand pattern is also decided at the zone level.
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Table 4.2: Quality of Service Statistics for Long Peaks (No Ridesharing).

Peak Demand Passengers Served Dropout Percentage
Percentage Reloc Surge Post Reloc Surge Post

0% 25664 25153 25196 0.0 0.0 0.0
17% 25237 25484 25470 11.1 0.0 0.0
24% 25176 25297 25346 13.8 0.0 0.0
31% 25640 25078 25188 15.4 0.0 0.0
38% 26172 25094 25154 17.0 0.0 0.0

Table 4.3: Quality of Service Statistics for Long Peaks Cont. (No Ridesharing).

Peak Demand Wait Time Avg (mins) Relocation
Percentage Reloc Surge Post Reloc Surge Post

0% 4.1 3.5 3.5 2510 2852 2863
17% 5.8 4.3 4.3 1670 2117 2152
24% 6.1 4.2 4.3 1638 2264 2158
31% 5.5 4.1 4.3 1860 2363 2270
38% 6.3 4.2 4.2 1800 2514 2513

4.4.1 Long Peaks

Consider the case where a 30-minute peak is inserted into a single zone to simulate a de-

mand surge after a special event such as a sports game or a concert. The experiments con-

sider instances with four different peaks that contain 17%/24%/31%/38% more requests

respectively. Table 4.2 and Table 4.3 report the dropout rate, the number of riders served,

the waiting times, and the number of relocations. RELOCATION sees an increasing number

of dropouts as the peaks become stronger, with 17% dropping out in the largest instance.

SURGE and SURGE+POSTPONE, on the other hand, exhibit a zero dropout rate, while

serving approximately the same number of riders. The pricing models also achieve lower

waiting time. They perform more relocations than RELOCATION, most likely because there

are fewer requests waiting to be scheduled, giving more opportunities for vehicles to re-

locate. Table 4.4 shows that postponed riders are served quickly, meeting the quality of

service goals of the platform. Overall, these results show that the pricing MPCs provide

service quality guarantees.
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Table 4.4: Quality of Service for Postponed Riders.

Statistics Peak Demand Percentage
17% 24% 31% 38%

Percentage Served (%) 100 100 100 100
Wait Time Avg 5.4 5.3 5.1 5.2
Wait Time Std 1.3 1.1 1.4 1.2

Table 4.5: Revenues for Long Peaks (No Ridesharing).

Peak Demand Revenue
Percentage Reloc Surge (-0.5) Surge (-1.0) Surge (-2.0) Post

0% 74972 75808 74564 73942 73200
17% 73994 83245 78807 76587 75648
24% 74123 84890 79599 76953 76712
31% 74875 83360 78306 75779 75057
38% 76021 82039 77261 74871 74394

It is important to compare the revenues of the MPCs, which are computed based on

price elasticity of demand. The price p0ijt that corresponds to D0
ijt is computed in a stan-

dard way using travel times [40]. The prices for the other demand patterns are derived from

the price elasticity of demand ϵ = ∆D%
∆p%

=
(Dk

ijt−D0
ijt)/D

0
ijt

(pkijt−p0ijt)/p
0
ijt

. The model evaluation considers

three elasticity levels: −0.5, −1.0, and −2.0 for SURGE. SURGE+POSTPONE assumes an

elasticity of −1.0 for its surge component and offers an x% discount in order to postpone

x% of the demand, for x ∈ {20, 30, 40}. Table 4.5 presents the revenue results: the rev-

enues are noticeably higher for SURGE than for RELOCATION when ϵ ∈ {−0.5− 1.0} and

about the same when ϵ = −2.0. The SURGE+POSTPONE’s revenues are about the same as

RELOCATION’s and not as high as SURGE’s revenues, since giving a discount to some rid-

ers is typically not as profitable as charging everyone a higher price, although this depends

on the exact price-demand relationships. Overall, the results show that the pricing MPC

provides service guarantees without sacrificing revenues.

To understand which riders are priced out, Figure 4.2 displays the proportions of de-

mand kept by SURGE (demand multipliers) and the original demand for two epochs: one
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(a) During Peak

(b) After Peak

Figure 4.2: Demand Multipliers and Demand.

during the peak and one after the peak. In both cases, the regions where people are priced

out are spread out and are not solely concentrated in the low-demand or remote regions.

This shows that the pricing decisions are not biased with regard to demand or geographical

locations.

The above experiments were conducted without ridesharing but similar results were
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Table 4.6: Number of Passengers Priced Out.

Peak Demand Model
Percentage Rideshare No Rideshare

Surge Post Surge Post

17% 827 675 1423 1205
24% 1161 839 1836 1761
31% 1704 1721 2078 2101
38% 1789 1835 2235 2200

obtained when the platform used ridesharing. The main difference is an increase in the

number of served riders and revenues. For SURGE, ridesharing increases the number of

riders by 2%, 3%, 4%, and 3% and the revenues by 1%, 1%, 4%, and 4% for the peak

instances.

4.4.2 Short Peaks

The benefits of postponing customers did not materialize during long peaks, since the

model had no ability to postpone customers for very long periods. Instead, consider short

peaks of 10-minutes with 17%/24%/31%/38% surges in demand and assume that the

forecasting algorithm can predict the start and end of the peak. The demand forecast is

obtained by adding white noise with a 2% standard deviation of the true demand. Ta-

ble 4.6 reports the number of riders priced out by SURGE and SURGE+POSTPONE with

and without ridesharing. While both models achieve a zero dropout rate on all instances,

SURGE+POSTPONE prices out fewer riders, especially during small peaks in the rideshar-

ing setting. A possible explanation is that, when the peak is not too intense, more vehicles

are available in the future to serve postponed demand. When the peak is strong or rideshar-

ing is not available, fewer vehicles can be used to serve the postponed demand. These

observations imply that postponing is most helpful when the surge is relatively small.
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4.5 Conclusions

This chapter proposes AP-RTRS, a real-time framework for ride sharing that features a

dynamic pricing scheme. To our knowledge, AP-RTRS is the first framework that pro-

vides service guarantees and ensures short waiting times for ride-sharing platforms during

peak times. This is achieved by prompting people to use the service at a later time or

admitting fewer customers. AP-RTRS combines a real-time dial-a-ride optimization to

dispatch and route vehicles with an MPC component for pricing and relocation. Exper-

imental results on the Yellow Taxi instances in New York City with peaks of increasing

intensities demonstrate that AP-RTRS meets its performance guarantee targets while not

sacrificing revenues or creating any major geographical fairness issues. The results also

show that discounting is effective for mild peaks where it increases the number of riders

served significantly, especially when ride-sharing is considered. Future work can focus on

generalizing AP-RTRS with fairness guarantees and taking into account the supply(driver)

side’s response to pricing.
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CHAPTER 5

LEARNING OPTIMIZATION-PROXY FOR MPC MODELS

Large-scale ride-hailing systems often combine routing at the individual request level with

dynamic pricing and vehicle relocation for anticipatory demand-supply control. Existing

mainstream methodologies for pricing and relocation, MPC and RL, suffer from signifi-

cant computational drawbacks in either online deployment or offline training. The MPC

optimization needs to be solved online and often trades off fidelity (hence quality of solu-

tions) for computational efficiency. Reinforcement learning requires a tremendous amount

of data to explore high-dimensional state-action spaces and typically simplifies the problem

to ensure efficient training. While a complex real-world system like ride-hailing may never

admit a perfect solution, there are certainly possibilities for improvement.

This work presents a step to overcoming these computational challenges. Its key idea

is to replace the MPC optimization with a machine-learning model that serves as the opti-

mization proxy and predicts the MPC’s optimal solutions. The proposed approach allows

ride-hailing systems to consider the MPC at higher spatial or temporal fidelity since the

optimizations can be solved and learned offline. The proposed learning framework can

accommodate any MPC formulation as long as the pricing decisions are on the zone-level

(demand/price in each zone) and the relocation decisions are on the zone-to-zone level

(number of vehicle relocations between each zone).

Learning the MPC however, comes with several challenges. First, the pricing and re-

location decisions are interdependent: where the vehicles should relocate depends on the

demand which is governed by price. This imposes implicit correlation among the pre-

dictions, which are hard to enforce in classic regression models. Second, the relocation

decisions are of high dimensions (e.g., the number of vehicles to relocate between pairs of

zones) and sparse, as relocations typically occur only between a few low-demand and high-
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demand regions. Capturing such patterns is difficult even with large amount of data. Third,

the predicted solutions may not be feasible, as most prediction models cannot enforce the

physical constraints that the solutions need to satisfy.

To solve these challenges, we design a sequential prediction framework that first pre-

dicts the pricing decisions and then the relocation decisions based on the predicted prices.

Furthermore, the framework utilizes an aggregation-disaggregation procedure that predicts

the decisions at an aggregated level to overcome the high dimensionality and sparsity, and

then converts them back to feasible solutions on the original granularity by a polynomial-

time solvable transportation optimization. As a consequence, during real-time operations,

the typical NP-Hard and computationally demanding MPC optimization is replaced by a

polynomial-time problem of sequential prediction and optimization.

To the best of the authors’ knowledge, the only work that has taken a similar approach

is [41], which approximates the decisions of a relocation MPC model by a recurrent neural

network (RNN) and shows that the RNN performs close to the original model. However,

their model does not include pricing and considers only one epoch (10 mins). This work fo-

cuses on much more sophisticated MPC models incorporating both relocation and pricing

decisions over the course of multiple epochs. As a consequence, the system dynamics be-

comes much more complex and the model is significantly harder to learn since the solution

space is exponentially larger.

The proposed learning & optimization framework is evaluated on the Yellow Taxi data

set in New York City and serves 6.7% more riders than the original optimization approach

due to its higher fidelity. The results suggest that a hybrid approach combining machine

learning and tractable optimization may provide an appealing avenue for certain classes

of real-time problems.
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5.1 The Imitated MPC Optimization

Without loss of generality, the learning and optimization framework is illustrated with a

variation of the MPC model in Chapter 4. Note, however, that the framework can accom-

modate other pricing and relocation models. In particular, the new MPC model has the

option to reduce but not postpone riders (same as the SURGE model in Section 4.4), since

rider postponement is a specific design feature while the framework is intended for gen-

eral model formulations. A demand multiplier mit ∈ [0, 100] is selected for each zone

and epoch, which represents the percentage of incoming demand to admit. For exam-

ple, mit = 80 means to keep 80% demand originating from zone i during epoch t. The

model is given a set of available demand multipliers {mk
it}k∈K for each zone and epoch,

and will choose the demand multiplier that maximizes the platform’s benefits while main-

taining short waiting times. The relocation decisions are determined on the zone-to-zone

level, e.g., number of vehicles to relocate between each pair of zones. The model formu-

lation is presented in Table 5.1 and Figure 5.1. In the formulation, i, j denote zones and

t0, t, ρ epochs. Compared with the original model formulation (Figure 4.1), the main dif-

ference is that decision variables xp
ijtτρ and vijtτ become xp

ijtρ and vijt, dropping the time

index τ denoting the epoch that the request is postponed to. Since riders only wait for s

epochs before dropping out, the valid subscripts for variables xp
ijtρ must satisfy the con-

straint 1 ≤ t ≤ ρ ≤ min(T, t + s − 1). These conditions are implicit in the model for

simplicity. Furthermore, let ϕ(t) = {ρ ∈ T : t ≤ ρ ≤ t + s − 1} denote the set of valid

pick-up epochs for riders placing their requests in epoch t.

The objective maximizes the weighted sum of customers served and minimizes the relo-

cation cost. Constraint (5.1a) ensures that the model selects exactly one demand multiplier

for each zone and epoch. Constraint (5.1b) derives the number of vehicles needed to serve

the demand as a function of the demand multiplier selected (captured by variable pkit). Con-

straint (5.1c) enforces the service guarantees: it makes sure that riders with requests in the
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Table 5.1: The Nomenclature for the MPC Optimization.

Model Input

Vit Number of vehicles that will become idle in i during t
{(mk

it, D
k
ijt)}k∈K Set of demand multipliers and their corresponding demand from

i to j during t available to be selected
λij Number of epochs to travel from i to j

Model Parameters

s Number of epochs that a rider remains in the system
Wij Average number of riders from i to j that a vehicle carries
qp(t, ρ) Weight of a rider served at ρ whose request was placed at t
qrij(t) Relocation cost between i and j in t

Decision Variables

pkit ∈ {0, 1} Whether the kth demand multiplier mk
it is chosen for zone i and

epoch t
xr
ijt ∈ Z+ Number of vehicles starting to relocate from i to j during t

Auxiliary Variables

vijt ∈ Z+ Number of vehicles needed to serve all expected riders from i to
j whose requests are placed at t

xp
ijtρ ∈ Z+ Number of vehicles that start to serve at time ρ riders going from

i to j whose requests were placed at t
lit ∈ {0, 1} Whether there is unserved demand in i at the end of epoch t

first (T−s+1) epochs are served in the time horizon since they have at least s epochs to be

served. Constraint (5.1d) makes sure that the served demand does not exceed the true de-

mand. Constraint (5.1e) is the flow balance constraint for each zone and epoch. Constraint

(5.1f) and Constraint (5.1g) prevent vehicles from relocating unless all the demand in the

zone has been served, approximating the behavior of the routing algorithm which favors

scheduling vehicles to nearby requests. Constraint (5.1h) and Constraint (5.1i) specify the

range of the variables. The model is always feasible when the demand can be reduced to

0 in all zones and epochs. The model is a mixed-integer linear program (MILP), which

is difficult to solve at high fidelity when the number of zones/epochs/demand multipliers

is large. This is the key motivation for replacing the optimization with a more efficient

machine learning model.
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max
∑
i,j

∑
t,ρ

qp(t, ρ)Wijx
p
ijtρ −

∑
i,j

∑
t

qrij(t)x
r
ijt

s.t.
∑
k∈K

pkit = 1 ∀i, t (5.1a)

vijt =
∑
k∈K

Dk
ijtp

k
it ∀i, j, t (5.1b)∑

ρ

xp
ijtρ = vijt ∀i, j, t ≤ T − s+ 1

(5.1c)∑
ρ

xp
ijtρ ≤ vijt ∀i, j, t > T − s+ 1

(5.1d)∑
j,t0

xp
ijt0t

+
∑
j

xr
ijt − Vit =

∑
j,t0

xp
jit0(t−λji)

+
∑
j

xr
ji(t−λji)

∀i, t (5.1e)∑
j

xr
ijt ≤Mlit ∀i, t (5.1f)

∑
j

∑
t0∈ϕ(t)

(
vijt0 −

t∑
ρ=t0

xp
ijt0ρ

)
≤M(1− lit) ∀i, t (5.1g)

xp
ijtρ, x

r
ijt, vijt ∈ Z+ (5.1h)

pkit, lit ∈ {0, 1} (5.1i)

Figure 5.1: The Imitated MPC Optimization.

5.2 The Learning Framework

The learning framework trains an optimization-proxy that predicts the actionable decisions

of a pricing and relocation optimization model Ω : I → W , where I is the model input

andW = R∪M is the model’s pricing decisionsM and the relocation decisionsR. The

training data can be generated by running Ω on a set of problem instances and extracting

its results. Without loss of generality, the presentation illustrates the learning methodology

based on the MPC model in Section 5.1, but the methodology applies to any MPC model

whose pricing decisions are on the zone-level (demand/price in each zone) and relocation

decisions are on the zone-to-zone level (number of relocations between each zone). Hence
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Figure 5.2: The Architecture of the Optimization-Proxy.

|W| = O(|Z|2), where |Z| is the number of zones in the dispatch area.

To account for the correlation between pricing and relocation decisions, the optimization-

proxy is composed of two machine learning models - one to predict the pricing decisions

and the other to predict the relocation decisions based on the predicted demand (price) (see

Figure 5.2). The predictions of the relocation and pricing decisions are thus coupled via

the sequential prediction structure.

5.2.1 The Pricing-Learning Model

The pricing-learning model Ôp : I → M takes the MPC optimization’s inputs I (listed

in Table 5.1) and predicts the pricing decisions in the first epoch (only these decisions

are actionable after each MPC execution). More precisely, the model predicts demand

multipliers m = [mi1]i∈Z . The predicted demand multipliers are rounded to the nearest

demand multiplier to be the final pricing decisions. For example, if the set of demand

multipliers is {mk
i1}k∈K = {100, 75, 50, 25, 0} and the prediction is 80, the final prediction

will be 75. The choice of the machine-learning model can be problem-dependent and the

learning framework is not confined to any specific learning model.
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5.2.2 The Relocation-Learning Model

The relocation-learning model Ôr : I ′ → X takes as input the MPC model’s input I as

well as the predicted demand (derived from the demand multipliers m) in the first epoch

from Ôp. The target is the first epoch’s relocation decisions r = [xr
ij1]i,j∈Z . In reality,

r ∈ R is high-dimensional (|R| = |Z|2) and sparse, since most vehicles relocate to a

few high-demand zones. The high-dimensionality and sparsity impose great difficulty for

learning. This chapter designs an aggregation-disaggregation procedure which predicts r at

the aggregated (zone) level and then disaggregates the predictions via an efficient optimiza-

tion procedure. More precisely, the zone-level relocation decision x ∈ X is predicted and

disaggregated to zone-to-zone level by an efficient optimization problem T O : X → R.

Aggregation and Prediction The zone-to-zone level decision [xr
ij1]i,j∈Z is first aggre-

gated to, and predicted at the zone level. More specifically, two metrics are predicted for

each zone i:

1. Number of vehicles relocating from i to other zones, i.e., xo
i :=

∑
j∈Z,j ̸=i x

r
ij1;

2. Number of vehicles relocating to i from other zones, i.e., xd
i :=

∑
j∈Z,j ̸=i x

r
ji1.

These two metrics can be both non-zero at the same time: an idle vehicle might be relocated

from i to another zone for serving a request in the near future, and another vehicle could

come to i to serve a later request. The aggregated decisions x = [xd
i ]i∈Z ⊕ [xd

i ]i∈Z , where

⊕ denotes vector concatenation, are then predicted by the chosen machine-learning model.

This aggregation step reduces the label dimension from |R| = |Z|2 to |X | = 2|Z|.

Disaggregation and Feasibility Restoration The predicted relocation decisions x̂ must

be transformed to feasible solutions that are integer and obey flow balance constraints. This

is performed in three steps:

1. x̂o
i and x̂d

i are rounded to their nearest non-negative integers;
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2. To make sure that there are not more relocations than idle vehicles, take x̂o
i =

min{x̂o
i , Vi1} where Vi1 is expected number of idle vehicles in i in the first epoch;

3. x̂o
i and x̂d

i must satisfy the flow balance constraint, e.g.,
∑

i∈Z x̂o
i =

∑
i∈Z x̂d

i : this

is achieved by setting the two terms to be the minimum of the two, by randomly

decreasing some non-zero elements of the larger term.

After a feasible relocation plan is constructed at the zone level, the disaggregation step

reconstructs the zone-to-zone relocation via a transportation optimization T O : X → R.

The model formulation is given below. Variable rij denotes the number of vehicles to

relocate from zone i to zone j, and constant cij represents the corresponding relocation

cost. The model minimizes the total relocation costs to consolidate the relocation plan. The

solution rij will be implemented by the ride-hailing platform in the same way as xr
ij1 from

the MPC. Note that rii should be 0 since x̂ denotes relocations into and out of each zone.

However, the problem in that form may be infeasible. By allowing the rii’s to be positive

and assigning a large value to the relocation costs cii, the problem is always feasible, totally

unimodular, and polynomial-time solvable [42].

T O(x̂) = argmin
r

∑
i,j∈Z

cijrij (5.2a)

s.t.
∑
j∈Z

rij = x̂o
i , ∀i ∈ Z (5.2b)

∑
j∈Z

rji = x̂d
i ∀i ∈ Z (5.2c)

rij ∈ Z+ ∀i, j ∈ Z (5.2d)

5.3 Simulation Study

The proposed learning framework is evaluated on Yellow Taxi Data in Manhattan, New

York City [43]. The machine learning models, Ôr and Ôp, are trained from 2017/01 to

2017/05 and tested in 2017/06. Section 5.3.1 reviews the simulation environment. Section

41



Figure 5.3: The Manhattan Area.

5.3.2 presents the learning results. Section 5.3.3 evaluates the performance of the machine

learning policies.

5.3.1 Simulation Environment

The end-to-end ride-hailing simulator in [17] is the basis of the experimental evaluation.

The Manhattan area is partitioned into a grid of cells of 200 squared meter and each cell

represents a pickup/dropoff location. Travel times between the cells are queried from Open-

StreetMap [38]. The fleet is fixed to be 1600 vehicles with capacity 4, distributed randomly

among the cells at the beginning of the simulation. Riders must be picked up in 10 minutes

and matched to a vehicle in 5 minutes since their requests, after which they drop out. The

routing algorithm (reviewed in Section 2.5) batches requests into a time window and opti-

mizes every 30 seconds. The MPC component is executed every 5 minutes. It partitions the

Manhattan area into 24 zones (Figure 5.3) and time into 5-minute epochs. The time window

contains 6 epochs and riders can be served in 2 epochs following their requests. The num-

ber of idle vehicles in each epoch is estimated by the simulator based on the current route

of each vehicle and the travel times. The ride-share ratio is Wij = 1.5 for all i, j ∈ Z. Ser-
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vice weight and relocation penalty are qp(t, ρ) = 0.5t0.75ρ−t and qrij(t) = 0.001 ∗ 0.5tηij

where ηij is travel time between zone i and zone j in seconds. Five demand multipliers

[100, 75, 50, 25, 0] are available for each zone and epoch.

The baseline demand D := [D0
ijt]i,j∈Z,t∈T are forecasted and used to derive the demand

under each demand multiplier - the demand from zone i to zone j at epoch t is Dk
ijt =

D0
ijt ∗ mk

it% under demand multiplier mk
it. The design of demand forecasting techniques

is beyond the scope of this work. We first forecast zone-level demand Dit =
∑

j∈Z D0
ijt

and then assign the destinations based on historical distribution. The reason for doing

zone-level prediction is to reduce sparsity in D0
ijt, since most trips travel between a few

popular regions. The forecasting model is a 2-layer fully-connected neural network with

(256, 256) hidden units, RELU activation functions, and MSE loss with l1-regularization.

It is trained from 2017/01 to 2017/05 and tested in 2017/06. The original time series data

is augmented by injecting white noise at each time step to create more training data, where

the white noise is sampled from a uniform distribution U(−5, 5). To predict zone-level

demand in the MPC horizon, the model uses the demand observed in the previous 4 epochs,

as well as data observed a week ago during the same period to account for seasonality. For

example, when forecasting demand from 8:00am to 8:30am (6 epochs) on 2017/06/08, the

model uses demand from 7:40am to 8:00am on 2017/06/08 and demand from 7:40am to

8:30am on 2017/06/01. After zone-level demand is predicted, it is assigned to zone-to-

zone level based on the historical distribution of the trip’s destination. For example, if µij

proportion of trips from zone i goes to zone j during the hour of the prediction and D̂it

is the demand prediction, the final zone-to-zone prediction is D̂0
ijt = D̂it × µij rounded

to the nearest integer. The mean absolute error (MAE) and the symmetric mean absolute

percentage error (SMAPE) of the zone-level forecast in 2017/06 are displayed in Figure

5.4. The overall mean squared error of the zone-to-zone level forecast in 2017/06 is 0.49.

The MPC’s pricing decisions are implemented at the level of demand multipliers: if

MPC decides to keep 50% demand in a zone, the simulation randomly keeps 50% requests
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(a) MAE. (b) SMAPE.

Figure 5.4: The Accuracy of the Demand Forecasting. Each Point Denotes the Average
Demand and the MAE/SMAPE of a Zone on the Test Set.

in the current epoch and discards the rest. After the MPC decides zone-to-zone level relo-

cations, a vehicle assignment optimization determines which individual vehicles to relocate

by minimizing total traveling distances (see [17] for details).

Of the routing, MPC, and vehicle assignment models, the routing model is the most

computationally intensive since it operates at the individual (driver and rider) level as op-

posed to the zone level. Since all three models must be executed within the 30 seconds

batch window, the platform allocates 20 seconds to the routing optimization, 5 seconds to

the MPC, and 5 seconds to the vehicle assignment. All the models are solved using Gurobi

9.0 with 6 cores of 2.1 GHz Intel Skylake Xeon CPU [39].

5.3.2 Training Results

The machine learning models Ôr and Ôp are trained on Yellow Taxi data between 2017/01

and 2017/05. Each daily instance between 7:00am and 9:00am are selected as training

instances. The total number of riders in these instances ranges from 10,000 to 50,000,

representing a wide variety of demand scenarios in Manhattan. The instances are perturbed

by randomly adding/deleting a certain percentage of requests to generate more training

instances, where the percentages are sampled from a uniform distribution U(−5, 5). The

instances are run by the simulator and the MPC results are extracted as training data.
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In addition to the expected demand and supply mentioned in Section 5.2.1, the pricing-

learning model also uses the following input features: the difference between supply and

demand in each zone during the first epoch under all demand multipliers, and the ratio

between cumulative supply and cumulative baseline demand [Ṽit/D̃
0
it]i∈Z,t∈T where Ṽit =∑t

τ=1 Viτ and D̃0
it =

∑t
τ=1

∑
j∈Z D0

ijτ . These additional features help improve the learning

accuracy.

Four models were trained to learn the pricing and relocation decisions: random for-

est (RF), support vector regression (SVR), gradient boosting regression tree (GBRT), and

deep neural network (DNN). The RF, SVR, and GBRT models were trained on 8000 data

points and the DNN was trained on 35000 data points since fitting the DNN typically re-

quires more data. All the models use the mean squared error (MSE) loss except SVR

which uses epsilon-insensitive loss and l2-regularization. The hyperparameters of each

model were tuned through 5-fold cross-validation. The selected hyperparameters for the

relocation models are: (kernel, regularization weight) = (radial basis function, 100), (max

tree depth, number of trees) = (32, 200) for RF, (max tree depth, number of trees) = (64,

200) for GBRT, and two fully-connected hidden layers with (750, 1024) hidden units and

hyperbolic tangent (tanh) activation functions for the DNN. The selected hyperparameters

for the pricing models are: (kernel, regularization weight) = (radial basis function, 1000),

(max tree depth, number of trees) = (64, 200) for RF, (max tree depth, number of trees) =

(32, 100) for GBRT, and two fully-connected hidden layers with (750, 1024) hidden units

and ReLU activation functions for DNN. The SVR, GBRT, and RF models were trained in

scikit-learn package and the DNN model was trained in Pytorch by Adam optimizer with

batch size 32 and learning rate 10−3 [44, 45, 46].

The trained models were evaluated on a held-out testing set. The predictions are

rounded to feasible solutions by the procedures described in Section 5.2.1 and Section

5.2.2. The overall loss after rounding is reported in Table 5.2, where the relocation models

report the mean squared error (MSE) loss and the pricing models report both the MSE and
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Table 5.2: Testing Loss of the Models.

Model Relocation (MSE) Pricing (MSE) Pricing (0-1 Loss(%))

SVR 21.98 100.49 13.17
RF 21.69 101.29 13.32
GBRT 28.37 88.59 12.28
DNN 6.83 66.65 9.46

(a) Relocation Predictions. (b) Pricing Predictions.

Figure 5.5: MPC Decisions Predictions: Each Point on the Left Denotes the Average Num-
ber of Relocations and the MAE of Relocation Predictions for a Zone. Each Point on the
Right Denotes the Average Demand Multiplier and the 0-1 Loss of the Pricing Prediction
of a Zone.

the 0-1 loss (percentage of time that the rounded predictions were wrong). Since the DNN

models achieved the highest accuracy in both cases, they were selected as the final models.

The error for each zone under the DNN model is given in Figure 5.5. The prediction errors

for all zones are reasonable, although a few zones exhibit higher loss than others. Overall

these results indicate that the models successfully learned the MPC decisions.

5.3.3 The Benefits of Learning the MPC Model

The trained machine learning models are evaluated on Yellow Taxi data in 2017/06. The

proposed methodology (DNN-P24) is compared with the original MPC model with 24

zones (MPC-P24), an MPC model at lower spatial fidelity with 15 clustered zones (MPC-

P15), and a baseline that only performs relocation but not pricing (Relocation-24). All
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(a) Drop Out Percentage. (b) Riders Served.

(c) Waiting Time Averages. (d) Number of Relocation.

Figure 5.6: Evaluation Results of DNN-P24 and Its Comparison With Pure Optimization
Approaches.

models but MPC-P24 are solved near optimally in 5 seconds with 6 CPU cores as dis-

cussed in Section 5.3.1. MPC-P24, which cannot be solved near-optimally in 5 seconds,

is given more time to solve and represents the ideal solution that cannot be achieved in

real-time due to computational limits. In particular, 2.4% MPC-P24 instances failed to find

a solution within 20% optimality gap in 5 seconds. MPC-P15, on the other hand, can be

solved in 5 seconds due to its lower granularity, therefore representing what can be achieved

in real-time. The drop-out rate, number of riders served, rider waiting time averages, and

number of relocations are reported in Figure 5.6. In all instances, DNN-P24 achieves sim-

ilar performance as MPC-P24. Both approaches ensure a drop-out rate near zero, whereas
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Table 5.3: The Transportation Model Run Times.

Mean Max

Solver Time (s) 0.004 0.093

Relocation-24 loses increasingly more riders as the instance becomes larger. DNN-P24 and

MPC-P24 also achieve lower average waiting times and serve similar number of riders as

Relocation-24. In addition, they serve more riders than MPC-P15: on large instances with

more than 25,000 riders, DNN-P24 serves on average 6.7% more riders than MPC-P15 by

pricing out fewer riders, demonstrating the benefits of higher model fidelity. DNN-P24

and MPC-P24 perform more relocations than MPC-P15 to serve more riders (finer spatial

partition also unveils more opportunities for vehicle relocation). The solver times of the

transportation optimization are reported in Table 5.3 - they never exceed 0.093 seconds.

The prediction time is also within fraction of a second. Overall, these promising results

demonstrate that the proposed framework is capable of approximating the MPC model at

high-fidelity efficiently, which leads to significant improvements in service quality.

5.4 Conclusions

Large-scale ride-hailing systems often combine real-time routing at the individual request

level with a macroscopic Model Predictive Control (MPC) optimization for dynamic pric-

ing and vehicle relocation. The MPC operates over a longer time horizon to compensate

for the myopic nature of the routing. However, the longer horizon increases computational

complexity and forces the MPC to use coarser spatial-temporal granularity, degrading the

quality of its decisions. This work addresses the computational challenge by imitating the

MPC optimization by machine learning and a polynomial-time transportation optimization.

The resulting learning & optimization approach serves as the optimization proxy, allowing

the MPC to be considered at higher spatial and/or temporal fidelity since the optimizations

can be solved and learned offline. Experimental results on the New York Taxi data set show
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that the proposed approach is computationally efficient and serves 6.7% more riders than

the original optimization approach due to its higher fidelity.
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CHAPTER 6

REINFORCEMENT LEARNING FROM OPTIMIZATION-PROXY

The previous chapter presents a learning & optimization framework to reduce the typical

NP-Hard pricing and relocation optimization to a polynomial-time procedure. Reducing the

computational cost however, does not tackle all the drawbacks of the model-based approach

- the optimization model’s performance heavily depends on how well it approximates the

underlying ride-hailing dynamics (e.g., how the demand and supply interact over a period

of time), which is challenging since the real-time dynamics is highly complex and volatile.

For instance, anticipating how demand will be served is an immensely difficult task as the

routing algorithm may be a complex mechanism itself. In addition, the model is confined

to the time horizon that it considers and is not able to capture the long-term effects that may

be present in the system.

Reinforcement learning, on the other hand, has the advantage of learning by interacting

with the system and receiving feedback (reward) for its actions. As discussed in Chap-

ter 3, RL can be divided into three streams: single-agent RL, decentralized multi-agent

RL, and centralized multi-agent RL. The single-agent framework maximizes the reward

of an individual agent, while the multi-agent framework maximizes system-level benefits.

A main challenge of RL is training complexity since the state and action spaces are typ-

ically high-dimensional (often infinite-dimensional) due to the complex demand-supply

dynamics. Sampling in high-dimensional spaces makes the training computationally ex-

pensive and unstable. Consequently, many papers simplify the problem by enforcing agents

within the same region to follow the same policy [47, 22], or restricting relocations to only

neighboring regions [18, 19, 20, 21, 22, 5]. Another challenge is promoting coordination

among a large number of agents (vehicles). Single-agent RL focuses on a single vehi-

cle and ignores group-level reward. Decentralized multi-agent RL considers group-level
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benefits only in a limited fashion since the state/action/reward of the individual agents are

still modeled separately. Centralized multi-agent RL considers the state and action of the

agents jointly and has the potential to achieve maximal cooperation. However, the joint

state-action spaces are extremely high-dimensional and make the problem computationally

prohibitive. Mao et al. proposed the only work using a fully-centralized formulation [24].

They modeled each dispatch zone instead of a vehicle as an agent to simplify the state-

action space. Nevertheless, the approach was demonstrated in a simple setting with a small

number of zones due to computational complexity. Their model also only makes relocation

decisions but not pricing.

While MPC and RL seem drastically different - one is model-based and the other

model-free; one is data-independent and the other data-dependent - they have different

strengths and weaknesses and could complement each other. In this chapter, we propose

a Reinforcement Learning from Optimization Proxy (RLOP) approach that combines opti-

mization with reinforcement learning (Figure 6.1). The RLOP framework is a special case

of the Reinforcement Learning from Expert Demonstration (RLED) framework where the

expert is an optimization algorithm [48]. To the best of our knowledge, this work is the first

application of an RLED framework to vehicle relocation and dynamic pricing problems,

and one of the few RL models with a fully-centralized policy.

The RLOP approach consists of two main steps:

1. It first applies imitation learning to obtain an optimization proxy for a given opti-

mization model, i.e., it trains a machine learning model to approximate the mapping

between the inputs of the optimization and its actionable decisions;

2. It then seeds an RL component with the optimization proxy as the initial policy. The

RL component further improves this policy by interacting with the environment, cap-

turing the real system dynamics and long-term effects that are beyond the capabilities

of the model-based approach.
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Figure 6.1: The RLOP Framework.

The RLOP framework has three important benefits. First, the optimization proxy approx-

imates the model-based optimization with high fidelity and is order of magnitude faster.

Second, the RL component improves the optimization proxy by capturing long-term effects

and real system dynamics present in sample trajectories, which is beyond the capability of

the original optimization. Third, The RL component is significantly easier to train since

it starts with a high-quality policy. Compared to [24], the only fully-centralized approach

in the literature, RLOP is able to demonstrate the centralized approach on a much larger

scale due to its training efficiency.

The proposed RLOP framework is evaluated on the New York Taxi data set, using the

optimization and simulation architecture presented by [17]. The experimental results reveal

two interesting findings:

1. The optimization proxy learns the optimization model with high fidelity, producing

similar objective values at a fraction of the optimization’s computing time.
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2. The RL component warm-started by the optimization proxy is computationally effi-

cient, converging in a few iterations while pure centralized reinforcement learning is

too expensive computationally to be applied.

3. The RL component further reduces the relocation costs by 5.9% compared to the

optimization proxy.

6.1 RLOP Framework

The RLOP framework is composed of two stages: imitation learning and reinforcement

learning. The imitation learning stage trains an optimization proxy, i.e., a machine-learning

module that approximates the actionable decisions of a pricing and relocation optimization

model. The reinforcement-learning stage takes the optimization proxy as the initial policy

and refines it by a policy gradient method.

6.1.1 Imitation Learning

The imitation-learning stage trains an optimization proxy to predict the actionable decisions

of a pricing and relocation optimization model Ω : I → W , where I is the model input

andW := R∪M is the model’s pricing decisionsM and the relocation decisionsR. M

needs to be on the zone-level (price/demand in each zone) and R needs to be on the zone-

to-zone level (number of relocations between each zone). The methodology for training the

optimization proxy is presented in Chapter 5. Specifically, the optimization proxy has two

machine learning models, Ôp : I → M and Ôr : I ′ → X , which sequentially predict the

pricing and relocation decisions. The zone-level relocation predictionX is disaggregated to

the original zone-to-zone level via a transportation optimization T O : X → R following

Ôr’s prediction. To make sure that the optimization proxy can be refined by the policy

gradient method, Ôr and Ôp need to be differentiable with respect to their parameters. For

instance, they can be artificial neural networks or linear regression models but not decision

trees.
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6.1.2 Reinforcement Learning

The RL algorithm starts from Ôr and Ôp and improves them by a policy gradient method.

Specifically, the RL step models the underlying problem as a Markov Decision Process

(MDP). MDP is characterized by a tuple < S,A, R, P, γ >, which consists of a state space

S, an action space A, a reward function R(s, a), a transition function P (s′|s, a), and a

discount factor γ ∈ [0, 1]. At each decision epoch t in the planning horizon {0, 1, ..., Te},

the agent observes the state of the system st ∈ S , takes an action at ∈ A, receives an

immediate reward R(st, at), and transitions to the next state st+1 according to the transition

probability P (·|st, at). For simplicity, we will use Rt in place of R(st, at) throughout the

discussion. The goal is to find a stochastic decision policy πθ : S → P(A) parametrized

by θ, i.e., a mapping from the state space to a probability distribution over the action space,

to maximize the total expected discounted reward

J(θ) = EP,πθ

[
Te∑
t=0

γtRt

]
(6.1)

The policy is trained iteratively based on the Policy Gradient Theorem [8]

∇θJ(θ) = EP,πθ

[
Te∑
t=0

Gt∇θ logPπθ
(at|st)

]
(6.2)

where Gt =
∑Te

τ=t γ
τ−tRτ is the total discounted reward since epoch t in the trajectory τ =

(s0, a0, R0, ..., sTe , aTe , RTe) and Pπθ
(at|st) is the probability of taking action at in state st

under the decision policy πθ. In reality, computing the expectation in (6.2) is intractable

since transition probability P does not have a closed-form expression. The gradient is

approximated by Monte-Carlo sampling, i.e.,

∇θJ(θ) ≈
1

N

N∑
i=1

Te∑
t=0

Gi
t∇θ logPπθ

(ai
t|sit) (6.3)
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Algorithm 1: RLOP
Input: A pricing and relocation optimization modelM.

1 Train differentiable machine learning models Ôr and Ôp to approximateM;
2 Choose learning rates αp and αr, parameters βp and βr, discount factor γ, and

covariances Σp and Σr;
3 while not converged do
4 Ôr ← Apply Policy Gradient (Algorithm 2) with (αr, βr, γ, Ôr,Σ

r);
5 Ôp ← Apply Policy Gradient (Algorithm 2) with (αp, βp, γ, Ôp,Σ

p);
6 end

where {τi}Ni=1 = {
(
si0, a

i
0, R

i
0, ..., s

i
Te
, ai

Te
, Ri

Te

)
}Ni=1 are trajectories generated by applying

πθ in the simulation environment.

Due to the complex inter-dependencies between pricing and relocation, training a sin-

gle decision policy for both is challenging because of high sampling variance. The two

decisions are also distinct in nature - pricing controls the demand and relocation controls

the supply. This requires the design of different reward functions and training techniques.

The RLOP framework instead trains two separate policies, one for pricing and another for

relocation, starting from the optimization proxy Ôp and Ôr, respectively. The two poli-

cies are trained iteratively with one policy fixed and the other policy updated by the policy

gradient method until convergence. The iterative algorithm is summarized in Algorithm 1.

Next we will present the policy gradient algorithm.

The underlying MDP of relocation reinforcement learning is defined as follows. The

state and action spaces are the same as the input and output spaces of Ôr : I ′ → X so

that Ôr can be transformed into an initial policy for RL. The details of this transformation

will be presented shortly. The reward function is R(st, at) = −ut − βrvt, a weighted

average of customer satisfaction and system cost, where ut is the total waiting time of

riders who emerge in epoch t and vt is the expected time that vehicles will relocate due to

action at. For dropout riders, ut can be assigned a big number as a penalty. Both ut and vt

are in minutes. Parameter βr denotes the relative importance of system cost compared to

customer satisfaction, e.g., βr = 0.5 implies that the platform is willing to relocate up to 2
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Algorithm 2: Policy Gradient (Gaussian Policy)
Input: Learning rate α, parameter β, discount factor γ, initial deterministic policy

fθ, and covariance Σ.
Output: Trained policy fθ

1 for Episode = 1, 2, ... do
2 for i = 1, ..., N do
3 for t = 0, 1, ...Te do
4 Observe current state sit and sample an action ai

t from Gaussian policy
πθ(s

i
t) = N (fθ(s

i
t),Σ);

5 Restore ai
t to a feasible solution, implement it in the simulator, and

compute reward Ri
t based on β;

6 end
7 end
8 Compute total discounted reward Gi

t =
∑Te

τ=t γ
τ−tRi

τ for all i, t;
9 Compute the policy gradient∇θJ(θ) by Equation (6.3);

10 θ ← θ + α∇θJ(θ)

11 end

minutes for a 1 minute reduction in waiting time. βr depends on the platform’s underlying

objective and is taken as an input. The transition function P (st+1|st, at) depends on the

underlying vehicle-routing algorithm, travel times, and the pricing policy, and does not

have a closed-form expression.

The underlying MDP of the pricing reinforcement learning is defined as follows. The

state and action spaces are the same as the input and output spaces of Ôp : I → M.

The reward function is R(st, at) = −ns
t + βpn

u
t where ns

t is the number of served riders

who emerge in epoch t and nu
t is the number of dropout riders who emerge in epoch t.

βp controls the tradeoff between fulfilled rides and dropouts. βp = 10 implies that the

platform allows a rider to dropout only if it can serve at least 10 riders instead. βp depends

on the platform’s underlying objective and is taken as an input. The transition function

P (st+1|st, at) depends on the underlying vehicle-routing algorithm, travel times, and the

relocation policy, and does not have a closed-form expression.

It remains to specify how the optimization proxy can be turned into initial policies for

RL. We will use Ôr as an example as Ôp will follow the same procedure. Recall that
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Ôr : I ′ → X is a deterministic mapping from the state space to the action space. In

the RLOP framework, the policy gradient algorithm starts from Gaussian policy π0
θ(·) =

N (Ôr(·),Σ) centered around Ôr with covariance Σ. The covariance matrix Σ is a diagonal

matrix whose diagonal entry Σii is the (sampling) variance of an relocation action xi (xi

is an entry of x ∈ X ). Note that xi is one of the prediction labels of Ôr, so its empirical

distribution can be estimated in the imitation-learning stage. Therefore, Σii can be taken as

a certain percentage of xi’s characteristic statistics such as its empirical mean or median.

Prior knowledge of Σ is extremely valuable since a well-chosen sampling variance can lead

to more efficient exploration during training.

The policy gradient algorithm is summarized in Algorithm 2. Note that after sampling

an action a from πθ, it should be restored to a feasible solution before being implemented

- it should be rounded to the nearest demand multiplier if it is a pricing decision or re-

stored to zone-to-zone level via the transportation optimization T O if it is a relocation

decision. Note that the policy gradient algorithm is general and can incorporate any spe-

cific reinforcement-learning techniques (e.g., actor-critic, PPO, off-policy sampling, etc.)

appropriate for the problem at hand.

6.2 Simulation Study

The RLOP framework is evaluated on Yellow Taxi Data in Manhattan, New York City [43].

It is trained from 2017/01 to 2017/05 and evaluated in 2017/06 during morning rush hours

on weekdays. Section 6.2.1 reviews the simulation environment. Section 6.2.2 presents

the imitation-learning results. Section 6.2.3 presents the reinforcement-learning results.

Section 6.2.4 evaluates the performance of the policy.

6.2.1 Simulation Environment

The experiments use the end-to-end simulation framework in [17]. The Manhattan area is

partitioned into a grid of cells of 200 squared meters and each cell represents a pickup/dropoff
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location. Travel times between the cells are queried from [38]. The fleet is fixed to be 1600

vehicles with capacity 4, distributed randomly among the cells at the beginning of the sim-

ulation. Riders must be picked up in 10 minutes and matched to a vehicle in 5 minutes

since their requests, after which they drop out.

The simulator has two main components: the ride-sharing routing algorithm reviewed

in Section 2.5 and the MPC model in Chapter 5. The routing algorithm batches riders into a

time window and optimizes every 30 seconds. The MPC model is executed every 5 minutes.

It partitions the Manhattan area into 24 zones and time into 5-minute epochs (Figure 5.3).

Its planning horizon contains 4 epochs and riders can be served in 2 epochs following their

requests. The number of idle vehicles in each epoch is estimated by the simulator based

on the current route of each vehicle and the travel times. The ride-share ratio is Wij = 1.5

for all i, j ∈ Z . Service weight and relocation penalty are qp(t, ρ) = 0.5t0.75ρ−t and

qrij(t) = 0.001 ∗ 0.5tηij where ηij is travel time between zone i and zone j in seconds. Five

demand multipliers [100, 75, 50, 25, 0] are available for each zone and epoch. The zone-to-

zone demand Dijt is forecasted based on historical data. The design of demand forecasting

techniques is beyond the scope of this work. We first forecast zone-level demand Dit =∑
j∈Z Dijt and then assign the destinations based on historical distribution. The reason for

doing zone-level prediction is to reduce sparsity in Dijt, since most trips travel between

a few popular regions. The forecasting model is a 2-layer fully-connected neural network

with (256, 256) hidden units and RELU activation functions. The loss function is MSE loss

with l1-regularization. It is trained from 2017/01 to 2017/05 and tested in 2017/06. The

original time series data is augmented by injecting white noise sampled from a uniform

distribution U(−5, 5) to create more training data. To predict zone-level demand in the

MPC horizon {Dit}i∈Z,t∈T , the model uses the demand observed in the previous 3 epochs,

as well as demand observed a week ago during the same period to account for seasonality.

For example, when forecasting demand from 8:00am to 8:20am (4 epochs) on 2017/06/08,

the model uses demand from 7:45am to 8:00am on 2017/06/08 and demand from 7:45am
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to 8:20am on 2017/06/01. After zone-level demand is predicted, it is assigned to zone-to-

zone level based on the historical distribution of the trip’s destination. For example, if µij

proportion of trips from zone i goes to zone j during the hour of the prediction and D̂it

is the demand prediction for zone i, the final zone-to-zone prediction is D̂ijt = D̂it × µij

rounded to the nearest integer. Overall, the mean squared error of the zone-to-zone level

forecast in 2017/06 is 0.86.

The MPC’s pricing decisions are implemented at the level of demand multipliers: if

MPC decides to keep 50% demand in a zone, the simulation randomly keeps 50% requests

in the current epoch and discards the rest. After the MPC decides zone-to-zone level relo-

cations, a vehicle assignment optimization determines which individual vehicles to relocate

by minimizing total traveling distances [17]. Of the routing, relocation, and vehicle assign-

ment models, the routing model is the most computationally intensive since it operates on

the individual (driver and rider) level as opposed to the zone level. Since all three models

must be executed in the 30 seconds batch window, the experiments allocate 15 seconds to

the routing optimization, 10 seconds to the MPC, and 5 seconds to the vehicle assignment.

All the models are solved using Gurobi 9.1 with 24 cores of 2.1 GHz Intel Skylake Xeon

CPU [39].

6.2.2 Imitation Learning

The optimization proxy is trained from 2017/01 to 2017/05, 8:00am - 9:00am, Monday to

Friday, when the demand is at its peak and the need for relocation and pricing the greatest.

The number of riders in these instances ranges from 22,000 to 29,000, providing a wide

variety of demand distribution. The weekends and non-busy hours see much less demand

and should be considered separately. The experimental study focuses on the busy hour be-

cause it is the most interesting and necessary period for balancing demand and supply. Data

augmentation is employed to generate more instances: each 1-hour instance is perturbed

by randomly adding/deleting a certain percentage of requests where the percentages are
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Table 6.1: Imitation Learning Testing Loss.

Relocation (MSE) Pricing (MSE) Pricing (0-1 Loss(%))

6.88 62.52 9.2

sampled from a uniform distribution U(−5, 5). The instances are run by the simulator and

the MPC model’s inputs and outputs are extracted as training data. In total, 15, 000 data

points are used in training and 2500 data points are used for testing.

The two machine learning models Ôr and Ôp are both fully-connected neural networks

with 2 hidden layers of (512, 256) units. The relocation-learning model uses the hyperbolic

tangent (tanh) activation function and the pricing-learning model uses the RELU activation

function for the hidden layers. The final output layer uses RELU in both cases. The two

models both use mean-squared error (MSE) loss with l1-regularization. The training is

conducted in Pytorch by Adam optimizer with batch size 32 and learning rate 10−3 [45, 46].

The trained models are evaluated on the testing set where the predictions are rounded to

feasible solutions by the procedures described in Chapter 5. The overall loss after rounding

is reported in Table 6.1, where the relocation model reports the mean squared error (MSE)

loss and the pricing model reports both the MSE and the 0-1 loss (percentage of time that

the rounded predictions were wrong). The loss of each zone is reported in Figure 6.2. The

errors for all the zones are reasonable, although a few zones exhibit higher loss than others.

In addition, the optimization proxy achieves similar performance as the MPC in simulation:

the detailed results are presented in Section 6.2.4. Overall, these results indicate that the

optimization proxy successfully learned the MPC decisions.

6.2.3 Reinforcement Learning

The optimization proxy is refined by reinforcement learning in 2017/05. Since the number

of riders in most daily instances ranges from 22,000 to 29,000, four instances with [23960,

25768, 27117, 28312] riders are selected and the policy is trained on these representative

instances. To stabilize training, it is common practice to subtract a baseline from the reward
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(a) Relocation Predictions. (b) Pricing Predictions.

Figure 6.2: MPC Decisions Predictions: Each Point on the Left Denotes the Average Num-
ber of Relocations and the MAE of Relocation Predictions for a Zone. Each Point on the
Right Denotes the Average Demand Multiplier and the 0-1 Loss of the Pricing Prediction
of a Zone.

to distinguish good and bad actions when computing the policy gradient:

∇θJ(θ) ≈
1

N

N∑
i=1

Te∑
t=0

(Gi
t − bit)∇θ logPπθ

(ai
t|sit) (6.4)

where bit is the baseline representing the expected reward since t following the current

policy. (Gi
t − bit) therefore measures the ”advantage” of this trajectory’s decisions over

the current policy. The baseline bit can be estimated in many different ways [49]. This

work employs the sample average method: it samples K = 10 trajectories for each training

instance and takes the sample average as baseline, i.e., bit =
1
K

∑K
k=1G

ik
t if trajectories for

instance i are indexed by {i1, ...iK}. Therefore each policy gradient update is based on

4K = 40 sample trajectories.

Algorithm 1 is run with (αr, βr, αp, βp, γ) = (0.005, 0.75, 0.001, 50, 0.75). Σr
ii =

0.05x0.75
i where x0.75

i is the 75th percentile of relocation action xi in the imitation-learning

data set (recall that xi is a prediction label of Ôr). Σp
ii = 0.1σ(mi0) where σ(mi0) is the

standard deviation of demand multiplier mi0 in the imitation-learning data set. To make

sure that RL does not overfit on the selected representative instances, the policy is vali-
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dated on other instances in 2017/05 after each training episode in Algorithm 2. Algorithm

2 stops when the average reward on the validation set fails to improve upon the best av-

erage reward for 10 consecutive episodes. The overall training (Algorithm 1) stops when

the average reward on the validation set fails to improve by at least 1% in two consecutive

iterations (two executions of Algorithm 2).

In the experiment, Algorithm 1 converges after 3 iterations. The normalized training

and validation curves of each iteration are given in Figure 6.3. The three policy gradient

iterations improve the reward on the validation set by 3%, 1%, and 0%, resp. Each iter-

ation also converges in relatively few episodes, which is significantly more efficient than

pure reinforcement learning algorithms which typically converge in tens of thousands of

episodes.

6.2.4 Evaluation Results

The trained policy is evaluated on weekdays in 2017/06. The proposed RLOP approach is

compared with the optimization proxy as well as the MPC optimization. Pure reinforce-

ment learning without initial policies seeded with the optimization proxy (Algorithm 1

without the first step) fails to converge due to the high-dimensional state and action spaces:

it is too expensive computationally to be applied in this setting. Figure 6.4 reports the num-

ber of riders served, the percentage of riders who drop out, the average rider waiting time

(minutes), and the average vehicle relocation time (minutes) on each weekday in 2017/06.

Table 6.2 reports their monthly averages as well as the average model run times. The opti-

mization proxy and the MPC optimization achieve similar performance on almost all daily

instances. The optimization proxy sees slightly higher waiting time, but serves more rid-

ers with fewer dropouts. The optimization proxy outperforms the MPC on certain metrics

because the MPC optimization is based on an approximation of the ride-sharing system -

its decisions are optimal for the approximation but not necessarily for the real system. The

RLOP’s performance is similar to the other two models’ performance in terms of riders
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(a) Iteration 1. (b) Iteration 2.

(c) Iteration 3.

Figure 6.3: Training and Validation Curve of Reinforcement Learning (Normalized).

served, waiting time, and drop-out percentage. Its relocation cost, on the other hand, is

much lower. In particular, its relocation time is 5.4% lower than the MPC and 5.9% lower

than the optimization proxy. The optimization proxy and the RLOP are also much faster

than the MPC and are guaranteed to run in polynomial time. On average, the MPC in-

stances take 2.6s to solve while the optimization proxy and the RLOP take only fractions

of a second. The most computational cost of RLOP lies in the offline training stage where

data for imitation learning and RL are generated through simulation. Nevertheless, RLOP

is still more efficient than pure RL which requires a prohibitively large number of samples

to train when starting from a random policy. These promising results show that the RLOP is

an efficient and effective approach for vehicle relocation and dynamic pricing in real-time
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Figure 6.4: Evaluation Results of the RLOP, the Optimization Proxy, and the MPC Opti-
mization. Each Point in the Plots Represents a Weekday in 2017/06.

settings.

6.3 Conclusions

Idle vehicle relocation and dynamic pricing are crucial for addressing demand-supply im-

balances that frequently arise in the ride-hailing system. Current mainstream methodolo-

gies - optimization and reinforcement learning - suffer from computational complexity in

either offline training or online deployment. This chapter proposes a reinforcement learn-

ing from Optimization Proxy (RLOP) approach to alleviate their computational burden and

search for better policies. Specifically, RLOP trains two machine-learning models to ap-

proximate the pricing and relocation decisions of an optimization model, and then refines

them iteratively by reinforcement learning. On the New York City dataset, the RLOP ap-
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Table 6.2: Summary Statistics of Tested Models.

Riders Served Dropout Pct. Wait Time Reloc. Time Run Time (s)

MPC 22867 0.16% 2.15 2.77 2.594
Opt. Proxy 23219 0.10% 2.24 2.79 0.028

RLOP 22997 0.11% 2.25 2.63 0.027

proach achieves significantly lower relocation costs and computation time compared to the

optimization approach, while pure reinforcement learning is too expensive computationally

for practical purposes.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

Idle vehicle relocation and dynamic pricing are important tools for addressing demand-

supply imbalances that frequently arise in the ride-hailing market. Although interdepen-

dent, the two decisions have largely been studied independently in the literature due to

modeling and computational complexity. The current mainstream methodologies, MPC

and RL, also suffer from significant computational limitations in either online deployment

or offline learning. To tackle these drawbacks and expand the research horizon, this thesis

first proposes an optimization model computing both relocation and pricing decisions in

Chapter 4. The model guarantees reasonable waiting time for the riders by reducing or

postponing requests that are beyond the system’s service capacity. Chapter 5 presents a

learning & optimization framework to approximate the optimal solutions of a general pric-

ing and relocation optimization, serving as an optimization-proxy. It reduces the typical

NP-Hard optimization to a polynomial-time procedure of prediction and (efficient) opti-

mization, allowing the optimization to be considered at higher fidelity and thus improving

the quality of decisions. Chapter 6 takes one step further: it refines the optimization proxy

in Chapter 5 by reinforcement learning, combining the strengths of both model-based and

model-free approaches while overcoming their drawbacks. This hybrid approach is the

very first Reinforcement Learning from Expert Demonstration (RLED) framework applied

to relocation and pricing problems. It is not only computationally efficient but also demon-

strates superior performance than MPC and RL alone.
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7.2 Future Work

While this thesis expands the research horizon and tackles the computational limitations of

the existing approaches, there are still many important research questions and new possi-

bilities to explore.

The thesis has assumed that trip demand depends only on price. Nowadays, most ride-

hailing services also provide estimated time of arrival (ETA) when the passenger searches

for a ride, which factors into her decision-making. Therefore, using a more realistic de-

mand model for dynamic pricing and vehicle relocation can be a further direction. Another

key assumption in the thesis is that an accurate forecast of supply, demand, and travel

time is available at hand. Both the optimization and the learning models make their de-

cisions based on point estimates, which can be highly inaccurate as real-time dynamics

is extremely volatile. Future research can therefore account for input uncertainty, devel-

oping stochastic optimization or RL models that leverage a set of uncertainty information

(confidence intervals/distribution information) [14, 16]. The model can also incorporate

robustness into the objective, optimizing not only the average case performance but also

the worst case performance to control the risk and variance in real-time.

Furthermore, this thesis has taken number of rides and rider waiting time as the main

performance metrics. In reality, more socio-economic factors need to be considered and

a few are listed as an illustration. First, Low-income communities are more susceptible

to surge pricing than high-income communities, leading to social fairness issues. Second,

when the objective is to maximize number of rides or profit, the model may price out trips

that are costly to serve: these trips may originate from remote areas that require long-

distance pick-ups or go to areas where the trip demand is low. Discarding these trips is

cost-effective for the platform but induces fairness issues. Third, when human drivers

come into play, income equality becomes an important consideration. The platform needs

to ensure similar income for the drivers to retain them in the long term. These various
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considerations are all essential to the ride-hailing operations but may have contradicting

effects on the platform’s decision-making. Research that balances multiple factors and

explores their short-term and long-term socio-economic impact is greatly needed in the

literature.

The learning frameworks in the thesis are trained entirely offline on historical data.

During online deployment, however, the data distribution may deviate from the training

data distribution, leading to potentially poor model performance. Future work can therefore

focus on detecting distribution shift (change-point detection) and designing online learning

methods to align the model with the latest distribution.

Future research could also extend from the centralized setting in this thesis to a non-

centralized setting where drivers also respond to the pricing and relocation decisions of

the platform, i.e., modeling the system as a two-sided market where both the demand and

supply sides are affected by the platform’s decisions. Estimating each driver’s behaviors -

such as when and where she wants to work, how long she is willing to work, and how much

incentive she needs to perform certain actions (relocate/serve a trip at a certain price) - and

incorporating them into the decision-making is an immensely complex and challenging

task. Although some studies have considered driver’s behavior [25, 26, 27, 28, 29, 30],

they focus mostly on pricing’s impact on the long-term market equilibrium. Real-time

modeling of the two-sided market is much needed.

Finally, tackling real-time demand-supply imbalances could motivate new operational

design. Part of the reason for frequent imbalances is that it is difficult to estimate demand

and supply accurately beforehand. Having riders reserve their rides in advance, for exam-

ple, cancels out some of the uncertainty and enables the platform to better plan ahead, a

practice that ride-hailing companies such as Uber and Lyft have already adopted. Another

possibility is carpooling where private car owners traveling for personal reasons (not for

making profits from the trip) can find riders to share the ride on the platform (BlaBlaCar,

Waze). Although carpooling services have existed for a long-time, they are largely oper-
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ating as independent services and not combined with ride-hailing. Integrating them into

the ride-hailing market can be another promising direction. Finally, the design of a multi-

modal transportation system involving ride-hailing, public transit, and other mobility op-

tions can not only alleviate demand-supply imbalances but also reduce carbon emissions

and decrease congestion.

In summary, on-demand mobility service is a complex system that involves various

parties and is influenced by multiple factors. Its operational management requires contri-

butions from both technical and non-technical sides. It is the author’s wish that this thesis

presents a small step forward and inspires innovative work in the future.
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