
HARDWARE-FRIENDLY MODEL COMPRESSION TECHNIQUES FOR DEEP
LEARNING ACCELERATORS

A Dissertation
Presented to

The Academic Faculty

By

Foroozan Karimzadeh

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Engineering

Department of Electrical and Computer Engineering

Georgia Institute of Technology

December 2022

© Foroozan Karimzadeh 2022

HARDWARE-FRIENDLY MODEL COMPRESSION TECHNIQUES FOR DEEP
LEARNING ACCELERATORS

Thesis committee:

Dr. Arijit Raychowdhury
Department of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Justin Romberg
Department of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Shimeng Yu
Department of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Asif khan
Department of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Yingyan Liu
Department of Computer Science
Georgia Institute of Technology

Date approved: December 12, 2022

I’m not super. Any talents I have, I worked for – it seems a long time since I thought of

myself as a hero.

Oliver Queen

To my Dad Amir

for Inspiring me to Dare to Dream,

To my Mom Farkhondeh

for Inspiring me to Live,

To my husband Esmaeil

for Inspiring me to be Fearless,

To my sisters Aida, Parisa, Nazanin

for inspiring me to Work Hard,

To my friend Ardavan

for Inspiring me to Laugh,

Finally To the women and girls of Iran

for inspiring me to be Brave.

“Woman. Life. Freedom”

TABLE OF CONTENTS

Acknowledgments . viii

List of Tables . ix

List of Figures . x

List of Acronyms . xiv

Summary . xvi

Chapter 1: Introduction and Background . 1

1.1 Introduction . 1

1.2 Literature Survey . 2

1.2.1 State-of-the-art Artificial Neural Networks (ANN) 2

1.2.2 Sparse Neural Network . 3

1.2.3 Quantization . 5

Chapter 2: Network-Level Sparsity using LFSR Indexing 8

2.1 Introduction and Motivation . 8

2.2 Proposed LFSR-Generated PRS Based Sparsity (LFSR-Generated Pseudo-
random sequence based Sparsity (LGPS)) Method 9

2.2.1 Linear Feedback Shift Register (Linear Feedback Shift Registers
(LFSR)) based Pseudo-Random Sequence (PRS) Generation 10

v

2.2.2 Training LGPS with a PRS based Regularization 11

2.2.3 Pruning and Retraining . 13

2.2.4 DNN Compression and Hardware Architectures 14

2.3 Experimental Results . 18

2.3.1 Benchmark Methods . 18

2.3.2 Simulation results for the proposed pruning algorithm 19

2.3.3 Comparison of Hardware Implementation in 65nm CMOS 25

2.4 Conclusions . 32

Chapter 3: Network-level Sparsity and Quantization for Ultra-Low Bit Precision 35

3.1 Introduction and Motivation . 35

3.2 SKG: Towards Energy Efficient DNN accelerator via Sparsified Gradual
Knowledge Distillation . 36

3.2.1 Preliminaries . 37

3.2.2 Knowledge Distillation and Gradual Quantization 38

3.2.3 Hardware . 39

3.3 Experimental Results . 41

3.4 Conclusion . 45

Chapter 4: Bit-Level Sparsity and CIM-aware DNN Compression 47

4.1 Introduction and Motivation . 47

4.2 BitS-Net: Bit-Sparse Deep Neural Network for Energy-efficient Resistive
Random Access Memory (RRAM) Based Compute-In-Memory 49

4.2.1 Necessity of Compute-In-Memory Architecture 49

4.2.2 Preliminaries . 51

vi

4.2.3 BitS-Net Training . 52

4.3 Algorithm-Hardware Joint Optimization in Compute In Memory (CIM)
during inference . 55

4.4 Experimental Results . 58

4.4.1 Evaluation on CIFAR-10 . 60

4.4.2 Evaluation on ImageNet . 60

4.4.3 Hardware Evaluations . 62

4.5 Conclusion . 64

Chapter 5: Twofold Sparsity: CIM-aware Network- and Bit-level Sparsity for
Energy-efficient Deep Learning accelerator 66

5.1 Introduction and Motivation . 66

5.2 Double sparsity training . 67

5.2.1 Network-level sparsity using LFSR indexing 67

5.2.2 Bit-level sparsity . 68

5.2.3 Twofold sparsity: Network- and Bit-level sparsity 69

5.2.4 Post-pruning . 70

5.2.5 Inference . 70

5.3 Experimental Results . 70

5.4 Conclusion . 72

Chapter 6: Conclusion . 74

References . 76

Vita . 84

vii

ACKNOWLEDGMENTS

I would like to thank the members of my thesis committee for their help in preparation

of this work.

I would especially like to to my advisor and mentor, Dr. Arijit Raychowdhury, for

his guidance and advice during my PhD. I am grateful for his endless support. His great

mentorship was the key factor to my success in my research and professional activities.

The author gratefully acknowledges the support for this work offered by the Semicon-

ductor Research Corporation (SRC) under grant JUMP CBRIC task ID 2777.004, 2777.005

and 2777.006.

I world like to thank my academic advisor, Dr. Daniel Staiculescu, who is more like

a friend to me, for all of the help, support and guidance. She is a wonderful and caring

person.

I’d like to thank my lab mate, Anupam Goldar, who generously shared his knowledge

of hardware design with me.

I would also thank my friends, Ardavan Afshar, Ashley Alva, Aline Eid, Yash Logan,

Yasaman Edrisian, Mahnood Mehrban, for the memorable time together.

Finally, nobody has been more important to me in the pursuit of this journey than my

family. I’d like to thank my husband, Esmaeil, for all of his love, support, help and guid-

ance. He is always there for me. I’d like to thank my parents, whose love and guidance are

with me in whatever I pursue. They are my heroes.

viii

LIST OF TABLES

2.1 Number of parameters, pruning (using LGPS method) and reference accu-
racy and rate of compression for different networks. 20

2.2 Rank of fully connected layers of a fully connected (FC) network with two
hidden layers of size 512 each and LeNet-5 on MNIST in three different
sparsity rates of unpruned network, LGPS-II, baseline and CGS method
(with block size: 64× 64). (LGPS-I gain similar results as LGPA-II). . . . 22

2.3 Hardware Parameters. 27

2.4 Measured Latency (ms) of the overall system for our LGPS-I, LGPS-II,
baseline and CGS. 30

2.5 Measured performance (number of frames processed per ms) of the overall
system for LGPS-I, LGPS-II, baseline and CGS. 31

3.1 The accuracy for our method and a baseline method for different sparsity
percentage. 44

3.2 The energy (J) of our proposed method for different sparsity percentage
using CIM and CMOS architectures. 45

4.1 The coefficient set for quantization. 55

4.2 The accuracy and total energy of Cifar-10 on BitS-Net using coefficient set
1, set 2 and ternary, in comparison to the baseline methods on ResNet-20. . 60

4.3 The final classification accuracy and total energy achieved by BitS-Net
method and the baselines including POT, APOT, INQ, uniform quantization
and the full precision network in ResNet-18 and ResNet-34 architectures. . 61

ix

LIST OF FIGURES

1.1 Number of parameters in Deep Neural Network (DNN) models 3

2.1 LGPS method consists of four main steps: generating indices using LFSR
topology, training the network with regularization of the specified weights
using LFSR, pruning redundant weights and retraining the remaining con-
nections. 10

2.2 High-level illustrations of our proposed DNN accelerator architecture for
inference. The architectures of (a) LFSR Block, (b) LGPS-I and (c) LGPS-
II. 15

2.3 High-level illustrations of DNN accelerator for inference. The architectures
of (a) baseline and (b) CGS method. 17

2.4 The accuracy (mean± std) vs sparsity percentage of LGPS-I and LGPS-II
on MNIST dataset for 10 trials and two networks: (a) LeNet-300-100 and
(b) LeNet-5. 21

2.5 The comparison between different regularization parameters (λ) for LGPS-
I with/without retraining. 23

2.6 The comparison between L1 and L2 regularization methods with/without
retraining for LGPS-I. 24

2.7 Accuracy error (%) of LGPS-I in comparison with the baseline method on
different sparsity rates. LGPS-II shows similar algorithmic results as well. . 25

2.8 Accuracy error (%) of LGPS-I in comparison with the CGS method on
different sparsity rates and block sizes (CGS, block size). LGPS-II shows
similar algorithmic results. 26

2.9 Accuracy of LGPS-I and SIMD for LeNet-5 on MNIST and modified VGG-
16 on downsampled ImageNet in different sparsity rates. 27

x

2.10 Total memory required for baseline method (contains indices, pointer and
overhead) and LGPS-I for 4, 6 and 8 index bit precision with different spar-
sity levels. Vertical axis is in Logarithmic scale. LGPS-II shows similar
algorithmic results as well. 28

2.11 Total memory required for CGS method for different block sizes (contains
indices, pointer and overhead) and LGPS-I with different sparsity levels.
Vertical axis is in Logarithmic scale. LGPS-II shows similar algorithmic
results as well. 29

2.12 Accuracy vs total memory required for baseline method (contains indices,
pointer and overhead), LGPS-I and CGS method for 8-bit index precision
with different sparsity levels on (a) fully connected network with two hid-
den layers of size 512 each and MNIST dataset, (b) modified VGG-16 on
downsampled ImageNet. Markers from right to left on each line are related
to 30, 40, 50, 60, 70, 80, 90, 95% sparsity rates. LGPS-II shows similar
algorithmic results as well. 30

2.13 The measured area (mm2) of the overall systems consists of accumula-
tor, multiplier, and input/output buffers for baseline method, LGPS-I and
LGPS-II, CGS (block size 4× 4) and SIMD. Measurements performed for
three different networks (LeNet-300-100, LeNet-5 and modified VGG-16)
at various sparsities and 4-8 bit-width indexing precision. 31

2.14 An example of the breakdown of area among memory, index vs. logic,
for LGPS-II, and baseline and CGS method on Lenet300-100 network with
90% sparsity. 32

2.15 The measured power (W) of overall systems consists of accumulator, mul-
tiplier, and input/output buffers for baseline method, LGPS-I and LGPS-II,
CGS (block size 4 × 4) and SIMD methods methods.Measurements per-
formed for three different networks (LeNet-300-100, LeNet-5 and modified
VGG-16) at various sparsity and 4-8 bit-width indexing precision. 33

2.16 The relative execution time of overall systems during inference of LGPS-I
and LGPS-II with respect to baseline method on LeNet-300-100, LeNet-
5 and modified VGG-16 at sparsity rate of 90% and 4 bit-width indexing
precision. 34

3.1 An overview of the proposed method consisting of pruning, knowledge dis-
tillation (KD) and gradual quantization steps for DNN compression during
training. The quantized weight and activation will then be used during in-
ference to increase the energy efficiency of the system while preserving the
accuracy. 37

xi

3.2 The high-level hardware architectures of CIM and conventional CMOS for
inference. 40

3.3 Accuracy vs bit-width (4-2 bits) for uniform and PoT method with KD and
gradual quantization and baseline methods including APoT and XNOR-Net
with FL32 as the pre-trained model on ResNet-18 and ImageNet dataset. . . 42

3.4 Accuracy vs bit-width (8-2 bits) for uniform quantization with and without
gradual quantization on ResNet-18 and ImageNet dataset. 46

3.5 The total estimated energy achieved by the proposed method for Uniform
and PoT compared with the baseline method, APoT, with FL32 pre-trained
model for ResNet-18 on ImageNet. From left to right: 4-bit, 3-bit, 2-bit
precision. 46

4.1 Structure of a systolic array as an intermediate solution to support AI systems. 50

4.2 Compute-in-memory architectures exploiting resistance of memory cells. . 50

4.3 Binary and multi-bit current-sensing RCIM at the bitline. 56

4.4 Simplified structure of current- and voltage-sensing read in RCIM architec-
tures. 57

4.5 Architecture of voltage-sensing multi-bit RCIM architecture. 58

4.6 Measured resistance (R) distribution of the 2-bit weights in the BitS-Net. . . 59

4.7 Percentage of 00, 01, 10, 11 in the total weight values of ResNet-18 for
BitS-Net3 (ternary), BitS-Net2 (set 2 coefficients), BitS-Net1 (set 1 coeffi-
cients), POT, APOT and 8-bit quantization methods. 63

4.8 Energy of multiplication and ADC for BitS-Net3 (ternary), BitS-Net2 (set 2
coefficients), BitS-Net1 (set 1 coefficients), POT, APOT and 8-bit quantiza-
tion methods on (a) ResNet-20 on CIFAR-10; (b) ResNet-18 on ImageNet
and (c) ResNet-34 on ImageNet. 64

5.1 Accuracy vs sparsity rate for our method before and after post pruning. . . . 71

5.2 Energy (J) vs sparsity rate (%) for twofold sparsity during inference using
LFSR indexing and RRAM based CIM architecture. 72

xii

5.3 Energy (J) of Twofolds-Net with different sparsity rate (%) compared to
the baseline methods including: BitS-Net1, POT, ApOT and 8-bit uniform
quantization. 73

xiii

LIST OF ACRONYMS

AI Artificial Intelligence

ANN Artificial Neural Networks

APoT Additive Power of Two

BitS-Net Bit-Sparse Deep Neural Network

BL bit-line

CGS Coarse-Grain Sparsification

CIM Compute In Memory

CMOS Complementary Metal-Oxide Semiconductor

CNN Convolutional Neural Network

DBN Deep Belief Networ

DNN Deep Neural Network

DRAM Dynamic Random-Access Memory

FC Fully connected

IoT Internet of Things

KD Knowledge Distillation

LFSR Linear Feedback Shift Registers

LGPS LFSR-Generated Pseudo-random sequence based Sparsity

MLP Multi-Layer Perceptron

MSB Most Significant Bit

MVM matrix-vector multiplication

PoT Power of Two

PRS Pseudo-Random Sequence

xiv

ReLU Rectified Linear Unit

RRAM Resistive Random Access Memory

SKG Sparsified Knowledge Distillation and gradual Quantization

STE Straight-Through Estimator

WL word-line

xv

SUMMARY

The objective of the proposed research is to introduce solutions to make energy-efficient

Deep Neural Network (DNN) accelerators to be deployable on edge devices through de-

veloping hardware-aware DNN compression methods. The rising popularity of intelligent

mobile devices and the computational cost of deep learning-based models call for effi-

cient and accurate on-device inference schemes. In particular, we proposed four com-

pression techniques for energy and memory efficient DNN computing. In the first method,

LFSR-Generated Pseudo-random sequence based Sparsity (LGPS), we present a hardware-

aware pruning method where the locations of non-zero weights are derived in real-time

from a Linear Feedback Shift Registers (LFSR). Using the proposed method, we demon-

strate a total saving of energy and area up to 63.96% and 64.23% for VGG-16 network

on down-sampled ImageNet, respectively for iso-compression-rate and iso-accuracy. Sec-

ondly, We achieved ultra-low bit-precision deep learning model by developing a quantiza-

tion scheme through knowledge distillation and gradual quantization for pruned network.

Thirdly, we propose a novel model compression scheme that allows inference to be car-

ried out using bit-level sparsity, which can be efficiently implemented using in-memory

computing macros. We introduce a method called BitS-Net to leverage the benefits of

bit-sparsity (where the number of zeros is more than number of ones in binary representa-

tion of weight/activation values) when applied to Compute-In-Memory (Compute In Mem-

ory (CIM)) with Resistive Random Access Memory (Resistive Random Access Memory

(RRAM)) to develop energy efficient DNN accelerators operating in the inference mode.

We demonstrate that BitS-Net improves the energy efficiency by up to 5x for ResNet mod-

els on the ImageNet dataset.

In the last part, to achieve highly energy-efficient DNN, we introduce a novel twofold

sparsity method (Twofold Sparsity, TwofoldS-Net) to sparsify the DNN models in bit- and

network-level, simultaneously. We added two separate regularizations to the loss function

xvi

in order to achieve bit- and network-level sparsity at the same time. We sparsify the model

in network-level, by adding a mask generated by LFSR. For bit-level sparsity, we quantize

the network to 8-bit representation in two’s complement format. During inference we take

advantage of CIM architecture and LFSR indexing. We have shown that by using our

proposed method we are able to sparsify the network and design a highly energy-efficient

deep learning accelerator to eventually bring Artificial Intelligence (AI) to our daily lives.

xvii

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Ever-increasing number of edge devices such as mobile, wearable and Internet of Things

(IoT) require computations to be performed close to the source of the data at the edge [1,

2]. This is critical due to the fact that sending/receiving data to/from a centralized server

increases both the latency as well as the cost of communication. Edge computing can en-

able real-time data analysis locally which mitigates the latency and increases privacy of the

data. It is also important where we need accurate and fast computation to generate results

under strict latency constraints. Over the past several years, a trend toward embedded com-

puting of artificial neural networks Artificial Neural Networks (ANN) in edge devices have

emerged [1]. ANN models such as deep neural networks (DNN) which are typically very

large, have gained remarkable performance in data analysis. However, it is hard to deploy

these models on edge devices since they are resource constrained [3].

DNN models have achieved state-of-the-art performance in various machine learning

applications, such as computer vision [4, 5, 6], natural language processing [7], health care

[8, 9] etc. Not only DNN models have shown a remarkable performance in improving

accuracy over time, but also grown gradually to larger and more complex models. For in-

stance, LeNet-5 [10], a classical Convolutional Neural Network (CNN), developed in 1998

with less that 500K parameters for handwritten digits classification, while VGG-16 [11],

the winner of ImageNet competition in 2014, has more than 90M parameters. Although the

aforementioned networks are powerful, due to their large size, it is hard to accommodate

large networks on an on-chip memory and an external Dynamic Random-Access Memory

(DRAM) memory is often required. In addition, large and over-parameterized DNNs are

1

computationally expensive and consume considerable amount of memory and energy. For

example, in 45nm Complementary Metal-Oxide Semiconductor (CMOS) process, access-

ing an external DRAM consumes 3 order of magnitude higher energy that accessing an

on-chip SRAM [12].

A growing body of research has been devoted to improve the efficiency of DNN models

for inference and edge devices [12, 13, 14, 15, 16]. It has been shown that DNN models

are mostly over-parameterized and hence parts of the network are redundant [17]. Model

compression can reduce the size of DNN models while preserving the accuracy [12, 14, 18,

19, 20] and therefore it can enable DNN models to run on embedded mobile applications

and edge devices.

1.2 Literature Survey

In this section, we explore the prior works that have been done on DNN compression. Then,

the challenges associated with existing methods and the motivation behind the proposed

methods are presented.

1.2.1 State-of-the-art ANN

Fully connected (Fully connected (FC)) Multi-Layer Perceptron (MLP) and CNNs are

among the State-of-the-art ANNs. These networks usually have a lot of parameters that

should be trained. The number of parameters of four state-of-the-art networks including

LeNet-300-100, LeNet-5 [10], AlexNet [4] and VGG16 [11] are illustrated in Figure 1.1.

LeNet-300-100 is a FC network while the rest of them are CNNs. Figure 1.1 shows that a

considerable number of parameters are related to the FC layers. For example, the number

of FC connections in VGG-16 are 10× more than that of convolutional connections.

2

LeNet300-100 LeNet-5 AlexNet VGG-16
103

104

105

106

107

108

109

N
u

m
b

er
 o

f
P

ar
am

et
er

s

Fully connected layer
Convolutional layer

Figure 1.1: Number of parameters in FC vs convolutional layers for baseline networks con-
sists of LeNet 300-100, LeNet-5, AlexNet and VGG-16. The vertical axis is in logarithmic
scale.

1.2.2 Sparse Neural Network

There are several prior research that have demonstrated there are significant redundancies

in most of DNN models [17], [12] which result in using extra power and storage resources.

As such, various model compression techniques such as Deep Belief Networ (DBN) [21],

regularization [22], Auto Encoder [23] have been developed to prune the redundant pa-

rameters and make DNN models more efficient without losing accuracy. [24] proposed a

method to compress the network by using 8-bit fixed point integer for weights value instead

of 32-bit floating point representations. [13] presented a method to prune the network fol-

lowed by weight sharing to reduce the number of bits required to represent the weight and

the activation values comparable to the original network.

In general, we can divide pruning methods into two categories: (1) structured prun-

ing, (2) unstructured pruning. Unstructured pruning is based on a criteria (e.g. magnitude,

threshold, etc.) that element-wise prune the weight connections. Threshold-base prun-

ing was applied to DNN models in [12], resulting 9× and 13× model size compression

3

on AlexNet and VGG-16, respectively. In another method called Deepcompression [13],

threshold-based method followed by weight sharing and Huffman coding are applied to

compress DNN networks which achieves 49× memory saving on VGG network. More-

over, 20× model size reduction is achieved by applying magnitude-based pruning to Long

Short Term Memory (LSTM) hardware [25]. In addition, [26] proposed a dynamic prun-

ing approach. In this method, instead of permanently pruning a connection, some pruned

connections are allowed to regain their importance and regrow during an iterative train-

ing process. Although unstructured and element-wise pruning results in higher parameter

reduction, these methods incur considerable index memory and irregular memory access,

hurting both performance and power. Several DNN accelerator have been developed to

cope with the irregularity caused by unstructured pruning [14], [3]. However, they need to

store the addresses of random weights that have been kept after training.

On the other hand, the idea of structured pruning is to avoid irregular model compres-

sion in the obtained weight matrices after pruning [27, 28, 29]. Several researches have

been done to structurally prune DNNs by pruning the structural component such as the

entire or parts of layers and filter channels based on calculating their importance with re-

spect to the test accuracy [30], rank of the filters [31], [32], or ranked them based on the

contribution of each filter to the next layers’ activation [33] or through regularization [34],

[35] and [22]. In [36], a block-wise sparsity technique called Coarse-Grain Sparsifica-

tion (CGS) to prune MLPs is presented. However, the results demonstrate limited weight

compression of 4×. In [37], energy-efficient LSTM recurrent neural network (RNN) ac-

celerator is proposed by using an hardware-centric network compression technique called

hierarchical CGS. To compress the network, each weight layer passes through several level

of CGS using various block size. By using hierarchical CGS-based block-wise recursive

weight compression, the author demonstrated that LSTM networks can be compressed 16×

while obtaining minimal accuracy loss. Using CGS for sparsification of a networks leads

to decrease memory footprint and energy required for running inference. However, the per-

4

formance of this method is highly dependent to the size of the block. Also, the value of the

dropped blocks keep to be zero during the training which might negatively affect the large

networks where the remaining weights could not fine-tune the effect of pruning. Moreover,

during inference, the address of the selected blocks should be saved. [38] also pruned the

network by choosing a global percentage k and removing all the k% synapses that have

the smallest weight magnitudes across all the network’s layers. [39] performed pruning by

defining different pruning criteria using correlation-base pruning rather than magnitude-

base pruning. In [40], FC layers are pruned by solving a least squares problem in which

the difference between activation of the pruned and original networks is minimized.

On the hardware side, several accelerators and hardware architecture have been de-

signed to exploit sparsity of pruned neural networks. The Cambricon-X architecture [14]

takes advantage of the sparse network by proposing an indexing method to skip the zero

weights. SCNN [15] is another architecture that proposes a new dataflow by encoding and

maintaining non-zero weights and activations and efficiently delivering them to a multi-

plier array. EIE architecture [3] proposed a DNN accelerator and an indexing framework

to accelerate the mathematical calculation of a sparse network for the compression method

called deep compression [13] where pruning, quantization and Huffman encoding are em-

ployed to compress the network. The Eyeriss architecture [41] is designed to run compact

DNN models by introducing a hierarchical mesh which is a flexible on-chip network that

can be adapted to different data types and improves the utilization of the memory resources.

1.2.3 Quantization

DNN compression methods such as quantization [42] have been proposed in the litera-

ture to compress DNN models and enable them to run on embedded mobile applications

[43]. Low-precision DNN models decrease the required storage memory as well as com-

putational complexity while achieving accuracy analogous to floating point operation [44].

After quantization, most of the multiplication-and-accumulate (MAC) operations can be

5

replaced by simple bit-wise operations which cause large reductions in memory require-

ment and complexity in hardware, enables us to fit the models in on-chip memory, increase

energy efficiency and enhance speed during inference. However, a large reduction in pre-

cision causes information loss which can incur significant accuracy drop [44] unless the

models are trained under proper constraints. This issue is more significant in complex data

sets such as ImageNet [45]. Ideally, we want to use lower precision while achieving equiv-

alent accuracy as the original network with floating point. Quantization can be done during

or after training which are called quantization-aware training and Post-training quantiza-

tion, respectively. Post-training quantization is faster while quantization during training

achieves higher accuracy since the network learns the weight with low-precision better

during training [42].

Memory access is the bottleneck in large DNN models which dominates the total energy

consumption. For instance, the size of AlexNet and VGG-16 Caffe model are over 200MB

and 500MB, respectively. This makes it hard to deploy DNN models on edge devices

since they do not fit in on-chip memory and therefore require the more costly DRAM

accesses [3]. The cost of accessing DRAM is 640pJ for 32-bit coefficients which is 3

order of magnitude larger than accessing on-chip SRAM [13]. A new class of embedded

non-volatile memory (eNVM) which perform matrix multiplication (y = W x) in a dense

memory structure offers a solution to minimize data transport by performing compute in-

memory [46].

In addition, DNN models are trained using floating point (i.g. float-32) format on GPUs.

However, efficient hardware DNN accelerators operate on the fixed-point format. There-

fore, by compressing the neural network through quantization and sparsification, we can

reduce the total number of operations in the fixed-point format and shrink the size of DNN.

However, the irregular pattern caused by compression prevent the efficient acceleration and

requires the new indexing scheme which increase the memory usage [3]. Moreover, net-

work compression causes information loss. Several papers have explored methods to quan-

6

tize parameters (e.g., weights) and optimize the weights parameters simultaneously during

training to gain better accuracy and compensate the information loss due to low-precision

quantization [47, 44, 42]. However, many of them do not quantize the activation and the

first and last layer of weights. INQ (Incremental Network Quantization) [48] efficiently

convert any pre-trained full-precision convolutional neural network (CNN) model into a

low-precision version using a masking method during training. The weights are quantized

to either powers of two or zero but activation is still in full-precision which make it harder

to run the model during inference. DOREFA-NET [49] quantize the network using low

bit-width parameter gradients. SYQ [44] is another quantization scheme where reduces

the information loss by learning a symmetric codebook for particular weight subgroups. In

[42], a quantization method that allows inference to be carried out using integer-only arith-

metic is proposed by introducing fake nodes to the model where weights and activation are

quantized in this step during training. [47] introduces an Additive Powers-of-Two (APOT)

quantization scheme to non-uniformly quantize the bell-shaped distribution of weights and

activation by constraining all quantization levels as the sum of Powers-of-Two terms.

On the other hand, there are several methods that have been developed to sparsify the

DNN models at the network level to shrink the network and eliminate unimportant weights

[12], [15]. However, the sparsification causes irregularity in the weight matrices which

makes it even harder than using the original network on GPU or CPU [3]. It requires to

store additional indexing matrix to keep track of the zero weights. Recently, several DNN

models architecture have been designed to accelerate the sparse network and cope with the

irregularity caused by sparsity and unstructured pruning [14, 15, 41, 3]. Despite of the

efforts done in the area of DNN accelerators, new architectures based on traditional CMOS

still face the fundamental technological limitations of CMOS.

7

CHAPTER 2

NETWORK-LEVEL SPARSITY USING LFSR INDEXING

The increase in the number of edge devices has led to the emergence of edge computing

where the computations are performed on the device. In recent years, deep learning have

become the state-of-the-art method in a broad range of applications, from image recogni-

tion, to cognitive tasks. However, neural network models are typically large and compu-

tationally expensive and therefore not deployable on power and memory constrained edge

devices. Sparsification techniques have been proposed to reduce the memory foot-print of

neural network models. However, they typically lead to substantial hardware and memory

overhead. In this chapter, we propose a hardware-aware pruning method to sparsify the

DNN models in the network-level using linear feedback shift register (LFSRs) to gener-

ate the locations of non-zero weights in real-time during inference. We call this LFSR-

generated pseudo-random sequence based sparsity (LGPS) technique. We explore two dif-

ferent architectures for our hardware-friendly LGPS technique, based on (1) row/column

indexing with LFSRs and (2) column-wise indexing with nested LFSRs, respectively.

2.1 Introduction and Motivation

It has been shown that DNNs can be trained using less number of neurons and synapses

[17] by sparsifying the model. In network-level sparsity, the redundant weights are re-

moved. Large neural networks consume considerable amount of memory resources and

power which make it hard to deploy on resource constrained edge devices. Thus, model

compression through pruning is one solution to shrink the network size while preserving the

classification accuracy. Although the baseline pruning method [12] has good performance

from an algorithm view, from hardware prospective, it requires as high as 2× memory

foot-print (for storing values and address indices in memory) compared to the model size.

8

On the other hand, sparse networks add a level of irregularity to the network which

makes it even harder to run them on hardware platforms such as GPUs or CPUs. This

irregularity comes from the fact that the network’s weights are pruned randomly. The ex-

isting hardware platforms such as GPU and CPU do not support efficient sparse networks

with irregular weight orders. State of the art DNN accelerators also cannot take full advan-

tage of the lower memory footprint of sparse networks [14].

Therefore, these observations motivate us to develop a hardware-aware pruning method

and accelerator to remove redundant weights and take advantage of a sparse network and

also reduce the memory footprint of storing the non-zero indices. We expect our approach

to be an enabler for deploying state-of-the-art neural networks on edge and mobile devices.

2.2 Proposed LFSR-Generated PRS Based Sparsity (LGPS) Method

We present a hardware-friendly pruning method, namely LGPS. During the training step

in consists of the following steps:

1. In the first step of the training algorithm, a Pseudo-Random Sequence (PRS) is gen-

erated that acts as the indices to sparsify the synapses. The PRS can be generated

on-die using LFSR. We show that the expressibility of the network and the accuracy

of the model are not compromised in the process.

2. Next, the network is trained with regularization of the specific synapses whose ad-

dresses (or indices) are not covered by the PRS. Only the indices that are produced

by the PRS are not regularized. All the regularized parameters are forced to zero.

3. Finally, the regularized connections are pruned and the remaining connections (whose

indices are covered by the PRS) are retrained (Figure 2.1).

Generating the locations of the zero weights in the connectivity matrix by using a PRS

provides good performance, and also making it easier to generate the indices on the fly,

9

Training +
Regularization

Re
tr

ai
ni

ng

Pruning

In
de

x
fr

om
 LF

SR

Figure 2.1: LGPS method consists of four main steps: generating indices using LFSR
topology, training the network with regularization of the specified weights using LFSR,
pruning redundant weights and retraining the remaining connections.

without the need to be stored in a separate memory sub-bank. During deployment, the non-

zero weights of the pruned network, the seed of the PRS and the structure of the LFSR are

shared with the edge device. During inference, the following steps are executed:

1. The structure of the LFSR and the seed of the PRS provides the same bit-wise stream

of the same PRS that was used during training.

2. The non-zero weights are read sequentially and the corresponding addresses are

matched with the PRS value. This allows the correct multiplication between acti-

vations and weights.

3. All the non-zero weights are covered and the final classification result is generated.

2.2.1 Linear Feedback Shift Register (LFSR) based PRS Generation

LFSR [50] is a common topology to generate pseudo random bit sequences. It consists of

a cascade of n flip-flops followed by linear feedback using a couple of exclusive-or (XOR)

gates (ci). The value used to initialize the LFSR is called input seed (si). The mathematical

formula to calculate the LFSR output sequence (sj) is shown in Equation 2.1.

10

sj =
n∑

i=0

cisj−i, j ≥ n (2.1)

The main advantages of using the LFSR topology to generate PRS are:

1. The hardware implementation is simple and compact.

2. The PRS is generated in real-time within a clock cycle and does not require any

memory foot-print.

3. The generated PRS has useful statistical properties that preserves the rank of the

generated connectivity matrix [51] (to be elaborated further in section section 3.3).

4. The maximum PRS length without repetition (equal to 2n − 1) can be achieved as

long as the characteristic polynomials is primitive [51].

Here, we propose two different indexing schemes to prune the networks using LFSR.

In the first method (called LGPS-I), we use two separate LFSRs with different input seeds

to generate indices for rows and columns separately. The row indices encode the addresses

of input vector elements while the column indices indicate the address of the output vector.

In the second indexing approach (called LCPS-II), we use one LFSR to generate random

indices for each column of weight matrix. To generate a different PRS within each column

we utilize another LFSR to generate different random input seed for each column and

ensure that we preserve the rank of the sparse matrix. Finally, for both approaches, to keep

the generated indices within the range of the row/column length, we multiply the generated

index to the size of the row/column and keep the Most Significant Bit (MSB) as the desired

index. The process of generating the addresses using LFSR is summarized in Figure 2.2a.

2.2.2 Training LGPS with a PRS based Regularization

After generating the PRS using the LFSR, we use them as the indices for the connection

matrix that needs to be kept and the remaining connections will be regularized and pruned.

11

A FC layer of a DNN with input (x), weight matrix (W) and vector of bias (b) performs

the following function. The following formulation is based on our first indexing approach

i.e. row/column indexing. The second method for PRS generation can also be similarly

formulated and omitted here for brevity.

Z = W Tx+ b (2.2)

a = σ(Z) (2.3)

Where T is a transpose function, σ is a non-linear activation function which is typically

chosen to be a Rectified Linear Unit (ReLU) [52]. To simplify the above equations, we

merge vector of b with W . This can be done by appending b as an additional column to the

end of matrix W . The above equations can be rewritten and calculated element-wise as:

a = ReLU

(
n−1∑
d=0

Wdexe

)
(2.4)

Where d and e are the indices of the original weight matrix corresponding to the rows

and columns, respectively.

In the next step, the specific connections (weights) selected based on LFSR indexing

are trained without regularization and the remaining connections are regularized to be zero

during the training step. We have investigated the use of both L1 and L2 regularization

methods to penalize the target connections (Figure 2.6). L1 regularization results in more

weights to be near zero which gives better performance in terms of accuracy after pruning

without performing another retraining step [12]. On the other hand, L2 regularization gives

the best retraining results. Regularization also prevents over-fitting as the PRS selects a

random subset of target synapses.

In the regularization methods, a regularizer component is added to the cost function (J).

Here, we show the formula for L2-regularization in Equation 5.3. In addition, weights will

12

be updated during back propagation process as shown in Equation 2.6.

J(W [l], b[l]) =
1

m

m∑
d=1

L(ŷ(i), y(i)) +
λ

2m

L∑
l=1

||W [l]
!i !j||

2
F (2.5)

where !i and !j are the weights related to row and column indices that should be regu-

larized to be zero. In other words, these indices are the one that are not selested by PRS

from LFSR.

W [l+1] =

W [l][1− αλ
m
], if d, e ̸= i, j

W [l] − αdW [l], if d, e = i, j
(2.6)

where i, j, L and α are correspond to the row and column indices generated from LFSR,

the layer’s number and the learning rate, respectively. λ is the regularization parameter and

can be tuned where larger λ penalize the weights values more and make them zero.

2.2.3 Pruning and Retraining

Regularization makes selected weight values to be zero or very close to zero. However,

in order to design a DNN accelerator for LGPS, we need to make sure that the selected

weights are exactly equal to zero. Therefore, we add a pruning step to guarantee that all

the selected weights are zeroed-out. The computation of activation function with the LFSR

based pruning method shown in Equation 2.4 becomes

a = ReLU

(
n−1∑
j

Sijxj

)
(2.7)

Where S is correspond to the sparse weight matrix. Finally, the pruned network is

retrained iterativly for several epochs to compensate for the pruned connections and fine-

tune the remaining ones.

13

2.2.4 DNN Compression and Hardware Architectures

We design an efficient DNN hardware accelerator to perform inference on the proposed

sparse networks. After training the neural network using LGPS, the compressed model

is ready to be deployed. As mentioned before, a baseline pruning technique to sparsify

networks add irregularity to the structure which makes it hard for the state-of-the-art DNN

accelerators to fully take the advantage of the reduced memory footprint [14]. The main ad-

vantage of using LGPS method is that we generate the indices of the unpruned connections

in real-time during inference and as a result only the non-zero weights need to be stored. We

implement the hardware design of LGPS, baseline, the CGS and SIMD methods to com-

pare and contrast the advantages and limitations of them. The architecture of the LFSR

based indexing LGPS-I and LGPS-II architecture are illustrated in Figure 2.2. In addition,

the architecture of the baseline design and CGS methods are shown in Figure 2.3 for com-

pleteness. The block diagrams illustrate the difference in hardware resources/operations in

the proposed methodologies, baseline and CGS methods to infer from a sparse FC network,

with N input neuron, M output neuron and sp as the level of sparsity (i.e number of zeros).

The detailed explanation of these methods are as follow:

LGPS with Row/Column indexing using LFSR (LGPS-I)

In this scheme (Figure 2.2b), we call LGPS-I, LFSR block1 is used to generate the PRS

as an index for each of the input neurons. The way the PRS (as an index) is generating

inside LFSR Block is shown in Figure 2.2a. Since the range of generated PRS is between

1 and 2N − 1, to keep the range in the number of input neurons, the generated PRS is

multiplied to the length of input neurons (m). Then, the most significant bits (MSBs) of

the calculated value in binary form is selected. This scales the generated number within

range m ≤ 2N − 1. If we do not perform this scaling, a PRS number greater than m can

be generated and results in unused cycles, that reduces the throughput. Next, the generated

index is used to select the right input to be multiplied to the corresponding weight value

14

LFSR

0 1 1
Output Seq.

Input Seed…011001

𝑴 𝒐𝒓 𝑵, 𝑠. 𝑡. 𝑤𝑀×𝑁

0 1 1 01
MSBs(𝒍𝒐𝒈𝟐 𝑵 bits)

Index

LFSR Block

(a) LFSR Block.

Sparse Weight
Matrix

LFSR Block
1

(Row Index, M)

𝒋

LFSR Block
2

(Column Index, N)

(𝒍𝒐𝒈𝟐 𝑴 bits) (𝒍𝒐𝒈𝟐 𝑵 bits)

Input
Vector

Input Buffer ∑
𝒙𝒊 𝑾𝑹

Output Buffer

Neuron
Output

𝑺𝒊𝒋𝒊

(M.N.(1-sp) Bytes)

(b) The proposed hardware using row/column LFSR indexing.

𝑺𝒊𝒋
Input
Vector Input

Buffer
∑

𝒙𝒊 𝑾𝑹 Output
Buffer

Neuron
Output

LFSR Block
1

(Column Index, N)

𝒊

Sparse Weight
Matrix

(M.N.(1-sp) Bytes)

LFSR Block
2

Input
Seed

(𝒍𝒐𝒈𝟐 𝑵 bits)

(c) The proposed hardware using column-wise LFSR indexing.

Figure 2.2: High-level illustrations of our proposed DNN accelerator architecture for infer-
ence. The architectures of (a) LFSR Block, (b) LGPS-I and (c) LGPS-II.

15

in the sparse weight matrix (S). The result of multiplication/accumulation is stored in the

output buffer where the address comes from the second LFSR block with different input

seed. Again the output of the LFSR block 2 (j) is calculated based on the process showed in

Figure 2.2a. This time the PRS generated by LFSR is multiplied to the column length (N)

in order to keep the range of the indices (j) between 1 to N . In order to calculate the output

neuron using this architecture, the output of multiplication/accumulation should write and

store in the output buffer until the result for one input column is calculated which is referred

to the output neuron. This leads to the extra reads and writes to/from memory. The exact

number of memory reads from the input and the output buffer depend on the number of

multiply and accumulate units and also the model size.

LGPS with Column-wise indexing using Nested-LFSRs

To solve the problem of extra reads and writes in the aforementioned architecture, we

introduce a slightly modified architecture based on column-wise indexing to generate a

sparse network using nested-LFSRs. We call this LGPS-II. In this second methodology,

we introduce a column-wise indexing approach using one LFSR to generate indices in the

size of input column. Block-diagram of this approach is illustrated in Figure 2.2c. Column

indices are generated using the LFSR block 1 introduced in Figure 2.2a. The input seed

is generated randomly using LFSR block 2. The reason behind using LFSR block 2 is

to generate different input seeds for each column which cause different PRSs for each

column. This will help to preserve the rank of the sparse matrix during training. Finally,

the multiplication-accumulation of input and sparse weight matrix is performed column-

wise and the value of each output neuron is calculated without the need to store them in the

output buffer each time. The advantage of this approach is that it reduces the number of

read/write from/to the output memory. In addition, this approach aids parallel processing

as the indices for each column are generated in parallel and are uncorrelated to the others.

We can take advantage of this by distributing over multiple sub-arrays during inference.

16

Input
Vector

Input Buffer ∑
𝒙𝒊 𝑾𝑹

Output Buffer

Neuron
Output

Sparse Weight

Value (S)

𝑺𝒊𝒋

Sparse Index

(z)
Pointer (P)

(M·N/2·(1+α) Bytes)

(M·N·(1+α).(1-sp) Bytes)

∑Logic

(M Bytes)

(a) Baseline method.

Input
Vector

Input Buffer ∑
𝒙𝒊 𝑾𝑹

Output Buffer

Neuron
Output

Sparse Weight

Value (S)

𝑺𝒊𝒋

Selector
Block indices (I)

(M.N.B.(1-sp) Bytes)

Logic

((1-sp).M.N/B Bytes)

(b) CGS method.

Figure 2.3: High-level illustrations of DNN accelerator for inference. The architectures of
(a) baseline and (b) CGS method.

DNN accelerator for benchmarks

To accelerate the multiplication-accumulation of baseline algorithm, the weight matrix is

typically compressed to three vectors that should be saved in the memory (Figure 2.3a).

The first, a vector (S) consists of non-zero values of each column of weight matrix W .

The second, vector (z), that has equal length to vector S, which includes the addresses of

each entry in S. Third, a pointer vector (p) which keeps track of each column and points to

the beginning of each column’s vector, is used. In addition, the bit-width of each entry of

S and z is designed to be four-bit or eight-bits, which leads to additional memory usage,

17

since the index is represented in with a half-byte or one-byte resolution. We have denoted

this ratio parameter as α. For example, when using a four bit-width representation, if more

than 24 − 1 zeros appear before a non-zero entry, a zero is added to the vectors S and z.

This will result in a larger memory foot-print to store the sparse weight matrix.

The architecture of CGS method is demonstrated in Figure 2.3b where the sparse weight

matrix (S) and the addresses of the remaining blocks (I) should be stored in memory. The

size of the block size (B) is defined during training. As an example the block size B can

be 64 × 64. A selector and corresponding logic is required to choose the correct input for

multiplication to the sparse weights. The final benchmark, SIMD method, also stores the

sparse weight values, a vector containing the number of column for the first element of

each group and a vector containing the row index of the first non-zero element in each row.

2.3 Experimental Results

In this section, we present the experimental results of the algorithm and hardware imple-

mentation of LGPS-I and LGPS-II compared to the baseline, CGS and SIMD methods.

2.3.1 Benchmark Methods

We used three state-of-the-art pruning methods to compare the algorithmic results. In the

first method [12] (baseline), the connections that have the values less than a predefined

threshold are pruned. The threshold is determined by the standard deviation of the weights

multiplied by a set of hyper-parameters. We choose the hyper-parameters by trial and error

and this leads to fine-tuning of the level of sparsity. In the second methodology (CGS

method) [36], a pruning method is proposed to randomly drop the weights in a coarse-

grain block-wise basis. Note that all blocks along a row or a column should not be pruned

in order to keep all the neurons during training. We choose learning rate of 0.01 for training.

In the third method (SIMD) [53], the weight matrix is divided to groups of size two, and

the groups that have RMS less than a threshold are pruned away.

18

2.3.2 Simulation results for the proposed pruning algorithm

To demonstrate the effectiveness of our proposed methodologies, we evaluate the results

on both FC networks and CNNs using different datasets consists of MNIST, Cifar10 and

down-sampled ImageNet and ImageNet (original size). For FC networks, we have used

LeNet-300-100, and FC networks with different hidden layer sizes, we also utilized LeNet-

5 and VGG-16 as CNNs. It should be noted that in order to use downsampled ImageNet,

we modified the VGG16. Finally, we evaluate the pruning method on MobileNet, as an

example of a network that is designed to run on mobile devices, using original ImageNet.

Training step for each network is implemented on Tensorflow platform and carried out on

Nvidia GTX 1080 Ti GPUs. It should be noted that we mainly focused on pruning FC

layers’ weights as they consume the maximum amount of memory resources. Moreover,

there are fewer opportunities of effective hardware mapping of FC layer computations than

convolution layers [54]. As shown in Figure 1.1, large DNNs are over-parameterized;

this is mainly because of the large number of connections in fully connected layers of

these networks that do not contribute to an output activation. As an example, about 89%

of VGG-16 parameters are in the FC layers. The test accuracy, number of parameters

and the rate of compression of different networks including fully connected networks with

different hidden layers on MNIST dataset, LeNet-5 on MNIST, VGG-16 on downsampled

ImageNet and MobileNet on original ImageNet dataset are reported in Table 2.1. These

results show there are redundancy in number of parameters in neural networks and the

weights can be heavily pruned while preserving the accuracy. LeNet 300-100, LeNet-5

and modified VGG-16 can be compressed, while preserving the accuracy, compared to the

unpruned network by 11×, 12× and 7×, respectively. We also evaluated our method on

MobileNet which is designed for mobile applications and has significantly reduced number

of parameters. We have achieved 1.34× compression rate on this network.

19

Table 2.1: Number of parameters, pruning (using LGPS method) and reference accuracy
and rate of compression for different networks.

Network Error Parameters Compression Rate
LeNet-300-100 Unpruned 4.1% 267K

LeNet-300-100 Pruned 4.3% 24K 11×
FC-512-512 Unpruned 2.7% 669K

FC-512-512 Pruned 2.8% 67K 10×
FC-256-256 Unpruned 2.9% 668K

FC-256-256 Pruned 3.1% 66K 10×
LeNet-5 Unpruned 1.5% 431K

LeNet-5 Pruned 1.6% 35K 12×
Modified VGG-16 Unpruned 48.6% 23M

Modified VGG-16 Pruned 50.1% 3.3M 7×
MobileNet Unpruned 40.5% 4.24M

MobileNet Pruned 43.1% 3.17M 1.34×

Results on MNIST Dataset

In this section we have demonstrated the pruning results of various ANNs on MNIST.

Figure 2.4 illustrates the accuracy (mean ± std) of our pruning algorithms, LGPS-I and

LGPS-II on MNIST dataset for 10 trials. We evaluated them on two different networks

including LeNet-300-100 and LeNet-5. The first network, LeNet-300-100, is a fully con-

nected network with two hidden layers of length 300 and 100 neurons each. The second

one, LeNet-5, is a convolutional neural network with two convolutional layers followed by

two fully connected layers of sizes 120 and 84 neurons. The results show that our pruning

method can prune the networks more that 90% while preserving the accuracy. In addition,

LGPS-I and LGPS-II perform equally well for both networks and different sparsity lev-

els. As such, for the software evaluations of our method, we just present the results for

LGPS-I. LGPS-II shows similar algorithmic results. This is because the LFSR generated

random numbers maintain the rank of the connectivity matrix, which in turn preserves the

expressibility of the matrix [55]. To evaluate this property, we compare the ranks of the un-

pruned networks, LGPS, baseline (threshold pruning) and CGS method using block size of

64× 64. The results for 40%, 75% and 95% sparsity rate demonstrated in Table 2.2. Based

20

40 50 60 70 80 90
Sparsity (%)

(a)

85

90

95

100

A
cc

u
ra

cy
 (

%
)

std 1
LGPS-I
std 2
LGPS-II

40 50 60 70 80 90
Sparsity (%)

(b)

85

90

95

100

A
cc

u
ra

cy
 (

%
)

std 1
LGPS-I
std 2
LGPS-II

Figure 2.4: The accuracy (mean± std) vs sparsity percentage of LGPS-I and LGPS-II on
MNIST dataset for 10 trials and two networks: (a) LeNet-300-100 and (b) LeNet-5.

on our observation, rank of the weight matrix does not get affected by pruning the networks

using our hardware-aware methodology. In fact, the proposed method preserve the rank of

weight matrix closer to the dense matrix (before pruning). Therefore, we conclude that the

expressibility of the weight matrices as well as the overall accuracy of the ANNs remain

unchanged. However, ranks of matrices in baseline and CGS method have drastically re-

duced. The reason behind this reduction is that in the baseline, the lower weights’ value that

have been pruned are mainly belong to the border of the image as the handwritten letters in

MNIST dataset where positioned in the middle of the image. In addition, in CGS method,

dropping the weights in a block-by-block basis reduces the rank reduction, in particular for

higher levels of sparsity.

21

Table 2.2: Rank of fully connected layers of a fully connected (FC) network with two
hidden layers of size 512 each and LeNet-5 on MNIST in three different sparsity rates of
unpruned network, LGPS-II, baseline and CGS method (with block size: 64×64). (LGPS-I
gain similar results as LGPA-II).

Network FC
Network

LeNet-5

Sparsity
Hidden Layer

H1 H2 H3 H1 H2 H3

Unpruned Network 512 512 10 120 84 10

L
G

PS
-

II

40(%) 512 512 10 120 84 10
75(%) 512 512 10 120 83 10
90(%) 512 512 10 119 82 10

B
as

e-
lin

e

40(%) 256 238 10 67 46 10
75(%) 210 191 10 44 27 10
90(%) 216 179 10 39 20 10

C
G

S 40(%) 512 512 10 120 84 10
75(%) 464 448 10 120 76 10
90(%) 272 192 10 74 76 10

Moreover, the proposed method is evaluated based on different regularization parame-

ters (λ) to find the best λ to prune the network while preventing over-fitting. We choose

different λ values equal to .1, 2 and 10 to evaluate the effects of L2 regularization on net-

work pruning with and without retraining. Based on the results (Figure 2.5), we choose a

medium value of λ = 2 for an optimal trade-off between the rate of pruning and preventing

over-fitting. Lower values of λ cause the network to over-fit while a faster pruning rate that

uses a higher value of λ reduces test accuracy. It should be noted that LGPS-II is shown

the similar results. In addition, we investigate the effects of L1 and L2 regularization on

pruning (Figure 2.6). We chose L2 regularization to prune the networks because it shows

better performance with retraining step.

Results on Cifar10 and ImageNet Datasets

Cifar 10 is a set of images with 10 different classes. The results of LeNet-5 on Cifar10 for

our method in comparison with the baseline is demonstrated in Figure 2.7c. The results

demonstrates that LGPS-I can achieve the same result as baseline even in more complex

22

40 50 60 70 80 90 100
Sparsity (%)

-60

-50

-40

-30

-20

-10

0

A
cc

u
ra

cy
 e

rr
o

r
(%

)

 = 0.1, w/o retrain

 = 2.0, w/o retrain

 = 10, w/o retrain

 = 0.1, w retrain

 = 2.0, w retrain

 = 10, w retrain

Figure 2.5: The comparison between different regularization parameters (λ) for LGPS-I
with/without retraining.

datasets. Also, the baseline method has higher standard deviation compared to LGPS-I in

5 trials. LGPS-II also achieved no accuracy loss during pruning up to 90% sparsity rate.

The last dataset that we evaluate our method is the ImageNet dataset [45]. This dataset

contains 1000 different classes. The only pre-processing that we have done on this dataset

is a single crop with no rotation and we have not performed any other pre-processing or

augmentation. The largest batch size, 32 images/batch, used for implementation. We tested

MobileNet [56] on ImageNet dataset and the result of accuracy in different sparsity rates of

the FC layer illustrates in Figure 2.7e. Finally, we tested our method on VGG-16 network

which is a large and complex network. ImageNet dataset is used but initially down-sampled

it to 64 × 64 [57]. The reason that we used down-sampled ImageNet is that the network

is converged faster since the images are smaller. Second, to show that the pruning method

is also work on low resolution images which is sometimes the case in the captured images

from edge devices. It should be noted that, in order to fit to the spatial size (i.e. 64 × 64)

of down-sampled ImageNet, we have modified VGG-16 by just changing the FC layer

size to 2048 and eliminating the last pooling layer. This is due to the fact that the feature

23

75 80 85 90 95
Sparsity (%)

-15

-10

-5

0
A

cc
u

ra
cy

 e
rr

o
r

(%
)

L1 regularization, w/o retrain
L1 regularization, w retrain
L2 regularization, w/o retrain
L2 regularization, w retrain

Figure 2.6: The comparison between L1 and L2 regularization methods with/without re-
training for LGPS-I.

size should maintain enough spatial coverage before each pooling layer. The results are

illustrated in Figure 2.7d which demonstrate that the proposed pruning method based on

LFSR indexing can prune the network while preserving the accuracy as the level of sparsity

changes.

In addition, we compare the accuracy of LGPS-I with CGS method on different net-

works including MNIST on FC network with two hidden layers of size 512 (Figure 2.8a),

Cifar10 on LeNet5 (Figure 2.8b) and VGG16 on downsampled Imagenet (Figure 2.8c). The

results of CGS method different block sizes from 1× 1, 2× 2, etc, on MNIST and Cifar10

datasets show that as the size of blocks increases, the accuracy drops. The results demon-

strate that LGPS can preserve the accuracy better in different sparsity rates. In addition, the

results of LGPS-I compared to SIMD method is demonstrated in Figure 2.9. LGPS-I can

preserve the accuracy in different sparsity rates in comparison to SIMD method. LGPS-II

shows similar algorithmic results as well, for example, it achieved 98.2% accuracy in 90%

sparsity rate when using LeNet-5 network on MNIST.

24

40 50 60 70 80 90

-10

-5

0

5

E
rr

o
r

(%
)

std for LGPS-I
LGPS-I
std for baseline
Baseline

(a) LeNet-300-100 on MNIST

40 50 60 70 80 90

-10

-5

0

5

E
rr

o
r

(%
)

std for LGPS-I
LGPS-I
std for baseline
Baseline

(b) LeNet-5 on MNIST

40 50 60 70 80 90

-10

-5

0

5

E
rr

o
r

(%
)

std for baseline
Baseline
std for LGPS-I
LGPS-I

(c) LeNet-5 on Cifar10

40 50 60 70 80 90

-10

-5

0

E
rr

o
r

(%
)

std for LGPS-I
LGPS-I
std for baseline
Baseline

(d) Downsampled ImageNet on VGG-16

40 50 60 70 80 90
Sparsity (%)

-10

-5

0

E
rr

o
r

(%
)

std for baseline
Baseline
std for LGPS-I
LGPS-I

(e) ImageNet on MobileNet

Figure 2.7: Accuracy error (%) of LGPS-I in comparison with the baseline method on
different sparsity rates. LGPS-II shows similar algorithmic results as well.

2.3.3 Comparison of Hardware Implementation in 65nm CMOS

In this section, the results of hardware implementation for the baseline and LGPS-I and

LGPS-II are demonstrated to estimate key hardware metrics. The baseline and LGPS-I,

LGPS-II and CGS architectures have been synthesized using 65nm CMOS technology.

The hardware accelerators are synthesized with Synopsis Design Compiler. The measure-

ments are combinations of synthesized module results and calculations. To make fair com-

parisons, only single MAC unit computation and full-on-chip SRAM architecture are im-

plemented. Table 2.3 represents the implementation parameters. Memory bank sizes are

different sizes of synthesized SRAM. The on-chip SRAM can be much larger than these

sizes by having more of them. The pre-layout analysis shows that the required memory-

25

40 50 60 70 80 90
Sparsity (%)

75

80

85

90

95

A
cc

u
ra

cy
 (

%
)

CGS, 1 1
CGS, 2 2
CGS, 4 4
CGS, 8 8
CGS, 16 16
CGS, 32 32
CGS, 64 64
CGS, 128 128
LGPS

(a) FC network on MNIST

40 50 60 70 80 90
Sparsity (%)

30

35

40

45

50

55

60

A
cc

u
ra

cy
 (

%
)

CGS, 1 1
CGS, 2 2
CGS, 4 4
CGS, 8 8
CGS, 16 16
CGS, 32 32
CGS, 64 64
LGPS

(b) LeNet-5 on Cifar10

40 50 60 70 80 90
Sparsity (%)

30

35

40

45

50

A
cc

u
ra

cy
 (

%
)

CGS, 2 2
CGS, 64 64
LGPS

(c) VGG16 on downsampled ImageNet

Figure 2.8: Accuracy error (%) of LGPS-I in comparison with the CGS method on different
sparsity rates and block sizes (CGS, block size). LGPS-II shows similar algorithmic results.

footprint of LGPS-I can be reduced by 1.51× to 2.80× compared to the baseline method.

The results for the baseline method with 4, 6 and 8 bit-width representation of the index

and the proposed LFSR-based indexing are illustrated in Figure 2.10. It should be noted

that LGPS-II shows similar results in terms of required memory as well. In addition, the

comparison between the required memory of LGPS-I and CGS method with four different

block sizes are illustrated in Figure 2.11. The index bit-with are chosen to be 8 bit. The

results show that LGPS-I requires 2×, 1.2×, 1.07× and 1.002× less memory compared to

the CGS with 1 × 1, 2 × 2, 4 × 4 and 64 × 64 block sizes, respectively. Although the

required memory of LGPS-I and CGS with block size 64 × 64 are very close, CGS could

not preserve the accuracy in higher block sizes (Figure 2.12). The comparison between

the accuracy versus the total required memory of LGPS-I, baseline and CGS is shown in

Figure 2.12. The memory calculation is done on (a) fully connected network with two

26

40 50 60 70 80 90
Sparsity (%)

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

SIMD, LeNet-5
LGPS-I, LeNet-5
SIMD, VGG-16
LGPS-I, VGG-16

Figure 2.9: Accuracy of LGPS-I and SIMD for LeNet-5 on MNIST and modified VGG-16
on downsampled ImageNet in different sparsity rates.

hidden layers of 512 neurons each on MNIST and (b) the modified VGG-16 network on

downsampled ImageNet with 23M parameters.

In addition to memory measurement, the overall system (memory, multiplier, accumu-

lator and input/output buffers) parameters consists of area and power of the two proposed

architecture in comparison to baseline, CGS and SIMD methods are also measured. For

CGS method, we chose block size of 4×4 as it shows close accuracy percentage compared

to LGPS. Figure 2.13 illustrated the area measurements for three different networks includ-

Table 2.3: Hardware Parameters.

Technology Node TSMC 65nm
Supply Voltage 1V

Datapath Bitwidth 8b
Index Bitwidth 4b, 8b

Clock Frequency 1GHZ
Memory Bank Size 256B, 512B, 1KB, 4KB

27

40 50 60 70 80 90
Sparsity (%)

106

107

T
o

ta
l r

eq
u

ir
ed

 m
em

o
ry

 (
B

yt
es

) 4b indexing, baseline
6b indexing, baseline
8b indexing, baseline
LGPS

8b: 2.06x
6b: 1.82x
4b: 2.80x

8b: 2.01x
6b: 1.74x
4b: 1.51x

Figure 2.10: Total memory required for baseline method (contains indices, pointer and
overhead) and LGPS-I for 4, 6 and 8 index bit precision with different sparsity levels.
Vertical axis is in Logarithmic scale. LGPS-II shows similar algorithmic results as well.

ing LeNet-300-100, LeNet-5 and modified VGG-16 at 4 and 8 bit-width index precisions.

The results demonstrate that LFSR based indexing has considerable advantages over base-

line method in terms of area saving. Our proposed method can save up to 50% area even

in large and complex network like modified VGG-16. Figure 2.14 illustrates an example

of the breakdown of area among memory, index vs. logic, for LGPS-II, and baseline and

CGS method on Lenet300-100 network with 90% sparsity.

The power measurements of the three networks are also demonstrated in Figure 2.15

and a maximum of 37.03% power savings across various sparsity rates and indexing bit-

widths are reported. Although significant power savings are reported for both of our pro-

posed methods, it should also be noted that in some of the cases (Figure 2.15, a,b and c)

of the LGPS-I, the measured power in slightly higher than the baseline. This is because

28

40 50 60 70 80 90
Sparsity (%)

106

107

T
o

ta
l r

eq
u

ir
ed

 m
em

o
ry

 (
B

yt
es

)

LGPS
CGS, 1 1
CGS, 2 2
CGS, 4 4
CGS, 64 64

CGS, 1 1: 2x
CGS, 2 2: 1.2x
CGS, 4 4: 1.07x
CGS, 64 64: 1.002x

Figure 2.11: Total memory required for CGS method for different block sizes (contains
indices, pointer and overhead) and LGPS-I with different sparsity levels. Vertical axis is in
Logarithmic scale. LGPS-II shows similar algorithmic results as well.

row/column LFSR indexing introduces additional output buffer access (2 cycle read and 1

cycle write) which increases the power usage. This additional numbers of read and write

are calculated and included in our design and results. We address this problem by intro-

ducing LGPS-II. In this case, we reduce the number of read and write to/from memory

by performing the multiplication/accumulation for each column and then saving the final

result in the memory, which reduces the power consumption significantly. We also evalu-

ate the execution time of LGPS-I and LGPS-II with respect to the baseline method during

inference. The relative execution time of overall systems on LeNet-300-100, LeNet-5 and

modified VGG-16 at sparsity rate of 90% and 4 bit-width indexing precision is illustrated

in Figure 2.16. The results shows that our methods improve the execution time. LGPS-

II is 1.53× faster that the baseline pruning method. In addition, we evaluate the latency

29

105 106

Total required memory (Bytes)

88

90

92

94

96

A
cc

u
ra

cy
 (

%
)

LFSR
Baseline
CGS, block size 2 2
CGS, block size 4 4
CGS, block size 64 64

Decreasing sparsity

(a) FC network on MNIST

106 107

Total required memory (Bytes)

35

40

45

50

A
cc

u
ra

cy
 (

%
)

LGPS
Baseline
CGS, block size 2 2
CGS, block size 64 64

Decreasing sparsity

(b) VGG-16 on downsampled ImageNet

Figure 2.12: Accuracy vs total memory required for baseline method (contains indices,
pointer and overhead), LGPS-I and CGS method for 8-bit index precision with different
sparsity levels on (a) fully connected network with two hidden layers of size 512 each and
MNIST dataset, (b) modified VGG-16 on downsampled ImageNet. Markers from right to
left on each line are related to 30, 40, 50, 60, 70, 80, 90, 95% sparsity rates. LGPS-II shows
similar algorithmic results as well.

Table 2.4: Measured Latency (ms) of the overall system for our LGPS-I, LGPS-II, baseline
and CGS.

Sparsity
Network

LeNet-300-100 LeNet-5 modified VGG-16

L
G

PS
-

I

40% 0.95 0.20 82.8
75% 0.39 0.08 34.5
90% 0.15 0.03 13.8

L
G

PS
-

II

40% 0.63 0.14 55.2
75% 0.26 0.05 23.0
90% 0.10 0.02 9.21

B
as

el
in

e
M

et
ho

d 40% 0.81 0.18 69.1
75% 0.34 0.07 29.1
90% 0.17 0.04 14.1

C
G

S 40% 0.65 0.15 56.1
75% 0.28 0.06 23.6
90% 0.56 0.03 11.1

(in ms) and performance (number of frames processed per second) of the two proposed

architecture, the baseline and CGS. The results are shown in Table 2.4 and Table 2.5.

30

Figure 2.13: The measured area (mm2) of the overall systems consists of accumulator, mul-
tiplier, and input/output buffers for baseline method, LGPS-I and LGPS-II, CGS (block size
4 × 4) and SIMD. Measurements performed for three different networks (LeNet-300-100,
LeNet-5 and modified VGG-16) at various sparsities and 4-8 bit-width indexing precision.

Table 2.5: Measured performance (number of frames processed per ms) of the overall
system for LGPS-I, LGPS-II, baseline and CGS.

Sparsity
Network

LeNet-300-100 LeNet-5 modified VGG-16

L
G

PS
-

I

40% 1.05 5.0 0.012
75% 2.56 12.5 0.028
90% 6.66 33.3 0.072

L
G

PS
-

II

40% 1.58 7.14 0.018
75% 3.84 20 0.04
90% 10 50 0.11

B
as

el
in

e
M

et
ho

d 40% 1.23 5.55 0.01
75% 2.94 14.28 0.03
90% 5.8 25 0.07

C
G

S 40% 1.53 6.66 0.017
75% 3.57 16.6 0.04
90% 1.78 33.3 0.09

31

CGS

4%

91%

5%

Baseline
3%

64%

33%

Logic Weight Index

LGPS-II

5%

95%

< 1%

Figure 2.14: An example of the breakdown of area among memory, index vs. logic, for
LGPS-II, and baseline and CGS method on Lenet300-100 network with 90% sparsity.

2.4 Conclusions

We propose LGPS a DNN accelerator for sparse network generated by LFSR-based in-

dexing. We investigate the performance of two different LFSR-based indexing methods

including row/column wise indexing (LGPS-I) and column-wise nested-LFSR based in-

dexing (LGPS-II). The advantage of our proposed LFSR-based pruning is that we solve

the problem of irregular sparse network and we no longer need to store the address of the

unpruned weights. The propose method enables us to deploy large DNNs on inference and

edge devices due to the significant reduction both in memory foot-print and access energy.

We have shown that LGPS can preserve the accuracy while pruning DNNs, and can achieve

a maximum of 37.35% power saving and 49.84% area saving across varying sparsity rates.

Smaller machine learning models are easy to deploy [13]. In this work, we show that the

proposed methods can prune a large class of neural network models and drastically reduce

their size compared to the sate of the art. This facilitates deployment of the models as well

as the memory required to store the model on the edge devices. For example, Figure 2.12

shows the advantage of LGPS as we can compress LeNet-300-100 and modified VGG-16

to less than 1MB and 100MB storage memory, respectively. We expect such techniques to

be practical solutions towards deploying ML models on the edge.

32

Figure 2.15: The measured power (W) of overall systems consists of accumulator, multi-
plier, and input/output buffers for baseline method, LGPS-I and LGPS-II, CGS (block size
4× 4) and SIMD methods methods.Measurements performed for three different networks
(LeNet-300-100, LeNet-5 and modified VGG-16) at various sparsity and 4-8 bit-width in-
dexing precision.

33

1 1
.0

4

 1
.5

5

1 1
.0

4

 1
.5

4

1 1
.0

2

 1
.5

3

LeNet-300-100 LeNet-5 VGG-16

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
el

at
iv

e
E

xe
cu

ti
ve

 t
im

e

Baseline LGPS-I LGPS-II

Figure 2.16: The relative execution time of overall systems during inference of LGPS-I
and LGPS-II with respect to baseline method on LeNet-300-100, LeNet-5 and modified
VGG-16 at sparsity rate of 90% and 4 bit-width indexing precision.

34

CHAPTER 3

NETWORK-LEVEL SPARSITY AND QUANTIZATION FOR ULTRA-LOW BIT

PRECISION

In this chapter, we proposed Sparsified Knowledge Distillation and gradual Quantization

(SKG), a method to jointly sparsify and quantize DNN models to ultra-low bit-precision

using Knowledge Distillation and gradual quantization (SKG).

3.1 Introduction and Motivation

DNN compression techniques such as pruning [22] and quantization [47] offer solutions to

enable DNNs to be run on the edge devices. Several works in the literature focus on quan-

tization methods for DNN compression [47]. Low-precision operation reduce the required

memory size and computation while achieving analogous accuracy to the floating point

computation [44]. The multiply-and-accumulate (MAC) operations in quantized network

can be then replaced by simple bit-wise operations cause huge reductions in computations

and required energy. Eventually, quantization enhances the energy efficiency and speed

up the computation during inference. On the other hand, information loss and significant

accuracy drop incur as a result of quantization to lower precision numbers [44], especially

in complex data like ImageNet. The goal is to quantize the network while achieving com-

parable accuracy as the original network with floating point operation.

In this work we have utilized Knowledge Distillation (KD) which is a method to transfer

knowledge from another pre-trained network as a teacher to a target student network, letting

the student network to mimic the teacher network performance [58]. KD can be used

as the DNN compression technique, for instance, to better prune the network [58]. [59]

transformed knowledge from multiple teacher. [60] leveraged KD method and Kullback-

Leibler (KL) divergence as the loss function for quantization. To tackle the problem of

35

training DNNs with low-precision, [61] transfer the knowledge from the feature map and

the logits output to better train the network. PQK method pruned and quantizad the network

at the same time in an interactive manner [62] while in our paper, we prune and quantize

the network in the separate steps.

we propose a method to jointly prune and quantize the model to ultra low bit-width,

allowing DNNs to run on the power and battery constrained edge devices. The method has

three steps including: (1) pruning (2) quantization using KD and (3) gradual quantization to

lower bit precision. During inference, we also use both traditional CMOS based accelerator

and CIM architecture for comparison. We train the pruned network while gradually reduces

the bit-precision using KD, and demonstrated that we can preserve the accuracy better in

very low bit precision.

3.2 SKG: Towards Energy Efficient DNN accelerator via Sparsified Gradual Knowl-

edge Distillation

The SKG method illustrated in Figure 3.1 consisting of three steps: pruning, gradual quanti-

zation and knowledge distillation scheme to achieve an ultra-low bit-precision DNN model.

The goal is to achieve an energy-efficient computation while preserving the accuracy dur-

ing inference. The training starts with the initialization using a full precision (i.e. float-32)

pre-trained model. In this work, we used both pruned and unpruned network for the full

precision network. For pruning, we have utilized a threshold based method as explained in

[12] to sparsify the full precision network. In the next step, the network is quantized to n-

bit fixed-point precision (e.g. 8-bit) during training using knowledge distillation to achieve

similar accuracy. Next, the model with quantized weight and activation is saved as the pre-

trained model for the lower bit precision training. This process is continued to decrease the

bit-width gradually one by one until the result for the desired lowest bit-precision (e.g. 2-

bit) is achieved. The goal is to quantize the network gradually to gain higher accuracy and

compensate for the loss of information as a result of ultra-low bit quantization. We used

36

Inference

Float-32

Pre-trained Network
As N bit precision

TrainingInitialization
Pruned or Unpruned

Network

N-1 bit precision

𝑋𝑞

𝑊𝑞

𝑋

𝑊

Quantization using
KD, N-1 bit precision

Hardware Architecture

𝑌

𝑌

𝑀𝑆𝐸 𝐿𝑜𝑠𝑠

T
ea

ch
er

St
u

d
en

t
Logits layer

Figure 3.1: An overview of the proposed method consisting of pruning, knowledge dis-
tillation (KD) and gradual quantization steps for DNN compression during training. The
quantized weight and activation will then be used during inference to increase the energy
efficiency of the system while preserving the accuracy.

uniform and power-of-two (PoT) quantization methods in this paper but other methods of

quantization can be applied. During inference, we also utilized traditional CMOS and CIM

architectures to evaluate and compare the energy efficiency of the system.

3.2.1 Preliminaries

To quantize the model, suppose W ∈ RCout×Cin×k×k is a 4D tensor representing a convo-

lutional layer’s kernels, where Cout and Cin and k are the number of output channel, input

channels and the kernel size, respectively. We can define the weight quantization formula

[47] as follow:

Wq = αΠQ(1,b)⌊
W

α
, 1⌉, (3.1)

where b is the bit-precision, α is the scaling factor and the scaling function ⌊., 1⌉ scales the

weights to the range of [−1, 1]. Then, the scaled W is projected by Π(.) in an element-wise

manner to the defined quantization levels, Q(1, b).

For uniform quantization, QU(1, b) defines as Equation 4.3. Moreover, PoT quan-

tization (Equation 4.4) quantized the networks by constraining quantization levels to be

powers-of-two values or zero.

37

QU(1, b) = {0, ±1

2b−1 − 1
,

±2

2b−1 − 1
, ...,±1}, (3.2)

QPOT (1, b) = {0,±2−2b−1+1,±2−2b−1+2, ...,±1}, (3.3)

Quantization maps each element of the full precision weight matrix to a b bit-width

fixed-point representation. The result of convolution against quantization level is then re-

scaled by multiplying to the scaling factor (α). α is generally a floating-point number [47].

However, in this paper, we round it to the nearest int8 power of two number to have fully

fixed-point computation during inference.

During backward path, the modified version of Straight-Through Estimator (STE) [63]

is adopted for the projection operation [47]. The gradients of α are calculated as bellow:

∂Wq

∂α
=

sign(W) if |W | > α

ΠQ(1,b)
W

α
− W

α
if |W | ≤ α

(3.4)

After quantization, the arithmetical calculation of DNN models can be performed in an

on-chip system with low-precision fixed-point operations, which is much more efficient in

terms of the required memory and energy than their floating-point equivalent[64].

3.2.2 Knowledge Distillation and Gradual Quantization

We explore the idea of KD and gradual quantization for a pruned full-precision network.

Knowledge distillation are mainly divided into three types [65]: relation-based knowl-

edge, feature-based knowledge and response-based knowledge. In this work, we apply

the response-base knowledge where the network is learned to use quantized weights and

activation using KD during training while using the logits layer values of a higher-precision

network as the ground-truth (Figure Figure 3.1). First, we use both pruned and unpruned

full-precision (float-32) model as a pretrained model. The pruning is performed using a

38

threshold based method as explained in [12] where the weights less than a defined thresh-

old are removed during the training. Since the value of pruned weights are zero, they

remain zero during quantization in the forward path. We also applied a mask to make

sure the percentage of pruning remain the same until the end of gradual quantization. We

then use the last activation of the full-precision network as the ground-truth and teacher to

quantize the lower precision like 4-bit as the student network. For KD method, minimum

square error (MSE) is used as a loss function, L, as shown in Equation 3.5, where Y and Ŷ

are the last logits layers of the original full-precision network and the quantized network,

respectively.

L(Y, Ŷ) = (Y − Ŷ)2 (3.5)

Afterward, the final model with 4-bit precision is saved and used as the pre-trained

model for training the network with 3-bit precision. We continue this gradual reduction in

bit-precision until we reach the target bit-precision, for example 2-bit precision. It should

be mentioned that we quantize all the layers of the network except the last layer and both the

weight and activation to the desired bit-width. Last layer is quantized to 8-bit precision as it

is used for classification. The reason of using gradual quantization is that if we quantize the

network from full-precision to the target low bit-precision, the accuracy drops drastically

because of losing huge information. However, using gradual quantization, we can better

preserve the accuracy for lower bit-precision like 4 or 2 bit-precision.

3.2.3 Hardware

In this paper, we used two different hardware architectures, CIM and 65nm conventional

CMOS technology, during inference to evaluate the energy efficiency. CIM architecture

utilizing resistance of memory cells is illustrated in Figure 4.3 where a memory cell itself

serves as a PE and memory simultaneously. The memory cell holding the weights as the

resistance generates the current which is the result of bit-wise multiplication between the

39

(a) CIM architectures exploiting resistance of memory cells.

(b) The hardware architecture for sparse DNN computation using a conventional 65nm CMOS and
the its characteristics.

Figure 3.2: The high-level hardware architectures of CIM and conventional CMOS for
inference.

inputs and weights. Then, currents are summing up as a result of a current-summing BL

structure in a memory array. Therefore, the intermediate data are accumulated immediately.

As a result, an energy-efficient architecture is achieved especially for deep learning com-

putations. In particular, the CIM architectures utilizing emerging memory such as RRAM

have achieved importance in performing energy-efficient computing thanks to its inherent

multiply-and-accumulate (MAC) functionality in BL structures, non-volatility and com-

patibility to CMOS process. In this work, we utilized the voltage-sensing multi-bit RCIM

architecture proposed in [66, 67]. The detailed description of the architecture is explained

in [67]. In this architecture, a 2-bit encoding is employed where with the 2-bit-encoded

RRAM cells (11, 10, 01, and 00) and the ADC-based readout circuits, the measured energy

40

per bit during CIM is 0.83, 0.47, 0.28, and 0.15 pJ/bit, respectively. We have used these

actual measurements to estimate the required energy of the networks.

The proposed method also synthesized with 65nm CMOS technology to measure hard-

ware metrics. Implementation parameters are shown in Figure 3.2b. In this architecture,

the sparse weight matrix is compressed in three vectors and saved in the memory: (1)

the non-zero values of the weights (S), (2) location of the non-zero weights (I) and (3) a

pointer vector to point to the start of each column in the weight matrix (P). In addition to

the mentioned three vectors, each entry bit-width of S and I is designed to be equal to the

bit-precision, and additional memory usage ratio resulted from limited index representation

is denoted by β [3, 43].

3.3 Experimental Results

In this section, we validate our proposed method, SKG, on ResNet-18 network and ImageNet-

ILSVRC2012 dataset with 1000 classes [45]. ImageNet dataset consists of 1.2M training

and 50K validation images. Before starting the training step, the images are randomly

cropped and resized to 224×224. Apart from a single crop and normalization, we have

not done any other pre-processing on images. The original full-precision ResNet model

is implemented using PyTorch official implementation and initialized from the released

pre-trained model. The results have compared with various baseline methods including

uniform quantization, PoT quantization, additive powers-of-two (APoT) [47] and XNOR-

Net [68]. Training is carried out on Nvidia GTX 1080 Ti GPUs. In this paper, we quantize

both weight and activation with the same method to the target bit-precision for all the layers

except the last layer of the network to gain fully quantized DNNs. Like other baseline meth-

ods, the last layer is quantized to 8 bit-width since it is used for classification. Moreover,

stochastic gradient descent (SGD) with the momentum of 0.9 is employed for parameter

optimization. MSE (Equation 3.5) is also applied as the loss function for KD method be-

tween Y, the last logits layer of the original full-precision network, and Ŷ the last logits

41

Figure 3.3: Accuracy vs bit-width (4-2 bits) for uniform and PoT method with KD and
gradual quantization and baseline methods including APoT and XNOR-Net with FL32 as
the pre-trained model on ResNet-18 and ImageNet dataset.

layer of the quantized network.

In the proposed method, we start with training a ResNet model on Imagenet using

float-32 format as a pre-trained and teacher network. Instead of using the Imgenet labels,

we utilized the last logits layer of the original full-precision network as the teacher and

ground-truth. In this work, both pruned and unpruned networks are utilized as the teacher

network. Since the edge devices are resource constrained in terms of battery and energy,

the pruned network as the teacher can help to further compress the DNN models. As

illustrated in Figure 3.2, multiplying to the sparse wight matrix (i.e. zero values) decrease

the energy consumption [3]. Specifically, in CIM architecture, the weight values with more

zeros in their binary representations are desirable since multiplying to the bit with zero

value requires 6x less energy. Therefore, sparsifying the network will help to decrease the

energy consumption during inference. Eventually, the goal is to quantize the network to

ultra-low bit-precision as a student network using a KD technique and gradually decrease

42

the bit-precision.

First, we compare the accuracy of the proposed method with different baseline meth-

ods including APoT, XNOR-Net. First we evaluated our method using an original ResNet

model with no pruning. We implement KD and gradual quantization method on two com-

monly used quantization method, (1) uniform quantiozation and (2) PoT, and quantize

them gradually to the lower bit precision by using the model from the previous bit-width as

the pre-trained model and its last logits layer as the ground truth. The two state-of-the-art

baseline methods (APoT and XNOR-Net) are quantize using FL32 model as the pre-trained

network. XNOR-Net is the method for 2-bit quantization. Therefore, XNOR-Net result is

just presented for 2 bit-width. The results for 4, 3, 2 bit-width, illustrated in Figure 3.3

show that our proposed method helps the network to preserve the accuracy for ultra low

bit-widths.

To show the effectiveness of gradual quantization, for 8-bit to 2-bit precision is imple-

mented using ResNet-18 on Imagenet dataset. We then compare the accuracy for different

bit precision with the accuracy of a network trained and quantized to different bit preci-

sion using fl-32 network with no pruning as the pre-trained model. Figure 3.4 illustrates

the accuracy vs bit-width from 8-bit to 2-bit for the proposed method and the baseline

using uniform quantization. No gradual quantization is applied for the baseline method.

As demonstrated, gradual quantization can preserve the accuracy better for lower bit pre-

cision. The accuracy for 5, 4, 3, 2 bit-widths are 69.14%, 68.41%, 64.52%, 60.34%, re-

spectively. While the accuracy for the mentioned bit-widths for the baseline method are

67.81%, 60.11%, 58.31%, 40.51%, respectively, which are lower than the accuracy of our

proposed method.

Moreover, we explored the idea of pruning and quantization to increase the energy

efficiency by removing unimportant connections and quantize the rest to the ultra-low bit

precision. To do so, we start with a pruned original float-32 ResNet-18 model and used

that as the ground-truth for KD method to train a network with 4-bit precision. Next, the

43

Table 3.1: The accuracy for our method and a baseline method for different sparsity per-
centage.

Method Our method baseline

Sparsity
Bit-width

4-bit 3-bit 2-bit 4-bit 3-bit 2-bit

40% 68.2 64.7 59.1 64.5 56.2 51.2
70% 68.5 63.1 57.9 63.4 53.2 50.6
90% 67.2 61.2 60.9 54.9 51.2 48.7

last logits layer of the trained 4-bit network is utilized as the label to train the network

with 3-bit precision and so on. Table 3.1 shows that our method gains higher accuracies in

different sparsity rates and bit-precision. For example, in 70% sparsity rate, SKG achieves

68.5%, 63.1% and 57.9% accuracy in 4-bit, 3-bit and 2-bit precision, respectively.

Moreover, we compared the required energy to run our method for different sparsity

rates and bit-precision based on CIM and 65nm CMOS architecture illustrated in Fig-

ure 3.2. We have used the actual measurement to estimate the total energy required in

CMOS and CIM architectures. The results are demonstrated in Table 3.2. The estimated

energy for CIM includes the RRAM array, the ADC, the controller, and other peripheral

circuits except for the voltage reference (VREF) generator, and for CMOS architecture in-

cludes memory, multiplier, accumulator and input/output buffer. In the CIM architecture, a

2-bit encoding is employed where with the 2-bit-encoded RRAM cells (11, 10, 01, and 00)

and the ADC-based readout circuits, the measured energy per bit during CIM is 0.83, 0.47,

0.28, and 0.15 pJ/bit, respectively. We have used these actual measurements to estimate

the required energy of the networks with different sparsity rates. The result shows that the

energy consumption estimated using CIM architecture are lower than traditional CMOS

architecture.

Since CIM architecture achieved lower required energy, we compare the energy con-

sumption of SKG and baseline method using only the 2bit/cell RRAM based CIM architec-

ture during inference (Figure 3.5). The results show that SKG with PoT method and gradual

quantization can achieve the best accuracy while consuming the least energy among other

44

Table 3.2: The energy (J) of our proposed method for different sparsity percentage using
CIM and CMOS architectures.

Method CIM 65nm CMOS

Sparsity
Bit-width

4-bit 3-bit 2-bit 4-bit 3-bit 2-bit

40% 204.5 150.2 55.6 551.3 412.8 338.4
70% 156.2 98.5 42.8 477.9 364.1 251.7
90% 102.6 65.1 29.4 328.2 218.9 158.1

methods for ultra-low bit precision. The energy saving of gradual PoT quantization com-

pare to the APoT for 4, 3 and 2 bit-width are 75.98%, 86.96% and 21.97%, respectively.

3.4 Conclusion

Using powerful DNN algorithm on the resource constrained edge devices requires us to

develop compression techniques to make efficient DNNs in terms of energy consumption

and size. In this paper, we proposed SKG to jointly prune and quantize ResNet models

for highly compressed networks that can be deployed on edge devices. we demonstrated

that using KD technique along with the gradual quantization help the network to better

preserve the accuracy in ultra-low bit-precision and the accuracy can be increased up to

20% compared to the baseline methods. In addition, SKG can achieve higher compression

rates by using the sparse float-32 network as the ground-truth. We also compared the energy

consumption during inference using CIM and traditional 65nm CMOS technologies. The

results show that CIM architecture can achieve 2x less energy. Moreover, using KD and

gradual PoT quantization and CIM architecture, we can reduce the energy consumption

more than other methods during inference. Using CIM architecture for 4 to 2-bit-width

quantization, gradual PoT quantization saves 75.98%, 86.96% and 21.97% energy compare

to the APoT baseline method and achieve 68.3%, 64.1% and 60.7% accuracy, respectively

which are higher than the baseline methods with full-precision model as the pre-trained

network.

45

Figure 3.4: Accuracy vs bit-width (8-2 bits) for uniform quantization with and without
gradual quantization on ResNet-18 and ImageNet dataset.

Figure 3.5: The total estimated energy achieved by the proposed method for Uniform and
PoT compared with the baseline method, APoT, with FL32 pre-trained model for ResNet-
18 on ImageNet. From left to right: 4-bit, 3-bit, 2-bit precision.

46

CHAPTER 4

BIT-LEVEL SPARSITY AND CIM-AWARE DNN COMPRESSION

The rising popularity of intelligent mobile devices and the computational cost of deep

learning-based models call for efficient and accurate on-device inference schemes. In this

Section, we propose a novel model compression scheme that allows inference to be car-

ried out using bit-level sparsity, which can be efficiently implemented using CIM macros.

we introduce a method called Bit-Sparse Deep Neural Network (BitS-Net) to leverage the

benefits of bit-sparsity (where the number of zeros are more than number of ones in bi-

nary representation of weight/activation values) when applied to CIM with resistive RAM

(RRAM) to develop energy efficient DNN accelerators operating in the inference mode.

4.1 Introduction and Motivation

Memory access is the bottleneck in large DNNs which dominates the total energy consump-

tion. This makes it hard to deploy DNNs on edge devices since they do not fit in on-chip

memory and therefore require the more costly DRAM accesses [3]. The cost of accessing

DRAM is 640pJ for 32-bit coefficients which is 3 order of magnitude larger than access-

ing on-chip SRAM [13]. A new class of embedded non-volatile memory (eNVM) which

perform matrix multiplication in a dense memory structure offers a solution to minimize

data transport by performing compute in-memory [46]. A compute-in-memory architecture

has gained importance in achieving high-throughput low-latency AI systems [69]. A tradi-

tional Von Neumann architecture suffers from the latency and power dissipation caused by

intra-chip data communication. Therefore, CIM architecture has emerged to overcome the

aforementioned problems by conducting the computations in the memory. By employing

CIM architectures along with the proposed bit-level sparsity, low-latency energy efficient

computing systems can be achieved.

47

In this work, we proposed a novel quantization method leveraging the bit-sparsity to

quantize DNNs when using RRAM based CIM. This implements a novel DNN accelerator

that can be used in many applications related to edge computing. In resistive 1T-1R bitcells,

the weights are encoded as the resistive of the cell [70]. Most RRAM cells encode binary

information where the high resistance represents a “0” and a low resistance represents a

“1”. When a word-line voltage of “0” is applied, the bit-cell is not turned on and there

is no energy dissipated in the process (except for peripheral circuits). On the other hand,

when a word-line voltage of “1” is applied, a current is allowed to flow through the bit-

cell. In CIM operation, multiple word-lines are simultaneously turned-on based on the

input data pattern, and the corresponding cells are activated. The current through the cells

is subsequently accumulated on the bit-line and eventually sensed by an analog to digital

converter (ADC). When the cell stores a “0” there is very little current (IOFF) flowing

through the cell and when the cell stores a “1” there is significantly larger current (ION)

flowing through the cell. Hence, having more “0”s in the network, as opposed to “1”s

reduces the total energy dissipated during inference. Further, recent advances in RRAM

technology has enabled multiple-states per cell. In one particular implementation that has

been described in details in [67], 3-levels per cell have been demonstrated. Experimental

work on a 40nm embedded RRAM array [70, 67], show that 4 levels (2-bits) per cell are

possible with tight resistance distributions. This allows higher memory density with 2-

bits/cell, where each cell represents one of the four states 00, 01, 10 or 11 corresponding

to four resistance levels 00 is the highest resistance and 11 is the lowest resistance state. In

such a 2-bit/cell encoding it is desirable to have more 00s and 01s than 10s and 11s. This

is the motivation develop BitS-Net algorithm where we train the network to increase the

energy efficiency by increasing the number of 00s and 01s and reducing the number of 10s

and 11s in the INT8 representation of the weights. This is a novel bit-level sparsification

technique that leverages the key characteristics of the RRAM based CIM architectures.

48

4.2 BitS-Net: Bit-Sparse Deep Neural Network for Energy-efficient RRAM Based

Compute-In-Memory

In this section, we go over the fundamentals of the proposed BitS-Net, a novel CIM-aware

DNN compression techniques which take advantage of CIM architecture and sparsify the

network at the bit-level instead of the network-level. This technique can, of course, be

combined with network-level sparsification techniques.

4.2.1 Necessity of Compute-In-Memory Architecture

The Von-Neumann architecture has prevailed while supporting various tasks with central-

ized processing elements (PEs), control units, and memory. Since the advent of AI systems,

the importance of DNNs has been on the rise featuring massive matrix-vector multiplica-

tion (MVM). Von Neumann architecture has strived to accommodate DNNs by relying

upon its versatility. However, this architecture suffers from prohibitive power dissipation

incurred by massive data transfer between the PEs and memory, retaining the weight of

DNNs. Moreover, von Neumann architecture features instruction-driven operation. Thus,

data processing is not initiated promptly even if the input vector is ready for the MVM. Fig-

ure 4.1 shows the structure of a systolic array. Considering the ability to conduct massive

parallel computation, a weight-stationary systolic array appears to be one of the candidates

to support energy-efficient MVM owing to the distributed data processing unit (DPU) that

includes a PE and memory. A systolic array conducts data processing immediately once the

input vector is applied owing to the data-driven operation of the DPUs. However, a clock-

cycle-based propagation of intermediate data across the DPUs eventually incurs excessive

latency that is proportional to the size of the input vector. Thus, to achieve energy-efficient

MVM with low latency independent of the size of the input vector, CIM architectures have

come into the limelight. Figure 4.2 shows the CIM architecture exploiting resistance of

memory cells. Instead of the DPUs, a memory cell itself serves as a PE and memory simul-

49

DPU1,1

PE

Wm,n

X

DPU
DPUm,1

DPU1,n DPUm,n

Y1 Ym

CLK-based
propagation

X1[t]

Xn[t+n-1]

X2[t+1]

Xn-1[t+n-2]

MVM Latency proportional to the size of input vector n

Input vector
for Y1...m[t+n]

Figure 4.1: Structure of a systolic array as an intermediate solution to support AI systems.

W1,1

BL1 BL2 BLm

W2,1 Wm,1

W1,n W2,n Wm,n

Y1[t] Ym[t]Y2[t]

X1[t]

Xn[t]

X W I

Low MVM latency independent of the size of the input vector n

Im,n

Xn

Im,n=Wm,n Xn

Ym= Im,1...n

CIM
operation

Bitwise
multiplication

at memory cells

0 0 (RHRS) 0

0 1 (RLRS) 0

1 0 (RHRS) IHRS

1 1 (RLRS) ILRS

RHRS>>RLRS
(=ILRS>>IHRS)

Figure 4.2: Compute-in-memory architectures exploiting resistance of memory cells.

taneously in CIM architectures. The memory cell retaining the weights generates the cur-

rent that is the result of bit-wise multiplication. Owing to a current-summing bit-line (BL)

structure in a memory array, the intermediate data are accumulated immediately, thereby

achieving low latency in addition to energy-efficiency superior to the aforementioned ar-

chitectures. In particular, the CIM architectures employing emerging memory such as

PCRAM, MRAM, and RRAM have gained importance in achieving energy-efficient com-

puting systems for AI owing to the inherent multiply-and-accumulate (MAC) functional-

ity in BL structures, non-volatility, high bit density, and compatibility to CMOS process.

Compared to other emerging memory, RRAM features energy-efficient read (RD) and the

feasibility of multi-bit encoding owing to low latency and an appropriate ON/OFF ratio,

respectively [71, 72, 73, 74].

50

4.2.2 Preliminaries

Matrix-vector multiplication (MVM) is a basic building block in many DNN models where

dot products between weight (W) and its input values (X) is calculated in each layer. We

denote the output of each hidden layer (a) as

a = σ(W TX) (4.1)

Where T is a transpose function, σ is an element-wise nonlinear activation function

which is usually a Rectified Linear Unit (ReLU) [52].

In order to quantize the model, suppose W ∈ RCout×Cin×k×k is a 4D tensor representing

kernels in a convolutional layer, where Cout and Cin and k are the number of output channel,

input channels and the kernel size, respectively. Therefore, the quantization scheme of the

weights [47] is defined as

Wq = αΠQ(1,b)⌊
W

α
, 1⌉ (4.2)

where b is the bit-width, α is the scaling factor and the scaling function ⌊., 1⌉ scales the

weights into [−1, 1]. Then the scaled W is projected by Π(.) in an element-wise manner

to the defined quantization levels. Q(1, b) defines a set of quantization levels for example

uniform quantization. For uniform and power of two (POT) quantizations, Q(1, b) defines

as Equation 4.3 and Equation 4.4, respectively.

QU(1, b) = {0, ±1

2b−1 − 1
,

±2

2b−1 − 1
, ...,±1} (4.3)

QPOT (1, b) = {0,±2−b+1,±2−b+2, ...,±1} (4.4)

Quantization maps each element in the weight matrix which is in floating-point format

to a b-bit fixed-point representation. The result of convolution against quantization level is

51

then re-scaled by multiplying to α. Generally, α is a floating-point number [47]. However,

in order to have fully fixed-point computation, we round it to the closest integer in our

proposed method. Therefore, arithmetical calculation in DNN models, for example in fully

connected and convolutional layers, can be performed on an on-chip hardware using low-

precision fixed-point operations, which are substantially cheaper in terms of memory and

power than their floating-point equivalent [64].

During backpropagation, Straight-Through Estimator (STE) [63] is adopted as pro-

posed in [47] for the projection operation. The gradients of α are computes as follow

∂Wq

∂α
=

sign(W) if |W | > α

ΠQ(1,b)
W

α
− W

α
if |W | ≤ α

(4.5)

Nevertheless, the baseline accuracy cannot be achieved with uniform quantization since

the results does not match the distribution of weights (typically normal distribution) [13].

Moreover, POT quantization is also not the efficient way of quantization for hardware since

the negative values containing a lot of ones which requires a lot of energy for multiplication.

In this paper, we proposed a highly efficient hardware-aware method for quantization and

low-bit fixed-point computation that can be easily map to CIM hardware.

4.2.3 BitS-Net Training

We proposed a bit-level sparsity method that leverage the fact that there are a lot of zeros

in the bit representation of weight values. First, a coefficient set for quantization is defined.

The criteria for calculating the coefficient set will be explained later. In the next step, the

network is quantized during training for several epochs and finally the quantized network is

achieved. We will take advantage of bit-level sparsity to decrease the number of multipli-

cation while exploiting CIM architecture. In resistive CIM architectures, the 0 and 1 states

are represented by OFF and ON resistances on the RRAM cells respectively. To increase

the energy efficiency of the CIM designs, it is beneficial to increase the number of 0s in

52

the model representation that enables not only higher throughput (by under provisioning

for the ADCs) but also increase the energy efficiency. Therefore, in the bit-level sparsity,

we aim to increase the number of zeros in the bit representation of weights/activation of

neural networks by quantizing the weights/activation to the desired fixed-point numbers

using Equation 4.2 during training. During our fixed-point training, for each layer, first the

weights are scaled to be in the range of W ∈ [−1, 1] using a scaling factor α. The CIM

architecture consists of cells of two bits that can be 00, 01, 10 and 11. Multiplying to each

of these two bits is done in different energy level (E00 < E01 < E10 < E11). Therefore, the

desired weight’s values are the ones that have less bits with higher energy like 11 and more

00. During BitS-Net training, we quantize every floating point weight to its closest favor-

able coefficient C which is the set of possible coefficient and favorable fixed-point numbers

that W can be quantized. C for INT8 numbers are shown in Table 4.1. Since the coefficient

sets are between [−1, 1] and negative numbers have 11 in their two’s complement repre-

sentations which leads to a large energy requirement, during inference, we save Wq + 1 in

memory in order to remove 11 in the coefficients. This is the reason we choose numbers

represented at Table 4.1 where they do not have 11 in their binary representations during

inference. As an example, the binary representations for w1 = 0.375 and w2 = −0.375 are

00.011000 and 11.101000. By adding one to the quantized weights (Wq + 1), the binary

representation of w1 + 1 and w2 + 1 will be 01.01 10 00 and 10. 10 10 00. Therefore,

there is no 11 in the binary format of coefficients in Table 4.1. The numbers at set 1 and

set 2 have no ’11’ and the maximum of four and three ’10’, respectively. By employing

CIM architectures along with the proposed bit-level sparsity, low-latency energy efficient

computing systems can be achieved.

The BitS-Net is explained in detail in algorithm 1. First the coefficient set is defined

as explained above which will be an input for the quantization algorithm. In the forward

path, first, the weights are quantized based on Equation 4.2 by dividing the weights by a

scaling factor (αW) to make the weights in the range of [-1, 1]. Then, the scaled weights

53

Algorithm 1: Bit-level sparsity and network quantization for lossless CNNs with
low-precision weights.

Input : x: the training data, Set of desired numbers to be quantized to:
C = {c1, c2, ..., ck}; k ≤ N , with{Wl : 1 ≤ l ≤ L}: the pre-trained
full-precision CNN model, loss function L(Y, Ŷ), learning rate, λt

Output: {Ŵl : 1 ≤ l ≤ L}: the final low-precision model with the weights
constrained to be in the desired set with higher bit-level sparsity.
{x̂l : 1 ≤ l ≤ L}: quantized activation.

1 Forward propagation:
2 for l = 1 to L do

3 Qlw = quantize(Wl) using Wq = Round(αw)ΠQ(1,b)⌊
W

αw

, 1⌉

4 Qlx = quantize(xl) using xq = Round(αx)ΠQ(1,b)⌊
x

αx

, 1⌉

5 Compute the output activations: xout = Conv(Wlq;xlq)

6 Compute the loss between the actual and predicted values: L(Y, Ŷ)

7 end for
8 Backward propagation: ∂L̂

∂Ql
= WeightBackward(Ql,

∂L̂

∂Ŷ
)

Wt+1 = UpdateWeights(Wt,
∂L̂
∂Ql

, λt) λt+1 = UpdateLearningRate(λt, t)

are quantized (ΠQ(1,b)) by calculating the minimum distance between the weights and the

coefficient set as shown in Equation 4.6.

ΠQ(1,b) = argminci∈C |ci − |Wl|| (4.6)

Where ci ∈ C represents the possible numbers in the coefficient set. In the next step,

the activation is quantized as well to have a fully quantized network. The activation values

are first scaled to the range of [0, 1], since they are all positive numbers. Then they are

quantized to the fixed-point numbers. In this paper, we quantize the activations uniformly

to the 8-bit fixed-point numbers (Equation 4.3). Finally, the convolution value is computed

between the quantized weight (Wlq) and the quantized activation (xlq). The backpropaga-

tion is applied using the STE method as explained in Equation 4.5 to update the weights.

54

Table 4.1: The coefficient set for quantization.

Set Coefficient sets
Set 1 ±{0, 0.3438, 0.3750, 0.4063, 0.5, 0.6250, 0.6563, 1.0}
Set 2 ±{0, 0.3750, 0.5, 0.6250, 1.0}

Ternary ±{0, 1.0}

4.3 Algorithm-Hardware Joint Optimization in CIM during inference

As an algorithm-hardware joint approach, the BitS-Net is proposed to attain superior system-

level energy efficiency by addressing the bit-level sparsity of weights while considering

energy per bit in CIM. In this paper, we demonstrate the superior energy efficiency of the

proposed BitS-Net considering the measured energy per bit during CIM, thereby exhibiting

the feasibility of the algorithm deployment to multi-bit resistive CIM (RCIM) architectures.

During inference, we use the following formula to classify the input images. As mentioned

before, the goal is to eliminate the number of 11 occurrence in the weight matrix during

inference. Since we add one to Wq, (Wq + 1), we need to modify Equation 4.1 as shown in

Equation 4.7 in order to calculate the correct multiplication of weights and activation.

Z = ((Wq + 1)TX)−
(∑

i

xi

)
.1T (4.7)

Where xi are elements of the input vector X and 1 is all-ones vector with dimension

equal to the number of rows in the weight matrix (W).

Introduction to RCIM Architectures

RCIM architectures exploit a MAC-friendly BL structure [67, 75, 76, 77, 78, 79, 80, 81,

70]. To read the CIM result out, current- or voltage-sensing RD is employed at the BL.

Figure 4.3 shows the binary and multi-bit current-sensing RCIM at the BL. The current-

sensing CIM is widespread in RCIM architectures. Each RRAM cell is programmed in a

low resistance state (LRS) or a high resistance state (HRS) in binary encoding to repre-

55

critical
condition ()0, , 0R LRS HRS HRSI I I I

() OUT LRS total LRSMAC f N I I= =

() ()0 1 2 1
0, , ,..., NR HRS LRSI I I I I I

−
 = =

() ()1OUT LSB total LSB LSBMAC f I I I I I= = =

total RI I=
I.R[0]

I.total

BL
[n]

WL[0] WL[1]

R[0] R[1]

WL[N]

R[N]

I.R[1] I.R[N]

Binary
encoding

N-bit
encoding

Figure 4.3: Binary and multi-bit current-sensing RCIM at the bitline.

sent the weights of AI systems. In multi-bit encoding, the RRAM cell is set to a certain

resistance between the LRS and HRS resistance to program multi-level weights in a single

RRAM cell. The output of the current-sensing RCIM is read out by the ratio of the total

current at the BL to the LSB current which is the LRS current in binary encoding. Since

the crucial premise of the current-sensing RCIM is that the HRS current is negligible, a

sufficient margin between the LSB current and the HRS current is desirable. However,

the resistance range of an RRAM cell is fixed such that multi-bit encoding exacerbates

the narrow current margin. It eventually incurs logic ambiguity in the CIM output when

the aggregate current from accessed HRS cells exceeds the LSB current. To surmount the

aforementioned problems in current-sensing RCIM, voltage-sensing RD has been proposed

in the prior arts [70, 67].

Figure 4.4 depicts the current- and voltage-sensing RD in RCIM architectures. Com-

pared to the current-sensing RCIM architectures where a fixed voltage at the BL is used to

exploit the cell current relying on RRAM resistances, the voltage-sensing RCIM architec-

tures use fixed or variable current to employ a wide range of readout BL voltages (V.RBLs)

as the CIM output. The V.RBL reflects the parallel resistance of accessed RRAM cells.

56

V.BL

xN

WL
[N:1]

I.R
[N:1]

xN

WL
[N:1]

I.R[k]
=f(R[k])

R

V.RBL

R
I.total

V.RBL
=f(R.eq)
=MACOUT

Current-sensing RD Voltage-sensing RD

1T-1R
RRAM

cell

Figure 4.4: Simplified structure of current- and voltage-sensing read in RCIM architectures.

The voltage-sensing RD does not suffer from the aforementioned logic ambiguity since

the parallel resistance has a unique value in a certain number of accessed RRAM cells

(N.RRAM). However, the parallel resistance drastically decreases over N.RRAM such that

a sufficient sampling margin in readout cannot be secured even employing diode-connected

current sources [82]. Furthermore, it even worsens in multi-bit encoding. In this work, we

employ the voltage-sensing multi-bit RCIM architectures overcoming the aforementioned

problems to evaluate the system-level energy efficiency of the proposed BitS-Net.

Voltage-Sensing Multi-Bit RCIM Architecture in the Evaluation of the BitS-Net

Figure 4.5 shows the simplified architecture of the voltage-sensing multi-bit RCIM archi-

tecture used in the evaluation of the BitS-Net [67]. As a solution to the drastic decrease

of the V.RBL over the parallel resistances, the BL current control is employed to provide

a unit current per accessed RRAM cell, thereby achieving a sufficient sampling margin

in readout. The multi-bit encoding is conducted by iterative write (WR) with verification

that reconfigures a WR pulse after monitoring the resistance of the programmed RRAM

cell and initiates another WR process to achieve the target resistance [70, 67]. In readout,

ADC-based readout circuit determines the MAC output considering the N.RRAM. The de-

tailed description of the architecture is delineated in [67]. In this work, a 2-bit encoding

is employed while securing sufficient resistance distance to avoid the invasion to an adja-

57

X[t]

Input 9

3
2
:1

 B
L

 M
U

X

3
2
:1

 B
L

 M
U

X
1

6
:1

 S
L

 M
U

X
 x[t]

8x

I.BL &
MUX

WL decoder

4-bit
ADC

8x

Input-
aware
ADC

decoder

MAC.out

Voltage-sensing
readout circuit

Input-aware
current CTRL

Y[t]

WL[0]

BL[0] SL[0] BL[1]

1T-1R RRAM array
with multi-bit encoding

BL

WL

HRS/.../LRS

SET/
RST

SL

1T-1R
multi-bit
RRAM
cells

Figure 4.5: Architecture of voltage-sensing multi-bit RCIM architecture.

cent resistance state. Figure 4.6 shows the measured resistance of the 2-bit weights in the

BitS-Net from the test chip of the RCIM architecture [67]. Considering the 3σ-window

of resistances, the resistance for the 2-bit weight (11, 10, 01, and 00) is determined. The

nominal resistances of 2-bit encoding in an RRAM array are 2.08kΩ, 4.85kΩ, 8.77kΩ, and

76.31kΩ, respectively. With the 2-bit-encoded RRAM cells (11, 10, 01, and 00) and the

ADC-based readout circuits, the measured energy per bit during CIM is 0.83, 0.47, 0.28,

and 0.15 pJ/bit, respectively.

4.4 Experimental Results

In this section, we present the experimental results of the algorithm and CIM hardware

implementation of BitS-Net. To evaluate our method, BitS-Net is compared with several

state-of-the-art baselines on ResNet architectures [83]. Baseline methods consist of APOT

[47], POT [47], INQ [48], ADD-Net [84], 8-bit quantization and the original floating point

networks. In our method both weights and activations of the networks are quantized in

order to have fully quantized network that can be implemented in an on-chip hardware.

It should be noted that that APOT and POT utilize 8-bit quantization for the first and last

layers in the original papers, which incur more memory cost. INQ also used full precision

58

1

11 10 01 00

𝝁 2.08𝑘Ω 4.85𝑘Ω 8.77𝑘Ω 76.31𝑘Ω

𝝈 97.65Ω 204.9Ω 0.96𝑘Ω 25.55𝑘Ω

𝑬𝑪𝑰𝑴 0.83
𝑝𝐽

𝑏𝑖𝑡
0.47

𝑝𝐽

𝑏𝑖𝑡
0.28

𝑝𝐽

𝑏𝑖𝑡
0.19

𝑝𝐽

𝑏𝑖𝑡

Figure 4.6: Measured resistance (R) distribution of the 2-bit weights in the BitS-Net.

(32 bits floating point) for activation which makes it impossible to run it in an on-chip sys-

tem. In our implementation, we employ 8-bit quantization just for the last layer to balance

the accuracy drop and the hardware overhead. In our proposed BitS-Net quantization algo-

rithm, weights are quantized to coefficients in Table 4.1 to have an efficient CIM hardware

for DNN accelerations. Moreover, we have used power of two values in order to quantize

the activation as shown in Equation 4.4.

59

4.4.1 Evaluation on CIFAR-10

The first dataset that we used is CIFAR-10 [85] with 50K training and 10K test images

of size 32×32. The ResNet-20 network is utilized where its architectures for CIFAR-10

includes a convolutional layer followed by 3 residual blocks and a final FC layer. For

CIFAR-10, we train the networks up to 200 epochs with a mini-batch size of 128 and

learning rate of 0.04 at the beginning and scaling factor of 0.1 at epoch 80, 120. stochastic

gradient descent (SGD) with momentum of 0.9 was implemented for optimization step.

The results are demonstrated in Table 4.2. The results show that BitS-Net (Set 1) can

achieve 91.63% accuracy which is about 1% lower that the 8-bit precision model. BitS-Net

(Set 2) achieved 90.04% accuracy while the original network before quantization achieved

92.74 % accuracy. Also, BitS-Net achieved lower required energy than the mentioned

baseline methods.

4.4.2 Evaluation on ImageNet

To evaluate our method, we also used ImageNet datasets [45] with 1000 classes. The Ima-

geNet dataset consists of 1.2M training and 50K validation images. For the pre-processing

step [83], training images are randomly cropped and resized to 224×224 and the validation

images are center-cropped to the same size. The ResNet models are implemented using Py-

Torch official implementation and initialized from the released pre-trained model. During

Table 4.2: The accuracy and total energy of Cifar-10 on BitS-Net using coefficient set 1,
set 2 and ternary, in comparison to the baseline methods on ResNet-20.

Method Bit Precision (W/A) Accuracy (%) Total Energy (J)
BitS-Net (Set 1) 8/8 91.63 0.37
BitS-Net (Set 2) 6/8 90.04 0.22

BitS-Net (Ternary) 3/3 79.84 0.09
POT 8/8 90.87 0.51

APOT 8/8 91.90 0.69
ADD-Net 8/8 91.60 0.88

8-bit precision 8/8 92.60 1.21
Full-Precision (Floating-point) 32/32 92.74 -

60

Table 4.3: The final classification accuracy and total energy achieved by BitS-Net method
and the baselines including POT, APOT, INQ, uniform quantization and the full precision
network in ResNet-18 and ResNet-34 architectures.

Network Bit precision ResNet-18
ResNet-

34

Method
Accuracy (%)

W/A top-1 top-5 Total Energy (J) top-1 top-5 Total Energy (J)

BitS-Net (Set 1) 8 / 8 67.73 87.64 139.54 70.08 89.28 221.46
BitS-Net (Set 2) 6 / 8 67.05 87.64 96.31 70.02 89.11 162.64

BitS-Net (Ternary) 3 / 3 63.69 85.48 41.84 64.51 86.21 53.94
POT 8 / 8 65.01 86.33 187.05 63.26 85.86 242.71

APOT 8 / 8 66.13 87.14 283.97 70.14 89.88 531.32
INQ 8 / 32 67.42 87.02 - 70.23 89.68 -

ADD-Net 8 / 8 66.01 87.50 337.23 69.11 89.21 633.32
POT 4 / 8 64.70 86.89 168.17 63.02 85.73 286.77

APOT 4 / 8 66.05 86.95 143.07 69.55 89.41 244.61
4-bit precision 4 / 8 67.91 88.59 140.14 69.12 89.29 240.56
8-bit precision 8 / 8 68.29 88.57 368.93 71.28 90.17 674.44

Full-Precision (Floating-point) 32 / 32 68.52 88.49 - 71.07 90.18 -

training, batch size is set to 128 (based on the GPU memory size). We choose a learning

rate of 0.1 with a decay factor of 0.1 at epoch 30, 60, 80, 100 during the 120 epochs for

training the network. Moreover, SGD with the momentum of 0.9 is utilized to optimize

the parameters. We quantize ResNet-18 and ResNet-34 on ImageNet dataset and the re-

sults are compared with the baseline methods in Table 4.3. The results demonstrate that

BitS-Net can achieve higher accuracy than the baseline quantization methods. The accu-

racy of BitS-Net set 1 and 2 are 67.73% and 67.05%, respectively while POT and APOT

methods gained 65.01% and 66.13% on ResNet-18. BitS-Net keeps and quantizes the big-

ger weight values which have higher importance [12] and quantize the smaller values (less

important) to zero which causes higher accuracy. PoT method suffers from the rigid res-

olution [47], and achieved the lowest accuracy compared to the other methods. The total

energy (multiplications and ADC) of each methods are also estimated based on the actual

measurement from the hardware. The result show that BitS-Net consume less energy that

other baseline methods. As an example the energy required to run BitS-Net (Set 2) on

ResNet-18 is 96.31J which is 4x less than 8-bit quantization (368.93J). Also, ADD-Net

for 8 bit quantization requires 337.23 and 633.32J energy for ResNet-18 and ResNet-34

on ImageNet dataset, respectively, which are 2.5x and 3.5x higher energies than BitS-Net

61

(Set 1) and BitS-Net (Set 2) on ResNet-18. BitS-Net set 1 consists of 15 numbers which

are chosen from 8-bit numbers to eliminate all the ’11’ in the binary representations of both

positive and negative numbers. On the other hand, the effective number of bits to handle

the 15 values can be just 4 bits. Therefore, we also investigated and compared the BitS-Net

results to the baseline methods with 4-bit weights. The results show the effectiveness of

BitS-Net. All the baseline methods achieved higher energy than BitS-Net. For example,

APOT quantization with 4-bit weights and 8-bit activation consumes 143.07 (J) which is

higher than BitS-Net set 1 with 139.54 (J) required energy. In addition, the percentage of

00, 01, 10, 11 in the total weight matrices of ResNet-18 for BitS-Net3 (ternary), BitS-Net2

(set 2 coefficients), BitS-Net1 (set 1 coefficients), POT, APOT and 8-bit quantization meth-

ods is illustrated in Figure 4.7. 2% ’11’ in BitS-Nets correspond to the last FC layer which

is quantized to an 8-bit precision. 8-bit quantization has the most number of “11” values

(42%) which consume the most energy during multiplication.

4.4.3 Hardware Evaluations

In this section, the results of hardware implementation for the BitS-Net and baseline meth-

ods are demonstrated to estimate key hardware metrics. The estimated energy includes the

RRAM array, the ADC, the controller, and other peripheral circuits except for the voltage

reference (VREF) generator. The VREF generator was excluded since a single set of the

VREF generator is sufficient for the entire RRAM macro and the power consumption of

the generator will be negligible while increasing the size of RRAM macro. We have esti-

mated the energy through measurements from the RRAM hardware. However, the RRAM

macro is not large enough to fit the entire model. Instead, we scan in the different model

weights serial, write into the RRAM array and measure the array energy. In other words,

since the RRAM macro is of limited size, we scan in the weights of the layers serially and

conduct the energy estimation one layer at a time. As a prototype of the RRAM-based CIM

architecture, the RRAM macro focuses on the CIM operation. Regarding array utilization,

62

the system architecture that will use this macro will dictate what the system-level metrics

would be. Similarly, hardware utilization is highly dependent on the system architecture,

the compiler, and any extrapolation on hardware utilization, system-level costs, etc. will

be too speculative for this work. We will need to define specific design architectures and

compiler techniques that would be outside the scope.

With the 2-bit-encoded RRAM cells (00, 01, 10, and 11) [70], the measured energy per

2-bits during CIM is 1.46 pJ/2bits, 0.73 pJ/2bits, 0.36 pJ/2bits, 79 fJ/2bits, respectively.

In addition the energy of ADC is 0.208 pJ/2bits. It should be noted that the cycle time is

20ns. The energy breakdown for multiplication and ADC are demonstrated in Figure 4.8

which shows that BitS-Net requires less energy than the baseline method. BitS-Net (set2) is

more than 5x energy efficient compared to 8-bit quantization. For example, in ResNet-34,

BitSp-Net3

78%

15%
5%2%

BitSp-Net2

57%
20%

22%
2%

BitSp-Net1

45%

25%

28%

2%

POT

55%

17%

12%

15%

APOT

34%

31%

18%

17%

00 01 10 11

8-bit

31%

13%
14%

42%

BitS-Net3 BitS-Net2 BitS-Net1

POT APOT 8-bit

Figure 4.7: Percentage of 00, 01, 10, 11 in the total weight values of ResNet-18 for BitS-
Net3 (ternary), BitS-Net2 (set 2 coefficients), BitS-Net1 (set 1 coefficients), POT, APOT
and 8-bit quantization methods.

63

0.05
0.08

0.26

0.17
0.33

0.18

0.37

0.19 0.59

0.39

0.69

1.13

BitS
-Net3

BitS
-Net2

BitS
-Net1 POT

APOT
8-bit

0

0.5

1

1.5

E
n

er
g

y
(J

)

Mupliplication
ADC

(a) Cifar-10-ResNet20

17.25
24.6 46.93

49.39
74.21

65.35
119.01

68.05
162.37

121.61
270.43

98.5

BitS
-Net3

BitS
-Net2

BitS
-Net1 POT

APOT
8-bit

0

50

100

150

200

250

300

350

E
n

er
g

y
(J

)

Mupliplication
ADC

(b) ImageNet-ResNet18

(c) ImageNet-ResNet34

Figure 4.8: Energy of multiplication and ADC for BitS-Net3 (ternary), BitS-Net2 (set 2
coefficients), BitS-Net1 (set 1 coefficients), POT, APOT and 8-bit quantization methods on
(a) ResNet-20 on CIFAR-10; (b) ResNet-18 on ImageNet and (c) ResNet-34 on ImageNet.

the total energy required during inference is 162.64 (J) while APOT and 8-bit quantization

require 531.33 and 674.45 (J), respectively. In addition, ternary quantization consume least

energy at the expense of lower accuracy. Therefore, BitS-Net is more energy efficient than

the baseline methods.

4.5 Conclusion

We proposed BitS-Net, an algorithm-hardware joint approach to attain superior system-

level energy efficiency by addressing the bit-level sparsity of weights while considering

64

energy per bit in CIM. Since E00 < E01 < E10 < E11, we sparse the weights and quantized

the networks to the values that have bits with lower energies required for multiplication in

CIM architecture. As a result, we are able to develop a highly energy efficient system to run

DNNs during inference. We demonstrate that BitS-Net improves the energy efficiency by

up to 5x compared to the 8-bit network for ResNet model on ImageNet dataset. It should

be noted that in order to efficiently utilize the proposed RRAM macro for executing actual

neural networks in a system, the system architecture and the compiler, and related system-

level costs such as hardware utilization and off-chip memory access should be taken in

account. Considering the fact that the energy efficiency of all the methods is estimated

under the same condition, we believe that the comparison in Table 4.3 is apples-to-apples

to address the efficiency improvement of the proposed BitS-Net.

65

CHAPTER 5

TWOFOLD SPARSITY: CIM-AWARE NETWORK- AND BIT-LEVEL SPARSITY

FOR ENERGY-EFFICIENT DEEP LEARNING ACCELERATOR

In this chapter, a novel CIM-aware method (TwofoldS-Net) is introduced in which we

sparsify the deep learning model in bit- and network-level, simultaneously. The method is

explained in detail the following sections.

5.1 Introduction and Motivation

In the previous chapters, we introduce novel network-level, bit-level and quantization meth-

ods to compress large deep learning methods. We were able to compress the models while

preserve the classification accuracy. In chapter 2, we proposed a hardware-aware network-

level sparsity using LFSR indexing where there is no need to save the locations of un-

pruned weights during inference. we were able to reduce the memory size and required

energy by removing the weights and sparsifying in the network-level along with using

LFSR during inference. In chapter 3, a method for fixed-point computation and ultra-low

bit precision model have been proposed through gradual quantization and KD. In chapter 4,

we proposed CIM-aware deep learning compression to quantize and sparsify the network in

the bit-level. We have shown that we can achieve highly energy-efficient DNN accelerators

by taking advantage of emerging technologies such as RRAM based CIM architectures.

These researches motivate us to develop a novel hardware-friendly method to jointly spar-

sify the network in bit- and network-level and taking advantage of CIM architecture to

design a highly energy-efficient deep learning algorithm and hardware co-design.

66

5.2 Double sparsity training

In this section, the fundamentals of our method are explained in detail. To the best of our

knowledge, this is the first time that a joint bit- and network-level sparsity method has been

proposed to take advantage of CIM architecture for highly energy efficient deep learning

accelerator. We proposed a joint sparsity in the bit- and network-level for highly energy-

efficient deep learning computation using CIM architectures to enable edge computing.

The advantages of CIM architectures are discussed in detain in subsection 4.2.1. Deep

learning methods are usually large and over-parameterized and and it is hard to deploy

them on power-constrained edge devices. The goal of network-level sparsity is to remove

unimportant parameters and weights. On the other hand, CIM architecture uses bit-wise

multiplication. The energy of multiplying to zero is less than one. Therefore, we introduces

bit-level sparsity to quantize the network and increase the sparsity in the bit representation

of the numbers. We apply the sparsity during training by adding separate regularization

formulas for bit- and network-level separately as shown in Equation 5.1 In the following

sections, our method is explained in details.

L = LCE +Regnet +Regbit (5.1)

5.2.1 Network-level sparsity using LFSR indexing

In order to randomly sparsify the network weights, we use the indices generated by LFSR.

LFSR [50] is the commonly used hardware topology to generate pseudo random bit se-

quences [86]. The advantages of using an LFSR to generate the indices are: (1) simple

hardware implementation, (2) preserving the rank of the generated connectivity matrix

[51] and (3) there is no need to save the addresses of no-zero weights during inference.

LFSR generates PRS using an array of flip-flops followed by linear feedback performed

by several exclusive-or (XOR) gates (ci). The initial state of flip-flops is called input seed

67

(s). nth order characteristic polynomials is used to mathematically formulate the generated

PRS using LFSR [22]:

xn + cn−1x
n−1 + ...+ c1x+ 1 (5.2)

To obtain the maximum PRS length with no repetition of length 2n − 1, the charac-

teristic polynomials have to be primitive [51]. By using the same seed and the primitive

polynomial, we can generate the same PRS over and over.

In the training step, we generate a mask of zeros and ones with the size of weight

matrix W in each layer. The location of ones are based on PRS generated by LFSR and

they correspond to the weights that we want to keep during training. After selecting the

weights using the PRS sequence, we regularize the weights correspond to zeros in the mask

during the training process to make them zero. We can also control the sparsity percentage

based on the generated PRS. We have applied L2 regularization [12] and added to the loss

function to penalize non-zero weight values.

For L2 regularization, a regularizer component is added to the cost (J) , as shown in

Equation 5.3.

Regnetwork =
λ

2m

L∑
l=1

||W [l] ⊙M [l]||2F (5.3)

Where L is the layer’s number in the network. λ is the regularization parameter and

can be tuned. Larger λ will more penalized the weights values to zero. M is the mask

generated by LFSR and ⊙ denotes the element-wise multiplication.

5.2.2 Bit-level sparsity

The energy required to multiply to zero bit is a lot lower than multiplying to one in CIM ar-

chitecture. In this section, we explain the second part of our method to sparsity the network

in bit-level. First, we convert weight matrices in floating-point format to the correspond-

ing bit representation through quantization scheme. We first divide the weight matrix with

68

the max of weight to extract the scaling factor (s). W = s.Ws where s = max|W |. Ws

is in the range of [−1, 1]. We then apply uniform quantization to quantize the weights

to b-bit binary representation as follow Wq = Round[Ws × (2b−1 − 1)]/2b − 1. Quan-

tization maps every element of the weight matrix to a b-bit fixed-point representation,

Wq ∈ {0, ±1

2b−1 − 1
,

±2

2b−1 − 1
, ...,±1}. We then convert the quantized weights to their

binary representations. We should note that, we represent the weights in the two’s com-

plement format. Our goal is to sparsify the ones in the bit representation of the weights.

In addition, hardware systems are using two’s complement format to represent the signed

numbers and do the multiplications. As an example, number 9 in a 5 bit fixed-point format

is a good number since it has only two 1’s (01001). However, -9 (10111) is not a desire

number in two’s complement format since it has more ones which leads to higher energy

required for multiplication. Therefor, we proposed a regularization scheme that sparsify

the bit representation of weights in the 2’s complement format.

W = s . Ws ≃ s . Wq =
s

2b−1 − 1
(W (b)

s 2b −
b−1∑
n=0

W (n)
s 2n), (5.4)

During the back propagation, we used the straight-through estimator (STE) method for

the bit representation training to enable a quantized model to be trained with continuous

floating-point weights [87].

∂J

∂W b
s

=
2b

2n − 1

∂J

∂Wq

(5.5)

5.2.3 Twofold sparsity: Network- and Bit-level sparsity

In this section, we proposed our joint regularization method to sparsify the network in the

bit- and network-level simultaneously.

J = LCE +
λ

2m

L∑
l=1

||W [l] ⊙M [l]||2F + β

L∑
l=1

||
b−1∑
n=0

W (n)
q ||2F (5.6)

69

where λ and β are the regularization parameters which defines the strength of the regu-

larization. The larger λ and β are, the faster weights sparsified to zero. Therefore, there is

a trade-off between regularization parameters, accuracy and convergence of the networks.

Learning rate lr is also another parameter that should be fine tuned to get the best result.

5.2.4 Post-pruning

During the training, the regularizers force the weight to go to zero. However, some weights

might be very close to zero but not exactly zero. In this step, we mask the selected weight

by LFSR indexing to be exactly zero and we continue the training for a couple of epochs

only for bit sparsity. Therefore, in the post pruning step, we can remove the regularization

related to LFSR indexing. As a result, we’ll be sure that all the weights selected by LFSR

become exactly zero.

5.2.5 Inference

During inference, LFSR selects the right weight from the sparsed weight matrix to be

multiplied to the correct input. In CIM architecture, weights are related to the word-line

(WL) and inputs on the BL. Since the network is also sparsified in bit-level, the number of

ones are lower that the original network which leads to lower required energy.

5.3 Experimental Results

In this section, the results of the proposed CIM-aware twofold sparsity method for DNN is

demonstrated. ResNet-20 on CIFAR-10 dataset is used to show the advantage of TwofoldS-

Net and the results have compared to the baseline methods such as 8-bit uniform quanti-

zation, Additive Power of Two (APoT), Power of Two (PoT). Training is carried out on

Nvidia GTX 1080 Ti GPUs. Figure 5.1 shows the accuracy vs sparsity rates of our pro-

posed method before and after post pruning. First, our method can preserve the accuracy

during training. The accuracy of training with 0% sparsity is 85.28% while the accuracy

70

Figure 5.1: Accuracy vs sparsity rate for our method before and after post pruning.

of the network with 70% sparsity is 84.56 and 82.28% before and after post pruning which

implies that our method can sparsify the network up to 80% with about 1% accuracy loss.

We also calculated the energy required during inference as illustrated in Figure 5.2.

With the 2-bit-encoded RRAM cells (11, 10, 01 and 00) and the ADC-based readout cir-

cuits, the measured energy per bit during CIM is 1.46, 0.73, 0.36, 0.079 , and 0.208 pJ/bit,

respectively. We then calculated the estimation of overall energy of the system (Figure 5.2).

The results demonstrate that the energy of the system is decreasing as the sparsity increases.

Figure 5.3 shows the energy required to run TwofoldS-Net with different sparsity rates

compared to the baseline methods including PoT, APoT and 8-bit uniform quantization.

We also compared the results with BitS-Net method which we explained in chapter 4.

We showed the energy break down results for ADC and multiplication of input (x) with

weights in 2-bit/cell format (00, 01, 10, 11). TwofoldS-Net with all the different sparsity

rates achieved lower energy required than APoT and 8-bit uniform quantization. Energy

required for TwofoldS-Net with 90 % to 40% sparsity are less and equal then the BitS-Net

71

Figure 5.2: Energy (J) vs sparsity rate (%) for twofold sparsity during inference using
LFSR indexing and RRAM based CIM architecture.

and PoT methods, which implies the energy-efficiency of TwofoldS-Net.

5.4 Conclusion

In this chapter, we proposed a twofold sparsity method where the deep learning model is

sparsified in the bit- and network-level, simultaneously. We achieved twofold sparsity by

adding two separate regularizations, one to sparsify the network in bi-level and the other

one is to sparsify the network in the network-level. In the bit-level sparsity the goal is to

make the bit values in the bit representation of the number. In the network-level sparsity,

we masked the weights based on LFSR indexing and kept the corresponding weights and

removes the rest. Finally, we were able to achieve highly energy-efficient deep learning

accelerator by taking advantage of CIM architecture and LFSR indexing.

72

Figure 5.3: Energy (J) of Twofolds-Net with different sparsity rate (%) compared to the
baseline methods including: BitS-Net1, POT, ApOT and 8-bit uniform quantization.

73

CHAPTER 6

CONCLUSION

In this research, we are focusing on hardware-centric DNN compression techiniques and

proposed four novel hardware-aware algorithm, LGPS, BitS-Net, SKG and Twofold spar-

sity in order to enable DNN models to be deployable on edge devices.

In chapter 2, we introduced LGPS, a new method of indexing a sparse network for

inference, to enhance the memory usage and energy efficiency of DNN models. We’ve

utilized an LFSR based indexing by generating two PRS as indices instead of saving them

in a separate memory. The generated indices are used to decide which weights to be pruned

and which ones to be retained. We show that our method can prune large networks without

loss of accuracy. Moreover, maximum of 63.96% power savings and 68.18% area savings

across varying sparsity, indexing bit-widths can be achieved.

In chapter 3, we proposed SKG to jointly prune and quantize ResNet models for highly

compressed networks that can be deployed on edge devices. we demonstrated that using

KD technique along with the gradual quantization help the network to better preserve the

accuracy in ultra-low bit-precision and the accuracy can be increased up to 20% compared

to the baseline methods. In addition, SKG can achieve higher compression rates by using

the sparse float-32 network as the ground-truth. We also compared the energy consump-

tion during inference using CIM and traditional 65nm CMOS technologies. The results

show that CIM architecture can achieve 2x less energy. Moreover, using KD and grad-

ual PoT quantization and CIM architecture, we can reduce the energy consumption more

than other methods during inference. Using CIM architecture for 4 to 2-bit-width quantiza-

tion, gradual PoT quantization saves 75.98%, 86.96% and 21.97% energy compare to the

APoT baseline method and achieve 68.3%, 64.1% and 60.7% accuracy, respectively which

is higher than the baseline methods with full-precision model as the pre-trained network.

74

In chapter 4, we proposed BitS-Net, an algorithm-hardware joint approach to attain

superior system-level energy efficiency by addressing the bit-level sparsity of weights while

considering energy per bit in CIM. Since E00 < E01 < E10 < E11, we sparse the weights

and quantized the networks to the values that have bits with lower energies required for

multiplication in CIM architecture. As a result, we are able to develop a highly energy

efficient system to run DNN models during inference. We showed that BitS-Net improves

the energy efficiency by up to 5x compared to the 8-bit network for ResNet model on

ImageNet dataset.

Finally, in chapter 5, we proposed Twofold Sparsity (TwofolS-Net), a novel CIM-aware

method to jointly sparsify the deep learning models in bit- and network-level during train-

ing. Using network-level sparsity, we were able to remove weights while bit-level sparsity

reduces the number of ones in the bit representation of the weight values. During inference,

we take advantage of RRAM CIM architecture. In 2bit/cell CIM architecture, the energy

level for multiplication to 00 are 10x lower than 11. Also the multiplication is happening

in the memory and we do not need to fetch the data. In addition, we used the LFSR to

multiply the correct sparse weight to the corresponding input and we do not need to store

the same size matrix as sparse weight in order to save the addresses of sparse weight ma-

trix. The results illustrated the energy efficiency of the proposed TwofolS-Net. Compared

to 8-bit uniform quantization, TwofolS-Net can improve the energy-efficiency by more that

5x.

75

REFERENCES

[1] M. Verhelst and B. Moons, “Embedded deep neural network processing: Algorith-
mic and processor techniques bring deep learning to iot and edge devices,” IEEE
Solid-State Circuits Magazine, vol. 9, no. 4, pp. 55–65, 2017.

[2] Y. Huang, X. Ma, X. Fan, J. Liu, and W. Gong, “When deep learning meets edge
computing,” in 2017 IEEE 25th international conference on network protocols (ICNP),
IEEE, 2017, pp. 1–2.

[3] S. Han et al., “Eie: Efficient inference engine on compressed deep neural network,”
in 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architec-
ture (ISCA), IEEE, 2016, pp. 243–254.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing sys-
tems, 2012, pp. 1097–1105.

[5] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning
for computer vision: A brief review,” Computational intelligence and neuroscience,
vol. 2018, 2018.

[6] S. Ma, X. Zhang, C. Jia, Z. Zhao, S. Wang, and S. Wanga, “Image and video com-
pression with neural networks: A review,” IEEE Transactions on Circuits and Sys-
tems for Video Technology, 2019.

[7] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learn-
ing based natural language processing,” ieee Computational intelligenCe magazine,
vol. 13, no. 3, pp. 55–75, 2018.

[8] R. Boostani, F. Karimzadeh, and M. Nami, “A comparative review on sleep stage
classification methods in patients and healthy individuals,” Computer methods and
programs in biomedicine, vol. 140, pp. 77–91, 2017.

[9] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning for health-
care: Review, opportunities and challenges,” Briefings in bioinformatics, vol. 19,
no. 6, pp. 1236–1246, 2017.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

76

[12] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connections
for efficient neural network,” in Advances in neural information processing systems,
2015, pp. 1135–1143.

[13] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[14] S. Zhang et al., “Cambricon-x: An accelerator for sparse neural networks,” in The
49th Annual IEEE/ACM International Symposium on Microarchitecture, IEEE Press,
2016, p. 20.

[15] A. Parashar et al., “Scnn: An accelerator for compressed-sparse convolutional neural
networks,” in 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA), IEEE, 2017, pp. 27–40.

[16] Z. Chen, Z. Chen, J. Lin, S. Liu, and W. Li, “Deep neural network acceleration
based on low-rank approximated channel pruning,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 67, no. 4, pp. 1232–1244, 2020.

[17] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. De Freitas, “Predicting parame-
ters in deep learning,” in Advances in neural information processing systems, 2013,
pp. 2148–2156.

[18] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for model
compression and acceleration on mobile devices,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 784–800.

[19] X. Ding, X. Zhou, Y. Guo, J. Han, J. Liu, et al., “Global sparse momentum sgd for
pruning very deep neural networks,” in Advances in Neural Information Processing
Systems, 2019, pp. 6382–6394.

[20] Z. Chen et al., “Exploiting weight-level sparsity in channel pruning with low-rank
approximation,” in 2019 IEEE International Symposium on Circuits and Systems
(ISCAS), IEEE, 2019, pp. 1–5.

[21] H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net model for visual area
v2,” in Advances in neural information processing systems, 2008, pp. 873–880.

[22] F. Karimzadeh, N. Cao, B. Crafton, J. Romberg, and A. Raychowdhury, “Hardware-
aware pruning of dnns using lfsr-generated pseudo-random indices,” in 2020 IEEE
International Symposium on Circuits and Systems (ISCAS), IEEE, 2020, pp. 1–5.

77

[23] M. Ranzato, C. Poultney, S. Chopra, and Y. L. Cun, “Efficient learning of sparse
representations with an energy-based model,” in Advances in neural information
processing systems, 2007, pp. 1137–1144.

[24] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural networks
on cpus,” 2011.

[25] S. Han et al., “Ese: Efficient speech recognition engine with sparse lstm on fpga,” in
Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2017, pp. 75–84.

[26] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient dnns,” in
Advances in neural information processing systems, 2016, pp. 1379–1387.

[27] H. Mao et al., “Exploring the regularity of sparse structure in convolutional neural
networks,” arXiv preprint arXiv:1705.08922, 2017.

[28] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance estimation
for neural network pruning,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 11 264–11 272.

[29] J. Kepner and R. Robinett, “Radix-net: Structured sparse matrices for deep neural
networks,” in 2019 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), IEEE, 2019, pp. 268–274.

[30] S. Chen and Q. Zhao, “Shallowing deep networks: Layer-wise pruning based on
feature representations,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 41, no. 12, pp. 3048–3056, 2018.

[31] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep neural net-
works,” in Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 1389–1397.

[32] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for deep neu-
ral network compression,” in Proceedings of the IEEE international conference on
computer vision, 2017, pp. 5058–5066.

[33] Z. Zhuang et al., “Discrimination-aware channel pruning for deep neural networks,”
in Advances in Neural Information Processing Systems, 2018, pp. 875–886.

[34] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in
deep neural networks,” in Advances in neural information processing systems, 2016,
pp. 2074–2082.

78

[35] R. Yu et al., “Nisp: Pruning networks using neuron importance score propagation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 9194–9203.

[36] D. Kadetotad, S. Arunachalam, C. Chakrabarti, and J.-s. Seo, “Efficient memory
compression in deep neural networks using coarse-grain sparsification for speech
applications,” in Proceedings of the 35th International Conference on Computer-
Aided Design, 2016, pp. 1–8.

[37] D. Kadetotad, V. Berisha, C. Chakrabarti, and J.-S. Seo, “A 8.93-tops/w lstm re-
current neural network accelerator featuring hierarchical coarse-grain sparsity with
all parameters stored on-chip,” in ESSCIRC 2019-IEEE 45th European Solid State
Circuits Conference (ESSCIRC), IEEE, 2019, pp. 119–122.

[38] A. Marchisio, M. A. Hanif, M. Martina, and M. Shafique, “Prunet: Class-blind prun-
ing method for deep neural networks,” in 2018 International Joint Conference on
Neural Networks (IJCNN), IEEE, 2018, pp. 1–8.

[39] Y. Sun, X. Wang, and X. Tang, “Sparsifying neural network connections for face
recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2016, pp. 4856–4864.

[40] L. Mauch and B. Yang, “A novel layerwise pruning method for model reduction of
fully connected deep neural networks,” in 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017, pp. 2382–2386.

[41] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible accelerator for
emerging deep neural networks on mobile devices,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 2019.

[42] B. Jacob et al., “Quantization and training of neural networks for efficient integer-
arithmetic-only inference,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 2704–2713.

[43] F. Karimzadeh, N. Cao, B. Crafton, J. Romberg, and A. Raychowdhury, “Hardware-
aware pruning of dnns using lfsr-generated pseudo-random indices,” in 2020 IEEE
International Symposium on Circuits and Systems (ISCAS), IEEE, 2020, pp. 1–5.

[44] J. Faraone, N. Fraser, M. Blott, and P. H. Leong, “Syq: Learning symmetric quan-
tization for efficient deep neural networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 4300–4309.

[45] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” In-
ternational Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

79

[46] B. Crafton, S. Spetalnick, G. Murali, T. Krishna, S.-K. Lim, and A. Raychowdhury,
“Breaking barriers: Maximizing array utilization for compute in-memory fabrics,”
arXiv preprint arXiv:2008.06741, 2020.

[47] Y. Li, X. Dong, and W. Wang, “Additive powers-of-two quantization: An efficient
non-uniform discretization for neural networks,” arXiv preprint arXiv:1909.13144,
2019.

[48] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network quantization:
Towards lossless cnns with low-precision weights,” arXiv preprint arXiv:1702.03044,
2017.

[49] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients,” arXiv preprint
arXiv:1606.06160, 2016.

[50] R. Mita, G. Palumbo, S. Pennisi, and M. Poli, “A novel pseudo random bit gener-
ator for cryptography applications,” in 9th International conference on electronics,
circuits and systems, IEEE, vol. 2, 2002, pp. 489–492.

[51] T. W. Cusick and P. Stanica, Cryptographic Boolean functions and applications.
Academic Press, 2017.

[52] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0: A tool to
model large caches,” HP laboratories, vol. 27, p. 28, 2009.

[53] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke, “Scalpel:
Customizing dnn pruning to the underlying hardware parallelism,” ACM SIGARCH
Computer Architecture News, vol. 45, no. 2, pp. 548–560, 2017.

[54] M. Verhelst and B. Murmann, “Machine learning at the edge,” in NANO-CHIPS
2030, Springer, 2020, pp. 293–322.

[55] J. Gu, Z. Zhao, C. Feng, M. Liu, R. T. Chen, and D. Z. Pan, “Towards area-efficient
optical neural networks: An fft-based architecture,” in 2020 25th Asia and South
Pacific Design Automation Conference (ASP-DAC), IEEE, 2020, pp. 476–481.

[56] A. G. Howard et al., “Mobilenets: Efficient convolutional neural networks for mobile
vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[57] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neural net-
works,” arXiv preprint arXiv:1601.06759, 2016.

80

[58] L. Chen, Y. Chen, J. Xi, and X. Le, “Knowledge from the original network: Restore a
better pruned network with knowledge distillation,” Complex & Intelligent Systems,
pp. 1–10, 2021.

[59] S. You, C. Xu, C. Xu, and D. Tao, “Learning from multiple teacher networks,” in
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017, pp. 1285–1294.

[60] S. Shin, Y. Boo, and W. Sung, “Knowledge distillation for optimization of quan-
tized deep neural networks,” in 2020 IEEE Workshop on Signal Processing Systems
(SiPS), IEEE, 2020, pp. 1–6.

[61] B. Zhuang, M. Tan, J. Liu, L. Liu, I. Reid, and C. Shen, “Effective training of con-
volutional neural networks with low-bitwidth weights and activations,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2021.

[62] J. Kim, S. Chang, and N. Kwak, “Pqk: Model compression via pruning, quantization,
and knowledge distillation,” arXiv preprint arXiv:2106.14681, 2021.

[63] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients through
stochastic neurons for conditional computation,” arXiv preprint arXiv:1308.3432,
2013.

[64] D. Goldberg, “What every computer scientist should know about floating-point arith-
metic,” ACM computing surveys (CSUR), vol. 23, no. 1, pp. 5–48, 1991.

[65] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A survey,” Inter-
national Journal of Computer Vision, vol. 129, no. 6, pp. 1789–1819, 2021.

[66] F. Karimzadeh, J.-H. Yoon, and A. Raychowdhury, “Bits-net: Bit-sparse deep neural
network for energy-efficient rram-based compute-in-memory,” IEEE Transactions
on Circuits and Systems I: Regular Papers, 2022.

[67] J.-H. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and A. Raychowd-
hury, “A 40nm 100kb 118.44 tops/w ternary-weight computein-memory rram macro
with voltage-sensing read and write verification for reliable multi-bit rram opera-
tion,” in 2021 IEEE Custom Integrated Circuits Conference (CICC), IEEE, 2021,
pp. 1–2.

[68] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet clas-
sification using binary convolutional neural networks,” in European conference on
computer vision, Springer, 2016, pp. 525–542.

[69] W. He et al., “2-bit-per-cell rram-based in-memory computing for area-/energy-
efficient deep learning,” IEEE Solid-State Circuits Letters, vol. 3, pp. 194–197, 2020.

81

[70] J. Yoon, M. Chang, W.-S. Khwa, Y.-D. Chih, M.-F. Chang, and A. Raychowdhury,
“29.1 a 40nm 64kb 56.67 tops/w read-disturb-tolerant compute-in-memory/digital
rram macro with active-feedback-based read and in-situ write verification,” in 2021
IEEE International Solid-State Circuits Conference (ISSCC), IEEE, vol. 64, 2021,
pp. 404–406.

[71] M. Le Gallo and A. Sebastian, “An overview of phase-change memory device physics,”
Journal of Physics D: Applied Physics, vol. 53, no. 21, p. 213 002, 2020.

[72] O. Golonzka et al., “Mram as embedded non-volatile memory solution for 22ffl finfet
technology,” in 2018 IEEE International Electron Devices Meeting (IEDM), IEEE,
2018, pp. 18–1.

[73] S. Mittal, J. S. Vetter, and D. Li, “A survey of architectural approaches for managing
embedded dram and non-volatile on-chip caches,” IEEE Transactions on Parallel
and Distributed Systems, vol. 26, no. 6, pp. 1524–1537, 2014.

[74] C. Nail et al., “Understanding rram endurance, retention and window margin trade-
off using experimental results and simulations,” in 2016 IEEE International Electron
Devices Meeting (IEDM), IEEE, 2016, pp. 4–5.

[75] W.-H. Chen et al., “A 65nm 1mb nonvolatile computing-in-memory reram macro
with sub-16ns multiply-and-accumulate for binary dnn ai edge processors,” in 2018
IEEE International Solid-State Circuits Conference-(ISSCC), IEEE, 2018, pp. 494–
496.

[76] C.-X. Xue et al., “Embedded 1-mb reram-based computing-in-memory macro with
multibit input and weight for cnn-based ai edge processors,” IEEE Journal of Solid-
State Circuits, vol. 55, no. 1, pp. 203–215, 2019.

[77] C.-X. Xue et al., “15.4 a 22nm 2mb reram compute-in-memory macro with 121-
28tops/w for multibit mac computing for tiny ai edge devices,” in 2020 IEEE Inter-
national Solid-State Circuits Conference-(ISSCC), IEEE, 2020, pp. 244–246.

[78] W. Wan et al., “33.1 a 74 tmacs/w cmos-rram neurosynaptic core with dynamically
reconfigurable dataflow and in-situ transposable weights for probabilistic graphi-
cal models,” in 2020 IEEE International Solid-State Circuits Conference-(ISSCC),
IEEE, 2020, pp. 498–500.

[79] R. Mochida et al., “A 4m synapses integrated analog reram based 66.5 tops/w neural-
network processor with cell current controlled writing and flexible network architec-
ture,” in 2018 IEEE Symposium on VLSI Technology, IEEE, 2018, pp. 175–176.

82

[80] B. Chen, F. Cai, J. Zhou, W. Ma, P. Sheridan, and W. D. Lu, “Efficient in-memory
computing architecture based on crossbar arrays,” in 2015 IEEE International Elec-
tron Devices Meeting (IEDM), IEEE, 2015, pp. 17–5.

[81] T. F. Wu et al., “Brain-inspired computing exploiting carbon nanotube fets and re-
sistive ram: Hyperdimensional computing case study,” in 2018 IEEE International
Solid-State Circuits Conference-(ISSCC), IEEE, 2018, pp. 492–494.

[82] S. Yin, X. Sun, S. Yu, and J.-S. Seo, “High-throughput in-memory computing for
binary deep neural networks with monolithically integrated rram and 90-nm cmos,”
IEEE Transactions on Electron Devices, vol. 67, no. 10, pp. 4185–4192, 2020.

[83] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[84] J. Faraone et al., “Addnet: Deep neural networks using fpga-optimized multipliers,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 1,
pp. 115–128, 2019.

[85] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny
images (tech. rep.),” University of Toronto, 2009.

[86] A. A.-H. Qasem, M. Ibrahim, and A. M. Mohammad, “A double stage implemen-
tation for 1-k pseudo rng using lfsr and trivium,” Journal of Computer Science and
Control Systems, vol. 11, no. 1, pp. 13–17, 2018.

[87] H. Yang, L. Duan, Y. Chen, and H. Li, “Bsq: Exploring bit-level sparsity for mixed-
precision neural network quantization,” arXiv preprint arXiv:2102.10462, 2021.

83

VITA

EDUCATION

Ph.D in Electrical & Computer Engineering (Dec 2022) at Georgia Institute of Technology.

M.S in Computer Science (May 2020) at Georgia Institute of Technology.

M.S in Biomedical Engineering (May 2014) at Shiraz University, Iran.

ACADEMIC EMPLOYMENT

Graduate Teaching Assistant, College of Engineering, Georgia Institute of Technology,

Aug 2017 - Apr 2018.

Graduate Research Assistant to Prof. Arijit Raychowdhury, College of Engineering, Geor-

gia Institute of Technology, May 2018 - Dec 2022.

PUBLICATIONS

[1] (Under review) Foroozan Karimzadeh, R Raychowdhury. DualS-Net: CIM-aware dual

sparse network in network- and bit-level for highly energy efficient deep learning acceler-

ator. IEEE transaction of Circuit and Systems (IEEE-TCAS I), 2022.

[2] Foroozan Karimzadeh, JH Yoon, R Raychowdhury. BitS-Net: Bit-Sparse Deep Neural

Network for Energy Efficient RRAM-Based Compute-In-Memory. IEEE transaction of

Circuit and Systems (IEEE-TCAS I), 2022.

[3] Foroozan Karimzadeh, R Raychowdhury. Towards Energy Efficient DNN accelerator

via Sparsified Gradual Knowledge Distillation. IFIP/IEEE 30th International Conference

on Very Large Scale Integration (VLSI-SOC). IEEE, USA, 2022.

[4] Foroozan Karimzadeh, R Raychowdhury. Towards CIM-friendly and Energy-Efficient

DNN Accelerator via Bit-level Sparsity. IFIP/IEEE 30th International Conf. on Very Large

Scale Integration (VLSI-SOC). IEEE, USA, 2022.

[5] Foroozan Karimzadeh, R Raychowdhury. A Hardware-Friendly Approach Towards

Sparse Neural Networks Based on LFSR-Generated Pseudo-random Sequences. IEEE

84

transaction of Circuit and Systems (IEEE-TCAS I), 2020.

[6] Foroozan Karimzadeh, N Cao, B Crafton, J Romberg, R Raychowdhury. Hardware-

aware Pruning of DNNs using LFSR-Generated Pseudo-Random Indices. IEEE Interna-

tional Symposium on Circuits and Systems (ISCAS). IEEE, Spain, 2020.

[7] Foroozan Karimzadeh, R Raychowdhury. Memory and Energy Efficient Method To-

ward Sparse Neural Network Using LFSR Indexing. IFIP/IEEE 28th International Confer-

ence on Very Large Scale Integration (VLSI-SOC). IEEE, USA, 2020.

ACADEMIC AWARDS

Design Automation Conference (DAC 2022) Young Fellow. 2022

Selected as a speaker at IEEE Woman in Engineering- International Leadership Confer-

ence, (IEEE WIE-ILC), U.S. 2022

Semiconductor Research Corporation (SRC) Graduate Fellowship, awarded in partnership

with Texas Instruments. This prestigious award provides full tuition and fees and a monthly

stipend to the awardee. The Fellowship Program supports doctoral student for up to three

years. 2021

Selected as a speaker at IEEE Woman in Engineering- International Leadership Confer-

ence, (IEEE WIE-ILC), U.S. 2021

85

	Title Page
	Table of Contents
	Acknowledgments
	List of Tables
	List of Figures
	List of Acronyms
	Summary
	1 | Introduction and Background
	Introduction
	Literature Survey

	2 | Network-Level Sparsity using LFSR Indexing
	Introduction and Motivation
	Proposed LFSR-Generated PRS Based Sparsity (lgps) Method
	Experimental Results
	Conclusions

	3 | Network-level Sparsity and Quantization for Ultra-Low Bit Precision
	Introduction and Motivation
	SKG: Towards Energy Efficient DNN accelerator via Sparsified Gradual Knowledge Distillation
	Experimental Results
	Conclusion

	4 | Bit-Level Sparsity and CIM-aware DNN Compression
	Introduction and Motivation
	BitS-Net: Bit-Sparse Deep Neural Network for Energy-efficient rram Based Compute-In-Memory
	Algorithm-Hardware Joint Optimization in cim during inference
	Experimental Results
	Conclusion

	5 | Twofold Sparsity: CIM-aware Network- and Bit-level Sparsity for Energy-efficient Deep Learning accelerator
	Introduction and Motivation
	Double sparsity training
	Experimental Results
	Conclusion

	6 | Conclusion
	References
	Vita

