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SUMMARY 

Epigenetic modifications are genomic alterations which regulate the expression and 

activity of genes by changing the structure of chromatin. These mechanisms of regulation 

expand the proportion of the genome that is functional well beyond the comparably rare 

instances of protein coding genes, which, in humans, only correspond to ~2% of the 

genome. The aim of this dissertation is to leverage advances in the genomic identification 

and annotation of epigenetic modifications to explore questions regarding the (1) role of 

DNA methylation in X chromosome regulation through comparative genomic analyses, (2) 

the organization and (3) evolution of enhancers identified from histone modifications.  

In the second chapter of this thesis, we consider the role of DNA methylation in an 

iconic example of epigenetic regulation, namely the X chromosome inactivation (XCI). 

XCI is the process by which one of the two female X chromosomes is silenced to balance 

the expression of X-linked genes in male and female genomes and is functionally 

conserved in two branches of mammals (eutherians and marsupials). In eutherians, it is 

well established that DNA methylation plays a role in establishing XCI through the 

silencing of the lncRNA Xist on the active X chromosome as well as in the long-term 

maintenance of inactive X-linked genes. However, the role of DNA methylation in 

marsupials remains controversial. We utilize novel multi-tissue, sex-inclusive Whole 

Genome Bisulfite Sequencing (WGBS) coupled with improved genomic annotations to 

elucidate the role of DNA methylation in X chromosome regulation in a representative 

marsupial, the modern koala (Phascolarctos cinereus). Consequently, we clarify conserved 
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and divergent roles of DNA methylation on the regulation of XCI in marsupials and 

eutherians. 

In the following two chapters, we integrate multi “-omics” datasets including whole 

genome chromatin state maps and gene expression data from a diverse set of tissues to 

elucidate the organization and evolution of human enhancers, a hallmark of the 

(epi)genomic regulatory landscape. Enhancers are short, mostly non-coding DNA 

sequences that orchestrate the context- and developmental time-specific expression of 

associated genes. Enhancers are often studied as highly tissue-specific regulatory elements 

in what has been deemed a “paradigm of modularity.” However, contrary evidence, 

indicating that a subset of enhancers may be repurposed in multiple tissue and/or 

developmental contexts, is mounting. In this study, we characterize the previously 

unknown frequency and genomic characteristics of these highly “pleiotropic” enhancers. 

We further evaluate the organization of the larger gene-enhancer interaction network 

considering (1) the distribution of enhancer pleiotropy, (2) the variations in the number of 

enhancer-target gene links, and (3) the expression breadth of target genes.   

Furthermore, we explore the evolution of human enhancer through genomic 

duplication events. Duplications are a canonical reservoir of the raw material needed for 

the evolution of novel functional elements in the genome and have been studied extensively 

with respect to genes. The selective processes governing the maintenance of duplicate 

genes are well characterized, and similar evolutionary mechanisms have been proposed for 

non-coding regulatory elements. However, whether duplication events affect enhancer 

evolution and maintenance is currently unknown. Through sequence homology analyses, 

we identify likely candidate duplicate enhancers in our large dataset to determine the 
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frequency of duplicate enhancer retention in the human genome. Additionally, we 

determine the characteristics of duplicate enhancers contributing to their evolutionary 

maintenance. We demonstrate that duplication of enhancers has significant footprint on 

pleiotropic enhancers and that recently duplicated human enhancers exhibit signatures of 

accelerated evolution and specialized for immune related functions.  

Together, these studies reveal previously unknown patterns of conservation and 

divergence of epigenetic regulatory mechanisms along two deep branches of mammals, as 

well as elucidate the molecular architecture and the impact of duplication on the genomic 

landscape of enhancer-gene regulation. 
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CHAPTER 1. INTRODUCTION 

Epigenetic regulation is a mechanism by which the activity and expression of genes 

is influenced by changes in the structure of nearby chromatin rather than any alteration to 

the DNA sequence coding for the associated genes (Jaenisch and Bird 2003). 

Consequently, this mode of regulation expands the functional component of a genome 

beyond the relatively rare instances of protein coding regions, which in humans only 

encompasses ~2% of the total genome (Harrow, et al. 2009). A well-studied epigenetic 

mark is the so-called ‘DNA methylation’, involving the addition of a methyl group (CH3) 

to C-5 position of the cytosine ring of DNA resulting in 5-methycytosine (5mC) (Bird 

1992; Moore, et al. 2013). DNA methylation is performed by a family of enzymes called 

DNA methyltransferases (DNMTs) (Bird 2002; Jaenisch and Bird 2003). In mammals, it 

is primarily observed in contexts in which a cytosine base is followed by a guanine base to 

generate a CG-dinucleotide referred to as a CpG site. (Ramsahoye, et al. 2000; Ziller, et al. 

2011). Previous studies have demonstrated that DNA methylation is a critical element of 

normal mammalian development, playing a role in gene and spurious RNA transcription 

silencing, genomic imprinting, the suppression of transposable elements, and X 

chromosome inactivation (XCI) (Robertson and Jones 2000; Shevchenko, et al. 2013; 

Smith and Meissner 2013; Neri, et al. 2017).  

X chromosome inactivation is a paradigm of epigenetic regulation in which one of 

the two female X chromosomes is silenced to balance the expression of X-linked genes in 

males and females (Lyon 1961). This phenomenon of dosage compensation is conserved 

in the two deep mammalian branches, eutherians and marsupials; however, evidence 
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suggests that the underlying mechanisms are evolutionarily divergent. For example, the 

expression of two independent long non-coding RNAs (lncRNAs) from the inactive X 

chromosome (XI) drives XCI in the two branches,   Xist in eutherians (Brown, et al. 1992; 

Heard, et al. 1997; Plath, et al. 2002) and Rsx in marsupials (Grant, et al. 2012a). 

Additionally, the paternally derived X chromosome is preferentially silenced in marsupials 

(Sharman 1971; Wang, et al. 2014) whereas inactivation occurs randomly in either the 

paternally or maternally derived X chromosome in eutherians (Huynh and Lee 2003; 

Okamoto, et al. 2004). In eutherians, it is well established that a downstream consequence 

of XCI maintenance is a signature of increased methylation (hypermethylation) of gene 

promoters on the inactive X chromosome indicative of gene silencing (Riggs 1975; 

Mohandas, et al. 1981; Bird 2002; Duncan, et al. 2018). Additionally, Xist is exclusively 

unmethylated and expressed on the inactive female X chromosome while the 

corresponding locus on the active X chromosome is methylated and repressed (Panning 

and Jaenisch 1996). However, the role of DNA methylation in marsupial XCI remains 

controversial. Studies employing immunofluorescent labelling found signatures of 

hypomethylation across the inactive X chromosome (Rens, et al. 2010; Ingles and Deakin 

2015), while others found insignificant differences in DNA methylation patterns between 

active and inactive X chromosomes with the exception of the region around Rsx (Piper, et 

al. 1993; Loebel and Johnston 1996; Wang, et al. 2014; Waters, et al. 2018).   

Although these studies provide foundational insights to the landscape of DNA 

methylation in the relatively understudied marsupial mammalian branch, it is noteworthy 

that these previous works only examined a subset of all X-linked CpGs or employed 

techniques which overrepresented promoters and CpG Islands (Sun, et al. 2015). In chapter 
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2, we aim to elucidate the role of DNA methylation in marsupial X chromosome regulation 

using novel, nucleotide-resolution, multi-tissue, and sex-inclusive DNA methylation data 

from a representative marsupial, the modern koala (Phascolarctos cinereus). We leverage 

the improved gene annotations of the recent high quality assembly by Johnson et al. 

(Johnson, et al. 2018) coupled with previously generated transcriptome data (Hobbs, et al. 

2014) to increase the resolution of the analysis of marsupial X chromosome regulation. 

Collectively, this chapter highlights the conserved and divergent pathways of X 

chromosome regulation between a representative eutherian and marsupial leading to the 

functional conservation of XCI in both mammalian branches. 

 Another component of epigenetic regulation are histone modifications which are 

post-translation modification to the N-terminal tails of histone proteins that alter chromatin 

structure, recruit additional histone modifiers, and drive the activation or repression of 

functional regions of the genome (reviewed in (Cedar and Bergman 2009; Bannister and 

Kouzarides 2011)). These modifications can be detected at a base-pair resolution across 

the genome through Next-Generation Sequencing (NGS) techniques such as Chromatin 

immunoprecipitation followed by sequencing (ChIP–seq) (Park 2009; Bannister and 

Kouzarides 2011). Utilizing the association of the enrichment and depletion of histone 

modifications with functional regions of the human genome, the Roadmap Epigenomics 

Consortium annotated 127 human epigenomes across a diverse set of tissues, generating a 

remarkably rich data resource for epigenetic analyses. (Roadmap Epigenomics 

Consortium, et al. 2015). These functional annotations include the genome wide 

identification of enhancer regions, a hallmark of regulatory landscapes, marked by the 

relative enrichment of H3K4me1 (monomethylation of the 4th lysine of histone 3) coupled 
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with the depletion of H3K4me3 (trimethylation of the 4th lysine of histone 3) (Sharifi-

Zarchi, et al. 2017; Local, et al. 2018; Rada-Iglesias 2018).  

Enhancers are short, primarily non-coding DNA sequences often comprised of 

clusters of transcription factor binding motifs that are capable of modulating the 

transcription of genes over large genomic distances (Banerji, et al. 1981; Lettice, et al. 

2014; Long, et al. 2016). This regulatory feat is thought to be accomplished through the 

generation of chromatin loops within genomic segments called topological-associated 

domains (TADs) which bring acting enhancers in close physical proximity to target genes 

(Ong and Corces 2011; Dixon, et al. 2012; Plank and Dean 2014). Recent works have 

emphasized the importance of these elements in demonstrating that disruptive mutations in 

enhancers have been associated with both the onset of disease (Melton, et al. 2015; Zhang, 

et al. 2018) and instances of human-specific adaptations (Prabhakar, et al. 2008; 

Mendizabal, et al. 2016; Chen, Li, et al. 2018; Flores and Ovcharenko 2018). Although 

much interest surrounds the pervasive and vital role of enhancers in the maintenance and 

function of the human genome, many key questions remain unresolved. For instance, many 

enhancers are known to be highly tissue and developmental stage specific. How such 

context-specific enhancers regulate broadly expressed, housekeeping genes as well as 

genes with tissue-specific expression in a precise manner, is currently not well understood. 

Another significant question is how enhancers evolve and are maintained over evolutionary 

time. In chapters 3 and 4, we aim to address these open questions of the organization and 

evolution of enhancers as epigenetic regulators. 

In literature, enhancers are often characterized as regulatory elements that act in 

particular spatiotemporal contexts in what has been deemed a “paradigm of modularity” 
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(Sabarís, et al. 2019). Several lines of evidence support this conclusion including the 

consistent observation across independent datasets that enhancer greatly outnumber genes 

(ENCODE 2012; Andersson, et al. 2014). This many-to-one interaction structure would 

negate the need for an enhancer to be repurposed to regulate multiple genes. Indeed, the 

resulting redundancy in regulating enhancers for an individual gene has been shown to 

stabilize gene expression by acting as a buffer to variations in transcription factor inputs 

during development (Osterwalder, et al. 2018; Waymack, et al. 2020). In addition, Villar 

et al. demonstrated that enhancers evolve rapidly, an observation which supports a model 

in which individual enhancers have a small effect on gene expression (Villar, et al. 2015).  

Intriguingly, recently studies across a diverse range of taxa have accumulated 

evidence of some “pleiotropic” enhancers that may be active in multiple tissues or 

developmental contexts (McKay and Lieb 2013; Infante, et al. 2015; Preger-Ben Noon, et 

al. 2018). These observations have complex implications as any variants introduced to 

pleiotropic genomic regions can have both beneficial and deleterious consequences in 

multiple active contexts (Guillaume and Otto 2012). Despite such significance, the 

prevalence of enhancer pleiotropy among the vast number of potential enhancers, and how 

it correlates to gene expression, is not well understood. To address this critical gap of 

knowledge, in Chapter 3, we use multi-tissue chromatin maps across human tissues 

(Roadmap Epigenomics Consortium, et al. 2015) to investigate the enhancer-gene 

interaction architecture while accounting for (1) the distribution of enhancer pleiotropy, (2) 

the variations of regulatory links from enhancers to target genes, and (3) the expression 

breadth of target genes. 
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 Moreover, we utilize this curated set of putative enhancers and enhancer attributes 

to explore the evolution and maintenance of enhancers following duplication events. 

Sequence duplications, including small scale duplication of segments of the genome as 

well as whole genome duplications, are classical sources of raw material used in the 

evolution of novel genes and functional elements (Ohno 1970). This phenomenon is well 

studied in the context of gene duplications where previous works have demonstrated that, 

while the frequency of duplication is high in eukaryotic genomes, the majority of 

duplicated genes rapidly accumulate deleterious mutations and are lost in a process called 

nonfunctionalization ((Lynch and Conery 2000; Innan and Kondrashov 2010a) and 

references therein). Alternatively, a small subset are evolutionarily retained by either 

gaining a beneficial novel function (neofunctionalization) or partitioning the original 

function of the ancestral gene between the two duplicates (subfunctionalization) (Ohno and 

Smith 1972; Force, et al. 1999b). Although enhancer regions also undergo sequence 

duplication, it is unknown what proportion of duplicated enhancers are retained or what 

regulatory features would contribute to their subsequent maintenance over evolutionary 

time. We explore this mechanism of enhancer evolution in detail in chapter 4.       

In summary, this work utilizes novel and integrated, state-of-the-art, multi-omics 

datasets to elucidate features of the evolution and architecture of epigenetic regulation 

across the genome considering both model and non-model organisms.  
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CHAPTER 2. A COMPARATIVE GENOMIC ANALYSIS OF 

EPIGENETIC REGULATION ACROSS THE X CHROMOSOME 

 This content has been modified from Singh et al.’s "Koala methylomes reveal 

divergent and conserved DNA methylation signatures of X chromosome regulation," 

published in Proceedings of the Royal Society B. (Singh, et al. 2021) 

2.1 Abstract 

 X chromosome inactivation (XCI) mediated by differential DNA methylation 

between sexes is an iconic example of epigenetic regulation. Although XCI is shared 

between eutherians and marsupials, the role of DNA methylation in marsupial XCI remains 

contested. Here we examine genome-wide signatures of DNA methylation across fives 

tissues from a male and female koala (Phascolarctos cinereus) and present the first whole 

genome, multi-tissue marsupial “methylome atlas.” Using these novel data, we elucidate 

divergent versus common features of representative marsupial and eutherian DNA 

methylation. First, tissue-specific differential DNA methylation in koalas primarily occurs 

in gene bodies. Second, females show significant global reduction (hypomethylation) of X 

chromosome DNA methylation compared to males. We show that this pattern is also 

observed in eutherians. Third, on average, promoter DNA methylation shows little 

difference between male and female koala X chromosomes, a pattern distinct from that of 

eutherians. Fourth, the sex-specific DNA methylation landscape upstream of Rsx, the 

primary lncRNA associated with marsupial XCI, is consistent with the epigenetic 

regulation of female- (and presumably inactive X chromosome-) specific expression. 
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Finally, we utilize the prominent female X chromosome hypomethylation and classify 98 

previously unplaced scaffolds as X-linked, contributing an additional 14.6 Mb (21.5 %) to 

genomic data annotated as the koala X chromosome. Our work demonstrates evolutionarily 

divergent pathways leading to functionally conserved patterns of XCI in two deep branches 

of mammals. 

2.2 Introduction 

 X chromosome inactivation (XCI) is a classic example of sex chromosome 

regulation in which one of the two X chromosomes in females is silenced as a mechanism 

thought to adjust the expression levels of X-linked genes (Lyon 1961). Although XCI is 

observed in the two deep branches of mammals, eutherian and marsupial mammals 

(Shevchenko, et al. 2013), there are several notable differences between the two lineages. 

First, in eutherians, the transcription of a long non-coding RNA (lncRNA) gene, Xist, from 

the inactive X chromosome is essential for XCI (Brown, et al. 1992; Heard, et al. 1997; 

Plath, et al. 2002). However, the Xist locus is not present in marsupials (Duret, et al. 2006; 

Ng, et al. 2007). Instead, another lncRNA gene, Rsx, drives marsupial XCI (Grant, et al. 

2012a). Second, marsupials exhibit ‘imprinted’ XCI by selectively silencing the paternal 

X chromosome (Sharman 1971; Wang, et al. 2014). In contrast, XCI in eutherians occurs 

randomly between the maternally and paternally derived X chromosomes, although 

paternal XCI has been observed during early rodent development (Huynh and Lee 2003; 

Okamoto, et al. 2004). Third, while eutherian XCI involves the exclusion of active histone 

marks and the recruitment of repressive histone marks on the inactive X chromosome 

(Heard 2005), marsupial X chromosomes do not show a consistent pattern (Koina, et al. 

2009; Wang, et al. 2014). Instead, the inactive marsupial X chromosome, while depleted 
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of the active histone marks, shows variable enrichment patterns of repressive histone marks 

(Koina, et al. 2009; Wang, et al. 2014). Specifically, out of five repressive marks examined 

in two marsupial studies, H3K9me3, H4K20me3, and HP1α were enriched (Koina, et al. 

2009) while H3K27me3 and H3K9me2 (Rens, et al. 2010) were not enriched on the 

inactive X chromosome. These differences suggest that evolutionary pathways leading to 

XCI likely differ between eutherians and marsupials, and that novel insights into the 

mechanism of XCI can be gained from comparative studies. 

 The role of DNA methylation in marsupial XCI has been particularly controversial. 

Immunofluorescent labeling studies observed relative hypomethylation of the inactivate X 

chromosome in marsupials (Rens, et al. 2010; Ingles and Deakin 2015). Other studies 

found little difference in DNA methylation between active and inactive marsupial X 

chromosomes (Piper, et al. 1993; Loebel and Johnston 1996; Wang, et al. 2014). Recently, 

Waters et al. (Waters, et al. 2018) analyzed reduced representation bisulfite sequencing 

(RRBS) data of a male and female opossum (Monodelphis domestica) and proposed that 

female X chromosomes in marsupials, but not in eutherians, exhibit hypomethylation near 

the transcription start sites (TSSs). Notably, all these studies analyzed different marsupial 

species and tissues. In addition, and importantly, they either examined a small number of 

CpGs or employed methodologies that over-represent promoters and CpG islands (in case 

of RRBS, (Sun, et al. 2015)). Since patterns of DNA methylation vary greatly among 

distinctive genomic regions with different functional consequences, it is necessary to 

extend our knowledge to unbiased, whole-genome assays of DNA methylation.  

 Recently, Johnson et al. (Johnson, et al. 2018) integrated long and short read 

sequencing by PacBio and Illumina to generate the highest quality reference genome 
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assembly of any marsupial species for the modern koala (Phascolarctos cinereus), the sole 

extant member of the marsupial family Phascolarctidae (Price 2008). To leverage and 

compliment this resource, here we have generated whole-genome bisulfite sequencing 

(WGBS) maps across tissues of both sexes, capturing the DNA methylation state of nearly 

all cytosines in koala genome. Our data provide the first multi-tissue, whole genome 

methylome resource of any marsupial enabling us to show distinctive impacts of DNA 

methylation on tissue-specific gene expression in marsupials, as well as on XCI in 

eutherians and marsupials. 

2.3 Results  

2.3.1 Genome-wide differential DNA methylation between tissues in the modern koala 

 To investigate genome-wide patterns of DNA methylation, we generated WGBS 

data from five tissues (brain, lung, kidney, skeletal muscle, and pancreas) from a male 

(“Ben,” Australian Museum registration M.45022) and female koala (“Pacific Chocolate,” 

Australian Museum registration M.47723). The mean depth of coverage fell between 9.9× 

and 14.6× (Supplementary Table A.1). The overall DNA methylation levels of koala tissues 

are on par with those in other mammals (Schultz, et al. 2015; Mendizabal, et al. 2016; 

Keown, et al. 2017), exhibiting heavy genome-wide DNA methylation punctuated by the 

hypomethylation of CpG islands and other regulatory elements (Figure 2.1). A hierarchical 

clustering of methylation profiles demonstrated a clear grouping of samples by tissue 

(Figure 2.1A). Interestingly, we observed that the pancreas exhibited the most unique 

methylation signature among the five tissues studied, while the kidney and lung samples 

shared the most similar methylation profiles.  
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Figure 2.1 Overview of DNA methylation patterns across the koala genome. (A) 
Hierarchical clustering of DNA methylation of five tissues. (B) Tissue-specific and shared 
differentially methylation regions (DMRs) between tissues. Total DMRs per tissue are 
reported in the first column. (C) Enrichment of brain DMRs in different functional regions 
compared to length and GC matched control regions (***p < 0.0001, n.s. Not significant, 
from 10,000 bootstraps). Error bars depict standard deviation. Results for other tissues are 
in Supplementary Fig. 1. (D) A 945 bp brain-specific DMR overlapping ALDOC’s 
promoter and part of the gene body (grey region) with corresponding CpG fractional 
methylation for the brain (red) and eight remaining tissues (blue). Line smoothing 
performed using local regression (LOESS). This gene was up-regulated in brain compared 
to kidney (probability of differential expression > 96% from NOISeq).  

 

To further examine patterns of tissue-differential DNA methylation, we identified shared 

and tissue-specific differentially methylated regions (DMRs) using BSmooth (Hansen, et 

al. 2012). Tissue-specific DMRs were defined as regions that were differentially 

methylated in a particular tissue compared to all other tissues in a pairwise analysis, while 

shared DMRs were those observed in multiple tissues (Figure 2.1B). We found that the 
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majority (50-53%) of tissue-specific DMRs fell in gene bodies (Figure 2.1C, 

Supplementary Figure A.1, Supplementary Table A.2), which was a significant increase 

compared to length and GC matched control regions (fold enrichment (FE) = 1.25~1.44, p 

< 0.0001 based on 10,000 bootstraps; Figure 2.1C, Supplementary Figure A.1, 

Supplementary Table A.2). On the other hand, DMRs were significantly depleted in 

intergenic regions (p < 0.05 based on 10,000 bootstraps: Figure 2.1C, Supplementary 

Figure A.1, Supplementary Table A.2).  

 The numbers of DMRs per tissue are shown in Figure 2.1B. Interestingly, the 

pancreas samples contained the largest number of tissue-specific DMRs (Figure 2.1B). 

Further analysis with a more comprehensive sampling of tissues is required to determine if 

the pancreas is a true outlier in terms of DNA methylation in this species. However, it is 

worthwhile to note that koalas are known for their unique and highly specialized diet of 

eucalyptus leaves, which is highly toxic to most other mammals (Gleadow, et al. 2008). 

Indeed, we found that genes containing tissue-specific DMRs (e.g. Figure 2.1D) were 

enriched in specific biological functions, consistent with their unique tissue origins 

(Supplementary Table A.3). For example, pancreas-specific DMRs were preferentially 

found in genes associated with metabolic processes while brain specific DMRs were linked 

to genes associated with neural developmental processes. 

2.3.2 Global patterns of DNA methylation and transcription in koalas 

 To infer the role of DNA methylation in gene expression, we integrated methylome 

data with previously generated koala RNA-seq data (Hobbs, et al. 2014), identifying 

matched sets for three common tissues (kidney, brain, and lung). Promoter DNA 
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methylation and gene expression were significantly negatively correlated across the 

genome (Table 2.1, Supplementary Figure A.2). In comparison, both extremely 

hypomethylated and hypermethylated gene bodies showed high gene expression (Table 

2.1, Supplementary Figure A.2), which is consistent with the patterns observed in other 

taxa (Lister, et al. 2009; Zemach, et al. 2010; Jjingo, et al. 2012; Spainhour, et al. 2019). 

Next, we compared differentially methylated genes (DMGs) containing DMRs (n = 1944 

genes from n = 4,615 DMRs) with differentially expressed genes (DEGs), between brain 

and kidney samples. Currently available RNA-seq data from koalas do not include 

sufficient biological replicates. We overcame this limitation by simulating replicates within 

each RNA-seq data set (NOISeq, (Tarazona, et al. 2015)) and identified 600 putative DEGs 

(probability of differential expression > 95% according to the NOISeq).  

Table 2.1 Correlation analysis of mean promoter and gene body DNA methylation 
and ranked gene expression. Spearman’s rank correlation coefficients (ρ) and associated 
significances are reported for all tissues with both whole genome bisulfite sequencing 
(WGBS) data and RNA-seq expression data.  

Tissue Genomic Region Gene Count Rho (p-value) 
Brain Promoter 5,396 -0.08 (p = 2.28×10-9) 

 Gene body 5,443 -0.16 (p < 2.2×10-16) 
Kidney Promoter 9,268 -0.12 (p < 2.2×10-16) 

 Gene body 9,379 -0.12 (p < 2.2×10-16) 
Lung Promoter 9,192 -0.13 (p < 2.2×10-16) 

 Gene body 9,265 -0.19 (p < 2.2×10-16) 

 

 DMGs were significantly more likely to be differentially expressed than non-

DMGs, exhibiting a 1.54-fold enrichment (χ2 = 33.07, p < 0.0001). Additionally, 

differential expression between tissues displayed a weak, yet significant negative 

correlation with differential promoter DNA methylation between tissues (Supplementary 
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Figure A.3A). Gene body DNA methylation showed a more complex relationship with 

gene expression where both relative hypo- and hypermethylation was associated with 

increased expression (Supplementary Figure A.3B). These results indicate significant 

associations between DNA methylation and transcription in the koala genome, where the 

direction of relationship is consistent with previous observations in other taxa (Lister, et al. 

2009; Zemach, et al. 2010; Jjingo, et al. 2012; Spainhour, et al. 2019).  

2.3.3 Global hypomethylation of female X chromosome in koalas 

 Utilizing the novel WGBS data from both sexes in koalas, we examined variations 

in male and female X chromosome DNA methylation. The koala genome project used 

cross-species chromosome painting data to identify 24 putative X chromosome scaffolds 

and 406 putative autosomal scaffolds (Johnson, et al. 2018). As expected from 2:1 ratio of 

X chromosomes in females compared to males, the median depth of coverage of CpGs on 

the putative X scaffolds were consistently higher (~2-fold) in female samples compared to 

male samples (p < 2.2 × 10-16, Mann-Whitney U test, Supplementary Figure A.4A). 

Furthermore, the proportion of reads mapped to the putative X scaffolds showed a distinct 

bimodal distribution whereby the male samples cluster close to 1.3% and the female 

samples cluster near 2.4% (Supplementary Figure A.4B). By contrast, male and female 

samples were indistinguishable with respect to read mapping to putative autosomes 

(Supplementary Figure A.4D). These observations demonstrate that our WGBS data are 

well suited to study differential DNA methylation between the male and female X 

chromosomes.  
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We found that the global DNA methylation level of the female X chromosome was 

strikingly lower than that of the male X chromosome in all koala tissues examined (Figure 

2.2A, B and Supplementary Figure A.5, p < 2.2 × 10-16, Mann-Whitney U test). This trend 

could either be attributed to the reduction of DNA methylation in the female X 

chromosomes or the increase of DNA methylation in the male X chromosome. We 

compared the male and female DNA methylation for autosomes and determined that the 

female X chromosome exhibited reduced DNA methylation (Figure 2.2C). Consequently, 

we use the term ‘female hypomethylation’ (as opposed to male hypermethylation) 

consistently in this work. We also analyzed DNA methylation of human male and female 

X chromosomes (Methods) and found that the human X chromosomes were also globally 

hypomethylated in females compared to males (Figure 2.2A, C).  
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Figure 2.2 Global patterns of female and male DNA methylation (5mC) in human and 
koala X chromosomes. (A) Both human and koala X chromosomes show chromosome-
wide female hypomethylation. (B) Distributions of the DNA methylation difference 
between female and male koalas in autosomes and the X chromosome. (C) Comparison of 
fractional DNA methylation between females and males illustrating that the female X 
chromosomes are hypomethylated in both humans and koalas. (D, F, and G) DNA 
methylation differences between females and males of (D) the X chromosome and (F) 
autosomes of koalas, and (G) the X chromosome of female (yellow) and male (purple) 
humans. In the koala autosome, the female and male lines overlap completely illustrating 
no sex-based methylation difference. Line smoothing was performed using local regression 
(LOESS). (E) Average fractional methylation of CpGs in 100-bp sliding windows using a 
10 bp step size in a 5 Kb region upstream and downstream of all chromosome X linked 
gene’s transcription start sites (TSSs) across koala tissues.   

 Significant female hypomethylation was observed in all functional regions across 

the koala X chromosome (Figure 2.2D, Supplementary Figure A.6A) but was the most 

pronounced in gene bodies and intergenic regions. Promoters showed the least sex-based 

DNA methylation difference. In Figure 2.2E, we show a zoomed-in view of the male and 

female X chromosome DNA methylation near the transcription start sites (TSS), which 
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illustrates the clear pattern of consistent female hypomethylation. The koala autosomal 

scaffolds, on the other hand, did not display significant differential DNA methylation 

between the sexes in any functional region (Figure 2.2F, Supplementary Figure A.6B)). In 

comparison, female X chromosome hypomethylation in humans (Figure 2.2A, C, and 

Supplementary Figure A.6C) was driven by the gene body and intergenic regions while 

promoters displayed female hypermethylation (Figure 2.2G). 

2.3.4 Promoter DNA methylation is not a universal driver of sex-specific expression in 

koalas 

 To investigate the implications of the observed sex-specific DNA methylation, we 

examined sex-specific expression using published RNA-seq koala transcriptomes (Hobbs, 

et al. 2014). Of the total RNA-seq dataset, only one tissue (kidney) had expression data 

from both sexes and was used for downstream analysis. Of the 209 X-linked genes, 36 

(17.2%) exhibited female overexpression while 11 (5.3%) showed male overexpression 

(probability of differential expression > 95% based on NOISeq, Figure 2.3A). Although, 

on average, autosomal genes also exhibited slight female-biased expression 

(Supplementary Figure A.7A, B), the increase was more substantial in the X chromosome 

(mean chromosome X female to male log2 fold change = 0.50, autosome female to male 

expression log2 fold change = 0.24).  
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Figure 2.3 Female and male gene expression across autosomes and the X chromosome 
using kidney RNA-seq data. (A) Distribution of female (yellow) and male (purple) up-
regulated genes by NOISeq (probability of differential expression > 95%) across the X 
chromosome (scaffolds ordered by scaffold length). The mean female and male fractional 
methylation difference across each gene promoter (B) and gene body (C) correlated with 
the corresponding log-transformed ratio of female to male expression. For B and C, 
Spearman’s rank correlation coefficient and the associated p-value are reported. The Rsx 
gene was excluded from the correlation calculation. 

We examined the relationship between fractional methylation difference and gene 

expression difference between males and females (N = 209 gene bodies and N = 206 

promoters, excluding 3 promoters with CpGs coverage < 3). In promoters, no significant 

relationship was observed (Figure 2.3B). Indeed, both hypo- and hypermethylated 
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promoters were similarly represented in female over-expressed genes (Supplementary 

Table A.4). Interestingly, female and male DNA methylation difference in gene bodies 

showed a significant negative correlation with gene expression (Spearman’s rank 

correlation coefficient, ρ = -0.14, p = 0.04, Figure 2.3C). These observations support an 

association between sex-based differential gene body DNA methylation and differential 

gene expression in koalas. 

2.3.5 The Rsx region displays a pattern suggesting methylation driven control of X 

chromosome regulation in koalas 

 We sought to infer the role of DNA methylation on the main driver gene of 

marsupial XCI. Previous studies have indicated that Rsx, a key regulator of XCI, is 

regulated by sex-specific DNA methylation in the opossum (Grant, et al. 2012b; Wang, et 

al. 2014). To examine if the koala Rsx also exhibits regulatory signatures of differential 

DNA methylation, we first identified the putative Rsx region from this species. Based on 

the sequence homology with the Rsx gene from the gray short-tailed opossum 

(Monodelphis domestica) (Grant, et al. 2012b), we identified a 29.8 Kb candidate Rsx 

sequence (Methods), using PacBio long read sequencing generated by Johnson et al. 

(Johnson, et al. 2018). We validated that the candidate Rsx in koala was significantly up-

regulated in females compared to males across different tissues, using two different tools 

to measure differential gene expression (Table 2.2).  

Table 2.2 Sex-based differential expression of the lncRNA Rsx utilizing different data 
subsets and expression quantification tools. Normalized expression count values and 
significance of sex-based differential expression is shown for three data subsets using two 
expression quantification tools. All data refers to the dataset considering all 15 RNA-seq 
samples (7 male and 8 female). Matched data includes the tissues with both male and 
female RNA-seq samples (brain, kidney, and lung), and the kidney data is reported 
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independently. DeSeq2 reports significance as an associated p-value from the Wald test 
while NOISeq reports a probability of differential expression threshold. 

Expression Dataset Tool Female Count Male Count Significance 
All Data (n = 15) DeSeq2 6987.1 16 p-value =  0.05 
Matched Data (n = 6) DeSeq2 6837.6 0 p-value = 2.04×10-30 
Matched Data (n = 6) NOISeq 7872.4 0.67 Probability = 99.99% 
Kidney Data (n = 2) NOISeq 4074.4 0.68 Probability = 99.99% 

 

 We found that the gene body region of Rsx is similarly methylated between the 

male and female koalas (Figure 2.4, and Figure 2.3C). However, two CpG islands upstream 

of Rsx are highly and significantly female hypomethylated. Specifically, these CpG islands 

covering 101 CpGs exhibited a 36% reduction of DNA methylation in females compared 

to males (Figure 2.4). These observations indicate that differential expression of koala Rsx 

between sexes is likely under the regulation of differential DNA methylation of upstream 

cis-regulatory sequences. 
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Figure 2.4 Annotation of genomic of DNA methylation (5mC) around Rsx. The top 
panel identifies CpG islands (CGI), the middle panel reports the absolute male (purple) and 
female (yellow) fractional methylation at each CpG, and the bottom panel shows the female 
and male fractional methylation difference. Highlighted in grey across all panels is the 
female hypomethylated region upstream of the Rsx TSS. 

2.3.6 Identification of novel candidate X-linked scaffolds by sex-specific methylation 

patterns 

We have demonstrated above (in the section 2.3.1) several characteristics of the X-linked 

scaffolds that distinguished them from autosomal scaffolds. Specifically, we showed that 

X-linked scaffolds exhibited significantly higher sequence depths in females than in males, 

distinctive clustering based on the proportion of mapped reads in males and females, and 

distinctive hypomethylation in females compared to males (Supplementary Figure A.4). 

We utilized these characteristics to determine if additional candidate X scaffolds existed 

within the 6.7% of the koala assembly that remained unclassified. We identified 98 

scaffolds that fit the above patterns (Supplementary Figure A.4C), including a clear shift 

towards female hypomethylation (mean female-male 5mC for all candidate X scaffolds 
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was -0.25 ± 0.12) (Supplementary Figure A.5). These candidate scaffolds contributed an 

additional 14.6 Mb (21.5%) to the annotated koala X chromosome. These newly identified 

putative X chromosome scaffolds should further our understanding of the koala X 

chromosome. 

2.4 Discussion 

 Whole-genome bisulfite sequencing is a gold-standard of genomic DNA 

methylation analysis, as it produces information on nearly all cytosines in a genome. We 

generated WGBS data from a male and female koala, including the same individual whose 

genome was recently sequenced to yield the highest quality assembly among current 

marsupial genomes (Johnson, et al. 2018). The novel multi-tissue, nucleotide-resolution 

DNA methylation maps of koalas reveal genome-wide patterns of tissue-specific 

differential DNA methylation enriched in gene bodies. Gene body methylation is an 

ancestral form of DNA methylation in animal genomes (e.g., (Zemach, et al. 2010; Yi 

2012)). Although its role in gene expression has been historically less appreciated than has 

promoter DNA methylation, gene body DNA methylation is becoming recognized as an 

important component of transcriptional regulation. For example, a study of human 

epigenome of 18 tissues reported that differential methylation occurring within gene bodies 

was more strongly associated with gene expression than those in promoters (Schultz, et al. 

2015). Our results indicate that gene body DNA methylation plays similarly significant 

roles in koala gene regulation.  

Studies from other taxa have also demonstrated that the relationship between gene 

body DNA methylation and gene expression is non-linear. For example, DNA methylation 
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levels of the first exons/introns of genes are negatively correlated with gene expression 

(Brenet, et al. 2011; Chuang, et al. 2012; Anastasiadi, et al. 2018), and tend to be different 

from downstream genic regions (Brenet, et al. 2011). Conversely, high levels of cumulative 

gene body DNA methylation are positively correlated with gene expression and may 

reduce spurious transcription of intragenic RNA (Huh, et al. 2013; Neri, et al. 2017). The 

relationship between gene body DNA methylation and transcription in koalas 

(Supplementary Figure A.3B) shows a similar pattern to the observations in other taxa 

(Lister, et al. 2009; Zemach, et al. 2010; Jjingo, et al. 2012; Spainhour, et al. 2019).  

At the chromosomal level, we show that the female X chromosomes of koala are 

globally hypomethylated compared to both the male X chromosome and the autosomes of 

both sexes (Figure 2.2). Even though it may appear counterintuitive at the first glance, we 

posit that the hypomethylation of female X chromosome is as a common feature of 

eutherian and marsupial mammals driven by the DNA methylation patterns of gene bodies 

and intergenic regions. Hellmann and Chess (Hellman and Chess 2007) showed that the 

inactive X chromosomes of humans had reduced gene body DNA methylation. Whole 

genome bisulfite sequencing data of mouse (Keown, et al. 2017) and humans (Sun, et al. 

2019) also showed pervasive hypomethylation of the inactive X chromosome in gene 

bodies and intergenic regions (Figure 2.2). We present a model summarizing these 

observations (Fig. 5).  
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Figure 2.5 Model of DNA methylation (5mC) patterns for representative eutherian 
and marsupial mammals. In female eutherian mammals, DNA methylation of promoters 
and CpG islands are increased on the inactive X chromosome (XI) compared to the active 
X chromosome (XA). In comparison, gene body and intergenic DNA methylation is 
reduced on the inactive X chromosome (XI) compared to the active X chromosome (XA). 
Female marsupial mammals show hypomethylation in gene bodies and intergenic regions 
of the inactive X chromosome; however, they diverge from eutherian mammals in their 
promoter methylation patterns. Marsupial promoters are modestly hypomethylated in the 
female X chromosomes (XA and XI) compared to the male X chromosome (XM). 

In contrast, Waters et al. (Waters, et al. 2018) recently proposed that the reduction of 

gene body DNA methylation was specific to marsupials, but not observed in mouse 
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(Waters, et al. 2018). The reason why they did not observe DNA methylation difference in 

mouse might be due to the inherent bias of their method, RRBS, which disproportionately 

samples regions with high GC content (Sun, et al. 2015). High GC-content regions tend to 

be hypomethylated (Elango, et al. 2008; Cotton, et al. 2015) and show less variation of 

DNA methylation. We illustrate this trend using koala data in Supplementary Figure A.8. 

Since RRBS samples high GC genomic regions, the difference between male and female 

X chromosomes could have been underestimated in the previous study (Waters, et al. 

2018). We also note that since promoters are generally high in GC contents, they show 

comparatively lower methylation difference between the male and female X chromosomes 

(Supplementary Figure A.8). The causative relationship between chromosome-wide DNA 

hypomethylation of the X chromosome and chromosome-wide gene silencing is currently 

unresolved. Interestingly, marsupial genomes harbor an additional copy of DNMT1 

(Alvarez-Ponce, et al. 2018), which could lead to functional divergence between the 

mammalian lineages. Analyses of DMNT expression in our data, however, did not indicate 

significant differential expression of DNMTs between sexes (probability of differential 

expression using NOISeq < 95%).  

Despite overarching promoter patterns, DNA methylation signatures of Rsx, the 

major player in XCI initiation in marsupials (Grant, et al. 2012b), suggest that koala Rsx 

expression is regulated by DNA methylation of upstream CpG islands (Figure 2.4). 

Previously, Wang et al. (Wang, et al. 2014) showed differential DNA methylation of Rsx 

promoter in opossum. Our observation is consistent with Wang et al. (Wang, et al. 2014), 

and suggests that regulation of the key initiator of XCI via differential DNA methylation 

of regulatory sequences is a common feature of eutherians and marsupials.  
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In summary, we show that gene body DNA methylation is an important contributor 

to differential expression between tissues in koalas. We also show that the global 

hypomethylation of female X chromosome (specifically in gene bodies and intergenic 

regions) is a conserved feature of X chromosome regulation in eutherians and marsupials 

(Figure 2.5). However, X chromosome promoter methylation and the subsequent effect on 

the regulation of gene expression appear to be divergent between these two lineages (Figure 

2.5).  Regulation of the Rsx, on the other hand, is supported by promoter DNA methylation, 

which mirrors the regulation of the eutherian Xist locus. Together, these conclusions 

illuminate the intricate evolutionary pathways that have diverged and converged to 

influence gene regulation, XCI, and dosage compensation in eutherian and marsupial 

mammals. 

2.5 Methods  

2.5.1 Whole genome bisulfite sequencing and processing   

 Genomic DNA was extracted using a Bioline Isolate II Genomic DNA Extraction 

Kit (Cat#. BIO-52067) following the recommended protocol with an additional DNAse 

free RNaseA (100mg/ml) (Qiagen cat. #19101) treatment before column purification. 

20mg tissue samples from brain, kidney, lung, skeletal muscle, and pancreas from a female 

koala, “Pacific Chocolate” (Australian Museum registration M.45022), and a male koala, 

“Ben” (Australian Museum registration M.47723), were bisulfite converted using the EX 

DNA Methylation-Lightning Kit (Zymo cat. #D5030). WGBS libraries were constructed 

using the TruSeq DNA methylation kit (Illumina cat.# EGMK81213). The libraries were 

sequenced on a NovaSeq6000 S2 (Illumina) using the 2 × 100bp PE option. Processing of 
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the WGBS data followed previous studies (Mendizabal, et al. 2016). Bisulfite conversion 

rates were estimated for each WGBS sample using methPipe's bsrate (Song, et al. 2013) 

(Supplementary Table A.1). Strand-specific methylation calls were combined, and all 

samples were filtered to remove CpGs covered by fewer than three reads (Supplementary 

Table A.1).  

2.5.2 Analyses of tissue differentially methylated regions 

 A hierarchical clustering tree was drawn using the hclust from R’s stats package. 

The distance matrix was calculated using Euclidean distances and Ward’s method was used 

for the agglomeration. The data for the final tree was visualized using R’s dendextend 

package (Galili 2015). Clustering confidence values were generated by pvclust using 

10,000 bootstraps. Bismark generated CpG reports were filtered to remove scaffolds that 

were less than 2 Mb in length, retaining 3.03 × 109 (94.8%) of the genome. DMRs were 

called using BSmooth (Hansen, et al. 2012), with a minimum fractional methylation 

difference of 0.3 (30%) and at least 5 CpG sites per DMR. DMRs were considered shared 

between tissues if they overlapped by at least 50%. Using koala gene annotations from 

Ensembl (Phascolarctos_cinereus.phaCin_unsw_v4.1.97 release), promoters were defined 

as regions located 1000 bp upstream of the identified transcription start site (TSS). We 

generated 10,000 genomic control regions (length and GC content matched) for all unique 

DMRs for enrichment analyses. Functional annotation and GO term enrichment analysis 

was performed utilizing the ToppGene Suite (Chen, et al. 2009). The gene sets were 

combined for lung and kidney due to the similarity of their methylation profiles and lack 

of DMRs (Figure 2.1A, C). 
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2.5.3 Differential DNA methylation between sexes 

 We randomly sampled a subset of the autosomal scaffolds that were length matched 

with the X chromosome scaffolds, which we called the “matched autosome” dataset. These 

scaffolds were divided into 10-kb bins and the difference between male and female 

fractional methylation at each 10-kb bin was computed for all tissues. For the analysis of 

human data, we used WGBS fractional methylation reports from a male brain (Epigenome 

ID: E071) and a female brain (Epigenome ID: E053) and the human known gene 

annotations from Ensembl (hg19 release). Due to its similarity in size to the human X 

chromosome, we used data from human chromosome 8 as our representative autosome in 

the comparative analysis. Mean methylation across functional regions was calculated by 

dividing each gene’s function regions into 20 even bins by sequence length. Significance 

for each bin (Mann-Whitney test) is shown in Supplementary Figure A.6.  

2.5.4 Identification of candidate X-linked scaffolds 

 To isolate candidate X-linked scaffolds from the 1,477 unclassified koala scaffolds, 

we binned the unclassified scaffolds into 10-kb windows and calculated the mean fractional 

methylation of the associated CpGs. We then determined the average female and male 

methylation differences across the bins and plotted the density of the differences for all 

five tissues. SVY and DS independently select scaffolds that exhibited a statistically 

significant shift towards female hypomethylation from zero. The scaffolds that showed 

significant female hypomethylation in all five tissues and were selected by both SVY and 

DS were isolated (n = 98 covering 14.6 Mb of sequence with mean female-male 5mC = -

0.25 ± 0.12). As an additional validation, the percent of reads mapping to the putative X-
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linked and autosome-linked scaffolds over the total number of mapped reads was computed 

for the male and female sample in all tissues.  

2.5.5 Annotation of koala Rsx 

 For Rsx annotation, we downloaded the published genome Rsx fasta files from the 

partial opossum assembly (Grant, et al. 2012b) and the complete PacBio koala assembly 

(Johnson, et al. 2018; Sprague, et al. 2019). We used BLASTN 2.2.29 (Zhang, et al. 2000) 

to align both sequences to the koala reference genome (phaCin_unsw_v4.1) and obtained 

genomic coordinates. The entire assembled koala Rsx sequence aligned with 100% identity 

and no gaps. Only one 30.4 kb transcript, a novel lncRNA, overlapped with the annotated 

Rsx region (overlap > 90% of transcript) and was used to evaluate gene expression.  

2.5.6 Analysis of differential gene expression 

 Second All RNA-seq expression data were obtained from the previously published 

koala transcriptomes (Hobbs, et al. 2014). Following the protocol outlined in (Pertea, et al. 

2016), we used the koala GTF annotation from Ensembl 

(Phascolarctos_cinereus.phaCin_unsw_v4.1.97.gtf.gz release) to assemble mapped reads 

into transcripts using StringTie 2.0 (Pertea, et al. 2016) with the -e-b--A <gene_abund.tab> 

flags. We used StringTie’s functionality for de novo transcript assembly to identify 

candidate Rsx transcripts. An updated GTF annotation was generated including novel 

transcripts using the --merge flag and the previously generated mapped reads were 

reassembled into transcripts guided by this GTF file. DeSeq2 1.22.2 (Love, et al. 2014) 

was used to perform differential gene expression analysis between males and females. 

NOISeq 2.26.1 (Tarazona, et al. 2015) was used for differential expression analysis due to 
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its ability to simulate technical replicates within given RNA-seq data sets when no 

replicates are available.  

2.5.7 Data accessibility 

 The raw and processed methylation datasets generated in this study have been 

deposited and accessible through GEO Series accession number GSE149600. 
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CHAPTER 3. ENHANCER PLEIOTROPY, GENE EXPRESSION, 

AND THE ARCHITECTURE OF HUMAN ENHANCER-GENE 

INTERACTIONS 

 This content has been modified from Singh and Yi’s "Enhancer pleiotropy, gene 

expression, and the architecture of human enhancer-gene interactions," published in 

Molecular Biology and Evolution (Singh and Yi 2021).  

3.1 Abstract 

 Enhancers are often studied as noncoding regulatory elements that modulate the 

precise spatiotemporal expression of genes in a highly tissue-specific manner. This 

paradigm has been challenged by recent evidence of individual enhancers acting in 

multiple tissues or developmental contexts. However, the frequency of these enhancers 

with high degrees of ‘pleiotropy’ out of all putative enhancers is not well understood. 

Consequently, it is unclear how the variation of enhancer pleiotropy corresponds to the 

variation in expression breadth of target genes. Here we use multi-tissue chromatin maps 

from diverse human tissues to investigate the enhancer-gene interaction architecture while 

accounting for (1) the distribution of enhancer pleiotropy, (2) the variations of regulatory 

links from enhancers to target genes, and (3) the expression breadth of target genes. We 

show that most enhancers are tissue-specific and that highly pleiotropy enhancers account 

for <1% of all putative regulatory sequences in the human genome. Notably, several 

genomic features are indicative of increasing enhancer pleiotropy, including longer 

sequence length, greater number of links to genes, increasing abundance and diversity of 
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encoded transcription factor motifs, and stronger evolutionary conservation. Intriguingly, 

the number of enhancers per gene remains remarkably consistent for all genes (~14). 

However, enhancer pleiotropy does not directly translate to the expression breadth of target 

genes. We further present a series of Gaussian Mixture Models to represent this 

organization architecture. Consequently, we demonstrate that a modest trend of more 

pleiotropic enhancers targeting more broadly expressed genes can generate the observed 

diversity of expression breadths in the human genome. 

3.2 Introduction 

  The precise and robust orchestration of gene expression by distal, short 

DNA sequences called enhancers is a hallmark of genomic regulatory landscapes 

(Shlyueva, et al. 2014; Villar, et al. 2015).  Enhancers are noncoding regulatory regions 

often comprised of clusters of transcription factor (TF) binding motifs that can modulate 

the transcription of genes over large genomic distances (Banerji, et al. 1981; Lettice, et al. 

2014; Long, et al. 2016). These interactions are achieved through the formation of 

chromatin loops bringing specific enhancers in close physical proximity to target genes 

within genomic segments called topological-associated domains (TADs) (Ong and Corces 

2011; Dixon, et al. 2012; Plank and Dean 2014). Ultimately, the resulting enhancer-gene 

interaction architecture governs developmental processes and tissue identities (Long, et al. 

2016). Previous studies have demonstrated that disruptive mutations in enhancer regions 

are associated with the onset of complex diseases (Maurano, et al. 2012; Melton, et al. 

2015; Zhang, et al. 2018). Enhancers may also play important roles in human specific 

adaptations (Prabhakar, et al. 2008; Mendizabal, et al. 2016; Chen, Li, et al. 2018; Flores 

and Ovcharenko 2018; Jeong, et al. 2020). Consequently, understanding the mechanisms 
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of the enhancer-gene interaction architecture is critical to advance our knowledge of 

genome regulation and evolution.  

Enhancers are often characterized as regulatory elements that act in a specific 

spatiotemporal context, in what Sabarís et al. recently described as a “paradigm of 

modularity” (Sabarís, et al. 2019). Genome-wide chromatin state analyses have revealed 

the presence of enhancers in orders of magnitude greater numbers than of genes (ENCODE 

2012) implying a many-to-one interaction structure. The resulting redundancy of enhancers 

can stabilize gene expression by acting as a buffer to fluctuations in transcription factor 

inputs (Waymack, et al. 2020) and thus provide phenotypic robustness during development 

(Osterwalder, et al. 2018). Indeed, a model in which individual enhancers, on average, have 

a small effect on gene expression is supported by the observation that mammalian 

enhancers evolve rapidly (Villar, et al. 2015) and that sequence motifs comprising 

enhancers are functionally and phylogenetically redundant (Chen, Fish, et al. 2018; Huh, 

et al. 2018). Interestingly, recent studies across a wide range of taxa are accumulating 

evidence that some enhancers can be ‘pleiotropic’, i.e. active in multiple tissues and/or 

developmental stages (McKay and Lieb 2013; Infante, et al. 2015; Preger-Ben Noon, et al. 

2018). The implications of this observation are complex as variants in pleiotropic genomic 

regions can have both beneficial and deleterious consequences in different tissue or 

developmental contexts (Guillaume and Otto 2012). Analyses of the functionality of 

enhancer pleiotropy have the potential to reveal details of the enhancer-gene interaction 

architecture and its roles in evolution (Andersson, et al. 2014; Fish, et al. 2017; Sabarís, et 

al. 2019). Despite such significance, the prevalence of enhancer pleiotropy among the vast 
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number of potential enhancers, and how it correlates to gene expression, is not well 

understood.  

To address this critical gap of knowledge, here we elucidated the frequency and 

organization of enhancer pleiotropy across human tissues, utilizing recently generated 

multi-tissue epigenomic data (Roadmap Epigenomics Consortium, et al. 2015). Our 

primary goal was to understand the role of the enhancer-gene interaction architecture in 

regulating genes of varying breadth of expression, or expression across few or many 

tissues. Gene expression breadth is a well characterized and widely used metric to evaluate 

gene activity (Yanai, et al. 2004; Fagerberg, et al. 2014; Kryuchkova-Mostacci and 

Robinson-Rechavi 2017) where some genes are expressed in a highly tissue-specific 

manner while others are broadly expressed in multiple tissues. Previous studies have 

investigated factors that affect gene expression breadth (Liao, et al. 2006; Park, et al. 2012; 

Hurst, et al. 2014), yet the link between tissue-specific activity of enhancers and tissue-

specific expression of genes remains unclear. For example, are the tissue activities of 

enhancers and genes matched such that housekeeping genes achieve their expression 

patterns through interactions with highly pleiotropic enhancers, while tissue-specific genes 

are regulated by tissue-specific enhancers? Or are these regulatory relationships more 

complex than a one-to-one interaction architecture? Integrating enhancer pleiotropy across 

tissues with gene expression breadths of target genes, our study reveals previously unknown 

patterns of the enhancer-gene interaction architecture and demonstrates a complex 

regulatory interplay between enhancers and genes extending beyond matched tissue 

activity patterns.  
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3.3 Results  

3.3.1 Genomic enhancer features are predictive of their pleiotropy across tissues 

 We utilized data from NIH’s Roadmap Epigenomics Mapping Consortium which 

contains 127 human reference epigenomes (Roadmap Epigenomics Consortium, et al. 

2015) to explore enhancer activity across a diverse set of tissues. A sample-balanced, 

representative subset of 43 samples from 23 human tissues were extracted for analysis (see 

Methods, Supplementary Table 1). We identified genomic regions encoding enhancers 

(henceforth referred to as ‘enhancer regions’ or simply ‘enhancers’) from the core 15-state 

ChromHMM model which uses five histone marks, H3K4me3, H3K4me1, H3K36me3, 

H3K27me3, and H3K9me3, for chromatin state-characterization (Abascal, et al. 2020). In 

total, our dataset included 646,419 unique putative enhancers (see Methods, 

Supplementary Table B.1, https://github.com/soojinyilab/Enhancer_Dataset_2020).  

 We first examined how often a specific genomic region exhibited an enhancer 

chromatin state across all sampled tissues. For example, one region (‘enhancer’) might be 

classified as an enhancer in a single tissue, a few tissues, or in all 23 examined tissues. We 

define the degree of ‘enhancer pleiotropy’ as the number of tissues in which each region 

was classified as an enhancer, such that low values indicate tissue-specific activity and high 

values indicate broad activity across multiple tissues. In the following sections, we will 

state that an enhancer is “found” or “present” in a tissue if a genomic region exhibits the 

enhancer chromatin state in one or more of the representative samples.  

 The distribution of enhancer pleiotropy (Figure 3.1a) clearly shows that the 

majority (75.3%) of all enhancers were found in three or fewer tissues. Approximately a 
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quarter of all enhancers were present in 4-20 tissues (24.3%) and only 0.4% of all enhancers 

were found in more than 20 tissues (Figure 3.1). Therefore, only a small subset of enhancers 

is highly pleiotropic across tissues. Based on the observation in Figure 3.1a, we grouped 

enhancers to three categories according to their enhancer pleiotropy for downstream 

analyses. Specifically, enhancers found in 1-3 tissues are defined as ‘narrow’ enhancers, 

‘intermediate’ enhancers as those present in 4-20 tissues, and ‘broad’ enhancers as those 

found in 21-23 tissues (see Methods). Classifying degrees of pleiotropy into a greater 

number of groups yielded consistent results (one such example is shown in Supplementary 

Figure B.1a,b). The percent of the human genome comprised of enhancers in each 

pleiotropic category is reported in Supplementary Table B.2.    

 

Figure 3.1 Genomic features of enhancers classified by degree of pleiotropy. (a) The 
distribution of enhancers by pleiotropy, or number of tissues in which an enhancer is 
present, demonstrates that the majority of enhancers are highly tissue-specific. Enhancer 
pleiotropy increases with (b) enhancer sequence length, and (c) distance in base-pairs from 
enhancer to nearest gene. Enhancer pleiotropy is also positively correlated with (d) total 
transcription factor (TF) motif count per enhancer after accounting for the confounding 
effect of enhancer sequence lengths. (e) More pleiotropic enhancers also harbor greater 
numbers of unique TF motifs independent of enhancer length. For (a-e), Enhancers were 
divided into pleiotropic categories based on presence in 1-3 tissues (narrow enhancers), 4-
20 tissues (intermediate enhancers), or 21-23 tissues (broad enhancers). For (d and e), 
Spearman’s rank correlation coefficient and the associated p-value are reported for a partial 
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correlation analysis (Kim and Yi 2007) controlling for the effect of gene length on total 
and unique number of TF motifs per enhancer. 

 We hypothesized that some properties of enhancers may be correlated with their 

pleiotropic activity. Indeed, several genomic features of enhancers are predictive of their 

degree of pleiotropy. First, although broad enhancers are rare, they are significantly longer 

(mean length = 2,576 bp) than both narrow (mean length = 760 bp) and intermediate 

enhancers (mean length = 2,026 bp) (p < 2.2 × 10-16, Mann-Whitney U test). This is 

demonstrated by a significant and strong positive correlation between the enhancer 

pleiotropy and the enhancer length (Spearman’s rank correlation coefficient, ρ = 0.7, p < 

2.2 × 10-16, Figure 3.1b). To ensure this correlation was not an artifact of our methods to 

annotate enhancers across tissues, we examined the relationship between enhancer 

pleiotropy and enhancer lengths in several randomly selected tissues and observed the same 

pattern (Supplementary Figure B.2). In addition, more pleiotropic enhancers are found 

closer to genes than less pleiotropic enhancers (Spearman’s rank correlation coefficient, ρ 

= -0.16, p < 2.2 × 10-16, Figure 3.1c). Figure 3.1c depicts the mean distance between an 

enhancer and the closest adjacent gene, indicating that broad enhancers are located closest 

to adjacent genes, followed by intermediate, and narrow enhancers. Broad enhancers also 

tend to cluster more closely to other enhancers than less pleiotropic enhancers. The distance 

to the nearest enhancers was the shortest for the broad enhancers compared to intermediate 

and narrow enhancers (p < 2.2 × 10-16, Mann-Whitney U test, Table 3.1).  

Table 3.1 Distance to nearest enhancer by enhancer pleiotropic category. 

Enhancer Pleiotropy Mean Distance Narrow Intermediate Broad 
Narrow (1-3) 1428 ± 7036 * p < 2.2e-16 p < 2.2e-16 
Intermediate (4-20) 739.5 ± 1661 p < 2.2e-16 * p = 0.1824 
Broad (21-23) 624.5 ± 1148 p < 2.2e-16 p = 0.1824 * 
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 Finally, we directly explored the abundance and diversity of transcription factor 

motifs that are encoded in enhancers to evaluate prospective variations in regulatory 

potential. TF motif occurrences were identified using the MEME (Bailey, et al. 2009) 

suite’s FIMO software and the HOCOMOCO v11 core database (Kulakovskiy, et al. 2016) 

of 680 human TF motifs. TF motif abundance (measured by the total occurrences of TF 

motifs) and diversity (measured by the number of unique TF motifs) were both strongly 

positively correlated with enhancer pleiotropy (Figure 3.1d and e, Spearman’s rank 

correlation coefficient, ρ = 0.55, and  ρ = 0.58 respectively, p < 2.2 × 10-16 for both). This 

trend was significant after controlling for length using partial correlation (Kim and Yi 

2007) (Spearman’s partial rank correlation coefficient, ρ = 0.13, and ρ = 0.14 respectively, 

p < 1 × 10-10 for both). Broad enhancers contained a significantly greater abundance and 

diversity of TF motifs compared to both intermediate and narrow enhancers 

(Supplementary Figure B.3 and Supplementary Table B.3). 

3.3.2 The majority of enhancers are linked to two or fewer target genes 

 Given that enhancers display unique genomic characteristic according to their 

pleiotropic activity, we hypothesized that there would be implications of this variation on 

the number of targeted genes for each enhancer. In the following sections, we call the 

interaction between enhancers and their target genes as regulatory “links.” To investigate 

our prediction, we utilized a repository of enhancer-gene links generated by an algorithm 

(JEME) which links the activity of enhancers and genes uses multiple linear regressions 

and a random forest classifier (Cao, et al. 2017). A total of 107,503 enhancers in our data 

set had target genes identified by this approach. Although this was a subset of our total 

enhancer dataset (16.6% of all putative enhancers), the subsampling was unbiased and 
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highly representative of the distribution of enhancers by pleiotropic category. Moreover, 

compared to previously generated Roadmap enhancer-gene links (Ernst, et al. 2011), JEME 

did not over-represent genes linked to increasingly pleiotropic enhancers Supplementary 

Figure B.4).  

 We observed that nearly half of all enhancers were linked to a single gene. On 

average, enhancers were linked to 2.5 genes, with over 90% of all enhancers interacting 

with 5 or fewer genes (Figure 3.2a). Despite this overarching trend, more pleiotropic 

enhancers tended to be linked to greater number of genes. This is demonstrated by the 

finding that increasing enhancer pleiotropy was positively correlated with an increasing 

number of linked genes (Spearman’s rank correlation coefficient, ρ = 0.25, p < 2.2 × 10-16, 

Figure 3.2b). This correlation was consistent after controlling for enhancer length using 

partial correlation (Spearman’s partial rank correlation coefficient, ρ = 0.22, p < 1 × 10-10). 

Broad enhancers were linked to an average of 9.4 genes, a 4.4-fold increase compared to 

the mean number of gene-links per narrow enhancer (Table 3.2). 
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Figure 3.2 Patterns of links to target genes from enhancers categorized by enhancer 
pleiotropy. (a) The percent of all putative enhancers (N = 646,419) linked to a specific 
number of target genes as depicted in the schematic legend. (b) Box-and-whisker plot of 
the number of target genes per enhancer categorized by enhancer pleiotropy, or number of 
tissues in which an enhancer was present. Spearman’s rank correlation coefficient and the 
associated p-value are reported for a partial correlation analysis (Kim and Yi 2007) 
controlling for the effect of gene length on the number of target genes per enhancer. 
Enhancers were divided into pleiotropic categories based on presence in 1-3 tissues 
(narrow enhancers), 4-20 tissues (intermediate enhancers), or 21-23 tissues (broad 
enhancers). 

Table 3.2 Summary of gene links per enhancer by enhancer pleiotropic category. 

 
Enhancer Pleiotropy 

Mean Number of 
Gene Links 

Median Number of 
Gene Links 

Max Number of 
Gene Links 

Narrow (1-3) 2.14 ± 2.0 1 33 
Intermediate (4-20) 3.61 ± 3.6 2 42 
Broad (21-23) 9.43 ± 6.7 8 36 
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3.3.3 Enhancer pleiotropy does not directly translate to gene expression breadth 

 Given the observation that most enhancers are tissue-specific, and that enhancer 

pleiotropy is positively correlated with the number of target genes per enhancer, we sought 

to connect the relationship between enhancer pleiotropy and gene expression breadth. 

Median gene-level TPM human expression data was obtained from the Genotype-Tissue 

Expression (GTEx) project (GTEx Consortium 2013) for all possible tissues matching the 

enhancer dataset (N = 17 tissues, from 3,828 samples Supplementary Table B.4). Principal 

Component Analyses indicated strong effects of tissues on gene expression 

(Supplementary Figure B.5). We employed a widely used estimate of gene expression 

across tissues, referred to as ‘expression breadth (τ)’ (Yanai, et al. 2004), wherein τ values 

are bound from 1 (genes with tissue-specific expression) to 0 (broadly expressed genes). 

As previously reported (Yanai, et al. 2004; Kryuchkova-Mostacci and Robinson-Rechavi 

2017), the distribution of genes by expression breadth shows at least two distinct peaks 

capturing tissue-specific genes and broad, housekeeping genes (Figure 3.3a).  
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Figure 3.3 Enhancer-gene interaction architecture accounting for enhancer 
pleiotropy and gene expression breadth. (a) Overview of the enhancer-gene interaction 
architecture. The top panel shows the distribution of enhancers by decreasing degree of 
pleiotropy and increasing tissue-specificity. The bottom panel displays the distribution of 
genes by increasing breadth of gene expression (τ) and increasing tissue-specificity. The 
middle panel is a schematic depiction of the enhancer-gene interaction architecture 
accounting for the distribution of enhancers and number of linked target genes by enhancer 
pleiotropic category and the distribution of genes by expression breadth (τ). (b) 
Comparison of the distribution of breadth of expression (τ) values for all linked target genes 
of enhancers by enhancer pleiotropic category (*** indicate p < 2.2 × 10-16, Mann-
Whitney U test). (c) The mean percent of links from enhancers of each enhancer pleiotropy 
category to all genes (N = 16,442) evenly divided into 10 bins by gene expression breadth 
(τ) values. Schematic legend depicts links from enhancers categorized by pleiotropy to a 
representative gene. For (a-c), Enhancers were divided into pleiotropic categories based on 
presence in 1-3 tissues (narrow enhancers), 4-20 tissues (intermediate enhancers), or 21-
23 tissues (broad enhancers). 

When comparing the distributions of gene expression breadth with that of enhancer 

pleiotropy, it is apparent that tissue-specific enhancer activity does not directly translate to 

distribution of gene expression breadths (Figure 3.3a, Supplementary Figure B.6). 

Specifically, even after we adjusted each enhancer count by the number of linked target 
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genes, the low frequency of broad enhancers could not be matched to the high frequency 

of broadly expressed genes (Supplementary Figure B.6). In fact, all enhancers, irrespective 

of their degree of pleiotropy, regulate both tissue-specific (high τ) and broadly expressed 

genes (low τ) (Figure 3.3b). Strikingly, narrow enhancers, which encompass over 75% of 

the total enhancer dataset, interact with broadly expressed genes (τ < 0.5) as often as 

narrowly expressed genes (τ ≥ 0.5) (Table 3.3). This observation contradicts a simple one-

to-one regulatory correspondence between enhancer pleiotropy and gene expression 

breadth. Nevertheless, there is a slight trend that broad enhancers tend to be linked to target 

genes of significantly greater expression breadth (lower τ values) compared to narrow and 

intermediate enhancers (Figure 3.3b). Even though the mean expression breadths of linked 

target genes vary modestly between narrow (mean τ = 0.55), intermediate (mean τ = 0.49), 

and broad enhancers (mean τ = 0.44), the differences are statistically significant (across 

different enhancer pleiotropy categories, p < 2.2 × 10-16 in all comparisons by Mann-

Whitney U test, Figure 3.3b).  

Table 3.3 Summary of expression breadth of genes regulated by enhancers in each 
pleiotropic category. 

Enhancer 
Pleiotropy 

 
Mean τ  

 
Median τ 

Gene-links with  
τ ≥ 0.5 (%) 

Gene-links with  
τ < 0.5 (%) 

Narrow (1-3) 0.55 ± 0.29 0.50 77399 (50%) 78137 (50%) 
Intermediate (4-20) 0.49 ± 0.28 0.41 33258 (42%) 46735 (58%) 
Broad (21-23) 0.44 ± 0.28 0.34 767 (33%) 1524 (67%) 

3.3.4 Genes are linked to similar number of enhancers with varying degrees of pleiotropy 

 As a complementary approach to our previous analysis of connecting enhancer 

pleiotropy to gene expression breadth, we examined the distribution of linked enhancers 

per gene across the spectrum of gene expression breadth (τ). Remarkably, genes were 
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consistently linked to an average of approximately 14 enhancers independent of τ value 

(Supplementary Figure B.7, Supplementary Table B.5) suggesting an optimization of the 

number of regulatory enhancer interactions per gene. When comparing the composition of 

enhancers classified by pleiotropic category linked to genes, we find that the use of 

pleiotropic enhancers varies slightly yet significantly according to the expression breadth 

of the target gene (Figure 3.3c). Genes exhibiting higher tissue specificity of expression (τ 

≥ 0.5) interact with a significantly greater number of narrow enhancers (enhancers found 

in ≤ 3 tissues) exhibiting an O/E ratio of 1.06. Genes that are more broadly expressed (τ < 

0.5) show enriched interaction with enhancers found in more than three tissues 

(intermediate and broad enhancers) with an O/E ratio of 1.10 (χ2 = 1529.3, p < 0.0001). 

3.3.5 Three component Gaussian Mixture models highlight the interplay between 

enhancer pleiotropy and gene expression breadth 

 To further elucidate the regulatory relationship between enhancer pleiotropy and 

gene expression breadths we developed a model comprised of Gaussian mixture 

distributions to represent the enhancer-gene interaction architecture. Specifically, the 

expression breadths of target genes (measured by τ values) for enhancers with different 

pleiotropies were represented as multi-component Gaussian mixtures (Figure 3.4a). 

Utilizing expectation maximization and AIC and BIC criteria (see Methods, 

Supplementary Figure B.8a, and Supplementary Table B.6), we determined that the 

distribution of gene expression breadths of the linked target genes of enhancers were 

optimally represented as a three-component Gaussian mixture models (GMM), for narrow 

(GMMN), intermediate (GMMI), and broad enhancers (GMMB).  
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 𝐺𝐺𝐺𝐺𝐺𝐺𝑁𝑁 = 𝛼𝛼1𝑁𝑁Ν�Χ|𝜇𝜇1,𝜎𝜎12� +  𝛼𝛼2𝑁𝑁Ν�Χ|𝜇𝜇2,𝜎𝜎22� +  𝛼𝛼3𝑁𝑁Ν�Χ|𝜇𝜇3,𝜎𝜎32� (1) 

 𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼 = 𝛼𝛼1𝐼𝐼Ν�Χ|𝜇𝜇1,𝜎𝜎12�  +  𝛼𝛼2𝐼𝐼Ν�Χ|𝜇𝜇2,𝜎𝜎22�   +  𝛼𝛼3𝐼𝐼Ν�Χ|𝜇𝜇3,𝜎𝜎32� (2) 

 𝐺𝐺𝐺𝐺𝐺𝐺𝐵𝐵 = 𝛼𝛼1𝐵𝐵Ν�Χ|𝜇𝜇1,𝜎𝜎12� +  𝛼𝛼2𝐵𝐵Ν�Χ|𝜇𝜇2,𝜎𝜎22� +  𝛼𝛼3𝐵𝐵Ν�Χ|𝜇𝜇3,𝜎𝜎32� (3) 

 In the above equations (1-3), X is the distribution of τ for all linked target genes, α 

is the mixing weight of the associated distribution component, and µ and σ2 are the mean 

and variance, respectively, for the density function N(X) for each component. Figure 3.4a 

displays the distributions generated by each three component GMM overlaying histograms 

of the true distributions of linked target genes’ breadth of expression (τ value) for narrow, 

intermediate, and broad enhancers. Empirical cumulative density functions (CDFs) 

obtained from the true distributions and the theoretical CDF generated from the composite 

distributions of GMMs exhibit a near perfect correlation, validating our approach 

(Spearman’s rank correlation coefficient, ρ = 1, p < 2.2 × 10-16, Figure 3.4b).  
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Figure 3.4 Modeling the enhancer-gene interaction architecture. (a) The distributions 
generated by each three component GMM, GMMN (top), GMMI (middle), and GMMB 
(bottom), overlaying histograms of the true distributions of linked target genes’ breadth of 
expression (τ value) for narrow, intermediate, and broad enhancers, respectively. Cross-
validation results comparing observed distributions of gene-enhancer links by enhancer 
pleiotropic category to predicted gene-enhancer links generated from the Gaussian mixture 
models are reported. Results are shown for R2, root mean squared error (RMSE), and mean 
absolute error (MAE) calculated from the caret package in R. (b) The correlation between 
empirical cumulative density functions (CDFs) obtained from the true distributions and the 
theoretical CDF generated from the composite distributions of GMMN (top), GMMI 
(middle),  and GMMB (bottom) are plotted. Spearman’s rank correlation coefficient and the 
associated p-value are reported. (c) Weights (α) for all three components of the narrow 
(GMMN), intermediate (GMMI), and broad (GMMB) enhancer gaussian mixture models 
generated by the Expectation-Maximization (EM) algorithm. Component 1 represents a 
distribution of broadly expressed genes with average τ = 0.26, component 2 represents a 
distribution of intermediately expressed genes with average τ = 0.61, and component 3 
represents narrowly expressed genes with average τ = 0.96.   

 Our models visualize two aspects of the enhancer-gene interaction architecture: (1) 

the prevalence of genes across the spectrum of expression breadth, and (2) the number of 

links from enhancers of each pleiotropic category to genes of varying expression breadth. 

The first feature was previously shown to exhibit a bimodal distribution largely comprised 

of broadly expressed genes and tissue-specific genes (Supplementary Figure B.6a; also 

(Yanai, et al. 2004; Kryuchkova-Mostacci and Robinson-Rechavi 2017)). Our finding 
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suggests that a three-component distribution including a group of gene with a medium level 

of gene expression might be more representative of the enhancer-gene interaction 

architecture (Supplementary Figure B.8). The second point is emphasized by the variation 

of the weight parameters (α) in corresponding components of the three models, visualizing 

the size of the contribution of genes with different expression breadths to the Gaussian 

mixture distributions of each enhancer pleiotropic category (Table 3.4, Figure 3.4c). The 

weight of the first component, associated with more broadly expressed genes (µ = 0.26, 

Supplementary Table B.7), increases with increasing enhancer pleiotropy. On the other 

hand, the weight of the third component, associated with more tissue-specific genes (µ = 

0.26, Supplementary Table B.7), decreases from the narrow to broad enhancer models. 

These model results mirror our previous findings (Figure 3.3) and supports the conclusion 

that, even though the total number of enhancers per gene is largely constant across the 

genome (Supplementary Figure B.7, Supplementary Table B.5), slight shifts of the usage 

of pleiotropic enhancers by broadly expressed genes can achieve the range of gene 

expression breadths of target genes.  

Table 3.4 Distribution weights (α) of Gaussian mixture models. Values are reported for 
all three components of the narrow (GMMN), intermediate (GMMI), and broad (GMMB) 
enhancer Gaussian mixture models generated by the Expectation-Maximization (EM) 
algorithm. 

Model Component Weight (α) 
 1 0.36 

GMMN 2 0.42 
 3 0.22 
 1 0.44 

GMMI 2 0.41 
 3 0.15 
 1 0.57 

GMMB 2 0.31 
 3 0.13 
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3.3.6 Enhancers exhibit distinct signatures of sequence conservation dependent on 

degree of pleiotropy 

 Previous work from mammalian genomes (Villar, et al. 2015) showed that 

enhancers undergo rapid evolutionary turnover. Importantly, the authors found that 

enhancer conservation was a rare event observed in only 1% of all analyzed enhancers. 

Given that rare, broad enhancers exhibit a distinct signature of increased links to target 

genes and a modest increase in interactions with broadly expressed genes, we hypothesized 

that enhancers with different pleiotropies may exhibit different degrees of evolutionary 

conservation. To test this prediction, we used multiple approaches to evaluate conservation, 

namely, (1) determining the enrichment of conserved elements within enhancers, (2) 

identifying the distribution of highly conserved segments within each enhancer (see below 

and Methods), and (3) calculating overall the normalized ratio of significantly conserved 

sites per enhancer. For robustness, we employed two independent measures to quantify 

conservation, the Genomic Evolutionary Rate Profiling (GERP) Reduced Substitution (RS) 

score (Cooper, et al. 2005) and the Phylogenetic P-values (PhyloP) score (Pollard, et al. 

2010).  

 We first examined the enrichment of GERP conserved elements (Cooper, et al. 

2005; Davydov, et al. 2010) within enhancers. All enhancers, independent of pleiotropic 

category, were significantly enriched for conserved elements compared to length-matched 

control regions (p < 0.0001 based on 10,000 bootstraps, Figure 3.5a). When separated to 

different pleiotropy categories, broad enhancers exhibited the highest enrichment (fold 

change (FC) = 2.04 compared to the control regions), followed by intermediate enhancers 

(FC = 1.94) and narrow enhancers (FC = 1.64).  
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Figure 3.5 Signatures of conservation in enhancers categorized by pleiotropy. (a) 
Enrichment of conserved regions identified by GERP score in narrow, intermediate, and 
broad enhancers. The enrichment is shown through a comparison with length matched 
control regions. For all categories, p < 0.0001 (illustrated as *) based on 10,000 bootstraps 
and error bars indicating standard deviation are shown. The distributions of local max 
PhyloP score, defined as the 50 bp window within an enhancer with the highest mean 
PhyloP score, is reported for enhancers by degree of pleiotropy (b) and enhancer divided 
into pleiotropic category (c). The distributions of the normalized ratio of significantly 
conserved sites, defined as number of sites in an enhancer with PhyloP score ≥ 1.3 over the 
total sequence length of the enhancer, is reported for enhancers by degree of pleiotropy (d) 
and enhancer divided into pleiotropic category (e).  For (a-d), Enhancers were divided into 
pleiotropic categories based on presence in 1-3 tissues (narrow enhancers), 4-20 tissues 
(intermediate enhancers), or 21-23 tissues (broad enhancers). For (b and c), the blue dashed 
line indicates a PhyloP score threshold above which implies significant conservation 
(PhyloP score ≥ 1.3 corresponding to a p-value of ≤ 0.05). For (b and d), Spearman’s rank 
correlation coefficient and the associated p-value are reported. For (c, and e), three asterisks 
(***) indicate p < 2.2 × 10-16 and two asterisks (**) indicate p < 1 × 10-9 based on Mann-
Whitney U tests. 

 Next, we evaluated the presence of highly conserved regions within individual 

enhancers, which may be representative of critical functional components encoded within 

enhancer regions. Specifically, we calculated the mean conservation scores for all regions 

within each enhancer using a sliding window with a fixed step size to determine the “local 

max conservation score” across each enhancer. Figure 3.5b illustrates the positive 
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correlation between increasing enhancer pleiotropy and increasing local max conservation 

score (Spearman’s rank correlation coefficient, ρ = 0.39, p < 2.2 × 10-16, Figure 3.5b). 

Accordingly, the local max conservation score increases significantly between narrow to 

intermediate enhancers, and between intermediate to broad enhancers (p < 2.2 × 10-16 for 

all comparisons, Mann-Whitney U test, Figure 3.5c). To address any potentially 

confounding effect of enhancer length on conservation, we further calculated the ratio of 

significantly conserved sites per enhancer normalized by the enhancer’s sequence length. 

Similar to previously used criterion (Davydov, et al. 2010), we defined sites in the top 10% 

of all genomic RS scores (RS score ≥ 2) as those exhibiting “constrained” conservation. 

Additionally, we used a of PhyloP score ≥ 1.3 corresponding to a p-value of ≤ 0.05 as a 

threshold for significant conservation. We show a significant positive correlation between 

enhancer pleiotropy and the normalized ratio of conserved sites (Spearman’s rank 

correlation coefficient, ρ = 0.15, p < 2.2 × 10-16, Figure 3.5d). Broad and intermediate 

enhancers contained a significantly greater proportion of conserved sites than narrow 

enhancers (p < 1 × 10-9 and p < 2.2 × 10-16, respectively from Mann-Whitney U tests, Figure 

5e). Figures 5b,c,d and e all show results generated using PhyloP scores, however, the 

results were highly consistent with those generated using GERP RS score (Supplementary 

Figure B.9 and Supplementary Figure B.10). Collectively, these analyses indicate that 

sequence conservation is more prevalent in more pleiotropic enhancers. 

3.4 Discussion 

 In this study, we explored the regulatory architecture of enhancer-gene interactions 

and gene expression breadth. We demonstrated that enhancers primarily act in a tissue-

specific manner; highly pleiotropic enhancers were rare, constituting less than 1% of all 
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putative enhancers across the examined tissues. Notably, recent comparative studies 

between distant mammalian species have indicated that enhancers tend to be tissue- and 

species-specific (Villar, et al. 2015; Roller, et al. 2020). Despite the extreme skew toward 

tissue-specific enhancer activity, several notable genomic characteristics are positively 

correlated with increasing enhancer pleiotropy. Specifically, more pleiotropic enhancers 

are longer, located in closer proximity to genes, comprised of a greater abundance and 

diversity of TF motifs, and linked to a greater number of target genes. These features 

suggest that highly pleiotropic enhancers are ‘repurposed,’ or used as regulatory elements 

for a greater number of genes and tissue contexts, more often than less pleiotropic 

enhancers, potentially due to their closer proximity to genes and increased regulatory 

potential due to encoded TF motifs. Indeed, the functional importance of these highly 

pleiotropic enhancers is supported by the finding that broad enhancers are significantly 

more conserved than narrow or even intermediate enhancers. Notably, enhancers which 

clustered closer to genes have previously been found to contain developmentally critical 

transcription factor binding motifs and to be subsequently deeply conserved (Boffelli, et 

al. 2004).  

A recent study by Fish et al. (Fish, et al. 2017) analyzing an independent enhancer 

dataset in which enhancers were categorized based on species-specific activity or species-

conserved activity found that species-conserved enhancers were more pleiotropic than 

species-specific enhancers. The authors further determined that species-conserved 

enhancers contained a greater number and diversity of transcription factor binding motifs, 

providing complimentary support to our conclusion that pleiotropic enhancers exhibit 

greater regulatory potential within species. In addition, these observations provide potential 
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explanations for intriguing differences between enhancers and promoters – even though 

both enhancers and promoters are capable of initiating transcription (Nguyen, et al. 2016), 

promoters are on average longer and more conserved than enhancers (Nguyen, et al. 2016; 

Huh, et al. 2018), and house sequence motifs with greater effect sizes (Huh et al. 2018). 

Our study supports the idea that some of the difference between promoters and enhancers 

may be due to the proximity of promoters to genes themselves.  

One of our primary study objectives was to link the breadth of enhancer activity, or 

degree of pleiotropy, to the well characterized distribution of gene expression breadth 

(Yanai, et al. 2004; Fagerberg, et al. 2014; Kryuchkova-Mostacci and Robinson-Rechavi 

2017). Overall, the number of target genes per enhancer and the number of linked 

enhancers per gene are remarkably consistent across the genome. The distribution of 

enhancer pleiotropy cannot explain the distribution gene expression breadth by directly 

matching tissue activity. Indeed, when examining the composition of enhancers 

categorized by pleiotropy that interact with genes of varying expression breadth, we 

determined that all enhancers, independent of pleiotropic category, regulate both tissue-

specific and broadly expressed genes. In fact, narrow enhancers, the predominant form of 

enhancers in the human genome, regulate narrowly expressed genes as often as broadly 

expressed ones. Nevertheless, highly pleiotropic enhancers more often are linked to 

broadly expressed genes than to tissue-specific genes, albeit slightly. We show that this 

slight shift in the link between pleiotropic enhancers and broadly expressed genes, together 

with the optimized number of enhancer-gene links, can explain the distributions of gene 

expression breadth and enhancer pleiotropy. Our study thus provides novel and useful 
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insight into understanding the underlying regulatory logic of enhancer-gene interaction 

architecture.  

3.5 Methods  

3.5.1 Enhancer Dataset Generation and Pleiotropic Classification 

 Enhancer data were obtained from the NIH Roadmap Epigenomics Mapping 

Consortium (http://www.roadmapepigenomics.org/) which combines 111 reference human 

epigenomes generated from the Roadmap Epigenomics Project with 16 epigenomes from 

the Encyclopedia of DNA Elements (ENCODE) project (ENCODE+Roadmap dataset). Of 

the 127 available epigenomes, any samples generated from cancer derived cell lines were 

removed. To avoid confounding results caused by overrepresented tissues, two 

representative samples were randomly selected for each tissue to maximize the number of 

tissues which could be included in this analysis. Finally, all fetal samples (n=11) were 

retained to include developmental enhancers which may not be present in adult tissues. 

Following samples filtration, a final dataset of 43 samples spanning from 23 human tissues 

were used for downstream analysis (Supplementary Table B.1). Once the epigenomes were 

selected, enhancer coordinates were obtained from the core 15-state ChromHMM model 

which uses five histone marks, H3K4me3, H3K4me1, H3K36me3, H3K27me3, and 

H3K9me3, for chromatin state-characterization. Specifically, state 6 (genic enhancers) and 

state 7 (enhancers) coordinates were extracted.   

 To process the enhancer data, a methodology similar to that of Cao et al. was 

implemented (Cao, et al. 2017). All enhancers from replicated samples of the same tissue 

were assigned to the common tissue. Then, the union of all enhancers across all samples 

http://www.roadmapepigenomics.org/
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was taken to generate a data matrix with N=3,293,794 total candidate enhancer regions. 

Outlier regions with the top 5% length (length > 3,500 bp) were removed and excluded 

from downstream analysis. All candidate enhancer region was then merged with other 

regions that overlapped by more than 50% the length of the shorter candidate region to 

generate the putative enhancer dataset. Permutation analyses of length filtration and 

overlap thresholds for merging were performed, and the results and overarching trends 

remained consistent across all analysis variations (Supplementary Figure B.1c). 

Importantly, the cumulative number of putative enhancers increased with the inclusion of 

each additional tissue sample, but the total number of enhancers consistently began to 

stabilize once eight or more tissues were added across several variation of the merging 

criteria (Supplementary Figure B.1d). With the inclusion of the first six tissues, ~50% 

(305719/ 646419) of the total dataset was identified (Supplementary Figure B.1e).  The 

final enhancer dataset and extended enhancer attribute file are available at 

https://github.com/soojinyilab/Enhancer_Dataset_2020.  

 To assign tissue pleiotropic classifications, enhancers found in the fewest tissues 

(1-3 tissues, bottom 13% of the total number of tissues) were denoted as “narrow 

enhancers” and the enhancers found in the most tissues (21-23 tissues, top 13% of the total 

number of tissues) were classified as “broad enhancers.” Enhancers present in 4-20 tissues 

shared features of both “narrow” and “broad” enhancers and were thus deemed 

“intermediate enhancers.” Several more minute dissections of the classification system 

were considered for this analysis (representative alternative classification shown in 

Supplementary Figure B.1a,b), however, our aim in utilizing a three category classification 
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scheme was to capture overarching trends in genomic features and gene regulation of 

enhancers while improving the simplicity and clarity of analyses and visualization.  

3.5.2 Identification of Transcription Factor Occurrences 

 To determine the occurrences of transcription factor motifs in enhancers 

categorized by their degree of pleiotropy, we identified TF motifs using the MEME suite 

(Bailey, et al. 2009)’s FIMO software and the HOCOMOCO v11 core database 

(Kulakovskiy, et al. 2016) containing 680 human TF motifs. Default parameters and a q-

value threshold of <0.1 was set as inputs for FIMO for TF motifs to be matched to input 

enhancer sequences classified by degree of pleiotropy.  

3.5.3 Enhancer-Gene Target Links 

 The list of target genes of enhancer activity was obtained from 

http://yiplab.cse.cuhk.edu.hk/jeme/ which is a repository of enhancer-gene links inferred 

by JEME from the ENCODE+Roadmap dataset (Cao, et al. 2017). Briefly, JEME is a 

supervised machine-learning technique which utilizes a random-forest classifier to predict 

enhancer-gene links based on the correlation between gene expression and normalized 

epigenetic marks within large windows (1 Mb around each transcription start site (TSS)). 

The epigenetic marks used included three histone modifications, H3K4me1, H3K27ac, and 

H3K27me3, generated from ChIP–seq and DNase I hypersensitivity sites from DNase-seq. 

JEME implements cross-validation with shuffling and integrates both global and sample 

specific enhancer activity signatures to ensure important sample specific enhancer-target 

interactions are not missed due to weak signals across all samples.  

http://yiplab.cse.cuhk.edu.hk/jeme/
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3.5.4 Gene Expression Data Acquisition and Processing 

 Per-tissue median gene level TPM expression data from the Genotype-Tissue 

Expression (GTEx) Project were obtained from the GTEx Portal (dbGaP accession number 

phs000424.v7.p2) on 02/14/2019 for all possible tissues matching the enhancer dataset (N 

= 17 tissues from 3,828 samples, Supplementary Table B.4). Any genes with gene 

expression values equaling zero across all tissues were removed. The breadth of gene 

expression (τ) was calculated for all genes based on the algorithm derived by Yanai et al. 

(Yanai, et al. 2004). The equation (eq. 4) for τ of a gene is defined as: 

 
𝜏𝜏 =  

∑ (1 − 𝑥𝑥𝑖𝑖)𝑁𝑁
𝑖𝑖=1

𝑁𝑁 − 1
 (4) 

Where 𝑁𝑁 is the total number of tissues and 𝑥𝑥𝑖𝑖 is the expression value of a single tissue 

normalized by the maximal expression value across all tissues bounding τ values between 

0 (broadly expressed genes) and 1 (narrowly expressed genes). 

 Because τ calculations are sensitive to the number of tissues included in the analysis 

(eq. 4), we opted to use the GTEx expression dataset to optimize the number of tissues 

matching the enhancer tissue set (17/23 tissues with gene expression data). Direct RNA-

seq data is available for 13/23 tissues through the Roadmap Epigenomics Project 

(Supplementary Table B.8), however, τ values from this subset would be biased towards 

more broadly expressed genes due to the reduction in total tissue count. To ensure that the 

larger GTEx gene expression dataset was representative of the expression profiles of the 

ENCODE+Roadmap enhancer dataset, we sought to ensure the direction of gene 

expression was consistent between the two RNA-seq datasets. Indeed, the τ-values were 
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highly correlated and significant (Spearman’s rank correlation coefficient, ρ = 0.92, p < 

2.2 × 10-16, Supplementary Figure B.11).  

3.5.5 Mathematical Modeling  

 Gaussian mixture equations modeling the distribution of links to all genes of 

varying τ values by enhancer pleiotropic category were defined as GMMN, GMMI, GMMB 

for narrow, intermediate, and broad enhancers respectively (eq. 1-3). Each density function 

takes the general form of equation 5. 

 𝑁𝑁(𝜏𝜏) =  
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒
1
2(𝜏𝜏−𝜇𝜇𝜎𝜎 )2 (5) 

First a composite distribution of all enhancer-gene links independent of enhancer 

pleiotropy was generated and used to determine the optimal number of mixture components 

for the models. Mixtures of 1-3 components were fit to the composite model using the 

Expectation-Maximization (EM) algorithm implemented using normalmixEM from the 

mixtools package (Benaglia, et al. 2009) in R. AIC (Akaike 1974) and BIC (Schwarz 1978) 

values were used as the criteria for selecting the three component model. 

 To reduce model overfitting, mean (µ1, µ 2, µ 3) and variance (σ2
1, σ2

2, σ2
3)   

parameters for all three components were first estimated from the composite distribution 

and utilized as fixed values in GMMN, GMMI, and GMMB (Supplementary Table 7). The 

weight parameters (α1, α 2, α 3) were then estimated independently. As a validation of the 

models, the correlations between the empirical cumulative density function from the true 

distributions of enhancer-gene links and the theoretical cumulative density function 
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generated from the composite Gaussian mixture model distributions were calculated for 

each enhancer pleiotropy model (GMMN, GMMI, GMMB).  Additionally, the correlation 

(R2), root mean squared error (RMSE), and mean absolute error (MAE) were calculated 

comparing the true distributions to those generated by the models using the caret package 

in R (Kuhn 2008).  

3.5.6 Enhancer Conservation Analysis 

 Genome-wide nucleotide resolution conservation scores were defined as Genomic 

Evolutionary Rate Profiling (GERP) Reduced Substitution (RS) scores (Cooper, et al. 

2005) and Phylogenetic P-values (PhyloP) scores (Pollard, et al. 2010). GERP RS scores 

were obtained from 

http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_scores.tar.gz (Cooper, 

et al. 2005; Davydov, et al. 2010) while PhyloP scores were downloaded from 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/phyloP46way/ generated from the 

alignment of 36 and 46 mammals respectively.  Any site with a conservation score of zero 

was filtered out of the analysis for both metrics as it represents a position at which there 

were too few species alignments to generate an accurate conservation score. Three 

approaches were utilized to evaluate enhancer conservation by pleiotropic category: (1) 

determining the enrichment of conserved elements within enhancer regions classified by 

pleiotropic category, (2) identifying local maximum conservation scores, and (3) 

calculating the ratio of conserved sites per enhancer normalized by enhancer sequence 

length.  
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 For approach (1), the enrichment of previously defined conserved elements was 

analyzed compared to length-matched control regions across enhancers classified by 

pleiotropy. The elements were identified by the program gerpelem (Davydov, et al. 2010) 

and were downloaded from 

http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_elements.tar.gz 

(freeze date 5/18/2020). First, the overlaps between the conserved elements and narrow, 

intermediate, and broad enhancers were determined. Next, 10,000 length match control 

regions for all conserved elements were generated and overlapped with enhancers by 

pleiotropic category. The fold-change was calculated for all categories comparing the 

overlap of conserved elements compared to the bootstrap control and p-values were 

reported as the ratio of number of simulated values as at least as extreme as the observed 

values to the total number of simulations.   

 For approach (2), a local max conservation score was generated by calculating the 

average RS and PhyloP score across 50 bp windows using a 10 bp step-size and reporting 

the maximum average conservation score for each enhancer or “local max conservation 

score”. The distribution and median local max conservation score were then plotted 

independently for all enhancers by the number of tissues they are found in as well as for 

enhancers by pleiotropic category (narrow, intermediate, and broad). Finally, in approach 

(3), the number of sites above a significant conservation score threshold over the total 

enhancer length was reported for all enhancers generating a “ratio of conserved sites” value 

per enhancer normalized by enhancer length. For RS scores, a significant threshold of RS 

≥ 2 was chosen for this analysis capturing the top 10% of all scores across the genome. 

Additionally, a PhyloP score ≥ 1.3 corresponding to a p-value of ≤ 0.05 was select as a 

http://mendel.stanford.edu/SidowLab/downloads/gerp/hg19.GERP_elements.tar.gz
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threshold of significant conservation. As above, the distribution and median fraction of 

conserved sites were plotted independently for all enhancers by the number of tissues they 

are found in as well as for enhancers classified by pleiotropy (narrow, intermediate, and 

broad).  
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CHAPTER 4. EVOLUTIONARY ORIGINS OF ENHANCERS 

THROUGH DUPLICATIONS 

4.1 Introduction 

 Genomic duplication events, encompassing small-scale sequence duplications to 

whole genome duplication, are canonical sources for the raw materials used for the 

evolution of functional elements of the genome (Ohno 1970). Among these evolutionary 

events, the frequency and consequences of gene duplications has been the most extensively 

studied. Previous works demonstrate that, although gene duplications occur at a high 

frequency, the vast majority of these redundant regions lose functionality rapidly due to 

the accumulation of degenerative mutations in a processed called non-functionalization 

((Lynch and Conery 2000; Innan and Kondrashov 2010b) and references therein). On the 

other hand, duplicate genes may be retained via two alternative evolutionary trajectories: 

neofunctionalization or subfunctionalization. Neofunctionalization refers to the cases when 

one gene copy retains the ancestral function while the other gains a novel function through 

the acquisition of an advantageous mutation and subsequent positive selection (Ohno and 

Smith 1972; Force, et al. 1999a). In contrast, subfunctionalization refers to instances when 

degenerative mutations accumulate in both copies of the duplicated gene, but the ancestral 

gene function is maintained by the combined dosage of the duplicate pair (Lynch and Force 

2000). Both scenarios demonstrate critical pathways for the expansion of novel gene 

functions which can increase the functional diversity of the genome. In fact, it is estimated 

that 15-50% of all human genes have originated via duplication events (Li, et al. 2001; 

Park and Makova 2009; Keller and Yi 2014; Acharya and Ghosh 2016).     
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 Functional evolution through sequence duplication could also contribute to 

diversification of non-coding cis-regulatory elements (reviewed in (Long, et al. 2016)). 

Chief among these elements are enhancers, short DNA sequences which control the precise 

context- and time-dependent expression of genes (Banerji, et al. 1981; Lettice, et al. 2014; 

Long, et al. 2016). Specific instances of the retention of functional duplicated enhancers 

have been reported such as the two hepatic control regions driving the expression of the 

human apolipoprotein (apo) E genes (Allan, et al. 1995; Goode, et al. 2011). Enhancer 

duplications are also associated with diverse abnormal phenotypes in humans such as 

Keratolytic winter erythema (KWE), bilateral concha-type microtia, disorders of sex 

development (Ngcungcu, et al. 2017; Croft, et al. 2018; Si, et al. 2020). Despite these 

observations, it remains unknown what proportion of all enhancers originate and are 

maintained following duplication events.  

 Several factors may influence the differences in evolutionary forces acting on 

duplications in genic regions compared and those in enhancer regions. Enhancers are 

organized in a many-to-one interaction structure where there are many more enhancers 

than genes (ENCODE 2012; Singh and Yi 2021). This redundancy helps maintain the 

robust and stable expression of target genes by acting as a buffer against fluctuations in 

transcription factor inputs and deleterious mutations any one regulatory region 

(Osterwalder, et al. 2018; Waymack, et al. 2020; Kvon, et al. 2021). Most enhancers are 

also highly tissue specific (Singh and Yi 2021), which collectively suggests that this 

reduction in effect size compared to a gene may alleviate the selection pressure or 

evolutionary constraint on an individual enhancer (Sabarís, et al. 2019). On average, 

enhancers are also shorter than genes and can readily evolve function from ancestral 
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regulatory sequences which reduces the evolutionary barrier for de novo enhancer 

formation either through spontaneous emergence or exaptation (Rebeiz, et al. 2011; Villar, 

et al. 2015; Fong and Capra 2021). Therefore, enhancers may have alternative trajectories 

to evolve novel function and are subject to less selective constraint associated with the 

redundant copies.  

 Here, we aim to examine how duplication and subsequent functional diversification 

may have occurred over the course of evolution of enhancers in the human genome. We 

have recently (Singh and Yi 2021) curated and characterized a large dataset of putative 

enhancers from the Roadmap Epigenomics Mapping Consortium (Roadmap Epigenomics 

Consortium, et al. 2015) across 23 diverse human tissues. A notable result from this study 

was the identification of a rare (<1%) subset of highly pleiotropic enhancers with an 

increased effect size in terms of breadth of activity and number of regulated target genes. 

In this study, we utilize these annotations to determine the frequency of duplicate enhancer 

maintenance as well as enhancer features which may determine their retention over 

evolutionary time in the human genome. 

4.2 Results  

4.2.1 Distinctive Genomic Features of Duplicate Enhancers 

 For our analyses, we utilized the curated set of enhancers generated in Singh and 

Yi 2021 (Singh and Yi 2021) from NIH’s Roadmap Epigenomics Mapping Consortium 

(Roadmap Epigenomics Consortium, et al. 2015). Beginning with 646,419 unique putative 

enhancers identified from chromatin-state characterization (Abascal, et al. 2020) across 23 

human tissues, we performed an all-by-all BLAST coupled with stringent filtration criteria 
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for repetitive content and overlap coverage (see Methods) to identify candidate duplicated 

enhancer families. We further performed single-linkage clustering (SLC) within 

duplication groups to identify duplicate enhancer pairs based on evolutionary divergence 

measured by Kimura's  two-parameter (K2P) model (Kimura 1980). In total, we generated 

a dataset of 3,336 candidate duplicate pairs with a mean K2P distance of 0.21 

(Supplementary Figure C.1). These duplicate enhancers encompass approximately 1% of 

all enhancers, which is a notably smaller proportion than that of genes originating through 

duplication events (~25-40% of all human genes, (Park and Makova 2009; Keller and Yi 

2014)).   

 Given that duplicate enhancers encompass a small subset of the total number of 

putative enhancers, we were interested in exploring the genomic characteristics 

contributing to their continued maintenance over evolutionary time. We specifically 

considered the relative enrichment of six attributes of duplicated enhancers compared to 

control groups of length matched non-duplicated enhancers acting as the genomic 

background. As we previously defined (Singh and Yi 2021), the degree of “enhancer 

pleiotropy,” refers to the number of tissues in which a region exhibits an enhancer 

chromatin state and is considered active. As such, low enhancer pleiotropy values indicate 

that the corresponding enhancers act in a tissue-specific manner while high values imply 

that the enhancers are broadly active in multiple tissues. We found that duplicate enhancers 

are significantly longer and more pleiotropic than are non-duplicate control enhancers 

(Figure 4.1a,b and Supplementary Table C.1). With respect to coding regions of the 

genome, duplicate enhancers are in closer proximity to genes and linked to a greater 

number of target genes than are control enhancers (Figure 4.1c,d and Supplementary Table 
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C.1). Finally, we found that duplicate enhancers harbor a significantly greater number and 

more diverse groups of transcription factor (TF) binding motifs compared to control 

regions (Figure 4.1e,f and Supplementary Table C.1).  

 

Figure 4.1 Genomic characteristics of duplicate enhancers. Enrichment of six genomic 
attributes of duplicate enhancers, (a) enhancer pleiotropy, (b) enhancer length (bp), (c) 
distance to nearest gene (kbp), (d) number of linked target genes per enhancer (e) total 
number of transcription factors (TFs) per enhancer, and (f) total number of unique TFs 
(representing TF diversity) per enhancer, compared to those of length-matched non-
duplicate control enhancers. For all attributes (a-f), p < 0.001 (illustrated as *) based on 
1,000 bootstraps. Error bars indicate standard deviation. (g) Enrichment of duplicate 
enhancers in all surveyed tissues compared to length-matched non-duplicate control 
enhancers. Odds ratio and p-value are reported from Fisher’s Exact Test considering the 
occurrence of duplicate enhancers active or not active in each tissue compared to the 
expected pattern from the control enhancers. 

 We further investigated which, if any, of the 23 tissues analyzed were significantly 

enriched or depleted of duplicated enhancers compared to the control enhancers. We show 

that 11 out of 23 tissues (47.8%) are significantly enriched for duplicated enhancers in both 
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datasets (Figure 4.1g, and Supplementary Table C.2). This subset notably includes 

members of the primary and secondary lymphoid organs, the thymus and spleen as well as 

blood cells. The brain, skin, embryotic stem cells, and kidney samples were consistently, 

and significantly, depleted of duplicated enhancer compared to the control datasets (odds 

ratio < 1, p ≤ 0.002 Fisher’s Exact Test).  

4.2.2 The relative age of duplicated enhancers is predictive of regulatory potential 

 Given that duplicate enhancers show a wide range of sequence divergence between 

pairs (Supplementary Figure C.1), we hypothesized that characteristics affecting the 

regulatory potential of duplicated enhancers could be a factor in their preservation over 

evolutionary time. To test this hypothesis, we assigned relative ages to each enhancer pair 

based on their pairwise K2P distances, where smaller distances between pairs imply a more 

recent duplication while larger distances are indicative of an older duplication. We then 

binned the duplicate pairs evenly between the minimum and maximum evolutionary 

distance such that no bin contained less than 10 data points and examined variation of the 

associated enhancer attributes (Figure 4.2). Enhancer pleiotropy, length, and transcription 

factor count and diversity all increase with relative ages of duplicate pairs such that the 

“youngest” (K2P distance ≤ 0.33) duplicates are consistently and significantly less 

pleiotropic, shorter, and harbor fewer transcription factors than the “oldest” (K2P distance 

> 1.00) duplicate enhancers (p ≤ 0.05 for all attributes, Mann–Whitney U test). Indeed, 

compared to the mean attribute values of the control distributions, the “oldest” duplicates 

show a larger and more significant deviation than do the “youngest” duplicates (Figure 4.2 

and Supplementary Table C.3). 



 67 

 

Figure 4.2 Correlation between relative age of duplicate enhancers and genomic 
characteristics. Distribution of (a) enhancer pleiotropy, (b) enhancer length (bp), (c) total 
number of transcription factors (TFs) per enhancer, and (d) total number of unique TFs 
(representing TF diversity) per enhancer for all duplicate enhancers divided into bins by 
their K2P distance. The bins were evenly distanced between the minimum and maximum 
K2P of the total duplicate enhancer set. The K2P ranges within each bin are as follows: 
Bin 1 K2P = 0-0.33, Bin 2 K2P = 0.33-0.67, Bin 3 K2P = 0.67-1.00, and Bin 4 K2p > 1. 
The total number of duplicate enhancers per bin are reported along with p-values from 
Mann-Whitney U test (*** indicate p < 2.2 × 10-16 and ** indicates p < 0.001). The mean 
value of length-matched non-duplicate control enhancers are shown as a horizontal dashed 
line on each plot. 

4.2.3 Signatures of asymmetric evolution in recently duplicated enhancers 

 The above analyses indicate that regulatory attributes of enhancer sequences are 

associated with relatively rare instances of the evolutionary retention of duplicate 

enhancers. If the gain and loss of regulatory attributes are related to changes at the sequence 
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level, we may be able to detect the associated signal at the level of sequence evolution. In 

other words, we can determine whether duplicate enhancers undergo accelerated sequence 

evolution, which would be expected if the gain of a specific regulatory attribute is driven 

by positive selection. In the following section we utilized two non-human primate (NHP) 

genomes (rhesus macaque and chimpanzee genomes) to further examine the fates of 

duplicate enhancers in relation to their sequence evolution.  

 To quantify duplicate enhancer sequence evolution, we first employed a sequence 

homology search to identify orthologous regions in both non-human primate genomes 

(summarized in Figure 4.3a). Briefly, we used a reciprocal best BLAST hit (RBBH) 

approach to identify single-copy orthologous regions independently in the rhesus macaque 

and chimpanzee genomes. For the subset of duplicate enhancers with single-copy 

orthologous regions in both NHP outgroups, we surmised these enhancers likely resulted 

from a duplication event following the divergence of the human-chimpanzee lineages. Due 

to the lack of a more distantly related outgroup, duplicate enhancers with single-copy 

orthologous regions in the macaque lineage may include instances of a loss of duplication 

in the macaque genome rather than a gain of duplication in the human genome. However, 

these regions are still informative in analyzing signatures of sequence evolution within 

human duplicate pairs. Furthermore, we found that only 2.1% (69/329) of the duplicate 

enhancers with single-copy orthologous regions in the chimpanzee exhibited ‘loss’ in the 

chimpanzee genome (Supplementary Table C.4). It stands to reason that most duplicate 

pairs with single copy orthologous regions in the rhesus macaque genome likely result from 

duplication events following the human-rhesus macaque divergence. In total, we report 
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738 and 260 duplicate enhancer pairs with rhesus macaque and chimpanzee as outgroups, 

respectively (Table 4.1). 

 

Figure 4.3 Asymmetric evolution of duplicate enhancers. (a) Schematic representation 
of the reciprocal best BLAST hit (RBBH) strategy to identify orthologous regions in non-
human primate (NHP) genomes. Duplicate enhancers with single-copy orthologous regions 
in one or both NHP genome were identified if one enhancer within a pair was reciprocally 
the “best hit” for a NHP region while the other enhancer uniquely mapped to the same 
region. (b) Classification scheme for duplicate enhancers with single-copy orthologous 
regions in one or both NPH genome. (c) Representative phylogenic tree of a duplicate 
enhancer pair in which one enhancer (enhancer A) exhibits accelerated evolution relative 
to its mate (enhancer B). For these analyses, the NHP orthologous region is used as the 
outgroup sequence. (d). Total number of duplicate enhancers identified as exhibiting 
significant accelerated evolution in a Relative Rate Test (RRT) and a Likelihood Ratio Test 
(LRT) utilizing either the chimpanzee or rhesus macaque as the outgroup. 

 To test for instances of accelerated sequence evolution of enhancers within recently 

duplicated pairs (Figure 4.3c), we utilized the baseml module from PAML (Yang 2007) 
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which compares the maximum likelihoods of different evolutionary scenarios using a 

likelihood ratio test (LRT). In parallel, we performed Tajima’s relative rate test (Tajima 

1993) on each duplicate pair and NHP orthologous outgroup sequence. Table 4.1 

summarizes the total number duplicate enhancer pairs in which one of the enhancers 

exhibits accelerated sequence evolution based on statistical significance in both tests 

(Figure 4.3d). In total, approximately 30% of all duplicate enhancer pairs using the rhesus 

macaque as an outgroup and 40% of all duplicate enhancer pairs with chimpanzee as an 

outgroup display signatures of sequence acceleration (Table 4.1). Hereafter, we will refer 

to the enhancer in a duplicate pair exhibiting significant acceleration as the “accelerating 

enhancer,” while the other enhancer will be called the “non-accelerating enhancer.” 

Table 4.1 Duplicate enhancer pairs exhibiting signatures of asymmetric evolution. 
Duplicate pairs (DPs) with single-copy orthologous sequences in either rhesus macaque or 
chimpanzee genomes are reported. Both outgroup sequence sets were used to identify 
significant asymmetric enhancer sequence evolution. 

Total 
Duplicate 
Pairs (DP) 

Total DP  
Rhesus Macaque 

Outgroup 

Asymmetric DP  
Rhesus Macaque 

Outgroup  

Total DP  
Chimpanzee 

Outgroup 

Asymmetric DP  
Chimpanzee 

Outgroup  
3,336 738          221 (29.9 %) 260 108 (41.5 %) 

 

 We find that accelerating enhancers identified using the rhesus macaque as an 

outgroup are significantly less pleiotropic than their complementary non-accelerating 

enhancer (p < 0.002, paired sign test, Figure 4.4a, and Supplementary Table C.5). Indeed, 

these enhancers were significantly more likely to be entirely tissue specific (i.e., 

functioning as an enhancer in only one tissue with degree of pleiotropy = 1) than non-

accelerating enhancers (odds ratio = 2.34, p < 0.003 Fisher’s Exact Test, Supplementary 

Table C.6). These enhancers were also shorter and harbored fewer and less diverse 
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transcription factor binding motifs than the non-accelerating enhancer in the pair (Figure 

4.4a, and Supplementary Table C.5). We found no significant differences in the genomic 

features of accelerating enhancers compared to non-accelerating enhancers when 

considering the most recent duplicates following the human-chimpanzee divergence, 

which may be due to the insufficient resolution of data at this time (Supplementary Table 

C.7). As such, for the following function annotation analyses, we will focus on the subset 

of duplicate enhancers exhibiting significant asymmetric evolution in the human-rhesus 

macaque comparison.  

 

Figure 4.4 Features of duplicate enhancers exhibiting accelerated evolutions. (a) 
Violin plots comparing genomic attributes of duplicate enhancers experiencing accelerated 
sequence evolution compared to the associated non-accelerating enhancer. Reported p-
values were calculated from paired two-sample sign tests (*** indicate p < 5.5 × 10-5 and 
** indicates p < 9 × 10-3). (b) Frequency of transcription factor families from significantly 
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and uniquely enriched TF motifs in either accelerating or non-accelerating duplicate 
enhancers. (g) Functional annotation of genes significantly associated with accelerating 
enhancers. In (a-c), accelerating enhancers were identified using the orthologous rhesus 
macaque region as the outgroup sequence. 

 We identified significantly enriched transcription factor binding motifs and 

associated transcription factor families within accelerating and non-accelerating enhancers 

using MEME (Bailey, et al. 2009) suite’s SEA software and the HOCOMOCO v11 core 

database of human TF binding motifs. Intriguingly, we show that enriched motifs found 

almost exclusively in accelerating enhancers compared to non-accelerating enhancers 

belong to FOX factors, HOX-related factors, and SOX-related factors, among others 

(Figure 4.4b). Similarly, overrepresented motifs in non-accelerating enhancers are mostly 

associated with families relatively depleted in accelerating enhancers, including Fos-

related factors, bHLH-ZIP factors, Ets-related factors, and thyroid hormone receptor-

related factors (Figure 4.4b). Through Gene Ontology analysis using the Genomic Regions 

Enrichment of Annotations Tool (GREAT) v.3.0.0 (McLean, et al. 2010) and ShinyGO 

v0.741 (Ge, et al. 2019), we demonstrate that accelerating enhancers are significantly 

associated with genes enriched in immune functions and stress responses (FDR < 0.05 

hypergeometric test, Figure 4.4c and Supplementary Figure C.2).  

4.2.4 The majority of accelerating duplicate enhancers gain novel tissue activity 

 Given the signature of asymmetrical sequence evolution within duplicate enhancer 

pairs, we endeavored to evaluate the corresponding effect on the collective breath of tissue 

activity of these enhancers.  Specifically, we identified instances where accelerating 

enhancers in recently duplicated enhancer pairs gained activity in at least one novel tissue 

compared to the non-accelerating enhancer. These events may be indicative of regulatory 
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neofunctionalization driven by a duplication event. We report that ~75% of all accelerating 

enhancers consistently gained activity in novel tissues compared to the non-accelerating 

enhancer when considering asymmetrically evolving enhancers identified by either 

chimpanzee or rhesus macaque outgroup analysis (Table 4.2). This gain of enhancer 

regulatory function is primarily restricted to the addition of 1-2 novel tissues (Figure 

4.5a,c).  

Table 4.2 Gain of regulatory function in accelerating enhancers. Total number of 
accelerating enhancers that gain novel tissue activity compared to the tissue activities of 
their non-accelerating mate. Values are reported for accelerating enhancers identified using 
both non-human primate orthologous regions as outgroups. 

NHP Age Category Total Number of 
Accelerating Enhancers 

Number of Accelerating Enhancers 
gaining tissue activity (%) 

Rhesus Macaque 221 164 (74.2 %) 
Chimpanzee 108 81 (75.0 %) 

 

 We performed a permutation-based enrichment analysis of the occurrence of the 

accelerating enhancers in each tissue compared to the occurrence of pleiotropy matched 

enhancers in the same tissue as control background. In the subset of accelerating enhancers 

identified from the human-rhesus macaque comparison, there is a significant 

overrepresentation of blood, spleen, and adrenal enhancers (p < 0.05, Fisher’s Exact Test, 

Figure 4.5b). Although not significant, we note that brain enhancers showed the greatest 

depletion of these accelerating enhancers (Odds ratio = 0.63, p = 0.055, Fisher’s Exact 

Test). With respect to accelerating enhancers originating from duplication events following 

the more recent human-chimpanzee divergence, blood enhancers also show a significant 

enrichment compared to the control (OR = 2.79, p = 0.001, Figure 4.5d). In contrast, the 

brain enhancers show and enrichment for these more recently accelerating enhancers, 
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although the enrichment is not significant (Odds ratio = 1.14, p = 0.77, Fisher’s Exact Test). 

Interestingly, when considering duplicates in the human- rhesus macaque comparison, we 

observe that non-accelerating enhancers (N=221 enhancers with mean pleiotropy = 5.84) 

in accelerating pairs are significantly more pleiotropic than those whose pairs are evolving 

symmetrically (N = 488 enhancers with mean pleiotropy = 3.94; p = 2.39 × 10-5 Mann–

Whitney U test). 

 

Figure 4.5 Gain of tissue activity and tissue enrichment of accelerating enhancers. In 
(a and c), the distribution of the number of novel tissues in which accelerating enhancers 
gain function compared to their non-accelerating mate for those identified using (a) rhesus 
macaque or (c) chimpanzee orthologous regions as outgroups. (b and d) The enrichment 
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and significance of duplicate enhancers exhibiting accelerated evolution in each of the 
survey tissues compared to pleiotropy matched enhancers in the corresponding tissue as 
the control background. Odds ratio and p-value are reported from Fisher’s Exact Test. 

4.3 Discussion 

 In this study, we explore the evolutionary origins of human enhancers through 

genomic duplication events. Our analyses show that very few duplicated enhancers are 

maintained in the human genome (~1% of all putative enhancers). This pattern is 

diametrically opposed to observations in gene evolution where studies estimate as much as 

15-50% of all genes show signatures of originated through duplication events (Li, et al. 

2001; Park and Makova 2009; Keller and Yi 2014; Acharya and Ghosh 2016). Indeed, 

utilizing the recently duplicated enhancers identified since the human lineage’s divergence 

from rhesus macaques and chimpanzees, we calculate the rate of enhancer duplication to 

be 4.57–5.74 × 10-5 duplications per enhancer per million years (Supplementary Table 

C.8). This rate is in the order of 8-25x less than the rates reported for human gene 

duplications (0.515–1.49 × 10-3 duplications per gene per million years (Pan and Zhang 

2007)).  

 Many features of enhancer composition and organization may factor into the 

dramatic differences in duplicate gene and enhancer retention. Enhancers have a reduced 

barrier of evolution due to their smaller size and ability to repurpose ancestral DNA and 

transposable elements lending themselves to greater instances of genesis through 

exaptation or spontaneous emergence (Rebeiz, et al. 2011; Villar, et al. 2015). To support 

this evolutionary model, Fong and Capra (Fong and Capra 2021) recently reported that 

enhancers show enrichment for a “simple evolutionary architecture” where the underlying 



 76 

sequences came from a single rather than multiple evolutionary ages. Enhancers are also 

highly redundant in their interaction with genes, a feature which stabilizes the expression 

of target genes but may dilute the selective pressure on any single enhancer (Singh and Yi 

2021). Importantly, in an analysis of 20 mammalian liver enhancers, Villar et al. (Villar, et 

al. 2015) reported that enhancer function experienced rapid evolutionary turnover even 

though most enhancer sequence could be aligned across all species. This result implies that, 

at a sequence level, it cannot be guaranteed a region functioned as an enhancer at the time 

of duplication and would, therefore, not experience evolutionary conservation.       

 Although we found enhancer evolution through duplication was rare, some 

characteristics of duplicate enhancers appear to contribute to their evolutionary 

maintenance. We show that increased pleiotropy is a hallmark of duplicate enhancers. 

Additionally, these enhancers are longer, linked to a greater number of target genes to 

regulate, located closer to genic regions, and enriched for diverse transcription factor 

binding sites. Collectively, these features suggest that an increase in regulatory potential 

may play a factor in the retention of these enhancers in the genome. These trends are the 

most exaggerated when considering the “oldest” subset of duplicated enhancers (Figure 

4.2).   

 Next, we sought to explore questions regarding the evolutionary trajectories and 

functionality of these duplicated regulatory regions. Specifically, how often does 

asymmetric evolution occur between recently duplicated pairs? In cases where one of the 

two duplicates exhibits accelerated evolution, how often do enhancers gain activity in novel 

tissues indicating potential instances of duplication driven regulatory neofunctionalization? 

Are there particular tissues which are overrepresented in accelerating enhancers? Using 
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orthologous regions in rhesus macaque and chimpanzee genomes, we found that 30-40% 

of recently duplicated enhancer pairs experienced accelerated evolution in one enhancer 

copy. Notably, most of these accelerating enhancers (~75%) gained novel tissue activity 

beyond the activity of its non-accelerating mate, suggestive of regulatory 

neofunctionalization. Consequently, the significant acceleration of these enhancers at the 

sequence level could be explained by positive selection associated with the gain of a novel 

tissue activity. Interestingly, the non-accelerating enhancers were among the most 

pleiotropic of all enhancers (mean pleiotropy = 5.84, Supplementary Table C.5). Therefore, 

our observation is consistent with the idea that duplication of highly pleiotropic enhancer, 

which harbors high degree of regulatory potential, contributing to the successful 

repurposing and subsequent selection to maintain novel function in the duplicated copy.  

 In evaluating the functional consequences of duplicate enhancers, we observe that 

all maintained duplicate enhancers, particularly accelerating enhancers, were significantly 

enriched in immune-related tissues including blood, spleen, and thymus samples. The 

enriched target genes linked to accelerating enhancers correlated with stress and immune 

responses. These findings concur with previous results that the most recent enhancers 

experiencing positive selection were enriched for immune function (Moon, et al. 2019). 

The selection and retention of these enhancers may be partially driven by their function as 

many studies in diverse organisms have shown parallel and consistent signatures of 

positive selection in immune pathways (Schlenke and Begun 2003; Sackton, et al. 2007; 

Kosiol, et al. 2008; Barreiro and Quintana-Murci 2010). 

4.4 Methods  
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4.4.1 Putative Enhancer Dataset 

  The putative enhancer dataset and associated enhancer attributes were downloaded 

from https://github.com/soojinyilab/Enhancer_Dataset_2020 (access date 11/11/2020). 

These attributes include number of tissues in which the enhancer was “present” based on 

enhancer chromatin state, the number of gene links per enhancer, the distances to the 

nearest gene measured in base pairs, and the number and diversity of TF motifs. The 

detailed methods of how these data were curated can be found in Singh and Yi (Singh and 

Yi 2021). Briefly, two representative samples were selected from the 127 epigenomes 

available from the NIH Roadmap Epigenomics Mapping Consortium (Roadmap 

Epigenomics Consortium, et al. 2015). These included 43 samples across 23 human tissues. 

Enhancer coordinates (state 6 and state 7) were obtained from the 15-state ChromHMM 

model and merged based on an overlap of 50% after outlier length filtration. Corresponding 

TF motifs for each enhancer were identified using MEME suite’s FIMO package (Bailey, 

et al. 2009) and the HOCOMOCO v11 core database (Kulakovskiy, et al. 2016). Gene links 

were downloaded for the ENCODE+Roadmap dataset from the JEME repository (Cao, et 

al. 2017).  

4.4.2 Identification and Enrichment of Duplicate Enhancers 

 To identify duplicate enhancers from all putative enhancers, nucleotide sequences 

corresponding to the genomic coordinates of the original dataset of 646,419 enhancer 

regions were extracted from the human hg19 reference genome (GRCh37.p13). Following 

this extraction, RepeatMasker (Smit, et al. 2019) was run on the sequences to identify 

enhancers comprised of highly repetitive elements (>50% repetitive content). To avoid 

https://github.com/soojinyilab/Enhancer_Dataset_2020
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spurious matches between highly repetitive regions in non-duplicate enhancers, these 

enhancers were excluded from the downstream analyses. Next, an all-by-all BLAST 

(blastn (Altschul, et al. 1990)) was perform on the remaining enhancer sequences with an 

e-value threshold of 1×10-10. Enhancer families were generated from the reciprocal BLAST 

hits where the two sequences overlapped by 50% the length of the shortest sequence. In 

total we report 2,362 enhancer families encompassing 7,118 enhancers.  

 For downstream sequence evolution analyses, it was critical to identify candidate 

pairs within duplicate enhancer families. To this end, multiple sequence alignments 

(MSAs) were generated for all enhancers within duplicate enhancer families using MAFFT 

(v7.310 (Katoh and Standley 2013)) the converted into evolutionary distance matrices for 

each family in MEGA (mega-cc v10 (Kumar, et al. 2018)). Evolutionary distances were 

measured by Kimura's  two-parameter (K2P) model (Kimura 1980). Following 

methodology similar to Park and Makova (Park and Makova 2009), single-linkage 

clustering of K2P distances was performed to merge enhancers within families into 

candidate duplicate pairs based on closet evolutionary distance.  

 For all duplicate enhancer enrichment analyses, 1,000 control datasets of length 

matched non-duplicate enhancers were generated from the putative enhancer dataset. 

Enrichment p-values were reported as the ratio of the number of control values at least as 

extreme as the duplicate enhancer value over the total number of control datasets for each 

examined attribute. Fisher’s exact test and associate odds ratios were calculated to measure 

the enrichment or depletion of duplicate enhancers by examining the occurrence of 

duplicate enhancers within and without each tissue (observed value) compared to that of 

the control non-duplicate enhancer background (expected values).  
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4.4.3 Evaluating Signatures of Asymmetric Duplicate Enhancer Evolution 

 To identify duplicate enhancers exhibiting asymmetric evolution, it was necessary 

to identify outgroups to measure sequence divergence. To that end, orthologous regions in 

two NHP genomes, rhesus macaque (rheMac10) and chimpanzee (panTro5), were 

identified using a reciprocal best BLAST hit (RBBH) approach (summarized in Figure 

4.3a). For each enhancer in the duplicate enhancer dataset, a BLAST search was performed 

to find the “best hit” in each NPH genome. We then performed a reciprocal BLAST search 

of those “best hits” from the NHP genome against the human genome (GRCh37.p13). If 

the “best hit” for the reciprocal BLAST search returned the original enhancer region, the 

corresponding NHP was considered in orthologous region. Notable, for recent duplicates 

resulting from events following the divergence of the human-NPH lineage, it is expected 

that there would be a shared “best hit” in the NPH genome as there would be a single-copy 

orthologous region. Consequently, the reciprocal “best hit” from the NPH region to the 

human genome would match the one of the two recent duplicates (presumably the duplicate 

exhibiting less sequence divergence from the NPH genome). To identify this subset, 

duplicate enhancer pairs that shared “best hits” in the NPH genome and did not map to 

multiple NPH regions were retained as candidate recent duplicates. These regions were 

classified to have single-copy orthologous regions in one or both NPH genome (Figure 

4.3b).  

 Utilizing these single-copy orthologous sequences, baseml from PAML(Yang 

2007) was performed to identify instances of asymmetric evolution. Specifically, for each 

recently duplicated enhancer pair (Table 4.1), a phylogenetic tree was generated from a 

multiple sequence alignment (MSA) of the two enhancers and the outgroup primate 
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orthologous region and then tested to better fit a molecular clock model in which branches 

have the same rate or a free-rates clock model in which the rates of branches can vary. The 

free-rate model account for cases of asymmetric evolution of duplicated enhancer pairs. 

Baseml reports the log likelihoods of each model which were then compared by a 

likelihood ratio test to determine duplicate pairs whose divergence was significantly better 

fit by the free-rate model. In tandem, the MSAs were analyzed by Tajima’s relative rate 

test (Tajima 1993) implemented in MEGA (mega-cc v10 (Kumar, et al. 2018)) confirm or 

reject the molecular clock hypothesis indicative of symmetric sequence evolution based on 

the sequence divergence of the duplicate pair. Duplicate pairs with significant signatures 

of asymmetric evolution in both analyses were included in subsequent analyses.  

4.4.4 Functional Annotation of Accelerating Enhancers 

 Functional annotation of TF motifs and associated TF families for duplicate 

enhancer exhibiting asymmetric evolution was performed by MEME suite’s (Bailey, et al. 

2009) SEA package and the HOCOMOCO v11 core database of human TF binding motifs. 

First, the enrichment of TF motifs was determined for both accelerating and non-

accelerating enhancers independently using length-matched control regions as the genomic 

background. The unique TF motifs in each enrichment set were then identified as the motifs 

unique enrichment in accelerating enhancers compared to their non-accelerating enhancer 

mate. From these enrichments, the frequencies of associated TF families were reported. 

Gene ontology of the target genes of accelerating enhancers was performed independent 

using two tools. The Genomic Regions Enrichment of Annotation Tool (GREAT v3.0.0. 

(McLean, et al. 2010)), is specifically designed to annotate biological meaning to genes 

linked to non-coding cis-regulatory elements based on proximity. The associated 
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significant GO terms related to Biological Process and Molecular Function were identified 

for accelerating enhancers using all duplicate enhancers as the background set and an FDR 

threshold > 0.05. Independently, the JEME gene-links annotated to enhancers in Singh and 

Yi (Singh and Yi 2021), were extracted for the subset of enhancers exhibiting accelerated 

sequence evolution. These genes were tested for significant enrichment in ShinyGO v0.741 

(Ge, et al. 2019) against a background set of all duplicate enhancer linked genes in the total 

duplicate enhancer dataset. The higher GO terms are reported for the enriched genes.  
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CHAPTER 5. CONCLUSIONS 

The rapid expansion of sequencing technology, allowing for the high-resolution 

exploration of multiple facets of the genome, has dramatically shifted perspectives on the 

organization of functional and regulatory elements. One of the most striking developments 

involves insights into the role of non-coding regions, once viewed as a mere barrier against 

the accumulation of deleterious mutations in regions critical for normal development and 

operation (Ohno and Smith 1972). Massive efforts to annotate genomes through the 

integration of diverse datasets including gene expression, histone modification, DNA 

methylation, and chromatin structure and accessibility have begun to clarify the role of 

non-coding regions in the stability, regulation, and evolution of the genome (ENCODE 

2012; GTEx Consortium 2015; Roadmap Epigenomics Consortium, et al. 2015; Zhang, et 

al. 2021). Indeed, similar analyses of non-model organisms have furthered perspectives on 

the evolution of (epi)genetic mechanisms and regulation thus enhancing our understanding 

of the greater tree of life (Kyger, et al. 2020). This dissertation capitalized on these 

advances to broadly examine and provide insights into epigenetic modifications in the 

evolution and architectures of genomic regulation in both model and non-model species. 

In the first study, we explored a classic paradigm of epigenetic regulation, namely 

X chromosome inactivation (XCI), with respect to conserved and divergent patterns of 

DNA methylation in eutherians and, relatively understudied, marsupials. DNA methylation 

plays a role in both the silencing of the lncRNA Xist on the active X chromosome as well 

as in the long-term maintenance of inactive X-linked genes in eutherians (Brown, et al. 

1992; Heard, et al. 1997; Plath, et al. 2002). In chapter 2, we sought to clarify contradictory 
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reports that DNA methylation may or may not play a similar role in marsupial X 

chromosome regulation using improved genomic annotations and nucleotide resolution 

WGBS data of a representative marsupial. Additionally, we explored tissue-specific DNA 

methylation patterns in what is the first multi-tissue, whole genome methylome atlas for a 

marsupial. We demonstrated that differential DNA methylation between tissues was 

significantly enriched in gene bodies. Gene body DNA methylation, the more ancestral 

form compared to promoter DNA methylation (Zemach, et al. 2010; Yi 2012), has been 

shown to strongly correlate with gene expression (Schultz, et al. 2015) and seems to play 

a multifaceted role in genomic regulation. Previous work shows that increased DNA 

methylation of the first intron/exon are correlated with a reduction in gene expression, 

indicative of transcriptional silencing (Brenet, et al. 2011; Chuang, et al. 2012; Anastasiadi, 

et al. 2018). However, high cumulative levels of gene body DNA methylation are 

positively correlated with gene expression and may reduce instances of spurious 

transcription of intragenic RNA in actively transcribed genes (Huh, et al. 2013; Neri, et al. 

2017). 

With respect to X chromosome regulation, we showed that the global 

hypomethylation of the female X chromosomes is driven by methylation levels in gene 

body and intergenic regions in both eutherians and marsupials. In contrast to patterns seen 

in eutherians, the promoters of koalas show no sex-based differences indicating that XCI 

is not maintained by increased promoter DNA methylation on inactive X-linked genes in 

marsupials. Interestingly, it has been noted that marsupials have a more unstable and 

incomplete XCI (Graves 1996; Koina, et al. 2009) compared to eutherians which may be 

partially due to this DNA methylation divergence. These conserved and divergent patterns 
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of chromosomal DNA methylation between the two mammalian lineages are modeled in 

Figure 2.5. Despite the overarching trend that promoter DNA methylation is exclusive to 

eutherian XCI, we did observe a female hypermethylated regulatory region upstream of 

Rsx, the lncRNA responsible for XCI initiation in marsupials. Similar to the regulatory 

mechanism for the parallel Xist lncRNA in eutherians (Brown, et al. 1992; Heard, et al. 

1997; Plath, et al. 2002), this signature suggests that the silencing of Rsx on the active 

female X chromosome may be mediated by promoter DNA methylation. Collectively, this 

work explored comparative evolutionary pathways that influence gene regulation, XCI, 

and dosage compensation in eutherian and marsupial mammals.  

 In addition to DNA methylation, another key epigenetic mark involves the 

modification of histone tails. Chromatin-state maps annotate properties of chromatins 

based on integrative analyses of these histone modifications and serve as epigenetic 

resources that can facilitate a heightened understanding of genome organization and 

evolution. In chapters 3 and 4, we utilized these maps to curate a large and representative 

dataset of putative enhancers across 23 human tissues (Roadmap Epigenomics Consortium, 

et al. 2015). In the first study, we aimed to quantify the “paradigm of modularity,” which 

suggests that enhancers act as highly tissue-specific regulators of gene expression (Sabarís, 

et al. 2019). We were specifically interested in how this model of enhancer activity 

corresponds to the variations in gene expression breadth (Yanai, et al. 2004; Fagerberg, et 

al. 2014; Kryuchkova-Mostacci and Robinson-Rechavi 2017). We found that most 

enhancers were tissue-specific (>75% found in three or fewer tissues) and that highly 

pleiotropic enhancers were a rare subset (<1% of all putative enhancers). Despite this skew 

towards tissue-specific activity, increasing enhancer pleiotropy was predictive of 
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increasing regulatory potential emphasized by positive correlations with longer sequence 

length, number of linked target genes, closer proximity to genic regions, and enrichment 

for transcription factor binding sites. Indeed, we found that these rare enhancers were 

significantly more conserved than tissue-specific enhancers indicative of an increase 

evolutionary constraint for these highly repurposed enhancers. An interesting observation 

about highly pleiotropic enhancers is that they share characteristics of promoter regions, 

namely an increase in size, TF motif composition, and conservation (Nguyen, et al. 2016; 

Huh, et al. 2018). These findings help shed light on the intriguing differences between these 

critical regulatory regions in the genome. 

In this work, we also demonstrated that the distribution of enhancer activity cannot 

directly explain the distribution in gene expression breadth in one-to-one interaction 

network. All enhancers, independent of their degree of pleiotropy, regulate both broadly 

expressed and tissue-specific genes. However, there is a slight, yet significant bias for 

highly pleiotropic enhancers to interact with broadly expression genes. Through modeling, 

we showed how this bias, coupled with a positive correlation of enhancer pleiotropy with 

increase gene-linking, can explain the observed distribution of gene expression breadth. 

This study provides novel insight into the architecture of enhancer-gene interactions while 

elucidating a rare group of enhancers with intriguing evolutionary and genomic signatures.  

In the Chapter 4 of this dissertation, we aimed to analyze the evolutionary origins 

of human enhancer through sequence duplications. Gene duplication readily provides the 

raw material needed for novel element evolution (Ohno 1970). Indicative of the importance 

of this mode of evolution, studies estimate that 15-50% of all human genes have originated 

via duplication events (Li, et al. 2001; Park and Makova 2009; Keller and Yi 2014; Acharya 
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and Ghosh 2016). We found that the maintenance of duplicate enhancers is a comparably 

rare event; through sequence homology analysis, we identified ~1% of all putative 

enhancers showed signatures of evolutionary origin via duplication. Despite such rarity, 

duplicate enhancers were significantly longer, more pleiotropic, located closer to genes, 

linked to a greater number of target genes, and comprised of a great number and diversity 

of TF binding motifs compared to non-duplicate enhancers. Indeed, this increase in 

regulatory potential showed the greatest deviation from non-duplicate enhancers in the 

“oldest” duplicates consistent with the implication that these characteristics contribute to 

their evolutionary retention in the genome.  

Using non-human primate genomes as outgroups, we were able to identify 

enhancers exhibiting accelerating evolution in one of the two duplicate pairs. In most 

instances (~75% of all accelerating enhancer), we observed a gain of novel tissue activity 

in the accelerating enhancer compared to its non-accelerating mate, which may suggest 

instances of regulatory neofunctionalization. Notably, non-accelerating enhancers were 

highly pleiotropic, which is consistent with idea that duplications of enhancers with high 

regulatory potential may increase the likelihood of successful repurposing and maintenance 

following duplication. We also observed all maintained duplicate enhancers, principally 

accelerating enhancers, were significantly enriched in immune tissues and function. Thus, 

there may be a functional characteristic contributing to the maintenance of duplicate 

enhancers as adaptation benefiting immune pathways consistently shows signatures of 

positive selection (Schlenke and Begun 2003; Sackton, et al. 2007; Kosiol, et al. 2008; 

Barreiro and Quintana-Murci 2010).  
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In this thesis, we integrated expansive, state-of-the art “-omics” datasets to divulge 

novel perspectives on the evolution and architecture of diverse features of epigenetic 

regulation, namely DNA methylation in XCI and the enhancer landscape identified from 

histone modifications. We generate the first multi-tissue “methylome atlas” for a 

marsupial, which allows us to examine conserved and divergent molecular mechanisms 

governing XCI in mammals at a higher resolution than previously possible. This resource 

can also inform future studies as the rapid expansion of NGS technology will undoubtable 

allow for more in deep analyses of understudied, non-model organisms thereby expanding 

the understanding of the larger tree of life. In addition, we capitalize on rich, existing 

resources to examine paradigms of (epi)genomic regulation by enhancers. Collectively, 

these studies expand our perspective on the functional genome and motivate the future 

exploration of the critical components shaping the human genome. 
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APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

 

Supplementary Figure A.1 Enrichment of tissue specific differentially methylated 
regions (DMRs) falling within genomic functional regions. Data shown for (A) 
pancreas, (B) skeletal muscle, (C) kidney, and (D) lung. For (A-D), the enrichment of 
DMRs in each functional region (promoter, gene body, and intergenic regions) is shown 
through a comparison with length and GC matched control regions (***indicates p < 
0.0001, ** indicates p < 0.001, * indicates p < 0.05, and non-significance is shown by n.s. 
based on 10,000 bootstraps). Error bars indicate standard deviation.  
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Supplementary Figure A.2 Correlation of gene expression and DNA methylation 
(5mC) in CpGs across promoters and gene bodies. Three tissues with both whole 
genome bisulfite sequencing (WGBS) DNA methylation data and RNA-seq gene 
expression data are shown, (A) brain (n = 5,396 promoters and n = 5,443 gene bodies), (B) 
kidney (n = 9,268 promoters and n = 9,379 gene bodies), and (C) lung (n = 9,192 promoters 
and n = 9,265 gene bodies). For (A-C), TPM expression values were ranked from lowest 
to highest for each gene and correlated with mean fractional DNA methylation (methylated 
reads/total reads per CpG site). Spearman’s rank correlation coefficients and the associated 
p-values are reported. 
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Supplementary Figure A.3 Correlation of tissue dependent DNA methylation (5mC) 
and gene expression from brain and kidney samples. (A) The mean brain and kidney 
DNA methylation difference calculated for all CpGs across each gene promoter matched 
with the corresponding log-transformed ratio of brain to kidney expression. (B) The mean 
brain and kidney DNA methylation difference calculated for all CpGs across each gene 
body and matched with corresponding log-transformed ratio of brain to kidney expression. 
For A and B, Spearman’s rank correlation coefficient and the associated p-value is 
reported. Blue dots indicate genes that are significantly differentially express between brain 
and kidney samples (probability of differential expression > 95% based on NOISeq) and 
red dots show all genes that are significantly similarly methylated in brain and kidney 
samples (probability of differential expression < 5% based on NOISeq). 
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Supplementary Figure A.4 Sex-specific CpG depth of coverage and read mapping to 
autosomes and X chromosomes. (A) For each of the five tissues, box-and-whisker plots 
of CpG depths across the X chromosome in male (purple) and female (yellow) samples 
(*** indicates p < 2.2x10-16, Mann-Whitney U test). Histogram and distribution of sex-
based read mapping per sample (n=10) to (B) X-linked scaffolds, (C) candidate X-linked 
scaffolds, and (D) a subset of autosome-linked scaffolds matched in length with all known 
X-linked scaffolds. For (A-C), the percent of reads mapping to the scaffold category of 
interested over the total number of mapped reads in the genome was calculated for all male 
(n=5) and female samples (n=5). The known X-linked and candidate X-linked scaffolds 
show a bimodal distribution with an increase of read mapping to female samples expected 
from the 2:1 ratio X chromosomes in females to males. This bimodality is not observed in 
autosomes. 
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Supplementary Figure A.5 The distribution of sex-based CpG fractional DNA 
methylation (5mC) differences across autosomes and X chromosomes. The distribution 
of female and male mean fractional DNA methylation difference from (A) brain, (B) lung, 
(C) kidney, (D) skeletal muscle and (E) pancreas samples across autosomes and X 
chromosomes. For (A-E), the female and male mean fractional methylation (methylated 
reads/total reads per CpG) was calculated for all CpGs within 10 kb bins across each 
autosome- or X-linked scaffold. All tissues exhibited a significant shift towards female 
hypomethylation in the X chromosome compared to the autosome (*** indicates p < 
2.2x10-16, Welch’s t-test). 
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Supplementary Figure A.6 Signatures and significance of female and male DNA 
methylation (5mC) in human and koala X chromosomes across functional regions. 
The mean fractional methylation (5mC) values for male and female (A) koala X 
chromosomes, (B) koala autosome, and (C) human X chromosomes across different 
functional regions (promoters, exons, introns, and intergenic regions). All gene functional 
regions (promoters, gene body, and intergenic) were divided into 20 equal bins by sequence 
length and the mean male and female fractional methylation is reported per bin. The 
associated p-value for the male and female methylation difference is reported where red 
dots indicate a significance difference (p < 0.05, Mann-Whitney U test). 
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Supplementary Figure A.7 Female and male gene expression across autosomes and 
the X chromosome using kidney RNA-seq data. For all autosome-linked genes (n = 
10,414) and chromosome X-linked genes (n= 209), a box-and-whisker plot (A) and density 
distribution (B) of the log-transformed female to male expression ratio (p = 0.14, Mann-
Whitney U test) generated by NOISeq. 
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Supplementary Figure A.8 Sex-based DNA methylation (5mC) by GC-content across 
autosomes and the X chromosome. For (A and B), the mean female and male methylation 
difference calculated from CpGs in 1 Kb bins across (A) autosomes and (B) X 
chromosomes. For (C and D), mean female and male methylation difference calculated 
from CpGs located in promoter regions (defined as regions 1 kb upstream of known gene 
TSSs) in (C) autosomes and (B) X chromosomes. For (A-D), data from all five tissues 
(brain, kidney, lung, pancreas, and skeletal muscle) are reported. All plots are colored by 
data density where blue represents low density regions and yellow represents high density 
regions. 
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Supplementary Table A.1 Overview of processed whole genome bisulfite sequencing 
(WGBS) data for all 10 koala samples. 

Sample Australian 
Museum 

registration  

Name Tissue Mapped 
Reads 

De-
duplicated  

Reads 

Total 
CpGs 

Coverage 
(%) 

Mean 
Depth 

% 
Reads 
Cov > 

3× 

Bisulfite 
Conversion 

Rate 

WGM145_01_S1 
 

M.45022 
Pacific 
Chocolate Brain 602055711 228244836 16761785 97.5 13.99 93.4 

 
98.2 

WGM145_04_S2 M.47723 Ben Brain 677593548 233893124 16761785 97.6 14.61 93.8 98.0 

WGM145_06_S3 
 

M.45022 
Pacific 
Chocolate Kidney 559911229 213274030 16761785 97.2 13.62 92.5 

 
98.7 

WGM145_08_S4 M.47723 Ben Kidney 589121434 202094771 16761785 97.2 12.93 92.3 98.7 

WGM145_09_S5 
 

M.45022 
Pacific 
Chocolate Lung 637878987 210002505 16761785 97.5 13.8 93.2 

 
98.6 

WGM145_12_S6 M.47723 Ben Lung 663204935 198555030 16761785 97.3 12.54 92.4 98.6 

WGM145_14_S7 
 

M.45022 
Pacific 
Chocolate 

Skeletal 
Muscle 592423486 168450992 16761785 96.7 10.93 90.0 

 
98.7 

WGM145_16_S8 
 

M.47723 Ben 
Skeletal 
Muscle 605979530 168220022 16761785 96.8 11.12 90.4 

 
98.6 

WGM145_19_S9 
 

M.45022 
Pacific 
Chocolate Pancreas 563288200 159866998 16761785 96.2 9.857 88.0 

 
98.6 

WGM145_20_S10 M.47723 Ben Pancreas 598508860 166573663 16761785 96.6 10.56 89.4 98.7 
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Supplementary Table A.2 Enrichment and significance of all tissue specific DMRs 
compared to length and GC matched control regions. Reported are the total counts of 
tissue specific differentially methylated regions (DMRs) falling within one of three 
annotated genomic regions: promoters, gene bodies, and intergenic regions. The 
enrichment of DMRs in each functional region is shown through a fold change comparison 
with a control dataset generated from 10,000 bootstraps using length and GC matched 
control regions. All significant p-values (p < 0.05) are highlighted in bold. 

Tissue Genomic Region DMR Counts (%) Enrichment p-value 
Pancreas Promoter 52 (4.5%) 1.13 0.74 
 Gene body 612 (52.5 %) 1.44  < 0.0001 
 Intergenic 502 (43.0 %) -1.40  < 0.0001 
Brain Promoter 17 (3.5%) -1.35 0.25 
 Gene body 256 (53.0 %) 1.38  < 0.0001 
 Intergenic 210 (43.5%) -1.34  < 0.0001 
Skeletal Muscle Promoter 19 (4.9 %) -1.23 0.32 
 Gene body 202 (51.8 %) 1.27 < 0.0001 
 Intergenic 169 (43.3 %) -1.26 0.001 
Kidney Promoter 5 (4.0 %) -1.34 0.40 
 Gene body 62 (50.0 %) 1.25 < 0.0001 
 Intergenic 57 (46.0%) -1.21 0.04 
Lung Promoter 1 (4.3 %) -1.61 0.51 
 Gene body 12 (52.2%) 1.37 < 0.0001 
 Intergenic 10 (43.5%) -1.31 0.14 
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Supplementary Table A.3 Functional annotation of enriched biological processes 
associated with gene sets containing tissue-specific differentially methylated regions 
(DMRs). Gene ontology (GO) terms are presented for the top five most significantly 
enriched results of each tissue after correcting for multiple testing (FDR < 0.05). As the 
numbers of tissue-specific DMRs for lung (n=22) and kidney (n=119) samples were so 
few, the corresponding gene sets were combined for this analysis. 

 

 

 

 

 

 

 

Tissue GO biological process term Accession ID p-value q-value  

Brain central nervous system development  GO:0007417 5.79×10-13 2.71×10-09 
Brain generation of neurons  GO:0048699 1.47×10-12 3.45×10-09 
Brain head development  GO:0060322 2.84×10-12 3.78×10-09 
Brain Neurogenesis GO:0022008 3.22×10-12 3.78×10-09 
Brain brain development  GO:0007420 4.98×10-12 4.67×10-09 
Pancreas response to endoplasmic reticulum stress GO:0034976 2.14×10-11 1.51×10-07 
Pancreas oxoacid metabolic process  GO:0043436 1.58×10-10 4.04×10-07 
Pancreas organic acid metabolic process  GO:0006082 1.72×10-10 4.04×10-07 
Pancreas response to endogenous stimulus  GO:0009719 6.34×10-09 1.12×10-05 
Pancreas carboxylic acid metabolic process  GO:0019752 2.29×10-08 3.24×10-05 
Skeletal Muscle actin filament-based process GO:0030029 1.26×10-09 5.78×10-06 
Skeletal Muscle actin cytoskeleton organization GO:0030036 5.04×10-09 1.16×10-05 
Skeletal Muscle cytoskeleton organization GO:0007010 1.50×10-08 2.30×10-05 
Skeletal Muscle cellular carbohydrate metabolic process GO:0044262 2.19×10-08 2.52×10-05 
Skeletal Muscle embryonic morphogenesis GO:0048598 2.37×10-07 2.17×10-04 
Lung and Kidney embryonic skeletal system morphogenesis GO:0048704 1.50×10-10 3.52×10-07 
Lung and Kidney embryonic organ morphogenesis GO:0048562 1.61×10-10 3.52×10-07 
Lung and Kidney embryonic skeletal system development GO:0048706 5.24×10-10 7.65×10-07 
Lung and Kidney embryonic organ development GO:0048568 1.13×10-08 1.23×10-05 
Lung and Kidney pattern specification process GO:0007389 3.31×10-08 2.90×10-05 
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Supplementary Table A.4 Analysis of the relationship between sex-based promoter 
DNA methylation (5mC) and gene expression across chromosome X using kidney 
WGBS and RNA-seq data. The ratios of gene promoters exhibiting either female 
hypermethylation or female hypomethylation that were associated with genes that were 
significantly over expressed in either female or male kidney samples (probability of 
differential expression > 95% based on NOISeq). The numerator shows the number of 
genes with significant differential expression while the denominator shows to total number 
of genes (with both significant and non-significant expression) in each methylation and 
expression category. 

 Female-Biased Gene 
Expression 

Male-Biased 
Gene expression 

Female Promoter 
Hypermethylation 

14
44

= 𝟎𝟎.𝟑𝟑𝟑𝟑 
5

32
= 𝟎𝟎.𝟏𝟏𝟏𝟏 

Female Promoter 
Hypomethylation 

22
73

= 𝟎𝟎.𝟑𝟑𝟎𝟎 
6

57
= 𝟎𝟎.𝟏𝟏𝟏𝟏 

 

 

 

 

Supplementary Table A.5 Mean and median sex-based DNA methylation difference 
calculated for all candidate X-scaffolds (n=98) by tissue. The female and male mean 
fractional DNA methylation (methylated reads/total reads per CpG) was calculated for all 
CpGs within 10 kb bins across candidate scaffold. 

Tissue Median Male-Female 5mC Mean Male-Female 5mC 
Pancreas -0.2282 ± 0.15 -0.2066 ± 0.12 
Brain -0.3273 ± 0.14 -0.2911 ± 0.12 
Skeletal Muscle -0.2748 ± 0.15 -0.2431 ± 0.12 
Kidney -0.2850 ± 0.15 -0.2567 ± 0.12 
Lung -0.2706 ± 0.14 -0.2437 ± 0.11 
Combined Tissues -0.2773 ± 0.15 -0.2484 ± 0.12 
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APPENDIX B. SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

 

Supplementary Figure B.1 Validating merging criteria and enhancer pleiotropy 
category selection. (a) Comparison of the distribution of breadth of expression (τ) values 
for all linked target genes of enhancers divided into six approximately even pleiotropy 
groups. Combined violin and box-and-whisker plots are shown with a white point 
indicating the mean of each distribution. P-values are reported between designated groups 
based on Mann-Whitney U tests. (b) The mean percent of links from enhancers divided 
into six pleiotropy groups to all genes (N = 16,442) evenly divided into 10 bins by gene 
expression breadth (τ) values. Schematic legend depicts links from enhancers categorized 
by pleiotropy to a representative gene. (c) The distribution of enhancers by pleiotropy, or 
number of tissues in which an enhancer is present utilizing variations of the overlap 
merging criteria, 50% (top), 25% (middle), and any overlap (bottom). (d) Total enhancer 
counts with each additive tissue utilizing variations of the overlap merging criteria. (e) The 
percent of the total putative enhancer database (N = 646,419 enhancers) identified with the 
addition of enhancers found in each tissue. For (c and d), two regions exhibiting an 
enhancer chromatin state were merged across samples and tissues if they exhibited any 
overlap (any), overlapped by 25% of the shorter sequence length (25%), or overlapped by 
50% of the shorter sequence length (50%). 
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Supplementary Figure B.2 Length of enhancers categorized by pleiotropy across 
samples. Box-and-whisker plot of enhancer sequence length by enhancer pleiotropy from 
five randomly selected tissue samples, brain, heart, lung, ovary, and small intestine. The 
epigenome ID (EID) assigned by the Roadmap Epigenomics Consortium is reported. P-
values based on Mann-Whitney U test are shown where *** indicates p < 2.2 × 10-16, ** 
indicates p = 5.1 × 10-12, * indicates p = 8.7 × 10-4, and n.s. indicates no significance and 
mean values of each distribution is shown as a white point. Enhancers were divided into 
pleiotropic categories based on presence in 1-3 tissues (narrow enhancers), 4-20 tissues 
(intermediate enhancers), or 21-23 tissues (broad enhancers). 
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Supplementary Figure B.3 Frequency and diversity of TF motifs across enhancer 
pleiotropy categories. Box-and-whisker plot of (a) the number of total occurrences and 
(b) unique occurrences of TF motifs per enhancer categorized by enhancer pleiotropy, or 
number of tissues in which an enhancer was present. Enhancers were divided into 
pleiotropic categories based on presence in 1-3 tissues (narrow enhancers), 4-20 tissues 
(intermediate enhancers), or 21-23 tissues (broad enhancers). For (a and b), the asterisks 
(***) indicate p < 2.2 × 10-16 based on Mann-Whitney U tests. 
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Supplementary Figure B.4 Comparison of representative enhancer datasets. Boxplot 
showing the log-transformed ratio of enhancers in each pleiotropic category, narrow 
(enhancers present in 1-3 tissues), intermediate (enhancers present in 4-20 tissues), and 
broad (enhancers present in 21-23 tissues) in three datasets. The “All enhancers” dataset 
contains all putative enhancers analyzed in this work (N = 646,419), the “JEME enhancers” 
dataset is a subset of all enhancers which were linked to target genes using the JEME 
algorithm (N = 107,503), and the “Roadmap Linked Enhancers” dataset is the subset of the 
total putative enhancers which have previously been linked to target genes based on 
proximity (N = 97,677). Notably, JEME did not overrepresent genes linked to broad 
enhancers despite their closer proximity to genes than narrow and intermediate enhancers. 
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Supplementary Figure B.5 Distributions of enhancer and gene activity across tissues. 
PCA plots depicting all GTEx TPM expression samples used to generate the final tissue-
specific expression dataset (N = 3,828 samples from 17 tissues). Samples are colored by 
sex (a,c) and tissue-type (b,d) for the first four principle components which explain 53.27% 
percent of the variance in the total dataset. The results indicate a strong effect of tissue type 
but not sex on gene expression.   
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Supplementary Figure B.6 Distributions of enhancer and gene activity across tissues. 
(a) Distribution of the breadth of gene expression (τ) of all analyzed genes (N = 16,442). τ 
values are bound from 0 (broadly expressed genes) to 1 (genes with tissue-specific 
expression). (b) Distribution of enhancer pleiotropy, or number of tissues in which an 
enhancer is present, for the total enhancer dataset (N = 646,419). The adjusted dataset 
displays the distribution of enhancers after each enhancer is multiple by the number of 
linked target genes. This adjustment accounts for the increased regulation potential of 
enhancers linked to a greater number of genes. 
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Supplementary Figure B.7 Distributions of the numbers of enhancers linked to genes 
of varying expression breadth (τ). All gene (N = 16,442) were divided into 10 evenly 
distributed bins between τ = 0 and τ = 1. The distribution of the number of enhancers linked 
to all genes within each bin is reported. The dashed vertical line indicates the mean number 
of enhancers linked to all genes independent of their τ value (mean = 14.26 enhancer links 
per gene). 
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Supplementary Figure B.8 Gaussian Mixture Model (GMM) Selection Criteria. (a) 
Akaike information criterion (AIC) and Bayesian information criterion (BIC) values 
reported for multi-component mixture models utilized for model component selection. (b) 
The distributions generated by the three component GMM overlaying a histogram of the 
true distributions of the breadth of expression (t) from all genes linked to enhancers. For (a 
and b), Results are shown for a composite distribution of all gene-enhancer links 
independent of enhancer pleiotropic category. 
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Supplementary Figure B.9 Comparison of local max conservation trends measured 
by independent conservation scores. Comparison of correlation between enhancer 
pleiotropy and the local max conservation score calculated using (a and c) GERP RS scores 
and (b and d) PhyloP Scores. For (a and b) Spearman’s rank correlation coefficient and the 
associated p-value are reported. For (c and d) p-values based on Mann-Whitney U test are 
shown where *** indicates p < 2.2 × 10-16.  Dashed blue line indicates threshold for 
significant conservation score (GERP: RS = 2 and PhyloP: Score = 1.3). 
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Supplementary Figure B.10 Comparison of local max conservation trends measured 
by independent conservation scores. Comparison of correlation between enhancer 
pleiotropy and the ratio of conserved sites calculated using (a and c) GERP RS scores and 
(b and d) PhyloP Scores. For (a and b) Spearman’s rank correlation coefficient and the 
associated p-value are reported. For (c and d) p-values based on Mann-Whitney U test are 
shown where *** indicates p < 2.2 × 10-16, ** indicates p < 1 × 10-9, and n.s. indicates non-
significance. 
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Supplementary Figure B.11 Validation of gene expression breadth distribution. 
Correlation between gene breadth of expression (τ) calculated using ENCODE+Roadmap 
and GTEx RNA-seq data for N = 15,453 genes common in both datasets. Spearman’s rank 
correlation coefficient and the associated p-value are reported, and plot is colored such that 
low density points are blue while high density points are yellow. Total density distributions 
for ENCODE+Roadmap and GTEx genes’ expression breadth are also shown along each 
corresponding axis. 
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Supplementary Table B.1 Overview of the epigenomes analyzed in this study from 
the Roadmap Epigenomics Consortium.  

Epigenome ID Sex Standardized Epigenome Name Anatomy 
E080 MALE Fetal Adrenal Gland ADRENAL 
E034 MALE Primary T cells from peripheral blood BLOOD 
E050 MIXED Primary hematopoietic stem cells G-CSF-mobilized Female BLOOD 
E129 UNKNOWN Osteoblast Primary Cells BONE 
E071 MALE Brain Hippocampus Middle BRAIN 
E073 MIXED Brain Dorsolateral Prefrontal Cortex BRAIN 
E081 MALE Fetal Brain Male BRAIN 
E082 FEMALE Fetal Brain Female BRAIN 
E008 FEMALE H9 Cells ESC 
E015 FEMALE HUES6 Cells ESC 
E063 FEMALE Adipose Nuclei FAT 
E075 FEMALE Colonic Mucosa COLON 
E076 FEMALE Colon Smooth Muscle COLON 
E078 MALE Duodenum Smooth Muscle DUODENUM 
E079 MALE Esophagus ESOPHAGUS 
E084 MALE Fetal Intestine Large INTESTINE 
E085 MALE Fetal Intestine Small INTESTINE 
E109 MALE Small Intestine INTESTINE 
E101 FEMALE Rectal Mucosa Donor 29 RECTUM 
E103 FEMALE Rectal Smooth Muscle RECTUM 
E092 FEMALE Fetal Stomach STOMACH 
E094 MALE Gastric STOMACH 
E111 FEMALE Stomach Smooth Muscle STOMACH 
E083 MIXED Fetal Heart HEART 
E095 MALE Left Ventricle HEART 
E086 UNKNOWN Fetal Kidney KIDNEY 
E066 MIXED Liver LIVER 
E088 FEMALE Fetal Lung LUNG 
E096 FEMALE Lung LUNG 
E128 UNKNOWN NHLF Lung Fibroblast Primary Cells LUNG 
E089 FEMALE Fetal Muscle Trunk MUSCLE 
E108 FEMALE Skeletal Muscle Female MUSCLE 
E090 FEMALE Fetal Muscle Leg MUSCLE_LEG 
E097 FEMALE Ovary OVARY 
E087 MALE Pancreatic Islets PANCREAS 
E098 MALE Pancreas PANCREAS 
E091 FEMALE Placenta PLACENTA 
E099 MALE Placenta Amnion PLACENTA 
E059 MALE Foreskin Melanocyte Primary Cells skin01 SKIN 
E126 FEMALE NHDF-Ad Adult Dermal Fibroblast Primary Cells SKIN 
E113 MALE Spleen SPLEEN 
E093 FEMALE Fetal Thymus THYMUS 
E112 MALE Thymus THYMUS 
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Supplementary Table B.2 Percent of genome covered by enhancers categorized by 
enhancer pleiotropy. 

 

Supplementary Table B.3 Frequency and diversity of transcription factor (TF) motif 
occurrences by enhancer pleiotropy category. 

 
Enhancer Pleiotropy 

Mean Total TF 
Motif 

Median Total 
TF Motif 

Mean Unique 
TF Motif 

Median Unique 
TF Motif 

Narrow (1-3) 32.5 ± 64.2 14 12.2 ± 9.3 10 
Intermediate (4-20) 102.5 ± 127.4  67 26.9 ± 10.9 28 
Broad (21-23) 207.5 ± 219.6 205 43.9 ± 8.9 45 

 

Supplementary Table B.4 List of tissues from which expression data was obtained 
from the Genotype-Tissue Expression (GTEx) Project  

Tissue Sample Region 
ADRENAL Adrenal gland 
BLOOD Whole blood 
BRAIN Frontal cortex 
BRAIN Hippocampus  
FAT Adipose subcutaneous 
COLON Sigmoid 
COLON Transverse 
ESOPHAGUS Mucosa 
ESOPHAGUS Muscularis 
INTESTINE Small intestine (terminal ileum) 
STOMACH Stomach 
HEART Left ventricle 
KIDNEY Cortex 
LIVER Liver 
LUNG Lung 
MUSCLE Skeletal  
OVARY Ovary 
PANCREAS Pancreas 
SKIN Fibroblasts 
SKIN Suprapubic region 
SPLEEN Spleen 

Enhancer Pleiotropy Number of Enhancers Total Sites (bp) Percent of Genome 
Narrow (1-3) 486,893 370,110,400 12.0 % 
Intermediate (4-20) 157,172 318,471,800 10.2 % 
Broad (21-23) 2,354 6,062,800 0.2 % 
All Enhancers  646,419 694,645,000 22.4 %  
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Supplementary Table B.5 Summary of the numbers of enhancers linked to genes of 
varying expression breadth (τ). All gene (N = 16,442) were divided into 10 evenly 
distributed bins between τ = 0 and τ = 1. 

 
Tau Bin 

Number of 
Genes 

(N = 16,442) 

Mean Linked 
Enhancer Count 

Median Linked 
Enhancer Count 

 
Variance 

0.9 - 1.0 3071 14.41 ± 6.7 14.0 44.61 
0.8 - 0.9 1268 14.82 ± 7.2 14.0 52.42 
0.7 - 0.8 1002 14.90 ± 6.7 14.0 45.05 
0.6 - 0.7 981 15.24 ± 6.6 15.0 43.83 
0.5 - 0.6 1233 15.00 ± 6.5 14.0 42.44 
0.4 - 0.5 1559 14.83 ± 6.2 14.0 38.92 
0.3 - 0.4 2215 14.35 ± 5.9 14.0 35.27 
0.2 - 0.3 3124 14.01 ± 5.4 13.5 28.93 
0.1- 0.2 1923 13.96 ± 5.4 13.0 29.26 
 0 – 0.1 66 13.39 ± 5.3 13.0 27.72 

 

Supplementary Table B.6 Log-likelihood, Akaike information criterion (AIC), and 
Bayesian information criterion (BIC) utilized for model component selection. Results 
are shown for a composite distribution of all gene-enhancer links independent of enhancers 
specificity category. 

Model Criterion 1 Component 2 Component 3 Component 
 Log-likelihood -43255.31 3417.18 25586.33 

GMMcomposite AIC 86514.61 -6824.37 -51156.67 
 BIC 86535.37 -6772.47 -51073.63 

 

Supplementary Table B.7 Mean (µ) and variance (σ2) parameters for a three component 
gaussian mixture model generated by the Expectation-Maximization (EM) algorithm 
utilizing the distribution of all gene tau values independent of the specificity classification 
of the associated enhancers. These variables correspond to µ1,2,3 and 𝝈𝝈𝟏𝟏,𝟑𝟑,𝟑𝟑

𝟑𝟑  in the enhancer 
specificity dependent. 

Component Mean (µ) Variance (σ2) 
1 0.26 0.08 
2 0.61 0.19 
3 0.96 0.04 
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Supplementary Table B.8 List of tissues from which expression data was obtained from 
the Genotype-Tissue Expression (GTEx) Project (dbGaP accession number 
phs000424.v7.p2) and from the RoadMap epigenomics consortium. 

Tissue GTex Sample Region (N=17) RoadMap RNA Sample (N=13) 
ADRENAL Adrenal gland - 
BLOOD Whole blood E050 (T-cell) 
BRAIN Frontal cortex, Hippocampus E071 (Hippocampus), E082 (Fetal) 
FAT Adipose subcutaneous - 
COLON Sigmoid, Transverse - 
ESOPHAGUS Mucosa, Muscularis E079 (Esophagus) 
INTESTINE Small intestine (terminal ileum) E084 (Fet. Large), E085 (Fet. Small), E109 (Small) 
STOMACH Stomach E094 (Gastric) 
HEART Left ventricle E095 (Left ventricle) 
KIDNEY Cortex - 
LIVER Liver E066 (Liver) 
LUNG Lung E096 (Lung), E128 (Lung) 
MUSCLE Skeletal  - 
OVARY Ovary E097 (Ovary) 
PANCREAS Pancreas E087 (Pancreatic Islets), E098 (Pancreas) 
SKIN Fibroblasts, Suprapubic region E059 (foreskin) 
SPLEEN Spleen E113 (Spleen) 
THYMUS - E112 (Thymus) 
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APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

 

Supplementary Figure C.1 Distribution of K2P distances between duplicate enhancer 
pairs. Dashed line denotes the mean K2P value of the dataset. 
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Supplementary Figure C.2 Gene Ontology of genes associated with accelerating 
duplicate enhancers. Higher GO terms for Biological Process and Molecular Function 
annotation for genes enriched in the accelerating duplicate enhancer dataset identified 
using either the (a) rhesus macaque or (b) chimpanzee orthologous regions as outgroups. 
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Enhancer Attribute Duplicate Enhancers Control Enhancers P-value 
Pleiotropy 4.14 ± 4.4 3.72 ± 0.04 < 0.001 
Length 1338.0 ± 925.4 1072.3 ± 10.6 < 0.001 
Distance to Nearest Gene (kbp) 28.0 ± 72.3 61.2 ± 1.6 < 0.001 
Number of Target Gene Links 3.1 ± 2.8 2.6 ± 0.08 < 0.001 
Total TF Binding Motifs 83.5 ± 110.5 63.0 ± 1.1 < 0.001 
Unique TF Binding Motifs 21.5 ± 12.2 18.6 ± 0.11 < 0.001 

Supplementary Table C.1 Mean attribute values for duplicate enhancers compared 
length-matched non-duplicate enhancer controls. The reported p-values as based on 
1,000 bootstraps of the control regions. 

 

Tissue Odds Ratio P-value 
ESC 0.7717 7.06 x 10-9 
Blood 1.668 6.99 x 10-34 
Skin 0.8586 5.01 x 10-4 
Fat 1.157 0.003 
Liver 1.4535 9.48 x 10-15 
Brain 0.8830 0.002 
Colon 1.078 0.133 
Duodenum 1.074 0.279 
Esophagus 1.422 8.16 x 10-10 
Adrenal 1.226 1.65 x 10-5 
Heart 1.005 0.918 
Intestine 1.091 0.058 
Kidney 0.7446 8.39 x 10-6 
Lung 0.9430 0.146 
Muscle 1.203 4.71 x 10-6 
Placenta 1.486 1.42 x 10-19 
Stomach 1.223 1.43 x 10-6 
Thymus 1.705 6.96 x 10-27 
Ovary 1.087 0.137 
Pancreas 1.152 0.001 
Rectum 1.034 0.533 
Spleen 1.663 3.72 x 10-24 
Bone 0.9562 0.369 

Supplementary Table C.2 Enrichment of duplicate enhancers across all surveyed 
tissues compared to length-matched non-duplicate control enhancers. Odds ratio and 
p-value are reported from Fisher’s Exact Test considering the occurrence of duplicate 
enhancers active or not active in each tissue compared to the expected pattern from the 
control enhancers. 
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Enhancer Attribute Control Mean Bin 1 Mean Bin 2 Mean Bin 3 Mean Bin 4 Mean 
Pleiotropy 3.72 ± 0.04 3.84 ± 4.2  4.5 ± 4.7 6.8 ± 5.1 7.7 ± 5.5 

Length (bp) 1072.3 ± 10.6 1215.4 ± 865.3 1524.7 ± 964.2 2345.8 ± 739.5 2555.2 ± 855.9 
Total TF Count 63.0 ± 1.1 77.6 ± 106.6 86.2 ± 98.5 140.1 ± 154.4 153.8 ± 140.7 

Unique TF Count 18.6 ± 0.11 20.2 ± 12.0 23.7 ± 11.5 31.3 ± 9.8 32.3 ± 10.8 

Supplementary Table C.3 Mean attribute values of duplicate enhancers binned 
evenly by K2P distance between duplicate pairs compared to the mean value of 1,000 
bootstraps of the control non-duplicate enhancers. The K2P ranges within each bin are 
as follows: Bin 1 K2P = 0-0.33, Bin 2 K2P = 0.33-0.67, Bin 3 K2P = 0.67-1.00, and Bin 4 
K2p > 1.    

 

Human-Chimpanzee-Macaque (H-C-M) Duplicate Enhancer Copy Number (%)  
2-1-1 2-2-1 2-1-2 2-?-2 2-2-2 Total 

260 (10.6%) 444 (18%) 69 (2.8%) 34 (1.4%) 1654 (67.2%) 2461 (100%) 

Supplementary Table C.4 Total counts (and percent) of duplicate enhancers with 
variations in copy number in the human, chimpanzee, and rhesus macaque genomes. 
Each column is labeled by the copy number of the enhancer found in the human-
chimpanzee-rhesus macaque genomes respectively. The (?) symbol represents instances 
where the human enhancer did not map an orthologous region of the corresponding non-
human primate genome. Enhancers in the 2-1-2 column represent examples of duplication 
‘loss’ in the chimpanzee genome.     

 

Enhancer 
Attribute 

Mean  
Accelerating Enhancer 

Mean  
Non-accelerating Enhancer 

 
p-value 

Pleiotropy 4.18 5.84 5.90 × 10-7 
Length (bp) 1314.9 1613.6 8.72 × 10-3 

Total TF Count 58.6 71.5 5.42 × 10-5 
Unique TF Count 21.8 24.4 1.48 × 10-3 

Supplementary Table C.5 Mean attribute values for duplicate enhancers exhibiting 
accelerated evolution compared to their non-accelerating mate. Accelerating 
enhancers were identified using the orthologous region in the rhesus macaque genome as 
an outgroup. Reported p-values were calculated from paired two-sample sign tests.   

 



 120 

NHP Age Category Accelerating 
Enhancer 

Pleiotropy = 1 

Accelerating 
Enhancer 

Pleiotropy > 1 

Non-accelerating 
Enhancer 

Pleiotropy = 1 

Non-accelerating 
Enhancer 

Pleiotropy > 1 

Odds Ratio 
(p-value) 

Rhesus Macaque 87 134 48 173 2.34 (0.0001) 
Chimp 65 135 57 143 1.21 (0.44) 

Supplementary Table C.6 Values for a contingency table used to identify the 
enrichment of accelerating enhancers as entirely tissue-specific (pleiotropy = 1) 
compared to their corresponding non-accelerating enhancers. Accelerating enhancers 
identified using both non-human primate orthologous regions as outgroups are reporting. 
Odds ratio and p-value are reported from Fisher’s Exact Test. 

 

 
Enhancer Attribute 

Mean Accelerating 
Enhancer 

Mean 
 Non-accelerating Enhancer 

 
Sign Test p-value 

Pleiotropy 4.50 4.69 0.51 
Length (bp) 1472.2 1398.1 0.13 

Total TF Count 104.8 90.4 0.84 
Unique TF Count 24.2 23.6 0.25 

Supplementary Table C.7 Mean attribute values for duplicate enhancers exhibiting 
accelerated evolution compared to their non-accelerating mate. Accelerating 
enhancers were identified using the orthologous region in the rhesus macaque genome as 
an outgroup. Reported p-values were calculated from paired two-sample sign tests.   

 

NHP Age 
Category 

Number of 
duplicate enhancers 

Time since Human 
Divergence (my) 

Enhancer Duplication Rate 
(duplications/enhancer/million years) 

Rhesus Macaque 738 25 4.57 × 10-5 
Chimpanzee 260 7 5.73 × 10-5  

Supplementary Table C.8 Rate of enhancer duplications calculated using total 
number of duplicates identified with single-copy orthologous regions in both non-
human primate genomes. 
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