
ROTOR FATIGUE LIFE PREDICTION AND DESIGN FOR REVOLUTIONARY
VERTICAL LIFT CONCEPTS

A Dissertation
Presented to

The Academic Faculty

By

Joseph Nathaniel Robinson

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology

December 2022

Copyright © Joseph Nathaniel Robinson 2022

ROTOR FATIGUE LIFE PREDICTION AND DESIGN FOR REVOLUTIONARY
VERTICAL LIFT CONCEPTS

Approved by:

Prof. Dimitri Mavris
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Alexia Payan
School of Aerospace Engineering
Georgia Institute of Technology

Prof. Kyle Collins
Dept. of Aerospace Engineering
Embry-Riddle Aeronautical University

Prof. Marilyn Smith
School of Aerospace Engineering
Georgia Institute of Technology

Prof. Daniel Schrage
School of Aerospace Engineering
Georgia Institute of Technology

Date Approved: August 6, 2022

Most deadly errors arise from obsolete assumptions.

Frank Herbert, Children of Dune

To Rachel

ACKNOWLEDGEMENTS

Although only one name is listed as the author of this thesis, anyone who has gone

through this process will know that it is impossible to complete it alone. I would like to

begin this document by thanking the individuals without whom this work would have never

been completed.

First, I need to acknowledge my defense committee members. My advisor, Prof. Dimitri

Mavris, taught me how to think about aerospace problems from a designer’s perspective and

helped me refocus on the big picture when I got too excited about some specific technological

challenge. Dr. Alexia Payan was instrumental in designing and executing my experiments

and introduced me to the exciting world of rotorcraft flight safety. Prof. Kyle Collins saw my

potential as a first-year grad student and gave me the skills I needed to succeed in rotorcraft

design and analysis. Prof. Marilyn Smith introduced me to aeroelasticity as an undergrad

and welcomed me into her own lab to work on fascinating and complex problems. Prof.

Daniel Schrage provided me with a wealth of practical resources on helicopter design, many

of which have been cited in this document.

Since this research is computational in nature, I want to thank the software developers

who went above and beyond to make sure I was able to use their tools. Specifically, Allan

Wood and Prof. Wenbin Yu, developers of VABS and PreVABS, were both extremely helpful

and generous with their time. Larry Meyn, developer of RCOTOOLS, was quick to update

his code when I found a bug that would have brought my progress to a halt. Dr. Régis Lebrun,

a developer of OpenTURNS, assisted with my reliability analysis multiple occasions. I

would also like to acknowledge all the other developers, contributors, and publishers of the

open source software used in this research.

My fellow students at ASDL were essential in providing support and feedback throughout

the process. Dr. Eric Inclan, Alexander Braafladt, Jeffrey Pattison, Rahul Rameshbabu,

and Nikhil Iyengar all provided genuinely meaningful suggestions while listening to my

v

presentation far more times than should be required of any one person. Max-Daniel Sokollek

wrote some excellent syntax highlighting rules for RCAS in vim, which I used throughout

this research. A special thanks goes to Adrienne Durham, the Academic Program Manager,

for helping me navigate the academic and bureaucratic requirements of graduate school.

I would also like to thank those who were not directly involved in my thesis research

but had a positive influence on my career. Specifically, Charles Johnson of the FAA and

Dr. Aditya Saraf of ATAC Corporation both played significant roles in my professional

development and I will be endlessly grateful for their mentorship.

However, those who had the most influence on my success are my family members. My

parents, Bert and Teresa Robinson, taught me how to write, and how to fret over spelling

and grammar, from a young age. Unfortunately for my readers, they were not as concerned

with the art of brevity, as evidenced by the length of this document. My brother, Nicholas

Robinson, convinced me that MATLAB might not be the only programming language worth

learning and inspired me on my (unrelated to this thesis but nearly as difficult) bread-making

journey.

Finally, I need to thank my wonderful girlfriend, Rachel Martin, who has been a constant

source of encouragement, inspiration, love, and support. No matter what happens in my

career, I will always know that pursuing a PhD was worthwhile because, had I not enrolled

in AE 6230 Structural Dynamics in the fall of 2018 to study for qualifying exams, I would

not have met her. I can’t wait to see where our lives together go from here.

Sincerely,
Joseph Nathaniel Robinson

Georgia Institute of Technology
July 2022

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xiii

List of Figures . xvi

Nomenclature . xxi

Summary . xxx

Chapter 1: Motivation and Research Objectives 1

1.1 Life-Cycle Costs . 2

1.1.1 System-Level Decomposition . 2

1.1.2 Maintenance Actions . 3

1.1.3 Discussion . 4

1.2 Accident Rates . 5

1.2.1 JHSAT Accident Analysis . 6

1.2.2 JHIMDAT Accident Analysis . 7

1.2.3 NTSB Accident Data . 8

1.2.4 Discussion . 11

1.3 Relevance to Future Rotorcraft Programs 11

1.3.1 Urban Air Mobility . 12

1.3.2 Military Programs . 13

1.4 A Common Denominator . 14

1.4.1 Component Replacement Costs . 15

1.4.2 Component Failure Causes . 16

vii

1.4.3 Discussion . 16

1.5 Causes of Fatigue Damage . 17

1.5.1 Forward Flight . 18

1.5.2 Higher-Order Aerodynamic Effects 19

1.5.3 Low Cycle Fatigue . 20

1.5.4 Other Sources of Fatigue Damage 20

1.5.5 Influence on Accident Rates . 21

1.6 Research Objectives . 22

Chapter 2: Review of Rotorcraft Design Methods 26

2.1 Rotary-Wing Vehicle Design . 27

2.1.1 Overview . 28

2.1.2 Vehicle Design Tools . 34

2.1.3 Rotor Design Tools . 40

2.2 Rotorcraft Fatigue Design . 45

2.2.1 Fatigue Damage Theory . 46

2.2.2 Fatigue Design Methods . 64

2.3 New Approaches to Fatigue Design . 79

2.3.1 Structural Design Against Fatigue Failure for Composite Rotor Blades 80

2.3.2 Impact of Active Rotor Technologies on Fatigue Life 82

2.3.3 Applications of Surrogate Modeling to Fatigue Design 83

2.3.4 Reliability of Fatigue Life Predictions 87

2.3.5 Discussion . 88

2.4 Gaps in the Literature . 90

Chapter 3: Research Formulation . 94

3.1 Conjecture to Research Question 0 . 95

3.2 Research Question 1 . 97

viii

3.3 Research Question 2 . 98

3.4 Proposed Methodology . 99

3.4.1 Reference Methodology . 99

3.4.2 Preliminary Fatigue Design Methodology 100

3.5 Research Question 3 . 101

3.6 Summary . 102

Chapter 4: Prediction of Fatigue Loads Using Surrogate Modeling 104

4.1 Review of Surrogate Modeling Techniques 105

4.1.1 Response Surface Methods . 106

4.1.2 Artificial Neural Networks . 111

4.1.3 Gaussian Process Models . 115

4.1.4 Comparison . 119

4.2 Hypothesis to Research Question 1 . 122

4.3 Experiment 1 Overview . 124

4.4 Experiment 1a . 124

4.4.1 Experimental Design . 125

4.4.2 Multidisciplinary Analysis . 127

4.4.3 Generic SMR Helicopter Model 143

4.4.4 OpenMDAO Modules and Supporting Tools 152

4.4.5 Results and Analysis . 161

4.4.6 Summary . 198

4.5 Experiment 1b . 200

4.5.1 Experimental Design . 200

4.5.2 Flight Envelope Sampling . 202

4.5.3 Surrogate Modeling Methods . 207

4.5.4 Results and Analysis . 208

4.5.5 Summary . 212

ix

4.6 Conclusions . 216

Chapter 5: Structural Reliability Solutions to the Fatigue Life Problem 218

5.1 Review of Structural Reliability Methods 219

5.1.1 Basic Concepts . 219

5.1.2 Approximate/Analytical Methods 224

5.1.3 Sampling/Simulation Methods . 225

5.1.4 Comparison . 231

5.2 Hypothesis to Research Question 2 . 232

5.3 Experiment 2 Overview . 235

5.4 Experiment 2a . 236

5.4.1 Experimental Design . 236

5.4.2 Notional Fatigue Reliability Problem 238

5.4.3 Structural Reliability Solutions . 240

5.4.4 Results and Analysis . 242

5.4.5 Summary . 248

5.5 Experiment 2b . 248

5.5.1 Experimental Design . 249

5.5.2 Mission Spectrum . 249

5.5.3 Load Spectrum . 254

5.5.4 Ground–air–ground cycle . 256

5.5.5 Results and Analysis . 257

5.5.6 Summary . 261

5.6 Conclusions . 262

Chapter 6: Fatigue Design of a Conceptual Rotary-Wing Aircraft 265

6.1 Hypotheses to Research Question 3 . 266

6.1.1 Rotor Blade Cross Section Design 266

x

6.1.2 Vehicle Design . 267

6.1.3 Design Mission Requirements . 269

6.2 Experiment 3 Overview . 270

6.3 Experiment 3.1 . 271

6.3.1 Experimental Design . 271

6.3.2 Implementation . 273

6.3.3 Results and Analysis . 273

6.4 Experiment 3.2 . 277

6.4.1 Experimental Design . 277

6.4.2 Implementation . 278

6.4.3 Results and Analysis . 279

6.5 Experiment 3.3 . 284

6.5.1 Experimental Design . 284

6.5.2 Results and Analysis . 286

6.6 Conclusions . 289

Chapter 7: Concluding Remarks . 292

7.1 Research Summary . 292

7.2 Contributions . 299

7.3 Findings and Recommendations . 300

7.4 Limitations and Future Work . 302

7.5 Future Applications . 303

7.5.1 Applications to Existent Rotorcraft 304

7.5.2 Applications to Revolutionary Vertical Lift Concepts 305

Appendix A: OpenMDAO Python Wrappers . 308

A.1 RCAS Wrapper . 308

A.2 PreVABS+VABS Wrapper . 320

xi

Appendix B: Generic Single Main Rotor Helicopter Models 337

B.1 NDARC Model . 337

B.2 RCAS Model . 349

B.2.1 Structural Model . 349

B.2.2 Aerodynamic Model . 357

B.2.3 Supporting Files . 362

B.2.4 OpenMDAO–RCAS Variable Mapping 370

B.3 PreVABS+VABS Model . 375

Appendix C: OpenMDAO Modules and Supporting Tools 384

C.1 MDA Group . 384

C.2 Blade Ballast Calculator . 393

C.3 Mass Calculator . 395

C.4 Von Mises Stress Calculator . 405

C.5 Stress Analyzer . 408

References . 411

Vita . 422

xii

LIST OF TABLES

1.1 Summary of all key observations in Chapter 1 22

2.1 Example transport helicopter mission spectrum 69

2.2 Calculated fatigue lives for the hypothetical pitch link problem 78

2.3 Summary of literature questions and observations in Chapter 2 91

3.1 Summary of literature gaps identified in Chapter 2 94

4.1 Extreme flight condition survey for Experiment 1a 126

4.2 Examples of RCAS structural elements . 133

4.3 Basic attributes of the generic SMR helicopter NDARC model 144

4.4 Performance of the generic SMR helicopter NDARC model 145

4.5 Orthotropic materials used in the PreVABS+VABS model 149

4.6 Ply thicknesses used in the PreVABS+VABS model 150

4.7 Inertia models for the generic SMR helicopter model 156

4.8 Value and position of the peak Seq,max point and its location in the extreme flight

condition survey . 199

4.9 Surrogate modeling methods and architectural choices for Experiment 1b . . . 201

4.10 Baseline DOE for Experiment 1a . 203

4.11 Hover/axial climb DOE for Experiment 1a . 203

4.12 Space-filling augmentation and test set DOEs for Experiment 1a 204

5.1 Structural reliability problem parameters for Experiment 2a 237

5.2 Structural reliability solution performance metrics for Experiment 2a 238

5.3 Probabilistic mission spectrum developed for Experiment 2b 253

5.4 Deterministic rotor blade fatigue life predictions 261

xiii

6.1 Experimental design for Experiment 3.1 . 272

6.2 Experimental design for Experiment 3.2 . 278

6.3 Experimental design for the first part of Experiment 3.3 285

6.4 Experimental design for the second part of Experiment 3.3 285

B.1 Mapping from OpenMDAO variables to NDARC variables (weights) 346

B.2 Mapping from OpenMDAO variables to NDARC variables (geometry) 347

B.3 Mapping from OpenMDAO variables to NDARC variables (flight condition) . . 348

B.4 Coefficients of RCAS trim springs and dampers 349

B.5 Origins of RCAS structural model subsystems 349

B.6 Orientations of RCAS structural model subsystems 350

B.7 Control mixer of RCAS model . 350

B.8 Origins of RCAS model fuselage subsystem primitive structures 350

B.9 Orientations of RCAS model fuselage subsystem primitive structures 351

B.10 Nodes of RCAS model fuselage primitive structure 351

B.11 Rigid body masses of RCAS model fuselage primitive structure 351

B.12 Nodes of RCAS model vertical stabilizer primitive structure 352

B.13 Nodes of RCAS model horizontal stabilizer primitive structure 352

B.14 Origins of RCAS model main rotor subsystem primitive structures 353

B.15 Nodes of RCAS model main rotor shaft primitive structure 353

B.16 Nodes of RCAS model main rotor blade primitive structure 354

B.17 Hinges of RCAS model main rotor blade primitive structure 355

B.18 Origins of RCAS model tail rotor subsystem primitive structures 355

B.19 Orientations of RCAS model tail rotor subsystem primitive structures 356

B.20 Nodes of RCAS model tail rotor shaft primitive structure 356

B.21 Nodes of RCAS model tail rotor blade primitive structure 356

B.22 Origins of RCAS aerodynamic model supercomponents 357

B.23 Orientations of RCAS aerodynamic model supercomponents 358

xiv

B.24 Aerodynamic nodes of RCAS model main rotor blade aerodynamic component 359

B.25 Aerodynamic segments of RCAS model main rotor blade aerodynamic component359

B.26 Aerodynamic nodes of RCAS model tail rotor blade aerodynamic component . 360

B.27 Aerodynamic segments of RCAS model tail rotor blade aerodynamic component360

B.28 Mapping from OpenMDAO variables to RCAS variables (flight condition) . . . 371

B.29 Mapping from OpenMDAO variables to RCAS variables (fuselage mass and

inertia) . 372

B.30 Mapping from OpenMDAO variables to RCAS variables (rotor mass and inertia)373

B.31 Mapping from OpenMDAO variables to RCAS variables (other mass and inertia)374

B.32 Mapping from OpenMDAO variables to PreVABS+VABS variables 383

C.1 Inputs and outputs for the blade ballast calculator 395

C.2 Inputs and outputs for the mass calculator . 405

C.3 Inputs and outputs for the von Mises stress calculator 407

C.4 Inputs and outputs for the stress analyzer . 410

xv

LIST OF FIGURES

1.1 Rotorcraft usage and accident numbers from 1964 to 2011 9

1.2 Accident proportions per first-occurrence classification from 1964 to 2011 . . . 10

1.3 Conceptual illustration of the lift force produced by a rotor at different radial

and azimuthal stations . 19

1.4 Flow chart summarizing the formulation of Research Question 0 24

2.1 Flow chart summarizing the rotorcraft design process 33

2.2 Outline of the NDARC program . 36

2.3 Outline of RAM-C simulation . 39

2.4 Extended design structure matrix of a multi-disciplinary rotorcraft optimization

environment . 43

2.5 Notional cyclic load history . 48

2.6 Notional S-N diagram and curves . 50

2.7 Notional Goodman diagram . 51

2.8 Notional residual strength degradation curves 54

2.9 Notional crack growth rate curves . 57

2.10 Examples of the peak count and level crossing cycle counting methods 59

2.11 Example of the range-mean cycle counting method 60

2.12 Example of the Rainflow cycle counting method 61

2.13 Diagram of the safe life methodology . 67

2.14 Phases of rotorcraft fatigue design . 74

2.15 Structural design framework developed by Li 81

2.16 Flow chart summarizing the identification of gaps in the literature 93

3.1 Initial diagram of the preliminary fatigue design methodology 100

xvi

3.2 Flow chart summarizing the research formulation 102

4.1 Demonstration of response surface model fitting 108

4.2 Demonstration of RSM goodness-of-fit checks 110

4.3 A simple artificial neural network . 113

4.4 A more complex artificial neural network . 113

4.5 Demonstration of a GPM surrogate model . 118

4.6 Overview of Experiment 1a . 125

4.7 RCAS physical model hierarchy . 132

4.8 VABS analysis process . 138

4.9 Summary of the multidisciplinary analysis tool 142

4.10 3D representation of the generic SMR helicopter NDARC model 145

4.11 Different 3D representations of the generic SMR helicopter in RCAS 148

4.12 Representations of the PreVABS+VABS rotor blade cross section model 150

4.13 Fan plot comparison of original NLB formulation to new GECB formulation . . 151

4.14 Rotor blade forces and moments for Experiment 1a, case 0 163

4.15 Seq,max and its location for Experiment 1a, case 0 165

4.16 Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 0 165

4.17 Rotor blade forces and moments for Experiment 1a, case 1 166

4.18 Seq,max and its location for Experiment 1a, case 1 167

4.19 Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 1 168

4.20 Rotor blade forces and moments for Experiment 1a, case 2 169

4.21 Seq,max and its location for Experiment 1a, case 2 170

4.22 Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 2 170

4.23 Rotor blade forces and moments for Experiment 1a, case 3 172

4.24 Seq,max and its location for Experiment 1a, case 3 173

4.25 Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 3 173

4.26 Rotor blade forces and moments for Experiment 1a, case 4 174

xvii

4.27 Seq,max and its location for Experiment 1a, case 4 175

4.28 Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 4 175

4.29 Rotor blade forces and moments for Experiment 1a, case 5 177

4.30 Seq,max and its location for Experiment 1a, case 5 178

4.31 Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 5 178

4.32 Rotor blade forces and moments for Experiment 1a, case 6 179

4.33 Seq,max and its location for Experiment 1a, case 6 180

4.34 Seq field at blade station 6 (x = 14.025 ft) for Experiment 1a, case 6 181

4.35 Rotor blade forces and moments for Experiment 1a, case 7 182

4.36 Seq,max and its location for Experiment 1a, case 7 183

4.37 Seq field at blade station 6 (x = 14.025 ft) for Experiment 1a, case 7 183

4.38 Rotor blade forces and moments for Experiment 1a, case 8 184

4.39 Seq,max and its location for Experiment 1a, case 8 185

4.40 Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 8 185

4.41 Rotor blade forces and moments for Experiment 1a, case 9 187

4.42 Seq,max and its location for Experiment 1a, case 9 188

4.43 Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 9 188

4.44 Rotor blade forces and moments for Experiment 1a, case 10 189

4.45 Seq,max and its location for Experiment 1a, case 10 190

4.46 Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 10 190

4.47 Rotor blade forces and moments for Experiment 1a, case 11 191

4.48 Seq,max and its location for Experiment 1a, case 11 192

4.49 Seq field at blade station 6 (x = 14.025 ft) for Experiment 1a, case 11 192

4.50 Rotor blade forces and moments for Experiment 1a, case 12 194

4.51 Seq,max and its location for Experiment 1a, case 12 195

4.52 Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 12 195

4.53 Rotor blade forces and moments for Experiment 1a, case 13 196

xviii

4.54 Seq,max and its location for Experiment 1a, case 13 197

4.55 Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 13 197

4.56 Overview of Experiment 1b . 200

4.57 Input space for surrogate model training in Experiment 1a 205

4.58 Response space for surrogate model training in Experiment 1a 206

4.59 Time history of signed von Mises stress at three points demonstrating disconti-

nuities around Svm,s = 0 . 206

4.60 Learning curves for RSM surrogate models 208

4.61 Learning curves for ANN surrogate models 209

4.62 Learning curves for GPM surrogate models 210

4.63 Learning curves for best-performing models of each method 211

4.64 Goodness-of-fit plots for the 200-node shallow ANN model 213

4.65 Goodness-of-fit plots for the Matérn (ν = 3/2) GPM model 215

4.66 Updated flowchart of the preliminary fatigue design methodology after Experi-

ment 1 . 217

5.1 A hypothetical simple structural reliability problem 220

5.2 Notional isoprobabilistic transformation . 222

5.3 Demonstration of reliability calculations using Monte Carlo simulation 227

5.4 Demonstration of reliability calculations using importance sampling 230

5.5 Overview of Experiment 2a . 236

5.6 Probabilistic S-N curve used in Experiment 2a 240

5.7 Pf predictions from all solution methods at k = 1 243

5.8 Pf predictions from all solution methods at rk = 109, rk = 108.5, and rk = 108 244

5.9 Number of stress distribution samples per solution 246

5.10 Wall-clock runtime per solution . 247

5.11 Overview of Experiment 2b . 248

5.12 Diagram of the mission profile used in Experiment 2b 250

xix

5.13 Equivalent stress distributions produced in Experiment 2b 257

5.14 Probability of failure at different service life requirements for Experiment 2b . . 259

5.15 Updated flowchart of the preliminary fatigue design methodology after Experi-

ment 2 . 263

6.1 Overview of Experiment 3.1 . 271

6.2 Geometry of the PreVABS+VABS rotor blade model in different cases of Ex-

periment 3.1 . 274

6.3 Mesh of the PreVABS+VABS rotor blade model in different cases of Experi-

ment 3.1 . 274

6.4 Equivalent stress distributions produced in Experiment 3.1 275

6.5 Impact of blade spar thickness on probability of fatigue failure at 5000 FH . . . 276

6.6 Overview of Experiment 3.2 . 277

6.7 Varying tail rotor cant angles in RCAS model for Experiment 3.1 280

6.8 Equivalent stress distributions produced in Experiment 3.2 280

6.9 Impact of tail rotor cant angle on probability of fatigue failure at 5000 FH . . . 281

6.10 Equivalent stress distributions produced in Experiment 3.2 with the aft-shifted

CG distribution . 283

6.11 Impact of tail rotor cant angle on probability of fatigue failure at 5000 FH with

the aft-shifted CG distribution . 283

6.12 Overview of Experiment 3.3 . 284

6.13 Equivalent stress distributions produced by the ROC study in Experiment 3.3 . 286

6.14 Impact of rate of climb on probability of fatigue failure at 5000 FH 287

6.15 Equivalent stress distributions produced by the cruise speed study in Experi-

ment 3.3 . 288

6.16 Impact of cruise speed on probability of fatigue failure at 5000 FH 289

xx

NOMENCLATURE

Rotorcraft design and analysis is an inherently multidisciplinary effort. Equations, methods,

and algorithms from a large body of scientific and engineering research have been used

in this thesis. An effort was made to keep the nomenclature in this document consistent

with its original authors’ nomenclature, while also avoiding confusing conflicts. In some

cases, one symbol or acronym may represent multiple concepts, or the same concept may

be represented by multiple symbols. The author hopes that the meaning will be obvious in

context, but apologizes in advance for any confusion.

Acronyms and Initialisms

AC aerodynamic center

AHS American Helicopter Society

AMRDEC . Aviation and Missile Research, Development, and Engineering Center

ANN artifical neural network

ART active rotor technology or Advanced Rotorcraft Technology, Inc.

BET blade-element theory

CAMRAD . Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dy-
namics

CBEMT . . . combined blade-element–momentum theory

CBM condition-based maintenance

CCD central composite design

CDF cumulative density function

CFD computational fluid dynamics

CG center of gravity

COV coefficient of variation

CSD computational structural dynamics

xxi

CTM Cost Too Much

CTOL conventional takeoff and landing

DES discrete event simulation

DGW design gross weight

DoD Department of Defense

DOE design of experiments

DOF degree of freedom

DS directional simulation

MCP maximum continuous power

eVTOL . . . electric VTOL

FAA Federal Aviation Administration

FORM . . . first-order reliability method

GA general aviation

GAG ground–air–ground

GECB geometrically-exact composite beam

GPM gaussian process model

GRP Sikorsky Generalized Rotor Performance

HCF high cycle fatigue

HHC higher-harmonic control

IHST International Helicopter Safety Team

IRP intermediate rated power

JHIMDAT . . Joint Helicopter Implementation Measurement Data Analysis Team

JHSAT . . . Joint Helicopter Safety Analysis Team

LCC life-cycle costs

LCF low cycle fatigue

LHS Latin hypercube simulation

FVL Future Vertical Lift

xxii

MC Monte Carlo simulation

MDA multidisciplinary analysis

MFOP maintenance-free operating period

MRP maintenance recovery period

MTBF mean time between failures

RAF Royal Air Force

NASA National Aeronautics and Space Administration

NDARC . . . NASA Design and Analysis of Rotorcraft

NLB nonlinear beam

NTSB National Transportation Safety Board

O&S operating and support

OML outer mold line

OpenMDAO An Open-Source Framework for Multidisciplinary Design, Analysis, and
Optimization

OpenTURNS An Open-Source Initiative for the Treatment of Uncertainties, Risks, ’n’
Statistics

PDF probability density function

QMC quasi-Monte Carlo

R&D research and development

RAM-C . . . reliability, availability, maintainability, and cost

RCAS Rotorcraft Comprehensive Analysis System

RCOTOOLS Rotorcraft Optimization Tools

RDT&E . . . research, development, test, and evaluation

RFP request for proposals

ROC Rate of climb

ROM reduced order model

RQ research question

RSE response surface equation

xxiii

RSM response surface method

SLS sea level standard atmosphere

SMA scheduled maintenance action

SMR single main rotor

SORM . . . second-order reliability method

SSE sum of squared errors or sum of squared residuals

SST total sum of squares

TBO time between overhauls

TOS top-of-scatter

TTF time to failure

TTR time to repair

UAM urban air mobility

UMA unscheduled maintenance action

VABS Variational Asymptotic Beam Sectional Analysis

VAM variational asymptotic method

VTOL vertical takeoff and landing

X2TD Sikorsky X2 Technology Demonstrator

Symbols and Functions

a crack length

Ao operational availability

b least-squares estimates of the β coefficients

b activation function bias

C cumulative fatigue damage

D(a) Dirac distribution at x = a

D domain

D distance

xxiv

E[V] expected value of the random variable V

e residual

Eii Young’s modulus along the i axis

EA axial stiffness

EIi bending stiffness about the xi-axis

F force

FV (v) cumulative distribution function of the random variable V

fV (v) probability density function of the random variable V

f(v) function of the variable(s) v

G(V) performance function

Gij Shear modulus in the direction j on the plane whose normal is i

GJ torsional stiffness

H generalized stiffness

H(U) standardized performance function

hd Density altitude

I(v) indicator function

I moment of inertia

i moment of inertia per unit length

K kinetic energy per unit length

K stress intensity factor

k(v,v′) . . . covariance function

K(V, V ′) . . covariance matrix

k, n number of elements in a set

` length

L(µ`, σ`) . . Lognormal distribution whose underlying normal distribution isN
(
µ`, σ

2
`

)
M moment

m mass

xxv

N (µ, σ2) . . normal distribution of mean µ and variance σ2

N cycles to failure

Pr(E) probability of the random event E

P ∗ most-probable failure point

R stress ratio or resistance of a structure

r load spectrum repetitions

Std(V) . . . standard deviation of the random variable V

S load or stress or strain or strength

S0 initial static strength

Sr residual strength

S∞ endurance limit

Su ultimate static strength

T (a, b, c, d) . Trapezoidal distribution with vertices at x = a, x = b, x = c, and x = d

T thrust

t time

TIP isoprobabilistic transformation

U strain energy per unit length

U(a, b) . . . Uniform distribution from x = a to x = b

U independent standardized normal random variable

Var(V) . . . variance of the random variable V

V airspeed

W work per unit length

W (α, β, γ) . Weibull distribution with shape parameter α, scale parameter β, and loca-
tion parameter γ

W Gross weight

w weight parameter

X random variable

xxvi

x input or independent variable

y output or dependent variable

α Weibull distribution shape parameter

β reliability index or Weibull distribution scale parameter

β coefficients of the RSE

γ engineering strain or Weibull distribution location parameter

∆ Change in a quantity

δ Langrangean variation

∆(a,m, b) . . Triangular distribution with a minimum x = a, a maximum at x = b, and
a mode at x = m

ε tail rotor cant angle

ε error of a surrogate model

θ GPM hyperparameter

κ curvature

µ mean or mass per unit length

ν strength degradation parameter

νij Poisson’s ratio corresponding to a contraction in direction j when extension
is applied in direction i

σ standard deviation

σf signal standard deviation

φ(v) activation function in a surrogate model

Φn(v) cumulative distribution function of the n-dimensional standard normal

φn(v) probability density function of the n-dimensional standard normal

χ2
n chi-squared distribution with n degrees of freedom

ψ Rotor blade azimuth angle

ω Turn rate

Superscripts and Diacritics

xxvii

· mean

·̂ approximation or estimate

> transpose

Subscripts

0 initial

1, 2, 3 axes in a Cartesian coordinate system

amp amplitude

B blade

b ballast

eq equivalent

f final or failure

h horizontal

hs hydrostatic

i, j counters

l lower

max maximum

mean mean

min minimum

NE never-exceed

range range

s survival or signed

t total

tr training set

u upper

v vertical

vm von Mises

xxviii

x, y, z axes in a rotor blade or vehicle coordinate system

Units

deg degree

d calendar day, equal to 24 h

FH fight hour

ft foot

Hz hertz

HP horsepower

h hour

in inch

kip kip, equal to 1000 lbf

ksi kip/in2

lb pound-mass

lbf pound-force

MMH maintenance man-hour

MPa megapascal

m meter

min minute

rev revolution

RPM revolutions per minute

s second

slug slug, equal to 32.17404 lb

° degree

xxix

SUMMARY

Despite recent technological advancements, rotorcraft still lag behind their fixed-wing

counterparts in the areas of flight safety and operating cost. Competition with fixed-wing

aircraft is difficult for applications where vertical takeoff and landing (VTOL) capabilities

are not required. Both must be addressed to ensure the continued competitiveness of vertical

lift aircraft, especially in the context of new military and civilian rotorcraft programs such

as Future Vertical Lift and urban air mobility, which will require orders-of-magnitude

improvements in reliability, availability, maintainability, and cost (RAM-C) metrics.

Lifecycle costs and accident rates are strongly driven by scheduled replacement or failure

of flight-critical components. Rotor blades are life-limited to ensure that they are replaced

before fatigue damage exceeds critical levels, but purchasing new blades is extremely costly.

Despite aggressive component replacement times, fatigue failure of rotor blades continues

to account for a significant proportion of inflight accidents. Fatigue damage in rotorcraft

is unavoidable due to the physics of rotary-wing flight, but new engineering solutions to

improve fatigue life in the rotor system could improve rotorcraft operating costs and flight

safety simultaneously.

Existing rotorcraft design methods treat fatigue life as a consequence, rather than a driver,

of design. A literature review of rotorcraft design and fatigue design methods is conducted to

identify the relevant strengths and weaknesses of traditional processes. In rotorcraft design,

physics-based rotor design frameworks are focused primarily on fundamental performance

analysis and do not consider secondary characteristics such as reliability or fatigue life.

There is a missing link between comprehensive rotor design frameworks and conceptual

design tools that prevents physics-based assessment of RAM-C metrics in the early design

stages.

Traditional fatigue design methods, such as the safe life methodology, which applies the

Miner’s rule fatigue life prediction model to rotorcraft components, are hindered by a lack of

xxx

physics-based capabilities in the early design stages. An accurate fatigue life quantification

may not be available until the design is frozen and prototypes are flying. These methods

are strongly dependent on extrapolations built on historical fatigue data, and make use of

deterministic safety factors based on organizational experience to ensure fatigue reliability,

which can lead to over-engineering or unreliable predictions when applied to revolutionary

vertical lift aircraft.

A new preliminary fatigue design methodology is designed to address these concerns.

This methodology is based on the traditional safe life methodology, but replaces several key

elements with modern tools, techniques, and models. Three research questions are proposed

to investigate, refine, and validate different elements of the methodology. The first research

question addresses the need to derive physics-based fatigue load spectra more rapidly than

modern comprehensive analysis tools allow. The second investigates the application of

different probabilistic reliability solution methods to the fatigue life substantiation problem.

The third question tests the ability of the preliminary fatigue design methodology to evaluate

the relative impact of common preliminary fatigue design variables on the probability of

fatigue failure of a conceptual helicopter’s rotor blade.

Hypotheses are formulated in response to each research question, and a series of exper-

iments are designed to test those hypotheses. In the first experiment, a multi-disciplinary

analysis (MDA) environment combining the rotorcraft performance code NDARC, the

comprehensive code RCAS, and the beam analysis program VABS, is developed to provide

accurate physics-based predictions of rotor blade stress in arbitrary flight conditions. A

conceptual single main rotor transport helicopter based on the UH-60A Black Hawk is im-

plemented within the MDA to serve as a test case. To account for the computational expense

of the MDA, surrogate modeling techniques, such as response surface equations, artificial

neural networks, and Gaussian process models are used to approximate the stress response

across the flight envelope of the transport helicopter. The predictive power and learning

rates of various surrogate modeling techniques are compared to determine which is the

xxxi

most suitable for predicting fatigue stress. Ultimately, shallow artificial neural networks are

found the provide the best compromise between accuracy, training expense, and uncertainty

quantification capabilities.

Next, structural reliability solution methods are investigated as a means to produce

high-reliability fatigue life estimates without requiring deterministic safety factors. The

Miner’s sum fatigue life prediction model is reformulated as a structural reliability problem.

Analytical solutions (FORM and SORM), sampling solutions (Monte Carlo, quasi-Monte

Carlo, Latin hypercube sampling, and directional simulation), and hybrid solutions (im-

portance sampling) are compared using a notional fatigue life problem. These results are

validated using a realistic helicopter fatigue life problem which incorporates the fatigue

stress surrogate model and is based on a probabilistic definition of the mission spectrum to

account for fleet-wide usage variations. Monte Carlo simulation is found to provide the best

performance and accuracy when compared to the exact solution.

Finally, the capabilities of the preliminary fatigue design methodology are demonstrated

using a series of hypothetical fatigue design exercises. First, the methodology is used to

predict the impact of rotor blade box spar web thickness on probability of fatigue failure.

Modest increases in web thickness are found to reduce probability of failure, but larger

increases cause structural instability of the rotor blade in certain flight regimes which

increases the fatigue damage rate. Next, a similar study tests the impact of tail rotor cant

angle. Positive tail rotor cant is found to improve fatigue life in cases where the center of

gravity (CG) of the vehicle is strongly biased towards the tail, but is detrimental if the CG is

closer to the main rotor hub station line. Last, the effect of design mission requirements like

rate of climb and cruising airspeed is studied. The methodology is not sensitive enough to

predict the subtle impact of changes to rate of climb, but does prove that a slower cruising

airspeed will decrease probability of fatigue failure of the main rotor blade.

The methodology is proven to be capable of quantifying the influence of rotor blade

design variables, vehicle layout and configuration, and certain design mission requirements,

xxxii

paving the way for implementation in a rotorcraft design framework. This thesis ends with

suggestions for future work to address the most significant limitations of this research, as

well as descriptions of the tasks required to apply the methodology to conventional rotorcraft

or conceptual revolutionary vertical lift aircraft.

xxxiii

CHAPTER 1

MOTIVATION AND RESEARCH OBJECTIVES

Rotary-wing vehicles have made incredible technological strides since the introduction

of the first mass-produced helicopter nearly eight decades ago. The ensuing years have

seen significant improvements in efficiency, speed, endurance, passenger comfort, utility,

maneuverability, and more. However, rotorcraft still lag behind their fixed-wing counterparts

in a number of areas. Key deficiencies include flight safety, operating costs, purchase price,

noise, and vibrations [1].

In spite of these drawbacks, rotorcraft remain competitive because their vertical takeoff

and landing (VTOL) capabilities enable certain missions, such as medical evacuation,

offshore support, sight-seeing, and urban mobility, that would be impossible or impractical

with conventional takeoff and landing (CTOL) vehicles. Nevertheless, it is necessary to

improve the affordability and flight safety of rotary-wing aircraft to ensure their continuing

viability in a sea of increasingly versatile and capable aerospace vehicles [1].

Despite the vast expenditures committed to the research, design, testing, certification,

and production of vertical lift aircraft, operating costs are the primary driver of rotorcraft

life-cycle costs (LCC) [2]. This greatly diminishes the affordability of owning and operating

a fleet of rotary-wing aircraft. Comparatively, fixed-wing aircraft outrank rotorcraft in nearly

every area of operating and support (O&S) cost [3]. Furthermore, rotary-wing vehicles suffer

a proportionally higher rate of fatal accidents than their fixed-wing counterparts [4, 5]. In

addition to the tragic loss of life, these accidents damage the public perception of rotorcraft

safety and decrease public acceptance of vertical lift aircraft, regardless of their role. Both

of these aspects must be improved if rotary-wing aircraft are to remain relevant and become

more widely adopted.

In this chapter, helicopter life-cycle costs and accident rates are investigated thoroughly.

1

Common areas of improvement for each are identified and discussed in detail. Throughout

the chapter, key observations are highlighted. Later, these observations are used to define

research objectives for this thesis.

1.1 Life-Cycle Costs

In order to address the high cost of rotorcraft operations, the individual elements of LCC

must first be decomposed and examined. Based on a 1975 survey of United States Army

helicopters, Reddick [2] estimates O&S costs comprise 75% of LCC, with acquisition costs,

which includes research and development (R&D) and production, making up the remaining

25%. Of the O&S costs, 75% are due to maintenance and parts, with personnel (10%) and

consumables (15%) accounting for the remainder. Thus, maintenance and parts makes up a

majority (56.25%) of LCC.

1.1.1 System-Level Decomposition

Maintenance costs can be further decomposed into the major systems on the vehicle. Reddick

presents a summary of direct support maintenance costs for individual components on the

Boeing CH-47 Chinook cargo helicopter. On this vehicle, the rotor (28.8%), power plant

(27.4%), and transmission (11.5%) systems account for the majority of maintenance costs.

The same three systems are ranked similarly on the Bell UH-1 utility helicopter, although

the power plant replaces the rotor as the highest-cost system.

Within the rotor system, the blades account for nearly all (80%) of the maintenance cost.

Rotor blade maintenance drivers include, in order of significance, foreign object damage,

cracking, combat damage, overstressing, and debonding, among other reasons. Reddick

attributes the high rate of blade damage to the extreme aerodynamic environment within

which the blades operate.

Conversely, the maintenance cost drivers for the power plant are not dominated by

any one component of the system. Again, foreign object damage is the most significant

2

maintenance cost contributor, followed closely by issues arising to improper maintenance,

seal leakage, and erosion. However, only foreign object damage exceeds 10% of the total

cost contribution, and a large number of maintenance items contribute less than 5%. Reddick

posits that the lack of a single significant contributor decreases the efficacy of power plant

maintenance improvement programs.

Maintenance costs incurred by the transmission system are largely driven by scheduled

removal and replacement of wear items such as bearings and gears. An effective mainte-

nance improvement program could involve advancing the design of transmissions to reduce

wear and increase the time between overhauls (TBO), which would significantly reduce

maintenance costs for this system.

1.1.2 Maintenance Actions

Harris [3] arrives at similar conclusions to Reddick and highlights the drastically higher

maintenance cost of rotorcraft compared to their fixed-wing competitors. Harris argues that

the primary operating cost drivers of rotorcraft are maintenance actions and replacement of

life-limited parts.

Maintenance actions are frequently categorized as scheduled maintenance actions

(SMAs) or unscheduled maintenance actions (UMAs). SMAs must occur at specific intervals

specified by the manufacturer. For example, the maintenance manual for a Robinson R22

GA helicopter specifies a number of recurring maintenance tasks with intervals ranging from

29 FH to 2200 FH and four months to 12 years. Establishing the frequency of UMAs for a

given vehicle is difficult, but Harris recommends a rule of thumb of 1 MMH of unscheduled

maintenance per MMH of scheduled maintenance. SMAs and UMAs contribute to the O&S

cost of the vehicle through part costs and labor costs.

Life-limited parts are those that must be replaced at specific intervals to maintain

airworthiness of the vehicle. In most helicopters, many elements of the main rotor system

are limited by their fatigue life, which is a period of safe operation after which a component

3

has a certain risk of failing due to fatigue fracture. For example, several flight-critical

components of a Robinson R22 must be replaced at intervals ranging from 2200 FH to

6260 FH [3]. Predictably, the cost of replacement components is high, and replacement

costs over several years of operation can easily rival the initial purchase price of the vehicle

Thus, part replacement costs also contribute significantly to overall O&S costs.

1.1.3 Discussion

Harris concludes that high operating costs inherent to rotorcraft prevent direct competition

between rotary-wing and fixed-wing vehicles in most cases. In the case of a hypothetical

commercial airline operating a rotorcraft fleet, high ticket prices, driven primarily by O&S

expenses, would make operations infeasible without government subsidies. In fact, this

exact scenario played out in the mid-20th century when the Federal Aviation Administration

(FAA) supported the establishment of three helicopter airlines with operating concepts

notably similar to the modern concept of urban air mobility (UAM).1 These airlines were

never able to turn a profit without government subsidies and each ceased operations shortly

after the subsidies were ended [3].

Conversely, in the early 20th century, fixed-wing airlines were able to successfully

transition from businesses supported by government subsidies and airmail contracts to

independent businesses focused primarily on carrying passengers. Thus, rotorcraft are

restricted to applications in which their VTOL capabilities are mandatory; otherwise, lower

O&S costs will force operators to choose fixed-wing aircraft. This leads to Observation 1.1:

Observation 1.1
High LCC associated with rotorcraft are driven by part replacement and repair require-

ments. Rotor blades make up a significant portion of this cost due to their extreme

operating environment, high purchase price, and life-limited nature.

1UAM is a concept of operations which consists of small VTOL aircraft carrying passengers a short distance
in an urban environment.

4

In the conclusion to his report, Reddick suggests increasing focus on vehicle reliability

and maintainability during the development phase, which could reduce LCC despite in-

creasing design costs. This effort must be accompanied by the development of more robust

methods to predict O&S costs in the preliminary design phase rather than by extrapolating

from historical operational data.

Similarly, Harris notes the difficulty of establishing realistic expectations for the time

and cost required to maintain a helicopter fleet. Much of this difficulty is due to a lack

of comprehensive historical financial data for helicopter operations and the challenge of

comparing operational experience across a diverse helicopter fleet. Thus, the fundamental

problem of high O&S costs is compounded by the difficulty of designing new rotary-wing

vehicles that significantly improve upon their predecessors in terms of affordability due, in

part, to the lack of appropriate design tools.

1.2 Accident Rates

Statistics gathered by the FAA indicate that helicopters suffer an average fatal accident rate

of 1.02× 10−5 accidents/FH, significantly greater than the overall (fixed- and rotary-wing)

fatal accident rate of 0.84× 10−5 accidents/FH [5].2 According to Lombardo [4], helicopters

experience a greater number of in-flight accidents than fixed wing aircraft, relative to the

number of each type operating. A portion of this discrepancy can be explained by the

use case: helicopters typically fly more risky missions than fixed-wing aircraft, including

search and rescue, emergency medical services, offshore support, and troop insertion. These

missions frequently occur in adverse weather conditions or at low altitudes, which are

inherently dangerous. However, some causes of the excessive accident rate of rotorcraft may

be traceable to the fundamental nature of the vehicles themselves. This section presents a

more detailed analysis of helicopter accident rates and causes.

2Generally, accident analyses report accident rates as, for example, 1 accident per 100,000 FH. In an effort to
be more consistent with best practices when using units in a written context, this document will use the form
1× 10−5 accidents/FH. The meaning is identical.

5

1.2.1 JHSAT Accident Analysis

A recent statistical analysis of rotorcraft accidents was published by the U.S. Joint Helicopter

Safety Analysis Team (JHSAT) covering 523 helicopter accidents in 2000, 2001, and

2006 [6, 7]. This dataset includes rotorcraft accidents in the U.S. only. The JHSAT reports

a total rotorcraft accident rate of 9.1× 10−5 accidents/FH, 8.0× 10−5 accidents/FH, and

5.7× 10−5 accidents/FH for these three years, respectively, and notes that for 15 years prior

to the publication of the report the rotorcraft accident rate has remained relatively constant,

indicating stagnation in the safety record. Additionally, 49% of all rotorcraft accidents in

the years studied included at least one injury, with 16% resulting in fatal injury. In total, 483

victims were injured in just three years, including 151 fatalities.

The JHSAT grouped these accidents into a number of different categories, including

industry, activity, occurrence, and phase of flight. By industry, the most accidents occurred

in the personal/private and instructional/training categories (18.5% and 17.9% of accidents,

respectively), indicating that general aviation (GA) helicopters account for a large number

of total accidents. In the occurrence category, which identifies the immediate cause of the

accident, loss of control (41%), autorotations (32%), and system component failures (28%)

account for the bulk of all accidents.3 Thus, the majority of rotorcraft safety incidents may

be attributed to pilot error; however, a significant proportion of accidents are beyond the

pilots’ control.

Loss of control occurrences include any accident in which the pilot loses control over the

aircraft. According to the JHSAT report, the three most prominent causes of loss of control

accidents are performance management issues (e.g., insufficient rotor power or RPM),

dynamic rollover, and exceeding the established operating limits of the vehicle. These

categories make up 15%, 6%, and 5%, respectively, of the total 523 accidents examined in

the report.

3Each accident can have multiple assigned occurrences, which is why the sum of these percentages exceeds
100%.

6

Autorotation accidents typically occurred when the pilot(s) performed the maneuver

incorrectly, either during training or during an actual in-flight emergency. The JHSAT

attributes these incidents primarily to lack of experience on behalf of the pilot(s) or, in the

case of training, the instructor’s failure to intervene and prevent the accident.

System component failures are incidents in which the failure of a specific system on

the vehicle leads to an accident. Organized by system, the system component failures

occur primarily in the powerplant (45.8%), the rotor (38.2%), and the airframe (16.0%).

Organized by initiating event, the bulk of system component failures (50.7%) are related

to improper maintenance procedures, while lesser amounts are due to manufacturing error,

pilot error, and unknown causes (21.5%, 18.1%, and 9.8%, respectively).

1.2.2 JHIMDAT Accident Analysis

A subsequent follow-on analysis by the U.S. Joint Helicopter Implementation Measurement

Data Analysis Team (JHIMDAT) statistically compares the JHSAT data with new data

collected during the three years from 2009 to 2011, which included 415 helicopter acci-

dents [8, 9]. The JHIMDAT attempted to determine if there were any statistically significant4

differences in the accident categories compared to the JHSAT dataset, thus indicating if

corrective actions were improving or failing to improve the flight safety record.

The JHIMDAT found that the number of GA (personal/private and instructional/training)

accidents increased, but the increase was not statistically significant. These classifications

remained the most prominent within the industry category. Within the occurrence category,

the number of loss of control accidents significantly increased, the number of autorotation

accidents remained nearly constant, and the number of system component failures signif-

icantly decreased. Nevertheless, at 21.4% of all accidents, component failures remain a

substantial portion of the total accident count.

Within the system component failure category, neither of the three systems discussed

4Note that the JHIMDAT used a particularly conservative p-value of 0.01 in this analysis.

7

previously showed any significant difference between the two datasets. However, when

categorized by initiating event, the number of accidents attributed to manufacturing error

significantly decreased, the number attributed to maintenance error and pilot error remained

roughly constant, and, most worryingly, the number assigned to unknown causes increased

sharply. Overall, the JHIMDAT concluded that, while the overall number of accidents

decreased, the proportion of accidents in most categories either remained stagnant or

increased, with very few categories showing significant improvements in the number of

incidents.

1.2.3 NTSB Accident Data

Harris’s own analysis of rotorcraft accidents covers a broader span of time than that of the

JHAST/JHIMDAT [10]. Using National Transportation Safety Board (NTSB) data, Harris

studied U.S. rotorcraft accidents from 1964 to 2011. Overall, the data show that the total

number of rotorcraft accidents per year is steadily decreasing despite the increasing size

of the rotorcraft fleet and escalating number of hours flown per year, as can be seen in

Figure 1.1.

Harris credits the recent significant decrease in accident occurrences to the actions of the

International Helicopter Safety Team (IHST), the organization which established the JHSAT

and the JHIMDAT. However, the situation is not as optimistic as Figure 1.1 would perhaps

make it appear. Harris highlights the appearance of accident bubbles that correspond closely

to the introduction of new technologies to the helicopter fleet. For example, the total yearly

number of accidents rises and falls significantly (relative to a straight downward-sloping

trend line) from 1972 to 1986, with a peak during 1980. This correlates closely with the

adoption of rotorcraft powered by a single turbine engine; the total number of these vehicles

in service grew significantly from 1970 to 1985. Harris asserts that this bubble was a result

of the inherent risks associated with new, and potentially poorly understood, technologies

and vehicle configurations, a phenomenon known in the field of reliability engineering as

8

Figure 1.1: Rotorcraft usage and accident numbers from 1964 to 2011, reprinted from
Harris [10] with permission.

infant mortality [11]. The possibility of additional accident bubbles bodes poorly for the

safety of future vertical lift vehicles, which may use configurations and propulsion systems

wildly different from those of the present day.

The NTSB also categorizes rotorcraft accidents by first occurrence, in a manner similar to

the JHSAT report. Over the nearly 50 year period studied by Harris, the four most prominent

accident causes were as follows: loss of engine power (26.6%), loss of control (15.4%),

in-flight collision (14.76%), and airframe/component/system failure/malfunction (12.8%).

Note that the NTSB first occurrence classifications do not align exactly with the JHSAT

accident occurrences,5 but in both studies loss of control and system component failures are

among the most common causes. Figure 1.2 plots the change in accident proportions within

each NTSB classification throughout the same time span.

5For example, accidents attributed to “autorotation” by the JHSAT are likely attributed to “loss of engine
power” by the NTSB, since autorotation typically follows the loss of engine power.

9

Figure 1.2: Accident proportions per first-occurrence classification from 1964 to 2011,
reprinted from Harris [10] with permission.

The proportion of two of the accident classifications, loss of engine power and in-flight

collisions, decreases steadily over time. This suggests that mitigating factors to address these

issues have been successful. However, the proportion of loss of control accidents increases

significantly throughout the time span. This could be a result of helicopters becoming

more difficult to pilot, or being tasked to perform increasingly dangerous missions. It may

also simply be that the proportion of loss of control accidents, which are the third most

common by 2011, increased because the proportion of the two most common accidents as

of 1964 decreased over time. Finally, the proportion of airframe/component/system failures

or malfunctions remains relatively constant, indicating that rotorcraft may not have become

significantly more reliable since 1964.

10

1.2.4 Discussion

The JHSAT and JHIMDAT each issued a number of recommendations to improve the acci-

dent rate. Many of these recommendations are operational: they are focused on improving

pilot training and decision making methods or ensuring the implementation of proper main-

tenance procedures. Interestingly, neither the JHSAT nor JHIMDAT seem to suggest that

safety records could be improved by making changes to the design of the aircraft.

Conversely, Harris recommends improvements to the vehicles themselves to improve

the accident record. For example, Harris advocates increased rotor system inertia to im-

prove the autorotational capability of single-engine helicopters, at the expense of increased

weight empty and reduced useful load, as well as a more widespread adoption of stability

augmentation systems to address loss of control incidents. Harris compares the safety record

of rotorcraft to that of fixed-wing aircraft in the early 20th century and suggests that safety

standards should be dramatically increased for future rotary-wing vehicles. This leads to

Observation 1.2:

Observation 1.2
Component failures comprise a significant number of rotorcraft accidents and this

proportion has not changed dramatically over time. It may be possible to reduce the

rate of component failures through improvements to the vehicle designs themselves in

addition to operational interventions.

1.3 Relevance to Future Rotorcraft Programs

The previous sections have established that LCC and flight safety are significant drawbacks

that dampen the widespread adoption of rotary-wing vehicles. It is likely that these problems,

and their potential solutions, will only become more important in future as the use of rotary-

wing vehicles becomes more widespread in the GA, commercial, and military sectors.

11

1.3.1 Urban Air Mobility

The UAM operating concept was discussed previously in Section 1.1. Many academic,

industrial, and governmental organizations are currently pursuing the development and

implementation of the vehicles, regulatory standards, technologies, and aviation systems

necessary to make UAM a reality [12, 13, 14]. This concept has the potential to revolution-

ize personal and public transportation. A complete UAM system could involve fleets of

thousands of vehicles completing hundreds of thousands of trips daily in just one urban area.

Commercial operations of this size will carry massive maintenance costs and passenger

safety will be of the utmost concern. Therefore, vehicles designed for use in a UAM system

may very well be required to meet higher standards of safety than current helicopters.

Presently, most conceptual UAM systems are based around small electric VTOL (eV-

TOL) configurations carrying only a few passengers [15]. These aircraft exist in a design

space bounded by a large number of constraints: they must be light enough to hover, yet

sturdy enough to protect their occupants in an accident; efficient in both hover and forward

flight to maximize available battery power; and small enough to operate in confined urban

environments, yet carry enough passengers to turn a profit. These strenuous and often

conflicting requirements have resulted in a wide variety of exotic vertical lift configurations,

many of which have not been previously flown.

Many proposed eVTOL concepts feature several rotor systems in novel arrangements

that are uncommon in production rotorcraft. Examples include side-by-side dual rotors,

multirotor systems, tilting rotors, slowed rotors, stopped rotors, variable speed rotors, ducted

rotors, and more. There is a strong relationship between flight safety and rotor system

configuration. It is likely that novel eVTOL designs will require substantial analysis and

testing to ensure that all safety risks are appropriately modeled. Certain configurations have

unique interactions between different aerodynamic components on the vehicle that may

negatively impact safety. For example, Avera [16] showed that rotor–rotor interactions in

an overlapping side-by-side rotor configuration can affect the magnitude of aerodynamic

12

loading on each rotor and that this effect is highly sensitive to the lateral and vertical

separation of the rotors. This could have unintended consequences on the handling qualities

of the vehicle, or the heightened aerodynamic loading could increase the chances of rotor

blade failure.

Equally important is the public perception of these vehicles. Because of the proposed

scale of UAM operations, eVTOL aircraft may become tightly integrated into the urban

fabric and a perception and proven record of safety will need to be maintained. Ito and

Furue [17] found that the perceived safety of a given aircraft drives public acceptance.

Obviously, an in-flight failure, especially over a populated urban area, would significantly

harm public acceptance of the UAM system and the eVTOL vehicle type.

It is unlikely that these aircraft will remain restricted to commercial roles. Several

organizations [18, 19, 20] have announced the development of equally-exotic personal

eVTOL aircraft which will be targeted towards the GA market and it is possible that other

eVTOLs originally developed for UAM will eventually be sold as GA aircraft. This could

lead to widespread proliferation of novel rotary-wing configurations in a market that is

already subject to the largest proportion of rotorcraft accidents, as discussed in Section 1.2.

1.3.2 Military Programs

Note also that the militaries of several nations have been aggressively targeting reliability,

availability, maintainability, and cost (RAM-C) improvements in their rotorcraft fleets for

several decades. Improving the RAM-C characteristics of a vehicle allows the aircraft to

be used more often, due to reduced maintenance downtime, and for less expense, due to

reduced O&S cost. Recent decades have seen a maintenance paradigm shift from preventive

maintenance, to condition-based maintenance (CBM), to the beginnings of a maintenance-

free operating period (MFOP) paradigm [21]. The MFOP policy has been adopted by the

U.S. Department of Defense (DoD) and the British Royal Air Force (RAF).

Under the Future Vertical Lift (FVL) program, the DoD is targeting a MFOP of 100 FH

13

and an operational availability (Ao) of 90%, compared to a current benchmark of less

than 10 FH and 75%, respectively. For more detail on present and future efforts to reduce

maintenance and cost burdens of military rotorcraft, the reader is encouraged to review the

thesis by Bellocchio [21]. The future of military rotorcraft is relevant to the commercial

and GA markets, because a large number of successful civilian rotorcraft are derived from

military programs [1]. Thus, requirements set by military procurement offices will be

embedded in the design of civilian rotorcraft for decades to come.

The previous discussion can be summarized in Observation 1.3:

Observation 1.3
Improving LCC and flight safety are key objectives or requirements in modern and

future rotary-wing development programs, in both the civilian and military sectors.

1.4 A Common Denominator

Observations 1.1 and 1.2 summarize two of the most prominent deficiencies of rotorcraft

compared to fixed-wing aircraft: high life-cycle costs and a poor safety record. Each of these

issues is a significant challenge and overcoming both will require a large-scale coordinated

effort involving rotorcraft operators, pilots, industry members, and regulators. However,

Reddick and Harris, among other authors, believe that both problems can be addressed using

engineering methods. That is, modifying helicopter designs before production and fielding

to improve flight safety or reduce O&S cost is feasible. Of course, solutions that improve

rotorcraft safety, such as enhanced stability augmentation systems, may not improve O&S

cost. In fact, the opposite is likely true. Conversely, some efforts to make rotorcraft more

affordable, such as lowering safety margins, come at the expense of flight safety, which is

unacceptable.

However, a common denominator can be found in the category of component failures.

In terms of O&S costs, Reddick and Harris both note that a large portion of operating cost is

driven by the need to replace components that have either been damaged, failed, or worn

14

out. Further, failures or malfunctions in airframe components is listed as a leading cause of

helicopter accidents by the JHSAT, the JHIMDAT, and the NTSB. Note from Figure 1.2 that

the proportion of accidents induced by component failures has not decreased significantly

over nearly 50 years, indicating that any efforts to mitigate this accident cause have been

largely ineffective.

Hypothetically, an effort to reduce the rate at which onboard systems and components

fail would improve both safety and O&S costs, at the expense of development and possibly

manufacturing costs. Detailed trade-off studies between O&S costs, manufacturing costs,

and development costs could potentially identify a level of investment at which LCC and

safety are both improved. Before such a study can be performed, the primary causes of

component failures on rotorcraft must be understood and classified. In this section, the

operating cost and flight safety studies discussed previously will be analyzed in greater

detail.

1.4.1 Component Replacement Costs

Reddick and Harris both discuss the cost of replacing failed or worn out components in

their analyses of operating cost. In Reddick’s analysis, the blades of the rotor system are

an important driver of maintenance costs, making up 80% of the total rotor system support

cost, which in turn makes up approximately 30% of the total vehicle maintenance cost. As

discussed previously, many of the costs incurred by rotor blades are associated with blade

damage or failure: foreign object damage (44%), cracking (9%), combat damage (9%),

overstresses (9%), and debonding (6%) are the key cost contributors. Reddick also notes

that rotor blades are difficult to repair; approximately half of all removals to address the

aforementioned items result in the blade in question being scrapped and a new blade fitted

for replacement.

As discussed previously, the cost of replacing life-limited parts is a major driver of O&S

costs. Many of these replacement requirements are due to concerns of fatigue failure. These

15

parts are considered fatigue-life limited and must be replaced after a certain number of flight

hours or years, even if they have not been visibly damaged. For example, the Robinson

R22 main rotor blade life is limited to 2200 FH or 10 years, the Bell 206B main rotor blade

is fatigue life limited to 5000 FH, and the Sikorsky S-76 main rotor blade is fatigue life

limited to 28,000 FH. As of the time of this writing, replacement costs are $16,200, $47,530,

and $162,390 per blade, respectively [3].6 Although Harris does not attempt to rigorously

calculate the contribution of these fatigue-life limited parts to the overall O&S cost, it is

easy to see their significance.

1.4.2 Component Failure Causes

Additionally, NTSB data collected from 1964 to 2011 indicates that approximately 12% of

all rotorcraft accidents are due to system or component failure. In this category, over 80% of

failures occur in the main and tail rotor systems [10], which include the the rotor, drivetrain,

and control system. In terms of failure modes, the leading cause of component failures

was fatigue fracture, which was responsible for 23% of all component failures leading to

accidents. Additionally, component failures are frequently caused by errors in assembly,

installation, or maintenance.

Davies, Jenkins, and Belben [22] report that 54.8% of all component failures examined

by the AugustaWestland (now Leonardo) Materials Technology Laboratory can be attributed

to fatigue. Additional failure modes cited by the authors include corrosion (11.7%), wear

(10.3%), and overload (10.0%). The JHSAT and JHIMDAT reports do not discuss accident

statistics in enough detail to determine the failure mode of the component involved.

1.4.3 Discussion

It is clear that fatigue failure is a leading cause of component failure on rotorcraft, and that

fatigue is also a primary driver of O&S costs and responsible for a significant proportion

6The R22 uses a two-bladed teetering rotor system and both blades must be replaced simultaneously, bringing
total replacement cost to $32,400.

16

of helicopter accidents. Additionally, the rotor systems appear to be the common locations

of fatigue failure; failures in these systems are made more serious by the high cost of rotor

blade replacements and the near-inevitability of an accident after a rotor failure occurs.

Fortunately, fatigue is a relatively well-understood failure mode and easier to analyze using

engineering methods than other common rotor failure modes, such as foreign object damage

or combat damage, which occur in a more unpredictable fashion. Thus, efforts to improve

the resistance of rotor components to fatigue damage could result in safer, more affordable

rotary-wing aircraft. This leads to Observation 1.4:

Observation 1.4
Targeting fatigue life improvements in the rotor system could improve rotorcraft O&S

costs and flight safety simultaneously.

In the next section, the underlying causes of fatigue damage in rotorcraft will be de-

scribed.

1.5 Causes of Fatigue Damage

Due to their fundamental nature, rotary-wing aircraft are highly susceptible to fatigue

damage. In fact, they are much more susceptible to fatigue failure and resulting accidents

than fixed-wing vehicles. The production of lift using a rotating wing produces highly

dynamic airloads which are realized as oscillating loads applied at a high frequency [4]. In

contrast, lift generation using a fixed wing produces relatively steady airloads and when

dynamic loading occurs the associated frequencies and cycle counts are typically much

lower. It is this dynamic loading environment that is responsible for the accumulation of

fatigue damage and eventual fatigue failure if components are not regularly removed from

service.

There are a number of factors contributing to the dynamic loading produced by rotating

wings. Fundamentally, the rotor loading environment is made up of aerodynamic, centrifugal,

inertial, and gravitational forces, which vary based on the flight condition of the vehicle. This

17

section will attempt to concisely describe the flight conditions and loading environments

most relevant to fatigue life determination. For a more detailed explanation of fatigue loads

in rotorcraft, the reader is encouraged to review the technical report by Lombardo [4].

1.5.1 Forward Flight

Perhaps the most common flight condition for any aircraft is steady forward flight. In a

fixed-wing vehicle, lift is generated by air rushing over the wings. Because each portion of

the wing experiences the same wind velocity at all points in time, the lift produced by the

fixed wing is effectively steady. However, in rotary-wing vehicles, the rotation of the wing

during edgewise flight alters the magnitude and direction of the relative wind at each point,

both radially and azimuthally. In steady level flight, a specific radial point on the blade will

experience azimuthal variation in airspeed and angle of attack, resulting in dynamic airloads

that vary over the course of one revolution. These are known as cyclic airloads and each

period of oscillation is referred to as a cycle. This phenomenon is illustrated in Figure 1.3.

Typically, the forward velocity of the vehicle correlates positively with the magnitude of the

load cycle. Knowledge of the magnitude and number of cycles accumulated over a specified

period is a critical step in calculating the fatigue damage, and the remaining safe life, of a

component.

Cyclic airloads are particularly harmful due to their rapid rate of accumulation. For

example, Lombardo notes that a rotor angular speed of 5 Hz will result in load cycles

accumulating at a rate of 18,000 cycles/FH. Over the course of a 10,000 FH service life, the

rotor system will have accumulated approximately 108 cycles due to forward flight cyclic

loading alone. Thus, cyclic loading is known as high cycle fatigue (HCF), in contrast to low

cycle fatigue (LCF). This distinction will be discussed further later in this section.

18

Figure 1.3: Conceptual illustration of the lift force produced by a rotor at different radial
and azimuthal stations, reprinted from Lombardo [4] with permission.

1.5.2 Higher-Order Aerodynamic Effects

The aerodynamic environment is further complicated by rotor–fuselage interactions and

rotor–rotor interactions, which produce additional unsteady loads. Further, higher-order

aerodynamic effects such as high-speed compressibility, blade-tip vortices, reverse flow, and

dynamic stall each add additional dynamic loads. In addition to oscillating aerodynamic

loads, a rotor in edgewise flight also experiences oscillating inertial loads due to blade

flapping and lagging, static centrifugal forces, and static gravitational forces.

In hovering flight or vertical climbs, the effect of cyclic aerodynamic loading is largely

reduced. However, cyclic loading can still be induced by ambient wind, center of gravity

imbalance, and rolling moments produced by the tail rotor in a single main rotor (SMR)

configuration. Additionally, rotor–fuselage and rotor–rotor interactions continue to cause

dynamic loading in axial flight.

The region between hover and forward flight, known as transitional flight, is also a

significant source of fatigue loads. Because the flight condition is constantly changing

during transitional flight, the blade response is similarly transient; this may produce greater

deformations in the blade structure, which are accompanied by increased internal loads.

19

Lombardo notes that the transition from forward flight to hover generally occurs more slowly

than the reverse operation because the pilot is simultaneously preparing to land. Thus, the

vehicle spends more time in the transitional flight condition and more fatigue cycles are

accumulated.

1.5.3 Low Cycle Fatigue

Two of the most important causes of LCF in rotorcraft are ground–air–ground (GAG) cycles

and autorotation. The GAG cycle is simply a single cycle describing the oscillation between

the minimum steady load on a part, which usually occurs on the ground, and the maximum

steady load on the same part, which usually occurs in-flight, perhaps during a maneuver.

GAG cycles result in LCF loading at a rate of 1 cycle/flight. LCF loads superimposed

with HCF loads can cause said HCF loads to be more damaging than would otherwise be

predicted.

If autorotation occurs during a flight, the magnitude of the GAG cycle is amplified

because the rotor is operating in a manner opposite of its normal state, in essence acting

as a windmill and extracting power from the air. This results in steady loads on some

rotor components being nearly opposite of what would be experienced in normal flight, and

the minimum load in the GAG cycle becomes the loads experienced during autorotation.

Lombardo notes that autorotation is responsible for a large proportion of fatigue damage in

training helicopters due to the frequency with which the maneuver is practiced.

1.5.4 Other Sources of Fatigue Damage

Fatigue loads can also be induced by taxiing, droop stop pounding, ground resonance,

operating from uneven surfaces, operating from ships, and more. These loading patterns are

inherent to and unavoidable in any vehicle configuration which includes a rotor in edgewise

flight. Of course, the design and orientation of a specific rotor affects the fatigue loads

that are inflicted upon it. For example, in a SMR configuration, the tail rotor typically

20

experiences a higher number of load cycles than the main rotor because they rotate at a

higher speed. Additionally, yaw maneuvers result in increased cyclic loading on the tail

rotor. In a tandem configuration, the effect of rotor–rotor interactions is much stronger than

that of a SMR. Ultimately, predicting the strength and frequency of fatigue loads on rotor

systems requires detailed knowledge of the rotor design, vehicle configuration, and expected

operational profile of the vehicle.

1.5.5 Influence on Accident Rates

Support for the previous assertion that fatigue damage is more prevalent in rotary- than

fixed-wing aircraft can be found in the analysis of accident reports. In 1983, Campbell and

Lahey [23, 24] published a study of 1885 fatigue-related accidents in fixed- and rotary-wing

aircraft occurring from the year 1927 to 1981. Of these accidents, a total of 1466 were

attributed to fixed-wing vehicles and 419 were attributed to rotorcraft. Considering that, in a

given year, the number of fixed wing aircraft is roughly two-to-three orders of magnitude

greater than the number of operational helicopters [4], rotorcraft appear to be much more

susceptible to fatigue accidents.

Campbell and Lahey report that the most common location of fatigue failure in rotorcraft

is the engine or transmission, accounting for 32% of all observed accidents. The tail rotor

is responsible for 24% of accidents, followed by the main rotor at 13%. If the tail rotor

and main rotor are considered together, rotor systems account for 37% of all fatigue-related

accidents in rotorcraft and are responsible for 155 accidents resulting in 248 fatalities and the

destruction of 74 aircraft. Other common locations of fatigue failure in rotorcraft include the

fight controls, airframe, and landing gear. At the time of the report’s publication, rotorcraft

experienced an average fatigue-related accident rate of 31 accidents/year, compared to

69 accidents/year for fixed-wing aircraft.

The previous discussion can be summarized in Observation 1.5:

21

Observation 1.5
Fatigue damage is unavoidable in rotorcraft due to the aerodynamic forces produced by

a rotating wing in edgewise flight. This is reflected in the proportionally higher fatigue-

related accidents in rotary-wing aircraft compared to their fixed-wing counterparts.

1.6 Research Objectives

The discussion of the previous sections is summarized in Table 1.1, which reprints all the

key observations in Chapter 1 for reference.

Table 1.1: Summary of all key observations in Chapter 1.

Observations

1.1 High LCC associated with rotorcraft are driven by part replacement and repair
requirements. Rotor blades make up a significant portion of this cost due to their
extreme operating environment, high purchase price, and life-limited nature.

1.2 Component failures comprise a significant number of rotorcraft accidents and this
proportion has not changed dramatically over time. It may be possible to reduce the
rate of component failures through improvements to the vehicle designs themselves
in addition to operational interventions.

1.4 Targeting fatigue life improvements in the rotor system could improve rotorcraft
O&S costs and flight safety simultaneously.

1.5 Fatigue damage is unavoidable in rotorcraft due to the aerodynamic forces produced
by a rotating wing in edgewise flight. This is reflected in the proportionally higher
fatigue-related accidents in rotary-wing aircraft compared to their fixed-wing coun-
terparts.

1.3 Improving LCC and flight safety are key objectives or requirements in modern and
future rotary-wing development programs, in both the civilian and military sectors.

Future rotorcraft development programs will be influenced by the twin objectives of

mitigating rotor system O&S costs (Observation 1.1) and reducing in-flight component

failures (Observation 1.2). Analyses of O&S cost drivers and accident causes suggest that

improving the fatigue life of rotor system components could have a significant positive

impact in both areas (Observation 1.4). Because fatigue damage is unavoidable in rotary-

wing aircraft (Observation 1.5), the problem cannot simply be “designed out” of the vehicle.

22

Currently, revolutionary vertical lift vehicles with new and unique configurations and

strenuous cost and safety requirements are being designed and prototyped (Observation 1.3).

In order to meet these requirements, these vehicles should be designed from the beginning

with the goal of maximizing the fatigue life of critical rotor system components. That is,

fatigue life should be a design driver rather than a fallout property.

Although fatigue life is not typically considered as a primary design driver in modern

helicopters, an analogy can be found in the wind turbine industry. The economic feasibility

of a wind turbine is highly dependent on maintaining a low maintenance burden, especially

in off-shore wind farms where access is difficult or expensive [25]. Thus, wind turbine

components are typically designed for a fatigue life of 20 years or more [26]. Wind turbines

and rotorcraft are not entirely dissimilar: each constantly accumulates fatigue damage in

operation due to the cyclic nature of the airloads acting on the rotor. The intensity of these

loads varies depending on the magnitude, direction, and turbulence intensity of the wind

flowing through the turbine, producing a variety of loading environments similar to the

rotorcraft flight conditions discussed in Section 1.5.

Several researchers have developed design frameworks to optimize wind turbine blade

fatigue life in the early design stages. Ronold, Wedel-Heinen, and Christensen [26] de-

veloped a probabilistic model of the fatigue damage accumulated by a wind turbine rotor

blade. Random variables were used to capture the stochastic nature of airloads and material

strength. Simple stress–strain relationships, S-N curves, damage accumulation theories,

and first-order reliability methods were used to determine the probability of fatigue failure

during the 20 year design life. Toft and Sørensen [27] discuss a similar, but more complex,

reliability-based design framework intended to estimate the reliability of a wind turbine

blade in both fatigue failure and ultimate failure. Florian and Sørensen [25] incorporated a

fatigue damage model into a maintenance and repair simulation to optimize the LCC of an

individual wind turbine.

The existence of fatigue design frameworks for wind turbine rotor blades establishes a

23

precedent of feasibility. It is reasonable to assume that a similar fatigue design framework

could be developed for rotorcraft. Such a framework would enable the use of fatigue life as

a driver in the early stages of development, allowing engineers to conduct design exercises

and trade-offs to improve fatigue life prior to the detailed design and construction of the

vehicle.

However, the fatigue life prediction problem is complex and multi-dimensional. A

complete analysis of the fatigue life of a specific component must consider the structural

and material design of the component; the mean and oscillatory loads on the component,

including aerodynamic, centrifugal, and gravitational forces; and the manner by which the

vehicle’s operational profile influences these loads. The primary focus of this research will

be reviewing, testing, and implementing methods to efficiently solve the fatigue life problem

in order to achieve cycle times suitable for use in a rotorcraft design framework. This leads

to the fundamental research question of this thesis:

Research Question 0

How can the fatigue life of rotor system components be efficiently evaluated for use as

a design driver in a rotorcraft design framework?

A flow chart summarizing the logical steps leading to the formulation of Research Question 0

is presented in Figure 1.4.

Obs.
1.1

Obs.
1.2

Obs.
1.3

Obs.
1.4

Obs.
1.5

RQ 0

Figure 1.4: Flow chart summarizing the formulation of Research Question 0.

24

The remainder of this dissertation will involve answering Research Question 0 and any

subsequent research questions that arise. To that end, the following research objectives will

be pursued:

1. Review the strengths and weaknesses of traditional and modern rotorcraft fatigue

design methods.

2. Formulate a new rotorcraft fatigue design methodology to address the weaknesses of

traditional methods.

3. Conduct virtual experiments to test, validate, and refine different elements of the

methodology.

4. Demonstrate the viability of the methodology using a hypothetical fatigue design

exercise.

Chapter 2 will feature literature review necessary to satisfy Research Objective 1, cover-

ing rotorcraft design methods, traditional fatigue design practices, and modern improvements

to those practices. Research Objective 2 will be the focus of Chapter 3, which concerns the

formulation of the framework and subsequent research questions. Chapters 4 and 5 will

address Research Objective 3 by constructing virtual experiments using industry-standard

research and simulation packages. Finally, Research Objective 4 will be considered in

Chapter 6, which will document a proof-of-concept fatigue design study to demonstrate the

applicability of the new methodology.

25

CHAPTER 2

REVIEW OF ROTORCRAFT DESIGN METHODS

In order to answer Research Question 0 and address Research Objective 1, an in-depth

literature review was conducted. The findings of the literature review are presented in this

chapter.

This review attempts to answer three literature questions related to the subjects of

vehicle design and fatigue design. These are distinct from research questions in that they

are intended to be answered by reviewing preexisting research rather than by conducting

original research.

First, the aerospace vehicle design process in general, and the rotorcraft design process

in particular, will be reviewed. The objective of this activity is to understand how the fatigue

design process integrates with the overall design process; that is, when and how fatigue

design influences or is influenced by vehicle design. Additionally, popular rotorcraft design

tools will be examined to assess their feasibility for fatigue design or other RAM-C design

activities. This is captured by Literature Question 1:

Literature Question 1

How does fatigue design fit into the overall vehicle design process? Can existing

rotorcraft design tools be effectively utilized for fatigue design?

Next, the traditional rotorcraft fatigue design process will be examined. This will include

discussion of both fatigue damage theory and fatigue design methods. The function of

specific theories, models, and practices will be identified and any disadvantages with respect

to Research Question 0 will be highlighted. This leads to Literature Question 2:

Literature Question 2

What are the most important elements of the traditional fatigue design process? What

are the associated disadvantages and drawbacks?

26

Finally, a survey of modern rotorcraft fatigue design studies or methodologies will be

presented. Particular attention will be paid to those that seek to improve upon traditional

methods using new computational methods or simulation packages. The completeness of

each study or methodology, or the degree to which it satisfies Research Question 0, will also

be assessed. This is summarized by Literature Question 3:

Literature Question 3

How have other researchers improved upon the traditional rotorcraft fatigue design

process?

Throughout the chapter, key observations related to the aforementioned literature ques-

tions are highlighted. Following the review, specific gaps in the literature are derived from

these observations.

2.1 Rotary-Wing Vehicle Design

Aircraft design is a complex, iterative, and multi-disciplinary process that seeks to derive

the best possible solution to a set of requirements. Prior to constructing a rotor fatigue

design framework, the various elements of the aircraft design process must be understood.

This section provides an overview of the rotorcraft design process, followed by detailed

discussions of tools used in the conceptual and preliminary design of rotary-wing vehicles.

The section is concluded by examining the state of the art in rotor system preliminary design

tools.

For reference, Literature Question 1, which is the focus of this section, is reprinted

below:

Literature Question 1

How does fatigue design fit into the overall vehicle design process? Can existing

rotorcraft design tools be effectively utilized for fatigue design?

27

2.1.1 Overview

Anderson [28] defines aircraft design as “the intellectual process of creating on paper . . . a

flying machine to meet certain specifications and requirements established by potential users

and/or pioneer innovative, new ideas and technology”. This process is typically divided into

a number of stages or phases based on the various design activities and the order in which

they occur. The definition of each phase is somewhat arbitrary and varies between authors,

institutions, or organizations. For example, Anderson, in a discussion of fixed-wing vehicle

design, divides the design process into three stages termed conceptual design, preliminary

design, and detail design. Johnson [29], discussing rotary-wing vehicles, describes only

two stages, termed preliminary design and detail design. Leishman [30], also discussing

rotorcraft, blends the conceptual design and preliminary design stages into a single stage

termed conceptual and preliminary design, which is followed by detail design.

It appears that, in the case of rotorcraft design, the distinction between the conceptual

and preliminary design stages may be insignificant or difficult to define. For the purposes

of this research, a line is drawn between conceptual and preliminary design at the point at

which rotor system analysis transitions from simple tools such as momentum theory and

blade-element theory (BET) to more complex analyses using comprehensive codes and

flexible blade models. This distinction will be discussed in further detail later in this section.

2.1.1.1 Requirements

Requirements are “a clear set of specifications, which are defined based on the needs of a

potential customers or . . . the need to meet a specific military requirement” [30]. In aircraft

design, requirements may be specified by the customer, the manufacturers themselves, or

other stakeholders. Typically, requirements for a specific vehicle program are written into a

contract after negotiations between the manufacturer and the customer. Alternatively, the

customer will issue a request for proposals (RFP), and multiple manufacturers will submit

competing designs in response. After winning the contract, the manufacturer is responsible

28

for designing and/or producing a vehicle that meets all the specifications laid out in the

contract.

Leishman provides examples of typical requirements for civilian and military rotorcraft

programs. Civilian rotorcraft are typically designed with an eye towards reducing cost

and internal/external noise while increasing safety, passenger comfort, reliability, and

maintainability. Comparatively, military rotorcraft are focused primarily on performance,

speed, maneuverability, flexibility, damage tolerance, and survivability.

2.1.1.2 Conceptual Design

The conceptual design stage encompasses all design activities involved in determining

the overall configuration and size of the vehicle [28]. Design decisions are driven by the

vehicle requirements: the end goal of the conceptual design stage is to produce a high-level

layout of a vehicle that is capable of meeting all specifications. This design should also

be optimized; that is, the design selected should be the best possible design that satisfies

the requirements. During conceptual design, engineers are primarily concerned with the

aerodynamics, propulsion, performance, and weight of the aircraft. Anderson notes that

processes such as structural design and control system design are typically not the focus of

the conceptual design stage. However, certain decisions within the conceptual design stage

may be made by qualitatively considering the impact on the vehicle structure or control

system.

This stage also concerns the aerodynamic design of the rotor system(s). Leishman

asserts that the main rotor is the single most important component of the helicopter and, as a

result, “helicopter design is often synonymous with rotor aerodynamics” [30]. Because the

performance of the vehicle is highly dependent on the performance of the rotor(s), in-depth

design of this system begins early in the design process. This process typically begins with

a selection of the rotor configuration (e.g., single main rotor, tandem, coaxial, etc.) and basic

sizing [29]. Other rotor design variables of interest include the number of blades, solidity,

29

tip speed, and disk loading. Additionally, the designer may consider more complex variables

such as the geometric twist distribution, planform shape, and airfoil(s). Consideration is

also given to the aerodynamic environment in which the rotor will operate, defined by

Mach number, advance ratio, and blade loading. Other rotor conceptual design activities

include prediction or calculation of the weights of each component and estimation of basic

performance measures such as equivalent lift-to-drag ratio, propulsive efficiency, and figure

of merit (FM). Rotor conceptual design processes typically use elementary rotor theories

such as momentum theory, BET, or combined blade-element–momentum theory (CBEMT)

due to their speed and flexibility [30], which allows the designer to quickly explore a large

design space.

A modern example of the rotor conceptual design process is given by Bagai [31], who

describes the aerodynamic design of the Sikorsky X2 Technology Demonstrator (X2TD)

rotor system. The X2TD rotor system consists of two hingeless coaxial lift-offset rotors.

Additionally, the blades have a complex planform shape, a non-monotonically-decreasing

geometric twist distribution, and a variety of airfoils. The aerodynamic design of the rotor

system was accomplished by improving upon a previously-designed vehicle, the Sikorsky

XH-59A, using the Sikorsky Generalized Rotor Performance (GRP) methodology. GRP

uses a relatively simple rigid blade lifting surface model with uniform or non-uniform

inflow, supplemented by airfoil lookup tables and stall models. Bagai notes the simplicity

of the model allows for rapid design space exploration but resulted in loss of fidelity in

certain cases. The primary design activities described by Bagai include blade geometric

design, including airfoil selection, planform design, and blade twist specification; and rotor

performance prediction at several values of lift-offset, shaft tilt, and blade loading. Note that,

as discussed previously, it is difficult to classify this work as conceptual versus preliminary

design. However, because Bagai focused primarily on rotor aerodynamics and did not make

significant considerations for the structural design of the rotor blade, it is more appropriately

classified as conceptual design.

30

2.1.1.3 Preliminary Design

In the preliminary design stage, the layout produced during conceptual design is further ana-

lyzed, refined, and expanded [28]. Only minor changes are made to the overall configuration

of the vehicle: the primary focus is on structural analysis and design, as well as the design

of certain important systems, such as the control system. Additionally, the analyses become

more complex. Wind tunnel testing and computational fluid dynamics (CFD) are used to

understand and improve the aerodynamics of the vehicle, leading to minor changes in the

layout. By the end of the preliminary design stage, the configuration should be frozen and

rigorously defined.

During this stage, the rotor design discussed previously is similarly refined and expanded.

The rotor hub type (e.g., articulated, teetering, hingeless, etc.) will be selected based on the

desired handling qualities, aeroelastic stability, and maintainability of the rotor [29]. The

structure of the rotor blade will be considered, and a basic cross-sectional design may be

created. Mass and stiffness distributions along the blade can be calculated, which, when

combined with the hub design, enable more detailed analysis using more advanced tools

such as comprehensive analysis programs. Comprehensive analyses can predict the complete

aeromechanical behavior of a rotor system, synthesizing the fields of dynamics, structural

dynamics, aerodynamics, and aeroelasticity. These tools also enable the prediction and

improvement of rotor characteristics such as stability, vibration, and noise. Because the tools

and theories used in rotor preliminary design require far greater runtime than the conceptual

design techniques discussed earlier, preliminary design is focused only on exploring a small

portion of the design space around the conceptual design point.

Blackwell and Millott [32] provide a modern example of the rotor preliminary design

process. This work follows from Bagai’s conceptual design of the X2TD rotor and concerns

the dynamic design of the X2TD rotor system. The authors discuss a rotor preliminary design

methodology that combines the Sikorsky KTRAN, RCAS, and CAMRAD II comprehensive

codes. This methodology was used to conduct a trade study on blade thickness, spar

31

wall thickness, hub separation, blade precone, blade natural frequencies, and aerodynamic

efficiency. The primary goals of this study were to provide sufficient inter-rotor tip clearance,

reduce vibrations, achieve aeromechanical stability, measure blade and control system loads,

and appropriately place blade natural frequencies to avoid resonance conditions.

These activities are classified as preliminary design because they follow on from the con-

ceptual design activities discussed by Bagai, do not significantly alter the rotor configuration

selected in conceptual design, and exhibit a greater focus on structural design and analysis

of the rotor blades. Note also that more advanced aeromechanical simulations are used to

support the preliminary design activities, in contrast to the simpler rigid blade aerodynamic

models used in conceptual design.

2.1.1.4 Detail Design

Anderson colloquially defines detail design as the “nuts and bolts” stage. Prior to this stage,

all design and analysis of aerodynamics, propulsion, structures, performance, and flight

controls should be completed. Now, each component of the aircraft, such as ribs, spars, and

skin, must be precisely designed to produce detailed manufacturing specifications. Fasteners

are also selected, sized, and placed on the vehicle. At the end of the detailed design phase,

the aircraft should be ready for manufacturing and eventual delivery.

Johnson mentions that, in the design of rotor systems, the detail design phase includes an

in-depth structural analysis of all the components of the hub and blades as well as detailed

measurements or predictions of all aerodynamic and inertial loads. At this stage, prototypes

of the rotor system will be constructed for aerodynamic and structural analysis. According

to Leishman, wind tunnel testing, ground testing, construction of a prototype vehicle, and

flight testing may also occur during the detail design phase. Others, such as Arden, Chappell,

and Reddick [33], consider construction and flight testing of the prototype vehicle to be

part of a post-design phase they term “development”. Needless to say, these activities are

inherently expensive and time-consuming, and any major redesigns at this stage could result

32

in significant budget and schedule overruns.

2.1.1.5 Discussion

The rotorcraft design process discussed previously is roughly summarized in Figure 2.1.

As the design process progresses, the level of detail and precision increases, from the

general layout established in the conceptual design change to the precise manufacturing

specifications established in the detail design phase. Simultaneously, the complexity and

accuracy of the analysis tools used to support the design effort increases.

Requirements

Conceptual design:
• Overall layout
• Weight and

performance
• Rotor configuration

and sizing
• Elementary theories

Preliminary design:
• Structural design
• Rotor hub design
• Blade mass and

stiffness
• Comprehensive

analyses

Detail design:
• Design for fabrication
• Precise structural

design
• Wind tunnel testing
• Prototype flight

testing

Design output

Figure 2.1: Flow chart summarizing the rotorcraft design process.

In the early design stages, low-fidelity tools are used to enable rapid exploration of

the design space, trade studies, and optimization. In later stages, these tools are replaced

with higher-fidelity simulation packages, wind tunnel tests, and possibly flight tests, which

provide increased accuracy at the expense of much greater cycle times. Thus, later stages

of design are focused more on exploring a very small space around the previously selected

design.

Mavris [34] notes that due to the structure of the design process, the amount of design

freedom decreases monotonically throughout each stage. That is, major decisions regarding

the vehicle design are made in early design stages when their impacts may not be fully

33

understood due to the low fidelity of the analyses used in these stages. These decisions also

have the most significant impact on the overall performance and cost of the final vehicle

design. Thus, developing methodologies to use higher-fidelity tools in the conceptual and

preliminary design stages is a common focus of modern aircraft design research. Related

efforts will be discussed later in this document.

In the context of fatigue design, the preliminary design stage appears to be the earliest

point at which fatigue life predictions can be reasonably accomplished. In the conceptual

design stage, the rotor blade structural design is not advanced enough to determine blade

loads with reasonable accuracy. Additionally, conceptual design tools are typically more

concerned with the aerodynamic performance and efficiency of the rotor system and may

not make any provisions to predict blade loads. Finally, the computational expense of

rotorcraft fatigue design, to be discussed in Section 2.2, means that these analyses are too

time-consuming for use in conceptual design activities.

However, in the preliminary design stage, the structural design of the rotor blade will

progress to a point at which fairly accurate prediction of blade loads may be possible.

Comprehensive tools currently used to assist in preliminary design could be leveraged to

predict blade loads for fatigue analysis. The small size of the preliminary design space is

more suited for the high-fidelity, computationally expensive programs used for fatigue life

prediction. This leads to Observation 2.1:

Observation 2.1
The preliminary design stage is the earliest point in the rotorcraft design process at

which fatigue design is feasible.

2.1.2 Vehicle Design Tools

The past few decades have seen a proliferation in the number of rotorcraft vehicle design

tools. This terminology refers to software tools used primarily in the conceptual design

phase to assist in the design and analysis of rotary-wing vehicles. The use of the word

34

vehicle implies tools that consider the entire aircraft in a multi-disciplinary manner, rather

than other design tools that focus only on a specific system or sub-system on the vehicle.

This section provides an overview of some of these tools. They are divided into categories

based on their primary use. Performance-focused tools are those that are primarily concerned

with traditional conceptual design activities as described in Section 2.1.1. They are typically

concerned primarily with vehicle weight, sizing, aerodynamics, propulsion, and performance.

RAM-C–focused tools are those that are intended to predict the reliability, availability,

maintainability, and cost aspects of the concept vehicle. These tools may be coupled with

performance-focused tools to provide a more complete vehicle design environment or may

be operated in a standalone manner.

2.1.2.1 Performance-focused Tools

Perhaps the most well-known example of a performance-focused tool is NASA Design

and Analysis of Rotorcraft (NDARC), a rotorcraft design code developed at NASA Ames

Research Center [35]. NDARC uses a robust collection of component models, including

rotors, wings, fuselages, drive systems, and more, which enable the user to construct nearly

any rotary- or fixed-wing vehicle concept imaginable. Separate design and analysis routines

within NDARC allow the user to either size a “rubberized” concept based on one or more

design missions and flight conditions, or analyze the performance of a sized concept in

any number of missions or conditions. An outline of the NDARC program is included in

Figure 2.2.

NDARC relies on low-fidelity models similar to those discussed in Section 2.1.1 to

reduce computational expense and design iteration time. For example, many of the compo-

nent weight and power consumption models are constructed using regressions of historical

rotorcraft component data. Regression models used in NDARC are, in general, applicable to

a wide variety of vertical lift concepts because they are used in a system-by-system buildup

of the vehicle, rather than attempting to capture the performance of the entire vehicle in

35

Figure 2.2: Outline of the NDARC program, reprinted from Johnson [36] with permission.

one model. Simple physics-based models such as momentum theory, BET, and lifting line

theory are also used for the analysis of rotor aerodynamics and performance. Due to the low-

fidelity and compartmentalized nature of the NDARC analysis, some interactions between

systems may be lost. However, depending on how the designer chooses to model the vehicle,

reasonable flexibility and accuracy can be achieved. NDARC outputs include a detailed

vehicle weight breakdown, a description of the sized configuration, and detailed performance

assessments and mission analyses. NDARC will be discussed further in Section 4.4.2.1.

Although NDARC is primarily performance-focused, some RAM-C capabilities have

been integrated. Until recently, NDARC used a relatively basic cost model developed by

36

Harris and Scully [37], known as the “rotorcraft cost too much (CTM)” model. This model

estimates unit cost and direct operating cost using a statistical analysis of data derived from

historical aircraft. The resulting equations are based on airframe weight, empty weight,

maximum takeoff weight, fuel weight, installed power, and the number of rotor blades.

Although this model may provide a reasonable first-order prediction of general cost

characteristics, similar simple cost models have proved inadequate when predicting the

outcomes of certain RAM-C trade-offs [38]. For example, simple cost models were unable to

correctly predict the results of a historical helicopter upgrade program: the model predicted

increased maintenance costs based on the gross weight increase when, in fact, the actual

maintenance cost was much lower due to reliability improvements in the upgraded vehicle.

Fortunately, there are a large number of more detailed rotorcraft RAM-C models available.

Many tools implementing these models use a system-level buildup philosophy similar to

that of NDARC, and some are even designed to interface directly with NDARC.

2.1.2.2 RAM-C–focused Tools

RAM-C–focused tools are a more recent development in the rotorcraft community. The

development of these programs has been fueled by a recent push to produce more affordable

and reliable rotorcraft, especially in the military sector, as discussed in Section 1.3. This

section provides a brief overview of selected RAM-C–focused tools and methodologies.

Bellocchio [21] developed a discrete event simulation tool to model the reliability and

availability of vertical lift systems. This program allows the user to build a reliability model

of a vehicle by specifying the time to failure (TTF) and time to repair (TTR) of its component

systems using statistical distributions. The tool then simulates vehicle operations: missions

are “flown” and the vehicle must be “repaired” when components fail. The stochastic nature

of system failure is captured using Monte Carlo simulation. The primary outputs from the

simulation are aggregate predictions of MFOP and maintenance recovery period (MRP),

which are used to assess the reliability and availability of the vehicle. The author used the

37

results of the simulation to identify necessary improvements to meet reliability targets and

investigate the impact of different preventive maintenance policies. Notably, Bellocchio

did not attempt to compute the cost of these maintenance actions or predict the specific

reliability characteristics of individual systems; the necessary TTF and TTR distributions

are generated randomly or, in some examples, derived from historical maintenance data.

Price, Ashok, Armstrong, et al. [39] developed a similar discrete event simulation,

including a more detailed phased mission simulation and additional fault types. The authors

developed the simulation to predict traditional RAM-C metrics including Ao, mean time

between failures (MTBF), and maintenance man-hours per flight hour (MMH/FH), in

addition to MFOP as studied by Bellocchio. The tool was intended to calculate the cost of

the maintenance actions accumulated during the simulation, but difficulty obtaining realistic

estimates of component replacement costs prevented study in this area. Notably, the authors

also had difficulty determining realistic values of TTF and TTR for each component, noting

that “because this environment is meant for use at the conceptual design level, part failure

and repair time data are rarely available for the specific components of interest” [39]. A

high-level overview of the authors’ simulation is included in Figure 2.3.

Significant inroads into the problem of predicting rotorcraft LCC in the preliminary

design phase were made by Scott et al. (see Scott [38], Scott, Schrage, and Sirirojvisuth [40],

and Scott [41, 42]). Scott and his co-authors developed a RAM-C assessment environment

that predicts maintenance and cost characteristics of a rotorcraft design using the Bell PC-

Based Cost Model [43]. This model was enhanced with multiplicative technology factors

that enabled the representation of RAM-C–focused system upgrades. Scott’s environment

was integrated with NDARC, enabling complex trade-offs between weight, performance,

operating cost, and maintenance cost. Additional regression equations were integrated

to capture necessary increases in procurement cost and research, development, test, and

evaluation (RDT&E) costs due to RAM-C upgrades. This approach allows the prediction of

RAM-C characteristics at a level of fidelity very similar to NDARC’s weight and perfor-

38

Figure 2.3: Outline of RAM-C simulation, reprinted from Price, Ashok, Armstrong, et
al. [39] with permission.

mance modeling, and recent upgrades to the NDARC software have incorporated portions

of Scott’s cost model [36].

Other notable studies include the work of Bhattacharya et al. (see Bhattacharya, Nagaraju,

Fiondella, et al. [44, 45] and Bhattacharya, Nagaraju, Spero, et al. [46]), who developed

a more rigorous model of rotorcraft component failure rates. This work was specifically

focused on modeling the impact of RAM-C investments and considering the impacts on the

rotary-wing fleet as a whole, rather than individual vehicles.

2.1.2.3 Discussion

The aforementioned design tools and studies have significantly advanced the understanding

of RAM-C characteristics of rotary-wing aircraft. Most importantly, they have helped

identify trade-offs that can be made in the early design stages to significantly reduce LCC

and overall fleet costs.

However, many of the cited publications explicitly discussed the challenge of meeting

data requirements. Most simulation tools require several inputs for each system on the

39

vehicle. These inputs are often difficult to estimate realistically, especially in the case

of the technology factors used in Scott’s financial analysis. Harris [3] stated that a lack

of well-documented and consistently-organized accounting and maintenance data makes

the task of predicting RAM-C characteristics difficult, and this observation appears to be

corroborated by the experiences of Bellocchio, Price, Scott, and others.

This difficulty is especially prevalent in the early design stages where detailed designs

of each system and component, which are necessary for full-scale reliability engineering

analysis, are not yet available. New design and analysis tools may be required to accurately

predict the RAM-C characteristics of individual rotorcraft systems and components in the

early design stages. This leads to Observation 2.2:

Observation 2.2
Most currently available RAM-C–focused design tools suffer from high data input

requirements. These inputs can be difficult to populate due to a lack of appropriate

resources to predict individual system characteristics in the early design stages.

2.1.3 Rotor Design Tools

Recent advances in computer technology have enabled vast possibilities in the field of rotor

system analysis and design. Rotor design tools are tools, software packages, or design

frameworks intended to aid in the design, optimization, and analysis of the rotor system(s),

alone or in the context of the whole vehicle. These tools typically use fairly advanced

simulation programs to provide a higher level of fidelity than is typical of the vehicle design

tools discussed in Section 2.1.2. They may be used independently or coupled to vehicle

design tools to improve the accuracy of the rotor aerodynamic theories inherent to the

vehicle design tool.

This section provides an overview of some of these tools. First, key enablers to the

development of rotor design tools are described. Next, a number of examples of modern

rotor design tools are reviewed.

40

2.1.3.1 Enablers

Rotor design tools are enabled by the convergence of two disciplines, each developed

simultaneously and, for the most part, independently. The first discipline of interest is rotor

comprehensive analysis, discussed previously in Section 2.1.1. According to Johnson [47],

the field of comprehensive analysis began in 1962 with the development of what later

became known as the C81 program at Bell Helicopter. The field has expanded since, and

as of the time of this writing, at least eight modern, full-scale comprehensive codes are in

existence.

Typically, comprehensive codes combine a computational structural dynamics (CSD)

solver with built-in aerodynamic theories, including airfoil lookup tables and a number of

wake models, to calculate the motion, deformation, and loads of the various components

of the rotor system. Recent developments in comprehensive analysis have focused on

integrating CFD with these codes to replace the built-in aerodynamic theories [47]. In

these efforts, CFD aerodynamic calculations are coupled with the comprehensive code to

provide a highly accurate, albeit computationally expensive, prediction of airloads and rotor

performance.

Recently, Smith and Moushegian [48] have developed dual-solver hybrid methods that

reduce the cost of coupled CFD–CSD analysis by using Reynolds-averaged Navier-Stokes

solvers in only the near field, while the wake is simulated with more cost-effective methods.

When applied to a UH-60A main rotor model, these methods were demonstrated to be

accurate to within 4% of a full CFD–CSD simulation while being 70% less expensive [49].

To the best of this author’s knowledge, these hybrid methods have not yet been utilized

within a rotor design environment, but they promise to dramatically increase the fidelity of

these tools while maintaining low runtime. Comprehensive analysis is discussed further in

Section 4.4.2.2.

, The second discipline of interest is engineering optimization. This field concerns the

development of computer algorithms to automatically improve products or designs based

41

on one or several objective functions. Objective functions provide a means to calculate the

performance of the product based on its design variables.

A limited history of engineering optimization in the context of rotor design is given by

Tarzanin and Young [50] who, writing in 1998, describe 12 years of experimentation with

the optimization of rotor systems at the Boeing Company. The authors and their colleagues

attempted to generate rotor designs with substantial improvements in weight, vibration, and

aerodynamic performance. The authors used a “single, tightly coupled, interdisciplinary

rotor analysis” similar to the comprehensive codes described previously. The optimization

task was accomplished using gradient-based, metaheuristic, and response surface methods.

Predictably, they faced challenges related to a large number of design variables, the high

computational cost of evaluating the objective functions, and the complexity of the design

space. Nevertheless, their overall experience was promising and the paper concludes with

optimism for the future of automated optimization and design of rotor systems.

2.1.3.2 Modern Examples

The convergence of comprehensive analysis with engineering optimization has resulted in a

push to improve rotor system design by incorporating high-fidelity, physics-based prediction

methods into the early stages of the process. If successful, these projects could improve

vehicle performance, reduce design cycle time and cost, and mitigate uncertainty and risk.

For example, in 2010, Sinsay and Nuñez [51] presented the efforts of the U.S. Army’s

Aviation and Missile Research, Development, and Engineering Center (AMRDEC)1 to

develop what they termed right-fidelity rotorcraft design. Right-fidelity design is an attempt

to create a flexible, rapid, physics-based design environment by combining low- and high-

fidelity analysis tools intelligently with engineering optimization algorithms. Chief among

these tools are CFD analyses of fuselages and lifting surfaces, comprehensive analysis of

rotor systems, and higher-fidelity coupled CFD/CSD analysis of rotor systems.

Later, Sinsay and Alonso [52] presented a multidisciplinary analysis environment in-

42

tegrating the comprehensive code CAMRAD II, an in-house structural analysis code, and

NDARC. This environment was successfully used to improve the performance of a vehicle

featuring a coaxial lift-offset rotor, demonstrating its ability to analyze and optimize next-

generation rotary-wing aircraft. Sinsay and Alonso’s design framework is reproduced in

Figure 2.4. Note the highly coupled and iterative nature of the analysis.

Figure 2.4: Extended design structure matrix of a multi-disciplinary rotorcraft optimization
environment, reprinted from Sinsay and Alonso [52] with permission.

Another notable effort in the field of automated optimization of rotor systems is that

of Collins et al. (see Collins, Bain, Rajmohan, et al. [53], Collins [54], and Collins and

Sankar [55]). Over several years, Collins and his colleagues developed a mixed-fidelity

(combining low-fidelity and high-fidelity tools) framework using CSD, CFD/CSD, and

aeroacoustic analyses. This framework integrated comprehensive analysis code RCAS,

aeroacoustics code PSU-WOPWOP, and CFD code GT-Hybrid to improve the performance,

vibration, and external noise characteristics of a hingeless rotor system. Notably, this

framework also made use of surrogate modeling techniques to reduce the expense of

1AMRDEC is now known as the Aviation & Missile Center (AMC)

43

repeatedly evaluating the objective functions during the optimization process. Surrogate

modeling will be discussed further in Section 4.1. Ultimately, this effort was successful in

generating a set of pareto-optimal rotor system designs that improved upon the baseline

design in most of the metrics of interest.

2.1.3.3 Discussion

A large number of similar studies focusing on first principles, physics-based optimization of

rotor systems using a variety of analysis tools have been published. An exhaustive review of

these efforts is beyond the scope of this research. There are two common themes among the

majority of these studies.

First, the computational expense and runtime of the simulation packages that serve as

the foundation of rotor design tools make application to the early design stages difficult.

As discussed in Section 2.1.1, conceptual and preliminary design environments rely on a

fast cycle time and rapid iteration to explore the design space efficiently. Sinsay and Nuñez

overcome this challenge through the use of right-fidelity frameworks, which combine low-

fidelity and high-fidelity tools to improve overall runtime while retaining a certain level of

accuracy. Collins’ mixed-fidelity framework is philosophically similar to Sinsay and Nuñez’s

right-fidelity framework, but is supplemented by the use of surrogate modeling techniques,

which can dramatically reduce computational expense if implemented appropriately. This

leads to Observation 2.3:

Observation 2.3
The development of rotor design tools is complicated by the computationally expensive

simulation packages on which they rely.

Second, most rotor design tools are focused primarily on fundamental aspects of rotor

system performance, such as the conceptual design performance measures discussed in

Section 2.1.1.2. Some rotor design tools have expanded to include objectives such as

perceived noise, magnitudes and frequencies of hub vibration, and structural stability, which

44

are typically considered to be preliminary design considerations. Very few studies have

considered in great detail the RAM-C characteristics of the rotor system, such production

cost, O&S cost, and component failure rates.

Generally, the assumption is that if certain desirable parameters can be maximized while

weight is minimized, the resulting design will be high-performance and affordable [30].

However, this is not always the case; affordability improvements can be accomplished

without reducing component weight. For example, a rotor could be modified to improve

the service life of a specific critical component at the expense of forward flight efficiency.

The additional cost of extra fuel now required may well be offset by the cost saved in part

replacements, resulting in an overall reduction in LCC.

Of course, the authors of the aforementioned studies should not be criticized for their

focus on more fundamental parameters. In engineering, it is common practice to ensure

the feasibility of a system before optimizing its secondary characteristics. The affordability

of a rotor system is meaningless if it provides such poor performance that it can never be

installed on a practical aircraft.

The previous discussion leads to Observation 2.4:

Observation 2.4
Most currently existing physics-based rotor design tools typically do not make consid-

erations for the as RAM-C characteristics of the rotor system.

In the next section, the rotorcraft fatigue design process will be examined, including its

relationship to the vehicle design processes and tools discussed previously.

2.2 Rotorcraft Fatigue Design

Fatigue design is the process of predicting the fatigue life of certain safety-critical com-

ponents of a system and, if necessary, taking steps to improve the fatigue life [56]. This

process is especially important in rotary-wing vehicles due to the constant accumulation of

HCF loads during nearly all phases of flight, as discussed in Section 1.5. Fatigue design

45

spans each stage of the vehicle design process. The fidelity and accuracy of the methods

used will vary depending on the available structural design information and loads data in

each stage.

This section discusses the process of fatigue design in rotorcraft. First, a general review

of fatigue damage theory is presented, with a focus on fatigue life prediction models and

cycle counting methods. Next, fatigue design literature specifically related to the rotorcraft

industry is reviewed and traditional fatigue design methods are discussed. Finally, several

new approaches to rotorcraft fatigue design related to the rotor design tools discussed in

Section 2.1.3 are examined.

For reference, Literature Question 2, which is the focus of this section, is reprinted

below:

Literature Question 2

What are the most important elements of the traditional fatigue design process? What

are the associated disadvantages and drawbacks?

2.2.1 Fatigue Damage Theory

Fatigue is a phenomenon in which materials subjected to cyclic loading accumulate damage

over time, eventually leading to failure [57]. Notably, fatigue damage can be accumulated at

load levels significantly lower than a given material’s ultimate strength, potentially causing

structural failures without exceedance of the ultimate load. Fatigue damage can also be

exacerbated by temperature fluctuations, corrosion, contact between two surfaces, or fretting.

Suresh [57] describes five general stages of fatigue damage progression as follows:

1. Microscopic structural changes cause permanent damage.

2. Microscopic cracks are created.

3. Microscopic cracks grow and coalesce to form “dominant” crack(s).

4. Dominant crack(s) propagate through the structure.

5. The structure fractures or becomes unstable.

46

More simply, the first three stages can be considered crack initiation and the final two can be

considered crack propagation. The objective of fatigue life prediction models is to estimate,

for a given structure, the amount of load cycles until crack initiation or until structural

failure.

Modern and historical literature contains a vast number of fatigue life prediction models

with varying levels of sophistication, complexity, and applicability. An exhaustive review

and comparison of each model is beyond the scope of this research. Instead, this section

will contain a brief summary of models with demonstrated applications to rotorcraft fatigue

analysis.

Degrieck and van Paepegem [58] classify these models into three categories. Fatigue

life models do not consider the actual damage mechanisms; instead, these models use

S-N curves derived from experiments in which material samples are loaded to failure at

varying load levels. S-N curves can be combined with the known load history to produce a

hypothetical level of damage accumulation and an associated fatigue life. Phenomenological

models predict the degradation of material stiffness or strength which can be measured

in a laboratory, unlike the damage accumulation factor predicted by fatigue life models.

A failure criterion based on a certain level of residual stiffness or strength is established.

Finally, progressive damage models predict the progress of the actual damage mechanism,

such as the crack initiation and propagation stages described previously.

2.2.1.1 Fatigue Life Models

The most commonly-used fatigue life model is known as Miner’s sum, Miner’s rule, or the

Palmgren-Miner rule [59]. Despite being published in 1945, this theory remains popular

due to its low computational expense and the relatively small amount laboratory testing

required for its implementation. Miner’s rule is used in nearly all fatigue life predictions in

the rotorcraft industry, as will be discussed in Section 2.2.2. Cansdale [60] hypothesizes that

Miner’s rule remains popular in this domain because subsequently-developed alternatives

47

do not show consistent improvements over a wide range of applications and are, in general,

more complicated.

S-N Curve Fatigue life models such as Miner’s rule begin with the definition of the S-N

curve. Typically, material coupons or representative components are subjected to constant

cyclic loading in a laboratory. The applied load, S, may be described in terms of force,

moment, stress, strain or displacement. Since the load is alternating, S can be further

described in terms of the maximum load, Smax, the load range, Srange = Smax − Smin, or

the load amplitude, Samp = Smax − Smean. The test continues until structural failure occurs.

The number of cycles required to reach failure, N , is recorded. If the sample has not failed

after a predetermined number of cycles, the article is considered to have infinite fatigue

life for this value of S, known as runout. A notional cyclic load history and its associated

terminology are presented in Figure 2.5.

0 1 2 3 4

Smax

Smin

Smean

Srange Samp

Load cycles, n

L
oa

d,
S

Figure 2.5: Notional cyclic load history.

In addition to the load amplitude, the mean load also has an impact on N . Typically, the

48

impact of the mean load is captured using the stress ratio, R:

R =
Smin

Smax

=
Smean − Samp

Smean + Samp

(2.1)

Thus, R = −1 represents fully reversed loading (Smin = −Smax and Smean = 0) and R = 1

represents constant loading with no alternating component (Smin = Smax = Smean).

A number of samples will be tested until failure at constant load amplitude, with the

amplitude varied in each test to establish the impact of S on N . Typically, these tests are

all performed at constant R. If R is varied during the test, the data points collected will

not belong to the same S-N curve and will produce erroneous results. It is common in the

rotorcraft industry to use only six representative component samples to save cost at the

expense of increased uncertainty in the definition of the S-N curve [33]. If material coupons

are used, more data points will likely be produced, reducing uncertainty. After completing

all the tests, a S-N diagram is created by plotting each failure point with S on the ordinate

and N on the abscissa. Then, a mathematical description of the S-N curve is derived by

fitting an appropriate mathematical expression to the data using a technique such as the

least-squares fit. For example, Och [61] provides two potential expressions:

S = S∞ + (Su − S∞)e−α(logN)β (2.2)

S = S∞ +
B

Nx
(2.3)

In Equation (2.2), S∞ represents the endurance limit, or the highest load level at which

fatigue failure will never occur, and must be determined during the fitting process; Su

represents the ultimate static strength and can be determined using other simple tests;

and α and β are additional parameters that must be determined during the fitting process.

Equation (2.3) is a simpler equation that is easier to derive: only two parameters, B and S∞,

need to be determined during the fitting process. The exponent x is chosen based on the

material; for example, x = 1/2 would be used for a steel sample. However, Equation (2.3) is

49

only accurate for the HCF range (N > 105), whereas Equation (2.2) covers the entire LCF

and HCF range from N = 1 to N =∞. A notional S-N diagram and associated S-N curves

are presented in Figure 2.6.

100 101 102 103 104 105 106 107 108

S∞

Su

Cycles to failure, N

L
oa

d
am

pl
itu

de
,S

a
m
p

Equation (2.2)
Equation (2.3)
Failure points

Figure 2.6: Notional S-N diagram and curves.

Mean Load Effects An single S-N curve such as the curve pictured in Figure 2.6 is only

valid for a single value of R. However, components of a rotary-wing vehicle will experience

variations in mean load throughout a single flight. For example, the mean load on a rotor

blade will change with variations in gross weight, density altitude, or rotor speed. Typically,

increasing the magnitude of the mean load reduces N , so mean load effects must be captured

to produce a valid fatigue life prediction [61].

Additional fatigue tests can be performed at different R-values. Alternatively, various

corrections can be used to predict the equivalent stress at R = −1, Seq, for a given cycle

defined by Samp and Smean. The most common correction used in the rotorcraft industry is

50

known as the Goodman relation and can be described as follows [61, 62]:

Seq =
SampSu

Su − Smean

(2.4)

When plotted in the (Smean, Samp)-space, the nature of the Goodman relation becomes more

clear. Figure 2.7 depicts a notional Goodman diagram.

R = 0R = −0.5

R = 0.5
Su

Smean,i

Samp,i

Seq,i

N = 1

N = Ni

Mean load, Smean

L
oa

d
am

pl
itu

de
,S

a
m
p

Figure 2.7: Notional Goodman diagram.

In Figure 2.7, constant-life lines are represented by solid colored lines. For a given cyclic

loading pattern defined by (Smean,i, Samp,i), the equivalent load Seq,i can be found by tracing

a constant life line from the abscissa at Su through the point (Smean,i, Samp,i) to the ordinate.

Then, the fatigue life Ni can be found from an appropriate S-N curve, assuming the curve

was derived using tests at R = −1. If the S-N curve was derived using a different R-value,

Seq,i can be found where the appropriate constant-R line, represented in Figure 2.7 as gray

dashed lines emanating from the origin, intersects the constant-life line. Thus, the Goodman

relation essentially allows for the construction of additional S-N curves at R-values differing

from the original experiment.

51

Non-linear variations of the Goodman diagram exist; for example, the constant-life

lines can be shifted along the abscissa or the constant-life lines can be constructed in a

piecewise fashion. These variations may offer improved accuracy in some cases. However,

these variations require additional fatigue life testing whereas the linear Goodman diagram

requires only the S-N curve and knowledge of Su. Thus, the linear form of the Goodman

relation remains popular due to its simplicity.

Cumulative Fatigue Damage Finally, the accumulation of fatigue damage can be calcu-

lated. The load spectrum is a fixed load sequence intended to capture the complete variation

of cyclic loading a component will encounter in service. The load spectrum is composed of

k segments each containing, for example, a defined mean load, Smean,i, and load amplitude,

Samp,i, which occur for a certain number of cycles, ni. Then, using an appropriate S-N

curve and mean load correction, an equivalent fatigue life, Ni, can be established for the ith

segment in the spectrum. The cumulative damage is calculated using Miner’s rule:

C =
k∑
i=1

ni
Ni

(2.5)

where C is representative of the cumulative fatigue damage. Typically, a failure criterion is

established such that C = 1 at failure. The total fatigue life can be found by repeating the

load spectrum until C = 1 is reached.

A number of variations on Miner’s rule exist. For example, Nijssen describes a number

of non-linear variations, with the general form

C =
k∑
i=1

[
A
ni
Ni

+B

(
ni
Ni

)D]
(2.6)

where A, B, and D are additional parameters that must be found by examining experimental

data. Note that this form reduces to Equation (2.5) by setting A = 1, B = 0, and D = 0.

Hashin and Rotem [63] developed a complex non-linear multi-stage fatigue life model which

52

showed improvements over Miner’s rule in certain cases. However, Miner’s rule remains

the dominant fatigue damage theory in the rotorcraft industry and other industries due to its

economical nature, as discussed previously.

2.2.1.2 Phenomenological Models

Phenomenological models have an advantage over fatigue life models in that they track

cumulative fatigue damage using material properties that can be measured macroscopi-

cally [58]. For example, the cumulative fatigue damage parameter, C, in Equation (2.5),

does not have any true physical meaning and cannot be measuring during the fatigue life ex-

periment. On the other hand, phenomenological models predict the degradation of material

strength or material stiffness, which can be measured. Strength-degradation models have

the advantage of an inherent failure criterion: the sample fails when the strength degrades

to a point that it is exceeded by the load. However, the strength of a material cannot be

measured without degrading or destroying the sample. Stiffness-degradation models have

the advantage that stiffness can be measured easily without degrading the sample, but the

failure criterion is more arbitrary and usually depends on a predefined stiffness threshold.

Despite the wide variety of phenomenological models that have been developed, this

author could only find one that had been used in the context of rotary-wing systems. A

strength degradation model developed by Schaff and Davidson [64, 65] was used in the

analysis of rotor blade fatigue by Li, Volovoi, and Hodges [66] and the analysis of wind

turbine blade fatigue by Nijssen [62]. This model is developed specifically for composite

materials and is notable for its limited experimental input requirements and flexibility. In

fact, the model requires only a few additional inputs beyond the S-N curve and mean load

corrections discussed previously.

For constant amplitude loading, the residual strength can be calculated using

Sr(n) = S0 − (S0 − Smax)

(
n

N

)ν
(2.7)

53

where Sr is the residual strength, S0 is the initial static strength, and ν is termed the “strength

degradation parameter”, which must be determined experimentally. If S0 is assumed to be

equal to the ultimate static strength, Su, then ν is the only additional parameter that must

be derived in order to implement this model. A graphical depiction of Equation (2.7) is

presented in Figure 2.8.

Smax

S0

N

ν = 1

ν < 1

ν > 1

Load cycles, n

R
es

id
ua

ls
tr

en
gt

h,
S
r

Figure 2.8: Notional residual strength degradation curves.

Figure 2.8 demonstrates the impact of ν on the strength degradation pattern. Schaff and

Davidson term the ν = 1 case “linear degradation”, the ν > 1 case “sudden death”, and

the ν < 1 case “early degradation”. A specific value of ν for a given material is derived by

fitting data obtained during fatigue life experiments.

Equation (2.7) can be extended to spectrum loading as

Sr

 j∑
i=1

ni

 = S0 − (S0 − Smax,i)

(
nj + neff,i

Nj

)νj

(2.8)

where j is the current segment in the spectrum, i denotes the previous segments, and neff,j is

54

the effective number of cycles for the j th segment. The latter is calculated using

neff,j = Nj

S0 − Sr
(∑j−1

i=1 ni

)
S0 − Smax,j


1
νj

(2.9)

As before, Nj is determined using an appropriate S-N curve and mean load correction. Note

that because the calculation of Sr at each block depends on the strength degradation in each

previous segment, the model must be applied to each segment in turn, unlike Equation (2.5).

Schaff and Davidson also introduce additional modifications to the model to account for

complex spectrum loading phenomena, such as strength conversion and cycle mix effects.

Experimental methodology for deriving the model parameters for a specific sample is also

developed. The model is shown to out-perform Miner’s rule in certain cases with composite

materials and complex spectrum loading definitions. However, the model also requires more

experimental effort to derive and more computational resources to evaluate.

2.2.1.3 Progressive Damage Models

Progressive damage models are perhaps the most “realistic” method to assess fatigue life.

These models predict the development and propagation of a specific damage mode through

the structure. For example, in metallic materials, progressive damage models typically

predict the crack propagation phase discussed previously. The structure is considered to have

failed when the crack propagates completely through its thickness. In composite materials,

these models may predict a number of different damage modes, including matrix cracking

and delamination. Generally, the growth of damage within the structure can be measured,

either microscopically or macroscopically, allowing the rate of damage propagation to easily

be tracked during the experiment [58].

Salvetti, Cavallini, and Fediani [67] provide a review of progressive damage models

within the context of rotorcraft fatigue design. The primary focus of the review is on crack

propagation models. Fundamentally, these models depend on establishing a functional

55

relationship between the crack growth rate and a quantity known as the stress intensity

factor:
da

dn
= f(∆K,R) (2.10)

where a is the crack length and K is the stress intensity factor. ∆K represents the total

stress intensity factor range during a particular load cycle. Methods used to calculate K

depend on the geometry of the crack and the material but generally follow the form

K = σ
√
πaF (g, a) (2.11)

where σ is a reference stress and g captures the geometry of the problem.

The true form of Equation (2.10) can only be derived through experimental measures.

The relationship between crack growth rate and ∆K is typically sigmoidal in nature if

plotted on a log–log axis. That is, at very low values of ∆K, the crack growth rate is almost

imperceptible. At intermediate values, da
dn

varies linearly with ∆K, and at high values, da
dn

increases dramatically. The typical impact of R is to increase the crack growth rate. A

notional plot of this relationship is presented in Figure 2.9.

A number of different forms of Equation (2.10) can be used depending on the specific

problem and the desired level of accuracy. The Paris law takes the form

da

dn
= Cp ∆Km (2.12)

where Cp and m are constants which must be determined experimentally. This equation is

limited in that it represents only the linear portion of Figure 2.9 and does not include stress

ratio effects. Additional forms discussed by Salvetti et al. include

da
dn

= CF ∆Km
[
(1−R)Kc −∆K

]−1 (2.13)

da
dn

= C1 + C2 tanh−1
log
[
KcKt
K2

max
(1−R)s

]
log Kt

Kc

(2.14)

56

Stress intensity factor range, ∆K

C
ra

ck
gr

ow
th

ra
te

,
d
a

d
n

R = 0

R = 0.2

R = 0.4

R = 0.6

R = 0.8

Figure 2.9: Notional crack growth rate curves.

where CF , C1, C2, and s are constants that must be determined experimentally. Kc and

Kt represent the critical and threshold values of K, which correspond to the high-rate and

low-rate regions of Figure 2.9, respectively. These equations improve upon the Paris law in

that they more appropriately capture the sigmoidal shape of the crack growth rate curves

as well as the stress ratio effects. However, additional fatigue life experiments must be

performed to derive values for each constant.

In constant amplitude loading, it is rather simple to calculate the total fatigue life by

rearranging and integrating Equation (2.10):

N =

af∫
a0

da

f(∆K,R)
(2.15)

where a0 and af represent the initial and final crack length, respectively. However, in the

case of spectrum loading, additional complications are added due to interaction effects. For

example, the presence of a single peak load, known as an overload, in a constant amplitude

loading program will cause a decrease in the subsequent crack growth rate. Conversely, the

57

presence of an underload can cause an increase in the subsequent crack growth rate. These

interaction effects can change the total fatigue life of the specimen by factors of two or

more. These effects can be captured in Equation (2.15) by introducing appropriate corrective

factors in specific cycles.

Degrieck and van Paepegem describe additional progressive damage models tailored

specifically to composite materials. Many of these models use forms similar to the Paris law

to describe the growth of damage modes such as delamination and matrix cracking. Notably,

many models are specific to the damage mode under consideration and, as of the time of

this writing, there is no single general model that is applicable in all situations.

2.2.1.4 Cycle Counting Methods

Each of the fatigue life prediction models discussed previously relies, in part, on an accurate

description of the loading spectrum. In the case of constant amplitude loading, this definition

is rather simple: one only needs to specify Smean, Srange, and n to define the entire loading

program. However, constant amplitude loading is rarely applicable to real-world scenarios.

As discussed in Section 1.5, rotary-wing vehicle components will experience a highly diverse

loading spectrum over the course of a single flight. The process of deriving a well-defined

loading spectrum from a load signal is known as cycle counting. The objective of the cycle

counting process is to produce a sequence of load peaks (Smax,i) and valleys (Smin,i), or load

means (Smean,i) and ranges (Srange,i), along with an associated number of cycles (ni). In

some methods, the order of cycles is preserved. This section will present a brief review of

cycle counting methods with a focus on those used in rotary-wing literature.

Peak Count and Level Crossing Perhaps the simplest cycle counting method is the

peak count method [68]. In this method, the local value of Smax is recorded each time a

change in the slope of S is noted. Identical or very similar values of Smax are grouped and

counted together to determine the total cycle count. In some variations, the troughs may

58

be recorded as well. A similar method, known as the level crossing method, defines one or

more threshold values of S. A count is accumulated each time the load signal crosses the

threshold in an upward direction [68, 69]. This can be used to filter out small variations

in amplitude or remove cycles below the endurance limit that would otherwise be counted

using the peak count method. In some variations, downward crossings across a separate

threshold level are also counted. Examples of the peak count and level crossing methods for

a hypothetical load signal are presented in Figure 2.10.

Time, t

L
oa

d,
S

Signal
Smax,i

(a) Peak count

Time, t

(b) Level crossing

Figure 2.10: Examples of the peak count and level crossing cycle counting methods.

Range-Mean An obvious drawback of the peak count and level crossing methods is that

only Smax is counted, thus neglecting the ability to calculate Smean and determine the value

of R. A more complex method that captures R is known as the range-mean method [62].

In this method, the load signal is divided into segments, each of which is bounded by a

peak and its adjacent valley. Smean,i and Srange,i is calculated for each segment and stored.

The order of segments can be preserved or discarded depending on the requirements of the

fatigue life prediction model. Note that in the range-mean method, half-cycles are counted

instead of full cycles. An example of the range-mean counting method is presented in

59

Figure 2.11.

Time, t

L
oa

d,
S

Signal
Smean,i

Srange,i

Figure 2.11: Example of the range-mean cycle counting method.

The primary deficiency of the range-mean method can be seen clearly in Figure 2.11.

Only the small load oscillations are counted and information regarding the large underlying

load oscillation is lost. Considering that a larger value of Srange results in more fatigue

damage, cycle counting using the range-mean method could lead to non-conservative results

if patterns similar to Figure 2.11 are present in the signal. An realization of these patterns in

rotary-wing vehicles is the GAG cycle, discussed previously in Section 1.5. In the case of

rotorcraft, range-mean counting may capture only HCF cycles while ignoring the damaging

LCF cycles.

Rainflow A cycle counting method known as the Rainflow method [62, 68] or the range

pair-range [69] method corrects this issue.2 The Rainflow method consists of a two-phase

algorithm. First, the load signal is converted into a sequence of peaks and troughs, which

can be represented as a sequence S = {S1, S2, S3, . . . Sk}. A hypothetical load sequence is

presented in Figure 2.12a.

2The Rainflow method was developed in Japan and first published in 1967. Simultaneously, the range pair-
range method was developed in the Netherlands and first published in 1969. Both methods produce identical
results [69]. In this text, this algorithm will be referred to as the Rainflow method.

60

S1

S3

S5

S7
S9 S11

S13

S15

S17

S19

S2

S4

S6

S8
S10

S12

S14

S16

S18

Time, t

L
oa

d,
S

(a) Original signal

S3

S5

S7
S9 S11

S13

S15

S17

S2

S4

S6

S8 S12

S14

S16

S18

Time, t

L
oa

d,
S

(b) Range pairs

S1

S10

S19

Time, t

(c) Residual

Figure 2.12: Example of the Rainflow cycle counting method.

The first phase begins by selecting the first four extrema, {S1, S2, S3, S4}. Since the

inner extrema, S2 and S3, are “contained” within the outer extrema, S1 and S4, the range

pair S2–S3–S2 is extracted and counted.3 S2 and S3 are removed from the sequence and

the algorithm steps to the next four extrema, {S1, S4, S5, S6}. If the inner extrema are

not contained within the outer extrema, such as is the case when the algorithm reaches

3S2 and S3 are “contained” within S1 and S4 because S1 < S2 < S4 and S1 < S3 < S4.

61

{S1, S10, S11, S12}, the range pair is not extracted and S10 and S11 remain within S. Instead,

the algorithm steps to the next four extrema, {S10, S11, S12, S13} and continues until S19 is

reached. The range pairs extracted in the first phase are depicted in Figure 2.12b.

In the second phase, the remaining points, {S1, S10, S19}, are grouped together, extracted,

and counted as single ranges. These points are known as the residual, and capture the large

underlying load oscillation in the original signal. The residual is depicted in Figure 2.12c. A

more detailed description of the Rainflow method, including analysis of the results, is given

by de Jonge [69].

Several variations of the Rainflow algorithm exist. For example, Nijssen developed a

cycle counting method termed the “Rainflow-equivalent range-mean count”, which combines

the Rainflow and range-mean methods discussed previously into a method which is more

suitable for use in strength degradation or crack growth fatigue life prediction models, in

which the load spectrum must be evaluated sequentially. This algorithm produces similar

results to the Rainflow method but preserves the approximate order of the load cycles.

2.2.1.5 Discussion

The number of fatigue life prediction models, only a minute fraction of which have been

discussed in the preceding sections, is large and continually increasing as new models are

developed and published. The correct choice of model depends on the structural design,

material choice, and load spectrum, but perhaps most importantly on the level of information

available to the engineer at the design stage in which the fatigue life prediction is undertaken.

For example, application of the progressive damage models requires knowledge of the most

critical damage mode, its location, and its geometry. In general, this requires the component

or a representative model thereof to be constructed and tested experimentally before the

necessary model parameters can be derived [67]. This restricts application of these models

to during or after the detail design stage, discussed previously in Section 2.1.1.4.

Fatigue life models and certain phenomenological models are more easily adaptable to

62

earlier design stages. Because the model parameters can be populated by testing material

coupons, they are applicable to parts that have not yet been produced, assuming a sufficient

database of material fatigue life data exists. For example, Li, Volovoi, and Hodges applied

Schaff and Davidson’s strength degradation model to the preliminary design of main rotor

blades; this effort will be discussed further in Section 2.3.1. Once the part is constructed

and the load spectrum is known, the model parameters can be modified to improve accuracy

and the same models can be recycled for a more detailed and accurate analysis.

The choice of material also has a strong influence on the selection of the fatigue life pre-

diction model. Many components of modern rotorcraft, especially those in the rotor system,

are constructed of composite materials. Some argue that linear fatigue life models such as

Miner’s rule are inappropriate for the analysis of composite fatigue due to its non-linear

nature. However, Nijssen demonstrated that Schaff and Davidson’s strength degradation

model did not improve significantly upon Miner’s rule in the context of wind turbine rotor

blade fatigue life prediction. The author concludes that Miner’s rule is preferable due to its

reduced computational expense and the relative lack of strength degradation data available

in material databases.

Progressive damage models are also difficult to use with composite materials: Salvetti,

Cavallini, and Fediani state that “as a consequence of the complexity and variety of the

damage forms . . . existing [fracture mechanics] methodologies do not lead to useful applica-

tions, from an engineering point of view, in the field of composite materials” [67]. Further

developments in this field are required to develop a single progressive damage model that is

generally applicable to a wide range of materials, geometries, and damage modes.

This discussion, and the discussion in Section 2.1.1, leads to Observation 2.5:

63

Observation 2.5
Fatigue life models such as Miner’s rule and phenomenological models such as Schaff

and Davidson’s strength-degradation model are most appropriate for use in the rotorcraft

preliminary design stage. Miner’s rule is preferable due to its simplicity and ease of

implementation.

A cycle counting method should be selected based on the fatigue life prediction model of

choice. Literature from the rotorcraft industry [4, 56] suggests the Rainflow method is the de

facto standard for use in rotary-wing vehicles. However, if the fatigue life prediction model

in use incorporates sequence effects then the Rainflow-equivalent range-mean counting

method developed by Nijssen, which produces similar results to the Rainflow method, is

preferable.

2.2.2 Fatigue Design Methods

This section explores the process of applying the theory discussed in Section 2.2.1 to

rotorcraft components. First, a brief history of rotorcraft fatigue design is given. Next,

traditional processes are described in detail, with a focus on describing competing fatigue

design methodologies and aligning individual fatigue design activities to the overall design

process discussed in Section 2.1.1.

2.2.2.1 History

Rotorcraft designers have been concerned with the service life of rotor blades since near the

inception of the helicopter. In 1935, inventor Jaun de la Cierva specified a service life of

75 FH for the blades of his Cierva C.30 autogyro, which were constructed using a steel spar

surrounded by wooden spars and skin [70].

Writing in 1969, Twelvetrees [71] discusses the subsequent evolution of rotor blade

construction from that early period until the mid-1960s. Twelvetrees describes the manner

by which wooden rotor blades were phased out due to their poor service life. It appears that,

64

at the time, the primary driver of rotor blade service life was not fatigue damage but the slow

warping of the wooden rotor blade until the outer mold line (OML) was altered to the point

of being unusable. Wooden blades, which by then had obtained a service life of around

600 FH, were slowly replaced by metal blades. Metal blades did away with the warping

issues associated with wooden blades, but are more susceptible to fatigue damage than wood.

Early metal rotor blades, typically made of steel, were fatigue-life limited to 1800 FH. Over

time, the construction of metal blades was improved until service lives neared 5000 FH.

Simultaneously, designs were improved to allow for easier inspections.

Twelvetrees also discusses the possibility of composite blade construction, which, at the

time, had not yet been realized. The author correctly predicts that the high strength and low

weight of certain composite materials will allow engineers to produce lighter, stiffer blades

with longer service lives. It seems that Twelvetrees recognized the extreme importance of a

well-designed, long-lived rotor blade, concluding the report by predicting that

in [the] future, reconsideration of priorities will result in a well engineered

blade that is a commercial proposition and thus make a significant contribution

to bringing the most sought-after means of transport into successful compe-

tition with other types of aircraft in the civil as well as the military fields of

operation [71].

In 1961, Ward and Ludi [72] presented an in-depth review of rotor loads research with a

particular focus on applications to fatigue life substantiation. This is the earliest substantial

work on this subject known to this author. Ward and Ludi discuss the three main building

blocks of the fatigue life substantiation process:

1. A list of possible flight conditions and associated load cycle data,

2. The total or percentage of time the vehicle will spend in each flight condition,

3. The rate at which the structure accumulates fatigue damage.

These three factors are the primary focus of nearly every subsequent work related to fatigue

life prediction in rotorcraft.

65

At the time, the main difficulty in the process appeared to be in the prediction of load

cycles associated with various flight conditions. Because advanced rotor aerodynamics

theories, and the powerful computers needed for their calculation, had not yet been developed,

the authors and their contemporaries were required to derive fatigue loads from wind tunnel

experiments and flight tests of heavily instrumented rotorcraft. The knowledge of fatigue

theory was sophisticated enough to derive a fatigue life specification for a given component

once the loads were determined, but this analysis was necessarily done a posteriori; that is,

fatigue life could not be determined until the vehicle had been developed to the point that

wind tunnel tests of the rotor system and flight tests of the prototype aircraft were possible.

As discussed in Section 2.1.1, a change to a critical component due to insufficient service

life at this stage in the design process would likely be extremely costly and time-consuming.

2.2.2.2 Modern Methods

Rotorcraft fatigue design methods have progressed significantly since the time of Cierva.

Advances in computational power, load prediction and measurement, and aeroelastic theories

have enabled more rigorous fatigue life predictions that enable rotorcraft designers to specify

longer component lifetimes with greater confidence. The fatigue life of modern rotorcraft

components is specified using one of two methodologies: the safe life methodology or the

damage tolerance methodology [33].

Safe Life Methodology Components designed according to the safe life methodology

are specified with a service life or replacement time and removed once that time is elapsed,

regardless of the operational history or current condition of the component. The service

life is selected such that the chance of fatigue failure is extremely remote. For example, the

U.S. Army specifies that safety-critical components must have a probability of failure of

one in a million [73]. This requirement is known colloquially as six nines reliability, since

the specified probability of failure implies a reliability of 0.999999. A diagram of the safe

66

life methodology as presented by Lombardo [4] is included in Figure 2.13.

Fatigue tests,
existing knowledge

Mean
S-N curve

Working
S-N curve

Damage
hypothesis

Safe life

Mission
spectrum

Load
spectrum

Flight loads
survey

Measured
loads

Component
loads

Load
reduction

Flight condition to compo-
nent loads transfer functions

Flight
parameters

Flight
condition

Figure 2.13: Diagram of the safe life methodology, adapted from Lombardo [4] with
permission.

Fatigue Tests The top left portion of Figure 2.13 has been described previously in

Section 2.2.1.1. Fatigue tests of material coupons and representative components are

combined with existing knowledge on prior tests to produce a S-N curve, as in Figure 2.6.

Note that the failure points in Figure 2.6 do not align precisely with the curve. Stochastic

variability in the material properties, coupon/component construction, and applied load

cause scatter in the data. As such, the curve in Figure 2.6 represents the mean fatigue life

of all components in the population: 50% of all components will exhibit a higher fatigue

life and 50% a lower fatigue life. If the safe life was calculated using the mean S-N curve,

half of all components fielded would fail before their specified retirement time, causing an

unacceptable loss of life and equipment.

67

Instead, the safe life calculation is conducted using the working S-N curve, which is

derived from the mean S-N curve using a number of reductions, or safety factors. Methods

used to produce the working S-N curve vary between manufacturers. One common option

is to use the µ− 3σ curve, where µ is the mean fatigue life and σ is the standard deviation

of the fatigue life. Other options include taking 80% of the mean value curve or drawing

the S-N curve through only the lowest points. Some manufacturers use different reduction

methods for LCF and HCF regions. These reductions are based mainly on organizational

experience [4]. Additional methods for constructing the working curve are given by Facchin

and Raggi [74].

Mission Spectrum The rightmost portion of Figure 2.13 describes the process by

which the load spectrum, discussed previously in Section 2.2.1.1, is established. First, the

mission spectrum is defined. The mission spectrum is a table which defines the expected

flight conditions the vehicle will experience and the percentage of time it will spend in each

within its operational life. It is typically derived using one or more mission profiles, which

are generally included in the RFP as discussed in Section 2.1.1.1. It can also be derived by

recording a number of flights of a typical mission type and calculating the percentage of

time spent in each condition.

Because helicopters are highly versatile and the actual usage of the vehicle may vary from

the manufacturers’ original intentions, it is common to include some level of conservatism

in the definition of the mission spectrum. For example, rotorcraft used for training will

accumulate higher levels of fatigue damage due to the high rate of practice autorotations, as

discussed in Section 1.5. This must be preempted in the definition of the mission spectrum

to ensure flight safety for the entire fleet. An example transport helicopter mission spectrum

given by Stievenard [75] is included in Table 2.1.

Note that each flight condition in Table 2.1 is further divided, or prorated, into one of

three density altitudes; density altitude has a strong impact on fatigue loads as discussed in

68

Table 2.1: Example transport helicopter mission spectrum, from Stievenard [75].

Percentage of total time (%)

Condition Sea level 1500 m 3000 m Total

Hover in-ground-effect (IGE) 4.450 0.500 0.050 5
Hover OGE 4.450 0.500 0.050 5
Rearwards flight at maximum permitted speed 0.356 0.040 0.004 0.4
Start of forward flight from rearward flight 0.089 0.010 0.001 0.1
Sideways flight to the right at maximum speed 0.890 0.100 0.010 1
Sideways flight to the left at maximum speed 0.890 0.100 0.010 1
Rudder reversal from turn to right in hover 0.445 0.050 0.005 0.5
Rudder reversal from turn to left in hover 0.445 0.050 0.005 0.5
Transition speed 2.670 0.300 0.030 3
Turn to right at transition speed 0.890 0.100 0.010 1
Turn to left at transition speed 0.890 0.100 0.010 1
0.5VNE 7.120 0.810 0.070 8
0.7VNE 6.206 0.724 0.070 7
Turn to right at 0.7VNE (40°) 1.335 0.150 0.015 1.5
Turn to left at 0.7VNE (40°) 1.335 0.150 0.015 1.5
0.85VNE 15.120 1.710 0.170 17
Turn to right at 0.85VNE (40°) 1.780 0.200 0.020 2
Turn to left at 0.85VNE (40°) 1.780 0.200 0.020 2
0.9VNE 25.810 2.900 0.290 29
0.95VNE 1.980 0.498 0.022 2.5
VNE 0.890 0.098 0.012 1
1.11VNE 0.445 0.050 0.005 0.5
Oblique climb at maximum power 2.136 0.240 0.024 2.4
Vertical climb at maximum power 2.136 0.240 0.024 2.4
Autorotation at minimum RPM 0.090 0.009 0.001 0.1
Autorotation at maximum RPM 0.090 0.009 0.001 0.1
Load factor less than unity 0.445 0.050 0.005 0.5
Approach 3.015 0.350 0.035 3.5
Flare 0.356 0.040 0.004 0.4
Quick stop 0.090 0.009 0.001 0.1

Section 1.5. It is also common to prorate the conditions further based on gross weight or

center of gravity location [76]. Also note that even though level cruise segments at various

speeds account for 64.5% of the time in this mission spectrum, far less common conditions

are also included because they can produce far more fatigue damage than level flight despite

their minimal duration.

69

Load Spectrum Once the mission spectrum is defined, the fatigue loads associated

with each condition must be determined. The most accurate method for determining

component loads is to conduct a flight survey of the conditions in Table 2.1 using a heavily-

instrumented vehicle. These instruments typically include transducers which can measure

displacement, velocity, acceleration, or strain on a component; component loads can later be

derived from these measurements. These data can be stored on the vehicle for later analysis

or transmitted wirelessly during the flights. Additional measurements of flight parameters

are used to define an associated flight condition for each portion of the load history. The

process of component load measurement is described in more detail by Jorio [77].

Because load data measured during flight is subject to scatter in a manner similar to

the S-N data, additional reductions or safety factors are applied to the load data to ensure

acceptable reliability. A common method is to fly the same condition multiple times and use

the highest loads recorded; this is known as the top-of-scatter (TOS) method [78]. After

load reduction is complete, a load spectrum is formed by correlating the mission spectrum

with the component loads in each condition using a transfer function.

Safe Life Calculation Finally, the safe life of the component is calculated by applying

an appropriate damage hypothesis. The damage hypothesis consists of a fatigue damage

theory and a cycle counting method, as discussed in Sections 2.2.1 and 2.2.1.4. The

determined safe life is translated to a replacement time specification, possibly involving

further application of safety factors, which is included in the maintenance manual for

the vehicle model. The component in question must be replaced after its safe life is

consumed, regardless of the condition of the component, for the vehicle to remain airworthy.

The safe life methodology achieves the required level of component reliability through

combined reductions or safety factors on the S-N curve, the component loads, and the

mission spectrum [79].

70

Damage Tolerance Methodology Components designed according to the safe life method-

ology suffer a number of drawbacks. Primarily, the requirement to retire each component

after the safe life elapses results in the premature retirement of most parts. For example,

assuming six nines reliability, only one part in 1,000,000 will actually suffer fatigue failure

by the end of its safe life. The remaining 999,999 parts will be discarded despite having use-

ful fatigue life remaining. Additionally, it is difficult to capture the influence unpredictable

phenomena such as manufacturing defects, maintenance errors, or operational damage [33].

Finally, parts designed according to the safe life methodology may be overly conservative,

resulting in a weight penalty [80].

The damage tolerance methodology offers an alternative approach to deriving fatigue

life and can result in significant cost savings if applied appropriately. In general, damage-

tolerant structures are designed to contain damage rather than avoid it, as in the safe life

methodology. A regular inspection interval is prescribed in order to detect any damage

before it leads to failure of the component. The duration of the inspection interval is set

based off of the calculation of the time between the coalescence of visible damage and

the failure of the structure. The damage tolerance methodology is closely related to and

dependent upon the progressive damage models discussed in Section 2.2.1.3.

Arden, Chappell, and Reddick [33] describe the two primary categories of damage-

tolerant structures, which they term fail-safe and safe crack growth. Fail-safe structures are

those that can successfully experience damage without causing a significant flight safety

risk. For example, structures such as the fuselage can be designed with multiple load paths

such that if one fails, another is available to take the remaining load. Structures can also be

designed with features to arrest crack growth before the crack propagates catastrophically.

Safe crack growth implies that the (single load path) structure has been sized such that the

crack will grow slowly at a stable rate not propagate completely through the structure before

the next inspection. In both cases, the structure is designed to maintain acceptable strength

to allow for safe operation in the interval between inspections.

71

Due to the wide variety of damage-tolerant approaches and the complexity thereof, the

damage tolerance methodology is not described in great detail in this document. The building

blocks are similar to those of the safe life methodology, except that a progressive damage

theory such as a crack propagation model is used instead of Miner’s rule. Additionally,

the safety and reliability of the structure must be predicted in undamaged and damaged

states. Finally, rigorous inspection methods must be designed and proven to be capable of

detecting the damage mode in question. A more detailed treatment of the damage tolerance

methodology is given by Arden, Chappell, and Reddick [33], Amer [80], and Reddick [81].

Although damage-tolerant structures may offer better safety and longer fatigue lives than

those designed using the safe life methodology, there are some difficulties in the application

of this methodology. Primarily, the damage tolerance methodology is subject to the same

drawbacks associated with progressive damage models, as discussed in Section 2.2.1.3. The

lack of a unified, generally applicable model for composite materials adds additional time

and expense to the fatigue substantiation process, as models may have to be tailored to

individual components and damage modes. Additionally, it is difficult to apply the damage

tolerance methodology to some of the most critical parts of the vehicle. For example,

helicopter dynamic components typically only have one load path, preventing the use of the

fail-safe approach. Inspections of these components may be impossible or overly difficult

and time-consuming, complicating the use of the safe crack growth approach. Thus, while

the damage tolerance methodology can be easily applied to certain components, like the

airframe, the safe life methodology remains the dominant choice for many others [4].

2.2.2.3 Phases of Fatigue Design

The fatigue design methodologies presented in the previous section may seem monolithic

but in fact are an idealization of a complex procedure that is executed in a staged, iterative

manner throughout the design, development, production, and in-service phases of the aircraft

fleet’s life-cycle. This section provides an overview of the various phases of rotorcraft fatigue

72

design and draws connections to the design stages discussed in Section 2.1.1. For reference,

a diagram of the phases of fatigue design, adapted from Arden, Chappell, and Reddick, is

presented in Figure 2.14.

Design Phase The design phase encompasses the requirements definition, conceptual

design stage, preliminary design stage, and detail design stage, as outlined in Figure 2.1.

As part of the requirements process, the customer or another stakeholder will specify the

required mission profile(s), the desired service life of critical components, the fatigue design

methodology to be used, and the methods of qualification. Typically, only military customers

include fatigue life as a requirement; for civilian rotorcraft, desired fatigue life is decided

upon by the manufacturer. These decisions will strongly influence the service life, and in

turn the safety and expense, of the final vehicle [33].

According to Arden, Chappell, and Reddick, little fatigue design is done in the conceptual

design stage. As discussed in Section 2.1.1.2, this stage is mainly concerned with defining

to the overall configuration and performance of the vehicle, and the level of knowledge

necessary to define the fatigue life of a specific component is not yet available.

The initial fatigue design activities take place during the preliminary and detail design

stages. Traditionally, the structural layout and material selection of critical components is

established to some degree during the preliminary design stage. During the detail design

stage, the structural layout and sizing of critical components is refined to achieve the desired

fatigue life. Because physical components of the vehicle are most likely not available in

this stage, fatigue life data is populated using fatigue testing of material coupons rather than

representative components.

Clearly, the flight loads survey specified in Figure 2.13, which is a critical component

of any fatigue design methodology, is also unachievable at this stage. Instead, fatigue

loads and the resultant fatigue life may be estimated using low-fidelity analytical studies or

extrapolations based on historical data. For example, the Army Materiel Command [82]

73

Requirements
Conceptual

design

Preliminary
design

Detail design

Tooling
fabrication

Specimen
fabrication

Technical data
for production

Component and
assembly tests

Substantiation
of compliance

Qualification
data

Flight article
fabrication

Wind
tunnel tests

Flight load
measurement

Service
evaluation

Production

Operation

Design phase

Development phase

Production and in-service phases

Figure 2.14: Phases of rotorcraft fatigue design, adapted from Arden, Chappell, and Red-
dick [33] with permission.

describes a method by which fatigue life can be estimated using only a single load condition.

The component loads associated with a specific flight condition, such as high speed flight,

74

are measured using a preexisting similar vehicle or predicted using analytical methods such

as the comprehensive analyses discussed in Section 2.1.3. Then, corrective factors are

applied to these loads to account for changes from the baseline in material, flight condition,

and desired fatigue life. These corrective factors depend on certain fundamental physical

parameters of the vehicle and are to be derived using statistical analysis of flight load surveys

from previously-designed helicopters.

Alternatively, designers can use a standardized fatigue loading sequence, known as

loading standards, to substitute for an actual load spectrum. Loading standards are defined

fatigue load spectra that are intended to represent a specific structure or use case. They are

intended to be used a basis for material fatigue testing and for the assessment of analytical

fatigue life prediction techniques. Although loading standards are not intended for use

in the final fatigue testing of specific aircraft components, they can provide a reasonable

preliminary estimation of the loads a component may be subjected to in service [83].

For helicopters, the HELIX and FELIX [84, 85] loading standards can be used. These

standards are intended to represent the loads produced by articulating and rigid rotor

systems, respectively, and are derived from flight load surveys of helicopters of each type.

Development Phase The development phase begins once the manufacturer commits

resources to the production of the vehicle. Although Figure 2.14 implies the development

phase is fully subsequent to the design phase, in reality, their may be overlap between the

two for scheduling purposes. This overlap blurs the distinction between the two phases;

some authors, such as Leishman [30], consider certain development phase activities to be a

part of the late detail design stage.

A critical fatigue design activity during the development phase is the construction and

testing of full-scale representative components for laboratory testing. Fatigue data derived

from these experiments will replace the coupon test data used during the design phase.

Simultaneously, prototypes of the complete aircraft and the rotor system will be constructed

75

for flight and wind tunnel testing. This enables accurate flight load measurements, which

will replace the load estimates used previously in the design phase.

With all the key elements in place, the fatigue life of each component is reevaluated

using the desired fatigue design methodology and compliance with the fatigue requirements

is evaluated by the qualifying agency. If the required fatigue life is not met, redesign of the

components in question will likely be required. This requires developing new production

tooling, constructing new representative components, repeating the component fatigue tests,

and possibly repeating wind tunnel and flight testing, which significantly impacts the cost

and schedule of the program.

Production and In-Service Phases Although the majority of fatigue design activities have

been completed by the conclusion of the development phase, certain processes continue into

the production and in-service phases. For example, quality control is constantly conducted

during the production phase. A few specimens of each component are removed from

the production line regularly and tested using the same fatigue testing methods as in the

development phase. If the test fails, then it is likely that some drift in production quality has

caused the components to fall below the defined fatigue life requirements and production

may be paused to allow time for correction. Quality assurance is especially important

in the case of composite materials because small differences in the manufacture of these

components can result in wide variation in material properties [33].

Additionally, the mission spectrum may be revised during the in-service phase based on

the actual usage of the aircraft, leading to reevaluations of the specified service life. Accident

records collected during the operational life the model can be analyzed to determine if

redesigns or modifications are necessary. For example, as of 1983, the Bell 47, a light GA

helicopter, experienced 42 accidents attributable to fatigue failure of the tail rotor blade,

seven caused by the tail rotor blade yoke, and six caused by the tail rotor retention bolt [24].

It is not known to this author whether corrective action was taken in this case.

76

2.2.2.4 Discussion

The traditional fatigue design methods discussed in this section are typified by their con-

servatism as well as their reliance on flight test data. The need for conservative methods is

self-evident: it is much more disastrous to specify an overly-optimistic service life than a

pessimistic one. In order to prevent catastrophic loss of life and equipment, designers and

regulatory agencies have established stringent safety requirements, such as the six nines

reliability requirement. Uncertainty in material fatigue properties, mission spectra, and

fatigue loading force engineers to design to the “worst case” fatigue life: that is, a vehicle

constructed of the weakest material, performing the most damaging maneuvers, and subject

to the highest possible loads for each flight condition should still be safe for the specified

service life. It is well-understood that this practice leads to the waste of some components

due to aggressive retirement schedules, but this is considered to be an acceptable trade-off

for increased flight safety.

However, the methods used to derive this conservatism are somewhat arbitrary and

vary from organization to organization. This section discussed the manner by which safety

factors or reductions are applied to fatigue test data, flight load data, and mission spectra

to produce an appropriate level of reliability for the entire vehicle fleet. Generally, these

reductions are not standardized and are left to the discretion of the manufacturer, subject to

approval from the qualifying agency [33]. This can result in wide variability in results. For

example, the American Helicopter Society (AHS)4 posed a hypothetical pitch link fatigue

life problem, asking a number of rotorcraft manufacturers to predict the fatigue life of the

pitch link based on the same source data [86]. The results of this exercise are given by

Lombardo and included in Table 2.2.

Although Table 2.2 may be an extreme example, it is evident that the lack of standard-

ization in the safe life methodology results in variation across manufacturers. Additionally,

because many of the safety factors and reductions are based on the given manufacturer’s ex-

4The AHS is now known as the Vertical Flight Society (VFS).

77

Table 2.2: Calculated fatigue lives for the hypothetical pitch link problem, from Lom-
bardo [4].

Predicted fatigue life (FH)

Block counting Manufacture’s preferred
Manufacturer method cycle counting method

Aerospatiale 9 58
Augusta 804 6450
Bell 1831 27,816
Boeing-Vertol 1294 22,523
Hughes 2594 24,570
Kaman 861 56,901
Sikorsky 240 470

perience, the reasoning behind each may be difficult to trace. This leads to Observation 2.6:

Observation 2.6
Traditional methods used to achieve high fatigue life reliability vary across organiza-

tions and are based on organizational experience rather than rigor.

Additionally, the safe life and damage tolerance fatigue design methodologies are highly

dependent on flight load surveys. These surveys are a necessary and irreplaceable part

of the final fatigue life substantiation and qualification process, as they provide the most

accurate representation of the loads a component will experience in service. The previous

literature review also indicates that flight surveys play a major role in the early stages of

design: preliminary and detail design activities are dependent upon historical flight load

surveys of similar helicopters to predict load data for the current vehicle. Although some

sources [4, 33] mention the use of analytical load prediction techniques, it appears these are

used less frequently and treated with greater suspicion than flight loads data.

These practices are most likely not appropriate for the revolutionary rotary-wing configu-

rations as described in Section 1.3. In advanced and revolutionary vertical lift configurations,

historical loads data gathered from SMR helicopters and other traditional configurations

are no longer applicable. Complex configuration-dependent interactions, such as those

identified by Avera and discussed in Section 1.3, will not be captured by historical datasets

78

and fatigue life predictions derived from this data may be flawed. If traditional methods are

used in the design of complex rotary-wing vehicles, components may have unacceptably low

fatigue lives, necessitating frequent component replacements or costly redesigns to improve

their service lives. This leads to Observation 2.7:

Observation 2.7
Historical flight load surveys used in the rotorcraft fatigue design process may produce

erroneous predictions when applied to revolutionary rotary-wing configurations.

2.3 New Approaches to Fatigue Design

The traditional fatigue design methods discussed previously comprise the most common

procedures in use by the rotorcraft industry, its customers, and its regulators. These methods

have evolved over the decades. Namely, the introduction of the damage tolerance methodol-

ogy has lead to a decrease in the prevalence of parts designed using the safe life methodology,

where applicable. New, more thorough fatigue life prediction models have helped improve

reliability and decrease uncertainty in the service life estimates. However, while elements of

the methodology evolve, the overall process remains similar to the processes depicted in

Figures 2.13 and 2.14.

In this section, several new, and largely academic, approaches to the fatigue design

process are reviewed and discussed. The primary focus is on approaches that are intended to

integrate with or complement the vehicle design tools discussed in Section 2.1.2. In general,

these approaches also tend to make use of the physics-based rotor design tools discussed in

Section 2.1.3.

For reference, Literature Question 3, which is the focus of this section, is reprinted

below:

Literature Question 3

How have other researchers improved upon the traditional rotorcraft fatigue design

process?

79

2.3.1 Structural Design Against Fatigue Failure for Composite Rotor Blades

Li, Volovoi, and Hodges [66] (see also Li [87]) developed a composite rotor blade design

process which uses fatigue failure as a constraint. The design framework integrates the

blade cross-sectional design and analysis tool VABS [88], the rotorcraft comprehensive code

Dymore [89], and an in-house fatigue analysis based on Schaff and Davidson’s strength

degradation model. Li’s design framework is depicted in Figure 2.15.

The framework uses a single objective function which seeks maximum performance

by minimizing cross-sectional mass and ensures aerodynamic stability by minimizing the

distance between the aerodynamic center and the shear center. Additional constraints ensure

the first six natural frequencies of the blade are not near the integer multiples of the rotor

speed to avoid resonant conditions. The minimum acceptable fatigue life of the rotor blade

is also included as a design constraint.

The optimization process begins by generating a mesh of the rotor blade cross-section in

VABS. The cross-section is defined by a VABS geometry template which, when combined

with the initial design variables, generates a VABS input file. The design variables enabled

by the template include skin thickness and layup angle, web thickness and layup angle,

several geometric properties of the D-spar, and the weight of a non-structural leading edge

mass. VABS calculates sectional mass and stiffness properties for the cross-section, which

are then used to build a multi-body dynamic analysis model in Dymore. VABS will be

discussed further in Section 4.4.2.3.

Because the aeroelastic analysis and trim procedure is very computationally intensive,

the natural frequency constraints are checked using a simpler in-vacuo analysis. If the

resonance constraints are satisfied, then the rotor is trimmed to the desired flight condition(s)

in Dymore. The spanwise loads on the rotor blade are recorded for the duration of the flight

condition and used for the process of stress and strain recovery in VABS. The recovery

process produces a time history of the stress and strain fields at each node in the cross-section

mesh; this data is then used to calculate the fatigue life as described in Section 2.2.1.3.

80

Cross-section
geometry template

Random initial
design values

Cross-section
mesh generation

VABS sectional
analysis

Initial
curvature

Determine natu-
ral frequencies

Resonant?

Perturb the
last point

that satisfies
constraints

Trim rotor

VABS stress and
strain recovery

Fatigue analysis

Objective,
constraints,
gradients

Converged?

Optimal blade
structure

Determine
the next

design point

Yes No

Yes

No

Figure 2.15: Structural design framework developed by Li, adapted from Li, Volovoi, and
Hodges [66] with permission.

81

Next, the objective function, constraint functions, and gradients thereof are calculated.

The framework uses a sequential quadratic programming optimization algorithm to search

for the lightest and most stable cross-section design that meets the fatigue life requirement.

Li’s case study centers on the optimization of a three-bladed hingeless rotor system. Only a

single flight condition is analyzed: steady forward flight at V = 123 ft/s and T = 1500 lbf.

The fatigue life requirement is set to at least 10,000 FH. Sixteen randomized initial designs

were used to produce five local optima that satisfied all the constraints. The best of these

optima was significantly lighter than the baseline design and features a calculated fatigue

life of 15,800 FH. The fatigue life of the baseline design is not known.

2.3.2 Impact of Active Rotor Technologies on Fatigue Life

Arruda, Hamel, and Collins [90] developed a quantitative technology analysis framework

intended to assess the impact of active rotor technologies (ARTs) on rotorcraft performance,

effectiveness, and LCC. This work essentially “bridges” the rotor design tools discussed

in Section 2.1.3 with the RAM-C–focused vehicle tools discussed in Section 2.1.2.2. The

impact of a given ART is assessed using physics-based rotor analysis tools and the resulting

impact on LCC is determined using a discrete event simulation (DES).

In the example provided in the work, Arruda, Hamel, and Collins demonstrated a

framework intended to test the impact of higher-harmonic control (HHC) on pitch link

fatigue life. HHC systems supplement the 1/rev swashplate control inputs using additional

control inputs of higher frequencies. The amplitude, frequency, and phase of the HHC inputs

can be varied to tune the rotor blade response to produce the desired results. Generally,

HHC is intended to reduce hub vibrations, but in this case is used to minimize the pitch link

load amplitude.

Arruda, Hamel, and Collins used RCAS to model the rotor system with HHC added. The

rotor system was simulated across a number of flight conditions, such as hover, steady climb,

transient maneuvers, and forward flight at various airspeeds, reflecting the operational reality

82

of the vehicle in question. Ideal values for HHC phase, frequency, and amplitude were

found by sweeping the values of these parameters over a predefined range and selecting the

combination which most reduced pitch link load amplitude and vertical hub force amplitude.

The pitch link loads were recorded and applied to an ANSYS finite-element model of the

pitch link to determine the peak stresses on the part. The authors then applied Miner’s rule

to the pitch link to determine the fatigue life of the pitch link. It was estimated that the

improvements in fatigue life obtained by implementing HHC would result in a reduction in

pitch link replacements of 20% for a notional helicopter fleet.

2.3.3 Applications of Surrogate Modeling to Fatigue Design

The discussion in Sections 2.2.1 and 2.2.2 repeatedly emphasizes the dependence of fatigue

life prediction methods on vast quantities of data. Constructing the appropriate fatigue life

prediction model requires an extensive fatigue life testing program using material coupons

or representative components. Developing the load spectrum requires a thorough flight loads

survey, which must capture a large number of flight conditions and maneuvers to adequately

account for the expected in-service usage of the entire fleet. Because of the stochastic nature

of these processes, identical tests must be carried out multiple times to provide an estimate

of the mean and the variance of the results. For example, a single maneuver in a flight

loads survey may be repeated multiple times to capture variations in the resulting fatigue

loads [78].

These testing requirements contribute significantly to the cost of vehicle development

and certification. In some cases, the amount of testing may be reduced for economic and

schedule reasons. This forces the manufacturer to apply more conservative safety factors or

reductions to maintain adequate fatigue reliability given reduced certainty [4].

Surrogate modeling is a tool that could potentially be used to reduce the number of

test cases required in certain situations. The basic principle of surrogate modeling is to

approximate a complicated or expensive function, f(x), such as a rotor system aeroelastic

83

analysis, by building a surrogate model, f̂(x), that approximates the output of f(x) but can

be executed more rapidly. Because f̂(x) does not reproduce f(x) exactly, there will be some

associated error ε(x). The goal is to use an appropriate surrogate modeling technique to

reduce the magnitude of ε(x) for the desired range of the input variables, x. This surrogate

model can then be evaluated in the place of the original function, generating new outputs

without requiring costly and time-consuming analysis [91].

2.3.3.1 Regression Analysis of the Load Spectrum

Several applications of surrogate modeling in the context of the rotorcraft fatigue design

problem can be found in the literature. The first is a study on establishing a relationship

between fatigue loads and flight condition using response surface methods by Zion [76]. The

objective of this study was to analyze trends in fatigue loads for specific critical components

of the CH-53 heavy-lift transport helicopter by building a surrogate model based on data

collected during flight loads surveys. Then, the influence of each independent variable can be

analyzed leading to more informed construction of further flight loads surveys. Additionally,

the surrogate model could be used to predict fatigue loads for flight conditions or maneuvers

that have not been flown, potentially reducing the number of test points in the program. This

would allow the manufacturer to construct a detailed load spectrum at a low cost.

Response surface methods are a surrogate modeling technique in which a functional re-

lationship is established between the dependent variable, y, and the k independent variables,

x, using regression analysis [92]. Zion uses linear response surface equations of the form

yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + εi (2.16)

where βj are linear coefficients and i denotes the sample point. The values of βj are

estimated using a linear regression process which minimizes the sum of squared errors (SSE)

84

for all n sample points, which is defined as

SSE =
n∑
i=1

ε2
i =

n∑
i=1

(yi − β0 − β1xi1 − β2xi2 − . . .− βkxik)2 (2.17)

The resultant least-squares estimates of the βj coefficients are termed bj and used to form

the response surface equation:

ŷi = b0 + b1xi1 + b2xi2 + . . .+ bkxik (2.18)

Equation (2.18) can then be used to generate outputs for additional sets of dependent vari-

ables not included in the original n data points. Assuming that the surrogate model is

well-developed, the error should be low for most new cases, as long as the independent vari-

ables are kept within the ranges used to construct the response surface equation. Response

surface methods are discussed further in Section 4.1.1.

Zion used surrogate models to predict steady and vibratory loads for the main rotor

pushrod and the tail rotor spindle of the CH-53. Separate response surface equations were

produced for each flight condition and maneuver of interest, including level cruise, steady

state climb, 30° turns, 45° turns, and climbing turns. Dependent variables included load

factor, airspeed, density altitude, gross weight, engine torque, rotor RPM, rate of climb,

pilot control positions, and vehicle attitude, although not all dependent variables were found

to be significant influences on fatigue loads in all cases. Zion demonstrated that, with the

application of appropriate modeling techniques, well-developed surrogate models can be

used to predict fatigue loads for all flight conditions with reasonable accuracy. The author

also noted the importance of evenly sampling a wide range of the dependent variables to

produce a flexible surrogate model with low error. However, it is not known to this author

whether Zion’s work has been applied to the fatigue design of any production vehicles.

85

2.3.3.2 Prediction of Stress and Strain

Another study of interest focuses on the use of surrogate modeling to predict the maximum

stress and strain in a rotor blade cross section by Schank [93]. Schank constructed a rotor

blade analysis framework to determine optimal trim conditions for complex rotary-wing

aircraft with non-unique trim solutions. The trim conditions are constrained by the ultimate

strength of the rotor blade material, which must resist aerodynamic loads imparted by gusts

of wind. In order to evaluate these constraints, Schank uses the aforementioned VABS tool

to calculate the internal stress and strain at critical points in the rotor blade. Load data is

provided by the comprehensive analysis program RCAS.

Schank notes that the process of recovering internal stress and strain from applied loads

and moments in VABS is extremely time consuming, requiring approximately of 7 h for a 5 s

gust simulation with 1000 time steps. To combat this, the author implemented an artificial

neural network to predict the maximum strain in the blade cross-section based on the applied

loads and moments. Neural networks are a non-linear surrogate modeling technique inspired

by analogy to a the human brain [91]. This type of surrogate modeling will be discussed

further in Section 4.1.2. In general, this modeling technique is much more flexible, but also

much more complex, than the linear response surface methods discussed previously.

The neural network was able to predict the maximum strain with no more than 5% error

in approximately 1 s. However, Schank notes that this technique is only cost-effective if the

total neural network training time is lower than the time required for a complete stress and

strain recovery in VABS. The training process must be repeated each time the design of the

cross-section is changed, possibly limiting the application of this process in the preliminary

design phase where the cross-section design may change rapidly. Although the author does

not apply his technique to fatigue life prediction, he notes that the computational cost of this

problem could be greatly reduced using similar methods.

86

2.3.4 Reliability of Fatigue Life Predictions

As discussed in Section 2.2.2.2, the safe life methodology achieves an appropriate fatigue

reliability through the use of aggressive reductions and safety factors. This allows engineers

and regulators to specify retirement times that ensure flight safety despite variations in

material strength, rotor loads, and vehicle usage. However, the level of reliability provided

by the safe life methodology is not typically quantified; rather, it is accepted that the

probability of failure, Pf , is “extremely remote” based on organizational and operational

experience [79].

Thompson and Adams [79] developed a numerical Monte Carlo simulation to quantify

the reliability level of safe life calculations. Monte Carlo simulation will be discussed

further in Section 5.1.3. The objective of the study was to do away with commonly used

safety factors to better represent the “true” nature of fatigue damage. Thus, key parameters

were modeled with random variables and the fatigue life prediction was accomplished

probabilistically rather than deterministically.

The simulation requires statistical distributions for material strength, fatigue loads in

each flight condition, and frequency of occurrence of each flight condition. These distri-

butions were created by fitting normal, lognormal, and Weibull distributions to historical

data recorded during material tests, flight loads surveys, and usage surveys. The calculation

proceeds by simulating the operations of a single UH-60 vehicle with component strengths

assigned by sampling the material strength distribution. Throughout the simulation, dif-

ferent maneuvers and flight loads are applied to the component by sampling from their

respective distributions. When the cumulative fatigue damage reaches its limit, the age of

the component at failure is recorded and the simulation is reset and repeated.

If the simulation is repeated a sufficient number of times, an approximation of the true

Pf distribution is obtained. Then, the fatigue life at a desired Pf can be calculated by

reading from the cumulative distribution function of Pf . In reality, calculating extremely

small values of Pf using a Monte Carlo simulation requires an impracticably large number

87

of simulations.5 The authors were only able to achieve Pf ≈ 1× 10−3 using over 1000

repetitions of the simulation. These results were manually extrapolated to Pf = 1× 10−6 to

obtain estimates of the retirement time necessary to achieve six nines reliability.

Thompson and Adams found that the retirement times calculated using the traditional

safe life methodology were extremely similar to those calculated using the aforementioned

methods. The authors also conducted sensitivity analyses and concluded that variability

in material strength is the most important factor in the fatigue life prediction, followed by

flight load variability and usage variability.

2.3.5 Discussion

The framework described by Li proposes a novel alternative to the fatigue design processes

discussed in Section 2.2.2. Essentially, this framework incorporates fatigue life as a con-

straint in the preliminary design of the rotor system, using tools and concepts similar to

those of Section 2.1.3. This allows rotor performance, weight, stability, and fatigue life to be

considered simultaneously, which is not possible in the traditional rotor design process. The

segmented nature of the optimization process reduces computational expense by evaluating

many of the constraints prior to the full aeroelastic analysis of the rotor system, enabling

more rapid design space exploration.

However, the comprehensive analysis of the rotor is limited to a single steady forward

flight condition in which the rotor system is modeled in isolation. This neglects a wide

variety of extremely damaging flight conditions discussed in Section 1.5, such as transient

maneuvers, the GAG cycle, and transitional flight. In effect, the mission spectrum portion

of the safe life methodology (see Figure 2.13) is neglected entirely and, as a result the load

spectrum is extremely simplified. Additionally, the effects of rotor–fuselage and rotor–rotor

interactions are not captured. As a result, the calculated fatigue life of 15,800 FH may be

significantly overestimated.

5Recall that to achieve six nines reliability, 1− Pf = 0.999999. Thus, Pf = 1× 10−6. This is referred to as
a weak probability.

88

Furthermore, the only design variables considered by Li are related to the cross-sectional

design of the blade itself. The potential impacts of variations in other design variables, such

as the rotor hub, the position of the rotor relative to other components on the vehicle, or

the cruise speed, are neglected. Nevertheless, the approach presented by Li is especially

promising and has the potential to be expanded into a more complete analysis.

Arruda, Hamel, and Collins improved upon Li’s framework in some respects by properly

capturing the vehicle’s mission spectrum by modeling a number of flight conditions and

maneuvers. They also demonstrated the potential of modifying design parameters other than

those related to the cross-section of the blade to improve fatigue life. This work establishes

that the fatigue life of a rotor system component can be influenced by a number of internal

and external design decisions.

However, this analysis also depended on a single rotor modeled independently of the re-

mainder of the vehicle, neglecting rotor–rotor and rotor–fuselage interactions. Additionally,

Arruda, Hamel, and Collins did not attempt to rigorously optimize the parameters of the

HHC system or investigate any other ARTs, which could potentially improve the fatigue life

further. Thus, this study serves as a promising proof-of-concept but does not constitute a

complete design environment.

Zion and Schank demonstrated the applicability of surrogate modeling to the rotorcraft

fatigue design problem. Both authors demonstrated the potential to replace time-consuming

and expensive processes with rapid evaluations of simple functions. However, neither author

demonstrated the technique in the context of a fatigue design framework. In this context,

the application of a surrogate model requires a cost–benefit trade-off analysis. The benefit

of rapid evaluation may be outweighed by the cost of evaluating the original function at

each of the training points used in the construction of the surrogate model. Additionally, the

error induced by the surrogate model would reduce confidence in the fatigue life prediction;

additional measures may be required to maintain a satisfactory level of reliability.

Thompson and Adams demonstrated that the safety factors and reductions key to the

89

traditional safe life methodology can be eliminated using probabilistic calculations to

determine reliability. Unfortunately, the authors were not able to capture the extremely weak

probabilities required by the six nines requirement in a reasonable amount of time. The

extrapolation method used to predict these values was not especially rigorous and may not

be generically applicable to other cases. Additionally, the Monte Carlo simulation used in

this study is rather crude and leaves room for improvement.

This discussion leads to Observation 2.8:

Observation 2.8
Several new approaches to the rotorcraft fatigue design have demonstrated the potential

applicability of physics-based design tools. In each case, limitations in scope prevent

their application in a complete fatigue design environment.

2.4 Gaps in the Literature

The guiding literature questions and derived observations from the literature review in the

previous sections are reprinted in Table 1.1 for reference.

Based on the observations in Table 1.1, a number of gaps in the literature can be identified.

Observation 2.1 states that the fatigue design in certain rotorcraft components is possible

as early as the preliminary design stage. Based on the discussion in Section 2.1.1, it is

desirable to conduct such analyses as early as possible, in order to ensure the vehicle will

achieve desirable fatigue life characteristics and avoid costly redesigns during detail design

or development if requirements are not met. Early knowledge of component service lives is

also necessary to accurately predict maintenance and cost requirements for the complete

aircraft.

However, preexisting preliminary design tools developed for rotor systems and rotary-

wing vehicles are not capable of predicting the fatigue life of rotor components or projecting

vehicle RAM-C characteristics using this information, as noted by Observations 2.2 and 2.4.

New approaches to the rotorcraft fatigue design problem presented in works by Li, Volovoi,

90

Table 2.3: Summary of literature questions and observations in Chapter 2.

Literature Questions

1 How does fatigue design fit into the overall vehicle design process? Can existing
rotorcraft design tools be effectively utilized for fatigue design?

2 What are the most important elements of the traditional fatigue design process?
What are the associated disadvantages and drawbacks?

3 How have other researchers improved upon the traditional rotorcraft fatigue design
process?

Observations

2.1 The preliminary design stage is the earliest point in the rotorcraft design process at
which fatigue design is feasible.

2.2 Most currently available RAM-C–focused design tools suffer from high data input
requirements. These inputs can be difficult to populate due to a lack of appropriate
resources to predict individual system characteristics in the early design stages.

2.3 The development of rotor design tools is complicated by the computationally expen-
sive simulation packages on which they rely.

2.4 Most currently existing physics-based rotor design tools typically do not make
considerations for the as RAM-C characteristics of the rotor system.

2.5 Fatigue life models such as Miner’s rule and phenomenological models such as
Schaff and Davidson’s strength-degradation model are most appropriate for use
in the rotorcraft preliminary design stage. Miner’s rule is preferable due to its
simplicity and ease of implementation.

2.6 Traditional methods used to achieve high fatigue life reliability vary across organi-
zations and are based on organizational experience rather than rigor.

2.7 Historical flight load surveys used in the rotorcraft fatigue design process may
produce erroneous predictions when applied to revolutionary rotary-wing configura-
tions.

2.8 Several new approaches to the rotorcraft fatigue design have demonstrated the
potential applicability of physics-based design tools. In each case, limitations in
scope prevent their application in a complete fatigue design environment.

and Hodges [66], Zion [76], Thompson and Adams [79], Li [87], Arruda, Hamel, and

Collins [90], and Schank [93] serve as promising proofs-of-concept but do not constitute

complete fatigue design frameworks, as stated by Observation 2.8. This leads to Gap 1:

91

Gap 1

There is a missing link between rotor design tools and rotary-wing vehicle design tools

that prevents physics-based prediction of component service lives and resulting RAM-C

characteristics in the preliminary design stage.

Addressing Gap 1 is hindered by inherent difficulties in the rotorcraft fatigue design

process. Primarily, establishing the load spectrum, which is critical for determining an

accurate representation of in-service fatigue loads, is costly and time-consuming. In the

preliminary design phase, load spectra are typically approximated by applying correction

factors to historical flight load surveys. As noted by Observation 2.7, this historical data is

not applicable to complex vertical lift configurations and its continued use could result in

erroneous and potentially non-conservative fatigue life predictions.

Rotor aeroelastic analysis tools, such as the comprehensive analysis programs discussed

in Section 2.1.3, offer a potential solution by enabling the analytical prediction of component

loads for arbitrary rotary-wing aircraft configurations. However, as noted by Observation 2.3,

the computational expense of these programs complicates their use in conceptual and

preliminary design frameworks. The vast amount of runtime required to construct a complete

load spectrum prohibits the direct application of comprehensive analyses to the fatigue design

problem. This leads to Gap 2:

Gap 2

No well-developed methods are available to rapidly derive the load spectrum of revolu-

tionary vertical lift configurations in the preliminary design stage.

Traditional fatigue design methods used in the rotorcraft industry use acceptably accurate

fatigue life prediction methods, as noted by Observation 2.5. Sufficient reliability and

confidence in fatigue life predictions is achieved by introducing conservative biases wherever

uncertainty is present. These biases take the form of reductions and safety factors that vary

between aircraft development programs, manufacturers, and qualifying agencies, and are

typically based on a given organization’s historical experience, as noted by Observation 2.6.

92

These approaches are difficult to trace and reproduce and may provide overly conservative

solutions in some cases, leading to increased weight and expense of the final component.

Attempts to do away with these safety factors using probabilistic methods can only be

found in one-off studies which do not appear to have resulted in widespread adoption in the

industry. More rigorous, robust, transparent, and flexible methods of achieving sufficient

fatigue life reliability are necessary. This leads to Gap 3:

Gap 3

There are no consistent and repeatable methods to ensure high fatigue life reliability in

regular use in the rotorcraft industry.

The connections between the observations from Chapter 2 and the three gaps identified

previously are illustrated in Figure 2.16.

Obs.
2.2

Obs.
2.4

Gap 1

Obs.
2.3

Obs.
2.7

Gap 2

Obs.
2.5

Obs.
2.6

Gap 3

Obs.
2.1

Obs.
2.8

Figure 2.16: Flow chart summarizing the identification of gaps in the literature.

The following chapter will address the formulation of a research plan to close the gaps

identified in this section.

93

CHAPTER 3

RESEARCH FORMULATION

In Chapter 1, Research Question 0 was derived based on a review of rotorcraft life-cycle

costs, accident rates, causes of fatigue damage, and future vertical lift aircraft development

programs. For convenience, Research Question 0 is reprinted below:

Research Question 0

How can the fatigue life of rotor system components be efficiently evaluated for use as

a design driver in a rotorcraft design framework?

The literature review in Chapter 2 covered rotary-wing vehicle design, including the

design process, vehicle design tools, and rotor design tools; rotorcraft fatigue design,

including fatigue damage theory and traditional fatigue design methods used in the rotorcraft

industy; and several new academic approaches to rotorcraft fatigue design. Key observations

from each subject area were used to identify three main gaps in the literature, as illustrated

in Figure 2.16. These gaps are summarized in Table 3.1.

Table 3.1: Summary of literature gaps identified in Chapter 2.

Gaps

1 There is a missing link between rotor design tools and rotary-wing vehicle design
tools that prevents physics-based prediction of component service lives and resulting
RAM-C characteristics in the preliminary design stage.

2 No well-developed methods are available to rapidly derive the load spectrum of
revolutionary vertical lift configurations in the preliminary design stage.

3 There are no consistent and repeatable methods to ensure high fatigue life reliability
in regular use in the rotorcraft industry.

In this chapter, a conjecture to Research Question 0 is formed. Next, further research

questions are developed and an initial outline of a new preliminary fatigue design methodol-

ogy is presented.

94

3.1 Conjecture to Research Question 0

Gap 1 motivates the development of a new fatigue design methodology. Such a methodology

would need to be consistent with the activities and knowledge level of the preliminary design

stage (see Section 2.1.1.3) in order to ensure compatibility with the vehicle and rotor design

tools described in Sections 2.1.2 and 2.1.3, respectively. For reference, Figure 2.1, which

summarizes the stages of rotorcraft design, is reprinted below.

Requirements

Conceptual design:
• Overall layout
• Weight and

performance
• Rotor configuration

and sizing
• Elementary theories

Preliminary design:
• Structural design
• Rotor hub design
• Blade mass and

stiffness
• Comprehensive

analyses

Detail design:
• Design for fabrication
• Precise structural

design
• Wind tunnel testing
• Prototype flight

testing

Design output

Figure 2.1: Flow chart summarizing the rotorcraft design process (reprinted from Page 33).

A primary requirement for a preliminary design methodology is to produce results

quickly. Although the most wide-ranging design space exploration is complete by the

end of the conceptual design stage, the preliminary design stage will contain some design

excursions and trade studies to seek an optimal design point near the configuration identified

previously. If fatigue life predictions take an inordinate amount of time to complete, such

design exploration would be impossible or prohibitively time-consuming.

An additional requirement is that the level of knowledge required by the preliminary

design methodology must be consistent with the knowledge produced before and during the

preliminary design stage. As described previously, the preliminary design stage typically

involves wind tunnel testing and CFD simulations to further the aerodynamic design of the

95

vehicle. Rotor hub design and rotor blade structural design will advance to a point such

that comprehensive aeroelastic analyses can be used to predict rotor performance, stability,

loads, and handling qualities. However, detailed structural layouts and manufacturing plans

will not be created until the detail design stage. This limits the available structural analysis

methods. For example, certain fatigue life prediction methods, such as the progressive

damage models discussed in Section 2.2.1.3, are likely unsuitable for use in a preliminary

design methodology. Of course, deriving the load spectrum from flight load surveys is

also impossible because prototype vehicles will not be flown until the development phase.

Alternative methods are needed to construct the load spectrum.

The aforementioned requirements necessitate modifications to existing rotorcraft design

methodologies which, as described in Section 2.2.2, are fully applicable only in the detail

design stage or the development phase. Enhancements to these methodologies are necessary

to produce fatigue life predictions of comparable quality and reliability in the preliminary

design stage. These modifications are derived from the rotorcraft design and analysis tools

discussed in Sections 2.1.2 and 2.1.3 and the new fatigue design approaches discussed in

Section 2.3. This can be stated as a conjecture to Research Question 0:

Conjecture 0

A new preliminary fatigue design methodology can be created by enhancing traditional

fatigue design methodologies with modern rotorcraft analysis tools and integrating new

methods to improve flexibility and runtime. This enables the use of rotor component

fatigue life as a design driver for future rotary-wing vehicle development programs.

To support Conjecture 0, a new preliminary fatigue design methodology will be devel-

oped and tested, satisfying Research Objective 2. This methodology must generate fatigue

life predictions of a fidelity similar to those of the aforementioned traditional fatigue design

methodologies. Additionally, runtime must be sufficiently low to allow for design space

exploration analogous to that which may take place in the preliminary design stage. The ca-

pabilities and drawbacks of this methodology will be assessed by application to hypothetical

96

rotorcraft design exercises.

3.2 Research Question 1

Constructing a complete load spectrum is critical to the assessment of the fatigue life of

a flight-critical component. This is especially important in the context of revolutionary

vertical lift vehicles, which may experience complex loading environments due to their

novel configurations. Sections 1.5 and 2.2.2 emphasize the importance of capturing all

elements of the load spectrum, as seemingly insignificant segments may be responsible for a

majority of the fatigue damage a component experiences.

The most promising method of predicting the load spectrum in the preliminary design

stage is to leverage comprehensive analysis tools to analytically predict component loads and

stresses. This technique is used in the context of fatigue life prediction by Li [87], Arruda,

Hamel, and Collins [90], and Schank [93] (see Sections 2.3.1 to 2.3.3) and in the context of

rotor design environments by Sinsay and Alonso [52] and Collins [54] (see Section 2.1.3).

However, long runtimes are inherent to comprehensive analysis programs due to the

complexity of the non-linear equations that must be solved and the short time steps required

for accuracy. Analysis time increases significantly if CFD coupling is introduced, which

may be necessary to accurately predict the airloads produced by unconventional rotor

configurations. For example, Collins [54] reported a runtime of approximately 9 h for a

single analysis point using loose CFD/CSD coupling on 12 processors, which he considered

to be “very fast”. Consider that constructing a load spectrum for the relatively simple

transport helicopter mission spectrum described in Table 2.1 would require, at minimum, 90

analysis points or 810 h of processing time assuming runtimes are similar to those reported

by Collins. This process would need to be repeated each time the vehicle or mission design

is modified. The process of constructing a load spectrum for use in the preliminary fatigue

design methodology quickly becomes intractably difficult and time-consuming. This leads

to Research Question 1:

97

Research Question 1

How can a complete load spectrum be rapidly derived using physics-based comprehen-

sive analysis tools?

3.3 Research Question 2

Gap 3 identifies the lack of available methods to ensure fatigue life prediction reliability

in traditional rotorcraft design methods. The reductions and safety factors described in

Section 2.2.2.2 do produce acceptable levels of reliability in most cases, as demonstrated

by Zion [78] and Thompson and Adams [79]. However, reductions vary across organiza-

tions and are typically derived from a given organization’s operational experience. Thus,

reductions that produce high fatigue life reliability for conventional rotorcraft may not be

similarly successful when applied to arbitrary rotary-wing configurations.

Lappos [94] argues that the practice of depending upon safety factors to address modeling

uncertainty when designing new rotorcraft leads to overly-conservative designs. Instead,

designers should use probabilistic methods that capture and quantify this uncertainty, leading

to a more robust design with potential savings in weight and cost.

The proposed preliminary fatigue design methodology should make use of similar

principles to ensure high reliability while minimizing the use of traditional reductions and

safety factors. This has the potential to reduce the weight and cost of the resultant designs

and provide additional flexibility with respect to changing levels of uncertainty and variable

reliability requirements. This leads to Research Question 2:

Research Question 2

How can probabilistic methods be applied to efficiently remove the dependence of

traditional fatigue design methodologies on reductions and safety factors?

Research Questions 1 and 2 will be used to satisfy Research Objective 3.

98

3.4 Proposed Methodology

This section outlines the initial formulation of the preliminary fatigue design methodology

proposed in Conjecture 0.

3.4.1 Reference Methodology

This methodology will be based upon the safe life fatigue design methodology detailed in

Figure 2.13. The safe life methodology was selected over the damage tolerance methodology

because safe life remains the dominant methodology of use for single-load-path components

in the rotorcraft industry. Additionally, the damage tolerance methodology is less appropriate

for application in the preliminary design stage (see Section 3.1). For reference, Figure 2.13,

which diagrams the safe life methodology, is reprinted below.

Fatigue tests,
existing knowledge

Mean
S-N curve

Working
S-N curve

Damage
hypothesis

Safe life

Mission
spectrum

Load
spectrum

Flight loads
survey

Measured
loads

Component
loads

Load
reduction

Flight condition to compo-
nent loads transfer functions

Flight
parameters

Flight
condition

Figure 2.13: Diagram of the safe life methodology (reprinted from Page 67).

99

3.4.2 Preliminary Fatigue Design Methodology

The proposed preliminary fatigue design methodology replaces elements of the safe life

methodology with modern tools, techniques, and models detailed in the previous chapters.

A diagram of the proposed methodology is presented in Figure 3.1.

Existing
fatigue data

Probabilistic
S-N curve

Damage
hypothesis

Load
spectrum

?

Safe life

Beam cross-
section model

Sectional
properties

Stress/strain
recovery

?

Rotor compre-
hensive model

Update
model

Load
histories

Vehicle
perf. model

Flight
conditions

RQ 1

RQ 2

Mass

Stiffness

Flight
state

Atmos.

Figure 3.1: Initial diagram of the preliminary fatigue design methodology.

The first difference between the proposed design methodology and the safe life method-

ology is the construction of the S-N curve. In the proposed methodology, information

relating to the variance of the S-N data is retained to create a probabilistic S-N curve, rather

than deriving a working curve from the mean curve. This probabilistic data will be captured

as uncertainty in the probabilistic analysis.

100

Rather than rely on present or historical flight load surveys to produce a load spectrum,

the proposed methodology makes use of beam cross-section modeling programs such as

VABS (see Sections 2.3.1 and 2.3.3), rotor comprehensive analysis programs such as RCAS

or Dymore (see Section 2.1.3) and vehicle performance analysis tools such as NDARC

(see Section 2.1.2). The beam analysis tool provides sectional mass and stiffness properties

for the component design. The vehicle analysis tool provides a description of the vehicle

state, including airspeed, atmospheric conditions, gross weight, attitude, and pilot control

positions, based on a predefined design mission profile or point performance conditions.

This data is used to update the comprehensive analysis model, which can then be

executed repeatedly in different flight conditions. Once load histories for the appropriate

flight conditions are obtained from the comprehensive model, the cross-section model will be

executed again in stress/strain recovery mode to extract stress and strain fields. A complete

load spectrum for the component of interest can then be derived. Research Question 1,

explored further in Chapter 4, will address ways to speed up this process at runtime to avoid

the computational expense of repeated calls to the comprehensive analysis and cross-section

model.

Finally, the load spectrum and damage hypothesis will be used to predict the component’s

safe life at the desired level of reliability. Research Question 2, which is addressed in

Chapter 5, will explore ways to replace traditional reductions and safety factors with modern

probabilistic methods. Thus, the methodology described in Figure 3.1 will be refined and

updated based on the outcome of original research intended to answer Research Questions 1

and 2.

3.5 Research Question 3

The utility of the aforementioned methodology must be demonstrated through an appropriately-

realistic case study. The test case is structured as a hypothetical preliminary design exercise

intended to improve the fatigue life of a baseline conceptual design. This will involve

101

determining a baseline safe life the rotor blades and seeking methods to improve their

lifespan. Conceptual and preliminary design variables defining the rotor blade cross-section,

vehicle geometry, and design mission profile will be varied to study the resulting impact on

the fatigue life prediction. This case study is framed as Research Question 3:

Research Question 3

Does the preliminary fatigue design methodology enable evaluation of the relative

impact of common preliminary design variables on the probability of fatigue failure of

a flight-critical component in a conceptual helicopter design?

Further details related to the case study will be provided in Chapter 6. Research Question 3

will be used to satisfy Research Objective 4.

3.6 Summary

In this section, the initial design of a preliminary fatigue design methodology to address

weaknesses in traditional rotorcraft design processes was proposed. Two research questions

which will inform the development of this methodology were identified, and a third is used

to frame a proof-of-concept study of the methodology’s capabilities. The logical process

used to formulate these research questions is depicted in Figure 3.2.

RQ 0 Gap 1 Con. 0

Gap 2

Gap 3

RQ 1

RQ 2

RQ 3

Figure 3.2: Flow chart summarizing the research formulation, not including the observations
described in Table 2.3.

102

The next chapters will involve additional literature review necessary to formulate hy-

potheses to the aforementioned research questions. Virtual experiments will be conducted to

address each hypothesis in turn, and the proposed methodology will be refined as necessary.

The capabilities of the methodology will be tested and compared to preexisting traditional

methods.

103

CHAPTER 4

PREDICTION OF FATIGUE LOADS USING SURROGATE MODELING

Research Question 1 (see Section 3.2) asks if the load spectrum derivation task can be sped

up despite the long runtime of comprehensive analysis programs. For reference, Research

Question 1 is reprinted below.

Research Question 1

How can a complete load spectrum be rapidly derived using physics-based comprehen-

sive analysis tools?

The literature review in Chapter 2 suggests that surrogate modeling methods may be able

to rectify this problem. Zion [76] demonstrated that response surface methods can be used to

predict oscillatory and mean component loads based on inputs such as gross weight, density

altitude, airspeed, pilot control positions, and vehicle attitude. Schank [93] successfully

used artificial neural networks to predict maximum strain in a rotor blade cross-section

based on the applied forces and moments. Either or both of these methods could be used to

reduced the total computational expense of building the load spectrum, but further research

is required to determine the most appropriate surrogate modeling method, which dependent

and independent variables should be considered, and if a significant time savings can be

realized.

This section begins with a brief review of surrogate modeling and a comparison of several

methods of interest. Next, a hypothesis to Research Question 1 is formed. Hypothesis 1 will

be tested with Experiment 1, and the results will be used to refine the preliminary fatigue

design methodology.

104

4.1 Review of Surrogate Modeling Techniques

Surrogate modeling, which was discussed briefly in Section 2.3.3, is the process of creating

an approximate model, f̂(x), of an expensive function, f(x), such as a CFD analysis, finite

element analysis, or rotor comprehensive analysis. The approximate model can then be

used in place of the expensive function to reduce calculation time when a large number of

executions are required. Surrogate modeling is also known as regression analysis; in this

text, the term regression analysis is avoided in order to prevent confusion with the process

of statistical hypothesis testing.

The general process of developing a surrogate model is as follows [95]:

1. Identify the input variables x, and their ranges, xu − xl: The set of input variables

should be chosen appropriately to balance flexibility and complexity. If the set of

input variables are too limited, the model will be inflexible and possibly not well-

suited to its task. If a large number of input variables are required, then the size of

the input space must be increased and the surrogate model itself will become more

complex. Similarly, the length of each input range must be chosen with care. Because

extrapolation outside of the design space may produce wildly inaccurate predictions,

the input ranges must be sufficiently large to capture all possible use cases. However,

a large input range also increases sampling time and makes fitting the model more

difficult.

2. Sample the design space: The sampling process involves defining n sample or training

points, x1,x2, . . . ,xn, and evaluating f(x) n times to find the corresponding values

of the response variable, y1, y2, . . . , yn. The process of selecting the sample points is

known as design of experiments (DOE). A large number of DOEs have been developed

and may be selected based on the nature of the experiment, the response, and the

surrogate modeling method.

3. Fit the surrogate model to the responses: The process of fitting the surrogate model

105

involves “training” the model by varying its parameters (or hyperparameters) until the

responses, yi, are well predicted. The level of prediction accuracy (goodness-of-fit)

achieved is usually measured by assessing the residual between the predicted responses

and the measured responses, ei = yi− ŷi. The training process and the goodness-of-fit

metrics used vary widely between different surrogate modeling methods. This step

will be the primary focus of this section.

4. Check the surrogate model for goodness-of-fit: After the surrogate model is trained,

it is best practice to validate the model by checking its accuracy. A number of

metrics and procedures can be used to check and improve the fit. Model fit error

describes the difference between the predicted and actual responses in the training

set. Model representation error describes the difference between the predicted and

actual responses in a new set of data which is generated for validation purposes and

not used in the training process. Each of these errors must be acceptably low for the

predictions generated by the surrogate model to be considered accurate [96].

The field of surrogate modeling is wide-ranging and has connections with the fields of

statistical analysis and machine learning. In the remainder of this section, several surrogate

modeling methods of interest, including response surface methods (RSM), artificial neural

networks (ANN), and Gaussian process modeling (GPM), are discussed and compared. This

is by no means intended to be an exhaustive review of the field of surrogate modeling, which

is beyond the scope of this thesis.

4.1.1 Response Surface Methods

Response surface methods involve fitting a polynomial function to the sample points using

a process called linear regression. The complexity of the model depends on the order of

the polynomial. For example, Equation (2.16), reprinted below for reference, defines a

106

first-order response surface equation (RSE).

yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + εi

Second-order interactions between the input variables can be captured by including

multiplication terms of the form β12xi1xi2 or self-interaction terms of the form β11x
2
i1. It

is also possible to capture third- and higher-order interactions using a similar pattern, but

second-order models are sufficient for many cases [97]. The set of x-terms used in the

RSE are known as the basis functions. It is more convenient to write Equation (2.16) using

matrix–vector notation as

y = Φβ + ε (4.1)

where

y =



y1

y2

...

yn


, Φ =



1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

...
...

...
...

...

1 xn1 xn2 · · · xnk


, β =



β1

β2

...

βk


, and ε =



ε1

ε2

...

εn


Then, least-squares estimates of the coefficients can be found by minimizing the SSE

with respect to β

min
β

SSE = min
β
ε>ε (4.2)

This can be solved analytically using

d

dβ
ε>ε

∣∣∣
b

= 0 (4.3)

which leads to

b =
(

Φ>Φ
)−1

Φ>y (4.4)

107

where b are the least squares estimators of β. Finally, predictions can be made using

ŷ = Φb (4.5)

An identical process would be used for higher-order models, with appropriate modifications

to the Φ matrix and the β vector.

4.1.1.1 Demonstration

A demonstration of RSM fitting is presented in Figure 4.1. Sample points were generated by

sampling a normal distribution with a standard deviation of σ = 0.05 around the function

y = sin(x) for the range [0, 2.5]. Four separate models were created, with bases ranging

from zeroth- to third-order. The zeroth-order basis is {x0}, the first-order basis is {x0, x1},

and so on. Equation (4.4) was used to estimate the regression coefficients and Equation (4.5)

was used to generate predictions.

x

y

Samples
0th-order
1st-order
2nd-order
3rd-order

Figure 4.1: Demonstration of response surface model fitting.

Note that the model generated using the zeroth-order basis is simply the mean of the

sample points. The first-order basis provides a linear fit of the sample points and captures

108

the overall trend. Satisfactory fit is achieved with the second-order basis, and the third-order

basis offers little additional benefit.

4.1.1.2 Goodness-of-Fit

A number of goodness-of-fit metrics can be used to assess the uncertainty or error in the

predictions produced by the model [96]. The coefficient of determination, R2, is calculated

using

R2 = 1− SSE
SST

(4.6)

where SSE is the residual sum of squares and SST is the total sum of squares, defined as

SSE = e>e (4.7)

SST = (y − y)>(y − y) (4.8)

where e = y − ŷ and y is the mean of y. R2 takes a value between negative infinity and

one. Generally, a low value of R2, such as R2 < 0.8, indicates a poor fit, while a high value

of R2 may suggest but does not guarantee a good fit. For example, the values of R2 for the

four models in Figure 4.1 are 0, 0.4787, 0.9595, and 0.9610, from lowest- to highest-order.

Note that R2 = 0 for the zeroth-order model because ŷ = y for all sample points.

Another common goodness-of-fit check is to plot y versus ŷ and e versus ŷ. The former

plot, known as the actual by predicted plot, should show that most points are clustered

around the y = ŷ line with even distribution and no discernible pattern. This indicates that

the predicted responses are closely aligned with the actual responses. The latter plot, known

as the residual by predicted plot, should show a random distribution of residuals with small

overall variation. For example, the aforementioned goodness-of-fit checks for the models in

Figure 4.1 are presented in Figure 4.2.

Figure 4.2 indicates that both goodness-of-fit metrics improve dramatically as the model

order increases, but the difference between the second- and third-order models is marginal.

109

A
ct

ua
l,
y

Predicted, ŷ

R
es

id
ua

l,
e

(a) Zeroth-order

Predicted, ŷ

(b) First-order

Predicted, ŷ

(c) Second-order

Predicted, ŷ

(d) Third-order

Figure 4.2: Demonstration of RSM goodness-of-fit checks. Note that the axes of the actual
by predicted and residual by predicted plots are to different scales.

Additionally, the clumping towards the right of the second- and third-order models indicates

that these models do not accurately predict the highest observations in the sample set.

Additional goodness-of-fit checks include analyzing the distribution of the model fit

error, which is the difference between actual and predicted values of the sample set, and

model representation error, which is the difference between the actual and predicted values

of a separate testing or validation set, which is not used during the fitting process. Each of

these distributions should have a mean near zero and an acceptably small spread. The model

representation error is especially important as it quantifies the power of the model to predict

observations outside of the sample set. It can also be used to estimate the overall uncertainty

in predictions produced by the model.

110

4.1.1.3 Improving Goodness-of-Fit

If the model fit is unacceptable, the model can be improved through the use of transforma-

tions or higher-order terms [92, 96]. Transformation fits are applied by applying a functional

transformation, such as a logarithm, power, or trigonometric function, to either the dependent

or the independent variables. For example, a logarithmic dependent-variable transformation

of Equation (2.16) would take the form

log yi = β0 + β1xi1 + β2xi2 + . . .+ βkxik + εi (4.9)

The remainder of the fitting process is identical, but results must be “un-transformed” prior

to use of the model. Transformations allow the model to adapt to underlying patterns in the

true function that may be difficult to capture with polynomial functions alone. For example,

a sinusoidal transformation may improve fit in the demonstration in Figures 4.1 and 4.2.

Higher-order terms can be included by adding higher-order basis functions to the model.

This is useful if complex interactions exist between input variables exist in the true function.

However, this may lead to overfitting, a phenomenon whereby the model predicts the true

function well only at the training points and does not perform well in general. This behavior

can be identified by analyzing the model representation error. In some cases, higher-order

terms do not significantly improve the fit, as in Figure 4.2. Thus, the marginal improvement

gained may not be worth the extra computational time required to fit a more complex model.

4.1.2 Artificial Neural Networks

Artificial neural networks, sometimes referred to simply as neural networks, simulate the

brain structure and learning methods of biological organisms [98]. The network is composed

of simple building blocks known as perceptrons, analogous to neurons, which can be

arranged and connected in different ways to create complex topologies. The network is

trained in a manner similar to RSM, except a nonlinear regression technique known as

111

backpropagation is used to find parameter values that minimize prediction error. ANNs are

highly adaptable and are well-suited to uses such as classification and surrogate modeling.

The perceptron is essentially a mathematical function that takes in multiple inputs and

gives a single output. This function is typically idealized as a step function that is “off” until

a certain threshold value is reached. In a sense, a single perceptron is a surrogate model that

produces binary predictions based on its inputs. It can be represented mathematically as

Equation (4.10):

ŷ = φ

b+
k∑
i=1

wixi

 (4.10)

where φ is the activation function, b is the bias, and wi are the weights of each input. The

form of the activation function is selected based on the purpose of the network and are

generally similar to the step function. Common activation functions include the identity

function, the sign function, the sigmoid function, hyperbolic tangent function, and the

rectified linear unit function [98]. The bias and input weights are determined automatically

during the training process. Note that if the activation function in Equation (4.10) is the

identity function, the equation is identical to that of a first-order RSE.

4.1.2.1 Layering

The complexity of the network is increased by layering the neurons. For example, the outputs

of multiple perceptrons in the first layer can be summed and fed into another perceptron in

the second layer by expanding Equation (4.10) into

ŷ = φ

b+
m∑
j=1

wjφj

bj +
k∑
i=1

wijxi


 (4.11)

To avoid complex mathematical notation, ANNs can be represented graphically using a

mathematical network in which each node is a perceptron, as in Figure 4.3.

In Figure 4.3, the first layer is referred to as the input layer and the second layer is

112

x1

x2

x3

x4

ŷ

Figure 4.3: A simple artificial neural network.

referred to as the output layer. Additional layers can be added between the input and output

layers; these are referred to as hidden layers. An example of a more complex network with

one hidden layer is given in Figure 4.4.

x1

x2

x3

x4

ŷ

Figure 4.4: A more complex artificial neural network.

113

4.1.2.2 Topology

The topology of the ANN can be modified in a number of ways. The number of hidden

layers and the nodes on each layer can be varied. A network with one hidden layer and

many nodes in each layer is called a shallow network; a network with multiple layers and

only a few nodes in each is called a deep network. Although a large shallow network is

theoretically capable of predicting the output of any function, the high number of node

interconnections, each of which has some associated weight parameter, will make training

the network more difficult. Both the training time and the required size of the sample set

increases as the number of nodes increases. Deep networks can model similarly complex

responses using fewer nodes; complexity is obtained through the convolution of activation

functions with the activation functions on subsequent layers. However, deep networks have

inherent issues which make training more difficult [98].

The neuron interconnections can also be modified. Fully connected networks have

connections between every neuron in each layer, as in Figure 4.4. Partially connected

networks have connections between only some of the neurons in subsequent layers to reduce

the number of weights that must be determined. Feed-forward networks only connect

neurons to neurons in subsequent layers. Recurrent networks connect neurons to neurons in

the same layer or in preceding layers, creating complex recursive models [99].

Additionally, the number of nodes in the output layer may be modified to produce

multiple outputs from the same model; this is especially useful in surrogate models that aim

to predict multiple responses. For surrogate modeling applications, output nodes typically

use the linear activation function, φ(v) = v, to produce real-valued outputs. Other nodes in

the network may use other activation functions; Aggarwal [98] states that the rectified linear

unit function is a common choice for modern neural networks because it eases the process

of training deep neural networks.

114

4.1.2.3 Training

Training the ANN involves determining the weight and bias parameter values that mini-

mize the prediction error using a process called backpropagation. Initially, values for all

parameters are generated randomly. The backpropagation process has two phases: forward

and backward. In the forward phase, the response for a single sample in the training set

is computed by executing the entire model. The prediction error and the gradient of the

prediction error with respect to the output is computed. In the backward phase, the gradient

of the prediction error with respect to the weight and bias parameters is determined for each

node, starting from the output node. These gradients are used to update the parameters

and the process is repeated with the next sample point [98, 99]. The rate at which weight

parameters are varied is controlled using the learning rate parameter.

The backpropagation process concludes at an arbitrary stopping point, which may be de-

termined through a variety of different convergence criteria. Because ANNs have a tendency

to overfit the data, especially for networks with large numbers of nodes, goodness-of-fit

checks similar to those used for RSM should be applied [98]. Additionally, a number of

automated procedures are available to reduce overfitting, including early stopping, ensem-

bling, dropout, and regularization [99]. For a more detailed discussion of these techniques,

the reader is encouraged to review the text by Aggarwal [100].

4.1.3 Gaussian Process Models

Gaussian process modeling is a non-parametric, stochastic machine learning technique

with applications to classification and surrogate modeling [101]. Regression begins by

specifying a prior distribution of functions. The prior distribution is an infinitely-large

set of basis functions with common characteristics; these characteristics are dictated by

the hyperparameters of a covariance function which defines the process. The posterior

distribution is formed by applying the sample set to the prior distribution and “filtering out”

those basis functions that do not pass through the sample points. The user is left with a

115

distribution which defines the expected value and the variance of the prediction at each point.

Thus, GPM provides both a predicted response, ŷ, and its uncertainty. The learning task

involves determining the hyperparameters which cause the posterior distribution to best fit

the training data [102].

Covariance Functions The prior distribution is determined by a mean function and a

covariance function. Typically, the mean function is assumed to be zero, some non-zero

constant, or a polynomial function. The covariance function describes the relationship

between the function values of two points based on the distance between the coordinates of

each point [101]. For example, the squared exponential covariance function

k(x,x′) = σ2
f exp

(
−|x− x

′|2
2`2

)
(4.12)

has a higher value when the point x is near x′ than when they are far apart. Thus, similar

points are expected to have similar function values. In Equation (4.12), σf and ` are the

hyperparameters of the covariance function. The characteristic length, `, defines how rapidly

the basis functions may change value, and the signal standard deviation, σf , controls the

magnitude of these changes. The covariance of sets of points is described by a covariance

matrix, K(X,X ′).

4.1.3.1 Predictions

Predictions require a training set, Xtr, and associated responses, ytr. Assuming the mean

of the prior distribution is zero, the joint distribution of the predictions and the training

responses is  ŷ
ytr

 ∼ N
0,

 K(X,X) K(X,Xtr)

K(Xtr, X) K(Xtr, Xtr)


 (4.13)

116

where N is the normal distribution. Using Bayes’ theorem, the conditional distribution of

the predicted responses is found to be

ŷ ∼ N
(
K(Xtr, Xtr)

−1K(Xtr, X)ytr, K(X,X)−K(X,Xtr)K(Xtr, Xtr)
−1K(Xtr, X)

)
(4.14)

The mean and variance of the prediction for a single test point, x, can then be found using

E[ŷ] = k(xtr,x)>K(Xtr, Xtr)
−1ytr (4.15)

Var(ŷ) = k(x,x)− k(xtr,x)>K(Xtr, Xtr)
−1k(xtr,x) (4.16)

4.1.3.2 Training

In GPM, learning is accomplished by tuning the hyperparameters, θ, to maximize the

marginal likelihood. The marginal likelihood is the probability of obtaining the training

point responses conditioned on the training point coordinates and the hyperparameters,

p(ytr|Xtr,θ). This is traditionally accomplished by minimizing the negative logarithmic

transformation:

− log p(ytr|Xtr,θ) =
1

2
log |K(Xtr, Xtr)| −

1

2
y>trK(Xtr, Xtr)

−1ytr −
n

2
log 2π (4.17)

In Equation (4.17), the first term acts as a complexity penalty, the second term captures the

data fit, and the third term is a normalization constant. Thus, when the equation is minimized,

the GPM naturally assumes a balance between complexity and model fit, which may be

difficult to achieve with other surrogate modeling methods. Because the covariance function

is infinitely differentiable, the optimization task can be achieved using a gradient-based

optimizer [103, 104].

117

4.1.3.3 Demonstration

A demonstration of the GPM surrogate modeling method is presented in Figure 4.5. The

function y = x sinx was sampled at six points distributed evenly on the range [0, 2π]. A

GPM surrogate model with a squared exponential covariance function was trained with

these sample points using the fitrgp function in the MATLAB Statistics and Machine

Learning ToolboxTM. The hyperparameters were found using a quasi-Newton optimizer:

the optimized values are ` = 1.0220 and σf = 2.3104. The variability in the prediction is

captured by plotting a 95% confidence interval (µ± 1.96σ) around the prediction.

x

y

Training points
Prediction
95% CI
y = x sinx

Figure 4.5: Demonstration of a GPM surrogate model.

Note that the fit of this model is relatively poor; a low number of sample points was

chosen to create large confidence intervals for visualization purposes. In fact, the true

function is not captured within the 95% confidence interval at all points due to the poor fit.

However, the uncertainty reduces to zero at each training point because all prior functions

that do not pass through these points have been discarded. Also note that the prediction

uncertainty increases dramatically beyond the limits of original sample space. This is also

the case with other surrogate modeling techniques.

118

A complete discussion of GPM and its applications is beyond the scope of this thesis.

For a more detailed treatment, the reader is encouraged to review the text by Rasmussen and

Williams [105].

4.1.4 Comparison

The surrogate modeling methods discussed previously each have unique advantages and

disadvantages. Although all are technically capable of creating a model given the same set

of sample points, the quality of the model produced by each method will not be identical.

The correct choice of modeling method depends on the characteristics of the true function

and on the desired properties of the resultant surrogate model.

4.1.4.1 Response Surface Methodology

RSM is perhaps the simplest modeling method surveyed. Response surface equations have a

small number of parameters, which means that fewer sample points are required to train the

model. This is an advantage when the true function is extremely costly to evaluate. The form

of the trained model is also simple: a complete RSE can typically be written in one or several

lines of text depending on the number of basis functions used. The polynomial equation

is also relatively easy to understand. This has advantages when transferring, deploying, or

publishing the model.

However, RSM is not well-suited to modeling highly non-linear responses. Traditional

first- and second-order equations are not well suited to capturing the response of functions

that are, for example, exponential in nature. Although dependent-variable transformations

are able to improve the fit in some cases, the process is not guaranteed to work in all cases

and increases the amount of manual input required during the training task. Higher-order

terms can be added to the basis function set, but this reduces the benefits of RSM’s inherent

simplicity. Determining which higher-order terms to include is also a manual diagnostic

procedure.

119

Response surface equations are also limited in that they are single-output, deterministic

models. If multiple outputs are required, as is the case in a rotor blade load or stress

prediction model, an additional model must be trained for each output. This increases the

number of goodness-of-fit checks required and the total modeling time. The deterministic

nature of RSM is also a disadvantage when it is desired to quantify the uncertainty in the

model. A measure of uncertainty can be derived from the model representation error, but this

is a global quantity that applies to every point in the sample space rather than a local quantity

that varies between points. This may lead to overestimation of the model uncertainty at

some points.

4.1.4.2 Artificial Neural Networks

ANNs avoid the primary drawbacks of RSM by enabling the creation of hugely complex

models from simple building blocks. Complexity can be achieved by increasing the number

of hidden layer nodes in a shallow neural network or increasing the number of layers in

a deep neural network. This flexibility means that ANNs can successfully approximate

highly-nonlinear functions that would be difficult to capture with RSM.

Additionally, it is simple to produce multiple outputs with one network by increasing the

number of nodes in the output layer. Although the goodness-of-fit should still be checked for

each output individually, training a single model to produce multiple outputs is advantageous

because potential correlations between the outputs provide additional information that, if

captured, can increase the accuracy of the model. For example, in a rotor blade load or stress

modeling application, each response is likely positively correlated. Such a correlation could

be exploited in a multiple-output ANN but would be lost with RSM.

However, the flexibility of ANN is also its primary weakness. The amount of parameters

that must be trained in a networks scales rapidly as the complexity of the network increases.

For example, the model depicted in Figure 4.3 has k + 1 parameters: one weight for each

of the k inputs plus a bias parameter. The model depicted in Figure 4.4 has k + 1 input

120

parameters for each of the four nodes in the hidden layer, plus five additional parameters for

the output layer. Aggarwal [98] recommends that the total number of training points be at

least two to three times the number of parameters in the model. Thus, ANN is at a severe

disadvantage if the true function is expensive to evaluate. The large number of parameters

also leads to an inherent tendency towards overfitting and poor generalization; a number of

methods are available to counteract this tendency, as described previously, but no method is

guaranteed to work in all cases.

The designer of a neural network must make decisions regarding the network architecture,

the types of node interconnections, the activation functions on each layer, and the training

methods to be used. These choices may not be obvious from the outset and multiple networks

may need to be trained and evaluated before an appropriate choice for the problem in question

is found. The complexity of the definition of the trained model makes interpretation, transfer,

and deployment more difficult than RSM. ANN is also a deterministic modeling technique

in the same sense as RSM, leading to similar issues when quantifying model uncertainty.

4.1.4.3 Gaussian Process Models

Perhaps the single most significant advantage of GPM is the probabilistic nature of the

model. Because the expected value and the variance of the prediction is produced for each

training point, GPM is inherently well-suited to applications which require quantification of

modeling uncertainty, such as the structural reliability methods to be discussed in Chapter 5.

These models are also capable of capturing the effects of noisy, rather than exact, inputs

although this capability is not generally needed when the true function is a deterministic

computer program [103].

GPM also provides a middle ground between the simplicity of RSM and the complexity

of ANN. Because the model is non-parametric, fitting the model does not reduce its flexibility.

GPM draws from an infinite set of basis functions, so the choice of which basis functions to

include is not required. The hyperparameter optimization process balances model fit and

121

model generalization, reducing the overfitting issues inherent to ANN while still maintaining

the ability to model highly non-linear functions. The design of a GPM also involves fewer

choices than the design of a neural network; essentially, the only major choices to be

made are the formulation of the covariance function and the number of sample points. The

formulation of the covariance function depends on the nature of the training points. For

example, if a periodic pattern is observed, a periodic covariance function is required to

capture this effect properly.

However, GPM is generally limited to single-output models, requiring multiple models

when multiple responses are desired. Rasmussen and Williams describes some methods

by which correlation between multiple outputs can be captured in a GPM framework, but

this is an active area of research and development that may not be sufficiently mature for

engineering applications. Most popular surrogate modeling toolkits, such as MATLAB and

scikit-learn, do not include this capability at the time of this writing.

Additionally, the training process for GPM is not trivial. Equation (4.17) can have

multiple local minima, each corresponding to a different interpretation of the input data.

Human intervention may be required to ensure that appropriate minimum is reached by the

optimizer. For example, the optimization process may need to be repeated with multiple

starting points. Poor hyperparameter choices may lead to a model that technically fits the

sample points but otherwise has so much uncertainty that it is not useful for prediction.

4.2 Hypothesis to Research Question 1

It is not obvious which of the three previously discussed techniques is the best choice

for application in the rotor fatigue stress prediction problem. RSM likely will require the

lowest number of training points, but may suffer in terms of accuracy since, as discussed in

Section 1.5, rotor loads are highly non-linear in both mean and amplitude with respect to the

current flight condition. The primary advantage of ANN in this application is the capability

to easily produce multiple outputs from a single model. The stochastic nature of GPM lends

122

itself better to probabilistic applications than either RSM or ANN.

In the fatigue stress prediction application, the number of outputs required depends on

the fidelity of the model. In the simplest case, the first harmonic of a single stress invariant

on a single point on a single blade on a single rotor requires at least two responses, mean

stress and stress range, to predict. If all elements of the stress tensor (S11, S12, S13, S22,

S23, and S33) at that point are required then at least 12 responses are needed. The number

of responses increases further if it is desired to capture loads at multiple blade stations,

using multiple harmonics of the periodic stress signal, on multiple independent blades, or

on multiple rotors. Eventually, this problem leaves the domain of scalar surrogate modeling

and would be better handled by reduced order models (ROMs), which are beyond the scope

of this research. Since all these stress responses are likely correlated, the ability of a neural

network to model and exploit this correlation gives a significant advantage over training

multiple models using RSM or GPM. If the number of outputs is reduced at the expense of

model fidelity, then RSM or GPM may be more appropriate than ANN.

As discussed previously, the fact that GPM predictions include both the expected value

and the variance at each test point is extremely useful in structural reliability applications.

This simplifies the process of determining the uncertainty in the load predictions and appro-

priately reflects the variable nature of uncertainty across the design space. In Figure 4.5,

variance is lowest near the training points and largest at the maximum distance between

training points. Compared to a global estimate of uncertainty derived from model represen-

tation error, the GPM result will likely lead to higher reliability levels since the nature of

model uncertainty is better understood.

Based on the qualitative review and discussion of surrogate modeling techniques, it

appears that scalar surrogate modeling is applicable to this problem. The application of sur-

rogate models should provide a runtime advantage over individual calls to the comprehensive

analysis program. This can be stated as a hypothesis to Research Question 1:

123

Hypothesis 1

At least one of the surveyed surrogate modeling methods can be used to derive a

complete load spectrum from comprehensive analysis results, enabling rapid design

space exploration.

The null hypothesis to Hypothesis 1 can be stated as follows:

None of the surrogate modeling methods surveyed can be used to derive a

complete load spectrum more rapidly than comprehensive analyses.

This will depend on the number of load predictions required to produce a fatigue life

assessment. This process will be discussed further in Section 4.3.

4.3 Experiment 1 Overview

Experiment 1 is intended to establish that scalar surrogate modeling can be used to predict

the fatigue loading on a rotor blade in arbitrary flight conditions. Additionally, it will

compare the ability of the aforementioned surrogate modeling methods to predict rotor blade

fatigue loads throughout the flight envelope. This section discusses the processes that will

be used to compare the predictive capability and computational expense of each technique.

Experiment 1 is divided into two sub-experiments. Experiment 1a covers the devel-

opment of a multidisciplinary analysis (MDA) tool, the implementation of a helicopter

model in that tool, and the process of determining a critical fatigue point on the rotor blade.

Experiment 1b involves training different surrogate models to predict the stress response at

the critical fatigue point and comparing model performance.

4.4 Experiment 1a

Figure 4.6 provides an overview of Experiment 1a. The following sections detail the design

of the experiment; implementation of the MDA, the helicopter model, and supporting

analyses; results; and conclusions.

124

Figure 4.6: Overview of Experiment 1a.

4.4.1 Experimental Design

The first step of Experiment 1a is to develop the environment necessary to run the experiment,

collect data, and analyze the results. The environment consists of a custom MDA tool based

on the preliminary fatigue design methodology proposed in Section 3.4 (see Figure 3.1).

Then, a generic single-main-rotor (SMR) helicopter model will be implemented in the

MDA. Although the preliminary fatigue design methodology is intended to be applicable to

any arbitrary rotorcraft configuration, including exotic vertical lift aircraft currently being

studied for implementation as UAM vehicles, this research makes use of a single main rotor

transport helicopter for a number of reasons. First, the SMR configuration is well-studied and

reference implementations exist in a many relevant software tools. Second, a conventional

helicopter model can be tuned to match existing rotorcraft designs, which would enable

validation of the predicted loads, stresses, and fatigue life produced by this methodology.

This would not be possible for conceptual or prototype aircraft that have not yet undergone

strenuous flight testing and flight loads surveys. Finally, because this methodology is

built entirely upon physics-based models, it can be assumed to be applicable to arbitrary

rotorcraft configurations as long as the models accurately capture that configuration’s unique

characteristics. Although the results may not be similar to or even follow the same trends as

the generic SMR configuration, the methodology itself will be equally effective.

The generic SMR helicopter model is based off the Sikorsky UH-60A Black Hawk,

which was selected because of the wide variety of reference implementations of this heli-

copter type in various design and analysis tools. Because many of the specific details of

the UH-60A are subject to publication restrictions, the model implemented in this experi-

125

ment does not aim to exactly replicate the behavior of this helicopter but instead provide a

reasonable approximation of a generic helicopter in the medium-lift utility class.

The generic SMR helicopter model will be executed in a number of extreme flight

conditions, detailed by Table 4.1. Each flight condition is defined by six variables: airspeed

(V), density altitude (hd), gross weight (GW), rate of climb (ROC), turn rate (ω), and center

of gravity station line offset (CG). These variables were chosen to allow the simulation of

nearly all steady-state flight conditions relevant to fatigue damage accumulation, although

certain conditions like pull-up and push-over cannot be simulated, and transient conditions

are not considered.

Table 4.1: Extreme flight condition survey for Experiment 1a.

Case Name V (kt) hd (ft) GW (lb) ROC (ft/min) ω (deg/s) CG (ft)a

0 Baseline 130 5000 16,000 0 0 0.5
1 Hover 0 5000 16,000 0 0 0.5
2 High speed 160 5000 16,000 0 0 0.5
3 Low altitude 130 0 16,000 0 0 0.5
4 High altitude 130 10,000 16,000 0 0 0.5
5 Low weight 130 5000 11,500 0 0 0.5
6 High weight 130 5000 21,000 0 0 0.5
7 Descent 130 5000 16,000 −1400 0 0.5
8 Climb 130 5000 16,000 1400 0 0.5
9 Left turn 130 5000 16,000 0 −6 0.5

10 Right turn 130 5000 16,000 0 6 0.5
11 Forward CG 130 5000 16,000 0 0 −0.3
12 Aft CG 130 5000 16,000 0 0 1.6
13 Reverse −20 5000 16,000 0 0 0.5

a CG offset is referenced to the main rotor hub station line.

The flight conditions in Table 4.1 were selected to approximately match the limits of the

UH-60A flight envelope [106], except for the baseline case which is intended to represent

a typical cruise condition and serve as a frame of reference for the other flight conditions.

It is assumed that the edges of the flight envelope correspond to the most-damaging flight

conditions in terms of fatigue damage accumulation.

For each flight condition, the MDA will predict force and moment components (Fx, Fy,

126

Fz, Mx, My, and Mz), where x, y, and z denote the axial, chordwise, and flapwise axes in

the blade reference system, respectively. These components will be predicted at each station

along the rotor blade and each time step in a complete blade revolution, producing a large

number of load conditions.

Next, each load condition will be passed back into the cross-section model in stress

recovery mode to predict the stress tensor field across the entire cross-section. The signed

von Mises stress invariant will be calculated to reduce the six components of the stress

tensor to a single value. Signed von Mises was chosen over standard von Mises because it

can account for compression and tension loading, which is important in fatigue analysis.

A simple first-harmonic analysis of the cyclic stress signal at each point on the cross-

section will be used to extract the mean stress, Smean, and stress amplitude, Samp. Goodman’s

relation will be applied to ultimately produce an equivalent stress, Seq, field for the entire

cross section. These equivalent stress fields will be analyzed to select an appropriate critical

fatigue design point for use in Experiment 1b.

Because the generic SMR helicopter used in this research is not intended to exactly

replicate an actual helicopter model, the results produced in this experiment and subsequent

experiments cannot be validated. Instead, the MDA was implemented using software

tools whose results have been independently validated. In this research, it is assumed

that the results predicted by the MDA are sufficiently realistic to enable development and

demonstration of different elements of the methodology. Verification and validation efforts

will be discussed further in Chapter 7.

The next sections will describe the development of the MDA, helicopter model, and

supporting tools necessary to implement the previously-described experimental plan.

4.4.2 Multidisciplinary Analysis

Figure 3.1 provides the building blocks for the MDA. The primary elements are the vehicle

performance model, the rotor comprehensive analysis, and the beam cross-section model.

127

In this section, each of the primary elements and the software tools chosen for each element

will be discussed in turn, including a brief review of the relevant theory and the capabilities

of each tool.

4.4.2.1 Vehicle Performance Model

As described in Section 3.4, the vehicle performance model is responsible for calculating

and providing a description of the vehicle flight state in all flight conditions in the mission

spectrum. The flight state includes all parameters necessary to initiate a rotor loads prediction

program, such as airspeed, atmospheric conditions, gross weight, center of gravity location,

and pilot control positions necessary for trimmed flight. The vehicle performance model

must be capable of storing the vehicle description, storing the definition of each flight

condition, and rapidly determining the trim solution for each flight state.

This research will use NDARC, discussed previously in Section 2.1.2, to provide the

vehicle performance model. NDARC was chosen due to its ability to accurately represent

revolutionary vertical lift concepts using an extremely flexible component library. The

program also has a wide user base in the rotorcraft academic community, which has led to

the development of several useful extensions, such as RCOTOOLS, an NDARC–Python

interface [107]. This section contains a brief review of the elements of NDARC that are

applicable to this research; more detailed theory and description is provided by Johnson [36].

For reference, the NDARC program outline previously presented in Figure 2.2 is reprinted

below.

NDARC Theory The central component of an NDARC job is the aircraft description,

which defines the component systems of the vehicle. This description can be a fixed model or

can be created by a conceptual design sizing task. For each component, properties such as the

location, geometry, weight, aerodynamic model, power consumption or production model,

and more, are specified. The overall aircraft properties are obtained from the combination

128

Figure 2.2: Outline of the NDARC program (reprinted from Page 36).

of the component properties. These attributes are then used for mission analysis, flight

performance analysis, and performance mapping tasks.

Flight state solutions are produced by both the mission analysis and flight performance

analysis tasks. In NDARC, a mission is a series of segments where vehicle properties, such

as fuel weight, payload weight, and configuration, are applied consistently to subsequent

segments. Each segment represents a different portion of the mission, such as taxi, take-off,

hover, climb, cruise, and so on. The flight condition defined in the current segment is

used to calculate a flight state solution, and that information is used to determine power

required, power available, fuel burn rate, and other important parameters. Conversely, flight

129

performance analysis consists of defining a set of unrelated flight conditions and producing

flight state solutions for each condition. This is commonly used for point performance

calculations, such as maximum speed, service ceiling, and maximum takeoff gross weight.

In the context of the current research, either analysis type could be used to produce the

necessary data; mission analysis is beneficial if one desires to track gross weight and CG

shift throughout a mission as fuel is burned.

The flight state solution process involves trimming the aircraft. Trim is achieved by

solving for the pilot control positions and vehicle attitude that produce equilibrium, which

is achieved when all the forces and moments on the vehicle sum to zero. Thus, solving

the trim solution requires a detailed accounting of all the forces and moments produced by

or acting on each component of the vehicle. These forces and moments are found using

aerodynamic models that are tailored specifically to each component. For example, rotor

loads are calculated using BET to determine the blade motion and airloads, and momentum

theory to calculate the inflow. NDARC is capable of modeling some higher-order effects,

such as non-uniform inflow, tip loss, and interference with other components. Limitations

include restricting the blade flapping motion to rigid blades with no hinge offset: only the

coning and 1/rev flapping components are considered. Forces in the rotating frame are

transformed into the non-rotating frame to calculate the hub forces, which in turn are applied

to the airframe.

The trim solution is found numerically using the Newton-Raphson method. Trim

variables, such as pilot controls1 and vehicle Euler angles, are adjusted until the trim targets,

typically the summed forces and moments, reach zero within some predefined tolerance.

Once the trim solution is found for a given flight state, the pilot control positions, the

definition of the aerodynamic environment, and any vehicle properties such as weight

and inertia can be extracted and transferred to the comprehensive analysis for rotor loads

calculations.
1In NDARC, pilot controls (collective, cyclic, etc.) are mapped to component controls (swashplate position,
elevator position, etc.) using a control mixing matrix.

130

NDARC Validation NDARC was validated by comparing its predictions to known flight

performance data, weight statements, and comprehensive code predictions for four different

real-world rotorcraft. Johnson [108] used the UH-60A to represent the SMR configuration,

the CH-47D to represent the tandem configuration, the XH-59A to represent the coaxial

lift-offset configuration, and the XV-15 to represent the tiltrotor configuration. NDARC

predictions were found to closely match the truth data in each case, although the degree of

similarity is dependent on tuning rotor power consumption models to match comprehensive

analysis results. Thus, the NDARC model of the generic SMR helicopter, which will be

described in Section 4.4.3.1, could be tuned to match an existing helicopter, unlocking the

predictive power of NDARC.

4.4.2.2 Comprehensive Analysis

Comprehensive analysis programs were discussed previously in Section 2.1.1. These

codes combine the disciplines of structural dynamics, aerodynamics, controls, and flight

dynamics to produce detailed predictions of rotorcraft attributes such as performance,

loads, vibration, noise, stability, and handling qualities. Most programs are founded on

rigorous dynamics theories, allowing for precise analysis of rotating flexible beams. In this

application, comprehensive analysis will be used primarily for calculating the internal forces

and moments in the rotor blades, or another rotor component of interest.

The preferred comprehensive analysis program for this research is RCAS, developed by

Advanced Rotorcraft Technology, Inc. (ART) under a contract from the Aeroflightdynamics

Directorate of AMRDEC. RCAS was chosen due to its widespread adoption in the rotorcraft

research community (see Section 2.1.3) and the author’s own familiarity with the program.

Additionally, RCAS offers a mixed-fidelity modeling approach: the same model can be

adapted for low-fidelity (e.g. rigid blade), medium-fidelity (e.g. nonlinear flexible blades),

and high-fidelity (e.g. CFD/CSD coupling) analyses. This allows the user to tailor the

analysis for his or her desired levels of accuracy and runtime, which is especially useful

131

for research which requires a large number of cases to be executed rapidly. This section

contains a brief review of RCAS theories and capabilities; a more detailed description of the

program is provided by Saberi, Khoshlahjeh, Ormiston, et al. [109].

RCAS Theory RCAS is capable of modeling a wide range of rotary-vehicle configurations

in hover, trimmed flight, and maneuvering flight. Defining a vehicle in RCAS requires the

construction of any number of interconnected, coupled models: the structural model, the

aerodynamic model, the engine/drivetrain model, and the control system model. The RCAS

model hierarchy is presented in Figure 4.7. Only the structural model and the aerodynamic

model will be discussed here, as this research will not make use of the other models.

Top-level
physical model

Structural model

Subsystem

Primitive
structure

Element

Aerodynamic
model

Super-
component

Component

Aerodynamic
segment

Engine/drivetrain
model

Element

Control
system model

Superblock

Superblock

Element

Figure 4.7: RCAS physical model hierarchy. Components with dashed outlines will not be
used in this research.

Structural Model The structural model is decomposed into subsystems, such as the

fuselage, rotor system, tail boom, empennage, and so on. Each subsystem is composed of

primitive structures, such as rotor blades, wings, or stabilizers. The primitive structures are

132

in turn built of finite elements, which are the fundamental building blocks of the structural

model. Elements are defined by their type, their properties, the location of their nodes,

the connectivity between elements, and the constraints on each element. RCAS features

an extensive library of structural elements to aid model construction; a portion of these

elements are defined in Table 4.2.

Table 4.2: Examples of RCAS structural elements.

Type DOF Features Applications

6-DOF rigid body 1 to 6 Body axis velocities as
DOFs

Large maneuver motion

Rigid body mass 0 With CG offset Rigid fuselage, stores,
blades, rotating masses

Rigid bar 0 With mass and CG offset Hinge offsets, very stiff
components

Hinge 0 to 2 Free or controlled with
linear spring and damper

Flap, lag, pitch bearing,
gimbal for rotor hub

Slide 0 to 1 Free or controlled with
linear spring and damper

Pitch link input from
swashplate, landing gear

Spring 0 Linear, nonlinear,
translational, rotational

One-dimensional rods,
control stiffness

Damper 0 Linear, nonlinear,
translational, rotational

Elastomeric bearings,
snubbers, viscous dampers

Nonlinear beam 1 to 9 With elongation DOF,
reduced geometric coupling,
and material anisotropy

Rotor blades, tail boom,
fuselage elastic parts, other
elastic components

The nonlinear beam (NLB) element is perhaps the most important of the elements listed

in Table 4.2. The NLB is used to model flexible rotor blades, among other structures.

The element is based on the moderate deformation beam theory described by Hodges and

Dowell [110]. Constructing a rotor blade or similar structure of multiple NLBs allows

arbitrarily large deformations to be calculated precisely. Each NLB has nine degrees of

freedom (DOFs), but any arbitrary degree of freedom can be removed to simplify the model

or create a rigid blade. Elastic properties and structural twist can be defined for the blade

133

independent of the number and location of NLB elements. The properties are then linearly

interpolated to Gaussian quadrature points defined along the beam. An alternative NLB

formulation known as the geometrically-exact composite beam (GECB), based on updated

theories by Hodges [111], provides greater accuracy but must be defined with a series of

6× 6 mass and stiffness matrices instead of scalar stiffness values.

Aerodynamic Model The RCAS aerodynamic model uses a similar hierarchy of

components. The aerodynamic model is built from supercomponents, such as rotors, wings,

bodies, and auxiliary rotors. Each supercomponent is constructed from three types of com-

ponents: lifting surfaces (e.g., blades and wings), lifting bodies, and auxiliary disk rotors.

Components function like a mesh of connected aerodynamic segments. Aerodynamic seg-

ments are discrete representations of airfoils or bodies; each has an aerodynamic computation

point at the segment center which is used for local velocity and force calculations.

The airloads on each segment are determined from the local flow velocity, which is a

function of the rigid body motion of the complete model, the inflow on the component, and

the dynamic response of the specific point. Airloads are calculated from linear or nonlinear

analytical functions or lookup tables which consider velocity, angle of attack, Mach number,

compressibility corrections, tip loss corrections, and yawed flow effects. RCAS also has the

capability to model linear or nonlinear unsteady flow effects, such as dynamic stall, trailing

edge separation, and vortex shedding.

The inflow on a rotor or wing is calculated through the use of customizable inflow

models and interference models. Inflow models include uniform inflow, blade-element

momentum thoery (BEMT), the Peters–He generalized dynamic wake model, a prescribed

vortex wake model, and two free vortex wake models. Rotor-to-rotor interference models

include simple rotor-to-rotor interaction, horseshoe vortex wake, cylindrical vortex sheet,

and prescribed or free vortex wake. Interference with wings and bodies is calculated using

horseshoe vortex wake, prescribed vortex wake, or source–sink models.

134

Solution Procedures At their core, RCAS solutions are similar to conventional finite

element approaches, with some modifications. The system equations are formed first by

forming the system DOFs,X , from the element DOFs, x. Then, the element equations are

expressed in terms of the residual force vector, q. The element residuals are collected into

the system residual vector,Q, which is then linearized by perturbation to form:

Q = F −MẌ − CẊ −KX (4.18)

where

M =
∂Q

∂Ẍ
, C =

∂Q

∂Ẋ
, K =

∂Q

∂X

Ẍ =
d2X

dt2
, and Ẋ =

dX

dt

and F is the vector of forces. The dimensionality of Equation (4.18) can be reduced using

modal reduction, whereby certain vibratory modes are dropped from the model, leaving

only the most influential modes and improving processing time [112]. Equation (4.18) is

numerically integrated in time using the Newmark-Beta method, and the Newton-Raphson

method is used within each time step to drive the residual vector to zero.

RCAS contains three primary analysis types: periodic analysis, trim analysis, and

maneuver analysis. Periodic analysis involves solving the equations of motion for a defined

time period, T , such that the solution at time t is equal to the solution at time t + T . For

example, if T is set to the length of a single rotor revolution, then the periodic solution

would provide a complete simulation of the model in a fixed and steady flight condition.

The periodic solution can be found by numerically integrating the system equations in time

until all the transients have decayed or by applying the harmonic balancing method in the

frequency domain.

The trim solution consists of a series of repeated periodic solutions, between which the

135

trim variables are adjusted until the trim responses match their targets. Generally, the trim

responses are averaged over one revolution to account for the natural fluctuation in rotor

loads over a single revolution in forward flight. This process proceeds in a manner similar to

the NDARC trim solution discussed previously. First, the trim sensitivity matrix is formed

by perturbing each of the trim variables in turn and then the Newton-Raphson method is

used to complete the trim process.

Finally, maneuver analyses allow the user to examine the nonlinear transient response of

the model subject to some perturbation. This solution process involves first establishing a

periodic or trim solution as the initial conditions, then numerically integrating the nonlinear

system equations in the time domain. Parameters such as the pilot control inputs can be

varied continuously during the maneuver analysis.

After a given solution has been completed, the analyst can extract and visualize any

arbitrary model parameter. In this research, the blade forces and moments will be extracted

at every spanwise blade station for each time step in the periodic solution. This data will

then be transferred to the cross-section model to find the internal stress and strain field in

the rotor blade.

RCAS Validation Saberi, Khoshlahjeh, Ormiston, et al. [109] validated RCAS by com-

paring its results to simple elastic problems, structural dynamic problems, and rotor system

studies. First, RCAS results were shown to match the exact solution of an elastic beam

with a tip moment, even when the model exhibits extreme deformation. Next, the au-

thors demonstrated that the RCAS nonlinear beam element also matches the results of the

Princeton Beam experiment, which measured the static deformation and natural frequencies

of a cantilever beam with a tip weight at various pitch angles. Further RCAS validation

efforts included predicting the structural dynamics of a rotating blade with a swept tip, and

predicting UH-60A rotor blade loads. In the latter case, RCAS predictions showed good

agreement except for the torsional moment predictions.

136

Bir [112] performed further RCAS validation experiments using wind turbine models.

RCAS results were compared with analytical results, or predictions from the UMARC and

ADAMS comprehensive codes. RCAS was found to be as accurate as the other two tools,

although its adoption in the wind turbine industry has been hindered by the difficulty of

learning to operate and extracting simulation data from RCAS.

4.4.2.3 Cross-Section Model

In the methodology presented in Figure 3.1, the beam cross-section model plays two critical

roles. First, it is responsible for calculating beam elastic properties from the cross-sectional

blade design; these properties are later imported into the nonlinear beam definition in the

comprehensive model. Additionally, the cross-section model is used to find the stress and

strain fields on the blade cross-section; these results are then used along with a S-N curve to

calculate cumulative damage on the component using Miner’s sum.

In this work, VABS will be used to provide the cross-section model. VABS is a beam

sectional analysis program developed primarily by Prof. Dewey Hodges of the Georgia

Institute of Technology and Prof. Wenbin Yu of Utah State University [88]. VABS has

been continuously developed since 1989 and currently constitutes a mature, industry-ready

software program. Although the majority of VABS use cases involve the analysis of

composite rotor blades, it is applicable to many slender structures constructed from a variety

of materials [113]. VABS was selected for use in this research due to its ability to accomplish

both the elastic property calculation and stress recovery tasks, its previous use in similar

applications (see Sections 2.3.1 and 2.3.3), and the author’s previous experience with this

program. This section includes an overview of VABS theory and operations.

VABS Theory The theory behind VABS is based upon a geometrically exact description

of nonlinear one-dimensional beam kinematics and a decomposition method known as

the variational asymptotic method (VAM). VAM allows the decomposition of the three-

137

Geometry,
material, density

2D linear cross-
section analysis

2D warping and
strain recovery

Initial twist
and curvature

Elastic and
inertial constants

3D recovery
analysis

Loads, boundary
conditions

1D nonlinear
beam analysis

1D displacement,
resultants

3D stress &
strain fields

Figure 4.8: VABS analysis process. Dashed boxes represent components that will be
replaced by the comprehensive analysis solution in this research.

dimensional nonlinear beam elasticity analysis into a nonlinear one-dimensional beam

analysis and a linear two-dimensional cross-sectional analysis. This process is illustrated in

Figure 4.8.

In the two-dimensional linear cross-section analysis, VABS uses a finite-element rep-

resentation of the beam cross-section, which requires complete definitions of geometry,

material stiffness, and material density, to produce spanwise elastic and inertial properties.

Materials can be isotropic, orthotropic, or anisotropic [113]. The finite-element mesh can be

created using a third-party FEA program such as ANSYS or a VABS pre-processor known

as PreVABS [114].

The outputs of this process can be tailored to the required fidelity. For example, in

simple applications, the classical beam model can be used:

U =
1

2



γ11

κ1

κ2

κ3



> 

H11 H12 H13 H14

H12 H22 H23 H24

H13 H23 H33 H34

H14 H24 H34 H44





γ11

κ1

κ2

κ3


(4.19)

138

where U is the strain energy per unit length, γ11 is the axial strain, κ1 is the elastic twist, κ2

and κ3 are the elastic bending curvatures, and Hij are generalized stiffness coefficients. Note

that by convention the x1-axis is oriented along the blade reference line and the x2-axis is

oriented chordwise pointing from the trailing edge to the leading edge. In the simplest case

of homogeneous prismatic beams made of isotropic materials for which the x2 and x3 axes

are aligned with the principal axes and originating from the shear center, Equation (4.19)

reduces to the more familiar

U =
1

2



γ11

κ1

κ2

κ3



> 

EA 0 0 0

0 GJ 0 0

0 0 EI2 0

0 0 0 EI3





γ11

κ1

κ2

κ3


(4.20)

where EA is the axial stiffness, GJ is the torsional stiffness, and EI2 and EI3 are the

bending stiffnesses.

The generalized Timoshenko model includes transverse shear strain:

U =
1

2



γ11

2γ12

2γ13

κ1

κ2

κ3



> 

H11 H12 H13 H14 H15 H16

H12 H22 H23 H24 H25 H26

H13 H23 H33 H34 H35 H36

H14 H24 H34 H44 H45 H46

H15 H25 H35 H45 H55 H56

H16 H26 H36 H46 H56 H66





γ11

2γ12

2γ13

κ1

κ2

κ3


(4.21)

139

and the generalized Vlasov model adds restrained warping effects:

U =
1

2



γ11

κ1

κ2

κ3

κ′1



> 

H11 H12 H13 H14 H15

H12 H22 H23 H24 H25

H13 H23 H33 H34 H35

H14 H24 H34 H44 H45

H15 H25 H35 H45 H55





γ11

κ1

κ2

κ3

κ′1


(4.22)

where κ′1 is the twist rate. A more complex representation can be used to incorporate

the trapeze effect, which is not covered here. The cross-sectional analysis procedure also

includes calculating the cross-section inertia matrix, which is identical for each model.

The formulation of the spanwise strain energy is used in the elastodynamic beam

equations, which are derived from Hamilton’s extended principle as follows:

∫ t2

t1

∫ `

0

[
δ(K − U) + δW

]
dx1 dt = 0 (4.23)

where δ is the Langrangean variation, K is the kinetic energy per unit length, δW is the

applied virtual work per unit length, t1 and t2 are arbitrary times, and ` is the length of the

beam [88]. The complete derivation of VABS equations using VAM is beyond the scope of

this text; an in-depth description of this procedure is given by Hodges [111].

The choice of cross-sectional stiffness model is dictated by the fidelity of the one-

dimensional beam analysis. The one-dimensional nonlinear beam analysis component

of VABS is capable of incorporating any of the models discussed previously, providing

extremely precise results. However, in this research, the one-dimensional nonlinear beam

analysis component of VABS will be replaced with the comprehensive analysis blade

airloads solution as discussed in Section 4.4.2.2. The simpler NLB element formulation

used by RCAS to model rotor blades mandates the use of the classical model, which results

in a slight loss in fidelity. However, the more advanced GECB formulation enables direct

140

application of the generalized Timoshenko mass and stiffness matrices.

Once the spanwise blade airloads are determined, VABS will be used again to calculate

the three-dimensional stress and strain fields in the cross-section. In VABS terminology, this

process is known as recovery. The recovery process produces displacement, stress, and strain

values at each node and Gaussian integration point in the finite-element mesh. Averaged

values of each variable are also calculated for the entire element to aid in visualization.

Each variable is reported in the beam coordinate system and the material coordinate system,

which is necessary for fatigue failure analysis.

VABS Validation Yu, Volovoi, Hodges, et al. [115] validated VABS using a number of

different test cases. First, an elliptic bar was modeled analytically using VAM, and the

solution was identical to that derived from the theory of elasticity. Next, VABS was used

to calculate the shear center location for various cross-section geometries, which agreed

with common engineering assumptions used to approximate the shear center. Finally, VABS

results were compared to the three-dimensional finite element code ABAQUS. In this study,

the stress and strain fields recovered by VABS showed strong agreement with the 3D stress

and strain values predicted by ABAQUS.

4.4.2.4 Implementation

The previous sections described the core components necessary to construct the MDA. In

order to complete the MDA, the tools must be connected in a manner that enables them to

act as a single consistent solver. A diagram of the necessary connections is presented in

Figure 4.9.

First, the PreVABS+VABS model of the rotor blade cross-section is executed. PreVABS

provides an XML-based language for defining the rotor blade cross section, including

material properties, composite layups, and geometry. PreVABS meshes the cross-section

model and generates input files for VABS, which is then predicts mass and stiffness matrices

141

Figure 4.9: Summary of the multidisciplinary analysis tool.

for the cross section. The mass and stiffness matrices are passed directly to RCAS, and the

mass per unit length of the blade is used to calculate the total blade mass, which is then

passed to NDARC.

Next, the NDARC model of the vehicle is executed. NDARC predicts weights for each

of the primary components of the vehicle, such as the fuselage, rotor, engine, and stabilizers.

These weights, and associated moments of inertia, are passed to RCAS. NDARC also

solves the trim solution for the flight condition of interest. The converged values for pitch,

roll, collective, lateral cyclic, longitudinal cyclic, and pedal position are used as the initial

condition for the RCAS trim solution. NDARC also provides a summary of the atmospheric

environment in that flight condition, including the viscosity, density, and speed of sound,

which are also passed to RCAS.

After all the other analyses are complete, RCAS is executed in trim solution mode.

When the trim solution is complete, RCAS outputs the force and moment components at

each blade station for each time step in the periodic solution. This constitutes the final

output of the MDA.

Later, the PreVABS+VABS model will be executed in stress recovery mode to produce

stress tensor fields for each load case provided by RCAS. In this case, PreVABS+VABS is

executed in a standalone fashion and not alongside any other program. The stress tensor

field will be processed as described in Section 4.4.1 to produce Seq fields for each load case.

All data transfer between applications will be accomplished using Python. Python was

selected for this application because it provides a single integrated environment for data

142

collection and analysis. Specifically, the OpenMDAO package [116] simplifies data transfer

between and execution of various software tools.

To enable communication through OpenMDAO, each software tool needs a wrapper that

maps specific OpenMDAO variables to the appropriate position in that programs’ input or

output files. The basic process is to read the input file, convert that file into a Python-native

data structure, update values within that data structure, then regenerate a new input file with

the desired updates. This enable automatic execution of different models without requiring

any manual intervention by a human operator.

NDARC makes use of the RCOTOOLS wrapper described in Section 4.4.2.1. For

RCAS, Michael Avera of the Army Research Laboratory (ARL) provided a prototype

Python wrapper. Because this wrapper was originally intended to be used only with isolated

rotor models, further developments were necessary to enable operation with a complete

helicopter model. Additional development was required to enable parsing of the tabular

force and moment history files produced by RCAS. The code for the RCAS wrapper is

included in Appendix A.1.

For PreVABS+VABS, a completely custom Python wrapper was developed based on

the xmltodict Python package. This wrapper is able to modify arbitrary attributes of

the PreVABS cross-section model, such as material properties, layup definitions, or even

geometry. Other elements of the wrapper were developed to read elastic properties and

stress tensor fields from the VABS output files. The code for the PreVABS+VABS wrapper

is included in Appendix A.2.

Further details related to the MDA and its elements will be provided in Sections 4.4.3

and 4.4.4.

4.4.3 Generic SMR Helicopter Model

As described in Section 4.4.1, a generic single main rotor helicopter similar to the UH-

60A Black Hawk is used as a test case for Experiment 1. This section describes the

143

implementation of this vehicle in each of the components of primary components of the

MDA.

4.4.3.1 NDARC Model

The NDARC model of the generic SMR helicopter is based on the “helicopter” example

distributed with NDARC. Most attributes of this model were tuned to more closely match

the known characteristics of the UH-60A. Additionally, the model was converted from a

scalable model used for sizing tasks to a fixed-dimension model which is more appropriate

for performance analysis. The basic attributes of the NDARC model are described in

Table 4.3.

Table 4.3: Basic attributes of the generic SMR helicopter NDARC model.

Property Units Value

Design gross weight lb 16,000
Operating weight lb 11,308.2
Empty weight lb 10,533.2
Installed horsepower HP 3200

Main rotor

Radius ft 26.8
Number of blades — 4
Blade chord ft 1.75
Hub type — articulated
Incidence deg 3

Tail rotor

Radius ft 6
Number of blades — 4
Blade chord ft 1.75
Hub type — hingeless
Canta deg 0
a The UH-60A has a tail cant of approxi-

mately 20°; this was removed for simplic-
ity.

A 3D sketch of the NDARC model is presented in Figure 4.10. Note that this model

is not intended to be a physically accurate description of the helicopter, but is useful for

144

visualizing the relative sizes and positions of each component.

Figure 4.10: 3D representation of the generic SMR helicopter NDARC model.

In order to inform the experimental design presented in Table 4.1, the basic performance

attributes of the NDARC model were analyzed. The results of the performance study are

presented in Table 4.4.

Table 4.4: Performance of the generic SMR helicopter NDARC model.

Property Units Value Notes

Maximum takeoff weight lb 21,866.09 Sea level standard atmosphere (SLS),
intermediate rated power (IRP)

Maximum cruise speed kt 159.34 SLS, design gross weight (DGW), max-
imum continuous power (MCP)

Best range speed kt 129.31 SLS, DGW
Hover ceiling ft 11,759.32 Standard atmosphere, DGW, IRP
Cruise ceiling ft 18,340.84 SLS, DGW, MCP, 130 kt
Maximum climb rate ft/min 1447.70 SLS, DGW, MCP, 130 kt
Maximum turn rate deg/s 11.88 SLS, DGW, MCP, 130 kt

Note that these values are based only on power required; specifically, NDARC solves

each case such that the power required is equal to the power available. NDARC does not

make any considerations for aerodynamic, aeroelastic, or structural effects that may limit

performance in certain extreme conditions.

145

The files required to model the generic SMR helicopter in NDARC are included in

Appendix B.1. Tables B.1 to B.3 describe the mapping between NDARC’s input and output

variables and the OpenMDAO variables. The OpenMDAO variables will be described

further in Section 4.4.4.

4.4.3.2 RCAS Model

The RCAS model of the generic SMR helicopter is geometrically identical to the NDARC

model. Different elements of the helicopter are modeled using the RCAS building blocks

described previously in Table 4.2. The rotor system of the RCAS model is derived from

“Training Example 4” distributed with RCAS, which was expanded from an isolated rotor

model to a complete 6-DOF helicopter model.

The main rotor consists of a series of flexible and rigid beams, each with its own mass

and inertia. The rotor blades themselves are modeled using the GECB formulation of the

NLB element. The beam is composed of 11 nodes and has two degrees of freedom in the

axial, lead–lag, flap, and torsion directions, as well as both shear directions. Each of the 10

elements has six Gauss integration points. At runtime, the 6× 6 mass and stiffness matrices

required to define the GECB element are passed from VABS to RCAS. The fully-articulated

swashplate is constructed from rigid beam elements, hinges, and pitch bearings. A spring in

series with the pitch link simulates control stiffness.

Aerodynamically, the main rotor is composed of 15 aerodynamic segments, each of

which models a quasi-nonlinear NACA0012 airfoil. The swept tip of the UH-60A was

removed for simplicity, but the −8° aerodynamic and structural blade twist was retained.

Blade element monentum theory (BEMT) was used for the inflow model in order to keep

runtime low. Correction factors for yawed flow, tip loss, linear unsteady effects, and

compressibility effects are present in the model. Additionally, the main rotor is simulated

using the single blade analysis option, where the motion of only one rotor blade is calculated

then duplicated to the other three blades. This improves runtime and, since all simulated

146

flight conditions are steady-state, does not impede accuracy.

Since the main rotor is the focus of this research, the remainder of the helicopter is

modeled using simpler elements. The fuselage is composed of rigid beams with mass,

inertia, drag, lift, and pitching moment. The horizontal and vertical stabilizers are composed

of rigid beams with mass and inertia. Aerodynamically, the stabilizers use simple linear

airfoil definitions with uniform inflow.

The tail rotor is constructed of rigid beams with mass and inertia. A swashplate is

not modeled, but a pitch bearing is included to enable yaw control. The tail rotor uses a

NACA0012 airfoil with uniform inflow. Each rotor blade is constructed of five aerodynamic

segments. The tail rotor also uses the single blade analysis option.

Particular attention was paid to ensuring consistency between the NDARC and RCAS

models. Where applicable, all aerodynamic properties in the NDARC model, such as lift

and drag coefficients of the fuselage, stabilizers, and tail rotor, were copied to the RCAS

model. OpenMDAO ensures that all weight properties of the NDARC model, which may

change for each run, are copied to the RCAS model at runtime. This process is described

further in Section 4.4.4.

Figure 4.11 presents different renderings of the RCAS model of the generic SMR

helicopter. Figure 4.11a depicts the beam and point mass elements that make up the

structural definition. Figure 4.11b overlays the aerodynamic elements of the model over

the structural model. Figure 4.11c shows a freeze-frame of the model in forward flight.

The z-component of the aerodynamic loads on the main rotor are plotted to show the

lift distribution on the rotor blade. The rotor blade is noticeably deforming, as would be

expected in any flight condition.

The RCAS file used to model the generic SMR helicopter could not be made publicly

available. A detailed description of the RCAS model, including the various components of

the structural and aerodynamic models, is presented in Appendix B.2. The descriptions and

tables in this appendix provide enough information for the reader to reconstruct the RCAS

147

(a) Structural model (b) Aerodynamic model

(c) Deformation and loads

Figure 4.11: Different 3D representations of the generic SMR helicopter in RCAS.

model if desired. Tables B.28 to B.31 describe the mapping between the variables in this

file and the OpenMDAO variables. The OpenMDAO variables will be described further in

Section 4.4.4.

4.4.3.3 PreVABS+VABS Model

Unlike the NDARC and RCAS models, the PreVABS+VABS model does not simulate the

entire vehicle. Instead, this model represents only the two-dimensional cross section of the

main rotor blade. The PreVABS+VABS model is derived from a composite cross-section

developed by Rohl, Cesnik, Dorman, et al. [117]. These authors, and later Kumar [118],

modeled a parametric rotor blade cross section and used numerical optimization to match

the inertial and elastic properties of that model to known properties of the UH-60A rotor

148

blade. Because the internal structure of the UH-60A rotor blade is not publicly available,

Rohl’s model serves as a useful substitute.

Rohl’s cross section model was recreated in PreVABS using the NACA0012 outer mold

line to match the RCAS aerodynamic model. The model consists of five materials: IM7,

E-glass, S-glass, plascore, and steel. The box spar of the rotor blade is composed of IM7

with a 0°/45°/−45°/90° layup. The entire outer mold line is covered in an E-glass overwrap

with a 0°/45°/−45°/0° layup. The leading edge is reinforced with IM7 under the overwrap,

and is covered in a steel erosion strip, which serves to protect the blade from dust or large

particles which can cause pitting. The extreme trailing edge is filled with S-glass, and the

remainder of the area between the S-glass fill and the box spar is filled with plascore. Each

material was modeled orthotropically using the values in Table 4.5.

Table 4.5: Orthotropic materials used in the PreVABS+VABS model, from Rohl, Cesnik,
Dorman, et al. [117].

Property Units IM7 E-glass S-glass Steel Plascore

ρ slug/ft3 3.01 3.34 3.61 15.13 0.09
E11 lb/ft2 3.45× 108 4.32× 108 9.06× 108 4.28× 109 1.44× 105

E22 lb/ft2 1.84× 108 4.32× 108 2.51× 108 4.28× 109 2.88× 106

E33 lb/ft2 1.84× 108 4.32× 108 2.51× 108 4.28× 109 1.44× 105

G12 lb/ft2 1.02× 108 8.55× 107 7.52× 107 1.61× 109 5.01× 105

G13 lb/ft2 1.02× 108 8.55× 107 7.52× 107 1.61× 109 1.44× 105

G13 lb/ft2 1.02× 108 8.55× 107 7.52× 107 1.61× 109 8.35× 105

ν12 — 0.34 0.15 0.28 0.30 0.01
ν13 — 0.34 0.15 0.28 0.30 0.30
ν23 — 0.30 0.30 0.30 0.30 0.01

Rohl, Cesnik, Dorman, et al. tuned the ply thicknesses of each structural element to

match the UH-60A elastic properties. The results require that a number of plies of each

material of varying thickness are used in the cross-section design. Although this may not

be realistic from a manufacturing standpoint, the ply thickness specifications were left

unchanged in this research.

Figure 4.12 presents the complete PreVABS+VABS cross section model. Figure 4.12a

149

Table 4.6: Ply thicknesses used in the PreVABS+VABS model.

Component Material Ply number Thickness (ft) Angle (deg)

Spar IM7 1 0.00410 0
Spar IM7 2 0.00372 45
Spar IM7 3 0.00372 −45
Spar IM7 4 0.00100 90
Overwrap E-glass 1 0.00050 0
Overwrap E-glass 2 0.00050 45
Overwrap E-glass 3 0.00050 −45
Overwrap E-glass 4 0.00050 0
Erosion strip Steel 1 0.00164 0
LE reinforcement IM7 1 0.00782 0

displays the geometry of the cross section. Figures 4.12b to 4.12d show detail views of

the trailing edge, box spar, and leading edge, respectively. Figure 4.12e shows the mesh

produced by PreVABS using the built-in automesher with a minimum size of 0.010 ft.

(a) Geometry

(b) Trailing edge detail (c) Spar detail (d) Leading edge detail

(e) Mesh

Figure 4.12: Representations of the PreVABS+VABS rotor blade cross section model.

After creating the PreVABS+VABS model, its mass and stiffness matrices were trans-

150

ferred to the RCAS model. A fan plot was created to compare the original NLB formulation

from the RCAS training example file2 and the new GECB formulation. The results are

presented in Figure 4.13.

(a) Nonlinear beam (b) Geometrically exact composite beam

Figure 4.13: Fan plot comparison of original NLB formulation to new GECB formulation.

Note that most of the mode frequencies produced by the NLB (see Figure 4.13a) are

very similar to those of the GECB (see Figure 4.13b). The frequency of the third mode has

increased slightly at low rotor speed, while the frequencies of the fifth and sixth modes have

decreased slightly across the entire range. The similarity suggests that the PreVABS+VABS

cross section model accurately reproduces the characteristics of the UH-60A rotor blade,

even though the outer mold line is not representative. Most importantly, the structural

stability of the RCAS model’s main rotor will not be affected by transitioning from the NLB

to the GECB.

The files used to define the PreVABS+VABS model are included in Appendix A.2.

Table B.32 describes the mapping between the PreVABS+VABS input/output variables

and the OpenMDAO variables. The OpenMDAO variables will be described further in

Section 4.4.4.

2It is assumed that the RCAS training example file is also intended to represent a UH-60A rotor system,
although the elastic definition has been simplified to comply with data restrictions.

151

4.4.4 OpenMDAO Modules and Supporting Tools

In addition to the three primary software tools describe previously, the MDA requires a

number of other supporting tools to maintain consistency between the different models.

Each of these tools is implemented directly in Python as a subclass of the OpenMDAO

ExplicitComponent class. Finally, these tools are combined into a OpenMDAO Group,

which handles the execution order and variable mapping. This section will describe each of

the supporting tools and the group in turn.

4.4.4.1 Blade Ballast Calculator

The PreVABS+VABS rotor blade cross section model does not include any ballast. In order

to ensure that the rotor blade remains aerodynamically stable in the presence of design

changes, the CG must remain ahead of the aerodynamic center (AC). The blade ballast

calculator analyzes the mass matrix calculated by VABS and calculates a necessary ballast

mass and location to maintain the CG of the baseline rotor blade design.

The VABS mass matrix takes the form of Equation (4.24) [113]:

M =



µ 0 0 0 µxm3 −µxm2

0 µ 0 −µxm3 0 0

0 0 µ µxm2 0 0

0 −µxm3 µxm2 i22 + i33 0 0

µxm3 0 0 0 i22 i23

−µxm2 0 0 0 i23 i33


(4.24)

where µ is the mass per unit length, xm2 and xm3 are the center of mass location along the

second and third axes, and i22, i23, i33 are the moments of inertia per unit length.

The blade ballast calculator first extracts these values, then calculates the necessary

152

ballast mass and location using Equations (4.25) to (4.27):

µb = µf − µ0 (4.25)

xm2,b =
xm2,fµf − xm2,0µ0

µb
(4.26)

xm3,b =
xm3,fµf − xm3,0µ0

µb
(4.27)

where the b subscript denotes the ballast, the 0 subscript denotes the original values of each

parameter read from the VABS output file, and the f subscript denotes the final desired

values of each parameter. The implementation includes a check to ensure that Equation (4.25)

does not return a negative value for the ballast mass.

Finally, the moments of inertia are reconstructed using Equations (4.28) to (4.30):

i22,f = i22,0 + µbx
2
m3,b

(4.28)

i33,f = i33,0 + µbx
2
m2,b

(4.29)

i23,f = i23,0 + µbxm2,bxm3,b (4.30)

and a new VABS mass matrix with the effects of the ballast included is assembled using

Equation (4.24).

The code defining the blade ballast calculator is included in Appendix C.2. The OpenM-

DAO variable names of the inputs and ouptuts are listed in Table C.1.

4.4.4.2 Blade Weight Calculator

The blade weight calculator calculates the complete mass of all four rotor blades given the

mass per unit length of the cross section. The equation is given by

mB = nBµ`B +mH (4.31)

153

where mB is the blade mass, nB is the number of blades, `B is the length of a single blade,

and mH is the mass of the rigid beam used to model hinge offset. In the generic SMR

helicopter model, nB = 4, `B = 25.3 ft, and mH = 0.122 slug.

4.4.4.3 Mass Calculator

The mass calculator module is responsible for ensuring that the mass and inertia parameters

of the helicopter components are consistent between the NDARC and RCAS models. It also

calculates the payload CG required to maintain the specified vehicle CG given the payload

weight and vehicle gross weight.

The module makes use the component weights and locations defined by the NDARC

model. The inertial properties of each component are estimated by idealizing that component

as a simple three-dimensional object. For minor components, inertia is neglected.

This module calculates the inertia of an ellipsoid using Equations (4.32) to (4.35):

Ixx =
1

5
m
(
a2 + b2

)
(4.32)

Iyy =
1

5
m
(
a2 + c2

)
(4.33)

Izz =
1

5
m
(
b2 + c2

)
(4.34)

Ixy = Ixz = Iyz = 0 (4.35)

where a, b, and c are the semi-major axes of the ellipsoid along the z, y, and x axes,

respectively.

The inertia of a cylinder oriented along the x axis is modeled using Equations (4.36)

to (4.39):

Ixx =
1

2
mR2 (4.36)

Iyy =
1

12
m
(
L2 + 3R2

)
(4.37)

Izz =
1

12
m
(
L2 + 3R2

)
(4.38)

154

Ixy = Ixz = Iyz = 0 (4.39)

where R and L are the radius and length of the cylinder, respectively. The equations can

easily be modified for cylinders oriented along the y and z axes.

The inertial properties of a rectangular prism are given by Equations (4.40) to (4.43):

Ixx =
1

12
m
(
L2 +H2

)
(4.40)

Iyy =
1

12
m
(
W 2 +H2

)
(4.41)

Izz =
1

12
m
(
L2 +W 2

)
(4.42)

Ixy = Ixz = Iyz = 0 (4.43)

where L, W , and H are the length, width, and height of the rectangular prism, respectively.

The prism is assumed to be oriented with width on the x axis, length on the y axis, and

height on the z axis.

Finally, a flat disc component can be modeled using Equations (4.44) to (4.47):

Ixx =
1

2
mR2 (4.44)

Iyy =
1

4
mR2 (4.45)

Izz =
1

4
mR2 (4.46)

Ixy = Ixz = Iyz = 0 (4.47)

where the flat disc is assumed to be oriented along the x axis.

The exact inertia model used for each RCAS component is listed in Table 4.7. This table

also describes the mapping between NDARC systems and RCAS components.

155

Table 4.7: Inertia models for the generic SMR helicopter model.

RCAS component NDARC
component(s)a

Inertia model Inertia parametersb

Fuel Fuel None None

Fuselage Fuselage group,
systems and
equipment,
vibration reduction,
fuel systems

Ellipsoid a = 3 ft, b = 4 ft,
c = 19.97 ft

Useful load Fixed useful load None None

Gear Alighting gear None None

Main rotor blade (×4) Main rotor blades Nonec None

Main rotor hub Main rotor hub and
hinge

Flat disc R = 1.25 ft

Tail rotor blade (×4) Tail rotord Rectangular prism W = 4.8 ft,
L = 0.754 ft,
H = 0.090 ft

Tail rotor hub Tail rotord Flat disc R = 1.2 ft

Horizontal stabilizer Horizontal
stabilizer

Rectangular prism W = 14.66 ft,
L = 2.93 ft,
H = 0.35 ft

Vertical stabilizer Vertical stabilizer Rectangular prism W = 8.55 ft,
L = 0.71 ft,
H = 3.54 ft

Engine group Drive system,
engine structure,
engine system

Cylinder L = 9.985 ft,
R = 2 ft

Payload Payload None None
a Masses from several different NDARC components can be combined for a single RCAS

component. The inertia model uses the sum of these masses.
b The inertial model of each component is defined using the axes of its reference frame in

the RCAS model.
c The inertial properties of the main rotor blade are captured by the nonlinear beam model

in RCAS.
d The tail rotor blades are assumed to sum to 55% of the tail rotor system, with the hub

and shaft making up the other 45%.

156

The total mass of the vehicle is calculated using Equation (4.48):

mt =
n∑
i=1

mi (4.48)

where n is the number of components. The CG of the entire system can then be found using

Equations (4.49) to (4.51):

xCG =

∑n
i=1mixi
mt

(4.49)

yCG =

∑n
i=1miyi
mt

(4.50)

zCG =

∑n
i=1mizi
mt

(4.51)

The mass calculator module calculates the necessary payload CG position for a pre-

scribed vehicle CG position. This is accomplished by first calculating the total mass and CG

without the payload included. Then, the station line (x position) of the payload is determined

using

xPL =
xCG (m0 +mPL)− xCG,0m0

mPL

(4.52)

where the PL subscript denotes quantities relating to the payload and the 0 subscript denotes

quantities related to the vehicle not including the payload. This module does not modify the

butt line (y) or water line (z) of the payload or the combined CG position.

The code needed to run the mass calculator module is given in Appendix C.3. Table C.1

lists the inputs and outputs of the mass calculator module.

4.4.4.4 Pre-RCAS Modules

Due to differences in the way the NDARC and RCAS models are defined, a number of

simple tools are used to convert specific variables into the correct format.

First, the ROC Negatizer makes the rate of climb negative. Because RCAS uses a

z-down reference frame to define trimmed flight conditions, a negative ROC corresponds to

157

a positive altitude rate.

The Payload Negatizer makes the payload CG station line negative. In the NDARC

model, station line is positive towards the aft of the helicopter, but the RCAS model uses an

x-forward reference frame for the fuselage, so station line is positive towards the front of the

helicopter. Both models use the rotor hub as the reference line, so no additional conversions

are needed.

Next, the Turn Radius Calculator is used to calculate the turn radius given a turn rate,

which RCAS needs to define a steady state turn condition. This is calculated according to

Equation (4.53):

R =


V
|ω| , if ω 6= 0

0, if ω = 0

(4.53)

where R is turn radius.

NDARC calculates pilot control positions required for trimmed flight, but in certain

extreme flight conditions it may be difficult to initialize the RCAS trim solution with those

control positions. It is easier to initialize RCAS with less extreme control positions and

allow RCAS to trim to the model to the correct solution. To accomplish this, the Control

Damper multiplies the collective, lateral cyclic, longitudinal cyclic, and pedal positions

predicted by NDARC by a factor of 0.75.

4.4.4.5 MDA Group

The MDA Group combines the previously discussed software programs, wrappers, and

supporting modules into one location. It defines a number of independent variables to enable

simple definition of the flight condition. The group also controls the execution order of the

different elements of the multidisciplinary analysis. Recall overview of the MDA presented

previously in Figure 4.9.

The execution order is as follows:

1. The PreVABS+VABS model is initialized and executed. This model outputs the blade

158

inertial and elastic properties. If any blade design variables have been modified, they

will be incorporated into this step.

2. The blade ballast calculator determines the necessary amount and position of ballast

to maintain the aerodynamic stability. A new VABS mass matrix is constructed to

account for the ballast.

3. The blade weight calculator calculates the mass of a main rotor blade given the mass

per unit length of the cross section.

4. NDARC is initialized and executed. This first execution of NDARC is intended to

account for potential changes in the rotor blade weight; the weights of other systems,

such as the main rotor hub, may increase or decrease as a result. Helicopter component

weights and positions are read from the outputs.

5. The mass calculator reads the component weights and positions and calculates the

payload CG location, the system CG location, and the component moments of inertia.

6. NDARC is initialized and executed a second time using the updated CG locations from

the mass calculator. The user-defined flight condition is simulated and the trimmed

control positions and atmospheric properties are returned to OpenMDAO.

7. The pre-RCAS modules are executed to prepare the RCAS run.

8. RCAS is initialized and executed. The RCAS model takes component mass and

inertia inputs from NDARC and the mass calculator, trimmed control positions from

NDARC, atmospheric conditions from NDARC, and rotor blade mass and stiffness

matrices from VABS and the blade ballast calculator. RCAS returns a complete set

of forces and moments on every blade station at every time step in the trimmed,

converged periodic solution.

Thus, a complete field of rotor blade loads can be automatically calculated for every

flight condition listed in Table 4.1, or any other arbitrary flight condition that can be defined

by those six variables. The RCAS model uses 11 blade stations and 72 time steps per rotor

blade revolution, so a complete MDA run produces 792 load cases. The code to implement

159

the MDA group is included in Appendix C.1.

After the MDA execution is complete, each load case is passed through the Pre-

VABS+VABS model, now running in recovery mode, which returns a large number of

stress tensors representing the internal 3D stress field in the rotor blade cross section. Two

additional tools are used to process the stress tensor field into a form that is easier to interpret.

4.4.4.6 Von Mises Stress Calculator

As described in Section 4.4.1, each stress tensor is converted into a signed von Mises stress

invariant, which is a scalar value.

The von Mises stress calculator calculates signed von Mises stress for each Gauss point

on the cross section model, according to Equations (4.54) to (4.56):

Shs =
1

3
(S11 + S22 + S33) (4.54)

Svm =

√
1

2

[
(S11 − S22)2 + (S22 − S33)2 + (S33 − S11)2

]
+ 3

(
S2

12 + S2
23 + S2

13

)
(4.55)

Svm,s =


−Svm, Shs < 0

Svm, Shs ≥ 0

(4.56)

where Shs is the hydrostatic stress, Svm is the von Mises stress, and Svm,s is the signed von

Mises stress.

The von Mises stress calculator produces one stress field for each of the 792 load cases

produced by the MDA. These calculations can apply to the entire stress field or to a single

point of interest. The code to run the von Mises stress calculator is included in Appendix C.4.

Table C.3 lists the inputs and outputs of this module.

160

4.4.4.7 Stress Analyzer

The stress analyzer performs cyclic analysis on the signed von Mises stress fields produced

by the von Mises stress calculator. Because this research considers only steady-state flight

conditions, a simple first-harmonic analysis is used instead of the complex cycle counting

methods described in Section 2.2.1.4. This analysis assumes that the 1/rev components of

the stress signal are the most important components and that higher-order frequencies can

be neglected.

For each Gauss point, the maximum and minimum signed von Mises stress values in

the cycle, Smax and Smin, are extracted. The amplitude and mean of the cycle is calculated

using Equations (4.57) and (4.58):

Samp = Smax − Smin (4.57)

Smean = Smin +
Samp

2
(4.58)

Then, the equivalent stress is calculated using the linear form of Goodman’s relation

(see Equation (2.4) and Figure 2.7). In Experiment 1a, the ultimate stress, Su, is assumed to

be 160 ksi. This value will be refined based on specific material properties in Experiment 2.

In this application, the stress analyzer produces 11 equivalent stress fields from the 792

signed von Mises stress fields. Equivalent stress is proportional to the rate at which fatigue

damage is accumulated. Therefore, the point with highest equivalent stress is the most likely

to be the first point of fatigue failure. The code required to run the stress analyzer is included

in Appendix C.5. Table C.4 lists the inputs and outputs of this module.

4.4.5 Results and Analysis

In order to locate the critical fatigue point, each of the flight conditions in Table 4.1 was

simulated using the previously-described MDA environment and the generic SMR helicopter

model. The 792 load cases produced by RCAS were passed through the PreVABS+VABS

161

model in recovery mode, and the recovered stress tensor field was condensed into a signed

von Mises equivalent stress scalar field using the von Mises stress calculator and stress

analyzer modules.

In this section, the force, moment, and equivalent stress fields for each of the extreme

flight conditions will be analyzed. Particular interest is paid to the spanwise, chordwise, and

flapwise position of the maximum equivalent stress point in each case.

4.4.5.1 Case 0: Baseline

The baseline case represents a typical cruise flight condition for the generic SMR helicopter.

This case is intended to serve as a reference to which the extreme flight conditions can be

compared.

Figure 4.14 shows contour plots of the six blade load components over a complete

revolution. A blade revolution is defined by the azimuth angle, ψ, which is 0° when

the blade is pointing aft and 180° when the blade is pointing forwards. Fx, Fy, and Fz

correspond to spanwise, chordwise, and flapwise force components, respectively. Mx is

a twisting moment about the blade axis, My is a flapwise bending moment, and Mz is a

bending moment in the lead–lag direction.

Note the strong centrifugal forces visible in the Fx plot. Centrifugal forces are caused by

the rotation of the blade and, at each station, are proportional to the weight of the outboard

segment. Thus, especially near the root, the blade experiences a large amount of tension.

The shear forces, Fy and Fz, are much smaller in magnitude than the centrifugal force.

The chordwise shear forces near the root are likely caused by interactions with the pitch link

and the lead–lag damper. The flapwise shear forces show interesting spanwise oscillations

that are evidence of higher-order bending modes. The strong negative flapwise shear force

near the root on the advancing blade in the region where 45° < ψ < 135° is likely due to

interactions with the pitch link, which pulls the leading edge of the rotor blade down. Note

that shear forces are expected to be small; in simpler aeroelastic models, rotor blade shear

162

Figure 4.14: Rotor blade forces and moments for Experiment 1a, case 0.

163

stiffness and shear loads are neglected.

There is a corresponding strong negative (pitch down) blade moment near the root

of the blade where 45° < ψ < 225°, but pitching moments are small elsewhere. The

generic SMR helicopter model uses a symmetric NACA0012 airfoil which does not produce

significant pitch moments. The My and Mz plots portray strong flapwise and chordwise

moments across the blade root and midspan. These moments are most likely a consequence

of interactions between the aerodynamic environment and the rotor blade structure. A large

lift distribution on the midspan of the advancing rotor blade produces significant positive

flapwise bending moments, and the corresponding increase in drag produces significant

negative chordwise bending moments. These effects are partially reversed for the retreating

blade, which experiences weaker, but negative, flapwise bending moments and weaker

negative chordwise bending moments.

Finally, note that all forces and moments decay to zero at the tip of the blade. This is

expected as a rotor blade is essentially a fixed–free beam, and the tip loss model in RCAS

ensures that no aerodynamic forces are generated exactly at the rotor blade tip.

Figure 4.15 plots the spanwise variation of Seq,max and its chordwise and flapwise

position on the cross section. The highest value of Seq occurs at station 1, the root of the

rotor blade, which is located 1.25 ft outboard of the center of the shaft. The value of Seq at

this point is 40.04 ksi.

Note that Seq,max first drops, then rises slightly throughout the midspan of the rotor blade,

then drops again to zero at the tip. This is reflective of the chordwise and flapwise bending

moments seen in Figure 4.14. Figure 4.16 plots the full Seq field on the rotor blade cross

section. The Seq,max point is highlighted in red.

There are essentially two regions of elevated Seq on the cross section. The first is the

auxiliary (forward) web of the box spar. Recall from Section 4.4.3.3 that the box spar is

responsible for carrying most of the blade loads and is composed of the composite material

IM7. There is another elevated stress region on low pressure surface near the leading edge

164

Figure 4.15: Seq,max and its location for Experiment 1a, case 0.

Figure 4.16: Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 0.

of the blade. This corresponds to the location of the thin steel erosion strip, which protects

the blade from dust and debris.

4.4.5.2 Case 1: Hover

Figure 4.17 plots the rotor blade loads for the hover case. Although the centrifugal forces

are similar to the baseline case, all other loads vary significantly. Because the vehicle is

stationary, there is little cyclic variation of airloads on the rotor blade. However, the rotor

still produces some pitching and rolling moment to compensate for the CG position and tail

165

rotor thrust.

Figure 4.17: Rotor blade forces and moments for Experiment 1a, case 1.

166

The shear forces are also similar to the baseline case, albeit with slightly reduced

amplitudes. The twisting, flapwise bending, and chordwise bending moments lose the

characteristic 1/rev oscillations present in the baseline case, as there is no longer an “advanc-

ing” or “retreating” blade. The flapping and chordwise bending moments also have lower

peak-to-peak amplitudes than the baseline case. Figure 4.18 shows the spanwise variation

of Seq,max.

Figure 4.18: Seq,max and its location for Experiment 1a, case 1.

The peak stress point is still located at the root of the blade, and, at 35.44 ksi, is lower

than the peak stress of the baseline case. However, the spanwise variation of stress changed

dramatically. In this case, Seq decreases throughout the rotor blade and no elevated stress is

present in the midspan. Recall that Seq is driven by both Samp and Smean. Although Smean

is still present, Samp is nearly zero in the mid-span segment, as evidenced by Figure 4.17,

resulting in a corresponding decrease in Seq. Figure 4.19 plots the equivalent stress field at

the root of the blade.

In Figure 4.19, the peak stress location is very similar to the baseline case, although the

highest value of Seq is lower. The region of elevated stress on the steel erosion strip is also

present.

167

Figure 4.19: Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 1.

4.4.5.3 Case 2: High Speed

Figure 4.20 plots the rotor blade loads for the high speed case. Overall, the patterns of the

rotor blade loads are similar to the baseline case, although peak-to-peak amplitudes are

higher in all loads except centrifugal force.

In particular, there is a stronger pitch up (positive) moment near the tip on the advancing

blade. The retreating blade experiences oscillations between positive and negative chordwise

moments on the retreating blade, where 180° < ψ < 360°. At high flight speeds, the area of

the retreating blade near the root experiences a phenomenon known as reverse flow where

the relative local wind speed is less than or equal to zero. This can have unpredictable

aerodynamic effects, including flow separation and stall. The quasi-nonlinear aerodynamic

model used by the RCAS model is capable of modeling steady-state reverse flow effects

because the coefficients of the NACA0012 are defined for angles-of-attack from −180° to

180°.

Figure 4.21 plots the spanwise variation of Seq,max. The pattern is very similar to the

baseline case, albeit with notably higher Smax overall. At the root, Seq,max = 49.73 ksi. The

complete equivalent stress field at the root is presented in Figure 4.22.

In this case, the maximum equivalent stress point is located near the leading edge of the

blade on the low pressure surface. The exact position corresponds to the steel erosion strip.

168

Figure 4.20: Rotor blade forces and moments for Experiment 1a, case 2.

169

Figure 4.21: Seq,max and its location for Experiment 1a, case 2.

Figure 4.22: Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 2.

It appears that the greater deformations of the rotor blade in the high speed flight condition

cause the steel erosion strip, which has higher moduli of elasticity than the composite

materials (see Table 4.5), to experience higher stress. However, note that the auxiliary web

of the box spar also experiences high equivalent stress.

4.4.5.4 Case 3: Low Altitude

The rotor blade loads produced by the low altitude case are plotted in Figure 4.23. Overall,

this case is nearly indistinguishable from the baseline case. The magnitude of the flapwise

170

shear forces are slightly lower, but the magnitudes of the pitching and chordwise bending

moments are slightly higher than the baseline case. This is possibly related to higher air

density at low altitudes increasing the aerodynamic loading on the rotor blade.

Figure 4.24 plots the spanwise variation of Seq,max and its position. At 42.59 ksi, the

peak equivalent stress is slightly higher than the baseline case, but the shape of the spanwise

variation is otherwise similar.

Figure 4.25 presents the cross-sectional distribution of equivalent stress at the blade root.

Other than the increased magnitude of Seq,max, this stress field is effectively identical to the

baseline case.

171

Figure 4.23: Rotor blade forces and moments for Experiment 1a, case 3.

172

Figure 4.24: Seq,max and its location for Experiment 1a, case 3.

Figure 4.25: Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 3.

4.4.5.5 Case 4: High Altitude

The high altitude case is similarly nearly identical to the baseline case. Figure 4.26 plots

the rotor blade loads predicted for this case. The shear force magnitudes are slightly lower

than the baseline case, but the magntitudes and cyclic variations in the pitching, chordwise

bending, and flapwise bending moments are very nearly identical to the baseline case.

The spanwise variation of the maximum equivalent stress point, presented in Figure 4.27,

is also similar to the baseline case. With a maximum equivalent stress of 36.80 ksi, this case

is slightly less damaging than the baseline case. This is likely due to the lower air density at

173

Figure 4.26: Rotor blade forces and moments for Experiment 1a, case 4.

174

higher altitudes, which decreases the overall aerodynamic loading on the rotor blade.

Figure 4.27: Seq,max and its location for Experiment 1a, case 4.

Figure 4.28 displays the distribution of equivalent stress over the cross section. Again,

other than the difference in magnitude, this stress field is very similar to the baseline case.

Figure 4.28: Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 4.

4.4.5.6 Case 5: Low Weight

The rotor blade forces and moments for the low weight case are plotted in Figure 4.29.

Compared to the baseline case, the chordwise shear force has less extreme negative peaks

and the flapwise shear force have a more extreme positive peak at the blade root on the

175

retreating blade. This appears to be due to changes in pitch link forces required to maintain

this flight condition.

The twisting moment has a more extreme pitch up (positive) moment at the root on

the retreating blade. The flapwise bending moment has a greater negative moment at the

root and midspan of the retreating blade, where 225° < ψ < 270°. The chordwise bending

moment has a lower magnitude overall than the baseline case. Figure 4.30 presents the

spanwise variation of Seq,max.

Interestingly, despite the lower weight of the vehicle in this flight condition, the max-

imum equivalent stress, which is located at the root, is higher than the baseline case, at

47.49 ksi. This may be related to the higher peak in the flapwise shear force seen in Fig-

ure 4.29. However, it is important to remember that, due to the highly nonlinear nature of

stress in composite materials, the stress field is somewhat abstracted from the rotor load

distributions. For example, load components can interact in ways that are not intuitive: an

increase in flapwise bending moment could actually decrease stress on the low pressure

surface of the rotor blade because its compression counteracts the tension produced by

centrifugal loading. In this case, decreases in internal blade loads due to the lower weight of

the vehicle could actually contribute to an increase in stress at certain locations on the cross

section.

Figure 4.31 plots the variation of Seq across the cross section at the blade root. Although

equivalent stress has increased on the auxiliary web of the box spar, the stress on the erosion

strip appears to be slightly lower than the baseline case.

176

Figure 4.29: Rotor blade forces and moments for Experiment 1a, case 5.

177

Figure 4.30: Seq,max and its location for Experiment 1a, case 5.

Figure 4.31: Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 5.

4.4.5.7 Case 6: High Weight

Figure 4.32 plots the blade loads for the high weight case. Compared to the baseline case,

the chordwise shear force has higher magnitude. There is also a significant difference in

each of the moments.

The twisting moments have higher peak-to-peak amplitudes than the baseline case. In

addition, there is a new region of strong pitch-down moment on the midspan of the retreating

blade, where 270° < ψ < 315°. The patterns of the flapwise bending moment are similar,

but the retreating blade experiences are more negative moment where 225° < ψ < 270°. In

178

Figure 4.32: Rotor blade forces and moments for Experiment 1a, case 6.

179

the chordwise bending moment, Figure 4.32 shows a more extreme positive moment on the

root of the retreating blade, and more extreme negative moments on the retreating blade

midspan, particularly where 270° < ψ < 315°. These patterns are consistent with a rotor

system that must produce more thrust to lift the increased weight of the vehicle.

Figure 4.33: Seq,max and its location for Experiment 1a, case 6.

Figure 4.33 plots the variation of Seq,max across the rotor blade. Although the root stress

remains high, the midspan of the blade actually experiences a slightly higher maximum

equivalent stress than the root. However, at 36.80 ksi, this maximum stress is lower than the

baseline case. Figure 4.34 presents the equivalent stress field at station 6 of the rotor blade,

which is located 14.025 ft outboard of the center of the rotor shaft.

Figure 4.34 indicates a previously-unseen candidate for the critical fatigue point: the

area of the low pressure surface directly above the auxiliary web of the box spar. This

location corresponds to the steel erosion strip. There is a corresponding region of high stress

on the high pressure surface directly below the auxiliary web. Interestingly, the box spar

itself does not carry much stress. Because the centrifugal force and twisting moments are

lower at the midspan, the box spar is not required to carry as much load.

180

Figure 4.34: Seq field at blade station 6 (x = 14.025 ft) for Experiment 1a, case 6.

4.4.5.8 Case 7: Descent

The rotor blade forces and moments for the descent case are presented in Figure 4.35. In

general, the flapwise and chordwise shear forces are similar to the baseline case but the

peak-to-peak amplitudes are slightly lower. The advancing blade sees a higher pitch up

moment on the midspan and tip of the advancing blade, specifically where 90° < ψ < 135°.

The flapwise and chordwise bending moments are largely indistinguishable from the

baseline case, except for less extreme positive chordwise moments on the root of the blade.

The spanwise variations in the maximum equivalent stress point, presented in Figure 4.36,

show a similar pattern to the high weight case, except Seq,max is much lower overall. The

peak stress occurs at the midspan and is only 32.60 ksi.

Figure 4.37 shows a cross-sectional Seq distribution that is also similar to the gross

weight case, albeit at a lower magnitude. These results are unexpected because literature

review (see Section 1.5) suggests that descent is one of the more damaging conditions in

terms of material fatigue. Because the RCAS model uses BEMT inflow and does not include

a wake model, the unique interactions between the main rotor wake and the rotor blades

typically seen at negative rates of climb are not modeled. Thus, the current implementation

of the MDA will not produce completely accurate results in descent.

181

Figure 4.35: Rotor blade forces and moments for Experiment 1a, case 7.

182

Figure 4.36: Seq,max and its location for Experiment 1a, case 7.

Figure 4.37: Seq field at blade station 6 (x = 14.025 ft) for Experiment 1a, case 7.

4.4.5.9 Case 8: Climb

Figure 4.38 presents rotor blade loads for the climbing case. These loads are significantly

different from the baseline case. Although the chordwise shear is only slightly higher, the

negative flapwise shear at the blade root is much more significant than the baseline case.

This is likely due to the forces carried in the pitch link. Additionally, the negative peaks of

the pitching and chordwise bending moments are more extreme than the baseline case.

As can be seen in Figure 4.39, Seq,max at the root is much higher than the baseline case

with a value of 58.21 ksi. This appears to reflect the impact of the flapwise shear differences

183

Figure 4.38: Rotor blade forces and moments for Experiment 1a, case 8.

184

seen in Figure 4.38. The maximum stress is similar to the baseline case at the midspan and

tip locations.

Figure 4.39: Seq,max and its location for Experiment 1a, case 8.

Figure 4.40 shows that the location of the maximum stress point at the blade root is the

same as in the high speed case. However, note that the equivalent stress on the box spar

auxiliary web is also significantly greater than in the baseline case.

Figure 4.40: Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 8.

In the climbing case, the main rotor produces thrust equal to the baseline case. However

the amount of power produced by the rotor is higher. This correlates with an increase in

drag on the rotor blade, which is likely responsible for the more negative chordwise bending

185

moment. The changes in flapwise shear appear to be correlated with changes in pitch link

forces required by the trim position of the rotor system.

4.4.5.10 Case 9: Left Turn

The blade forces and moments for the left turn case are presented in Figure 4.41. The shear

force plots are very similar to the baseline case, except that the chordwise shear force has a

slightly smaller peak-to-peak amplitude and the flapwise shear force has a slightly wider

peak-to-peak amplitude.

However, the plot of twisting moment shows a significant increase in pitch down

(negative) moment on the root of the advancing blade, where 90° < ψ < 180. The negative

flapwise bending moments where 225° < ψ < 270° are also more significant than in the

baseline case. The chordwise bending moment is very similar to the baseline case. These

results are consistent with a rotor that is producing more lift on its advancing than retreating

blade, resulting in a net horizontal force pointed to the port side of the vehicle.

Figure 4.42 shows a similar spanwise variation in Seq,max to the baseline case. At

42.78 ksi, the peak equivalent stress at the root of the blade is just slightly above the baseline

case. Figure 4.43 indicates that the peak stress location is in the same position on the steel

erosion strip as the high speed case.

186

Figure 4.41: Rotor blade forces and moments for Experiment 1a, case 9.

187

Figure 4.42: Seq,max and its location for Experiment 1a, case 9.

Figure 4.43: Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 9.

4.4.5.11 Case 10: Right Turn

Figure 4.44 plots the rotor force and moment distribution in the right turn case, which is

effectively indistinguishable from the left turn case. Any differences are due to the fact

that, to produce a net horizontal force to the starboard side of the aircraft, the rotor must

produce more lift on its retreating blade than its advancing blade. This is a consequence of

the counterclockwise rotation direction employed on nearly all American helicopters.

Similarly, Figures 4.45 and 4.46 are also very similar to the left turn case. Although

the peak equivalent stress at the root is slightly lower at 41.89 ksi, this is likely within the

188

Figure 4.44: Rotor blade forces and moments for Experiment 1a, case 10.

189

margin of error of RCAS’s trim solution.

Figure 4.45: Seq,max and its location for Experiment 1a, case 10.

Figure 4.46: Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 10.

4.4.5.12 Case 11: Forward CG

The rotor blade loads for the forward CG case are plotted in Figure 4.47. In this case, the

shear forces are significantly lower than the baseline case. For the flapwise shear force in

particular, the peak-to-peak amplitudes near the blade root are much less significant.

The chordwise bending moment also has lower peak-to-peak amplitudes than the baseline

case, although the twisting and flapwise bending moments do not differ significantly from

190

Figure 4.47: Rotor blade forces and moments for Experiment 1a, case 11.

191

the baseline. Significant differences in the spanwise variation of Seq,max can be seen in

Figure 4.48.

Figure 4.48: Seq,max and its location for Experiment 1a, case 11.

The high root stress that was present in most of the previous cases has reduced to

approximately 15 ksi, and the maximum stress, which is located at the mid span, is only

29.24 ksi. Figure 4.49 shows a cross-sectional Seq field that is similar to the descent case.

The maximum stress location is on the steel erosion strip just above the auxiliary web, with

a corresponding region of high stress on the high pressure surface.

Figure 4.49: Seq field at blade station 6 (x = 14.025 ft) for Experiment 1a, case 11.

The forward CG case is less stressful than the baseline case because it is “easier” for

192

the rotor. In forward flight, the vehicle must pitch down, but this is counteracted by the

tail-heavy nature of the helicopter design. In the forward CG case, the CG is located just

ahead of the main rotor shaft, so the pitch down moment required from the rotor system is

lower. This results in lower loads and stresses on the rotor blade.

4.4.5.13 Case 12: Aft CG

The aft CG is perhaps the most interesting case surveyed in this experiment, as demonstrated

by Figure 4.50. Although the chordwise shear force has a smaller peak-to-peak amplitude,

the flapwise shear force is much more extreme. Particularly, the peak-to-peak amplitude of

the oscillating flapwise shear force near the rotor blade root is much higher, which obscures

the characteristic spanwise oscillations seen in previous cases. It also appears that the mean

flapwise shear is higher than in previous cases.

The pitch up (positive) twisting moments on the tip of the advancing blade, in the region

where 90° < ψ < 135°, are higher than the baseline. The flapwise bending moment shows

a similar pattern to the baseline case, but the peak-to-peak amplitude is higher. The same

can be said of the chordwise bending moment plot.

Figure 4.51 reveals a significantly higher maximum equivalent stress at the root of the

rotor blade. At 94.25 ksi, it is more than twice the corresponding value of the baseline case.

As can be seen in Figure 4.52, this maximum stress point is at the same location near the top

of the auxiliary box spar web.

The aft CG case is significant in that it is the most damaging case from a fatigue life

perspective. The aftward CG shift increases the pitch up moment on the helicopter; this must

be countered by the main rotor to achieve the proper pitch down orientation for trimmed

forward flight. High overall pitch down moment exerts proportionally more stress on the

rotor blade.

193

Figure 4.50: Rotor blade forces and moments for Experiment 1a, case 12.

194

Figure 4.51: Seq,max and its location for Experiment 1a, case 12.

Figure 4.52: Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 12.

4.4.5.14 Case 13: Reverse

The reverse flight case is very similar to the hover case. Figure 4.53 shows that the blade

load distributions for this case. Although the flapwise and chordwise shear forces have

slightly higher peak-to-peak amplitudes than the baseline case, the patterns are effectively

identical.

The peak-to-peak amplitude of the twisting moment is almost exactly the same as the

hover case, but the location of the negative peak has been shifted towards the ψ = 315°

azimuth position. The chordwise bending moment has a slightly larger magnitude than the

195

Figure 4.53: Rotor blade forces and moments for Experiment 1a, case 13.

196

hover case, but the negative peak is shifted towards the ψ = 180° azimuth. These results are

consistent with a rotor system that is generating some net rearward horizontal force.

Figure 4.54: Seq,max and its location for Experiment 1a, case 13.

Figures 4.54 and 4.55 reinforce that the reverse flight case is nearly identical to the hover

case, except the maximum equivalent stress is slightly higher at 37.28 ksi.

Figure 4.55: Seq field at blade station 1 (x = 1.25 ft) for Experiment 1a, case 13.

Note that, because aerodynamic interaction between the main and tail rotors were

neglected in the RCAS model, these results may be unrealistic. If the wake of the tail rotor

was modeled, it is possible that it would be ingested by the main rotor in reverse flight,

resulting in a more unique load environment.

197

4.4.6 Summary

The results of the extreme flight condition survey are summarized in Table 4.8. In general, the

cases which varied the CG location of the helicopter showed the most significant differences

compared to the baseline case. Variation in airspeed, gross weight, and rate of climb were

also significant. Changes in altitude and turn rate did not have a very strong effect; the

effect of turn direction was almost negligible. The reverse flight case was not significantly

different from the hover case.

Ultimately, there are three candidates for the definition of the critical fatigue point. The

point on the auxiliary web of the box spar near the low pressure surface occured in 7 of the

14 surveyed positions. Additionally, this point experiences the highest overall equivalent

stress in the aft CG case. Two points on the low pressure surface, one near the leading edge

and one just above the auxiliary web, occurred in a total of 4 and 3 cases, respectively.

When selecting the critical fatigue point, the consequences of a failure at that point must

be considered. A failure of the auxiliary web of the box spar constitutes a serious structural

failure of the rotor blade. Loss of this structural member would significantly impact the

ability of the rotor blade to carry loads. The decreased structural strength at that location

may lead to a complete failure of the rotor blade, which would almost certainly result in a

fatal accident.

Conversely, the initiation of a fatigue crack on the steel erosion strip would have less

drastic consequences. Although a crack would impair the ability of the erosion strip to protect

the blade from pitting, it likely would not significantly alter the structural characteristics

of the rotor blade and would be discovered at the next inspection. A portion of the erosion

strip could be replaced by a rotor blade repair specialist, or a new rotor blade could be fitted.

Either way, it is unlikely that this failure mode would lead to an accident.

For these reasons, the point on the auxiliary web of the box spar was selected to

serve as the critical fatigue point for all subsequent experiments. This point is defined

by a chordwise (y) position of 0.176 ft and a flapwise (z) position of 0.066 ft. Note that

198

Table 4.8: Value and position of the peak Seq,max point and its location in the extreme flight
condition survey.

Case Name Seq,max (ksi) Station Location Notes

0 Baseline 40.04 1 Box spar aux. web Typical cruise
condition

1 Hover 35.44 1 Box spar aux. web
2 High speed 49.73 1 Low pressure

surface near
leading edge

On steel erosion
strip

3 Low altitude 42.59 1 Box spar aux. web
4 High altitude 36.80 1 Box spar aux. web
5 Low weight 47.49 1 Box spar aux. web
6 High weight 36.80 6 Low pressure

surface above aux.
web

On steel erosion
strip

7 Descent 32.60 6 Low pressure
surface above aux.
web

8 Climb 58.21 1 Low pressure
surface near
leading edge

9 Left turn 42.78 1 Low pressure
surface near
leading edge

10 Right turn 41.89 1 Low pressure
surface near
leading edge

11 Forward CG 29.24 6 Low pressure
surface above aux.
web

Lowest overall

12 Aft CG 94.25 1 Box spar aux. web Highest overall
13 Reverse 37.28 1 Box spar aux. web Similar to hover

although Experiment 1a considered specific extreme flight conditions in isolation, subsequent

experiments will consider combinations of these cases, such as a high gross weight and

aft CG flight condition, which is expected to be even more damaging. Additionally, in

Experiment 2b, these flight conditions will be combined into a complex mission profile to

better model the operations of a realistic transport helicopter.

199

4.5 Experiment 1b

Experiment 1a identified the critical fatigue point on the main rotor blade of the generic

SMR helicopter. Experiment 1b concerns training scalar surrogate models to predict the

mean stress and stress amplitude responses at that point. Figure 4.56 provides an overview

of Experiment 1b.

Figure 4.56: Overview of Experiment 1b.

4.5.1 Experimental Design

First, the flight envelope defined by the six variables studied in Experiment 1a will be

sampled using DOEs. The complete analysis environment developed previously, consisting

of the MDA, stress recovery, von Mises stress calculator, and cyclic stress analyzer, is

executed at each point. To reduce computational expense, the stresses at only the first blade

station are recovered and the responses at only the critical stress point are stored. The

responses are the mean equivalent stress, S∗mean, and the equivalent stress amplitude, S∗amp,

at the previously-defined critical fatigue point.

Next, a number of surrogate models will be fit to the data and trained to predict both

responses. Each of the surrogate models surveyed in Section 4.1 will be tested. The

architectures of each model will also be varied to determine if certain modeling choices can

improve accuracy. The methods and their variations are presented in Table 4.9.

Each surrogate model will be trained while varying the quantity of training data available.

This type of analysis is used to understand a model’s learning curve. Since one of the

requirements of the preliminary fatigue design methodology is to minimize cycle time, it is

desirable that the selected surrogate modeling method performs well with as few training

points as possible; this will minimize the runtime of the MDA sampling process.

200

Table 4.9: Surrogate modeling methods and architectural choices for Experiment 1b.

Method Architecture parameter Options

Response surface equations Polynomial order 1st-order
2nd-order
3rd-order

Shallow neural networks Hidden layer nodesa 50
100
200

Deep neural networks Network topology (20, 20)b

(20, 20, 20)
(50, 50)
(50, 50, 50)

Gaussian process models Covariance function Squared exponential
Matérn (ν = 3/2)
Matérn (ν = 5/2)
Rational quadratic

a Shallow neural networks have a single hidden layer between the input and
output layers.

b This nomenclature describes two 20-node hidden layers between the input
and output layers.

The performance of the surrogate models will be compared using two of the surrogate

model performance metrics reviewed in Section 4.1. The coefficient of determination, R2,

provides a simple metric to quantify overall performance. Higher values of R2 indicate a

better fit. The ideal is R2 = 1, which indicates perfect performance. The standard deviation

of prediction error, σ, referred to as the model fit/representation error by Mavris [96],

provides an estimation of the “spread” in the predictions. Lower values of σ indicate better

performance; the ideal would be σ = 0. This performance metric is particularly relevant

in the context of Experiment 2, where the uncertainty associated with surrogate model

predictions must be incorporated. Both metrics will be applied to the training set, which is

used to fit the model, and the testing set, which is held out during the training process and

used to provide an unbiased assessment of model performance.

The surrogate modeling method and architecture that provides the best performance as

201

the lowest number of sample points will be selected for use in subsequent experiments. In

this experiment, a good fit will be indicated by a value of R2 near or above 0.9, and a value

of σ near or below 0.05. The next sections will discuss the implementation of the flight

envelope DOEs and the specific parameters used to train the surrogate models.

4.5.2 Flight Envelope Sampling

The flight envelope is sampled using the six variables explored in Experiment 1a. To enable

the learning curve analysis, a series of sequential DOEs was developed. Each DOE provides

a complete sampling of the flight envelope space, and additional DOEs can be added to

increase the infill of sampling points.

The first DOE is a central composite design (CCD). The CCD architecture was chosen

to completely cover the flight envelope with as few points as possible. An ideal CCD

DOE would require only 77 points to sample a six-dimensional space. However, in this

application, certain corners of the design space are physically meaningless. If airspeed, V ,

is zero, then a coordinated turn is impossible and the turn rate, ω, will have no effect.

Thus, the first DOE was split into a baseline set, where a minimum airspeed of 10 kt

is maintained, and an additional hover/axial climb set, where V and ω are fixed at 0 kt

and 0 rad/s, respectively. This four-dimensional space requires 25 points for full coverage.

Together, these two DOEs make make up a 102-point initial set.

The variables and ranges for the baseline set and the hover/axial climb set are presented in

Tables 4.10 and 4.11, respectively. Note that the variable ranges have been contracted slightly

compared to Experiment 1a because the combination of certain points, like maximum GW

and maximum ROC, were found to consistently cause the NDARC or RCAS solutions to

fail. These DOEs were constructed in JMP, a statistical analysis program with a strong

emphasis on surrogate modeling features.

Next, a number of space-filling augmentation DOEs were created in order to provide

infill in regions not covered by the CCD DOE. These DOEs were defined sequentially using

202

Table 4.10: Baseline DOE for Experiment 1a.

Variable Units Minimum Maximum

V kt 10 160
hd ft 0 10,000
GW lb 11,500 20,000
ROC ft/min −1200 1200
ω deg/s −6 6
CG ft −0.3 1.6

Table 4.11: Hover/axial climb DOE for Experiment 1a.

Variable Units Minimum Maximum

hd ft 0 10,000
GW lb 11,500 20,000
ROC ft/min −1200 1200
CG ft −0.3 1.6
a V and ω are fixed at 0 in this DOE.

a space-filling algorithm within JMP that considers pre-existing points when building a new

DOE. Thus, the points from the augmentation DOEs will not be too close to the CCD DOEs,

or to each other, which maximizes flight envelope coverage and sampling efficiency. The

space-filling augmentation set expands the minimum value of V to 0 kt, but also implements

a rule to prevent non-zero values of ω at any point where V = 0 kt. Five augmentation

DOEs were created with 100 sample points each.

Finally, a fully independent test set DOE was created. This DOE uses the same pa-

rameters and space-filling algorithm as the augmentation DOEs, but the sampling does not

consider the positions of any other sample points. In this application, a common test set

is desirable because it allows the evaluation of all surrogate models on equal footing. The

variables and ranges used in the space-filling augmentation and test set DOEs are described

in Table 4.12.

The S∗mean and S∗amp responses were evaluated at all sample points using the process

described in Experiment 1b. Running in parallel on eight processor cores, each case took

an average 1.9 min of wall-clock time to complete, although runtime varies significantly

203

Table 4.12: Space-filling augmentation and test set DOEs for Experiment 1a.

Variable Units Minimum Maximum

V kt 0 160
hd ft 0 10,000
GW lb 11,500 20,000
ROC ft/min −1200 1200
ω deg/s −6 6
CG ft −0.3 1.6

depending on the length of the RCAS trim solution.

A small number of cases failed to converge, either during the NDARC or RCAS solutions.

These cases were excluded from the surrogate model training process. The input space is

visualized as a scatter plot matrix in Figure 4.57. Sample points from all DOEs are included.

Converged sample points are plotted with a blue dot, and non-converged sample points are

plotted with an orange × symbol.

First, note that there is a greater concentration of non-converged cases in the high altitude,

high GW, and high speed region. This region is one in which the RCAS model occasion-

ally fails to converge, either because the maximum number of trim solution iterations is

reached before trim is achieved, or a numerical error is encountered in the periodic solution

subroutine. However, there is also a fair number of converged sample points in this region.

Also note that the concentration of sample points is greater in the corners and the

center of the flight envelope space than any other regions. This is due to the use of central

composite designs to define the first DOE. Since the corners of the design space correspond

with the most extreme, and most damaging, flight conditions, extra data in these regions is

not unappreciated.

The corresponding response space is visualized in Figure 4.58. A natural logarithm

transform has been applied to the S∗mean response to smooth out its distribution. This should

improve the fit quality for simpler surrogate models like RSM.

Note the distinct “gulf” or gap in sample points in the response space. This is an artifact

204

Figure 4.57: Input space for surrogate model training in Experiment 1a.

of the signed von Mises stress calculation (see Equations (4.54) to (4.56)). Consider a time

history of signed von Mises stress, as presented in Figure 4.59.

In Figure 4.59, the line labeled Smean,max describes the stress history at the point of

maximum mean stress, and likewise for the lines labeled Samp,max and Seq,max. At any point,

there is a distinct discontinuity around Svm,s = 0, when Svm,s crosses from positive to

negative, or vice versa. This is because signed von Mises stress becomes negative whenever

the hydrostatic stress is negative, without regard for the value of von Mises stress itself. Thus

as the amplitude of one of the stress history traces increases, it may eventually cross zero,

where the discontinuity artificially increases the amplitude further. This effect is responsible

205

Figure 4.58: Response space for surrogate model training in Experiment 1a.

Figure 4.59: Time history of signed von Mises stress at three points demonstrating disconti-
nuities around Svm,s = 0.

for the gulf seen in Figure 4.58.

This is a notable weakness of the signed von Mises stress formulation in this application.

The additional nonlinearity in the response data will negatively impact the performance of

all surrogate modeling methods. However, other stress invariants have their own unique

weaknesses, and signed von Mises stress is still the most applicable for this research.

206

4.5.3 Surrogate Modeling Methods

Each surrogate modeling method described in Table 4.9 was implemented using the scikit-

learn package [119]. First, all the data points were scaled to the [0, 1] range based on the

minimum and maximum values of each input variable and response. This prevents the scale

of one variable overwhelming any of the others.

The RSM surrogate models were implemented using scikit-learn’s LinearRegression

class. The un-transformed input variables describe only a first-order polynomial; second-

and third-order polynomials were created by transforming the input variable array using the

PolynomialFeatures class.

The GPM surrogate models were implemented using the GaussianProcessRegressor

class. The squared exponential kernel is modeled using the RBF class, the Matérn kernel

uses the Matern class, and the rational quadratic kernel uses the RationalQuadratic class.

Each kernel was multiplied by a ConstantKernel, added to a second ConstantKernel,

and added to a WhiteKernel. The two constant kernels help the GPM adapt to the specific

mean and scale of the response variables. The white noise kernel allows the GPM to account

for noise by not requiring a perfect fit through every training point. Noise is produced by

minor variations in the NDARC and RCAS trim solutions due to the tolerance in the trim

solution convergence criteria. The Gaussian process models were trained using five restarts

of the L-BFGS-B hyperparameter optimizer from random initial conditions to increase the

chances of finding the global optimum.

The shallow and deep artificial neural networks were implemented using the MPLRe-

gressor class. The training process was configured using the L-BFGS solver, which works

well on small training sets and has far fewer hyperparameters to tune than other solvers.

The regularization parameter was held constant at 0.01 to minimize differences between the

trained models.

Each variation of each model was trained six different times: first, with only the first

102-case CCD DOE, and then with each of the five 100-case augmentation DOEs appended

207

to the training set.

4.5.4 Results and Analysis

Figure 4.60 presents the learning curve for all studied RSM surrogate models. The results

using the coefficient of determination performance metric are plotted in Figure 4.60a; the

standard deviation of error metric is plotted in Figure 4.60b. Recall that higher R2 indicates

better performance and lower σ indicates better performance. In Figure 4.60, each score

is calculated independently on the training and test set. The training set data is indicated

with dashed lines, and the test set data is indicated with solid lines. Because the test set is

held out during the training process, it provides a better assessment of how the model will

perform with data that it has not “seen” before.

(a) Coefficient of determination (b) Standard deviation of error

Figure 4.60: Learning curves for RSM surrogate models.

Figure 4.60 demonstrates the overall poor performance of RSM in this application. The

first- and second-order RSEs do not achieve good performance by either metric, especially

in the case of the mean stress response. Even with the logarithmic transform, Smean is

distributed less uniformly than Samp, which complicates training for linear models.

208

These models also show evidence of overfitting with a lower amount of training data,

as indicated by training scores which are much higher than corresponding testing scores.

Although these models fit the training data very well, they will not be generalizable to new

data. In the case of the third-order RSE, the R2 and σ scores for the test set with only the

first DOE included in the training data are so poor they are beyond the limits of the ordinate

axes.

In general, as the amount of training data increases, the fit improves, although returns

diminish rapidly. When all available training data is included, third-order RSE performs

respectably when predicting the Samp response, but does not quite reach the objectives for

the Smean response.

Figure 4.61 plots the learning curve for all shallow and deep ANN models described in

Table 4.9. Shallow models are indicated by architectures with a single hidden node layer;

deep models have multiple hidden layers between the input and output layers.

(a) Coefficient of determination (b) Standard deviation of error

Figure 4.61: Learning curves for ANN surrogate models.

The results for the ANN surrogate models are more difficult to distinguish than those

of the RSM models. There are not any obvious clear best performers across all training

209

data amounts, and the performance does not monotonically improve as more training data

is added. There are two possible reasons for these phenomena. First, there is inherent

stochasticity in the ANN training network, which adds an element of randomness to the

results.

Second, some of the training DOEs may include certain outlying points that could

negatively impact the performance of the model. Specifically, the second and fourth aug-

mentation DOEs seem to slightly degrade model performance. This effect appears more

prominent in the deep neural networks, which are more prone to overfitting due to the

large number of parameters that must be tuned. Overall, the ANN models seem to be more

sensitive to training data outliers than the RSM models.

Nevertheless, the overall performance of ANN models is much better than RSM models,

especially for the Smean response. Specifically, the (200) shallow network and the (50, 50)

deep network show the best performance. The performance of these models plateaus after

the third augmentation set is added, unlike the RSM models which continue to improve with

the addition of more training data.

(a) Coefficient of determination (b) Standard deviation of error

Figure 4.62: Learning curves for GPM surrogate models.

210

The learning curves for the GPM surrogate models are plotted in Figure 4.62. The

performance of all the models is very similar. The GPM models experience similar overfitting

issues to the RSM models with small amounts of training data, especially in the Smean

response. Similarly to ANN, they also show performance degradation in response to the

addition of the second augmentation DOE. The overall performance for the Samp response

is acceptable, but the performance for the Smean response is significantly worse than ANN.

In particular, the squared exponential covariance functions shows the worst performance,

which is especially visible in Figure 4.62b. The Matérn (ν = 3/2) covariance function

performs slightly better than all others in both responses according to both scoring metrics.

Like the (200) and (50, 50) ANN models, the performance of these models flattens after the

third augmentation DOE is introduced.

Figure 4.63 plots the same learning curves for the best performing model of each

architecture. Specifically, the third-degree RSM, 200-node shallow ANN, (50,50) deep

ANN, and Matérn (ν = 3
2
) GPM models are included.

(a) Coefficient of determination (b) Standard deviation of error

Figure 4.63: Learning curves for best-performing models of each method.

The ANN models show a clear score advantage on the Smean response, where both RSM

211

and GPM struggle. The ANN and GPM models show similar performance when fitting the

Samp response, while the RSM model lags behind.

The deep ANN model shows somewhat inconsistent performance compared to the

shallow ANN model. The performance oscillates as the amount of training data increases,

while the performance of the shallow model plateaus. Because the deep neural network has

many more parameters that must be tuned during the training process, it is more susceptible

to overfitting than the shallow ANN, especially since the overall number of training samples

used is relatively small. Thus, the shallow ANN model is preferred.

4.5.5 Summary

Overall, the shallow 200-node ANN demonstrated the best fit to both responses using

both performance metrics. The performance of this model starts to plateau as the third

augmentation DOE is added, which corresponds to a total of 402 training points before

non-converged points were removed. Including the 100 points of the test set, about 15.9 h

of runtime was required to produce the data to train and validate this model. Detailed

goodness-of-fit plots for this model are included in Figure 4.64.

It is also worth considering the best-performing GPM surrogate model, even though it

did not fit the data as well as ANN. In this research, GPM has a particular advantage when

applied to probabilistic modeling. In Experiment 2b, it will be necessary to quantify the

uncertainty in each surrogate model prediction. When making a prediction with a Gaussian

process model, the model returns estimates of the mean response and the standard deviation

of error at that point (see Section 4.1.3). Thus, if the uncertainty in the response is assumed

to be normally-distributed, it can be modeled as in Equations (4.59) and (4.60):

Smean ∼ L (µ` = cm + kmµSmean , σ` = kmσSmean) (4.59)

Samp ∼ N
(
µ = ca + kaµSamp , σ = kaσSamp

)
(4.60)

212

(a) Actual vs. predicted

(b) Residual vs. predicted

(c) Model fit error (left) and model representation error (right)

Figure 4.64: Goodness-of-fit plots for the 200-node shallow ANN model.

213

where L is the lognormal distribution; µ` and σ` are the mean and standard deviation,

respectively, of the underlying normal distribution; c and k are constants and scaling factors,

respectively, associated with the scaling of the response to the [0, 1] range; and µSmean ,

σSmean , µSamp , and σSamp are the mean and standard deviation of the predictions returned

by the GPM at a specific point. Note that Smean is modeled using a lognormal distribution

because that response was logarithmically transformed to improve the surrogate model fit.

The uncertainty associated with a GPM prediction can be quantified locally: σ may

be higher or lower depending on how confident the model is in that region of the flight

envelope space. Comparatively, the uncertainty associated with an ANN prediction can only

be quantified globally: uncertainty is estimated using the standard deviation of the test set

prediction error and applied equally to all predictions, as in Equations (4.61) and (4.62):

Smean ∼ L (µ` = cm + kmµSmean , σ` = 0.056km) (4.61)

Samp ∼ N
(
µ = ca + kaµSamp , σ = 0.038ka

)
(4.62)

Note that the coefficients on σ` and σ correspond to the standard deviation of model

representation error presented in Figure 4.64c. If σ` and σ are consistently larger in the

ANN model than the GPM model, then any probabilistic results produced using the ANN

model may be overly conservative.

Thus, it is worthwhile to also retain the best-performing GPM surrogate model and

compare the results further in subsequent experiments. Detailed goodness-of-fit plots for

the Matérn (ν = 3/2) model are presented in Figure 4.65.

214

(a) Actual vs. predicted

(b) Residual vs. predicted

(c) Model fit error (left) and model representation error (right)

Figure 4.65: Goodness-of-fit plots for the Matérn (ν = 3/2) GPM model.

215

4.6 Conclusions

Experiment 1 examined the possibility of using surrogate modeling to predict fatigue load

components in arbitrary flight conditions, with the goal of improving upon the slow execution

speed of complex comprehensive codes. Experiment 1a described the development of a

rotorcraft multidisciplinary analysis environment, the implementation of a generic single-

main-rotor helicopter model in that environment, and an extreme flight condition survey

which was used to locate the critical fatigue point on the rotor blade. The extreme flight

condition survey also served as a rudimentary sensitivity analysis for six flight envelope

variables. Experiment 1b compared a large number of different surrogate modeling methods

and architectures to determine which was the most appropriate for predicting fatigue load

components across the entire flight envelope.

Recall Hypothesis 1:

Hypothesis 1

At least one of the surveyed surrogate modeling methods can be used to derive a

complete load spectrum from comprehensive analysis results, enabling rapid design

space exploration.

Ultimately, Hypothesis 1 was supported by the results of Experiment 1. Two suitable

surrogate modeling methods were identified and retained for further comparison in subse-

quent experiments. Moreover, ANN surrogate models achieved satisfactory performance

with only 502 load samples in total. Because probabilistic analyses can require hundreds of

thousands or even millions of load samples, it is likely that a significant speed advantage

has been realized. This advantage becomes even more notable if more accurate and costly

comprehensive analyses, or coupled CFD–CSD analyses, are used in the MDA environment.

Thus, the preliminary fatigue design methodology, previously presented in Figure 3.1,

can now be updated based on the results of Experiment 1.

Figure 4.66 reflects that ANN or GPM surrogate modeling can be used to effectively

216

Existing
fatigue data

Probabilistic
S-N curve

Damage
hypothesis

Load
spectrum

?

Safe life

Beam cross-
section model

Sectional
properties

Stress/strain
recovery

ANN/GPM
surrogate

Rotor compre-
hensive model

Update
model

Load
histories

Vehicle
perf. model

Flight
conditions

RQ 1

RQ 2

Mass

Stiffness

Flight
state

Atmos.

Figure 4.66: Updated flowchart of the preliminary fatigue design methodology after Experi-
ment 1.

capture the knowledge of the MDA with regards to fatigue loads throughout the flight

envelope.

217

CHAPTER 5

STRUCTURAL RELIABILITY SOLUTIONS TO THE FATIGUE LIFE PROBLEM

Research Question 2 (see Section 3.3) asks if it is possible to remove the need for reductions

and safety factors by shifting the traditional safe life methodology from a deterministic to a

probabilistic process. For reference, Research Question 2 is reprinted below.

Research Question 2

How can probabilistic methods be applied to efficiently remove the dependence of

traditional fatigue design methodologies on reductions and safety factors?

Wind turbine designers, whose work was discussed previously in Section 1.6, make use

of structural reliability methods when specifying rotor blade service lives. The discipline of

structural reliability focuses on utilizing known or estimated uncertainty in loads, material

strength, and modeling accuracy to analytically or numerically predict the reliability of a

structural component against ultimate failure or fatigue failure.

Although some authors [78, 79] have applied simple structural reliability techniques

such as Monte Carlo simulation to rotorcraft fatigue life predictions, it appears that these

methods are not commonly used in the fatigue design process itself [4, 56]. Additionally,

Monte Carlo simulation is a crude method of calculating reliability, and may fail when

especially low probabilities of failure are necessary [120]. As such, original research is

required to determine the applicability of more advanced structural reliability methods to a

preliminary fatigue design methodology. Specifically, methods for determining service life

for exceptionally low probabilities of failure should be investigated and tested.

This section begins with a brief review of structural reliability methods and solution

techniques. Then, a hypothesis to Research Question 2 is formed. Finally, Experiment 2 is

conducted to test Hypothesis 2.

218

5.1 Review of Structural Reliability Methods

The discipline of structural reliability seeks to improve the safety of structures by modeling

uncertainty and variability in loads, strength, and geometry inherent to real structures. If

treated appropriately, these uncertainties can be used to quantify the reliability of a structure,

or the probability that it will survive throughout its intended life without failure. The

reliability of a structure is quantified using the probability of survival, Ps, or the probability

of failure, Pf . Since the failure state of a structure is typically considered to be binary,

Pf = 1− Ps. For example, the six nines reliability requirements specifies Ps = 0.999999.

Thus, Pf = 1− 0.999999 = 1× 10−6. This is an extremely weak probability of failure; the

implications of this fact will be discussed later in this section.

This section provides a basic discussion of structural reliability methods and their

potential application to safe life prediction. It is not intended to be an exhaustive description

of the field. For more detail, the reader is encouraged to review the texts by Ditlevsen and

Madsen [121], Lemaire [122], and Mansour [123].

5.1.1 Basic Concepts

In the simplest case, the failure of a structure occurs when the internal stresses, S, in the

structure exceed the inherent resistance, R, provided by the material [124]. For example,

stresses may be produced due to applied loads, heat, or displacement; the resistance can be

represented using the material’s yield strength or ultimate strength. This can be represented

using the limit state equation:

G(R, S) = R− S = 0 (5.1)

where G(R, S) is the performance function. In Equation (5.1), R and S are random

variables; a specific outcome of these variables is denoted using lower case letters as r and

s, respectively. The distributions of R and S are described by their joint probability density

219

function, fR,S(r, s). The failure domain, Df , is given by G ≤ 0 and the survival domain, Ds,

is given by G > 0. The limit state surface, G = 0, separates the two domains. The objective

of the problem is to determine the volume of probability encompassed by the failure domain,

Pf . This requires exact or approximate knowledge of the location and shape of the limit

state surface.

For example, Figure 5.1 presents a hypothetical simple structural reliability problem. The

colored lines are contours of fR,S(r, s); in this case, the joint probability density function

is simply a bivariate normal distribution with some correlation between the variables.

The failure domain is represented by the grey shaded area below the limit state equation,

G(R, S) = R− S = 0.

The probability of failure can be calculated by integrating the joint probability density

function over the failure domain:

Pf = Pr (R− S ≤ 0) =

∫
r−s≤0

fR,S(r, s) dr ds (5.2)

G(
R,

S)
= 0

Df

Ds

s

r

Figure 5.1: A hypothetical simple structural reliability problem. The colored lines are
contours of fR,S(r, s) and the grey shaded area is the failure domain.

220

This equation is difficult to integrate analytically except in extremely simple cases, such

as when R and S are independent or when one of the variables is deterministic. For more

complex problems, Equation (5.2) can be generalized to a vector of random variables,

X = [X1, X2, . . . , Xn]>. Then,

Pf = Pr
(
G(X

)
≤ 0) =

∫
G(x)≤0

fX(x) dx1 dx2 · · · dxn (5.3)

Solving Equation (5.3) is the primary focus of structural reliability analyses. This task is

complicated by the following factors:

1. The complete joint probability distribution forX is rarely known. Instead, knowledge

may be limited to the marginal distributions and the covariance matrix. In the worst

case, knowledge is limited to only the first and second moments (mean and standard

deviation) of each random variable distribution.

2. The analytical form of performance function is rarely known. Instead, G(X) may be

a mechanistic model, such as a FEA code.

3. Numerical integration of Equation (5.3) will likely produce errors on the same order

as Pf , especially for very weak probabilities.

This drives the development of approximate solution methods and sampling methods, which

will be discussed further later in this section.

These solution methods rely on the calculation of a quantity known as the reliability index,

represented by β. Determining β first requires the transformation of each random variableXi

into independent standard normal variables, denoted Ui. This is known as an isoprobabilistic

transformation, TIP. In the case of normal variables, this can be accomplished using

TIP(xi) = ui =
xi − E[Xi]

Std(Xi)
(5.4)

221

For other distributions, one may use the inverse transformation theorem as follows:

TIP(xi) = ui = Φ−1
(
FXi(xi)

)
(5.5)

where Φ is the cumulative distribution function of the multivariate standard normal. Of

course, this transformation is only possible if the cumulative distribution function, FXi(xi),

is known.

In other cases, a number of approximate isoprobabilistic transformations are available.

Depending on the level of knowledge regarding the distributions of Xi, one may use the

Rosenblatt, Nataf, or Hermite transformations. If the variables are dependent, one may de-

correlate the variables using information from the correlation matrix. These methods are not

discussed at length here; more detail is given by Lemaire [125]. A notional isoprobabilistic

transformation of the system depicted in Figure 5.1 is presented in Figure 5.2.

G
(R
,S
) =

0

s

r

(a) Before transformation

Df

Ds

H(U1, U2) = 0

O

P ∗

β

u1

u
2

(b) After transformation

Figure 5.2: Notional isoprobabilistic transformation.

Note that after the isoprobabilistic transformation is applied, the limit state surface is

222

represented as H(U) = 0 rather than G(X) = 0. Equation (5.3) becomes

Pf = Pr
(
H(U) ≤ 0

)
=

∫
H(u)≤0

φ(u) du1 du2 · · · dun (5.6)

where φ is the probability density function of the multivariate standard normal. In cases

where the standardized limit state surface is linear, this equation can be evaluated analytically.

In general, the probability of failure must be calculated by first determining the reliability

index. The reliability index is defined as the shortest Euclidean distance between the origin

and the limit state surface in the u-space. The nearest point on the limit state surface to

the origin is known as the most-probable failure point or the standard design point and is

denoted P ∗. Thus, finding the reliability index is a constrained optimization problem that

can be stated as
β = min

u

√
u>u

s.t. H(u) = 0

(5.7)

Standard constrained optimization techniques are applicable to this problem.

For example, in the simpleR−S case discussed previously, if both variables are assumed

to be normally distributed and independent, the standardized variables, uR and uS , can be

found using Equation (5.2). Then, the limit state equation becomes

uR Std(R)− uS Std(S) + E[R]− E[S] = 0 (5.8)

The shortest distance from the limit state surface to the origin is found analytically using

β =
E[R]− E[S]√

[Std(R)]2 + [Std(S)]2
(5.9)

In this case, the limit state surface is linear and the isoprobabilistic transformation allows

223

Equation (5.3) to be integrated analytically to find

Pf = Φ(−β) (5.10)

Note that this equation is not generally applicable, although it does provide a first-order

estimate of Pf in some of the methods to be discussed subsequently.

5.1.2 Approximate/Analytical Methods

The previously-described example is one of the few cases where the exact probability of

failure can be determined analytically. In other cases, Pf can be analytically approximated

by simplifying the form of the problem formulation. These methods require that the

isoprobabilistic transformation can be applied and the reliability index can be found.

5.1.2.1 First-Order Reliability Method

The first-order reliability method (FORM) approximates the limit state surface using a

hyperplane tangential to the actual surface at P ∗ [126]. The approximate limit state surface,

Ĥ(u), is constructed as

Ĥ(u) = α>u+ β (5.11)

where α is the vector of direction cosines between P ∗ and the origin of the standardized

space. Then, the probability of failure can be approximated using

P̂f = Φ(−β) (5.12)

which is exact if the true limit state surface is linear.

Note that the accuracy of the FORM result depends on the curvature of the limit state

surface. If the limit state surface curves away from the origin of the standardized space, the

FORM result will likely overestimate the true probability of failure. However, if the surface

224

curves towards to the origin, the approximate result will underestimate the true probability

of failure, sometimes by several orders of magnitude in special cases. Lemaire states that

FORM typically provides an estimate of Pf on the same order as the true value for simple

problems. However, the result should be validated using another method if possible.

5.1.2.2 Second-Order Reliability Method

The second-order reliability method (SORM) approximates the limit state surface using

a quadratic surface that osculates the true limit state surface at P ∗ [126]. This requires

knowledge of the curvature of the limit state surface at the most-probable failure point,

which generally must be approximated numerically. SORM approximations typically take

the form of corrections to the FORM result, and a number of different forms exist.

A commonly used SORM correction is the Breitung formula:

P̂f = Φ(−β)

n−1∏
i=1

1√
1 + βκi

 (5.13)

where κi are the approximate principal curvatures of the limit state surface at P ∗. Note that

Equation (5.13) is essentially the same as Equation (5.12) with a correcting coefficient based

on the curvature. Other forms of SORM include the Hohenbichler approximation and the

Tvedt approximation, which are described in detail by Lemaire [126]. Although SORM

generally improves upon FORM results, Lemaire notes that in special cases SORM can be

less accurate, so care must be taken in its application.

5.1.3 Sampling/Simulation Methods

Sampling methods, or simulation methods, are those that rely on sampling from the input

random variable distributions and calculating the resulting value of the performance func-

tion [120]. The probability of failure is estimated from the proportion of cases for which

G(x) ≤ 0. This techniques are useful in cases where constructing the isoprobabilistic trans-

225

formation, finding the reliability index, or applying the FORM and SORM approximations is

difficult or impossible, but are generally considered to be more expensive and less accurate.

Some sampling methods incorporate reliability information from the approximate solu-

tion methods to speed their convergence. In this section, a selection of sampling methods

are discussed in order from least to most reliability information required.

5.1.3.1 Monte Carlo Simulation

Monte Carlo simulation (MC) is perhaps the simplest and most widely-applicable sampling

method available [120]. As discussed in Section 2.3.4, this technique has been applied to

assess the fatigue life reliability produced by the traditional safe life methodology [79]. As

a reliability solution method, MC is characterized by its minimal preparation requirements.

One only needs to be able to evaluate the performance function, G(X), and sample from the

random variable distributions. These samples are termed x. It is not necessary to perform

the isoprobabilistic transformation or find the most-probable failure point.

In Monte Carlo simulations, Equation (5.3) is approximated by introducing a failure

indicator function, If , such that

If (x) =


1, if G(x) ≤ 0

0, if G(x) > 0

(5.14)

Essentially, the indicator function counts the number of cases in a simulation that exist within

the failure domain. Then, for N samples, the probability of failure can be approximated

using

Pf =

∫
Rn
If (x)fX(x) dx1 dx2 · · · dxn = E[If] (5.15)

E[If] ≈
1

N

N∑
i=1

If (xi) = P̂f (5.16)

226

An example MC is presented in Figure 5.3. The reliability of the system presented

previously in Figure 5.1 was estimating by producing 1000 samples of the bivariate normal

distribution and determining failure by evaluating the performance function at each point.

In total, 155 of 1000 samples fall in the failure domain; thus, P̂f = 0.155.

G(
R,

S)
= 0

s

r

G(r, s) > 0

G(r, s) ≤ 0

Figure 5.3: Demonstration of reliability calculations using Monte Carlo simulation.

The variance of P̂f can be estimated using

Var(P̂f) ≈
1

N
P̂f (1− P̂f) (5.17)

leading to an approximate coefficient of variation (COV) of

COV ≈

√√√√1− P̂f
NP̂f

(5.18)

For example, the MC depicted in Figure 5.3 has a COV of approximately 0.0738.

Knowledge of the COV is valuable because it is used to quantify the confidence in the

Monte Carlo estimate of P̂f . Typically, a value of COV as low as 0.05 to 0.10 is desirable.

This dictates the required number of samples. Equation (5.18) indicates that estimating

227

a probability of failure near 10−n with a COV of 0.1 requires approximately N = 10n+2

samples. This in turn drives the runtime of the Monte Carlo simulation.

5.1.3.2 Directional Simulation

Directional simulations (DS) improve upon MC by reducing the number of samples required

to reach a specified COV [120]. This technique requires only that the isoprobabilistic

transformation be performed prior to its application.

Although their are several varieties of directional simulation, they share many common-

alities [127, 128]. Directional simulation begins by representing the vector of standardized

random variables, U , as the product of a scalar radius and multidimensional direction:

U = R∆ (5.19)

where R2 is a χ2
n-distributed random variable and ∆ is uniformly distributed on the unit

n-sphere centered on the origin of the standardized space. The basic process for the ith DS

sample can be summarized as follows:

1. Generate a radial direction δi by sampling ∆.

2. Search for the solution to the limit state equation, H(U) = 0, along δi using a line

search method. The solution is found at the radius ri.

3. Calculate the conditional probability of a sample along this line falling in the failure

domain using

Pf,i = Pr
(
H(Rδi) ≤ 0

)
= Pr(R > ri) = Pr

(
1− χ2

n(r2
i)
)

(5.20)

The probability of failure is then estimated using

P̂f =
1

N

N∑
i=1

Pf,i (5.21)

228

and the variance of P̂f may then be estimated as

Var(P̂f) ≈
1

N(N − 1)

N∑
i=1

(
Pf,i − P̂f

)2

(5.22)

The DS method improves upon the Monte Carlo simulation economically because

Equation (5.20) can be evaluated analytically. Directional simulation is especially powerful

if the limit state surface is near-spherical in the standardized design space. In most cases,

directional simulation achieves a certain COV in far fewer samples than Monte Carlo

simulation.

5.1.3.3 Importance Sampling

The importance sampling method is similar to Monte Carlo simulation but the sampling

process is conditioned on the location of the most-probable failure point [120, 128]. Of

course, this requires locating P ∗ and thus determining the reliability index, so at the very

least the FORM solution must be known.

Importance sampling assumes that the majority of the failure probability is located near

P ∗, so it is more efficient to sample near this point rather than from the complete joint

distribution of the random variable vector. The new sampling distribution is termed ψ(u).

For example, one may sample from the multivariate standard normal centered on P ∗. Then,

the probability of failure becomes

Pf =

∫
Rn
If (u)

φ(u)

ψ(u)
ψ(u) du1 du2 · · · dun (5.23)

which can be estimated using

P̂f =
n∑
i=1

If (ũi)
φ(ũi)

ψ(ũi)
(5.24)

229

where ũi are samples of the ψ distribution. The variance can be estimated using

Var(P̂f) =
n∑
i=1

[
If (ũi)

φ(ũi)

ψ(ũi)
− P̂f

]2

(5.25)

A graphical representation of the importance sampling process is depicted in Figure 5.4.

Note that this method appears similar to the Monte Carlo simulation depicted in Figure 5.3,

but the samples are drawn from a distribution near the most-probable failure point rather

than the joint distribution of the input random variable vector.

H(U1, U2) = 0

O

u1

u
2

H(u1, u2) > 0

H(u1, u2) ≤ 0

Figure 5.4: Demonstration of reliability calculations using importance sampling.

It is easy to see the advantage of importance sampling from Figure 5.4. Because the

ψ(u) distribution is located much nearer to the limit state surface, many of the samples fall

in the failure domain. This allows one to predict extremely low probabilities of failure with

low COV using far fewer samples than Monte Carlo simulation, and possibly even fewer

samples than directional simulation. However, application of this technique may be difficult

or impossible if the most-probable failure point cannot be readily found.

There are a number of similar methods that involve sampling the standardized space near

230

the limit state surface, such as conditional sampling, adaptive sampling, and conditional

importance sampling. These methods, among others, are described in more detail by

Lemaire [120].

5.1.4 Comparison

The methods discussed previously are equally capable of providing an estimate of the

probability of failure of a structure. However, the quality of this estimate and the amount of

effort required to obtain it varies significantly.

Lemaire conducted a comparison of the approximate and sampling methods using the

simple system described in Equation (5.1) with uniformly distributed random variables.

The author found that the SORM approximation came incredibly close to the true solution,

and the FORM approximation was within the same order of magnitudue. Monte Carlo

simulation required over 3000 samples to estimate the probability of failure with a COV

of 0.1. Direction sampling required approximately 600 samples, and importance sampling

required approximately 400 samples. These numbers do not include the effort required to

execute the isoprobabilistic transformation and find P ∗.

Of course, these results are applicable only to the specific case investigated by Lemaire,

which has a strong, easily-identifiable most-probable failure point. In general, it is difficult

to determine which method is best to apply for a particular problem. FORM and SORM

results are probably the fastest for simple, low-order systems in which P ∗ is easily found.

More complex systems with high-dimensional, highly-nonlinear performance functions

may benefit from the application of sampling methods as it will be too costly to locate

the most-probable failure point. However, if the performance function is defined by an

expensive external analysis program, or if the probability of failure is especially weak, then

crude sampling methods such as Monte Carlo simulation should be avoided due to the high

sampling requirement.

In addition to the MC and DS methods described previously, there are a number of

231

other sampling methods that do not require any analytical reliability information. Latin

hypercube simulation (LHS) uses a stratified sampling strategy which covers the random

variable ranges more efficiently than crude MC. However, it is only applicable to systems

with independent random variable inputs. The quasi-Monte Carlo (QMC) method uses

quasi-random low-discrepancy sequences to sample the input random variables, rather

than the pseudorandom approach used by crude Monte Carlo. This provides for a faster

convergence rate. The details of these methods are not discussed in detail here, but are

described at length in many structural reliability resources [121, 128].

In the next section, the application of the aforementioned structural reliability solution

techniques to the fatigue life prediction problem will be discussed.

5.2 Hypothesis to Research Question 2

As discussed in Sections 2.2 and 3.4, Miner’s sum is the preferred damage hypothesis for

the preliminary fatigue design methodology due to its flexibility, relevance, and the minimal

amount of experimental data required. Miner’s sum is given in Equation (2.5). This equation

can be reformulated as a performance function (with a slight change in notation) as follows:

G(n,N ,Seq) = 1−
k∑
i=1

ni
Ni(Seq,i)

(5.26)

where

n =



n1

n2

...

ni
...

nk


, N =



N1(Seq,1)

N2(Seq,2)

...

Ni(Seq,i)

...

Nk(Seq,k)


, and Seq =



Seq,1

Seq,2

...

Seq,i

...

Seq,k



232

where k is the total number of load spectrum segments, Seq,i is the equivalent load for the

ith segment, ni is the length of the ith segment in cycles, and Ni is the number of cycles to

failure at Seq,i. Note that the functional relationship between Ni and Seq,i is described by

the S-N curve.

In Equation (5.26), n,N , and Seq are all vectors of random variables of length k. Thus,

the structural reliability problem is 3k-dimensional. The mean of ni represents the expected

lengths of the ith segment in the load spectrum; its variance represents uncertainty in the

segment length brought about by differences in usage between operators. The mean of

Ni(Seq,i) represents the expected cycles to failure at the ith load level as described by the

mean S-N curve; its variance represents uncertainty in the number of cycles to failure due to

scatter in the S-N curve. Finally, the mean of Seq,i represents the equivalent load of the ith

segment in the load spectrum; its variance represents uncertainty in the load due to scatter in

the flight load measurements if an actual loads survey is used, or surrogate model error if a

regression model is used as described in Chapter 4. Variance in Seq,i could also represent

the degree of uncertainty in comprehensive analysis load predictions if the model has been

calibrated to test data and the level error is known.

In the traditional safe life methodology, it is common to reduce the original safe life

calculation when establishing component replacement times due to uncertainty in the

fatigue life prediction produced by Miner’s sum. In the structural reliability field, this is

known as modeling uncertainty, which acknowledges the fact that any model is at best an

approximation of reality and does not produce completely reliable results [121]. Modeling

uncertainty can be incorporated into Equation (5.26) by replacing the first term in the

performance function by another random variable:

G(n,N ,Seq, C) = C −
k∑
i=1

ni
Ni(Seq,i)

(5.27)

Here, C is a scalar random variable with an expected value of unity; its variance represents

233

the level of uncertainty in the Miner’s sum prediction.

It may be necessary to repeat the load spectrum a number of times. For example, if the

load spectrum represents a single flight with known duration, then the summation term in

Equation (5.27) could be multiplied by a deterministic coefficient, r, to represent the desired

service lifetime of the component:

G(n,N ,Seq, C, r) = C − r
k∑
i=1

ni
Ni(Seq,i)

(5.28)

Note that this is only possible due the linear nature of Miner’s sum and would not be

applicable to fatigue life prediction models in which the order of load cycle application is

non-trivial.

The performance function described by Equation (5.28) is much more complex than

the simple systems described in Section 5.1. It contains 3k + 1 random variables, which

greatly increases the expense of numerically calculating gradients (and possibly Hessian

matrices) required by the optimization problem described by Equation (5.7). Additionally,

the random variable Ni is a function of another random variable, Seq,i. Further, in the

rotorcraft fatigue life application, Seq,i is itself a function of the variables used to define

each segment of the load spectrum. Lemaire terms these compound variables and notes

that they are, in effect, random variables with random distribution parameters, forming a

compound distribution [129]. Compound distributions rarely have analytical expressions

and instead are implemented using numerical methods such as the previously-discussed

sampling methods [130].

Due to the complexity of the Miner’s sum performance function, it is possible that

approximate methods dependent on finding the most-probable failure point will not be

practical. Thus, evaluating the probability of fatigue failure may require the use of sampling

methods such as Monte Carlo simulation and directional simulation. Fortunately, the

calculations required by Equation (5.28) are relatively simple to accomplish numerically,

234

especially if surrogate models are used to describe the load spectrum, removing the need

for an interface to an external analysis program. This discussion leads to a hypothesis to

Research Question 2:

Hypothesis 2

At least one of the surveyed structural reliability sampling methods can be used to

efficiently remove the dependence on reductions and safety factors by quantifying the

reliability of fatigue life predictions using Miner’s sum.

The null hypothesis to Hypothesis 2 can be stated as follows:

The surveyed structural reliability sampling methods cannot be used to effi-

ciently remove the dependence on reductions and safety factors.

The null hypothesis represents the case in which the traditional safe life methodology

performs equivalently to or better than the structural reliability methods discussed previously.

This will be assessed by comparing results attained using traditional deterministic methods

to those obtained using probabilistic methods. This process will be discussed further in

Section 5.3.

5.3 Experiment 2 Overview

In this experiment, the capabilities of different structural reliability techniques will be com-

pared methodically. As discussed previously, Miner’s sum is expected to be an especially

challenging case due to its high dimensionality, extreme nonlinearity, and compound vari-

ables. Thus, selecting an appropriate structural reliability method is critical to the success of

the preliminary fatigue design methodology.

Experiment 2 is a multi-part experiment. Experiment 2a will examine the performance

characteristics of different structural reliability methods against varying levels of complexity

using a notional fatigue reliability problem. In Experiment 2b, results from Experiment 2a

will be verified using data and models from the generic SMR helicopter implemented in

Experiment 1.

235

5.4 Experiment 2a

Figure 5.5 provides an overview of Experiment 2a. The following sections detail the design

of the experiment, implementation of the notional fatigue reliability problem and structural

reliability solution methods, results, and conclusions.

Figure 5.5: Overview of Experiment 2a.

5.4.1 Experimental Design

Experiment 2a is concerned with determining the capability of different structural reliability

solution methods to calculate results for increasingly complex problems. The methods

under consideration are the MC, DS, LHS, QMC, FORM, SORM, and FORM-IS techniques

described in Section 5.1. The experimental environment described in Section 4.4.2 will

not be used. Instead, a simplified flexible testing environment with a notional fatigue life

problem will be used to reduce runtime while allowing more control over the variables. The

Miner’s sum performance function from Equation (5.28) is simplified by setting C = 1 and

n = 1, resulting in Equation (5.29):

G(N ,Seq, r) = 1− r
k∑
i=1

1

Ni(Seq,i)
(5.29)

In Equation (5.29), the dimensionality, or the number of random variables in the problem,

is k. Increasing dimensionality increases the difficulty of the problem for both analytical

and sampling solution methods. In analytical methods, dimensionality dictates the size of

the space that is subject to isoprobabilistic transformation and numerical optimization. In

sampling methods, dimensionality is related to the number of individual distributions that

236

must be sampled at each step of the algorithm. Some sampling algorithms additionally

require transformations of each distribution to find the next sampling point.

The total number of load cycles in Equation (5.29) is rk since each load is applied for

only one cycle. Problems with fewer numbers of load cycles will be less likely to fail. This is

expected to make the problem more difficult to solve, especially for crude sampling methods

like MC. Because sampling problems estimate Pf by counting the number of iterations that

fail and comparing that to the number of iterations that survive, low Pf problems will be

more difficult to solve with an appropriate level of confidence because many more iterations

are required to produce a satisfactory number of failed iterations.

Table 5.1 describes the different values of the k and rk parameters that will be tested in

Experiment 2a. Each parameter is varied between its minimum and maximum values in a

logarithmic fashion. Eight steps are used for k and seven steps are used for rk, resulting in a

total of 56 structural reliability problems that must be solved for each of the seven solution

methods identified previously.

Table 5.1: Structural reliability problem parameters for Experiment 2a.

Parameter Symbol Min. Max. Steps Notes

Dimensionality k 1 200 8 k = 1 represents constant
amplitude loading, k = 200
represents a complex load
spectrum

Number of cycles rk 106 109 7 rk = 106 corresponds to
Pf ≈ 10−5, rk = 109 corresponds
to Pf ≈ 5× 10−1

Note that the minimum and maximum values for rk were determined after the notional

reliability problem was implemented; this will be described further in Section 5.4.2.

A number of performance metrics will be used to assess each solution. First, the results

will be compared to the exact solution in simpler cases where solving the exact solution

is feasible. This process will be described further in Section 5.4.3. The expense of each

structural reliability method will be determined by recording the total number of calls of

237

the performance function, the total number of samples of the notional stress distribution,

and the wall-clock runtime required to produce a converged solution. These performance

metrics are summarized in Table 5.2.

Table 5.2: Structural reliability solution performance metrics for Experiment 2a.

Metric Objective Notes

Accuracy Maximize Compared to exact solution; only possible in
simple cases

Performance function calls Minimize Related to iterations of solver
Stress distribution samples Minimize Performance function calls multiplied by k
Runtime Minimize Wall-clock time for each solution

Of particular interest is the values of these performance metrics in the weak Pf and

high dimensionality region. Because extremely low probabilities of failure are required

for civil and military rotorcraft designs, determining which solution method can accurately

and efficiently solve this type of problem is the primary objective of this experiment. The

best-performing structural reliability method(s) will be validated in Experiment 2b and used

in subsequent experiments.

5.4.2 Notional Fatigue Reliability Problem

The notional fatigue reliability problem defined by Equation (5.29) requires a S-N curve to

define the relationship between Seq,i and Ni. As described in Section 3.4, this research will

use a probabilistic S-N curve to capture uncertainty in the material’s fatigue resistance. A

probabilistic S-N curve formulation described by Freire Júnior and Belísio [131] was used

in this research.

Freire Júnior and Belísio define the mean S-N curve using a standard log-log relationship,

as in Equation (5.30):

logS = A−B
(
logN

)C
(5.30)

where A, B, and C are constants related to a specific material that can be derived experi-

mentally, S is the fatigue load amplitude, and N is the mean fatigue life corresponding to S.

238

Note that S can be a deterministic scalar or a random variable, and that log is the base-10

logarithm.

Equation (5.30) can be rearranged to describe the distribution of logN given a random

variable S, as in Equation (5.31):

logN ∼
(
A− logS

B

) 1
C

(5.31)

Next, the fatigue life distribution given uncertainty in material strength, N , is defined

using
N

N
∼ W (α, β, γ) (5.32)

whereW is a Weibull distribution with shape parameter α, scale parameter β, and location

parameter γ.

Because a number of different distributions are referred to by the common name

“Weibull”, Equation (5.33) defines the probability density function (PDF) of the specific

distribution used in this research:

fX(x) =
α

β

(
x− γ
β

)α−1

exp

[
−
(
x− γ
β

)α]
, x ∈ [γ,+∞) (5.33)

This model was implemented using material data derived from fatigue loading experi-

ments of IM7 coupons. Data for the constants in Equations (5.30) and (5.32) were provided

by Freire Júnior and Belísio [131] and Harris, Gathercole, Lee, et al. [132]. For a stress ratio

of R = −1 (fully reversed loading), A = 2.95, B = 0.020, C = 1.36, α = 1.41, β = 1.23,

and γ = 0.05. Note that these values assume S is provided in MPa. Because the surrogate

models derived in Experiment 1b predict stress in units of ksi, it is necessary to convert to

MPa prior to applying Equation (5.31).

Figure 5.6 plots the probabilistic S-N curve created using these parameters. The dark

grey and light grey regions represent 50% and 95% confidence intervals around N . The

239

widths of these regions are proportional to the amount of uncertainty introduced into the

material definition by Equation (5.32).

Figure 5.6: Probabilistic S-N curve used in Experiment 2a.

This experiment uses a notional load distribution of S ∼ N (50, 52) to model fatigue

loading. This distribution was chosen because it is similar to the predicted Seq responses

observed throughout Experiment 1. In Experiment 2b, the notional load distribution will be

replaced with a much more realistic load spectrum derived from the generic SMR helicopter

model and the surrogate models developed in Experiment 1b.

5.4.3 Structural Reliability Solutions

All of the structural reliability solution methods used in Experiment 2 were implemented

using the the OpenTURNS package [128]. OpenTURNS provides a large number of tools

to solve structural reliability problems, including distribution modeling, distribution trans-

formation, and solution algorithms. This section describes the details of the OpenTURNS

240

implementation for this experiment.

The performance function G (see Equation (5.29)) is implemented symbolically using

OpenTURNS’ SymbolicFunction class. The symbolic implementation allows Open-

TURNS to automatically calculate gradients and Hessians as needed for the analytical

solution methods. The inputs to the symbolic function are each stress distribution, Si, and

the Weibull distribution, N/N. For a given iteration, if G ≤ 0, the structure has failed; if

G > 0, the structure has survived.

In extremely simple cases, where k = 1 and Pf is high, the problem can be solved

exactly. For this exercise, Equation (5.31) was implemented using the SymbolicFunction

class, and the CompositeDistribution class was used to define the N distribution. Then,

the N distribution is found using Equation (5.34):

N ∼ N

N
×N (5.34)

and the performance function can be reduced to a single random variable distribution using

Equation (5.35):

G ∼ 1− r
(

1

N

)
(5.35)

Then, the probability of failure after r load cycles can be found using Equation (5.36):

Pf = Pr (G ≤ 0) =

∫
G≤0

gX(x) dx (5.36)

where gX(x) is the PDF of G. Note that as Pf decreases, numerical errors in the integration

algorithm approach the order of Pf , so the results cannot be considered accurate beyond a

certain point. Nevertheless, solving the exact solution provides a measure of confidence in

the solutions produced by the analytical and sampling methods.

The structural reliability solution methods themselves are implemented using classes

in the OpenMDAO library. MC, QMC, and LHS are implemented using the Probabil-

241

itySimulationAlgorithm class configured with the MonteCarloExperiment, LowDis-

crepancyExperiment, and LHSExperiment sampling classes, respectively. QMC uses the

SobolSequence class to define the low-discrepancy experiment.

The DS implementation uses the DirectionSampling class. The simulation was

configured using the default MediumSafe root-finding strategy with the Brent solver and

the OrthogonalDirection sampling strategy.

FORM and SORM make use of the FORM and SORM classes, each using the Cobyla

numerical optimizer. The SORM implementation is configured to use the Breitung correction

to estimate Pf . The numerical optimizer used by FORM and SORM is initialized from the

mean of the multivariate distributionX =
[
N/N, S0, S1, S2, . . . , Sk

]
.

Finally, the FORM-IS implementation is implemented using the ProbabilitySimu-

lationAlgorithm class configured with the ImportanceSamplingExperiment sampling

class. Because the importance sampling simulation initializes around a FORM design point,

the FORM solution must be completed first then passed to the FORM-IS solution.

Each structural reliability solution runs until convergence is achieved. For sampling

methods, convergence is assumed when the coefficient of variation (COV) is less than

0.1. COV is estimated after each iteration using Equation (5.18). For analytical methods,

convergence is assumed when the absolute, relative, residual, and constraint errors are

all less than 10−10. After the run concludes, the estimate of Pf and its 95% confidence

interval, where applicable, are returned. Additional data necessary to populate the metrics

in Table 5.2 is also collected from each run.

5.4.4 Results and Analysis

5.4.4.1 Accuracy

The predicted Pf is plotted against the number of load cycles, rk, at k = 1 for each solution

method in Figure 5.7. The exact solutions are plotted with single points, the analytical

solutions are plotted with marked lines, and the sampling solutions are plotted with a filled

242

area that spans the 95% confidence interval.

Figure 5.7: Pf predictions from all solution methods at k = 1.

As expected, Pf decreases as rk decreases. At 109 load cycles, Pf is almost 0.5 or

50%, but at 106 cycles, Pf is as low as 10−5. All of the solutions are in general agreement,

although the FORM solution appears to slightly overpredict Pf at low values of rk.

The predictions align with the exact solution at rk = 109, but are lower than the

exact solution at rk = 108.5 and rk = 108. As described previously, the exact solution is

inaccurate at lower Pf because of compounding errors associated with numerical integration.

Because the simulation and analytical solution methods agree at rk = 108, it is likely that

they are more accurate than the “exact” solution.

Figure 5.8 examines the effect of increasing dimensionality on prediction accuracy.

It is expected that as dimensionality increases, Pf remains mostly constant, since each

additional stress distribution is identical. In Figure 5.8, Pf is plotted against k at at rk = 109,

rk = 108.5, and rk = 108. The different solution methods are represented in the same

243

manner as in Figure 5.7.

Figure 5.8: Pf predictions from all solution methods at rk = 109, rk = 108.5, and rk = 108.

At rk = 109, all of the solution methods except FORM satisfy the expectation that Pf

should remain mostly constant as k increases. FORM consistently underpredicts Pf at higher

values of k. This is likely due to FORM’s linear approximation of the limit state surface,

which, depending on the convexity of the surface, can cause the method to consistently

underpredict or overpredict the true solution. Note that SORM, which models the limit

state surface as a quadratic surface, does not suffer from the same inaccuracy in this case.

244

Also note that FORM-IS corrects the FORM solution: the importance sampling process is

conditioned on the FORM solution, but it can more accurately capture the shape of the limit

state surface than FORM alone.

At rk = 108.5, the SORM solution begins to break down. SORM shows significant

overprediction of Pf at k = 2, k = 5, and k = 10. The underprediction of the FORM

solution also increases at this level. It appears that the shape of the limit state surface is

becoming more complex at lower numbers of cycles, which degrades the performance of

the analytical solutions.

At rk = 108, FORM and SORM degrade further. Now, SORM overpredicts Pf at

k = 10, k = 20, and k = 50, and fails entirely at k = 100. FORM continues to underpredict

Pf by an even greater amount. Additionally, the DS solution exhibits a similar overprediction

pattern to SORM. Seemingly, the solution methods which involve estimating the shape

of the limit state surface break down at lower numbers of load cycles, while the solution

methods that rely on sampling alone continue to perform well. The FORM, SORM, and DS

methods were removed from consideration due to accuracy issues.

5.4.4.2 Performance

Figure 5.9 plots the number of stress distribution samples required to produce a converged so-

lution. The MC, QMC, LHS, and FORM-IS methods are plotted individually in Figures 5.9a

to 5.9d.

The MC, QMC, and LHS plots all show a similar pattern: the number of stress distribu-

tion samples is low at high rk (and thus high Pf) and increase either as rk decreases or k

increases. This is consistent with the expectation that low Pf problems are more difficult

for sampling algorithms to solve. Despite QMC and LHS using more intelligent sampling

algorithms, their performance is not significantly improved over the MC solution. If one

examines the data behind Figure 5.9 directly, a slight improvement for QMC and LHS is

apparently, but it is not significant enough to appear in the contour plots.

245

(a) Monte Carlo (b) quasi-Monte Carlo

(c) Latin hypercube sampling (d) Importance sampling

Figure 5.9: Number of stress distribution samples per solution.

Conversely, the FORM-IS plot is starkly different from the other three solution methods.

FORM-IS requires far fewer stress distribution samples overall, and is largely insensitive to

rk, and thus Pf . This is because FORM-IS makes use of the FORM solution to effectively

“skip” to a location near the most probable failure point, P ∗ (see Figures 5.2 and 5.4).

Despite FORM’s accuracy issues, it is able to find a solution much faster than any of the

sampling methods. While MC, QMC, and LHS spend a large amount of time sampling and

evaluating points throughout the problem space, FORM-IS samples points only near the

limit state surface and is thus able to produce an accurate, converged solution in far fewer

samples than MC, QMC, or LHS.

Figure 5.10 plots the wall-clock runtime for the same set of solutions. For the MC,

246

QMC, and LHS solutions, runtime at high Pf is as low as 10−3 s, but for low Pf and high

dimensionality, runtimes are as long as 106 s, 278 h, or 11.6 d. These solutions were executed

in parallel on eight processor cores over a period of several weeks.

(a) Monte Carlo (b) quasi-Monte Carlo

(c) Latin hypercube sampling (d) Importance sampling

Figure 5.10: Wall-clock runtime per solution.

Figure 5.10 does make the advantages of QMC and LHS more apparent: the region of

extremely high runtime near the top-left of each plot is not as large for either solution method

as it is for MC. However, FORM-IS continues to show the strongest performance, with

maximum runtimes of approximately 104 s, or 2.78 h. The patterns are similar to Figure 5.9,

with MC, QMC, and LHS showing strong sensitivity to both rk and k and IS showing strong

sensitivity to k but only weak sensitivity to rk.

247

5.4.5 Summary

Experiment 2a described the development of a notional fatigue problem to compare the

performance of different solution methods under varying conditions. The results showed

that MC, QMC, LHS, and FORM-IS are all capable of producing accurate solutions at

low probability of failure and high dimensionality. FORM, SORM, and DS all exhibited

accuracy issues that prevent their application at low probabilities of failure.

From a performance perspective, FORM-IS is a clear improvement over MC, QMC,

and LHS, requiring two orders-of-magnitude less runtime to solve the most difficult prob-

lems. The accuracy and efficiency of this algorithm lends initial support to Hypothesis 2.

However, these are only preliminary results based off a simple notional test case with a

normally-distributed stress distribution. These results must be validated with a more complex

problem before definitive conclusions can be drawn. Experiment 2b will adapt the processes

and methods developed and tested in Experiment 2a to a complete helicopter fatigue life

quantification problem.

5.5 Experiment 2b

Figure 5.11 provides an overview of Experiment 2b. The following sections with describe

the experimental design, implementation of the mission spectrum, transformation of the

mission spectrum into a load spectrum, results, and analysis.

Figure 5.11: Overview of Experiment 2b.

248

5.5.1 Experimental Design

Experiment 2b is intended to validate the results of Experiment 2a by testing the most

successful structural reliability solution methods (MC, QMC, LHS, and FORM-IS), using a

realistic rotor blade fatigue life estimation problem.

First, a mission spectrum based on a common transport mission is developed. Rather than

prorating the mission spectrum to account for changes in vehicle configuration, altitude, and

airspeed as described in Section 2.2.2.2, random variable distributions are used to capture

usage variation. Using the six different flight condition variables defined in Experiment 1, a

wide variety of operations can be captured in a single mission definition. For example, the

same basic mission profile can be used to define a high-weight cargo transport mission or a

low-weight ferry mission.

Next, the fatigue load surrogate models trained in Experiment 1b are utilized to convert

the mission spectrum into a load spectrum. The end result of this process is a series of

equivalent stress distributions, one for each segment of the mission, that capture all possible

variability in the fatigue loads for that segment. Sources of variability include surrogate

model uncertainty and the aforementioned stochasticity in the mission spectrum definition.

Finally, the structural reliability solution process developed in Experiment 2a is executed

using the newly-populated load spectrum. Predictions of Pf at different specified service

lives are used to compare the different solution methods using the performance metrics

defined in Table 5.2, and to further study the differences between the ANN and GPM

surrogate models. This step also includes a comparison to traditional deterministic fatigue

life prediction methods, described in Section 2.2.2.

5.5.2 Mission Spectrum

A critical component of Experiment 2b is the mission spectrum. The mission spectrum

describes a set of mission profiles that are used to evaluate the fatigue life of the rotor blade.

It must be flexible enough to cover a wide variety of potential use cases, yet focused enough

249

to support meaningful analysis.

For this experiment, the mission spectrum was adapted from a UAM design mission

profile published by Silva, Johnson, Solis, et al. [133]. The authors defined a short-range

passenger transport mission intended to model a typical UAM concept of operations. For this

research, the range of the design mission was increased to reflect the greater capabilities of

a turbine-powered conventional helicopter over electrically-powered VTOL aircraft. Several

variations of this mission were implemented in the NDARC model of the generic SMR

helicopter to observe its performance and fuel burn rate throughout the mission. Mission

variations included standard weight, high gross weight, low gross weight, high cruise speed,

and high altitude. Results from this study are not included here, but influenced the ultimate

design of the probabilistic mission spectrum.

Figure 5.12 diagrams the mission profile. The mission is constructed in 16 segments or

phases.

Figure 5.12: Diagram of the mission profile used in Experiment 2b.

First, the vehicle takes off, maneuvers around the vertiport, and transitions to forward

flight. Then, it climbs to cruising altitude. Cruise is divided into four segments in order to

more accurately model decreasing weight throughout the mission. Interspersed between the

four cruise segments are three turning segments to account for changes in the direction of

travel during cruise. Cruise is followed by descent to the landing site. After the descent

stage, the helicopter transitions to hovering flight, maneuvers to the helipad, and settles to

250

the ground. A reserve segment is also included in the mission definition.

As described previously, each segment of the mission is defined by a set of random

variables to account for usage variability. In the absence of historical usage data, a large

number of assumptions concerning these distributions were required. To minimize the total

amount of assumptions, four very simple distributions were used throughout the mission

spectrum. All distributions were constructed using OpenTURNS.

First, the Dirac distribution, D(a), is used to model deterministic parameters. The PDF

of the Dirac distribution is 1 at some value x = a and 0 otherwise (see Equation (5.37)).

f(x) =


1, x = a

0, otherwise
(5.37)

The uniform distribution, U(a, b), is used to model a uniform probability between two

points x = a and x = b. Its PDF is given by Equation (5.38):

f(x) =


1
b−a , a ≤ x ≤ b

0, otherwise
(5.38)

A triangular distribution, ∆(a, b, c), has a minimum at x = a, a maximum at x = b,

and a mode at x = m. The triangular distribution can be used similarly to the normal

distribution or other symmetric distributions, but it is bounded and does not require any

specific assumptions about standard deviation or other shape parameters. Its PDF is given

by Equation (5.39):

f(x) =



2(x−a)
(m−a)(b−a)

, a ≤ x < m

2(b−x)
(b−m)(b−a)

, m ≤ x ≤ b

0, otherwise

(5.39)

Finally, the trapezoidal distribution, T (a, b, c, d) is used for cases that require more

251

complexity than any of the previous distributions can model. The trapezoidal distribution

has a minimum at x = a, two vertices at x = b and x = c, and a maximum at x = d. Its

PDF is given by Equation (5.40):

f(x) =



(
2

d+c−a−b

)
x−a
b−a , a ≤ x < b

2
d+c−a−b , b ≤ x < c(

2
d+c−a−b

)
d−x
b−c , c ≤ x ≤ d

0, otherwise

(5.40)

The complete definition of the mission spectrum is included in Table 5.3. For each

segment, distributions are defined for the six flight condition variables: V , h, GW, ROC,

ω, and CG. Additional distributions are defined for segment distance, D, and time, t. The

amount of fuel burned in each segment, ∆GW, was defined deterministically because

of computational issues related to adding and subtracting distributions in OpenTURNS.

Deterministic fuel burn estimates were derived by studying the NDARC mission results.

Broadly, the mission is defined by a few key distributions. Cruise speed, V5, is defined

by a triangular distribution, ∆(100, 130, 160) kt, which captures low- and high-speed cruise.

Gross weight at takeoff is defined by a trapezoidal distribution, T (12, 15, 17, 20)× 103 lb,

which captures low-, medium-, and high-weight missions.

Similarly, rate of climb and rate of descent are defined by two triangular distributions,

∆(600, 900, 1200) ft/min and ∆(−1200,−900,−600) ft/min, respectively, which models

different levels of expediency that may be required by operational constraints. Finally, the

total range of the cruise segments is given by R ∼ T (25, 50, 75, 100) NM to accommodate

short- and long-range missions, and the CG position is given by XCG ∼ T (−0.3, 0, 0.3, 0.6)

to account for different payload configurations.

252

Ta
bl

e
5.

3:
Pr

ob
ab

ili
st

ic
m

is
si

on
sp

ec
tr

um
de

ve
lo

pe
d

fo
rE

xp
er

im
en

t2
b.

V
h

G
W

R
O

C
ω

C
G

D
t

∆
G

W
Se

g.
L

ab
el

k
t

ft
lb

ft
/
m

in
d

eg
/
s

ft
N

M
s

lb

1
Ta

ke
of

f
T

(0
,0
,5
,1

0
)

T
(0
,0
,2
,6

)
×

1
0
3
T

(1
2
,1

5
,1

7
,2

0
)
×

1
0
3

U
(1

0
0
,5

0
0
)

D
(0

)
X

C
G

*
D

(0
)

6
0

5
0

R
O
C

1
1
0

2
M

an
eu

ve
r1

U
(1

0
,3

0
)

h
1

+
5
0

G
W

1
−

∆
G

W
1

∆
(0
,0
,5

0
0
)

∆
(−

3
,0
,3

)
C

G
1

V
1
t 1

3
6
0
0

6
0
U

(0
,1

)
1
0

3
Tr

an
si

tio
n

1
V
2

+
V
3
−
V
2

2
h
2

G
W

2
−

∆
G

W
2

D
(0

)
D

(0
)

C
G

2
V
2
t 2

3
6
0
0

6
0
U

(0
.2

5
,0
.7

5
)

1
0

4
C

lim
b

U
(8

0
,1

3
0
)

h
3

+
h
5
−
h
3

2
G

W
3
−

∆
G

W
3

∆
(6
,9
,1

2
)
×

1
0
2

D
(0

)
C

G
3

V
3
t 3

3
6
0
0

6
0
h
5
−
h
3

R
O
C

4
7
0

5
C

ru
is

e
1

∆
(1

0
0
,1

3
0
,1

6
0
)
T

(4
,4
,6
,1

0
)
×

1
0
3

G
W

4
−

∆
G

W
4

D
(0

)
D

(0
)

C
G

4
R 4
†

3
6
0
0
D

5
V
5

1
2
0

6
Tu

rn
1

V
5

h
5

G
W

5
−

∆
G

W
5

R
O

C
5
T

(−
6
,−

3
,3
,6

)
C

G
5

V
6
t 6

3
6
0
0

6
0
U

(0
,1

)
1
0

7
C

ru
is

e
2

V
5

h
5

G
W

6
−

∆
G

W
6

R
O

C
5

ω
5

C
G

6
R 4
†

3
6
0
0
D

7
V
7

1
2
0

8
Tu

rn
2

V
5

h
5

G
W

7
−

∆
G

W
7

R
O

C
5

ω
6

C
G

7
V
8
t 8

3
6
0
0

t 6
1
0

9
C

ru
is

e
3

V
5

h
5

G
W

8
−

∆
G

W
8

R
O

C
5

ω
5

C
G

8
R 4
†

3
6
0
0
D

9
V
9

1
2
0

10
Tu

rn
3

V
5

h
5

G
W

9
−

∆
G

W
9

R
O

C
5

ω
6

C
G

9
V
1
0
t 1

0
3
6
0
0

t 6
1
0

11
C

ru
is

e
4

V
5

h
5

G
W

1
0
−

∆
G

W
1
0

R
O

C
5

ω
5

C
G

1
0

R 4
†

3
6
0
0
D

1
0

V
1
0

1
2
0

12
D

es
ce

nt
U

(8
0
,1

3
0
)

h
1
1
−
h
1
1
−
h
1
3

2
G

W
1
1
−

∆
G

W
1
1
−

∆
(1

2
,9
,6

)
×

1
0
2

D
(0

)
C

G
1
1

V
1
2
t 1

2
3
6
0
0

6
0
h
1
3
−
h
1
1

R
O
C

1
2

4
0

13
Tr

an
si

tio
n

2
V
1
2

+
V
1
4
−
V
1
2

2
h
3

G
W

1
2
−

∆
G

W
1
2

R
O

C
3

ω
3

C
G

1
2

V
1
3
t 1

3
3
6
0
0

t 3
1
0

14
M

an
eu

ve
r2

V
2

h
2

G
W

1
3
−

∆
G

W
1
3

R
O

C
2

ω
2

C
G

1
3

V
1
4
t 1

4
3
6
0
0

t 2
1
0

15
L

an
d

V
1

h
1

G
W

1
4
−

∆
G

W
1
4

U
(−

1
0
0
,−

5
0
)

ω
1

C
G

1
4

D
(0

)
6
0

(−
5
0
)

R
O
C

1
5

1
0

16
R

es
er

ve
V
5

h
5

G
W

1
5
−

∆
G

W
1
5

R
O

C
5

ω
5

C
G

1
5

V
1
6
t 1

6
3
6
0
0

6
0
U

(0
,2

0
)

2
5
0

*
X

C
G
∼
T

(−
0
.3
,0
,0
.3
,0
.6

)
†
R
∼
T

(2
5
,5

0
,7

5
,1

0
0
)

253

The mean range of the mission spectrum in 62.5 NM, although this does not include

any segments other than the cruise phase. Including all segments results in a nominal

wind distance of 104.5 NM. The average time required to complete the mission is 0.87 FH,

resulting in an average of 13,523 load cycles.

There are some important limitations related to the mission as defined in Table 5.3.

Primarily, each distribution is defined independently. In reality, distributions would be

correlated within and across mission segments. For example, the amount of fuel burn in

one segment is positively correlated with the airspeed and gross weight in that segment.

Although the mission spectrum was made as realistic as possible by defining specific

distributions as functions of other distributions, developing a complete correlated mission

spectrum would require significant investment in mission simulation, sampling, and fitting

distributions and correlation coefficients to the results, which is beyond the scope of this

research. Additionally, several of the structural reliability solution methods reviewed in

Section 5.1 require independent input distributions.

5.5.3 Load Spectrum

After defining the mission spectrum, a process was developed to convert the data in Table 5.3

to a set of equivalent stress, Seq, distributions. This process makes use of methods imple-

mented in OpenTURNS to produce Smean and Samp distributions using the surrogate models

trained in Experiment 1b, which are later converted to Seq distributions using Goodman’s

relation. The process is applied to each mission segment sequentially.

First, an instance of the ComposedDistribution class is defined. This class com-

bines the six independent flight condition distributions into a six-dimensional multivariate

distribution with an independent copula.

Next, distributions are initialized for the Smean and Samp responses. As discussed in

Section 4.5.5, Smean and Samp can be modeled with lognormal and normal distributions,

respectively. In OpenTURNS, the lognormal distribution, L(µ`, σ`, γ), has three parameters:

254

µ` is the mean of the underlying normal distribution, σ` is the standard deviation of the

underlying distribution, and γ is a location parameter that is fixed to zero in this research.

The normal distribution, N (µ, σ), has two parameters: µ is the mean and σ is the standard

deviation. Equations (4.59) to (4.62) describe how the parameters of these distributions

relate to the predictions and uncertainty of the GPM and ANN surrogate models.

The lognormal and normal distributions are combined into a block independent distribu-

tion using OpenTURNS’ BlockIndependentDistribution class. A block independent

distribution is similar to a composed distribution, except the parameters can easily be modi-

fied after the fact. Essentially, the block independent distribution creates a two-dimensional

five-parameter distribution from the lognormal and normal distributions.

Next, the parameters of the block independent distribution are conditioned on the flight

condition distributions using the ConditionalDistribution class. In OpenTURNS, a

conditional distribution is defined by Equation (5.41):

fX(x) =

∫
fX|g(y)

(
x|g(y)

)
fY (y) dy (5.41)

where fY (y) is the PDF of the composed distribution, Y are the six flight condition

distributions, fX(x) is the PDF of the conditioned block independent distribution,X are

the lognormal and normal stress response distributions, and g(y) is a link function. The link

function maps Y to the parameters ofX . This is accomplished by querying the surrogate

models for each stress response, deriving the parameters as seen in Equations (4.59) to (4.62),

and concatenating the five parameters into a vector.

Finally, the marginal distributions of the block independent distribution are extracted to

recover the Smean and Samp distributions. Goodman’s relation (see Equation (2.4)) is used

to form Seq from Smean and Samp. In this experiment, Su was set to 1430 MPa using data

from Harris, Gathercole, Lee, et al. [132].

The end result of this process is a set of 16 Seq distributions, each corresponding to one

255

of the 16 mission segments defined in Table 5.3. Each stress distribution captures all the

variability in the mission definition and the uncertainty imparted by the stress surrogate

models. Because the distributions were constructed analytically, there is no loss of fidelity in

the process. These distributions replace the nominal stress distribution used in Experiment 2a

in the fatigue life problem definition.

5.5.4 Ground–air–ground cycle

The ground–air–ground (GAG) cycle, described in Section 1.5, is an important type of low-

cycle fatigue (LCF), that can significantly impact the fatigue life of helicopter components.

Even though the cycle count is low compared to high-cycle fatigue (HCF), stress amplitude

is very high. In order to more realistically model the fatigue life of the generic SMR

helicopter, and to demonstrate that the preliminary fatigue design methodology can account

for both HCF and LCF, the GAG cycle was incorporated into the mission spectrum.

The GAG cycle is implemented as the 17th mission segment, with a cycle count of one.

The mean stress and stress amplitude of the GAG cycle are derived using Equations (5.42)

and (5.43):

Samp =
1

2
(Smax − Smin) (5.42)

Smean = Smin + Samp (5.43)

where Smax and Smin are the maximum and minimum values of stress experienced throughout

the mission.

Smax and Smin can be constructed using the MaximumDistribution class.1 However,

attempting to subtract the Smin distribution from the Smax distribution resulted in com-

putational issues that crashed the program. This may be a bug in the current version of

OpenTURNS as similar issues were experienced when constructing the mission spectrum.

1The minimum stress is simply the negative maximum of the negative stress distributions.

256

To bypass this issue, the GAG was defined simply as Seq = Smax, which is derived from

Equations (5.42) and (5.43) when Smax = −Smin. This is a conservative implementation

that assumes the amplitude of the GAG cycle is higher than it would be otherwise.

5.5.5 Results and Analysis

5.5.5.1 Equivalent Stress Distributions

The equivalent stress distributions generated during Experiment 2b are plotted in Figure 5.13.

Figure 5.13 is a series of violin plots, each of which represents a Seq distribution for a

different mission segment. Distributions produced by ANN and GPM are plotted side-by-

side for comparison. Each violin plot was formed by sampling the appropriate distribution

10,000 times and fitting a distribution with kernel density estimation (KDE).

Figure 5.13: Equivalent stress distributions produced in Experiment 2b.

In general, the distributions produced by the GPM surrogate model have higher medians

than those produced by ANN. Because the ANN model has better overall goodness-of-

fit than the GPM model (see Figures 4.61 and 4.62), it is likely that the GPM model is

257

overpredicting some results. However, the ANN model produces distributions with longer

tails. This is an effect of the global versus local uncertainty quantification used when defining

the link functions for these two models, which was discussed previously in Section 4.5.5.

Clearly the GAG cycle has the highest overall Seq distribution. This will always hold

true regardless of the particular model or mission spectrum because of the way the GAG

stress distribution is derived. In terms of the standard mission segments, the climb, cruise,

and turning segments have the highest Seq distributions. The cruise and turning segments

are mostly indistinguishable, which reflects the findings of Experiment 1a. However, the

climb segment has noticeably “fatter” tails than the other segments, which suggests it is

likely to be more damaging than other segments.

The descent segment has the lowest equivalent stress distribution overall. As discussed

in Section 4.4.5.8, this effect may be physically inaccurate and is a limitation of the inflow

and wake models used in the RCAS implementation of the generic SMR helicopter. Also

notice that the descent segment is the site of the largest discrepancy between the ANN and

GPM surrogate models, which indicates that one of the models may have not been able to fit

the negative rate of climb region well.

5.5.5.2 Probability of Failure

Next, the structural reliability solution methods that performed well in Experiment 2a were

used to predict probability of failure at different service life requirements. Pf was predicted

at service lives ranging from 350 FH to 200,000 FH. The full Miner’s sum performance

function (see Equation (5.28)) was used. Compared to Experiment 2a, random variable

distributions derived from mission segment time were used to populate ni and C was set to

N (1, 0.052).

Unfortunately, the QMC, LHS, and FORM-IS methods, which showed promise in

Experiment 2a, failed to produce usable results for this experiment. Although the exact

cause of failure is unknown, it is most likely related to the complexities associated with the

258

definition of the Seq distributions for Experiment 2b. QMC and LHS both must transform

the input random variable distributions to determine the sampling points, and FORM-IS

must initialize from a FORM solution that requires an isoprobabilistic transformation of the

input variables. Although these tasks were simple in Experiment 2a when the input variables

were normally distributed, they are non-trivial when applied to distributions constructed

in the manner described in Section 5.5.3. The current version of OpenTURNS does not

provide enough diagnostic information to solve this issue or develop a workaround.

However, crude Monte Carlo sampling does not require any transformations of the

input variables. Because the Seq distributions can be sampled relatively quickly, the MC

simulation was the only functional solution method tested in this experiment. The results

produced by the MC method are presented in Figure 5.14.

Figure 5.14: Probability of failure at different service life requirements for Experiment 2b.

For context, the fatigue life of the rotor blade of the Robinson R22, a popular two-seat

general aviation helicopter, is 2200 FH. The fatigue life of the rotor blade of the Sikorsky

S-76, a high-end executive transport helicopter, is 28,000 FH [3]. Recall that the target Pf

259

for a flight-critical component under the six-nines reliability paradigm is 10−6.

Although the results produced using the ANN and GPM surrogate models are in agree-

ment at high Pf , GPM clearly predicts below the ANN model at lower Pf . Low Pf

corresponds to lower cycle counts, where most failed iterations are those that include sam-

ples from the tails of the Seq distribution. Because the stress distributions produced by the

ANN surrogate models have longer tails, those distributions are more likely to produce

elevated levels of stress that lead to component failure. Conversely, at high cycle counts,

failed iterations can include samples from the bodies or tails of the stress distributions. In

the bodies of the distributions, ANN and GPM are more similar, so the predictions show

better agreement.

5.5.5.3 Comparison to Deterministic Methods

In order to compare the results of the probabilistic fatigue life methodology to traditional

deterministic fatigue life methodologies, reduction methods from Section 2.2.2 were applied

to the data generated in Experiment 2b.

First, the probabilistic S-N curve described in Section 5.4.2 was reduced to a determinis-

tic curve at 80% of the probabilistic curve’s mean value. The equivalent stress distributions

were increased to deterministic values using either the µ+ 3σ method, where the determinis-

tic stress is equal to the mean of the stress distribution plus three times its standard deviation,

or the top-of-scatter (TOS) method, where the deterministic stress value is equal to the

maximum observed sample from the stress distribution. All parameters were estimated

using 10,000 samples of each distribution.

Equation (5.28) was rearranged to solve the deterministic fatigue life problem (see

Equation (5.44)):

r =
C∑k

i=1
ni

Ni(Seq,i)

(5.44)

where r describes the number of mission repetitions to failure. ni was populated using the

means of each mission segment time distribution and C was set to 0.85 using the µ− 3σ

260

reduction. The results of this study are presented in Table 5.4.

Table 5.4: Deterministic rotor blade fatigue life predictions.

Fatigue life (FH)

Surrogate model µ+ 3σ stress TOS stress

ANN 63,350 155.9
GPM 58,170 2226

From Table 5.4, it is immediately obvious that deterministic results vary widely de-

pending on the methodology used. Cross-referencing with Figure 5.14, it can be seen that

predictions made using µ + 3σ drastically overpredict the safe life, corresponding with

probabilities of failure from 2× 10−3 to 4× 10−3. The probability of failure predicted by

the TOS method using the GPM surrogate model corresponds to approximately 3× 10−5,

but the prediction for the ANN model does not appear on the Figure 5.14 at all.

Although the TOS/GPM prediction has acceptable levels of reliability, the fact remains

that the reliability of these predictions cannot be quantified using deterministic methods.

This reinforces the earlier argument that deterministic fatigue life predictions derived from

organization experience and historic data cannot be assumed to produce sufficient levels of

reliability, especially where new rotorcraft configurations are concerned.

5.5.6 Summary

Experiment 2b validated the results of Experiment 2a by constructing a realistic probabilistic

mission spectrum, producing equivalent stress distributions corresponding to that mission

spectrum using the stress surrogate models, and producing new fatigue life predictions using

the previously-tested structural reliability solution methods. Ultimately, it was found that,

given the complex construction of the Seq distributions, only Monte Carlo simulation was

capable of producing predictions.

This experiment also compared the predictions produced using the ANN and GPM

surrogate models from Experiment 1b. GPM surrogate models were found to consistently

261

predict Pf values several orders of magnitude below the ANN predictions, especially at

low Pf . Because the ANN surrogate model is more conservative, faster to execute, and

demonstrated better goodness-of-fit than the GPM model, the ANN model will be retained

for use in subsequent experiments.

Finally, the results produced by the probabilistic fatigue life methodology were com-

pared to deterministic results produced by traditional reductions and safety factors. The

deterministic results were found to vary significantly depending on the safety factor used,

which highlights the value of a probabilistic method which can predict both a fatigue life

specification and the probability of failure associated with that prediction.

5.6 Conclusions

Experiment 2 examined the possibility of using structural reliability methods to proba-

bilistically evaluate Miner’s sum for fatigue life analysis, with the goal of improving upon

traditional deterministic methods. Experiment 2a described the development of a notional

fatigue life problem and the comparison of a number of popular structural reliability meth-

ods using that problem. Experiment 2b expanded the notional fatigue life problem into a

complete helicopter fatigue analysis using a realistic mission spectrum and stress predictions

from the generic SMR helicopter.

Recall Hypothesis 2:

Hypothesis 2

At least one of the surveyed structural reliability sampling methods can be used to

efficiently remove the dependence on reductions and safety factors by quantifying the

reliability of fatigue life predictions using Miner’s sum.

The results of Experiment 2 partially support Hypothesis 2. High-reliability fatigue life

predictions were produced with no deterministic safety factors. Comparison to deterministic

methods demonstrated the value of using probabilistic methods instead of trusting safety

factors and reductions which are derived from heuristics and experience. However, the

262

only functional solution method, Monte Carlo simulation, is not efficient at low Pf , as

demonstrated by Experiment 2a. Thus, this experiment does not fully support the hypothesis

it was intended to test.

The preliminary fatigue design methodology, previously presented in Figures 3.1 and 4.66,

can now be updated based on the results of Experiment 2.

Existing
fatigue data

Probabilistic
S-N curve

Damage
hypothesis

Load
spectrum

MC
simulation

Safe life

Beam cross-
section model

Sectional
properties

Stress/strain
recovery

ANN
surrogate

Rotor compre-
hensive model

Update
model

Load
histories

Vehicle
perf. model

Flight
conditions

RQ 1

RQ 2

Mass

Stiffness

Flight
state

Atmos.

Figure 5.15: Updated flowchart of the preliminary fatigue design methodology after Experi-
ment 2.

Figure 5.15 reflects that Monte Carlo simulation can be used to produce a probabilistic

safe life and its associated probability of failure. It also reflects that ANN surrogate modeling

was chosen over GPM.

With the end of Experiment 2, the preliminary fatigue design methodology is finalized.

263

However, its utility must be demonstrated. The final experiment of this thesis, Experiment 3,

will involve applying the methodology to a hypothetical fatigue design exercise. This

experiment is described further in Chapter 6.

264

CHAPTER 6

FATIGUE DESIGN OF A CONCEPTUAL ROTARY-WING AIRCRAFT

After Experiments 1 and 2, all critical elements of the preliminary fatigue design methodol-

ogy (see Figure 5.15) have been determined. However, the aforementioned experiments are

not intended to represent actual use of the methodology. In this chapter, the effectiveness of

the methodology will be tested using a series of experiments designed to prove its ability to

serve as an effective preliminary design tool. These experiments will also serve as instruc-

tive use cases demonstrating potential applications of the methodology to specific design

problems.

Conjecture 0 requires the methodology to enable the use of rotor component fatigue

life as a design driver. Thus, the methodology must be capable of predicting the impact of

changes of common conceptual or preliminary design variables on the rated fatigue life, or

the associated probability of failure, of a flight-critical component. This led to Research

Question 3, which is reprinted below for the reader’s convenience:

Research Question 3

Does the preliminary fatigue design methodology enable evaluation of the relative

impact of common preliminary design variables on the probability of fatigue failure of

a flight-critical component in a conceptual helicopter design?

In the next section, hypotheses to Research Question 3 will be developed. Then, a series

of experiments will be designed and executed to test each hypothesis. If the experiments

successfully demonstrate the ability of the preliminary fatigue design methodology to predict

the impact of preliminary design variables, then Conjecture 0 will be supported.

265

6.1 Hypotheses to Research Question 3

Throughout this research, the multi-disciplinary nature of the helicopter fatigue life predic-

tion problem has been emphasized. Because a component’s fatigue life is dependent on

its design, the overall design of the helicopter, and the characteristics of the helicopter’s

missions, changes in any of those variables should impact the predicted probability of fatigue

failure. Specifically, the newly-developed preliminary fatigue design methodology must

be capable of predicting changes in the probability of failure of the main rotor blade given

modifications to the rotor blade cross section design, the vehicle design, and the design

mission requirements.

6.1.1 Rotor Blade Cross Section Design

Direct changes to the rotor blade cross section may be the most effective way to improve

rotor blade fatigue life. However, the rotor blade cross section is one of the most constrained

elements of a helicopter. The cross section must be designed to satisfy weight, aerody-

namic, ultimate failure, aeroelastic stability, maintainability, manufacturability, and cost

constraints [87, 93]. There may not be a significant amount of design freedom available to

design for fatigue life.

The preliminary fatigue design methodology could be integrated into a rotor blade

design framework similar to that developed by Li [87], where the rotor blade is optimized

for weight subject to natural frequency and fatigue life constraints (see Section 2.3.1).

Alternatively, fatigue life could serve as the objective function while weight and structural

dynamic concerns are relegated to constraints. In either case, the preliminary fatigue

design methodology must be able to predict the impact of cross section design changes of

probability of fatigue failure.

In Experiments 1 and 2, fatigue life was quantified at a critical fatigue point on the

auxiliary web of the rotor blade box spar. The signed von Mises stress at that point was used

266

to model damage progression using Miner’s sum. At a basic level, stress is proportional to

the amount of force divided by the area of the surface with a normal vector in the direction of

that force. Thus, if the area around the the critical fatigue design point increases, the signed

von Mises stress at that point will decrease, ultimately leading to a decrease in probability

of failure.

The preliminary fatigue design methodology should be sensitive enough to quantify this

effect. This leads to Hypothesis 3.1:

Hypothesis 3.1

The preliminary fatigue design methodology will enable quantification of the impact of

blade spar thickness on probability of rotor blade fatigue failure at a specified service

life.

The null hypothesis to Hypothesis 3.1 can be stated as follows:

The preliminary fatigue design methodology does not provide sufficient infor-

mation to predict the impact of blade spar thickness on the probability of rotor

blade fatigue failure.

This hypothesis will be tested by Experiment 3.1.

6.1.2 Vehicle Design

If the rotor blade cross section design is already highly-constrained, designers may instead

look to the design of the rotorcraft itself to improve fatigue life. Although the vehicle layout

is subject to weight, performance, handling, maneuverability, and payload constraints, its

design may be more flexible than the rotor blade itself, especially in the case of advanced

configurations with many available design variables.

In this case, the preliminary fatigue design methodology could be integrated into a

rotorcraft vehicle design framework. The closest example that could be found in the

literature is that of Arruda, Hamel, and Collins [90], although these authors tested the impact

267

of main rotor design, not the vehicle as a whole. For a review of this design framework,

see Section 2.3.2. In this application, the preliminary fatigue design methodology would

provide fatigue life predictions driven by changes in vehicle layout and configuration to

enhance the design environment with fatigue-related objectives or constraints.

In Experiments 1a and 1b, the station line of the generic SMR helicopter’s center of

gravity was found to have a significant impact on stress at the critical fatigue point. It was

hypothesized that, as the CG shifts further aft, additional pitch down moment is required

from the main rotor to keep the helicopter in the appropriate orientation for forward flight.

This in turns increases the aerodynamic forces on, and the stress in, the rotor blade.

Several existing helicopters, such as the UH-60 Black Hawk and the CH-53K King

Stallion, have a positive cant angle on the tail rotor. Canting the tail rotor allows that rotor

to produce anti-torque thrust and a vertical thrust component, described by Equations (6.1)

and (6.2):

Th = T cos ε (6.1)

Tv = T sin ε (6.2)

where T is the total tail rotor thrust, Th is the horizontal (y-axis) component of thrust, Tv is

the vertical (z-axis) component of thrust, and ε is the tail rotor cant angle.

In the case of the generic SMR helicopter, positive tail rotor cant would produce a

positive vertical thrust component at the tail of the helicopter, which would result in a net

pitch down moment. This could compensate for the aft-biased center of gravity without

requiring increased aerodynamic loading on the main rotor, thus reducing stress on the rotor

blade and improving the probability of fatigue failure.

Hypothesis 3.2 states that the preliminary fatigue design methodology is capable of

predicting the impact of tail rotor cant angle on fatigue life:

268

Hypothesis 3.2

The preliminary fatigue design methodology will enable quantification of the impact of

tail rotor cant on probability of rotor blade fatigue failure at a specified service life.

The null hypothesis to Hypothesis 3.2 can be stated as follows:

The preliminary fatigue design methodology does not provide sufficient infor-

mation to predict the impact of tail rotor cant angle on the probability of rotor

blade fatigue failure.

This hypothesis will be tested by Experiment 3.2.

6.1.3 Design Mission Requirements

In the case that neither the blade cross section or vehicle design can be modified to improve

fatigue life, designers may want to revisit the design mission requirements. Although

mission requirements are traditionally treated as “set in stone”, designers may have an

opportunity to propose changes to the requirements if they are found to have an overly-

detrimental effect on the product. Alternatively, the organization defining the requirements

may wish to evaluate their impact on the reliability and cost of the helicopter.

Mission requirements are used to construct the mission spectrum, which directly drives

the load spectrum, which is used as the basis for fatigue life prediction. Changes in mission

requirements could therefore have a significant impact on the fatigue life of helicopter

components. To the best of this author’s knowledge, there are no works in the literature that

directly assess the influence of design mission requirements on fatigue life.

In Experiment 1a, the high speed and high rate of climb cases were found to significantly

increase the equivalent stress at the critical fatigue point. Experiment 2b found that the climb

and cruise mission segments featured some of the highest equivalent stress distributions in

the mission spectrum. In particular, the tails of the climb segment were “fatter” than those

of the cruise segment, indicating that the blade is more likely to see higher stresses while

climbing.

269

These results suggest that the probability of rotor blade fatigue failure could be reduced

by reducing the rate of climb during the climb segment and/or reducing the airspeed in the

cruise segment. Hypothesis 3.3 is divided into two parts: Hypothesis 3.3.1 asserts that the

preliminary fatigue design methodology will be capable of modeling the impact of changes

to rate of climb requirements, and Hypothesis 3.3.2 states that the methodology will predict

the effects of changes to airspeed requirements.

Hypothesis 3.3

1. The preliminary fatigue design methodology will enable quantification of the impact

of average rate of climb on probability of rotor blade fatigue failure at a specified

service life.

2. The preliminary fatigue design methodology will enable quantification of the impact

of average cruise speed on probability of rotor blade fatigue failure at a specified

service life.

The null hypotheses to Hypotheses 3.3.1 and 3.3.2 can be stated as follows:

1. The preliminary fatigue design methodology does not provide sufficient information

to predict the impact of average rate of climb on the probability of rotor blade fatigue

failure.

2. The preliminary fatigue design methodology does not provide sufficient information

to predict the impact of average cruise speed on the probability of rotor blade fatigue

failure.

These hypotheses will be tested by Experiment 3.3.

6.2 Experiment 3 Overview

In Experiment 3, the predictive capabilities of the preliminary fatigue design methodology

will be tested. Experiment 3 is a multi-part experiment, where each part aims to confirm the

ability of the methodology to predict the impact of a different design variable. Experiment 3.1

270

tests the impact of rotor blade box spar thickness, Experiment 3.2 predicts the effects of tail

rotor cant angle, and Experiment 3.3 studies the influence of rate of climb and cruise speed.

The following sections describe the design, implementation, and results of each part

of Experiment 3. Afterwards, Hypotheses 3.1 to 3.3 will be revisited. The results of these

experiments will either support or fail to support Conjecture 0.

6.3 Experiment 3.1

Figure 6.1 provides an overview of Experiment 3.1. The following sections detail the design

of the experiment, implementation of the blade spar thickness design variable, results, and

analysis.

Figure 6.1: Overview of Experiment 3.1.

6.3.1 Experimental Design

Experiment 3.1 analyzes the impact of blade spar thickness on the predicted probability

of rotor blade fatigue failure after 5000 FH. The results are compared against the baseline

design described in Section 4.4.3.3 and quantified in Section 5.5.

The experiment is divided into five cases, including the baseline case. Each subsequent

case increases the blade spar thickness by a slight amount by modifying the number of blade

spar layers in the generic SMR helicopter PreVABS+VABS model. This rotor blade design

variable can be easily modified using the Python MDA environment and does not require

direct modification of the PreVABS input files.

In Experiment 1a, a critical fatigue point on the rotor blade cross section was identified

by recovering the full equivalent stress field in a number of extreme flight conditions. In this

experiment, it cannot be assumed that the critical fatigue point remains in the same location

271

as the thickness of the blade spar increases. A new critical fatigue point is identified for each

case by recovering the full equivalent stress field for the baseline flight condition used in

Experiment 1a; the complete extreme flight condition survey is not repeated for each case.

Next, the flight envelope of the generic SMR helicopter is sampled using the flight

envelope DOEs developed in Experiment 1b. For each case, sampling covers the the same

points in the training and testing sets used to develop the surrogate models that were applied

in Experiment 2b. Based on the conclusions of Experiment 2 (see Section 5.6), an artificial

neural network surrogate model is fit to each data set.

Finally, the Monte Carlo structural reliability solution tested in Experiment 2b is used

to predict the probability of fatigue failure at 5000 FH. In this experiment, Pf at a fixed

fatigue life is used as the independent variable since it only requires a single evaluation of

the structural reliability problem. Predicting a new fatigue life would require specifying the

desired Pf and running multiple iterations of the structural reliability problem with different

values of r until Pf is met. The two problems are related: if a design change results in a

reduction in Pf over the baseline value, it would also result in an increase in fatigue life at

the baseline Pf .

Table 6.1 summarizes the cases that are tested in this experiment. The new critical

fatigue points are also identified.

Table 6.1: Experimental design for Experiment 3.1.

Case Number of spar layers Spar thickness (ft) Critical point location (ft)

Baseline 4 0.0125 (0.176, 0.066)
1 6 0.0200 (0.169, 0.066)
2 8 0.0274 (0.162, 0.066)
3 10 0.0349 (0.155, 0.066)
4 12 0.0423 (0.148, 0.066)

In this experiment, it is assumed that all of the cross section designs specified in Table 6.1

satisfy the structural, aeroelastic, and stability requirements of the rotor system. Additionally,

it is assumed that the failure of the box spar auxiliary web remains the primary fatigue

272

failure mode for the rotor blade.

6.3.2 Implementation

The design variables modified in this experiment concern only the PreVABS+VABS rotor

blade model, described previously in Section 4.4.3.3. Figure 4.12c provides a detailed view

of the box spar of the rotor blade and Table 4.6 defines the different lamina used in the

rotor blade. The main and auxiliary spar webs are constructed using a 0°/45°/−45°/90° IM7

layup.

In this experiment, the 45°/−45° layers were simply repeated to increase the blade spar

thickness as described in Table 6.1. For symmetry, the modifications were applied to both the

main and auxiliary webs, which minimizes movement of the CG and maintains aerodynamic

stability. Table B.32 includes the exact definition of the PreVABS+VABS variables used to

effect this change, and describes their mapping to the OpenMDAO variables used by the

MDA.

The geometries of the rotor blade cross section for each case are displayed in Figure 6.2.

Because the basepoints defining the position of the main and auxiliary web spars are located

on the outside of the spar box, the spars extend further inwards in each case, rather than

extending towards the leading and trailing edges of the blade.

Figure 6.3 shows the resultant VABS mesh for each geometry in Figure 6.2 after the

PreVABS automesher is applied. The mesh size is constant, so the number of mesh elements

grows slightly for each case.

6.3.3 Results and Analysis

The equivalent stress distributions for each mission segment were derived in a manner

identical to Experiment 2b. Figure 6.4 plots the Seq distributions for each mission segment

for each case listed in Table 6.1. The data is presented as a series of box plots rather than

the violin plots used in Figure 5.13 because box plots provide better readability with a large

273

(a) Baseline (b) Case 1 (c) Case 2

(d) Case 3 (e) Case 4

Figure 6.2: Geometry of the PreVABS+VABS rotor blade model in different cases of
Experiment 3.1 (box spar detail).

(a) Baseline (b) Case 1 (c) Case 2

(d) Case 3 (e) Case 4

Figure 6.3: Mesh of the PreVABS+VABS rotor blade model in different cases of Experi-
ment 3.1 (box spar detail).

number of distributions on the same plot.

In Figure 6.4 each group of box plots applies to the same mission segment. Each

individual box plot describes the results of a different blade spar thickness setting. The box

plots visualize the median, interquartile range, extrema, and outliers of each Seq distribution.

Each box plot was created by sampling the corresponding equivalent stress distribution

10,000 times.

274

Figure 6.4: Equivalent stress distributions produced in Experiment 3.1.

From Figure 6.4, it is immediately apparently that the bodies of the stress distributions

decrease as blade spar thickness increases. The medians and interquartile ranges are lowest

at high numbers of spar layers for every segment. However, the most dramatic change

occurs between the baseline case and the first case, with diminishing returns thereafter.

This suggests that increasing the thickness of the spar web correlates with a decrease in

equivalent stress for most flight conditions.

However, the tails of the distributions do not follow the same trend. In the third and

fourth cases, the outliers of the Seq distributions in the cruise, turn, reserve, and GAG

segments extend further than the tails of the baseline, first, and second cases. The effect is

strongest at 10 spar layers and decreases slightly at 12 spar layers.

Although it is difficult to determine the exact cause of this effect without a more detailed

analysis of the rotor system, it is possible that modifications to the blade cross section

have introduced an aeroelastic effect that cancels out the improvements in certain flight

conditions. For example, if, in the third and fourth case, an aerodynamic–structural feedback

275

loop increases blade deformation in high speed flight, that could increase equivalent stress

in those flight conditions. Regardless of the cause, these longer tails are likely to have a

significant impact on probability of fatigue failure, as seen previously when comparing

ANN and GPM surrogate models in Experiment 2b.

After analyzing the equivalent stress distributions, Monte Carlo simulation was used to

predict the probability of fatigue failure at 5000 FH in a manner similar to Experiment 2b.

These results are plotted in Figure 6.5. The height of each bar describes Pf , and the error

bars illustrate the 95% confidence interval for each prediction.

Figure 6.5: Impact of blade spar thickness on probability of fatigue failure at 5000 FH.

The results in Figure 6.5 follow logically from Figure 6.4. For the first two cases, Pf is

improved significantly compared to the baseline case. For the third and fourth cases, the

longer tails of the stress distributions increase Pf dramatically. In fact, each of these cases is

worse than the baseline case in terms of probability of fatigue failure.

The statistical significance of these results was calculated using one-sided statistical

means testing. For cases where the predicted Pf is lower than the baseline, the probability

276

of that case’s Pf distribution being greater than the baseline is calculated, and vice versa for

cases where Pf is higher than the baseline. If the calculated probability, p, is less than 0.01,

the results are considered to be statistically significant. In Experiment 3.1, all cases were

found to be statistically significant. For cases 1, 2, and 3, p ≈ 0, and for case 4, p = 0.008.

Notably, this experiment disproved the heuristic proposed in Section 6.1.1, where it

was suggested that increasing spar thickness would monotonically decrease Pf . Instead,

the probabilistic fatigue design methodology demonstrated the existence of higher-order

effects leading to negative Pf improvement that may not be obvious to a designer basing

their decisions on rules of thumb and experience.

6.4 Experiment 3.2

Figure 6.6 provides an overview of Experiment 3.2. The following sections detail the design

of the experiment, implementation of the tail rotor cant design variable, results, and analysis.

Figure 6.6: Overview of Experiment 3.2.

6.4.1 Experimental Design

Experiment 3.2 examines the impact of tail rotor cant angle on the probability of main

rotor blade fatigue failure at 5000 FH. This experiment, which is conducted similarly to

Experiment 3.1, is intended to demonstrate the ability of the probabilistic fatigue design

methodology to predict the fatigue life impact of vehicle layout changes.

This experiment is divided into five cases, including the baseline case. Each subsequent

case increases the tail rotor cant angle, ε, by 10°. The tail rotor cant angle MDA variable is

connected to the NDARC and RCAS models.

277

Unlike Experiment 3.1, it is not necessary to relocate the critical fatigue point in this

experiment because the baseline rotor blade cross section design is used for all cases.

However, the flight envelope sampling and ANN training processes must be complete

for each case. After new ANN surrogate models are trained, the Monte Carlo structural

reliability solution is used to find the probability of main rotor blade fatigue failure as in

Experiment 2b and Experiment 3.1.

Table 6.2 describes each case tested in this experiment. For reference, the horizontal

and vertical coefficients of tail rotor thrust, cos ε and sin ε, respectively, are also provided

for each value of ε.

Table 6.2: Experimental design for Experiment 3.2.

Case Tail rotor cant, ε (deg) Tv coefficient Th coefficient

Baseline 0 0 1
1 10 0.174 0.985
2 20 0.342 0.940
3 30 0.500 0.866
4 40 0.643 0.766

In this experiment, it is assumed that modifications to the tail rotor cant angle do not

negatively impact the performance, handling qualities, stability, or controllability of the

generic SMR design. That is, changes in ε will not produce a helicopter design that fails to

meet any of its original requirements.

6.4.2 Implementation

The design variables in this experiment concern the NDARC and RCAS models, described

previously in Section 4.4.3.1 and Figure 4.11. In NDARC, the tail rotor cant angle can

be set directly. A positive tail rotor cant angle corresponds to a counterclockwise rotation

of the tail rotor hub, when viewed from behind the helicopter. The mapping between the

OpenMDAO tail rotor cant variable and the NDARC tail rotor cant variable is included in

Table B.2.

278

In the RCAS model, the orientation of the structural and aerodynamic tail rotor subsys-

tems must both be modified. Additionally, because the baseline RCAS model is defined in a

x-forward, y-right, z-down coordinate system, the tail rotor subsystems are rotated by 180°

about the y axis, then −90° about the x axis to achieve a proper orientation. A new module

was added to the OpenMDAO model to convert the tail rotor cant angle to RCAS x axis

rotations. This transformation is described by Equation (6.3):

εRCAS = −90° + ε (6.3)

This module is positioned just before the RCAS wrapper in the execution order. The

mapping between the OpenMDAO tail rotor cant variable and the RCAS tail rotor cant

variable is included in Table B.30.

The impact of tail rotor cant angle on the RCAS model is presented in Figure 6.7. The

view is from behind the helicopter. Note that the horizontal and vertical stabilizers also

have a slight counterclockwise rotation from horizontal because the model is oriented to the

attitude it would take in trimmed flight at cruise speed.

6.4.3 Results and Analysis

Figure 6.8 plots the equivalent stress distributions for each case and each mission segment.

The data in this figure largely rejects the assumptions of Section 6.1.2, which posited that

increasing the tail rotor cant angle would reduce Seq on the main rotor blade.

Instead, despite slight improvements in Seq in the first case, cases 2 to 4 show elevated

stress in both the bodies and tails of the distributions. It appears that the change in tail rotor

cant has increased the magnitude of aerodynamic moments required of the main rotor to

maintain trimmed flight.

This may be due to a a reduction in anti-torque effectiveness: as the horizontal component

of tail rotor thrust decreases (see Table 6.2), the tail rotor collective must increase to

279

(a) Baseline (b) Case 1 (c) Case 2

(d) Case 3 (e) Case 4

Figure 6.7: Varying tail rotor cant angles in RCAS model for Experiment 3.1 (view from
behind helicopter).

Figure 6.8: Equivalent stress distributions produced in Experiment 3.2.

280

counteract the torque from the main rotor. If the tail rotor collective reaches a point where

the blades begin to stall, it will be less effective and more control authority will be required

from the main rotor. Alternatively, the increase in tail rotor cant may have upset the stability

of the helicopter in forward flight conditions, with larger pilot control inputs required to

compensate.

The resultant impact on the predicted main rotor blade fatigue life is presented in

Figure 6.9. As expected from Figure 6.8, increasing tail rotor cant increases Pf at 5000 FH.

Figure 6.9: Impact of tail rotor cant angle on probability of fatigue failure at 5000 FH.

By the fourth case, Pf ≈ 1: the main rotor blade is nearly guaranteed to fail at or before

5000 FH. Each case is statistically significant at p ≈ 0.

Recall from Table 5.3 that each segment in the mission spectrum uses a CG distribution

described by Equation (6.4):

XCG ∼ T (−0.3, 0, 0.3, 0.6) ft (6.4)

281

where XCG is a random variable describing the x-axis shift of the CG location compared to

the main rotor hub station line.

This distribution was selected to model typical loading conditions experienced by a

transport helicopter, but does not cover the complete CG range tested in Experiment 1b,

which spanned from −0.3 ft to 1.6 ft. To further test the impact of tail rotor cant, the baseline

CG distribution from Equation (6.4) was replaced by an aft-shifted CG distribution described

by Equation (6.5):

XCG ∼ T (0, 0.5, 1.0, 1.5) ft (6.5)

This distribution spans the range from the main rotor hub station line to 1.5 ft aft of that

point. It is hypothesized that the impact of tail rotor cant will be more favorable when using

the aft-shifted CG distribution since the need to produce aerodynamic pitch down moment

to counteract the inherent pitch up moment is higher.

Figures 6.10 and 6.11 plot the equivalent stress distributions and Pf predictions, respec-

tively, for the new CG distribution. Although the stresses and resultant probabilities of

failure are higher than Figures 6.8 and 6.9 overall, the impact of tail rotor cant improves,

rather than degrades, the probability of failure.

All the results presented in Figure 6.11 are statistically significant at p ≈ 0. This

experiment adds an important qualification to the heuristic stated in Section 6.1.2, where it

was hypothesized that tail rotor cant will always improve probability of main rotor blade

fatigue failure. Instead, tail rotor cant will only improve Pf if the CG distribution is shifted

aftwards.

282

Figure 6.10: Equivalent stress distributions produced in Experiment 3.2 with the aft-shifted
CG distribution.

Figure 6.11: Impact of tail rotor cant angle on probability of fatigue failure at 5000 FH with
the aft-shifted CG distribution.

283

6.5 Experiment 3.3

Figure 6.12 provides an overview of Experiment 3.3. The following sections detail the

design of the experiment, modifications of the mission spectrum to reflect changes in mission

variables, results, and analysis.

Figure 6.12: Overview of Experiment 3.3.

6.5.1 Experimental Design

Experiment 3.3 is split into two parts. First, the impact of rate of climb on the probability of

main rotor blade fatigue failure by 5000 FH is examined. Next, the impact of cruise speed is

evaluated. 6This experiment is intended to quantify the ability of the probabilistic fatigue

design methodology to predict the impact of mission and performance requirements on

fatigue life.

Unlike Experiments 3.1 and 3.2, it is not necessary to modify the generic SMR helicopter

MDA model, resample the flight envelope, or retrain the ANN surrogate models, because

the design of the helicopter does not change. Instead, the baseline stress surrogate model

developed during Experiment 2b is used. Only the probabilistic mission spectrum, presented

in full in Table 5.3, is modified in this experiment.

In the first part of Experiment 3.3, the rate of climb distribution in the climb segment

is modified from its baseline value of ∆(600, 900, 1200) ft/min. In the first two cases, the

mode of the triangular distribution is reduced to 600 ft/min and 700 ft/min, and the minimum

and maximum are similarly adjusted to maintain a total range of 600 ft/min. In the final

two cases, the mode of the triangular distribution is raised to 1000 ft/min and 1100 ft/min.

The minimum is raised to 300 ft/min below the mode, but the maximum is held constant at

284

1200 ft/min to avoid exceeding the upper bound of the ROC input variable in the surrogate

model. Table 6.3 defines each case entirely.

Table 6.3: Experimental design for the first part of Experiment 3.3.

Case Mode of ROC (ft/min) ROC distribution (ft/min)

Baseline 900 ∆(600, 900, 1200)
1 700 ∆(400, 700, 1000)
2 800 ∆(500, 800, 1100)
3 1000 ∆(700, 1000, 1200)
4 1100 ∆(800, 1100, 1200)

For the cruise speed study, the airspeed distributions in the cruise, turning, and reserve

mission segments are modified from their baseline value of ∆(100, 130, 160) kt. In the first

two cases, the mode is reduced to 110 kt and 120 kt, and the minimum and maximum are

reduced to maintain a range of 60 kt. In the final two cases, the mode is raised to 140 kt and

150 kt, and the minimum is raised to 30 kt below the mode. The maximum is held constant

at 160 kt to respect the upper bound of the V input variable. These cases are defined in

Table 6.4.

Table 6.4: Experimental design for the second part of Experiment 3.3.

Case Mode of V (kt) V distribution (kt)

Baseline 130 ∆(100, 130, 160)
1 110 ∆(80, 110, 140)
2 120 ∆(90, 120, 150)
3 140 ∆(110, 140, 160)
4 150 ∆(120, 150, 160)

Throughout Experiment 3.3, it is assumed that the performance and mission requirements

used to design the generic SMR helicopter can be adjusted as necessary. That is, there will

be no conflict between the customer and the manufacturer if the target rate of climb and

cruise speed for the design mission are pushed below or above their initial specifications.

285

6.5.2 Results and Analysis

The stress distributions produced during the rate of climb study are included in Figure 6.13.

As predicted, the stress in the climb segment is lower for cases where the mode of the ROC

distribution is below the baseline, and higher for cases where it is greater. These effects are

replicated on a smaller scale in the GAG equivalent stress distribution. The GAG distribution

is only affected by the ROC distribution for cases where the maximum stress is seen during

the climb segment. Note that minor differences in the stress distributions of other segments

are simply due to the random sampling of each distribution used to create the box plots; in

reality, there is no change in the distributions.

Figure 6.13: Equivalent stress distributions produced by the ROC study in Experiment 3.3.

Figure 6.14 presents the results of the Monte Carlo structural reliability calculations for

Pf . The results of each case are nearly indistinguishable from the baseline case. Clearly, the

effect of modifying the ROC distribution is not impactful enough to significantly influence

the resultant Pf calculation, despite clearly impacting the Seq distributions that drive Pf .

286

Figure 6.14: Impact of rate of climb on probability of fatigue failure at 5000 FH.

The results of cases 1 to 4 are statistically insignificant at p = 0.45, p = 0.47, p = 0.50,

and p = 0.47. This indicates that the current form of the preliminary fatigue design

methodology is not sensitive enough to predict extremely minor changes in Pf . This

drawback is inherent to any sampling solution methods and could be improved by decreasing

the maximum coefficient of variation convergence criterion at the expense of solution

runtime.

The stress distributions produced during the airspeed study are presented in Figure 6.15.

As predicted, the severity of the equivalent stress distributions scales proportionally to

airspeed in the cruise, turning, and reserve segments. There is also a noticeable impact on

the GAG Seq distribution.

Also note that the tails of the stress distributions in the cruise and turning segments

are highest for the cases where the mode of V is 130 kt, 140 kt, and 150 kt. In previous

experiments, it was hypothesized that the tails of the stress distributions for these segments

was driven by high speed flight in the 150 kt to 160 kt regime. Figure 6.15 confirms this

287

Figure 6.15: Equivalent stress distributions produced by the cruise speed study in Experi-
ment 3.3.

hypothesis, as the stress distributions for the 110 kt and 120 kt cases, which have maxima

less than 150 kt, have comparatively short tails.

The influence of these stress distributions on Pf is presented in Figure 6.16. These

results also follow the expected trend: reducing cruise speed improves Pf , while cruising at

faster speeds elevates Pf . The results in Figure 6.16 are statistically significant: for cases 1

to 4, p ≈ 0, p ≈ 0, p = 0.001, and p ≈ 0.

While the first part of Experiment 3.3 suggested that the probabilistic fatigue design

methodology may not be sufficiently sensitive to predict the results of changes in mission

requirements, the cruise speed study demonstrated that stronger effects are relatively easy to

predict with statistical significance.

288

Figure 6.16: Impact of cruise speed on probability of fatigue failure at 5000 FH.

6.6 Conclusions

Experiment 3 tested the ability of the probabilistic fatigue design methodology to predict

changes in the fatigue life characteristics of a conceptual rotorcraft design based on changes

to that design or its mission requirements. This experiment also served as a proof-of-concept

demonstrating the different manners by which this methodology can be integrated into

rotorcraft design and analysis environments.

Experiment 3.1 tested the methodology’s ability to detect changes to the rotor blade

cross section design. Recall Hypothesis 3.1:

Hypothesis 3.1

The preliminary fatigue design methodology will enable quantification of the impact of

blade spar thickness on probability of rotor blade fatigue failure at a specified service

life.

The results of Experiment 3.1 support Hypothesis 3.1. An increase in blade spar

289

thickness was found to improve probability of fatigue failure up to a certain point, after which

the probability of failure increased. This effect was not predictable prior to Experiment 3.1,

which reinforces the usefulness of the methodology.

Experiment 3.2 tested the ability of the probabilistic fatigue design methodology to

predict the impact of vehicle layout changes, namely the tail rotor cant angle. Recall

Hypothesis 3.2:

Hypothesis 3.2

The preliminary fatigue design methodology will enable quantification of the impact of

tail rotor cant on probability of rotor blade fatigue failure at a specified service life.

The results of Experiment 3.2 support Hypothesis 3.2. Increasing tail rotor cant angle

was found to have negative effects on Pf when the baseline mission spectrum was used, but

modifications to the baseline mission spectrum revealed that tail rotor cant can improve Pf

if aft-biased center of gravity locations are more common.

Finally, Experiment 3.3 explored if the methodology could predict the influence of

changes to performance or design mission requirements. Recall Hypothesis 3.3:

Hypothesis 3.3

1. The preliminary fatigue design methodology will enable quantification of the impact

of average rate of climb on probability of rotor blade fatigue failure at a specified

service life.

2. The preliminary fatigue design methodology will enable quantification of the impact

of average cruise speed on probability of rotor blade fatigue failure at a specified

service life.

The results of Experiment 3.3 reject Hypothesis 3.3.1 (i.e. the null hypothesis cannot be

rejected) but support Hypothesis 3.3.2. Inherent uncertainty in the Pf predictions produced

by all structural reliability sampling solution methods mean that the preliminary fatigue

design methodology is not sensitive enough to calculate the relatively minor changes in Pf

due to changes in the rate of climb requirement. However, more impactful effects, like those

290

of the airspeed requirement, were easy to predict with statistical significance. This indicates

that the methodology is better-suited to predicting major effects than minor effects.

291

CHAPTER 7

CONCLUDING REMARKS

7.1 Research Summary

This thesis details the development of a proposed preliminary fatigue design methodology

and the execution of several experiments intended to inform its development and explore its

capabilities.

In Chapter 1, two of the principal disadvantages of rotorcraft, high operating cost and

poor safety record, were investigated. A review of relevant literature and accident statistics

found that both areas could likely be improved by reducing the amount of flight-critical

component failures (Observations 1.1, 1.2, and 1.4). A significant proportion of these failures

are caused by material fatigue, which is an unavoidable damage mode that accumulates

constantly in rotary-wing aircraft during flight (Observation 1.5). Given the need for highly

reliable and maintainable vertical lift aircraft in the near future, new rotorcraft development

programs should aim to guarantee high fatigue life through fatigue-driven design decisions

(Observation 1.3). These observations led to Research Question 0:

Research Question 0

How can the fatigue life of rotor system components be efficiently evaluated for use as

a design driver in a rotorcraft design framework?

In order to answer Research Question 0, four research objectives were proposed:

1. Review the strengths and weaknesses of traditional and modern rotorcraft fatigue

design methods.

2. Formulate a new rotorcraft fatigue design methodology to address the weaknesses of

traditional methods.

3. Conduct virtual experiments to test, validate, and refine different elements of the

292

methodology.

4. Demonstrate the viability of the methodology using a hypothetical fatigue design

exercise.

In Chapter 2, literature related to Research Objective 1 was reviewed, guided by Lit-

erature Questions 1 to 3. First, the process of aircraft design in general, and rotary-wing

aircraft design in particular, was researched. It was determined that fatigue improvement

efforts could begin in the preliminary design stage at the earliest (Observation 2.1).

Next, frameworks and tools used for rotary-wing vehicle design and rotor system analysis

and design were reviewed. It was found that most RAM-C–focused vehicle design tools are

plagued by difficulties populating the inputs with realistic data without resorting to historical

projections (Observation 2.2). Additionally, most physics-based rotor system design tools

only consider fundamental physical characteristics of the system and do not make efforts to

predict reliability and maintainability (Observations 2.3 and 2.4).

Finally, the rotorcraft fatigue design process was discussed, including fatigue damage

theories, traditional fatigue design methods, and new approaches to the fatigue design

problem. Primarily, traditional fatigue design methods are limited by their reliance on

historical flight loads surveys to predict component loads and safety factors to achieve high

fatigue life reliability (Observations 2.5 to 2.7). Several new approaches show promise but

in each case limitations in scope or capability prevent these methods from being used as a

complete design methodology (Observation 2.8).

At the end of Chapter 2, three gaps in the literature were identified that must be closed

in order to answer Research Question 0. Gap 1 addresses the missing link between vehicle

design tools and rotor design tools:

Gap 1

There is a missing link between rotor design tools and rotary-wing vehicle design tools

that prevents physics-based prediction of component service lives and resulting RAM-C

characteristics in the preliminary design stage.

293

Gap 2 addresses the challenge of building a realistic load spectrum for arbitrary vehicle

configurations rapidly and without relying on historical data:

Gap 2

No well-developed methods are available to rapidly derive the load spectrum of revolu-

tionary vertical lift configurations in the preliminary design stage.

Finally, Gap 3 highlights the necessity of removing arbitrary safety factors from the fatigue

design process:

Gap 3

There are no consistent and repeatable methods to ensure high fatigue life reliability in

regular use in the rotorcraft industry.

In Chapter 3, a conjecture to Research Question 0 was formulated based on Gap 1:

Conjecture 0

A new preliminary fatigue design methodology can be created by enhancing traditional

fatigue design methodologies with modern rotorcraft analysis tools and integrating new

methods to improve flexibility and runtime. This enables the use of rotor component

fatigue life as a design driver for future rotary-wing vehicle development programs.

Additionally, two subsequent research questions based on Gaps 2 and 3 were posed. Research

Question 1 addresses the computational expense of using comprehensive analysis load

predictions to build a complete load spectrum:

Research Question 1

How can a complete load spectrum be rapidly derived using physics-based comprehen-

sive analysis tools?

Research Question 2 addresses the need to probabilistically solve the fatigue life problem

rather than solving deterministically with safety factors:

294

Research Question 2

How can probabilistic methods be applied to efficiently remove the dependence of

traditional fatigue design methodologies on reductions and safety factors?

To address Research Objective 2, an initial design of the preliminary fatigue design method-

ology was diagrammed, which can be found in Figure 3.1. Research Question 3 was

proposed to test the capabilities of the methodology:

Research Question 3

Does the preliminary fatigue design methodology enable evaluation of the relative

impact of common preliminary design variables on the probability of fatigue failure of

a flight-critical component in a conceptual helicopter design?

In Chapter 4, scalar surrogate modeling methods were reviewed and proposed as a

solution to Research Question 1:

Hypothesis 1

At least one of the surveyed surrogate modeling methods can be used to derive a

complete load spectrum from comprehensive analysis results, enabling rapid design

space exploration.

To address Research Objective 3, Experiment 1 was developed to test Hypothesis 1 and

determine if surrogate models could improve upon the slow execution speed of comprehen-

sive analyses.

In Experiment 1a, a multidisciplinary analysis environment was developed coupling

three state-of-the-art helicopter analysis programs: NDARC for weight prediction and

performance analysis, RCAS for comprehensive and structural analysis, and VABS for

rotor blade cross section design and analysis. A generic single main rotor helicopter model

was implemented within the MDA environment to serve as a test case. The generic SMR

helicopter was subject to a number of extreme flight conditions to identify the critical fatigue

point and study the sensitivity of equivalent stress at that point to different flight envelope

variables.

295

In Experiment 1b, three popular surrogate modeling techniques (response surface meth-

ods, artificial neural networks, and Gaussian process models) were compared based on their

ability to accurately predict mean stress and stress amplitude at the critical fatigue point.

Experiment 1 supported Hypothesis 1: ANN and GPM surrogate models were found to

offer satisfactory predictive performance. Furthermore, the application of surrogate model-

ing greatly reduces the number of MDA samples that are required to solve a probabilistic

fatigue life problem.

In Chapter 5, structural reliability methods were reviewed and proposed as solution to

Research Question 2:

Hypothesis 2

At least one of the surveyed structural reliability sampling methods can be used to

efficiently remove the dependence on reductions and safety factors by quantifying the

reliability of fatigue life predictions using Miner’s sum.

To further Research Objective 3, Experiment 2 was designed to test Hypothesis 2 and

determine if structural reliability methods could provide more trustworthy solutions to the

fatigue life prediction problem than traditional deterministic methods.

In Experiment 2a, a notional fatigue reliability problem was developed based on an

assumed load distribution, a probabilistic S-N curve, and the Miner’s sum fatigue life

prediction model. A number of popular solution methods including analytical methods

(first- and second-order structural reliability methods), sampling methods (Monte Carlo,

quasi-Monte Carlo, Latin hypercube sampling, and directional sampling), and one hybrid

method (importance sampling) were compared based on their ability to efficiently and

accurately solve the notional fatigue life problem.

These results were validated in Experiment 2b, where the notional fatigue life problem

was replaced by a complete helicopter fatigue analysis using a realistic mission spectrum

and stress predictions from the surrogate models developed in Experiment 1b. The structural

reliability solutions were also compared against hypothetical deterministic solutions based

296

on traditional fatigue design methods available in the literature.

Experiment 2 partially supported Hypothesis 2: solutions to the fatigue life problem

were found using structural reliability methods, but the complexity of the problem and its

input distributions meant that Monte Carlo simulation was the only useful method, which

suffers from low efficiency at low probabilities of failure.

After Experiments 1 and 2, the probabilistic fatigue design methodology was finalized

based on the results of these experiments. For the reader’s convenience, a flow chart

describing the final methodology is reprinted below.

Existing
fatigue data

Probabilistic
S-N curve

Damage
hypothesis

Load
spectrum

MC
simulation

Safe life

Beam cross-
section model

Sectional
properties

Stress/strain
recovery

ANN
surrogate

Rotor compre-
hensive model

Update
model

Load
histories

Vehicle
perf. model

Flight
conditions

RQ 1

RQ 2

Mass

Stiffness

Flight
state

Atmos.

Figure 5.15: Flowchart of the preliminary fatigue design methodology after Experiments 1
and 2 (reprinted from Page 263).

Finally, to address Research Objective 4, Chapter 6 poses three hypotheses intended to

297

establish the capabilities of the preliminary fatigue design methodology. These hypotheses

were based on literature review and observations related to the fatigue life problem in

Experiments 1 and 2:

Hypothesis 3.1

The preliminary fatigue design methodology will enable quantification of the impact of

blade spar thickness on probability of rotor blade fatigue failure at a specified service

life.

Hypothesis 3.2

The preliminary fatigue design methodology will enable quantification of the impact of

tail rotor cant on probability of rotor blade fatigue failure at a specified service life.

Hypothesis 3.3

1. The preliminary fatigue design methodology will enable quantification of the impact

of average rate of climb on probability of rotor blade fatigue failure at a specified

service life.

2. The preliminary fatigue design methodology will enable quantification of the impact

of average cruise speed on probability of rotor blade fatigue failure at a specified

service life.

Experiment 3 was designed to address Hypotheses 3.1 to 3.3 and serve as a case study to

demonstrate different potential applications of the preliminary fatigue design methodology.

Experiment 3.1 studied the impact of blade spar thickness on probability of fatigue failure

of the main rotor blade. This experiment supported Hypothesis 3.1 by demonstrating that

the methodology could predict, with statistical significance, how the probability of fatigue

failure decreases with slight increases in thickness, then increases as potentially-damaging

aeroelastic effects are encountered in the high speed flight regime.

Next, Experiment 3.2 established a link between tail rotor cant angle and probability

of main rotor blade fatigue failure. It was found that a positive tail rotor cant angle can

298

improve fatigue life if the mission spectrum used in fatigue life prediction defines a tail-

heavy flight condition. This experiment supported Hypothesis 3.2 by establishing that the

fatigue methodology is able to quantify these effects with statistical significance.

Finally, Experiment 3.3 attempted to predict the influence of design mission requirements

on fatigue life. Although this experiment failed to support a link between rate of climb and

fatigue life, leading to the rejection of Hypothesis 3.3.1, it supported Hypothesis 3.3.2. The

more significant effects of airspeed on fatigue life were easier to quantify than the subtle

effects of rate of climb. As a whole, the research described in Chapters 4 to 6 supported

Conjecture 0.

7.2 Contributions

The preliminary fatigue design methodology provides a significant advantage over the

traditional fatigue design methodologies described in Section 2.2.2 and the new approaches

described in Section 2.3.

This methodology utilizes artificial neural network surrogate models to speed up the

prediction of fatigue stress components derived from physics-based multidisciplinary anal-

ysis tools. Notably, this removes the need for extrapolations from historical fatigue data

when designing new rotorcraft, which is a notable drawback of traditional fatigue design

methods. If the physics-based models that underlie the loads and stress predictions are able

to accurately predict results for revolutionary vertical lift aircraft, this methodology will be

applicable to exotic configurations. Because little to no historical data exists for this type of

aircraft, traditional fatigue design methodologies would be inapplicable.

Furthermore, structural reliability solution methods were proven effective at predicting

fatigue life or probability of fatigue failure. This obviates the need for overly-conservative

and potentially unreliable safety factors and reductions that plague traditional fatigue design

methodologies. Shifting fatigue design towards probabilistic design methods provides

greater confidence in fatigue life predictions which can improve flight safety, reduce weight

299

and over-engineering, and reduce waste due to overly-aggressive component replacement

times.

Finally, the preliminary fatigue design methodology was proven to enable the use of

fatigue life as a design driver for new rotorcraft programs through a series of case studies.

Although the methodology as demonstrated in this thesis is not a complete rotorcraft design

environment, it could be incorporated into a preexisting physics-based design environment,

such as those described in Section 2.1.3, to provide richer results. This would require

adapting this methodology to the environment’s preferred performance tool, comprehensive

code, and beam analysis, then incorporating the fatigue life predictions as a design objective

or constraint.

This methodology is applicable to a number of specific design activities:

1. In the field of rotor blade design, engineers could make use of the methodology to run

trade-off studies or optimization problems concerning rotor blade weight, dynamic

characteristics, ultimate strength, and resistance to fatigue failure.

2. During the preliminary design stage, designers can conduct layout excursions trading

performance, flight dynamics, handling qualities, and fatigue life of flight-critical

components. Notably, the fatigue influence of minor changes in vehicle layout can be

predicted with confidence.

3. During requirements definition or verification, customers such as government agencies,

military procurement teams, or urban air mobility operators can assess the impact of

their mission requirements on flight-critical component replacement intervals.

As described in Chapter 1, the fatigue life of certain components has a direct connection to

the reliability, availability, maintainability, and cost of the fielded helicopter design.

7.3 Findings and Recommendations

This research enables more rigorous fatigue design than the heuristics and trends described

in Section 1.5. Based on the fatigue analysis of the generic SMR helicopter in Experiment 3,

300

some general recommendations regarding rotorcraft fatigue design can be made.

First, Experiment 3.1 revealed unexpected fatigue-related effects that were not predicted

prior to the experiment. Namely, certain rotor blade designs experience intense aeroelastic

effects during high-speed forward flight that significantly increased the equivalent stress at

the critical fatigue point. This type of high-order structural–aerodynamic effect is extremely

difficult to account for using heuristics alone as it depends on the rotor blade design,

including structural layout and choice of materials; the configuration of the rotor system

and its controls; and the flight condition and configuration of the helicopter. Thus, when

considering changes to such critical components, rotorcraft engineers should base their

decisions on rigorous analysis and fatigue life predictions rather than relying on prior

knowledge or experience.

Next, Experiment 3.2 highlighted the sensitivity of rotor blade fatigue life to changes

in vehicle layout, relative subsystem positions and orientations, and payload configuration.

This emphasizes the need to conduct fatigue design activities from a holistic viewpoint.

Rotor blade design and vehicle design are on different “scales”, which means they would

traditionally be designed independently from one another. In reality, the two are highly

intertwined, especially in the context of fatigue life prediction, which is inherently a multidis-

ciplinary process. In fatigue design, the whole is not equal to the sum of its parts. Rotorcraft

designers should ensure that their design methods are able to account for all systems on the

helicopter regardless of scale or important interactions and holistic effects could be missed.

Finally, Experiment 3.3 reveals the significance that design mission and point perfor-

mance requirements can have on helicopter fatigue life. Minor changes in the design cruise

speed resulted in significant changes in probability of rotor blade fatigue failure. Orga-

nizations that write requirements for new rotorcraft should be aware of the impact these

requirements have on the RAM-C characteristics of the final design. For example, it is

desirable to achieve a high cruising speed for UAM concepts in order to offer significant

time savings over terrestrial modes of transportation. However, this may come at the expense

301

of reduced rotor blade fatigue life, which will significantly increase operating costs and may

endanger the economic feasibility of the service as a whole.

7.4 Limitations and Future Work

The preliminary fatigue design methodology developed as a part of this research is a

promising proof-of-concept. However, it features a number of limitations that restrict

its effectiveness which could be addressed in future research by interested parties. As

limitations specific to individual experiments were already described in previous chapters,

this section focuses only on limitations with the overall implementation.

First, this iteration of the methodology only considers a single critical point of failure on

the component of interest. This restriction was brought about by the limitations of the scalar

surrogate models used to predict mean stress and stress amplitude. Recently, techniques

known as reduced-order modeling (ROM) have become popular, especially in the field of

fluid-structure interaction [134, 135], which includes rotorcraft aeromechanics. ROMs allow

the prediction of entire fields rather than single scalar values. The increased computational

complexity associated with ROMs puts their application beyond the scope of this thesis, but

they could potentially be used to predict a field of stress invariants or stress tensors on the

entire rotor blade cross section, which would make the single critical fatigue point analysis

obsolete.

The cyclic load analysis used throughout this thesis considered only the mean and

amplitude of the periodic stress signal, effectively limiting analysis to the first harmonic of

stress and neglecting any higher-frequency harmonics. If a Fourier analysis was performed

on the periodic stress signal, a number of harmonics, including 1/rev, 2/rev, 3/rev, 4/rev,

etc. terms, would be apparent [29]. The higher-order terms have lower magnitudes than

the 1/rev component, but they account for a greater number of total fatigue cycles due to

their higher frequency. This could have a significant impact on the predicted fatigue life

of the rotor blade. Higher-order harmonics are also a concern for helicopter components

302

in the non-rotating system. In conventional designs, the main rotor passes vibratory loads

at multiples of nB/rev (where nB is the number of blades in the rotor) through the hub to

the fuselage [136]. In the case of the four-bladed generic SMR helicopter, 4/rev, 8/rev,

12/rev, etc. vibratory loads would be required to predict the fatigue life of components in

the non-rotating system. These higher-order harmonics could be captured using Fourier

analysis of the periodic stress waveform, or by implementing the rainflow cycle counting

method described in Section 2.2.1.4.

A related limitation is that the multidisciplinary analysis environment developed in this

research only considers periodic flight conditions. Transient conditions such as in-flight

maneuvers, turbulence, rotor spin-up, and engine shut down, which are known to contribute

significantly to fatigue damage, are not modeled [4]. To address this limitation, simulations

of transient conditions could be developed in the comprehensive code. The stress histories

produced during each transient condition can then be simplified using cycle counting and

approximated with a separate surrogate model or reduced-order model to incorporate these

conditions into the fatigue life prediction problem.

Finally, Experiment 1b revealed the potential unsuitability of the signed von Mises stress

invariant when the data includes stress histories that cross zero. A signed stress invariant

was necessary in this research to properly model both compression and tension loading, but

the nonlinearities introduced by the signed von Mises stress reduced the accuracy of the

surrogate models used to predict the stress responses. Future work should explore other

invariants of the stress tensor [137] and qualify the advantages and disadvantages of each

in the context of the rotorcraft fatigue design problem Alternatively, ROMs may enable

prediction of the entire stress tensor, which would enable the use of multiaxial fatigue life

prediction models, replacing the uniaxial S-N curve used in this research.

7.5 Future Applications

Beyond the future work required to address the limitations identified previously, this method-

303

ology can be expanded for applications to both existent conventional rotorcraft and concep-

tual revolutionary vertical lift concepts.

7.5.1 Applications to Existent Rotorcraft

The generic SMR helicopter model used in this research can serve as a starting point for

modeling other helicopters of the same configuration. Because the NDARC and RCAS

models are modular, it is relatively simple to swap or resize components as necessary to

tune the models to match different rotorcraft. A new VABS model would need to be created

to match the construction and materials of the rotor blade. In most cases, this would require

a partnership with a rotorcraft manufacturer since the design details of nearly all helicopters

are intellectual property.

The fidelity of the models could also be improved. For example, the NDARC rotor power

consumption model can be tuned to wind tunnel test results or flight data provided by the

manufacturer. Detailed analysis of rotor wake characteristics and aerodynamic interactions

would benefit the accuracy of the RCAS model immensely.

Then, this model can be used for validation and verification of the preliminary fatigue

design methodology, which was not possible in this thesis. Predicted rotor blade loads and

stresses can be compared to results from instrumented rotor blades to validate the accuracy

of the NDARC, RCAS, and VABS models. If these results show good agreement, a new

probabilistic mission spectrum based on the industry partner’s design missions or fleet usage

data will be created. Then, the preliminary fatigue design methodology can be used to

predict fatigue life at the manufacturer’s desired level of reliability. These results can be

compared directly to the manufacturer’s own fatigue life substantiation to verify the new

methodology’s accuracy.

In certain cases, such as advanced composite rotor blades with infinite fatigue life,

it may not be practical or desirable to apply this methodology to the rotor blade. The

methodology could instead be applied to other components on the rotorcraft with a few

304

simple modifications. The RCAS model would need to include a finite element node at

one or more locations on that component, and a new structural model would be required to

predict stresses throughout the structure. If the component cannot be approximated with a

one-dimensional beam, then a three-dimensional finite element model may be required. This

approach could be used to substantiate the fatigue life of other flight critical components in

the rotor system, like the pitch links or rotor shaft, or structural elements in the non-rotating

system.

If a partnership cannot be formed with a rotorcraft manufacturer, then the methodology

could be validated by analogy to wind turbines or even fixed-wing aircraft. In the wind

turbine case, RCAS and VABS can still be used to provide the aeroelastic rotor model, and

NDARC would not be required. Design and loads data could be obtained through partnership

with NREL, who have expressed interest in using RCAS for wind turbine modeling [112].

Adapting the methodology to a fixed-wing aircraft would require more significant reworking,

since the sources of fatigue damage in fixed-wing aircraft differ significantly from their

rotary-wing counterparts.

7.5.2 Applications to Revolutionary Vertical Lift Concepts

After validating the preliminary fatigue design methodology by application to existent

rotorcraft, it can be used for the design, development, and eventual certification of revo-

lutionary vertical lift aircraft. This will require partnering with manufacturers to develop

entirely new NDARC, RCAS, and VABS models for each vehicle, since they are unlikely

to match the single main rotor configuration used in this research. Since many of the

higher-fidelity aerodynamic models in RCAS require tuning to match wind tunnel or flight

test data, it will be necessary to expand the comprehensive code with higher-fidelity first-

principles aerodynamic models, such as vortex particle methods [16] or dual-solver hybrid

methods [48].

Then, the preliminary fatigue design methodology can be integrated into the manufac-

305

turer’s preliminary design processes to enable the use of fatigue life as a design driver or

constraint. This enables the designers to make fatigue-oriented design decisions, ultimately

improving the safety and RAM-C metrics of the aircraft. As the design process progresses,

the models and mission spectrum can be upgraded to reflect new knowledge about the

aircraft and its intended use. A sufficiently accurate model tuned to match data from wind

tunnel and flight tests can also be used to support the certification process.

The procedures, models, and methodology developed in this research represent a sig-

nificant down payment towards enabling physics-based fatigue life substantiation in the

preliminary design stage, which is the first step in completing the “missing link” between

physics-based design tools and RAM-C prediction tools. Physics-based RAM-C assessment

methodologies such as that described in this thesis are essential for the design of successful,

reliable, and financially-competitive rotorcraft. As transformative vertical lift aircraft take

to the skies, operators and passengers alike will take comfort in the fact that these vehicles

have been rigorously engineered to ensure a safe, smooth, and trouble-free flight.

306

Appendices

307

APPENDIX A

OPENMDAO PYTHON WRAPPERS

This appendix describes a series of OpenMDAO wrappers that enable control and execution

of the different software elements of the multidisciplinary analysis (MDA) environment.

Wrappers were created for the RCAS and VABS programs. An initial version of the RCAS

wrapper was generously provided by Michael Avera of the Army Research Laboratory. The

VABS wrapper was created from scratch for this research; it is designed to work only with

the PreVABS pre-processor. For NDARC, the publicly available RCOTOOLS wrapper was

used. Each wrapper is written in the Python programming language. The basic functionality

of each wrapper is as follows:

1. Read a pre-existing input file for the program and create a representation of that

information using Python data structures.

2. Implement a syntax (“access strings”) that allow the user to easily map OpenMDAO

variables to specific locations within the Python data structure.

3. Generate a new input file that represents the original model with changes to specific

variables from OpenMDAO.

4. Execute the new input file, parse the results, and return the results to OpenMDAO.

A.1 RCAS Wrapper

The RCAS OpenMDAO wrapper is divided into two files, RCASparse.py and RCASwrap-

per.py. RCASparse.py is responsible for parsing the RCAS input and output files as

well as building a new input file reflecting variable changes from OpenMDAO. This file

is capable of parsing the RCAS master log and arbitrary tabular outputs generated by the

user-defined output module. RCASwrapper.py provides an interface between OpenMDAO

and RCASparse.py. This wrapper was tested with RCAS version 17, Python version 3.9,

308

and OpenMDAO version 3.8.

Listing A.1: RCASparse.py
1 """
2 RCAS Input/Output File Parser for OpenMDAO v3.2
3
4 Original Author: Michael Avera - U.S. Army Research Laboratory - VTD
5 Current Author: Joseph Robinson - Aerospace Systems Design Laboratory
6 """
7
8 from pyparsing import CaselessLiteral, Combine, ZeroOrMore, Literal, \
9 Optional, Word, alphanums, \

10 oneOf, nums, LineStart, \
11 OneOrMore, srange
12 from numpy import array, nan, append
13 from openmdao.utils.file_wrap import ToFloat, ToInteger, FileParser
14 from collections import OrderedDict
15
16 class RCASlist(object):
17 """Utility to ease the task of constructing a formatted RCAS input file."""
18
19 def __init__(self, comp):
20 # self.rcasfile = None
21 self.rcas_dict = None
22 self.title = ""
23 self.lines = []
24 self.comp = comp
25
26 def parse_input(self,file):
27 """
28 Parses an existing RCAS script file and creates a dict to hold the
29 data.
30
31 Parameters
32 ----------
33 file : string
34 Path to the original RCAS input deck.
35
36 Returns
37 -------
38 None.
39
40 """
41
42 self.lines = []
43 currentscreen = ""
44 currentpage = 0
45 linenum = 0
46
47 infile = open(file, ’r’)
48 data = infile.readlines()
49 infile.close()
50
51 # tokens
52 script_begin_token = LineStart()+Literal("***begin-RCAS-file: scriptfile ***"

↪→)
53 script_end_token = LineStart()+Literal("*****end-RCAS-file: scriptfile ***"

↪→)
54 screen_token = LineStart()+CaselessLiteral("S ")

309

55 page_token = LineStart()+CaselessLiteral("N")
56 data_token = LineStart()+CaselessLiteral("a ")
57 data2_token = LineStart()+CaselessLiteral("c ")
58
59 comment_token = Literal("!")
60 menu_token = LineStart()+CaselessLiteral("M ")
61
62 # types of pieces of data
63 digits = Word(nums)
64 dot = "."
65 sign = oneOf("+ -")
66 nan = Literal("--")
67 ee = CaselessLiteral(’E’) | CaselessLiteral(’D’)
68 # num_int = ToInteger(Combine(Optional(sign) + Optional(digits) + digits))

↪→ #RCAS can use 2 digit int
69 num_int = ToInteger(Combine(Optional(sign) + digits)) #JNR debug
70 num_float = ToFloat(Combine(Optional(sign) +
71 ((digits + dot + Optional(digits)) |
72 (dot + digits)) +
73 Optional(ee + Optional(sign) + digits)))
74 textvalue = Word(alphanums+"."+"_"+"&"+"("+")")
75 commands = Word(srange("[a-zA-Z]")) + ZeroOrMore(Word(srange("[a-zA-Z]")))
76 mixed_exp = ToFloat(Combine(Word(nums) + Optional(dot) + Optional(Word(nums)

↪→) + ee + Optional(sign) + digits))
77 vector = Combine(digits+Literal(":")+digits)
78 numval = nan | vector | mixed_exp | num_float | num_int
79
80 # types of different lines of data
81 screenline = (screen_token.setResultsName("token") + \
82 Word(srange("[A-Z]")).setResultsName("name"))
83 menuline = (menu_token.setResultsName("token") + \
84 Word(srange("[A-Z]")).setResultsName("name"))
85 dataline = (data_token.setResultsName("token") + \
86 OneOrMore(numval | textvalue).setResultsName("data"))
87 dataline2 = (data2_token.setResultsName("token") + \
88 OneOrMore(numval | textvalue).setResultsName("data"))
89
90 # initialize variables for the loop
91 self.header=[]
92 self.footer=[]
93 scriptflag = False
94 record_name_flag = False
95 rcas_dict = OrderedDict()
96 screen_dict = self.generate_screen_dict()
97 current_name = None
98 current_naming_screen = None
99 cmd_ctr = 0

100 menu_ctr = 0
101
102 # loop through the input file
103 for line in data:
104 base_line = line
105 line = line.strip()
106
107 # empty lines
108 if not line:
109 continue
110
111 # comment lines
112 if comment_token.searchString(line): #removes comment but doesnt

↪→ continue parsing

310

113 if scriptflag:
114 line = line.split("!",1)[0]
115 if not line:
116 continue
117
118 # no further parsing if script header hasn’t been found yet
119 if script_begin_token.searchString(line):
120 scriptflag = True
121 self.header.append(base_line)
122 continue
123 elif not scriptflag:
124 self.footer.append(base_line)
125 continue
126
127 elif screenline.searchString(line): #Lines starting with "S"
128 screen = screenline.parseString(line)
129 currentscreen = screen.name
130 currentpage = 0
131 linenum = 0
132 rcas_dict[currentscreen] = {
133 "data": {currentpage : { linenum : {}}},
134 "type": "screen",
135 }
136
137 if currentscreen.upper() in screen_dict:
138 # this screen will lend its data to its non-unique screens
139 record_name_flag = True
140 current_naming_screen = currentscreen
141
142 if current_naming_screen and (currentscreen.upper() in screen_dict[

↪→ current_naming_screen.upper()]):
143 # this screen is non-unique
144 new_current_screen_key = current_name + "-" + currentscreen
145 rcas_dict[new_current_screen_key] = rcas_dict.pop(currentscreen)
146 currentscreen = new_current_screen_key
147
148 elif page_token.searchString(line): #Lines starting with "N"
149 currentpage = currentpage + 1
150 linenum = 0
151 rcas_dict[currentscreen]["data"][currentpage] = { linenum : {}}
152
153 elif dataline.searchString(line): #Lines starting with "a"
154 values = dataline.parseString(line)
155 rcas_dict[currentscreen]["data"][currentpage][linenum] = values.data.

↪→ asList()
156 linenum = linenum + 1
157
158 if record_name_flag:
159 # looking for the name of current_naming_screen
160 current_name = values.data.asList()[0].upper()
161 new_naming_screen_key = current_name + "-" +

↪→ current_naming_screen
162 rcas_dict[new_naming_screen_key] = rcas_dict.pop(

↪→ current_naming_screen)
163 record_name_flag = False
164
165 elif dataline2.searchString(line): #Lines starting with "c"
166 values = dataline2.parseString(line)
167 linenum = linenum - 1
168 rcas_dict[currentscreen]["data"][currentpage][linenum] = values.data.

↪→ asList()

311

169 linenum = linenum + 1
170
171 elif script_end_token.searchString(line):
172 scriptflag = False
173 self.footer.append(base_line)
174 self.footer.append("\n")
175
176 elif menuline.searchString(line): #Lines starting with "M"
177 menu = menuline.parseString(line)
178 currentmenu = menu.name
179 currentmenu_key = str(menu_ctr) + "-" + currentmenu
180 rcas_dict[currentmenu_key] = {
181 "data": {},
182 "type": "menu",
183 }
184 menu_ctr = menu_ctr + 1
185
186 # anything left over should just be commands like EXIT, COPYAEROCOMP, etc
187 else:
188 command = commands.parseString(line)
189 currentcommand = " ".join(command)
190 currentcommand_key = str(cmd_ctr) + "-" + currentcommand
191 rcas_dict[currentcommand_key] = {
192 "data": {},
193 "type": "command",
194 }
195 cmd_ctr = cmd_ctr + 1
196
197 self.rcas_dict = rcas_dict
198
199 def parse_rcasmasterlog(self,log_file):
200 """
201 Parse the rcasmaster001.log file.
202
203 Parameters
204 ----------
205 log_file : string
206 Path to RCAS log file.
207
208 Returns
209 -------
210 dataout : dict
211 Dictionary of output data from log file.
212
213 """
214
215 # f = open(self.rcasfile+str(num)+’/’+"rcasmaster001.log", ’r’)
216 f = open(log_file, ’r’)
217 log = f.readlines()
218 f.close()
219
220 PWRTSH_token = Literal("Shaft Total Power")
221 PWRISH_token = Literal("Shaft Induced Power")
222 PWRPSH_token = Literal("Shaft Profile Power")
223 sigma_token = Literal("Solidity")
224 radius_token = Literal("Rotor Radius")
225 coll_token = Literal("Swashplate Coll")
226 ct_token = Literal("Thrust Coeff")
227 cp_token = Literal("Power Coeff")
228 aoa_token = Literal("TPP Ang. of Attack")

312

229 conv_token = Literal("Trim solution has been reached")
230 nonconv_token= Literal("Trim did not converge")
231 nonconv2_token=Literal("No trim data available")
232 nonconv3_token=Literal("Floating point exception: Invalid operation")
233 wind_token =Literal("Wind X")
234 density_token =Literal(’Air Density’)
235 vtip_token =Literal(’Blade Tip Speed’)
236
237 dataout={’PWRTSH’:array([]), ’PWRISH’:array([]), ’PWRPSH’:array([]), ’sigma’:

↪→ array([]), ’radius’:array([]),
238 ’conv’:False, ’ct’:array([]), ’cp’:array([]), ’aoa’:array([]), ’wind’:

↪→ array([]), ’density’:array([]), ’vtip’:array([]) }
239 skip = False
240
241 for line in log:
242 line = line.strip()
243 if (nonconv_token.searchString(line) or nonconv2_token.searchString(line)
244 or nonconv3_token.searchString(line)):
245 skip=True
246 dataout[’conv’] = False
247 for k,v in dataout.items():
248 if k != "conv":
249 dataout[k]=append(dataout[k],nan)
250 elif conv_token.searchString(line):
251 dataout[’conv’]=True
252 skip=False
253
254 if skip==False:
255 if PWRTSH_token.searchString(line):
256 dataout[’PWRTSH’]=append(dataout[’PWRTSH’],float(line.split("(HP)

↪→ =")[1]))
257 if PWRISH_token.searchString(line):
258 dataout[’PWRISH’]= append(dataout[’PWRISH’],float(line.split("(HP

↪→)=")[1]))
259 if PWRPSH_token.searchString(line):
260 dataout[’PWRPSH’]=append(dataout[’PWRPSH’],float(line.split("(HP)

↪→ =")[1]))
261 if sigma_token.searchString(line):
262 dataout[’sigma’]= append(dataout[’sigma’],float(line.split()[2]))
263 if radius_token.searchString(line):
264 dataout[’radius’]=append(dataout[’radius’],float(line.split()[3])

↪→)
265 if ct_token.searchString(line):
266 dataout[’ct’]=append(dataout[’ct’],float(line.split("=")[1].split

↪→ ()[0]))
267 if cp_token.searchString(line):
268 dataout[’cp’]= append(dataout[’cp’],float(line.split("=")[1].

↪→ split()[0]))
269 if aoa_token.searchString(line):
270 dataout[’aoa’]=append(dataout[’aoa’],float(line.split("=")[1].

↪→ split()[0]))
271 if wind_token.searchString(line):
272 dataout[’wind’]=append(dataout[’wind’],float(line.split("=")[2].

↪→ split()[0]))
273 if density_token.searchString(line):
274 dataout[’density’]=append(dataout[’density’],float(line.split("="

↪→)[1].split()[0]))
275 if vtip_token.searchString(line):
276 dataout[’vtip’]=append(dataout[’vtip’],float(line.split("=")[1].

↪→ split()[0]))
277

313

278 return dataout
279
280 def parse_rcastable(self,tab_file,cols):
281 """
282 Parse a RCAS output table file.
283
284 Parameters
285 ----------
286 tab_file : string
287 Path of the table file to be parsed.
288 cols : string
289 Range of columns to include.
290 Example: "2" will include only the second column.
291 "2:11" will include the second through eleventh columns.
292
293 Returns
294 -------
295 data_out : numpy.array
296 Array containing the requested data.
297
298 """
299
300 # parse column choice
301 if ":" in cols:
302 colstart = int(cols.split(":")[0])
303 colend = int(cols.split(":")[1])
304 else:
305 colstart = int(cols.split(":")[0])
306 colend = colstart
307
308 # open file and set marker
309 parser = FileParser()
310 parser.set_file(tab_file)
311 parser.mark_anchor("!M YY1")
312
313 # find number of rows in table
314 num_lines = len(open(tab_file, ’r’).readlines())
315 rows = num_lines - (parser._current_row+1)
316
317 data_out = parser.transfer_2Darray(1, colstart, rows, colend)
318
319 return data_out
320
321 def generate(self,output_filename):
322 """
323 Writes RCAS input file from self.rcas_dict
324
325 Parameters
326 ----------
327 output_filename : string
328 Path to the file to be written.
329
330 Returns
331 -------
332 None.
333
334 """
335
336 currentkey = ""
337 currentpage = 0

314

338 self.output=[]
339 for line in self.header:
340 self.output.append(line)
341
342 for key,value in self.rcas_dict.items():
343 pages = value["data"]
344 if ’-’ in key:
345 trimmed_key = key.split(’-’)[1]
346 else:
347 trimmed_key = key
348
349 if value["type"] == "command":
350 self.output.append("\n")
351 self.output.append("%s\n" % trimmed_key)
352 continue
353
354 if key != currentkey:
355 self.output.append("\n")
356 if value["type"] == "screen":
357 self.output.append("S %s\n" % trimmed_key)
358 elif value["type"] == "menu":
359 self.output.append("M %s\n" % trimmed_key)
360
361 currentkey = key
362 currentpage = 0
363
364 for page,lines in pages.items():
365 if page != currentpage:
366 while page !=currentpage:
367 self.output.append("N\n")
368 currentpage = currentpage + 1
369
370 for line,data in lines.items():
371 if data:
372 self.output.append("a %s\n" % ’ ’.join(map(str,data)))
373
374 self.output.append("\n")
375
376 for line in self.footer:
377 self.output.append(line)
378
379 outfile = open(output_filename, ’w’)
380 outfile.writelines(self.output)
381 outfile.close()
382
383 def generate_screen_dict(self):
384 """
385 A function to generate a dict of non-unique RCAS screens
386
387 Returns
388 -------
389 screen_dict : dict
390 A dictionary of the form:
391 <NAMING_SCREEN_1>: [
392 <NAMED_SCREEN_1>,
393 <NAMED_SCREEN_2>,
394 <etc.>,
395],
396 <NAMING_SCREEN_2>: [
397 <etc.>,

315

398],
399 <etc.>
400
401 """
402 screen_dict = {
403 "SELSUBSYS": [
404 "SUBSYSTYP",
405 "SUBSYSCOMP",
406 "PSORIGIN",
407 "PSORIENT",
408 "CONNCONST",
409 "CORNODE",
410 "BLADECOMP",
411 "ROTORPARAM",
412 "MBC",
413 "SINGLEBLADE"
414],
415 "PRIMITIVEID": [
416 "ELDATASETID",
417 "FENODE",
418 "RIGIDBODYMASS",
419 "RIGIDBAR",
420 "HINGE",
421 "PSMODALDAMP",
422 "SLIDE",
423 "SPRELE",
424 "NLBEAMDEF",
425 "GCBEAMDEF",
426 "CONTROLCONNECT",
427],
428 "AEROSUPCOMPID": [
429 "SUPCMPTYP",
430 "COMPID",
431 "CPORIGIN",
432 "CPORIENT",
433 "INFLOW",
434 "DYNINFDATA",
435 "AEROPTION",
436 "THRUSTAVE",
437 "SUPCMPTOSS",
438 "TIPLOSS"
439],
440 "AEROCOMPID": [
441 "COMPTYPE",
442 "AERONODE",
443 "AEROSEG",
444 "BODYAEROTAB",
445],
446 }
447
448 return screen_dict

Listing A.2: RCASwrapper.py
1 """
2 RCAS Wrapper for OpenMDAO v3.2
3
4 Original Author: Michael Avera - U.S. Army Research Laboratory - VTD
5 Current Author: Joseph Robinson - Aerospace Systems Design Laboratory
6 """

316

7
8 from openmdao.api import ExternalCodeComp
9 import os, shutil

10 from modules.RCASparse import RCASlist
11 from modules.SupportingFunctions import add_runid
12
13 class RCASwrapper(ExternalCodeComp):
14 """A file wrapper for RCAS."""
15
16 def __init__(self,rcaspath,inputpath,rcasfile,inputs_list,outputs_list,
17 save_parsed_original=False,force_linear=False,
18 parallel=False,saveallruns=False,logger=None):
19 # execute ExternalCodeComp.__init__()
20 super(RCASwrapper,self).__init__()
21
22 # assign fields
23 self.rcaspath = rcaspath
24 self.inputpath = inputpath
25 self.rcasfile = rcasfile
26 self.inputs_list = inputs_list
27 self.outputs_list = outputs_list
28 self.inputs_dict = {}
29 self.outputs_dict ={}
30 self.save_parsed_original = save_parsed_original
31 self.force_linear = force_linear
32 self.parallel = parallel
33 self.saveallruns = saveallruns
34 self.logger = logger
35
36 def setup(self):
37 """
38 Setup method.
39
40 Returns
41 -------
42 None.
43
44 """
45
46 # File I/O variables
47 # These should be set by run script before executing setup()
48 if not self.inputpath:
49 print("[RCASwrapper]:INPUT FILEPATH NOT SET! Did you forget to set rcas.

↪→ inputpath?")
50 if not self.rcaspath:
51 print("[RCASwrapper]:RCAS FILEPATH NOT SET! Did you forget to set rcas.

↪→ rcaspath?")
52 if not self.rcasfile:
53 print("[RCASwrapper]:RCAS INPUT FILE NOT SET! Did you forget to set rcas.

↪→ rcasfile?")
54
55 # External Code public variables
56 self.orig_input_file = self.rcasfile + ".rcas"
57 self.script = RCASlist(self)
58 self.rcaspath = shutil.copy(src=self.rcaspath,dst=os.getcwd())
59
60 # Parse the input file
61 self.script.parse_input(os.path.join(self.inputpath,self.orig_input_file))
62
63 if self.save_parsed_original:
64 self.script.generate("Original_Parsed_RCAS_job.rcas")

317

65
66 # Prepare inputs and outputs
67 for item in self.inputs_list:
68 self.add_input(item[0],**item[2])
69 self.inputs_dict[item[0]] = item[1]
70 for item in self.outputs_list:
71 om_var = item[0] # variable name in openMDAO
72 rcas_var = item[1] # variable name in RCAS wrapper
73 opt_dic = item[2] # dictionary of options
74
75 discrete = opt_dic.pop("discrete",None) #True, False, or None; remove

↪→ discrete key
76 if not discrete:
77 self.add_output(om_var,**opt_dic)
78 else:
79 self.add_discrete_output(om_var,**opt_dic)
80 self.outputs_dict[om_var] = rcas_var
81
82 def compute(self, inputs, outputs, discrete_inputs, discrete_outputs):
83 """
84 Generates new RCAS deck, executes RCAS, and parses outputs.
85
86 Parameters
87 ----------
88 inputs : dict
89 Dictionary of inputs in the RCAS subsystem.
90 outputs : dict
91 Dictionary of outputs in the RCAS subsystem.
92
93 Returns
94 -------
95 None.
96
97 """
98
99 do_compute = True

100 if self.force_linear and self.comm.rank != 0:
101 do_compute = False
102
103 if do_compute:
104 # New job name with random ID added
105 if self.parallel:
106 self.new_rcasfile = add_runid(self.rcasfile,length=4)
107 else:
108 self.new_rcasfile = self.rcasfile
109
110 # Set new filenames and copy original files
111 self.input_file = self.new_rcasfile + ".rcas"
112 # copyfile(os.path.join(self.inputpath,self.orig_input_file),self.

↪→ input_file)
113 self.output_file = os.path.join(self.new_rcasfile+’00’,"rcasmaster001.log

↪→ ")
114
115 self.options[’external_input_files’] = [self.input_file,]
116 self.options[’external_output_files’] = [self.output_file,]
117
118 # Prepare the command
119 self.options[’command’] = [self.rcaspath,self.input_file]
120
121 # parse inputs
122 for key, value in self.inputs_dict.items():

318

123
124 if "." not in value: # standard input
125 input_value = inputs[key][0]
126
127 screen = value.split("%")[0]
128 page = int(value.split("%")[1]) - 1 # convert to indexing from

↪→ 0
129 line = int(value.split("%")[2]) - 1 # convert to indexing from

↪→ 0
130 index = int(value.split("%")[3]) - 1 # convert to indexing from

↪→ 0
131
132 # replace data in rcas_dict
133 oldval = self.script.rcas_dict[screen]["data"][page][line][index]
134 if oldval != input_value:
135 if input_value.is_integer():
136 input_value=int(input_value)
137 self.script.rcas_dict[screen]["data"][page][line][index] =

↪→ input_value
138
139 else: # changing a value in the blade elastic properties in the

↪→ footer
140 input_value = inputs[key]
141
142 file = value.split("%")[0]
143 entry = value.split("%")[1]
144
145 # Find location of file in self.script.footer
146 file_location = [i for i in range(len(self.script.footer)) if

↪→ file in self.script.footer[i]]
147 file_slice = slice(file_location[0]+1,file_location[1])
148
149 # Find location of entry in file
150 entry_location = [i for i in range(len(self.script.footer[

↪→ file_slice])) if entry in self.script.footer[file_slice][
↪→ i]]

151 if not entry_location:
152 raise Exception(’Entry %s could not be found in %s’ % (entry,

↪→ file))
153 elif len(entry_location) > 1:
154 raise Exception(’Entry %s found multiple times in %s’ % (

↪→ entry,file))
155 else:
156 entry_location = file_location[0] + entry_location[0] + 1
157
158 # Overwrite existing data with new data
159 for i in range(len(input_value)):
160 data = input_value[i,:]
161 new_line = ’’
162 for j in range(len(data)):
163 new_line = new_line + ’%0.8e ’ % data[j]
164 new_line = new_line + ’\n’
165 self.script.footer[entry_location + i + 1] = new_line
166
167 # generate new RCAS input deck
168 self.script.generate(self.input_file)
169
170 # run rcas and parse and load outputs
171 print("RCASwrapper: executing %s" % self.input_file)
172 super(RCASwrapper, self).compute(inputs, outputs)
173

319

174 # parse outputs
175 outs = []
176 for key, value in self.outputs_dict.items():
177 outs.append(value)
178 log_outs = [item for item in outs if ("log" in item)]
179 tab_outs = [item for item in outs if ("tab" in item)]
180
181 # read log file outputs
182 if log_outs:
183 logdata = self.script.parse_rcasmasterlog(self.output_file)
184 for item in log_outs:
185 key = item.split(’-’)[1]
186 if key == "conv":
187 discrete_outputs[self.get_key(self.outputs_dict,item)] =

↪→ logdata[key]
188 else:
189 outputs[self.get_key(self.outputs_dict,item)] = logdata[key]
190
191 # read tab file outputs
192 if tab_outs:
193 for item in tab_outs:
194 tab_file = item.split(’-’)[1].split(’%’)[0]
195 tab_file = os.path.join(os.path.dirname(self.output_file),

↪→ tab_file + ’.tab’)
196 cols = item.split(’-’)[1].split(’%’)[1]
197 outputs[self.get_key(self.outputs_dict,item)] = self.script.

↪→ parse_rcastable(tab_file, cols)
198
199 # Remove run files
200 if not self.saveallruns:
201 os.remove(self.input_file)
202 shutil.rmtree(self.new_rcasfile + ’00’) # folder output
203 # don’t remove .csh file because another process may be using it
204
205
206 def get_key(self,my_dict,val):
207 for key, value in my_dict.items():
208 if val == value:
209 return key

A.2 PreVABS+VABS Wrapper

The PreVABS+VABS OpenMDAO wrapper is divided into two files, PreVabsParse.py

and PreVabsWrapper.py. PreVabsParse.py is responsible for parsing and generating

the XML-formatted input files for PreVABS into a Python dictionary using the xmltodict

package. This module also handles parsing geometric, inertial, elastic, and stress recovery

information from the VABS output files. PreVabsWrapper.py includes two classes that

provide an interface between OpenMDAO and PreVabsParse.py. The PreVabsWrapper

class is used to execute VABS in homogenization mode, and PreVabsRecover is used to

320

execute VABS in stress recovery mode. This wrapper was tested with PreVABS version 1.2,

VABS version 3.8, Python version 3.9, and OpenMDAO version 3.8.

Listing A.3: PreVabsParse.py
1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 PreVABS parser for thesis work. Will integrate with PreVABS wrapper.
5
6 Created on Thu Sep 17 15:52:04 2020
7
8 @author: josephrobinson
9 """

10
11 import os
12 import xmltodict
13 from openmdao.utils.file_wrap import FileParser
14 from modules.SupportingFunctions import has_handle
15 import numpy as np
16 import time, random
17
18 class PreVabsParse(object):
19 """ Class for parsing PreVABS documents """
20
21 def __init__(self,input_dir,cross_section_file,output_dir):
22 self.input_dir = input_dir
23 self.output_dir = output_dir
24 self.cross_section_file = cross_section_file
25
26 self.baselines_file = None
27 self.basepoints_file = None
28 self.layups_file = None
29 self.materials_file = None
30
31 self.prevabs_dict = None # Original PreVABS input dictionary
32 self.cross_section = None # reference to cross section location in self.

↪→ prevabs_dict
33 self.baselines = None # reference to baselines location in self.prevabs_dict
34 self.layups = None # reference to layups location in self.prevabs_dict
35 self.materials = None # reference to materials location in self.prevabs_dict
36 self.basepoints = None # reference to basepoints location in self.

↪→ prevabs_dict
37 self.combined = False # True if PreVABS 1.1 combined format is being used
38
39 self.M = np.empty((6,6)) # mass matrix
40 self.S = np.empty((6,6)) # stiffness matrix
41 self.num_nodes = 0
42 self.num_elems = 0
43
44 def parse_input(self):
45 """
46 Parses the input file specified in self.cross_section file and all
47 associated files in the <include> tag.
48
49 Returns
50 -------
51 None.
52

321

53 """
54 # Write cross section file
55 cross_section_file = os.path.join(self.input_dir,self.cross_section_file+".

↪→ xml")
56
57 self.prevabs_dict = {}
58 self.prevabs_dict["cross_section"] = self.read_xml(cross_section_file)["

↪→ cross_section"]
59 self.cross_section = self.prevabs_dict["cross_section"]
60
61 # Check if the PreVABS 1.1 combined format is being used
62 if "@format" in self.cross_section:
63 if self.cross_section["@format"] == ’1’:
64 self.combined = True
65 else:
66 self.combined = False
67 else:
68 self.combined = False
69
70 # Read in supporting files if any exist
71 if "include" in self.prevabs_dict["cross_section"]:
72 include = self.prevabs_dict["cross_section"]["include"]
73 if include: # make sure include isn’t empty
74 if "baseline" in include:
75 self.baselines_file = include["baseline"][0]
76 baselines_file = os.path.join(self.input_dir,self.baselines_file+

↪→ ".xml")
77 self.prevabs_dict["baselines"] = self.read_xml(baselines_file)["

↪→ baselines"]
78 self.baselines = self.prevabs_dict["baselines"]
79 if "layup" in include:
80 self.layups_file = include["layup"][0]
81 layups_file = os.path.join(self.input_dir,self.layups_file+".xml"

↪→)
82 self.prevabs_dict["layups"] = self.read_xml(layups_file)["layups"

↪→]
83 self.layups = self.prevabs_dict["layups"]
84 if "material" in include:
85 self.materials_file = include["material"][0]
86 materials_file = os.path.join(self.input_dir,self.materials_file+

↪→ ".xml")
87 self.prevabs_dict["materials"] = self.read_xml(materials_file)["

↪→ materials"]
88 self.materials = self.prevabs_dict["materials"]
89
90 # Assign sub-dicts of cross_section dict if combined format is being used
91 if self.combined:
92 if "baselines" in self.cross_section:
93 self.baselines = self.cross_section["baselines"]
94 if "layups" in self.cross_section:
95 self.layups = self.cross_section["layups"]
96
97 # Read basepoints if it exists
98 if "include" in self.baselines["basepoints"]:
99 self.basepoints_file = self.baselines["basepoints"]["include"]

100 basepoints_file = os.path.join(self.input_dir,self.basepoints_file+".dat"
↪→)

101
102 self.prevabs_dict["basepoints"] = {}
103 self.basepoints = self.prevabs_dict["basepoints"]
104 names = []

322

105 coords = []
106 while has_handle(basepoints_file):
107 time.sleep(random.random()) # check if file is already being read by

↪→ another process
108 with open(basepoints_file, ’r’) as fd:
109 for line in fd:
110 item = line.rstrip().split() # strip off newline and any other

↪→ trailing whitespace
111 if item:
112 names.append(item[0])
113 coords.append([float(item[1]),float(item[2])])
114 self.basepoints["names"] = names
115 self.basepoints["coords"] = coords
116
117 def parse_output(self,filename):
118 """
119 Parse M and S matrices from the .sg.K VABS output file.
120
121 Returns
122 -------
123 None.
124
125 """
126 output_file = os.path.join(self.output_dir,filename+".sg.K")
127
128 # open file and set marker
129 parser = FileParser()
130 parser.set_file(output_file)
131
132 # read mass matrix
133 parser.mark_anchor("The 6X6 Mass Matrix")
134 self.M = parser.transfer_2Darray(3,1,8,6)
135
136 # read stiffness matrix
137 parser.mark_anchor(" Timoshenko Stiffness Matrix (1-extension; 2,3-shear, 4-

↪→ twist; 5,6-bending)")
138 self.S = parser.transfer_2Darray(3,1,8,6)
139
140 def parse_recovery(self,filename,ext,cols,timeout=np.inf):
141 """
142 Parse arbitrary columns from any recover file (.E, .S, .EM, .SM, etc.)
143
144 Parameters
145 ----------
146 ext : str
147 Extension of the file to parse ("E", "S", "EM", etc.).
148 cols : str
149 Specification of the columns to extract.
150
151 Returns
152 -------
153 np.array
154 Array of data corresponding to requested file and columns.
155
156 """
157 recovery_file = os.path.join(self.output_dir,filename)+".sg."+ext
158
159 # parse column choice
160 if ":" in cols:
161 colstart = int(cols.split(":")[0])
162 colend = int(cols.split(":")[1])

323

163 else:
164 colstart = int(cols.split(":")[0])
165 colend = colstart
166
167 col_slice = slice(colstart-1,colend)
168
169 # read data in file
170
171 total_wait = 0
172 wait_time = 0.5
173 while not os.path.exists(recovery_file) and total_wait < timeout:
174 time.sleep(wait_time)
175 total_wait += wait_time
176
177 if os.path.isfile(recovery_file):
178 data = np.loadtxt(recovery_file)
179 else:
180 raise ValueError(’%s could not be found’ % recovery_file)
181
182 return data[:,col_slice]
183
184 def parse_vabs_file(self,filename):
185 """
186 Parse some mesh information from the VABS .sg input file.
187
188 Returns
189 -------
190 None.
191
192 """
193 vabs_file = os.path.join(self.output_dir,filename+".sg")
194
195 # Custom parser since there may or may not be newlines between rows
196 line_idx = 0
197 with open(vabs_file, ’r’) as fd:
198 for line in fd:
199 item = line.rstrip().split() # strip off newline and any other

↪→ trailing whitespace
200 if item and line_idx == 3:
201 self.num_nodes = int(item[0])
202 self.num_elems = int(item[1])
203 break
204 if item:
205 line_idx = line_idx+1
206
207 def process_dict(self):
208 """
209 Processes the original PreVABS dictionary by converting specific entries
210 to lists of floats or ints.
211
212 Raises
213 ------
214 Exception
215 Errors if the layup is specified as a stack sequence instead of an
216 explicit list.
217
218 Returns
219 -------
220 None.
221

324

222 """
223 # process baselines dict
224 if self.baselines:
225 # convert coordinates to float list
226 if "point" in self.baselines["basepoints"]:
227 for item in self.baselines["basepoints"]["point"]:
228 self.quick_convert(item,"#text","coords")
229
230 # convert angles and radii to floats
231 for item in self.baselines["baseline"]:
232 if "angle" in item:
233 self.quick_convert(item,"angle","angle")
234 if "radius" in item:
235 self.quick_convert(item,"radius","radius")
236
237 # process materials dict
238 if self.materials:
239 for item in self.materials["material"]:
240 # convert density to float
241 if "density" in item:
242 self.quick_convert(item,"density","density")
243
244 # convert elastic properties to float
245 if "elastic" in item:
246 for prop in item["elastic"].keys():
247 self.quick_convert(item["elastic"],prop,prop)
248
249 for item in self.materials["lamina"]:
250 self.quick_convert(item,"thickness","thickness")
251
252 # process layups dict
253 if self.layups:
254 for layup in self.layups["layup"]:
255 if "@method" in layup and layup["@method"] != "explicit list":
256 raise Exception("Only explicit list layup methods are supported

↪→ by the parser")
257
258 for layer in layup["layer"]:
259 if "#text" in layer:
260 text = layer["#text"]
261 layer.pop("#text")
262 else:
263 text = ""
264
265 if ":" in text: # angle:stack
266 text = text.split(":")
267 layer["angle"] = [float(text[0])]
268 layer["stack"] = [int(text[1])]
269 elif text: # angle:1
270 layer["angle"] = [float(text)]
271 layer["stack"] = [1]
272 else: # 0:1
273 layer["angle"] = [0.0]
274 layer["stack"] = [1]
275
276 # process cross_section dict
277 if self.cross_section:
278 # convert translate, scale, and mesh_size to float
279 if "general" in self.cross_section:
280 if "translate" in self.cross_section["general"]:

325

281 self.quick_convert(self.cross_section["general"],"translate","
↪→ translate")

282 if "scale" in self.cross_section["general"]:
283 self.quick_convert(self.cross_section["general"],"scale","scale")
284 if "mesh_size" in self.cross_section["general"]:
285 self.quick_convert(self.cross_section["general"],"mesh_size","

↪→ mesh_size")
286
287 # convert recovery data
288 if "recover" in self.cross_section:
289 for field in ["displacements","rotations","forces","moments"]:
290 self.quick_convert(self.cross_section["recover"],field,field)
291 for field in self.cross_section["recover"]["distributed"].keys():
292 self.quick_convert(self.cross_section["recover"]["distributed"],

↪→ field,field)
293
294 def unprocess_dict(self):
295 """
296 "Unprocesses" the processed PreVABS dictionary by converting specific
297 values back into strings.
298
299 Returns
300 -------
301 None.
302
303 """
304 # unprocess baselines dict
305 if self.baselines:
306 # revert coordinates
307 if "point" in self.baselines["basepoints"]:
308 for item in self.baselines["basepoints"]["point"]:
309 self.quick_revert(item,"coords","#text")
310
311 # revert angles and radii
312 for item in self.baselines["baseline"]:
313 if "angle" in item:
314 self.quick_revert(item,"angle","angle")
315 if "radius" in item:
316 self.quick_revert(item,"radius","radius")
317
318 # unprocess materials dict
319 if self.materials:
320 for item in self.materials["material"]:
321 # revert density
322 if "density" in item:
323 self.quick_revert(item,"density","density")
324
325 # revert elastic properties
326 if "elastic" in item:
327 for prop in item["elastic"].keys():
328 self.quick_revert(item["elastic"],prop,prop)
329
330 for item in self.materials["lamina"]:
331 self.quick_revert(item,"thickness","thickness")
332
333 # unprocess layups dict
334 if self.layups:
335 for layup in self.layups["layup"]:
336 for layer in layup["layer"]:
337 text = str(layer["angle"][0]) + ":" + str(layer["stack"][0])
338 layer["#text"] = text

326

339 layer.pop("angle")
340 layer.pop("stack")
341
342 # unprocess cross_section dict
343 if self.cross_section:
344 # revert translate, scale, and mesh_size
345 if "general" in self.cross_section:
346 if "translate" in self.cross_section["general"]:
347 self.quick_revert(self.cross_section["general"],"translate","

↪→ translate")
348 if "scale" in self.cross_section["general"]:
349 self.quick_revert(self.cross_section["general"],"scale","scale")
350 if "mesh_size" in self.cross_section["general"]:
351 self.quick_revert(self.cross_section["general"],"mesh_size","

↪→ mesh_size")
352
353 # revert recovery data
354 if "recover" in self.cross_section:
355 for field in ["displacements","rotations","forces","moments"]:
356 self.quick_revert(self.cross_section["recover"],field,field)
357 for field in self.cross_section["recover"]["distributed"].keys():
358 self.quick_revert(self.cross_section["recover"]["distributed"],

↪→ field,field)
359
360 def generate(self,filename):
361 """
362 Writes the updated "unprocessed" PreVABS dict to XML files. Also writes
363 all associated files in the <include> tag.
364
365 Parameters
366 ----------
367 filename : str
368 Name of cross section file.
369
370 Returns
371 -------
372 None.
373
374 """
375 # Generate cross section file
376 cross_section_file = os.path.join(self.output_dir,filename + ".xml")
377 cross_section_dict = {}
378 cross_section_dict["cross_section"] = self.prevabs_dict["cross_section"]
379 self.write_xml(cross_section_dict,cross_section_file)
380
381 # Generate baselines file
382 if self.baselines_file:
383 baselines_file = os.path.join(self.output_dir,self.baselines_file + ".xml

↪→ ")
384 baselines_dict = {}
385 baselines_dict["baselines"] = self.prevabs_dict["baselines"]
386 self.write_xml(baselines_dict,baselines_file)
387
388 # Generate layups file
389 if self.layups_file:
390 layups_file = os.path.join(self.output_dir,self.layups_file + ".xml")
391 layups_dict = {}
392 layups_dict["layups"] = self.prevabs_dict["layups"]
393 self.write_xml(layups_dict,layups_file)
394
395 # Generate materials file

327

396 if self.materials_file:
397 materials_file = os.path.join(self.output_dir,self.materials_file + ".xml

↪→ ")
398 materials_dict = {}
399 materials_dict["materials"] = self.prevabs_dict["materials"]
400 self.write_xml(materials_dict,materials_file)
401
402 # Generate basepoints file
403 if self.basepoints_file:
404 basepoints_file = os.path.join(self.output_dir,self.basepoints_file + ".

↪→ dat")
405
406 if not os.path.exists(os.path.dirname(basepoints_file)):
407 os.makedirs(os.path.dirname(basepoints_file))
408
409 basepoints = self.prevabs_dict["basepoints"]
410 output = []
411 for i in range(len(basepoints["names"])):
412 line = [basepoints["names"][i], basepoints["coords"][i][0],

↪→ basepoints["coords"][i][1]]
413 output.append(’%s\n’ % ’\t’.join(map(str,line)))
414
415 with open(basepoints_file,’w’) as fd:
416 fd.writelines(output)
417
418 def read_xml(self,input_file):
419 """
420 Uses xmltodict to read a PreVABS XML file as a dictionary.
421
422 Parameters
423 ----------
424 input_file : str
425 Path to input file.
426
427 Returns
428 -------
429 doc : dict
430 Dictionary output.
431
432 """
433
434 while has_handle(input_file):
435 time.sleep(random.random()) # check if file is already being read by

↪→ another process
436
437 with open(input_file,’r’) as fd:
438 doc = xmltodict.parse(fd.read(),
439 force_list=(’layup’,
440 ’layer’,
441 ’component’,
442 ’segment’,
443 ’baseline’,
444 ’material’,
445 ’point’))
446
447 return doc
448
449 def write_xml(self,output_dict,output_file):
450 """
451 Uses xmltodic to write a PreVABS XML file from a dictionary.
452

328

453 Parameters
454 ----------
455 output_dict : dict
456 Dictionary to be written.
457 output_file : str
458 Path to output file.
459
460 Returns
461 -------
462 None.
463
464 """
465 if not os.path.exists(os.path.dirname(output_file)):
466 os.makedirs(os.path.dirname(output_file))
467
468 while has_handle(output_file):
469 time.sleep(random.random()) # check if file is already being read by

↪→ another process
470
471 with open(output_file,’w’) as fd:
472 xmltodict.unparse(output_dict,output=fd,pretty=True)
473
474 def quick_convert(self,item,old_key,new_key):
475 """
476 Quickly converts an entry to a list of floats.
477
478 Parameters
479 ----------
480 item : dict
481 Bottom-level entry to be converted.
482 old_key : str
483 Name of the key in the original dictionary.
484 new_key : str
485 New name for the key.
486
487 Returns
488 -------
489 None.
490
491 """
492 text = item[old_key].split()
493 converted = [float(i) for i in text]
494 if old_key != new_key:
495 item.pop(old_key)
496 item[new_key] = converted
497
498 def quick_revert(self,item,old_key,new_key):
499 """
500 Quickly reverts an entry containing a list of floats to a string.
501
502 Parameters
503 ----------
504 item : dict
505 Bottom-level entry to be converted.
506 old_key : str
507 Name of the key in the original dictionary.
508 new_key : str
509 New name for the key.
510
511 Returns

329

512 -------
513 None.
514
515 """
516 val = item[old_key]
517 string = ’ ’.join(map(str,val))
518 if old_key != new_key:
519 item.pop(old_key)
520 item[new_key] = string

Listing A.4: PreVabsWrapper.py
1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Created on Wed Sep 23 14:56:44 2020
5
6 @author: josephrobinson
7 """
8
9 from openmdao.api import ExternalCodeComp

10 import os
11 from modules.PreVabsParse import PreVabsParse
12 from modules.SupportingFunctions import add_runid
13 from collections import OrderedDict
14 from shutil import copyfile
15
16 class PreVabsWrapper(ExternalCodeComp):
17 """ A file wrapper for PreVABS focused on calculating elastic properties """
18
19 def __init__(self,input_path,prevabs_file,supporting_files,
20 inputs_list,outputs_list,
21 force_linear=False,parallel=False,saveallruns=False,logger=None):
22 # execute ExternalCodeComp.__init__()
23 super(PreVabsWrapper,self).__init__()
24
25 # assign fields
26 self.input_path = input_path
27 self.prevabs_file = prevabs_file
28 self.supporting_files = supporting_files
29 self.inputs_list = inputs_list
30 self.outputs_list = outputs_list
31 self.inputs_dict = {}
32 self.outputs_dict = {}
33 self.force_linear = force_linear
34 self.parallel = parallel
35 self.saveallruns = saveallruns
36 self.logger = logger
37
38 def setup(self):
39 """
40 Setup method.
41
42 Returns
43 -------
44 None.
45
46 """
47

330

48 # We need to create a unique filename for each job for parallel processing to
↪→ work appropriately

49 # Original prevabs input file
50 self.script = PreVabsParse(self.input_path,self.prevabs_file,os.getcwd())
51
52 # Parse the input file
53 self.script.parse_input()
54
55 # Prepare inputs and outputs
56 for item in self.inputs_list:
57 self.add_input(item[0],**item[2])
58 self.inputs_dict[item[0]] = item[1]
59 for item in self.outputs_list:
60 self.add_output(item[0],**item[2])
61 self.outputs_dict[item[0]] = item[1]
62
63 def compute(self, inputs, outputs):
64 """
65 Generates new PreVABS files, executes PreVABS, and parses outputs.
66
67 Parameters
68 ----------
69 inputs : dict
70 Dictionary of inputs in the PreVABS subsystem.
71 outputs : dict
72 Dictionary of outputs in the PreVABS subsystem.
73
74 Returns
75 -------
76 None.
77
78 """
79
80 do_compute = True
81 if self.force_linear and self.comm.rank != 0:
82 do_compute = False
83
84 if do_compute:
85 # New job name with random ID added
86 if self.parallel:
87 self.new_prevabs_file = add_runid(self.prevabs_file)
88 else:
89 self.new_prevabs_file = self.prevabs_file
90
91 # Set new filenames and copy original files
92 self.input_file = self.new_prevabs_file + ".xml"
93 for file in self.supporting_files: # supporting files such as basepoints.

↪→ dat
94 copyfile(os.path.join(self.input_path,file),file)
95
96 self.output_file = self.new_prevabs_file + ".sg.K"
97 self.options[’external_input_files’]=[self.input_file,]
98 self.options[’external_output_files’]=[self.output_file,]
99

100 # Prepare the command
101 self.options[’command’] = (’prevabs -i {} -h -e > /dev/null’).format(self

↪→ .input_file)
102
103 # Modify input deck
104 self.script.process_dict()
105 for key,access_str in self.inputs_dict.items():

331

106 input_value = []
107 for i in range(len(inputs[key])):
108 if inputs[key][i].is_integer():
109 input_value.append(int(inputs[key][i]))
110 else:
111 input_value.append(inputs[key][i])
112 access_list = create_access_list(self.script.prevabs_dict,access_str)
113 old_val = get_from_dict(self.script.prevabs_dict,access_list)
114 if old_val != input_value:
115 set_in_dict(self.script.prevabs_dict,access_list,input_value)
116
117 # generate new PreVABS input deck
118 self.script.unprocess_dict()
119 self.script.generate(self.new_prevabs_file)
120
121 # run PreVABS and parse
122 print("PreVabsWrapper: Executing %s" % self.new_prevabs_file)
123 super(PreVabsWrapper, self).compute(inputs, outputs)
124 try:
125 # Check if elasticity file exists
126 self.script.parse_output(self.new_prevabs_file) # M and S matrices
127 except ValueError:
128 print("PreVabsWrapper: %s timed out, retrying" % self.

↪→ new_prevabs_file)
129 super(PreVabsWrapper, self).compute(inputs, outputs)
130 self.script.parse_output(self.new_prevabs_file) # M and S matrices
131
132 # parse and assign outputs
133 self.script.parse_vabs_file(self.new_prevabs_file) # mesh information
134 outs = []
135 for key, value in self.outputs_dict.items():
136 outs.append(value)
137
138 for attr in outs:
139 outputs[get_key(self.outputs_dict,attr)] = getattr(self.script,attr)
140
141 # Remove run files
142 if not self.saveallruns:
143 os.remove(self.input_file)
144 ext_list = [’.sg’,’.sg.ech’,’.sg.K’,’.sg.opt’,’.sg.v0’,’.sg.v1S’,’.sg

↪→ .v22’,’.txt’]
145 for ext in ext_list:
146 file = self.new_prevabs_file+ext
147 if os.path.isfile(file):
148 os.remove(file)
149
150 class PreVabsRecover(ExternalCodeComp):
151 """
152 A file wrapper for PreVABS focused on stress/strain recovery.
153 Should be run after PreVabsWrapper
154 """
155
156 def __init__(self,input_path,prevabs_file,
157 inputs_list,outputs_list,
158 force_linear=False,parallel=False,saveallruns=False,logger=None):
159 # execute ExternalCodeComp.__init__()
160 super(PreVabsRecover,self).__init__()
161
162 # assign fields
163 self.input_path = input_path
164 self.prevabs_file = prevabs_file

332

165 self.inputs_list = inputs_list
166 self.outputs_list = outputs_list
167 self.inputs_dict = {}
168 self.outputs_dict = {}
169 self.force_linear = force_linear
170 self.parallel = parallel
171 self.saveallruns = saveallruns
172 self.logger = logger
173
174 def setup(self):
175 """
176 Set up the component.
177
178 Returns
179 -------
180 None.
181
182 """
183 # Prepare inputs and outputs
184 for item in self.inputs_list:
185 self.add_input(item[0],**item[2])
186 self.inputs_dict[item[0]] = item[1]
187 for item in self.outputs_list:
188 self.add_output(item[0],**item[2])
189 self.outputs_dict[item[0]] = item[1]
190
191 def compute(self, inputs, outputs):
192 """
193 Generates new PreVABS files, executes PreVABS, and parses outputs (TBD).
194
195 Parameters
196 ----------
197 inputs : dict
198 Dictionary of inputs in the PreVABS subsystem.
199 outputs : dict
200 Dictionary of outputs in the PreVABS subsystem.
201
202 Returns
203 -------
204 None.
205
206 """
207
208 do_compute = True
209 if self.force_linear and self.comm.rank != 0:
210 do_compute = False
211
212 if do_compute:
213 # We need to create a unique filename for each job for parallel

↪→ processing to work appropriately
214 # Original prevabs input file
215 self.orig_input_file = self.prevabs_file + ".xml"
216
217 # New job name with random ID added
218 if self.parallel:
219 self.new_prevabs_file = add_runid(self.prevabs_file)
220 else:
221 self.new_prevabs_file = self.prevabs_file
222
223 # Set new filenames and copy original files

333

224 self.input_file = self.new_prevabs_file + ".xml"
225 copyfile(self.orig_input_file,self.input_file)
226 ext_list = [’.sg’,’.sg.ech’,’.sg.K’,’.sg.opt’,’.sg.v0’,’.sg.v1S’,’.sg.v22

↪→ ’] # all files VABS needs for recovery
227 for ext in ext_list:
228 copyfile(self.prevabs_file+ext,self.new_prevabs_file+ext)
229
230 # Prepare the command
231 self.options[’command’] = (’prevabs -i {} -d -e > /dev/null’).format(self

↪→ .input_file)
232
233 # Parse input file at runtime since it may have been changed by

↪→ PreVabsWrapper
234 self.script = PreVabsParse(self.input_path,self.new_prevabs_file,os.

↪→ getcwd())
235 self.script.parse_input()
236 self.script.process_dict()
237
238 # Modify input deck
239 for key,access_str in self.inputs_dict.items():
240 input_value = []
241 for i in range(len(inputs[key])):
242 if inputs[key][i].is_integer():
243 input_value.append(int(inputs[key][i]))
244 else:
245 input_value.append(inputs[key][i])
246
247 # pprint(access_list)
248 access_list = create_access_list(self.script.prevabs_dict,access_str)
249 old_val = get_from_dict(self.script.prevabs_dict,access_list)
250 if old_val != input_value:
251 set_in_dict(self.script.prevabs_dict,access_list,input_value)
252
253 # generate new PreVABS input deck
254 self.script.unprocess_dict()
255 self.script.generate(self.new_prevabs_file)
256
257 # run PreVABS and parse
258 print("PreVabsWrapper: Executing %s" % self.new_prevabs_file)
259 super(PreVabsRecover, self).compute(inputs, outputs)
260 try:
261 # Check if recovery files exist
262 self.script.parse_recovery(self.new_prevabs_file,’SM’, ’1’, timeout

↪→ =10)
263 except ValueError:
264 print("PreVabsWrapper: %s timed out, retrying" % self.

↪→ new_prevabs_file)
265 super(PreVabsRecover, self).compute(inputs, outputs)
266
267 # read all requested outputs
268 outs = []
269 for key, value in self.outputs_dict.items():
270 outs.append(value)
271
272 for item in outs:
273 ext = item.split(’%’)[0]
274 cols = item.split(’%’)[1]
275 outputs[get_key(self.outputs_dict,item)] = self.script.parse_recovery

↪→ (self.new_prevabs_file, ext, cols, timeout=10)
276
277 # Remove run files

334

278 if not self.saveallruns:
279 os.remove(self.input_file)
280 ext_list.extend([’.sg.E’,’.sg.ELE’,’.sg.EM’,’.sg.EMN’,’.sg.EN’,’.sg.S

↪→ ’,
281 ’.sg.S’,’.sg.SM’,’.sg.SMN’,’.sg.SN’,’.sg.U’,’.txt’])

↪→ # all files VABS recovery generates
282 for ext in ext_list:
283 file = self.new_prevabs_file+ext
284 if os.path.isfile(file):
285 os.remove(file)
286
287 def create_access_list(prevabs_dict,access_str):
288 """
289 Build an "access list" to traverse a nested dictionary.
290
291 Parameters
292 ----------
293 prevabs_dict : dict
294 Processed dictionary produced by PreVabsParse.process_dict.
295 access_str : str
296 Access string from input dictionary.
297
298 Returns
299 -------
300 access_list : list
301 List of keys to use for traversing the nested dictionary.
302
303 """
304 dict_chain = access_str.split("%")
305 access_list = []
306
307 # Iterate through dictionary to find the indicated value
308 for level in dict_chain:
309 level_type = None
310 if "(" in level: # indexed level
311 index = level.split("(")[1].split(")")[0]
312 try:
313 int(index)
314 except:
315 level_type = "named"
316 else:
317 level_type = "indexed"
318 else: # unindexed level
319 try:
320 int(level)
321 except:
322 level_type = "normal"
323 else:
324 level_type = "index"
325
326 if level_type == "normal": # enter next level normally
327 prevabs_dict = prevabs_dict[level]
328 access_list.append(level)
329 elif level_type == "index": # enter by index
330 index = int(level) - 1 # convert to indexed from 0
331 prevabs_dict = prevabs_dict[index]
332 access_list.append(index)
333 elif level_type == "indexed": # enter by index of a key
334 index = int(level.split("(")[1].split(")")[0]) - 1 # convert to indexed

↪→ from 0
335 level = level.split("(")[0]

335

336 prevabs_dict = prevabs_dict[level][index]
337 access_list.extend([level,index])
338 elif level_type == "named": # enter by searching for matching name
339 name = level.split("(")[1].split(")")[0]
340 level = level.split("(")[0]
341 to_search = prevabs_dict[level]
342 results = [item for item in to_search if item["@name"] == name]
343 if len(results) == 0:
344 raise Exception("No name matching %s found in %s" % (name,level))
345 elif len(results) > 1:
346 raise Exception("Multiple names matching %s found in %s" % (name,

↪→ level))
347 else:
348 prevabs_dict = results[0]
349 access_list.extend([level,to_search.index(results[0])])
350
351 if type(prevabs_dict) == dict or type(prevabs_dict) == OrderedDict:
352 raise Exception("%s did not lead to a bottom-level value" % access_str)
353
354 return access_list
355
356 # From: https://stackoverflow.com/questions/14692690/access-nested-dictionary-items-

↪→ via-a-list-of-keys
357 def get_from_dict(dic, keys):
358 dic_new = dic
359 for k in keys:
360 dic_new = dic_new[k]
361 return dic_new
362
363 def set_in_dict(dic, keys, value):
364 for key in keys[:-1]:
365 # dic = dic.setdefault(key, {})
366 dic = dic[key]
367
368 if type(dic[keys[-1]]) == int or type(dic[keys[-1]]) == float:
369 dic[keys[-1]] = value[0]
370 elif type(dic[keys[-1]]) == list:
371 dic[keys[-1]] = value
372 else:
373 raise Exception("%s is of type %s but it should be int, float, or list" %
374 dic[keys[-1]], type(dic[keys[-1]]))
375
376 def get_key(my_dict,val):
377 for key, value in my_dict.items():
378 if val == value:
379 return key

336

APPENDIX B

GENERIC SINGLE MAIN ROTOR HELICOPTER MODELS

This appendix contains the descriptions of the NDARC, RCAS, and PreVABS+VABS mod-

els used to define the generic single main rotor (SMR) helicopter model. These models were

used throughout Experiments 1 to 3. The NDARC model consists of a simple performance

definition of the helicopter. The RCAS model serves as a more physically-accurate aeroelas-

tic model of the helicopter. The PreVABS+VABS model defines the cross-section of the

RCAS model’s main rotor blade.

B.1 NDARC Model

The NDARC model is composed of four files. This model was derived from example files

that are distributed to NDARC users via the NDARC website. The NDARC job, defined by

heli.njob, instructs NDARC to skip the sizing task and run the performance analysis task.

The aircraft definition is included in heli.airc. The engine performance map is defined

by gen2000.list. A single generic performance condition is defined by generic.cond;

these parameters are intended to be overwritten by OpenMDAO based on the defined flight

condition for a given case.

Tables B.1 to B.3 describe the mapping between the variables in these files and the Open-

MDAO variables. The RCOTOOLS access string syntax is described by the RCOTOOLS

documentation. The OpenMDAO variables are further described in Appendix C.

Listing B.1: heli.njob
1 ! Single Main Rotor Helicopter job file
2 ! Originally created March 2009
3 ! Forked by Joseph Robinson, 2020-07-14
4
5 &JOB open_status=1,&END
6 &DEFN action=’ident’,
7 title=’Heli job file’,
8 created=’2020-07-14’,

337

9 &END
10 !##
11 &DEFN action=’read file’,file=’gen2000.list’,&END
12 &DEFN action=’read file’,file=’heli.airc’,&END
13 &DEFN action=’read file’,file=’generic.cond’,&END
14 ! &DEFN action=’read file’,file=’heli.cond’,&END
15 ! &DEFN action=’read file’,file=’heli.miss’,&END
16 !==
17 &DEFN quant=’Cases’,&END
18 &VALUE
19 title=’Heli Cases’,
20 ! Tasks
21 TASK_size=0,TASK_mission=0,TASK_perf=1,
22 ! Outputs
23 OUT_design=0,OUT_perf=0,OUT_geometry=0,
24 OUT_aircraft=0,OUT_solution=1,OUT_sketch=0,
25 ! Files
26 FILE_design=’heli.design’,FILE_perf=’heli.perf’,
27 FILE_geometry=’heli.geom’,FILE_sketch=’heli.dxf’,
28 FILE_aircraft=’heli.acd’,FILE_solution=’heli.soln’,
29 FILE_aero=’heli.aero’,FILE_engine=’heli.eng’,
30 FILE_error=’heli.err’,
31 &END
32 !==
33 &DEFN quant=’Size’,&END
34 &VALUE
35 title=’Heli Size’,
36 nFltCond=0,nMission=0,
37 SIZE_perf=’none’,SET_rotor=’radius+Vtip+sigma’,’radius+Vtip+sigma’,
38 FIX_DGW=1,FIX_WE=0,
39 SET_tank=’input’,SET_SDGW=’input’,SET_WMTO=’input’,SET_limit_ds=’input’,
40 &END
41 !==
42 &DEFN quant=’Solution’,&END
43 &VALUE
44 title=’Heli Solution’,
45 ! Trim
46 niter_trim=120,
47 mpid_trim=40,
48 trace_trim=1,
49 &END
50 !==
51 &DEFN action=’endofcase’,&END
52 &DEFN action=’endofjob’,&END
53 !##
54 ’endofinput’

Listing B.2: heli.airc
1 ! Single Main Rotor Helicopter aircraft file
2 ! Originally created March 2009
3 ! Forked by Joseph Robinson, 2020-07-14
4
5 &DEFN action=’ident’,
6 title=’Heli aircraft file’,
7 created=’2020-07-14’,
8 &END
9 !##

10 ! default helicopter
11 &DEFN action=’configuration’,&END

338

12 &VALUE config=’helicopter’,rotate=1,&END
13 !==
14 &DEFN quant=’Cost’,&END
15 &VALUE
16 year_inf=2010,
17 FuelPrice=5.00,
18 Npass=10,
19 &END
20 &DEFN quant=’Emissions’,&END
21 &VALUE &END
22 !==
23 &DEFN quant=’Aircraft’,&END
24 &VALUE
25 title=’Heli Aircraft’,
26 DGW=16000.,SDGW=17000.,WMTO=21000.,nz_ult=4.0,
27 altitude=4000.,SET_atmos=’temp’,temp=95.,
28 FIX_drag=0,FIX_DL=0, ! FIX_drag=1 DoQ, 2 CD, 3 kDrag; FIX_DL=1 DoQV, 2 kDL
29 INPUT_geom=1, ! fixed dimensional geometry (SL,BL,WL)
30 KIND_scale=1,kScale=1, ! mr reference length for kx,ky,kz
31 KIND_Ref=3,kRef=1, ! fuselage reference point
32 kx=0.1,ky=0.3,kz=0.3, ! radii of gyration scaled to reference length
33 &END
34 !--
35 &DEFN quant=’Systems’,&END
36 &VALUE
37 title=’Heli Systems’,
38 SET_Wpayload=2,Upass=200.,
39 SET_Wcrew=2,Ncrew=2,Ucrew=220.,Wcrew=160.,
40 nWoful=2,Woful_name=’baggage’,’survival kit’,Woful=60.,40.,
41 Wtrap=75.,
42 SET_Wvib=1,Wvib=0.,fWvib=0.025,
43 SET_Wcont=2,Wcont=0.,
44 Wfc_cc=100.,Wfc_afcs=100.,
45 fRWfc_nb=1.25,fRWhyd=0.4,
46 MODEL_FWfc=1,MODEL_WFWfc=2,fFWfc_nb=0.15,
47 Wauxpower=200.,Winstrument=200.,Wpneumatic=0.,Welectrical=400.0,
48 WMEQ=400.,
49 Wfurnish=600.,Wenviron=100.,
50 Ncrew_seat=2,Npass_seat=10,Ucrew_seat_inc=50.,Upass_seat_inc=40.,
51 MODEL_DI=1,kDeIce_elec=0.25,0.25,kDeIce_rotor=0.25,0.08,kDeIce_air=0.006,
52 SET_fold=0,
53 &END
54 !--
55 &DEFN quant=’Fuselage’,&END
56 &VALUE
57 title=’Heli Fuselage’,
58 ! geometry
59 SET_length=4,SET_nose=1,SET_aft=2,Length_nose=12.,fLength_aft=-0.2,
60 fRef_fus=0.4,Width_fus=8.,
61 SET_Swet=3,fSwet=0.7,fSproj=1.0,
62 Height_fus=6.,
63 Circum_boom=18.,Width_boom=2.7,
64 ! aerodynamics
65 DoQ_cont=0.,
66 AoA_zl=0.,AoA_max=35.,SS_max=35.,
67 SET_lift=2,dCLda=0.1,
68 SET_moment=2,CM0=0.,dCMda=0.05,
69 ! SET_side=2,dCYdb=-0.15, ! not possible in RCAS (closed-form)
70 SET_side=2,dCYdb=0.,
71 ! SET_yaw=2,CN0=0.,dCNdb=-0.03, ! not possible in RCAS (closed-form)

339

72 SET_yaw=2,CN0=0.,dCNdb=-0.,
73 SET_drag=2,SET_Dfit=2,SET_Drb=2,SET_Vdrag=2,SET_Sdrag=2,
74 CD=0.0065,CD_fit=0.0065,CD_rb=0.,0.,CDV=0.40,CDS=0.04,
75 MODEL_drag=2,AoA_Dmin=0.,Kdrag=15.,AoA_tran=25.,
76 ! weight
77 fWbody_crash=0.06,
78 &END
79 !--
80 &DEFN quant=’LandingGear’,&END
81 &VALUE
82 title=’Heli Landing Gear’,
83 ! drag
84 DoQ=0.,
85 ! weight
86 nLG=3,fWLG_crash=0.15,fWLG_ret=0.,
87 &END
88 !==
89 &DEFN quant=’Geometry’,&END
90 &VALUE
91 ! fixed geometry (INPUT_geom=1); SL +aft, BL +right, WL +up
92 ! fuselage reference
93 loc_cg%SL = 0.504, loc_cg%BL = 0.007, loc_cg%WL =

↪→ 1.098,
94 loc_fuselage%SL = 0.00, loc_fuselage%BL = 0.00, loc_fuselage%WL =

↪→ 0.00,
95 loc_gear%SL = 0.00, loc_gear%BL = 0.00, loc_gear%WL =

↪→ -5.36,
96 loc_rotor(1)%SL =-0.351, loc_rotor(1)%BL = 0.00, loc_rotor(1)%WL =

↪→ 6.691, ! 6.7 ft from fuselage center with 3 degree forward shaft tilt
97 loc_pylon(1)%SL = 0.00, loc_pylon(1)%BL = 0.00, loc_pylon(1)%WL =

↪→ 3.752,
98 loc_rotor(2)%SL = 33.05, loc_rotor(2)%BL = 1.072, loc_rotor(2)%WL =

↪→ 7.772,
99 loc_pylon(2)%SL = 0.00, loc_pylon(2)%BL = 1.072, loc_pylon(2)%WL =

↪→ 7.772, ! SET_geom=tailrotor: pylon SL relative hub
100 loc_tail(1)%SL = 29.48, loc_tail(1)%BL = 0.00, loc_tail(1)%WL =

↪→ 0.00,
101 loc_tail(2)%SL =31.265, loc_tail(2)%BL = 0.00, loc_tail(2)%WL =

↪→ 3.886, ! halfway between boom endpoint and tail rotor
102 loc_auxtank(1,1)%SL = 0.00, loc_auxtank(1,1)%BL = 0.00, loc_auxtank(1,1)%WL =

↪→ 0.00,
103 loc_engine(1)%SL = 0.00, loc_engine(1)%BL = 0.00, loc_engine(1)%WL =

↪→ 4.02,
104 &END
105 !==
106 &DEFN quant=’Rotor 1’,&END
107 &VALUE
108 title=’Heli Main Rotor’,
109 Vtip_ref=723.6,
110 INPUT_Vtip=2,fRPM_cruise=1.,fRPM_man=1.,fRPM_oei=1.,fRPM_xmsn=1.,
111 Plimit_rs=2880.,fPlimit_rs=2.,
112 radius=26.8,sigma=0.08314064191,rotate=1,nblade=4,
113 SET_chord=2,SET_twist=1,twistL=-10,
114 !nprop=3,rprop=0.,.9,1.,fchord=1.,1.,.6, ! for SET_chord=3
115 taper=1, ! for SET_chord=2
116 KIND_hub=1,flapfreq=1.035,gamma=8.26,precone=0.,
117 dclda=5.7,tiploss=.97,xroot=0.15,thick=0.09,
118 incid_hub=-3.,cant_hub=0.,
119 ! performance
120 MODEL_Ftpp=2,MODEL_Fpro=2,
121 ! induced power
122 Ki_hover=1.125,Ki_climb=1.125,Ki_prop=1.125,Ki_edge=2.0,Ki_min=1.1,

340

123 CTs_Hind=.10,kh1=1.25,kh2=0.,
124 mu_edge=0.35,ke1=.8,ke2=0.,ke3=1.,Xe=4.5,
125 ! profile power
126 MODEL_basic=2,
127 CTs_Dmin=.05,d0_hel=.0080,d0_prop=.0080,d1_hel=0.,d1_prop=0.,d2_hel=.5,d2_prop

↪→ =.5,
128 CTs_sep=.07,dsep=4.,Xsep=3.,
129 MODEL_stall=1,CTs_stall(1)=0., ! default
130 fstall=1.,dstall1=2.,dstall2=40.,Xstall1=2.,Xstall2=3.,
131 MODEL_comp=1,Mdd0=.73,Mddcl=0.,dm1=.005,dm2=1.,Xm=3.,
132 ! drag
133 SET_Spylon=2,kSwet_pylon=0.9, ! scaled pylon wetted area
134 SET_Dhub=2,SET_Vhub=2,SET_Dpylon=2,SET_Vpylon=2, ! scale drag based on CD
135 CD_hub=0.0025,CDV_hub=0.0025,CD_pylon=0.04,CDV_pylon=0.04, ! CD values for above
136 ! weight
137 TECH_blade=0, ! set custom blade weight
138 dWblade=737.815, ! from VABS + RCAS blade model
139 ! controls
140 KIND_control=4, ! pitch and NFP
141 &END
142 !--
143 &DEFN quant=’Rotor 2’,&END
144 &VALUE
145 title=’Heli Tail Rotor’,
146 INPUT_gear=1,Vtip_ref=648.,
147 Plimit_rs=640.,fPlimit_rs=2.,
148 radius=6.,sigma=0.16,rotate=1,nblade=4,!clearance_tr=0.25,
149 SET_chord=2,taper=1.,SET_twist=1,twistL=0.,
150 !KIND_hub=1,flapfreq=1.2,gamma=4.,precone=0.,delta3=45., ! articulated
151 KIND_hub=2,flapfreq=1.2,gamma=1.89,precone=0., ! hingeless
152 dclda=5.7,tiploss=.97,xroot=0.4,thick=.09,
153 incid_hub=0.,cant_hub=0.,!20.,
154 ! performance
155 MODEL_Ftpp=2,MODEL_Fpro=2,
156 ! induced power
157 Ki_hover=1.65,Ki_climb=1.65,Ki_prop=1.65,Ki_edge=2.0,Ki_min=1.65,
158 CTs_Hind=.05,kh1=0.,kh2=80.,
159 mu_edge=0.35,ke1=.8,ke2=0.,ke3=1.,Xe=4.5,
160 ! profile power
161 MODEL_basic=2,
162 CTs_Dmin=.04,d0_hel=.0090,d0_prop=.0090,d1_hel=0.,d1_prop=0.,d2_hel=.9,d2_prop

↪→ =.9,
163 CTs_sep=.06,dsep=20.,Xsep=3.,
164 MODEL_stall=1,CTs_stall(1)=0., ! default
165 fstall=1.,dstall1=5.,dstall2=40.,Xstall1=2.,Xstall2=3.,
166 MODEL_comp=1,Mdd0=.68,Mddcl=0.,dm1=.005,dm2=1.,Xm=3.,
167 ! no interference (vertical tail at low speed)
168 MODEL_int=0,
169 ! drag
170 SET_Spylon=1,Swet_pylon=0.,
171 SET_Dhub=2,SET_Vhub=2,SET_Dpylon=2,SET_Vpylon=2,
172 CD_hub=0.030,CDV_hub=0.030,CD_pylon=0.,CDV_pylon=0.,
173 ! controls
174 KIND_control=4, ! pitch and NFP
175 &END
176 !==
177 &DEFN quant=’Tail 1’,&END
178 &VALUE
179 title=’Heli Horizontal Tail’,
180 SET_tail=’vol+aspect’,
181 TailVol=0.020,AspectRatio=5.,

341

182 taper=1.,sweep=0.,dihedral=0.,thick=0.12,fchord_cont=0.,
183 cant=0.,incid=0.,
184 ! aerodynamics
185 AoA_zl=1.,CLmax=0.8,SET_lift=3,dCLda=2.3,Tind=1.,Eind=.9,
186 SET_drag=2,SET_Vdrag=2,
187 CD=0.015,CDV=0.015,
188 AoA_Dmin=0.,MODEL_drag=0,
189 ! weight
190 Vdive=250.,
191 &END
192 !--
193 &DEFN quant=’Tail 2’,&END
194 &VALUE
195 title=’Heli Vertical Tail’,
196 ! SET_tail=’vol+aspect’,
197 SET_tail=’vol+span’,
198 TailVol=0.015,!AspectRatio=2.,
199 span=8.5527, ! calculated from RCAS model (boom end to tail rotor)
200 taper=1.,dihedral=0.,thick=0.20,fchord_cont=0.,
201 sweep=24.67, ! calculated from RCAS model (boom end to tail rotor)
202 cant=0.,incid=0.,
203 ! aerodynamics
204 AoA_zl=0.,CLmax=1.,SET_lift=3,dCLda=1.5,Tind=1.,Eind=.9,
205 SET_drag=2,SET_Vdrag=2,
206 CD=0.020,CDV=0.020,
207 AoA_Dmin=0.,MODEL_drag=0,
208 ! weight
209 Vdive=210.,
210 place_AntiQ=2, ! place=tail
211 &END
212 !==
213 &DEFN quant=’FuelTank’,&END
214 &VALUE
215 title=’Heli Fuel Tank’,
216 Wfuel_cap=2500.,
217 ! aux tanks
218 Waux_cap=5000.,DoQ_auxtank=0.,fWauxtank=0.11,
219 ! weight
220 ntank_int=2,nplumb=2,Ktoler=1.8,
221 K0_plumb=120.,K1_plumb=3.,
222 &END
223 !==
224 &DEFN quant=’Propulsion’,&END
225 &VALUE
226 title=’Heli Propulsion’,
227 ! losses
228 MODEL_Xloss=1,
229 fPloss_xmsn=0.02,Ploss_windage=0.0,Pacc_0=60.,Pacc_d=0.,Pacc_n=0.,fPacc_ECU=0.,

↪→ fPacc_IRfan=0.,
230 ! geometry
231 SET_length=2,fLength_ds=0.9,
232 ! torque limit
233 Plimit_ds=2880.,fPlimit_ds=0.9,
234 ! weight
235 ngearbox=5,ndriveshaft=4,fShaft=0.10,
236 &END
237 !--
238 &DEFN quant=’EngineGroup’,&END
239 &VALUE
240 title=’Heli Engine Group’,

342

241 nEngine=2,nEngine_main=2,
242 IDENT_engine=’GEN2000’,
243 Peng=1600.,rating_to=’MRP’,
244 SET_Swet=2,kSwet=0.8,
245 ! torque limit
246 Plimit_es=2880.,fPlimit_es=0.9,
247 ! installation
248 eta_d=0.99,
249 Kffd=1.05,fPloss_inlet=.007,fPloss_ps=0.,
250 fPloss_exh=.02,fMF_auxair=.01,eta_auxair=.75,
251 fPloss_exh_IRon=.02,fMF_auxair_IRon=.01,eta_auxair_IRon=.75,
252 ! drag
253 SET_drag=2,SET_Vdrag=2,
254 CD=0.0100,CDV=0.0100,
255 ! weight
256 fWpylon=0.,fWair=0.45,
257 Kwt0_exh=0.,Kwt1_exh=0.06,
258 MODEL_lub=1,
259 &END
260 !==
261 &DEFN quant=’TechFactors’,&END
262 &VALUE
263 ! cost
264 TECH_cost_af=1.,TECH_cost_maint=1.,
265 ! flight control
266 TECH_RWfc_b=1.,TECH_RWfc_mb=1.,TECH_RWfc_nb=1.,TECH_RWhyd=1.,
267 TECH_FWfc_nb=1.,TECH_FWfc_mb=1.,TECH_FWhyd=1.,
268 ! anti-icing
269 TECH_DIelect=1.,TECH_DIsys=1.,
270 ! fuselage
271 TECH_body=1.,TECH_mar=1.,TECH_press=1.,TECH_crash=1.,TECH_ftfold=1.,TECH_fwfold

↪→ =1.,
272 TECH_LG=1.,TECH_LGret=1.,TECH_LGcrash=1.,
273 ! rotor profile power
274 TECH_drag=1.,1.,
275 ! rotor
276 TECH_blade(2)=1., ! only automatically solve weight for tail rotor
277 TECH_hub=1.,1.,TECH_spin=1.,1.,TECH_rfold=1.,1.,TECH_tr=1.,1.,TECH_aux=1.,1.,
278 ! tail
279 TECH_tail=1.,1.,
280 ! fuel tank
281 TECH_tank=1.,TECH_plumb=1.,
282 ! drive system
283 TECH_gb=1.,TECH_rs=1.,TECH_ds=1.,TECH_rb=1.,
284 ! engine group
285 TECH_eng=1.,TECH_cowl=1.,TECH_pylon=1.,TECH_supt=1.,TECH_air=1.,TECH_exh=1.,

↪→ TECH_acc=1.,
286 &END
287 !==
288 !##
289 &DEFN action=’endoffile’,&END

Listing B.3: gen2000.list
1 &DEFN action=’ident’,created=’October 2008’,
2 title = ’Turboshaft Engine Math Model Data (GEN2000)’,
3 &END
4 &DEFN quant=’EngineModel’,&END
5 &VALUE
6 ! Turboshaft Engine Model

343

7 title = ’Turboshaft Engine Math Model Data (GEN2000)’,
8 notes = ’Generic 2000 hp Engine’,
9 ident = ’GEN2000’,

10 ! Engine Ratings
11 nrate = 4,
12 rating = ’MCP ’, ’IRP ’, ’MRP ’, ’CRP ’,
13 ! Weight
14 Kwt0_eng = 0.000,
15 Kwt1_eng = 0.180,
16 Kwt2_eng = 0.000,
17 Xwt_eng = 0.0000,
18 ! Reference
19 P0_ref = 2000., 2400., 2540., 2660.,
20 SP0_ref = 134., 145., 164., 171.,
21 Pmech_ref = 3000., 3000., 3000., 3000.,
22 sfc0C_ref = 0.44,
23 SF0C_ref = 8.9,
24 Nspec_ref = 19100.,
25 Nopt0C_ref = 19100.,
26 ! Scaling, MF_ref=15.0
27 MF_limit = 30.,
28 SP0C_limit = 143.,
29 sfc0C_limit = 0.40,
30 KNspec = 73790.,
31 ! Optimum Power Turbine Speed (linear)
32 MODEL_OptN = 1,
33 KNoptA = 1.,
34 KNoptB = 0.,
35 XNeta = 2.,
36 ! Single Set of Input Parameters
37 INPUT_param = 1,
38 ! Power Available
39 INPUT_lin = 1,
40 ! specific power
41 Nspa = 1, 1, 1, 1,
42 Kspa0(1,1) = 3.80, 0.00, 0.00, 0.00, 0.00, ! MCP
43 Kspa0(1,2) = 3.20, 0.00, 0.00, 0.00, 0.00, ! IRP
44 Kspa0(1,3) = 3.00, 0.00, 0.00, 0.00, 0.00, ! MRP
45 Kspa0(1,4) = 2.80, 0.00, 0.00, 0.00, 0.00, ! CRP
46 Kspa1(1,1) = -2.80, 0.00, 0.00, 0.00, 0.00, ! MCP
47 Kspa1(1,2) = -2.20, 0.00, 0.00, 0.00, 0.00, ! IRP
48 Kspa1(1,3) = -2.00, 0.00, 0.00, 0.00, 0.00, ! MRP
49 Kspa1(1,4) = -1.80, 0.00, 0.00, 0.00, 0.00, ! CRP
50 Xspa0(1,1) = -0.22, 0.00, 0.00, 0.00, 0.00, ! MCP
51 Xspa0(1,2) = -0.22, 0.00, 0.00, 0.00, 0.00, ! IRP
52 Xspa0(1,3) = -0.22, 0.00, 0.00, 0.00, 0.00, ! MRP
53 Xspa0(1,4) = -0.22, 0.00, 0.00, 0.00, 0.00, ! CRP
54 Xspa1(1,1) = 0.00, 0.00, 0.00, 0.00, 0.00, ! MCP
55 Xspa1(1,2) = 0.00, 0.00, 0.00, 0.00, 0.00, ! IRP
56 Xspa1(1,3) = 0.00, 0.00, 0.00, 0.00, 0.00, ! MRP
57 Xspa1(1,4) = 0.00, 0.00, 0.00, 0.00, 0.00, ! CRP
58 ! mass flow
59 Nmfa = 2, 2, 2, 2,
60 Kmfa0(1,1) = 0.30, 0.70, 0.00, 0.00, 0.00, ! MCP
61 Kmfa0(1,2) = 0.29, 0.45, 0.00, 0.00, 0.00, ! IRP
62 Kmfa0(1,3) = 0.28, 0.35, 0.00, 0.00, 0.00, ! MRP
63 Kmfa0(1,4) = 0.27, 0.30, 0.00, 0.00, 0.00, ! CRP
64 Kmfa1(1,1) = -0.30, -0.70, 0.00, 0.00, 0.00, ! MCP
65 Kmfa1(1,2) = -0.29, -0.45, 0.00, 0.00, 0.00, ! IRP
66 Kmfa1(1,3) = -0.28, -0.35, 0.00, 0.00, 0.00, ! MRP

344

67 Kmfa1(1,4) = -0.27, -0.30, 0.00, 0.00, 0.00, ! CRP
68 Xmfa0(1,1) = 1.05, 1.10, 0.00, 0.00, 0.00, ! MCP
69 Xmfa0(1,2) = 1.05, 1.10, 0.00, 0.00, 0.00, ! IRP
70 Xmfa0(1,3) = 1.05, 1.10, 0.00, 0.00, 0.00, ! MRP
71 Xmfa0(1,4) = 1.05, 1.10, 0.00, 0.00, 0.00, ! CRP
72 Xmfa1(1,1) = 0.00, -0.01, 0.00, 0.00, 0.00, ! MCP
73 Xmfa1(1,2) = 0.00, -0.01, 0.00, 0.00, 0.00, ! IRP
74 Xmfa1(1,3) = 0.00, -0.01, 0.00, 0.00, 0.00, ! MRP
75 Xmfa1(1,4) = 0.00, -0.01, 0.00, 0.00, 0.00, ! CRP
76 ! Performance at Power Required
77 ! fuel flow mass flow gross jet thrust net jet thrust
78 Kffq0 = 0.20, Kmfq0 = 0.60, Kfgq0 = 0.20, Kfgr0 = 0.80,
79 Kffq1 = 0.80, Kmfq1 = 0.78, Kfgq1 = 0.80, Kfgr1 = 0.60,
80 Kffq2 = 0.00, Kmfq2 = -0.48, Kfgq2 = 0.00, Kfgr2 = 0.00,
81 Kffq3 = 0.00, Kmfq3 = 0.10, Kfgq3 = 0.00, Kfgr3 = 0.00,
82 Xffq = 1.30, Xmfq = 3.50, Xfgq = 2.00,
83 &END

Listing B.4: generic.cond
1 ! Generic performance file
2 ! Created by Joseph Robinson, 2020-07-15
3
4 &DEFN action=’ident’,
5 title=’Generic performance file’,
6 created=’2020-07-15’,
7 &END
8 !##
9 !==

10 &DEFN quant=’Performance’,&END
11 &VALUE
12 title=’Heli performance analysis’,
13 nFltCond=1,
14 &END
15
16 !--
17 &DEFN quant=’PerfCondition 1’,&END
18 &VALUE
19 title=’Generic’,label=’generic’,
20 SET_GW=’input’,GW=16000., ! gross weight, lbs
21 SET_UL=’fuel’,fFuel=1., ! top off fuel tanks
22 SET_atmos=’std’,altitude=0., ! density altitude, ft
23 Vkts=120., ! forward flight velocity, kn
24 ROC=0., ! rate of climb, ft/min
25 SET_turn=1,rate_turn=0., ! turn rate, deg/s
26 STATE_trim=’free’,
27 pitch=-1.,coll=7.5,pedal=-5.,lngcyc=5.,! trim initial conditions, deg
28 relax_trim=.2,
29 &END
30 !==
31 !##
32 &DEFN action=’endoffile’,&END

345

Ta
bl

e
B

.1
:M

ap
pi

ng
fr

om
O

pe
nM

D
A

O
va

ri
ab

le
s

to
N

D
A

R
C

va
ri

ab
le

s
(w

ei
gh

ts
).

O
pe

nM
D

A
O

va
ri

ab
le

R
C

O
TO

O
L

S
ac

ce
ss

st
ri

ng
a

U
ni

ts

w
e
i
g
h
t
_
m
a
i
n
_
b
l
a
d
e

R
o
t
o
r
(
1
)
%
d
W
b
l
a
d
e

lb
w
e
i
g
h
t
_
f
u
s
e
l
a
g
e

A
i
r
c
r
a
f
t
%
W
E
I
G
H
T
%
W
_
F
U
S
E
L
A
G
E

lb
w
e
i
g
h
t
_
s
y
s
t
e
m
s

A
i
r
c
r
a
f
t
%
W
E
I
G
H
T
%
W
_
E
Q
U
I
P

lb
w
e
i
g
h
t
_
f
u
e
l
s
y
s
t
e
m

A
i
r
c
r
a
f
t
%
W
E
I
G
H
T
%
W
_
F
U
E
L
S
Y
S

lb
w
e
i
g
h
t
_
g
e
a
r

A
i
r
c
r
a
f
t
%
W
E
I
G
H
T
%
W
_
G
E
A
R

lb
w
e
i
g
h
t
_
m
a
i
n
_
h
u
b

A
i
r
c
r
a
f
t
%
W
E
I
G
H
T
%
W
_
R
O
T
O
R
_
H
U
B

lb
w
e
i
g
h
t
_
m
a
i
n
_
b
l
a
d
e
s

A
i
r
c
r
a
f
t
%
W
E
I
G
H
T
%
W
_
R
O
T
O
R
_
B
L
A
D
E

lb
w
e
i
g
h
t
_
t
a
i
l
r
o
t
o
r

A
i
r
c
r
a
f
t
%
W
E
I
G
H
T
%
W
_
T
A
I
L
R
O
T
O
R

lb
w
e
i
g
h
t
_
h
o
r
i
z
s
t
a
b

A
i
r
c
r
a
f
t
%
W
E
I
G
H
T
%
W
_
H
T
A
I
L

lb
w
e
i
g
h
t
_
v
e
r
t
s
t
a
b

A
i
r
c
r
a
f
t
%
W
E
I
G
H
T
%
W
_
V
T
A
I
L

lb
w
e
i
g
h
t
_
d
r
i
v
e

A
i
r
c
r
a
f
t
%
W
E
I
G
H
T
%
W
_
D
R
I
V
E

lb
w
e
i
g
h
t
_
e
n
g
s
t
r
u
c
t

E
n
g
i
n
e
G
r
o
u
p
(
1
)
%
W
E
I
G
H
T
%
W
_
S
T
R
U
C
T
U
R
E

lb
w
e
i
g
h
t
_
e
n
g
i
n
e

A
i
r
c
r
a
f
t
%
W
E
I
G
H
T
%
W
_
E
N
G
S
Y
S

lb
w
e
i
g
h
t
_
f
u
e
l

P
e
r
f
o
r
m
a
n
c
e
%
P
e
r
f
C
o
n
d
i
t
i
o
n
(
1
)
%
F
l
t
A
i
r
c
r
a
f
t
%
W
F
U
E
L
_
T
O
T
A
L

lb
w
e
i
g
h
t
_
u
s
e
f
u
l
l
o
a
d

P
e
r
f
o
r
m
a
n
c
e
%
P
e
r
f
C
o
n
d
i
t
i
o
n
(
1
)
%
F
l
t
A
i
r
c
r
a
f
t
%
W
F
I
X
U
L

lb
w
e
i
g
h
t
_
p
a
y
l
o
a
d

P
e
r
f
o
r
m
a
n
c
e
%
P
e
r
f
C
o
n
d
i
t
i
o
n
(
1
)
%
F
l
t
A
i
r
c
r
a
f
t
%
W
P
A
Y
L
O
A
D

lb
a

T
he

R
C

O
TO

O
L

S
ac

ce
ss

st
ri

ng
id

en
tifi

es
a

sp
ec

ifi
c

lo
ca

tio
n

in
th

e
N

D
A

R
C

da
ta

st
ru

ct
ur

e.

346

Table B.2: Mapping from OpenMDAO variables to NDARC variables (geometry).

OpenMDAO variable RCOTOOLS access string Units

loc_fuselage_sl Fuselage%LOC_FUSELAGE_SLLOC ft
loc_fuselage_bl Fuselage%LOC_FUSELAGE_BLLOC ft
loc_fuselage_wl Fuselage%LOC_FUSELAGE_WLLOC ft
loc_gear_sl LandingGear%LOC_GEAR_SLLOC ft
loc_gear_bl LandingGear%LOC_GEAR_BLLOC ft
loc_gear_wl LandingGear%LOC_GEAR_WLLOC ft
loc_mainrotor_sl Rotor(1)%LOC_ROTOR_SLLOC ft
loc_mainrotor_bl Rotor(1)%LOC_ROTOR_BLLOC ft
loc_mainrotor_wl Rotor(1)%LOC_ROTOR_WLLOC ft
loc_tailrotor_sl Rotor(2)%LOC_ROTOR_SLLOC ft
loc_tailrotor_bl Rotor(2)%LOC_ROTOR_BLLOC ft
loc_tailrotor_wl Rotor(2)%LOC_ROTOR_WLLOC ft
loc_horizstab_sl Tail(1)%LOC_TAIL_SLLOC ft
loc_horizstab_bl Tail(1)%LOC_TAIL_BLLOC ft
loc_horizstab_wl Tail(1)%LOC_TAIL_WLLOC ft
loc_vertstab_sl Tail(2)%LOC_TAIL_SLLOC ft
loc_vertstab_bl Tail(2)%LOC_TAIL_BLLOC ft
loc_vertstab_wl Tail(2)%LOC_TAIL_WLLOC ft
loc_fueltank_sl FuelTank(1)%LOC_AUXTANK(1)_SLLOC ft
loc_fueltank_bl FuelTank(1)%LOC_AUXTANK(1)_BLLOC ft
loc_fueltank_wl FuelTank(1)%LOC_AUXTANK(1)_WLLOC ft
loc_engine_sl EngineGroup(1)%LOC_ENGINE_SLLOC ft
loc_engine_bl EngineGroup(1)%LOC_ENGINE_BLLOC ft
loc_engine_wl EngineGroup(1)%LOC_ENGINE_WLLOC ft
tail_rotor_cant Rotor(2)%cant_hub deg

347

Ta
bl

e
B

.3
:M

ap
pi

ng
fr

om
O

pe
nM

D
A

O
va

ri
ab

le
s

to
N

D
A

R
C

va
ri

ab
le

s
(fl

ig
ht

co
nd

iti
on

).

O
pe

nM
D

A
O

va
ri

ab
le

R
C

O
TO

O
L

S
ac

ce
ss

st
ri

ng
U

ni
ts

a
i
r
s
p
e
e
d

P
e
r
f
C
o
n
d
i
t
i
o
n
(
1
)
%
V
k
t
s

kt
a
l
t
i
t
u
d
e

P
e
r
f
C
o
n
d
i
t
i
o
n
(
1
)
%
a
l
t
i
t
u
d
e

ft
g
r
o
s
s
_
w
e
i
g
h
t

P
e
r
f
C
o
n
d
i
t
i
o
n
(
1
)
%
G
W

lb
r
a
t
e
_
o
f
_
c
l
i
m
b

P
e
r
f
C
o
n
d
i
t
i
o
n
(
1
)
%
R
O
C

ft
/m

in
t
u
r
n
_
r
a
t
e

P
e
r
f
C
o
n
d
i
t
i
o
n
(
1
)
%
r
a
t
e
_
t
u
r
n

de
g/

s
l
o
c
_
c
g
_
s
l

G
e
o
m
e
t
r
y
%
l
o
c
_
c
g
%
S
L

ft
l
o
c
_
c
g
_
b
l

G
e
o
m
e
t
r
y
%
l
o
c
_
c
g
%
B
L

ft
l
o
c
_
c
g
_
w
l

G
e
o
m
e
t
r
y
%
l
o
c
_
c
g
%
W
L

ft
a
t
t
_
p
i
t
c
h

P
e
r
f
o
r
m
a
n
c
e
%
P
e
r
f
C
o
n
d
i
t
i
o
n
(
1
)
%
F
l
t
A
i
r
c
r
a
f
t
%
P
I
T
C
H
_
T
R
I
M

de
g

a
t
t
_
r
o
l
l

P
e
r
f
o
r
m
a
n
c
e
%
P
e
r
f
C
o
n
d
i
t
i
o
n
(
1
)
%
F
l
t
A
i
r
c
r
a
f
t
%
R
O
L
L
_
T
R
I
M

de
g

n
d
a
r
c
_
c
o
n
t
_
c
o
l
l

P
e
r
f
P
e
r
f
o
r
m
a
n
c
e
%
P
e
r
f
C
o
n
d
i
t
i
o
n
(
1
)
%
F
l
t
A
i
r
c
r
a
f
t
%
C
O
N
T
R
O
L
_
T
R
I
M
(
1
)

de
g

n
d
a
r
c
_
c
o
n
t
_
l
a
t
_
c
y
c

P
e
r
f
o
r
m
a
n
c
e
%
P
e
r
f
C
o
n
d
i
t
i
o
n
(
1
)
%
F
l
t
A
i
r
c
r
a
f
t
%
C
O
N
T
R
O
L
_
T
R
I
M
(
2
)

de
g

n
d
a
r
c
_
c
o
n
t
_
l
o
n
_
c
y
c

P
e
r
f
o
r
m
a
n
c
e
%
P
e
r
f
C
o
n
d
i
t
i
o
n
(
1
)
%
F
l
t
A
i
r
c
r
a
f
t
%
C
O
N
T
R
O
L
_
T
R
I
M
(
3
)

de
g

n
d
a
r
c
_
c
o
n
t
_
p
e
d
a
l

P
e
r
f
o
r
m
a
n
c
e
%
P
e
r
f
C
o
n
d
i
t
i
o
n
(
1
)
%
F
l
t
A
i
r
c
r
a
f
t
%
C
O
N
T
R
O
L
_
T
R
I
M
(
4
)

de
g

a
i
r
_
v
i
s
c
o
s
i
t
y

P
e
r
f
o
r
m
a
n
c
e
%
P
e
r
f
C
o
n
d
i
t
i
o
n
(
1
)
%
F
l
t
A
i
r
c
r
a
f
t
%
V
I
S
C
O
S
I
T
Y

sl
ug

/(
ft

s)
a
i
r
_
d
e
n
s
i
t
y

P
e
r
f
o
r
m
a
n
c
e
%
P
e
r
f
C
o
n
d
i
t
i
o
n
(
1
)
%
F
l
t
A
i
r
c
r
a
f
t
%
D
E
N
S
I
T
Y

sl
ug

/f
t3

a
i
r
_
s
o
u
n
d
_
s
p
e
e
d

P
e
r
f
o
r
m
a
n
c
e
%
P
e
r
f
C
o
n
d
i
t
i
o
n
(
1
)
%
F
l
t
A
i
r
c
r
a
f
t
%
C
S
O
U
N
D

ft
/s

348

B.2 RCAS Model

The RCAS model is composed of a single file titled heli.rcas. Because the original

RCAS file cannot be published, this section consists of a series of paragraphs and tables that

describe the construction of the RCAS module.

B.2.1 Structural Model

The structural model consists of three subsystems. The mrotor subsystem describes the main

rotor, the fusess subsystem describes the fuselage, and the trotor subsystem describes

the tail rotor. The mrotor and trotor subsystems are attached to the fusess subsystem

using a rotating-nonrotating constraint at each subsystem’s respective hub node.

The model is attached to the world frame at the center point of the fuselage. All degrees

of freedom are enabled. The trim springs and dampers that connect the vehicle to the world

frame are described in Table B.4.

Table B.4: Coefficients of RCAS trim springs and dampers.

Object Units x y z

Translational spring lbf/ft 7.5× 105 7.5× 105 7.5× 105

Rotational spring ft lbf/rad 4.0× 106 8.5× 107 6.5× 106

Translational damper lbf s/ft 7.5× 103 7.5× 103 7.5× 103

Rotational damper ft lbf s/rad 4.5× 105 1.0× 106 7.5× 105

The geometric origins of the three subsystems are described in Table B.5 and their

orientations are described in Table B.6.

Table B.5: Origins of RCAS structural model subsystems.

Subsystem Units x y z

mrotor ft 0 0 0
fusess ft 0 0 0
trotor ft −33.05 0 −7.772

349

Table B.6: Orientations of RCAS structural model subsystems.

Subsystem Units First rotation (y) Second rotation (x)

mrotor deg 177 0
fusess deg 0 0
trotor deg 180 −90

Pilot controls are mapped to the helicopter’s control surface using a control mixer. The

control mixer is described in Table B.7.

Table B.7: Control mixer of RCAS model.

Control Value at 0 Coll. Lat. cyclic Long. cyclic Pedal Throttle

SP coll. 0 −0.0123 0 0 0 0
SP lat. cyc. 0 0 −0.00853 0 0 0
SP long. cyc. 0 0 0 −0.00853 0 0
TR coll. 0 0 0 0 −0.017453 0

B.2.1.1 Fuselage Subsystem

The fusess subsystem is composed of three primitive structures. fuseps models the

fuselage, vstabps models the vertical stabilizer, and hstabps models the horizontal stabi-

lizer. The vstabps and hstabps structures are constrained to the fuseps structure at their

respective root nodes.

The geometric origins of the three primitive structures are described in Table B.8 and

their orientations are described in Table B.9.

Table B.8: Origins of RCAS model fuselage subsystem primitive structures.

Subsystem Units x y z

mrotor ft 0 0 0
fusess ft −29.48 0 0
trotor ft −29.48 0 0

350

Table B.9: Orientations of RCAS model fuselage subsystem primitive structures.

Subsystem Units First rotation (z) Second rotation (y)

mrotor deg 0 0
fusess deg −90 90
trotor deg −90 180

Fuselage Primitive Structure The nodes comprising the fuseps primitive structure are

listed in Table B.10. These nodes are connected by five massless rigid bars running from

node 2 to each other node.

Table B.10: Nodes of RCAS model fuselage primitive structure.

Node ID Units x y z Description

1 ft 0 0 0 Main rotor attachment point
2 ft 0 0 0 Fuselage center point
3 ft −29.48 0 0 Stabilizer attachment point
4 ft 2 0 0 Payload CG
5 ft 0 0 5.36 Landing gear CG
6 ft 0 0 −4.02 Engine CG

The rigid body masses in this primitive structure are listed in Table B.11. Note that these

values can be overwritten by OpenMDAO based on mass and inertia values predicted by

NDARC when the model is initialized.

Table B.11: Rigid body masses of RCAS model fuselage primitive structure.

Elem. ID Node m (slug) Ixx (slug ft2) Iyy (slug ft2) Izz (slug ft2) Description

1 2 173.231 866.154 14,371.257 14,128.734 Fuselage
11 2 24.088 0 0 0 Fixed UL
12 5 19.582 0 0 0 Gear
13 6 84.731 169.658 789.617 789.617 Engine
14 2 77.703 0 0 0 Fuel
20 4 67.405 0 0 0 Payload

* The cross products of inertia (Ixy, Ixz, and Iyz) for all rigid body masses are zero.

351

Vertical Stabilizer Primitive Structure The nodes comprising the vstabps primitive

structure are listed in Table B.12.

Table B.12: Nodes of RCAS model vertical stabilizer primitive structure.

Node ID Units x y z Description

1 ft 0 0 0 Root
2 ft 7.772 −3.57 0 Tip

The two nodes of this structure are connected by a single rigid bar with a center of

gravity offset 4.276 ft along the x-axis from node 1, which models the mass and inertial of

the vertical stabilizer. This rigid bar has the following mass properties: m = 2.125 slug,

Ixx = 2.231 slug ft2, Iyy = 15.176 slug ft2, Izz = 12.959 slug ft2, and Ixy = Iyz = Ixz = 0.

Note that these values can be overwritten by OpenMDAO based on mass and inertia values

predicted by NDARC when the model is initialized.

Horizontal Stabilizer Primitive Structure The nodes comprising the hstabps primitive

structure are listed in Table B.13.

Table B.13: Nodes of RCAS model horizontal stabilizer primitive structure.

Node ID Units x y z Description

1 ft 0 0 0 Root
2 ft 7.32968 0 0 Starboard tip
2 ft −7.32968 0 0 Port tip

The two nodes of this structure are connected by a single rigid bar with its center of

gravity at node 1 which models the mass and inertial of the horizontal stabilizer. This

rigid bar has the following mass properties: m = 3.241 slug, Ixx = 2.325 slug ft2, Iyy =

58.038 slug ft2, Izz = 60.356 slug ft2, and Ixy = Iyz = Ixz = 0. Note that these values can

be overwritten by OpenMDAO based on mass and inertia values predicted by NDARC when

the model is initialized.

352

B.2.1.2 Main Rotor Subsystem

The mrotor subsystem is composed of two primitive structures. mshaft models the main

rotor shaft and blade1 models a single rotor blade and a corresponding portion of the

swashplate. The single blade analysis option is used to duplicate blade1 to model a four-

bladed rotor. The center of rotation of the rotor is at the root node of mshaft. The rotor is

defined to have a nominal rotation speed of 27.0 rad/s.

The geometric origins of the three primitive structures are described in Table B.14.

These structures are not rotated.

Table B.14: Origins of RCAS model main rotor subsystem primitive structures.

Primitive Units x y z

mshaft ft 0 0 0
blade1 ft 0 0 6.7

The blade1 structure is constrained to the mshaft structure at the root of the blade and

at the pitch link.

Main Rotor Shaft Primitive Structure The nodes comprising the mshaft primitive

structure are listed in Table B.15.

Table B.15: Nodes of RCAS model main rotor shaft primitive structure.

Node ID Units x y z Description

1 ft 0 0 0 Connection to fixed system
2 ft 0 0 0
3 ft 0 0 6.7

30 ft 0 0 5.8 Swashplate center

A free z-oriented hinge is placed between nodes 1 and 2 to allow the shaft to spin. A rigid

bar connects nodes 2 and 3 to model the mass and inertia of the shaft. The center of gravity

of this bar is located at node 3. The bar has the following mass properties: m = 18.605 slug,

Ixx = 14.535 slug ft2, Iyy = 7.268 slug ft2, Izz = 7.268 slug ft2, and Ixy = Iyz = Ixz = 0.

353

Note that these values can be overwritten by OpenMDAO based on mass and inertia values

predicted by NDARC when the model is initialized. A second, massless rigid bar connects

nodes 1 and 30.

Main Rotor Blade Primitive Structure The nodes comprising the blade1 primitive

structure are listed in Table B.16.

Table B.16: Nodes of RCAS model main rotor blade primitive structure.

Node ID Units x y z Description

1 ft 0 0 0 Blade root
2 ft 1.25 0 0 Lag hinge first node
3 ft 1.25 0 0 Lag hinge second node
4 ft 1.25 0 0 Flap hinge second node
5 ft 1.25 0 0 Pitch bearing second node
6 ft 3.805 0 0 Element node
7 ft 6.360 0 0 Element node
8 ft 8.915 0 0 Element node
9 ft 11.470 0 0 Element node

10 ft 14.025 0 0 Element node
11 ft 16.580 0 0 Element node
12 ft 19.135 0 0 Element node
13 ft 21.690 0 0 Element node
14 ft 24.245 0 0 Element node
20 ft 26.80 0 0 Blade tip
30 ft 0 0 −0.9 Swashplate center
31 ft 0 0 −0.9 Swashplate center
32 ft 0 0 −0.9 Swashplate center
33 ft 1.25 0 −0.9 Swashplate radial spoke node
34 ft 1.25 −0.7 −0.9 Bottom of pitch link
35 ft 1.25 −0.7 0 Pitch horn
36 ft 2.00 −0.7 0 Top of pitch link

A rigid bar connects nodes 1 and 2 to model the mass and inertia of the blade root. The

center of gravity of this bar is offset 0.625 ft from node 1. The bar has the following mass

properties: m = 0.112 slug and Ixx = Iyy = Izz = Ixy = Iyz = Ixz = 0.

A z-oriented slide element connects nodes 30 and 31 for collective swashplate control.

Nodes 34 and 35 are connected with translational linear spring with a stiffness coefficient of

354

8.15× 104 lbf/ft to model control stiffness. A series of hinges allow for blade movement

and cyclic swashplate control. These hinges are defined in Table B.17.

Table B.17: Hinges of RCAS model main rotor blade primitive structure.

Elem. ID Node 1 Node 2 Type Free? k (lbf/ft) c (lbf s/ft) Description

2 2 3 Lag Yes 0 4500 Lag hinge
3 3 4 Flap Yes 2000 0 Flap hinge
4 4 5 Pitch Yes 0 0 Pitch hinge

41 31 32 Pitch No 0 0 Control bearing*

* The control bearing is rotated by 60.75° about the z-axis.

A series of 10 geometrically-exact composite beams, connecting nodes 5 to 20, model

the inertia and elasticity of the rotor blade. Each of these beams has six Gauss integration

points, and has two active degrees-of-freedom in axial, lag, flap, torsion, and both shear

directions. The blade has a structural twist of 0.131 rad at the root and −0.044 rad at the tip.

The mass and stiffness matrices that define the beam are produced by the VABS model. The

baseline values of these matrices are defined in Appendix B.2.3.

B.2.1.3 Tail Rotor Subsystem

The trotor subsystem is composed of two primitive structures. tshaft models the tail

rotor shaft and tblade1 models a single tail rotor blade. The single blade analysis option

is used to duplicate tblade1 to model a four-bladed rotor. The center of rotation of the

rotor is at the root node of tshaft. The rotor is defined to have a nominal rotation speed of

108.0 rad/s.

The geometric origins of the three primitive structures are described in Table B.18 and

their orientations are defined in

Table B.18: Origins of RCAS model tail rotor subsystem primitive structures.

Primitive Units x y z

tshaft ft 0 0 0
tblade1 ft 0 0 1.072

355

Table B.19: Orientations of RCAS model tail rotor subsystem primitive structures.

Primitive Units First rotation (z)

tshaft deg 0
tblade1 deg −45

The tblade1 structure is constrained to the tshaft structure at the root of the blade.

Tail Rotor Shaft Primitive Structure The nodes comprising the tshaft primitive struc-

ture are listed in Table B.20.

Table B.20: Nodes of RCAS model tail rotor shaft primitive structure.

Node ID Units x y z Description

1 ft 0 0 0 Connection to fixed system
2 ft 0 0 0
3 ft 0 0 1.072 Connection to blade root

A free z-oriented hinge is placed between nodes 1 and 2 to allow the shaft to spin. A rigid

bar connects nodes 2 and 3 to model the mass and inertia of the shaft. The center of gravity

of this bar is located at node 3. The bar has the following mass properties: m = 1.479 slug,

Ixx = 1.065 slug ft2, Iyy = 0.532 slug ft2, Izz = 0.532 slug ft2, and Ixy = Iyz = Ixz = 0.

Note that these values can be overwritten by OpenMDAO based on mass and inertia values

predicted by NDARC when the model is initialized.

Tail Rotor Blade Primitive Structure The nodes comprising the tblade1 primitive

structure are listed in Table B.21.

Table B.21: Nodes of RCAS model tail rotor blade primitive structure.

Node ID Units x y z Description

1 ft 0 0 0 Blade root
2 ft 1.20 0 0 Control bearing first node
3 ft 1.20 0 0 Control bearing second node

20 ft 6.00 0 0 Blade tip

356

A massless rigid bar connects nodes 1 and 2. A second rigid bar with mass connects

nodes 3 and 20 to model the mass and inertia of the blade. The CG of this bar is offset

2.4 ft from node 3. The bar has the following mass properties: m = 0.452 slug, Ixx =

0.022 slug ft2, Iyy = 0.868 slug ft2, Izz = 0.868 slug ft2, and Ixy = Iyz = Ixz = 0. Note

that these values can be overwritten by OpenMDAO based on mass and inertia values

predicted by NDARC when the model is initialized.

A controlled pitch bearing is placed between nodes 2 and 3 to allow for collective control

of the tail rotor.

B.2.2 Aerodynamic Model

The aerodynamic model consists of five aerodynamic supercomponents. The amrotor

and atrotor supercomponents model the main and tail rotor systems, respectively. The

fusesc, vstabsc, and hstabsc supercomponents model the fuselage, vertical stabilizer,

and horizontal stabilizer, respectively.

The geometric origins of the five supercomponents are described in Table B.22 and their

orientations are described in Table B.23.

Table B.22: Origins of RCAS aerodynamic model supercomponents.

Subsystem Units x y z

amrotor ft 0 0 0
atrotor ft −33.05 0 −7.772
fusesc ft 0 0 0
vstabsc ft −29.48 0 0
hstabsc ft −29.48 0 0

No supercomponent-to-supercomponent interference is included in this model.

B.2.2.1 Main Rotor Supercomponent

The amrotor aerodynamic supercomponent defines the aerodynamic model used by the

main rotor. It consists of a single aerodynamic component, amblade1, which is positioned

357

Table B.23: Orientations of RCAS aerodynamic model supercomponents.

First rotation Second rotation
Subsystem Axis Angle (deg) Axis Angle (deg)

amrotor y 177 x 0
atrotor y 180 x −90
fusesc z 0 y 0
vstabsc z −90 y 90
hstabsc z −90 y 180

to match initial location of the blade1 primitive structure and constrained to the tip of

blade1.

The supercomponent is configured to use blade element momentum inflow. Yawed flow

effects, tip loss effects, linear unsteady effects, and compressibility effects are enabled. The

tip loss factor is 0.97.

Main Rotor Blade Component The amblade1 aerodynamic component contains the

aerodynamic definition of the main rotor blade. The aerodynamic nodes that define this

component are defined in Table B.24.

The aerodynamic nodes are connected with aerodynamic segments that describe the

airfoil properties at each point. These segments are defined in Table B.25.

The main rotor blade uses a lookup table to model the aerodynamics of a NACA0012

airfoil. This will be described in Appendix B.2.3.

B.2.2.2 Tail Rotor Supercomponent

The atrotor aerodynamic supercomponent defines the aerodynamic model used by the

tail rotor. It consists of a single aerodynamic component, atblade1, which is positioned

to match initial location of the tblade1 primitive structure and constrained to the tip of

tblade1.

The supercomponent is configured to use blade element momentum inflow. Yawed flow

effects, tip loss effects, linear unsteady effects, and compressibility effects are enabled. The

358

Table B.24: Aerodynamic nodes of RCAS model main rotor blade aerodynamic component.

Node ID Units x y z Description

1 ft 4.02 0 0 Root cut-off
2 ft 5.538667 0 0
3 ft 7.057333 0 0
4 ft 8.576 0 0
5 ft 10.094667 0 0
6 ft 11.613333 0 0
7 ft 13.132 0 0
8 ft 14.650667 0 0
9 ft 16.169333 0 0

10 ft 17.688 0 0
11 ft 19.206667 0 0
12 ft 20.725333 0 0
13 ft 22.244 0 0
14 ft 23.762667 0 0
15 ft 25.281333 0 0
16 ft 26.8 0 0 Tip

Table B.25: Aerodynamic segments of RCAS model main rotor blade aerodynamic compo-
nent.

Seg. ID Node 1 Node 2 Chord (ft) Twist (rad) Shear (rad)

1 1 2 1.75 0.0997747 0
2 2 3 1.75 0.0898845 0
3 3 4 1.75 0.0799943 0
4 4 5 1.75 0.0701041 0
5 5 6 1.75 0.0602139 0
6 6 7 1.75 0.0503237 0
7 7 8 1.75 0.0404335 0
8 8 9 1.75 0.0305433 0
9 9 10 1.75 0.0206531 0

10 10 11 1.75 0.0107629 0
11 11 12 1.75 0.0008727 0
12 12 13 1.75 −0.0090175 0
13 13 14 1.75 −0.0189077 0
14 14 15 1.75 −0.0287979 0
15 15 17 1.75 −0.0386881 0

tip loss factor is 0.97.

359

Tail Rotor Blade Component The atblade1 aerodynamic component contains the aero-

dynamic definition of the main rotor blade. The aerodynamic nodes that define this compo-

nent are defined in Table B.26.

Table B.26: Aerodynamic nodes of RCAS model tail rotor blade aerodynamic component.

Node ID Units x y z Description

1 ft 2.4 0 0 Root cut-off
2 ft 3.12 0 0
3 ft 3.84 0 0
4 ft 4.56 0 0
5 ft 5.28 0 0
6 ft 6 0 0

The aerodynamic nodes are connected with aerodynamic segments that describe the

airfoil properties at each point. These segments are defined in Table B.27.

Table B.27: Aerodynamic segments of RCAS model tail rotor blade aerodynamic compo-
nent.

Seg. ID Node 1 Node 2 Chord (ft) Twist (rad) Shear (rad)

1 1 2 0.7539822 0 0
2 2 3 0.7539822 0 0
3 3 4 0.7539822 0 0
4 4 5 0.7539822 0 0
5 5 6 0.7539822 0 0

The tail rotor blade uses a lookup table to model the aerodynamics of a NACA0012

airfoil. This will be described in Appendix B.2.3.

B.2.2.3 Fuselage Supercomponent

The fusesc aerodynamic supercomponent defines the aerodynamic model used by the

fuselage. It consists of a single aerodynamic component, fusecp, which is positioned to

match initial location of the fuseps primitive structure and constrained to the root node of

fuseps.

360

Fuselage Component The fusecp component represents a lifting body whose aerodynam-

ics are modeled by a series of lift, drag, and moment curves. The aerodynamic coefficients

are L0

q
= 0, L1

q
= 78.48, D0

q
= 24.0383, D1

q
= 0, D2

q
= 0, M0

q
= 0, and M1

q
= 1567.245.

In these equations, L, D, and M are lift, drag, and pitching moment, respectively, while q

is the dynamic pressure. The subscripts correspond to the zeroth-, first-, or second-order

coefficients of each curve. These parameters were adapted from the NDARC model.

B.2.2.4 Vertical Stabilizer Supercomponent

The vstabsc aerodynamic supercomponent defines the aerodynamic model used by the

vertical stabilizer. It consists of a single aerodynamic component, vstabcp, which is

positioned to match initial location of the vstabps primitive structure and constrained to the

root and tip nodes of vstabps. This supercomponent uses the uniform momentum inflow

model for half wings.

Vertical Stabilizer Component The vstabcp component models the aerodynamic surface

of the vertical stabilizer. The aerodynamic nodes match the nodes of the vstabps primitive

structure (see Table B.12). A single aerodynamic segment connects these nodes with a

chord of 3.544117 ft. The vertical stabilizer uses a linear airfoil model with CLα = 1.5,

CD = 0.02, and a zero lift angle-of-attack of 0°.

B.2.2.5 Horizontal Stabilizer Supercomponent

The hstabsc aerodynamic supercomponent defines the aerodynamic model used by the

horizontal stabilizer. It consists of a single aerodynamic component, hstabcp, which is

positioned to match initial location of the hstabps primitive structure and constrained to the

port and starboard nodes of hstabps. This supercomponent uses the uniform momentum

inflow model for full wings.

361

Horizontal Stabilizer Component The hstabcp component models the aerodynamic

surface of the horizontal stabilizer. The aerodynamic nodes match the nodes of the hstabps

primitive structure (see Table B.13). Two aerodynamic segments connect these nodes with

a chord of 2.931872 ft. The vertical stabilizer uses a linear airfoil model with CLα = 2.3,

CD = 0.015, and a zero lift angle-of-attack of 1°.

B.2.3 Supporting Files

A number of supporting files are required to complete the RCAS model. The blade_-

int_frc.topr and blade_int_mom.topr files define the output files which describe blade

forces and moments at each blade station for each time step in the periodic solution. The

BLADE_GCB_PROB.TAB file describes the inertial and elastic properties of the main rotor

blade, although this will be overwritten with results from the VABS model at runtime.

Finally, the NACA0012.C81 file provides a lookup table for the NACA0012 airfoil.

Listing B.5: blade_int_frc.topr
1 ***begin-RCAS-file: blade_int_frc.topr ***
2 oileltdrv
3 ANALYS TRIM
4 JOBCAS TESTING_00.01
5 LODTYP FRC
6 AXIS X
7 AXIS Y
8 AXIS Z
9 ELMSEL MROTOR_BLADE1_E5GCB

10 ELMSEL MROTOR_BLADE1_E6GCB
11 ELMSEL MROTOR_BLADE1_E7GCB
12 ELMSEL MROTOR_BLADE1_E8GCB
13 ELMSEL MROTOR_BLADE1_E9GCB
14 ELMSEL MROTOR_BLADE1_E10GCB
15 ELMSEL MROTOR_BLADE1_E11GCB
16 ELMSEL MROTOR_BLADE1_E12GCB
17 ELMSEL MROTOR_BLADE1_E13GCB
18 ELMSEL MROTOR_BLADE1_E14GCB
19 ELMSEL MROTOR_BLADE1_TIP
20 HARMFLG N
21 NUMHARM 0
22 MCFLAG ELMS
23 COMPVAR NONE
24 XRANGE 0
25 XRANGE 0
26 XRANGE 0
27 YRANGE 0
28 YRANGE 0
29 YRANGE 0

362

30 SCALE 1
31 SCALE 1
32 LABEL INTERNAL LOADS
33 DATADEST BladeIntFrc.dat
34 PLOTDEST NO
35 REPTDEST NO
36 REPSIZ 80
37 REPSIZ 60
38 *****end-RCAS-file: blade_int_frc.topr ***

Listing B.6: blade_int_mom.topr
1 ***begin-RCAS-file: blade_int_mom.topr ***
2 oileltdrv
3 ANALYS TRIM
4 JOBCAS TESTING_00.01
5 LODTYP MOM
6 AXIS X
7 AXIS Y
8 AXIS Z
9 ELMSEL MROTOR_BLADE1_E5GCB

10 ELMSEL MROTOR_BLADE1_E6GCB
11 ELMSEL MROTOR_BLADE1_E7GCB
12 ELMSEL MROTOR_BLADE1_E8GCB
13 ELMSEL MROTOR_BLADE1_E9GCB
14 ELMSEL MROTOR_BLADE1_E10GCB
15 ELMSEL MROTOR_BLADE1_E11GCB
16 ELMSEL MROTOR_BLADE1_E12GCB
17 ELMSEL MROTOR_BLADE1_E13GCB
18 ELMSEL MROTOR_BLADE1_E14GCB
19 ELMSEL MROTOR_BLADE1_TIP
20 HARMFLG N
21 NUMHARM 0
22 MCFLAG ELMS
23 COMPVAR NONE
24 XRANGE 0
25 XRANGE 0
26 XRANGE 0
27 YRANGE 0
28 YRANGE 0
29 YRANGE 0
30 SCALE 1
31 SCALE 1
32 LABEL INTERNAL LOADS
33 DATADEST BladeIntMom.dat
34 PLOTDEST NO
35 REPTDEST NO
36 REPSIZ 80
37 REPSIZ 60
38 *****end-RCAS-file: blade_int_mom.topr ***

Listing B.7: BLADE_GCB_PROP.TAB
1 ***begin-RCAS-file: BLADE_GCB_PROP.TAB ***
2 !M REFLENGTH
3 26.8
4
5 !M POS1

363

6 0.0
7
8 !M POS2
9 1.0

10
11 !M TWIST1
12 0.131
13
14 !M TWIST2
15 -0.044
16
17 !M MMAT1
18 2.20000000e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00

↪→ -3.85000000e-03
19 0.00000000e+00 2.20000000e-01 0.00000000e+00 -0.00000000e+00 0.00000000e+00

↪→ 0.00000000e+00
20 0.00000000e+00 0.00000000e+00 2.20000000e-01 3.85000000e-03 0.00000000e+00

↪→ 0.00000000e+00
21 0.00000000e+00 -0.00000000e+00 3.85000000e-03 2.69982400e-02 0.00000000e+00

↪→ 0.00000000e+00
22 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.17784133e-04

↪→ -1.37398934e-11
23 -3.85000000e-03 0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.37398934e-11

↪→ 2.63804559e-02
24
25 !M MMAT2
26 2.20000000e-01 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00

↪→ -3.85000000e-03
27 0.00000000e+00 2.20000000e-01 0.00000000e+00 -0.00000000e+00 0.00000000e+00

↪→ 0.00000000e+00
28 0.00000000e+00 0.00000000e+00 2.20000000e-01 3.85000000e-03 0.00000000e+00

↪→ 0.00000000e+00
29 0.00000000e+00 -0.00000000e+00 3.85000000e-03 2.69982400e-02 0.00000000e+00

↪→ 0.00000000e+00
30 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 6.17784133e-04

↪→ -1.37398934e-11
31 -3.85000000e-03 0.00000000e+00 0.00000000e+00 0.00000000e+00 -1.37398934e-11

↪→ 2.63804559e-02
32
33 !M SSTIF1
34 4.55369321e+07 1.87537770e-01 -3.46871241e+04 8.66582986e+03 5.33918393e-03

↪→ -2.89533006e+06
35 1.87537770e-01 3.76254571e+06 -1.22630524e+01 4.42762792e+00 -1.74621444e+03

↪→ -1.94971694e-02
36 -3.46871241e+04 -1.22630524e+01 1.94825569e+06 6.61410812e+04 -2.04712555e-02

↪→ 9.33465719e+02
37 8.66582986e+03 4.42762792e+00 6.61410812e+04 2.17211720e+05 4.33683356e-03

↪→ 8.80212979e+02
38 5.33918393e-03 -1.74621444e+03 -2.04712555e-02 4.33683356e-03 2.66378324e+05

↪→ -3.52369028e-02
39 -2.89533006e+06 -1.94971694e-02 9.33465719e+02 8.80212979e+02 -3.52369028e-02

↪→ 4.83001616e+06
40
41 !M SSTIF2
42 4.55369321e+07 1.87537770e-01 -3.46871241e+04 8.66582986e+03 5.33918393e-03

↪→ -2.89533006e+06
43 1.87537770e-01 3.76254571e+06 -1.22630524e+01 4.42762792e+00 -1.74621444e+03

↪→ -1.94971694e-02
44 -3.46871241e+04 -1.22630524e+01 1.94825569e+06 6.61410812e+04 -2.04712555e-02

↪→ 9.33465719e+02
45 8.66582986e+03 4.42762792e+00 6.61410812e+04 2.17211720e+05 4.33683356e-03

↪→ 8.80212979e+02
46 5.33918393e-03 -1.74621444e+03 -2.04712555e-02 4.33683356e-03 2.66378324e+05

364

↪→ -3.52369028e-02
47 -2.89533006e+06 -1.94971694e-02 9.33465719e+02 8.80212979e+02 -3.52369028e-02

↪→ 4.83001616e+06
48
49 !M ASTIF1
50 0 0 0 0
51 0 0 0 0
52 0 0 0 0
53 0 0 0 0
54
55 !M ASTIF2
56 0 0 0 0
57 0 0 0 0
58 0 0 0 0
59 0 0 0 0
60
61 !M BSTIF1
62 0 0 0 0
63 0 0 0 0
64 0 0 0 0
65 0 0 0 0
66
67 !M BSTIF2
68 0 0 0 0
69 0 0 0 0
70 0 0 0 0
71 0 0 0 0
72
73 !M CSTIF1
74 0 0 0 0
75 0 0 0 0
76 0 0 0 0
77 0 0 0 0
78
79 !M CSTIF2
80 0 0 0 0
81 0 0 0 0
82 0 0 0 0
83 0 0 0 0
84
85 !M DSTIF1
86 0 0 0 0
87 0 0 0 0
88 0 0 0 0
89 0 0 0 0
90
91 !M DSTIF2
92 0 0 0 0
93 0 0 0 0
94 0 0 0 0
95 0 0 0 0
96 *****end-RCAS-file: BLADE_GCB_PROP.TAB ***

Listing B.8: NACA0012.C81
1 ***begin-RCAS-file: NACA0012.C81 ***
2 0012 11391165 947
3 0. .20 .30 .40 .50 .60 .7 .75 .8
4 .9 1.
5 -180. 0. 0. 0. 0. 0. 0. 0. 0. 0.

365

6 0. 0.
7 -172.5 .78 .78 .78 .78 .78 .78 .78 .78 .78
8 .78 .78
9 -161. .62 .62 .62 .62 .62 .62 .62 .62 .62

10 .62 .62
11 -147. 1. 1. 1. 1. 1. 1. 1. 1. 1.
12 1. 1.
13 -129. 1. 1. 1. 1. 1. 1. 1. 1. 1.
14 1. 1.
15 -49. -1.18 -1.18 -1.18 -1.18 -1.18 -1.18 -1.18 -1.18 -1.18
16 -1.18 -1.18
17 -39. -1.18 -1.18 -1.18 -1.18 -1.18 -1.18 -1.18 -1.18 -1.18
18 -1.18 -1.18
19 -21. -.8 -.8 -.81 -.83 -.85 -.85 -.85 -.71 -.68
20 -.64 -.64
21 -16.5 -1.007 -1.007 -.944 -.96 -.965 -.965 -.965 -.795 -.76
22 -.7 -.7
23 -15. -1.19 -1.19 -1.09 -1.055 -.99 -.98 -.98 -.83 -.79
24 -.72 -.72
25 -14. -1.333 -1.333 -1.22 -1.096 -1. -.97 -.97 -.84 -.805
26 -.73 -.73
27 -13. -1.334 -1.334 -1.28 -1.12 -1. -.96 -.96 -.85 -.815
28 -.735 -.735
29 -12. -1.255 -1.255 -1.26 -1.13 -1. -.947 -.94 -.85 -.82
30 -.74 -.74
31 -11. -1.161-1.161 -1.19 -1.12 -.994 -.93 -.923 -.85 -.81
32 -.74 -.74
33 -10. -1.055 -1.055 -1.01 -1.082 -.985 -.91 -.90 -.845 -.805
34 -.73 -.73
35 -8. -.844 -.844 -.88 -.907 -.922 -.87 -.84 -.82 -.77
36 -.695 -.695
37 -6. -.633 -.633 -.66 -.684 -.741 -.77 -.75 -.77 -.72
38 -.593 -.593
39 -4. -.422 -.422 -.440 -.456 -.494 -.544 -.578 -.627 -.603
40 -.396 -.396
41 -2. -.211 -.211 -.22 -.228 -.247 -.272 -.313 -.350 -.395
42 -.2 -.2
43 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
44 0. 0.
45 2. .211 .211 .22 .228 .247 .272 .313 .350 .395
46 .2 .2
47 4. .422 .422 .44 .456 .494 .544 .578 .627 .603
48 .396 .396
49 6. .633 .633 .66 .684 .741 .77 .75 .77 .72
50 .593 .593
51 8. .844 .844 .88 .907 .922 .87 .84 .82 .77
52 .695 .695
53 10. 1.055 1.055 1.1 1.082 .985 .91 .90 .845 .805
54 .73 .73
55 11. 1.161 1.161 1.19 1.12 .994 .93 .923 .850 .810
56 .74 .74
57 12. 1.255 1.255 1.26 1.13 1. .947 .94 .85 .82
58 .74 .74
59 13. 1.334 1.334 1.28 1.12 1. .96 .96 .85 .815
60 .735 .735
61 14. 1.333 1.333 1.22 1.096 1. .97 .97 .84 .805
62 .73 .73
63 15. 1.19 1.19 1.09 1.055 .99 .98 .98 .83 .79
64 .73 .73
65 16.5 1.007 1.007 .944 .96 .965 .965 .965 .795 .76

366

66 .7 .7
67 21. .8 .8 .81 .83 .85 .85 .85 .71 .68
68 .64 .64
69 39. 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18
70 1.18 1.18
71 49. 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18
72 1.18 1.18
73 129. -1. -1. -1. -1. -1. -1. -1. -1. -1.
74 -1. -1.
75 147. -1. -1. -1. -1. -1. -1. -1. -1. -1.
76 -1. -1.
77 161. -.62 -.62 -.62 -.62 -.62 -.62 -.62 -.62 -.62
78 -.62 -.62
79 172.5 -.78 -.78 -.78 -.78 -.78 -.78 -.78 -.78 -.78
80 -.78 -.78
81 180. 0. 0. 0. 0. 0. 0. 0. 0. 0.
82 0. 0.
83 0. .18 .28 .38 .48 .62 .72 .77 .82
84 .92 1.0
85 -180. .022 .022 .022 .022 .022 .022 .022 .022 .022
86 .022 .022
87 -175. .062 .062 .062 .062 .062 .062 .062 .062 .062
88 .062 .062
89 -170. .132 .132 .132 .132 .132 .132 .132 .132 .132
90 .132 .132
91 -165. .242 .242 .242 .242 .242 .242 .242 .242 .242
92 .242 .242
93 -160. .302 .302 .302 .302 .302 .302 .302 .302 .302
94 .302 .302
95 -140. 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042
96 1.042 1.042
97 -120. 1.652 1.652 1.652 1.652 1.652 1.652 1.652 1.652 1.652
98 1.652 1.652
99 -110. 1.852 1.852 1.852 1.852 1.852 1.852 1.852 1.852 1.852

100 1.852 1.852
101 -100. 2.022 2.022 2.022 2.022 2.022 2.022 2.022 2.022 2.022
102 2.022 2.022
103 -90. 2.022 2.022 2.022 2.022 2.022 2.022 2.022 2.022 2.022
104 2.022 2.022
105 -80. 1.962 1.962 1.962 1.962 1.962 1.962 1.962 1.962 1.962
106 1.962 1.962
107 -70. 1.842 1.842 1.842 1.842 1.842 1.842 1.842 1.842 1.842
108 1.842 1.842
109 -60. 1.662 1.662 1.662 1.662 1.662 1.662 1.662 1.662 1.662
110 1.662 1.662
111 -50. 1.392 1.392 1.392 1.392 1.392 1.399 1.392 1.392 1.392
112 1.392 1.392
113 -30. .562 .562 .562 .562 .562 .562 .562 .562 .562
114 .562 .562
115 -21. .332 .332 .332 .332 .332 .332 .332 .332 .332
116 .332 .332
117 -16. .155 .155 .181 .207 .235 .257 .274 .292 .305
118 .342 .342
119 -15. .102 .102 .148 .181 .209 .233 .252 .271 .282
120 .298 .298
121 -14. .038 .038 .099 .146 .180 .212 .233 .249 .260
122 .293 .293
123 -13. .0264 .0264 .0455 .094 .148 .191 .216 .231 .239
124 .272 .292
125 -12. .022 .022 .030 .06 .111 .164 .198 .211 .220

367

126 .252 .291
127 -11. .0196 .0196 .0232 .038 .078 .135 .17 .192 .202
128 .232 .275
129 -10. .0174 .0174 .0189 .0259 .053 .105 .145 .176 .186
130 .213 .254
131 -9. .0154 .0154 .0159 .0187 .0351 .077 .122 .159 .172
132 .199 .232
133 -8. .0138 .0138 .0138 .0147 .0220 .053 .101 .140 .155
134 .183 .214
135 -7. .0122 .0122 .0122 .0123 .0141 .035 .082 .111 .139
136 .169 .192
137 -6. .011 .011 .011 .011 .011 .0212 .0615 .082 .12
138 .14 .17
139 -5. .01 .01 .01 .01 .01 .0132 .038 .054 .084
140 .111 .14
141 -4. .0093 .0093 .0093 .0093 .0093 .01 .0167 .03 .0575
142 .095 .112
143 -3. .0088 .0088 .0088 .0088 .0088 .009 .0102 .0175 .0355
144 .086 .102
145 -2. .0085 .0085 .0085 .0085 .0085 .0085 .0086 .0117 .0240
146 .081 .098
147 -1. .0083 .0083 .0083 .0083 .0083 .0083 .0083 .0091 .0175
148 .078 .096
149 0. .008 .008 .008 .008 .008 .008 .008 .008 .0137
150 .078 .095
151 1. .0083 .0083 .0083 .0083 .0083 .0083 .0083 .0091 .0175
152 .078 .096
153 2. .0085 .0085 .0085 .0085 .0085 .0085 .0086 .0117 .024
154 .081 .098
155 3. .0088 .0088 .0088 .0088 .0088 .0090 .0102 .0175 .0355
156 .086 .102
157 4. .0093 .0093 .0093 .0093 .0093 .01 .0167 .03 .0575
158 .095 .112
159 5. .01 .01 .01 .01 .01 .0132 .038 .054 .084
160 .111 .14
161 6. .011 .011 .011 .011 .011 .0212 .0615 .082 .12
162 .14 .17
163 7. .0122 .0122 .0122 .0123 .0141 .035 .082 .111 .139
164 .169 .192
165 8. .0138 .0138 .0138 .0147 .022 .053 .101 .14 .155
166 .183 .214
167 9. .0154 .0154 .0159 .0187 .0351 .077 .122 .159 .172
168 .199 .232
169 10. .0174 .0174 .0189 .0259 .053 .105 .145 .176 .186
170 .213 .254
171 11. .0196 .0196 .0232 .038 .078 .135 .17 .192 .202
172 .232 .275
173 12. .022 .022 .03 .06 .111 .164 .198 .211 .22
174 .252 .291
175 13. .0264 .0264 .0455 .094 .148 .191 .216 .231 .239
176 .272 .292
177 14. .038 .038 .099 .146 .18 .212 .233 .249 .26
178 .293 .293
179 15. .102 .102 .148 .181 .209 .233 .252 .271 .282
180 .298 .298
181 16. .155 .155 .181 .207 .235 .257 .274 .292 .305
182 .342 .342
183 21. .332 .332 .332 .332 .332 .332 .332 .332 .332
184 .332 .332
185 30. .562 .562 .562 .562 .562 .562 .562 .562 .562

368

186 .562 .562
187 50. 1.392 1.392 1.392 1.392 1.392 1.392 1.392 1.392 1.392
188 1.392 1.392
189 60. 1.662 1.662 1.662 1.662 1.662 1.662 1.662 1.662 1.662
190 1.662 1.662
191 70. 1.842 1.842 1.842 1.842 1.842 1.842 1.842 1.842 1.842
192 1.842 1.842
193 80. 1.962 1.962 1.962 1.962 1.962 1.962 1.962 1.962 1.962
194 1.962 1.962
195 90. 2.022 2.022 2.022 2.022 2.022 2.022 2.022 2.022 2.022
196 2.022 2.022
197 100. 2.022 2.022 2.022 2.022 2.022 2.022 2.022 2.022 2.022
198 2.022 2.022
199 110. 1.852 1.852 1.852 1.852 1.852 1.852 1.852 1.852 1.852
200 1.852 1.852
201 120. 1.652 1.652 1.652 1.652 1.652 1.652 1.652 1.652 1.652
202 1.652 1.652
203 140. 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042
204 1.042 1.042
205 160. .302 .302 .302 .302 .302 .302 .302 .302 .302
206 .302 .302
207 165. .242 .242 .242 .242 .242 .242 .242 .242 .242
208 .242 .242
209 170. .132 .132 .132 .132 .132 .132 .132 .132 .132
210 .132 .132
211 175. .062 .062 .062 .062 .062 .062 .062 .062 .062
212 .062 .062
213 180. .022 .022 .022 .022 .022 .022 .022 .022 .022
214 .022 .022
215 .20 .30 .40 .50 .6 .7 .75 .8 .9
216 -180. 0. 0. 0. 0. 0. 0. 0. 0. 0.
217 -170. .4 .4 .4 .4 .4 .4 .4 .4 .4
218 -165. .3 .3 .3 .3 .3 .3 .3 .3 .3
219 -160. .3 .3 .3 .3 .3 .3 .3 .3 .3
220 -135. .5 .5 .5 .5 .5 .5 .5 .5 .5
221 -90. .5 .5 .5 .5 .5 .5 .5 .5 .5
222 -30. .174 .184 .196 .214 .235 .25 .264 .277 .298
223 -23. .112 .118 .128 .144 .157 .171 .183 .206 .232
224 -16. .073 .078 .086 .097 .108 .117 .137 .176 .200
225 -15. .054 .065 .073 .084 .097 .111 .133 .173 .195
226 -14. 0. .027 .054 .068 .086 .103 .127 .167 .189
227 -13. 0. .0015 .025 .05 .074 .093 .122 .163 .184
228 -12. 0. 0. .002 .03 .06 .083 .116 .157 .176
229 -11. 0. 0. -.003 .014 .046 .074 .108 .149 .17
230 -10. 0. 0. -.0015 .002 .032 .065 .10 .142 .163
231 -9. 0. 0. 0. -.003 .016 .054 .089 .132 .154
232 -8. 0. 0. 0. -.004 .005 .041 .082 .123 .145
233 -7. 0. 0. 0. 0. -.004 .0275 .072 .1125 .136
234 -6. 0. 0. 0. 0. -.003 .016 .0625 .10 .125
235 -4. 0. 0. 0. 0. 0. .005 .04 .076 .102
236 -3. 0. 0. 0. 0. 0. -.0025 .026 .0665 .087
237 -2. 0. 0. 0. 0. 0. 0. .013 .053 .07
238 -1. 0. 0. 0. 0. 0. 0. .0035 .033 .045
239 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
240 1. 0. 0. 0. 0. 0. 0. -.0035 -.033 -.045
241 2. 0. 0. 0. 0. 0. 0. -.013 -.053 -.07
242 3. 0. 0. 0. 0. 0. .0025 -.026 -.0665 -.087
243 4. 0. 0. 0. 0. 0. -.005 -.04 -.076 -.102
244 6. 0. 0. 0. 0. .003 -.016 -.0625 -.1 -.125
245 7. 0. 0. 0. 0. .004 -.0275 -.072 -.1125 -.136

369

246 8. 0. 0. 0. .004 -.005 -.041 -.082 -.123 -.145
247 9. 0. 0. 0. .003 -.016 -.054 -.089 -.132 -.154
248 10. 0. 0. .0015 -.002 -.032 -.065 -.1 -.142 -.163
249 11. 0. 0. .003 -.014 -.046 -.074 -.108 -.149 -.17
250 12. 0. 0. -.002 -.03 -.06 -.083 -.116 -.157 -.176
251 13. 0. -.0015 -.025 -.05 -.074 -.093 -.122 -.163 -.184
252 14. 0. -.027 -.054 -.068 -.086 -.103 -.127 -.167 -.189
253 15. -.054 -.065 -.073 -.084 -.097 -.111 -.133 -.173 -.195
254 16. -.073 -.078 -.086 -.097 -.108 -.117 -.137 -.176 -.20
255 23. -.112 -.118 -.128 -.144 -.157 -.171 -.183 -.206 -.232
256 30. -.174 -.184 -.196 -.214 -.235 -.250 -.264 -.277 -.298
257 90. -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5
258 135. -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5
259 160. -.3 -.3 -.3 -.3 -.3 -.3 -.3 -.3 -.3
260 165. -.3 -.3 -.3 -.3 -.3 -.3 -.3 -.3 -.3
261 170. -.4 -.4 -.4 -.4 -.4 -.4 -.4 -.4 -.4
262 180. 0. 0. 0. 0. 0. 0. 0. 0. 0.
263
264 NACA0012 for Puma
265 from Bousman, US Army, October 1988
266
267 corrected cd typo at alpha=-10; October 1988
268
269 *****end-RCAS-file: NACA0012.C81 ***

B.2.4 OpenMDAO–RCAS Variable Mapping

Tables B.28 to B.31 describe the mapping between the variables in this file and the OpenM-

DAO variables. The RCAS access string syntax is described in the notes to Table B.28. The

OpenMDAO variables are further described in Appendix C.

370

Table B.28: Mapping from OpenMDAO variables to RCAS variables (flight condition).

OpenMDAO variable RCAS access stringa Units

airspeed INITCOND%3%1%1 ft/s
neg_rate_of_climbb INITCOND%3%1%3 ft/s
att_pitch INITCOND%2%1%5 rad
att_roll INITCOND%2%1%4 rad
rcas_cont_coll INITCOND%1%1%1 deg
rcas_cont_lat_cyc INITCOND%1%1%2 rad
rcas_cont_lon_cyc INITCOND%1%1%3 rad
rcas_cont_pedal INITCOND%1%1%4 rad
turn_radius INITCOND%5%1%1 ft
turn_rate INITCOND%5%1%2 rad/s
air_density AEROSTATCONST%1%1%4 slug/ft3

air_sound_speed AEROSTATCONST%1%1%5 ft/s
air_viscosity AEROSTATCONST%1%1%6 slug/(ft s)
neg_loc_payload_slc FUSEPS-FENODE%1%4%2 ft
azimuthsd tab-BladeIntFrc001%1 deg
blade_int_force_x tab-BladeIntFrc001%2:12 lbf
blade_int_force_y tab-BladeIntFrc002%2:12 lbf
blade_int_force_z tab-BladeIntFrc003%2:12 lbf
blade_int_moment_x tab-BladeIntMom001%2:12 ft lbf
blade_int_moment_y tab-BladeIntMom002%2:12 ft lbf
blade_int_moment_z tab-BladeIntMom003%2:12 ft lbf
a The RCAS access string identifies a specific point in the RCAS input file. For most

inputs, this takes the form <SCREEN>%<page>%<line>%<column. If the screen is non-
unique, then its “parent” screen is appended to the beginning of the screen name and
separated with a hyphen. For supplementary files, such as the mass and stiffness matrices,
the access string is of the form <filename>%<element>. For tabular output files, the
access string is of the form tab-<filename>%<first_col>:<last_col>.

b Because RCAS uses a z-down reference frame, a negative Vz implies a positive rate of
climb.

c Because RCAS uses a x-forward reference frame, a negative CG shift implies an aftward
movement of the CG.

d Provides a list of all azimuth angles in the periodic solution.

371

Table B.29: Mapping from OpenMDAO variables to RCAS variables (fuselage mass and
inertia).

OpenMDAO variable RCAS access string Units

mass_payload FUSEPS-RIGIDBODYMASS%1%6%3 slug
inert_payload_Ixx FUSEPS-RIGIDBODYMASS%1%6%4 slug ft2

inert_payload_Ixy FUSEPS-RIGIDBODYMASS%2%6%2 slug ft2

inert_payload_Ixz FUSEPS-RIGIDBODYMASS%2%6%3 slug ft2

inert_payload_Iyy FUSEPS-RIGIDBODYMASS%1%6%5 slug ft2

inert_payload_Iyz FUSEPS-RIGIDBODYMASS%2%6%4 slug ft2

inert_payload_Izz FUSEPS-RIGIDBODYMASS%1%6%6 slug ft2

mass_fuel FUSEPS-RIGIDBODYMASS%1%5%3 slug
inert_fuel_Ixx FUSEPS-RIGIDBODYMASS%1%5%4 slug ft2

inert_fuel_Ixy FUSEPS-RIGIDBODYMASS%2%5%2 slug ft2

inert_fuel_Ixz FUSEPS-RIGIDBODYMASS%2%5%3 slug ft2

inert_fuel_Iyy FUSEPS-RIGIDBODYMASS%1%5%5 slug ft2

inert_fuel_Iyz FUSEPS-RIGIDBODYMASS%2%5%4 slug ft2

inert_fuel_Izz FUSEPS-RIGIDBODYMASS%1%5%6 slug ft2

mass_fuselage FUSEPS-RIGIDBODYMASS%1%1%3 slug
inert_fuselage_Ixx FUSEPS-RIGIDBODYMASS%1%1%4 slug ft2

inert_fuselage_Ixy FUSEPS-RIGIDBODYMASS%2%1%2 slug ft2

inert_fuselage_Ixz FUSEPS-RIGIDBODYMASS%2%1%3 slug ft2

inert_fuselage_Iyy FUSEPS-RIGIDBODYMASS%1%1%5 slug ft2

inert_fuselage_Iyz FUSEPS-RIGIDBODYMASS%2%1%4 slug ft2

inert_fuselage_Izz FUSEPS-RIGIDBODYMASS%1%1%6 slug ft2

mass_usefulload FUSEPS-RIGIDBODYMASS%1%2%3 slug
inert_usefulload_Ixx FUSEPS-RIGIDBODYMASS%1%2%4 slug ft2

inert_usefulload_Ixy FUSEPS-RIGIDBODYMASS%2%2%2 slug ft2

inert_usefulload_Ixz FUSEPS-RIGIDBODYMASS%2%2%3 slug ft2

inert_usefulload_Iyy FUSEPS-RIGIDBODYMASS%1%2%5 slug ft2

inert_usefulload_Iyz FUSEPS-RIGIDBODYMASS%2%2%4 slug ft2

inert_usefulload_Izz FUSEPS-RIGIDBODYMASS%1%2%6 slug ft2

mass_gear FUSEPS-RIGIDBODYMASS%1%3%3 slug
inert_gear_Ixx FUSEPS-RIGIDBODYMASS%1%3%4 slug ft2

inert_gear_Ixy FUSEPS-RIGIDBODYMASS%2%3%2 slug ft2

inert_gear_Ixz FUSEPS-RIGIDBODYMASS%2%3%3 slug ft2

inert_gear_Iyy FUSEPS-RIGIDBODYMASS%1%3%5 slug ft2

inert_gear_Iyz FUSEPS-RIGIDBODYMASS%2%3%4 slug ft2

inert_gear_Izz FUSEPS-RIGIDBODYMASS%1%3%6 slug ft2

372

Table B.30: Mapping from OpenMDAO variables to RCAS variables (rotor mass and
inertia).

OpenMDAO variable RCAS access string Units

mass_matrix_1a BLADE_GCB_PROP.TAB%MMAT1 —
mass_matrix_2a BLADE_GCB_PROP.TAB%MMAT2 —
stiff_matrix_1a BLADE_GCB_PROP.TAB%SSTIF1 —
stiff_matrix_2a BLADE_GCB_PROP.TAB%SSTIF2 —
mass_main_hub MSHAFT-RIGIDBAR%2%1%2 slug
inert_main_hub_Ixx MSHAFT-RIGIDBAR%2%1%3 slug ft2

inert_main_hub_Ixy MSHAFT-RIGIDBAR%2%1%4 slug ft2

inert_main_hub_Ixz MSHAFT-RIGIDBAR%2%1%5 slug ft2

inert_main_hub_Iyy MSHAFT-RIGIDBAR%2%1%6 slug ft2

inert_main_hub_Iyz MSHAFT-RIGIDBAR%2%1%7 slug ft2

inert_main_hub_Izz MSHAFT-RIGIDBAR%2%1%8 slug ft2

mass_tail_blade TBLADE1-RIGIDBAR%2%1%2 slug
inert_tail_blade_Ixx TBLADE1-RIGIDBAR%2%1%3 slug ft2

inert_tail_blade_Ixy TBLADE1-RIGIDBAR%2%1%4 slug ft2

inert_tail_blade_Ixz TBLADE1-RIGIDBAR%2%1%5 slug ft2

inert_tail_blade_Iyy TBLADE1-RIGIDBAR%2%1%6 slug ft2

inert_tail_blade_Iyz TBLADE1-RIGIDBAR%2%1%7 slug ft2

inert_tail_blade_Izz TBLADE1-RIGIDBAR%2%1%8 slug ft2

mass_tail_hub TSHAFT-RIGIDBAR%2%1%2 slug
inert_tail_hub_Ixx TSHAFT-RIGIDBAR%2%1%3 slug ft2

inert_tail_hub_Ixy TSHAFT-RIGIDBAR%2%1%4 slug ft2

inert_tail_hub_Ixz TSHAFT-RIGIDBAR%2%1%5 slug ft2

inert_tail_hub_Iyy TSHAFT-RIGIDBAR%2%1%6 slug ft2

inert_tail_hub_Iyz TSHAFT-RIGIDBAR%2%1%7 slug ft2

inert_tail_hub_Izz TSHAFT-RIGIDBAR%2%1%8 slug ft2

tail_rotor_cant_struct SSORIENT%1%3%5 deg
tail_rotor_cant_aero SCORIENT%1%2%5 deg
a The main rotor blade uses the GECB formulation of the NLB element. Its mass and

stiffness are defined by the generalized Timoshenko mass and stiffness matrices from
VABS.

373

Table B.31: Mapping from OpenMDAO variables to RCAS variables (other mass and
inertia).

OpenMDAO variable RCAS access string Units

mass_horizstab HSTABPS-RIGIDBAR%2%1%2 slug
inert_horizstab_Ixx HSTABPS-RIGIDBAR%2%1%3 slug ft2

inert_horizstab_Ixy HSTABPS-RIGIDBAR%2%1%4 slug ft2

inert_horizstab_Ixz HSTABPS-RIGIDBAR%2%1%5 slug ft2

inert_horizstab_Iyy HSTABPS-RIGIDBAR%2%1%6 slug ft2

inert_horizstab_Iyz HSTABPS-RIGIDBAR%2%1%7 slug ft2

inert_horizstab_Izz HSTABPS-RIGIDBAR%2%1%8 slug ft2

mass_vertstab VSTABPS-RIGIDBAR%2%1%2 slug
inert_vertstab_Ixx VSTABPS-RIGIDBAR%2%1%3 slug ft2

inert_vertstab_Ixy VSTABPS-RIGIDBAR%2%1%4 slug ft2

inert_vertstab_Ixz VSTABPS-RIGIDBAR%2%1%5 slug ft2

inert_vertstab_Iyy VSTABPS-RIGIDBAR%2%1%6 slug ft2

inert_vertstab_Iyz VSTABPS-RIGIDBAR%2%1%7 slug ft2

inert_vertstab_Izz VSTABPS-RIGIDBAR%2%1%8 slug ft2

mass_engine FUSEPS-RIGIDBODYMASS%1%4%3 slug
inert_engine_Ixx FUSEPS-RIGIDBODYMASS%1%4%4 slug ft2

inert_engine_Ixy FUSEPS-RIGIDBODYMASS%2%4%2 slug ft2

inert_engine_Ixz FUSEPS-RIGIDBODYMASS%2%4%3 slug ft2

inert_engine_Iyy FUSEPS-RIGIDBODYMASS%1%4%5 slug ft2

inert_engine_Iyz FUSEPS-RIGIDBODYMASS%2%4%4 slug ft2

inert_engine_Izz FUSEPS-RIGIDBODYMASS%1%4%6 slug ft2

374

B.3 PreVABS+VABS Model

The PreVABS+VABS model consists of three different files. The primary file defines the

cross section geometry, layups, and structural components. This file is titled naca0012_-

comb.xml. The second file is a list of material and lamina definitions which must be inserted

into the MaterialDB.xml file in the PreVABS root directory. The third is a list of basepoints,

which define the NACA0012 outer mold line. This file is titled basepoints_rev.dat.

Table B.32 describes the mapping between the variables in the PreVABS+VABS model

and the OpenMDAO variables. The PreVABS access string syntax is described in the notes

to Table B.32. The OpenMDAO variables are further described in Appendix C.

Listing B.9: naca0012_comb.xml
1 <cross_section name="naca0012" format="1">
2 <include>
3 <!-- <baseline>baselines_rev</baseline> -->
4 <!-- <material>materials</material> -->
5 <!-- <layup>layups_fixed</layup> -->
6 </include>
7 <analysis>
8 <model>1</model>
9 </analysis>

10 <general>
11 <translate>0.25 0</translate>
12 <scale>1.75</scale>
13 <mesh_size>0.010</mesh_size>
14 <element_type>linear</element_type>
15 </general>
16 <recover>
17 <displacements>0 0 0</displacements>
18 <rotations>1 0 0 0 1 0 0 0 1</rotations>
19 <forces>0 0 0</forces>
20 <moments>0 0 0</moments>
21 <distributed>
22 <forces>0 0 0</forces>
23 <forces_d1>0 0 0</forces_d1>
24 <forces_d2>0 0 0</forces_d2>
25 <forces_d3>0 0 0</forces_d3>
26 <moments>0 0 0</moments>
27 <moments_d1>0 0 0</moments_d1>
28 <moments_d2>0 0 0</moments_d2>
29 <moments_d3>0 0 0</moments_d3>
30 </distributed>
31 </recover>
32 <!-- baselines file -->
33 <baselines>
34 <basepoints>
35 <include>basepoints_rev</include>
36 </basepoints>

375

37 <baseline name="bl_lps_for" type="straight">
38 <points>le:law</points>
39 </baseline>
40 <baseline name="bl_lps_spar" type="straight">
41 <points>law:lmw</points>
42 </baseline>
43 <baseline name="bl_lps_aft" type="straight">
44 <points>lmw:lte</points>
45 </baseline>
46 <baseline name="bl_te" type="straight">
47 <points>lte,te,hte</points>
48 </baseline>
49 <baseline name="bl_hps_aft" type="straight">
50 <points>hte:hmw</points>
51 </baseline>
52 <baseline name="bl_hps_spar" type="straight">
53 <points>hmw:haw</points>
54 </baseline>
55 <baseline name="bl_hps_for" type="straight">
56 <points>haw:122,le</points>
57 </baseline>
58 <baseline name="bl_lps_ero" type="straight">
59 <points>le:ler</points>
60 </baseline>
61 <baseline name="bl_hps_ero" type="straight">
62 <points>her:122,le</points>
63 </baseline>
64 <baseline name="bl_aux_web" type="straight">
65 <point>aw</point>
66 <angle>90</angle>
67 </baseline>
68 <baseline name="bl_main_web" type="straight">
69 <point>mw</point>
70 <angle>90</angle>
71 </baseline>
72 <baseline name="bl_tef" type="straight">
73 <point>tef</point>
74 <angle>90</angle>
75 </baseline>
76 </baselines>
77 <!-- layups file -->
78 <layups>
79 <layup name="layup_spar">
80 <layer lamina="la_im7_410">0</layer>
81 <layer lamina="la_im7_372">45</layer>
82 <layer lamina="la_im7_372">-45</layer>
83 <layer lamina="la_im7_100">90</layer>
84 </layup>
85 <layup name="layup_ovw">
86 <layer lamina="la_eglass_050">0</layer>
87 <layer lamina="la_eglass_050">45</layer>
88 <layer lamina="la_eglass_050">-45</layer>
89 <layer lamina="la_eglass_050">0</layer>
90 </layup>
91 <layup name="layup_spar_with_ovw">
92 <layer lamina="la_eglass_050">0</layer>
93 <layer lamina="la_eglass_050">45</layer>
94 <layer lamina="la_eglass_050">-45</layer>
95 <layer lamina="la_eglass_050">0</layer>
96 <layer lamina="la_im7_410">0</layer>

376

97 <layer lamina="la_im7_372">45</layer>
98 <layer lamina="la_im7_372">-45</layer>
99 <layer lamina="la_im7_100">90</layer>

100 </layup>
101 <layup name="layup_erosion_strip">
102 <layer lamina="la_steel_164">0</layer>
103 </layup>
104 <layup name="layup_le_fill">
105 <layer lamina="la_im7_782">0</layer>
106 </layup>
107 <layup name="layup_le_fill_with_ovw">
108 <layer lamina="la_eglass_050">0</layer>
109 <layer lamina="la_eglass_050">45</layer>
110 <layer lamina="la_eglass_050">-45</layer>
111 <layer lamina="la_eglass_050">0</layer>
112 <layer lamina="la_im7_782">0</layer>
113 </layup>
114 </layups>
115 <!-- components -->
116 <!-- airfoil surface except erosion strip -->
117 <component name="surface">
118 <segment name="sg_lps_for">
119 <baseline>bl_lps_for</baseline>
120 <layup direction="left">layup_le_fill_with_ovw</layup>
121 </segment>
122 <segment name="sg_hps_for">
123 <baseline>bl_hps_for</baseline>
124 <layup direction="left">layup_le_fill_with_ovw</layup>
125 </segment>
126 <segment name="sg_lps_spar">
127 <baseline>bl_lps_spar</baseline>
128 <layup direction="left">layup_spar_with_ovw</layup>
129 </segment>
130 <segment name="sg_hps_spar">
131 <baseline>bl_hps_spar</baseline>
132 <layup direction="left">layup_spar_with_ovw</layup>
133 </segment>
134 <segment name="sg_lps_aft">
135 <baseline>bl_lps_aft</baseline>
136 <layup direction="left">layup_ovw</layup>
137 </segment>
138 <segment name="sg_te">
139 <baseline>bl_te</baseline>
140 <layup direction="left">layup_ovw</layup>
141 </segment>
142 <segment name="sg_hps_aft">
143 <baseline>bl_hps_aft</baseline>
144 <layup direction="left">layup_ovw</layup>
145 </segment>
146 </component>
147 <!-- erosion strip -->
148 <component name="erosion_strip">
149 <segment name="sg_lps_erosion">
150 <baseline>bl_lps_ero</baseline>
151 <layup direction="right">layup_erosion_strip</layup>
152 </segment>
153 <segment name="sg_hps_erosion">
154 <baseline>bl_hps_ero</baseline>
155 <layup direction="right">layup_erosion_strip</layup>
156 </segment>

377

157 </component>
158 <!-- auxiliary (leading) web -->
159 <component name="aux_web" depend="surface">
160 <segment name="sg_aux_web">
161 <baseline>bl_aux_web</baseline>
162 <layup direction="left">layup_spar</layup>
163 </segment>
164 </component>
165 <!-- main (trailing) web -->
166 <component name="main_web" depend="surface">
167 <segment name="sg_main_web">
168 <baseline>bl_main_web</baseline>
169 <layup direction="right">layup_spar</layup>
170 </segment>
171 </component>
172 <!-- sglass fill -->
173 <component name="sglass_fill" type="fill" depend="surface">
174 <baseline fillside="left">bl_tef</baseline>
175 <material>sglass</material>
176 </component>
177 <!-- plascore fill -->
178 <component name="plascore_fill" type="fill" depend="surface,main_web,sglass_fill">
179 <location>pf</location>
180 <material>plascore</material>
181 </component>
182 </cross_section>

Listing B.10: Excerpt from MaterialDB.xml
1 <materials>
2 <material name="eglass" type="orthotropic">
3 <!-- E-Glass (slug-ft-lbf) -->
4 <density>3.34</density>
5 <elastic>
6 <e1>4.3229e+08</e1>
7 <e2>4.3229e+08</e2>
8 <e3>4.3229e+08</e3>
9 <g12>8.5536e+07</g12>

10 <g13>8.5536e+07</g13>
11 <g23>8.5536e+07</g23>
12 <nu12>0.15</nu12>
13 <nu13>0.15</nu13>
14 <nu23>0.30</nu23>
15 </elastic>
16 </material>
17 <material name="im7" type="orthotropic">
18 <!-- IM7 (slug-ft-lbf) -->
19 <density>3.01</density>
20 <elastic>
21 <e1>3.4464e+09</e1>
22 <e2>1.8374e+08</e2>
23 <e3>1.8374e+08</e3>
24 <g12>1.0224e+08</g12>
25 <g13>1.0224e+08</g13>
26 <g23>1.0224e+08</g23>
27 <nu12>0.34</nu12>
28 <nu13>0.34</nu13>
29 <nu23>0.30</nu23>
30 </elastic>
31 </material>

378

32 <material name="steel" type="orthotropic">
33 <!-- Steel (slug-ft-lbf) -->
34 <density>15.13</density>
35 <elastic>
36 <e1>4.2820e+09</e1>
37 <e2>4.2820e+09</e2>
38 <e3>4.2820e+09</e3>
39 <g12>1.6083e+09</g12>
40 <g13>1.6083e+09</g13>
41 <g23>1.6083e+09</g23>
42 <nu12>0.30</nu12>
43 <nu13>0.30</nu13>
44 <nu23>0.30</nu23>
45 </elastic>
46 </material>
47 <material name="sglass" type="orthotropic">
48 <!-- S-Glass (slug-ft-lbf) -->
49 <density>3.61</density>
50 <elastic>
51 <e1>9.0648e+08</e1>
52 <e2>2.5056e+08</e2>
53 <e3>2.5056e+08</e3>
54 <g12>7.5168e+07</g12>
55 <g13>7.5168e+07</g13>
56 <g23>7.5168e+07</g23>
57 <nu12>0.28</nu12>
58 <nu13>0.28</nu13>
59 <nu23>0.30</nu23>
60 </elastic>
61 </material>
62 <material name="plascore" type="orthotropic">
63 <!-- Plascore (slug-ft-lbf) -->
64 <density>0.09</density>
65 <elastic>
66 <e1>1.4400e+05</e1>
67 <e2>2.8829e+06</e2>
68 <e3>1.4400e+05</e3>
69 <g12>5.0112e+05</g12>
70 <g13>1.4400e+05</g13>
71 <g23>8.3520e+05</g23>
72 <nu12>0.01</nu12>
73 <nu13>0.30</nu13>
74 <nu23>0.01</nu23>
75 </elastic>
76 </material>
77 <lamina name="la_im7_410">
78 <material>im7</material>
79 <thickness>0.00410</thickness>
80 </lamina>
81 <lamina name="la_im7_372">
82 <material>im7</material>
83 <thickness>0.00372</thickness>
84 </lamina>
85 <lamina name="la_im7_100">
86 <material>im7</material>
87 <thickness>0.00100</thickness>
88 </lamina>
89 <lamina name="la_eglass_050">
90 <material>eglass</material>
91 <thickness>0.00050</thickness>

379

92 </lamina>
93 <lamina name="la_steel_164">
94 <material>steel</material>
95 <thickness>0.00164</thickness>
96 </lamina>
97 <lamina name="la_im7_782">
98 <material>im7</material>
99 <thickness>0.00782</thickness>

100 </lamina>
101 </materials>

Listing B.11: basepoints_rev.dat
1 le 0.0000000000 0.0000000000
2 2 -0.0006629550 0.0045356860
3 3 -0.0026500620 0.0089652630
4 4 -0.0059560520 0.0132828070
5 5 -0.0105721570 0.0174805780
6 6 -0.0164861380 0.0215491810
7 7 -0.0236823100 0.0254777740
8 8 -0.0321415900 0.0292543320
9 9 -0.0418415480 0.0328659420

10 10 -0.0527564590 0.0362991350
11 11 -0.0648573790 0.0395402370
12 12 -0.0781122200 0.0425757210
13 13 -0.0924858310 0.0453925700
14 14 -0.1079400970 0.0479786130
15 15 -0.1244340350 0.0503228470
16 law -0.1419239060 0.0524157230
17 ler -0.1603633310 0.0542493930
18 18 -0.1797034110 0.0558179110
19 19 -0.1998928600 0.0571173780
20 20 -0.2208781390 0.0581460450
21 21 -0.2426035990 0.0589043460
22 22 -0.2650116280 0.0593948930
23 23 -0.2880428050 0.0596224090
24 24 -0.3116360530 0.0595936220
25 25 -0.3357288090 0.0593171150
26 26 -0.3602571830 0.0588031480
27 27 -0.3851561290 0.0580634490
28 lmw -0.4103596210 0.0571109880
29 29 -0.4358008220 0.0559597540
30 30 -0.4614122690 0.0546245110
31 31 -0.4871260430 0.0531205840
32 32 -0.5128739570 0.0514636420
33 33 -0.5385877310 0.0496695110
34 34 -0.5641991780 0.0477540100
35 35 -0.5896403790 0.0457328110
36 36 -0.6148438710 0.0436213350
37 37 -0.6397428170 0.0414346730
38 38 -0.6642711910 0.0391875450
39 39 -0.6883639470 0.0368942710
40 40 -0.7119571950 0.0345687830
41 41 -0.7349883720 0.0322246420
42 42 -0.7573964010 0.0298750750
43 43 -0.7791218610 0.0275330210
44 44 -0.8001071400 0.0252111770
45 45 -0.8202965890 0.0229220430
46 46 -0.8396366690 0.0206779550
47 47 -0.8580760940 0.0184911130

380

48 48 -0.8755659650 0.0163735830
49 49 -0.8920599030 0.0143372880
50 50 -0.9075141690 0.0123939730
51 51 -0.9218877800 0.0105551550
52 52 -0.9351426210 0.0088320460
53 lte -0.9472435410 0.0072354620
54 54 -0.9581584520 0.0057757170
55 55 -0.9678584100 0.0044625050
56 56 -0.9763176900 0.0033047740
57 57 -0.9835138620 0.0023105990
58 58 -0.9894278430 0.0014870610
59 59 -0.9940439480 0.0008401290
60 60 -0.9973499380 0.0003745600
61 61 -0.9993370450 0.0000938160
62 te -1.0000000000 0.0000000000
63 63 -0.9993370450 -0.0000938160
64 64 -0.9973499380 -0.0003745600
65 65 -0.9940439480 -0.0008401290
66 66 -0.9894278430 -0.0014870610
67 67 -0.9835138620 -0.0023105990
68 68 -0.9763176900 -0.0033047740
69 69 -0.9678584100 -0.0044625050
70 70 -0.9581584520 -0.0057757170
71 hte -0.9472435410 -0.0072354620
72 72 -0.9351426210 -0.0088320460
73 73 -0.9218877800 -0.0105551550
74 74 -0.9075141690 -0.0123939730
75 75 -0.8920599030 -0.0143372870
76 76 -0.8755659650 -0.0163735830
77 77 -0.8580760940 -0.0184911130
78 78 -0.8396366690 -0.0206779550
79 79 -0.8202965890 -0.0229220430
80 80 -0.8001071400 -0.0252111770
81 81 -0.7791218610 -0.0275330210
82 82 -0.7573964010 -0.0298750740
83 83 -0.7349883720 -0.0322246420
84 84 -0.7119571950 -0.0345687830
85 85 -0.6883639470 -0.0368942710
86 86 -0.6642711910 -0.0391875440
87 87 -0.6397428170 -0.0414346730
88 88 -0.6148438710 -0.0436213340
89 89 -0.5896403790 -0.0457328110
90 90 -0.5641991780 -0.0477540100
91 91 -0.5385877310 -0.0496695110
92 92 -0.5128739570 -0.0514636420
93 93 -0.4871260430 -0.0531205840
94 94 -0.4614122690 -0.0546245110
95 95 -0.4358008220 -0.0559597530
96 hmw -0.4103596210 -0.0571109880
97 97 -0.3851561290 -0.0580634480
98 98 -0.3602571830 -0.0588031480
99 99 -0.3357288090 -0.0593171150

100 100 -0.3116360530 -0.0595936220
101 101 -0.2880428050 -0.0596224090
102 102 -0.2650116280 -0.0593948930
103 103 -0.2426035990 -0.0589043460
104 104 -0.2208781390 -0.0581460450
105 105 -0.1998928600 -0.0571173780
106 106 -0.1797034110 -0.0558179100
107 her -0.1603633310 -0.0542493930

381

108 haw -0.1419239060 -0.0524157230
109 109 -0.1244340350 -0.0503228470
110 110 -0.1079400970 -0.0479786130
111 111 -0.0924858310 -0.0453925700
112 112 -0.0781122200 -0.0425757210
113 113 -0.0648573790 -0.0395402360
114 114 -0.0527564590 -0.0362991350
115 115 -0.0418415480 -0.0328659420
116 116 -0.0321415900 -0.0292543320
117 117 -0.0236823100 -0.0254777740
118 118 -0.0164861380 -0.0215491810
119 119 -0.0105721570 -0.0174805780
120 120 -0.0059560520 -0.0132828070
121 121 -0.0026500620 -0.0089652630
122 122 -0.0006629550 -0.0045356860
123 aw -0.145 0
124 mw -0.408 0
125 pf -0.750 0
126 tef -0.950 0
127 sf -0.970 0

382

Ta
bl

e
B

.3
2:

M
ap

pi
ng

fr
om

O
pe

nM
D

A
O

va
ri

ab
le

s
to

Pr
eV

A
B

S+
VA

B
S

va
ri

ab
le

s.

O
pe

nM
D

A
O

va
ri

ab
le

Pr
eV

A
B

S+
VA

B
S

ac
ce

ss
st

ri
ng

a
U

ni
ts

s
p
a
r
_
l
a
y
e
r
2
_
s
t
a
c
k
s

c
r
o
s
s
_
s
e
c
t
i
o
n
%
l
a
y
u
p
s
%
l
a
y
u
p
(
l
a
y
u
p
_
s
p
a
r
)
%
l
a
y
e
r
(
2
)
%
s
t
a
c
k

—
s
p
a
r
_
l
a
y
e
r
3
_
s
t
a
c
k
s

c
r
o
s
s
_
s
e
c
t
i
o
n
%
l
a
y
u
p
s
%
l
a
y
u
p
(
l
a
y
u
p
_
s
p
a
r
)
%
l
a
y
e
r
(
3
)
%
s
t
a
c
k

—
m
a
s
s
_
m
a
t
r
i
x

M
—

s
t
i
f
f
_
m
a
t
r
i
x

S
—

m
e
s
h
_
e
l
e
m
s

n
u
m
_
e
l
e
m
s

—
f
o
r
c
e
_
x

c
r
o
s
s
_
s
e
c
t
i
o
n
%
r
e
c
o
v
e
r
%
f
o
r
c
e
s
%
1

lb
f

f
o
r
c
e
_
y

c
r
o
s
s
_
s
e
c
t
i
o
n
%
r
e
c
o
v
e
r
%
f
o
r
c
e
s
%
2

lb
f

f
o
r
c
e
_
z

c
r
o
s
s
_
s
e
c
t
i
o
n
%
r
e
c
o
v
e
r
%
f
o
r
c
e
s
%
3

lb
f

m
o
m
e
n
t
_
x

c
r
o
s
s
_
s
e
c
t
i
o
n
%
r
e
c
o
v
e
r
%
m
o
m
e
n
t
s
%
1

ft
lb

f
m
o
m
e
n
t
_
y

c
r
o
s
s
_
s
e
c
t
i
o
n
%
r
e
c
o
v
e
r
%
m
o
m
e
n
t
s
%
2

ft
lb

f
m
o
m
e
n
t
_
z

c
r
o
s
s
_
s
e
c
t
i
o
n
%
r
e
c
o
v
e
r
%
m
o
m
e
n
t
s
%
3

ft
lb

f
g
a
u
s
s
_
p
o
i
n
t
s

S
M
%
1
:
2

ft
s
t
r
e
s
s

S
M
%
3
:
8

lb
f/

ft
2

a
T

he
Pr

eV
A

B
S+

VA
B

S
ac

ce
ss

st
ri

ng
ty

pi
ca

lly
po

in
ts

to
a

sp
ec

ifi
c

po
si

tio
n

in
th

e
cr

os
s

se
ct

io
n

X
M

L
fil

e.
Tw

o
sp

ec
ia

ls
tr

in
gs

,M
an

d
S

,
po

in
tt

o
th

e
lo

ca
tio

ns
of

th
e

m
as

s
an

d
st

iff
ne

ss
m

at
ric

es
,r

es
pe

ct
iv

el
y,

in
th

e
VA

B
S

ho
m

og
en

iz
at

io
n

ou
tp

ut
fil

e.
A

no
th

er
sp

ec
ia

ls
tri

ng
,

n
u
m
_
e
l
e
m
s

,r
ef

er
en

ce
s

th
e

nu
m

be
ro

fm
es

h
el

em
en

ts
in

th
e

VA
B

S
in

pu
tfi

le
.I

n
re

co
ve

ry
m

od
e,

st
re

ss
or

st
ra

in
ou

tp
ut

fil
es

ca
n

be
sp

ec
ifi

ed
w

ith
th

e
fo

rm
<
e
x
t
e
n
s
i
o
n
>
%
<
f
i
r
s
t
_
c
o
l
>
:
<
l
a
s
t
_
c
o
l
>

.

383

APPENDIX C

OPENMDAO MODULES AND SUPPORTING TOOLS

The OpenMDAO modules and supporting tools are used to provide additional capabilities

which are necessary to execute the MDA and process its results. The MDA group controls

the execution order and data handling for the MDA. The blade ballast calculator and mass

calculator ensure consistency between the NDARC, RCAS, and VABS models. The von

Mises stress calculator and stress analyzer are used for data reduction and analysis after the

MDA execution completes.

C.1 MDA Group

The MDA group, which is responsible for executing each of the individual components

of the MDA and handling the data that passes between components, is implemented as a

subclass of the OpenMDAO Group class. This class can be imported into any other Python

script so the MDA environment and the generic SMR helicopter model can easily be reused

in different applications.

Listing C.1: HeliGroup
1 import os,sys,inspect
2 import openmdao.api as om
3 import numpy as np
4 import rcotools.ndarc.ndarc_mdao as nm
5 import modules.RCASwrapper as rm
6 import modules.PreVabsWrapper as pv
7 from modules.OmClasses import (HeliMassCalculator, TurnRadiusCalculator,
8 BladeBallastCalculator, ControlDamper, HeliCG)
9

10 class HeliGroup(om.Group):
11
12 def __init__(self,ndarc_job_path,
13 rcas_run_file,rcas_job_dir,rcas_job_file,
14 prevabs_job_dir,prevabs_job_file,prevabs_supporting_files,
15 run_parallel=False,force_linear=False,saveallruns=False,logger=None)

↪→ :
16 """
17 OpenMDAO Group subclass containing the PreVABS, NDARC, and RCAS models for

↪→ the

384

18 generic helicopter along with all necessary connecting and supporting
↪→ functions.

19 Reworked to set vehicle CG instead of payload CG.
20
21 Parameters
22 ----------
23 ndarc_job_path : string
24 Path to the original NDARC njob file.
25 rcas_run_file : string
26 Path to the rcas_master_run.csh file.
27 rcas_job_dir : string
28 Path to the RCAS job directory.
29 rcas_job_file : string
30 Name of the RCAS job file, without extension
31 prevabs_job_dir : string
32 Path to the PreVABS job directory.
33 prevabs_job_file : string
34 Name of the PreVABS job file, without extension.
35
36 Returns
37 -------
38 None.
39
40 """
41
42 super(HeliGroup,self).__init__()
43
44 self.ndarc_job_path = ndarc_job_path
45
46 self.rcas_run_file = rcas_run_file
47 self.rcas_job_dir = rcas_job_dir
48 self.rcas_job_file = rcas_job_file
49
50 self.prevabs_job_dir = prevabs_job_dir
51 self.prevabs_job_file = prevabs_job_file
52 self.prevabs_supporting_files = prevabs_supporting_files
53
54 self.run_parallel = run_parallel
55 self.force_linear = force_linear
56 self.saveallruns = saveallruns
57 self.logger = logger
58
59 def setup(self):
60 ### Independent variables component
61 # For variables that will probably change
62 indep_vars = om.IndepVarComp()
63 indep_vars.add_discrete_output(’casenum’, 1) #dummy variable for keeping

↪→ cases ordered
64 indep_vars.add_output(’airspeed’, 100.0, units=’kn’)
65 indep_vars.add_output(’altitude’, 0.0, units=’ft’)
66 indep_vars.add_output(’gross_weight’, 16000.0, units=’lb’)
67 indep_vars.add_output(’rate_of_climb’, 0.0, units=’ft / min’) #climb +,

↪→ descent -
68 indep_vars.add_output(’turn_rate’, 0.0, units=’deg / s’) #right +, left -
69 indep_vars.add_output(’cg’, 0.503, units=’ft’) #forward -, backwards +
70
71 ### Static variables component
72 # For variables you probably won’t change but might want easy access to
73 static_vars = om.IndepVarComp()
74 static_vars.add_output(’blade_mpl’, units=’slug / ft’, val=0.22)

385

75 static_vars.add_output(’blade_cg_y’, units=’ft’, val=0.0175) # + towards
↪→ leading edge, - towards trailing edge, ref quarter chord

76 static_vars.add_output(’blade_cg_z’, units=’ft’, val=0.0) # + towards low
↪→ pressure surface, - towards high pressure surface, ref chordline

77 static_vars.add_output(’tail_rotor_cant’, units=’deg’, val=0.0) # tail rotor
↪→ cant for exp 3b. + cants tail rotor upwards

78
79
80 ### NDARC weight initialization component
81 ndarc_weight_init_inputs = [
82 (’gross_weight’, ’PerfCondition(1)%GW’, {’val’: 16000.0, ’units’: ’lb’}),
83 (’weight_main_blade’, ’Rotor(1)%dWblade’, {’val’: 750.0, ’units’: ’lbm’})

↪→ ,
84 (’tail_rotor_cant’, ’Rotor(2)%cant_hub’, {’val’: 0.0, ’units’: ’deg’}), #

↪→ added for exp 3b
85]
86
87 ndarc_weight_init_outputs = []
88 loc_list = [
89 (’loc_fuselage’, ’Fuselage%LOC_FUSELAGE’),
90 (’loc_gear’, ’LandingGear%LOC_GEAR’),
91 (’loc_mainrotor’, ’Rotor(1)%LOC_ROTOR’),
92 (’loc_tailrotor’, ’Rotor(2)%LOC_ROTOR’),
93 (’loc_horizstab’, ’Tail(1)%LOC_TAIL’),
94 (’loc_vertstab’, ’Tail(2)%LOC_TAIL’),
95 (’loc_fueltank’, ’FuelTank(1)%LOC_AUXTANK(1)’),
96 (’loc_engine’, ’EngineGroup(1)%LOC_ENGINE’),
97]
98 for item in loc_list:
99 ndarc_weight_init_outputs.extend([

100 (item[0]+"_sl", item[1]+"%SLLOC", {’units’: ’ft’, ’val’: 0.0}),
101 (item[0]+"_bl", item[1]+"%BLLOC", {’units’: ’ft’, ’val’: 0.0}),
102 (item[0]+"_wl", item[1]+"%WLLOC", {’units’: ’ft’, ’val’: 0.0}),
103])
104 ndarc_weight_init_outputs.extend([
105 # Fixed weights
106 (’weight_fuselage’, ’Aircraft%WEIGHT%W_FUSELAGE’, {’units’: ’lbm’, ’val’:

↪→ 0.0}),
107 (’weight_systems’, ’Aircraft%WEIGHT%W_EQUIP’, {’units’: ’lbm’, ’val’:

↪→ 0.0}),
108 (’weight_vibration’, ’Aircraft%WEIGHT%W_VIB’, {’units’: ’lbm’, ’val’:

↪→ 0.0}),
109 (’weight_fuelsystem’, ’Aircraft%WEIGHT%W_FUELSYS’, {’units’: ’lbm’, ’val’

↪→ : 0.0}),
110 (’weight_gear’, ’Aircraft%WEIGHT%W_GEAR’, {’units’: ’lbm’, ’val’: 0.0}),
111 (’weight_main_hub’, ’Aircraft%WEIGHT%W_ROTOR_HUB’, {’units’: ’lbm’, ’val’

↪→ : 0.0}),
112 (’weight_main_blades’, ’Aircraft%WEIGHT%W_ROTOR_BLADE’, {’units’: ’lbm’,

↪→ ’val’: 0.0}),
113 (’weight_tailrotor’, ’Aircraft%WEIGHT%W_TAILROTOR’, {’units’: ’lbm’, ’val

↪→ ’: 0.0}),
114 (’weight_horizstab’, ’Aircraft%WEIGHT%W_HTAIL’, {’units’: ’lbm’, ’val’:

↪→ 0.0}),
115 (’weight_vertstab’, ’Aircraft%WEIGHT%W_VTAIL’, {’units’: ’lbm’, ’val’:

↪→ 0.0}),
116 (’weight_drive’, ’Aircraft%WEIGHT%W_DRIVE’, {’units’: ’lbm’, ’val’: 0.0})

↪→ ,
117 (’weight_engstruct’, ’EngineGroup(1)%WEIGHT%W_STRUCTURE’, {’units’: ’lbm’

↪→ , ’val’: 0.0}),
118 (’weight_engine’, ’Aircraft%WEIGHT%W_ENGSYS’, {’units’: ’lbm’, ’val’:

↪→ 0.0}),
119 # Flexible weights

386

120 (’weight_fuel’, ’Performance%PerfCondition(1)%FltAircraft%WFUEL_TOTAL’, {
↪→ ’units’: ’lbm’, ’val’: 0.0}),

121 (’weight_usefulload’, ’Performance%PerfCondition(1)%FltAircraft%WFIXUL’,
↪→ {’units’: ’lbm’, ’val’: 0.0}),

122 (’weight_payload’, ’Performance%PerfCondition(1)%FltAircraft%WPAYLOAD’, {
↪→ ’units’: ’lbm’, ’val’: 0.0}),

123])
124
125 ndarc_weight_init = nm.NdarcWrapper(self.ndarc_job_path,
126 ndarc_weight_init_inputs,

↪→ ndarc_weight_init_outputs,
127 parallel=self.run_parallel,
128 saveallruns=self.saveallruns,

↪→ saveinputfile=self.saveallruns)
129
130 blade_weight_calculator = om.ExecComp(’weight_main_blade = 4*(blade_mpl

↪→ *(26.8-1.25) + 0.112)’, # calculate weight of four main blades from
↪→ mass/length

131 blade_mpl = {’value’: 0.22, ’units’: ’
↪→ slug / ft’},

132 weight_main_blade = {’value’: 0.0, ’
↪→ units’: ’slug’})

133
134 ### NDARC flight condition component
135 ndarc_flight_cond_inputs = [
136 (’airspeed’, ’PerfCondition(1)%Vkts’, {’val’: 100.0, ’units’: ’kn’}),
137 (’altitude’, ’PerfCondition(1)%altitude’, {’val’: 0.0, ’units’: ’ft’}),
138 (’gross_weight’, ’PerfCondition(1)%GW’, {’val’: 16000.0, ’units’: ’lb’}),
139 (’rate_of_climb’, ’PerfCondition(1)%ROC’, {’val’: 0.0, ’units’: ’ft / min

↪→ ’}),
140 (’turn_rate’, ’PerfCondition(1)%rate_turn’, {’val’: 0.0, ’units’: ’deg /

↪→ s’}),
141 (’loc_cg_sl’, ’Geometry%loc_cg%SL’, {’val’: 0.0, ’units’: ’ft’}),
142 (’loc_cg_bl’, ’Geometry%loc_cg%BL’, {’val’: 0.0, ’units’: ’ft’}),
143 (’loc_cg_wl’, ’Geometry%loc_cg%WL’, {’val’: 0.0, ’units’: ’ft’}),
144 (’weight_main_blade’, ’Rotor(1)%dWblade’, {’val’: 750.0, ’units’: ’lbm’})

↪→ ,
145 (’tail_rotor_cant’, ’Rotor(2)%cant_hub’, {’val’: 0.0, ’units’: ’deg’}), #

↪→ added for exp 3b
146]
147
148 ndarc_flight_cond_outputs = [
149 # Trimmed fuselage attitude
150 (’att_pitch’, ’Performance%PerfCondition(1)%FltAircraft%PITCH_TRIM’, {’

↪→ units’: ’deg’, ’val’: 0.0}),
151 (’att_roll’, ’Performance%PerfCondition(1)%FltAircraft%ROLL_TRIM’, {’

↪→ units’: ’deg’, ’val’: 0.0}),
152 # Trimmed pilot control positions
153 (’ndarc_cont_coll’, ’Performance%PerfCondition(1)%FltAircraft%

↪→ CONTROL_TRIM(1)’, {’units’: ’deg’, ’val’: 0.0}),
154 (’ndarc_cont_lat_cyc’,’Performance%PerfCondition(1)%FltAircraft%

↪→ CONTROL_TRIM(2)’, {’units’: ’deg’, ’val’: 0.0}),
155 (’ndarc_cont_lon_cyc’, ’Performance%PerfCondition(1)%FltAircraft%

↪→ CONTROL_TRIM(3)’, {’units’: ’deg’, ’val’: 0.0}),
156 (’ndarc_cont_pedal’, ’Performance%PerfCondition(1)%FltAircraft%

↪→ CONTROL_TRIM(4)’, {’units’: ’deg’, ’val’: 0.0}),
157 # Atmospheric conditions
158 (’air_viscosity’, ’Performance%PerfCondition(1)%FltAircraft%VISCOSITY’, {

↪→ ’units’: ’slug / (ft * s)’, ’val’: 0.0}),
159 (’air_density’, ’Performance%PerfCondition(1)%FltAircraft%DENSITY’, {’

↪→ units’: ’slug / ft ** 3’, ’val’: 0.0}),
160 (’air_sound_speed’, ’Performance%PerfCondition(1)%FltAircraft%CSOUND’, {’

↪→ units’: ’ft / s’, ’val’: 0.0}),

387

161 (’ndarc_success’, ’%success’, {’val’: False, ’discrete’: True}),
162 (’ndarc_converged’, ’%converged’, {’val’: False, ’discrete’: True}),
163]
164
165 ndarc_flight_cond = nm.NdarcWrapper(self.ndarc_job_path,
166 ndarc_flight_cond_inputs,

↪→ ndarc_flight_cond_outputs,
167 parallel=self.run_parallel,
168 saveallruns=self.saveallruns,

↪→ saveinputfile=self.saveallruns)
169
170 ### RCAS component
171 rcas_inputs = [
172 # Blade elastic properties
173 (’mass_matrix_1’,’BLADE_GCB_PROP.TAB%MMAT1’,{’val’: np.zeros([6,6]), ’

↪→ units’: None}),
174 (’mass_matrix_2’,’BLADE_GCB_PROP.TAB%MMAT2’,{’val’: np.zeros([6,6]), ’

↪→ units’: None}),
175 (’stiff_matrix_1’,’BLADE_GCB_PROP.TAB%SSTIF1’,{’val’: np.zeros([6,6]), ’

↪→ units’: None}),
176 (’stiff_matrix_2’,’BLADE_GCB_PROP.TAB%SSTIF2’,{’val’: np.zeros([6,6]), ’

↪→ units’: None}),
177 # Speeds
178 (’airspeed’,’INITCOND%3%1%1’, {’val’: 168.0, ’units’: ’ft / s’}),
179 (’neg_rate_of_climb’, ’INITCOND%3%1%3’, {’val’: 0.0, ’units’: ’ft / s’}),
180 # Fuselage attitude initial conditions
181 (’att_pitch’, ’INITCOND%2%1%5’, {’units’: ’rad’, ’val’: 0.0}),
182 (’att_roll’, ’INITCOND%2%1%4’, {’units’: ’rad’, ’val’: 0.0}),
183 # Pilot control initial conditions
184 (’rcas_cont_coll’, ’INITCOND%1%1%1’, {’units’: ’deg’, ’val’: 0.0}),
185 (’rcas_cont_lat_cyc’,’INITCOND%1%1%2’, {’units’: ’deg’, ’val’: 0.0}),
186 (’rcas_cont_lon_cyc’, ’INITCOND%1%1%3’, {’units’: ’deg’, ’val’: 0.0}),
187 (’rcas_cont_pedal’, ’INITCOND%1%1%4’, {’units’: ’deg’, ’val’: 0.0}),
188 # Turn rate and radius
189 (’turn_radius’, ’INITCOND%5%1%1’, {’units’: ’ft’, ’val’: 0.0}),
190 (’turn_rate’, ’INITCOND%5%1%2’, {’units’: ’rad / s’, ’val’: 0.0}),
191 # Atmospheric
192 (’air_density’, ’AEROSTATCONST%1%1%4’, {’val’: 2.37e-3, ’units’: ’slug /

↪→ ft ** 3’}),
193 (’air_sound_speed’, ’AEROSTATCONST%1%1%5’, {’val’: 1116, ’units’: ’ft / s

↪→ ’}),
194 (’air_viscosity’, ’AEROSTATCONST%1%1%6’, {’val’: 3.62e-7, ’units’: ’slug

↪→ / (ft * s)’}),
195 # Payload stationline
196 (’neg_loc_payload_sl’, ’FUSEPS-FENODE%1%4%2’, {’val’: 0., ’units’: ’ft’})

↪→ ,
197 # Tail rotor cant (exp 3b)
198 (’tail_rotor_cant_struct’, ’SSORIENT%1%3%5’, {’val’: -90., ’units’: ’deg’

↪→ }),
199 (’tail_rotor_cant_aero’, ’SCORIENT%1%2%5’, {’val’: -90., ’units’: ’deg’})

↪→ ,
200 # Mass properties
201 (’mass_payload’, ’FUSEPS-RIGIDBODYMASS%1%6%3’, {’val’: 67.61, ’units’: ’

↪→ slug’}),
202 (’inert_payload_Ixx’, ’FUSEPS-RIGIDBODYMASS%1%6%4’, {’val’: 0., ’units’:

↪→ ’slug*ft**2’}),
203 (’inert_payload_Ixy’, ’FUSEPS-RIGIDBODYMASS%2%6%2’, {’val’: 0., ’units’:

↪→ ’slug*ft**2’}),
204 (’inert_payload_Ixz’, ’FUSEPS-RIGIDBODYMASS%2%6%3’, {’val’: 0., ’units’:

↪→ ’slug*ft**2’}),
205 (’inert_payload_Iyy’, ’FUSEPS-RIGIDBODYMASS%1%6%5’, {’val’: 0., ’units’:

↪→ ’slug*ft**2’}),

388

206 (’inert_payload_Iyz’, ’FUSEPS-RIGIDBODYMASS%2%6%4’, {’val’: 0., ’units’:
↪→ ’slug*ft**2’}),

207 (’inert_payload_Izz’, ’FUSEPS-RIGIDBODYMASS%1%6%6’, {’val’: 0., ’units’:
↪→ ’slug*ft**2’}),

208 (’mass_fuel’, ’FUSEPS-RIGIDBODYMASS%1%5%3’, {’val’: 77.70, ’units’: ’slug
↪→ ’}),

209 (’inert_fuel_Ixx’, ’FUSEPS-RIGIDBODYMASS%1%5%4’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

210 (’inert_fuel_Ixy’, ’FUSEPS-RIGIDBODYMASS%2%5%2’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

211 (’inert_fuel_Ixz’, ’FUSEPS-RIGIDBODYMASS%2%5%3’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

212 (’inert_fuel_Iyy’, ’FUSEPS-RIGIDBODYMASS%1%5%5’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

213 (’inert_fuel_Iyz’, ’FUSEPS-RIGIDBODYMASS%2%5%4’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

214 (’inert_fuel_Izz’, ’FUSEPS-RIGIDBODYMASS%1%5%6’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

215 (’mass_fuselage’, ’FUSEPS-RIGIDBODYMASS%1%1%3’, {’val’: 173.19, ’units’:
↪→ ’slug’}),

216 (’inert_fuselage_Ixx’, ’FUSEPS-RIGIDBODYMASS%1%1%4’, {’val’: 865.99, ’
↪→ units’: ’slug*ft**2’}),

217 (’inert_fuselage_Ixy’, ’FUSEPS-RIGIDBODYMASS%2%1%2’, {’val’: 0., ’units’:
↪→ ’slug*ft**2’}),

218 (’inert_fuselage_Ixz’, ’FUSEPS-RIGIDBODYMASS%2%1%3’, {’val’: 0., ’units’:
↪→ ’slug*ft**2’}),

219 (’inert_fuselage_Iyy’, ’FUSEPS-RIGIDBODYMASS%1%1%5’, {’val’: 14126.19, ’
↪→ units’: ’slug*ft**2’}),

220 (’inert_fuselage_Iyz’, ’FUSEPS-RIGIDBODYMASS%2%1%4’, {’val’: 0., ’units’:
↪→ ’slug*ft**2’}),

221 (’inert_fuselage_Izz’, ’FUSEPS-RIGIDBODYMASS%1%1%6’, {’val’: 14368.67, ’
↪→ units’: ’slug*ft**2’}),

222 (’mass_usefulload’, ’FUSEPS-RIGIDBODYMASS%1%2%3’, {’val’: 24.08, ’units’:
↪→ ’slug’}),

223 (’inert_usefulload_Ixx’, ’FUSEPS-RIGIDBODYMASS%1%2%4’, {’val’: 0., ’units
↪→ ’: ’slug*ft**2’}),

224 (’inert_usefulload_Ixy’, ’FUSEPS-RIGIDBODYMASS%2%2%2’, {’val’: 0., ’units
↪→ ’: ’slug*ft**2’}),

225 (’inert_usefulload_Ixz’, ’FUSEPS-RIGIDBODYMASS%2%2%3’, {’val’: 0., ’units
↪→ ’: ’slug*ft**2’}),

226 (’inert_usefulload_Iyy’, ’FUSEPS-RIGIDBODYMASS%1%2%5’, {’val’: 0., ’units
↪→ ’: ’slug*ft**2’}),

227 (’inert_usefulload_Iyz’, ’FUSEPS-RIGIDBODYMASS%2%2%4’, {’val’: 0., ’units
↪→ ’: ’slug*ft**2’}),

228 (’inert_usefulload_Izz’, ’FUSEPS-RIGIDBODYMASS%1%2%6’, {’val’: 0., ’units
↪→ ’: ’slug*ft**2’}),

229 (’mass_gear’, ’FUSEPS-RIGIDBODYMASS%1%3%3’, {’val’: 19.58, ’units’: ’slug
↪→ ’}),

230 (’inert_gear_Ixx’, ’FUSEPS-RIGIDBODYMASS%1%3%4’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

231 (’inert_gear_Ixy’, ’FUSEPS-RIGIDBODYMASS%2%3%2’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

232 (’inert_gear_Ixz’, ’FUSEPS-RIGIDBODYMASS%2%3%3’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

233 (’inert_gear_Iyy’, ’FUSEPS-RIGIDBODYMASS%1%3%5’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

234 (’inert_gear_Iyz’, ’FUSEPS-RIGIDBODYMASS%2%3%4’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

235 (’inert_gear_Izz’, ’FUSEPS-RIGIDBODYMASS%1%3%6’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

236 (’mass_main_hub’, ’MSHAFT-RIGIDBAR%2%1%2’, {’val’: 18.60, ’units’: ’slug’
↪→ }),

237 (’inert_main_hub_Ixx’, ’MSHAFT-RIGIDBAR%2%1%3’, {’val’: 14.53, ’units’: ’
↪→ slug*ft**2’}),

389

238 (’inert_main_hub_Ixy’, ’MSHAFT-RIGIDBAR%2%1%4’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

239 (’inert_main_hub_Ixz’, ’MSHAFT-RIGIDBAR%2%1%5’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

240 (’inert_main_hub_Iyy’, ’MSHAFT-RIGIDBAR%2%1%6’, {’val’: 7.26, ’units’: ’
↪→ slug*ft**2’}),

241 (’inert_main_hub_Iyz’, ’MSHAFT-RIGIDBAR%2%1%7’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

242 (’inert_main_hub_Izz’, ’MSHAFT-RIGIDBAR%2%1%8’, {’val’: 7.26, ’units’: ’
↪→ slug*ft**2’}),

243 (’mass_tail_blade’, ’TBLADE1-RIGIDBAR%2%1%2’, {’val’: 0.45, ’units’: ’
↪→ slug’}),

244 (’inert_tail_blade_Ixx’, ’TBLADE1-RIGIDBAR%2%1%3’, {’val’: 0.02, ’units’:
↪→ ’slug*ft**2’}),

245 (’inert_tail_blade_Ixy’, ’TBLADE1-RIGIDBAR%2%1%4’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

246 (’inert_tail_blade_Ixz’, ’TBLADE1-RIGIDBAR%2%1%5’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

247 (’inert_tail_blade_Iyy’, ’TBLADE1-RIGIDBAR%2%1%6’, {’val’: 0.86, ’units’:
↪→ ’slug*ft**2’}),

248 (’inert_tail_blade_Iyz’, ’TBLADE1-RIGIDBAR%2%1%7’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

249 (’inert_tail_blade_Izz’, ’TBLADE1-RIGIDBAR%2%1%8’, {’val’: 0.88, ’units’:
↪→ ’slug*ft**2’}),

250 (’mass_tail_hub’, ’TSHAFT-RIGIDBAR%2%1%2’, {’val’: 1.47, ’units’: ’slug’
↪→ }),

251 (’inert_tail_hub_Ixx’, ’TSHAFT-RIGIDBAR%2%1%3’, {’val’: 1.06, ’units’: ’
↪→ slug*ft**2’}),

252 (’inert_tail_hub_Ixy’, ’TSHAFT-RIGIDBAR%2%1%4’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

253 (’inert_tail_hub_Ixz’, ’TSHAFT-RIGIDBAR%2%1%5’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

254 (’inert_tail_hub_Iyy’, ’TSHAFT-RIGIDBAR%2%1%6’, {’val’: 0.53, ’units’: ’
↪→ slug*ft**2’}),

255 (’inert_tail_hub_Iyz’, ’TSHAFT-RIGIDBAR%2%1%7’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

256 (’inert_tail_hub_Izz’, ’TSHAFT-RIGIDBAR%2%1%8’, {’val’: 0.53, ’units’: ’
↪→ slug*ft**2’}),

257 (’mass_horizstab’, ’HSTABPS-RIGIDBAR%2%1%2’, {’val’: 3.09, ’units’: ’slug
↪→ ’}),

258 (’inert_horizstab_Ixx’, ’HSTABPS-RIGIDBAR%2%1%3’, {’val’: 2.25, ’units’:
↪→ ’slug*ft**2’}),

259 (’inert_horizstab_Ixy’, ’HSTABPS-RIGIDBAR%2%1%4’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

260 (’inert_horizstab_Ixz’, ’HSTABPS-RIGIDBAR%2%1%5’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

261 (’inert_horizstab_Iyy’, ’HSTABPS-RIGIDBAR%2%1%6’, {’val’: 55.48, ’units’:
↪→ ’slug*ft**2’}),

262 (’inert_horizstab_Iyz’, ’HSTABPS-RIGIDBAR%2%1%7’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

263 (’inert_horizstab_Izz’, ’HSTABPS-RIGIDBAR%2%1%8’, {’val’: 57.67, ’units’:
↪→ ’slug*ft**2’}),

264 (’mass_vertstab’, ’VSTABPS-RIGIDBAR%2%1%2’, {’val’: 2.09, ’units’: ’slug’
↪→ }),

265 (’inert_vertstab_Ixx’, ’VSTABPS-RIGIDBAR%2%1%3’, {’val’: 2.27, ’units’: ’
↪→ slug*ft**2’}),

266 (’inert_vertstab_Ixy’, ’VSTABPS-RIGIDBAR%2%1%4’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

267 (’inert_vertstab_Ixz’, ’VSTABPS-RIGIDBAR%2%1%5’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

268 (’inert_vertstab_Iyy’, ’VSTABPS-RIGIDBAR%2%1%6’, {’val’: 14.95, ’units’:
↪→ ’slug*ft**2’}),

269 (’inert_vertstab_Iyz’, ’VSTABPS-RIGIDBAR%2%1%7’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

390

270 (’inert_vertstab_Izz’, ’VSTABPS-RIGIDBAR%2%1%8’, {’val’: 12.84, ’units’:
↪→ ’slug*ft**2’}),

271 (’mass_engine’, ’FUSEPS-RIGIDBODYMASS%1%4%3’, {’val’: 84.73, ’units’: ’
↪→ slug’}),

272 (’inert_engine_Ixx’, ’FUSEPS-RIGIDBODYMASS%1%4%4’, {’val’: 169.46, ’units
↪→ ’: ’slug*ft**2’}),

273 (’inert_engine_Ixy’, ’FUSEPS-RIGIDBODYMASS%2%4%2’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

274 (’inert_engine_Ixz’, ’FUSEPS-RIGIDBODYMASS%2%4%3’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

275 (’inert_engine_Iyy’, ’FUSEPS-RIGIDBODYMASS%1%4%5’, {’val’: 788.70, ’units
↪→ ’: ’slug*ft**2’}),

276 (’inert_engine_Iyz’, ’FUSEPS-RIGIDBODYMASS%2%4%4’, {’val’: 0., ’units’: ’
↪→ slug*ft**2’}),

277 (’inert_engine_Izz’, ’FUSEPS-RIGIDBODYMASS%1%4%6’, {’val’: 788.70, ’units
↪→ ’: ’slug*ft**2’}),

278]
279
280 rcas_outputs = [
281 (’rcas_converged’,’log-conv’,{’val’: True, ’discrete’: True}),
282 (’azimuths’,’tab-BladeIntFrc001%1’,{’val’: np.zeros([72,1]), ’units’: ’

↪→ deg’}),
283 (’blade_int_force_x’,’tab-BladeIntFrc001%2:12’,{’val’: np.zeros([72,11]),

↪→ ’units’: ’lbf’}),
284 (’blade_int_force_y’,’tab-BladeIntFrc002%2:12’,{’val’: np.zeros([72,11]),

↪→ ’units’: ’lbf’}),
285 (’blade_int_force_z’,’tab-BladeIntFrc003%2:12’,{’val’: np.zeros([72,11]),

↪→ ’units’: ’lbf’}),
286 (’blade_int_moment_x’,’tab-BladeIntMom001%2:12’,{’val’: np.zeros([72,11])

↪→ , ’units’: ’ft*lbf’}),
287 (’blade_int_moment_y’,’tab-BladeIntMom002%2:12’,{’val’: np.zeros([72,11])

↪→ , ’units’: ’ft*lbf’}),
288 (’blade_int_moment_z’,’tab-BladeIntMom003%2:12’,{’val’: np.zeros([72,11])

↪→ , ’units’: ’ft*lbf’}),
289]
290
291 rcas_wrapper = rm.RCASwrapper(self.rcas_run_file,self.rcas_job_dir,self.

↪→ rcas_job_file,
292 rcas_inputs,rcas_outputs,
293 parallel=self.run_parallel,
294 force_linear=self.force_linear,
295 saveallruns=self.saveallruns,
296 logger=self.logger)
297
298 roc_negatizer = om.ExecComp(’neg_rate_of_climb = -rate_of_climb’, # needed to

↪→ align with RCAS inertial frame
299 rate_of_climb = {’value’: 0.0, ’units’: ’ft / min

↪→ ’},
300 neg_rate_of_climb = {’value’: 0.0, ’units’: ’ft /

↪→ min’})
301
302 payload_negatizer = om.ExecComp(’neg_loc_payload_sl = -loc_payload_sl’, #

↪→ needed since RCAS uses x-forward
303 loc_payload_sl = {’value’: 0.0, ’units’: ’ft’},
304 neg_loc_payload_sl = {’value’: 0.0, ’units’: ’ft’

↪→ })
305
306 rcas_tail_rotor_cant = om.ExecComp([’tail_rotor_cant_struct = -90 +

↪→ tail_rotor_cant’,
307 ’tail_rotor_cant_aero = -90 +

↪→ tail_rotor_cant’], # need to
↪→ convert tail rotor cant to RCAS
↪→ tail rotor reference system

391

308 tail_rotor_cant = {’value’: 0.0, ’units’:
↪→ ’deg’},

309 tail_rotor_cant_struct = {’value’: -90.0,
↪→ ’units’: ’deg’},

310 tail_rotor_cant_aero = {’value’: -90.0, ’
↪→ units’: ’deg’},

311)
312
313
314 control_damper = ControlDamper(damp_fact=0.75,force_linear=True)
315
316 ### PreVABS component
317 prevabs_inputs = [
318 (’spar_layer2_stacks’,’cross_section%layups%layup(layup_spar)%layer(2)%

↪→ stack’,{’val’: 1, ’units’: None}),
319 (’spar_layer3_stacks’,’cross_section%layups%layup(layup_spar)%layer(3)%

↪→ stack’,{’val’: 1, ’units’: None}),
320]
321 prevabs_outputs = [
322 (’mass_matrix’,’M’,{’val’: np.zeros([6,6]), ’units’: None}),
323 (’stiff_matrix’,’S’,{’val’: np.zeros([6,6]), ’units’: None}),
324 (’mesh_elems’,’num_elems’,{’val’: 0, ’units’: None}),
325]
326
327 prevabs_wrapper = pv.PreVabsWrapper(self.prevabs_job_dir,self.

↪→ prevabs_job_file,self.prevabs_supporting_files,
328 prevabs_inputs,prevabs_outputs,
329 parallel=self.run_parallel,
330 force_linear=self.force_linear,
331 saveallruns=self.saveallruns,
332 logger=self.logger)
333
334 ### Add subsystems
335 self.add_subsystem(’indepVars’, indep_vars)
336 self.add_subsystem(’staticVars’, static_vars)
337 self.add_subsystem(’preVabs’, prevabs_wrapper,
338 promotes_outputs=[’*’])
339 self.add_subsystem(’bladeBallastCalculator’, BladeBallastCalculator(

↪→ force_linear=self.force_linear),
340 promotes_inputs=[’*’], promotes_outputs=[’*’])
341 self.add_subsystem(’bladeWeightCalculator’, blade_weight_calculator,
342 promotes=[’*’])
343 self.add_subsystem(’rcasTailRotorCant’, rcas_tail_rotor_cant,
344 promotes=[’*’])
345 self.add_subsystem(’ndarcWeightInit’, ndarc_weight_init,
346 promotes_inputs=[’*’], promotes_outputs=[’*’])
347 self.add_subsystem(’heliCG’, HeliCG(single_blade_analysis=True,
348 force_linear=self.force_linear),
349 promotes_inputs=[’*’], promotes_outputs=[’*’])
350 self.add_subsystem(’ndarcFlightCond’, ndarc_flight_cond,
351 promotes_inputs=[’*’], promotes_outputs=[’*’])
352 self.add_subsystem(’rocNegatizer’, roc_negatizer,
353 promotes=[’*’])
354 self.add_subsystem(’payloadNegatizer’, payload_negatizer,
355 promotes=[’*’])
356 self.add_subsystem(’turnRadiusCalculator’, TurnRadiusCalculator(force_linear=

↪→ self.force_linear),
357 promotes=[’*’])
358 self.add_subsystem(’controlDamper’, control_damper,
359 promotes=[’*’])
360 self.add_subsystem(’rcas’,rcas_wrapper,

392

361 promotes_inputs=[’*’], promotes_outputs=[’rcas_converged’
↪→])

362
363 ### Set the subsystem execution order just in case
364 self.set_order([’indepVars’,
365 ’staticVars’,
366 ’preVabs’,
367 ’bladeBallastCalculator’,
368 ’bladeWeightCalculator’,
369 ’rcasTailRotorCant’,
370 ’ndarcWeightInit’,
371 ’heliCG’,
372 ’ndarcFlightCond’,
373 ’rocNegatizer’,
374 ’payloadNegatizer’,
375 ’turnRadiusCalculator’,
376 ’controlDamper’,
377 ’rcas’,
378])
379
380 def configure(self):
381 ### Define remaining connections
382 # Independent variables
383 self.connect(’indepVars.airspeed’,’airspeed’)
384 self.connect(’indepVars.altitude’,’altitude’)
385 self.connect(’indepVars.gross_weight’,’gross_weight’)
386 self.connect(’indepVars.rate_of_climb’,’rate_of_climb’)
387 self.connect(’indepVars.turn_rate’,’turn_rate’)
388 self.connect(’indepVars.cg’,’set_cg_sl’)
389 # Static variables
390 self.connect(’staticVars.blade_mpl’,’blade_mpl’)
391 self.connect(’staticVars.blade_cg_y’,’blade_cg_y’)
392 self.connect(’staticVars.blade_cg_z’,’blade_cg_z’)
393 self.connect(’staticVars.tail_rotor_cant’,’tail_rotor_cant’)
394 # Blade elastic properties
395 self.connect(’mass_matrix_new’,[’mass_matrix_1’,’mass_matrix_2’])
396 self.connect(’stiff_matrix’,[’stiff_matrix_1’,’stiff_matrix_2’])

C.2 Blade Ballast Calculator

The blade ballast calculator, which is responsible for balancing the rotor blade to ensure

the CG position does not move as the cross section design changes, is implemented as a

subclass of the OpenMDAO ExplicitComponent class. This class makes use of a function

called add_ballast to perform the calculations. Table C.1 lists the inputs and outputs of

this module.

Listing C.2: BladeBallastCalculator
1 class BladeBallastCalculator(ExplicitComponent):
2 """
3 Explicit component for calculating the appropriate blade cross-section ballast

393

4 for the desired mass per unit length and CG location
5 """
6 def __init__(self,force_linear=False):
7 super(BladeBallastCalculator, self).__init__()
8 self.force_linear = force_linear
9

10 def setup(self):
11 self.add_input("mass_matrix", units=None, val=np.empty((6,6)))
12 self.add_input("blade_mpl", units="slug / ft", val=0.22)
13 self.add_input("blade_cg_y", units="ft", val=0.0175)
14 self.add_input("blade_cg_z", units="ft", val=0.0)
15 self.add_output("mass_matrix_new", units=None, val=np.empty((6,6)))
16
17 def compute(self, inputs, outputs):
18 do_compute = True
19 if self.force_linear and self.comm.rank != 0:
20 do_compute = False
21
22 if do_compute:
23 outputs["mass_matrix_new"] = add_ballast(inputs["mass_matrix"],
24 inputs["blade_mpl"][0],
25 inputs["blade_cg_y"][0],
26 inputs["blade_cg_z"][0])

Listing C.3: add_ballast
1 def add_ballast(M_0,mu_f,Xm2_f,Xm3_f):
2 """
3 Calculates ballast mass and location for mass/CG matching of airfoil.
4
5 Parameters
6 ----------
7 M_0 : numpy.array
8 Original mass matrix from VABS.
9 mu_f : float

10 Desired value of mass per unit length.
11 Xm2_f : float
12 Desired i2 location of center of mass.
13 Xm3_f : float
14 Desired i3 location of center of mass.
15
16 Returns
17 -------
18 M_f : numpy.array
19 New mass matrix in VABS format.
20
21 """
22
23 # Original properties
24 mu_0 = M_0[0][0]
25 Xm2_0 = M_0[0][5] / -mu_0
26 Xm3_0 = M_0[0][4] / mu_0
27 i22_0 = M_0[4][4]
28 i33_0 = M_0[5][5]
29 i23_0 = M_0[4][5]
30
31 # Calculations
32 mu_b = mu_f - mu_0 # ballast mass
33 if mu_b <= 0:
34 raise ValueError("Inputs produce a non-positive value for ballast mass")

394

35
36 Xm2_b = (Xm2_f*mu_f - Xm2_0*mu_0) / mu_b # ballast location
37 Xm3_b = (Xm3_f*mu_f - Xm3_0*mu_0) / mu_b # ballast location
38
39 i22_f = i22_0 + mu_b*Xm3_b**2 # ballast is basically with i22 axis so this

↪→ shouldn’t change much
40 i33_f = i33_0 + mu_b*Xm2_b**2 # this should increase
41 i23_f = i23_0 + mu_b*Xm2_b*Xm3_b # this should change slightly
42
43 # New mass matrix
44 M_f = np.array([[mu_f, 0, 0, 0, mu_f*Xm3_f,

↪→ -mu_f*Xm2_f],
45 [0, mu_f, 0, -mu_f*Xm3_f, 0,

↪→ 0],
46 [0, 0, mu_f, mu_f*Xm2_f, 0,

↪→ 0],
47 [0, -mu_f*Xm3_f, mu_f*Xm2_f, i22_f + i33_f, 0,

↪→ 0],
48 [mu_f*Xm3_f, 0, 0, 0, i22_f,

↪→ i23_f],
49 [-mu_f*Xm2_f, 0, 0, 0, i23_f,

↪→ i33_f]])
50
51 return M_f

Table C.1: Inputs and outputs for the blade ballast calculator.

OpenMDAO variable Units Notes

Inputs

mass_matrix — From VABS outputs
blade_mpl slug/ft µ of baseline cross section (default is 0.22 slug/ft)
blade_cg_y ft xm2 of baseline cross section (default is 0.0175 ft)
blade_cg_z ft xm3 of baseline cross section (default is 0.0 ft)

Outputs

mass_matrix_new — To RCAS GECB definition

C.3 Mass Calculator

The mass calculator is responsible for calculating the inertial properties of various subsys-

tems on the helicopter model to maintain consistency between the NDARC and RCAS

models. It is implemented as a subclass of the OpenMDAO ExplicitComponent class. This

class makes use of a function called calculate_mass_props to perform the calculations.

Table C.1 lists the inputs and outputs of this module.

395

Listing C.4: HeliCG
1 class HeliCG(ExplicitComponent):
2 """
3 Explicit component for calculating the mass and inertia of the helicopter
4 model. Provides a payload SL location for a given payload weight and desired
5 CG location.
6 """
7 def __init__(self,single_blade_analysis=False,force_linear=False):
8 super(HeliCG,self).__init__()
9 self.single_blade_analysis = single_blade_analysis

10 # RCAS has a bug where the single blade analysis also multiplies the mass of
↪→ the hub/shaft by the number of blades.

11 # Setting this option to true will divide the output masses/inertias by four
↪→ to counteract this.

12 self.force_linear = force_linear
13
14 def setup(self):
15 # Location inputs
16 loc_list = [
17 ’loc_fuselage’,
18 ’loc_gear’,
19 ’loc_mainrotor’,
20 ’loc_tailrotor’,
21 ’loc_horizstab’,
22 ’loc_vertstab’,
23 ’loc_fueltank’,
24 ’loc_engine’,
25]
26
27 for item in loc_list:
28 for dim in ["sl","bl","wl"]:
29 self.add_input(item+"_"+dim, units="ft", val=0.0)
30
31 # self.add_input("loc_payload_sl", units="ft", val=0.0)
32 self.add_input("set_cg_sl",units=’ft’,val=0.0)
33
34 # Weight inputs
35 self.add_input("weight_fuselage", units="slug", val=0.0)
36 self.add_input("weight_systems", units="slug", val=0.0)
37 self.add_input("weight_vibration", units="slug", val=0.0)
38 self.add_input("weight_fuelsystem", units="slug", val=0.0)
39 self.add_input("weight_gear", units="slug", val=0.0)
40 self.add_input("weight_main_hub", units="slug", val=0.0)
41 self.add_input("weight_main_blades", units="slug", val=0.0)
42 self.add_input("weight_tailrotor", units="slug", val=0.0)
43 self.add_input("weight_horizstab", units="slug", val=0.0)
44 self.add_input("weight_vertstab", units="slug", val=0.0)
45 self.add_input("weight_drive", units="slug", val=0.0)
46 self.add_input("weight_engstruct", units="slug", val=0.0)
47 self.add_input("weight_engine", units="slug", val=0.0)
48 self.add_input("weight_fuel", units="slug", val=0.0)
49 self.add_input("weight_usefulload", units="slug", val=0.0)
50 self.add_input("weight_payload", units="slug", val=0.0)
51
52 # CG output
53 self.add_output("loc_cg_sl",units=’ft’,val=0.0)
54 self.add_output("loc_cg_bl",units=’ft’,val=0.0)
55 self.add_output("loc_cg_wl",units=’ft’,val=0.0)
56 self.add_output("loc_payload_sl", units="ft", val=0.0)
57

396

58 # Mass and inertia outputs
59 sys_list = [
60 "payload",
61 "fuel",
62 "fuselage",
63 "usefulload",
64 "gear",
65 "main_hub",
66 "tail_blade",
67 "tail_hub",
68 "horizstab",
69 "vertstab",
70 "engine",
71]
72
73 for item in sys_list:
74 self.add_output("mass_"+item,units=’slug’)
75 for elem in ["xx","xy","xz","yy","yz","zz"]:
76 self.add_output("inert_"+item+"_I"+elem,units=’slug*ft**2’,val=0.0)
77
78 def compute(self,inputs,outputs):
79 do_compute = True
80 if self.force_linear and self.comm.rank != 0:
81 do_compute = False
82
83 if do_compute:
84 # Set up the vehicle dictionary without payload
85 fuel = {
86 "location": np.array([inputs["loc_fueltank_sl"][0],
87 inputs["loc_fueltank_bl"][0],
88 inputs["loc_fueltank_wl"][0]]), # SL, BL, WL
89 "mass": {
90 "fuel": inputs["weight_fuel"][0], # slug
91 },
92 "inertia": {
93 "model": None,
94 }
95 }
96
97 fuselage = {
98 "location": np.array([inputs["loc_fuselage_sl"][0],
99 inputs["loc_fuselage_bl"][0],

100 inputs["loc_fuselage_wl"][0]]), # SL, BL, WL
101 "mass": {
102 "fuselage_group": inputs["weight_fuselage"][0], # slug
103 "systems_and_equipment": inputs["weight_systems"][0],
104 "vibration": inputs["weight_vibration"][0],
105 "fuel_system": inputs["weight_fuelsystem"][0],
106 },
107 "inertia": {
108 "model": "ellipsoid",
109 "x": 39.94, # ft
110 "y": 8, # ft
111 "z": 6 # ft
112 }
113 }
114
115 useful_load = {
116 "location": np.array([inputs["loc_fuselage_sl"][0],
117 inputs["loc_fuselage_bl"][0],

397

118 inputs["loc_fuselage_wl"][0]]), # SL, BL, WL
119 "mass": {
120 "fixed_useful_load": inputs["weight_usefulload"][0], # slug
121 },
122 "inertia": {
123 "model": None,
124 }
125 }
126
127 gear = {
128 "location": np.array([inputs["loc_gear_sl"][0],
129 inputs["loc_gear_bl"][0],
130 inputs["loc_gear_wl"][0]]), # SL, BL, WL
131 "mass": {
132 "alighting_gear": inputs["weight_gear"][0], # slug
133 },
134 "inertia": {
135 "model": None,
136 }
137 }
138
139 main_blade_1 = {
140 "location": np.array([inputs["loc_mainrotor_sl"][0],
141 inputs["loc_mainrotor_bl"][0],
142 inputs["loc_mainrotor_wl"][0]]), # SL, BL, WL
143 "mass": {
144 "blade": inputs["weight_main_blades"][0] / 4, # slug
145 },
146 "inertia": {
147 "model": None,
148 }
149 }
150
151 main_blade_2 = main_blade_1.copy()
152 main_blade_3 = main_blade_1.copy()
153 main_blade_4 = main_blade_1.copy()
154
155 main_hub = {
156 "location": np.array([inputs["loc_mainrotor_sl"][0],
157 inputs["loc_mainrotor_bl"][0],
158 inputs["loc_mainrotor_wl"][0]]), # SL, BL, WL
159 "mass": {
160 "hub_and_hinge": inputs["weight_main_hub"][0], # slug
161 },
162 "inertia": {
163 "model": "flat_disc",
164 "orientation": "x",
165 "radius": 1.25,
166 }
167 }
168
169 tail_blade_1 = {
170 "location": np.array([inputs["loc_tailrotor_sl"][0],
171 inputs["loc_tailrotor_bl"][0],
172 inputs["loc_tailrotor_wl"][0]]), # SL, BL, WL
173 "mass": {
174 "blade": (0.55*inputs["weight_tailrotor"][0]) / 4, # slug
175 },
176 "inertia": {
177 "model": "rect_prism",

398

178 "x": 4.8, # ft
179 "y": 0.7539822,
180 "z": 0.090478,
181 }
182 }
183
184 tail_blade_2 = tail_blade_1.copy()
185 tail_blade_3 = tail_blade_1.copy()
186 tail_blade_4 = tail_blade_1.copy()
187
188 tail_hub = {
189 "location": np.array([inputs["loc_tailrotor_sl"][0],
190 inputs["loc_tailrotor_bl"][0],
191 inputs["loc_tailrotor_wl"][0]]), # SL, BL, WL
192 "mass": {
193 "hub_and_hinge": 0.45*inputs["weight_tailrotor"][0], # slug
194 },
195 "inertia": {
196 "model": "flat_disc",
197 "orientation": "x",
198 "radius": 1.2,
199 }
200 }
201
202 horiz_stab = {
203 "location": np.array([inputs["loc_horizstab_sl"][0],
204 inputs["loc_horizstab_bl"][0],
205 inputs["loc_horizstab_wl"][0]]), # SL, BL, WL
206 "mass": {
207 "horiz_stab": inputs["weight_horizstab"][0], # slug
208 },
209 "inertia": {
210 "model": "rect_prism",
211 "x": 14.936,
212 "y": 2.931872,
213 "z": 0.35182464,
214 }
215 }
216
217 vert_stab = {
218 "location": np.array([inputs["loc_vertstab_sl"][0],
219 inputs["loc_vertstab_bl"][0],
220 inputs["loc_vertstab_wl"][0]]), # SL, BL, WL
221 "mass": {
222 "vert_stab": inputs["weight_vertstab"][0], # slug
223 },
224 "inertia": {
225 "model": "rect_prism",
226 "x": 8.5527,
227 "y": 0.7088234,
228 "z": 3.544117, # switched chord and thickness to align with RCAS

↪→ coordinate system
229 }
230 }
231
232 engine_group = {
233 "location": np.array([inputs["loc_engine_sl"][0],
234 inputs["loc_engine_bl"][0],
235 inputs["loc_engine_wl"][0]]), # SL, BL, WL
236 "mass": {

399

237 "drive_system": inputs["weight_drive"][0], # slug
238 "engine_structure": inputs["weight_engstruct"][0],
239 "engine_system": inputs["weight_engine"][0],
240 },
241 "inertia": {
242 "model": "cylinder",
243 "orientation": "x",
244 "length": 9.985, # ft
245 "radius": 2, # ft
246 }
247 }
248
249 no_payload = {
250 # "payload": payload,
251 "fuel": fuel,
252 "fuselage": fuselage,
253 "useful_load": useful_load,
254 "gear": gear,
255 "main_blade_1": main_blade_1,
256 "main_blade_2": main_blade_2,
257 "main_blade_3": main_blade_3,
258 "main_blade_4": main_blade_4,
259 "main_hub": main_hub,
260 "tail_blade_1": tail_blade_1,
261 "tail_blade_2": tail_blade_2,
262 "tail_blade_3": tail_blade_3,
263 "tail_blade_4": tail_blade_4,
264 "tail_hub": tail_hub,
265 "horiz_stab": horiz_stab,
266 "vert_stab": vert_stab,
267 "engine_group": engine_group,
268 }
269 vehicle = deepcopy(no_payload) # copy before it gets processed
270
271 # Run calculate_mass_props with no payload
272 no_pl_out, no_pl_mass, no_pl_cg = calculate_mass_props(no_payload)
273 no_pl_cg_sl = no_pl_cg[0]
274 # caclulate payload SL for desired CG position
275 loc_payload_sl = (inputs["set_cg_sl"][0] * (no_pl_mass + inputs["

↪→ weight_payload"][0]) -
276 no_pl_mass * no_pl_cg_sl) / inputs["weight_payload"

↪→][0]
277
278 # Build payload dict
279 payload = {
280 "location": np.array([loc_payload_sl,0,0]), # SL, BL, WL
281 "mass": {
282 "payload": inputs["weight_payload"][0], # slug
283 },
284 "inertia": {
285 "model": None,
286 }
287 }
288 # Add payload to vehicle dict
289 vehicle["payload"] = payload
290 # Rerun calculatemass_props with full vehicle
291 vehicle_out, total_mass, cg_position = calculate_mass_props(vehicle)
292
293 # Set outputs
294 outputs["loc_cg_sl"] = cg_position[0]
295 outputs["loc_cg_bl"] = cg_position[1]

400

296 outputs["loc_cg_wl"] = cg_position[2]
297 outputs["loc_payload_sl"] = loc_payload_sl
298
299 sys_list = [
300 ("payload","payload"),
301 ("fuel","fuel"),
302 ("fuselage","fuselage"),
303 ("usefulload","useful_load"),
304 ("gear","gear"),
305 ("main_hub","main_hub"),
306 ("tail_blade","tail_blade_1"),
307 ("tail_hub","tail_hub"),
308 ("horizstab","horiz_stab"),
309 ("vertstab","vert_stab"),
310 ("engine","engine_group"),
311]
312
313 for item in sys_list:
314 if not self.single_blade_analysis or "hub" not in item[1]:
315 outputs["mass_"+item[0]] = vehicle_out[item[1]]["system_mass"]
316 for elem in ["xx","xy","xz","yy","yz","zz"]:
317 outputs["inert_"+item[0]+"_I"+elem] = vehicle_out[item[1]]["

↪→ inertia"]["I"+elem]
318 elif self.single_blade_analysis and "hub" in item[1]: # divide hub

↪→ masses and inertias by four
319 outputs["mass_"+item[0]] = vehicle_out[item[1]]["system_mass"] /

↪→ 4
320 for elem in ["xx","xy","xz","yy","yz","zz"]:
321 outputs["inert_"+item[0]+"_I"+elem] = vehicle_out[item[1]]["

↪→ inertia"]["I"+elem] / 4

Listing C.5: calculate_mass_props
1 def calculate_mass_props(system_dict):
2 """
3 Calculates the total mass, center of gravity position, and inertia matrices
4 for the vehicle.
5
6 Parameters
7 ----------
8 system_list : dict of dicts
9 A dict of dictionaries. Each dictionary describes a system on the

10 vehicle. Dictionaries should be formatted as follows:
11
12 example_system = {
13 "location": np.array([<SL>,<BL>,<WL>]),
14 "mass": {
15 "example_mass_1": <example_mass_value>,
16 "example_mass_2": <example_mass_value>,
17 "example_mass_3": <example_mass_value>,
18 },
19 "inertia": {
20 "model": "<inertia_model>",
21 "orientation": "<axis_of_orientation>",
22 <supporting_entries>,
23 }
24 }
25
26 Valid inertia models include "cylinder", "flat_disc", "rect_prism",
27 "ellipsoid", or None.

401

28
29 "cylinder" should have a specified orientation and additional "length"
30 and "radius" entries.
31
32 "flat_disc" should have a specified orientation and additional "radius"
33 entry.
34
35 "rect_prism" should have additional "x" "y" and "z" entries.
36
37 "ellipsoid" should have additional "x" "y" and "z" entries.
38
39 Orientation need not be specified for "rect_prism" and "ellipsoid".
40
41 All units should be in the US customary (slug-foot-second) system.
42
43 Returns
44 -------
45 system_dict : dict of dicts
46 Updated version of the input dict containing additional fields for
47 calculated values.
48 total_mass : float
49 Total mass of the vehicle described by systems_list.
50 cg_position : numpy.array
51 Center of gravity position, in the order SL, BL, WL.
52
53 """
54
55 # Initialize variables
56 total_mass = 0
57 moment_arms = np.array([0,0,0])
58
59 # Iterate through systems
60 for key in system_dict:
61 system = system_dict[key]
62
63 # Mass and moment arms
64 system["system_mass"] = sum(system["mass"].values())
65 total_mass = total_mass + system["system_mass"]
66 moment_arms = moment_arms + system["system_mass"] * system["location"]
67
68 # Inertia properties
69 M = system["system_mass"] # shorthand for equations
70 # All equations from Prof. Saleh’s notes for AE 6210 Advanced Dynamics
71 inertia = system["inertia"]
72
73 if inertia["model"] is None:
74 inertia["Ixx"] = 0
75 inertia["Iyy"] = 0
76 inertia["Izz"] = 0
77
78 inertia["Ixy"] = 0
79 inertia["Ixz"] = 0
80 inertia["Iyz"] = 0
81 else:
82 if inertia["model"] == "ellipsoid":
83 a = inertia["z"]/2
84 b = inertia["y"]/2
85 c = inertia["x"]/2
86
87 inertia["Ixx"] = (1/5)*M*(a**2 + b**2)

402

88 inertia["Iyy"] = (1/5)*M*(a**2 + c**2)
89 inertia["Izz"] = (1/5)*M*(b**2 + c**2)
90
91 inertia["Ixy"] = 0
92 inertia["Ixz"] = 0
93 inertia["Iyz"] = 0
94
95 elif inertia["model"] == "cylinder":
96 L = inertia["length"]
97 R = inertia["radius"]
98
99 if inertia["orientation"] == "x":

100 inertia["Ixx"] = M*R**2 / 2
101 inertia["Iyy"] = (M/12) * (L**2 + 3*R**2)
102 inertia["Izz"] = (M/12) * (L**2 + 3*R**2)
103 elif inertia["orientation"] == "y":
104 inertia["Ixx"] = (M/12) * (L**2 + 3*R**2)
105 inertia["Iyy"] = M*R**2 / 2
106 inertia["Izz"] = (M/12) * (L**2 + 3*R**2)
107 elif inertia["orientation"] == "z":
108 inertia["Ixx"] = (M/12) * (L**2 + 3*R**2)
109 inertia["Iyy"] = (M/12) * (L**2 + 3*R**2)
110 inertia["Izz"] = M*R**2 / 2
111 else:
112 raise ValueError(inertia["orientation"] + " is not a valid

↪→ orientation")
113
114 inertia["Ixy"] = 0
115 inertia["Ixz"] = 0
116 inertia["Iyz"] = 0
117
118 elif inertia["model"] == "rect_prism":
119 L = inertia["y"]
120 W = inertia["x"]
121 H = inertia["z"]
122
123 inertia["Ixx"] = (1/12)*M*(L**2 + H**2)
124 inertia["Iyy"] = (1/12)*M*(W**2 + H**2)
125 inertia["Izz"] = (1/12)*M*(L**2 + W**2)
126
127 inertia["Ixy"] = 0
128 inertia["Ixz"] = 0
129 inertia["Iyz"] = 0
130
131 elif inertia["model"] == "flat_disc":
132 R = inertia["radius"]
133
134 if inertia["orientation"] == "x":
135 inertia["Ixx"] = M*R**2 / 2
136 inertia["Iyy"] = M*R**2 / 4
137 inertia["Izz"] = M*R**2 / 4
138 elif inertia["orientation"] == "y":
139 inertia["Ixx"] = M*R**2 / 4
140 inertia["Iyy"] = M*R**2 / 2
141 inertia["Izz"] = M*R**2 / 4
142 elif inertia["orientation"] == "z":
143 inertia["Ixx"] = M*R**2 / 4
144 inertia["Iyy"] = M*R**2 / 4
145 inertia["Izz"] = M*R**2 / 2
146 else:

403

147 raise ValueError(inertia["orientation"] + " is not a valid
↪→ orientation")

148
149 inertia["Ixy"] = 0
150 inertia["Ixz"] = 0
151 inertia["Iyz"] = 0
152
153 else:
154 raise ValueError(inertia["model"] + " is not a valid inertia model")
155
156 inertia["matrix"] = np.array([[inertia["Ixx"], inertia["Ixy"], inertia["Ixz"

↪→]],
157 [inertia["Ixy"], inertia["Iyy"], inertia["Iyz"

↪→]],
158 [inertia["Ixz"], inertia["Iyz"], inertia["Izz"

↪→]]])
159
160 # Calculate center of gravity position
161 cg_position = moment_arms / total_mass
162
163 return system_dict, total_mass, cg_position

404

Table C.2: Inputs and outputs for the mass calculator.

OpenMDAO variable Units Notes

Inputs

loc_<system>_sla ft From NDARC outputs
loc_<system>_bla ft From NDARC outputs
loc_<system>_wla ft From NDARC outputs
set_cg_sl ft Defined by flight condition
weight_<system>b slug From NDARC outputs

Outputs

loc_cg_sl ft Included to verify match with set_cg_sl
loc_cg_bl ft
loc_cg_wl ft
loc_payload_sl ft To RCAS model
mass_<system>c slug ft2 To RCAS model
inert_<system>_Ixxc slug ft2 To RCAS model
inert_<system>_Iyyc slug ft2 To RCAS model
inert_<system>_Izzc slug ft2 To RCAS model
inert_<system>_Ixyc slug ft2 To RCAS model
inert_<system>_Ixzc slug ft2 To RCAS model
inert_<system>_Iyzc slug ft2 To RCAS model
a <system> is replaced with fuselage, gear, mainrotor, tailrotor, horizstab,
vertstab, fueltank, and engine.

b <system> is replaced with fuselage, systems, vibration, fuelsystem, gear,
main_hub, main_blades, tailrotor, horizstab, vertstab, drive, engstruct,
engine, fuel, usefulload, and payload.

c <system> is replaced with payload, fuel, fuselage, usefulload, gear, main_hub,
tail_blade, tail_hub, horizstab, vertstab, and engine.

C.4 Von Mises Stress Calculator

The von Mises stress calculator, which reduces a stress tensor field to a signed von Mises

stress field, is implemented as a subclass of the OpenMDAO ExplicitComponent class.

Table C.3 lists the inputs and outputs of this module.

Listing C.6: VonMisesStress
1 class VonMisesStress(ExplicitComponent):
2 """
3 Explicit component for calculating von Mises stress and strain from VABS recovery

↪→ .

405

4 """
5
6 def __init__(self,num_gauss_points,force_linear=False,use_critical_point=False):
7 super(VonMisesStress, self).__init__()
8 self.num_gauss_points = num_gauss_points
9 self.force_linear = force_linear

10 self.use_critical_point = use_critical_point
11
12 def setup(self):
13 self.add_input("gauss_points", units="ft", val=np.zeros([self.

↪→ num_gauss_points,2]))
14 self.add_input("stress", units="lbf / ft**2", val=np.zeros([self.

↪→ num_gauss_points,6]))
15 self.add_discrete_input("use_critical_point", val=False)
16 self.add_input("critical_point", units="ft", val=np.zeros(2))
17
18 if self.use_critical_point:
19 self.add_output("stress_vm", units="lbf / ft**2", val=np.zeros(1))
20 self.add_output("stress_vm_signed", units="lbf / ft**2", val=np.zeros(1))
21 else:
22 self.add_output("stress_vm", units="lbf / ft**2", val=np.zeros(self.

↪→ num_gauss_points))
23 self.add_output("stress_vm_signed", units="lbf / ft**2", val=np.zeros(

↪→ self.num_gauss_points))
24
25 def compute(self, inputs, outputs, discrete_inputs, discrete_outputs):
26 do_compute = True
27 if self.force_linear and self.comm.rank != 0:
28 do_compute = False
29
30 if do_compute:
31 # Assign values to arrays:
32 s11 = inputs["stress"][:,0]
33 s12 = inputs["stress"][:,1]
34 s13 = inputs["stress"][:,2]
35 s22 = inputs["stress"][:,3]
36 s23 = inputs["stress"][:,4]
37 s33 = inputs["stress"][:,5]
38
39 # Stress calculations
40 shs = (s11 + s22 + s33) / 3 # hydrostatic stress
41 svm = np.sqrt(0.5*((s11-s22)**2 + (s22-s33)**2 + (s33-s11)**2) + 3*(s12

↪→ **2 + s23**2 + s13**2)) # von mises stress
42 # signed von mises stress:
43 svms = svm
44 svms[shs < 0] = -svms[shs < 0] # make von mises stress negative if

↪→ hydrostatic stress is less than 0
45
46 # Select critical point if desired
47 if discrete_inputs["use_critical_point"]:
48 critical = inputs["critical_point"]
49 gauss_points = inputs["gauss_points"]
50 dist_to_key = np.sqrt((gauss_points[:,0] - critical[0])**2 + (

↪→ gauss_points[:,1] - critical[1])**2).flatten()
51 nearest = dist_to_key.argmin()
52 # print(critical,nearest)
53 outputs["stress_vm"] = svm.flatten()[nearest]
54 outputs["stress_vm_signed"] = svms.flatten()[nearest]
55 else:
56 outputs["stress_vm"] = svm.flatten()
57 outputs["stress_vm_signed"] = svms.flatten()

406

Ta
bl

e
C

.3
:I

np
ut

s
an

d
ou

tp
ut

s
fo

rt
he

vo
n

M
is

es
st

re
ss

ca
lc

ul
at

or
.

O
pe

nM
D

A
O

va
ri

ab
le

U
ni

ts
N

ot
es

In
pu

ts

g
a
u
s
s
_
p
o
i
n
t
s

ft
A

rr
ay

of
G

au
ss

po
in

tl
oc

at
io

ns
s
t
r
e
s
s

lb
f/

ft
2

A
rr

ay
of

st
re

ss
te

ns
or

s
co

rr
es

po
nd

in
g

to
G

au
ss

po
in

tl
oc

at
io

ns
u
s
e
_
c
r
i
t
i
c
a
l
_
p
o
i
n
t

T
r
u
e

or
F
a
l
s
e

B
oo

le
an

fla
g

to
lim

it
an

al
ys

is
to

a
si

ng
le

G
au

ss
po

in
tr

at
he

rt
ha

n
th

e
en

tir
e

st
re

ss
fie

ld
c
r
i
t
i
c
a
l
_
p
o
i
n
t

ft
C

ri
tic

al
po

in
tl

oc
at

io
n

if
u
s
e
_
c
r
i
t
i
c
a
l
_
p
o
i
n
t

is
T
r
u
e

O
ut

pu
ts

s
t
r
e
s
s
_
v
m

lb
f/

ft
2

Vo
n

M
is

es
st

re
ss

at
ea

ch
G

au
ss

po
in

tl
oc

at
io

n
s
t
r
e
s
s
_
v
m
_
s
i
g
n
e
d

lb
f/

ft
2

Si
gn

ed
vo

n
M

is
es

st
re

ss
at

ea
ch

G
au

ss
po

in
tl

oc
at

io
n

407

C.5 Stress Analyzer

The stress analyzer, which calculates the first-harmonic components of the signed von Mises

stress cycle and applies the Goodman relation to derive equivalent stress, is implemented

as a subclass of the OpenMDAO ExplicitComponent class. Table C.4 lists the inputs and

outputs of this module.

Listing C.7: VonMisesStress
1 class StressAnalyzer(ExplicitComponent):
2 """
3 Explicit component for calculating certain stress values of interest from von

↪→ Mises stress.
4 """
5 def __init__(self,num_gauss_points,num_time_steps,force_linear=False):
6 super(StressAnalyzer, self).__init__()
7 self.num_gauss_points = num_gauss_points
8 self.num_time_steps = num_time_steps
9 self.force_linear = force_linear

10
11 def setup(self):
12 self.add_input("stress_ultimate", units="lbf / ft**2", val=2.304e7) # default

↪→ is 160 ksi
13 self.add_input("stress_vm_signed", units="lbf / ft**2", val=np.zeros((self.

↪→ num_gauss_points,self.num_time_steps)))
14 self.add_input("gauss_points", units="ft", val=np.zeros((self.

↪→ num_gauss_points,2)))
15 self.add_input("critical_point",units="ft", val=np.zeros(2))
16
17 self.add_output("stress_amplitude", units="lbf / ft**2", val=np.zeros((self.

↪→ num_gauss_points)))
18 self.add_output("stress_mean", units="lbf / ft**2", val=np.zeros((self.

↪→ num_gauss_points)))
19 self.add_output("stress_equivalent", units="lbf / ft**2", val=np.zeros((self.

↪→ num_gauss_points)))
20
21 self.add_output("max_stress_amplitude", units="lbf / ft**2", val=0.0)
22 self.add_output("max_stress_mean", units="lbf / ft**2", val=0.0)
23 self.add_output("max_stress_equivalent", units="lbf / ft**2", val=0.0)
24
25 self.add_output("loc_max_stress_amplitude", units="ft", val=np.zeros(2))
26 self.add_output("loc_max_stress_mean", units="ft", val=np.zeros(2))
27 self.add_output("loc_max_stress_equivalent", units="ft", val=np.zeros(2))
28
29 self.add_output("critical_stress_mean", units="lbf / ft**2", val=0.0)
30 self.add_output("critical_stress_amplitude", units="lbf / ft**2", val=0.0)
31 self.add_output("critical_stress_equivalent", units="lbf / ft**2", val=0.0)
32
33 def compute(self, inputs, outputs):
34 do_compute = True
35 if self.force_linear and self.comm.rank != 0:
36 do_compute = False
37
38 if do_compute:
39 stress = inputs["stress_vm_signed"]

408

40 s_u = inputs["stress_ultimate"]
41 gauss_points = inputs["gauss_points"] # shouldn’t change throughout the

↪→ cycle
42
43 # Stress mean/amplitude/equivalent at each point
44 stress_amp = np.zeros(self.num_gauss_points)
45 stress_mean = np.zeros(self.num_gauss_points)
46 stress_eq = np.zeros(self.num_gauss_points)
47 for i in range(self.num_gauss_points):
48 stress_amp[i] = stress[i,:].max() - stress[i,:].min()
49 stress_mean[i] = stress[i,:].min() + stress_amp[i] / 2
50 stress_eq[i] = (stress_amp[i] * s_u) / (s_u - np.abs(stress_mean[i]))
51
52 outputs["stress_amplitude"] = stress_amp
53 outputs["stress_mean"] = stress_mean
54 outputs["stress_equivalent"] = stress_eq
55
56 # Max stress amplitude point
57 stress_amp_max_ind = stress_amp.argmax()
58 stress_amp_max = stress_amp[stress_amp_max_ind]
59 stress_amp_max_loc = gauss_points[stress_amp_max_ind,:]
60 outputs["max_stress_amplitude"] = stress_amp_max
61 outputs["loc_max_stress_amplitude"] = stress_amp_max_loc
62
63 # Max mean stress point
64 stress_mean_max_ind = stress_mean.argmax()
65 stress_mean_max = stress_mean[stress_mean_max_ind]
66 stress_mean_max_loc = gauss_points[stress_mean_max_ind,:]
67 outputs["max_stress_mean"] = stress_mean_max
68 outputs["loc_max_stress_mean"] = stress_mean_max_loc
69
70 # Max equivalent stress piont
71 stress_eq_max_ind = stress_eq.argmax()
72 stress_eq_max = stress_eq[stress_eq_max_ind]
73 stress_eq_max_loc = gauss_points[stress_eq_max_ind,:]
74 outputs["max_stress_equivalent"] = stress_eq_max
75 outputs["loc_max_stress_equivalent"] = stress_eq_max_loc
76
77 # Key point stress values
78 critical = inputs["critical_point"]
79 dist_to_key = np.sqrt((gauss_points[:,0] - critical[0])**2 + (

↪→ gauss_points[:,1] - critical[1])**2).flatten()
80 nearest = dist_to_key.argmin()
81 outputs["critical_stress_mean"] = stress_mean[nearest]
82 outputs["critical_stress_amplitude"] = stress_amp[nearest]
83 outputs["critical_stress_equivalent"] = stress_eq[nearest]

409

Ta
bl

e
C

.4
:I

np
ut

s
an

d
ou

tp
ut

s
fo

rt
he

st
re

ss
an

al
yz

er
.

O
pe

nM
D

A
O

va
ri

ab
le

U
ni

ts
N

ot
es

In
pu

ts

s
t
r
e
s
s
_
u
l
t
i
m
a
t
e

lb
f/

ft
2

A
ss

um
ed

va
lu

e
of
S
u

s
t
r
e
s
s
_
v
m
_
s
i
g
n
e
d

lb
f/

ft
2

S
v
m
,s

ar
ra

y
fr

om
th

e
vo

n
M

is
es

st
re

ss
ca

lc
ul

at
or

g
a
u
s
s
_
p
o
i
n
t
s

ft
A

rr
ay

of
G

au
ss

po
in

tl
oc

at
io

ns
c
r
i
t
i
c
a
l
_
p
o
i
n
t

ft
C

ri
tic

al
po

in
tl

oc
at

io
n

O
ut

pu
ts

s
t
r
e
s
s
_
a
m
p
l
i
t
u
d
e

lb
f/

ft
2

S
a
m

p
fie

ld
s
t
r
e
s
s
_
m
e
a
n

lb
f/

ft
2

S
m

ea
n

fie
ld

s
t
r
e
s
s
_
e
q
u
i
v
a
l
e
n
t

lb
f/

ft
2

S
eq

fie
ld

m
a
x
_
s
t
r
e
s
s
_
a
m
p
l
i
t
u
d
e

lb
f/

ft
2

M
ax

im
um

va
lu

e
of
S

a
m

p

m
a
x
_
s
t
r
e
s
s
_
m
e
a
n

lb
f/

ft
2

M
ax

im
um

va
lu

e
of
S

m
ea

n

m
a
x
_
s
t
r
e
s
s
_
e
q
u
i
v
a
l
e
n
t

lb
f/

ft
2

M
ax

im
um

va
lu

e
of
S

eq

l
o
c
_
m
a
x
_
s
t
r
e
s
s
_
a
m
p
l
i
t
u
d
e

ft
L

oc
at

io
n

of
m

ax
im

um
va

lu
e

of
S

a
m

p

l
o
c
_
m
a
x
_
s
t
r
e
s
s
_
m
e
a
n

ft
L

oc
at

io
n

of
m

ax
im

um
va

lu
e

of
S

m
ea

n

l
o
c
_
m
a
x
_
s
t
r
e
s
s
_
e
q
u
i
v
a
l
e
n
t

ft
L

oc
at

io
n

of
m

ax
im

um
va

lu
e

of
S

eq

c
r
i
t
i
c
a
l
_
s
t
r
e
s
s
_
a
m
p
l
i
t
u
d
e

lb
f/

ft
2

S
a
m

p
at

th
e

cr
iti

ca
ls

tr
es

s
po

in
t

c
r
i
t
i
c
a
l
_
s
t
r
e
s
s
_
m
e
a
n

lb
f/

ft
2

S
m

ea
n

at
th

e
cr

iti
ca

ls
tr

es
s

po
in

t
c
r
i
t
i
c
a
l
_
s
t
r
e
s
s
_
e
q
u
i
v
a
l
e
n
t

lb
f/

ft
2

S
eq

at
th

e
cr

iti
ca

ls
tr

es
s

po
in

t

410

REFERENCES

[1] F. D. Harris, Introduction to Autogyros, Helicopters, and Other V/STOL Aircraft.
National Aeronautics and Space Administration, May 2012, vol. 2.

[2] H. K. Reddick Jr., “Army helicopter cost drivers,” U. S. Army Air Mobility Research
and Development Laboratory, Tech. Rep., Aug. 1975.

[3] F. D. Harris, “Operating costs,” in Introduction to Autogyros, Helicopters, and Other
V/STOL Aircraft, vol. 2, National Aeronautics and Space Administration, May 2012,
ch. 2.9, pp. 579–662.

[4] D. C. Lombardo, “Helicopter structures—a review of loads, fatigue design tech-
niques and usage monitoring,” Aeronautical Research Laboratory, Tech. Rep. 15,
May 1993.

[5] S. Kim, “Are helicopters less safe than planes?” The Telegraph, Oct. 2018.

[6] J. Drake et al., “The compendium report: The U.S. JHSAT baseline of helicopter
accident analysis, volume I,” International Helicopter Safety Team, Tech. Rep., Aug.
2011.

[7] ——, “The compendium report: The U.S. JHSAT baseline of helicopter accident
analysis, volume II,” International Helicopter Safety Team, Tech. Rep., Jul. 2011.

[8] L. Roskop, “Comparative report, volume 1—U.S. JHIMDAT data to U.S. JHSAT
data,” United States Helicopter Safety Team, Tech. Rep., Mar. 2014.

[9] ——, “Comparative report, volume 2—U.S. JHIMDAT data to U.S. JHSAT data,”
United States Helicopter Safety Team, Tech. Rep., Aug. 2014.

[10] F. D. Harris, “Accident record,” in Introduction to Autogyros, Helicopters, and Other
V/STOL Aircraft, vol. 2, National Aeronautics and Space Administration, May 2012,
ch. 2.10, pp. 663–698.

[11] P. Tobias, “Assessing product reliability,” in NIST/SEMATECH e-Handbook of Sta-
tistical Methods, C. Croarkin and P. Tobias, Eds., NIST, Oct. 2013, ch. 8, p. 8.1.2.4.

[12] Uber, Fast-forwarding to a future of on-demand urban air transportation, Web,
Uber Elevate, Oct. 2016.

411

[13] Booz Allen Hamilton, Executive briefing: Urban air mobility (UAM) market study,
Web, Presentation, Oct. 2018.

[14] National Aeronautics and Space Administration, Urban air mobility (UAM) market
study, Web, Presentation, Nov. 2018.

[15] R. McDonald and B. German, “eVTOL stored energy overview,” in Uber Elevate
Summit 2017, Dallas, Texas, Apr. 2017.

[16] M. Avera, “Vortex particle analysis of side-by-side overlapping rotors in forward
flight,” in AHS 73rd Annual Forum, Fort Worth, Texas, May 2017.

[17] Y. Ito and N. Furue, “Design-oriented study on the public acceptance of cargo
eVTOL aircraft as a revolutionary vehicle concept,” in Vertical Flight Society’s 75th
Annual Forum & Technology Display, Vertical Flight Society, May 2019.

[18] N. Zart, Opener officially launches single-person EVTOL personal aerial vehicle,
BlackFly, Web, Jul. 2018.

[19] SureFly, SureFly personal eVTOL air vehicle, Web, 2018.

[20] Grug Group, Grug group personal eVTOL jet, Web, 2018.

[21] A. T. Bellocchio, “A framework to enable rotorcraft maintenance free operating
periods,” Ph.D. dissertation, Georgia Institute of Technology, May 2018.

[22] D. P. Davies, S. L. Jenkins, and F. R. Belben, “Survey of fatigue failures in helicopter
components and some lessons learnt,” Engineering Failure Analysis, vol. 32, pp. 134–
151, Sep. 2013.

[23] G. S. Campbell and R. T. C. Lahey, “A survey of serious aircraft accidents involving
fatigue fracture, vol. 2: Rotary-wing aircraft,” National Aeronautical Establishment,
Tech. Rep., Apr. 1983.

[24] ——, “A survey of serious aircraft accidents involving fatigue fracture,” Interna-
tional Journal of Fatigue, vol. 6, no. 1, pp. 25–30, Jan. 1984.

[25] M. Florian and J. Sørensen, “Wind turbine blade life-time assessment model for
preventive planning of operation and maintenance,” Journal of Marine Science and
Engineering, vol. 3, no. 3, pp. 1027–1040, Sep. 2015.

[26] K. O. Ronold, J. Wedel-Heinen, and C. J. Christensen, “Reliability-based fatigue de-
sign of wind-turbine rotor blades,” Engineering Structures, vol. 21, no. 12, pp. 1101–
1114, Dec. 1999.

412

[27] H. S. Toft and J. D. Sørensen, “Reliability-based design of wind turbine blades,”
Structural Safety, vol. 33, no. 6, pp. 333–342, Sep. 2011.

[28] J. D. Anderson Jr., “The philosophy of airplane design,” in Aircraft Performance &
Design, McGraw-Hill, 2010, ch. 7, pp. 379–396.

[29] W. Johnson, “Design,” in Helicopter Theory, Dover Publications Inc., 1994, ch. 7,
pp. 313–343.

[30] G. J. Leishman, “Conceptual design of helicopters,” in Principles of Helicopter
Aerodynamics, Cambridge University Press, 2006, ch. 6, pp. 277–346.

[31] A. Bagai, “Aerodynamic design of the X2 Technology Demonstrator main rotor
blade,” in 64th Annual Forum of the American Helicopter Society, International,
May 2008.

[32] R. Blackwell and T. Millott, “Dynamics design characteristics of the Sikorsky X2
Technology Demonstrator aircraft,” in American Helicopter Society 64th Annual
Forum, American Helicopter Society, Apr. 2008.

[33] R. W. Arden, D. P. Chappell, and H. K. Reddick, “Development and qualification
procedures,” in Helicopter Fatigue Design Guide, AGARD-AG-292, F. Liard, Ed.,
Neuilly sur Seine, France: NATO Advisory Group for Aerospace Research and
Development, Nov. 1983, ch. 5, pp. 207–238.

[34] D. N. Mavris, Fixed wing aircraft design I: Classical design methods, Web, Class
notes, Aug. 2017.

[35] W. Johnson, “NDARC: NASA design and analysis of rotorcraft,” NASA Ames
Research Center, Moffett Field, California, Tech. Rep. TP-2009-215402, Dec. 2009.

[36] ——, “NDARC: NASA design and analysis of rotorcraft—theory,” NASA Ames
Research Center, Moffett Field, California, Tech. Rep. TP–20220000355/Vol 1, Jan.
2022.

[37] F. D. Harris and M. P. Scully, “Rotorcraft cost too much,” Journal of the American
Helicopter Society, vol. 43, no. 1, pp. 3–13, Jan. 1998.

[38] R. Scott, “A new rotorcraft design framework based on reliability and cost,” Ph.D.
dissertation, Georgia Institute of Technology, Aug. 2016.

[39] J. K. Price, S. Ashok, R. Armstrong, K. B. Collins, D. Mavris, and D. Schrage,
“Integrated discrete-event simulation environment for analysis of rotorcraft reliabil-
ity, availability, and maintainability,” in AHS International 73rd Annual Forum &
Technology Display, Vertical Flight Society, May 2017.

413

[40] R. Scott, D. Schrage, and A. Sirirojvisuth, “Development of a rotorcraft lifecycle
cost model incorporating reliability and maintainability with application to rotorcraft
preliminary design,” in AHS 69th Annual Forum, May 2013.

[41] R. Scott, “Conceptual design & affordability assessment of a highly reliable heli-
copter,” in AHS Specialists’ Meeting, Capability and Affordability in the Future of
the Vertical Lift Industry, Sep. 2015.

[42] ——, “Reliability-focused design of advanced rotorcraft configurations,” in AHS
72nd Annual Forum, May 2016.

[43] R. Biggs and J. Key, PC-based development and recurring cost model users’ guide,
2001.

[44] S. Bhattacharya, V. Nagaraju, L. Fiondella, E. Spero, and A. Ghoshal, “Rotorcraft
tradespace exploration incorporating reliability engineering,” in AHS 71st Annual
Forum, 2015.

[45] ——, “Process improvement for rotorcraft tradespace exploration incorporating
reliability and availability,” in AHS 72nd Annual Forum, American Helicopter
Society International, Inc., May 2016.

[46] S. Bhattacharya, V. Nagaraju, E. Spero, A. Ghoshal, and L. Fiondella, “Incorporating
quantitative reliability engineering measures into tradespace exploration,” Research
in Engineering Design, vol. 29, no. 4, pp. 589–603, Jul. 2018.

[47] W. Johnson, “A history of rotorcraft comprehensive analyses,” NASA Ames Re-
search Center, Moffett Field, CA, Tech. Rep. TP-2012-216012, Apr. 2012.

[48] M. J. Smith and A. Moushegian, “Dual-solver hybrid computational approaches for
design and analysis of vertical lift vehicles,” The Aeronautical Journal, vol. 126,
no. 1295, pp. 187–208, Dec. 2021.

[49] I. C. Wilbur, A. Moushegian, M. J. Smith, and G. R. Whitehouse, “UH-60A rotor
analysis with an accurate dual-formulation hybrid aeroelastic methodology,” Journal
of Aircraft, vol. 57, no. 1, pp. 113–127, Jan. 2020.

[50] F. Tarzanin and D. Young, “Boeing rotorcraft experience with rotor design and
optimization,” in 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, American Institute of Aeronautics and Astronautics, Sep.
1998.

[51] J. Sinsay and G. Nuñez, “Toward right-fidelity rotorcraft conceptual design,” in
51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, American Institute of Aeronautics and Astronautics, Apr. 2010.

414

[52] J. D. Sinsay and J. J. Alonso, “Optimization of a lift-offset compound helicopter in
a multidisciplinary analysis environment,” in AHS 71st Annual Forum, May 2015.

[53] K. Collins et al., “Toward a high-fidelity helicopter rotor redesign framework,” in
AHS International 64th Annual Forum & Technology Display, American Helicopter
Society International, Inc., May 2008.

[54] K. B. Collins, “A multi-fidelity framework for physics based rotor blade simulation
and optimization,” Ph.D. dissertation, Georgia Institute of Technology, 2008.

[55] K. Collins and L. Sankar, “Application of low and high fidelity simulation tools to
helicopter rotor blade optimization,” in AHS International 65th Annual Forum &
Technology Display, American Helicopter Society International, Inc., May 2009.

[56] F. Liard, “Helicopter fatigue design guide,” NATO Advisory Group for Aerospace
Research and Development, Neuilly sur Seine, France, Tech. Rep. AGARD-AG-292,
Nov. 1983.

[57] S. Suresh, “Introduction and overview,” in Fatigue of Materials, Cambridge Univer-
sity Press, 1998, ch. 1, pp. 1–32.

[58] J. Degrieck and W. van Paepegem, “Fatigue damage modeling of fibre-reinforced
composite materials: Review,” Applied Mechanics Reviews, vol. 54, no. 4, p. 279,
2001.

[59] M. A. Miner, “Cumulative damage in fatigue,” Journal of Applied Mechanics,
vol. 12, 1945.

[60] R. Cansdale, “Service load monitoring and structural integrity evaluation,” in Heli-
copter Fatigue Design Guide, AGARD-AG-292, F. Liard, Ed., Neuilly sur Seine,
France: NATO Advisory Group for Aerospace Research and Development, Nov.
1983, ch. 6, pp. 239–248.

[61] F. Och, “Fatigue strength,” in Helicopter Fatigue Design Guide, AGARD-AG-292,
F. Liard, Ed., Neuilly sur Seine, France: NATO Advisory Group for Aerospace
Research and Development, Nov. 1983, ch. 4.1, pp. 109–132.

[62] R. P. L. Nijssen, “Fatigue life prediction and strength degradation of wind turbine
rotor blade composites,” Sandia National Laboratories, Albuquerque, NM, Tech.
Rep. SAND2006-7810P, Nov. 2006.

[63] Z. Hashin and A. Rotem, “A cumulative damage theory of fatigue failure,” Materials
Science and Engineering, vol. 34, no. 2, pp. 147–160, Jul. 1978.

415

[64] J. R. Schaff and B. D. Davidson, “Life prediction methodology for composite
structures. part I—constant amplitude and two-stress level fatigue,” Journal of
Composite Materials, vol. 31, no. 2, pp. 128–157, Jan. 1997.

[65] ——, “Life prediction methodology for composite structures. part II—spectrum
fatigue,” Journal of Composite Materials, vol. 31, no. 2, pp. 158–181, Jan. 1997.

[66] L. Li, V. V. Volovoi, and D. H. Hodges, “Structural design against fatigue failure
for composite rotor blades,” in 64th Annual Forum and Technology Display of the
American Helicopter Society International, Apr. 2008.

[67] A. Salvetti, G. Cavallini, and A. Fediani, “Fracture mechanics,” in Helicopter Fatigue
Design Guide, AGARD-AG-292, F. Liard, Ed., Neuilly sur Seine, France: NATO
Advisory Group for Aerospace Research and Development, Nov. 1983, ch. 4.2,
pp. 133–178.

[68] A. Shah, M. Ruzzene, and J. J. Rimoli, “Influence of cycle counting methods on
fatigue life estimation of critical rotorcraft components,” in Vertical Flight Society
75th Annual Forum & Technology Display, AHS - The Vertical Flight Society, May
2019.

[69] J. B. de Jonge, “The analysis of load-time histories by means of counting methods,”
in Helicopter Fatigue Design Guide, AGARD-AG-292, F. Liard, Ed., Neuilly sur
Seine, France: NATO Advisory Group for Aerospace Research and Development,
Nov. 1983, ch. 3.4, pp. 89–106.

[70] F. D. Harris, “Vibration,” in Introduction to Autogyros, Helicopters, and Other
V/STOL Aircraft, vol. 2, National Aeronautics and Space Administration, May 2012,
ch. 2.6, pp. 315–436.

[71] W. N. Twelvetrees, “The evolution of the rotor blade,” Aircraft Engineering and
Aerospace Technology, vol. 41, no. 7, pp. 19–23, Jul. 1969.

[72] J. F. Ward and L. H. Ludi, “A review of current helicopter loads research as applied
to the problem of rotor-blade fatigue substantiation,” in AHS 17th Annual Forum,
May 1961.

[73] R. A. Everett Jr., F. D. Bartlett Jr., and W. Elber, “Probabilistic fatigue methodology
for six nines reliability,” NASA Langley Research Center, Tech. Rep. NASA-TM-
102757, Dec. 1990.

[74] A. Facchin and M. Raggi, “Statistical basis of data processing,” in Helicopter Fatigue
Design Guide, AGARD-AG-292, F. Liard, Ed., Neuilly sur Seine, France: NATO
Advisory Group for Aerospace Research and Development, Nov. 1983, ch. 4.4,
pp. 193–206.

416

[75] G. Stievenard, “Mission spectra,” in Helicopter Fatigue Design Guide, AGARD-AG-
292, F. Liard, Ed., Neuilly sur Seine, France: NATO Advisory Group for Aerospace
Research and Development, Nov. 1983, ch. 3.1, pp. 19–28.

[76] L. Zion, “Predicting fatigue loads using regression diagnostics,” in The American
Helicopter Society 50th Annual Forum, May 1994.

[77] A. Jorio, “Load spectra: Measurement techniques,” in Helicopter Fatigue Design
Guide, AGARD-AG-292, F. Liard, Ed., Neuilly sur Seine, France: NATO Advisory
Group for Aerospace Research and Development, Nov. 1983, ch. 3.3.1, pp. 63–80.

[78] H. L. Zion, “Safe life reliability: Evaluation of new statistical methods,” in American
Helicopter Society 47th Annual Forum, May 1991.

[79] A. E. Thompson and D. O. Adams, “A computational method for the determination
of structural reliability of helicopter dynamic components,” in American Helicopter
Society 46th Annual Forum, May 1990.

[80] K. B. Amer, “A ‘new’ philosophy of structural reliability, fail safe versus safe life
— the 1988 Alexander A. Nikolsky lecture,” in 44th Annual National Forum of the
American Helicopter Society, Jun. 1988.

[81] H. K. Reddick Jr., “Safe-life and damage-tolerant design approaches for helicopter
structures,” US Army Research and Technology Laboratories; Applied Technology
Laboratory, Tech. Rep., Aug. 1983.

[82] Army Materiel Command, “Engineering design handbook—helicopter engineering—
part one: Preliminary design,” U.S. Army Materiel Command, Alexandria, VA, Tech.
Rep. AMCP 706-201, Aug. 1974.

[83] A. A. ten Have, “HELIX and FELIX: Loading standards for use in the fatigue
evaluation of helicopter rotor components,” in Helicopter Fatigue Design Guide,
AGARD-AG-292, F. Liard, Ed., Neuilly sur Seine, France: NATO Advisory Group
for Aerospace Research and Development, Nov. 1983, ch. A, pp. 249–270.

[84] P. R. Edwards and J. Darts, “Standardized fatigue loading sequences for helicopter
rotors (HELIX and FELIX)—Part 1: Background and fatigue evaluation,” Royal
Aircraft Establishment, Tech. Rep. 84084, Aug. 1984.

[85] ——, “Standardized fatigue loading sequences for helicopter rotors (HELIX and
FELIX)—Part 2: Final definition of HELIX and FELIX,” Royal Aircraft Establish-
ment, Tech. Rep. 84085, Aug. 1984.

[86] R. W. Arden, “Hypothetical fatigue life problem,” in Specialists Meeting on Heli-
copter Fatigue Methodology, American Helicopter Society, Mar. 1980.

417

[87] L. Li, “Structural design of composite rotor blades with consideration of manufac-
turability, durability, and manufacturing uncertainties,” Ph.D. dissertation, Georgia
Institute of Technology, Aug. 2008.

[88] W. Yu, D. H. Hodges, and J. C. Ho, “Variational asymptotic beam sectional analysis
– an updated version,” International Journal of Engineering Science, vol. 59, pp. 40–
64, Oct. 2012.

[89] O. Bauchau, Dymore user’s manual, 2010.

[90] J. Arruda, L. Hamel, and K. Collins, “A method for quantitative technology analysis
of active rotor technologies,” in American Helicopter Society 67th Annual Forum,
American Helicopter Society International, Inc., May 2011.

[91] B. German, Surrogate modeling, Class Notes, 2018.

[92] R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, Response surface
methodology: process and product optimization using designed experiments, 3rd ed.
Hoboken, N.J: John Wiley & Sons, Inc., 2009.

[93] T. C. Schank, “Optimal aeroelastic trim for rotorcraft with constrained, non-unique
trim solutions,” Ph.D. dissertation, Georgia Institute of Technology, Apr. 2008.

[94] N. Lappos, Nikolsky lecture: Design advantages of an integrated cyber-physical
aircraft, Web, Presentation, May 2019.

[95] R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, “Introduction,” in
Response surface methodology: process and product optimization using designed
experiments, 3rd ed., Hoboken, N.J: John Wiley & Sons, Inc., 2009, ch. 1, pp. 1–12.

[96] D. N. Mavris, Design-of-experiments for practical applications in modeling, simu-
lation, and analysis—introduction to response surface methods, Web, Class notes,
Aug. 2017.

[97] R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, “Building empirical
models,” in Response surface methodology: process and product optimization using
designed experiments, 3rd ed., Hoboken, N.J: John Wiley & Sons, Inc., 2009, ch. 2,
pp. 13–79.

[98] C. C. Aggarwal, “An introduction to neural networks,” in Neural Networks and
Deep Learning, Springer-Verlag GmbH, 2018, ch. 1, pp. 1–52.

[99] B. Bagdatli, Artificial neural networks as a non-linear regression method example,
Web, Class notes, Aug. 2017.

418

[100] C. C. Aggarwal, Neural Networks and Deep Learning. Springer-Verlag GmbH,
2018.

[101] B. German and C. Heller, Gaussian process models, Web, Class notes, Aug. 2017.

[102] C. E. Rasmussen and C. K. I. Williams, “Introduction,” in Gaussian Processes for
Machine Learning, Cambridge, Mass: MIT Press, 2006, ch. 1, pp. 1–6.

[103] ——, “Regression,” in Gaussian Processes for Machine Learning, Cambridge, Mass:
MIT Press, 2006, ch. 2, pp. 7–32.

[104] ——, “Model selection and adaptation of hyperparameters,” in Gaussian Processes
for Machine Learning, Cambridge, Mass: MIT Press, 2006, ch. 5, pp. 105–128.

[105] ——, Gaussian Processes for Machine Learning. Cambridge, Mass: MIT Press,
2006.

[106] Department of the Army, “Operator’s manual for UH-60A helicopter, UH-60L
helicopter, EH-60A helicopter,” Headquarters, Department of the Army, Washington,
D.C., Tech. Rep. TM 1-1520-237-10, Oct. 1996.

[107] L. A. Meyn, “Rotorcraft optimization tools: Incorporating rotorcraft design codes
into multi-disciplinary design, analysis, and optimization,” in AHS Technical Con-
ference on Aeromechanics Design for Transformative Vertical Flight, Jan. 2018.

[108] W. Johnson, “NDARC — NASA design and analysis of rotorcraft: Validation
and demonstration,” in American Helicopter Society Aeromechanics Specialists’
Conference, San Francisco, CA: Vertical Flight Society, Jan. 2010.

[109] H. Saberi, M. Khoshlahjeh, R. A. Ormiston, and M. J. Rutkowski, “Overview of
RCAS and application to advanced rotorcraft problems,” in AHS 4th Decennial
Specialist’s Conference on Aeromechanics, San Francisco, California, Jan. 2004.

[110] D. H. Hodges and E. H. Dowell, “Nonlinear equations of motion for the elastic
bending and torsion of twisted nonuniform rotor blades,” NASA Ames Research
Center, Moffett Field, California, Tech. Rep. NASA-TN-D-7818, Dec. 1974.

[111] D. H. Hodges, Nonlinear Composite Beam Theory, F. K. Lu, Ed. 1801 Alexander
Bell Drive, Reston, Virginia: American Institute of Aeronautics and Astronautics,
Inc., 2006, 304 pp.

[112] G. S. Bir, “Structural dynamics verification of rotorcraft comprehensive analysis
system (RCAS),” National Renewable Energy Laboratory, 1617 Cole Boulevard,
Golden, Colorado 80401-3393, Tech. Rep. NREL/TP-500-35328, Feb. 2005.

419

[113] W. Yu, VABS manual for users, Web.

[114] S. Tian, X. Liu, and W. Yu, PreVABS, Web, Nov. 2017.

[115] W. Yu, V. Volovoi, D. Hodges, and X. Hong, “Validation of the variational asymptotic
beam sectional analysis (VABS),” in 19th AIAA Applied Aerodynamics Conference,
American Institute of Aeronautics and Astronautics, Jun. 2001.

[116] J. S. Gray, J. T. Hwang, J. R. R. A. Martins, K. T. Moore, and B. A. Naylor,
“OpenMDAO: An open-source framework for multidisciplinary design, analysis,
and optimization,” Structural and Multidisciplinary Optimization, vol. 59, no. 4,
pp. 1075–1104, Mar. 2019.

[117] P. J. Rohl, C. E. S. Cesnik, P. Dorman, and K. Kumar, “IXGEN — a modeling tool for
the preliminary design of composite rotor blades,” in American Helicopter Society
Future Vertical Lift Aircraft Design Conference, San Francisco, CA: American
Helicopter Society International, Inc., Jan. 2012.

[118] D. Kumar, “Design and analysis of composite rotor blades for active/passive vibra-
tion reduction,” Ph.D. dissertation, The University of Michigan, 2013.

[119] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[120] M. Lemaire, “Simulation methods,” in Structural Reliability, J. Mazars, Ed., London
Hoboken, NJ: ISTE Wiley, 2009, ch. 7, pp. 233–263.

[121] O. Ditlevsen and H. O. Madsen, Structural Reliability Methods. John Wiley & Sons
Ltd., 1996.

[122] M. Lemaire, Structural Reliability, J. Mazars, Ed. London Hoboken, NJ: ISTE
Wiley, 2009.

[123] A. E. Mansour, “An introduction to structural reliability theory,” Mansour Engineer-
ing, Inc, Berkely, CA 94708, Tech. Rep. SSC-351, Jan. 1990.

[124] M. Lemaire, “Elementary R − S case,” in Structural Reliability, J. Mazars, Ed.,
London Hoboken, NJ: ISTE Wiley, 2009, ch. 3, pp. 39–76.

[125] ——, “Isoprobablistic transformation,” in Structural Reliability, J. Mazars, Ed.,
London Hoboken, NJ: ISTE Wiley, 2009, ch. 4, pp. 77–114.

[126] ——, “Probability of failure,” in Structural Reliability, J. Mazars, Ed., London
Hoboken, NJ: ISTE Wiley, 2009, ch. 7, pp. 165–232.

420

[127] P. Bjerager, “Probability integration by directional simulation,” Journal of Engineer-
ing Mechanics, vol. 114, no. 8, pp. 1285–1302, Aug. 1988.

[128] M. Baudin, A. Dutfoy, B. Iooss, and A.-L. Popelin, OpenTURNS: An industrial
software for uncertainty quantification in simulation, 2015.

[129] M. Lemaire, “Mechanical–reliability coupling,” in Structural Reliability, J. Mazars,
Ed., London Hoboken, NJ: ISTE Wiley, 2009, ch. 11, pp. 341–391.

[130] P. V. Shevchenko, “Calculation of aggregate loss distributions,” The Journal of
Operational Risk, vol. 5, no. 2, pp. 3–40, May 2010.

[131] R. C. S. Freire Júnior and A. S. Belísio, “Probabilistic S–N curves using exponential
and power laws equations,” Composites Part B: Engineering, vol. 56, pp. 582–590,
2014.

[132] B. Harris, N. Gathercole, J. A. Lee, H. Reiter, and T. Adam, “Life–prediction for
constant–stress fatigue in carbon–fibre composites,” Philosophical Transactions of
the Royal Society of London. Series A: Mathematical, Physical and Engineering
Sciences, vol. 355, no. 1727, pp. 1259–1294, Jun. 1997.

[133] C. Silva, W. R. Johnson, E. Solis, M. D. Patterson, and K. R. Antcliff, “VTOL urban
air mobility concept vehicles for technology development,” in 2018 Aviation Tech-
nology, Integration, and Operations Conference, American Institute of Aeronautics
and Astronautics, Jun. 2018.

[134] T. Lieu, C. Farhat, and M. Lesoinne, “Reduced-order fluid/structure modeling of
a complete aircraft configuration,” Computer Methods in Applied Mechanics and
Engineering, vol. 195, no. 41-43, pp. 5730–5742, Aug. 2006.

[135] D. Xiao, P. Yang, F. Fang, J. Xiang, C. Pain, and I. Navon, “Non-intrusive reduced
order modelling of fluid–structure interactions,” Computer Methods in Applied
Mechanics and Engineering, vol. 303, pp. 35–54, May 2016.

[136] K. C. Kim, “Analytical investication into the helicopter vibration resulting from
main rotor blade (MRB) ballistic damage,” Army Research Laboratory, Aberdeen
Proving Ground, MD 21005-5068, Tech. Rep. ARL-TR-1985, Jun. 1999.

[137] J. Slavič, M. Mršnik, M. Česnik, J. Javh, and M. Boltežar, “Multiaxial vibration
fatigue,” in Vibration Fatigue by Spectral Methods, Elsevier, 2021, pp. 115–126.

421

VITA

Joseph Nathaniel Robinson was born in Los Gatos, California in April 1995. He attended

Loma Prieta Elementary School, C.T. English Middle School, and Los Gatos High School,

where he was inspired to persue a career in the aerospace industry. In 2013, he moved

to Atlanta, Georgia to attend the Georgia Institute of Technology, majoring in aerospace

engineering. He completed his bachelor’s coursework in 2017, earned a master’s degree in

2018, and finished his doctorate degree in 2022. Joseph currently lives in Herndon, Virginia

with his girlfriend, Rachel, and their dog, Tucker.

422

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Summary
	1 Motivation and Research Objectives
	1.1 Life-Cycle Costs
	1.1.1 System-Level Decomposition
	1.1.2 Maintenance Actions
	1.1.3 Discussion

	1.2 Accident Rates
	1.2.1 JHSAT Accident Analysis
	1.2.2 JHIMDAT Accident Analysis
	1.2.3 NTSB Accident Data
	1.2.4 Discussion

	1.3 Relevance to Future Rotorcraft Programs
	1.3.1 Urban Air Mobility
	1.3.2 Military Programs

	1.4 A Common Denominator
	1.4.1 Component Replacement Costs
	1.4.2 Component Failure Causes
	1.4.3 Discussion

	1.5 Causes of Fatigue Damage
	1.5.1 Forward Flight
	1.5.2 Higher-Order Aerodynamic Effects
	1.5.3 Low Cycle Fatigue
	1.5.4 Other Sources of Fatigue Damage
	1.5.5 Influence on Accident Rates

	1.6 Research Objectives

	2 Review of Rotorcraft Design Methods
	2.1 Rotary-Wing Vehicle Design
	2.1.1 Overview
	2.1.2 Vehicle Design Tools
	2.1.3 Rotor Design Tools

	2.2 Rotorcraft Fatigue Design
	2.2.1 Fatigue Damage Theory
	2.2.2 Fatigue Design Methods

	2.3 New Approaches to Fatigue Design
	2.3.1 Structural Design Against Fatigue Failure for Composite Rotor Blades
	2.3.2 Impact of Active Rotor Technologies on Fatigue Life
	2.3.3 Applications of Surrogate Modeling to Fatigue Design
	2.3.4 Reliability of Fatigue Life Predictions
	2.3.5 Discussion

	2.4 Gaps in the Literature

	3 Research Formulation
	3.1 Conjecture to Research Question 0
	3.2 Research Question 1
	3.3 Research Question 2
	3.4 Proposed Methodology
	3.4.1 Reference Methodology
	3.4.2 Preliminary Fatigue Design Methodology

	3.5 Research Question 3
	3.6 Summary

	4 Prediction of Fatigue Loads Using Surrogate Modeling
	4.1 Review of Surrogate Modeling Techniques
	4.1.1 Response Surface Methods
	4.1.2 Artificial Neural Networks
	4.1.3 Gaussian Process Models
	4.1.4 Comparison

	4.2 Hypothesis to Research Question 1
	4.3 Experiment 1 Overview
	4.4 Experiment 1a
	4.4.1 Experimental Design
	4.4.2 Multidisciplinary Analysis
	4.4.3 Generic SMR Helicopter Model
	4.4.4 OpenMDAO Modules and Supporting Tools
	4.4.5 Results and Analysis
	4.4.6 Summary

	4.5 Experiment 1b
	4.5.1 Experimental Design
	4.5.2 Flight Envelope Sampling
	4.5.3 Surrogate Modeling Methods
	4.5.4 Results and Analysis
	4.5.5 Summary

	4.6 Conclusions

	5 Structural Reliability Solutions to the Fatigue Life Problem
	5.1 Review of Structural Reliability Methods
	5.1.1 Basic Concepts
	5.1.2 Approximate/Analytical Methods
	5.1.3 Sampling/Simulation Methods
	5.1.4 Comparison

	5.2 Hypothesis to Research Question 2
	5.3 Experiment 2 Overview
	5.4 Experiment 2a
	5.4.1 Experimental Design
	5.4.2 Notional Fatigue Reliability Problem
	5.4.3 Structural Reliability Solutions
	5.4.4 Results and Analysis
	5.4.5 Summary

	5.5 Experiment 2b
	5.5.1 Experimental Design
	5.5.2 Mission Spectrum
	5.5.3 Load Spectrum
	5.5.4 Ground–air–ground cycle
	5.5.5 Results and Analysis
	5.5.6 Summary

	5.6 Conclusions

	6 Fatigue Design of a Conceptual Rotary-Wing Aircraft
	6.1 Hypotheses to Research Question 3
	6.1.1 Rotor Blade Cross Section Design
	6.1.2 Vehicle Design
	6.1.3 Design Mission Requirements

	6.2 Experiment 3 Overview
	6.3 Experiment 3.1
	6.3.1 Experimental Design
	6.3.2 Implementation
	6.3.3 Results and Analysis

	6.4 Experiment 3.2
	6.4.1 Experimental Design
	6.4.2 Implementation
	6.4.3 Results and Analysis

	6.5 Experiment 3.3
	6.5.1 Experimental Design
	6.5.2 Results and Analysis

	6.6 Conclusions

	7 Concluding Remarks
	7.1 Research Summary
	7.2 Contributions
	7.3 Findings and Recommendations
	7.4 Limitations and Future Work
	7.5 Future Applications
	7.5.1 Applications to Existent Rotorcraft
	7.5.2 Applications to Revolutionary Vertical Lift Concepts

	A OpenMDAO Python Wrappers
	A.1 RCAS Wrapper
	A.2 PreVABS+VABS Wrapper

	B Generic Single Main Rotor Helicopter Models
	B.1 NDARC Model
	B.2 RCAS Model
	B.2.1 Structural Model
	B.2.2 Aerodynamic Model
	B.2.3 Supporting Files
	B.2.4 OpenMDAO–RCAS Variable Mapping

	B.3 PreVABS+VABS Model

	C OpenMDAO Modules and Supporting Tools
	C.1 MDA Group
	C.2 Blade Ballast Calculator
	C.3 Mass Calculator
	C.4 Von Mises Stress Calculator
	C.5 Stress Analyzer

	References
	Vita

