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SUMMARY

This thesis presents a monolithic-3D (M3D) SRAM arrays using multiple tiers of Car-

bon Nanotube (CNT) transistors. The compiler automatically generates single-tier 2D

SRAM subarrays and multi-tier 3D SRAM subarrays with different tiers for cells and pe-

ripheral logic. Moreover, the compiler can integrate multiple subarrays of different di-

mensions to generate larger capacity SRAM arrays. The compiler is demonstrated in a

commercial-grade M3D process design kit (PDK) with 2 tiers of carbon nanotube tran-

sistors (CNFETs). Simulations show that the M3D CNT SRAM design can improve the

properties of memory compared to the 2D CNT SRAM design. In a 32KB memory im-

plementation, the M3D design can reduce footprint, latency, and energy by 33%, 10%

and 19% respectively. The compiler is used to show the feasibility of fine-grain logic and

SRAM stacking in M3D technology.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Monolithic 3D (M3D) integrated circuits (ICs) using fine-grain nano-scale inter layer vias

(ILVs) promises significant energy-efficiency improvements over 2D ICs [1]. However,

M3D requires sequential fabrication of multiple layers of transistors in one substrate, where

the circuit components in different tiers are interconnected via high-density 3D vias. The

need for high-temperature processing of silicon-based MOSFET (1000◦C) during sequen-

tial fabrication of one tier can degrade the reliability and performance of devices in previ-

ously fabricated tiers [1, 2, 3, 4, 5]. The recent works on silicon-based M3D processes are

exploring techniques that address the high-temperature processing challenges [6, 7].

Carbon nanotube FET (CNFET) based M3D process has emerged as an attractive alter-

native to the silicon-based M3D process [8, 9, 2, 10, 11, 4]. This is because CNFET can

be fabricated at the temperature below 425◦C which eliminates potential defects of devices

and interconnections on previously fabricated tiers [2]. Hence, in a CNT based M3D IC,

on/off currents of CNFET transistors in different tiers are close to each other. CNFET also

promises high energy-efficiency in designing logic and memory circuits [8, 9]. Shulaker

et. al. have demonstrated applications of CNFET based M3D processes [12, 13, 14]. Sri-

mani et. al. have demonstrated commercial-grade M3D process design kits (PDK) and the

operation of logic and SRAM [2].

This thesis present an SRAM compiler for CNFET-M3D using the PDK developed by

Srimani et. al. [2]. Although there are few prior works on SRAM cell design in M3D

silicon [15] or CNFET [2], there has been no SRAM compiler for CNFET based M3D.

Figure 1.1 shows a schematic of the M3D stack that includes two CNFETs layers and six

metal layers. Proposed compiler leverages similar CNFET performance in different tiers

in two ways. The compiler first exploit this observation to generate a large SRAM array
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Figure 1.1: Schematic layer organization of M3D PDK used in the compiler (re-drawn after
[2]). The 2 tiers of CNFETs are included in this process.

by combining stackable single-tier subarrays designed in individual tiers. These stackable

single-tier subarrays are referred to as the STF i.e. Single tier of FETs contain bit-cells and

peripherals, all in a single tier. The stackable single tier design is achieved by separating

metal layers used in each SRAM tiers as shown in Figure 1.1. As subarrays in different

tiers have similar performance, the compiler can efficiently integrate them to generate a

large array.

Second, this thesis presents 3D SRAM subarrays composed of multiple tiers of the tran-

sistor where bit-cells in one tier and peripheral circuits in other tiers are connected using

fine-grain ILVs. As transistors in different tiers have similar performance, the folding of

the peripheral circuits into multiple tiers allows reducing footprint while maintaining (or

improving) performance. The compiler presents two different types of multi-tier SRAM

subarrays. An MTF-BL subarray contains Multiple tiers of FETs with bit-line (BL) pe-

ripherals in a second layer of transistors. An MTF-ALL subarray contains Multiple tiers
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of FETs with all peripherals in word-line (WL) and BL peripherals in one tier of transistors

and bit-cells in a different tier.

The memory compiler flow generates the layout files (library exchange format (LEF)

and graphical data system (GDS)) and the timing file (liberty timing file (LIB)) for SRAM

memory with different types of subarrays with varying dimensions. The compiler sup-

ports the scaling capacity of the generated SRAM by integrating multiple subarrays. First,

the compiler can generate the physical design of an SRAM block by integrating smaller

subarrays using an H-tree architecture. Second, the further scaling of memory capacity is

achieved by connecting multiple SRAM blocks using Network-on-Chip (NoC) to generate

an SRAM array. The compiler demonstrates the application of CNFET M3D SRAM com-

piler for generating SRAM subarrays, blocks, and arrays of varying capacities. The thesis

shows the compiler to generate physical design of a system architecture with a multi-core

processor in one tier integrated with an SRAM array in the other tier. Each core locally

connects to a smaller capacity SRAM block but all SRAM blocks are connected via an

NoC to create a large capacity array but with multiple distributed access ports.

The compiler shows that M3D subarray designs can improve the properties of the mem-

ory compared to 2D subarray designs. The combination of WL and BL, used for the com-

parison, are 64WLx64BL, 64WLx128BL, 128WLx64BL and 128WLx128BL. The foot-

print, read energy, write energy and read latency can be reduced 27.8%-39.8%, 1.7%-2.8%,

4.7%-8% and 9.7%-11.3%, respectively. In addition, the properties of SRAM block also

can be improved by using MTF designs instead of STF design. 32KB of SRAM block can

achieve 24.8% lower footprint and 9.5% lower energy consumption.
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CHAPTER 2

M3D SRAM ARCHITECTURES AND COMPILER

2.1 Subarray Architectures

The SRAM subarrays include bit-cells, address decoders and drivers, sense-amplifiers

(SA), and write-driver circuits (Fig. 2). The compiler uses the single-ended dynamic SA

(Fig. 2). Before WL is raised high, the signal EN is high and pre-discharges the node X,

thereby pre-charging OUT to high. During reading, the signal EN is made ‘low’ which

turns the PMOS (P1) ON. If the SRAM bit-cell is storing a ‘0’, the BL discharges, thereby

turning on the PMOS P2 which charges the node X, and discharges OUT to low. If the

SRAM cell is storing an ‘1’, the BL remains high, which ensures the node X and OUT

remains low, and high, respectively. All of the logic is custom-designed and automatically

placed by the SKILL code. The compiler assumes all BLs are read/written in parallel i.e.

no BL interleaving or column multiplexing inside the subarray. All the columns are read

out in parallel and multiplexed outside of the subarray to create the designed data width

(32-bit).

Figure 2.2 shows the STF, MTF-BL, and MTF-ALL subarray micro-architectures. All

of these micro-architectures follow the same schematic design (Figure 2.1), but different

placement. For both STF and MTF designs, the bit-cell arrays remain in a 2D arrangement.

The key difference resides in the placement and arrangement of peripheral circuitry. The

physical implementation of bit-cells and all peripherals limit layer usage to one of the two

tiers (layers) of CNFETs and the two immediate layers of metal (one above and below the

FET, each) (Fig. Figure 1.1) to prevent metal usage overlap between top tier and bottom

tier designs. This allows M3D stacking of bit-cells and peripherals without need for re-

implementing physical layouts.
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Figure 2.1: Schematic of SRAM subarray

In the STF subarray, peripheral circuits are placed in the same tier as bit cells following

conventional 2D subarray arrangements. The compiler supports the design of STF subar-

rays in both tiers of transistors provided by the PDK. From post-PEX simulations, Tier-2

STF subarrays demonstrate only 4% and 6% reduction in read energy and latency, respec-

tively, compared to Tier-1 STF designs. The detailed analysis shows that the difference

is mainly contributed by different parasitics involved when changing tiers. However, for

comparison with MTF designs, Tier-1 STF designs are used as the baseline due to the fact

that Tier-1 STF and MTF designs all use the same tier (Tier-1) for implementing bit-cells.

Figure 2.2 (b) shows the MTF-BL subarray architecture. The WL drivers are placed

in Tier-1 along with bit cells, but WL address decoders and BL peripherals are in Tier-

2. As BL peripherals and WL drivers reside in different tiers, additional functionality is

added to scale/distribute the BL driver output stage as subarray dimensions change. This

allows trimming the BL driver for small subarrays to reduce footprint/performance over-

head. Figure 2.2 (c) shows MTF-ALL architecture where all peripherals are in the Tier-2.

The arrangement is such that, with peripherals and bit cells rotated/flipped, it can ensure

that output edges of peripherals are aligned along the center axes of the bottom bit-cell

arrays. This structure prevents BL peripherals from blocking WL access and vice versa by
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Figure 2.2: Subarray peripheral/bit-cell arrangement for (a) 2D STF, (b) MTF-BL, and (c)
MTF-ALL subarrays.
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Figure 2.3: Centered placement of peripherals reduces worst-case mismatch.

segmenting all peripheral instantiating to twice. However, the central location of peripher-

als also separates the access pins to different edges, which needs to be considered during

automated generation for multiple inter-connected subarrays.

A unique property of the CNFET M3D process is the use of back-gated CNFET (Fig-

ure 1.1). A key advantage of back-gate FET geometries is the reduction in gate-to-plug

capacitance [16], which reduces overall WL capacitance and BL capacitance in M3D

SRAM. The compiler utilizes the back-gate structure by placing bit-cells in the bottom

tier and BL peripherals in the top tier where BLs occupy the metal layers between tiers.

This arrangement allows multiple ILVs to be constructed for resistance reduction and min-

imizes parasitic capacitance applied from surrounding devices/metals to WLs that occupy

the bottom-most metal layer.

MTF subarrays created by stacking peripherals directly on top of the bit-cell array al-

low several advantages. The first advantage is reduced mismatch seen by peripherals (Fig-

ure 2.3). MTF designs allow flexible placement of peripherals compared to traditional 2D

structures. By centering the stacked peripherals, up to 2× reduction in worst-case mis-

match can be achieved. As worst-case conditions have been cut short, improvement in

read/write performance can also be observed. The second advantage is a benefit enabled

by the ability to manufacture dense ILVs in M3D technologies. Instead of utilizing ILVs
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Figure 2.4: Multiple ILV path for writing with MTF stacked peripherals.

for digital signals, MTF subarray structures use multi-ILV paths to create low-resistance

connections between WLs/BLs and their corresponding drivers (Figure 2.4). Reduced re-

sistance not only allows faster BL and WL switching, but also reduces I-R drop, which can

affect write stability for far-end bit-cells.

2.2 SRAM Block and Array Architecture

The compiler generates a large capacity SRAM array by integrating multiple smaller ca-

pacity subarrays. First, the compiler uses an H-tree architecture to integrate the smaller

subarrays to compile an SRAM block (Figure 2.5). Next, the compiler combines multiple

memory blocks using an NoC to design an SRAM array (Figure 2.6).

2.2.1 Architecture of the SRAM Block

An H-tree is a hierarchical design where each node of the tree accumulates data from lower

level nodes. The compiler refers the logic necessary to combine the subarrays within the

H-tree as the top module. The compiler can integrate any sizes and types of subarrays

as the leaf nodes of an H-tree. The compiler places the H-tree router in the empty space
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Figure 2.5: SRAM block design: (a) high-level placement and (b) H-tree architecture.

among the submodules. During reading, the H-tree router multiplexes multiple incoming

data ports from a lower level in the hierarchy to a single output port to the higher level in

the hierarchy. During writing the H-tree router de-multiplexes the incoming data port from

the higher level in the hierarchy to one of the output ports to the lower level in the hierarchy.

2.2.2 Architecture of the SRAM Array

An SRAM array is implemented by connecting multiple SRAM blocks using a memory

NoC (Figure 2.6). The current compiler generates a mesh NoC where each SRAM block

is connected to a router. The compiler uses the open-source NoC router which has a vir-

tual channel (VC) for the deadlock-free algorithm [17]. The router controls the read/write

access to individual SRAM blocks and manages the data movement within the memory

NoC.
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Figure 2.6: Multi-port memory network architecture.

2.2.3 Dataflow of SRAM Access

The compiler creates a distributed multi-port memory where each router acts as an I/O port.

Individual logic blocks can be connected to one router and access the entire memory. When

there is a memory access request from the logic blocks, the memory network automatically

calculates the index of the target SRAM block from the input address. Depending on the

physical distance between the target SRAM block and the requesting logic block, the access

request can traverse zero, one, or multiple hops in the network.

2.3 Evaluation and Design Space Exploration

The latency, area, and energy of the sub-arrays are evaluated using SPICE simulations of

the extracted netlists. The SRAM block including the H-tree network and the routers of

the memory NoC in the entire array is synthesized to meet the target memory frequency

while ensuring single cycle communication between successive levels in H-tree and nearest

routers in the NoC.

To evaluate the energy consumption of the array, the compiler synthesizes and perform

PNR of each level of the hierarchy independently. To calculate the dynamic energy of an

SRAM block, the compiler recognizes that only a single subarray and only one node in

10



each level of the H-tree is active every cycle. The static energy for the entire SRAM block

is computed. The energy for accessing the entire array includes the energy of one SRAM

block and the number of active routers (i.e. hops in NoC). As the number of hops for

an access can vary and only available from a detailed architectural simulation, this paper

considers all the routers are active (the worst-case scenario).

The compiler allows exploring various dimensions of subarrays, capacity of SRAM

blocks (i.e. number of levels in the H-tree hierarchy), and the number of SRAM blocks

(i.e. number of nodes in the mesh NoC) for a given memory capacity to meet a design goal

such as minimum footprint, or minimum energy. The subarray options include the type of

the subarray (STF, MTF-BL, and MTF-ALL), and different dimensions of a given subarray

type, all of which determine the access latency/energy of individual subarrays. Generating

a memory array with smaller capacity SRAM blocks will lead to more hops while accessing

a distant address. However, as a smaller capacity of SRAM block have lower read/write

latency/energy, the cost of local accesses will be reduced.

11



CHAPTER 3

SIMULATION RESULTS

3.1 Run time of Compiler

The run time of the compiler is measured on a desktop with i7-9700 core and 16GB mem-

ory. The subarray layout generation takes less than one minute. The analysis takes 30 and

120 minutes for a 64WL×64BL and a 128WL×128BL subarray, respectively. The run-

time to compile an SRAM block depends on the number of levels in the H-tree, where each

level requires 20 to 30 minutes. The generation of a 2MB SRAM array with 4x4 SRAM

blocks (128KB) and mesh NoC requires 120 minutes.

3.2 Subarray Compilation Results

Figure 3.1 visualizes the layout of different subarray types.

3.2.1 Footprint Analysis

Figure 3.2 (a) shows the 2D footprint area for different subarray dimensions normalized

to 64WL×64BL STF subarray footprint. MTF designs show a lower footprint than the

STF design. However, the benefit reduces for larger subarrays where peripheral circuits

have relatively lower contributions. MTF-ALL structures suffer from peripheral overhead

at small subarray dimensions. This is because peripherals placed in Tier-2 extend beyond

the bit-cell array boundaries in Tier-1. This overhead is addressed by scaled drivers in

MTF-BL, which provide the lowest footprint for 64WL×64BL subarray.
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Figure 3.1: Visualization of layouts of different subarray (64WL×64BL) structures.

Figure 3.2: Subarray area analysis: (a) footprint, (b) bit-cell density.
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Figure 3.3: Normalized subarray’s comparison for different subarrays on (a) Read energy
per bit, (b) read latency, and (c) write energy per bit.

3.2.2 Cell-density Analysis

Figure 3.2 (b) shows the bit-cell density for different subarray architectures. In traditional

2-D structures, the reduced cell density limits the usage of small subarrays. The cell density

can be increased by 1.32× by changing STF subarray dimensions from 64WL×64BL to

128WL×128BL. MTF subarrays with 64WL×64BL can achieve superior bit-cell density

than 128WL×128BL STF.
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Figure 3.4: Layout of compiled arrays (32KB with 128WL×128BL subarrays).

3.2.3 Read Latency and Energy Analysis

Figure 3.3 compares the read performance and read/write energy per bit of different types

of subarrays. The data is normalized to the energy and latency of STF subarrays at the

same dimensions. The results shows that the MTF-ALL designs show lower read latency

and read energy compared to the STF subarrays for all subarray dimensions. MTF-BL

structures show lower read latency for small subarrays but higher read latency for large

subarrays due to the additional parasitics introduced when the driver output stage is dis-

tributed across longer BLs for large subarrays.

3.2.4 Write Energy Analysis

As the write energy is dominated by the parasitic resistance and capacitance along the BL.

The result shows a reduction in write energy for both MTF designs at smaller subarray di-

mensions. However, similar to read access metrics, a marginal increase in write energy for

MTF-BL due to the higher parasitics introduced to/by distributed drivers is also observed

for larger subarray dimensions. MTF-ALL subarrays, on the other hand, demonstrate a

reduction in write energy for all subarray dimensions.

15



Figure 3.5: SRAM block (32KB) analysis (a) Normalized footprint (b) Subarray’s energy
per total energy (c) Normalized total energy.
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3.3 SRAM Block Compilation Results

Figure 3.4 shows the top view and side view of an SRAM block. The STF-Stack design

represents the stacking of Tier-1 and Tier-2 STF arrays to create the entire capacity. In this

example, the 32KB of SRAM block is designed with 128WL×128BL subarrays. Sixteen

subarrays are used in MTF designs while STF designs in each tier use eight subarrays.

32-bit bus width is assumed for simulation. The frequency target for the PNR follows the

subarrays’ maximum frequency (Figure 3.3).

3.3.1 Footprint Analysis

Figure 3.5 (a) shows the footprint comparison results (normalized to footprint generated by

64WL×64BL STF subarray). As expected, the subarray with a larger dimension reduces

the total footprint. The STF-Stack shows a lower footprint as the STF subarrays are stacked

using both Tier-1 and Tier-2. The MTF-ALL shows a smaller footprint than the MTF-BL

as all peripherals are in 3D.

3.3.2 Energy Analysis

The minimum energy design of an SRAM block depends on the trade-off between subar-

ray and top module energy. A larger dimension increases subarray energy but reduces top

module’s energy as fewer subarrays are used. Also, using large subarrays reduces footprint

and parasitic capacitance in the top module. Hence, the results show that larger subarrays

increase the ratio of the subarray’s energy to the SRAM block’s energy as shown in Fig-

ure 3.5 (b). As the majority of the energy consumption is from the subarrays, using larger

sub-array dimensions increases the energy of an SRAM block (Figure 3.5 (c)).
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Figure 3.6: Scalability of SRAM block capacity: (a) read energy (b) footprint.

3.3.3 Scalability of the Compiler

The developed compiler is used to generate SRAM blocks of varying capacities (Fig-

ure 3.6). All of the designs use the 128WL×128BL subarray to implement the SRAM

block. As only one subarray consumes read/write energy irrespective of the total capacity,

normalized read energy only increases marginally for larger capacity, mainly due to the

increased complexity of the top module (Figure 3.6 (a)). On the other hand, the footprint

advantage of STF-Stack over MTF designs increases with the larger capacity of the SRAM

block (Figure 3.6 (b)).

3.3.4 Block Optimization

Figure 3.7 shows the memory compiler output for 32KB SRAM block but varying design

targets. The compiler explores the 3 types of subarrays (STF-Stack, MTF-BL and MTF-

ALL) and 4 dimensions (64WL×64BL, 64WL×128BL, 128WL×64BL and 128WL×128BL)

while generating final designs. The compiler observes that designs with the largest possi-

ble STF-Stack result in the minimum footprint. On the other hand, the MTF-ALL subarray

with the smallest dimension shows the minimum latency. Among the 12 cases that are

compared, the 32KB SRAM block designed with 64WL×64BL MTF-BL subarray shows

the minimum energy. However, when the compiler generates the 128KB SRAM block,

MTF-ALL with 128WL×64BL subarray-based design shows minimum energy.

18



Figure 3.7: Memory compiler generates the best design for different objectives. All the
data is normalized by STF-Stack 64WL×64BL subarray-based design.

Figure 3.8: The 2MB memory network consisting of 4x4 128KB SRAM blocks.
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Figure 3.9: Analyze the (a) footprint and the (b) power ratio about 2MB memory network
which consists of different SRAM block and subarray capacity.

3.4 Multi-port SRAM Array Analysis

Figure 3.8 shows the layout of a 2MB SRAM array designed with 4 × 4 SRAM blocks

and routers. Each 128KB SRAM block is designed with STF-64WLx64BL subarrays. Fig-

ure 3.9 shows the footprint and power of the design considering various SRAM block and

subarray capacities. All the results are normalized to the SRAM array generated by 16KB

SRAM block and 64WLx64BL subarray. As expected, using a higher capacity SRAM

block shows a smaller footprint and lower worst-case power (assuming all routers are ac-

tive) because the number of SRAM blocks and memory-routers is decreased. Although

the power of individual SRAM blocks is higher with a larger capacity, the power reduction

due to fewer routers dominates. Note, if only a few routers are active (i.e. local memory

access) and/or router power is more optimized, the smaller capacity blocks will be more

power efficient. Among different subarray choices, as expected from Figure 3.5, the design

with 128WLx128BL subarray shows a lower footprint but higher power than the design

with 64WLx64BL subarray.

3.5 Logic and Memory Stacking

The physical design of a 3D multi-core design is implemented using the proposed compiler

(Figure 3.10). The compiler uses the OpenPiton as multi-core architecture [18] connected
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Figure 3.10: 3D multi-core processor and multi-port memory network stacked architecture.

Figure 3.11: Analyze the (a) local memory access latency and the (b) worst-case hop count
about 2MB memory network which consists of different SRAM block capacity.

to a shared on-chip cache organized as multiple networked SRAM blocks. Figure 3.10

show layout of a design with 4 × 4 OpenPiton cores connected to 2MB of shared cache

organized as 4× 4 128KB SRAM blocks (same as in Figure 3.8).

The multiple cores in M3D tier-2 are connected via a core NoC, and each core verti-

cally connects to a memory router in tier-1. The core-to-core communication occurs via

the NoC in the core-tier, while the NoC in the memory tier supports the core-to-memory

communication. The distributed memory access enables fast and low-latency access be-

tween a core and its local memory, thanks to direct vertical access (reduced wire-length)
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using ILVs. The multiple access ports also avoids the memory congestion associated with

using a single port. On the other hand, the memory network enables any core to access any

memory location enabling a large shared cache. The absence of the memory network will

limit the available memory capacity of each core, and lead to data duplication and cache

coherence challenges.

The impact of SRAM block capacity on the memory access latency is analyzed (Fig-

ure 3.11). The local read or write access from a core to its local SRAM block is performed

directly without using a memory-router. Hence, latency of the ‘local’ memory access de-

pends on the access latency of the SRAM block i.e. number of levels in the H-tree hierar-

chy. Increasing capacity of SRAM block, increases the local access latency (Figure 3.11

(a)). Thanks to the H-tree organization, latency of the local access is constant for any ad-

dress. The access to a distant memory block, referred to as the ‘global memory access’

is performed by using the memory network. Hence, the global access latency is variable

depending on the target address. The worst-case latency of the global access depends on

the maximum number of hops in the mesh network. Using larger SRAM block capacity

reduces worst-case number of hops (Figure 3.11 (b)). Note that, the global access latency

of a specific request depends on the memory access patterns of all cores which determines

the congestion in the network.
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CHAPTER 4

DISCUSSION

This paper has studied an M3D memory compiler that can exploit the multiple layers of

transistors on a single substrate and the high-density (3D via) interconnection between

tiers. The design concepts and compiler methodologies developed in this paper can be

adopted for alternative M3D IC technologies. In particular, as the array generation and the

multi-port memory network generation follows logic design automation methods, they can

be easily ported to other M3D processes. The circuit design concepts within the subarray

generation are also technology agnostic. However, due to the inherently analog nature of

the circuits the exact topologies, sizing, and layout are technology specific.

The 3D SRAM compiler needs additional considerations compared to a traditional 2D

SRAM compiler. The goal of the M3D compiler is to maximize the benefits of the M3D

PDK by allowing (1) logic to be placed above (below) STF subarrays in bottom (top) tiers

and (2) external routing to cross MTF subarrays when needed. The compiler also needs

to consider the availability of only two metal layers between the top and bottom tiers

of CNFETs. Hence, the M3D SRAM compiler must restrict the use of metal layers (to

only one layer above and one layer below the transistors) while implementing bit-cells

and peripherals. The above restriction creates several challenges. For example, additional

spacing is needed between transistors to allow bypass vias to transit between metal layers

above/below the transistor. This spacing relieves the routing congestion, but results in lower

area efficiency. Likewise, the M3D compiler can use only a single metal layer to design

power delivery network (PDN) of SRAM sub-arrays. Therefore, compared to traditional

2D SRAMs that use multiple layers of metals for PDN, the M3D SRAMs can experience

higher IR drop. This IR drop reduces the robustness of the memory operation.

The orientation and organization of BLs/WLs metal wires and VDD/VSS grids while
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compiling MTF sub-arrays must consider the constraints on metal layer usage. For exam-

ple, multiple routing vacancies are required to allow ILVs for cross-tier access and intra-tier

routing. These routing vacancies are aligned to avoid possible connectivity hazards during

the automated generation when subarray dimensions scale. The cross-tier access is the

connections for signal/power nets from M3D peripherals to nets in the bottom bit-cells.

The intra-tier routing is the transistor-bypass path to allow access between the horizontal-

routing layer and the vertical-routing layers that are below and above transistors. Moreover,

the routing connections passing through a transistor layer need to be carefully distributed

to place ILV stacks in MTF sub-arrays. The compiler places routing connections for WL

and BL in the top and bottom tier metal layers, respectively. The ILVs required for BL

connection use the vacancies in the top-tier, and the WL connection uses the vacancies in

the bottom-tier to improve area efficiency.

The parasitics of individual tiers are important factors while optimizing M3D designs.

For example, although CNFETs in different tiers have similar on current, there is still 4%-

6% difference in the performance of STF SRAMs in different tiers which can be important

for high frequency designs. The differences in parasitics also play the key role in optimizing

the design/placement of peripheral circuits for MTF subarrays.

The compiler uses H-tree based connection of multiple sub-arrays of small dimension

to create a single-port memory block of higher capacity. The H-tree based connectivity

simplifies the router design and wiring density within a memory block; but can only sup-

port one memory access per read/write cycle. On the other hand, the compiler connects

multiple memory blocks using a mesh-style NoC to create a high-capacity memory ar-

ray. As each memory block is vertically connected to a logic core, the NoC based design

allows multi-port access to the overall large capacity memory allowing high degree of ac-

cess concurrency (and hence, bandwidth) for local core-to-cache communications, like a

distributed cache architecture. However, this approach also preserves the logically shared

structure of the cache as all memory blocks can be accessed from any core thereby avoiding
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the complex cache coherency protocol required in traditional distributed caches. In other

words, the proposed approach uses the M3D integration to create a physically distributed

but logically shared cache that harness the bandwidth advantage of M3D for local access

while maintaining globally shared models of the memory to reduce the burdens on mem-

ory managements of distributed caches. Further, connecting memory blocks with a NoC

in the memory tier reduces the communication burden on the core routers and separate the

core-to-core and core-to-memory communication.

M3D technology can improve the latency and the energy of the memory access on the

multi-core system with the additional level of cache and routing resources. In the 2D system

design, the memory is placed next to the edge of the processor. Therefore, to read/write

function, data is transmitted across all the NoC routers from/to the edge of the processor

to/from the target core. This transmission increases the memory access latency, energy and

NoC congestion. However, in M3D designs, it is possible to place the multi-port memory

above/below the processor. In this design, the compiler can directly connect the memory

block to core and does not require the data transmission through NoC routers in the multi-

core processor.
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CHAPTER 5

CONCLUSION

This thesis demonstrates an SRAM memory compiler for CNFET-based M3D technologies

with multiple tiers of transistors. The compiler exploits the ability to have identical device

performance in all tiers to generate scalable subarray using single and multiple tiers of

peripherals. The compiler efficiently integrates the subarrays in a single or multiple tiers

to generate an SRAM block and integrates the blocks using an NoC to generate an SRAM

array. Ultimately, the developed compiler automatically generates the layout (LEF/GDS)

and timing (LIB) files of SRAM blocks that can be used in the full-chip design. The

simulation results show that multi-tier SRAMs with peripheral and bit-cells in different

tiers show lower energy and latency while 3D stacking single-tier SRAMs show a better

footprint. This thesis also show the feasibility of using the memory compiler to generate an

M3D stack of logic and memory. The future work will be improving the compiler as well

as exploring new system architectures enabled by efficient M3D memory compilers.
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