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Although this may seem a paradox, all exact science is dominated by the idea of

approximation. When a man tells you that he knows the exact truth about anything, you

are safe in inferring that he is an inexact man.

Bertrand Russell
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SUMMARY

The effectiveness of dynamic program analyses, such as profiling and memory-leak

detection, crucially depend on the quality of the test inputs. However, adequate sets of

inputs are rarely available. Existing automated input generation techniques can help but

tend to be either too expensive or ineffective. For example, traditional symbolic execution

scales poorly to real-world programs and random input generation may never reach deep

states within the program.

For scalable, effective, automated input generation that can better support dynamic

analysis, I propose an approach that extends traditional symbolic execution by targeting in-

creasingly small fragments of a program. The approach starts by generating inputs for the

whole program and progressively introduces additional unconstrained state until it reaches

a given program coverage objective. This approach is applicable to any client dynamic anal-

ysis requiring high coverage that is also tolerant of over-approximated program behavior–

behavior that cannot occur on a complete execution.

To assess the effectiveness of my approach, I applied it to two client techniques. The

first technique infers the actual path taken by a program execution by observing the CPU’s

electromagnetic emanations and requires inputs to generate a model that can recognize

executed path segments. The client inference works by piece wise matching the observed

emanation waveform to those recorded in a model. It requires the model to be complete (i.e.

contain every piece) and the waveforms are sufficiently distinct that the inclusion of extra

samples is unlikely to cause a misinference. After applying my approach to generate inputs

covering all subsegments of the program’s execution paths, I designed a source generator to

automatically construct a harness and scaffolding to replay these inputs against fragments

of the original program. The inference client constructs the model by recording the harness

execution.

The second technique performs automated regression testing by identifying behavioral

xii



differences between two program versions and requires inputs to perform differential test-

ing. It explores local behavior in a neighborhood of the program changes by generating

inputs to functions near (as measured by call-graph) to the modified code. The inputs are

then concretely executed on both versions, periodically checking internal state for behav-

ioral differences. The technique requires high coverage inputs for a full examination, and

tolerates infeasible local state since both versions likely execute it equivalently.

I will then present a separate technique to improve the coverage obtained by symbolic

execution of floating-point programs. This technique is equally applicable to both tradi-

tional symbolic execution and my progressively under-constrained symbolic execution. Its

key idea is to approximate floating-point expressions with fixed-point analogs.

In concluding, I will also discuss future research directions, including additional empir-

ical evaluations and the investigation of additional client analyses that could benefit from

my approach.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Software permeates our everyday living environment, from critical services (e.g. aircraft

separation and safety) to helpful conveniences (e.g. smartwatch reminders). When software

fails, the ramifications can range from catastrophic loss of life, to a consequential loss

of corporate market share. Moreover, the cost of software defects is a significant drag

on the economy. A widely cited 2002 NIST report approximated the cost of bugs in the

U.S. as $59.5 billion. A more current report by the Consortium for IT software Quality

(CISQ) estimated the U.S. cost of software operational failures in 2020 as $1.56 trillion

and identified the primary underlying cause as unmitigated software flaws [1].

1.1 Motivation

To reduce these costs, developers must detect these defects early. Dynamic program anal-

ysis is a common approach to defect detection, in which the analysis is performed during

program execution. This approach can be effective in diverse tasks such as memory-leak

and concurrency errors, but good results crucially depend on the quality of the test inputs.

Since dynamic analysis can only verify a property along an executed path, the test inputs

must provide high coverage of the targeted program behaviors. However, high-coverage in-

puts are not always available. Existing automated input generation techniques can help but

tend to be either too expensive or ineffective. For example, traditional symbolic execution

scales poorly to real-world programs and random input generation may never reach deep

states within the program. For example, consider a simple server application that accepts a

complexly formatted input, performs an analysis or transformation, and outputs the result.

A typical architecture for such a system would entail two major modules: a parser to val-

idate and instantiate the input and an operational module for analysis or transformation of
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the instantiated object. Randomly formatted inputs would often fail pass the parser valida-

tion to reach and exercise the operational module, especially if the parser’s input included

a magic identifier value, checksum, or hash value over the input. Symbolic execution can

find solutions for validated input, but due to the complex, looping flow control common to

input parsers, the majority of the executor’s explored paths may remain within the parser.

Depending upon the executor’s path scheduling algorithm, the paths within the operational

module may easily be starved by their more numerous parser-bound brethren.

Traditional symbolic execution [2] has advanced considerably in the past decade. By

treating all program inputs as symbolic values and conjoining constraints upon these input

values at conditional branch statements (the so-called path condition), symbolic execu-

tion can theoretically explore all feasible program paths. At each statement, the symbolic

executor can use the constrained symbolic values to compute the state of the analytic prop-

erty. However, as both a precise and a complete analysis technique, symbolic execution

suffers from scalability limitations. Since the number of paths explored tend to be expo-

nential in the number of program branch statements, the symbolic execution of real-world

programs often induces path explosion [3]. Also, since each path condition accumulates

terms at every conditional branch, they can become lengthy and computations entailing the

path condition can become a performance bottleneck. In describing the state of symbolic

execution, Cadar and Sen [3] listed constraint solving performance as the second-greatest

challenge to progress. Symbolic execution’s runtime is often dominated by the solver itself.

1.2 Approach

For scalable, effective automated input generation that can better support dynamic analysis,

I propose an approach that extends traditional symbolic execution by targeting increasingly

small fragments of a program. The approach starts by generating inputs for the whole pro-

gram and progressively introduces additional unconstrained state until it reaches a given

program coverage objective. This approach is applicable to any client dynamic analy-
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sis requiring high coverage that is also tolerant of over-approximated program behavior–

behavior that cannot occur on a complete execution from the standard program entry point

(i.e. main). Note that my approach does not attempt to compose the fragments into a

coherent set of program inputs, which would violate the Anti-Extensibility axiom [4]. In-

stead, the approach considers behavior in a local neighborhood of a program point. Feasible

program behavior is then a subset of this neighborhood behavior.

To assess the effectiveness of my approach, I applied it to two client techniques. The

first technique infers the actual path taken by a program execution by observing the CPU’s

electromagnetic emanations and requires inputs to construct a model for recognition of ex-

ecuted path segments. In this technique, the approach generates inputs to code fragments

generated in a neighborhood of each path segment for training. The client inference works

by piece wise matching the observed emanation waveform to those recorded in the model.

It requires the model to be complete (i.e. contain every piece) and the waveforms are

sufficiently distinct that the inclusion of extra samples is unlikely to cause an inference er-

ror. After applying my approach to generate inputs covering all segments of the program’s

execution paths, I designed a source generator to automatically construct a harness and

scaffolding to replay these inputs against fragments of the original program. The inference

client constructs the model by recording the harness execution.

The second technique performs automated regression testing by identifying behavioral

differences between two program versions. This technique identifies related neighborhoods

in both versions of the program that bound the modified code statements. It then explores

local behavior in these neighborhoods by generating inputs to functions near (as measured

by call-graph) to the modified code. The inputs are then concretely executed on both ver-

sions, periodically checking both external and internal state for behavioral differences.

The final work presented in this thesis is preliminary work to extend the coverage of

inputs generated by symbolic execution of floating-point programs. My technique automat-

ically substitutes fixed-point data types and operations for native floating-points types in the
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module under test. By replacing the floating-point types, the executor does not require a

floating-point enabled solver, nor extensions to the constraint language for type awareness.

The approach has limitations as compared to native floating-point. However, if the goal

of the analysis is high coverage input generation, the substitution of fixed-point operations

can find symbolic rational values to explore execution paths that current state-of-the-art

techniques cannot.

1.3 Contributions

Inputs generated by extending traditional symbolic execution to target progressively smaller

program fragments can improve the effectiveness of dynamic program analysis techniques

that can tolerate some amount of infeasibility by considerably increasing the analysis’s

coverage.

My research provides the following novel contributions:

• Progressive Symbolic Execution (PSE), which progressively introduces additional

unconstrained symbolic state for maximum path coverage.

• Zero-Overhead Path Inference (ZOPI) model construction, which extracts program

fragments, uses PSE to generate fragment inputs, and constructs suitable scaffolding

for the piece-wise execution of all program paths.

• Over-approximate Differential Testing (ODIT), which given two versions of a pro-

gram, systematically explores all the changed program behaviors.

• Publicly available prototype tools for the techniques.

• Empirical evaluations supporting the utility and scalability of the techniques.

• A prototype tool and initial empirical evaluation of KLEE-FXP, a technique to sub-

stitute fixed-point approximation of floating-point expressions to improve symbolic

execution coverage.
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1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 gives a brief overview

of foundational techniques upon which this work builds and defines some common ter-

minology used throughout this thesis. Chapter 3 details my technique for high-coverage

input generation, Progressive Symbolic Execution (PSE). Chapter 4 details my contri-

butions to Zero-Overhead Path Inference (ZOPI). Chapter 5 describes my technique for

behavioral differencing, Over-approximate Differential Testing (ODIT) and discusses ex-

periments and case studies supporting ODIT scalability. Chapter 6 outlines ODIT future

work for ODIT and applying fixed-point approximations to symbolic execution. Chapter 7

discusses related works. Finally, Chapter 8 concludes my thesis.
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CHAPTER 2

BACKGROUND

This chapter provides a background discussion covering traditional symbolic execution [2]

and under-constrained symbolic execution [5], together with limitations of both. It also

includes a discussion on an essential supporting technique, lazy initialization.

2.1 Traditional Symbolic Execution

Traditional symbolic execution [2] executes a program with symbolic input instead of con-

crete values, exploring all feasible program paths by executing the program with symbolic

external state. The symbolic executor maintains a set of symbolic states, each with an as-

sociated logical conjunction, the path condition PC, accumulated during execution. The

executor starts with a single state with a symbolic value for each of the program inputs and

an empty PC. It then executes program statements in their normal execution order and

with their original semantics, with the following two exceptions:

1. The executor computes statement values as symbolic values relative to the original

symbolic input values.

2. The executor forks a single state S when executing a branch statement with condition

C into two states, ST and SF , with associated PCs:

• PCT = PC ∧ C

• PCF = PC ∧ ¬C respectively.

While retaining only those states whose PCs are satisfiable.

The executor continues by selecting a state and executing its next statement. Execu-

tors work in conjunction with a constraint solver which can compute satisfying solutions
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to PCs. After the executor completes the final instruction for a state, the solver can then

supply program input values that will reproduce the state’s path through the program. In

theory, symbolic execution could provide inputs for complete path coverage. But, in prac-

tice path explosion [3] (the number of states is exponential in the number of branches),

solver performance overhead, and solver supporting theories required to solve PCs (e.g.

floating-point) limit path coverage [3].

2.2 Under-constrained Symbolic Execution

Starting from main, traditional symbolic execution may never reach a targeted function be-

fore suffering path explosion [3] or arriving at an unsolvable constraint. Under-constrained

symbolic execution [5] extends symbolic execution by substituting symbolic values for

internal state as well as program inputs. By substituting symbolic values for function argu-

ments and global variables, this technique can begin execution from any function, not just

program main. However, the consequence of this ability to reach deep within a program

for a targeted function is that under-constrained symbolic execution can produce infeasible

inputs for a function f ; that is, no program inputs executed from main can call f with the

generated inputs.

2.3 Lazy Initialization

Lazy initialization [6] is an important enabling technique for under-constrained symbolic

execution, as it allows the handling of unconstrained pointers or references. In languages

supporting pointers, lazy initialization [6] accounts for an unconstrained pointer p by fork-

ing states for each of:

1. p = NULL

2. p = new allocation

3. p = pre-existing memory object(s)

7



Various tools have implemented lazy initialization for symbolic execution in Java (e.g., [6,

7, 8]), C/C++ (via LLVM IR [9]), and object code [10]. Because this technique can inflict

a significant performance penalty, researchers have proposed optimizations for Java-based

symbolic execution [11, 12, 13]. However, these optimizations would be difficult to imple-

ment without Java’s memory manager and strict type safety.

2.4 Definitions

In this section, I define some terms used throughout the remainder of my thesis.

Control Flow Graph (CFG). A CFG for a function f is a directed graph G = ⟨N,E, en, ex⟩,

where N is a set of nodes that represent statements in f , E ⊆ N×N is a set of edges

that represent the flow of control between nodes, and en ∈ N and ex ∈ N are the

unique entry and exit points for the CFG.

Basic Block. A basic block in a CFG is a contiguous sequence of nodes (i.e., instructions)

with no incoming branches except for the first node in the block and no outgoing

branches except for the last node in the block.

Interprocedural Control Flow Graph (ICFG). An ICFG is a graph built by composing a

set CFGs, where the CFGs are connected according to the call relationships between

the functions they represent. Specifically, if a function f1 calls a function f2, the

two CFGs for f1 and f2, G1 and G2, are connected as follows: the node n in f1 that

represents the call site to f2 is replaced by two nodes nc (call node) and nr (return

node), such that all predecessors of n are connected to nc, and nr is connected to

all successors of n. Then, nc is connected to G2’s entry node, and G2’s exit node is

connected to nr.

Call Graph. A call graph is a directed graph G =< M,E >, where M is the set of

functions in the program, and an edge (fa, fb) ∈ E implies that function fa may call

function fb.

8



CHAPTER 3

PROGRESSIVE SYMBOLIC EXECUTION (PSE)

Dynamic program analysis is an important class of techniques to detect software defects.

But these techniques can only analyze portions of the software that are executed. So, they

are crucially dependent upon input coverage to be effective.

Analyzing targeted behavior deep within the program structure requires a set of pro-

gram inputs that not only reaches the targeted code, but also thoroughly covers it. Manu-

ally created test inputs tend to be ad-hoc and cover only a small-subset of program behavior

Automated input generation techniques can help, but tend to be either expensive or ineffec-

tive. For example, Random Input Generation may never reach program states deep within

the program due to structured formats and context-dependent inputs such as checksums or

cyclic redundancy checks (CRCs).

Traditional symbolic execution often also fails to reach the target due to state explosion

or solver failures. Rice’s theorem [14] tells us that any given program analysis in generality

cannot be both sound and complete. In practice, this means the analysis will produce either

false-negatives, false-positives, or both. Any single analysis technique can be designed to

favor one or the other. By unconstraning only program inputs and executing from program

entry, traditional symbolic execution avoids false-positives arising from infeasible program

states. Therefore, if a vanilla symbolic execution tool reports a safety property violation,

such as a memory fault, then the developer can be confident that the program has a defect

and the tool can produce an input to demonstrate the bug.

But by emphasizing completeness, traditional symbolic execution can deprecate sound-

ness by allowing false-negatives in the form of portions of the program not covered by the

analysis. But, what if a particular client analysis requires high coverage to be effective? If

precise techniques for input generation are ineffective and the dynamic analysis is tolerant
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of some over-approximation (infeasible inputs), we can just symbolically execute increas-

ingly smaller portions of the program in a local neighborhood of the target until achieving

the coverage goal. This insight leads to my technique for Progressive Symbolic Execution

(PSE).

3.1 PSE: Input Generation

To reach a coverage goal by executing increasingly smaller fragments of a program, PSE

progressively unconstrains symbolic program state in four phases or strategies. (The phases

are progressive in that the symbolic state in each phase is a superset of the symbolic state

in the prior phase.)

uInp (symbolic input state): Execution of the whole program with symbolic inputs. This

is equivalent to traditional symbolic execution performed from the entry point of the pro-

gram.

uExt (symbolic external state): Execution of each function with symbolic input parame-

ters and symbolic global state. Intuitively, this strategy corresponds to executing a function

as if it could be reached with every possible state and is equivalent to under-constrained

symbolic execution [5].

uStub (symbolic stubs): Execution of each function with symbolic input parameters, sym-

bolic global state, and all callees replaced by symbolic stubs (see example in Listings 3.1

and 3.2). Symbolic stubs return an unconstrained value and unconstrain global state and

values passed as output parameters. Intuitively, in addition to executing a function as if

it could be reached with every possible state, this strategy also assumes that callees can

modify the state in every possible way.

uInt (symbolic internal state): Executions of fragments of a function with symbolic local

and global state. Intuitively, this strategy corresponds to unconstraining the state reachable

by a code fragment, so that the code fragment can be executed as if it could be reached with

every possible state.
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1 i n t P ( char *p ) {
2 mark (m1 ) ;
3 i n t x=complex ( p ) ;
4 whi le ( x > 4) {
5 mark (m2 ) ;
6 / / some code
7 }
8 / / some code
9 mark (m3 ) ;

10 }

Listing 3.1: Original code.

1 i n t P′ ( char *p ) {
2 mark (m1 ) ;
3 i n t x= s y m b o l i c i n t ( ) ;
4 whi le ( x > 4) {
5 mark (m2 ) ;
6 / / some code
7 }
8 / / some code
9 mark (m3 ) ;

10 }

Listing 3.2: Modified code.

The specifics of PSE’s input generation are described in Algorithm 1. The algorithm

takes as input (1) a program, (2) a set of entry points for the program, and (3) three tuning

timeout parameters, and produces as output a set of replay cases. Each replay case consists

of a program fragment (an internal program function) and corresponding inputs. (Although

in most cases programs have a single entry point, supporting multiple entry points allows

for applying the same approach to libraries.) The timeout values specify maximum time

budgets for the progressive unconstraining strategies: t0 applies to uInp, t1 applies to uExt,

and t2 applies to both uStub and uInt. The output of the algorithm consists of the replay

cases generated by all progressive phases, which are stored in the container initialized in

line 2.

The algorithm starts by performing the uInp strategy on each of the program entry

points (lines 4-5). The uExt strategy iterates over each program function as discovered in a

breadth-first traversal of the program call graph and maintained in a work list (lines 7-12).
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I selected this traversal order to lengthen the average replay trace, as entry from functions

closer to program entry should produce longer traces. Lines 13-14 ensure that the algorithm

only executes uExt if a remaining path segment is reachable from the current function in

the call graph traversal. In that case, the algorithm invokes PSE on the function with the

uExt strategy, adds the resulting replay cases to set cases, and updates the set of remaining

path segments (lines 15-17).

Note that, for clarity, I treat the utility function extractPaths as polymorphic; that is, the

function always returns a set of intraprocedural path segments contained within its single

argument. The precise segmentation definition is expected to vary with the client analysis

technique and embodies the desired coverage metric. PSE will complete when inputs are

found to execute each of these segments or the technique times out. If the argument is

a function, it simply returns the set of path segments in the function. Conversely, if the

argument is a program or a set of functions, it returns the union of the path segments in

each function. Finally, if the argument is a basic block, it returns the set of path segments

reachable from the block and within the function containing the block.

If there are remaining path segments within the current function, the algorithm aggres-

sively unconstrains additional program state by substituting symbolic stubs for all callees

within the function (uStub strategy). This strategy allows the algorithm to skip over com-

plex callees that may be problematic for symbolic execution. (Since each function entry

and exit is marked, path segments within the callee can be covered separately from the

current function context.) Each replay case produced in this phase must be considered for

retention (lines 21-27). These include replay cases that result in a memory fault due to

the increased amount of symbolic state. The technique retains these faulting replay cases

anyway in case they end up being the only cases covering a specific path segment.

When symbolic stubs fail to expose a remaining path segment, the algorithm proceeds

to the uInt phase, which unconstrains also the program state at specific points within a

function (lines 28-39). This portion of the algorithm is analogous to the uStub strategy,
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except that it traverses the basic blocks within a functions’ CFG instead of the functions

within the call graph of the program. Also in this case, some replay cases may result in a

memory fault and are retained in case they cover path segment not otherwise covered.

Before advancing to the next function in the call graph traversal, the faulting replay

cases are examined for coverage of this function’s remaining path segments to decide which

ones to keep (lines 39-43). Because faulting replay cases contain a record of the faulting

basic block and the number of times that block occurs in the replay trace before faulting,

PSE’s replay can use these replay cases, if needed, and terminate them prior to the execu-

tion of the faulting statement.

In its final part, the algorithm returns a set of replay cases selected from all the potential

replay cases generated. Longer replay traces preserve more of the program context, and

thus may represent more authentic internal state during a future replay. Therefore, given a

set of replay cases covering a given path segment, the algorithm favors the case with the

longest trace. It does so by sorting the candidate replay cases by trace length and greedily

selecting cases to achieve maximum path segment coverage (lines 44-50).

Algorithm 1 relies on function execPSE to perform the different phases of its progres-

sive symbolic execution. Algorithm 2 provides the details of execPSE. The inputs of the

execPSE algorithm are (1) the program to symbolically execute, (2) the program point to

be used as the starting point for the symbolic execution, (3) the strategy to be used, and (4)

the timeout to be enforced.

The algorithm first sets s to the initial symbolic state, sets the first instruction to the first

instruction in the start basic block, and initializes the set of active states with the single

element s (lines 2-4). It then unconstrains the formal parameters to the function containing

the start basic block (lines 5-6).

The algorithm continues to unconstrain program state according to the specified strat-

egy (lines 6-12). The instruction processing loop (lines 13-33) is the same used in tradi-

tional symbolic execution, except for the way it handles call instructions (lines 18-33). If
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either the callee f is an external function, or the unconstraining strategy is uStub or uInt,

the algorithm (1) creates a new symbolic variable for each formal output parameter of f

and (2) assigns this symbolic variable to the corresponding actual argument at the call site.

Additionally, the algorithm creates new symbolic values and assignments for each global

variable referenced by f and for f ’s return value, if present.

3.2 PSE: Optimizations

To make PSE more scalable, I have incorporated several optimizations in the technique.

Lazy Initialization PSE uses lazy initialization [6] to construct pointer inputs for execu-

tion at an arbitrary program point. Specifically, accessing an unconstrained pointer value

causes PSE to explore potential program paths in which the pointer (a) is null, (b) points

to a newly allocated memory object of the targeted type, or (c) points to an existing memory

object of the targeted type. To prevent lazily initialized pointers to lazily initialized pointers

from unrolling infinitely, PSE tracks the depth of lazy memory objects. When the depth

exceeds a configurable threshold, only states for cases (a) and (c) above are considered.

Pointer Type-Casting Type-casting between pointer types is a common practice in C

programs. For example, a pointer may be declared as a char *, accessed, and later cast

to struct foo *. In these cases, the lazily initialized memory behind the pointer may

no longer be large enough to store memory objects of the new type. To address this issue,

lazily initialized symbolic objects have an immutable maximum physical size and a flexible

visible size. A lazy object’s initial visible size depends on the size of the allocated type.

A subsequent cast to a larger type can increase the visible size, up to its physical size,

whereas a cast to a smaller type does not decrease it. The visible size is used when reporting

symbolic solutions and when enforcing the inbounds pointer assumption, which I discuss

next.
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Inbounds Pointer Assumption Since out-of-bound pointer accesses can result in non-

deterministic behavior, lazy initialization ensures that unconstrained pointers either point

to allocated memory or are null. However, there are other ways to have a potentially

out-of-bounds pointer, such as through array indexing and pointer arithmetic. In PSE, an

indexed operation automatically inserts a path constraint requiring the resulting pointer to

be within the target allocation block. This approach reduces the path search space while

only eliminating undesirable paths. Faulting or non-deterministic paths have in fact low

utility when used to generate training samples.

Path Explosion Mitigation Rather than mitigating path explosion [3] using search strate-

gies, PSE tries to eliminate undesirable states early using multiple heuristics. The inbounds

pointer assumption discussed above, for instance, eliminates many abnormally terminating

paths. Loops are also a significant cause of path explosion, as symbolic conditions within a

loop body can create, at each iteration, a number of new paths exponential in the number of

branches. To mitigate this issue, PSE periodically samples the number of active path states

in each loop body. If the number of states in a single loop body grows across the sample

interval by more than a configurable threshold, those paths are randomly reduced by 90%.

3.3 PSE: Summary

This chapter has described PSE, my technique for generating high-coverage inputs to drive

a client dynamic analysis that is tolerant of some infeasible inputs. The next two chapters

will present two such analyzes. The first enables inferring a program execution path from

a distance (ZOPI) and the second is a fully automated behavioral differential testing tool

(ODIT).

15



Algorithm 1: Input generation
Input : program: program to analyze

entry points: program entry points
t0: classic symbolic execution timeout
t1: PSE native callees timeout
t2: PSE stubbed callees timeout

Output: result : {< frag, input >}
1 begin
2 cases← ∅
3 remaining ← extractPaths(program)
4 foreach fn ∈ entry points do
5 cases← cases ∪ execPSE(program, fn, uInp, t0)

6 remaining ← remaining \ coverage(cases)
7 visited← ∅
8 fn worklist← entry points
9 foreach fn ∈ fn worklist do

10 visited← visited ∪ {fn}
11 new fns← callees(fn) \ visited
12 append(fn worklist, new fns)
13 reachable fns← reaching(fn)
14 if remaining ∩ extractPaths(reachable fns) ̸= ∅ then
15 new cases← execPSE(program, fn, uExt, t1)
16 cases← cases ∪ new cases
17 remaining ← remaining \ coverage(new cases)
18 if remaining ∩ extractPaths(fn) ̸= ∅ then
19 faulting ← ∅
20 new cases← execPSE(program, fn, uStub, t2)
21 foreach case ∈ new cases do
22 if remaining ∩ coverage(case) ̸= ∅ then
23 if faulted(case) then
24 faulting ← faulting ∪ {case}

25 else if completed(case) then
26 cases← cases ∪ {case}
27 remaining ← remaining \ coverage(case)

28 if remaining ∩ extractPaths(fn) ̸= ∅ then
29 bb worklist← {bb | bb ∈ CFG(fn) sorted by BFS}
30 foreach bb ∈ bb worklist do
31 if remaining ∩ extractPaths(bb) ̸= ∅ then
32 new cases← execPSE(program, bb, uInt, t2)
33 foreach case ∈ new cases do
34 if remaining ∩ coverage(case) ̸= ∅ then
35 if faulted(case) then
36 faulting ← faulting ∪ {case}

37 else if completed(case) then
38 cases← cases ∪ {case}
39 remaining ← remaining \ coverage(case)

40 foreach case ∈ faulting do
41 if remaining ∩ coverage(case) ̸= ∅ then
42 cases← cases ∪ {case}
43 remaining ← remaining \ coverage(case)

44 result← ∅
45 remaining ← extractPaths(program)
46 cs worklist← {case | case ∈ cases sorted by trace length}
47 foreach case ∈ cs worklist do
48 if remaining ∩ coverage(case) ̸= ∅ then
49 result← result ∪ {case}
50 remaining ← remaining \ coverage(case)

51 return result
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Algorithm 2: execPSE(simplified)
Input : program: program to symbolically execute

start: program point to begin PSE
strategy: uInp | uExt | uStub | uInt
timeout: maximum time to perform PSE

Output: result : {< frag, input >}
1 begin
2 s← initial state[start]
3 fn← containingFn(start)
4 active states← {s}
5 foreach arg ∈ formalArgs(fn) do
6 unconstrain(s, arg)

7 if strategy ∈ {uExt, uStub, uInt} then
8 foreach var ∈ globalvariables do
9 unconstrain(s, var)

10 if strategy = uInt then
11 foreach var ∈ localVars(fn) do
12 unconstrain(s, var)

13 stop← now() + timeout
14 while active states ̸= ∅ ∧ now() < stop do
15 s← selectState(active states)
16 inst← nextInstruction(s)
17 switch inst do
18 case Call do
19 f ← targetFunction(inst)
20 if strategy ∈ {uStub, uInt} ∨ f /∈ program then
21 ¡ foreach arg ∈ actualArgs(inst) do
22 if isOutputPointer(arg) then
23 unconstrain(s, value)
24 arg ← value

25 foreach var ∈ globalvariables do
26 if isReferenced(f, var) then
27 unconstrain(var, value)
28 arg ← var

29 if returnType(f) ̸= void then
30 unconstrain(s, value)
31 setReturn(s, inst, value)

32 else
33 executeCall(s, f)
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CHAPTER 4

ZERO OVERHEAD PATH INFERENCE

4.1 Introduction

Program tracing consists of logging selected events during program execution. Such trace

logs are then used for various tasks, such as computer forensics, debugging, performance

analysis, and user profiling. Typically, program tracing is implemented through instrumen-

tation, that is, by adding probes to a program that log events as they occur.

Albeit effective, instrumentation can cause issues due to its intrusive nature. In partic-

ular, instrumentation adds runtime overheads that can be problematic in many scenarios,

including real-time systems, embedded software, and deployed applications. To address

these issues, while still being able to collect accurate (partial) program traces, prior work

developed zero-overhead profiling (ZOP) [15], a technique that can profile a program with-

out instrumenting it by leveraging the electromagnetic (EM) emissions generated by the

processing hardware during execution. ZOP, although effective, has three main limita-

tions. First, it requires extensive code coverage, and therefore a thorough set of test inputs,

during its training phase to achieve good accuracy. Basically, in ZOP, each relevant path

segment must be executed, so that its EM signal can be recorded and later matched. Un-

fortunately, in real-world programs, the test cases are frequently few, of poor quality, and

often completely absent. Second, ZOP predicts acyclic path profiles [16], rather than com-

plete execution traces. These path profiles count executions of unique, acyclic paths within

the program. Although useful for some tasks, path profiles summarize away the exact se-

quence of events that would instead be logged in a complete path trace. Third, ZOP can

fail to recover from a misprediction. ZOP attempts to match EM signals by following the

control flow graph of the program being profiled. When a misprediction occurs, ZOP back-
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tracks until it can find a path that better matches the signal. Although this approach can

avoid mispredictions that result in infeasible paths, the predicted and actual control flows

can diverge beyond recovery when the EM signals collected during training do not closely

match the signals observed during profiling for more than a short time.

For this work, I and co-authors [17] propose zero-overhead path inference (ZOPI), a

novel approach that extends ZOP and addresses its shortcomings. I made two principle

contributions to ZOPI. First, to support the training phase even in the absence of an exten-

sive set of inputs, I developed a new input-generation technique based on symbolic execu-

tion (see chapter 3): progressive symbolic execution (PSE). PSE overcomes some of the

limitations of traditional symbolic execution by taking advantage of the fact that program

path segments need not be observed in the context of a complete execution. More precisely,

initially PSE executes the whole program with symbolic inputs as done in classic sym-

bolic execution. If this fails to achieve sufficient coverage for ZOPI training, it proceeds

to execute functions with symbolic inputs and unconstrained global state (similar to UC-

KLEE [9]). PSE then continues by (1) substituting called functions with symbolic stubs

and (2) increasingly unconstrained local state, until a given coverage objective is achieved.

Although this approach can result in infeasible paths, this is not problematic when the ex-

ecution of such paths is used in training—in most (if not all) cases, the over-sampled EM

emissions will simply never match a signal produced during profiling. Second, I developed

a technique to automatically generate the scaffolding to replay the PSE identified program

fragments with their corresponding generated inputs. Co-authors [17] used these replays

to record program path-segment electromagnetic emanation waveforms to populate a path

inference model.

To evaluate ZOPI, I and co-authors [17] applied it to the three original ZOP bench-

marks and to a new, larger benchmark. The results show that ZOPI is a promising ap-

proach. In particular, they show that ZOPI does produce accurate path inferences, with an

accuracy over 90% for the cases considered. They also show that PSE is an effective tech-
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nique, in that it was able to cover feasible paths missed by traditional symbolic execution,

which contributed to increasing ZOPI’s accuracy.

4.2 Background

In this section, I provide some necessary background information on ZOP, the previous

technique for zero-overhead (acyclic paths) profiling, and on symbolic execution. I also

define some terms that used in the rest of the chapter.

4.2.1 Zero-Overhead Profiling

Zero-overhead profiling (ZOP) [15] computes acyclic path profiles [16] for a program P by

observing the electromagnetic (EM) emanations produced by a computing system during

execution of (an unmodified version of) P. ZOP consists of two main phases: training and

profiling. In the training phase, ZOP runs P against a set of inputs to collect waveforms for

the EM emanations generated by the computing system running P. In the profiling phase,

ZOP (1) runs P, uninstrumented and unmodified, against inputs whose executions need

to be profiled, (2) records the EM emissions produced by the program, and (3) matches

these emissions with those collected during training to predict which acyclic paths were

exercised and how often. In an evaluation performed on several benchmarks, ZOP was

able to predict acyclic-path profiling information with an accuracy greater than 94% on

average.

Despite these positive results, however, ZOP has some shortcomings that limit its use-

fulness and general applicability. First of all, as discussed above, ZOP requires an exten-

sive set of inputs in order to build good models in the training phase. In fact, the empirical

results described above were obtained by using test suites that achieved complete branch

coverage, which are rarely available in practice. In addition, acyclic path profiles provide

useful information, but they summarize events into histograms and discard information

about the full sequence of events. They therefore cannot be used for the many tasks for
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Figure 4.1: Overview of the ZOPI approach.
which information about complete traces is needed.

Finally, due to the way ZOP matches signals, the predictions it computes can suffer

unrecoverable accuracy losses.

4.2.2 Symbolic Execution

Symbolic execution [2] is a technique that executes a program using symbolic instead of

concrete inputs. At any point in the program’s (symbolic) execution, the technique keeps

track of (1) the symbolic state, expressed as a function of the inputs, and (2) the path

condition (PC), a set of constraints in conjunctive form that consists of the conditions on

the inputs under which the execution reaches that point. The symbolic state and the PC are

built incrementally during symbolic execution. When the technique executes a statement

s that modifies the value of a memory location m, it computes the new symbolic value of

m according to s’s semantics and suitably updates the symbolic state. When it executes

a conditional branching statement c, it forks the execution, follows both branches, and

updates the PC along each branch by adding an additional conjunct that represents c’s

predicate.

When successful, symbolic execution can compute an input that would cause a given

point in the program to be reached. To do so, the PC for that point would be fed to an SMT

(Satisfiability Modulo Theories) solver, which would try to find an assignment to the free

variables in PC (i.e., the inputs) that satisfies the PC.
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4.3 Zero-Overhead Path Inference

Figure 4.1 shows an overview of ZOPI, the technique for zero-overhead path inference.

(Please note that, to avoid clutter, some elements in the figure are repeated.) As the figure

shows, ZOPI consists of two main phases: Training and Inference.

The Training Phase takes as input (the source code of) a Program P , whose complete

paths are to be inferred, and generates the EME Model, a model of the electromagnetic

(EM) emissions generated by the program. Two modules of ZOPI take part in this phase:

the Input Generation and Replay module and the EME Model Generator. Given P , the

goal of the Input Generation and Replay module is twofold. The first goal is to generate

Replay Cases: inputs for P , or fragments thereof, that achieve a given coverage goal,

typically expressed in terms of program path segments. The second goal is to replay the

generated inputs against the program (or against a program fragment), so that the EME

Model Generator can record the EM emissions generated during the replay and generate

the EME Model, which links such emissions to the part of the program that generated them.

The Inference Phase takes as input the EME Model, Program P , and a set of Program

Inputs for P , and generates a set of Path Inferences, one for each provided program input.

The path inferences consist of complete execution traces for P and are computed by the

Path Inference module, which (1) observes the EM emanations produced by the Target

Device as it runs P against the provided inputs and (2) matches the observed emanations

with those in the EME Model.

The approach described in the Training Phase is applicable to any language, architec-

ture, or platform supporting an automated function-level input generation technique that

achieves high structural coverage. (Of course, our prototype tool is more limited than

that.) Conversely, the inference phase is currently constrained to very simple hardware de-

signs. For example, the emanations from multiple cores are difficult to distinguish, modern

multi-level memory caches drastically alter execution timings, and multi-stage execution
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Figure 4.2: EM emission matching (Callen et al. [15]).
pipelines overlap executing instructions.

However, my contribution to this work is in all phases up to the physical recording of

the EME Model and will be described in detail beginning in section 4.4. For context, here

I will briefly describe the work of co-authors [17] to realize a complete functioning ZOPI

prototype. As a microprocessor executes an instruction, electrical flows within the pro-

cessor generate electromagnetic (EM) waves. Since each instruction uses different circuits

within the processor, each instruction has a distinct impact on the overall EM wave gener-

ated. Although each individual instruction is brief and EM noisy, a sequence of instructions

can be recognizable, and their waves constitute a side-channel emanation from the proces-

sor To capture the EM, a co-author targeted the processor with an antenna connected to a

digital spectrum analyzer for recording. At the conclusion of the training phase, the EME

model is populated with a superset of all feasible execution path segments linked to its ex-

ecution EM recording. During inference, the captured waveform is compared to segments

in the EME Model to find the best match. Note that an exact match is not required. As long

as the signal-to-noise ration is within tolerable limits during both training and inference,

the closest match is the most likely segment taken.
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In the rest of this section, I return to describing my contribution to ZOPI in detail.

4.4 Input Generation

The training phase of ZOPI requires the recording of sample EM emissions collected from

the Target Device (i.e., the device that runs the program whose traces to be collected).

Moreover, for the training to be effective, ZOPI needs to collect a comprehensive set of

samples. Ideally, the technique would need to collect one sample for every possible path

in the program, which is clearly impractical. Because ZOPI’s signal matching divides the

EM emissions for an execution into smaller sampling windows, however, having samples

of path segments whose length is comparable to that of the sampling window is typically

enough. The goal of the Input Generation and Replay module is therefore to generate inputs

that adequately cover a suitably identified set of segments within the program.

The first step performed by this module is a preprocessing of the source code that per-

forms a set of semantics-preserving transformations aimed to facilitate later source code

manipulation. Specifically, the preprocessing expands macros, refactors short-circuiting

boolean expressions, encloses single statement blocks in braces, and rewrites each return

statement that involves a complex value as an assignment to a temporary variable followed

by a simple return of that variable.

Next, the module instruments the source code by inserting markers (i.e., special probes)

at selected program points. These markers partition an execution trace into segments, re-

ferred to as m2m paths (marker-to-marker paths). These m2m paths are the path segments

within the program functions that the inputs need to cover; that is, they are the coverage

requirements for the input generation. The level of granularity of the inserted markers is

critical to the effectiveness of the approach. Path segments that are too short would be easy

to cover but would result in EM signals that are hard to recognize and match. Conversely,

segments that are too long would generate EM signals that are easy to recognize and match

but would be difficult to cover. Based on past experience [15], preliminary experimen-
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tation, the way ZOPI performs signal matching, and domain knowledge, I selected the

following points for inserting markers: entry nodes of functions, exit nodes of functions,

loop heads, and target nodes of goto statements. Furthermore, because these markers can

occasionally result in excessively long m2m paths, the technique splits m2m paths longer

than a selected threshold by suitably inserting additional markers. I selected these marking

criterion so that (1) m2m paths are intraprocedural and do not contain cycles, (2) any pro-

gram trace can be represented as a sequence of contiguous m2m paths, and (3) the length

of the signals generated by the m2m paths is comparable to that of the sampling window

used by the Path Inference module.

Given a complete set of m2m paths, the technique tries to generate inputs that cover

all such paths using an approach based on symbolic execution. In principle, traditional

symbolic execution can generate inputs for all feasible paths in a program. However, its

effectiveness and scalability are limited in practice by several issues, and in particular by the

path explosion problem—the fact that the number of feasible paths is usually exponential

in the number of code branches [3]. In fact, traditional symbolic execution has problems

covering even individual statements, let alone m2m paths, that are located deep in the call

graph or hidden behind complex, looping control flow. To address this problem, and be

able to generate inputs that cover most m2m paths, I defined a new technique that extends

classical symbolic execution, called progressive symbolic execution (PSE) (see chapter 3).

The key insight that allows PSE to generate inputs for ZOPI is that a given m2m path

mp in program P need not be observed along a complete path, that is, a path that starts from

P ’s entry and follows a complete, top-down execution. If PSE cannot generate an input

that executes mp, it therefore derives a related program P ′ that contains an equivalent path

segment for which it can find an input. To generate P ′, PSE operates along two dimensions:

it (1) considers increasingly smaller fragments of the program and (2) replaces calls to other

functions or libraries with symbolic stubs.

The example shown in Listing 4.1 illustrates this second dimension. Assume that we are
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1 i n t P ( char *p ) {
2 mark (m1 ) ;
3 i n t x=complex ( p ) ;
4 whi le ( x > 4) {
5 mark (m2 ) ;
6 / / some code
7 }
8 / / some code
9 mark (m3 ) ;

10 }

Listing 4.1: Original code.

1 i n t P′ ( char *p ) {
2 mark (m1 ) ;
3 i n t x= s y m b o l i c i n t ( ) ;
4 whi le ( x > 4) {
5 mark (m2 ) ;
6 / / some code
7 }
8 / / some code
9 mark (m3 ) ;

10 }

Listing 4.2: Modified code.

interested in covering m2m path ⟨5, 6, 7, 8, 9⟩, between markers m2 and m3, and that the

symbolic execution of function complex() either results in a timeout or cannot be per-

formed because the code of the function involves theories not supported by the underlying

solver. In such a case, no input covering the path of interest would be produced. However,

it would be straightforward to generate an input that covers the analogous path segment

⟨5, 6, 7, 8, 9⟩ in the derived program P’ in Listing 4.2, where the integer value returned by

complex() has been replaced with a symbolic integer.

PSE produces a set of inputs encoded as Replay Cases, where each replay case is

an ordered pair that consists of a program fragment and inputs for that fragment. It also

constructs, for each replay case, the scaffolding necessary to run the corresponding code

fragment against its input. The next section discusses how P or fractions thereof execute

against the generated inputs to support ZOPI’s training phase.

26



4.5 Input Replay for EME Model Construction

The replay cases (i.e., inputs) generated by PSE for a program P using its uInp strategy

can be run directly on P . This is not true, however, for the replay cases generated by

PSE using its uExt, uStub, and uInt strategies, for which suitable scaffolding must be

created. The reason is that these replay cases are generated by unconstraining program

state, considering fragments of the program, and replacing called function with symbolic

stubs.

ZOPI generates the needed replay scaffolding in the same language as P , and the scaf-

folding consists of four major parts: replay bodies, replay stubs, input data, and replay

harnesses.

The replay bodies contain the source statements that comprise the m2m paths recorded

for ZOPI training. Bodies for replay cases generated using the uExt strategy simply consist

of the original function and corresponding callees. Bodies for replay cases generated using

the uStub strategy also consist of the original source function, but they are linked against

newly created replay stubs that return the right values and suitably set output parameters

and global variables. In addition to this, bodies for replay cases generated using the uInt

strategy must also be able to (1) start executing from an internal basic block bb, (2) initialize

the local and visible global state at bb, and (3) exit at the right point in the execution (i.e.,

after visiting a termination basic block a specific number of times). To do so, PSE first

creates a copy of the original function containing the fragment of interest and identifies the

statement stmt from which to start the execution. It then inserts a goto instruction at the

beginning of the current body, causing the execution to jump to the stmt. Finally, it inserts

a call to a function that suitably initializes local and global state.

The replay stubs correspond to symbolic stubs and provide suitable values for returns,

output parameters, and global variables. Furthermore, because each called function can be

invoked multiple times, ZOPI creates ordered sets of values, enabling the production of
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the right values for the different invocations. When executing a replay case with symbolic

stubs, ZOPI substitutes these replay stubs to the original called functions in the correspond-

ing replay body. It is worth noting that, because the function entries and exits are marked

program points, during signal matching the EM emissions from an actual recording of the

called function can be considered instead of the EM emissions generated by a stub.

The input data consist of static-initialized data structure arrays in the original source

language produced from the generated input values in the replay cases. Since the solver

produces byte arrays for each symbolic entity, I treat each memory object as a Binary

Large Object (BLOb) and decompose into fundamental data types and map onto the source

language data types for the target machine architecture. Note that the data input set for

a replay case may not contain complete values for all the required input variables. For

instance, a function may read the value of an input pointer but only write to the pointed

memory block. In general, since the values not contained in the input set do not affect the

execution, ZOPI can safely initialize the missing data items with some default value.

Among the input data, pointer variables require special handling, as the address space

during input generation is different from the address space during replay. To address this

issue, ZOPI adds to the replay cases a map of the address space at the time the case was

generated. This map includes the address and size of each memory object, the allocation

type, and a list of the cast operator types applied to the memory object. ZOPI needs the

entire address space because pointer values that are not in the generated input set cannot be

assigned a default value as ZOPI does with fundamental types. Writing memory by deref-

erencing such a pointer would in fact likely result in an access violation if not in undefined

behavior. Given this map, if the pointer value resolves into a memory object in the address

space of the replay case, PSE calculates its offset and emits the replay pointer value as

an offset into the statically-initialized data structure for the target object. Otherwise, it is

given a default initializer based on its type. I iterate through members of a structure variable

emitting a sequence of static initializers and extract each member’s data from the memory
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object BLOb at the correct offset. Nested structure member variables within an enclosing

structure variable are recursively decomposed.

Finally, the replay harnesses contain one harness for each replay body and fragment,

and a driver that invokes each replay fragment harness in turn. The fragment harness it-

erates through each input data set for the fragment, initializing global variables, declaring

and initializing fragment parameters, and initializing substituted stubs.

4.5.1 EME Model Generator and Path Inference

The goal of the EME (EM Emissions) Model Generator is record the replayed path seg-

ments, relating EM emissions to the code instructions in the program that generated them.

Path Inference is a fundamental part of ZOPI, as it is the component that actually pro-

duces path inferences using the EME Model generated during the training phase. Since

co-authors completed these modules, this work will not be further addressed within this

thesis.

4.6 Empirical Evaluation

To evaluate the effectiveness of the technique, I implemented it in a prototype tool and

performed an empirical evaluation on a set of benchmarks. In the evaluation, I and co-

authors [17] addressed the following research questions:

RQ1: Does ZOPI provide accurate path inference?

RQ2: How does ZOPI compare to ZOP?

RQ3: To what extent does state unconstraining help coverage?

Although RQ1 and RQ2 directly measure path inference results, they indirectly support

the effectiveness of PSE and replay scaffolding generation.
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4.6.1 Implementation Details

I implemented the modules of ZOPI discussed in Section 4.3. I used CIL [18] and clang [19]

to preprocess source code. I used a combination of clang and NetworkX [20] for control

flow graph analysis. I implemented PSE by extending the KLEE [21] symbolic execution

engine. I also relied on LLVM [22] and on the STP constraint solver [23], My implemen-

tation of PSE is publicly available as a self-contained docker image [17].

4.6.2 Evaluation Setup

Table 4.1: Benchmark statistics.

Benchmark LOC Basic Blocks M2M Paths

replace 495 245 229

schedule 464 175 153

print tokens 579 178 153

mDNS 24,815 3,939 5,763

To answer the research questions I and co-authors [17] selected four benchmarks. The first

three were used to evaluate ZOP in previous work [15]. The fourth benchmark, a real-world

mDNS server, shows the scalability of the approach, as it is two orders of magnitude larger

than the other benchmarks. Table 4.1 provides size metrics for these benchmarks. The

target device was an Altera Cyclone II FPGA with a Nios IIe processor. Using an FPGA

permits leveraging various debugging features and I/O pins to better understand program

behavior at the individual-cycle level. Unfortunately, however, it also considerably limits

the size of the potential benchmarks.

Using the timeout parameters described in Section 4.4, I defined three variants of PSE.

This allowed me, together with the use of vanilla KLEE, to evaluate the effects of different

input generation techniques on ZOPI’s accuracy:
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CS: Classic symbolic execution. Vanilla KLEE [24].

UC: Under-constrained symbolic execution. UC-KLEE proxied by performing PSE at

the function level.

PG: PSE with all unconstraining strategies enabled.

FN: PSE without the uExt strategy. (Basically, this parameterization skips under-constrained

symbolic execution by introducing symbolic stubs and considering sub-function frag-

ments right away, which makes the analysis considerably faster at the cost of gener-

ating shorter paths.)

4.6.3 RQ1: Inference Accuracy

Table 4.2: Mean path inference accuracy (%).

Benchmark CS UC FN PG

replace 90.05 93.89 90.31 93.89

schedule 94.27 94.31 94.45 94.44

print tokens 77.71 93.35 78.72 93.36

mDNS 98.94 98.97 98.95 98.95

To answer RQ1, I first generated replay cases (i.e., input sets) for the four benchmarks

and for the four input generation strategies considered: CS, UC, FN, and PG. Second, I

used ZOPI to generate EME Models for each benchmark and input set. Then, for re-

place, schedule, and print tokens, I randomly selected 100 inputs from the tests provided

in the SIR repository [25]. For mDNS, I used Avahi [26] to generate 9 inputs (i.e., mDNS

queries) that target different host addresses and ask for different services, including incor-

rect queries. (I manually checked that the inputs exercise different aspects of the mDNS
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protocol.) Finally, co-authors [17] used ZOPI to perform path inference using the gener-

ated EME Models.

Table 4.2 reports the path inference accuracy for the cases considered, computed by

measuring the edit distance between actual and inferred paths. The inference error is the

edit distance divided by the length of the actual path, and the inference accuracy is 1 minus

the inference error.

As the table shows, for all four benchmarks the inference accuracy tends to be generally

fairly high. The highest accuracy is achieved with either UC or PG in three of four cases,

with the fourth case (schedule) showing a very close result for FN and PG. Interestingly,

as I will show in section 4.6.5, PG achieves higher coverage but does not always result in

higher inference accuracy. The reason for this is that the increased accuracy from a fully

populated waveform model is offset by an increased possibility of a misinference when

the sampling window straddles the entry or exit of a symbolic stub. Approaches to match

sub-window EM signals could address this issue and further improve the results for PG.

Also interestingly, ZOPI achieves high inference accuracy for mDNS regardless of the

input generation strategy involved. Further analysis of the results showed that this happens

for different reasons, with the main ones being that (1) all the paths the program takes when

receiving a valid mDNS packet are similar because traces are largely dominated by loops

with a large number of iterations, and (2) all the paths the program takes when receiving an

invalid mDNS packet are extremely short. This skews the results considerably and makes it

so that any input generation strategy that produces even just a few valid and invalid packets

result in reliable EME Models, and thus high accuracy in the inference.
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Figure 4.3: Detailed path inference accuracy for PG.

To better understand how path inference accuracy varies across inputs, consider the

box-and-whisker plot in Figure 4.3, which shows detailed results for PG. (The plot for UC

is fairly similar.) For each benchmark (x-axis), the figure shows the range of inference

accuracy (y-axis). The boxes represent the 1st and 3rd quartiles, with an interior band at

the median. The whisker ends represent the lowest and highest points within 1.5 of the

interquartile range. Dots signify outliers.

Although Figure 4.3 shows consistently high path inference accuracy, it also shows that

there is room for improvement. For example, accuracy above 96% for the schedule bench-

mark is an outlier. In general, some limitations of the inference technique can affect the

results. Furthermore, I found that different m2m paths may sometime result in instruction

sequences that are very similar to each other, even if they execute different parts of the

program, and thus generate EM emissions that are also very similar to each other [27]. For

example, two different m2m paths may have the exact same mix of store and ALU oper-

ations. For another example, switch statements are commonly compiled into jump tables,
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which leads to multiple paths generating EM emissions that are difficult distinguish (a case

that often happens for print tokens and mDNS and causes a drop in accuracy).

4.6.4 RQ2: Comparison with ZOP

Table 4.3: Acyclic-path profiles prediction accuracy (%).

Benchmark ZOP ZOPI (UC) ZOPI (PG)

replace 94.70 94.11 94.11

schedule 95.10 94.71 94.96

print tokens 97.90 91.36 91.33

ZOP and ZOPI produce to some extent apples and oranges, as the path profiles computed

by ZOP and the complete traces inferred by ZOPI are not directly comparable. To generate

complete traces with ZOP would require extending the approach—and basically re-invent

ZOPI. However, the path profile prediction accuracy of ZOP can be compared with ZOPI

inferences by extracting acyclic-path profiles from complete traces. Table 4.3 shows these

results, computed for the traces generated using UC and PG and for the three benchmarks

with published ZOP results. As the table shows, ZOPI’s accuracy is lower than but compa-

rable to that of ZOP for replace and schedule (less than one percentage point), and slightly

lower for print tokens (around 6.5 percentage points).

The main reason for this slight decrease in accuracy lies in the fact that ZOP used a

stateful model that selects the best match from m2m paths reachable from the currently

predicted marker. This strategy reduces mispredictions, but is problematic when a mispre-

diction does occur. Conversely, ZOPI’s stateless inference suffers no additional penalty

for misinferences, which makes it effective for inferring complete paths, but can result in a

larger number of individual incorrect path segment inferences.
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4.6.5 RQ3: Coverage

Table 4.4: Coverage comparison among CS, UC, and PG/FN.

M2M Paths

Benchmark total CS UC PG/FN

replace 229 168 (73.4%) 179 (78.2%) 206 (90.0%)

schedule 153 119 (77.8%) 136 (88.9%) 149 (97.4%)

print tokens 153 115 (75.2%) 132 (86.3%) 143 (93.5%)

mDNS 5763 509 (8.8%) 2454 (43.3%) 4147 (72.0)%

Table 4.5: Missing m2m paths in the training inputs.

Benchmark CS UC PG/FN

replace 3 2 0

schedule 7 2 0

print tokens 9 3 0

mDNS 96 18 0

To answer RQ3, I measured the m2m path coverage achieved on all the benchmarks by

the four input generation techniques considered. Table 4.4 shows the results, together with

the total number of m2m paths determined by static analysis. The PG and FN replay cases

produced identical coverage, so their results are shown together.

As the table shows, PG/PN achieved higher m2m path coverage than UC, which in

turn achieved higher coverage than CS. This result is not surprising, as increasing symbolic

state should necessarily lead to higher coverage. A more interesting question is how many

additional feasible m2m paths were covered by PG/PN. Unfortunately, I cannot compute

this information automatically, as it is an undecidable problem, and doing it by hand would

be extremely time-consuming and error-prone. I can however compute a lower bound for
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this information by checking how many of the m2m paths covered by the evaluation inputs

in the study (i.e., in the actual executions used to evaluate inference accuracy) were missed

by the generated input sets used for training; a decreasing number of uncovered m2m paths

would necessarily indicate an increased number of feasible paths covered. Table 4.5 reports

this information and clearly shows that PG/FN (i.e., PSE) consistently covers additional

feasible path segments that UC does not cover, and so does UC with respect to CS. This

result provides initial indication that it is worth pursuing more aggressive unconstrained

state approaches when generating inputs. However, more research and experiments are

needed to demonstrate that client techniques can indeed benefit from the additional cover-

age achieved.

4.7 Threats to Validity

In this section, I briefly discuss the main threats to the validity of the empirical evaluation

and steps taken to mitigate them. The main threat to internal validity is the potential for

defects in my implementation. In mitigation, I based the implementation on KLEE, a

reliable and stable symbolic execution engine. I also carefully tested the implementation

of PSE, which is available for public inspection [17]. Threats to external validity include

the size and number of benchmarks. As discussed in Section 4.6.2, the maximum size of

a potential benchmark was unfortunately constrained by the limitations of the embedded

processor used in the evaluation. (Programs larger than mDNS could not be loaded onto the

FPGA board.) Similarly, long signal recording, measurement, analysis, and human checks

limited the number of benchmarks. Other threats to external validity are the way I selected

inputs, especially for mDNS, and the possible lack of generalizability of the results to other

devices.
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4.8 Conclusion

This chapter presented ZOPI, a new approach that can collect complete execution traces

accurately and with zero overhead by leveraging EM emanations. ZOPI can greatly benefit

and support several important developer tasks, such as debugging applications, tuning per-

formance, and profiling users. Although stateless signal matching allows ZOPI to recover

from mispredictions, it also causes some additional mispredictions. In future, a mediated

use of control flow information may allow for increasing accuracy while still permitting

recovery after mispredictions. The evaluation results show that ZOPI is indeed effective

and can produce accurate execution traces without requiring any program instrumentation.
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CHAPTER 5

OVER-APPROXIMATE DIFFERENTIAL TESTING (ODIT)

5.1 Introduction

Most software continuously evolves through repeated cycles of program updates for bug

fixes, performance improvements, and addition of new features. As software evolves, de-

velopers must verify that a proposed update contains all planned, intentional behaviors and

does not introduce unintended behaviors, typically known as regression errors or simply

regressions. In an ideal world, developers would have a formal specification of the desired

program behavior and verification could be completely formal and automated. In practice,

however, specifications are typically missing, and developers rely on testing to detect re-

gression errors. Specifically, developers execute regression test suites, or parts thereof, on

the modified software, hoping that regressions would result in test failures.

Unfortunately, test suites are typically and necessarily limited in terms of the behaviors

they can cover [28, 29]. Moreover, even when a behavior is covered by a test suite, oracles

may fail to detect behavioral differences because they often focus on and check specific

parts of the program state.

Researchers have proposed approaches that try to address these issues, but the effective-

ness of these techniques tends to be limited by practical factors. In particular, techniques

that under-approximate behavior with random program input generation or symbolic exe-

cution (e.g. [30, 31]) have difficulty finding inputs that reach changes that are distant from

the program entry. Conversely, over-approximated techniques (e.g., [32, 9]) only check ex-

ternally observable (macroscopic) differences, such as program crashes or leaked memory.

To address these limitations of traditional regression testing approaches, in this chap-

ter I introduce a new technique called ODIT—overapproximate differential (regression)
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testing. Given two program versions, ODIT (1) analyzes the two versions to identify input-

compatible internal functions defined in both versions, (2) generates test inputs for these

functions that reach the changed code, and (3) leverages differential testing [33] to identify

behavioral differences between program versions. A function f0 in the original program

and a function f1 in the modified version are input-compatible if they have the same signa-

ture; that is, the same function name, sequence of argument types, and return type. Inputs

generated for f0 can then be applied to f1 and vice versa.

ODIT utilizes progressive symbolic execution (PSE) (see chapter 3) to generate inputs

(i.e., parameter and global values) for input-compatible functions that exercise the modified

code in either version. For behavior comparison, the technique then concretely executes

each input on the original version, while retaining periodic program-state snapshots. Each

input, together with the state snapshot sequence resulting from its original version exe-

cution (used as an oracle) serves as a test case for the modified version. After concretely

executing the test case on the modified version, the technique then compares corresponding

state pairs from the original and modified program snapshot sequences to identify behav-

ioral differences. In addition to potential regressions, this over-approximated list will also

contain redundant, infeasible, and intentional differences. Therefore, ODIT clusters dif-

ferences and ranks them based on their likelihood of being unintentional according to a

heuristic.

To evaluate the technique, I considered 61 real-world, known regressions from the

CoREBench suite [34]. I then performed two studies. First, I applied ODIT to the 43

out of the 61 CoREBench regressions for which I could reliably define a ground truth (in

the form of an oracle). ODIT was able to automatically identify 25 of the 43 regressions,

and for 10 of these 25 regressions, ODIT produced no false positives. For the remaining

15 regressions, ODIT also generated false positives, but it ranked the true positives in the

top three positions in most cases. Next, I compared ODIT to Shadow [31], a state-of-the-

art under-approximated technique, using its published results for 20 of the regressions in
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type: string
i: 0
s: “-5”

int type int
-5: i: 5
NULL s: NULL

Figure 5.1: Illustrative Example
CoREBench. ODIT detected 14 of the 20 regressions considered, whereas Shadow de-

tected at most 8 of them. Moreover, ODIT was an order of magnitude faster than Shadow.

These results, albeit still somewhat preliminary in nature, are promising, as they show

that the technique can (1) automatically identify regressions, while (2) generating a low

number of false positives, and (3) ranking the true positives in top positions. The results

also show that ODIT (4) can outperform a state-of-the-art technique.

I envisage developers applying ODIT routinely (e.g., prior to committing changes to

a repository) to verify that all behavioral changes are intentional. The evaluation provides

initial evidence that the technique supports such usage.

5.2 Illustrative Example

Before describing the details of the technique, I introduce an illustrative example. First, I

describe a scenario in which ODIT could have prevented the release of an actual regression.

Then, I give a high level walk-through applying the technique to the example program

modification. Here and throughout this paper, I adopt the convention that entity0 (where

entity is a program element such as the whole program, function, variable, etc.) refers

to the original version and entity1 refers to the analogous entity in the updated version.
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Figure 5.2: ODIT Overview
Listings 1 and 2 contain code taken directly from one of the benchmarks, CoREBench [34]

regression number 22. The subject program is expr, a utility for expression evaluation.

The first listing contains the original source code for a function toarith0 to convert a value

from a string to an integer representation. The second listing contains an updated version

committed to the project’s repository and released. Based upon subsequent bug reports,

the developer likely intended toarith1 to be equivalent to toarith0, but the former can

incorrectly convert strings representing negative numbers. Incidentally, the toarith1 fault

lies in duplicate sign adjustment is lines 13 and 26. The code modification introducing this

regression changed a single function, toarith, without changing the V ALUE structure

shown above the listings.

This scenario begins when the developer, Ridley, completes coding the update expr1,

but before committing it to the project source repository. Much as the actual developer

probably did, Ridleyinspects the changes, runs some exploratory tests, and sees nothing

amiss. For additional assurance, Ridleysubmits expr0 and expr1 to ODIT. A few minutes

later, ODIT reports inputs to toarith which result in different output values in v0 and

v1. Using specific values provided by the technique, Ridleycan recognize and correct the

problem with toarith1 before committing to the project repository.

To detect internal behavioral differences, ODIT employs the four phases depicted in

figure 5.2. Change Identification starts by recording additions, deletions, type, and imple-

mentation changes of global variables and functions. In the expr example, no variables or

functions were added, deleted, or changed; and only one function, toarith has a modified

implementation. This phase then identifies functions with equivalent signatures that can
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reach modified functions in either version. It forwards a list of these functions as entry

points, ordered by function-call distance from program changes, to the next phase. Since,

the type of toarith’s parameter, V ALUE, is unchanged, toarith itself will be at the head.

Note that had V ALUE equivalence not held (e.g. due to a field addition), then the list head

would be a parent function in the program’s call graph.

Input Generation then produces inputs for each entry point. Since this list only contains

functions with equivalent signatures, all generated inputs for fn0 can execute on fn1, and

conversely. To simplify this example, I only discuss the head of the entry point list, toarith.

This phase first generates inputs for toarith0 and toarith1, discarding inputs that do not

execute changed statements.

Behavioral Comparison identifies differences by concretely executing the generated

inputs on both versions of the program, while accumulating sequences of program state

snapshots at each function return. In the example above, there is a single function return

during concrete execution and a single pair of program states for comparison, S0 and S1.

For each state pair, the S0 values for global variables, toarith return value, and output

parameters provide an oracle for comparison with S1. Since the prior phase will generate

multiple V ALUE inputs encoding negative strings, each such input will fail the field i

comparison of toarith’s parameter.

The final phase, Difference Analysis, organizes the differences detected for developer

consumption. Input generation may have produced many inputs triggering the same differ-

ence (e.g. “-1”, “-2”, etc.) In the example, this phase will report to the developer that there

is a single behavioral difference effecting toarith’s output parameter, field i; along with a

set of inputs reproducing it.

The expr example is an actual regression error that ODIT could have prevented. expr

is also a good illustration of the advantages of over-approximate input generation. To reach

the modified function, toarith, from program entry requires traversing complex, recursive,

and looping control flow. Other top-down, dynamic symbolic execution based approaches
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to differential testing may not reach the changed function.

For example, Shadow [31] did not generate any tests for this regression. In this case,

the technique produced no false positives. But, under less ideal conditions, the reported

differences will arise from both intentional and unintentional changes, infeasible inputs,

and side effects of prior behavioral differences. The next section details the algorithm

described in this section and my method for ordering and ranking the detected behavioral

differences to emphasize the unintentional, but feasible ones.

5.3 Over-approximate Differential Test

Developers typically modify software to change program behavior, and the actual behavior

of the update can be different from its expected behavior. These differences, which ODIT

computes in terms of over-approximated differences between observable program values,

are what I call unintended behavior. Figure 5.2 shows an overview of the ODIT technique.

Its only inputs are an original version of a program P0 and a modified version P1. It

does not require prior instrumentation of either version. ODIT outputs a list of behavioral

differences, ranked in an order favoring unintended, feasible differences.

ODIT proceeds in four major phases: 1) Change Identification; 2) Input Generation; 3)

Behavior Comparison; and 4) Difference Analysis, detailed in the following subsections.

5.3.1 Change Identification

From P0 and P1, Change Identification outputs a list of entry points for the next phase,

Input Generation, and a list of modified code statements. Each entry point is a function

defined in both P0 and P1 with an equivalent signature and that can reach changed code

in either program’s call graph; together with that function’s call-graph distance to changed

code. Note that there is always at least one such entry point, main. main0 and main1

will have equivalent signatures and, as the root of each program’s call graph, will reach the

changed code. ODIT takes advantage of other potential entry points closer to the actual
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change.

Algorithm 3 (Change Identification) starts by identifying functions defined in both P0

and P1 (C, line 4), functions added (A, line 5), and functions deleted (D, line 6). Lines

7 and 8 of the algorithm then identify functions in C that are modified in P1 (∆), as well

as the subset of ∆ with a different function signature (∆S); that is, functions defined in

both P0 and P1, but with non-equivalent parameters or return types. ODIT computes type

equivalence of primitive types (e.g. int, float) by direct type comparison. Pointer types

are equivalent if each points to equivalent types, and composite types (e.g. structures,

arrays) are equivalent if all members are equivalent. Type decomposition for equivalence

is essential since data types may have changed between P0 and P1. For example, if the

example in Listings 1 and 2 contained data type V ALUE0 and a modified V ALUE1 with

an additional field, then toarith would not be a valid entry point. The loop in lines 10-12

iterates over every function f in C that have equivalent signatures. If there is a path in the

static, context-insensitive call-graph of P0 from f0 to any changed or deleted function or

there is a path in P1 from f1 to any changed or added function, then f is an entry point.

Note that the constructed call-graphs are context-insensitive and only consider direct calls,

i.e. the graph does not include calls that could occur through a function pointer. As a final

step, the set of entry points are ordered by function-call distance to the closest changed

code.

The final line 13 of the algorithm produces a list of changed statements for each com-

mon function in C. Both of Change Identification two outputs are inputs to the next phase.

5.3.2 Input Generation

ODIT leverages under-constrained symbolic execution (SE) [5] to generate function-level

inputs. Traditional symbolic execution [2] executes a program with symbolic input instead

of concrete values. Symbolic execution explores all feasible program paths by executing

the program with symbolic external state. It maintains a set of symbolic states, each with
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Algorithm 3: Change Identification
Input : P0: original version of program P

P1: updated version of program P
Output: E: ordered list of functions reaching D

∆i: list of changed program stmts
1 begin
2 F0 ← {f ∈ fns | f ∈ P0}
3 F1 ← {f ∈ fns | f ∈ P1}
4 C ← F0 ∩ F1

5 A← F1 \ F0

6 D ← F0 \ F1

7 ∆← {f ∈ C | f0 ̸= f1}
8 ∆s ← {f ∈ ∆ | sig(f0) ̸= sig(f1)}
9 E ← ∅

10 foreach f ∈ C \∆s do
11 if reaches(P0, f,∆ ∪D) ∨ reaches(P1, f,∆ ∪A) then
12 E ← E ∪ {f}

13 ∆i ← {s ∈ statements in P | s0 ̸= s1}
14 return < E,∆i >

an associated logical conjunction, the path condition PC, accumulated during execution.

The executor starts with a single state with a symbolic value for each of the program inputs

and an empty PC. It then executes program statements in their normal execution order and

with their original semantics, with the following two exceptions. 1) The executor computes

statement values as symbolic values relative to the original symbolic input values. 2) The

executor forks a single state S executing a branch statement with condition C into two

states, ST and SF , with associated PCs PC = PC ∧C and PC = PC ∧¬C respectively.

The executor continues by selecting a state and executing its next statement. Executors

work in conjunction with a constraint solver which can compute satisfying solutions to

PCs. When the executor state executes a state’s terminating instruction, the solver can then

calculate program input values that will reproduce the state’s path through the program.

In theory, symbolic execution could provide inputs for complete path coverage. But, in

practice path explosion [3] (the number of states is exponential in the number of branches),

solver performance overhead, and required supporting theories required to solve PCs (e.g.

floating-point) limit path coverage [3].

Starting from main, symbolic execution may never reach a targeted function before

suffering path explosion [3] or arriving at an unsolvable constraint. Progressive symbolic

execution (PSE) extends traditional symbolic execution by substituting symbolic values

45



for more than just program inputs. By substituting symbolic values for function arguments

and global variables, under-constrained symbolic execution can begin execution from any

function, not just program main. In languages supporting pointers, lazy initialization [6]

accounts for an unconstrained pointer p by forking states for each of: 1) p = NULL, 2) p =

a new allocation, 3) p = a pre-existing memory object(s). However, the consequence of this

improved scalability is that under-constrained symbolic execution can produce infeasible

inputs for a function f ; that is, no program inputs executed from main can call f with the

generated inputs.

Input Generation constructs inputs for each of the entry points, within a configurable

maximum function-call distance from changed code, as found by Change Identification.

Selection of the distance value improves ODIT scalability and represents a trade-off in

time vs precision. A large distance will provide more unchanged execution context before

reaching the changed function, thereby potentially reducing the risk of infeasible inputs

to the changed code. However, the additional entry points also increase technique over-

head with diminishing benefit, as distant entry points are less likely to find inputs reaching

changed code. In my experience with the benchmarks in section 5.5, a threshold function-

call distance of 2 yielded good difference detection within a reasonable runtime and was

selected for all of the experiments. I leave the selection and tuning of a ‘best’ value for a

given program to future work.

For each selected entry point e, ODIT performs under-constrained symbolic execution

for a configurable period of time on both e0 and e1—while only unconstraining global

variables common to both programs—with equivalent data types and function arguments.

Other global values are concretely assigned with their original initializer. Allocating more

time to under-constrained symbolic execution may reach deeper into the program’s call

graph from e but is generally unnecessary, as the technique selects e for proximity to the

program changes. For the experiments in Section 5.5, I used a 60-second timeout. For

comparison with traditional symbolic execution, the KLEE [24] evaluation allocated 60
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minutes for each of the coreutils. Since e was selected to have equivalent signatures, inputs

generated for either e version can be executed on the other. The ODIT symbolic executor

uses the statement difference detail provided by Change Identification to only persist inputs

that execute a changed statement. This step filters out inputs that cannot demonstrate a

difference. For example, consider the illustrative example in Listing 1. A generated toarith

parameter of type integer executes the same statements in both versions, so ODIT discards

the input. The technique generates inputs for e0 and e1 identically, with the single exception

of crashing inputs. Since P0 is the baseline behavior, a crashing e0 input is presumed to

be infeasible and discarded. However, a crashing e1 input may be new behavior and is

retained.

When the PSE symbolic executor completes a retained path from an entry point e, it

obtains concrete, initial values for the path’s unconstrained global variables and program

arguments and persists them as a test input. When the symbolic executor’s allotted timeout

arrives, will likely still be in progress. Rather than discard potentially useful inputs, PSE’s

symbolic executor selects satisfying values for the path explored so far, and completes the

execution concretely and persists test inputs as with prior completed paths.

For ODIT’s PSE tool, I extended my prior implementation with two major specializa-

tions in addition to lazy initialization. Since loops often lead to path explosion [3], I set a

maximum threshold on the number of states whose next program statement can be in any

single loop body. When this threshold is exceeded, states within the loop body are inhibited

from branching into multiple states. Instead of forking additional states at a branch state-

ment, an inhibited state selects a single branch to follow. The executor will try to select a

branch corresponding to a loop exit, if available. Otherwise, a random satisfiable branch is

selected.

My other major extension to my PSE tool handles external functions, i.e. declared func-

tions without a function definition or body. System calls and external library calls are com-

mon examples of external functions. All non-trivial programs (including the benchmarks)
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generally contain at least one call to an external function. Since symbolically executing

the native library code is impractical, symbolic executors often provide a simplified model

for handling external calls. However, reliance on a system model can limit the accessible

breadth of program behavior. For example, Palikareva et al. cite KLEE’s incomplete envi-

ronmental model as a contributing factor to several of Shadow’s unsuccessful executions.

To prevent false positives, their tools requires an under-approximating model that is cur-

rently manually constructed. In contrast, ODIT dynamically uses an over-approximating

model by generating new, unconstrained values for the external function’s output parame-

ters and return value. These external values are treated as program inputs and concretized

values are stored in the persisted test input for future execution replay.

This step completes the Input Generation phase. By construction, the generated tests

are executable on both P0 and P1; and only contain inputs that execute modified code

statements.

5.3.3 Behavior Comparison

This phase executes each generated test input on both P0 and P1, logging all raw behav-

ioral differences found. Algorithm 4 defines the high-level algorithm for the Behavioral

Comparison phase.

To execute a test input, (lines 4 and 6) ODIT utilizes its symbolic executor as a concrete

executor. In this mode, the executor prepares an initial program state as in symbolic mode.

But instead of creating symbolic state, it retrieves values for global variables and program

arguments from the test input. If a value for a global variable is not available in the test

input (added/deleted or changed data type), then its default initializer is used. Values for

function arguments will always be present in the test input since they were generated only

for functions with equivalent signatures. When the executor encounters a call to an external

function during execution of a test input, it returns the call specific output parameters and

return values specified within the test input.
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Executing test inputs within the concrete executor permits a comprehensive and detailed

view into program state at fine granularity and without instrumentation. The executor first

runs the test input on P0. During replay, the executor stores a sequence of P0’s memory

address space snapshots; appending a new snapshot upon return from any functions com-

mon to both P0 and P1. If P0 does not terminate the test input in a controlled fashion (e.g.

entry function return, exit, abort), then ODIT discards the test input. Since P0 defines

baseline behavior, crashing inputs are presumed to result from infeasible test inputs (line

5). Upon execution completion (lines 4 and 6) execute returns a result code, a sequence of

state snapshots, and the execution’s final state.

Because external function calls are also a source of behavioral differences, the executor

records each external call executed. Recall that during Input Generation, the symbolic

executor creates new, unconstrained values for the external function output parameters.

During behavior comparison, the external function’s input values can reflect a behavioral

difference. For example, assume program P contains a function f that changes a file’s

access mode through the chmod system call. If inputs exist that can cause f1 to call chmod

with difference access control bits than f0, then this could indicate a behavioral difference.

If P0 executes the test inputs without crashing or timeout, the executor replays the test

inputs on P1 (line 6). If P1 terminates differently than P0 (e.g., P0 aborts and P1 exits), the

executor logs the behavioral difference. Otherwise, the executor compares program states

at selected pairs of snapshots, called checkpoints, from the two executions (lines 10-13).

The technique computes checkpoints by aligning pairs of snapshots by function return

in both program versions. For example, suppose we have a P0 and P1 with functions {

f , g, h } in common. Executing test input I on P0 produces the snapshot sequence [f 0
0 ,

g00 , h0
0] and on P1 produces the snapshot sequence [f 0

1 , g01 , h0
1], where amn signifies the

snapshot taken on the m-th return from version n (0,1) of function a. In this example,

pairing snapshots for comparison is straightforward: { f 0
0 , f 0

1 }, { g00 , g01 }, and { h0
0, h

0
1 }.

Aligning the memory snapshots into comparable pairs is more challenging when executing
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the test input I on P0 and P1 result in different call sequences, S0 and S1. To pair snapshots

in this general case, ODIT computes the longest common subsequence (LCS) between S0

and S1. That is, the longest sequence of snapshots (not necessarily consecutive) occurring

in the same order as in S0 and S1.

ODIT conducts state comparisons (lines 13-14) as a series of type-aware value com-

parisons. v0 = v1 is a defined relation only if type(v0) is equivalent to type(v1). Therefore,

if the type of a program element v (e.g., a function return type) has changed, the technique

cannot compare v0 and v1 and will not log a detected difference. The technique defines

value equality by type as follows: primitive type⇒ bit-wise comparison; structure type

⇒ iterative comparison of member types; array type⇒ iterative comparison of consecu-

tive type; pointer type⇒ recursive comparison of referenced type.

Pointers are equal if they point to equal memory objects. Dereferencing occurs as a

depth-first-search of the memory graph to avoid cycles. I construct state comparison as a

sequence of value comparisons: 1) the returning callee’s return value; 2) the callee’s output

arguments; 3) global variables; 4) external call input parameters; 5) stdout and stderr.

For each detected difference, Behavioral Comparison logs three fields: 1) an annotated

identifier, 2) the form of difference found, and 3) current call distance through unchanged

functions. The identifier specifies the program element containing the detected difference.

Possible program elements include global variables, function return values, function output

parameters, and output streams. The technique adds annotations to identifier names to

signify structure members, array element access, and pointer dereferencing. For primitive

data types, the only possible form of difference is a bit-wise value difference, but other

types can differ in other ways. For example, a pointer type may differ in value of dereferents

(a standard value difference), one pointer may be NULL, or one pointer may lack a referent

(i.e. a dangling pointer). The final field is used by the Difference Analysis 5.3.4 phase as a

distance metric for ranking clustered differences.

At this point, ODIT has logged a list of raw differences discovered during Behavior
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Algorithm 4: Behavior Comparison
Input : P0: original version of program P

P1: updated version of program P
T : set of test inputs

Output: DiffLog: log of raw differences found
1 begin
2 DiffLog ⇐ ∅
3 foreach t ∈ T do
4 r0 ← execute(P0, t)
5 if r0 ∈ { return, exit, abort} then
6 r1 ← execute(P1, t)
7 if r0 ̸= r1 then
8 DiffLog ⇐ termination diff

9 else
10 S0 ⇐ snapshots(r0)
11 S1 ⇐ snapshots(r1)
12 foreach chkpt ∈ aligned(S0, S1) do
13 DiffLog ⇐ cmp(S0[chkpt], S1[chkpt])

14 DiffLog ⇐ cmp(final(r0), final(r1))

Comparison. The difference log will likely contain many entries immaterial to regression

detection. It also may contain feasible, unintended behavioral differences threatening to

become regression errors. The objective of the next phase is cluster, order, and rank the

raw behavioral differences to emphasize the feasible, unintended changes.

5.3.4 Difference Analysis

The raw difference log produced by Behavior Comparison will contain redundant differ-

ences, infeasible differences, and intentional differences along with the unintentional re-

gression errors. This phase clusters, orders, and ranks individual difference reports into an

actionable list for developer consideration.

For each test input, the log contains a list of differences found in checkpoint state com-

parisons and the final state comparison. Each state comparison contains a list of value

differences found. Each entry in this list records the differing program element’s identifier,

a descriptor for the form of difference, and the distance through unchanged functions calls

prior to difference detection. The intuition behind this heuristic is that intentional changes

tend to have immediate effect, whereas unintended changes are more likely farther from

the site of the code update. For example, changing a function to use a more efficient sort-

ing algorithm may have a localized detectable state difference. But at a distance, through
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unchanged portions of the program, the state will be equivalent: a sorted list. However,

if the updated sorting function contains a bug, execution distant from the change will still

detect the list difference. The heuristic also favors feasible behavior. A common form of

infeasible behavior arises from infeasible function inputs, such as an invalid pointer. If

both the original and modified function react to the infeasible input in the same way (e.g.,

memory fault), then comparison finds no differences. And if they behave differently, the

difference is likely to be immediately observable.

This phase first iterates over each test input with a failing comparison. For input, it

collects the set of differing program elements along with the maximum distance at which

the element difference was found during this input execution. The technique updates a

co-occurrence matrix (an identifer⊗identifer sparse array) accordingly. If program ele-

ments x1 and y1 both fail comparison to x0 and y0, respectively, in the same test, then

co-occurrence[x, y] is incremented. When completed, co-occurrence allows ODIT to iden-

tify dependent differences. Conceptually, if every test input that detected a difference in x

also detected a difference in y, then x is likely dependent on y. For example, consider a

program with a function f returning an integer, and two functions a and b that both call f

and store the returned value into variables ga and gb, respectively. Suppose f is modified

and introduces a regression. Then Input Generation will produce test inputs for a, b, and

f and Behavior Comparison will detect differences in f ’s return value, ga, and gb. The

co-occurrence matrix allows ODIT to infer that the differences in ga and gb are dependent

on f ’s return value. More formally, the co-occurrence relation provides a partial order over

the set of element identifiers with detected differences.

Each element identifier in the raw comparison log is assigned a distance metric that

is the mean of the distances in the test inputs for which it is logged. The co-occurrence

dependency forms a graph whose roots correspond to independent differences detected.

ODIT ranks the roots of the resulting lattice by decreasing distance for presentation to

developers.
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5.4 Limitations

ODIT targets incremental changes in a program. Having multiple unrelated changes with

intertwined control flow can increase the number of reported root behavioral differences,

affect difference ranking, and distort the co-occurrence relation. Three of the regressions

in the empirical study originated from the same commit in which the developer, in an

abundance of optimism, changed 65% of the program. Nevertheless, ODIT performed

well on two of these three regressions.

Another limitation of ODIT concerns changes to a program element’s type. If a func-

tion argument changes type between versions, the technique is unable to generate a test

starting from that point. In this case, the technique looks for alternative entry points pre-

ceding the changed function in program’s call-graph. If a functions’ return type changes,

the technique can generate a test input, but cannot compare the functions’ return value.

Similarly, the technique cannot compare a global variable with changed data type.

5.5 Empirical Evaluation

To evaluate ODIT, I implemented a prototype tool and performed an empirical evaluation

on a set of benchmarks. In the evaluation, I addressed the following research questions:

RQ1: Can ODIT detect and effectively rank regressions?

RQ2: How do ODIT’s over-approximating results compare to a similar tool’s under-

approximating results?

RQ3: How does ODIT perform on refactored, real-world code?

5.5.1 Implementation Details

I implemented ODIT’s Change Identification phase as a clang [19] analysis pass and an

LLVM [35] analysis pass. The clang analysis pass records declarations of external func-

tion constant parameters to limit unconstrained output parameters during Input Generation,
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since this information is no longer available to the LLVM bitcode. The LLVM pass exam-

ines two bit-code modules to determine functions and global variables added, removed, or

changed and constructs a mapping of comparable types between the two module’s names-

paces. To identify modified program statements, the LLVM pass iterates over each func-

tion fn. For each basic block in fn, ODIT computes a hash from the blocks sequence of

instructions, named values, and constants. Hashing the basic block hashes in a depth-first-

search decent of the fn’s control flow graph computes a hash for fn. For the implementa-

tion of Change Identification, hash(f0) ̸= hash(f1), flags f as modified. Statement level

changes are identified by matching block hashes between f0 and f1.

I forked the KLEE symbolic execution engine [24, 21] to implement ODIT’s under-

constrained symbolic execution for Input Generation and concrete execution for Behavior

Comparison. During Input Generation, I used the STP constraint solver version 2.1.2.

Finally, I developed the Difference Analysis phase in python3. My implementation of

ODIT is publicly available together with the experiment data and infrastructure (https:

//sites.google.com/view/odit-ase2021/).

5.5.2 Evaluation Setup

To evaluate ODIT’s ability to detect regressions, I considered potential benchmarks based

on the following criteria: (1) an active development cycle with frequent repository commits;

(2) availability of associated artifacts (e.g., error-introducing and error-fixing commits).

Given these criteria, I selected a prior established set of regression defects CoREBench [34].

CoREBench contains a curated collection of real regression errors from four widely-used

open-source projects, which provides realistically complex benchmarks for evaluating ODIT.

CoREBench validated each of the regressions in their benchmarks, providing commit iden-

tifiers introducing the regression and bug reports describing the defect. For this preliminary

study, I evaluated the 70 CoREBench regressions. I omitted regressions requiring 32-bit

compilation, unsupported multibyte locales (e.g., ja JP.sjis), and regressions reporting dif-
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ferent effects but resulting from the same code modification. After discarding these, 61

CoREBench regressions remained. Table 5.1 lists the CoREBench programs, entailed re-

gression identifiers, and average source code size.

Table 5.1: Regression benchmarks.

program regressions LOC

rm 1 1044

cut 3, 6, 12, 17, 21 519

tail 4, 5, 16 1039

seq 7, 8, 9, 18, 19, 20 254

cp 10 2498

ls 13, 14 3106

du 15 624

expr 22 583

find 23 - 37 8,738

grep 38 - 52 6,153

make 53 - 70 23,805

To answer RQ1 and RQ2, I must be able to determine whether a behavior difference

captured by ODIT relates to a specific regression fault. Although CoREBench [34] in-

cludes failing test cases gleaned from each regression’s original bug report, their inputs are

not suitable for my use. Each of these tests detects the regression’s manifestation to exter-

nal output. From the example in section 5.2, the provided regression test contains program

arguments that cause expr1 to print an incorrect result. However, in the under-constrained

exploration of expr behavior, a test input for toarith will never execute to a print state-

ment. To correctly evaluate ODIT, I need to determine when a value computed by toarith

would later manifest as the regression’s error.

To this end, I use bug oracles as an approximated specification of the regression. A
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bug oracle refers to an oracle that detects a specific incorrect behavior [36]. Thus, for each

regression defect in the benchmark, I designed a bug oracle to detect the faulty behavior

described in the bug report and addressed in the error-fixing commit. The bug oracles

consist of a pair of regression identifier and a declarative expression (i.e. without side

effects). When the expression evaluates to false, the specific identified regression will

manifest. Then, execution blithely continues unaffected, since the expression is without

side effects. If the expression never evaluated to false over the entire execution, then the

bug did not occur. As an example of a bug oracle, consider listing 5.1. The oracle is the

o assert in line 31. The o assert condition exactly matches bug expression, that is

the bug will occur if and only if the oracle condition is false. This particular bug will not be

expressed until much later, when expr prints the resulting miscalculated value. But, since

ODIT only differentially executes in a neighborhood of the changed code (i.e. toarith),

evaluation of ODIT to detect the regression requires an oracle close to the modified code.

It is worth noting that the bug oracles are only required as ground truth in the evaluation

but are not required by ODIT.

Introducing bug oracles into P1’s code would add control flow that would bias the input

generation phase to produce inputs exercising the oracles themselves. Therefore, I imple-

mented the bug oracles subject to conditional compilation to build both the original P1 and

the oracle instrumented PO
1 . After running Input Generation on P0 and P1, I performed

Behavior Comparison on P0 and PO
1 to provide an approximation of ground truth correlat-

ing with the specific benchmark’s regression defect. The regression identifier distinguishes

regressions when a single code update introduces multiple regressions (e.g. regressions

9, 18, and 20). During the Behavior Comparison phase, the executor maintains a list of

signaled bug oracles, strictly for evaluation purposes. Therefore, the evaluation can not

only determine whether ODIT found a true regression, but whether it found the specific

regression addressed in the benchmark’s bug report.

Throughout this section, I will refer to results that signal the corresponding bug oracle
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as a true positive. If the oracle is not signaled, then the result is a false positive. Note that in

this terminology, a difference originating from an intentional change, a different program

defect, and an infeasible test input are all labeled as false positives. I do not know the

developer’s intent, have perfect program comprehension, or have a decidable algorithm to

determine feasibility. But I do know if the bug oracle’s condition was satisfied.

I performed the experiments on a server with dual Intel Xeon® E5-2650 processors

running at 2.20 GHz with 48 cores, 128 GB DRAM, and running Ubuntu 20.04. I set a

limit for ODIT of 60 minutes for each pair of code versions analyzed, and this limit was

never reached in the experiments.
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5.5.3 RQ1: Regression Detection and Ranking

Table 5.2: ODIT Experimental Results

bench regression detection cmp

mark inputs diffs +o PPV -o FDR rank odit shdw

01-rm 671 0 0 - 0 - N/A ✗ ✗

03-cut 30641 5 0 0.0% 5 100.0% N/A ✗ ✗

04-tail 11407 1 1 100.0% 0 0.0% 1 ✓ ✗

05-tail 8311 1 0 0.0% 1 100.0% N/A ✗ ✓1

06-cut 3198 5 2 40.0% 3 60.0% 1 ✓ ✓

07-seq 13427 2 1 50.0% 1 50.0% 1 ✓ ✗

08-seq 14088 3 1 33.3% 2 66.7% 2 ✓ ✗

09-seq 15248 2 2 100.0% 0 0.0% 1 ✗ ✗

10-cp 4239 0 0 - 0 - N/A ✗ ✓

12-cut 28606 7 3 42.9% 4 57.1% 3 ✓ ✓2

13-ls 13062 3 2 66.7% 1 33.3% 1 ✓ ✓

14-ls 10186 10 10 100.0% 0 0.0% 1 ✓ ✗

15-du 1402 10 8 80.0% 2 20.0% 1 ✓ ✗

16-tail 8296 1 0 0.0% 1 100.0% N/A ✗ ✓1

17-cut 28573 7 3 42.9% 4 57.1% 3 ✓ ✓2

18-seq 15248 2 2 100.0% 0 0.0% 1 ✓ ✗

19-seq 8533 3 1 33.3% 2 66.7% 3 ✓ ✗

20-seq 15250 2 2 100.0% 0 0.0% 1 ✓ ✗

21-cut 18841 11 11 100.0% 0 0.0% 1 ✓ ✓

22-expr 2644 1 1 100.0% 0 0.0% 1 ✓ ✗
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Table 5.3: ODIT Experimental Results

bench regression detection cmp

mark inputs diffs +o PPV -o FDR rank odit

23-find 2552 67 1 1.5% 66 98.5% 67 ✓

24-find 22994 3 0 0.0% 3 100.0% N/A ✗

26-find 180975 65 10 15.4% 55 84.6% 1 ✓

27-find 7771 1 0 0.0% 1 100.0% N/A ✗

28-find 89420 4 0 0.0% 4 100.0% N/A ✗

30-find 35945 7 7 100.0% 0 0.0% 1 ✓

31-find 180873 64 10 15.6% 54 84.4% 1 ✓

32-find 52459 9 2 22.2% 7 77.8% 1 ✓

33-find 52268 9 2 22.2% 7 77.8% 1 ✓

34-find 34835 7 0 0.0% 7 100.0% N/A ✗

36-find 68074 4 0 0.0% 4 100.0% N/A ✗

37-find 89012 2 2 100.0% 0 0.0% 1 ✓

38-grep 4583 8 5 62.5% 3 37.5% 2 ✓

41-grep 27704 51 0 0.0% 51 100.0% N/A ✗

42-grep 2965 15 13 86.7% 2 13.3% 1 ✓

44-grep 586 0 0 - 0 - N/A ✗

45-grep 3142 1 0 0.0% 1 100.0% N/A ✗

46-grep 9069 5 3 60.0% 2 40.0% 2 ✓

47-grep 25758 22 0 0.0% 22 100.0% N/A ✗

48-grep 25918 16 0 0.0% 16 100.0% N/A ✗

49-grep 58 0 0 - 0 - N/A ✗

51-grep 168 13 0 0.0% 13 100.0% N/A ✗

52-grep 2012 3 3 100.0% 0 0.0% 1 ✓

Table 5.2 and Table 5.3 present the quantitative results of my experiments. The leftmost

column identifies the CoREBench [34] benchmark together with its CoREBench numerical

identifier. I refer to the regression detection columns to answer RQ1. The first column of

this group (inputs) reports the number of test inputs produced by Input Generation. The
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subsequent columns detail the number of independent differences found (diffs), the num-

ber of true positive differences (+o), the positive predictive value (precision), the number

of false positive differences (-o), the false discovery rate, and the highest ranked true posi-

tive. When a single update introduces multiple regressions, these values reflect differences

coincident with any of the updates bug oracles.

In 19 of 43 benchmarks, the top ranked difference was a true positive, and 25 (58%)

ranked near the top (i.e. at least third). ODIT detected behavioral differences in 39 of

the benchmarks, with 29 reporting false positives. Although false positives are to be ex-

pected due to intentional behavioral changes and generated infeasible inputs, the technique

produced no false positives on 14 regressions.

Inspection of the benchmarks in which ODIT either low-ranked or missed the regres-

sion difference revealed four general conditions limiting the technique’s difference analy-

sis, behavior comparison, and input generation:

First, the introduction of multiple, unrelated changes in the same code update impedes

Difference Analysis and leads to a disproportionate number of false positives and low rank-

ing true positives. For example, regressions 12 and 17 were both introduced in the same

commit to cut. The two unrelated changes increase the number of differences detected, and

the intermingled control flow prevent co-occurrence from detecting and ordering dependent

differences. For future work, data flow analysis may help untangle co-occurrence.

Second, program updates to use different external APIs prevent Behavior Comparison

from taking address space snapshots and performing state comparisons local to the changed

code. For example, regression 5 (and 16) was introduced when find transitioned file update

detection from periodic polling to event notification (inotify). Differing external function

calls unconstrain in-comparable variables. And differing API use methodologies (poll vs.

event) significantly alter the function call sequence forcing relatively coarse-grained com-

parisons.

Third, program logic requiring the use of unsupported constraint solver theories limits
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the ability of Input Generation to produce inputs with broad coverage. For example, seq

(regressions 7, 8, 9, 18, 19, 20) uses many float data types. Since the solver lacks a theory

of floating-point arithmetic, the executor must concretize symbolic floats on first operation,

prohibiting future symbolic branching. This limits program paths considered and inputs

generated.

Forth, program structure can severely restrict the available entry points for Input Gen-

eration. For example, both rm and cp (1 and 10) populate a configuration data structure in

main incorporating a detailed task description from command arguments, and then refer to

this structure as a parameter in a chain of auxiliary functions. A program update that modi-

fies this configuration structure renders all of these auxiliary functions nonequivalent types,

and prevents input generation from anywhere but main. Similarly, grep first constructs a

deterministic finite automaton (DFA) and then supplies input to the DFA. Changes to the

DFA structure limit grep input generation to a close proximity to main.

Since ODIT reported a highly-ranked true positive in the majority of the benchmarks,

the technique can detect and rank real-world regression errors.

5.5.4 RQ2: Comparative Results

In this subsection, I compare the results from ODIT’s over-approximate approach to those

of a related under-approximating tool, Shadow [31]. Both techniques use symbolic ex-

ecution to explore differential program behavior and both tools are forks of KLEE [24].

But Shadow does not report infeasible behavioral differences. Shadow symbolically exe-

cutes both programs in parallel, with the original version shadowing the updated execution.

When the versions’ paths diverge, Shadow combines path condition elements from both ex-

ecutions to construct inputs comprehensively covering the modified code. Fortunately for

technique comparison, Palikareva et al. also conducted experiments on CoREBench [34]

regressions.

The last column group in table 5.2 indicates the specific CoREBench regression errors
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reported by each tool. A checkmark in the ODIT column indicates that the experiment

detected the specific regression described by CoREBench. For example, regressions 12 and

17 are different defects, introduced in the same code update. My use of bug oracles during

technique evaluation allow an association of a reported difference to a specific regression.

This assures that ODIT not only found a regression, but both regressions.

Palikareva et al. conducted experiments on the core utilities in CoREBench (regressions

1 - 22). The authors combined results for regressions { 5, 16 } and {12, 17}, simply report-

ing bug detected. Since both of these code updates introduced multiple regressions, which

specific regression was detected cannot be distinguished. Depending upon how the bug re-

ports were combined, Shadow detected between 6 and 8 of the 20 core regressions. ODIT

detected 14 of the same 20 regressions. Over-approximating behavior allowed ODIT to de-

tect more errors than Shadow, but at the cost of potentially reporting infeasible differences.

Another advantage of /pse/ is reduced overhead. Shadow’s median runtime of 9,175

seconds is much higher than ODIT’s median of 335 seconds. Also, Shadow presumes a

pre-existing test input that reaches the updated code and requires code instrumentation as

annotations identifying the changed code. ODIT requires neither.

5.5.5 RQ3: Scability to Real-World Software

As discussed above, these experimental results were preliminary. Though the results were

promising and suggest the viability of the ODIT approach, generalizing these results re-

quires more diverse benchmarks. My derivation of ODIT’s executor from KLEE [24]

places some constraints on potential experiment subjects. The program’s source language

must be entirely in ’C’, with minimal inline assembly. Enhancement to KLEE supporting

other LLVM compiler frontends such as C++ and Rust is still a work in progress and has

not been back-ported into ODIT.

I envision ODIT as a tool that developers routinely run before committing code to a

repository, or even (automatically) every time the code is saved. However, the tool would
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not be useful if it generated too many false alarms. In 5, I demonstrated that ODIT can (1)

generate a low number of false positives and (2) rank the true positives above the false pos-

itives in most cases. In support of this approach, I present an experiment and an extended

case study discussion of three real-world programs that are currently widely deployed.

In this subsection, I describe work supporting the scalability and utility of Over-approximate

Differential Testing (ODIT) to real-world software projects. For this evaluation, I enhanced

the prototype tool used in the experiments of chapter 5. In addition to the usual latent bug

fixes, I made several enhancements to lower the overhead and improve the performance of

the prototype tool.

First, I extended the use of loop inhibition first described in chapter 5. To be self-

contained, I will briefly describe the motivation and approach to this novel modification to

standard Klee [21] state explosion mitigation. Klee starts with a configurable maximum

threshold for the total amount of memory devoted to containing states for the program

under test. If this threshold is exceeded, Klee randomly selects and terminates states until

the surviving states are below the threshold. The issue with this scheme, is that exceeding

the memory threshold generally occurs during a path explosion [3] such as from a symbolic

condition within a loop body. Terminating a few percentages of these states still leaves the

majority of them also within the loop. Often, then leading to another threshold violation

since, with high probability, the next state selected will still be in the exploding loop body.

Instead, the under-constrained [5] executor in ODIT tracks the states currently executing

within each loop body. When the number of states executing in any single loop body

exceed a configurable threshold, those states (and those only) are fork-inhibited. When a

fork-inhibited state reaches a branch instruction: 1) if a loop-exit is a satisfiable branch,

then it is selected, disregarding any other possible branch, 2) otherwise, if more than one

branch is satisfiable, then one is selected at random. This approach has the advantage that

states outside the loop body are more likely to be chosen and those within the body are

biased to take the loop exit. To improve the performance of the ODIT prototype tool, I
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extended fork-inhibition to a generalized condition that applies to all states, not just those

in a loop body. When ODIT’s symbolic executor reaches the timeout for these larger, real-

world programs, often many thousands of states are still executing. Adding a short period

of global fork-inhibition allows many of them to complete.

Since many potential benchmarks are multithreaded programs, PSE must model the use

of the pthread library for threading and synchronization. Recall from chapter 5 that ODIT

dynamically generates new, unconstrained values for all output parameters for each external

library function. Since many of the functions in the pthread library take non-constant points

for arguments, by default, ODIT treats these as function outputs and upon return from a

call, supplies unconstrained values. When the mutex is embedded in the protected object

(as is normally the case), whenever the program locks the mutex, ODIT’s default behavior

is to supply an unconstrained value for the entire data structure. In response, I implemented

a system model for this library. Since multithreaded code is out of scope and unsupported

by ODIT, the model for this class of library functions always succeeds, never waits, and

constructs concrete return values for select output parameters, such as thread handles.

Next, I applied the enhanced tool to consider RQ3. To evaluate the extent to which

ODIT would generate false alarms for code without regressions, I considered potential

benchmarks with: (1) an active development cycle with frequent repository commits; and

(2) a sequence of commits that consist of refactorings or small incremental changes. For

a case study on ODIT scalability, I selected three programs satisfying these requirements:

redis [37], memcached [38] and lighttpd [39]. Redis is an in-memory data structure

store used as a database, cache, message broker, and streaming engine. Memcached is a

distributed memory object cache generally used to optimize web service delivery. Multiple

web servers can access and update the same memory object pool, reducing the load on

backend data storage such as SQL servers. Lighttpd is a flexible web server optimized

for performance, low overhead, and portability. As an aside, lighttpd was started while

the original author was finishing their thesis on an unrelated topic; the existing apache
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Figure 5.3: Example commit graph from Redis

servers were a bottleneck.

From the release history of these three programs, I selected sets of sequential release

pairs for consideration. Each pair consisted of a program major release and its subsequent

minor release. I selected relatively modern major releases to avoid build failures due to the

evolution of gnu autotools. Because selecting commit difference pairs in a real-world

program is not at straightforward as might be expected, I wrote a tool to extract them. The

commit graph for complex software is often complex as well; without the simple branching

of a development and subsequent merge back into a main branch. For example, consider

the example from Redis in figure 5.3. In some cases, again e.g. Redis, the prior release

need not even be an ancestor of a later release. The tool takes begin and end references

and finds relevant pairs by:

1. Constructs a directed acyclic graph (DAG) from the commits,
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2. Computes the sub-graph of ancestors of end,

3. Adjusts begin to the closest ancestor (maybe begin itself),

4. Enumerates all paths from end to begin in the commit graph,

5. Includes all edges in these paths whose leading node has a single parent (i.e. not a

merge node) and whose diff contains a modified program source file,

For each of the three subject programs, I selected commit pairs between a major release

and its next tagged release. Each subject program occupies a column in table 5.4. The

left most sub-column contains the commit pair in the form prev..post and listed from

latest to earliest pairs. For simplicity, henceforth I will refer to the pair by its post commit

short identifier. For each commit, I manually inspected the log message and the modified

source files. Though uncommon, I did find instances in which commit messages indicated

comment changes only, whereas the commit difference contained additional behavioral

changes. Through this inspection, I manually classified the extent of change in each commit

as one of the following categories:

comment: change involving only comments.

refactor: behavior-preserving change to program logic.

behavior: behavior-modifying change to program logic.

data: change involving only data.

platform: change was conditionally dependent upon architecture or upon a non-default

build option.

The right hand sub-column of table 5.4 identifies each commit’s category.

66



Table 5.4: Case Study Subjects.

Redis memcached lighttpd

5.0.1↘ 5.0.0 category 1.6.1↘ 1.6.0 category 1.4.41↘ 1.4.40 category
c801283..c595050 data 2168ac8..aac7d69 behavior 375022a..5863d05 data
4c4f50e..c801283 data 9a4aa77..2168ac8 platform ebf3af8..375022a comment
a7b46e0..4c4f50e refactor c557f1c..71d4fa8 behavior acd5e45..ebf3af8 platform
80e129d..a7b46e0 data b5ec478..c557f1c data 558bfc4..acd5e45 behavior
88805cb..80e129d behavior 9198a33..b5ec478 platform f7410da..558bfc4 behavior
6b40273..88805cb data c838b56..9198a33 platform ad6d418..f7410da data
1c637de..6b40273 behavior ab2ae12..6ca41fc refactor c8e647a..ad6d418 behavior
90b52fd..1c637de data 936325b..ab2ae12 refactor a62bff9..c8e647a behavior
89cbb5d..90b52fd refactor 1.5.1↘ 1.5.0 a69a803..a62bff9 behavior
175515c..89cbb5d platform bac46b3..d866123 behavior a95aaa9..a69a803 behavior
3997dd6..175515c refactor 6107b92..bac46b3 behavior bce293e..a95aaa9 platform
bd80291..3997dd6 platform 67287ca..6107b92 behavior 565dec2..bce293e behavior
4369cbc..bd80291 comment d1f34d6..b2ea920 behavior 38139fa..565dec2 behavior
1ed821e..4369cbc data 304b77e..d1f34d6 platform 9af58a9..38139fa behavior
b49bcd0..1ed821e behavior 78c260a..71b2385 platform ed34089..9af58a9 behavior
09d1849..b49bcd0 refactor 3e8f5e2..78c260a behavior b43fc00..ed34089 behavior
bdf6306..09d1849 comment 1.4.11↘ 1.4.10 cd33554..b43fc00 behavior
50222af..bdf6306 behavior 595572c..016a87c refactor 78c79ea..cb468d3 behavior
643ee6e..50222af refactor a16ce58..595572c behavior 1ebc83f..78c79ea behavior
8b609c9..643ee6e behavior 96c07ae..a16ce58 behavior d506f4a..779c133 behavior
2710260..8b609c9 behavior f4983b2..3b96138 refactor 4d92046..d506f4a data
a677923..2710260 behavior 324975c..f4983b2 behavior a3ec906..4d92046 behavior
427e440..a677923 behavior 193a653..324975c behavior 72abc87..a3ec906 refactor
28f9ca4..427e440 refactor b3630e1..193a653 behavior acad2c9..9c49dc9 refactor
4bf9efe..28f9ca4 refactor 8c1c18e..b3630e1 behavior 393dfd8..acad2c9 behavior
4fbd7a3..4bf9efe behavior 99fc043..8c1c18e behavior adf9159..393dfd8 data
2480db5..4fbd7a3 comment 10698ba..99fc043 behavior 052a049..00cc4d7 behavior
e5e4d2e..2480db5 behavior 40b7b4b..10698ba behavior e9c9f42..2cdc017 behavior
713800d..e5e4d2e comment f58de2a..40b7b4b behavior 8f8fa60..e9c9f42 behavior
e79ee26..713800d behavior 7066273..f58de2a behavior
505cc70..e79ee26 behavior ee486ab..7066273 refactor
3c36561..505cc70 comment 7bc93a6..ee486ab data
3761582..3c36561 behavior
edc47a3..3761582 refactor
9872af6..edc47a3 refactor
3f399c3..9872af6 comment
eaaff62..3f399c3 behavior
43ebb7e..eaaff62 comment
de8fdaa..43ebb7e behavior
dc8f111..de8fdaa refactor
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Refactored Code

Since RQ3 focuses on refactoring, the table 5.5 details each individual refactoring com-

mit. The leftmost column lists the subject program and the refactoring commit identifier.

The second column shows the number of files changed and the number of source lines

added/deleted. The third column contains shows the number of modified functions and

global variables found during ODIT Change Identification. The final column shows the

number of inputs produced by ODIT Input Generation and the total number of differences

found by Behavior Comparison and Difference Analysis. Rather than burying the lede, the

major significance is that ODIT found no differences in the refactored code, i.e. it produced

no false-positives.
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Table 5.5: ODIT refactoring commit results.

subject ∆files ∆lines ∆fn ∆V inputs diffs

redis::4c4f50e 1 3 1 0 51 0

redis::90b52fd 1 3 0 0 0 0

redis::175515c 1 6 0 0 0 0

redis::b49bcd0 1 2 0 0 0 0

redis::50222af 1 1 15 0 2 0

redis::427e440 1 1 0 0 0 0

redis::28f9ca4 3 21 0 0 0 0

redis::3761582 1 23 1 0 0 0

redis::edc47a3 1 61 12 0 9443 0

redis::de8fdaa 1 12 1 0 847 0

memcached::6ca41fc 2 4 1 0 0 0

memcached::ab2ae12 1 2 1 0 0 0

memcached::016a87c 1 6 0 0 0 0

memcached::3b96138 4 56 13 0 38422 0

memcached::40b7b4b 1 56 1 0 14916 0

memcached::f58de2a 1 18 1 0 918 0

memcached::7066273 1 8 1 0 909 0

lighttpd::a3ec906 1 5 0 0 0 0

lighttpd::9c49dc9 1 14 0 0 0 0

In the rest of this section, I discuss each of these refactoring commits, which are the

focus of RQ3, and leave discussion of the other categories to section 5.5.5. ODIT found

that seven of the refactorings contained no differences in the program’s functions or global

variables. Recall from chapter 5 that the Difference Analysis phase calculates hashes over

the LLVM intermediate representation (IR) of each basic block and over the control flow
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graph (CFG) of each function. Therefore, if no functions or global variables have been

added or removed, no global variable changed type, and no function evaluates to a different

hash, then there are no IR statements to target for Input Generation and ODIT completes

while reporting no differences found, skipping Input Generation, Behavior Comparison,

and Difference Analysis.

From these 8 refactorings:

redis::90b52fd removed an unnecessary local variable, keys in multiple nodes.

redis::175515c simplified an if statement by incorporating a prefix increment operator.

redis::b49bcd0 changed a local variable’s type from time t to mstime t, but both

types resolved to the same underlying LLVM IR data type.

redis::427e440 inserted an additional header file. Due to C coding practices which of-

ten employ the preprocessor to redefine types and functions, the equivalence of the

resulting object code is non-trivially determined.

redis::28f9ca4 replaces the read of a global variable with an architecture independent

function. Under a linux build, this new function simply returns the value of prior

the global variable. Since the compiler optimized this new function call away, the

resulting IR is identical.

memcached::016a87c removed an unused parameter from the spawn and wait func-

tion.

lighttpd::a3ec906 added a build configuration dependent include file

lighttpd::9c49dc9 refactored an if..else chain throwing a compiler warning, in dead code

subsequently discarded by the compiler.

For six of the refactoring, ODIT identified differences and generated inputs, in some

cases in large numbers, without reporting any false positives:
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redis::4c4f50e reversed the operands of a logical AND in an if condition. Although this

modification may seem obviously equivalent, one of the logical operands is function

call which could have side effects. If so, then the updated program could exhibit a

behavior difference due to boolean shortcutting.

redis::50222af moved the initialization of a global variable, without changing its value.

redis::edc47a3 hoisted a fragment of common functionality into a new function with mod-

ified semantics and modified the donor site and other impacted sites for the new func-

tion. The significance of this update is reflected in the number of modified source

lines (61), modified function bodies (12), and the number of tests generated (6,681).

redis::de8fdaa simplified the control flow of msetGenericCommand. The update elim-

inates a used, but algorithmically not required, variable.

memcached::3b96138 replaced memcached’s object reference counting mechanism used

by the server for automatic memory object garbage collection. This was also an

invasive update, generating 51,758 test inputs.

memcached::40b7b4b was a complex refactoring intended to simplify the convoluted

control flow of do item alloc.

memcached::f58de2a was a continued refactoring intended to further simplify the convo-

luted control flow of do item alloc. The equivalence of the updated code is not

obvious, and could easily have introduced a fault.

memcached::7066273 relocated a mutex unlock to an earlier point prior to function exit,

freeing other threads earlier. Although the change is small, it is located at the end of

a function with significant flow control.

For commits redis::3761582 and memcached::6ca41fc and ODIT was unable to gener-

ate inputs that reached an updated program statement before timeout. Memcached::ab2ae12
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is an interesting case that can likely be labeled as a true-positive unintended behavioral

change. The git log message for this commit is ‘̀Add stdio.h,stddef.h to storage.c” Manual

inspection confirms that the only change to program source files was the insertion of these

two include files; which should have no impact on the Linux build as the inclusion was

not required on that platform. Based upon the log comments and the inspection, I originally

categorized this commit as a refactor. However, ODIT reported two behavioral differences.

Upon manual inspection of the generated LLVM IR, I found that there had been a change

in memcached’s autotools configuration generator that modified the format of its ver-

sion string. Although ODIT does not target data differences during change identification,

the change in string length was detected as a parameter to the construction of the response

to an API server version query. The prototype tool reported the difference found in the

data packet returned by dispatch bin command. Since the behavioral change was not

mentioned in the commit message, I infer that the developer was probably either unaware

or unconcerned of build system side effects.

As a trial to determine whether ODIT could generate difference reaching inputs for

redis::3761582 and memcached::6ca41fc if allocated more time, I re-ran input generation

for these two commits with a 10-minute timeout per entry point, instead of 1-minute as used

as a baseline. But, even with an order-of-magnitude more time, ODIT found no difference

reaching inputs.

These results, together with RQ1, provide initial evident that ODIT can be effective in

detecting regressions without overwhelming the user with a large number of false positives.

In the next section, I discuss the other commit categories found in the benchmarks.

Case Study Discussion

This section presents a case study discussion of the remaining benchmark commit cate-

gories: comment, data, platform, and behavior. Discussion for the first three of these will

be brief. Commits in the comment category contained only source code changes to program
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comments. Even though they are behavior preserving, they cannot be considered a refac-

tor since there is no restructuring of the existing source code. For all three benchmarks,

the ODIT Change Identification phase correctly detected that these commits contained no

modified functions or global variables and did not proceed to Input Generation. Note that

the ODIT Change Identification alone would have been useful for a couple commits whose

git log message indicated they were comment only, but additionally contained some mi-

nor behavioral code changes as well. During my manual inspection, I categorized these as

behavior.

Commits in the data category contained only source code changes to data values, with

no modified program functions. ODIT does not support this category of change since Input

Generation targets changed IR instructions. And a data-only update will not modify any

program statements. I manually inspected the eleven commits in table 5.4 in the data cat-

egory. In all of these instances, the data change did not modify program behavior. Rather,

these changes modified version string, help messages, command option names, or revised

program message phraseology. However, program behavior can certainly be encoded in

data. For example, Redis encodes its server commands within a lookup table mapping

command name to a function for dispatch. Additional fields in the lookup table describe

other steps to be taken before and/or after the indirect function call. So data determines

the behavior around the dispatched command. I plan to address this limitation in future

work by starting with a data flow analysis from modified data to locate affected program

functions.

Commits in the platform category contained behavioral changes in source code that

was conditionally excluded from building in my experiment setup. For example, mem-

cached::b2ea920 pertained to ARM builds, and did not produce a difference in the com-

piled LLVM IR. Similarly, lighttpd::ebf3af8 modified an assertion, which were disabled

in the default build, and lighttpd::a95aaa9 is conditioned on a build option that defaults to

disable. All commits in this category produced no differences in generated functions.
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Commits in the behavior category will consume the remainder of this section. Recall

from chapter 5 that ODIT input generation can be constrained by the subject program’s

architecture. I provide more detail on this limitation here for clarity and background to

the ensuing discussion. For reference, see a high-level representation of the architectural

style that limited input generation for rm, cp, and grep in listing 5.2 In this style, the

program is segmented into two major components: a parser and an applicator. The parser

reads a textual specification of the operations/transformations to be performed and returns

a validated binary configuration representing the operation to be applied. The applicator

then applies the operation to the input, passing the operation down to a series of helper

functions. For rm and cp, the structure specifies the file operations to be performed. For

grep, the structure contains a Deterministic Finite Automaton (DFA) constructed from

the regular expression argument. As a result, any modification to supported file operations

that change this structure or a modification to the DFA representation prevents ODIT from

comparing the memory objects returned by parse. Of even more consequence, Input

Generation can only start at main since operation0 and operation1 are of differing types.

Therefore, for this style of architecture and these types of modifications, ODIT can only

perform the equivalent of classical symbolic execution.

One way to greatly mitigate this limitation would be to build a mapping between the

fields of operation0 and operation1. Unfortunately, a structure in LLVM IR is a sequence of

anonymous data types, so the mapping is not explicit. Such a field mapping could be built

by heuristics from field utilization in the original and modified program, or could also be

constructed from IR debug metadata. Requiring a debug build would likely be acceptable

to an ODIT user, since the technique requires source code anyway.

Two other Redis commits just prior to the 5.0.0 release, 9714bba26 and a3fb28edc,

pose another challenge for ODIT. In my prior work [40], ODIT was unable to generate

any test inputs for either. Manual inspection revealed another architectural complication.

Both of these commits added a new client command to the Redis server, while making
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no other change. Since Redis dispatches client commands by matching a request string

to an offset into a table of function pointers, ODIT’s Change Identification only found

some new functions and ignored one data element addition. And none of the new functions

where reachable through the updated program’s static call graph from a function present in

the original program. Hence, there is no valid starting point for Input Generation.

The commits within the behavior category fall into one of three categories: 1) inputs

generated, and behavioral differences found; 2) inputs generated, but behavioral differences

not found; and 3) no inputs generated. Next, I discuss each of these categories in turn.

For each of the commits in which ODITreported behavioral differences, the difference

could be a) a true-positive, unintended behavioral difference; b) a false-positive intentional

behavior change; or c) a false-positive, infeasible difference. Note that a true-positive

does not necessarily indicate a regression, but rather a significant potential for one. The

developer may not have been aware of all the side effects of the modification, but upon ex-

amination could determine that the unexpected effects are benign. For example, a function

update that leaves a different value in a global variable that is not accessed again during

the remaining program execution is still a true-positive, if the developer did not realize

the effect at the time of coding. In fact, a precise ground truth to distinguish between the

a) and b) possibilities would require insight into the developer’s contemporary program

comprehension. Although user studies could be used to estimate the proportion of inten-

tional vs unintentional differences, the ratio likely varies greatly with the subject program.

Moreover, that information alone would not be useful to determine the intentionality of a

particular difference. I considered, but ultimately rejected, multiple proxies for developer

intentionality. For example, a difference that was later identified with a program bug can

be presumed to have been unintentional. But this proxy omits all unintentional but benign

differences as well as bug fixes that were not logged to an issue tracking system. As a prac-

tical matter, even when a bug is logged and tracked, the benchmark’s developers recorded

what they changed to correct the bug, not the commit introducing the bug. Finding the
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introducing commit for a specific defect is certainly possible, as benchmark suites such as

CoREBench [34] have done. However, these suites only considered a limited number of

identified bugs. To serve as a proxy for unintended behavior, I would have to consider all

issues identified in the bug tracking system for potential origin in one of the benchmark

commits. This approach is clearly impractical. I also considered using modified test cases

as a proxy for intentional behavior changes. Presumably, an intentional program behavioral

change would be accompanied by a corresponding update to the program’s regression test

suite to validate the change. However, none of the evaluated repository commits contained

both source code changes and test code changes. The intentional behavior changes were

either untested, had no impact on existing test cases, or test cases were modified as a part

of a different commit.

The remaining possibility for a reported behavioral difference is infeasibility. As dis-

cussed in chapter 5, an infeasible difference is one that is only observed while executing

infeasible inputs; that is inputs producing a system state that cannot be realized by any

top-down execution from program entry (i.e. main). For example, an update that removes

the null-pointer check on an input from a utility function that is only called with a valid

pointer may produce an infeasible difference. The neighborhood of the modified function

may be insufficient to establish the impossibility of a null pointer value. A program analyst

could simply increase the size of the neighborhood, but at the cost of additional analysis

overhead and risk that input generation may not reach the modified code. Additional sym-

bolic execution from program entry to reach the desired neighborhood is also unlikely; if

traditional symbolic execution could find inputs reaching the boundary, then it could also

find inputs reaching the changed code. In general, the path explosion problem [3] is resis-

tant to divide-and-conquer approaches. Perhaps other analysis techniques could detect the

infeasibility and eliminate some false-positives. For example, a static pointer analysis may

be able to determine that the hypothetical function argument above can never be null.
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Table 5.6: ODIT behavior commit results, no reported differences.

subject inputs diffs comment

redis::1ed821e 149 0 Fix XCLAIM missing entry bug.
redis::a677923 1028 0 asyncCloseClientOnOutputBufferLimitReached():

don’t free fake clients.
redis::3f399c3 8 0 migrate: fix mismatch of RESTORE reply

when some keys have expired.
memcached::595572c 384 0 fix ’age’ stat for stats items
memcached::324975c 204 0 fix braindead linked list fail
memcached::193a653 37035 0 close some idiotic race conditions

Table 5.6 lists the subject commits, number of tests generated, and commit comment

for those commits with a behavioral difference and for which input generation reached

modified code, but for whom behavior comparison did not find any differences.

Manual inspection of the source code differences and inputs generated revealed the

following observations:

redis::1ed821e introduced a new local variable to a single modified function, xclaimCommand.

Since the new variable resulted in a modified function preamble, ODIT recognized

all generated inputs as reaching modified code. However, none of these inputs

reached the function’s modified behavior, near the end of the function.

redis::a677923 prevents the freeing of fake client connections. ODIT generated inputs

reaching modified function statements, but detected no changed program behavior

as the function does not return a value and does not modify any global program

variables.

redis::3f399c3 is similar to redis::1ed821e.

memcached::595572c corrects an error in which memcached reported age statistics as

a date instead of an interval. This commit is an excellent example of a behavioral

difference missed by ODIT due to consideration of inputs in a close neighborhood

of the program change. The modified function is a leaf in a stack of functions for
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reporting statistics, each of which accepts and passes down a function pointer that

physically writes the formatted statistic. With this architecture, no return values or

global variables are written close to the function change; just lazily initialized internal

values. Farther execution context would be required to observe the value differences

written to global state.

memcached::193a653 expanded the scope of a mutex synchronization lock to avoid a data

race condition. Since ODIT models these functions (mutex lock and mutex unlock)

as always successful and without side effects, the relocated lock has no observable

effect.
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Table 5.7: ODIT behavior commit results, no generated inputs.

subject inputs diffs comment

redis::643ee6e 0 0 When replica kills a pending RDB save during SYNC,
log it.

redis::8b609c9 0 0 Move child termination to readSyncBulkPayload
redis::2710260 0 0 Prevent RDB autosave from overwriting full resync

results
redis::4bf9efe 0 0 MULTI: OOM err if cannot free enough memory in

MULTI/EXEC context
redis::2480db5 0 0 Plugs a potential underflow
redis::713800d 0 0 if we read a expired key, misses++
redis::e79ee26 0 0 Fix XRANGE COUNT option for value of 0.
redis::3c36561 0 0 Overhead is the allocated size of the AOF buffer, not its

length
redis::43ebb7e 0 0 several typos fixed, optimize MSETNX to avoid

unnecessary loop
memcached::b2ea920 0 0 fix null pointer ref in logger for bin update cmd
lighttpd::acd5e45 0 0 [security] disable stat cache if !follow-symlink (fixes

#2724)
lighttpd::ed34089 0 0 do not set REDIRECT URI in mod magnet,

mod rewrite (#2738)
lighttpd::b43fc00 0 0 [mod status] show keep-alive status w/ text output

(fixes #2740)
lighttpd::cb468d3 0 0 [core] stay in CON STATE CLOSE until done with req
lighttpd::779c133 0 0 [security] do not emit HTTP PROXY to CGI env
lighttpd::00cc4d7 0 0 [mod auth] fix Digest auth to be better than Basic

(fixes #1844)
lighttpd::2cdc017 0 0 [config] inherit server.use-ipv6 and server.set-v6only

(fixes #678)

Table 5.7 lists the commits for which ODIT generated no inputs in the first column and

the corresponding commit comment in the last column. In these cases, PSE was unable to

symbolically execute from an entry point to reach a changed program instruction. Often,

the reason may simply be the same factors limiting the scalability of classical symbolic

execution as well, state explosion and solver limitations. For example in lighttpd::cb468d3,

the update only modified 10 lines of source code, but this lines occur near the bottom of a

1,000 line main. This essentially requires the traversal of a complete program execution

to reach the first modified program statement.

Additionally, manual inspection of these code changes also revealed other factors lim-
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iting PSE’s ability to generate inputs. For example, lighttpd::acd5e45 introduced a change

to a global configuration structure. Since the data type of the configuration changed, ODIT

was unable to unconstrain the global variable containing the system configuration. As a

result, ODIT could only explore behavior with defaulted configuration values. As reported

by Shadow [31] authors, another limiting factor is that some commits require a precise en-

vironmental model. In redis::4bf9efe, memory allocation failures are required to trigger the

modified behavior. Although ODIT’s environmental model could be augmented to provide

allocation failures to cover this scenario, the additional overhead of modeling the potential

failure of every allocation would likely exceed the limited benefit.

Finally, static type casting also limits the ability of PSE to reach changed code. A com-

mon C programming language idiom uses void pointers as a form of data hiding. List-

ing 5.3 contains the beginning of the modified function from lighttpd::b43fc00 employing

this idiom. The parameter p d is declared to be of type void* in line 3 and compiles to

an i8* (i.e. a byte pointer) in LLVM IR. During input generation, PSE lazily initializes

pointer values as an array of base types to accommodate C arrays, which are generally

interchangeable with pointers. With the selected PSE defaults used in these experiments,

p d would point to an unconstrained symbolic array of eight bytes. Line 4 then assigns the

address of this array to a pointer p to type plugin data and Line 6 dereferences a field

of p beyond the allocated size. Since the dereference is invalid, it blocks execution of the

succeeding modified code. To give a sense of the scale of type casting, lighttpd::b43fc00

contains 629 bitcasts either from or to an i8*.

With the presentation of these results, I conclude this case study into applications of the

prototype ODIT tool to real-world software.

5.6 Threats to Validity

External validity. The benchmarks consisted of 43 regressions found in 10 versions of

a program and 30 refactored versions of a second program. Although the results of this
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preliminary study are encouraging, generalizability requires further experiments with more,

and more diverse, subjects.

Construct validity. The main risk has to do with the soundness and precision of my

bug oracles, which dynamically determine if a specific regression has occurred during an

execution. They are challenging to write since they must be declarative and located close to

the defect location. To mitigate this risk, I conducted extensive testing of the bug oracles.

Internal validity. The bug oracles also constitute a threat to internal validity, because

the additional control flow could influence input generation around the regression, favoring

defect detection. To mitigate this risk, I constructed the oracles for conditional compilation

(see Section5.5.2).

5.7 ODIT in Practice

I envision ODIT used in a practitioner environment as a pre-commit verification or a post-

commit code review. Either way, successful integration into developer workflow presumes

some standardization of version control utilization. In this section, I outline a set of version

control best-practices that are conducive to continuous differential testing in general and

ODIT in particular. These recommendations are not exclusive to differential testing, but

also reflect commonly accepted best-practice with git (e.g. see [41])

Atomic Commits: Each commit should contain a single unit of work that cannot be de-

composed into a sequence of smaller units. This practice allows the developer to

examine each intended behavioral change in isolation to more easily recognize unin-

tended effects.

Refactoring Commits: Related to atomic commits, developers should avoid combining

code refactoring along with either feature addition or bug correction in a single com-

mit. By definition, refactoring should preserve behavior and should not detect any

behavioral differences. Including intentional behavioral differences in the differential
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analysis could obscure an unintended refactoring side effect from a developer.

Mixed-Behavior Commits: Also related to atomic commits, developers should avoid com-

bining bug-fixing code with new feature code in a single commit. While evaluating

ODIT results, developers must reason about the concrete effects of their behavioral

changes to distinguish the unintentional behaviors. Simultaneously reasoning about

corrected behavior and newly defined behavior unnecessarily increases developer

cognitive load.

Frequent Commits: As a result of the above, commits should be frequent. Developers can

more readily recognize ODIT reported unintended behavior over small, incremental

change.

Per-Feature Branches: Development of each new feature should occur in a dedicated fea-

ture branch rather than committed directly to a main/release branch. Intermingling

the behavioral differences between unrelated code modifications reduces the ability

of ODIT’s difference analysis phase to recognize dependent differences and rank to

emphasize the unintended differences.

Frequent Branches: Conversely, a sequence of related software commits should be com-

mitted to a development branch, then merged into main/release branches. So consti-

tuted, each branch identifies a sequence of atomic code modifications whose compo-

sition realizes the branch’s feature.

Exclusive Branches: If a new feature is sufficiently complex, multiple developers may be

tasked with its implementation. In this case, developers may have difficulty recog-

nizing unintentional behavior due to modifications made by other developers. Miti-

gations for this effect include i. decomposing the feature into single-developer sized

sub-features or ii. creating developer branches to be merged into the feature branch.

In either approach, each branch contains the work of a single developer.
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No Breaking-Builds: Although commits that introduce build failures are generally bad al-

ready, breaking-build commits will prevent any ODIT analysis since the tool requires

both the original and updated program.

The above recommendations for version control best-practices are not particular to

ODIT. For example, most of these practices are included in GitFlow [42].

5.8 Applying ODIT Approach to Other Development Environments

In this section, I discuss the potential, future application of my techniques, Progressive

Symbolic Execution (PSE) and Over-approximate Differential Testing (ODIT), to other

programming languages and paradigms. At least conceptually, classic symbolic execution

as described by King [2] can be applied to any program. However, significant engineering

effort may be required to realize a practical, scalable tool for any given combination of pro-

gramming language and operating context (e.g. the operating system or other intermediate

framework). The tool must not only support the language itself, but also be able to either

symbolically execute its runtime libraries or include a model of the runtime behavior. Sim-

ilarly, PSE could be applied to any program, beginning at any arbitrary program statement

and assuming a completely symbolic program state. But in practice, PSE tool leverages

many language design features to limit the unconstrained state that need be explored. For

example, a function must contain a stack frame upon entry and may declare a returned

value. And the set of defined global variables partitions the total program state into discrete

elements. In the following subsections, I consider language features such as these and their

impact on PSE and ODIT scalability.

5.8.1 Statically, Singleton Typed Languages

In a statically typed language, every program term has either an explicit or inferred type

at compile time which determines how an object should be stored in memory and the op-

erations that are permitted upon it. By singleton, I mean that each term can be mapped to
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a single type. An example of languages violating this property would include those sup-

porting object inheritance, since a reference to an object of base type could also refer to

a derived type. PSE uses the static type system to set the initial symbolic state of global

variables and function parameters as well as to lazily initialize unconstrained pointer vari-

ables. Without static types for each variable, PSE would have to assume a maximum size

for each variable and allocate storage for the worst case scenario. Similarly, lazy initializa-

tion could still occur on dereference of a variable, but PSE would have to again assume a

worst-case allocation for the indirect storage. Since the type of each program element is a

single discrete type, the PSE executor knows the exact size of each element and its allowed

operational semantics.

Since ODIT uses PSE for input generation, the above naturally applies to it as well.

But, in addition, ODIT uses both of these language characteristics during state comparison.

A data element’s type determines the semantics of equivalence checking and by having only

a single type, only a single equivalence check for each variable is required. Constructing

a PSE or ODIT tool for any language with these characteristics would be conceptually

straightforward; though potentially requiring significant engineering effort. Support for a

language with an LLVM frontend could even use the publicly available PSE prototype tool

to symbolically execute the generated program IR bitcode. However, the language runtime

must be either executed by the executor or modeled. Heavy-weight runtimes such as the

garbage collector in go and rust would likely require modeling to avoid over-reporting

of infeasible behaviors.

Although dependence upon these language characteristics improves the scalability of

both techniques, language features that enable a program to violate either can result in

PSE’s inability to generate inputs or ODIT’s reporting of false-positive and false-negative

behavioral differences. As discussed in the prior subsection, type casting can impair or

completely prevent input generation. For example, casting a lazily initialized void * to

a struct * will fail if the symbolic storage for the dereferent is too small to contain
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the struct. And even if the struct happens to fit in the allocated space, a cast back to

void * will defeat state comparison since ODIT will no longer know the semantics of

type equivalence. In this case, ODIT will fall back to a sequential byte comparison which

could result in either a false-positive or a false-negative.

5.8.2 Statically, Multiple Typed Languages

Contrasting to a singleton typed, with a multiple typed language, a program element can

refer to more than one data type. An object-oriented language is a common example, due

to class inheritance. If class D is derived from a base class B, then an object of class D

can be used as a referent expecting a type B. Along a top-down execution from program

entry, each program path will dynamically resolve to a single type ((B) or (D)). But, PSE

may begin symbolic execution in an over-approximate state from an interior point in the

program. If symbolic execution accesses an unconstrained global variable or begins at

a function with an input parameter reference of type B, then lazy initialization [6] must

explore the behavior of not only objects of type B, but also must include all derived types.

Since a derived type can substitute different object method behaviors (such as through

c++ v-tables), an exploration of all behavioral differences must also include all potential

object types. This multiplicity can occur in three different situations during PSE: 1) lazy

initialization to a new object; 2) lazy initialization to an existing object, and 3) an output

object reference from an unconstraining stub.

Moreover, object-oriented languages are not the only ones with the multiple type char-

acteristic. Although neither go nor rust strictly support object inheritance, go interfaces

and rust traits allow for a reference to multiple types. As with inheritance, each static

type implementing the interface must be considered for a complete exploration of behav-

ioral differences. The amount of overhead incurred by this extra lazy initialization will

vary with implementation details. Recall that symbolic execution overhead is generally

exponential in the number of branches. As a single input parameter to the neighborhood,
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multi-type initialization overhead would be a constant factor. But, if incurred from an

unconstraining stub, it is potentially exponential in the number of stub invocations.

5.8.3 Dynamically Typed Languages

In the above discussion of PSE application to additional program languages, type played a

central role. Predictably, dynamically typed languages are particularly challenging to the

scalability of PSE. Given concrete program inputs, an execution from program entry along

a path will only access single, specific types. However, from an interior program point

such as a function entry, PSE has no language hints as to a program element’s type for lazy

initialization. Given a function foo(a), how should a be initialized? For existing element

initialization, PSE would have to consider execution with a set of each of all existing mem-

ory objects. Initializing a as a new object is even worse. At a minimum, this would have

to include every type of object observed so far. However, this is an under-approximation

as dynamically typed languages generally also dynamically declare them. Therefore, all

types available to the program may not have been observed thus far. Continuing in this

vein, languages such as python dynamically construct and modify types (i.e. classes).

Consequently, the behavior of a python object’s foo method could change between con-

secutive invocations. As with the multi-typed languages discussed in the previous section,

this type-uncertainty is repeated at every invocation of an unconstraining stub. In summary,

applying PSE to dynamically typed languages is conceptually possible. Though without

significantly simplifying assumptions to replace the type implicit constraints available to

statically typed languages, symbolic execution may suffer a path explosion before even

getting properly started.

5.9 Conclusion

This chapter presented ODIT, a novel technique for detecting potential regressions during

software evolution. ODIT (1) leverages under-constrained symbolic execution to generate
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function-level tests that traverse changed code, (2) executes the generated tests concretely

to detect behavioral differences between old and new code, and (3) performs clustering and

ranking of the detected differences to report them to developers in a useful presentation.

The evaluation of ODIT, performed on real programs and real regression errors, provides

initial evidence that the technique can help developers automatically identify regressions

without overwhelming them with false positives, and improves on the state of the art in

automated program behavioral differencing. This chapter also introduced experiments

and case studies supporting the scalability of ODIT to real-world, current, and actively-

maintained programs. I applied ODIT to sequential commits to redis, memcached,

and lighttpd and discussed the results in detail. I also considered the required effort,

both conceptual and engineering, to apply PSE and ODIT to other software development

languages.
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Listing 5.1: Example bug oracle
1 s t a t i c boo l t o a r i t h (VALUE *v ) {
2 sw i t ch ( v−> t y p e ) {
3 case i n t e g e r :
4 re turn t r u e ;
5 case s t r i n g : {
6 i n t m a x t v a l u e = 0 ;
7 char * cp = v−>s ;
8 i n t s i g n = (* cp == ’− ’ ? −1 : 1 ) ;
9

10 i f ( s i g n < 0)
11 cp ++;
12

13 do {
14 i f ( ISDIGIT (* cp ) ) {
15 i n t m a x t new v = 10 * v a l u e + s i g n * (* cp − ’ 0 ’ ) ;
16 i f (0 < s i g n ? (INTMAX MAX / 10 < v a l u e | | new v < 0)
17 : ( v a l u e < INTMAX MIN / 10 | | 0 < new v ) )
18 e r r o r ( EXPR FAILURE , 0 ,
19 (0 < s i g n ? ( ” i n t e g e r i s t o o l a r g e : %s ” )
20 : ( ” i n t e g e r i s t o o s m a l l : %s ” ) ) ,
21 q u o t e a r g c o l o n ( v−>s ) ) ;
22 v a l u e = new v ;
23 } e l s e
24 re turn f a l s e ;
25 } whi le (*++ cp ) ;
26

27 f r e e ( v−>s ) ;
28 v−>s = NULL;
29 v−> i = v a l u e * s i g n ;
30 v−> t y p e = i n t e g e r ;
31 o a s s e r t ( 2 2 , s i g n * v−> i >= 0 ) ;
32 re turn t r u e ;
33 }
34 d e f a u l t :
35 a b o r t ( ) ;
36 }
37 }
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Listing 5.2: Example problematic code style
1 s t r u c t o p e r a t i o n {
2 . . .
3 } ;
4

5 i n t main ( a rgs , i n p u t ) {
6 o p e r a t i o n *op = p a r s e ( a r g s ) ;
7 a p p l y ( op , i n p u t ) ;
8 }
9

10 void a p p l y ( op , i n p u t ) {
11 app ly me thod1 ( op , i n p u t ) ;
12 app ly me thod1 ( op , i n p u t ) ;
13 . . .
14 apply methodN ( op , i n p u t ) ;
15 }

Listing 5.3: Example type cast from lighttpd::b43fc00
1 h a n d l e r t m o d s t a t u s x x x ( s e r v e r * s rv ,
2 c o n n e c t i o n *con ,
3 void * p d ) {
4 p l u g i n d a t a *p = p d ;
5 . . .
6 avg = p−> a b s r e q u e s t s ;
7 . . .
8 <m o d i f i e d code>
9 . . .

10 }
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CHAPTER 6

FUTURE WORK

6.1 ODIT

In future, post-completion work, I would like to examine developer-centered aspects of

ODIT. In the preceding section, I presumed that developers will likely recognize their own

intended program behaviors. An important component of ODIT utility is the frequency

with which that presumption holds. Perfect bug understanding does not exist [43]. Analo-

gously, perfect correct-behavior understanding may not exist either. In a related question,

what information about a behavioral difference does a developer need to distinguish inten-

tional from unintentional behavior: effected program state, call trace, instruction trace, or

more. I also envisage qualitative studies on the most effective approaches to depict behav-

ioral differences to developers as well as an evaluation of developer perception of utility.

As discussed in section 5.4, the inclusion of multiple, unrelated changes to the same

code can obscure behavioral differences. For example, suppose we have two unrelated up-

dates to a program in which the first update intentionally modifies the value of a global

variable, and the second update unintentionally modifies the same variable. If both updates

are submitted as a single commit, then the expected behavioral difference could mask the

unexpected one. Best practice for use of ODIT calls for atomic commits, that is, each

commit should contain one update that cannot be decomposed into a set of smaller up-

dates. Another area of future work that could mitigate the need for atomicity, commit

decomposition reduces a combined-update commit into a sequence of loosely-coupled, co-

herent updates. ODIT would then run sequentially on each individual decomposed update.

Commit decomposition would not only aid ODIT, but also any other differential testing

technique as well.

90



6.2 Fixed-Point Approximation for Floating-Point Symbolic Execution

Developers use a variety of software analysis techniques to find and repair software de-

fects. One such technique, symbolic execution (SymEx) [2, 24, 44, 45, 46] is popular

due to its systematic approach to exploring execution paths and feasible program state. A

tool implementing a SymEx technique collects constraints over program input variables

along a program path. At each branching program statement, the SymEx tool depends

upon a constraint solver to determine the feasible branches, that is branches with a sat-

isfiable constraint. Therefore, critically, limitations in supported solver theories limit the

execution space explored by the SymEx tool. Since early constraint solvers lacked a theory

of floating-point arithmetic, most SymEx tools either do not support programs containing

floating-point operations, or concretize symbolic floating-point values upon contact.

With the advent of floating-point enabled solvers such as Z3 [47], two independent ef-

forts aimed to extend KLEE with floating-point support [48, 49]. The authors of both works

collaborated on a case study comparing their experiences and approaches [50]. They jointly

noted that both tools missed bugs or achieved low coverage due to the intractability of the

generated constraints, and concluded that breakthroughs were needed in solver floating-

point support before use in scalable SymEx. My approach in this preliminary work ex-

plores the improvement of SymEx coverage of floating-point code through approximation

with fixed-point equivalents.

6.2.1 Approach

My technique automatically substitutes fixed-point data types and operations for native

floating-points types in the module under test. By replacing the floating-point types, the

executor does not require a floating-point enabled solver, nor extensions to the constraint

language for type awareness. I note that fixed-point substitution is not the breakthrough

referenced in [50]. It has many limitations as compared to native floating-point: 1) lower
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precision and range, 2) may lack complete semantics for common floating-point values,

such as nan and inf, 3) little/no support for floating-point exceptions. However, if the goal

of the analysis is high coverage input generation, the substitution of fixed-point operations

can find symbolic rational values to explore execution paths that concretization cannot.

As a reminder/primer on fixed-point, it is a number representation storing a fixed num-

ber of digits of the fractional part. Numbers are stored with two fixed bit fields, often

represented in Qi.f form, with i integer bits and f fractional bits. For example, Q20.12 is a

32-bit number with 30 integer bits and 12 fractional ones. Of course, Q32.0 is just a stan-

dard uint32 t. Therefore, a number in Qi.f format with f fractional digits will be an integer

multiple of 2−n. For efficiently, fixed-point libraries are often hard-coded for a single Q

form. Due to this representation, fixed-point addition, subtraction, and relational operators

are closely related to their integer equivalents.

6.2.2 Prototype Implementation

For a preliminary assessment of this approach, I forked from the master branch of KLEE [21],

adding an experimental feature, -fixed-point. Herein, I will refer to my prototype as

KLEE-FXP. When this feature is active, the prototype transforms the module under test

by mutating values of double type to Q32.32. A future version of KLEE-FXP will mu-

tate float to Q16.16 and handle casts between the two types. Mutated values include

global variables, local variables, function parameters, and function return types. Structure

fields and array types are also re-written to substitute fixed-point types for floating-point.

Floating-point constants are converted to their equivalent fixed-point value. Basic blocks

including floating-point operations (e.g. add, sub, mul, div, etc.) and relations (are re-

written to use analogous calls into the fixed-point library instead. Finally, calls to the

floating-point library are redirected to an equivalent fixed-point function.

The example program in figure 6.1 declares a symbolic floating-point double (lines 6

and 7), performs some calculations (line 8), and then uses an if ladder that selects for
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1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e <math . h>
3 # i n c l u d e <k l e e / k l e e . h>
4

5 i n t main ( i n t argc , char * a rgv [ ] ) {
6 double a ;
7 k l e e m a k e s y m b o l i c (&a , s i z e o f ( a ) , ” a ” ) ;
8 double b = (2 * a ) + 1 ;
9 i f ( b > 1 . 0 ) {

10 p r i n t f ( ” g t \n ” ) ;
11 } e l s e i f ( b < 1 . 0 ) {
12 p r i n t f ( ” l t \n ” ) ;
13 } e l s e {
14 p r i n t f ( ” eq\n ” ) ;
15 }
16 re turn 0 ;
17 }

Figure 6.1: Problematic SymEx Code
values greater than, less than, or equal to 1 (lines 9-15). When standard KLEE accesses

the value of a while evaluating the expression for assignment to b in line 8, it concretizes

its value. Consequently, the resulting calculation of b will also be concrete and standard

KLEE will only find a single program path and generate a single test case.

In contrast to standard KLEE, when KLEE-FXP accesses a in line 8, it loads a standard

int64 (i.e. Q32.32), and b is assigned the return value of fix add(fix mul(2, a),

1). This simplification allows KLEE-FXP to find all three program paths and generate 3

test cases.

6.2.3 Modeling Floating-Point Semantics

Although arithmetically fixed-point addition, subtraction, and binary relations (e.g. less

than and greater than) are equivalent to their integer analogs, some extra checks and valida-

tions are required for full floating-point semantics. For example, operands must be checked

for non-number values such as nan and inf to implement the necessary behavior as per

section 6 of IEEE standard 754 [51]. As an approximation of floating-point expression
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evaluation, KLEE-FXP does not require a complete model of non-number semantics. In-

corporating all of the non-number floating-point semantics would yield the greatest poten-

tial for coverage, but at a cost of additional constraint complexity. In short, the additional

control flow to detect and handle the non-numbers results in either more generated exe-

cution states for the executor to consider or a more convoluted path condition over which

the solver must reason. The former reduces the probability that all paths will complete,

and the latter increases the probability of solver failure. For the preliminary experiments

discussed in the next section, I reserved a single NaN and a single∞ value instead of IEEE-

754’s sNaN, qNan, −∞ and +∞. The model does not support any type of floating-point

exceptions. In the KLEE-FXP model:

• isnan(x) and isinf(x) return true if and only if x is the designated value

• binary operations with a NaN operand return NaN

• unary operations with a NaN operand return NaN

• for x < 0, sqrt(x) returns NaN

The best model of non-number semantics to achieve maximum coverage is an open

topic and the subject of future work. Perhaps a static analysis of the subject program could

guide selection from a set of available models. For example, the subject in figure 6.1

requires no model of non-numbers for complete coverage.

Another aspect of floating-point semantics that must be modeled is wrapping overflow.

The sum of two floating-point numbers cannot be a negative floating-point number. There-

fore, integer overflow, in either direction, must be detected and prevented. The final element

of modeled floating-point semantic expectation is atomicity, that is there is a single path

through a floating-point operator. Therefore, the operator’s fixed-point analog merges all

states forked during the execution of the operator. A single state enters the operator, and

after merging, a single state leaves.
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1 f i x t f i x d i v ( f i x t a , f i x t b ) {
2

3 f i x t r e s u l t = k l e e f i x t ( ) ;
4 k l e e a s s u m e ( a = f i x m u l ( b , r e s u l t ) ) ;
5 re turn r e s u l t ;
6 }
7

8 f i x t f i x s q r t ( f i x t a ) {
9

10 f i x t r e s u l t = k l e e f i x t ( ) ;
11 k l e e a s s u m e ( a = f i x m u l ( r e s u l t , r e s u l t ) ) ;
12 re turn r e s u l t ;
13 }

Figure 6.2: Problematic SymEx Code
This approach yields satisfactory results for addition, subtraction, and multiplication.

However, the fixed point algorithms for division and square root involve multiple loops

with embedded conditions. Before merging, simple division generated 126 states; an un-

wieldy number to merge. After 60 seconds, the square root algorithm had not terminated

and had generated over 1,200 incomplete states. Fortunately, the inverse operation for both

of these, multiplication, is much simpler. In both cases, the result can be expressed by re-

turning a new symbolic variable constrained by the operation’s inputs. Figure 6.2 contains

pseudocode for both operations. Note that this technique essentially outsources the accu-

mulation of the path condition to the solver, but results in a simpler, but equivalent path

condition.

6.2.4 Preliminary Experimental Results

I implemented the floating point transformation as an LLVM [35] re-writing pass during

module preparation in KLEE [21]. The fixed-point library with the floating-point semantic

model is written in C and compiled to a bitcode library linked with the target program after

transformation. To evaluate the coverage achieved by KLEE-FXP, I selected a subset of the

benchmarks used to evaluate both versions of KLEE-float [50]; specifically, the synthetic
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Table 6.1: KLEE-FXP prelinminary experimental results.

benchmark ICov BCov ICov BCov

count klee 33.87 22.22 91.85 85.00
interval klee no bug 94.10 56.25 93.85 58.33
matrix inverse klee double 4 89.20 75.00 97.06 89.47
memcpy and use as bitvector klee 93.51 70.83 92.12 78.57
non terminating klee no bug 83.72 50.00 90.83 60.00
prefix sum klee bug double 95.65 75.00 94.81 85.00
rounding sqrt klee 21.90 12.50 72.73 65.00
sorted search klee bug float 81.11 54.55 95.29 91.67
sqrt klee 74.44 40.91 93.97 67.65
sum is commutative klee double 97.96 75.00 94.19 75.00
sum is not associative klee bug 97.96 75.00 94.19 75.00
vanishing klee bug 72.60 40.00 91.83 71.43

Total (12) 78.00 53.94 91.86 75.18

benchmarks contributed by the Imperial team. Of these 14 benchmarks, I eliminated one

that depended upon the representation format of IEEE-754 and one for which I found no

symbolic input; leaving 12 benchmarks for a preliminary experiment. Table 6.1 lists the

benchmarks in the left-most column. The middle two columns contain the instruction and

branch coverage resulting from running standard KLEE with a timeout of 60 minutes per

benchmark. The final two columns contain the instruction and branch coverage of KLEE-

FXP with the same parameters. These results must be considered preliminary as they both

reflect coverage as reported by KLEE. The coverage statistics are generally indicative of

performance, but some variation is expected due to module transformation injecting both

additional instructions and branches. These results are very encouraging, as KLEE-FXP

achieved higher branch coverage than traditional KLEE in 10 of 12 benchmarks.

6.3 Summary

As I have emphasized in this chapter, these results are preliminary. Additional work re-

mains to complete the evaluation of KLEE-FXP’s approach. The evaluation should in-

clude:

• All of the evaluation benchmarks used in [50].
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• Either or both implementations of KLEE-float.

• Normalized coverage statistics to only include program instructions and branches.

Future work in this area includes an evaluation of fixed-point approximation to detect

potential floating-point errors. Due to the limited range, the approach may have difficulty

detecting potential overflow or underflow. I would also like to explore applications of the

technique to program analysis and differential testing of scientific computing software.
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CHAPTER 7

RELATED WORK

7.1 Program Tracing

Prior approaches to program tracing required instrumentation of the monitored system or

runtime support. Software instrumentation is unfortunately expensive (e..g, they can incur

31% overhead for (acyclic) path profiling alone [16]). Recent processor designs, such as

Intel Processor Trace, can reduce this overhead to as little as 5% [52], but they require a

sophisticated processor, still entail non-zero overhead, and consume considerable storage

capacity and throughput.

7.2 Symbolic Execution

The key concepts of classical symbolic execution, as provided in [2], have been imple-

mented for input generation in many prior tools [44, 54, 24, 6, 45, 55, 46, 56, 57, 53].

My input generation work builds on this rich body of research on symbolic execution and

automated test generation.

My PSE technique is closely related to UC-KLEE [32], which performs under-constrained

symbolic execution from an arbitrary function call. This degree of under-constraining has

been shown to be effective for patch validation and defect detection [9]. However, unlike

PSE, UC-KLEE misses some path segments needed for complete ZOPI training.

Chopped symbolic execution [58] shares with my work the goal of reaching code buried

deep in the call graph, but takes an orthogonal approach; it employs program slicing to

exclude uninteresting portions of the code from symbolic execution, while maintaining

soundness. For ZOPI training, the only uninteresting code is dead code, so this approach

would not be applicable to this context.
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Since symbolic execution is susceptible to path explosion [3], numerous approaches

have been defined to address this issue. Guided path search heuristics select paths for

exploration either randomly [59, 24] or based on the predicted likelihood of reaching a

given coverage target [59, 24, 44]. Other approaches reduce the number of paths to search

by removing equivalent paths [60], removing paths that cannot reach new code [61], or

merging state on selected paths [62]. PSE could benefit from (suitably adapted versions

of) these techniques.

Lazy initialization is an important feature of generalized symbolic execution [6], as it al-

lows the handling of unconstrained pointers or references. Various tools have implemented

lazy initialization for symbolic execution in Java (e.g., [6, 7, 8]), C/C++ (via LLVM IR [9]),

and object code [10]. Because this technique can inflict a significant performance penalty,

researchers have proposed optimizations for Java-based symbolic execution [11, 12, 13].

However, these optimizations would be difficult to implement without Java’s memory man-

ager and strict type safety. UC-KLEE [32] uses a version of lazy initialization that models

unconstrained pointers as either NULL or pointing to a new memory object. I augmented

this model with existing memory locations that were either allocated with or typecast to the

type of entity being lazily initialized.

7.3 Fuzzing

Fuzzing in another approach to explore program behavior through program execution with

inputs randomly sampled from the program’s input space. In principle, symbolic execution

are starkly different solutions to the same problem. Symbolic Execution is a static analysis,

white-box technique to systematically consider the entire program input space. Fuzzing

is a dynamic analysis, black-box technique to randomly consider valid program inputs.

However, the intractability of thorough program behavior exploration has lead to a degree

of convergence in state-of-the art techniques from both approaches. For example, sym-

bolic execution frequently generates more symbolic states that can be explored in a fixed
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period of time. In practice, executors randomly select a next state for execution (though

the selection may be biased to satisfy a coverage goal). Similarly, state-of-the-art fuzzing

techniques have leveraged some view into program internals (gray-box) to improve their

resulting coverage.

The first recognized fuzzing utility, from Miller et al. [63], was a pure black-box ran-

dom string generator. The inputs generated were used for crash and non-termination de-

tection on a collection of standard Unix utilities. The tool only generated ASCII strings

used as program inputs, whereas PSE can generate complex structured inputs to functions

internal to the program. Fuzzers such as Randoop [64] and AFL [65] instrument the pro-

gram under test to capture line and branch coverage metrics as a feedback mechanism to

bias input generation toward new code. As a white-box technique, PSE does not need to

instrument the program, as it is never directly executed. One challenge both symbolic ex-

ecution and gray-box fuzzing have in common is scheduling. An executor must select the

next state to explore. How the next state is selected (or scheduled) significantly influences

the coverage of the resulting analysis. Similarly, fuzzers select and mutate prior inputs.

AFLfast [66] significantly improved input generation coverage over AFL [65] through an

innovative scheduling algorithm. Unlike PSE which uses the program itself to construct

structured input, random input fuzzers may have difficulty generating inputs that pass input

validation. For example, purely random inputs are unlikely to reach past a GIF image parser

into later image manipulation code. To mitigate this limitation, T-Fuzz [67] transforms the

subject program to remove the bottleneck code and libfuzzer [68] allows manual input for-

mat specification to guide input generation. Several techniques combine heavier weight

analyses with lighter weight ones to improve coverage. For example, Angora [69] uses a

more costly taint-analysis step to inform a subsequent low-instrumentation generation step.

Another successful approach is to combine symbolic execution and fuzzing into a hybrid

by alternating between them, such as Sage [55], Driller [70], and QSYM [71]. Currently,

ODIT only uses PSE for input generation and could benefit from the incorporation of a
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similar hybrid technique.

7.4 Regression and Differential Testing

The efficacy of regression testing is often constrained by two factors: the (1) difficulty of

providing accurate oracles to expose regressions [72, 29], and (2) limitations of existing

test suites to reveal unintended behavior changes [73]. Prior work has proposed many

techniques addressing these difficulties.

PREAMBL applies automatically generated invariants to regression testing [74], using

predicates as oracles. Pastore et al. applies model checking to regression testing [75]. Both

techniques generate oracles on the fly and can detect regression faults that do not surface to

the program’s external behaviors. Felsing et al. present automatic regression verification

for programs employing complex arithmetic on integer variables [76].

Another limitation of regression testing comes from the expense of running and main-

taining test suites. Researchers have proposed numerous automated methods for selection,

prioritization, minimization, and augmentation of regression tests [77, 78, 79, 80, 81, 64,

82, 83, 84]. Flaky tests also contribute to the cost of regression testing, with a growing

body of work on mitigation [85, 86, 87].

Regression test suites may insufficiently test the changed code [88, 84]. Researchers

have therefore proposed techniques for generating tests targeting the modified code. Dif-

fGen focuses on automated regression unit-test generation based on source code semantic

differencing [89]. eXpress selectively generates tests that are more likely to detect behav-

ioral differences across code versions [90]. EvoSuiteR uses a search-based approach to

reach and propagate changes between versions [91]. Similarly to ODIT, BERT uses java

input generation and program behavior comparison [92].

Much like regression testing, symbolic execution has received considerable attention

since its introduction [2] and has flourished in areas such as program verification and auto-

mated input generation [45, 55, 46, 56, 57, 53, 93]. My work builds upon all of these prior
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works.

Several recent works are of particular relevance. Engler and Dunbar [5] introduced

the concept of under-constrained symbolic execution (SE). Ramos and Engler [32] intro-

duced and evaluated a general purpose, scalable implementation of under-constrained SE,

UC-KLEE. Further work [9] applied UC-KLEE to verify that a software patch did not intro-

duce crashes. UC-KLEE and PSE share a common genealogy, as offsprings of KLEE [24,

21]. Ye, Zhao, and Sarkar [94] took an approach, partial symbolic execution, similar to

PSE to detect MPI usage anomalies. PSE, UC-KLEE, and partial symbolic execution

can all start at any function. However, PSE goes further than either of these other tools

by additionally unconstraining local variable state and substituting unconstraining stubs.

SPD [95] also considered over-approximate symbolic execution by abstracting away path

condition clauses. In a related approach, Godefroid [10] developed MicroExecution to ex-

ecute native assembly language instructions. DiSE [96] steers dynamic symbolic execution

toward program differences identified through static analysis. Related to my behavior dif-

ference clustering, the advent of field failure data collection and automated test generation

techniques has produced a wealth of crash and test failure reports requiring automated ap-

proaches to triage related faults. ReBucker [97] and RETracer [98] cluster crash reports

based upon stack trace information. Pham at al. cluster failing tests based upon a symbolic

analysis of the failing test’s accumulated path condition [99].
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CHAPTER 8

CONCLUSION

The objective of my work described in this thesis is to improve the results obtained from

dynamic analysis by increasing code coverage through over-approximated input genera-

tion techniques. In pursuit of this goal, I have developed Progressive Symbolic Execution

(PSE) and Over-approximate Differential Testing (ODIT), implemented tools to realize

these techniques, and applied these tools in evaluation of these techniques. All tools and

datasets utilized during my empirical experiments are publicly available for reuse and eval-

uation.

PSE is an input generation technique that produces a set of replay cases that cover a

superset of a program’s feasible path segments, where a path segment is a sub-graph of a

program function’s control flow graph (CFG). A segment is feasible if and only if a pro-

gram input exists that reaches and executes the segment. A replay case is an ordered pair of

program fragment and inputs that, when applied to the fragment, executes (or replays) the

embedded path segments. I implemented a scaffolding generator that realized the replay

cases as a set of compilable program sources. The resulting programs were then executed

on the target device for recording and incorporation into a model used by Zero-Overhead

Path Inference (ZOPI). The ZOPI evaluation both directly and indirectly support the ef-

fectiveness of the technique.

ODIT is a differential testing technique that identifies local behavioral differences be-

tween two versions of a program. It uses under-constrained symbolic execution to generate

function inputs in a local neighborhood (by threshold distance in program’s call graph),

of changed code. The technique generates function inputs constructed to be executable on

both versions. It then concretely executes each input on the programs, while accumulating

a sequence of program-state snapshot pairs (one from each version). Each state pair is then
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compared to identify potential behavioral differences. Due to the under-constrained input

generation, some of these collected differences may be infeasible; thus, they are an over-

approximation of actual program behavioral differences. Also, the feasible differences will

contain both intentional and unintentional changes. ODIT summarizes, orders, and ranks

these differences for display to the developer to emphasize the feasible, unintentional dif-

ferences.

To evaluate ODIT, I constructed prototype tools that are publicly available for down-

load and re-use. For example, the ODIT tool is fully automated. It calculates program

differences at the LLVM bitcode level, selects functions in a local neighborhood of these

changes, generates and replays inputs, and reports program differences without developer

input or program instrumentation. The results of the experiments presented herein show

the effectiveness of my techniques and reinforce optimism for the results of my remaining

work.

In future work, I would like to examine some human-factors related aspects of ODIT.

In the published work, I presumed that developers will likely recognize their own intended

program behaviors. An important component of ODIT utility is the frequency with which

that presumption holds. Perfect bug understanding does not exist [43]. Analogously, per-

fect correct-behavior understanding may not exist either. In a related question, what in-

formation about a behavioral difference does a developer need to distinguish intentional

from unintentional behavior: effected program state, call trace, instruction trace, or more.

I also envisage qualitative studies on the most effective approaches to depict behavioral

differences to developers as well as an evaluation of developer perception of utility.

In addition to the human-centric studies, I would also like to establish a proxy metric for

ground-truth, unintentional behavior beyond the bug-inducing behavior changes. Though

a bug can reasonably be inferred to be unintended, the contrapositive is unlikely to be

true. There will likely be much unintended software change side effects inducing benign

behavior. Perhaps developer intentionality could be inferred from commit associated test
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suite modification. Additionally, a proxy for ground-truth, erroneous behavior is required to

conduct extensive ODITstudies on real-world software beyond curated benchmarks. After

all, inspection of an interval of commits is insufficient to establish whether a code update

introduced an error. The error could have been detected long after the interval end, or the

error may be latent and yet to be detected. Unfortunately, the reliance on manual inspection

limits available analyses of ODITempirical results.

Finally, KLEE-FXP has potential application in both traditional symbolic execution

and floating-point intensive areas such as scientific computing. I expect to use the prototype

tool in the analysis of kokkos [100] software to detect such issues as invalid api usage,

faulty host/device memory management, and potential data-race conditions in software

written for high-performance computing clusters.
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