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SUMMARY 

The design of photonic devices in the nanoscale regime for outperforming the bulky 

optical components has been a long-lasting challenge in state-of-the-art applications. 

Accordingly, devising a comprehensive model to understand and explain the physics and 

dynamics of light-matter interaction in these nanostructures is a substantial step toward 

discovering novel phenomena and nanophotonic devices. However, the systematic 

realization of mature optical functionalities using complex nanostructures requires 

significant knowledge about the influence of different nanostructure features (or design 

parameters) on the interaction with electromagnetic (EM) waves. Currently, this 

information can only be found using cumbersome numerical simulations, which become 

intractable as the number of design parameters increase. Despite extensive efforts in 

forming new approaches for analysis, design, and optimization of photonic nanostructures 

using semi-analytical modeling, computationally efficient methods for either 

understanding the physics of light-matter interaction in these nanostructures or their inverse 

design for achieving the desired response are still missing. This challenge is constantly 

worsened as the advances in nanofabrication technology provide more degrees of freedom 

(and a more significant number of design parameters) in forming functional photonic 

nanostructures.  

In this thesis, I present a series of analysis and design approaches based on utilizing 

the "intelligent" aspects of artificial intelligence (AI). Applying these methods is beyond 

just designing the complex photonic nanostructures; they provide a powerful tool for a 

detailed understanding of the physics of light-matter interaction and discovering new 
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phenomena that can offer new classes of nanophotonic devices. Due to having a large 

number of design parameters and the complex and non-unique nature of the input-output 

relations in nanophotonic structures, conventional approaches cannot be used for their 

design and analysis. The dimensionality reduction (DR) techniques in this research 

considerably reduce the computing requirements. At the same time, machine-learning 

approaches like manifold learning and convex-hull formation enable the systematic 

evolution from an initial design to an optimal one. 

Towards designing nanophotonic structures, I have developed a series of 

algorithms for knowledge discovery in nanophotonics. I have invented the shallow pseudo-

encoder architecture to study the importance of each design parameter in forming the 

optical response. In follow-up research, I have introduced geometric learning approaches 

for studying the feasibility of the desired response using a class of photonic nanostructure 

while having a set of material and geometric constraints (e.g., the shape of nano cells or 

the optical properties of the available materials). In the final part of the trio, I have 

developed a new toolkit based on manifold learning to extract the underlying behaviors of 

responses for different classes of photonic nanostructures. Also, I have shown that we could 

extensively reduce the complexity of the neural network (NN) models by using pruning 

techniques. That would be a blessing for knowledge discovery in nanophotonics as one 

could dig into the deeper layers of the NN with reasonable complexity.  

This thesis also focuses on developing a reliable inverse design approach by 

overcoming the non-uniqueness challenge. I have developed a double-step DR technique 

to reduce the complexity of the inverse design problem while preserving the necessary 

information for finding the optimum nanostructure for the desired functionality. I have 



 xviii 

established an approach based on defining physics-driven metrics to explore the low-

dimensional manifold of the design-response space and provide an optimal region in the 

reduced design space for the desired functionality. Also, I have employed probabilistic 

models to map the low-dimensional instances to the actual design parameters to complete 

the inverse design approach for non-unique problems. 

 Although the AI approaches developed in this thesis are used for knowledge 

discovery and inverse design of nanophotonic structures, they can be adopted and extended 

to a wide range of engineering and science disciplines where the computational 

requirements of the conventional design and analysis techniques make them impossible to 

use for design and knowledge discovery. As an example, the manifold-learning approach 

was recently extended to the classification of the severity of COVID-19 and the discovery 

of its development in different patients. It is refreshing to say that when I started this 

research in nanophotonics, I would not imagine its usage for potentially saving lives in the 

future! 
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CHAPTER 1. INTRODUCTION 

1.1 Creating Nanodevices from Nanostructures 

The field of nanophotonics has been the subject of extensive expansion due to the 

unique capabilities of photonic nanostructures to control the propagation of EM waves. 

Owing to their constituent nanoscale features, which spectrally, spatially, and even 

temporally manipulate the optical state of the EM wave, nanophotonic devices extend all 

the functionalities realized by conventional optical devices in much smaller footprints. 

Combined with the advances in nanofabrication technologies, these nanostructures have 

been used to demonstrate devices with enormous potential for groundbreaking 

technologies addressing significant challenges in state-of-the-art applications, such as 

optical communications [1], signal processing [2], biosensing [3], energy harvesting [4], 

and imaging [5], to name a few. As an example, newly emerged metasurfaces [6] (MSs), 

two-dimensional planar structures comprising of densely arranged periodic/aperiodic 

arrays of well-engineered dielectric or plasmonic inclusions, offer profound control of the 

EM wave dynamics including amplitude, phase, polarization, and frequency in the 

subwavelength regime. 

In recent decades, the advancement of fabrication capabilities has enabled 

researchers and engineers to create optical devices with geometries smaller than the 

wavelength of light (i.e., sub-wavelength structures). These structures open up a new range 

of optical possibilities that are of great interest but are often beyond the intuition of current 

engineering. Finding the optimum geometry and material for such nanostructures for the 

desired response is mainly limited to guesswork and computationally intense simulations 
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of Maxwell’s equations. Researchers have been applying machine learning (ML) and deep 

learning (DL) to improve the inverse design process of nanostructures for specific optical 

responses within the past few years. 

1.2 21st Century Challenges in Designing Complex Photonics Nanostructures 

Systematic realization of mature optical functionalities using complex 

nanostructures requires significant knowledge about nanostructure features' influence on 

the propagation of EM waves, which currently can only be found using cumbersome 

numerical calculations. Besides, existing optimization approaches for EM nanostructures 

rely on significant iterations to get to a target device from an initial guess. Even by 

allocating unique computational resources, such time-consuming techniques are not 

guaranteed to reach the global optimum. Also, the methods do not provide much intuitive 

understanding of wave propagation dynamics inside these nanostructures unless a broad 

set of simulations is performed. Thus, developing new efficient approaches for rapid, 

accurate, and detailed analysis, design, and optimization of EM nanostructures is urgently 

needed and long overdue. 

Early efforts were directed at using simple DL techniques to aid the forward problem, 

i.e., mapping design parameters of a nanostructure to its corresponding spectral response 

with NNs [7]. The trained networks approximate computationally intensive simulation 

software, allowing for much quicker design iterations at the cost of decreased accuracy. 

However, solving the inverse problem directly, providing a set of design parameters that 

results in a specific response, is of interest. This problem is much more challenging than 
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the forward problem because it is a non-unique function, where multiple design parameter 

combinations can yield identical optical responses. These parameter combinations include 

design choices such as the material, geometry type (layered structure, nanospheres, and 

repeating patterns), and the design geometry values. This creates a large search space with 

areas of redundancy when designing for a specific response, and there do not exist many 

broad techniques for trimming the search space and gaining an intuition about the problem. 

In this thesis, we present a new series of physics-driven approaches based on AI to 

accelerate the designing of nanophotonic structures for achieving the desired response (i.e., 

reflection spectra of light in a specific band) while learning the underlying behaviors light-

matter interaction.  

1.3 Organization of Thesis 

The thesis consists of six chapters. The introduction chapter is followed by the 

fundamental concepts and theoretical backgrounds of the inverse design of nanophotonic 

structures. This chapter discusses the conventional techniques for designing nanostructures 

and the main challenges in inverse designing nanostructures (i.e., non-uniqueness 

challenge and infeasibility challenge). In chapter three, I present the developed techniques 

for alleviating non-uniqueness challenges. Chapter four is dedicated to introducing a new 

method for studying the feasibility of having an optical response by bounding the latent 

response space. In the fifth chapter, I present a series of techniques based on the intelligent 

aspect of AI for knowledge discovery in nanophotonics. In this section, we study the role 

of design parameters in forming the response, introduce physics-driven manifold learning 
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approaches, and analyze the sensitivity of different designs. In the last chapter, I present a 

summary of the contribution to the field and discuss the potential impactful next steps. 
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CHAPTER 2. FUNDAMENTAL CONCEPTS AND 

THEORETICAL BACKGROUNDS 

This chapter summarizes the prior research on the inverse design of the nanophotonic 

structure and the role of AI in nanophotonics. The first part is an overview of the three 

primary challenges in designing complex nanostructures, the curse of dimensionality, non-

unique solutions, and the existence of the solution. It is followed by a review of 

conventional approaches for tackling the challenges and the role of conventional AI 

techniques to accelerate designing nanodevices. This part also depicts the enormous 

potential impact of AI for investigating light-matter interaction in intricate scenarios. 

2.1 Design and Optimization of Nanophotonics Structures 

The widely used techniques for designing and optimizing nanostructures can be 

divided into two categories: 1) algorithms that rely on a random initial guess and iterative 

search [8-14] (e.g., a cycle of trial and error). These categories include brute force methods, 

evolutionary techniques, and algorithms that rely on cyclic trial and error. Such algorithms 

are customized for a specific design, i.e., for any arbitrary design problem. All the steps 

must be redone to find the suboptimal structure; 2) algorithms employing AI-based 

methods to optimize nanostructures' geometry [15-34]. While being more reliable in 

providing global optimum designs, such data-driven algorithms require a significant 

amount of training instances to be practical for real-world applications. Both approaches' 

enormous computational cost hinders their utilization for providing a detailed 

understanding of the fundamental properties of wave propagation in nanostructures. The 
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former category requires extensive computation power. The latter relies on the initial 

condition (i.e., starting point) and, in most cases, ends up finding local minima in the 

optimization landscape. Adjoint optimization approaches [35] can be employed to form a 

more efficient version of cyclic search methods, but still, designing complex geometries 

requires extensive computation. This shortcoming becomes more crucial as the number of 

design parameters grows. 

In contrast, AI-based techniques deal with modeling input-output relation for a 

particular class of nanostructures. These models mainly form a multi-objective 

optimization platform and more computationally efficient. But still, by increasing the 

number of design parameters and desired response features, the methods struggle with 

convergence and end up with locally optimum nanostructures. 

2.1.1 Curse of Dimensionality 

One of the other challenges in using NN for designing nanostructures is dealing with 

a broad array of responses, so-called the curse of dimensionality [35] (its phase and 

amplitude define, i.e., each spectrum over the desired wavelength). In a typical design 

problem, to fully represent optical features, the spectral responses should be sampled 

spatially in small regions. Spectrally, it should be sampled with a spectral resolution more 

petite than the wavelength. This can result in thousands of samples just for a single 

spectrum. This number could even rise if the EM nanostructure provides sharp responses. 

Furthermore, to find the optimum nanostructure, the geometry should be defined with more 

design parameters. This leads to having a design problem with vast arrays of inputs and 

output. With data generation limitations (i.e., using EM simulation software for generating 
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each simulation is time-consuming), training a NN for mapping input to output is difficult. 

The trained network tends to memorize the relation rather than learning it. 

2.1.2 Non-uniqueness Challenge 

The non-uniqueness issue is one of the main challenges in using NN for inverse 

design, as conventional NNs are many-to-one models. Typically, in an inverse design 

problem there more than one set of design parameters that could provide the desired 

response. Modelling such one-to-many relation is relatively complex as in different part of 

the optimization landscape, we may have a different number of solutions for each selected 

feature (e.g., zero solution in a region and multiple solutions in the other region for the 

desired response but another desired response multiple solutions in the former region and 

zero solution in the latter region). 

2.1.3 Feasibility of Optical Responses in Nanophotonic Structures 

Despite extensive achievements in photonic nanostructures' inverse design, setting 

general constraints (e.g., material and fabrication constraints) make some desired responses 

fundamentally unachievable. This can cause significant issues in the convergence of design 

algorithms. For example, let's assume the desired response has a resonance in a specific 

frequency band, but the structure cannot provide such a resonance by any means. As a 

result, no design parameters exist corresponding to the desired behavior. Therefore, it is of 

great importance to determine whether finding design parameters for a class of structure 

(e.g., the unit cell of nano-rods) to achieve the desired response (by some acceptable error) 

is even possible or not. 
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2.2 Artificial Intelligence Meets Nanophotonics 

Recently, AI-based design approaches combined with an efficient exhaustive cyclic 

search [27-28] have been implemented for designing nanostructures. Different methods to 

date mainly rely on training NNs using a set of design and response data (i.e., training set) 

gathered from EM simulation software to model input-output relation of optical 

nanostructures, then use the trained NN to solve the design problem. 

  Despite the progress in the AI-based design area, the current techniques primarily 

focus on modeling design problems with a smooth optimization landscape with almost one-

to-one relation between design space and response space (i.e., a single set of design 

parameters exists for each spectrum).  Different reported approaches to date primarily rely 

on training a NN (see Fig.1a) using the response of a set of devices (found by numerical 

simulations) and using the trained NN to solve the inverse design problem. Despite 

impressive progress in this area, the reported solutions mostly focus on solving simple 

problems with a reasonably smooth optimization landscape that have a one-to-one mapping 

of the design space to the response space (i.e., given response can be obtained by only a 

single set of design parameters) as shown in Fig 1b), where a vector of device response (𝑟𝚤& ) 

is achieved by a unique vector of design parameters (𝑑𝚤& ). In typical problems, most of the 

input-output relations do not have unique conditions. Figure 1c shows the optimization 

landscape of a more general problem in which the one-to-one relation between design and 

parameters and the output response parameters does not exist. As A result, trying to model 

a non-unique relation with a one-to-one model causes a convergence issue and leads to an 

invalid model. Efforts on turning a non-unique problem into a one-to-one problem by 

removing part of the dataset do not practically solve the case as the relation is still not one-
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to-one. This can result in convergence issues for the NN used for optimization (finding 

design parameters for a given desired optical response). Efforts on converting the problem 

to a one-to-one mapping by removing some training datasets (see Fig. 1c) do not essentially 

help in solving the problem as most of the design space is not covered by these training 

datasets. Such approaches just smooth out the training data and fit a strictly 

ascending/descending to it. In another report, a tandem network is used to solve the 

challenge [15]. The technique relies on first training a NN to relate design space and 

response space, cascade it as a pre-trained NN (i.e., tandem network) with another network 

that links design space and response space, and then train the whole network. Since feed-

forward NNs can provide multiple sets of output for a single set of inputs, the technique 

still cannot address the non-uniqueness issue. Another notable approach is based on using 

generative adversarial networks (GANs) to solve the inverse design problem. This 

technique is built on training a network to solve the forward problem with zero error and 

use it to generate ground truth data in each iteration. Training such a forward-problem-

solver network with close to zero error in a general design problem is a significant 

challenge and may require excessive computational resources.  Considering this challenge, 

by using such an accurate model, one could use it as a stand-alone tool for design, and it 

questions the necessitate of using the GAN-based design technique. In the reported design 

problem, each desired output needs extensive computation, which may reduce the value of 

using GAN if a perfect forward problem exists. The success of such techniques highly 

depends on the complexity of the problem and selection of the design parameters in the 

one-to-one region (outside the dead-zones in Fig. 1d) to converge acceptable answers. 
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More recently, new series of conditional GAN-based techniques has been used to 

solve the inverse design problem [24-27]. However, the techniques can provide a better 

comparison to trial approach errors. In essence, it can be considered as a variation of cyclic 

search, and the resulting output does not necessarily provide a viable design for the desired 

response. 

 

Figure 1 (a) A feed-forward NN for design and analysis of EM nanostructures; D and 

R represent design and response parameters, respectively. (b) Representation of a 

one-to-one design landscape as the most straightforward class of problems for the 

solution with the NN in a. (c) Representation of a general (non-one-to-one or many-

to-one) design manifold. Red dots represent instances with the same response features 

obtained with different sets of design parameters. The light-blue curve demonstrates 

the original design manifold, while the dashed line shows the estimated one obtained 



 11 

with conventional methods for solving the one-to-one problem (e.g., the NN in a). (d) 

Representation of the same design manifold as in c with a solution obtained by just 

training the NN in a for some intrinsically one-to-one region (outside the dead-zones); 

the non-optimal extrapolated manifold for the dead-zones is highlighted by red color. 

Our solution for solving the mentioned challenges [36,37] a resolution to the existing 

simulation challenges in both providing valuable intuitive understanding and the 

design/optimization of the EM nanostructures by 1) extensively reducing the 

dimensionality of the problem using DL-based and AI-based approaches, and 2) using the 

unique features of ANNs for the analysis and design/optimization of the problem in the 

reduced space. The resulting simulation tool can take preliminary information to enhance 

any given feature (e.g., insensitivity to fabrication imperfections) throughout the process. 

It also provides a trade-off between the accepted error and the simulations' complexity (and 

time). Thus, it can obtain valuable information about the role of design parameters [38-40] 

on the overall device performance, get detailed information about a specific feature of the 

device, or design an optimum device for any given functionality. 
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CHAPTER 3. OVERCOMING THE NONUNIUNIQUENESS 

CHALLENGE WITH HIGH COMPUTATION COMPLEXITY 

One of the main challenges in designing the desired nanostructure is the extensive 

computational complexity that EM simulation software imposes on the algorithm's total 

complexity. To alleviate this issue, I developed a series of DR-based techniques to reduce 

the computation cost while preserving sufficient information for studying/solving the 

design problem. Due to the non-uniqueness challenge finding the optimum low-

dimensional space to represent the input-output relation is challenging. This chapter 

represents the invented techniques for reducing the dimensionality and overcoming one of 

the main challenges is the inverse design, non-uniqueness challenge. First section 

represents the invented technique based on DR for the accelerating design of nanostructure. 

In the next section, by employing the DR-technique we simplify the design problem and 

study some nanophotonics design problems. In the third section, we extensively study the 

effectiveness of the DR on reducing the computation costs. In part 4, we employ mixture 

density networks (MDNs) to not only overcome the challenge of non-uniqueness but also 

provide multiple solution for each desired optical response/functionality. This chapter is 

followed by studying the sensitivity of the response against the variation of the design 

parameters and design inconsistencies (e.g., fabrication imperfection).  

3.1 Reducing the Dimensionality of the Nanophotonic Design Problems 

To address both the network-size and non-uniqueness challenges, I demonstrate a 

novel approach for designing complex nanostructures. The method is based on reducing 
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the dimensionality of both design space and response space through training artificial NNs, 

called autoencoders [42].  Once the dimensionality of these two domains is optimally 

reduced, the problem converts to a one-to-one problem in the latent space, which can be 

solved with less computational complexity.  

3.1.1 Reducing Dimensionality of the Response Space 

Figure 2 shows the design approach's schematic based on the design space's DR, 

assuming that the optimization landscape is non-unique. The original forward problem is 

illustrated by path 1 in Fig. 2, where each point in the design space corresponds to a point 

in the response space through a many-to-one relationship. A NN cannot be trained to 

inverse this relation, as explained above. This is the main complication in the design and 

optimization problem. In the proposed approach [36], we first use the DR technique to 

reduce the response space's dimensionality as much as possible while preserving the 

essential information.  

 

Figure 2 Applying the DR technique to the response and design space. In an optimal 

implementation, paths 1 and 4 are many-to-one, while routes 2, 3, and 5 are one-to-
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one. The direction of the arrows indicated the ways that are easily achievable due to 

the one-to-one relation. 

In the next step, we reduce the dimensionality of the design space as much as possible (see 

path 4 in Fig. 2). In this process, the design space's redundant nature is removed, resulting 

in a one-to-one relation between the reduced design and reduced response space (see path 

3 in Fig. 2).  After training the relevant DR mechanism, the relation between the original 

response space and the reduced design space will be one-to-one, and thus, one can simply 

invert the network. As the result, our design parameters are related to the original design 

parameters through a one-to-many relation analytically available through the training 

process (i.e., in the form of a formula with a series of nested Tanh(.) functions that model 

different nodes of the trained NN for the encoder part of the pseudo-encoder). Thus, we 

can find several design options by converting the resulting optimum reduced design 

parameters. At this stage, design constraints (e.g., fabrication imperfections, structure 

robustness, characterization limitations, etc.) can be taken into account to choose the final 

parameters. 

 

Figure 3 An example of the one-to-one DR. Each dot represents a point in the original 

space that corresponds to a point (shown by a dot) in the lower-dimensional space. 
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The heart of our approach is the effective implementation of the DR to efficiently 

reduce the dimensionality of both design and response space. Figure 3 shows a cartoon of 

2D manifold in the 3D space and its corresponding representation in 2D space. However 

we have the one-to-one relation for reducing the dimensionality of the optical space, 

unfortunately we do not have that luxury in reducing the dimensionality of the design-

response relation (i.e., design space). Several DR techniques have been developed in 

machine learning to facilitate classification, data visualization, and computation cost 

reduction. Among different approaches, principal component analysis, locally linear 

embedding (LLE) [43], and autoencoder are the most effective techniques. Considering 

these methods' features, we believe that autoencoder is the most suitable approach for 

solving inverse problems in general and designing EM nanostructures in particular. 

Autoencoder consists of two parts, the encoder and the decoder (see Fig. 4), which 

can be defined as transitions ∅ and 𝜓, such that: 

∅,𝜓 = 	again
∅,#

‖𝑋 − (∅𝑜𝜓)𝑋‖$                                             (1) 

The encoder takes the input 𝑥 ∈ 𝑅% = Χ and maps it to ℎ ∈ 𝑅& = ℱ, which n and p are the 

dimensionality of the input space and latent space, respectively. 
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Figure 4 Schematic representation of an autoencoder architecture. Autoencoder is a 

type of NN which is used to code the unlabeled data. 

To reduce the computational complexity, we first reduce the response space's 

dimensionality and train an autoencoder (see Fig. 4) using the dataset obtained from EM 

simulation software. We form a feed-forward NN to map the design space to the next step's 

reduced response space. Once the training is completed, we use the NN as a forward model 

to search over the reduced area to find the desired response (e.g., spectrum). 

3.1.2 Pseudo-encoder: An Ideal Platform for Nanophotonic Structures 

In the approach shown in Fig. 5, I invent the pseudo-encoder architecture that 

relates the original designs (i.e., 𝑑 ∈ 𝑅' = 𝐷) space to the reduced response space 

(i.e.,	𝑓 ∈ 𝑅& = ℱ) as it is shown in Fig. 4. By training the pseudo-encoder to reach the 

bottleneck layer's minimum size, we reach the reduced design space (i.e.,	𝑔 ∈ 𝑘 = 𝐺).  
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Figure 5 Architecture of a pseudo-encoder, which relates the original design space to 

the reduced response space while reducing the design space's dimensionality. The 

response decoder part retrieves the actual responses from the reduced response. 

Once the DR of the two spaces is complete, I form a NN by cascading the pseudo-

encoder and the pre-trained response decoder (see Fig. 5) to create a full forward modeler. 

3.2 Deep Neural Network for Modeling Forward Design Problem 

In this section, by applying the developed technique, we first reduce the 

dimensionality of the design problem and use a comprehensive DL-based tool to analyze 

and design the nanophotonic structures. 

3.2.1 A Comprehensive Deep Learning Model for the Forward Problem: Analysis 

To show the DL model's applicability, we consider four different generic photonic 

nanostructures design problems (see Fig. 6). For all nanostructures, first, I randomly select 
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design parameters in a feasible range, excite the structures with light, and measure the 

reflectance using EM simulation software to obtain the training data set. In the next step, I 

use the training data to train an autoencoder to study the DR technique's accuracy. Figures 

6a, b, c, and d show the comparison of the actual reflectance spectrum and the reconstructed 

data using the autoencoder for different dimensionalities (i.e., p = 20, 10, 5, and 2) for 

nanostructures in Figure 6a, b, c, and d, respectively. The spectrum can be encoded from 

200-dimensional space to 5-dimensional space with negligible error for all problems. 

 

 

Figure 6 Representation of four classes of nanophotonic structures. (a) Multilayer 

nanostructures [44-45] are made of SiO2 and HfO2. The thickness of each layer (i.e., 

hi) is a design parameter. (b) Dielectric structure [46] is made of SiO2 and HfO2. The 

design parameters are periodicity (i.e., p) and radii of the ellipsoids (i.e., rij). (c) Binary 
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plasmonic MS [47-49] made of SiO2, Al, and Al2O3. Each binary pattern forms a 

design instance. (d) A periodic MS with reconfigurable reflectivity [36] formed by a 

periodic array of Au, GST, and Al2O3. Widths (i.e., wi), pitches (i.e., pi), crystallization 

levels (i.e., lci), and GST height (i.e., h) are design parameters.  

Reducing the dimensionality of the design and response spaces considerably 

lessens the computation complexity as the resulting problem's dimension becomes orders 

of magnitudes less than the original problem (e.g., 3 to 5 instead of 20 to 200). Moreover, 

training the pseudo-encoder that relates the design space to the reduced response space (see 

Fig. 7) required much less computation than the NN that bonds the design space to the 

response space. 

3.2.2 Inverting the Deep Learning Algorithm for Non-unique Problems: Design    

Also, to decrease the computation complexity, I invent a double step DR [36] 

technique to solve the inverse problem. In the first step, I invert part of the NN, which 

relates the reduced design space to response space. This is easily achievable as the relation 

between these two spaces is one-to-one. (see path 5 in Fig. 2). Then, relate the reduced 

design space to the design space. This can be done by searching over the feasible design 

parameters with an order of magnitude lower computation. I use analytic relation between 

the original and the reduced design spaces to thoroughly explore the actual design space to 

find the points corresponding to the desired point in the reduced design space. 
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Figure 7 Reconstructing the response of the nanostructures in (a) Fig. 6a, (b) Fig. 6b, 

(c) Fig. 6c, and (d) Fig. 6d after DR as a function of dimensionality of the reduced 

response space. 

To show the design approach's applicability, in a collaboration with our groupmate, 

we consider a class of design problems to implement a reconfigurable metasurface enabling 

optical modulation, as shown in Fig. 6d. The nanostructure has ten design parameters (i.e., 

w1, w2, w3, p1, p2, p3, h, lc1, lc2, and lc3). As an exciting functionality, we are interested in 

the amplitude modulation of the incident light at 𝜆 = 1600 nm with a considerable 

bandwidth around the central wavelength. We use the autoencoder and the pseudo-encoder 

to reduce the dimensionality of the problem from 10×200 to 5×10. 

Figure 8 shows the performance of the DR approach for the nanostructure in Fig. 

6d for five different random set of design parameters. The left panel represent the results 
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of reducing dimensionality of the response and the right panel shows the results of reducing 

the dimensionality of the design. These results support the effectiveness of the DR 

technique that is presented in this chapter. 
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Figure 8 (a)-(e) the reconstructed response of the nanostructure in Fig. 6 of the main 

text after DR of the response space (left) and both spaces (right) for different 

dimensionality of the reduced response space (left) and the reduced design space 

(right, with dimensionality of the reduced response space being 10 for all cases) for 

five different test instances (not used in training). 

Figure 9 shows the results for designing a perfect light absorber for operation in the 

1500-1700 nm wavelength range using the structure in Fig. 6d. The desired response is 

zero reflectivity over the entire operating bandwidth. The overall mean squared error 
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(MSE) for the optimal structure response (i.e., D1) in Fig. 8 is 0.0147. The reflectance for 

the three other sub-optimal designs (i.e., D2, D3, D4) with considerably different design 

parameters are also shown in Table 1. 

Table 1 The design parameters and the resulting MSE for the optimal design and 

three good designs for the structure in Fig. 6d to achieve maximum absorption in the 

1500-1700nm wavelength region. h, wi , and pi {i=1,2,3} are in nm. 

Design h lc1 lc2 lc3 P1 P2 P3 W1 W2 W3 MSE 

D1 190 0.5 0.6 0.7 650 650 550 350 500 200 0.0147 
D2 190 0 0.2 0.8 650 650 350 450 250 250 0.0149 
D3 190 0.5 0.1 0.7 650 450 450 200 350 300 0.0152 
D4 190 0.3 0.6 0.8 650 550 550 250 300 450 0.0172 

 

 

Figure 9 (a) Achieved spectral responses for the full absorption in the 1500-1700 nm 

wavelength range [36]. Responses of the optimal (D1) and three other reasonably 

good, designed structures (D1, D2, D3) to achieve maximum absorption in the 1500-



 24 

1700nm wavelength region (shown by the shaded rectangle) is depicted. The dotted 

blue line indicates the reflectance spectrum in the off-state (Doff). 

3.3 Analyzing the Effectiveness of Dimensionality Reduction in Reducing the 

Computation Complexity of the Nanophotonics Design Problems 

In this part, we present a deep learning-based method using NNs for inverse design 

of photonic nanostructures. We show that by using DR in both the design and the response 

spaces, the computational complexity [44] of the inverse design algorithm is considerably 

reduced. As a proof of concept, we apply this method to design multilayer thin-film 

structures composed of consecutive layers of two different dielectrics and compare the 

results using our techniques to those using conventional NNs.  

3.3.1 Analysing the Computation Complexity of the Nanophotonic Inverse Design 

Problems 

The invented technique is a systematic approach for the inverse design of non-unique 

nanophotonic structures based on reducing the dimensionality of the design and response 

spaces (DS and RS, respectively). We show that by solving the inverse design problem 

using the reduced design space (RDS) and the reduced response space (RRS), the 

computation requirements are reduced by orders of magnitude. The inverse-design 

approach is based on dividing the large overall non-unique (and thus, non-invertible) 

problem into a combination of a large invertible problem (between the response space and 

the RDS) and a small non-invertible problem (between the RDS and the original design 

space). To demonstrate this approach’s unique features, we apply this method to design 
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standard multi-layer thin-film structures (See Fig.6a) composed of consecutive layers of 

silica (SiO2) and titania (TiO2). Our detailed comparison with the alternative approach 

based on training a conventional NN without DR shows an improvement by 2-3 orders of 

magnitude in the number of floating-point operations per second (FLOPS) without 

imposing a significant error. 

Feedforward NN (FNN) that is used as the baseline for comparison of the 

computational performance of different approaches. Considering the design space 𝑋 ∈ ℝ(  

and the response space 𝑌 ∈ ℝ), the FNN is trained to learn the mapping 𝐹: 𝑋 → 𝑌 with 

minimal MSE between the predicted and simulated responses. Then, for a desired response 

𝑌 ∈ 𝑦) the trained FNN will be used to search over the design space and find the optimum 

set of design parameters so that: 

𝑥∗ = argmax 𝐿𝑜𝑠𝑠(𝑦, 𝑦∗),  𝑥 ∈ 𝑋                                    (2) 

where 𝑦	 = 	𝐹(𝑥), 𝑦∗ 	= 	𝐹(𝑥∗), and 𝐿𝑜𝑠𝑠(𝑦, 𝑦∗) is considered as the MSE (i.e., ||𝑦	− 	𝑦^ ∗

	||). Although the FNN is significantly faster than an EM simulation software for searching 

over the design space, the computation will increase as the number of the design parameters 

and the complexity of the structure increases (since a network with more nodes and layers 

needs to be trained). This shortcoming is addressed in this section by employing DR. The 

first step in our DR-based design approach is to reduce the dimensionality of the response 

space using an autoencoder. Due to the high redundancy in the response of a photonic 

nanostructure, the dimensionality of the response space can be reduced extensively without 

significant error. The optimum dimensionality of the RRS can be found using an adhoc 

method by changing the size of the bottleneck layer in Fig. 4). Once the autoencoder is 
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trained, we can reduce the dimensionality of any given response using the encoder. Next, 

we consider the pseudo-encoder network (Fig. 5) to reduce the dimensionality of the DS. 

The first part of the network (i.e., DS-to-RDS) maps the DS into the RDS. Then the RDS-

to-RRS network maps the RDS to the RRS. Finally, using the decoder part of the trained 

autoencoder, the RRS will be mapped to the original RS. During the training, the MSE will 

be minimized over the original RS (note that the weights of the decoder part in are fixed 

by the trained autoencoder for the response space. 

As discussed in previous sections, the relation between the RDS and the RS is one-

to-one and can be inverted, while the mapping between the design space and the RDS is 

not one-to one. To find the inverse relation, we freeze the weights of the RDS-to-RRS 

network and concatenate it with a similar network from RRS to the RDS and training the 

RRS-to-RDS to find optimal parameters. Thus, the inverse design approach for a desired 

response is composed of two steps. First, we use the inverted relation between the RS and 

the RDS to map the desired response into a single point in the RDS. To simplify this 

inversion, we use the autoencoder to map the desired response to a point in the RRS, which 

will then be mapped to the corresponding point in the RDS using a trained network between 

the RRS and RDS. Secondly, we use the trained DS-to-RDS part of the network in to search 

over the design space and find the optimum set(s) of design parameters that map to the 

target point in the RDS. By using this two-step process, we considerably reduce the 

computation as the exhaustive search is performed over the smallest part of the pseudo-

encoder, rather than the entire NN between the DS and the RS as in the conventional NN-

based model.  
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3.3.2 Proof of Concept: Analysing the Computation Complexity of a Thin-film Design 

Problem 

To show the efficacy of our method, we perform the inverse design of an 8-layer 

and a 20-layer thin-film structure shown in Fig. 6a. These structures are composed of 

consecutive layers of SiO2 and TiO2, and the design parameters are the heights of different 

layers (ℎ+ ∈ 	 [30, 70]	𝑛𝑚) while the responses are 200 samples of the transmission 

spectrum from 300 to 750 THz [44]. This results in the dimensionalities of 8 and 20 for the 

DS for the first and second structures, respectively, and 200 for the RS. For comparison 

purposes, we also train a conventional NN and use it for inverse design of similar 

structures. The inverse design in this case is performed through an exhaustive search 

between the DS and the RS using the FNN. For each structure, we generate 50,000 sets of 

random design parameters and find the corresponding responses using the transfer matrix 

approach, implemented in Python. We use 80% percent of the dataset for training the 

algorithm and the remaining 20% for testing it. We compare the FLOPS and the normalized 

MSE (NMSE) for the FNN and the PE over the 8-layer and the 20-layer datasets. 

To investigate the existence of non-uniqueness in our dataset, we produce sets of 

design parameters with nearly identical optical spectrums with an accelerated brute force 

approach. We use the trained FNN to find three sets of design parameters that result in the 

minimum MSE between the calculated response and the desired response. The FNN used 

for the 8-layer structure has 4 hidden layers, each with 100 nodes and tangent hyperbolic 

(i.e., tanh) as the activation function. After training, the average NMSE over the test set for 

this network is 1.3 × 10−5 with 102,200 FLOPS for calculating the response of each test 

instance. Figure 3 shows the result of this investigation for an 8-layer structure. Figure 10b 
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shows very similar responses for the three selected structures despite major differences 

between their design parameters (see Fig. 10a). A similar observation is obtained for the 

case of 20-layer structures with a slight increase of error. This clearly indicates the presence 

of sets of non-unique design parameters that need to be addressed during inverse design. 

 

Figure 10 (a) The three best sets of design parameters (i.e., the heights of different 

layers) for the 8-layer structure of Fig. 6a for achieving the desired response and (b) 

their corresponding transmission responses. The NMSE between the desired response 

and the responses of the Design 1, Design 2, and Design 3 structures are 4.2 ×	10−5, 4.7 

×	10−5, and 3.8 ×	10−5, respectively. 

To reduce the dimensionality of the design and response spaces for the 8-layer 

structure, we first train the AE using different numbers of nodes for the bottleneck layer to 

find the optimum dimensionality of the RRS. Our results show that with a 9-layer 

autoencoder (4 layers for the encoder, four layers for the decoder, and one bottleneck 

layer), the best dimensionality of the RRS is 12 with a NMSE of 2.2 × 10−6 with 200, 100, 

50, 30, 12, 30, 50, 100, and 200 neurons in each layer, respectively. The activation 
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functions of all intermediate layers are tanh(·) with no activation functions in the input and 

output layers. We will then use a similar ad-hoc approach to find the best dimensionality 

for the RDS by training the pseudo-encoder part with a varying size of the bottleneck layer. 

We find that the optimum dimensionality of the RDS to be three using a pseudo-encoder 

with a total of 8 layers with 8, 5, 5, 3, 100, 50, 30, and 12 nodes in consecutive layers. The 

average NMSE of the trained PE over the test set is 7.6 ×	10−4 with 14,685 FLOPS (for 

connecting the DS to the RRS). However, the mapping between the DS and the RDS, which 

will be needed for the exhaustive search in the inverse design, is performed using the DS-

to-RDS network with only 173 FLOPS, which is smaller than the number of FLOPS needed 

for the FNN by a factor of ∼600. Note that in practice, it is preferred to use a random search 

(rather than an exhaustive search) for finding the best designs. Nevertheless, the advantage 

of the DR approach over the FNN remains the same as it applies to every step of the search 

process. The FNN for the 20-layer structure has 4 hidden layers, each with 300 nodes and 

tangent hyperbolic (i.e., tanh) as the activation function. This NMSE over the test set for 

this network is 1.2 ×	10−3 with 673,400 FLOPS for each test instance. Using a similar 

approach, the dimensionality of the response space for the 2-layer structure is reduced to 

20 with an average NMSE of 6.2 ×	10−5 using a 9-layer AE with 200, 100, 50, 30, 20, 30, 

50, 100, and 200 neurons in each layer, respectively. Figure 11a shows the variation of the 

MSE of the autoencoder with the dimensionality of the RRS, and Fig. 11b compares the 

corresponding responses in the autoencoder with the original response. The corresponding 

8-layer pseudo-encoder for this case has layers of 20, 20, 10, 8, 100, 50, 30, and 20 nodes, 

with the optimum dimensionality of 8 for the RDS. The average NMSE of the pseudo-

encoder over the test set is 1.1 ×	10−2 with 17,398 FLOPS for the entire pseudo-encoder and 
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1,398 FLOPS for the DS-to-RDS network. This shows a computation advantage over the 

FNN by a factor of ∼500. Figures 11a and 11b show the performance of our pseudo-

encoder-based approach and the FNN for the inverse design of the 8-layer and the 20-layer 

structures, respectively. In both cases, the desired response was not used in training or 

testing. Our algorithm uses random search instead of exhaustive search to address the non-

uniqueness issue. The results shown in Fig. 11 are the designs with the lowest NMSE. The 

NMSE between the desired (i.e., simulated) and the designed responses in Fig. 11a are 3.4 

×	10−5 and 1.7 ×	10−3 for the FNN and the pseudo-encoder approaches, respectively. The 

corresponding values of NMSE in Fig. 11b are 2 ×	10−3 and 3.6 ×	10−3 for the FNN and 

pseudo-encoder, respectively. The reported numbers are average numbers obtained in 

testing the algorithms for many designs in order to be good representatives of the 

performance of the two inverse design approaches. 

 

Figure 11 Finding the best dimensionality for the RRS. (a) The variation of the NMSE 

with the dimensionality of the RRS (i.e., the number of nodes in the bottleneck layer 

for a 20-layer structure in and the corresponding responses for different 
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autoencoders with different dimensionalities of the RRS along with the original 

simulated response. 

Figure 11 shows the advantage of our pseudo-encoder-based technique in 

performing the inverse design of a multi-layer structure over the conventional NN-based 

approaches in achieving similar NMSEs with 2-3 orders of magnitude reduction in 

computation. This advantage becomes more important for complex nanostructures with 

many design parameters where the computation of the FNN algorithm becomes excessive. 

While the actual computation advantage of the pseudo-encoder-based approach depends 

on the nature of the problem on both design and response spaces, we expect the observed 

numbers in this paper to be good representatives of such an advantage. 

It is important to note that the numbers of nodes in the layers of the PE after the 

bottleneck layer (i.e., the RDS-to-RRS network) do not affect the computation advantage 

of the pseudo-encoder in inverse design as the only part used for the final search is the DS-

to RDS network. Nevertheless, it is important to optimize the dimensions of the RDS and 

RRS to ensure a one-to-one relation between the RDS and the RS to enable the simple 

inversion from the RS to the RDS. This is currently done by trying different dimensions 

for the RRS and the RDS. Future research should be performed to develop more rigorous 

approaches for finding such optimal dimensions. 

While the pseudo-encoder-based approach is computationally favorable over the 

FNN during the inverse design phase, it requires more computation during the training 

phase since the pseudo-encoder requires training of two separate networks: the autoencoder 

for the DR of the RS, and the pseudo-encoder for that of the design space. However, 
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training is performed only once for all the inverse design attempts using a given photonic 

device architecture. Thus, the added training computation is not a major disadvantage of 

the pseudo-encoder-based approach. Although we considered thin-film structures with 20 

layers in this paper, our dimensionality-reduction approach can be used to reduce the 

computation requirements for structures with any number of layers. The computation 

advantage of the approach will be even more for more complex structures, especially with 

careful optimization of the dimension of the latent space based on the acceptable 

reconstruction error. Note that there is a trade-off between the dimensionality of the latent 

space (and thus, the computation requirements) and the error in reconstruction of a given 

response by the autoencoder, as can be seen from Figures 12a and 12b. 

A unique feature of the demonstrated approach is its generality and applicability 

for designing and investigating a variety of different nanophotonic structures for different 

applications, as long as the response features are covered in the training phase. This is in 

contrast to the conventional design approaches where the entire design process has to be 

repeated once the desired response changes (even slightly). 
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Figure 12 The desired and obtained responses (i.e., through inverse design) for the 

structure in Fig. 10 with (a) 8 layers and (b) 20 layers using the FNN and the pseudo-

encoder. The deviation from the desired response represents the error in the designed 

structure. 

3.4 Employing Mixture Density Networks to Overcome the Non-uniqueness 

Challenge 

Here we present an algorithm using multiple MDNs [41] to first aid in reduction of 

design parameter search space, and then to suggest complete optical nanostructures based 

on desired optical responses. We then demonstrate this approach during inverse design of 

a multilayered metamaterial device based on desired spectral responses. We first reduce 

the design search space by providing material choices for the structure, and then use a 

suitable material to complete the inverse design process and suggest device geometries. 

The methodology and trained networks guide design choices for a nanostructure 

based on a desired optical response and reduce the parameter search space to provide 
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insights about the design problem. To demonstrate the effectiveness of the proposed 

technique, we apply this method to a multilayer optical metasurface design problem. First, 

a trained network intuits information about material selection, and second, a network 

suggests layer heights to form a complete device proposal for any given desired optical 

response. 

As a proof of concept, we apply the proposed technique to design a multilayer 

structure. The first step is verified by a reduced dimensionality representation of the 

spectral responses which shows visually a range of materials for a given response. The 

second step of the design process is verified by a forward solving NN that approximates 

the spectral responses of the complete designs. 

In general, the goal of our proposed methodology is to first find a sweet spot for the 

ranges of design parameters which are capable of producing a desired optical response, and 

thus gain intuition about the design problem. Secondly, we wish to complete inverse design 

of an optical structure using this gained knowledge. We accomplish this with a MDN 

trained to capture the probability density of design parameters based on optical responses 

as input, and a secondary MDN to complete the outlined inverse design. 

A MDN is a NN with a final layer consisting of parameters for creating a Gaussian 

mixture distribution. Instead of the network trying to learn one correct answer, it learns a 

probability density of possible solutions by training a mixture of normal Gaussian curves. 

The number of Gaussian distributions combined to form the total density function is the 

number of mixtures, and each mixture is represented by a mean (µi), a standard deviation 
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(σi), and a mixing coefficient (αi). Equation (3) describes a Gaussian function used as the 

kernel for the mixtures, where x is the input given by the NN and y is the ground truth. 

𝜙+	(𝑦|𝑥) = 1/√(2𝜋𝜎+(𝑥)$	exp	(−(𝜇+(𝑥) − 𝑦)$/2𝜎+(𝑥)$)                      (3) 

Equation (4) describes the complete probability density function the network tries to 

learn. Note that the mixing coefficients add to 1. 

𝑝(𝑦|𝑥) = ∑ 𝛼+(𝑥)𝜙+(𝑦|𝑥)'
+-.                                          (4)  

MDNs are well suited to nanophotonics problems because of the non-uniqueness 

issue during design [36]. They can handle multiple correct answers in a training set for a 

given optical response, thus they can capture valid ranges for design parameters. If the 

ranges are distinct, then individual mixtures will be tuned to capture those search spaces. 

The range of values within each mixture is captured by the standard deviation of the 

mixture. In order to extract values for design and engineering purposes from the probability 

density function (PDF), several techniques can be used to sample the distribution. One 

approach is to randomly sample the distribution. Another approach is to take the mean of 

the constituent mixtures assuming a threshold for the mixing coefficient is above some 

value.  

3.4.1 Designing Multilayer Nanostructure Using Mixture Density Networks  

To show the effectiveness of this technique, we chose the task of designing 7-layer 

nanostructures (see Fig 6a) based on desired spectral responses. Two fictitious materials 

were chosen and alternated to form the layers. To simplify the model, the materials are 
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represented by only one of their design parameters, the relative permittivity 𝜖)  The odd 

layer material 𝜖)  was held constant at 1.46 across all devices, and the even layer 𝜖) 	were 

uniformly sampled between 2.9 and 6.1 for a single device. The layer heights for the device 

were uniformly sampled between 100 nm and 200 nm. The data set to train this problem 

included 40,000 simulated devices and their corresponding spectral responses, generated 

using a modified MATLAB script originating from Umit’s work [50], and randomly split 

up 70% for training, 10% validation, and 20% for testing. The output spectrum is the 

magnitude of EM reflection for frequencies between 450 THz and 750 THz (wavelength 

400 - 666 nm), sampled over 200 evenly spaced points. 

Next, we create the first MDN which includes 200, 60, 40, 10, 12 nodes at each 

layer, respectively. The input of the MDN corresponds to the spectral responses (200 

samples of the reflection response) and the output of the network corresponds to 4 sets of 

mean, standard deviation, and mixing coefficients (total of 12 parameters). The hidden 

layers are fully connected and form a nonlinear mapping between the spectral response and 

the parameters that describe the final PDF. Figure 12b shows the probability density 

functions of the relative permittivity for the corresponding responses in Fig. 12a. 

Inspecting the PDF, we can determine ranges of materials capable of constructing devices 

with a given optical response. 

After a range of values for 𝜖) is found, we train a new MDN to capture the relation 

between spectral responses combined with a chosen 𝜖), and geometry parameters for our 

optical device, in this case layer heights. This MDN in essence tries to suggest layer heights 

for an optical device based on a given spectral response and the 𝜖) for the even layer 

material. This network architecture includes 201, 20, 40, 60, 60 nodes at each layer, where 
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200 is the combined input of spectral response and 𝜖), and 60 represents the parameters 

for the PDF given an input. The MDN is trying to predict a 7D PDF because each 

representing the height of the structure, so with 4 mixes, we can calculate 4mix × (7µ/mix 

+7σ/mix +1α/mix) = 60 nodes. In order to generate device architectures, we sample our 

PDF at the means of the mixtures. 

In order to verify our results, two additional networks are built. The first is an 

autoencoder to pair with the first MDN and better visualize the types of material available 

to a designer for a desired spectral response. Utilizing this deep NN, we compress the 

responses to a 2D latent space, by using the spectral responses for the devices as both input 

and output for the network and a bottleneck. The network architecture includes 200, 80, 

40, 20, 10, 2, 10, 20, 40, 80, 200 nodes at each layer. The 𝜖) values used to generate each 

spectral response is kept handy to tag our responses compressed in the latent space. Figure 

13c displays our sample spectra mapped to the latent space, along with many other samples 

that are colored based on their r value. It is clear that at each point in the latent space, a 

variety of colors can be found, thus confirming our hypothesis that a variety of materials 

can be used to generate such a response. Auto-encoding alone can provide similar function 

to our MDN but is prone to high error and is better suited to provide a qualitative 

compliment to the quantitative range the MDN supplies. 
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Figure 13 (a) Randomly selected spectral responses that act as filters for different 

target frequencies. (b) MDN for the spectral responses describing the range of 

materials that are capable of creating such a response. (c) The spectral responses 

encoded in a lower dimensional space, verifying the output of the first MDN. (d) 

Describes the two MDN design flow for designing a device. procedure, some 

additional optimization steps could be taken to fine tune a design based on the PDF. 

Next, we model the input-output relation (i.e., design-response space) by training a 

feed forward NN. This network was employed to predict the corresponding spectrum for 

each set of design parameters (e.g., layer heights and 𝜖)). Figure 13a shows the 

effectiveness of this network in predicting the spectral response of a set of original design 

parameters (i.e., layer heights and 𝜖)). Figure 13b shows the same network validating 

designs suggested by the second MDN. 
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After training all the networks, we are able to implement our methodology shown 

in Figure 13d. First, we supply a desired spectral response (for testing, we randomly chosen 

from our test set), and find a PDF that describes material r values that may be used to 

generate such a response. This step can be verified by viewing the spectrum in the latent 

space. Upon inspecting the generated PDF, a clear range of possible materials can be 

compared to known materials to find a suitable match. For certain desired spectral 

responses, materials with the necessary properties cannot be supplied by the materials 

science community. 

3.4.2 Selecting the Optimum Material In a Design Problem 

Next, the selected material is supplied along with the same desired spectral 

response to the secondary MDN. This generates options for layer heights (see Fig. 14). If 

a different but valid r is chosen along with the same spectral response, a new set of possible 

layer heights will be generated. This is verified with the full-wave simulator (using the 

trained forward model), to roughly show the accuracy of each proposed design. 
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Figure 14 (a) A randomly selected optical response from the test set to try inverse 

design is simulated with the original design parameters. (b) Displays the simulated 

responses for MDN suggested designs. 

3.5 Conclusion 

In the current chapter, I demonstrated a series of DL-based approaches for designing 

EM nanostructures with a wide range of design possibilities. We showed that by reducing 

the dimensionality of the response and design spaces using autoencoder and pseudo-

encoder, we could convert the initial many to one problem into a one-to-one (or close to 

one-to-one) problem plus a simple one-to-many problem that can be solved using brute-

force analytical formulas. The resulting approach considerably reduces the computational 

complexity of both the forward problems and the inverse problems. In addition, it also 

allows for the inclusion of the design restriction (e.g., fabrication limitations) without 

adding computation complexities.  

We demonstrated here a reliable and computationally superior AI approach based 

on DR for analysis and inverse design of photonic nanostructures. The pseudo-encoder-
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based approach has 2-3 orders of magnitude reduction in the required computation for the 

inverse design of a typical photonic nanostructure without imposing much error compared 

to using an FNN. It also applies to non-unique problems with no significant difference. 

By breaking the sizeable non-unique inverse design problem into a sizeable one-to-one 

problem and a small non-unique problem, our pseudo-encoder-based approach can further 

facilitate the inverse design of photonic nanostructures, primarily through employing 

more rigorous optimization techniques for the last stage (from the RDS to the DS). In 

contrast, such rigorous methods cannot usually be employed for the original non-unique 

problem due to the excessive computation requirements. 

In this chapter, we leverage mixture density networks to choose materials properties 

and geometric design parameters during the inverse design of nanophotonic structures. We 

see this strategy as a way to gain intuition about the design problem and give an engineer 

a pathway to finding suitable designs for desired optical responses. We believe this method 

can be applied to inverse design problems in general because the tools for searching design 

spaces are still primitive, and the search spaces are large and obscure. When studying many 

problems in optics and other engineering disciplines, there is a lack of intuition about 

choices such as material type and geometry descriptions, while MDNs provide the missing 

guidance. 
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CHAPTER 4. DESIGN FEASIBILITY IN NANOPHOTONICS 

This chapter present a distinctive approach for knowledge discovery by bounding the 

forming the smallest convex/non-convex set to discover hidden optical phenomena while 

analyzing the feasibility of having a desired optical response from a specific class of 

nanostructures. The invented techniques reduce the dimensionality of the discovered 

patterns in the design space and response space while finding the governing geometry of 

such patterns in lower-dimensional space in which the Euclidean distance can be a good 

measure for the similarity of different patterns.  

Here, I leverage the intelligence aspect of AI for knowledge discovery in 

nanophotonics. In the next part, I present a new approach based on geometric learning for 

studying the feasibility of optical responses. This section employs convex-hull formation 

[51], manifold learning [52-54], and a one-class support vector machine [55] (SVM) to 

analyze the optical responses underlying behavior. 

4.1 Feasibility of the Nanophotonic Structures 

Design of photonic devices in the nanoscale regime outperforming the bulky optical 

components has been a long-lasting challenge in state-of-the-art applications. Accordingly, 

devising a comprehensive model to understand and explain the fundamental physics of 

light-matter interaction in these nanostructures is a substantial step toward the realization 

of novel photonic devices. To this end, existing modeling methods can be categorized into 

two main groups: single- and multi- objective approaches. Single-objective approaches 

either rely on exhaustive design parameter sweeps using brute-force EM-solver or evolve 



 43 

from an initial guess to a final result. Although the former requires extensive computation, 

the latter highly depends on the initial guess and in most cases converges to a local 

optimum. Parametrized adjoint optimization can be used to design high-performance 

nanostructures; however, they are computationally expensive. All of these single objective 

approaches are computationally demanding and fail when the input-output relation is 

complex, or the number of the desired features for a nanostructures grows. In contrast, 

multi-objective methods deal with formation of a model to optimize a certain class of 

problems. Although these methods are more computationally efficient, obtaining an 

optimal solution is not guaranteed. 

DL-based design approaches, combined with limited exhaustive searches, have 

proven to be a potent solver of multi-objective optimization problems by learning the input-

output relation. Dimensionality reduction approaches show have been shown the 

effectiveness of reducing the dimensionality of the problem and convert the inverse design 

problem into a more manageable version of it. More importantly, such novel techniques 

can provide considerable valuable insight about the dynamics of the light-matter interaction 

in nanostructures with the hope of uncovering new physical phenomena that can be used 

to form a completely new types of devices. The change in focus of using DL techniques 

from “optimization” to “knowledge discovery” can open a new research area with 

potentially transformative results in the entire field of nanophotonics. Examples of these 

“knowledge discovery” paradigms include assessing the feasibility of a desired response 

using a given structure as well as the range of the possible responses a given design can 

provide. Knowing the feasibility of a desired response offered by a photonic nanostructure 

is very helpful prior to any design or optimization effort in avoiding suboptimal designs or 
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convergence issues. It also guides us to modify the initial structure to achieve the desired 

response. 

In this chapter, we present a series of geometric learning- based approaches [47-49] 

by forming the smallest convex-set to discover hidden optical phenomena while analyzing 

the feasibility of having a desired optical response from a certain class of EM 

nanostructures. The developed approach in this chapter is based on reducing the 

dimensionality of the response space of a given EM nanostructure and funding the convex-

hull that contains achievable responses. The technique uses the numerical simulation of the 

response of the system for a series of similar simulations for validation of the technique. 

After initial training and validation, the algorithm finds the optimal bounded subset, which 

contains all feasible responses. 

The optimal region that contains the feasible responses might not be convex in many 

cases, and it is better to find a tighter bound for the feasible region. For this purpose, we 

use the one-class support vector machine (SVM) algorithm to find the nonconvex 

geometry. One-class SVM also provides information about the level of feasibility of a 

response and grants the possibility of trading the acceptable error to get the closest feasible 

response to an unfeasible one (desired). 

4.2 Convex-hull Analysis 

4.2.1 Convexity and Convex-hull Formation 

The convex-hull of a set of points is the smallest convex set that encompass all the 

points (see Fig 15). Considering x1, x2, …, xk Î X, the convex combinations of these points 
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is defined as q1x1+ q2x2+ …+ qkxk where qi³ 0 and q1+ q2+ …+ qk =1. A set is convex if and 

only if it contains all the convex combination of its points. The convex-hull of the set of 

points, X, is denoted as Conv X and defined as: 

Conv X ={q1x1+ q2x2+ …+ qkxk | xi Î X, qi³ 0, i= 1, 2, …, k, q1+ q2+ …+ qk =1}     (5) 

The convex-hull operator on a set of points: is 1) extensive (i.e. the convex-hull of 

all sets in X is a superset of X), 2) non-decreasing (i.e., convex-hull of a subset X, is a 

subset of the convex-hull of X), and 3) idempotent (i.e., the convex-hull of the convex-hull 

of  X is same as the convex-hull of X). The convex-hull of any set of points is also unique 

and closed set. 

 

Figure 15 Set A shows a non-convex set of points. The convex-hull (i.e., conv A) of this 

set is the smallest convex set that contains all the points in set A. 

There are different algorithms presented in geometrical computation to form the 

convex-hull of a given set of points. One of the most effective and well-known algorithms 

is Quick-hull. This algorithm finds the convex-hull of a set of points in d dimensional space 

using an effective method both in memory and computation. Given a set of n data points 

with r processed points, the algorithm is  O(n log r) for d£3 and is O(n fr/r) for d>3 (fr is 

the maximum number of facets for r vertices). The extreme points of a convex-hull are 
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referred as the vertices of the boundary of the convex-hull. The computation complexity of 

the algorithm depends on the number of facets and vertices of the convex-hull. Therefore, 

for sets with fewer extreme points it takes less time for the algorithm to find the solution. 

A d-dimensional convex-hull can be shown using its vertices and the (d-1)-dimensional 

facets. The ridges of the convex-hull can be shown using its vertices and (d-2)-dimensional 

facets which are the intersection of the vertices in two neighbouring facets. Quickhull 

forms the convex-hull using an incremental method based on Grunbaum’s Beneath-

Beyond theorem (See Figure 16) as the following: 

Grunbaum’s Beneath-Beyond Theorem: Consider H as the convex-hull of a set of points 

in Rd and a point p outside the convex-hull in Rd-H. F is a facet of Conv (HÈ p) if and only 

if: 

1) F is a facet of H and p is below F, or 

2) F is not a facet of H, and its vertices are p and the vertices of a ridge of H that has 

one incident facet below p and one above p.  

 

Figure 16 Quickhull algorithm adds the farthest point in the outside set to the convex-

hull at each iteration. The outside sets, the facets, ridges, and vertices will be updated 

in each step. This process continues until there is no outside point. 
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The Quickhull algorithm starts with a set of points (i.e., a random subset of all 

training datapoints) and forms the initial convex-hull. All the points that lie outside of the 

initial convex-hull are considered as the outside set. The furthest point from the outside set 

is found at each iteration and based on Grunbaum’s Beneath-Beyond Theorem, the facets, 

ridges, and vertices will be updated (see Fig. 16). This process will continue until 

convergence. The resulting convex-hull consists of all datapoints. 

After forming the convex-hull for a set X in the latent space, we need to find out 

whether a given point p lies inside the convex-hull or not. We first consider a random point 

a outside of the convex-hull. We then connect x and a with a line segment xa and find the 

number of its intersection with every of the convex-hull. If the number of intersections is 

odd, the point lies inside the convex-hull. Otherwise, if the number of the intersection is 

even or zero, this point is outside the convex-hull (see Fig 17). 

 

Figure 17 The schematic of Inhull function for finding points inside and outside the 

convex-hull. To check if a sample point x is inside or outside the convex-hull, the 
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algorithm considers with the convex-hull. If the number of intersections is odd, the 

point x is inside (part a) and if it is even (part b), x is outside the convex-hull. 

4.2.2 Convex-hull Analysis for Bounding Feasible Responses 

Figure 18 shows the schematic of our invented technique [47] for forming the 

convex-hull for the feasible responses of a given nanostructure. In the first step, a full-wave 

EM simulation software provides an initial batch of randomly generated patterns. Each 

pattern is calculated using a given set of randomly selected design parameters. Then we 

reduce the dimensionality of the response space by training an autoencoder utilizing a 

subset of the available training data and the desired reconstruction error. Next, we use the 

Quick-hull algorithm to form a convex-hull to bind the response space patterns. Then we 

validate the convex-hull utilizing a batch of validation data. As all of the validation data 

originate from a feasible structure, the optimum convex-hull should bound all the 

validation data. We put a threshold for the validation success rate. If convex-hull does not 

pass the validation step, the validation batch will be added to the initial training batch to 

expand the training dataset for retraining the algorithm. After convergence, the convex 

geometry is tested using the unseen test dataset (that includes both feasible and unfeasible 

responses) to find its performance defined by the error rate.  
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Figure 18 Training algorithm for finding the convex-hull of the patterns in the latent 

response space. The 2-D and 3-D representations are just examples for facilitating 

graphical understanding [47]. 

To demonstrate our technique's potential, I apply it to investigate possible optical 

reflection responses from the binary nanostructure in Fig. 6c with different pixilation levels 

(i.e., 7× 7 and 14×14). The design patterns in each case are achieved by a random selection 

of the binary inclusions. The calculated reflection spectra are sampled uniformly over the 

400-800 nm range wavelength range with 2nm resolution to form a vector with the 

dimensionality of 200 as the response pattern. Due to the algorithm's iterative nature in Fig. 

18, the minimum number of training data depends on the number of iterations for 

convergence. Besides, we use 500 simulated response patterns for testing the algorithms 

after convergence. Based on several simulations to understand the selected structures' 
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requirements, I chose 8000 as the training/validation dataset size. Knowing that achieving 

an ideal Fano line shape is not possible with these structures (due to the tremendous ohmic 

loss of metals in the visible range), in a collaboration with our groupmate, we also formed 

80 perfect Fano line shapes over the 400 – 800 nm spectral range unfeasible responses to 

test the algorithms. 

After obtaining the training dataset, the first step of the implementation is the DR 

of the response space by training an autoencoder. We select the latent response space's 

dimensionality as 6 to meet the threshold of 0.001 MSE, translating to less than 5% point-

to-point error. It is important to note that this initial training step aims to find the 

autoencoder's optimum dimensionality. We use an untrained autoencoder with the 

optimum dimensionality and train the entire algorithm. To find the optimum convex-hull 

in the resulting response space, we start with an initial batch of data with 5000 ground-

truth patterns in the algorithm in Fig. 18 to train the cascaded autoencoder forming the 

convex-hull in the 6D latent space. We use 200 validation data (without replacement) for 

autoencoder and 200 for the convex-hull. We select 5% point-to-point error for the 

autoencoder validation threshold and 95% for in-point percentage (i.e., rate of the ground-

truth patterns lies inside the boundary), respectively. The algorithm converged after 14 

iterations. As a result, we used 11000 data to reach convergence. Figure 19a shows that 

using 6 as the dimensionality of the latent response space results in MSE of 0.001, which 

can be translated to less than 5% point-to-point error.  
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Figure 19 (a) Reconstruction MSE for autoencoder trained on the responses of the 

14´14 binary structure in Fig. 6c for different dimensionalities of the latent response 

space. Using the result, 6 is selected as the desired dimensionality of the latent 

response space. Response can be reconstructed after reducing dimensionality from 

200 to 6 by accepting less than 5% error. (b) Auto-encoder training error and in-point 

percentage for the algorithm in Fig. 18 after different iterations of the algorithm. The 

algorithm converged after 14 iterations. 

Table 2 In-point percentage of each class of test parameters lines in 2-D, 3-D, and 6-

D convex-hull as well as one-class SVM highest confidence region 

Algorithm class Binary 14´14 % Binary 7´7 % Fano line shapes % 

Convex 2-D 99.2 100 35 
Convex 3-D 98.6 99.8 10 
Convex 6-D 91.8 96 0 

One-class SVM 2-D 90.2 90.6 0 
One-class SVM 3-D 91.4 89.4 0 
One-class SVM 6-D 88.2 84.4 0 
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4.3 Finding the Non-convex Boundary of The Feasible Responses 

4.3.1 One-class Support Vector Machine 

Assume that the training data are x1, x2, …, xk Î X where N is the numberof 

datapoints. Considering the mapping j(x) from the feature space, X, to a Dot Product space 

F, the kernel function is defined as: 

k(xi, xj) = <j(xi), j(xj)>                                               (6) 

There are different choices for the kernel function like Gaussian and polynomial kernel. 

In this chapter we use Gaussian kernel. 

k(x, x) = 𝑒/
‖"#$‖%

%

&                                                       (7) 

One-class SVM can be formulated as an optimization problem which finds a hyperplane 

to separate datapoints in X from the origin in F and has the maximum distance from the 

origin. The problem is formulated as a quadratic program: 

min
0∈2,3∈ℝ',5∈ℝ

.
$
‖𝑤‖$$ +

.
67
∑ 𝜉+ − 𝜌7
+-.                                  (8) 

𝑠. 𝑡. < 𝑊,j(xi) > ³	r	 − 𝜉+ 	"	𝑖Î{1,2, . . , 𝑁} 

By solving the optimization problem through quadratic programming, the decision 

function becomes 

𝑓(𝑥) = ∑ 𝛼+𝑘(𝑥+ , 𝑥) − 𝜌+                                               (9) 
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Here, r can be recovered using the dual variables (i.e., ai). The datapoints xi with their 

corresponding optimized nonzero ai is called support vector. These datapoints are close 

to the boundary and enforce the complexity of the boundary. 

4.3.2 One-class Support Vector Machine for Probabilistic Feasibility Analysis 

Although the convex-hull algorithm can find a convex geometry for possible 

responses, it has some limitations. If the optimum feasible region is not convex, inevitably, 

some unfeasible areas of the latent response space will be included in the convex-hull to 

reach a convex region. This limits the efficiency of the algorithm for such structures due 

to false-positive errors. Moreover, the algorithm acts as a binary classifier and classifies 

responses into two classes: feasible (achievable) and unfeasible (unachievable). It is 

desirable to know how far an unfeasible response is from viable responses in most practical 

cases. It is also helpful to see whether it is possible to push an unfeasible response toward 

the feasible region by accepting some error. Unfortunately, the Euclidean distance of a 

given point in the latent response space from the convex-hull boundaries is not a good 

measure for the corresponding response's feasibility. To address this limitation, I use one-

class SVM. Figure 21 shows the schematic of the one-class SVM technique. As Fig. 18, a 

similar process is used for training the one-class SVM to find the non-convex geometry of 

feasible response patterns in the latent space. 
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Figure 20 Representation of the convex-hulls for (a) 7× 𝟕  binary structure in Fig 6c 

and (b) 14×14 binary structure. The possible responses for the 7× 𝟕 and 14×14 binary 

designs and the infeasible ideal Fano line shapes are shown. Representation of the 

non-convex boundary and the confidence intervals for (c) 7× 𝟕  binary structure and 

(d) 14×14 binary structure. 
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Figure 21 Using one-class SVM over patterns in the latent response space to 

investigate the level of feasibility of the desired response. The dimensionality of the 

latent response space is found by training autoencoder [47]. 

I apply the developed technique to the same problem that we had in the previous 

section to add the luxury of forming a tighter boundary for the possible responses. We use 

the same training data to train a one-class SVM for the structure in Fig. 6c using 6-D, 3-D, 

and 2-D latent reactions. Although one-class SVM provides valuable information about 

each desired response's relative feasibility, finding the optimum hyperparameters.  

Despite training with a nonaggressive success rate of 95%, the convex-hull 

algorithm is capable of identifying all unfeasible responses as well as a large portion of 

feasible responses. For example, it is not trivial to compare the robustness of the resulting 

designs for achieving two responses as there is not a simple one-to-one relation between 

the Euclidean distance to the convex-hull boundary and the feasibility of the response. To 
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add this feature, I use the same training/validation data to train a one-class SVM to find the 

nonconvex geometry of the feasible responses for the structure in Fig 6(c) using 6D, 3D, 

and 2D latent RSs. Although one-class SVM provides valuable information about the 

relative feasibility of each desired response, finding the optimum hyperparameters (i.e., n 

and g) for one-class SVM is challenging. Here we use 500 validation patterns to cross 

validate the hyperparameters the hyperparameters and find n=0.4 and g=4 as the optimum 

parameters.  

Table 2 shows the result of testing the 6-D, 3-D, and 2-D one-class SVM algorithms 

with the same data used for testing the convex-hull algorithm. Lower success rates in 

identifying the possible responses while perfect performance in identifying unfeasible 

responses are attributed to the one-class SVM tighter geometry. This is also seen from the 

graphical representation of one-class SVM in the 2-D latent space. Note also the absolute 

values of the success rates in Table 2 for one-class SVM depend on the highest confidence 

region's definition. Reducing the level of confidence results in an extension of its 

corresponding geometry and thus a smaller error. In addition to the innermost geometry 

(highest confidence region) shown by red curves in Fig. 20c and 20d, several boundaries 

are identified with different colors. Each added region corresponds to a different level of 

the unfeasibility of a response in this one-class SVM is the minimum Euclidean distance 

of that response from the boundaries of the highest confidence region. A quantitative 

measure for the level of feasibility of a response is the minimum Euclidean distance of the 

response from the boundaries of the highest confidence region. The calculated distance in 

the 6-D one-class SVM for a series of responses of the structures is shown in Table 3. The 

average distance for each class of responses in Table 3 is calculated over the entire set of 
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those responses in the test dataset. In addition, for each class, a representative sample 

response and its actual distance from the geometry are shown. A negative/positive distance 

shows that the point lies outside/inside the highest confidence region; the absolute value of 

the distance shows the relative unfeasibility of a response. Table 3 clearly shows that a 

smoother response (the first row of Table 3) has a better feasibility than a sharper one (the 

second row of Table 3). It also confirms the unfeasibility of the ideal Fano and Lorentzian 

responses with Fano responses being farther from the feasibility region. 

It is important to note that the goal this initial training step is to find the optimum 

dimensionality of the autoencoder. For optimal training of either algorithm (See Fig. 18 

and Fig. 21), we use an untrained autoencoder with the optimum dimensionality and train 

the entire algorithm (composed of the autoencoder follows by the Quickhull to form the 

convex geometry). To find the optimum convex-hull in the resulting latent response space, 

we start with an initial batch of data with 5000 ground-truth patterns to train the cascaded 

autoencoder and forming the convex-hull. At each iteration we use 200 validation data 

(without replacement) for autoencoder validation threshold and 95% for in-point 

percentage (i.e., percentage of the ground-truth patterns lies inside the boundary), 

respectively. The algorithm converged after 14 iterations. As the result, 11000 training 

instances has been used to reach the convergence. 

Table 3 Average distance of different classes of test data (14by14 and 7by7 responses 

as well as Fano and Lorenzian lineshape resonances) from the highest confident 

region border for one-class SVM. Distances for random samples represented in the 

most right column 
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4.3.3 Analyzing Infeasibility of Optical Responses for a Binary Nanostructures 

As an experiment we simulate 21 random cylindrical nanostructures and obtain the 

corresponding response (see Fig. 22b). Then, I formed the nonconvex boundary of the 

feasible responses for the binary nanostructure in Fig. 6c. Figure 22 represents the location 

of those 20 responses on the 2-D latent space. As we can see the responses which has 

resonances in lower wavelengths and sharper resonances (e.g., 2, 10, and 12) are located 

in the outer region of the nonconvex boundary (represented by moving toward the lighter 

blue region). Such intuition about the capability of the structures in providing an specific 

response could help us in select a better type of structures (e.g., material, geometry, and 

size) and as the results push the highest possible accuracy for any design approaches. 
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Figure 22 (a) The trained one-class SVM for 14´14 structure in Fig. 3c. (b) 

Representation of the 20 random reflection responses achieved from another 

nanostructure. The corresponding number for each response is shown in the one-class 

SVM in (a). 

 The results in Fig. 20 and Fig. 22 show the power of geometric learning algorithms 

in assessing the feasibility of a desired response given a specific nanostructure design. They 

also show the advantage of one-class SVMs in providing a more quantitative measure for 
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the level of feasibility of the desired response. The advantage comes from the boundaries 

of the one-class SVM, the geometric distance of a point in the latent RS from the 

boundaries of the one-class SVM is a good measure for the feasibility of the response, 

whereas in convex-hulls, this relation does not hold necessarily. This advantage comes at 

the expense of more sophisticated training as the optimum hyperparameters n and g in SVM 

are not usually trivial to find. This advantage comes at the expense of more sophisticated 

training as the optimum hyper parameters n and g . Nevertheless, convex-hulls are helpful 

in providing the quick evaluation of the feasible response feasibility. The training process 

can also be simplified if more error is accepted. Note also that finding the exact geometry 

of the convex-hull and one-class SVM may not be important in design and optimization 

problems as the points on the boundaries correspond to less reliable responses that are 

prone to environmental changes or fabrication errors. We prefer the desired response to be 

in the middle of the one-class SVM. 

 In addition to the boundaries of convex-hull and one-class SVM in the latent RS, 

the area that is covered in that space by these shapes has important practical implications. 

The larger the area, the more capable the structure is in forming varieties of output 

responses. Figure 20 shows convex-hull and one-class SVM in the 2D latent RS of the 

binary nanostructure in Fig. 6c formed by 7´7 and 14´14 array of nanostructures. For 

comparison, the responses used for the testing of the 14´14 structure also provided. It is 

clear that the convex-hull and non-convex bound for the 7´7 nanostructure cover a smaller 

percentage of the 2D latent RS than those of the 14´14 structure. This conclusion must be 

taken with the caveat that the latent RSs for the two structures are not necessarily the same. 

Note that a wider range of responses may or may not be desirable for the design. For 
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reconfigurable structures, a wider response range usually is considered as unnecessary 

complexity of the selected structure. Figure 20 clearly shows that while technically none 

of the responses of the 7´7 structure was used in training the convex-hull and one-class 

SVM of the 14´14 nanostructure, all these responses fall inside the convex-hull and one-

class SVM as any 7´7 structure can be formed using the 14´14 structure. Figure 19a and 

(c) also show that some of the responses achieved by 14´14 structure cannot be achieved 

using the 7´7 structure, whereas some of them can. This is an important observation as it 

confirms that using 14´14 nanostructure for some responses might be unnecessary; the 

same response can be achieved by a much simpler structure with less fabrication challenges 

and more robustness against fabrication imperfection. I believe this observation is an 

important potential application of the convex-hull and one-class SVM in finding the most 

robust and least complex structures when the desired response falls in the middle of the 

one-class SVM (i.e., has maximum distance from the boundaries) results in more tolerance 

against environmental changes and fabrication imperfection. 

 The DR algorithm implemented by the autoencoder is an important step in reducing 

the required computational resources for the convex-hull and one-class SVM. For any 

particular problem, the optimum dimension of the latent RS depends on the selection of 

the design and the redundancy of the response (i.e., level of non-uniqueness). Thus, finding 

the optimum size of the latent RS is the initial step in implementing the developed 

techniques. Once the size of the latent RS is selected, the required computation for the 

calculation of the convex-hull and one-class SVM is primarily for the training algorithm. 

In this section we mainly used the brute-force approach in starting with a training dataset 

and expanding it until the convex-hull pass the validation test. Further rigorous approaches 
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must be developed to minimize the computation required for training. One can also take 

advantage of the trade-off between the accuracy and the computational cost to optimize the 

training approach as explained earlier. Although the focus of this chapter was first 

demonstration of feasibility study for a given response, the technique can be adopted for 

obtaining far more detailed information about the physics of nanostructures.  

The invented technique can also facilitate the design of nanostructures using 

conventional inverse problem-solving approaches such as genetic algorithms that focus on 

finding the design parameters of a selected structure without carefully studying the 

feasibility of achieving the desired response using the selected design. These techniques 

can use our approach as an initial feasibility study step to ensure the selected structure for 

the optimization procedure to avoid unnecessary complex designs and reduce the 

fabrication challenges. The invented technique can be optimally combined with any 

optimization technique to provide a guideline about the feasibility of a desired response 

and reduce the computation complexity of the inverse design problem. 

4.4 Conclusion 

In this chapter, I presented a new approach to utilizing AI to study nanophotonic 

structures' feasibility by training two well-known algorithms (convex-hull and one-class 

SVM) [47-49]. I showed that by combining the convex-hull (or one-class SVM) with DR 

by an autoencoder, we could find the range of possible responses and the degree of the 

feasibility of the desired response from any given class of EM nanostructure in its latent 

RS. By applying these techniques to a series of nanostructures, I showed the unique 

capabilities of one-class SVM and convex-hull in providing valuable insight into any EM 
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nanostructure's capabilities in providing different types of responses. While this is the first 

demonstration of an AI-based approach for such knowledge discovery, the presented 

techniques show great potentials in facilitating the understanding of the underlying physics 

of EM nanostructures and forming a more systematic approach in designing such 

nanostructures. 
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CHAPTER 5. ARTIFICIAL INTELLIGENCE FOR 

KNOWLEDGE DISCOVERY IN NANOPHOTONICS 

In this chapter, I presented a series of new methods for knowledge discovery in 

nanophotonics through latent learning. I showed that combination of the DR, manifold 

learning and convex-hull formation can provide priceless information about the level of 

feasibility for achieving a desired response given we want to use a certain class of 

nanostructure. By applying these techniques to a series of nanostructures, I showed the 

unique capability of the technique in providing valuable insight about the capabilities of 

manifold learning in providing different types of responses. Although this the first 

demonstration of an AI-based approach for such knowledge discovery, the presented 

techniques show great potentials in facilitating the understanding of the underlying physics 

of EM nanostructures as well as forming a more systematic approach in designing such 

nanostructures.   

5.1 Shallow Pseudo-encoders for Mining the Roles of Design Parameters 

Our approach's main advantage is the possibility of investigating the underlying 

physics of the device operation and obtaining intuitive information about the role of 

different design parameters on its response [37-39]. To show this capability, we use our 

approach with a pseudo-encoder to model the nanostructure in Fig. 6d. Figure 23a shows 

the resulting pseudo-encoder with the reduced design space dimension being four with 

green and red arrows representing positive and negative weights, respectively. Note that 

the DR of the design space is performed with only one encoder layer. The strength of the 
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connections is shown in Fig. 23a by the color opacity. As shown in Fig. 23b, the 

crystallization levels lc1, lc2, lc3 can only change one of the reduced response features as 

they mainly connect to one node (the purple node) in the bottleneck layer. As a result, as 

long as the total input to that purple node is fixed, the response will stay the same regardless 

of how the values of lc1, lc2, lc3 can change. This conclusion is reached by assuming a small 

error in training the pseudo-encoder and neglecting the small weights (or arrows in Fig. 

23a) connecting lc1, lc2, lc3 to the nodes bottleneck layer. To test this conclusion, we vary 

lc1, lc2, lc3 while keeping their weighted sum (according to the trained pseudo-encoder) and 

all other seven design parameters for the nanostructure in Fig. 6d, and we calculate the 

response of the nanostructure using brute-force COMSOL simulation (no pseudo-encoder 

intervention). The results for two different weighted sums are shown in Fig. 23b. The figure 

confirms our observation from the pseudo-encoder that lc1, lc2, lc3 effectively act as a single 

design parameter. This suggests that the parameter h can be used to obtain different classes 

of responses while weighted sum of lc1, lc2, lc3 can be used to finely tune a given class of 

response. The details of the design parameters for each case are shown in Table 4.  

Table 4 The design parameters and the resulting MSE for the optimal design and 

three good designs for the structure in Fig. 6d to achieve maximum absorption in the 

1500-1700nm wavelength region. h, wi , and pi {i=1,2,3} are in nm. 

Design h lc1 lc2 lc3 P1 P2 P3 W1 W2 W3 MSE 

D1 190 0.5 0.6 0.7 650 650 550 350 500 200 0.0147 
D2 190 0 0.2 0.8 650 650 350 450 250 250 0.0149 
D3 190 0.5 0.1 0.7 650 450 450 200 350 300 0.0152 
D4 190 0.3 0.6 0.8 650 550 550 250 300 450 0.0172 
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Figure 23 (a) The pseudo-encoder architecture trained for the problem in Fig. 3d, 

which relates the design space to the reduced design space. Green and red colors and 

opacity represent the positive, negative signs and the coupling strength. (b) Red 

curves correspond to three different lc1, lc2, lc3 where their weighted sum for the purple 

node is the same. Blue: similar three curves but for another weighted sum [36]. 

 While some of the conclusions about the role of design parameters in Fig. 23 

obtained by training the pseudo-encoder could also be obtained by the underlying mode 

properties of the DL-based (e.g., by analyzing the modes of plasmonic resonators), the 

ability of our approach in providing useful information about the physics of wave-matter 

interaction in non-trivial structures (e.g., nonlinear and dispersive metamaterials) will be 

extremely valuable. Indeed, by using this approach to find and understand new phenomena 

in such non-trivial structures, new ideas for forming new classes of devices can be 

generated. This is a major advantage of our approach over all existing design approaches, 

especially those that rely on multiple brute-force simulations of the structure for different 

design parameters. 
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 Note that the MSE (about 10%) in relating the design and response spaces using 

the mono-layer pseudo-encoder in Fig. 23b is larger than that a more complex pseudo-

encoder. Nevertheless, the intuitive understanding of the roles of the design parameters 

achieved with the simple pseudo-encoder is completely valid. While the mono-layer 

structure provides simple and helpful information about the role of design parameters, more 

sophisticated relation (and physics) can be learned by using a pseudo-encoder with more 

layers and studying the NN weights in the different layers. It is also evident that the 

algorithms selected for understanding the physics of the wave-matter interaction are in 

general different from those used for design and optimization of the structure to achieve a 

desired response. In the latter the minimization of the MSE in the input-output relation is 

critical while in the former it is the secondary importance. 

5.2 Manifold Learning: An Ultimate Approach for Response Analysis in 

Nanophotonic Structures 

To form a comprehensive playground for optical response analysis, we developed 

a new toolkit [56-58] based on manifold learning to extract underlying behaviors of 

responses for different nanostructures classes. The approach also provides valuable 

information for designing nanostructures by discovering the governing physics of light-

matter interaction in the nanoscale regime. Among other manifold learning techniques 

(e.g., Isomap, t-distributed stochastic neighbour embedding, LLE), multidimensional 

scaling, and unified manifold approximation and prediction), I believe LLE is the most 

suitable approach to our application due to its unique features in preserving local 

information in the low-dimensional space.  
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The developed method employs LLE to study the modality of the possible 

responses for each class of nanostructures. LLE finds the K nearest neighbours in the 

original space y, then calculates the optimum set of weights to reconstruct point yi from its 

neighbors while minimizing the cost function L calculated as: 

𝐿(𝑤) = ∑ q𝑦+ − ∑ 𝑤+8𝑦89
8-. q$7

+-.                                    (10) 

To find the minimum value for Equation 10, I solve an N×K linear equation for all training 

data neighborhoods. The resulting w captures a sufficient amount of geometrical 

information of the patterns by minimizing the cost function. Next, the LLE algorithm finds 

the latent patterns (vector z) using the optimum weights (i.e., 𝑤r).  

𝐿(𝑧) = ∑ q𝑧+ − ∑ 𝑤r+8𝑧89
8-. q$7

+-.                                      (11) 

The optimization problem in Equation 11 can be defined as a root problem of solving 

partial eigenvalue decomposition. 

 To show the technique's potential, I apply the algorithm to a set of EM spectral 

responses achieved from the metasurface structure in Fig. 24a to study the optical reflection 

spectra's modality [56]. The structure is composed of hydrogen silsesquioxane (HSQ), GST 

silicon (Si), and silicon dioxide (SiO2). GST is a type of PCM, which provides the luxury 

of controlling material properties (e.g., change in refraction index). This tuning can be done 

via an external stimulus (e.g., heat or voltage).  

The structure has six geometrical design parameters: r, p, hHSQ, his, h SiO2, and hGST. 

To generate the training data, we calculate the reflection spectra of 2400 different 
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geometries selected randomly. For each set of geometrical parameters, in a collaboration 

with our groupmate, we simulated GST with 11 uniformly distributed crystallization levels. 

Each of the calculated reflection spectra is uniformly sampled at 1000 wavelengths in the 

desired wavelength range of 1000-1700 nm, resulting in 1000-dimensional response space. 

To find the low-dimensional visual representation of the reflection spectra, I apply LLE to 

22880 reflection responses while keeping the MSE as the accuracy measure for the 

algorithm. I use the validation dataset to find K=10 as the nearest neighbors' optimum 

number to map the training data to the low-dimensional manifold using the validation 

dataset.  

Each sub-manifold represents the range of responses available from the 

metasurface with one of the 11 GST levels. This technique provides an intuitive visual 

representation of the nanostructure's detailed reflection spectra with different design 

properties and GST phases in low-dimensional space. It also enables us to follow the 

evolution of the metasurface responses upon changes in the GST phase or the 

nanostructure's geometrical parameters. 

As shown in Fig 24b (i) and (ii), each crystallization level owns a specific sub-

manifold in the latent space. This indicates the crucial role of material characteristics in 

providing a wide range of responses. Figure 24b (iii) shows the spectral response's gradual 

evolution by changing the GST crystallization level. 
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Figure 24 Representation of a multilayer metasurface [56] with (a) a single nanodisk. 

The pitch of the cell (p), the radius of the nanodisks (r), and thickness of the top and 

bottom layers (hi) are design parameters, (ii) Exciting an array of nanostructures in 

part (i) with a plane wave along the z-direction. (b) Applying LLE to the spectral 

responses of the nanostructure in part a. (i) Two- and (ii) three-dimensional manifold 

for amorphous and crystalline states, and nine intermediate states. (iii) representation 

of the modality changes in the reflectance spectra for a single geometrical design and 

four different crystallization levels. 

5.2.1 Analyzing the Role of Material Characteristics in Forming Optical Responses 

While the effect of geometry is always a subject of study in inverse design of 

nanostructures there has been no effort (to the best of our knowledge) to study and design 

the geometry and material at the same time. In this part we employed manifold learning-
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based technique to learn and design both geometry and material. To show the capability of 

the technique I employed the method to design the nanostructure in Figure 24a.   

Figure 25 represent the 3-D representation of the response instances for the 

nanostructure in Fig. 24. It is clearly shown that the responses formed different region 

based on their material characteristics (i.e., crystallization levels) even in the cases that 

they have same geometrical features. Such valuable understanding could provide use 

information about the underlying physics of light-matter interaction while guiding the 

intelligent design technique to select a better geometry and material as the starting point. 

 

Figure 25 Representation of the 3-D manifold of the responses achieved by structure 

in Fig. 6b using LLE from different angles. Colors (blue/red) represent the 

crystallization level of the GST (Amorphous/Crystalline). 
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Manifold learning approaches can be categorized in two main groups, methods 

which learn the local features and ones with focusing on preserving the global relations. 

For different algorithms the low-dimensional manifold is formed differently. In using 

manifold learning for knowledge discovery in nanophotonics this feature is more leaned 

toward being an advantage than being a shortcoming as we like to observe different type 

of clustering and use that as a hint to come up with a conjecture, generalize it by adding 

more simulation datapoints, and finally turn that to a hypothesis.  

In Figures 26 and 27, I applied different manifold learning technique to analyse the 

optical response that we get from the nanostructure in Fig. 24a for three different 

crystallization levels. As we can see different methods cluster responses in a different way 

and this could help the designer analyse the underlying features from different aspects and 

come up with a more strong understanding/hypothesis about the relation of the material 

characteristics and the optical response. Here we could clearly see different crystallization 

levels cover different part of the manifold and by walking on the underlying manifold we 

can pave different regions that could be translated as having the desired response is just 

doable in a specific crystallization level. 
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Figure 26 Representation of the 2-D manifold of the responses achieved by structure 

in Fig. 24a using different manifold learning approaches. Colors (blue/red/gray) 

represent the crystallization level of the GST (amorphous/crystalline/intermediate 

stage). (a) PCA, (b) kernel PCA, (c) LLE, (d) t-SNE, (e) MDS, (f) autoencoder, (g) 

convolutional autoencoder, and (h) UMAP. 
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Figure 27 Representation of the 3-D manifold of the responses achieved by structure 

in Fig. 24a using different manifold learning approaches. Colors (blue/red/gray) 

represent the crystallization level of the GST (amorphous/crystalline/intermediate 

stage). (a) PCA, (b) kernel PCA, (c) LLE, (d) t-SNE, (e) MDS, (f) autoencoder, (g) 

convolutional autoencoder, and (h) UMAP. 

5.2.2 Effect of Learning Loss and Metric in Knowledge Discovery 

Besides methodology in manifold learning, selecting the loss function and the 

metric plays a crucial role in forming the manifold. As no one is aware of the intact 

underlying behaviors and basically that itself is the subject of study, having the luxury of 

forming the manifold from different perspectives could be a very good playground to 

solidify the light-matter interaction conjectures.  

In Figures 28 I applied different loss functions to analyse the optical response that 

we get from the nanostructure in Fig. 24a for three different crystallization levels in both 

two and three dimensional space. As we can see different methods cluster responses in a 

different way, and this could help the designer analyse the underlying features from 

different aspects and come up with a stronger understanding/hypothesis about the relation 

of the material characteristics and the optical response. Here we could clearly see different 

crystallization levels cover different part of the manifold and by walking on the underlying 

manifold we can pave different regions that could be translated as having the desired 

response is just doable in a specific crystallization level. 
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Figure 28 Representation of the 2D and 3D manifold of the responses achieved by 

structure in Fig. 24a using different losses. Colors (blue/red/gray) represent the 

crystallization level of the GST (amorphous/crystalline/intermediate stage). (a) 2-D 

MSE, (b) 3-D MSE, (c) 2-D Huber loss, (d) 3-D Huber loss, (e) 2-D Cosine similarity, 

(f) 3-D Cosine similarity. 

5.3 Reducing the Geometric Complexity Using Manifold Learning 

In this section, we present a manifold learning-based technique for inverse design 

of nanostructures with minimal design complexity. This technique encodes the high 

dimensional spectral responses obtained by EM simulation software for a class of 

nanostructure with different design complexities using an autoencoder. We model the 

governing distributions of the data in the latent space using Gaussian mixture model 

(GMM) [59] which then provides the level of feasibility of a desired response for each 
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structure and use a NN to find the optimum solution. This method also provides valuable 

information about the underlying physics of light-matter interactions by representing the 

sub-manifolds of feasible regions for each design complexity level (i.e., number of design 

parameters) in the latent space. To show the applicability of the method, we employ this 

technique for inverse design of a class of nanostructures consisting of dielectric 

metasurfaces with different complexity degrees. 

The forward problem in designing nanophotonic structures is finding the response 

for a set of input design parameters. We consider this as the mapping F : X → Y, where x 

∈ X is a vector of design parameters and y ∈ Y is the corresponding response. 

Electromagnetic simulation softwares like COMSOL Multiphysics, CST Microwave 

Studio, Lumerical, etc. are the common tools for solving the forward problem in the 

nanophotonics society. However, the goal of inverse problem is to find the set of design 

parameters that results in the desired response, and we consider this unknown relation as 

the mapping G: Y → X. In other words, we seek to find x such that x = G(y∗). Evaluating 

G is not possible as we don’t have access to G. So, we formulate this problem in terms of 

F, which is available for us, within an optimization framework: 

𝑥∗ = :);'+%
<∈= 𝐿𝑜𝑠𝑠(𝑦, 𝑦∗)                                               (12) 

where y = F(x), y∗ = F(x∗), and Loss can be any of the available loss functions that suit the 

problem (e.g. MSE). This problem does not have a closed-form formulation due to the 

complexity of the input to output relation in nanophotonic structures and also suffers from 

non-convexity and non-uniqueness challenges (i.e., for the desired response, there might 

be multiple sets of design parameters). The current methods for solving inverse problems 
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in nanophotonics are based on brute-force search methods for finding the vector xi that 

results in the minimal MSE (i.e., ) or limits themselves to a particular part of the 

design space and model the inverse mapping to find the local minimum solution. However, 

these methods do not consider the design complexity of the structure in solving the inverse 

problem and converge to a highly complex system. In contrast, a coarser structure can 

produce comparable results. In this research, we use a manifold learning-based method to 

form the feasible set of responses for each design complexity in the latent space Z for a 

class of nanostructures and solve the inverse problem with the minimal design complexity. 

To show the capability of our method, we apply this approach to the inverse design of a 

class of nanostructure with different design complexities. Figure 28 shows the unit cell of 

the nanostructures, consisting of one to four ellipsoids of HfO2 on the top of SiO2 substrate 

[46]. As shown in Fig. 29, the number of design parameters and complexity of the structure 

increases as we add more ellipsoids. We randomly generate a set of design parameters for 

each structure and find the corresponding reflection responses using EM software (i.e., 

Lumerical). Then we train an AE to reduce the dimensionality of the response space Y. To 

model the distribution of the manifold of feasible responses for each structure, we use 

GMM. Finally, we train a NN from the design to the response space and use that to find 

the set of design parameters for the desired response. 
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Figure 29 Schematic of the nanostructures [46] with different complexity levels (i.e., 

number of design parameters) composed of unit cells with a layer of SiO2 and ellipsoid 

nano antennas of HfO2. The design parameters are periodicity of the unit cells (p ∈ 

[500,900] nm) and radius of the ellipsoids (Ri ∈ [60,200] nm). The number of design 

parameters (i.e., design complexity) are shown below each structure. 

To model the distribution of the manifold of the feasible response for each structure 

in Fig. 29, we use GMM. We consider the probability density function (pdf) of each 

structure as fZ (z) = , where  and the gi are Gaussian distributions with 

different means and covariance matrices (gi(z) = N(z; µi,Σi)). We used expectation 

maximization method to estimate the parameters θ = (α1,...,αN,µ1,...,µN,Σ1,...,ΣN), given a 

series of observations z1,z2,...,zM. The goal in this optimization problem is to find a θ 

maximizing the log-likelihood l(θ;z1,...,zM) = PMi=1 log(PNj=1 αjN(zi;µj,Σj)). 

After reducing the dimensionality of the response space of the training data and 

modeling the manifold of the feasible set of responses for each structure in the latent space 

using GMMs, we use Algorithm 1 for evolutionary design of nanostructures. First, we 

reduce the dimensionality of the desired response using a trained autoencoder. Second, we 

find the log-likelihood of being inside the feasible set of each class of structures in Fig. 29. 

We select the structures with log-likelihood larger than a threshold as the candidates of the 

solution to our inverse problem. Finally, for each design candidate we use a trained NN to 

search over the design space for the solution (i.e., structure that has a similar reflection 

response to the desired response). We use MSE as our loss function to predict the responses 

for any given set of design parameters. 
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To train our model, we generate a random set of design parameters for structures 

in Fig. 28 and find their corresponding reflection spectra. We sample the period of the 

unitcells (p) between 500 nm and 900 nm and the radius of HfO2 ellipsoids between 60 nm 

and 200 nm, with the fixed thickness of 350 nm in order to support reflection mode 

operation and satisfy the fabrication constraints. We excite the structures with normal 

incident light polarized in x-direction and conduct full-wave EM simulations with 

commercial Lumerical FDTD software to find the reflection responses of the structure in 

the wavelength of interest from 300 nm to 850 nm. These structures can potentially exhibit 

Fano-type resonances. 

We trained an autoencoder to reduce the dimensionality of the response space from 

550 to 2. Based on the manifold of the responses in Fig. 30, the Four scenario exhibits the 

most variate range of spectral responses in the latent space due to the dipole resonances in 

x-direction (co-polarized) and strong coupling of these resonances in y-direction (cross-

polarized). It is also clear from Fig. 30 that Three scenario has a substantially smaller 

feasible region in comparison with the Four scenario due to reduction in the co-polarized 

resonance and cross-polarized coupling. The BLBR scenario resembles the Three scenario 

since the co-polarized resonance is much stronger than single ellipsoid along the co-

polarized direction which results in a similar feasible range of responses as the Three 

scenario. This is also supported by the feasible region of BLTL which is much smaller than 

BLBR as the BLTL resonances are too weak to be coupled and reach the variety of BLBR. 

The One scenario exhibits the smallest convex hull with lowest resonance and coupling 

amongst all the scenarios as expected. In addition to the range of feasibility, the latent 

space representation provides insightful information about the classes of responses of in 
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different structures. As Fig. 30 shows, the resonances shift to left as we move counter-

clockwise around the edge of the responses of the Four structure. Also moving from the 

outside of the feasible set toward the center results in significant reduction in the amplitude 

of the resonances. This shows that adding more ellipsoid nanoantennas results in expansion 

of the manifold of responses in a wide range of frequencies, and peaks with higher quality 

factors become achievable. 

The results for two inverse designs are shown in Fig. 30a and b with the 

corresponding optimal design parameters, NMSE, and log-likelihood for each structure in 

structure results in a lower NMSE while BLTL and the One cannot produce a response 

similar to the desired spectra. For the desired response shown in Fig. 31b, however, the 

Three and BLBR structures result in a better design and lower NMSE in comparison to the 

Four which shows that the simpler structure would be a better option. This supports our 

claim regarding the ability of the evolutionary-based method for solving the inverse design 

with minimal design complexity. The response in Fig. 31b resembles a weaker cross-

polarized coupling of dipole resonances compared to the desired response in Fig. 31a. This 

supports the lower NMSE of the predicted responses by BLBR and the Three for the desired 

response in Fig. 30b. However due to the lack of strong co-polarized and cross-polarized 

couplings in BLTL and the One scenarios, the selected desired responses are not feasible 

with these two structures. 

 

Algorithm 1: Evolutionary Design Algorithm 

Result: Optimum Design with Minimal Complexity 
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Step 1: Map the desired response into the latent space using the trained AE 

Step 2: Find the log-likelihood of the feasibility of the response for each design complexity 

and select design candidates with higher log-likelihoods 

Step 3: Use feed forward DNN to search over the design space of the candidates and find 

the optimal solution 

 

 

Figure 30 Representation of the responses in the latent space for the structures shown 

in Fig. 28. The Four structure, which has the highest complexity, has largest feasible 

region while the One has smallest feasible region. The changes in the responses 

corresponding to the movement in the latent space is shown as inset [46]. 
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Table 5 Design parameters (in nm), NMSE, and log-likelihood for responses in Fig. 

31a. T, B, L, and R refer to Top, Bottom, Left, and Right, respectively. R1 is the radius 

along x-axis and R2 is the radius along y-axis for each ellipsoid. 

 r R1BL R2BL R1BR R2BR R1TL R2TL R1TR R2TR NMSE log(r)  

One 897 179 64 0 0 0 0 0 0 0.892 -656  

BLTL 546 79 79 0 0 153 132 0 0 0.876 -457  

BLBR 809 153 143 163 121 0 0 0 0 0.459 -4.14  

Three 780 168 144 168 144 145 98 0 0 0.397 -4.06  

Four 833 823 160 823 160 823 160 160 121 0.238 -0.97  

 

 

 

Table 6 Design parameters (in nm), NMSE, and log-likelihood for responses in Fig. 

31b. T, B, L, and R refer to Top, Bottom, Left, and Right, respectively. R1 is the radius 

along x-axis and R2 is the radius along y-axis for each ellipsoid. 

 r R1BL R2BL R1BR R2BR R1TL R2TL R1TR R2TR NMSE log(r)  

One 683 64 0 0 0 0 0 0 0 0.892 -435  
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BLTL 882 787 111 0 0 174 89 0 0 0.88 -133  

BLBR 737 132 121 132 132 0 0 0 0 0.378 -5.59  

Three 700 168 121 168 98 121 98 0 0 0.411 -8  

Four 700 823 823 823 160 121 121 160 121 0.416 -2.96  

 

 

Figure 31 Results for two desired responses and optimized responses achieved by the 

structures in Fig. 29 using the evolutionary design algorithm. (a) A Gaussian shape 

reflection response with mean at 620 nm and sigma 6nm and (b) a Gaussian with 

mean at 550 nm and sigma 10 nm. The corresponding design parameters, NMSE, and 

log-likelihood are in Table 5 and Table 6, respectively. 

5.4 Optical Sensitivity Analysis: Local Dimensionality Reduction for Studying the 

Role of Design Parameters in Response Variations 
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One of the critical features of designing nanostructure is being robust against errors 

and inconsistencies. Simulation software has been here for a long time, but there are still 

evident inconsistencies even when comparing the results of one software with another. It 

is clear that such results are not entirely accurate and, in the best case, a reasonable 

estimation of the optical responses for a particular nanostructure. This flaw, combined with 

the fabrication inconsistency, necessitates the urgency of having the techniques/solutions 

robust against the possible changes as no one is interested in having a delicate solution 

even if it has maximum accuracy. 

5.4.1 Manifold Learning for Sensitivity Analysis 

In this part we employed manifold learning technique to visualize the sweet spots for 

the designing nanostructures with a desired resonance wavelengths and quality factors (Q). 

First, we simulate 2000 random design patterns of the structure in Fig. 29. Then, we train 

a NN to model design-response relation for the structures. Figure 32 represent the 

corresponding 2-D patterns in the latent space. The bar represent different Q (high and low) 

and the resonance frequency (𝜆). We randomly tweak the design parameters and simulate 

the structure using the trained NN. Figure 33 shows that different part of the manifold 

(accordingly corresponding response regions) have different sensitivity for Q and 𝜆. By 

having such information one could first select the desired operating wavelength and Q 

range and limit the algorithm to work in this region. 
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Figure 32 Low-dimensional representation of 400 random instances achieved by 

structure in Fig. 28. (a) Representation of the 2-D low-dimensional space colored for 

different resonance wavelengths. (b) Representation of the 2-D low-dimensional space 

colored for different resonance Q. 

 

Figure 33 Sensitivity of the response in the low-dimensional space for 400 random 

designs achieved by structure in Fig. 29. (a) Representation of the Q in 2-D low-

dimensional space colored for different standard deviation. (b) Representation of the 
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Q in 2-D low-dimensional space colored for different mean. (c) Representation of the 

resonance wavelength in 2-D space colored for different standard deviation. (d) 

Representation of the resonance wavelength in 2-D space colored for different mean. 

5.4.2 Relating the Design Inconsistencies to the Latent Response Variations 

The developed approach introduced in the previous section can be modified to 

enhance any desired feature in the DR algorithm, especially for understanding the roles of 

different design parameters. In this setting, the input to the DR autoencoder for the design 

space is not the design parameters; instead, it is the variation of design parameters to study 

the sensitivity to such variations. The algorithm (see Fig. 34) starts with selecting a desired 

feature in the input-output characteristics. For each point in the reduced response space, I 

find the k nearest neighbors in that space that have the smallest distance|δ>,?| to the selected 

point I; 𝛿+,8 is a quantitative measure defined based on the selected feature. In the next step, 

I find find the design space points that correspond to the point i and points j = 1, 2, …, and 

k in the response space. We then calculate the vector of design parameter variations 

between points i and j in the design space (assuming n design parameters. This vector will 

have n components and is defined as	𝛥+,8). Each element of this vector is the difference 

between one of the design parameters' values at points i and j. Note that each point in the 

design space corresponds to a vector (of size n) that describes all design parameters 

corresponding to a single nanostructure design. To enhance the selected feature's role, we 

multiply this vector by its corresponding	|𝛿+,8|. Then, I use the enhanced sensitivity vector 

components|𝛿+,8|	𝛥+,8 as the input to the DR autoencoder in the design space. Note that for 

each design point i, we will have k sets of input data (corresponding to the variation 
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between points i and j = 1, 2, …, k) for training the autoencoder. The DR process here 

reduces the dimensions of the various vectors in the design space. Once the process is 

complete, the autoencoder's input points with higher weights correspond to design 

parameters with the most substantial influence on the selected feature. Considering the vast 

possibilities in choosing the number of nearest neighbors (k), the distance measure𝛿+,8, and 

the structure of the autoencoder, the ability of this approach in providing a deep 

understanding of the role of different design parameters on the input-output characteristics 

of the nanostructure is outstanding.  

 

Figure 34 Representation of the latent design and response relation and relating the 

sensitivity of the design to the latent response. 

5.5 Pruning Neural Networks for Understanding Design Response Relation 

In the previous section we presented variety of techniques for learning the underlying 

physics of light-matter interactions. While these techniques are quite useful in discovering 

knowledge in nanophotonics, analyzing the intermediate connection of NNs become harder 

as we move toward the inner layers (deeper layers). Also, by analyzing the first layer we 
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will learn just a limited information about the role of design parameter. Here we employed 

pruning techniques for both removing nodes and connections to simplify the NN and study 

the effect of that simplification in the accuracy of the network. Figure 35 represents the 

pruning [60] technique for the node and synapse reduction scenarios.  

 

 

Figure 35 Schematic of the node and synapse pruning technique. 

To show the effectiveness of the pruning technique in simplifying the NN while 

preserving the valid model for relating design to response, I applied the pruning algorithm 

to train a NN for modeling nanostructure response in Fig. 29. I trained two different NNs 

with different number of connections (deepness), on with 2.2M connections and one with 

2.4K connections. The results in Fig. 33 represent the accuracy of these two networks for 

different pruning levels (sparsity levels). As it is shown in Fig. 36a and b we could preserve 
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the same accuracy for the model while removing more than 25% of the connections in both 

scenarios. 

 

 

Figure 36 Results of pruning NNs trained to model the design to response relation of 

the structure in Fig. 29 for different pruning levels (i.e., sparsity levels) and different 

techniques (weight pruning and neuron pruning). (a) MSE of the pruned NN with 2.2 

M connections trained to model design to response relation of the structure in Fig. 7. 

(b) MSE of the pruned NN with 2.4 k connections trained to model design to response 

relation of the structure in Fig. 29. 

 

5.6 Conclusion 

In conclusion, I demonstrated here an AI-based technique for the understanding of 

the physics of wave-matter interaction in nanostructures [36-38]. Using the DR algorithm 
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in the response space and the design space (using an autoencoder and a pseudo-encoder, 

respectively), I could obtain an analytic formula that relates the design parameters to the 

response of the nanostructure while providing access to the weights of the NNs at all layers. 

By analysing these weights, meaningful information about the roles of different design 

parameters in the nanostructure's overall response can be obtained. This intuitive 

information can be used to understand the physics of light-matter interaction while 

facilitating the device optimization process by suggesting a non-uniform discretization of 

the design parameters to reduce the computation requirements. The approach presented 

here can significantly impact the design and understanding of the EM wave-matter 

interaction in nanostructures while being extendable to several other applications. 

We showed that manifold learning [56-58] could significantly facilitate 

nanophotonic structures' inverse design and provide the optimal solution while evolving 

toward the least complex structure by providing multiple solutions (using feasibility score 

provided by GMM) with different degrees of freedom. By applying the technique to a 

dielectric metastructure design problem, we achieved the optimum nanostructure for a 

particular desired response while minimizing the geometrical complexity. Lastly, this can 

be extended to a wide range of design problems- fluid mechanics, material science, and 

electronics, to name a few. 
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CHAPTER 6. EPILOGUE 

6.1 Contribution to the Field  

Design of photonic devices in the nanoscale regime outperforming the bulky optical 

components has been a long-lasting challenge in state-of-the-art applications. Accordingly, 

devising a comprehensive model to understand and explain the physics and dynamics of 

light-matter interaction in these nanostructures is a substantial step toward the realization 

of novel photonic devices. To this end, existing modeling methods can be categorized into 

two main groups: single- and multi-objective approaches. Single-objective approaches 

either rely on exhaustive design parameter sweeps using brute-force EM-solvers or evolve 

from an initial guess to a final result. Although the former requires extensive computation, 

the latter highly depends on the initial guess and, in most cases, converges to a local 

optimum. Parametrized adjoint optimization techniques can be used to design high-

performance nanostructures; however, it is computationally expensive. All of these single 

objective approaches are computationally demanding and fail when the input-output 

relation is complex or the number of the desired features for a nanostructures grows. In 

contrast, multi-objective methods deal with the formation of a model to optimize a certain 

class of problems. Although these methods are more computationally efficient, obtaining 

an optimal solution is not guaranteed. 

DL-based design approaches, combined with limited exhaustive searches, have 

proven to be a potent solver of multi-objective optimization problems by learning the input-

output relation. DR approaches convert the inverse design problem into a more manageable 

version of it by effectively reducing the dimensionality of the problem. More importantly, 
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such novel techniques can provide considerable valuable insight about the dynamics of 

light-matter interaction in nanostructures with the hope of uncovering new phenomena that 

can be used to form a completely new types of devices. The change in focus of using DL 

techniques from “optimization” to “knowledge discovery” can open a new research area 

with potentially transformative results in the entire field of nanophotonics. Examples of 

these “knowledge discovery” paradigms include assessing the feasibility of a desired 

response using a given structure as well as the range of the possible responses a given 

design can provide. Knowing the feasibility of a desired response offered by a photonic 

nanostructure is very helpful prior to any design or optimization effort in avoiding 

suboptimal designs or convergence issues. It also guides us to modify the initial structure 

to achieve the desired response. 

I have developed a new paradigm based on leveraging the “intelligent” aspects of AI 

to design nanostructure and understand the underlying physics of light-matter interactions.  

I showed, for the first time, that by reducing the dimensionality of the response and design 

spaces in nanophotonics using an autoencoder and a pseudo-encoder, we could convert the 

initial many-to-one problem into a one-to-one (or in the worst case, close to one-to-one) 

problem plus a considerably simpler one-to-many problem that can be solved using brute-

force analytical formulas. The resulting approach considerably reduces the computational 

complexity of both the forward problem and the inverse (or design) problem. Besides, it 

allows for the inclusion of the design restrictions (e.g., fabrication limitations) without 

adding computational complexities. It also provides valuable information about the roles 

of design parameters in the EM structure response, which can potentially enable novel 

phenomena and devices. Finally, this technique can be extended to solve many different 
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optimization problems in a wide range of science and engineering disciplines as long as 

enough data for training the incorporated AI algorithms are provided. 

I demonstrated an AI-based technique for the understanding of the physics of wave-

matter interaction in photonic nanostructures. Using the DR algorithm in the response 

space and the design space (using an autoencoder and a pseudo-encoder, respectively), I 

obtained an analytic formula to relate the design parameters to the response of the 

nanostructure while providing access to the weights of the NNs at all layers. By analyzing 

these weights, meaningful information about the roles of different design parameters in the 

overall response of the nanostructure can be obtained. This intuitive information can be 

used to understand the physics of light-matter interaction while facilitating the device 

optimization process by suggesting a non-uniform discretization of the design parameters 

to reduce the computation requirements. The approach presented here can significantly 

impact the design and understanding of the light-matter interaction in photonic 

nanostructures while being extendable to several other applications. 

I presented a new approach in utilizing AI for knowledge discovery in nanophotonics 

by training two well-known algorithms (convex-hull and one-class SVM). I showed that 

by combining the convex-hull (or the one-class SVM) with DR by an autoencoder, we 

could find the range of possible responses and the degree of the feasibility of any desired 

response from any given class of nanostructure in its latent RS. By applying these 

techniques to a series of nanostructures, I showed the unique capabilities of one-class SVM 

and convex-hull algorithms in providing valuable insight into the capabilities of any EM 

nanostructure in providing different types of responses. While this is the first demonstration 

of an AI-based approach for such knowledge discovery, the presented techniques show 
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great potentials in facilitating the understanding of the underlying physics of EM 

nanostructures as well as forming a more systematic approach in designing such 

nanostructures. 

I presented a new approach to utilize manifold learning for knowledge discovery in 

nanophotonics by studying the low-dimensional manifold of optical spectra using the LLE 

algorithm. By applying this technique to a class of nanostructures, I showed the unique 

functionality of this method in supplying valuable insights about different features of the 

response of any EM nanostructure and its capabilities in providing different types of 

responses. The resulting approach can be used as a facilitator during the design and 

engineering of photonic nanostructures and understanding the roles of different design 

parameters in the response of the structure. It is worth mentioning that this method can 

analyze a wide range of optical design problems with different levels of complexity. 

While my work provided the first examples of using AI for knowledge discovery in 

nanophotonic structures, the AI approaches I developed in this thesis are equally important 

in facilitating inverse design of photonic nanostructures, an urgent need of the industry. I 

showed that my DR techniques could reduce the computation requirements for the inverse 

design of photonic nanostructures by several orders of magnitude. Combined with the 

knowledge discovery techniques like one-class SVM and convex-hull, I showed the 

possibility of evolving from an initial architecture to a more optimal one (e.g., with reduced 

complexity, easier fabrication, etc.).   

A key challenge that I addressed in the design of nanostructures was the non-

uniqueness issue. I leverage MDNs to overcome the non-uniqueness challenge by 
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providing multiple designs for each desired optical response. I showed that by employing 

probabilistic methods (e.g., gaussian mixture models), a series of viable designs can be 

achieved for any desired response. Since material characteristics play a significant role in 

forming optical responses, I developed a fully automated tool based on my AI techniques 

for first selecting different materials in the envisioned platform and then finding the optimal 

geometrical design parameters for a complete solution of the inverse design problem. 

I developed a fully probabilistic approach, which provided the degree of feasibility 

of any desired response from a type of nanostructure. Such a method can facilitate the 

design of nanostructures using conventional inverse-problem-solving approaches like 

genetic algorithms that focus on finding the design parameters of a selected structure 

without carefully studying the feasibility of achieving the desired response using the 

selected initial structure. My approach can also be combined with any other optimization 

approach as an initial feasibility-study step to ensure the initially selected structure for 

optimization is indeed a proper choice. More importantly, my method can reduce the initial 

selection complexity before running the optimization procedure to avoid unnecessarily 

complicated designs and reduce the fabrication challenges.  

Extending the AI-based approaches to more sophisticated techniques, I demonstrated 

a reliable physics-driven manifold-learning approach to significantly facilitate the inverse 

design of nanophotonic structures and provide the optimal solution while evolving toward 

the least complex structure. The technique can offer multiple solutions (using MDNs) with 

different degrees of freedom. This model guides the user to select the best structure with 

the least design complexity (lowest fabrication complexity).  
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In summary, I have developed a rich portfolio of AI-based techniques for detailed 

knowledge discovery and inverse design of photonic nanostructures. I studied several 

important features in both obtaining valuable insight into the operation physics of these 

structures and in finding an optimal structure to provide a given response. I believe the 

combination of these approaches have opened a new area of research that can blossom in 

the coming years and change the way we analyze, design, and optimize nanophotonic 

structures. I am pleased that my techniques are being used by several research groups in 

the field to participate in this endeavor for a new era in intelligent knowledge discovery 

and design of electromagnetic nanostructures. I envision similar techniques can be adopted 

for a wide range of science and engineering disciplines. As such, I hope this thesis can 

facilitate innovative solutions for state-of-the-art problems in several applications. 

6.2 Future Works 

Despite the efforts on developing inverse design tools/algorithms, there is not any 

technique to solve ALL possible problems with arbitrary levels of complexity. All methods 

rely on intelligent trial and error on forward path, or they do the cyclic search over the 

design space. The main advantage of intelligent techniques is the computation efficiency 

and ability to reduce the complexity of the computation, e.g., by forming a complex 

analytic formula to replace the detailed EM solution. The reason of the limited success of 

several techniques (including some of the recent AI approaches) is simply the complexity 

of the design problem in which obtaining each instance (e.g., full simulation of a single 

structure) is time-consuming. This reduces the number of available samples that are 

obtained with a certain level of computation (e.g., using EM solvers). The AI-based 

techniques in this thesis were designed to increase the computation efficiency and thus, 
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expand the range of possible problems by enabling the design of gematrically more 

complex structures. Thus, there is still a major need to push for more computation 

efficiency and accepting some errors to obtain more sophisticated insight into the operation 

of the photonic nanostructures.   

I envision three main paths for further improvement of the AI-based approaches for 

nanophotonics. First, we should develop approaches that can enable free-form structures 

(no pre-selected geometries) without requiring excessive computation due to the huge 

number of possible designs. This would be achieved by reducing the size of the design 

space while maximizing the spanned region in the response space. This could be done by 

creating some motif structures (rather than completely random binary patterns for a free-

form structure) in the form of super cells and using them as building blocks to form any 

given nanostructure. In this formation, we do not consider changing one pixel of the free-

form structure at a time. We rather consider combining different building blocks that have 

tangible impact on the response. Second, I believe we need to change our way of using 

same metrics for all the design problems. By using different metrics based on the 

importance of any given design parameter in the overall response (which can be found by 

the approaches I developed), the convergence of the algorithm with far fewer instances for 

training will be achieved. Finally, I believe efforts should be focused on reducing the 

number of connections between the design and response spaces to minimize the complexity 

of the input-output relation while providing maximum information about the physics of 

operation of the desired device. This will be a more rigorous extension of the pruning work 

that I did in this thesis. I believe these three efforts worth extensive investigations, which 

could form new PhD theses and hopefully, high-impact research projects.  



 101 

REFERENCES 

1. Taghinejad, Mohammad, and Wenshan Cai. "All-optical control of light in 
micro-and nanophotonics." ACS Photonics 6.5 (2019): 1082-1093. 

2. Shen, Yichen, et al. "Deep learning with coherent nanophotonic 
circuits." Nature Photonics 11.7 (2017): 441-446. 

3. Sreekanth, Kandammathe Valiyaveedu, et al. "Biosensing with the singular 
phase of an ultrathin metal-dielectric nanophotonic cavity." Nature 
communications 9.1 (2018): 1-8. 

4. O’Carroll, Deirdre M. "Nanophotonics and plasmonics for solar energy 
harvesting and conversion." J. Photonics Energy 5.1 (2015): 057001. 

5. Zhang, Shuyan, et al. "Metasurfaces for biomedical applications: imaging and 
sensing from a nanophotonics perspective." Nanophotonics 10.1 (2021): 259-
293. 

6. Lin, Dianmin, et al. "Dielectric gradient metasurface optical 
elements." science 345.6194 (2014): 298-302 

7. Anthony, Martin, and Peter L. Bartlett. Neural network learning: Theoretical 
foundations. cambridge university press, 2009. 

8. Huntington, Mark D., Lincoln J. Lauhon, and Teri W. Odom. "Subwavelength 
lattice optics by evolutionary design." Nano letters 14.12 (2014): 7195-7200. 

9. Jin, Zhongwei, et al. "Complex inverse design of meta-optics by segmented 
hierarchical evolutionary algorithm." ACS nano 13.1 (2019): 821-829. 

10. Cai, Haogang, et al. "Inverse design of metasurfaces with non-local 
interactions." npj Computational Materials 6.1 (2020): 1-8. 

11. Tehrani, Kayvan F., et al. "Adaptive optics stochastic optical reconstruction 
microscopy (AO-STORM) using a genetic algorithm." Optics express 23.10 
(2015): 13677-13692. 

12. Macias, Demetrio, Dominique Barchiesi, and Alexandre Vial. "Evolutionary 
approach to an inverse problem in near-field optics microscopy." Optical 
Micro-and Nanometrology in Manufacturing Technology. Vol. 5458. 
International Society for Optics and Photonics, 2004. 

13. Macias, Demetrio, Alexandre Vial, and Dominique Barchiesi. "Inverse 
scattering algorithm for near-field optics microscopy using intensity 
data." Progress in Electromagnetics Research Symposium. 2004. 

14. Peurifoy, John, et al. "Nanophotonic particle simulation and inverse design 
using artificial neural networks." Science advances 4.6 (2018): eaar4206. 

15. Liu, Dianjing, et al. "Training deep neural networks for the inverse design of 
nanophotonic structures." ACS Photonics 5.4 (2018): 1365-1369. 

16. Tahersima, Mohammad H., et al. "Deep neural network inverse design of 
integrated photonic power splitters." Scientific reports 9.1 (2019): 1-9. 

17. So, Sunae, and Junsuk Rho. "Designing nanophotonic structures using 
conditional deep convolutional generative adversarial 
networks." Nanophotonics 8.7 (2019): 1255-1261. 

18. Lalau-Keraly, Christopher M., et al. "Adjoint shape optimization applied to 
electromagnetic design." Optics express 21.18 (2013): 21693-21701. 



 102 

19. Chen, Yingshi, et al. "Smart inverse design of graphene-based photonic 
metamaterials by an adaptive artificial neural network." Nanoscale 11.19 
(2019): 9749-9755. 

20. Yao, Kan, Rohit Unni, and Yuebing Zheng. "Intelligent nanophotonics: 
merging photonics and artificial intelligence at the 
nanoscale." Nanophotonics 8.3 (2019). 

21. Ma, Wei, Feng Cheng, and Yongmin Liu. "Deep-learning-enabled on-demand 
design of chiral metamaterials." ACS nano 12.6 (2018): 6326-6334. 

22. Inampudi, Sandeep, and Hossein Mosallaei. "Neural network based design of 
metagratings." Applied Physics Letters 112.24 (2018): 241102. 

23. Sakurai, Atsushi, et al. "Ultranarrow-band wavelength-selective thermal 
emission with aperiodic multilayered metamaterials designed by Bayesian 
optimization." ACS central science 5.2 (2019): 319-326. 

24. Liu, Zhaocheng, et al. "Generative model for the inverse design of 
metasurfaces." Nano letters 18.10 (2018): 6570-6576. 

25. So, Sunae, et al. "Deep learning enabled inverse design in 
nanophotonics." Nanophotonics 9.5 (2020): 1041-1057. 

26. Jiang, Jiaqi, et al. "Free-form diffractive metagrating design based on 
generative adversarial networks." ACS nano 13.8 (2019): 8872-8878. 

27. Jiang, Jiaqi, and Jonathan A. Fan. "Global optimization of dielectric 
metasurfaces using a physics-driven neural network." Nano letters 19.8 (2019): 
5366-5372. 

28. Nadell, Christian C., et al. "Deep learning for accelerated all-dielectric 
metasurface design." Optics express 27.20 (2019): 27523-27535. 

29. Baxter, Joshua, et al. "Plasmonic colours predicted by deep learning." Scientific 
reports 9.1 (2019): 1-9. 

30. Hegde, Ravi S. "Accelerating optics design optimizations with deep 
learning." Optical Engineering 58.6 (2019): 065103. 

31. Kudyshev, Zhaxylyk A., et al. "Rapid classification of quantum sources enabled 
by machine learning." Advanced Quantum Technologies 3.10 (2020): 
2000067. 

32. Melati, Daniele, et al. "Mapping the global design space of integrated photonic 
components using machine learning pattern recognition." arXiv preprint 
arXiv:1811.01048 (2018). 

33. Hammond, Alec M., and Ryan M. Camacho. "Designing integrated photonic 
devices using artificial neural networks." Optics express 27.21 (2019). 

34. Lalau-Keraly, Christopher M., et al. "Adjoint shape optimization applied to 
electromagnetic design." Optics express 21.18 (2013): 21693-21701. 

35. Aggarwal, Charu C. "On k-anonymity and the curse of dimensionality." VLDB. 
V. 

36. Kiarashinejad, Yashar, Sajjad Abdollahramezani, and Ali Adibi. "Deep 
learning approach based on dimensionality reduction for designing 
electromagnetic nanostructures." npj Computational Materials 6.1 (2020): 1-
12. 

37. Kiarashinejad, Yashar, et al. "Mitigating inverse design complexity of nano-
antennas using a novel dimensionality reduction approach (conference 



 103 

presentation)." Photonic and Phononic Properties of Engineered 
Nanostructures IX. Vol. 10927. International Society for Optics and Photonics, 
2019. 

38. Kiarashinejad, Yashar, et al. "Deep learning reveals underlying physics of 
light–matter interactions in nanophotonic devices." Advanced Theory and 
Simulations 2.9 (2019): 1900088. 

39. Hemmatyar, Omid, et al. "Full color generation with fano-type resonant HfO2 
nanopillars designed by a deep-learning approach." Nanoscale 11.44 (2019): 
21266-21274. 

40. Zandehshahvar, Mohammadreza, et al. "Dimensionality reduction-based 
method for design and optimization of optical nanostructures using neural 
network." Frontiers in Optics. Optical Society of America, 2019. 

41. Bishop, Christopher M. "Mixture density networks." (1994). 
42. Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the 

dimensionality of data with neural networks." science 313.5786 (2006): 504-
507. 

43. Roweis, Sam T., and Lawrence K. Saul. "Nonlinear dimensionality reduction 
by locally linear embedding." science 290.5500 (2000): 2323-2326. 

44. Zandehshahvar, Mohammadreza, et al. "Inverse design of photonic 
nanostructures using dimensionality reduction: reducing the computational 
complexity." Optics Letters 46.11 (2021): 2634-2637. 

45. Zandehshahvar, Mohammadreza, et al. "Sample-efficient machine-learning 
method for designing photonic nanostructures (Conference 
Presentation)." Photonic and Phononic Properties of Engineered 
Nanostructures X. Vol. 11289. International Society for Optics and Photonics, 
2020. 

46. Zandehshahvar, Mohammadreza, et al. "Accelerating inverse design of 
nanostructures using manifold learning." NeuRIPS machine learning for 
engineering and modeling, 2020. 

47. Kiarashinejad, Yashar, et al. "Knowledge discovery in nanophotonics using 
geometric deep learning." Advanced Intelligent Systems 2.2 (2020): 1900132. 

48. Kiarashinejad, Yashar, et al. "Geometric Deep Learning Unlocks the 
Underlying Physics of Nanostructures." CLEO: Science and Innovations. OSA, 
2020. 

49. Zandehshahvar, Mohammadreza, et al. "Cracking the Design Complexity of 
Nanostructures Using Geometric Deep Learning." CLEO: Science and 
Innovations. Optical Society of America, 2020. 

50. Cotuk, Umit. Scattering from multi-layered metamaterials using wave matrices. 
Naval Postgraduate School Mnterey CA, 2005. 

51. Barber, C. Bradford, David P. Dobkin, and Hannu Huhdanpaa. "The quickhull 
algorithm for convex hulls." ACM Transactions on Mathematical Software 
(TOMS) 22.4 (1996): 469-483. 

52. Maaten, Laurens van der, and Geoffrey Hinton. "Visualizing data using t-
SNE." Journal of machine learning research 9.Nov (2008): 2579-2605. 

53. Balasubramanian, Mukund, et al. "The isomap algorithm and topological 
stability." Science 295.5552 (2002): 7-7. 



 104 

54. McInnes, Leland, John Healy, and James Melville. "Umap: Uniform manifold 
approximation and projection for dimension reduction." arXiv preprint 
arXiv:1802.03426 (2018). 

55. Chen, Yunqiang, Xiang Sean Zhou, and Thomas S. Huang. "One-class SVM 
for learning in image retrieval." Proceedings 2001 International Conference on 
Image Processing (Cat. No. 01CH37205). Vol. 1. IEEE, 2001. 

56. Abdollahramezani, Sajjad, et al. "Dynamic hybrid metasurfaces." arXiv 
preprint arXiv:2008.03905 (2020). 

57. Zandehshahvar, Mohammadreza, et al. "Manifold learning for knowledge 
discovery and intelligent inverse design of photonic nanostructures: breaking 
the geometric complexity." arXiv preprint arXiv:2102.04454 (2021). 

58. Kiarashi, Yashar, Mohammadreza Zandehshahvar, and Ali Adibi. "Manifold 
learning for knowledge discovery and design in nanophotonics." Photonic and 
Phononic Properties of Engineered Nanostructures XI. Vol. 11694. 
International Society for Optics and Photonics, 2021. 

59. Reynolds, Douglas A. "Gaussian mixture models." Encyclopedia of 
biometrics 741 (2009): 659-663. 

60. Han, Song, Huizi Mao, and William J. Dally. "Deep compression: Compressing 
deep neural networks with pruning, trained quantization and huffman 
coding." arXiv preprint arXiv:1510.00149 (2015).  

61. Wiecha, Peter R., Arnaud Arbouet, Christian Girard, and Otto L. Muskens. 
"Deep learning in nano-photonics: inverse design and beyond." Photonics 
Research 9, no. 5 (2021): B182-B200. 

62. Dinsdale, Nicholas J., Peter R. Wiecha, Matthew Delaney, Jamie Reynolds, 
Martin Ebert, Ioannis Zeimpekis, David J. Thomson et al. "Deep learning 
enabled design of complex transmission matrices for universal optical 
components." ACS Photonics 8, no. 1 (2021): 283-295. 
 


