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SUMMARY

Additive Manufacturing (AM), also known as 3D printing, refers to a collection of

manufacturing processes where materials are joined together layer by layer to make objects

directly from 3D models. Due to many advantages of AM, such as rapid prototyping,

massive customization, material saving, and flexibility of designs, there is a trend for AM

to replace traditional manufacturing processes. However, AM highly relies on computers

to work. As AM systems are gaining popularity in many critical industry sectors, there is

an increased risk of cyberattacks on AM systems.

To protect AM systems from cyberattacks that aim to sabotage the AM systems, Intru-

sion Detection Systems (IDSs) can be used. In recent years, researchers proposed a series

of IDSs that work by leveraging side-channel signals. A side-channel signal is typically

a physical signal that is correlated with the state of the AM system, such as the acoustic

sound or the electromagnetic wave emitted by a 3D printer in a printing process. Because

of the correlation between a side-channel signal and the state of a 3D printer, it is possible

to perform intrusion detection by analyzing the side-channel signal. In fact, most existing

IDSs leveraging side-channel signals in AM systems function by comparing an observed

side-channel signal against a reference side-channel signal.

However, we found that these IDSs are not practical due to a lack of synchronization.

Many IDSs in the literature do not contain details on how to align two (or more) side-

channel signals at their starting moments and their stopping moments. In addition, we

found that there is time noise in AM processes. When the same G-code file is executed

on the same 3D printer multiple times, the printing processes will have slightly different

timing. Because of time noise, a direct comparison between two signals point by point or

window by window will not make sense. To overcome this problem, we propose to use

dynamic synchronization to find corresponding points between two signals in real time.

To demonstrate the necessity of dynamic synchronization, we performed a total of 302

xvii



benign printing processes and a total of 200 malicious printing processes with two printers.

Our experiment results show that existing IDSs leveraging side-channel signals in AM

systems can only achieve an accuracy from 0.50 to 0.88, whereas our IDS with dynamic

synchronization can reach an accuracy of 0.99.

Other than cyberattacks to sabotage AM systems, there are also cyberattacks to steal

intellectual property in AM systems. For example, there are acoustic side-channel attacks

on AM systems which can recover the printing path by analyzing the acoustic sound by a

printer in a printing process. However, we found that the acoustic side-channel attack is

hard to perform due to challenges such as integration drift and non-unique solution. In this

thesis, we explore the optical side-channel attack, which is much easier to perform than

the acoustic side-channel attack. The optical side-channel signal is basically the video of

a printing process. We use a modified deep neural network, ResNet50, to recognize the

coordinates of the printhead in each frame in the video.

To defend against the optical side-channel attack, we propose the optical noise injec-

tion method. We use an optical projector to artificially inject crafted optical noise onto the

printing area in an attempt to confuse the attacker and make it harder to recover the print-

ing path. We found that existing noise generation algorithms, such as replaying, random

blobs, white noise, and full power, can effortlessly defeat a naive attacker who is not aware

of the existence of the injected noise. However, an advanced attacker who knows about

the injected noise and incorporates images with injected noise in the training dataset can

defeat all of the existing noise generation algorithms. To defend against such an advanced

attacker, we propose three novel noise generation algorithms: channel uniformization, state

uniformization, and state randomization. Our experiment results show that noise generated

via state randomization can successfully defeat the advanced attacker.
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CHAPTER 1

INTRODUCTION

1.1 Additive Manufacturing and its Security Challenges

Additive Manufacturing (AM), also known as 3D Printing, is gaining popularity in a variety

of critical industrial sectors, such as automobile [1], aerospace [2], construction [3], and

medicine [4]. For example, researchers in Oak Ridge National Laboratory used a Big Area

Additive Manufacturing (BAAM) system to print a motor car [1]. Airbus used AM to

produce titanium bracket connectors for its Airbus A350 XWB for improved reliability and

reduced weight [2]. Apis Cor built the world’s largest 3D-printed building, a two-story

municipal administrative building with a height of 31 feet and an area of 900 square feet

[3]. Researchers in University of Michigan applied AM to manufacture a biodegradable

scaffolding, which can be attached to the outside of a trachea to treat tracheomalacia [4].

According to the Wohlers Report 2019, the AM industry, consisting of all AM products

and services worldwide, will reach $15.8 billion in 2020, $23.9 billion in 2022, and $35.6

billion in 2024 [5].

As the application of AM grows rapidly in critical industrial sectors, cyberattacks to

sabotage AM systems is becoming a concern. For example, Moore et al. analyzed the

vulnerability of common 3D printing software applications, such as Cura, ReplicatorG,

and Repetier-Host [6]. They found several vulnerabilities in these applications that can

lead to cyberattacks. Do et al. performed cyberattacks on two MakerBot 3D printers [7].

They found vulnerabilities in the network protocol used in these printers and were able to

take control of the printers to exfiltrate sensitive data and remotely manipulate the printers.

Moore et al. explored the implications of malicious 3D printer firmware [8]. When the

firmware of a 3D printer is tempered with by an attacker, it is possible for the printer to

1



print an object with defects even if the printer is sent benign G-code instructions. Sturm et

al. demonstrated that, by inserting small defects, such as voids, into the design file (such as

an STL file), the structural integrity of the printed object can be degraded [9]. Later, Yam-

polskiy et al. presented the idea of performing cyberattacks on AM systems in an attempt

to compromise the structural integrity of the printed objects [10]. When a printed object

with defects is put in operation, its failure could result in the whole system with the object

to fail, causing damage to property and life. To put this idea into practice, Belikovetsky et

al. performed a complete cyberattack on an AM system that manufactured propellers for

drones [11]. They secretly modified the design file to introduce small gaps between the hub

of the propeller and the blades. The manufactured propeller looked identical to a normal

propeller and could operate normally for a short period of time. The propeller then broke

in flight, causing the uncontrollable drone to fall from the sky.

As the application of AM increases rapidly, the protection of Intellectual Property (IP)

associated with AM is also becoming a concern [12, 13, 14, 15]. For example, it could take

years for a company to design a product to be additively manufactured and then sell the

product for a profit [16]. Losing the IP could mean a financial loss. Meanwhile, there are

designs that should be strictly controlled. An example is 3D printed firearms [17]. If the

design of a firearm is leaked, it may lead to unlawful production of the firearm. In recent

years, there emerges a series of side-channel attacks to steal IP in AM systems. In 2016, Al

Faruque et al., Hojjati et al., and Song et al. respectively proposed cyberattacks leveraging

the acoustic and magnetic side channels to steal IP in AM systems [18, 19, 20]. Although

the methods are different in technical details, they can determine the outline of an object

that is being printed by analyzing the acoustic and magnetic side-channel signals collected

by a cellphone near the printer.
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Figure 1.1: Side-channel signals for three printing processes using the same G-code file
and the same printer. The signals are aligned at the beginning. The misalignment in the
end is caused by time noise.

1.2 Intrusion Detection with Side Channels

Side channels are gaining popularity for intrusion detection in AM systems due to their

non-invasiveness and often air-gapped threat models [21, 22, 23, 24, 25, 26, 27]. To per-

form intrusion detection in AM systems, many existing Intrusion Detection Systems (IDSs)

compare an observed side-channel signal against a reference signal point by point or win-

dow by window. For each pair of points or windows, a distance is calculated between the

signals to determine if they are similar or not [21, 22, 23, 24, 27, 26] (the acoustic layer in

[22]), or a classifier can be employed to determine whether the signals are alike or not [22]

(the spatial layer in [22]).

This approach to compare signals works well if the two signals are aligned for every

pair of points or windows. It appears that when the same printing process is performed on

the same AM system, the timing should be the same. If this assumption is true, when an

observed signal is aligned with a reference signal at the beginning, they should be aligned

at other points. However, our experiments show that this assumption is not true. Figure 1.1

shows side-channel signals from three printing processes with the same G-code file and the

same printer. Although the side-channel signals are aligned at the beginning, they do not

end at the same time.

AM systems are asynchronous. When executed multiple times, the duration for the
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Figure 1.2: Correlation distances of a benign printing process and a malicious printing
process. Due to time noise, the distances of a benign printing process are very large and
could be larger than the distances of a malicious printing process.

same instruction can vary slightly. In addition, there can be random gaps between instruc-

tions. This random variation in timing is referred to as time noise. Time noise can be a result

of frame drops in data acquisition systems, mechanical and thermal delays in devices, and

task scheduling in operating systems (if equipped).

Time noise can invalidate any IDS that is based on comparing a side-channel signal

against a reference signal point by point or window by window. When comparing two sig-

nals that are out of alignment, the distances can become very large. Figure 1.2 shows the

correlation distances of a benign process and a malicious process. Without the considera-

tion of time noise, we can see that the distances of the benign process are as large as the

distances of the malicious process.

A practical IDS using side channels must be able to tolerate time noise. One approach

to tolerate time noise is to dynamically synchronize two signals. An existing method to do

so is called Dynamic Time Warping (DTW) [28, 29]. However, DTW does not natively

support real-time operations, consumes an excessive amount of computational resources,

and has limited accuracy for side-channel signals in AM systems, as will be demonstrated

in section 3.12.

To overcome the problems of DTW, we propose a novel algorithm called Dynamic

Window Matching (DWM) to replace DTW. DWM finds the timing relationship between

two signals by establishing a sliding window for each signal. As the pair of windows slides
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across the signals, the relative displacement (a.k.a. the horizontal displacement) between

the windows is determined by Time Delay Estimation (TDE). To stabilize the process, we

introduce biases in the TDE process, and we introduce inertial when adjusting the relative

displacement between the windows. DWM is a window-by-window algorithm. In contrast,

DTW is a point-by-point algorithm.

For a complete IDS, we propose NSYNC (Noise SYNC), a framework to practically

compare a side-channel signal against a reference signal for real-time intrusion detection in

AM systems. NSYNC first of all aligns two signals at the beginning by static synchroniza-

tion. The horizontal displacements between the two signals are then determined by either

DTW or DWM. A comparator then generates the vertical distance for each pair of points

or windows. Finally, a discriminator looks at both the horizontal displacements and the

vertical distances to automatically determine if there is an intrusion.

In NSYNC, the thresholds in the discriminator are learned by One-Class Classification

(OCC) [30]. In contrast, many existing IDSs either use binary classification [21, 22, 25]

(the spatial layer in [22]) or magic numbers for thresholds [22, 27] (the acoustic layer in

[22]). Some existing IDSs do not have an automatic decision module [24]. Binary classi-

fication requires knowing the malicious processes in advance, which can be impractical to

achieve. In contrast, OCC does not require such knowledge.

1.3 Defending Against Side-Channel Attacks

Side channels can be used by defenders to protect AM systems but they can also be used

by attackers to steal intellectual property in AM systems. In fact, side-channel attacks can

be used to break computer systems that are otherwise hard to break [31]. In the literature,

there are already many side-channel attacks to steal intellectual property in AM systems.

For example, when the acoustic wave in a printing process is recorded by an attacker,

the attacker can potentially infer information about the printing process by a variety of

techniques, such as signal processing and machine learning [18, 19, 20]. In addition, there
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are research efforts in the literature to recover the coordinates of the printhead in a 3D

printer by analyzing the infrared video observed by an infrared camera [32].

However, existing side-channel attacks on intellectual property in AM systems have

a variety of limitations and only work well for a few printing processes. For example,

the acoustic side-channel attacks in [18, 20] only work for printing processes where the

movement directions are restricted to four or eight cardinal directions, and the acoustic

side-channel attack in [19] only works for printing processes where the duration of each G-

code instruction is long enough to clearly see the boundaries between G-code instructions in

the spectrogram. The infrared video side-channel attack in [32] fails altogether potentially

due to a lack of proper methodology.

We propose the optical side-channel attack using a deep neural network. Although the

optical side-channel attack requires camera footage of a printing process, which can be hard

to acquire compared with audio data in the acoustic side-channel attack, the optical side-

channel attack can easily overcome the limitations faced by the acoustic side-channel attack

and recover the path of an arbitrary printing process. To our best knowledge, we are the

first research group to successfully perform the optical side-channel attack on intellectual

property in AM systems and present effective mitigation methods.

To defend against side-channel attacks on intellectual property in AM systems, re-

searchers came up with a variety of methods, such as tuning manufacturing parameters

[33, 34], using fake movements [20], balancing loads on motors [18], applying shields

[18, 19, 20], and injecting noise [19, 20]. In this thesis, we focus on the noise injection

method to defend against our proposed optical side-channel attack, because the noise in-

jection method, compared to many other defense methods, has the least amount of adverse

impact on the AM system and the printed objects.

Noise injection as an effective defense method requires an algorithm to determine the

pattern of the noise to be injected. There are several existing noise generation algorithms

such as random blobs, white noise, full power, and replaying the side-channel signal of
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another printing process [19]. According to our experiments on the optical side-channel

attack, although the existing noise generation algorithms are effective against a naive at-

tacker, they can be easily defeated by an advanced attacker, who is aware of the existence of

injected noise and attempts to identify and remove the injected noise in the attack process.

To defend against the advanced attacker, in this thesis, we propose three novel noise gener-

ation algorithms, and they are channel uniformization, state uniformization, and state ran-

domization. Our experiments show that state randomization can effectively defend against

attackers with different prior knowledge.

1.4 Structure of the Thesis

The structure of the thesis is as follows: In chapter 2, we briefly discuss papers that are

related to the thesis. In chapter 3, we present the NSYNC framework, which uses side-

channel signals in AM systems to perform intrusion detection. In chapter 4, we present

the optical side-channel attack as well as methods to defend against the proposed optical

side-channel attack. In chapter 5, we summarize important findings in the thesis.
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CHAPTER 2

LITERATURE SURVEY

2.1 Cyberattacks to Sabotage Additive Manufacturing Systems

Although there are no reported cyberattack on AM systems that result in a large loss of

property or life, the research community is working on potential threats on AM systems.

Moore et al. analyzed the vulnerability of common 3D printing software packages,

such as Cura, ReplicatorG, and Repetier-Host, and found several vulnerabilities that could

be potentially exploited by attackers [6]. Do et al. analyzed the network protocols in two

MakerBot 3D printers and found that they did not check the legitimacy of the SSL/TLS

certificates. As a result, they were able to exfiltrate sensitive data and remotely manipulate

the 3D printers [7].

To see if it is possible to launch a cyberattack on an AM system to weaken the structural

integrity of a printed object without being detected, Turner et al. implanted a virus on a

controller PC in an AM system and the virus rewrote G-code instructions for incoming G-

code files to maliciously change the geometry slightly to weaken the objects to be printed

[35]. They demonstrated with human subjects that the malicious modification could not be

noticed by AM operators.

Zeltmann et al. experimented with a Stratasys Connex 500 printer to see if it is possible

to insert malicious defects inside a printed object to weaken its structural integrity while

evading Non-Destructive Testing (NDT) [36]. They inserted tiny cubes (composed of a soft

material) into the structural material in a printed object. Although the ultrasonic inspection

could not detect the presence of the tiny cubes, the inserted defects did not cause noticeable

degradation of structural integrity. In addition to inserting defects, they experimented with

a Stratasys Dimension Elite FDM printer to see if it is possible weaken the structural in-
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tegrity of a printed object by changing the orientation of the object in the printing process.

They found that this method could effectively reduce the structural integrity, but the surface

pattern was noticeably changed which could lead to detection.

Sturm et al. performed a cyberattack that is similar to the cyberattack in [35]. They

infected a host computer in an AM system with a virus that could automatically insert voids

into a design file before it was submitted for printing. The maliciously inserted voids could

weaken the structural integrity of the printed object, and their presence was not noticed by

human operators.

Slaughter et al. performed a cyberattack on a metal AM system with a real-time process

monitoring system using infrared cameras [37]. The infrared images were used for quality

assessment and used as inputs to a closed-loop control system to correct temperatures in the

AM system. They performed various cyberattacks on the infrared imaging system and the

closed loop control system to maliciously alter the temperatures and were able to degrade

the quality of the printed objects.

Moore et al. demonstrated with a Printrbot 3D printer that by maliciously modifying

the firmware of the printer, an attacker can change the shape of the printed object or change

the extrusion rate in the printing process [8]. Normally, the extrusion rate must match the

printing speed. Otherwise, the quality of the printed object degrades either in the form of

under-extrusion or over-extrusion. This work demonstrates the importance of the security

of firmware in AM systems. When the firmware is compromised, a 3D printer can still

behave maliciously despite being sent benign G-code instructions.

Belikovetsky et al. demonstrated a complete cyberattack on an AM system that even-

tually resulted in the damage of physical property. The AM system was manufacturing

propellers for drones. An attacker first gained access to the host computer in the AM sys-

tem by sending an email containing a malicious zip file. Once the victim opened the zip

file and clicked an EXE file that looked like a PDF file, a reverse shell was opened in the

background for the attacker to secretly control the host computer. The attacker then looked
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for the design file and strategically inserted defects into important locations in the propeller.

When a propeller with the inserted defects was printed, the propeller was able to pass qual-

ity inspection, but still broke in flight, causing the drone with the propeller to fall from the

sky. This is the most serious type of cyberattacks that can happen to an AM system.

2.2 Intrusion Detection with Side Channels

To fight against cyberattacks that attempt to compromise the structural integrity of printed

objects, a series of IDSs leveraging side-channel signals have been proposed in the litera-

ture. There are two main advantages of side-channel based IDSs. They are air-gapped from

the systems to be protected and inflict zero overhead.

Chhetri et al. came up with the idea of using the acoustic side-channel signal in a

printing process to detect zero-day cyberattacks on AM systems [21]. They used machine

learning to estimate the velocity and distance of a movement from its acoustic side-channel

signal. This process is virtually the acoustic side-channel attack in [18, 19, 20]. By in-

terpreting the G-code instruction, the expected velocity and distance of the movement is

obtained. An alert is raised if the estimated values are different from the expected values

by predefined thresholds. However, an important assumption in the paper is that the side-

channel signal can be segmented such that each segment corresponds to a single G-code

instruction. This process is highly non-trivial and there are no details in the paper.

Bayens et al. presented an IDS with two layers. The acoustic layer compares an acous-

tic side-channel signal against a reference signal window-by-window with Dejavu, a music

retrieval engine that is similar to Shazam [38], to detect malicious infill patterns [22]. The

spatial layer compares the position signal (the position of the nozzle with respect to time)

against a pre-recorded reference signal to detect intrusion. The problem with the acoustic

layer is that Dejavu is optimized for music, not necessarily for acoustic side-channel sig-

nals. Our experiment results indicate that the acoustic layer simply classifies all printing

processes as malicious. The problem with the spatial layer is that it performs binary clas-
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sification, which requires knowing the malicious processes to be detected in advance. In

addition, the spatial layer requires the installation of a potentiometer onto the nozzle of the

printer, which is an invasive sensor.

Moore et al. proposed an IDS that measures electric currents delivered to actuators, and

compares measured signals against pre-recorded reference signals point-by-point to detect

malicious activities [23]. The main problem with this IDS is that it is not aware of the

existence of time noise, which can easily render point-by-point comparison invalid. The

current sensors are invasive as they need to be installed on the electric wire of steppers in

a printer. This can be hard for a lot of 3D printers. In addition, they use an electric wire

from the printer as a trigger to determine the starting moment of a printing process, which

breaks the air gap between the IDS and the 3D printer.

Gatlin et al. improved Moore’s method by analyzing the current in the Z-axis stepper

motor to identify the moments when a layer change happens [26]. The layer changing mo-

ments can not only be used to better align signals to be compared but also be used as indi-

cators for intrusion detection. In addition, instead of comparing raw signals point-by-point,

this IDS transforms the side-channel signals into fingerprints and compare fingerprints for

intrusion detection. Even though the signals to be compared are aligned at the layer chang-

ing moments, since it takes a long time to print a single layer, time noise can still render the

point-by-point comparison within a layer invalid. As with Moore’s IDS, the installation of

current sensors into a printer is invasive and is hard to be performed for a lot of (expensive

and enclosed) printers.

Gao et al. presented a process monitoring system that observes the acceleration, mag-

netic, acoustic, and optical side-channel signals to safeguard AM systems against cyberat-

tacks [24]. Based on the observed side-channel signals, state variables, such as the position

and velocity of the nozzle, are estimated, along with the height of each layer and the fan

speed. To detect intrusion, for each layer, the estimated position signal is converted into

a path and compared against the reference path obtained from the G-code file. Other esti-
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mated signals are compared against their counterparts derived from the G-code file to detect

intrusion. It seems that the reference printing speed and the reference fan speed within a

single layer are assumed to be constant. This assumption is usually true for the fan speed,

but unlikely to be true for the printing speed. In addition, this paper focuses on how accu-

rate they can recover the state variables from the side-channel signals. They do not provide

a discriminator to automatically determine if the side-channel signal to be assessed belongs

to a benign process or a malicious process.

Belikovetsky et al. presented a framework to transform an acoustic side-channel signal

into a spectrogram, which is further compressed by the Principle Component Analysis

(PCA) into a signal with only three channels [27]. The transformed signal is compared

window-by-window against a reference signal (derived from a verifiable benign printing

process) to detect intrusion. They proposed to insert special commands into the G-code

file to generate special sounds at the starting and stopping moments of a printing process,

which can be easily captured and processed by the IDS. The main problem with this IDS is

the lack of awareness of time noise.

Straub built a system with five cameras to capture images of a printing process to mon-

itor the progress of the printing process [39]. Later, Straub applied the same process moni-

toring system for intrusion detection [40, 41, 42, 42, 43, 44]. However, these IDSs are for

post-production verification only. They perform pixel-by-pixel comparison, which makes

these IDSs susceptible to the changes of the camera positions and lighting conditions. In

addition, these papers only show the difference between reference images and observed

images without providing mechanisms to automatically determine if the current printing

process is benign or malicious.

Wu et al. proposed to use machine learning to perform intrusion detection in AM

systems using the optical side channel. In the IDS, a camera captures images of infill

patterns in a printing process, and a feature vector of 24 components is derived from each

image. They collect a series of images with normal infill patterns. They also collect a
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series of images containing one of five predefined defects in the infill patterns. A binary

classifier is then trained on these images to discriminate images with normal infill patterns

and images with abnormal infill patterns. There are two serious problems that may restrict

the application of this IDS. First, it is not clear if the IDS can generalize to other types of

defects not seen in the five predefined defects. Second, it is not clear if the IDS still works

if an image is not fully covered by infill patterns.

2.3 Side-Channel Attacks for Intellectual Property

To perform the acoustic side-channel attack, Al Faruque et al. proposed an algorithm to

separate the acoustic signal due to one motor and the acoustic signal due to another motor

from the combined acoustic signal [18]. After the signals are separated, they use regression

models and classifiers to determine the speed for each motor. However, according to [45],

this approach may not be effective when the two motors are moving at the same time.

By assuming the printing speed is constant and known, Hojjati et al. proposed to use

matching filters to determine the direction for each movement [19]. As the matching filters

typically return multiple directions with equal probabilities, their method further uses the

magnetic side channel and human intelligence to determine the most likely directions for

all movements. Since this method depends the abrupt changes in the side-channel signal

to determine the boundaries of G-code instructions, this method may not work well for a

printing process where there are a lot of short and rapid movements.

As with Hojjati’s attacker, the method proposed by Song et al. assumes that the print-

ing speed is known in advance and uses magnetic fields for assistance [20]. Instead of

using matching filters, their method uses five classifiers to directly determine the nozzle’s

movement and the extruder’s state. Since this method relies on classifiers to work, a ma-

jor limitation of this method is that it only works well for a printing process where most

movements are along the eight cardinal directions.

Other than the acoustic side-channel attack, Al Faruque et al. came up with an attack
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that uses the infrared side channel to steal IP in AM processes [32]. They proposed a

mapping algorithm to convert an infrared video to a speed signal. However, according

to [32], the attack was not successful due to low resolution, low sampling rates, limited

perspectives, and inability to change the focus of the infrared camera.

2.4 Defending Against Side-Channel Attacks

The authors that proposed the side-channel attacks on AM systems also mentioned potential

mitigation methods without comprehensive evaluations in practice though. A complete list

of the defense methods is as follows:

Parameter Tuning. Chhetri et al. proposed to minimize the mutual information be-

tween side-channel signals and G-code instructions by tuning manufacturing parameters,

such as object orientation and printing speed [34]. However, the level of protection pro-

vided by the method is limited. According to their own performance metric, there is an

average reduction of 10% in the success rate, and they acknowledge that this method may

not be able to practically defeat side-channel attacks.

Movement Obfuscation. This method injects fake movements in a printing process to

confuse an attacker [20], as shown in Figure 2.1. A fake movement moves the printhead at

the extrusion speed without filament extrusion. This breaks the important assumption by

many attackers that a low printing speed corresponds to an extrusion movement whereas a

high printing speed corresponds to a non-extrusion movement [18, 19, 20]. However, this

method introduces stringing effects1, which can adversely affect the quality of the printed

object. In addition, this method can significantly extend the printing time.

Signal Power Reduction. This method aims at reducing the power of side-channel sig-

nals and thus reduce the Signal-to-Noise Ratio (SNR). The power of acoustic side-channel

signals can be reduced by a better design. For example, compared with SeeMeCNC Ro-
1In an FDM process, when the nozzle travels from point A to point B without extrusion, the molten

filament in the nozzle continues to come out in this process, and forms a string from point A to point B,
which is undesirable. To suppress the stringing effect, the extruder retracts the filament at the beginning of
the movement and then re-extrudes at the end of the movement.
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(a) No Fake Movement (b) With Fake Movements

Figure 2.1: Illustration of fake movements. (a) A layer without fake movement. (b) The
same layer with fake movements.

stock Max V3, Ultimaker 3 is much quieter and emits much less acoustic waves. The

power of optical side-channel signals can be reduced by using less lights in the environ-

ment. However, using less lights not only makes normal operation harder but also brings

security problems, such as potentially increased theft activities.

Physical Shielding. This method installs physical shields to prevent side-channel sig-

nals from reaching the attacker [18, 19, 20]. Examples are acoustic shields for the acoustic

side channel and view blocks for the optical side channel. However, view blocks can make

it hard to monitor the printing process by human beings or cameras.

Physical Uniformization. The core ideal of this defense method is to make physical

changes to the AM system such that the side-channel signals for different states of the AM

system are similar. In this way, it will be hard for an attacker to infer the state of the AM

system by analyzing the side-channel signal. For example, Al Faruque et al. proposed to

balance the loads in the x and y motors to make the acoustic emission from the x motor and

that from the y motor similar to each other [18]. For the optical side channel, the printhead

and the build plate can be made the same color such that it is hard to see the printhead in

relation to the build plate. However, our experiments indicate that this method may not be

effective as we were able to reconstruct the printing path by the optical side channel for a

printer where the printhead and the build plate were both black.
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Noise Injection. This defense method involves using signal generators (such as speak-

ers) to artificially create side-channel signals to interfere with side-channel signals in AM

systems in an effort to reduce the SNR and thus thwart side-channel attacks [20, 19]. The

artificially created side-channel signals are noise for an attacker, and thus is also referred

to as side-channel noise. This paper focuses on this method because, according to our

experiments, it is a low cost and effective solution, and it has the least amount of impact

on the AM system. The noise injection method requires an algorithm to generate noise.

Noise generated by existing algorithms can be easily filtered out by advanced attackers as

demonstrated by our experiments later in this thesis.
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CHAPTER 3

THE NSYNC FRAMEWORK

3.1 Introduction

The NSYNC framework is a solution to compare two signals to determine if the signals

are alike or not. For an AM system, when one of the signals is the side-channel signal

of a verified benign printing process and the other signal is the side-channel signal of an

unidentified printing process, the NSYNC framework acts as an IDS for the AM system.

The main strength of NSYNC is that it is capable of comparing signals that are not perfectly

aligned. For an AM system, two side-channel signals from two printing processes with the

same G-code file cannot be perfectly aligned due to the presence of time noise in the AM

system. Because of this, the NSYNC framework is probably, as of now, the only practical

IDS leveraging side-channel signals in AM systems.

In this chapter, we first of all briefly introduce the background information that is

needed to understand the NSYNC framework. We then present the threat model that the

NSYNC framework is designed for. Next, we discuss the overall structure of the NSYNC

framework. Afterwards, we discuss in detail each component of the NSYNC framework.

Finally, we present experiment results related to the NSYNC framework.

3.2 Background Information

3.2.1 Additive Manufacturing

Additive Manufacturing (AM) refers to a collection of manufacturing processes where ma-

terials are joined together layer by layer to make objects directly from 3D models [46].

AM processes are performed by computers without human intervention. The operation of

an AM process is called printing and the machine by which materials are joined together
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Figure 3.1: A general FDM process. A slicer converts a 3D model into G-code instructions,
which are then sent to a printer for execution. The printer interprets the G-code instructions
and instructs various actuators in the printer to work. An object is printed, and various side-
channel signals (acoustic, magnetic, optical, etc) are generated.

is called a printer. There are seven categories of AM processes, and each category con-

tains many types of AM processes. In this thesis, we focus on Fused Deposition Modeling

(FDM) [47], which is the most common AM process.

A general FDM process is described in Figure 3.1. The AM process starts with a 3D

model that describes the shape of the object to be printed. A specialized program called

a slicer, such as Cura, Slic3r, and MatterSlice, then asks for manufacturing parameters,

such as feed rates and temperatures, to be specified. Afterwards, the slicer converts the 3D

model into a G-code file, which is a collection of G-code instructions. Finally, the G-code

file is sent to a printer for execution. The printer interprets the received the G-code file and

instructs various actuators in the printer to work according to the G-code file. An object is

printed while various side-channel signals are emitted.

3.2.2 State Variables

From the perspective of control theory, a printer can be represented by a state variable1. The

components of the state variable may include the position of the printhead, the position of

the filament, the temperatures of the nozzle(s) and the build plate, the speed of the fans,

etc. The state variable as a function of time forms a state-variable signal, where each

component of the state variable corresponds to a channel in the signal. A state-variable

1A variable can be a scalar, a vector, or even a matrix. A state variable can be a vector with multiple
components.
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Figure 3.2: Example of a state-variable signal xSV with three channels x, y, z, where
(x, y, z) is the coordinate of the printhead. The state-variable signal could contain more
channels such as the displacement of the filament in the extruder, the fan speed, the tem-
perature(s) of the nozzle(s), and the temperature of the build plate.

signal is described by

xSV[n, c], n = 0, 1, · · · , N − 1, c = 0, 1, · · · , C − 1, (3.1)

where n is the time index, N is the number of data points, c is the channel index, and C is

the number of channels. If the sampling rate is fs, then the duration of the state-variable

signal is N/fs. Figure 3.2 shows a state-variable signal with three channels corresponding

to the x, y, and z coordinates of the printhead.

In this thesis, we may write xSV[n, c] simply as xSV[n] or xSV, where xSV[n] is a vector

of C components and xSV is an array2 (or matrix) of shape N × C.

Control Variables. There is a concept called control variables in [21]. A control

variable is the target of a movement, such as the target speed and the target position. In

contrast, a state variable is the instantaneous state during a movement, such as the instan-

taneous speed and the instantaneous position during a movement. In this thesis, we focus

our analysis on state variables as they are more directly related to side channels.

2In this thesis, we define arrays and vectors in the context of mathematics. An array is a sequence of
ordered elements. There can be an infinite number of elements in an array. A vector is a fixed number
of components. In the context of programming languages (C/C++ to be specific), an array is a block of
consecutive memory space to store a fixed number of elements. The size of an array, after its creation, cannot
be changed. In contrast, the size of a vector can be dynamically increased.
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3.2.3 Side Channels

Side channels are unintentional means of communication by which information about a

computer or a cyber-physical system can be leaked to an outsider.

AM systems have a variety of side channels. For example, when an AM system is

printing an object, the system emits acoustic waves [18, 19, 20] and electromagnetic waves

(including quasi-static electric fields and quasi-static magnetic fields) that can be sensed to

infer information about the printing process. The acceleration of any moving part in the

AM system can be measured by an accelerometer to infer information about the printing

process [22, 24]. Other examples of side channels in an AM system include, but are not

limited to, power consumption measured by power sensors [23, 26], temperatures measured

by thermometers, optical videos captured by cameras [24, 25], and infrared videos captured

by infrared cameras [32].

Mathematically, a side-channel signal is represented by

xSC[n, c], n = 0, 1, · · · , N − 1, c = 0, 1, · · · , C − 1, (3.2)

where n is the time index, N is the number of data points, c is the channel index, and C

is the number of channels. If the sampling rate is fs, then the duration of the side-channel

signal is N/fs. Typically, fs is determined by the Analog-to-Digital Converter (ADC) in

the data acquisition system that observes the side-channel signal.

As with xSV[n, c], we may write xSC[n, c] simply as xSC[n] or xSC, where xSC[n] is a

vector of C components and xSC is an array (or matrix) of shape N × C.

3.3 Threat Model

In chapter 2, we saw that there are cyberattacks that seek to compromise the structural

integrity of printed objects in AM systems, and there are IDSs that leverage side-channel

signals to fight against such attacks. In this section, we describe the threat model that is
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Figure 3.3: Threat model for intrusion detection with side channels. An attacker attempts to
undermine the structural integrity of the printed object by modifying the G-code file in the
network or the firmware in the printer. An air-gapped intrusion detection system monitors
the side-channel signals in the printing process to determine if there is an attack.

shared by the existing IDSs [21, 22, 23, 24, 27, 26].

The threat model is shown in Figure 3.3. In the threat model, an AM system is man-

ufacturing a functional object. An attacker wants to compromise the structural integrity

of the printed object without being detected. We assume that the attacker can modify the

software (G-code instructions) to be sent to the printer or the firmware of the printer. By

modifying the firmware, the printer could behave maliciously despite being sent benign G-

code instructions. The attacker knows how to strategically modify the G-code instructions

or firmware to weaken the structural integrity of the object and let the object pass existing

quality checks, such as the attack demonstrated in [11].

In the AM system, an air-gapped IDS leveraging side-channel signals is deployed. The

IDS is composed of an analyzer, sensors (and interfaces) to observe side-channel signals,

and reference signals. The analyzer, essentially a digital computer, continuously compares
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the observed signals against the reference side-channel signals. If an observed signal is

considered different from its corresponding reference signal at any moment, then an in-

trusion is detected and the IDS alerts AM operators, and automatically stops the printing

process if necessary.

3.3.1 Acquisition of Reference Signals

Reference signals are recorded side-channel signals from a benign process. A challenge to

obtain reference signals is to ensure that they indeed come from a benign process. One way

to do this is to subject the printed object to stringent tests and if the printed object passes

the tests, the printing process can be considered benign [23, 27, 26].

3.3.2 Requirements of Side-Channel Signals

In order for the aforementioned IDS to work, the selected side-channel signals must be

highly correlated with the state-variable signal of the printer. On the one hand, when the

state-variable signal of the printer is modified, the changes should be reflected in the side-

channel signals. Otherwise, the IDS will result in false negatives. On the other hand, when

the state-variable signal of the printer is not altered, the side-channel signals should remain

almost the same. Otherwise, the IDS will result in false positives.

3.3.3 Real-Time vs Post-Production

For real-time detection, the analyzer can only see the observed side-channel signals up to

the current moment but has access to the whole reference signals. In contrast, for post-

production analysis, the analyzer has access to the whole observed side-channel signals

as well as the whole reference signals. Real-time detection is more desirable since early

detection saves time and reduces material waste when an attack does occur.
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Figure 3.4: Overview of the NSYNC Framework.

3.3.4 Advanced Attackers

We assume that an advanced attacker knows the existence of the IDS in the AM system,

and attempts to avoid detection by leveraging the potential weaknesses in the IDS. For ex-

ample, the advanced attacker can perform an attack such that the duration of the malicious

printing process is the same as the duration of the benign printing process. A more advance

attacker can perform attacks that result in a lot of tiny changes across the whole printing

process. The tiny changes may not be detected by the IDS but their cumulative effect may

compromise the structural integrity of the printed object. Nevertheless, we assume that the

attacker cannot compromise any component in the IDS, including the observed signals, the

analyzer, and the reference signals.

3.4 Overview of the NSYNC Framework

The overall structure of the NSYNC framework is shown Figure 3.4. One of the signals to

be compared is referred to as the observed signal (or simply observation) and is denoted

by a. The other signal to be compared is referred to as the reference signal (or simply

reference) and is denoted by b.

Process of Operation. First of all, a goes through a static synchronizer to figure out its

starting and stopping moments3. Meanwhile, b also goes through the static synchronizer

3The starting and stopping moments are the starting and stopping moments of the signal comparison
process, not the starting and stopping moments of the printing process. See subsection 3.7.1 for more details.
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to figure out its starting and stopping moments. Afterwards, a and b are aligned at their

starting moments and the signal comparison process is initiated at their starting moments.

The aligned a and b then go through a dynamic synchronizer to figure out their timing

relationship, described by what is known as the horizontal displacements. After obtaining

their timing relationship, a comparator compares the corresponding points or windows in

a and b to obtain their vertical distances. Finally, both the horizontal displacements and

the vertical distances are used by the discriminator to determine if the signals are alike or

not. If the signals are not alike, an intrusion is declared. The signal comparison process is

terminated when reaching the stopping moment of a or the stopping moment of b.

Two Modes of Operation. Normally, the reference signal is a recorded signal and we

can access the whole reference signal before the NSYNC framework is invoked. However,

the observed signal can be a recorded signal or a real-time signal. When the observed signal

is a real-time signal, we can only access the observed signal up to the current moment.

The NSYNC framework can be operated in two modes, with one being the real-time

mode (or the online mode) and the other one being the post-production mode (or the offline

mode). In the real-time mode, the NSYNC framework can analyze both real-time signals

and recorded signals. In the post-production mode, the NSYNC framework can only ana-

lyze recorded signals. The real-time mode is more challenging to implement as the access

to the observed signal is more restrictive. To support the real-time mode, all components

that a real-time signal goes through must support the real-time signal.

3.4.1 Static Synchronization

Static synchronization refers to a process to identify a group of corresponding points in

two or more signals. The corresponding points can be any moments, such as the starting

moments, the stopping moments, or any layer changing moments. A moment is defined

by a template, an excerpt of a signal around the moment. The primary motivation to de-

velop static synchronization is to align signals at their starting moments and stop the signal
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comparison process at their stopping moments. The term “static” derives from the fact that

only one group of corresponding points is identified for each invocation of static synchro-

nization. Although it is possible to invoke static synchronization multiple times, a unique

template is required for each time of invocation.

3.4.2 Dynamic Synchronization

Dynamic synchronization is a process to continuously identify corresponding points or

windows in two signals in real time4. The relationship between corresponding points or

windows in the two signals is described by an array of horizontal displacements.

3.4.3 Comparator

After the corresponding points are determined, the next step is to evaluate the distances or

windows between corresponding points. Any valid distance metric (or distance function)

can be used, such as the cosine distance and the correlation distance.

3.4.4 Discriminator

A discriminator uses both the horizontal displacements and the vertical distances to deter-

mine if the two signals are alike or different. If the discriminator determines that the two

signals are different at any moment, an intrusion is declared.

The signal comparison process terminates when we hit the stopping moment of the

observed signal or the stopping moment of the reference signal. If no alert is issued during

the whole signal comparison process, we declare that there is no intrusion.

4Dynamic synchronization cannot be viewed as invoking static synchronization multiple times. First of
all, dynamic synchronization only supports a pair of signals (or two signals), whereas static synchronization
directly supports multiple signals. Second, dynamic synchronization does not require a template whereas
static synchronization requires a template.
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3.4.5 NSYNC as a Framework

There is a lot of freedom in the NSYNC framework. In fact, the NSYNC framework

does not stipulate a specific method to perform static synchronization or dynamic synchro-

nization. Any method that can accomplish the goal of static synchronization or dynamic

synchronization can be used. Similarly, any valid distance metric (or distance function) can

be used in the comparator and a variety of mechanisms can be used as the discriminator.

3.5 Structure of a Printing Process

To properly use the NSYNC framework, it is important to understand the structure of a

printing process as not all procedures of a printing process are applicable to NSYNC.

3.5.1 Three Parts of a Printing Process

Figure 3.5 shows the structure of a printing process by the Ultimaker 3 (UM3) printer. Each

box represents a procedure or a subroutine of the printing process5. On a high level, a print-

ing process is composed of three parts, and they are pre-deposition procedures, deposition

procedures, and post-deposition procedures. The pre-deposition procedures configure the

printer in a state that is ready for material deposition, such as moving the printhead and

the build plate to specific positions, heating the nozzle(s) and the build plate to specific

temperatures, and priming the nozzle(s) with filaments. The deposition procedures extrude

the filaments into the build plate and create the object. The post-deposition procedures put

the printer in a state that is suitable for staying idle and getting ready for the next printing

job. The post-deposition procedures include moving the printhead and the build plate to

specific locations and cooling down all heated components.

Figure 3.6 shows the structure of a printing process by the Rostock Max V3 (RM3)

printer. Compared with the UM3 printer, the printing process of the RM3 printer is much
5In this thesis, each procedure is referenced by its noun form. For example, “Home Printhead” is referred

to as the printhead-homing procedure, “Select Nozzle” referred to as the nozzle-selection procedure, and
“Deposit Materials” is referred to as the material-deposition procedure.
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Figure 3.6: Structure of a printing process of the SeeMeCNC Rostock Max V3 printer. The
first three boxes belong to the pre-deposition procedures. The box labeled as “ Deposit
Materials” belongs to the deposition procedures. The last two boxes belong to the post-
deposition procedures.

simpler. Nevertheless, on a high level, the printing process is still composed of three parts.

The part before the deposition procedures is referred to as the pre-deposition procedures

and includes heating the build plate, heating the nozzle, and putting the printhead to a home

position. The deposition procedures are responsible for depositing the materials into the

build area and creating the object. The part after the deposition procedures is referred to as

the post-deposition procedures and includes putting the printhead to the home position and

cooling down all heated components.

Both the UM3 printer and the RM3 printer occasionally move their printheads to their

home positions. This is crucial because a printer cannot see the absolute position of the

printhead but keeps a record of the relative displacement of the printhead with respect to

the home position. If the printhead is accidentally moved by external forces, the printer

will not see it and will move the printhead to wrong positions. When the printhead is

moved to the home position by a special instruction, switches located at the home position

will be triggered to inform the printer that the printhead reaches its home position and the

coordinate registers in the printer will be updated accordingly.
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3.5.2 Three Types of Procedures

In this thesis, procedures are divided into three types depending on what factor affects the

details of the procedures. The three types are environment-dependent procedures, process-

dependent procedures, and printer-dependent procedures.

An environment-dependent procedure is affected by the environment such as ambient

temperature and wind. For example, the time it takes to heat up a component depends on

the initial temperature of the component as well as the ambient temperature and the wind

in the environment. An environment-dependent procedure is highly volatile and it is very

hard to exactly reproduce the procedure6.

A process-dependent procedure is affected by the G-code instructions to be executed on

the printer. The material-deposition procedure is totally determined by the G-code instruc-

tions and hence is process-dependent. In the post-deposition procedures, the build-plate-

lowering procedure is affected by the G-code instructions because the build plate is low-

ered from a position when a printing process completes, and different objects have different

heights. Similarly, in the post-deposition procedures, the printhead-homing procedure is af-

fected by the G-code instructions because the printhead is moved to the home position from

the last point on the object to be printed. For different objects, the last points are different

and hence the homing movements are different. Compared with environment-dependent

procedures, process-dependent procedures are less volatile and can be reproduced with the

same G-code instructions.

A printer-dependent procedure is not affected by the environment or the G-code in-

structions. They are only affected by the printer and its configuration. For example, in

the pre-deposition procedures, the printhead-homing procedure is the same for different

G-code instructions and environment conditions because the printhead should already be

at the home position when this instruction is performed. Similarly, the build-plate-raising

6By exactly reproducing, we mean reproducing the procedure with exactly the same details, such as the
same duration and the same side-channel signals.
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procedure in the UM3 printer is the same regardless of the G-code instructions. The build

plate is always raised from the lowest position to the highest position. However, this pro-

cedure can be affected by the printer and its configuration. When the printer is manually

leveled, the height raised in this process can be affected. We also consider the nozzle se-

lection process in the UM3 printer to be printer-dependent because the first nozzle to be

used usually is the same for different printing processes, even though this behavior could

be overridden by a printing process. Overall, a printer-dependent procedure is highly stable

and can be easily reproduced in any printing process.

3.5.3 Signal Comparison Processes

A signal comparison process is a portion of a printing process where comparison of side-

channel signals is actively performed by the NSYNC framework. The NSYNC framework

is based on signal comparison and hence requires the side-channel signals to be repro-

ducible for different printing processes. As a result, the NSYNC framework cannot analyze

environment-dependent procedures in a printing process, and we exclude these procedures

in a signal comparison process. It is possible to exclude other procedures in a printing

process in the signal comparison process, but the material-deposition procedure should be

preserved as this procedure directly affects the printed object.

For the UM3 printer, we only perform signal comparison for the material-deposition

procedure because it is very hard to identify the build-plate-raising procedure and the build-

plate-lowering procedure in the acceleration side channel. This is because we only installed

the accelerometer on the printhead, and it is not affected by the build plate of the printer.

The starting and stopping moments of the signal comparison process is identified by two

arrows labeled by 1 and 2 respectively in Figure 3.5.

For the RM3 printer, we perform signal comparison for the material-deposition pro-

cedure as well as the printhead-homing procedures. Even though the printhead-homing

procedure in the post-deposition procedures is process-dependent, the last portion of this
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procedure is almost process independent. This is because the printer will home the print-

head again after the printhead reaches its home position, creating a signature movement

that is not affected by the details of a printing process. In this way, we can easily identify

the printhead-homing procedures in a side-channel signal.

3.6 Signal Processing in NSYNC

This section introduces necessary background knowledge on signal processing to under-

stand the NSYNC framework.

3.6.1 Signal Notation

A signal (including a side-channel signal) is denoted by x(t), where t is time. At any

moment, x(t) is a vector of one or more components. For example, the acoustic pressure

measured by a microphone is a vector of one component, whereas the acceleration mea-

sured by an accelerometer is a vector of three components (ax, ay, az). Each component

of x(t) as a function of time is defined as a channel. The number of channels in x(t) is

denoted by C.

In order for a computer to process a signal x(t), the signal x(t) must be sampled by

an Analog to Digital Converter (ADC) into a discrete sequence x[n] = x(nTs), where

n ∈ Z is the time index, Ts is the sampling interval. fs = 1/Ts is defined as the sampling

frequency. For each time index n, x[n] is a vector of C components. The whole discrete

signal x[n], n ∈ Z is simply denoted by x. If there are finite samples in x, we use N to

denote the number of samples in x.

We use x[i] to refer to the ith sample in x. x[i] contains all the channels and is a

vector of length C. We use x[i, c] to refer to the ith sample at the cth channel, where

c = 0, 1, · · · , C − 1. We use x[i1 : i2] to refer to a slice of x from index i1 (inclusive) to

index i2 (exclusive). We use x[:, c] to refer to all samples at the cth channel.
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3.6.2 Time Delay Estimation

The definition of Time Delay Estimation (TDE) is as follows: Suppose x and y have finite

samples and the length of x is longer than that of y. TDE is a process to determine the best

location of y in x, assuming that y appears in x once and only once [48, 49].

Sliding Method. One method to perform TDE is the sliding method. Suppose the

length of x is Nx, the length of y is Ny (Nx ≥ Ny), and the number of channels for

both x and y is C. One way to perform TDE is to compare y against x[n : n + Ny] for

n = 0, 1, · · · , Nx −Ny. For each n, we measure the similarity between x[n : n+Ny] and

y by a score s[n]. The similarity scores s[n], n = 0, 1, · · · , Nx−Ny form a new array with

a length of Nx −Ny + 1. We have

s[n] = f(x[n : n+Ny],y), n = 0, 1, · · · , Nx −Ny, (3.3)

where f is a function to calculate the score, also known as the similarity function.

Since a higher score indicates more similarity, the best location of y in x is given by

ndelay = argmax
n

s[n], (3.4)

which means that y[0] corresponds to x[ndelay].

Similarity Functions. In this thesis, we consider four similarity functions, and they

are Inner Product (IP), Covariance (Cov), Cosine (Cos), and Correlation Coefficient (CC)

[31]. Suppose u and v are two 1-D vectors of the same length N . The expressions for the

four similarity functions are shown in Table 3.1.

where ∥·∥2 is the L2 norm operator and

µu =
1

N

N−1∑
n=0

u[n], µv =
1

N

N−1∑
n=0

v[n]. (3.5)

Calculation Axes. The similarity functions in Table 3.1 require the two inputs be 1-D,
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Table 3.1: Score Functions

Name Expression

Inner Product (IP) f(u,v) = u · v

Covariance (Cov) f(u,v) = (u− µu) · (v − µv)

Cosine (Cos) f(u,v) =
u · v

∥u∥2 · ∥v∥2
Corr. Coef. (CC) f(u,v) =

(u− µu) · (v − µv)

∥u− µu∥2 · ∥v − µv∥2

whereas x[n : n + Ny] and y are 2-D, unless C = 1. When C > 1, there are two ways to

apply the similarity functions in Table 3.1. The first way is to calculate the similarity score

between x[n : n + Ny, c] and y[:, c] for c = 0, 1, · · · , C − 1, and average the similarity

scores across the channels. Because the similarity score is effectively applied along the

time axis in x and y, we refer to this way of calculation as calculating along the time axis.

The second way is to flatten both x[n : n + Ny] and y into 1-D vectors and proceed with

the calculation. We refer to this way of calculation as calculating along the none axis. Both

ways to deal with 2-D inputs will be evaluated in experiments.

3.6.3 Signal Detection

The definition of SD is as follows: Suppose x and y have finite samples and the length of

x is longer than that of y. We define SD as a process to determine all possible locations of

y in x. y may appear in x zero or multiple times. The main difference between SD and

TDE is that TDE assumes that y appears in x once and only once, whereas SD removes

this assumption. SD is in theory very similar to object detection [50, 51].

Sliding Method. As with TDE, we use the sliding method to perform SD. Suppose the

length of x is Nx, the length of y is Ny (Nx ≥ Ny), and the number of channels for both x

and y is C. We calculate the similarity score s[n] according to Equation 3.3.
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Instead of using Equation 3.4, y is detected in x at index n whenever

s[n] > sc, (3.6)

where sc is a pre-determined critical score.

Critical Score. The main challenge of SD is to accurately determine the critical score.

To do so, we need to find many training samples of x such that y appears in x exactly

once. Suppose the number of training samples is M and the training samples are expressed

by xm, m = 0, 1, · · · ,M − 1. For training sample xm, we perform TDE to obtain the

similarity scores sm[n], n = 0, 1, Nx − Ny and find the delay of y in xm. Figure 3.7 (a)

shows the plot of an array of similarity scores. The upper bound of the critical score is

sc,max(m) = max
n

sm[n]. (3.7)

The lower bound of the critical score is

sc,min(m) = max
n∈I

sm[n], (3.8)

where I = {0, 1, ..., ndelay,m−nexc, ndelay,m+nexc+1, ...Nx−Ny}, ndelay,m is the estimated

location of y in xm, and nexc is the half width of the window whose points are excluded

when calculating the lower bound of the critical score. nexc is a parameter to be tuned. By

default, we use nexc = round(0.05fs).

After obtaining sc,min(m) and sc,max(m), we define class A by

A = {sc,min(m)|m = 0, 1, · · · ,M − 1} (3.9)

and we define class B by

B = {sc,max(m)|m = 0, 1, · · · ,M − 1} (3.10)
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(a)idelay,m − nexc idelay,m + nexc + 1

sc,min(m)

sc,max(m)

(b)

sc

Figure 3.7: Challenges in SD. (a) Determining the range of the critical score for a single
training sample of x. The range is illustrated by the red region from sc,min to sc,max. The
maximum value of the whole score array is sc,max. The maximum value of the score array
inside the orange regions is sc,min. (b) Non-maximum suppression. Any point where the
score is above sc is the detected location of the template. There are multiple points that
satisfy this requirement. However, only one point (denoted by a cross in the figure) is the
true location of the template.

The next step is to perform binary classification on classes A and B using a single value as

the divider. One method to do this is to use the support vector machine with a linear kernel.

The divider is then chosen as the critical score sc.

Non-Maximum Suppression. When performing SD, it is possible for multiple ad-

jacent points to satisfy Equation 3.6, as shown in Figure 3.7 (b). As a result, y could be

detected in x multiple times near the same location, although only one instance of y should

be detected near that location. To mitigate this problem, we can apply a technique called

Non-Maximum Suppression (NMS) [52].

If we know in advance that y appears in x at most once, we can do the following steps.

First of all, we check if Equation 3.6 is satisfied by at least one point. If no, y does not

appear in x. If yes, we know that y appears in x once and only once. The best location of

y in x is x[ndelay : ndelay + Ny], where ndelay = argmax
n

s[n]. This process is tantamount

to performing TDE to search for y in x.

34



3.7 Static Synchronization

Static synchronization is defined as a process to find corresponding points in two or more

signals to be compared. The corresponding points can be the starting moments, the stopping

moments, any layer changing moments, or any characteristic moments7.

3.7.1 Motivation

Requirements on Signals. The NSYNC framework merely compares two signals to de-

termine if they are alike or not. For the NSYNC framework to act as an IDS, it is important

that a and b are similar to each other when their underlying G-code instructions are the

same (and the G-code instructions are executed faithfully). For a and b to be similar to

each other, their lengths (or duration) should be similar to each other.

However, the data acquisition system to collect side-channel signals starts before a

printing process starts and stops after the printing process stops. This is to ensure that the

side-channel signals cover the whole printing process. As a result, there are empty parts in

a side-channel signal that are irrelevant to the printing process and should be excluded in

the signal comparison process. In addition, according to Figure 3.5 and Figure 3.6, there

are environment-dependent procedures in a printing process, such as heating and cooling

nozzles and build plates, that must be excluded in the signal comparison process.

Starting and Stopping Moments. We define the starting moment of a side-channel

signal as the moment when the NSYNC framework starts to perform signal comparison

and the stopping moment of the side-channel signal as the moment when the NSYNC

framework terminates the signal comparison process. In other words, the NSYNC frame-

work only compares a and b between their starting and stopping moments. According to

this definition, the starting and stopping moments do not refer to the starting and stopping

moments of a printing process, but the starting and stopping moments of a signal compar-
7Notice that the word “moments” is plural. This is because the side-channel signals to be compared are

from different printing processes. Each printing process has a starting moment and a stopping moment. We
are interested in identifying all of the starting moments and the stopping moments.
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Figure 3.8: Two signals to be compared that are not yet aligned at the starting moments.

Si
gn

al
 1

Si
gn

al
 2

Figure 3.9: Two signals to be compared that are aligned at the starting moments.

ison process. The arrows in Figure 3.5 show the starting and stopping moments for the

UM3 printer whereas the arrows in Figure 3.6 show the starting and stopping moments for

the RM3 printer.

The primary motivation to develop static synchronization is to automatically and pre-

cisely identify the starting and stopping moments in a side-channel signal. In this way,

side-channel signals to be compared can be aligned at their starting moments and the signal

comparison process can be terminated at their stopping moments. Figure 3.8 shows two sig-

nals to be compared that are not aligned at the starting moments, whereas Figure 3.9 shows

two signals to be compared that are aligned at the starting moments. If the two signals are

directly compared point-by-point or window-by-window without the initial alignment, the

comparison will not make sense.

Several researchers in the literature are aware of the importance of aligning side-channel
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signals before comparison. For example, Moore et al. [23] proposed to use an electric wire

to connect the printer and the intrusion detection system. When the warming up process

completes, a pulse is sent over the electric wire to the intrusion detection system to initiate

the signal comparison process. The main problem with this approach is that the air gap

between the AM system and the IDS system is penetrated, and the environment-dependent

procedures are included in the signal comparison process.

Belikovetsky et al [27] proposed to use the M300 and G4 instructions to artificially

play beeps at the starting and stopping moments to determine the starting and stopping mo-

ments in a recorded side-channel signal. However, it is likely that they manually identified

the beeps in all of their recorded side-channel signals. A mechanism is still needed to au-

tomatically identify the beeps, as it is not practical to manually identify the beeps precisely

for a lot of recorded signals or a real-time signal.

3.7.2 Templates

Static synchronization attempts to find corresponding moments in two or more signals, and

the moments can be the starting moments, the stopping moments, or any layer changing

moments. How to specify the moment for static synchronization to look for? One solution

is to use a template, which is a sample of a signal around that moment.

Manually Obtain Templates. When inspecting a side-channel signal, we can manually

identify the moments of interest. Figure 3.10 shows an example of the acceleration side-

channel signal for a printing process by the UM3 printer. The green vertical line on the left

sub-figure shows the manually identified starting moment and the green shaded area shows

the template for the starting moment. The red vertical line on the right sub-figure shows

the manually identified stopping moment and the red shaded area shows the template for

the stopping moment.

It might be trivial to identify the starting and stopping moments by using the accel-

eration side-channel signal since there is a clear boundary at the starting moment or the
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Figure 3.10: Manually obtaining the starting and stopping templates of a printing process.
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Figure 3.11: Acoustic side-channel signal around the starting and stopping moments.

stopping moment. However, it is non-trivial to do so by using other side-channel signals,

such as the acoustic side-channel signal, as shown in Figure 3.11. This is because the

acoustic side channel is susceptible to environment noise. To mitigate this problem, we can

use the spectrogram of the acoustic side-channel signal to identify the starting and stopping

moments, as shown in Figure 3.12. The spectrogram is less susceptible to the environment

noise and we can clearly see the patterns and the boundaries in the spectrogram.

Anchor Point of a Template. A moment is typically defined by a single point in a

signal whereas a template has a duration. The moment that a template represents is referred

to as the anchor point of the template. For example, the anchor point of the template in the

94 95 96 97 98
Time (s)

0

200

400
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4482 4483 4484 4485 4486
Time (s)

Stopping

Figure 3.12: Acoustic side-channel signal around the starting and stopping moments.

38



10 3 10 2 10 1 100 101 102

Duration (s)

10 1

101

Av
er

ag
e 

Er
ro

r (
s) ACC

AUD

10 3 10 2 10 1 100 101 102

Duration (s)

10 2

100

Av
er

ag
e 

Er
ro

r (
s)

ACC
AUD

Figure 3.13: Illustration of the influence of the duration of templates on the performance
of static synchronization. ACC refers to the acceleration side channel whereas AUD refers
to the acoustic side channel. The results were derived with the UM3 printer. The left
sub-figure shows the result for estimating the starting moment whereas the right sub-figure
shows the result for estimating the stopping moment.

left sub-figure in Figure 3.10 is the left edge of the template. The anchor point of the

template in the right sub-figure in Figure 3.10 is 1.5 seconds to the right of the left edge.

In this thesis, the location of an anchor point is expressed in terms of its displacement

with respect to the left edge of the template. According to this rule, the anchor point in

Figure 3.10 is at 0 second, whereas the anchor point in Figure 3.10 is at 1.5 seconds. In

general, it is possible for an anchor point to be located at any location in its template. It is

even possible for an anchor point to be located outside of its template.

Duration of a Template. The template for the starting moment in Figure 3.10 has

a duration of 3.75 seconds whereas the template for the stopping moment in the same

figure has a duration of 1.9 seconds. Figure 3.13 illustrates the influence of the duration of

templates on the performance of static synchronization and the performance was measured

by the average error between the estimated moment and the actual moment. We can see that

the best performance is achieved for an intermediate duration. When selecting the duration

of a template, there is a trade-off. On the one hand, the template should be long enough to

be characteristic. On the other hand, if the template is very long, it may not be the same

across different printing processes, causing degradation of performance.

Two Types of Templates. There are two types of templates, and they are process-

dependent templates and printer-dependent templates. If a template is only applicable to
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a specific printing process (the same G-code file and the same printer), then the template

is process-dependent. If a template is applicable to all printing processes by the same

printer, then the template is printer-dependent. When a template is fully contained in a

printer-dependent procedure, the template is printer-dependent. If a template is contained

in a process-dependent procedure, there is still a chance for the template to be printer-

dependent. For example, the last second of the printhead-homing procedure of the RM3

printer is printer-dependent even though the procedure itself is process-dependent.

It is desirable to have printer-dependent templates since they can be used across dif-

ferent printing processes. For the RM3 printer, we were able to obtain printer-dependent

templates for both of the starting moments and the stopping moments. However, for the

UM3 printer, we were only able to obtain process-dependent templates for the starting

moments and the stopping moments.

3.7.3 Modes of Operation

The NSYNC framework can be operated in two modes, and they are the real-time mode (or

the online mode) and the post-production mode (or the offline mode). The main difference

between the two modes is the accessibility to the observed signal. For the real-time mode,

we have access to the observed signal up to the current moment. For the post-production

mode, we have access to the whole observed signal.

As with the NSYNC framework, static synchronization can be operated in two modes.

One of the operation modes is the Time Delay Estimation (TDE) mode, whereas the other

mode is the Signal Detection (SD) mode. The TDE mode is mainly used for analyzing post-

production (offline) signals, whereas the SD mode is mainly used for analyzing real-time

(online) signals.

For the TDE mode, the assumption is that the template appears and appears only once

in the signal to be analyzed. The task for static synchronization is to determine the best

location of the template in the signal. This task can be accomplished by what is known as
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Time Delay Estimation (TDE) [48, 49]. When we have access to the whole side-channel

signal for a printing process and we know that there is only a single starting moment (or a

single stopping moment), we can perform static synchronization in the TDE mode.

For the SD mode, the assumption is that the template may appear in the signal zero

or multiple times. We do not know in advance exactly how many times the template will

appear in the signal. However, we may know the upper limit on the number of times

that the template may appear in the signal. One method to implement this mode of static

synchronization is Signal Detection (SD).

3.7.4 Static Synchronization in the TDE Mode

When we are sure that a template appears in a signal to be analyzed once and only once,

we can use TDE to figure out the location of the template in the signal. For example, we

typically have access to the whole reference signal b and we know that the starting moment

should appear in b once and only once. Suppose the template of the starting moment is t.

We can perform TDE to determine the best location of t in b. It is possible for the template

of the starting moment and the template of the stopping moment to be very similar to each

other. When this is true, we need to restrict the range of b. For example, if we know the

approximate location of the starting moment in b, we can perform TDE to search for t in

the vicinity of the approximate location of the starting moment in b. If we know that the

starting moment in b must be within the first 200 seconds of b, we only need to perform

TDE to search for t in the first 200 seconds of b. Other advantages of performing TDE

locally include reduced analysis time and increased accuracy. When NSYNC is operated

in the post-production mode and we have access to the whole observed signal a, we can

perform TDE to find the starting moment in a in the same way.

We can perform TDE to search for the stopping moment in a signal in a similar way.

There are two main differences. First, we use the template of the stopping moment, instead

of the template of the starting moment. Second, the stopping moment of a signal is typically
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close to the end of the signal. For example, we may want to search for the stopping moment

in the last 100 seconds of the signal.

If the NSYNC framework is operated in the post-production mode and we have access

to the whole observed signal a, we can use TDE to obtain the starting moments for both a

and b. We can then align the two signals at their starting moments. This completes static

synchronization at the starting moments. However, if the NSYNC framework is operated

in the real-time mode, we do not have access to the whole observed signal a, and we cannot

use TDE to figure out the starting moment for a. When this situation happens, we need to

resort to SD to figure out the starting moment of a.

3.7.5 Static Synchronization in the SD Mode

When we cannot guarantee that a template appears in the signal to be analyzed once and

only once, we can use SD to determine if the template appears in the signal to be analyzed,

and if so, the locations of all occurrences of the template in the signal. There are two

exemplary scenarios where TDE is not applicable and SD is necessary.

One scenario is to look for layer changing moments in an offline signal. This is because

there are many occurrences of the layer changing moments in the signal, and this breaks

the assumption in TDE that the template appears once and only once in the signal to be

analyzed. For this scenario, we can perform SD with NMS to determine the locations of all

occurrences of the template in the signal.

Another scenario is when the NSYNC framework is operated in the real-time mode,

and we have access to the observed signal a until the current moment. It is possible that

the template may not have occurred in the signal up to the current moment. When the

NSYNC framework is operated in the real-time mode, the data acquisition system feeds

the observed side-channel signal frame by frame into the IDS. Suppose the template of the

starting moments is t and its critical score is sc. We can perform SD to determine if t has

occurred in a up to the current moment, and if so, the moment of t in a.
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Figure 3.14: Illustration of hopping windows. When the overlap is wider than the target
signal, the target signal must be fully included in one of the windows.

An Efficient Implementation. When the NSYNC framework is operated in the real-

time mode, there is an efficient method to perform static synchronization in the SD mode.

Suppose we are looking for t (the template) in the observed signal a. We can access a

window by window, and each window is expressed by a[i · nhop : i · nhop + nwin], i =

0, 1, · · · , where i is the window index, nwin is the width of the window in time index, and

nhop is the number of points by which the window moves forward each time. For each

window, we perform SD to detect t in a[i · nhop : i · nhop + nwin] with the assumption that

t appears zero or one time. Once t is detected in a[i · nhop : i · nhop + nwin] with a time

delay of j, then the left edge of t is i · nhop + j.

As shown in Figure 3.14, as long as the overlap between windows exceed the length

of t, t will be fully contained in at least one window. This is because the left edge of t

must be contained in the hop region of at least one window. Since the overlap region of

two adjacent windows is wider than t, t must be contained within the window. By default,

in NSYNC, we select nwin = 2nhop and let nhop be equal to the length of t.

We can use the aforementioned method to detect the starting moment as well as the

stopping moment in a, provided that the templates and the critical scores are available.

When the anchor point of a template is not located at the left edge of the template, the

displacement of the anchor point with respect to the left edge of the template must be

added to i · nhop + j.
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Figure 3.15: Acceleration side-channel signal with the time index readjusted.

3.7.6 Summary of Static Synchronization

The primary purpose of static synchronization is to identify the starting and stopping mo-

ments in the observation a and the reference b. When the NSYNC framework operates in

the real-time mode, we can perform static synchronization in the SD mode to figure out the

starting and stopping moments in a and we can perform static synchronization in the TDE

mode to determine the starting and stopping moments in a. When the NSYNC framework

operates in the post-production mode, we can perform static synchronization in the TDE

mode to figure out the starting and stopping moments for both a and b.

When the starting moments of a and b are determined, they can be aligned at their

starting moments and the signal comparison process can be initiated. We typically offset

the time axes of a and b such that the starting moments have a time index of zero, as

shown in Figure 3.15. The stopping moments of a and b are used for terminating the

signal comparison process. To be specific, when any of the stopping moments of a and b is

reached, the signal comparison process is complete. It should be noted that we cannot align

a and b at their stopping moments. This is because a and b are aligned at their starting

moments and they may have different lengths (or duration). As a result, it is impossible to

align a and b at their stopping moments.
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3.7.7 Duration-Based Intrusion Detection

When we perform static synchronization to determine both the starting and stopping mo-

ments for a signal, we can estimate its duration. Suppose the duration of a in seconds is

Ta and the duration of b in seconds is Tb. We can compare Ta and Tb to perform intrusion

detection. If the absolute difference between Ta and Tb exceeds a certain threshold, an

intrusion is declared. In other words, an intrusion is detected if

|Ta − Tb| > Tc, (3.11)

where Tc is the threshold or the critical duration.

To obtain the threshold Tc, we need a series of training signals am,m = 0, 1, · · · ,M−1

that indeed come from benign printing processes. Suppose their lengths in seconds are

Ta,m,m = 0, 1, · · · ,M − 1. The threshold Tc is then equal to the upper bound of {|Ta,m −

Tb|} plus a margin. The margin is required because the number of training signals is limited

and the length of a signal from a new benign printing process may have a larger deviation

from Tb. As a simple solution, we can let Tc to be

Tc = (1 + r)max
m

|Ta,m − Tb| (3.12)

and we can start with r = 0.25. It can be expected that the margin coefficient r decreases

as the number of training samples M increases and vice versa.

The duration-based intrusion detection system can be defeated if an attacker is able

to craft an attack such that the duration of the malicious printing process is equal to the

duration of the benign printing process. Nevertheless, this duration-based IDS may still

defeat a naive attacker who is not aware of the existence of the duration-based IDS.
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3.8 Dynamic Synchronization

Dynamic Synchronization (DSYNC) refers to any process that continuously identifies cor-

responding points or windows in two signals (a and b). DSYNC is needed when there is

time noise in a and b. In this section, we first discuss Dynamic Time Warping (DTW),

an existing method to perform point-based DSYNC. We then discuss Dynamic Window

Matching (DWM), a novel method to perform window-based DSYNC.

3.8.1 Dynamic Time Warping (DTW)

Point-Based Comparison. Suppose a and b have been aligned at their starting moments8

with a reasonable accuracy (not necessarily perfect), and we want to compare a and b point

by point. One may calculate the distance between a[n] and b[n] for n = 0, 1, · · · . However,

due to time noise, the comparison between a[n] and b[n] is meaningless since they may not

be corresponding points.

Overview of DTW. Dynamic Time Warping (DTW) is an existing method to find the

corresponding points between a and b [29]. DTW requires a distance metric d(·, ·) be

provided, and then outputs a list of tuples where a tuple (i, j) specifies that a[i] and b[j] are

corresponding points.

FastDTW. Due to the time complexity of DTW, a variation of DTW, called FastDTW,

is typically used [53]. FastDTW requires an additional parameter called the radius. Because

FastDTW is an approximation to DTW, this parameter controls the trade-off between speed

and accuracy. We always use the smallest radius for the fastest speed because it takes a very

long time to analyze side-channel signals by FastDTW. In this thesis, we simply use DTW

to refer to FastDTW.

Online DTW. DTW requires knowing the whole a and the whole b before they can be

analyzed. In other words, DTW does not support real-time analysis. Fortunately, there is

an ongoing effort to create a version of DTW that supports real-time analysis [54].
8The time axes are adjusted such that the starting moments have a time index of zero.
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Horizontal Displacement hdisp. If there is only one tuple with the first index being i

and the tuple is (i, j), we define j − i as the horizontal displacement of b with respect to a

at index i. In other words, we have hdisp[i] = j − i. If there are multiple tuples with the

first index being i, such as (i, j1), (i, j2), · · · , (i, jKi
), we define

hdisp[i] =
1

Ki

Ki∑
k=1

jk − i. (3.13)

3.8.2 Dynamic Window Matching (DWM)

Window-Based Comparison. Instead of comparing a and b point by point, we can alter-

natively compare a and b window by window. To be specific, we calculate the distance

between a{i} and b{i}, where

a{i} = a[i · nhop : i · nhop + nwin], (3.14)

b{i} = b[i · nhop : i · nhop + nwin], (3.15)

i = 0, 1, · · · is the window index, nwin is the window width in indexes, and nhop is the

number of samples by which the windows move forward each time. a{i} is referred to

as the ith window of a, whereas b{i} is referred to as the ith window of b. Due to time

noise, the comparison between a{i} and b{i} can be meaningless, even if a[0] is perfectly

aligned with b[0].

Overview of DWM. To solve this problem, for each a{i}, instead of comparing it with

b{i}, we attempt to find a better window of b to compare with. Suppose such a window

does exist and it can be expressed by

b{i;hdisp[i]} = b[i · nhop + hdisp[i] : i · nhop + hdisp[i] + nwin] (3.16)

where hdisp[i] is referred to as the horizontal displacement of b with respect to a at index
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Look for best match.

Figure 3.16: Illustration of the DWM algorithm. A pair of sliding windows are established
on the signals. As the windows slide across the signals, Time Delay Estimation (TDE) is
used to determine the relative timing relationship between the pair of windows.

i and b{i;hdisp[i]} is referred to as the ith window of b with an offset of hdisp[i]. The

absolute value of hdisp[i] is the horizontal distance, denoted by hdist[i].

Dynamic Window Matching (DWM) is a novel algorithm to find the corresponding

windows between a and b. The core of DWM is to determine the best hdisp such that a{i}

corresponds to b{i;hdisp[i]}.

A Basic Algorithm to Find hdisp. We present a basic algorithm to find hdisp. For each

window index i, we look for a{i} in the vicinity of b{i}, as shown in Figure 3.16. To be

more precise, we perform TDE to detect a{i} in

b{i}E = b[i · nhop − next : i · nhop + next + nwin], (3.17)

where next is a new parameter, called the extended window size, and b{i}E is the extended

ith window of b. Suppose TDE returns a time delay of j. As a result, TDE thinks that a{i}

is aligned with b{i; j − next}. We then let

hdisp[i] = j − next. (3.18)

Extending the Range of hdisp. The basic algorithm to find hdisp[i] might work well

if the magnitude of the actual hdisp[i] does not exceed next. Otherwise, the algorithm
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Figure 3.17: Illustration of Time Delay Estimation with Bias (TDEB).

will definitely fail. This is because, according to Equation 3.18, the range of hdisp[i] is

[−next, next]. Hence, if the magnitude of the actual hdisp[i] exceeds next, it is impossible

for the basic algorithm to return a correct hdisp[i].

To solve this problem, we perform TDE to detect a{i} in b{i;hdisp[i− 1]}E. Suppose

TDE returns j. We then perform the assignment

hdisp[i] = j − next + hdisp[i− 1]. (3.19)

For i = 0, we define hdisp[i− 1] to be 0.

Time Delay Estimation with Bias (TDEB). As shown in Figure 3.17, when a{i} is

mainly composed of periodic signals, multiple time delays are returned by TDE with equal

probability. Similarly, when a{i} is mainly composed of noise, TDE returns a random time

delay. In a word, when a{i} is periodic or noisy, TDE is unstable.

To solve this problem, we rely on the assumption that hdisp[i] should be close to hdisp[i−

1] most of the time. In other words, j should be close to next most of the time.

When performing TDE, as an intermediate step, we obtain a similarity array s[j], j =
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0, 1, · · · , 2next − 1. To increase similarity scores near j = next, we multiply the similarity

array by a Gaussian window with a standard deviation of nsigma and a length of 2next, as

shown in Figure 3.17. We then continue TDE with the modified similarity array. In this

way, we introduce bias towards j = next. When a{i} is periodic or noisy, hdisp[i] will be

close to hdisp[i− 1].

Low Frequency Component of hdisp. There is a new problem after extending the

range of hdisp. If, for any reason, the estimated value of hdisp[i − 1] deviates significantly

from its true value, it may cause hdisp[i] to deviate significantly from its true value, which

in turn causes further deviation in hdisp[i+ 1], etc. In other words, the DWM process may

run away. To mitigate this problem, we obtain a low frequency component of hdisp in the

following way

hdisp,low[i] = round(η(j − next) + hdisp,low[i− 1]), (3.20)

where η is a parameter that controls how fast hdisp,low can be affected by j−next. Now, we

perform TDEB to detect a{i} in b{i;hdisp,low[i− 1]}E. Suppose TDEB returns j. We then

perform the assignment

hdisp[i] = j − next + hdisp,low[i− 1]. (3.21)

The Final Algorithm to Find hdisp. The final DWM algorithm is presented in Algo-

rithm 1, where TDEB[β](x,y) is a function that finds the time delay of y in x biased by a

Gaussian window with a standard deviation of nsigma.

3.9 Comparators

Once the corresponding points or windows between a and b are identified, a distance value

can be calculated for each pair of points or windows, which are further used by the dis-

criminator for intrusion detection.
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Algorithm 1 Dynamic Synchronization
Input: a, b, nwin, nhop, next, nsigma, η
Output: hdisp[i], i = 0, 1, · · ·

1: Define hdisp as an array that can increase in size.
2: Define hdisp,low as an array that can increase in size.
3: Add a special element hdisp,low[−1] = 0.
4: i = 0
5: Wait for the printing process to start.
6: while the printing process is not over do
7: Wait for a[i · nhop : i · nhop + nwin] to be become available.
8: j = TDEB[nsigma](

b[i · nhop − next + hdisp,low[i− 1] :
i · nhop + next + hdisp,low[i− 1] + nwin],

a[i · nhop : i · nhop + nwin]
)

9: hdisp[i] = j − next + hdisp,low[i− 1]
10: hdisp,low[i] = round(η(j − next) + hdisp,low[i− 1])
11: i = i+ 1
12: end while
13: return hdisp

Vertical Distance vdist. If a and b are synchronized by DTW, we can calculate vdist

between a and b point by point. If DTW returns only one tuple with the first index being

i, namely (i, j), we define vdist[i] = d(a[i], b[j]), where f is a function (also known as the

distance function) to calculate the distance. If there are multiple tuples with the first index

being i, such as (i, j1), (i, j2), · · · , (i, jKi
), we define

vdist[i] =
1

Ki

Ki∑
k=1

d(a[i], b[jk]). (3.22)

If a and b are synchronized by DWM, we can calculate the vertical distances between

a and b window by window. Suppose a{i} is the ith window of a and its corresponding

window in b is b{i;hdisp[i]}. We have

vdist[i] = d(a{i}, b{i;hdisp[i]}). (3.23)
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Distance Functions. In this thesis, we consider two distance functions, and they are

the cosine distance and the correlation distance. Suppose u and v are 1-D vectors of the

same length N . The cosine distance is defined by

d(u,v) = 1− u · v
∥u∥ · ∥v∥ . (3.24)

The correlation distance is defined by

d(u,v) = 1− (u− µu) · (v − µv)

∥u− µu∥ · ∥v − µv∥
. (3.25)

where ∥·∥2 is the L2 norm operator and µu and µv are defined in Equation 3.5. The second

term in Equation 3.25 is in fact the Pearson’s correlation coefficient between u and v.

Other than the cosine distance and the correlation distance, there are many other dis-

tance metrics (or distance functions), such as the Manhattan distance and the Euclidean

distance. However, we do not consider the two distance metrics because they are sensitive

to the overall amplitude of a and b, and the overall amplitude of many side-channel signals

is susceptible to changes.9 If a distance metric that is sensitive to the overall amplitude of a

and b is used in an IDS, the overall amplitude of a and b must be strictly controlled (which

can be very hard). Otherwise, the IDS will suffer from a lot of false alerts.

Computation Axes. The distance functions in Equation 3.24 and Equation 3.25 require

the two inputs be 1-D. When the inputs are a[i] and b[j], the inputs are 1-D. However, when

the inputs are a{i} and b{i;hdisp[i]}, the inputs are 2-D, unless C = 1. When C > 1,

there are two ways to apply the distance functions in Equation 3.24 and Equation 3.25.

The first way is to calculate the distance value between a{i}[:, c] and b{i;hdisp[i]}[:, c] for

c = 0, 1, · · · , C − 1, and average the distance values across the channels. This way of

calculation is referred to as calculating along the time axis. The second way is to flatten

9For example, the amplitude of an acoustic side-channel signal strongly depends on the distance from the
microphone to the printer as well as the gain of the ADC converter, both of which are susceptible to changes.
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both a{i} and b{i;hdisp[i]} into 1-D vectors and proceed with the calculation. This way

of calculation is referred to as calculating along the none axis. Both ways to deal with 2-D

inputs will be evaluated in experiments to ascertain their performance.

3.10 Discriminators

The discriminator checks a and b in real time to automatically determine if a is signif-

icantly different from b. If so, an intrusion is declared. The discriminator is composed

of three sub-modules. If any sub-module raises an alert, an intrusion is declared. Each

sub-module is discussed as follows.

3.10.1 Sub-Module 1: cdisp-Based Detection

This sub-module checks hdisp to determine if the dynamic synchronization between a and

b is successful. When dynamic synchronization succeeds, hdisp contains a few fluctuations,

such as the benign process in Figure 3.18 (b). In contrast, when dynamic synchronization

fails, hdisp contains a lot of fluctuations, such as the malicious process in Figure 3.18 (b).

To capture this feature, we calculate the Cumulative Absolute Difference of the Horizontal

Displacement (CADHD) by

cdisp[i] =
i∑

j=0

|hdisp[j]− hdisp[j − 1]|, (3.26)

where hdisp[−1] is defined to be zero. Figure 3.18 (a) shows the CADHD arrays for a

benign process where dynamic synchronization succeeded and a malicious process where

dynamic synchronization failed. An intrusion is detected at index i if

cdisp[i] > cc, (3.27)

where cc is a critical value to be determined later.
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Figure 3.18: Automatic Intrusion Detection. (a) Intrusion is detected if cdisp[i] exceeds cc.
(b) Intrusion is detected if hdist[i] exceeds hc. (c) Intrusion is detected if vdist[i] exceeds vc.

3.10.2 Sub-Module 2: hdist-Based Detection

For hdist, as shown in Figure 3.18 (b), an intrusion is detected at index i if

hdist[i] > hc, (3.28)

where hc is a critical horizontal distance to be determined.

3.10.3 Sub-Module 3: vdist-Based Detection

For vdist, as shown in Figure 3.18 (c), an intrusion is detected at index i if

vdist[i] > vc, (3.29)

where vc is a critical vertical distance to be determined.

Suppressing Spikes. There are spikes in hdist and vdist due to time noise and amplitude
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noise. The spikes could cause false positives. To mitigate this problem, we filter hdist and

vdist in the following ways before Equation 3.28 and Equation 3.29 are applied:

hdist,f [i] = min(hdist[i− n : i]), i = 0, 1, · · · , (3.30)

vdist,f [i] = min(vdist[i− n : i]), i = 0, 1, · · · , (3.31)

where hdist,f and vdist,f are filtered arrays and n is the window size of the filter. By default,

we use a window size of 3 for both hdist and vdist.

3.10.4 Learning the Critical Values

In this section, we describe a method that uses One-Class Classification (OCC) to determine

the critical values cc, hc, and vc in the discriminator. For this purpose, for one reference

signal b, we need to run the benign process M times and observe the side-channel signals

am, m = 0, 1, · · · ,M − 1, where M is the number of observed signals.

Suppose cdisp,m, hdist,m and vdist,m are obtained by comparing am and b. Here, we

assume that hdist,m and vdist,m are the filtered horizontal distance array the filtered vertical

distance array respectively. We have

cc,m = max
i

cdisp,m[i], (3.32)

hc,m = max
i

hdist,m[i], (3.33)

vc,m = max
i

vdist,m[i]. (3.34)

The critical distances are determined by

cc = max
m

cc,m + r
(
max
m

cc,m −min
m

cc,m

)
, (3.35)

hc = max
m

hc,m + r
(
max
m

hc,m −min
m

hc,m

)
, (3.36)

vc = max
m

vc,m + r
(
max
m

vc,m −min
m

vc,m

)
, (3.37)
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Figure 3.19: Experiment setups. (a) Ultimaker 3 and various sensors, (b) SeeMeCNC
Rostock Max V3 and various sensors.

The parameter r determines the False Positive Rate (FPR) and the False Negative Rate

(FNR). The higher the value of r, the lower the FPR, but the higher the FNR. The value

of r depends on M , the sample size. To maintain the same FPR, r gets smaller when M

becomes larger. In NSYNC, we select an r that results in a small FPR (< 0.05) for most

scenarios.

3.11 Experiments on Static Synchronization

We performed a series of experiments to evaluate the performance of static synchronization

in NSYNC. We first of all present details of the experiment setup. Afterwards, we discuss

how to determine the parameters in static synchronization. Finally, we present experiment

results on static synchronization and a duration-based intrusion detection system.

3.11.1 Experiment Setup

Printers. We performed experiments on an Ultimaker 3 printer (UM3) and a SeeMeCNC

Rostock Max V3 printer (RM3), as shown in Figure 3.19. The UM3 printer was a popular

desktop 3D printer [55], whereas the RM3 printer was a popular Delta printer.

Printing Processes. We selected a gear model with a diameter of 60 mm and a thick-

ness of 7.5 mm, as shown in Figure 3.20 (a). For UM3, we used Cura 4.4 as the slicer. For
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Figure 3.20: Models for printing. (a) The geometry of the gear to be printed. (b) A mali-
cious version of the gear. A void is located inside the gear.

Table 3.2: Printing Processes for Each Printer

B/M Process Re. Description Ref.

B Benign 1 This is used for the reference.
B Benign 50 These benign processes are used for training.
B Benign 100 These benign processes are used for testing.
M Void 20 A void is inserted. [9]
M InfillGrid 20 Infill pattern is changed to grid. [22]
M Speed0.95 20 Printing speed is decreased by 5%. [24]
M Layer0.3 20 Layer height is changed to 0.3 mm. [24]
M Scale0.95 20 The object is shrunk by 5%. [9]

B/M = Benign or Malicious. Re. = Repetition (for each printer). All the malicious
processes are used for testing.

RM3, we used MatterControl 1.7.5 with MatterSlice as the slicer. For both printers, we

used the default setting with a layer height of 0.2 mm.

For each printer, the benign process was repeated 151 times. One benign process served

as the reference. 50 benign processes were used for learning the critical values (training).

The other 100 benign processes were used for testing. We manipulated the benign G-

code file in five different ways to simulate five types of malicious printing processes in

the literature. All malicious processes were used for testing. The details of the printing

processes for each printer can be found in Table 3.2.

Side Channels. We used six different types of side channels in the experiments and the

details are in Table 3.3. The locations of the sensors are shown in Figure 3.19. For each

printer, we installed the MPU9250 sensor on the printhead and SCT013 measured the total

AC current delivered to the printer. Figure 3.21 and Figure 3.22 respectively show samples
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Table 3.3: Types of Side Channels

ID Side Channel Sensor fs (Hz) Channels Bits

ACC Acceleration MPU9250 4000 6 16
TMP Temperature MPU9250 4000 1 16
MAG Magnetic MPU9250 100 3 16
AUD Audio AKG170 48,000 2 24
EPT Elec. Potential AKG170* 96,000 1 24
PWR Power/Current SCT013 12,000 1 24

EPT = Electric Potentials. Channels = Number of Channels.
* The AKG170s for collecting electric potentials were modified by
removing their caps, inspired by the method in [56].
We used a Teensy board to relay data from MPU9250 to a host PC.
We used a UMC404HD interface to collect data from AKG170 and
SCT013 to a host PC.

of the side-channel signals for the UM3 printer and the RM3 printer.

Spectrograms. Many existing IDSs internally transform a side-channel signal into a

spectrogram before further processing [22, 27, 26]. For other IDSs, including NSYNC,

in addition to comparing raw signals directly, we also compared their spectrograms. For

each side-channel signal, we obtained its spectrogram via Short-Time Fourier Transforms

(STFT) [31] and the details are shown in Table 3.4.

Theoretically speaking, the spectrogram of a signal can be considered as a new signal

with a reduced sampling rate and an increased number of channels. In fact, each frequency

band can be treated as a channel. When the original signal has multiple channels, the

frequency bands for all channels can be concatenated. In this thesis, when we refer to a

side-channel signal, the signal may be a spectrogram.

We consider spectrograms due to their potentially better performance. For example,

Han et al. used electromagnetic radiation to classify programs running in a Programmable

Logical Controller (PLC) and their results show that the classification accuracy is signif-

icantly higher if the classification is performed in the spectrogram domain instead of the

time domain [56]. Figure 3.21 and Figure 3.22 respectively show samples of the spectro-

grams for the UM3 printer and the RM3 printer.

Transformation. The spectrogram of a signal can be regarded as a transformation
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Figure 3.21: Samples of side-channel signals for the UM3 printer.
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Figure 3.22: Samples of side-channel signals for the RM3 printer.
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Table 3.4: Spectrograms for Side Channels

ID ∆f (Hz) ∆t (s) Window Channels Bits

ACC 20 1/80 BH 101× 6 16
TMP 20 1/80 BH 101 16
MAG 5 1/20 BH 11× 3 16
AUD 120 1/240 BH 201× 2 16
EPT 120 1/240 BH 401 16
PWR 60 1/120 Boxcar 101 16

∆f is the spectral resolution, which is equal to the reciprocal
of the window size (in seconds) in STFT. ∆t is the temporal
resolution, which is equal to the time by which the window
moves forward each time in STFT. BH = Blackman-Harris.

of the signal, and we add the suffix SPG to identify the transformation. For example,

ACC-SPG refers to the spectrogram of the acoustic side-channel signal. Apart from spec-

trograms, there are other types of transformations that can be performed on a signal, such

as Mel-Frequency Cepstral Coefficients (MFCC) as used by [21] and the Principle Com-

ponent Analysis (PCA) of the spectrogram of a signal as used by [27]. To emphasize a

signal without any transformation, we refer to the signal as the raw signal and use the suf-

fix Raw to identify a lack of transformations. For example, an acceleration side-channel

signal without any transformation can be referred to as ACC-Raw.

When a transformation suffix is missing, an identifier typically refers to the type (or

modality) of the side channel. For example, ACC refers to the acceleration side channel

(emphasizing the channel). If the identifier is used in a place where an input to the NSYNC

framework is expected, the Raw transformation is assumed by default. For example, ACC

refers to the raw acceleration side-channel signal.

3.11.2 Parameters for Static Synchronization

The primary purpose of this section is to figure out the influence of the parameters of static

synchronization on its performance. The parameters only include the score function and

the calculation axis (collectively referred to as the kernel). The parameters are the same

for static synchronization in the TDE mode and static synchronization in the SD mode.
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We mainly evaluated the performance in the TDE mode because the parameters should

influence static synchronization in the TDE mode and static synchronization in the SD

mode in a similar way and it is easy to perform static synchronization in the TDE mode.

Performance Metrics. To quantitatively measure the performance of static synchro-

nization, it is important to properly define performance metrics. In this thesis, we use

two performance metrics. The first performance metric is the error between the detected

moment and the actual moment10. This metric measures the accuracy of static synchroniza-

tion is. The second performance metric is the elapsed time for the static synchronization to

complete. This metric measures the speed of static synchronization.

Evaluation Procedures. To comprehensively understand the performance of static

synchronization, we performed static synchronization for each printer, each type of side-

channel signals11, and each template12. For each printer, each type of side-channel signals,

and each template, there were 150 printing processes (or 150 signals) to be analyzed. We

performed static synchronization for the 150 printing processes to obtain the average error

and the average elapsed time.

Templates Used for Evaluation. We need to specify the templates to be used when

invoking static synchronization. For the UM3 printer, the templates are shown in Fig-

ure 3.15. To be specific, the starting template starts at the starting moment and ends 3.75

seconds after the starting moment. The stopping template starts 1.5 seconds before the

stopping moment and ends 0.4 seconds after the stopping moment. For the RM3 printer,

the starting template starts at the starting moment and ends 1.0 second after the starting

moment. The stopping template starts 1.0 second before the stopping moment and stops

10We manually obtained the actual starting moment and the stopping moment for all printing processes.
11A side-channel signal is a specific signal whereas a type of side-channel signals refers to a collection of

side-channel signals that share the same side channel and the same transformation. We have six different types
of side channels in the experiments and they are ACC, TMP, MAG, AUD, EPT, and PWR. However, we have
12 types of side-channel signals and they are ACC-Raw, TMP-Raw, MAG-Raw, AUD-Raw, EPT-Raw, PWR-
Raw, ACC-SPG, TMP-SPG, MAG-SPG, AUD-SPG, EPT-SPG, and PWR-SPG. A side channel is a means
to transmit information whereas a side-channel signal refers to the information in the channel. Technically
speaking, in this thesis, a side-channel signal is a combination of a side channel and a transformation.

12By each template, we mean each template for the current type of side-channel signals. There are two
templates and they are the starting template and the stopping template.
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exactly at the stopping moment.

Evaluation Results. The combination of a score function and a calculation axis is

collectively referred to as a kernel. We performed static synchronization in the TDE mode

with eight different kernels (four different score functions and two calculation axes) in order

to compare their performance. The four score functions are Inner Product (IP), Covariance

(Cov), Cosine (Cos), and Correlation Coefficient (CC), as shown in Table 3.1. The two

calculation axes are none and time. The four score functions are combined with the two

calculation axes to form the eight kernels.

Table 3.5 shows the average error as a function of kernels for the UM3 and RM3 print-

ers. We only show the results for ACC-Raw, ACC-SPG, AUD-Raw, and AUD-SPG be-

cause they have the best performance and the space is limited. We show the results in

tables because there are a lot of numbers to be shown and the numbers span several or-

ders of magnitudes. We can see that the CC-time kernel had the best performance for both

printers, both types of templates, and all types of side-channel signals.

However, we also see that the CC-none kernel performed poorly for ACC-Raw. This

is because CC-none considers the relationship across channels. For example, the mean

(average) of the x or y channel in the ACC-Raw signal over time is approximately zero,

whereas the mean of the z channel over time is a non-zero constant due to the gravity. This

relationship across channels can result in a large score regardless of the location of the

template in the side-channel signal. As a result, the ability for CC-none to selectively find

the best location of the template is degraded.

Figure 3.23 shows the elapsed time vs kernels for AUD-Raw and the starting template.

The results for other types of side-channel signals or the stopping template are similar and

omitted to save space. We can see that, when the calculation axis was none, the elapsed

time increased as the mathematical expression becomes more complex. To be specific, the

IP score function had the least amount of time consumption whereas the CC score function

had the most amount of time consumption. However, when the calculation axis was time,
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Table 3.5: Average Error vs Kernel for Static Synchronization

Printer Template Kernel
Type of Side-Channel Signals

ACC-Raw ACC-SPG AUD-Raw AUD-SPG

UM3

Starting

IP-none 0.018015 72.107050 1.331822 20.974442
Cov-none 0.018015 29.438300 1.331822 21.838501
Cos-none 4.642789 0.013450 1.563312 0.004151
CC-none 4.631124 0.013400 1.563312 0.004167
IP-time 0.018015 72.107050 1.331822 20.974442
Cov-time 0.018015 0.012800 1.331822 0.004151
Cos-time 1.315330 45.559150 1.108091 0.004167
CC-time 0.015700 0.015600 1.108091 0.004151

Stopping

IP-none 2.421939 4.960650 0.001083 2.256279
Cov-none 2.646234 6.849700 0.001083 1.163590
Cos-none 26.890172 0.011850 0.098144 0.000345
CC-none 24.708509 0.011850 0.098144 0.000328
IP-time 2.421939 4.960650 0.001083 2.256279
Cov-time 2.085349 1.137700 0.001083 0.000328
Cos-time 2.761774 0.853800 0.001083 0.000410
CC-time 0.349514 0.012300 0.001083 0.000375

RM3

Starting

IP-none 0.011196 1.479500 0.007065 0.000100
Cov-none 0.011196 0.000900 0.007065 0.190432
Cos-none 0.154043 0.000250 0.020888 0.000017
CC-none 0.011198 0.000250 0.020888 0.000017
IP-time 0.011196 1.479500 0.007065 0.000100
Cov-time 0.011198 0.000450 0.007065 0.000017
Cos-time 0.011191 0.014650 0.022904 0.000100
CC-time 0.011187 0.000000 0.022904 0.000000

Stopping

IP-none 0.012368 24.563200 2.201267 11.654659
Cov-none 0.012368 0.556500 2.201267 0.000000
Cos-none 0.012368 0.000200 0.167697 0.000017
CC-none 0.012368 0.000200 0.167697 0.000017
IP-time 0.012368 24.563200 2.201267 11.654659
Cov-time 0.012368 0.000200 2.201267 0.000000
Cos-time 0.012378 15.156100 0.169946 0.000050
CC-time 0.012369 0.000000 0.169946 0.000000

The units of all numbers are in seconds.
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Figure 3.23: Elapsed time vs kernels for the UM3 and RM3 printers. The results are for
AUD-Raw only. Results for other types of side-channel signals are similar and omitted.

there was no obvious pattern. We can see that the Cov score function consumed more time

than the CC score function did. It is hard to explain the exact reason behind this behavior.

It might be a result of the optimization strategies in the computer architecture.

Generally speaking, time consumption is less of a concern because, to analyze a signal

of 200 seconds, the maximum elapsed time is less than 10 seconds. Static synchronization

can be easily performed in real time.

Because the CC-time kernel had the overall best performance, we will use this kernel

for the rest of the paper by default. We will use the CC-time kernel not only for TDE but

also for SD. We will use the CC-time kernel not only for static synchronization but also for

DWM, an implementation of dynamic synchronization.

3.11.3 Analysis of Properties of Templates

To identify a moment in a signal by static synchronization, we need a template for that mo-

ment. There are countless possibilities for a template. For example, we need to determine

the duration of the template and we need to determine the location of the moment in the

template (also known as the anchor point). This process is referred to as template design. In

this subsection, we study how properties of a template, namely the duration and the anchor

point, can affect the performance of static synchronization. We use the same performance

metrics and the evaluation procedures in subsection 3.11.2.
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Figure 3.24: Definition of duration for the starting and stopping moments.

Parametric Analysis on Template Duration. We studied the influence of the duration

of a template on the performance of static synchronization. Figure 3.24 shows the definition

of the duration of a template. For the template of the starting moment (also referred to as

the starting template), the anchor point is located on the left edge of the template. For

the stopping template, the anchor point is relocated on the right edge of the template. To

evaluate the influence of template duration, we need to perform static synchronization for

a lot of templates with different duration. In order to perform the experiments within a

reasonable amount of time, we only performed experiments with the acceleration side-

channel signals (ACC-Raw) and the acoustic side-channel signals (AUD-Raw).

Figure 3.25 shows the average error for the UM3 printer and the RM3 printer and

Figure 3.26 shows the elapsed time for both printers. We see that for both printers, both

types of templates, and both types of side-channel signals, the average error exhibited the

same pattern. That is, the average error was lower in the middle and higher on both ends.

Simply put, the best performance was achieved with an intermediate duration13.

For the UM3 printer, an accept range of template duration is from 1 second to 10 sec-

onds for all involved side-channel signals and all involved templates. By manually in-

specting the waves, we decided to use a duration of 3.75 seconds for the starting template

because this template is the longest template that is relatively consistent among all printing

processes considered in the experiments. By the same token, we decided to use a duration

of 1.5 seconds for the stopping template. For the RM3 printer, an acceptable range of tem-

13In this thesis, when the word “duration” is used as a countable noun, it means the value of the duration.
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Figure 3.25: Average error as a function of template duration. ACC is the acceleration
side-channel signal whereas AUD is the acoustic side-channel signal.

plate duration is from 0.1 second to 10 seconds. We decided to use a duration of 1 second

for both of the starting template and the stopping template.

By inspecting Figure 3.26, we see that the elapsed time overall increased as the template

duration increased although there was a lot of fluctuation. We see that the patterns were

the same for all printers, all types of side-channel signals, and all types of templates. The

pattern might be related to the computer architecture of the system that performed the

calculation. We also see that, to find a signal of 100 seconds in a signal of 200 seconds, the

maximum elapsed time was around 10 seconds. In other words, for a template that lasts

100 seconds, we could still perform static synchronization in real time.

Necessity of Arbitrary Anchor Points. When designing static synchronization for the

NSYNC framework, we allow an arbitrary location of the anchor point inside a template

(or even outside of the template). This makes it possible for the stopping template in

Figure 3.15 to include an empty part of 0.4 second after the stopping moment. Notice that

the stopping template in Figure 3.24 does not have this empty part. One may ask if it is
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Figure 3.26: Average elapsed time as a function of template duration.

Table 3.6: Average Error with and without Empty Parts

ACC-Raw ACC-SPG AUD-Raw AUD-SPG

With the Empty Part 0.349514 0.012300 0.001083 0.000375
Without the Empty Part 1.398049 0.188300 0.001083 0.000328

The results are for the UM3 printer and the stopping moment only.

really necessary to include this empty part in a template.

To answer this question, we performed experiments with the 0.4 second empty part

present and not present while holding everything else constant. We only performed experi-

ments with the UM3 printer and the stopping template. The results are shown in Table 3.6.

We can see that the empty part in the template significantly reduced the average error for

ACC-Raw and ACC-SPG although it slightly increased the average error for AUD-SPG.

Why does adding an empty part help with the performance for certain scenarios? This is

because we are using the CC-time kernel, which also takes the empty part into considera-

tion. When searching for the template in a signal, a match should also contain the empty

part. In this way, including the empty part can make the template more selective.

3.11.4 Static Synchronization in the TDE Mode

In the previous two subsections, we determined that the overall best kernel was CC-time

and we designed the starting and stopping templates for both the UM3 printer and the RM3

printer. Using ACC-Raw as an example, the templates for the UM3 printer and the RM3

printer are shown in Figure 3.27 and Figure 3.28 respectively. The properties (duration and
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Figure 3.27: Starting and stopping templates (ACC-Raw) for the UM3 printer.
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Figure 3.28: Starting and stopping templates (ACC-Raw) for the RM3 printer.

anchor point) of the templates for other types of side-channel signals are the same.

With the parameters and the templates specified, we performed static synchronization

in the TDE mode for all types of side-channel signals. The results for both printers (UM3

and RM3) and both templates (starting and stopping) are shown in Figure 3.29, where the

dashed red line in each sub-figure corresponds to the duration of the template.

In this thesis, we consider static synchronization unsuccessful if the error is more than

the duration of the template. According to this standard, we see that TMP-Raw, TMP-SPG,

EPT-Raw, PWR-Raw, and PWR-SPG were useless as static synchronization with these

types of side-channel signals unanimously failed. In fact, a visual inspection14 of these

types of side-channel signals reveal that they appeared to be random and did not contain

much information about the printing process. In other words, the Signal to Noise Ratio

(SNR) of these types of side-channel signals was almost zero. MAG-Raw, MAG-SPG, and

EPT-SPG were semi-useful types of side-channel signals as static synchronization with

these types of side-channel signals sometimes failed and sometimes succeeded. A visual

14Refer to Figure 3.21 and Figure 3.22 for samples of the side-channel signals.
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Figure 3.29: Average error of static synchronization in the TDE mode.

inspection of these types of side-channel signals reveal that they were weakly correlated

with the mechanical state-variable signal15 of the printer. In other words, they contained

some useful information but the SNR was relatively low. ACC-Raw, ACC-SPG, AUD-

Raw, and AUD-SPG were high quality types of side-channel signals. They were strongly

correlated with the mechanical state-variable signal of the printer and the SNR was high.

A visual inspection reveals that the MAG-Raw signals from the RM3 printer were pulse

width modulated as the signals mainly came from the heating coil in the build plate. The

temperature of the build plate was controlled by pulse width modulating the current in the

build plate, which created pulse width modulated magnetic fields around the build plate.

As a result of this, it is possible to infer the thermal state variables of the printer. However,

Pulse Width Modulation (PWM) makes the MAG-Raw signals non-reproducible. This vi-

olates the assumption of the NSYNC framework. That is, side-channel signals for the same

printer and the same G-code instructions should be almost identical. As a result, MAG-Raw

and MAG-SPG from the RM3 printer are not suitable for the NSYNC framework unless

15The mechanical state-variable signal contains the position, velocity, and acceleration of the printhead.
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measures are taken to filter out the modulated pulses in the side-channel signals.

We see that EPT-Raw was useless whereas EPT-SPG was semi-useful. A close inspec-

tion reveals that the EPT-Raw side-channel signals contained a predominant 60 Hz compo-

nent, which came from the power system. The 60 Hz component makes the side-channel

signals look like sinusoidal waves with ripples. As a result, EPT-Raw is not very useful for

the NSYNC framework. However, EPT-SPG is still useful because the 60 Hz component

is only one of the many frequency components and all the frequency components share the

same weight when calculating the scores.

Overall, for ACC-Raw, ACC-SPG, AUD-Raw, and AUD-SPG, we could use static syn-

chronization in the TDE mode to accurately identify the starting and stopping moments of a

printing process. The spectrograms performed better than the raw signals. With ACC-SPG

or AUD-SPG, the maximum error was around 0.01 second for a template with a duration

up to 3.75 seconds. This accuracy is satisfying for practical applications.

3.11.5 Static Synchronization in the SD Mode

As with static synchronization in the TDE mode, we use the CC-time kernel and the tem-

plates in Figure 3.27 and Figure 3.28 for static synchronization in the SD mode.

Critical Scores. For static synchronization in the SD mode, we need to obtain the

critical scores. For each printer, we used the 50 benign printing processes to obtain the

critical scores. A critical score was obtained for each printer (UM3 and RM3), each type

of side-channel signals, and each template (starting and stopping). We used the method

in subsection 3.6.3 to obtain the critical scores. Specifically, we used a support vector

machine with a linear kernel and a C value of 20 in the process of determining the critical

scores. The critical scores for both printers and both templates are shown in Figure 3.30.

With the critical scores determined, we performed static synchronization in the SD

mode on the 100 benign printing processes for testing purposes and the 100 malicious print-

ing processes. The results for both printers and both templates are shown in Figure 3.31.
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Figure 3.30: Critical scores for static synchronization in the SD mode.

We can see that only the RM3 printer with AUD-SPG could successfully identify both the

starting moments and the stopping moments. For the UM3 printer, only ACC-SPG could

properly identify the starting moments with a relatively large error (around 1.0 second).

The performance of static synchronization in the SD mode was much worse than that in the

TDE mode. Static synchronization in the SD mode is inherently more challenging.

One of the potential reasons that static synchronization in the SD mode failed is because

the critical scores were only applicable to the benign printing processes. In fact, the starting

and stopping templates were derived from the reference printing process. They could match

benign printing processes very well, but they did not match malicious printing processes

at the same level. Our hypothesis is that static synchronization in the TDE mode tolerates

a higher level of mismatch than static synchronization in the SD mode does. To test this

hypothesis, we performed static synchronization in the SD mode only on the 100 benign

printing processes and the results are shown in Figure 3.32. We see that the performance

was greatly improved as ACC-Raw, ACC-SPG, and AUD-SPG could successfully identify
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Figure 3.31: Average errors of static synchronization in the SD mode.

the starting and stopping moments for both printers.

In summary, static synchronization in the SD mode is more challenging. We could

successfully perform static synchronization in the SD mode on benign printing processes.

The best types of side-channel signals were ACC-Raw, ACC-SPG, and AUD-SPG. For the

acoustic side channel, spectrograms were required as AUD-Raw failed altogether in the SD

mode. With ACC, ACC-SPG or AUD-SPG, the maximum error was around 0.01 seconds

for a template with a duration up to 3.75 seconds. We could not successfully perform static

synchronization in the SD mode for malicious printing processes. Fortunately, unsuccessful

static synchronization will increase the chance for the NSYNC framework to issue an alert

and thus properly detect an intrusion event.

3.11.6 Duration-Based Intrusion Detection

By static synchronization, we can determine the duration of a printing process. According

to subsection 3.7.7, we can use the duration of a printing process as an indicator for intru-

sion detection. If the duration of a printing process is very different from what is expected,
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Figure 3.32: Average errors of static synchronization in the SD mode. The results were
obtained by testing on the 100 benign printing processes only.

an intrusion can be declared. We established an intrusion detection system according to the

procedures outlined in subsection 3.7.7 with a margin ratio of r = 0.25. We used static

synchronization in the SD mode to determine the duration of a printing process. We used

the 50 benign printing processes to obtain the thresholds and tested on the other 100 benign

printing processes as well as the 100 malicious processes. The intrusion detection results

are shown in Table 3.7. The results are reported in the format of

Accuracy (False Positive Rate / True Positive Rate)

where the accuracy is calculated by dividing the number of correctly predicted printing

processes (benign or malicious) by the number of all printing processes, FPR is defined

to be the number of False Positives (FPs) over the number of benign printing processes,

and True Positive Rate (TPR) is defined to be the number of True Positives (TPs) over the

number of malicious printing processes. A FP is a benign printing process that is declared

to be malicious by the IDS, whereas a TP is a malicious printing process that is declared to

be malicious by the IDS. We see that ACC-Raw, ACC-SPG, and AUD-SPG could reliably
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Table 3.7: Duration-Based IDS Results

T SC
Printer

UM3 RM3

Raw

ACC 1.00 (0.00 / 1.00) 1.00 (0.00 / 1.00)
MAG 0.83 (0.34 / 1.00) 0.59 (0.64 / 0.82)
AUD 0.97 (0.07 / 1.00) 0.84 (0.33 / 1.00)
EPT 0.69 (0.17 / 0.55) 0.64 (0.56 / 0.84)

SPG

ACC 1.00 (0.00 / 1.00) 1.00 (0.00 / 1.00)
MAG 0.53 (0.95 / 1.00) 0.51 (0.99 / 1.00)
AUD 1.00 (0.00 / 1.00) 1.00 (0.00 / 1.00)
EPT 0.87 (0.27 / 1.00) 0.98 (0.04 / 1.00)

T = Transformation. SC = Side Channel (Signal Type).

distinguish malicious printing processes from benign printing processes for both printers.

One of the reasons why the intrusion detection system worked well is because the du-

rations of all malicious printing processes were very different from those of the benign

printing process. Table 3.8 shows the average duration and the standard deviation of the

duration for all types of printing processes. When the duration of a malicious printing

process differs from the duration of the benign printing process by at least the standard

deviation of the duration of the benign printing process, there is a good chance for the

intrusion detection system to issue an alert.

Nevertheless, it is possible for an advanced attacker to craft a malicious printing process

such that its duration is close to the duration of the benign printing process. The advanced

attacker can remove or add instructions in a printing process to adjust its duration. The

duration-based intrusion detection system will not be able to defeat such an advanced at-

tacker, and we need to resort to the rest part of the NSYNC framework.

3.12 Experiments on Dynamic Synchronization

In this section, we present experiment results related to dynamic synchronization. We used

the same experiment setup as in section 3.11. We first of all show the consistency of hor-

izontal displacements. Afterwards, we discuss how to obtain the parameters in dynamic
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Table 3.8: Duration of Printing Processes

Process
Printer

UM3 RM3

Benign 4393.500 ± 0.897 2836.981 ± 0.034
Void 4404.973 ± 0.806 2844.488 ± 0.034
InfillGrid 4410.381 ± 0.884 2823.446 ± 0.026
Layer0.3 3035.414 ± 0.551 1985.969 ± 0.015
Speed0.95 4455.842 ± 0.991 2981.224 ± 0.049
Scale0.95 3874.998 ± 0.812 2492.245 ± 0.033

The units of numbers are in seconds.

synchronization, including DTW and DWM, with experiments. Finally, we present intru-

sion detection results using NSYNC with DTW and NSYNC with DWM.

3.12.1 Consistency of Horizontal Displacement Arrays

The consistency of horizontal displacement arrays refers to the following phenomenon.

When performing dynamic synchronization between a reference printing process and a

specific printing process, if the dynamic synchronization process is successful, the hori-

zontal displacement array should be invariant with respect to the method and the type of

side-channel signals that are used to determine the horizontal displacement array. In other

words, a horizontal displacement array is the property of two printing processes.

Default Parameters for DTW. In order to perform DTW, we have to specify all pa-

rameters. There are two parameters in DTW16. One is the radius in the DTW algorithm and

the other is the type of distance metrics. We always use a radius of 1 (the minimum allowed

radius) because the DTW algorithm is very slow when analyzing side-channel signals in

AM systems and the larger the radius, the slower the algorithm. For the distance metric, by

default we use the correlation distance as defined in Equation 3.25. We will later explore

the performance of different distance metrics in subsection 3.12.2.

Default Parameters for DWM. As with DTW, in order to perform DWM, we have

to specify all parameters. By default we use the parameters listed in Table 3.9. These

16More precisely, FastDTW. This is because only FastDTW has the radius parameter.
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Table 3.9: Parameters in DWM

Printer Kernel twin thop text tsigma η

UM3 CC-time 4.0 s 2.0 s 2.0 s 1.0 s 0.1
RM3 CC-time 1.0 s 0.5 s 0.1 s 0.05 s 0.1

parameters work well for a variety of side-channel signals and printing processes. We will

explain how we obtained the parameters in subsection 3.12.3.

Experiment Procedures. For each printer (UM3 or RM3), each type of side-channel

signals (6 × 2 in total), we performed DWM and DTW to obtain the horizontal displace-

ments between the side-channel signal from the reference printing process and the side-

channel signals from all other printing processes. We were only able to perform DTW for

signals with the SPG transformation because it took forever to analyze the raw signals.

Whereas many of the horizontal displacement arrays looked like random curves, some hor-

izontal displacement arrays exhibited consistent patterns.

Figure 3.33 (a) shows horizontal displacement arrays between all available side-channel

signals of the reference printing process and corresponding side-channel signals of a be-

nign printing process for the UM3 printer. We can see that horizontal displacement arrays

obtained by ACC-Raw, ACC-SPG, AUD-Raw, and AUD-SPG are the same, regardless of

the method (DWM or DTW). The horizontal displacement array obtained by EPT-SPG

with DWM also conforms to this same pattern. In addition, a close inspection of horizontal

displacement arrays obtained by MAG-Raw and MAG-SPG with DWM indicate that they

conform to the same pattern but with an increased level of noise.

Figure 3.33 (b) shows horizontal displacement arrays between all available side-channel

signals of the reference printing process and corresponding side-channel signals of a benign

printing process for the RM3 printer. We have similar observations as we had for the UM3

printer except two major differences. First of all, horizontal displacement arrays obtained

by MAG-Raw and MAG-SPG appear to be random. This may be due to the PWM waves in

the magnetic side-channel signals. Second, horizontal displacement arrays obtained with
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Figure 3.33: Horizontal displacement arrays (hdisp) obtained between the reference print-
ing process and a benign printing process with the specified printer by DWM and DTW for
all available types of side-channel signals. The numbers in brackets show the range of the
horizontal displacements in seconds.
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the SPG transformation appear to be ragged versions of their counterparts with the Raw

transformation. This is because the range of the horizontal displacements for the RM3

printer is very small and comparable to the temporal resolution of the spectrograms.

Horizontal Displacement Arrays as a Property of Printing Processes. This consis-

tency of horizontal displacement arrays across multiple types of side-channel signals and

methods (DWM and DTW) indicate that a horizontal displacement array is a property of

printing processes, not a property of side-channel signals. Because of this, we can say the

horizontal displacement array between two printing processes, dropping side-channel sig-

nals altogether. It should be noted that the consistency of horizontal displacement arrays

only occurs between the reference printing process and a benign printing process. There is

no well-defined horizontal displacement array between the reference printing process and

a malicious printing process.

Success of Dynamic Synchronization. The goal of dynamic synchronization (DWM

or DTW) is to find the horizontal displacement array between two printing processes by an-

alyzing side-channel signals. When dynamic synchronization is able to find this horizontal

displacement array, we say the dynamic synchronization process is successful. In contrast,

when dynamic synchronization returns a random look array, we say the dynamic synchro-

nization process fails. Typically, for high quality side-channel signals (such as ACC-Raw,

ACC-SPG, AUD-SPG), DWM and DTW return a horizontal displacement array that is

very close to the actual horizontal displacement array with little noise. For low quality

side-channel signals, dynamic synchronization typically fails altogether.

Inconsistency of Horizontal Displacement Arrays Across Printing Processes. Fig-

ure 3.34 shows the horizontal displacement arrays for three benign printing processes for

each printer. We can see that the horizontal displacement arrays are different across dif-

ferent instances of printing processes, even though the printing processes were performed

with the same G-code file and the same printer. This means that the time noise in a printing

process is random instead of deterministic.
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Figure 3.34: Horizontal displacement arrays (hdisp) for three benign printing processes.
The inconsistency of horizontal displacements across different instances of the benign
printing process indicates that time noise is highly random. The numbers in brackets show
the range of the horizontal displacements in seconds.

3.12.2 Parameters for Dynamic Time Warping

As previously mentioned, there are two parameters in DTW. One of them is the radius

and the other is the distance metric. For the radius, since the calculation speed is the main

concern, we always use the smallest allowable radius (which is 1) to expedite the algorithm

at a cost of possibly reduced accuracy. In this section, we study how the distance metric

affects the performance of DTW.

To save time, we only performed DTW for the 50 benign printing processes with ACC-

SPG. Figure 3.35 shows the horizontal displacement arrays obtained by DTW with various

distance metrics for one benign printing process. We can see that the distance metric does

not significantly affect the horizontal displacement array. In this thesis, we will by default

use the correlation distance.
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Figure 3.35: Horizontal displacement arrays obtained by DTW with various distance met-
rics for a benign printing process and both printers (UM3 and RM3). The type of side-
channel signals used to obtain the horizontal displacement arrays is ACC-SPG. The num-
bers in brackets show the range of the horizontal displacements in seconds.

3.12.3 Parameters for Dynamic Window Matching

In this section, we explore how parameters in DWM (kernels, nwin, nhop, next, nsigma,

and η) affect the performance of DWM and how each parameter are selected for the best

performance. nwin, nhop, next, nsigma, and η are originally defined in terms of indexes. The

five parameters can be alternatively defined in terms of seconds. To be specific, we define

twin = nwin/fs, thop = nhop/fs, text = next/fs, and tsigma = nsigma/fs, where fs is the

sampling rate of the side-channel signal.

Kernels. We performed DWM with eight different kernels to figure out their perfor-

mance. The eight kernels were obtained by combining four different score functions (IP,

Cov, Cos, and CC) and two different calculation axes (none and time). We performed ex-

periments with both printers, but to save time we only tested ACC-Raw, ACC-SPG, AUD-

Raw, and AUD-SPG. For each kernel, each printer, and each type of side-channel signals,

we performed DWM on the 50 benign printing processes. By analyzing the results, we find

80



that, for raw signals (ACC-Raw and AUD-Raw), the kernel does not significantly affect the

performance of DWM. However, for spectrograms (ACC-SPG and AUD-SPG), Cov-time

and CC-time have similar performance and outperform other kernels.

Figure 3.36 shows horizontal displacement arrays obtained by DWM with the eight

different kernels for one benign printing process and the UM3 printer. The results for other

benign printing processes or the RM3 printer are similar and not shown.

Parameters text and tsigma. The ratio text/tsigma controls the strength of the bias in

TDEB (as demonstrated in Figure 3.17), and a higher value of text/tsigma corresponds to a

stronger bias towards the center. When text/tsigma < 1, the bias effect is not significant.

When text/tsigma > 1, the bias effect is significant and the extended window size is ef-

fectively determined by tsigma instead of text. By default, we use text/tsigma = 2 for two

reasons. First, bias is desirable. Hence text/tsigma > 1. Second, when text/tsigma > 3,

to maintain the same effective extended window size, increasing the ratio is tantamount to

increasing text. This merely increases the consumption of computational resources without

other effects. As a balance, we choose text/tsigma = 2.

With text/tsigma = 2, tsigma effectively determines the extended window size. The influ-

ence of tsigma on hdisp is shown in Figure 3.37 (a). To ensure a successful DWM process,

tsigma should be larger than the absolute difference of the actual horizontal displacements

between any two consecutive windows. At the same time, tsigma should not be too large, as

it not only requires more computational resources but also decreases the accuracy of DWM

as a wider search area has more distraction.

There is an elegant way to select the best value for tsigma. We first of all estimate the

standard deviation of the duration of a benign printing process. This can be accomplished

by performing a benign printing process multiple times and measuring the duration of all

printing processes. We then select tsigma to be a value that is larger than this standard

deviation. Table 3.8 shows the standard deviations for UM3 and RM3 whereas Table 3.9

shows the selected tsigma for both printers. It should be noted that, as the duration of a
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Figure 3.36: Horizontal displacement arrays vs kernels for the UM3 printer.
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Figure 3.37: Parametric analysis results for DWM with the UM3 printer. The ordinates
are horizontal displacements in seconds. The brackets in all figures show the range of the
horizontal displacements. The results were obtained with ACC-Raw. Results obtained by
other types of side-channel signals are similar and not shown. Results with the RM3 printer
exhibit similar patterns and are not shown to save space.

printing process increases, the standard deviation of the duration of the printing process

may increase and the best tsigma can increase accordingly.

Parameter thop. thop controls the temporal resolution of hdisp. The maximum value of

thop is twin whereas the minimum value of thop is 1/fs. It is desirable to have a higher reso-

lution by choosing a smaller thop. However, the computational cost increases significantly

as thop is reduced. As a balance between computational cost and temporal resolution, we

choose thop = twin/2 by default.

Parameter twin. twin is the window size in the TDE process. Figure 3.37 (b) shows

how twin affects hdisp. When twin is very small, there are a lot of spikes in hdisp. When twin

is very large, the temporal resolution of hdisp becomes lower.
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In NSYNC, we obtain the best twin by parametric analysis. We sweep twin from a small

value to a large value and select the twin such that the change of the overall shape of hdisp

is the smallest with respect to twin.

Parameter η. Figure 3.37 (c) shows how η affects hdisp. In general, it is necessary to

have a positive η. For rare situations, when η is close to 1.0, DWM may run away.

To select the best η, we start with a small value of η, typically η = 0.1. If DWM is

unable to converge, we can crank up this value until DWM converges.

Table 3.9 shows the parameters obtained according to the aforementioned procedures

for both printers and we will use these parameters for the following experiments.

3.12.4 NSYNC with Dynamic Time Warping

We evaluated NSYNC with DTW as its dynamic synchronizer. We used r = 0.3 (the

coefficient for margins of critical values) to bring down the overall FPR close to zero.

We were not able to apply DTW on the raw signals because it took forever for DTW to

synchronize them. The detection results are shown in Table 3.10. The performance metrics

are the same as in subsection 3.11.6. The column cdisp shows the results if CADHD was

used alone for intrusion detection. Similarly, the columns hdist and vdist show the results

if hdist and vdist were used alone respectively. We can see that NSYNC with DTW mainly

relied on horizontal displacements for intrusion detection, as the vdist-based sub-module

totally failed. The acoustic side-channel spectrogram worked well for both printers. The

acceleration side-channel spectrogram worked well only for the UM3 printer.

3.12.5 NSYNC with Dynamic Window Matching

We evaluated NSYNC with DWM as its dynamic synchronizer. We used r = 0.3 in the

One-Class Classification (OCC) training process to bring down the overall FPR close to

zero. The detection results are shown in Table 3.11. We can see that cdisp was the most

reliable indicator. This means that dynamic synchronization on a benign process will likely
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Table 3.10: Detection Results for NSYNC with DTW

P T SC Results
Individual Sub-Module Results

cdisp hdist vdist

UM3 SPG

ACC 0.99 (0.02 / 1.00) 0.99 (0.02 / 1.00) 1.00 (0.00 / 1.00) 0.50 (0.00 / 0.00)
MAG 0.58 (0.10 / 0.26) 0.48 (0.08 / 0.04) 0.57 (0.10 / 0.24) 0.50 (0.00 / 0.00)
AUD 0.97 (0.06 / 1.00) 0.97 (0.06 / 1.00) 0.97 (0.06 / 1.00) 0.50 (0.00 / 0.00)
EPT 0.60 (0.04 / 0.24) 0.50 (0.00 / 0.00) 0.61 (0.00 / 0.22) 0.50 (0.04 / 0.04)

RM3 SPG

ACC 0.69 (0.02 / 0.40) 0.69 (0.02 / 0.40) 0.69 (0.02 / 0.40) 0.50 (0.00 / 0.00)
MAG 0.70 (0.00 / 0.40) 0.70 (0.00 / 0.40) 0.70 (0.00 / 0.40) 0.50 (0.00 / 0.00)
AUD 1.00 (0.00 / 1.00) 0.95 (0.00 / 0.90) 1.00 (0.00 / 1.00) 0.50 (0.00 / 0.00)
EPT 0.50 (0.00 / 0.00) 0.50 (0.00 / 0.00) 0.50 (0.00 / 0.00) 0.50 (0.00 / 0.00)

P = Printer. T = Transformation (on Signals). SC = Side Channel. The combination of a side channel and
a transformation constitutes a type of side-channel signals. The result format is Accuracy (FPR / TPR),
where FPR = False Positive Rate and TPR = True Positive Rate.

succeed whereas dynamic synchronization on a malicious process will likely fail. hdist

and vdist were less reliable as indicators on their own. When DSYNC fails for a malicious

process, the resulting hdist is meaningless and it may not be larger than the hdist of a benign

process. vdist is not reliable on its own because amplitude noise can easily affect vdist. For

example, acoustic noise (a type of amplitude noise) from the environment (such as talking)

directly affects vdist, but this amplitude noise does not significantly affect hdisp. Overall,

the performance of NSYNC with DWM is excellent as an accuracy of 1.00 was reached

for multiple types of side-channel signals. In addition, the vdist-based sub-module worked

successfully, and this means that the NSYNC framework with DWM can potentially detect

advanced attacks where the timing of the malicious process is preserved by the attacker.

3.12.6 Other Intrusion Detection Systems

This section presents intrusion detection results for IDSs in the literature. First of all, we

present evaluation results for three IDSs that do not contain any form of dynamic synchro-

nization, and they are Moore’s IDS [23], Bayen’s IDS [22], and Belikovetsky’s IDS [27].

Moore’s IDS [23]. This IDS essentially compares a[n] and b[n] without dynamic syn-

chronization to obtain vdist[n] for n = 0, 1, · · · , where the distance metric is the Mean
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Table 3.11: Detection Results for NSYNC with DWM

P T SC Results
Individual Sub-Module Results

cdisp hdist vdist

UM3

Raw

ACC 0.99 (0.02 / 1.00) 1.00 (0.00 / 1.00) 0.81 (0.02 / 0.64) 1.00 (0.00 / 1.00)
MAG 1.00 (0.00 / 1.00) 1.00 (0.00 / 1.00) 0.97 (0.00 / 0.93) 0.76 (0.00 / 0.51)
AUD 0.99 (0.02 / 1.00) 1.00 (0.00 / 1.00) 0.73 (0.02 / 0.47) 0.54 (0.00 / 0.08)
EPT 0.53 (0.00 / 0.06) 0.53 (0.00 / 0.06) 0.50 (0.00 / 0.00) 0.53 (0.00 / 0.06)

SPG

ACC 0.99 (0.02 / 1.00) 1.00 (0.00 / 1.00) 0.86 (0.02 / 0.73) 0.90 (0.00 / 0.80)
MAG 1.00 (0.01 / 1.00) 1.00 (0.00 / 1.00) 0.93 (0.01 / 0.87) 0.78 (0.00 / 0.56)
AUD 0.99 (0.02 / 1.00) 1.00 (0.00 / 1.00) 0.91 (0.02 / 0.83) 1.00 (0.00 / 1.00)
EPT 1.00 (0.00 / 1.00) 1.00 (0.00 / 1.00) 0.76 (0.00 / 0.52) 1.00 (0.00 / 1.00)

RM3

Raw

ACC 1.00 (0.00 / 1.00) 1.00 (0.00 / 1.00) 0.90 (0.00 / 0.80) 1.00 (0.00 / 1.00)
MAG 1.00 (0.01 / 1.00) 1.00 (0.01 / 1.00) 1.00 (0.00 / 1.00) 1.00 (0.00 / 1.00)
AUD 1.00 (0.00 / 1.00) 1.00 (0.00 / 1.00) 0.79 (0.00 / 0.57) 1.00 (0.00 / 1.00)
EPT 0.61 (0.00 / 0.21) 0.53 (0.00 / 0.05) 0.50 (0.00 / 0.00) 0.61 (0.00 / 0.21)

SPG

ACC 1.00 (0.00 / 1.00) 1.00 (0.00 / 1.00) 0.96 (0.00 / 0.91) 0.52 (0.00 / 0.03)
MAG 1.00 (0.00 / 1.00) 1.00 (0.00 / 1.00) 0.50 (0.00 / 0.00) 0.50 (0.00 / 0.00)
AUD 1.00 (0.00 / 1.00) 1.00 (0.00 / 1.00) 0.96 (0.00 / 0.91) 1.00 (0.00 / 1.00)
EPT 1.00 (0.00 / 1.00) 1.00 (0.00 / 1.00) 0.82 (0.00 / 0.63) 0.50 (0.00 / 0.00)

See Table 3.10 for table notes.

Absolute Error (MAE). This IDS uses the standard deviation at every moment to obtain the

critical values in the discriminator. The IDS is originally designed for electric currents in

motors. However, we were not able to observe this type of side-channel signals. Instead,

we applied this IDS on available side-channel signals. The results are shown in Table 3.12.

We can see that the IDS could not properly distinguish malicious printing processes from

benign printing processes, as the accuracy for most types of side channels was around 0.5,

which was basically guessing.

Bayen’s IDS [22]. This IDS compares side-channel signals window by window (90 s

or 120 s for the window size). This IDS first checks if the windows are in sequence. If

not, an intrusion is declared. It then checks the score for each window. If the score of

any window is below a pre-defined threshold, an intrusion is declared. However, in [22],

there is no detail on how to obtain the threshold for a new printer. As a result, we used the

OCC method in NSYNC to determine the thresholds for UM3 and RM3. We used r = 0.0
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Table 3.12: Detection Results for Moore’s and Gao’s IDS

P T SC Moore’s Method Gao’s Method

UM3

Raw

ACC 0.48 (0.05 / 0.01) 0.51 (0.01 / 0.02)
MAG 0.49 (0.03 / 0.01) 0.54 (0.01 / 0.08)
AUD 0.48 (0.05 / 0.01) 0.49 (0.05 / 0.02)
EPT 0.47 (0.31 / 0.25) 0.48 (0.30 / 0.25)

SPG

ACC 0.50 (0.01 / 0.00) 0.50 (0.03 / 0.03)
MAG 0.50 (0.03 / 0.02) 0.50 (0.12 / 0.12)
AUD 0.50 (0.05 / 0.05) 0.50 (0.05 / 0.05)
EPT 0.50 (0.00 / 0.00) 0.50 (0.01 / 0.00)

RM3

Raw

ACC 0.50 (0.00 / 0.00) 1.00 (0.01 / 1.00)
MAG 0.54 (0.08 / 0.15) 0.54 (0.07 / 0.15)
AUD 0.50 (0.00 / 0.00) 0.50 (0.00 / 0.00)
EPT 0.52 (0.18 / 0.21) 0.53 (0.31 / 0.37)

SPG

ACC 0.51 (0.02 / 0.03) 0.52 (0.00 / 0.03)
MAG 0.52 (0.03 / 0.07) 0.49 (0.10 / 0.08)
AUD 0.50 (0.00 / 0.00) 0.51 (0.00 / 0.02)
EPT 0.64 (0.09 / 0.36) 0.57 (0.00 / 0.13)

Results are for AUD only. See Table 3.10 for more table notes.

because the TPRs for the threshold-based sub-module were very low. We tested this IDS

only on AUD as this IDS supports only the acoustic side channel. The results are shown in

Table 3.13. Overall, the performance of the IDS was unsatisfying as the IDS declared most

printing processes as malicious. Especially, for the UM3 printer, the IDS simply declared

all printing processes as malicious. The IDS performed better for the RM3 printer than its

did for the UM3 printer. This could be due to the fact that the amount of time noise in the

RM3 printer was much less than that in the UM3 printer.

Table 3.13: Detection Results for Bayens’ IDS

Printer Win (s) Results
Individual Sub-Module Results

Sequence Threshold

UM3
90 0.50 (1.00 / 1.00) 0.50 (1.00 / 1.00) 0.57 (0.18 / 0.31)
120 0.50 (1.00 / 1.00) 0.50 (1.00 / 1.00) 0.54 (0.10 / 0.18)

RM3
90 0.75 (0.51 / 1.00) 0.75 (0.51 / 1.00) 0.95 (0.07 / 0.97)
120 0.85 (0.30 / 1.00) 0.86 (0.29 / 1.00) 0.80 (0.04 / 0.63)

Results are for AUD only. See Table 3.10 for more table notes.
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Table 3.14: Detection Results for Belikovetsky’s IDS

Printer Results

UM3 0.50 (1.00 / 1.00)
RM3 0.85 (0.31 / 1.00)

Belikovetsky’s IDS [27]. This IDS applies the PCA to compress the number of chan-

nels in the spectrogram of the observed signal down to three. Suppose the result is a. The

reference signal goes through the same process. Suppose the result is b. a and b are then

compared point by point (without dynamic synchronization) using the cosine distance met-

ric [27]. Suppose the result is vdist. A window of five seconds is used to calculate the

moving average of vdist. If the average distances of four consecutive windows drop below

0.63, then an intrusion is declared. As with the Bayen’s IDS, this method supports only the

acoustic side channel. The intrusion detection results are shown in Table 3.14. We can see

that the IDS totally failed for the UM3 printer and the performance of the IDS for the RM3

printer was unsatisfying as the accuracy was only around 0.85.

The next two IDSs to be evaluated contain a certain level of dynamic synchronization

as they align the signals to be compared at the beginning of each layer. Since a layer can

be considered as a huge window, this behavior can be considered as a form of dynamic

synchronization, but on a very coarse level. The two IDSs are Gao’s IDS [24] and Gatlin’s

IDS [26]. For the two IDS, we mainly present the evaluation results. Detailed analysis is

left to interested readers.

Gao’s IDS [24]. This IDS is similar to the Moore’s IDS except two aspects. First,

a and b are synchronized at moments when a layer change happens. Second, there is no

discriminator in the Gao’s IDS. As a result, we use the discriminator in NSYNC. We used

r = 0.0 because the TPRs were very low. The results are shown in Table 3.12.

Gatlin’s IDS [26]. This IDS first determines the layer changing moments for a. If

any moment deviates from its expected value by a predefined threshold, an intrusion is

declared. Inside each layer, this IDS compares the spectrogram of a against that of b point
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Table 3.15: Detection Results for Gatlin’s IDS

P SC Results
Individual Sub-Module Results

Time Match

UM3

ACC 0.85 (0.30 / 1.00) 0.93 (0.15 / 1.00) 0.73 (0.17 / 0.62)
MAG 0.74 (0.53 / 1.00) 0.92 (0.16 / 1.00) 0.47 (0.44 / 0.38)
AUD 0.89 (0.22 / 1.00) 0.93 (0.14 / 1.00) 0.49 (0.09 / 0.07)
EPT 0.97 (0.05 / 0.98) 0.97 (0.05 / 0.98) 0.51 (0.00 / 0.02)

RM3

ACC 0.86 (0.29 / 1.00) 0.97 (0.07 / 1.00) 0.87 (0.26 / 1.00)
MAG 0.92 (0.17 / 1.00) 0.98 (0.05 / 1.00) 0.94 (0.12 / 1.00)
AUD 0.90 (0.20 / 1.00) 0.95 (0.10 / 1.00) 0.95 (0.11 / 1.00)
EPT 0.96 (0.08 / 1.00) 0.96 (0.08 / 1.00) 0.50 (0.00 / 0.00)

P = Printer. SC = Side Channel. The result format is Accuracy (FPR / TPR),
where FPR = False Positive Rate and TPR = True Positive Rate.

by point using a special distance metric [26]. If the cumulative distance in a layer exceeds

a predefined threshold, an intrusion is declared. More details of this IDS can be found in

[26] or section 2.2. This IDS is originally designed for the electric currents in motors and

the layer changing moments are determined by detecting activities in the currents in the Z

motor. Since we were not able to access the currents in any motor, we obtained the layer

changing moments manually, and we applied this IDS to the side-channel signals that we

obtained. The detection results are shown in Table 3.15.

3.12.7 Comparison of Different IDSs

Figure 3.38 summaries the average accuracy for all IDSs that we evaluated. The results

were averaged over all printers and all types of side-channel signals (except EPT-Raw). As

we can see in Figure 3.38, as the level of dynamic synchronization (DSYNC) increases

from none to fine, the overall accuracy of the IDSs increases. Any IDS labeled with the

symbol “T” in Figure 3.38 means that the IDS uses time as an indicator for intrusion de-

tection. By analyzing the results of sub-modules in Table 3.10 and Table 3.11, we can see

that time is a more effective indicator than amplitude for intrusion detection.

In addition, we measured the average time it took to analyze one second of the side-

channel signals for both DWM and DTW. The results are shown in Figure 3.39. We can
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see that DTW was much slower than DWM, even if we used FastDTW with the fastest

configuration to implement DTW.

3.13 Conclusion

In this chapter, we presented NSYNC, a practical framework of IDSs that leverage side-

channel signals in AM systems. The NSYNC framework is composed of four major com-

ponents, and they are the static synchronizer, the dynamic synchronizer, the comparator,

and the discriminator.
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3.13.1 Static Synchronizer

The static synchronizer performs static synchronization (SSYNC), which finds specific mo-

ments in the signals to be analyzed. The specific moments can be the starting moments or

the stopping moments of the signal comparison process. The signals are aligned at their

starting moments before the signal comparison process is initiated. The stopping moments

in the signals tell the NSYNC framework to terminate the signal comparing process and

completes the intrusion detection process. In the literature, only a limited amount of exist-

ing IDSs, such as Moore et at. [23] and Belikovetsky et al. [27], are aware of the impor-

tance of aligning signals to be compared at their starting moments and explicitly provide

solutions to static synchronization.

Our proposed static synchronizer can be operated in two modes. One of them is the

TDE mode, which mainly supports post-production analysis or offline signals. The other

mode is the SD mode, which mainly supports real-time analysis or online signals. The

performance of the SD mode is worse than the TDE mode. Nevertheless, with high qual-

ity side-channel signals, our static synchronizer could reliably determine the starting and

stopping moments in the SD mode for all benign printing processes.

We implemented an intrusion detection system based on the duration of a printing pro-

cess and the duration was estimated by the static synchronizer in the SD mode. With high

quality side-channel signals, the intrusion detection system could reliably differentiate be-

nign printing processes and malicious printing processes.

Even though the static synchronizer in the SD mode is unable to properly identify the

starting and stopping moments of a malicious printing process, it will return a random du-

ration or a status that the moments are not detected at all. When either situation happens,

the duration-based intrusion detection system will consider the printing process to be ma-

licious. Additionally, with wrongly identified starting and stopping moments, the dynamic

synchronization process in the NSYNC framework will likely fail and issue an alert. In this

way, the malicious printing process can still be properly captured.
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For our static synchronizer, we tested eight different kernels (four score functions and

two calculation axes) for a variety of scenarios, and we find that the Correlation Coefficient

(CC) score function with the time axis has the best overall performance. In addition, we

explored the design parameters in a template, namely the duration and the anchor point

of the template. We found that the best performance of a template is obtained when the

template has an intermediate level of duration. Normally, the anchor point is located on

one of the edges of the template but allowing for an arbitrary location of the anchor point

can improve the performance of static synchronization under certain circumstances.

3.13.2 Dynamic Synchronizer

The dynamic synchronizer in the NSYNC framework performs dynamic synchronization

(DSYNC), which finds the timing relationship between two signals to be compared. The

timing relationship is described by what is known as the horizontal displacements. Dy-

namic synchronization is required because there is time noise in a printing process. As we

demonstrated in the experiments, an intrusion detection system will fail if it compares two

signals directly without any form of dynamic synchronization. An existing method to per-

form dynamic synchronization is Dynamic Time Warping (DTW). However, our evaluation

results show that DTW is not suitable for analyzing side-channel signals in AM systems be-

cause DTW not only has limited accuracy but also consumes an excessive amount of com-

putational resources. Our newly proposed method, Dynamic Window Matching (DWM),

can successfully overcome the problems of DTW.

One of the most important observations in our experiments is the consistency of hori-

zontal displacement arrays for benign printing processes. Normally, a horizontal displace-

ment array is obtained between two side-channel signals. One of the side-channel signals

acts as the reference whereas the other side-channel signal acts as the observation. Ac-

cording to our experiments, the horizontal displacement arrays by different types of side-

channel signals are the same provided that the quality of the side-channel signals are high
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enough for dynamic synchronization to succeed. This means that a horizontal displacement

array is the property of two printing processes, not two side-channel signals, even though

side-channel signals are needed to obtain the horizontal displacement array.

The consistency of horizontal displacement arrays only occurs for benign printing pro-

cesses. For a malicious printing process, the dynamic synchronization process typically

fails and yields a horizontal displacement array that fluctuates violently. To capture the

level of fluctuation in a horizontal displacement array, we use the Cumulative Absolute

Difference of Horizontal Displacement (CADHD). A high level of CADHD corresponds

to more violent fluctuation in the horizontal displacement array, and a higher likelihood of

dynamic synchronization failure.

For our dynamic synchronizer, we explored the influence of each parameter on the per-

formance of dynamic synchronization. We found that the CC-time kernel (the correlation

coefficient score function with the time axis) has the overall best performance. The Cov-

time kernel (the covariance score function with the time axis) has very similar performance,

but we simply use the CC-time kernel. The sigma value, the window size, and the eta value

all need to be selected properly as extremely large values or extremely small values can

result in poor performance. As a convention, we always select the extended window size

to be twice of the sigma value, and we always select the hop size to be half of the window

size. The optimal value for each printer is different but in general stays consistent for the

same printer across multiple printing processes.

3.13.3 Comparator

While performing dynamic synchronization, we can also obtain the vertical distances be-

tween the two signals to be compared. In theory, any distance metric can be used but we use

the correlation distance metric with the time axis as it is readily available from the CC-time

kernel in the dynamic synchronizer.
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3.13.4 Discriminator

The discriminator then takes in the horizontal displacements and the vertical distances to

determine if the two signals to be compared are different or not in real time. One of the most

important features of the discriminator in the NSYNC framework is that we use One-Class

Classification to determine the threshold between benign printing processes and malicious

printing processes. The main advantage of this approach is that it uses a series of benign

printing processes to determine the threshold and it does not require knowledge of mali-

cious printing processes. A margin ratio is required, and its value decreases as the number

of benign printing processes increases.

3.13.5 Experiments

We evaluated the performance of multiple IDSs on the same set of printing processes. We

saw that the NSYNC framework performed better than existing IDSs. The NSYNC frame-

work with DWM reached an average accuracy over 0.99, beating all other IDSs, including

the NSYNC framework with DTW. We also saw that time-based intrusion detection per-

formed better than amplitude-based intrusion detection. Last but not least, we compared

the time consumption of DWM and DTW and DWM was much faster than DTW.
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CHAPTER 4

OPTICAL SIDE CHANNEL: ATTACK AND DEFENSE

4.1 Introduction

In chapter 3, we saw how side-channel signals could be used by defenders to perform

intrusion detection for AM systems. When a side-channel signal is correlated with the

state-variable signal of an AM system, the side-channel signal can be used for intrusion

detection. When the state of the AM system is maliciously modified by an attacker, the

change will be reflected in the side-channel signal. An intrusion detection system performs

its duty by detecting the change in the side-channel signal.

When a side-channel signal is correlated with the state-variable signal of an AM system,

the side-channel signal can be used by an attacker to perform a side-channel attack. The

attacker analyzes the side-channel signal and attempts to infer the state-variable signal. For

example, an attacker may recover the printing path of a printing process by analyzing the

acoustic side-channel signal from the printing process [18, 19, 20].

In this chapter, we explore the possibility to recover the state-variable signal from the

optical side-channel signal of a printing process. The optical side-channel signal is the

video of a printing process and is obtained by an optical camera. Compared with the

acoustic side-channel signal, the optical side-channel signal is in general harder to obtain

because it is harder to hide a suspicious camera than it is to hide a suspicious microphone.

Nevertheless, we focus on the optical side channel for the following reasons.

• First, the optical side-channel attack on AM systems has not been performed. Al-

though there is an infrared side-channel attack in the literature [32], the attack failed

in their own evaluation. In fact, there is a good chance for the method in our optical

side-channel attack to be applicable to the infrared side channel.
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• Second, the acoustic side-channel attack is very challenging. To successfully per-

form the acoustic side-channel attack, a lot of restrictions apply. There are so many

restrictions that it is impossible to perform the acoustic side-channel attack for many

realistic printing processes. In contrast, the optical side-channel attack can be easily

performed for any printing process.

• Third, it is possible to obtain the optical side-channel signal under several circum-

stances, such as hacking surveillance cameras and process monitoring cameras.

The structure of this chapter is as follows. We first of all describe the threat model

for the optical side-channel attack. We then discuss the details on the optical side-channel

attack. Afterwards, we present the optical noise injection method to defend against the

optical side-channel attack. Finally, we present and discuss the experiment results. We do

not have a dedicated section for background information in this chapter as the background

information for this chapter is the same as the one in section 3.2.

4.2 Threat Model

The threat model is illustrated in Figure 4.1. A 3D printer is printing an object of value.

An attacker wishes to replicate this object without authorization. For this purpose, the

attacker uses a sensor around the printer to collect the side-channel signal in the printing

process. The attacker then uses a variety of methods, such as signal processing and machine

learning, to recover information about the printing process. The recovered information,

namely the intellectual property, can be used to reconstruct the printing process.

4.2.1 Operational Definition of Intellectual Property

Strictly speaking, the intellectual property of an AM process includes all information that

is necessary to exactly replicate the printed object. The information includes the make

and model of the printer that is used, the composition of the material, the geometry of the
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Figure 4.1: Illustration of the threat model. Multiple sensors are shown to make this threat
model to be applicable to existing side-channel attacks. Nevertheless, the focus of this
thesis is the optical side channel.

design, and the manufacturing parameters [15].

We assume that the attacker knows the make and model of the printer and the compo-

sition of the material. The geometry of the design and the manufacturing parameters are

embedded in the G-code file. In fact, many papers in the literature define the intellectual

property of a printing process as the G-code file [18, 20]. However, we argue that it is

not practical to recover the G-code file from the side-channel signal (xSC) of a real print-

ing process as it is not possible to segment the side-channel signal by G-code instructions,

as explained in Figure 4.2. As a result of this, in this thesis, we operationally define the

intellectual property of a printing process as its state-variable signal (xSV).

To fully replicate a printing process, the state variable should contain at least four chan-

nels and they are the x, y, z coordinates of the printhead and the coordinate of the extruder,

denoted by e. It is desirable to have other state variables such as the temperature of the

nozzle(s), the temperature of the build plate, and the speed of the cooling fan(s). Since the

attacker knows the make and model of the printer as well as the filament type, the attacker
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Figure 4.2: Simulated and estimated velocity signals. The upper signal is a velocity signal
obtained by simulating a G-code file. The lower signal is the same velocity signal estimated
by analyzing a side-channel signal. The green triangles show the boundaries between G-
code instructions. If we can only see the estimated velocity signal, it is nearly impossible
to determine the boundaries of the G-code instructions.

can infer the temperature and the fan speed based on common practices.

4.2.2 Acquisition of Side-Channel Signals

In this thesis, we are mainly concerned with the optical side channel. There are various

ways for an attacker to obtain the optical side-channel signal of a printing process.

• The attacker may have an employee or maintenance contractor working at the factory

to install a hidden camera on the ceiling of the factory. The AM factory may have

many devices installed on the ceiling, such as fire detectors, sprinklers, motion sen-

sors, light sensors, etc. The hidden camera can be disguised as one of these legitimate

devices to evade suspicion.

• The AM factory may have surveillance cameras, which may be connected to the

Internet. They can be compromised to become the part of a botnet [57]. The attacker

may be able to get a copy of the data from a compromised camera [58].

• In addition, some printers have built-in process monitoring cameras with weak access

control and the attacker can access the cameras directly. For example, Ultimaker 3, a

very popular desktop 3D printer, has strong security policies for making changes to
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the printer and does not allow G-code extraction, but allows anyone to see the feed

of its internal camera without authentication.

4.2.3 Analysis of Side-Channel Signals

The attacker uses signal processing and data driven methods such as template filtering and

machine learning to recover the state-variable signal from the side-channel signal. For data

driven methods, we assume that the attacker has access to the same printer model (and

the same filament) in a similar environment. As a result, the attacker can collect a lot of

training data, subject to the constraints of time and computational resources.

When a defense method is deployed, we assume that an advanced attacker knows the

defense method and tries to evade the defense method by launching more sophisticated

attacks. For example, when the noise injection method is used, the attacker can try to

learn the pattern of the injected noise and artificially create training samples with the same

type of injected noise. The attacker then retrains the machine learning model with the

newly created training samples. The retrained machine learning model may be able to

automatically reject the injected noise and proceed with the attack.

4.3 Optical Side-Channel Attack

This section describes the details of the optical side-channel attack. We first of all math-

ematically describe the side-channel attack. We then discuss the challenges in the attack.

Finally, we present the implementation of the attack.

4.3.1 Attack Formulation

The optical side-channel attack essentially attempts to recover the state-variable signal

(xSV) from the optical side-channel signal (xSC). The process is possible because there

is relationship between xSV and xSC. For example, the position of the printhead directly

affects the image seen by a camera. The speed of the printhead also affects the image seen
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by a camera in the form of motion blur. The relationship between xSV and xSC can be

mathematically described by

xSC[n] = f(xSV[n],
∂xSV

∂t
[n]) + e[n], (4.1)

where n is the time index, xSC[n] is a single frame in the video (an image), xSV[n] is the

state variable at time index n, ∂xSV/∂t is the derivative of xSV with respect to time t, f is

the mapping from xSV[n] and its derivative to xSC[n], and e[n] is the noise at time index n.

Since it is very hard to mathematically solve for xSV[n] from xSC[n], we use data-driven

methods such as template matching [19] and machine learning [20].

4.3.2 Challenges of the Attack

There are challenges in the optical side-channel attack. The details of the challenges and

the mitigation strategies are described as follows.

Limited Relationship. The relationship between certain channels in the state-variable

signal and the optical side-channel signal may be weak. For example, the position of the

filament, the temperature of the nozzle(s), and the temperature of the build plate do not

affect the optical side-channel signal. As a result, it is nearly impossible to recover these

channels in the state-variable signal. In response to this, we only recover the coordinates of

the printhead from the side-channel signal. We may guess the temperature of the nozzle(s)

and the temperature of the build plate with a high accuracy since the optimal temperatures

for a material are typically known constants. However, we need to know the position of the

filament in the whole printing process. To solve this problem, we use a common assumption

in the literature. That is, the attacker assumes that the printhead mainly travels at two target

speeds, a low speed for extrusion movements and a high speed for relocating the printhead.

This assumption is used by existing side-channel attacks [18, 20, 19].

Camera Properties. The configuration of the camera can affect the side-channel at-
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tack, such as the location and angle of the camera with respect to the printer as well as

the focal length, white balance, and exposure of the camera. When the attacker recreates a

system to collect training images, we assume that the attacker is able to get the same printer

and the same camera with a similar configuration. In addition, we assume that it is possi-

ble for the attacker to manually label a limited number of images in videos taken from the

camera used in the side-channel attack and use the labeled images for training purposes.

Lighting Conditions. The lighting conditions can change over time, especially when

the AM facility has windows that let natural lights through. A robust side-channel attack

should be able to tolerate changes in lighting conditions. In this case, machine learning

may be a better choice over template matching. To improve the attack’s robustness, it is

important to augment the training dataset by varying its exposure, brightness, and contrast,

to simulate changes in the lighting conditions.

Motion Blur Effect. It takes time for a camera to collect enough photons to register

a picture, and this time is referred to as the shutter speed of the camera. If the printhead

moves when the camera’s shutter is open, the moving printhead gets blurred in the regis-

tered picture, and this is referred to as the motion blur effect. To account for the motion

blur effect, we need six degrees of freedom in the label of a picture, and they are the x,

y, z coordinates of the printhead as well as the three components of the velocity vector of

the printhead. Due to the curse of dimensionality in machine learning, we need to collect

a huge amount of training images with the printhead at different locations with different

velocities. This can be rather challenging. To mitigate this problem, when the ambient

light is adequate and the camera has a fast shutter speed, we can ignore the motion blur

effect and we have

xSC[n] = f(xSV[n]) + e[n]. (4.2)

Deposited Materials. Materials (filaments) are deposited in a printing process. As a

result, for the same location of the printhead, it is possible for the camera to see different

images due to the deposited materials. This makes the side-channel attack hard because for
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Figure 4.3: Structure of ResNet50.

the same label (the same location of the printhead), the attacker needs to collect multiple

images with different distribution of deposited materials on the build plate. To make things

worse, changing the deposited materials on the build plate requires human efforts and can

be very time consuming. Fortunately, when printing an object that is smaller than the

printhead, the object may be totally obscured by the printhead. When this happens, we do

not need to consider the influence of deposited materials on the side-channel attack.

4.3.3 Implementation of the Attack

In this thesis, we use ResNet50 [59], a deep convolutional neural network, to recover the

state-variable signal from the optical side-channel signal. The structure of ResNet50 is

shown in Figure 4.3.

Modifying ResNet50. ResNet50 was originally designed to perform image classifica-

tion for 1000 classes. The output of ResNet50 contains 1000 numbers. We modified the
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last fully connected layer in ResNet50 such that it transforms 2048 neurons into 3 neurons,

corresponding to x, y, and z respectively. In this thesis, we refer to the modified ResNet50

directly as ResNet50. The input to ResNet50 is a single image showing the printer whereas

the output of ResNet50 are the coordinates of the printhead (x, y, and z).

Training Process. To train the deep neural network, we collect images of the printer

with the printhead at various locations without filament extrusion1. To be specific, we

instruct the printhead to sweep the whole printing space with a predetermined interval.

To improve the robustness of the attack, we augment the training dataset by randomly

rotating the images, randomly cropping and resizing the images, and randomly perturbing

the brightness, contrast, and hue of the images. We use the Mean Square Error (MSE)

as the loss function and we use the Adam algorithm [60] to train the neural network. We

gradually reduce the learning rate in the training process. We use a GPU for training. We

select a batch size that can fill up the available GPU memory and we shuffle the training

dataset when fetching a batch.

Testing Process. To evaluate the performance of the trained neural network, we use

two different testing datasets with each testing dataset having its own purpose.

For the first testing dataset, we collect the testing images in a similar manner that we

collect the training images. We execute one G-code instruction at a time, wait for the

instruction to be fully completed, take a picture, use the coordinates of the printhead as the

label for the picture, and then proceed to the next G-code instruction. The main advantage

of this testing dataset is that we have the ground truth label for each image, and we can

calculate the Mean Square Error (MSE) between the predicted labels and the ground truth

labels as the performance metric of the neural network.

For the second testing dataset, we perform the printing process in real time, record the

printing process as a video, and extract frames in the video one by one. The main purpose

of this testing dataset is to evaluate the performance of the optical side-channel attack for

1In other words, the build plate is clean for all images in the training dataset.
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a real printing process. For this testing dataset, we have the motion blur effect (as a side

effect) and we do not have the ground truth label for each image. As a result, we only

qualitatively measure the performance of the neural network by visually looking at the

recovered printing path.

4.4 Optical Noise Injection

The noise injection method uses a signal generator to artificially create a side-channel sig-

nal to interfere with the side-channel signal emitted by a printer, in an attempt to thwart the

side-channel attack. From the perspective of the attacker, the injected side-channel signal

is noise. Compared with many other methods to defend against side-channel attacks as

discussed in chapter 2, the main advantage of the noise injection method is its low over-

head. This method does not make any change to the existing physical components in the

AM system, nor does this method require modification to the G-code instructions. This

section discusses the details of the optical noise injection method. We first discuss optical

projectors. We then discuss existing and proposed noise generation algorithms.

4.4.1 Problem Definition

Several devices can be used to general optical side-channel signals, such as light bulbs,

Light-Emitting Diodes (LEDs), and optical projectors. We use an optical projector to gen-

erate optical side-channel signals, because a projector can readily accept a control signal to

generate a wide range of optical signals.

Control Signals. For a projector to work, a control signal, denoted by xCS, must be

provided. The control signal is typically a video file that is played by the projector. When

considering the defender’s projector and the attacker’s camera as a system, they can be

modeled by

xSC[n] = g(xSV[n],xCS[n]) + e[n], (4.3)
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where xCS[n] is the control signal at time index n, xSC[n] is the optical side-channel signal

at time index n, and e[n] is the noise at time index n. When xCS is zero, g in Equation 4.3

degenerates to f in Equation 4.2.

Number of Channels. xSC, xSV, and xCS typically have very different numbers of

channels. Figure 4.4 (a) shows an example of a frame of xCS. The projector accepts images

of 1024×768 pixels and each pixel contains 3 color values. Hence, there are 1024×768×3

channels in xCS. Figure 4.4 (b) shows the corresponding image seen by the camera and the

image contains 227 × 227 pixels and each pixel contains 3 color values. Hence, there are

227 × 227 × 3 channels in xSC. Finally, the number of channels in xSV is equal to the

number of components in the state variable that the attacker is attempting to recover, and

in this case it is 3 for x, y, and z.

Channel Transformation. Since there are 1024 × 768 pixels in xCS and 227 × 227

pixels in xSC, xCS and xSC are not channel compatible. Nevertheless, for every pixel in

xCS, it may have corresponding pixels in xSC. Conversely, for every pixel in xSC, it may

have corresponding pixels in xCS. The correspondence between pixels in xCS and pixels in

xSC is referred to as channel transformation. With channel transformation, we can express

xCS using the same channel structure of xSC. In the rest of the thesis, we always express

xCS with channel transformation performed. Hence, xCS always has the same channel

structure as xSC.

Independence of Channels. In this thesis, we in addition assume that channels are

independent, although this assumption may not be strictly true due to a phenomenon called

leakage. For example, when a projector sends a ray of light that is registered in a single

pixel in the camera, the adjacent pixels may also be slightly affected. In this thesis we

neglect the leakage phenomenon and we have

xSC[n, c] = gc(xSV[n],xCS[n, c]) + e[n, c]. (4.4)
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(a) Control Signal (b) Side-Channel Signal

Figure 4.4: Illustration of channel transformation and the capability of the optical projector.

In other words, xSC[n, c] is only affected by xCS[n, c]. Notice the function here is gc, which

takes xCS[n, c] as an argument. In contrast, g takes xCS[n] as an argument.

Capability of the Projector. As shown in Figure 4.4, for any pixel in the control signal

(xCS), its corresponding pixel in the side-channel signal (xSC) typically takes on a different

color. In fact, a pixel in xCS can take any color in the whole RGB color space. However,

the corresponding pixel in xSC can only reach a (narrow) subset of the whole RGB color

space. We refer to the color space that can be reached by a pixel in xSC as the capability of

the projector for that pixel.

If a projector has unlimited capability, we should be able to manipulate xSC in a way to

fully prevent side-channel attacks. One way to do this is to make xSC a constant value over

both time and channel. However, due to the limited capability of the projector, we have to

carefully design xCS to maximize the performance of protection.

4.4.2 Existing Noise Generation Algorithms

A noise generation algorithm refers to a systematic way to create values in xCS. Examples

of images with injected noise are shown in Figure 4.5.

Replaying. Suppose x′
SC is the recorded side-channel signal of a printing process that
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(a) No Protection (b) Replaying (c) Random Blobs (d) White Noise

(e) Full Power (f) Channel Uniform. (g) State Uniformization (h) State Randomization

Figure 4.5: Example images with noise generated by different noise generation algorithms.

is different from the current printing process. We let xCS = x′
SC. In other words, we replay

the side-channel signal of another printing process [19].

Random Blobs. This method fills the pixels in xCS with a circle that has a random

location, a random size, and a random (uniform) color. The blob is maintained for a certain

period of time and changes to another random blob.

White Noise. This method uses a random number generator (of a uniform distribution)

to independently fill all values in the control signal xCS.

Full Power. This method creates xCS such that the optical projector constantly out-

puts the maximum power. To be specific, all values in xCS are filled with their maximum

numbers. This method attempts to blind the attacker’s camera.

4.4.3 Proposed Noise Generation Algorithms

In this section, we propose three novel noise generation algorithms. These algorithms rely

on the information of the printing process and hence are print-specific.

Channel Uniformization. This method attempts to make xSC a constant over the chan-

107



nel index c. In other words, this method creates a control signal such that each picture seen

by the camera is of a uniform color. In this way, it becomes hard for the attacker to deter-

mine the location of the nozzle.

For a specific state (or a specific value of xSV[n]), if the intersection of the ranges of

xSC[n, c] (with respect to xCS[n, c]) for all c is not empty, we can select any value in this

intersection as the constant value C[n]. We then create xCS[n, c] by solving

gc(xSV[n],xCS[n, c]) = C[n]. (4.5)

xCS[n] is simply a collection of xCS[n, c] for all c. Both C[n] and xCS[n] depends on the

specific value of xSV[n].

If the aforementioned intersection is empty, we select a constant value C[n] that is likely

to be reached by most xSC[n, c] (as c is varied). Since xCS typically makes xSC brighter,

we can select C[n] by

C[n] = h({xSC[n, c]|c}), (4.6)

where h is a function to find a large value of a set, such as the 99th percentile of the set.

We do not use the maximum value of the set because it may be susceptible to outliers.

State Uniformization. When the state variable (xSV[n]) changes, the image seen by

the camera (xSC[n]) changes. It is this relationship that makes it possible to infer the state

variable from the image. This method creates a control signal (xCS) in an attempt to make

the image (xSC[n]) a constant as the state variable (xSV[n]) changes. In other words, xSC[n]

as a function of xSV[n] is uniformized.

For a specific channel index c, if the intersection of the ranges of xSC[n, c] (with re-

spect to xCS[n, c]) for all values of xSV[n] is not empty, we can select any value in this

intersection as the constant value C[n, c]. We then create xCS[n, c] by solving

gc(xSV[n],
∂xSV

∂t
[n], · · · ,xCS[n, c]) = C[n, c]. (4.7)
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xCS[n] is simply a collection of xCS[n, c] for all c. Both C[n, c] and xCS[n, c] are constants

with respect to xSV[n].

If the aforementioned intersection is empty, we select a constant value C[n, c] that is

likely to be reached by most xSC[n, c] (as xSV[n] is varied). Since xCS typically makes xSC

brighter, we can select C[n, c] by

C[n, c] = h({xSC[n, c]|xSV[n]}), (4.8)

where h is a function to find a large value of a set, such as the 99th percentile of the set.

Figure 4.6 (a) shows the color of a single pixel in xSC[n] as a function of the first two

coordinates of xSV[n]. For each value of xSV[n] or each dot in Figure 4.6 (a), as the control

signal for the specified pixel sweeps all of its possible values, the range of the color of the

specified pixel in xSC[n] forms a color space. Figure 4.6 (b) shows the color spaces for

four different states corresponding to the four red circles Figure 4.6 (a). We can see that

the intersection of the color spaces is empty.

Figure 4.6 (c) shows the color of the corresponding pixel in xCS[n] obtained by state

uniformization and Figure 4.6 (d) shows the color of the specified pixel in xSC[n] after the

obtained xCS[n] is applied. We can see that the pattern is more uniform, and it may be

harder for the attacker to infer (x, y) based on the observed color at this specific pixel.

State Randomization. This method attempts to randomize the relationship between

the image (xSC[n]) and the state (xSV[n]). To be specific, we create a control signal (xCS)

such that the image (xSC[n]) for a specific state (xSV[n]) appears to be the image (xSC[n])

for another random state (xSV[n]). Since the relationship between xSC[n] and xSV[n] is

disrupted, we can expect that it will be hard for the attacker to learn the true relationship

between xSC[n] and xSV[n].

Since a projector can only make pixels in xSC brighter, we apply a constant value on all

pixels in xCS[n] for all states (or all values of xSV[n]). This constant value is referred to as
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Figure 4.6: Illustration of the state uniformization method. (a) A pixel of xSC[n] as a func-
tion of xSV[n, 0 : 2]. (b) Color spaces for four different states. The four color spaces
approximately correspond to the four states with red circles in (a). (c) The control sig-
nal obtained by the state uniformization method. (d) A pixel of xSC[n] as a function of
xSV[n, 0 : 2] after the control signal is applied.
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the offset. By using the offset, it is now possible to make pixels xSC dimmer by reducing

the corresponding pixels in xCS[n] with respect to the offset. We express the strength of the

offset as the percentage of the maximum value accepted by an pixel in xCS[n]. By default,

we apply an offset with a strength of 50%.

We now discretize the domain of xSV[n] such that there is a finite number of states. By

default, we discretize the domain such that all states are equally spaced. These states are

referred to as master states and they serve as the targets to be matched.

For any new state xSV[n], we randomly select one of the master states as the target state.

Suppose the target state is x′
SV[n] and its corresponding side-channel signal is x′

SC[n]. We

create xCS[n] such that xSC[n] gets close to x′
SC[n]. To be specific, we find xCS[n] by

determining its value for each channel independently, and xCS[n, c] is equal to

argmin
xCS[n,c]

|gc(xSV[n],xCS[n, c])− x′
SC[n, c]|. (4.9)

We repeat this process for all channels and we can obtain xCS[n]. In this way, the optical

side-channel signal observed by the attacker, namely g(xSV[n], · · · ,xCS[n]), will look like

x′
SC[n, c]. When the attacker analyzes xSC[n] (with injected noise), he or she will more

likely infer x′
SV[n] instead of xSV[n].

This method is effectively a combination of channel uniformization and an advanced

version of replaying2. It attempts to hide the real printhead by channel uniformization and

creates a fake printhead as best as the projector allows.

2The original replaying method simply uses the recorded side-channel signal as the control signal. The
advanced replaying method finds a control signal such that the side-channel signal with the injected noise
looks like the recorded side-channel signal.
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Figure 4.7: Photo of the testbed.

4.5 Evaluation

4.5.1 Experiment Setup

To evaluate the performance of the proposed optical side-channel attack and the proposed

defense method, we set up a test bed as shown in Figure 4.7. The test bed was composed

of a SeeMeCNC Rostock Max V3 printer, a MOKOSE UC70 camera, and a ViewSonic

Pro7827HD projector. The whole test bed was placed in a dedicated room with fully con-

trolled lights (two lamps and no window).

Settings. To ensure the consistency of the images, we disabled auto white balance, auto

exposure, and auto focus in the camera. We manually set the white balance to 4600 K and

the exposure to -2. The focus length of the camera was mechanically adjusted to clearly

show the build plate of the printer. We used default settings for all other parameters in the

camera and all parameters in the projector.

Drivers. We used VLC for collecting images and VLC internally used ffmpeg to com-

municate with the camera. The main advantage of this approach is that images can be taken
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very quickly as they are extracted from the video stream from the camera. We used ffm-

peg directly to record videos and used imageio-ffmpeg for decoding the recorded videos.

imageio-ffmpeg also internally used ffmpeg as the video driver.

4.5.2 Optical Side-Channel Attack

Training Dataset. We collected the training dataset according to the procedures outlined

in subsection 4.3.3. The printing area of the printer was a cylinder of 137.5 mm in radius

and 404 mm in height. Since most printing processes only involve a fraction of the whole

printing space, to save time, we mainly focus on the printing area where z is less than or

equal to 5 mm. There are two parts of the training dataset.

• For the first part, we instructed the printhead to sweep the whole xy plane with a step

size of 2.5 mm and the z axis with a step size of 1.0 mm. This part covers a large

printing space with a coarse resolution. There are 133,365 images in this part.

• For the second part, we instructed the printhead to sweep the xy plane for a radius

of r = 50 mm with a step size of 1.0 mm and the z axis with a step size of 0.25

mm. This part covers a small printing space with a high resolution. There are 47,385

images in this part.

There are 180,750 images in the training dataset.

Each image is of size 1280x720 and we need to downsample the images to 227x227

before feeding them into the neural network. To enhance the robustness of the neural

network, a standard practice is to augment the dataset while downsampling the images

[61]. For each image in the dataset, we perform the following procedures:

1. Resize the image into a shape of 480x270.

2. Randomly rotate the image by -3 to 3 degrees.

3. Scale the image randomly by a factor of 0.85 to 1.0.
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Figure 4.8: Loss as a function of iteration or epoch.

4. Randomly crop the image with a size of 227x227.

5. Randomly change the brightness, contrast, saturation, and hue by 20%, 10%, 10%,

and 5% respectively.

Training Process. We started with a ResNet50 network that was pretrained with the

ImageNet dataset. We performed training on an RTX 2060 GPU with 6 GB of memory. We

used a mini batch size of 40 because it filled up most of the available memory. We used the

Mean Square Error (MSE) as the loss function and we used the Adam algorithm [60] for

training. The initial learning rate was set to 0.001 and the weight decay was set to 0.0005.

For every two epochs, we reduced the learning rate by 10%. We performed the training

process for 10 epochs. The loss as a function iteration/epoch is shown in Figure 4.8. We

can see that the error converged and the training process was successful.

Testing Datasets. By the procedures in subsection 4.3.3, we collected two testing

datasets for a printing process that manufactures a gear, as shown in Figure 4.9 (a). To

avoid multiple superimposed layers when displaying the results, we focus on a single layer

(z = 1.3 mm) for the printing process. Figure 4.9 (b) shows the ground truth of the printing

path at this layer.

Testing Results. Figure 4.9 (c) shows the recovered path for the first testing dataset

(a contrived printing process with ground truth labels for calculating errors). The average
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(a) Gear Model (b) Ground Truth (c) Testing Dataset 1 (d) Testing Dataset 2

Figure 4.9: Model and Paths recovered by the neural network for different testing datasets.
(a) The gear model. (b) The ground truth path. (c) The recovered path for testing dataset 1.
(d) The recovered path for testing dataset 2.

error is 0.71 mm and the maximum error is 1.50 mm. The recovered path is very close

to the ground truth. Figure 4.9 (d) shows the recovered path for the second testing dataset

(a real printing process without ground truth labels). The shape of the path is very similar

to the ground truth. This means that the motion blur effect (as a side effect in the second

testing dataset) can be neglected in our experiments.

4.5.3 Defending Against the Naive Attacker

We applied the seven noise generation algorithms to the printing process, one at a time, as

demonstrated in Figure 4.5. Since the naive attacker was not aware of the injected noise,

for each noise generation algorithm, the attacker used the previously trained neural network

to directly test on the protected testing dataset3. The results and the errors are shown in

Figure 4.10. We can see that all noise generation algorithms could effortlessly defeat the

attack since the recovered paths are nothing like the true path.

4.5.4 Defending Against the Advanced Attacker

An advanced attacker knows the existence of the injected noise and attempts to defeat the

protection method. For this purpose, the advanced attacker collects training images with

injected noise and uses the new training dataset to train the neural network, hoping that
3To obtain the performance metrics, we collected the protected testing datasets using the same procedure

to collect the training dataset or the first testing dataset.
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Figure 4.10: Recovered path by a naive attacker when noise generated by various algo-
rithms was applied. The number on the left in each sub-figure shows the mean error in mm
whereas the number on the right in each sub-figure shows the maximum error in mm.

the neural network can recognize the noise pattern, reject the injected noise, and properly

recover the coordinates in the protected testing images.

To be specific, for each noise generation algorithm, the attacker collects training images

with injected noise. There are two potential ways to collect such training images.

• The attacker may setup a testbed with a projector, imitate the noise generation algo-

rithm, and collect the training images at various locations of the nozzle.

• The attacker may extract images with injected noise from previous printing processes

and somehow, although very hard, manage to obtain the correct label for each image.

Eventually, the attacker obtains a training dataset that contains injected noise generated

by the same algorithm. For noise generation algorithms that contain randomness, such as

replaying, random blobs, white noise, and state randomization, the details of the injected

noise in the training dataset are different from those in the printing process to be recovered

(the protected testing dataset), such as locations and sizes for random blobs, target states
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Figure 4.11: Recovered path by an advanced attacker when noise generated by various
algorithms was applied. The number on the left in each sub-figure shows the mean error in
mm whereas the number on the right in each sub-figure shows the maximum error in mm.

for replaying and state randomization, and the exact distribution of pixels for white noise.

A neural network that is overfitted will not succeed in rejecting the noise, and the neural

network has to learn the pattern of the injected noise and reject unseen noise that has the

same pattern but with different details.

For each noise generation algorithm, due to the high cost of obtaining a training dataset

with injected noise, we collected a training dataset with injected noise covering the whole

xy plane with a step size of 5 mm and the z axis for a single point, namely z = 5 mm.

The advanced attacker used the new training dataset with injected noise to further train the

previously trained neural network for additional 30 epochs, starting with a learning rate of

0.001, which was decreased by 10% for every two epochs. The advanced attacker then used

the new neural network to infer coordinates in images from the protected testing dataset.

The results are shown in Figure 4.11.

We can see that the advanced attacker did a much better job than the naive attacker

in recovering the state-variable signal from the optical side-channel signal. Although the
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errors in Figure 4.11 (b) to (g) are higher than those in Figure 4.11 (a), a lot of details were

clearly recovered such as the number of teeth in the gear, the overall dimension of the gear,

and the infill pattern. In Figure 4.11 (h), we can see that state randomization algorithm is

the only noise generation algorithm that could withstand the advanced side-channel attack.

4.6 Discussion

4.6.1 Colors in the Paths

One may notice that the color in Figure 4.9 (a) and the color in Figure 4.9 (b) do not match.

The colors in the paths show the speed for each movement. A blue color corresponds to

a lower printing speed whereas a red color corresponds to a higher printing speed. The

colors in the paths do not match because we used a simulator to determine the speed for

each movement in the ground truth (and the first testing dataset), whereas the speed in the

second testing dataset was determined by the firmware in the printer. Currently, there is a

noticeable error between the simulated velocity and the actual velocity.

4.6.2 Performance of the Attackers

Naive Attacker. When no noise was injected, the naive attacker could do a pretty good

job in recovering the coordinates from the optical side-channel signal. Although the neural

network was trained on a dataset where the nozzle was located in a limited number of

locations, the neural network could properly identify the coordinates of the nozzle for a

location that was not present in the training dataset. In other words, the neural network

could intelligently interpolate with respect to the coordinates of the nozzle. When noise

was injected, the naive attacker failed all together. This indicates that the neural network

was unable to analyze images with patterns that it had never seen before.

Advanced Attacker. According to experiment results by the advanced attacker, by

seeing a limited number of images with injected noise, the neural network was able to filter

out the injected noise and proceed with recognizing the coordinates of the nozzle, even
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though at a reduced accuracy. Notice that for noise generation algorithms with randomness,

the details of the injected noise in the training dataset were different from those in the

protected testing dataset, but the neural network could still recognize and reject the injected

noise. This proves that the neural network was not simply remembering the details of the

injected noise but intelligently learned the pattern of the injected noise.

4.6.3 Performance of the Noise Generation Algorithms

According to the evaluation results, only the state randomization algorithm could fight

against the advanced attacker. One way to intuitively understand the performance of differ-

ent noise generation algorithms is to visually inspect the images after the noise is injected.

For images in Figure 4.5 (b) to (g), a human being can in general see the location of the

nozzle despite the existence of the injected noise.

Full power, channel uniformization, and state uniformization were unable to protect the

intellectual property because of the limited capability of the projector. We can expect that,

as the projector gets more powerful, the full power noise will blind the camera and the

uniformization methods will completely hide the details.

The replaying method failed mainly due to the fact that it did not consider the channel

effect caused by the projector, the physical space, and the projector. When a recorded video

is directly fed to a projector, the projected motion picture will look different from the real

thing. In other words, a human being is able to differentiate the projected nozzle from the

real nozzle in Figure 4.5 (b).

The state randomization algorithm had the best performance due to the fact that it is a

combination of an improved version of the replaying method and the state uniformization

algorithm. Instead of directly feeding a recorded side-channel signal to the control signal,

the state randomization algorithm searches for the control signal such that the projected

nozzle looks closest to a real nozzle. In addition, the state randomization algorithm attempts

to hide the real nozzle similar to what is attempted by the state uniformization algorithm.
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Table 4.1: Recorders and Generators

Side Channels Sensors Generators

Acoustic Microphone Speaker
Optical Camera Projector
Thermal Temperature Sensor Heater
Magnetic Magnetometer Coil
Power Power Sensor Resistor
Electromagnetic Antenna Antenna
Vibration Accelerometer Motor

4.6.4 Generalization to Other Side Channels

The noise injection method may be generalized to other types of side channels, as listed

in Table 4.1. For each type of side channels, there is a corresponding signal generator, as

demonstrated in Table 4.1. Most of the noise generation algorithms can be directly applied

to other side channels. The only exception is the random blobs generation algorithm, which

is only applicable to the optical side channel. Our hypothesis is that noise generation algo-

rithms that are effective in fighting against the optical side-channel attack will be effective

in fighting against other side-channel attacks. We propose this hypothesis because the op-

tical side-channel attack is an attack that can be easily launched but hard to defend. Many

other side-channel attacks cannot be performed at all unless a lot of restrictive assumptions

are made. More details can be found in section 4.7.

4.6.5 Limitations and Future Work

Motion Blur Effect. In the experiments, we were able to ignore the motion blur effect by

using a camera with a fast shutter speed. However, when the light in the AM facility is low,

a camera will suffer from a low shutter speed and we can no longer ignore the motion blur

effect. To mitigate this problem, as a direction for future work, we can create a training

dataset where the label of each image contains not only the position but also the velocity.

The main challenge is that a lot more samples are required as the degrees of freedom are

now six instead of three. In addition, it is very hard to precisely control the position and
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the velocity at the same time for each training image.

Camera Positions and Angles. In the experiments, the position and angle of the cam-

era largely remained stable. The neural network was able to deal with a small amount of

variation in the position and angle of the camera. It will be interesting to know if it is

possible to train a single neural network that can recognize the coordinates of the printhead

from multiple very different positions and angles of the camera, especially from a position

or an angle that does not appear in the training dataset.

Large Objects. In the experiments, the printed object was small in size and was com-

pletely blocked by the printhead. As a result, we were able to ignore the influence of

deposited materials on the side-channel attack. When printing a large object, the deposited

materials may affect the side-channel attack. Future work can study how the deposited

materials affect the performance of both the native attacker and the advanced attacker.

4.7 Additional Discussion

4.7.1 Acoustic Side-Channel Attack

In section 4.1, we mentioned that the acoustic side-channel attack is hard to perform. The

challenges associated with the acoustic side-channel attack are listed as follows.

Integration Drift. The acoustic side-channel signal is strongly correlated with the ve-

locity of the printhead, not the position of the printhead. As a result, an attacker can only

recover the velocity of the printhead from the acoustic side-channel signal. To obtain the

position, the attacker must integrate the estimated velocity over time. Since the estimated

velocity usually contains a lot of errors, there will be more errors in the estimated posi-

tion. This problem is known as the integration drift problem [62]. This problem is more

pronounced if one wants to recover position from acceleration.

Non-Unique Solution. Multiple states of the printer can generate the same side-

channel signal. As a result, it becomes very hard to determine the exact state for a given

side-channel signal. For example, the acoustic signals for a printhead moving along one
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direction and its opposite direction are almost identical.

Due to these challenges, it is very hard to perform the acoustic side-channel attack.

Existing acoustic side-channel attacks rely on a lot of assumptions to work, and as a con-

sequence, they only work for a very limited amount of contrived printing processes. For

example, the attack in [18, 20] restricts the directions of movements to be eight cardinal

directions as a way to reduce the search area. The attack in [18] further assumes that mul-

tiple layers have identical outlines and the recovered paths are averaged across layers to

reach a reasonable accuracy. The attack in [19] assumes that there are no short and rapid

movement. Otherwise, it is not possible to identify the boundaries between movements.

In contrast, the optical side-channel attack does not face these problems and can recover

the printing path for an arbitrary printing process. This is the primary reason we focus on

the optical side-channel attack in this thesis.

4.7.2 Infrared Side-Channel Attack

The authors in [32] claimed that their infrared side-channel attack failed due to the low res-

olution, the low frame rate, the lack of auto-focus capability, and the fixed camera perspec-

tive. However, it is unlikely that these reasons were accountable for the failure because our

optical side-channel attack faced the same problem and we had a low resolution (227x227).

It is more likely that a root cause of the failure was a lack of proper methodology. There is a

great potentially to adapt our optical side-channel attack to the infrared side-channel attack

and we may even recover more information such as the temperature(s) of the nozzle(s) and

the temperature of the build plate.

4.8 Conclusion

In this chapter, we discussed the optical side-channel attack to steal intellectual property

in AM systems. The intellectual property is operationally defined as the coordinates of the

printhead as a function of time, a.k.a. the state-variable signal in this thesis. We use a deep
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neural network to implement the optical side-channel attack. The neural network takes as

input an image of the printer and outputs the estimated coordinates of the printhead. The

neural network can tolerate a certain level of variation in the camera’s position and angle

as well as lighting conditions. The neural network contains a certain level of intelligence

because it can accurately determine the coordinates of the printhead for an image that is

not present in the training dataset.

We experimented with the noise injection method to defend against the proposed optical

side-channel attack. We found that any noise generation algorithm could easily defeat an

naive attacker, who had no knowledge of the defense method and the trained neural network

was never exposed to any image with injected noise. However, an advanced attacker, who

knew the existence of the defense method and attempted to filter out the injected noise

by adding images with injected noise in the training dataset, could easily defeat existing

noise generation algorithms, such as replaying, random blobs, white noise, and full power.

To solve this problem, we proposed three novel noise generation algorithms and they are

channel uniformization, state uniformization, and state randomization. Our experiment

results indicate that only the state randomization algorithm could withstand the attack by

an advanced attacker.
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CHAPTER 5

CONCLUSION

In this thesis, we mainly studied cybersecurity in Additive Manufacturing (AM) systems

with side channels. On the one hand, side channels in AM systems can be used by Intrusion

Detection System (IDS) to protect AM systems from being attacked. On the other hand,

side channels in AM systems can be maliciously used by attackers to perform side-channel

attacks to steal intellectual property in AM systems.

5.1 The NSYNC Framework

We found that existing IDSs leveraging side channels in AM systems are not practical due

to a lack of synchronization. On the one hand, side-channel signals to be compared must

be aligned at their starting moments before they are compared. On the other hand, there

is time noise in a printing process, which is the random variation of timing of instructions

in the printing process. If not compensated for, time noise can render signal comparison

meaningless. Unfortunately, only a few existing IDSs explicitly provide solutions to align

signals at their starting moments and no existing IDS is aware of time noise and they all

fail over a long period of time.

To solve the aforementioned problems, we propose NSYNC, a framework of practi-

cal IDSs leveraging side-channel signals in AM systems. The most important feature of

NSYNC is the inclusion of the static synchronizer and the dynamic synchronizer. The

static synchronizer is responsible for aligning side-channel signals to be compared at the

starting moments and terminating the signal comparison process at the stopping moments.

The dynamic synchronizer is responsible for continuously finding corresponding points or

windows in two signals with time noise. Our experiment results indicate that our static

synchronizer can find the specified moments (mainly the starting and stopping moments)
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accurately and efficiently. Our experiment results also indicate that existing intrusion de-

tection systems which are not aware of the existence of time noise have a very limited

performance whereas our NSYNC framework with Dynamic Window Matching (DWM)

can effortlessly reach an accuracy over 99%.

Other than the synchronization problem, some existing IDSs are not practical due to

a lack of practical discriminators, which are responsible for automatically issuing alerts

based on the signal comparison results. To be specific, some IDSs lack this component

altogether and human efforts are required to manually view the signal comparison results

to issue alerts. Some IDSs have discriminators but they require knowing malicious printing

processes in advance to determine the thresholds for classifying benign printing processes

and malicious printing processes. However, it is impractical to know malicious printing

processes in advance as there are countless malicious printing processes in the wild. To

avoid this problem, our NSYNC framework uses One-Class Classification (OCC) to build

the discriminator. Our experiment results show that the discriminator can reliably differ-

entiate malicious printing processes from benign printing processes when DWM is used as

the dynamic synchronizer.

5.2 Optical Side Channel: Attack and Defense

In addition to the NSYNC framework, another big area involved in this thesis is the optical

side-channel attack as well as methods to defend against the optical side-channel attack.

The optical side-channel attack uses a deep neural network to convert images in a printing

process to the state variable (mainly the position of the printhead) of the printer over time.

The state variable of the printer over time, also known as the state-variable signal, can be

used to reconstruct the printing process. Our experiment results indicate that our proposed

optical side-channel attack can successfully recover the path of a printing process despite

various challenges, such as limited relationship between the side-channel signal and the

state-variable signal, variations in the camera properties and lighting conditions, the motion
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blur effect, and the influence of deposited materials.

There are a variety of methods to defend against the proposed optical side-channel at-

tack and we explicitly focus on the noise injection method, which does not require any

modification to the hardware or software of the AM system and has a very low overhead.

To properly use the noise injection method, an algorithm is required to generate the noise.

We found that existing noise generation algorithms did not work well for the optical side-

channel attack, and we proposed three novel noise generation algorithms. The state ran-

domization algorithm worked very well and could successfully defend against an advanced

attacker, who knew the defense method in advance and attempted to circumvent the defense

method by training a neural network with images containing the injected noise.
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[54] I. Oregi, A. Pérez, J. Del Ser, and J. A. Lozano, “On-line dynamic time warp-
ing for streaming time series,” in Machine Learning and Knowledge Discovery in
Databases, M. Ceci, J. Hollmén, L. Todorovski, C. Vens, and S. Džeroski, Eds.,
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