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downward pressure is applied, allowing the legs to separate the hair and the 

Ag/AgCl tipped legs to achieve good contact with the scalp. (F) Illustration 

(left) showing electrode positions on a posterior view of the brain and 

highlighted occipital lobe and flow chart (right) describing the entire process 

of EEG-enabled brain-machine interfaces. 

Figure 31 Topographical mapping of EEG signals using convolutional neural networks. 

(a) 32-channel cap EEG setup on test subject. (b) Weights extracted from the 

2-CNN-Mapping convolutional neural network. From 32 convolutional filters 

used across all channels, the average weights for each point are summed, 

resulting in the weight mappings for each of the six subjects as illustrated in 

(c). The color scale represents the rescaled average neural network weights 

based on n=200 samples (40 samples per class). (d) shows the mappings 

generated for all 6 subjects, labeled correspondingly. 
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Figure 32 Antenna Matching Circuitry for SKINTRONICS wireless EEG. (A) shows the 

components in the antenna matching configuration optimized for use with the 

thin multilayer flexible SKINTRONICS format. (B) Shows reflection 

coefficient (S11) measurement with a network analyzer in air, with the device 

placed flat on a glass slide.  
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flexible circuit board. The PDMS-coated wafer surface allows the completed 

circuit boards to be peeled off and transferred onto a glass slide, where the 
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detached from the glass slide and fully encapsulated with elastomer. 
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the electronics bent at first location along the vertical axis, as shown in the 

inset photo, between microcontroller and ADC integrated circuits, 

demonstrating 180° bending (radius of curvature: 1.3 mm). (B) FEA of fine 

mesh structure simulating 180° bending in (A) with same radius resulting in 

minimal strain at the interconnects (scale bar: maximum principal strain). (C) 

Measurement of electrical resistance for the device in (A) under cyclic bending 

between 0 and 180°, showing negligible changes in resistance. (D) RSSI 

response at 0° and 180° with different distances up to 15 meters (n = 3 

samples). (E) Device bent at the second location along the vertical axis, as 

shown in the inset photo, between ADC and amplifiers (radius of curvature: 

1.3 mm). (F) FEA of the flexible structure simulating 180° bending with 

minimal strain (scale bar: maximum principal strain). (G) Measurement of 

cyclic bending effect on the device in (E) by recording the change of electrical 

resistance. (H) RSSI response up to 15 meters at 0° and 180° bending. (I) 15.2 

Hz SSVEP data recorded without (top) and with 180° bending (bottom). (J) 

Hair-based elastomer electrode under compression. (K) Corresponding load 

and unload curves showing a negligible peak change in resistance over a 6-

second cycle. (L) Subunit of a skin-mounted electrode under 100% stretching 

in experiment and FEA, showing no mechanical failure. (M) 180° bending test 

of the electrode, showing less than 2% strain in FEA and no mechanical 

defects in experimental observation. 
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Figure 35 Mechanical Testing Setup and Additional Results. (A) Picture of device 

conformed to skin, with lines indicating the two locations of bending. (B) 180° 

bending test setup, with the device attached to glass slides, and attached wires 

for resistance measurements. (C) Resistance measurements on cyclic bending 

after 100 cycles completed at two bending locations, indicated by the legend. 
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Figure 36 Compression Test Setup for Elastomeric Hair-based Electrodes. (A) Motorized 

tension/compression test stand setup with benchtop digital multimeter and 

laptop to measure resistance. (B) Placement of elastomeric hair-based 

electrodes between compression plates of test device. 
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Figure 37 Data from Compression Test of Elastomeric Hair-based Electrodes. (a) 

Resistance data measured across single leg of the elastomeric hair-based 

electrodes, with (b) showing a representative resistance curve for a single 

compression cycle. (c) is a smoothed curve computed from a moving average 

of (a), using a 6-second (90 sample) moving average, showing the drift in 

resistance over extensive mechanical usage. 
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Figure 38 Biaxial Stretching Test Setup for Skin Electrodes. (a) Custom device for 

biaxial stretching with a flexible skin-based electrode on an elastomer placed 

between the 4 clamps. (b) shows a close-up of the device with attached copper 

wire (using silver paste) for resistance measurement 
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Figure 39 Data from Biaxial Stretching and Bending of Skin Electrodes. (a) electrode 

near 60% biaxial stretching before fracturing, as shown in (b). (c) experimental 

stretching shows deformation of the silver causing an increase in resistance. 

(d) Bending 180° increases the resistance due to the deformation of the skin-

electrode but releasing that stress brings the resistance back down. 
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Figure 40 Analysis of the device performance in signal quality, feature extraction and 

classification accuracy. Three data sets for a conventional hair cap system 

(ActiveTwo; 1st column), bulky clip-on wireless system (BioRadio; 2nd 

column), and our 2-channel SKINTRONICS (3rd column). (A-C) 

Periodograms of 50 samples from 12.5 Hz SSVEP signals overlaid over each 

other, with peaks highlighted with red circles; this comparison illustrates our 

device’s ability to target and capture SSVEP signals without excessive noise 

precisely and consistently. (D-F). Average signal-to-noise ratio (SNR) with 

four SSVEP classes, across all six tested subjects. Error bars represent 

standard error of the mean (n=60 recordings; 6 subjects, 10 recordings each). 

(G) Two-channel SSVEP data at 12.5 Hz in time domain by using 4 Hz 

Butterworth high-pass filter and removed baseline drift. (H) Further 

preprocessing in the form of frequency-analysis including a single-window 

periodogram. (I) Welch power-spectral density analysis (PSDA) overlapping 

periodogram. (J) Cross-spectral density analysis (CSDA) of both channels. 

Note that the cross-spectral input includes the normal Welch power spectrum, 

resulting in three feature sets to the 1-layer CNN. (K) Comparison of 

classification accuracy between four preprocessing methods, shown in (G-J). 

The points on the graph are the mean accuracies from 36 trials from all 6 test 

subjects. Error bars represent standard error of the mean (n = 36 trials). 
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Figure 41 Feature representations using power and cross-spectral analyses. (A) A filtered 

EEG sample encoded with a noisy 15.2 Hz SSVEP signal in channels O1 and 

O2. (B) A simple periodogram using a window of equivalent length (single 

window periodogram). (C) The cross-spectral estimate of the single-windowed 

periodograms. This result may be improved by using windows of 0.5-second 

length with 50% overlap (Welch’s method), as seen in (D). Now, the 15.2 Hz 

peak is better represented, but still contains a peak around 11Hz. Taking the 

cross spectral estimate with Welch’s method gives us (E), which most closely 

represents the intended frequency content. In this example, the baseline CNN 

trained for classifying cross-spectral density data predicts the correct class. 

The labels show the predicted class and softmax output probabilities, where 

red represents a false classification output, and green represents the correct 

output. 
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Figure 42 Hyperparameter Optimization of 1 Layer Convolutional Neural Network. (A) 

Different learning rates between 1e-2 and 1e-4 were tested in, followed by 

number of units in the fully connected layer in (B). (C) Dropout regularization 

in between 25% and 75% is then added and analyzed. (D) Different activations 

in the fully connected layer are added. It appears that ReLU activation 

performs more optimally in the fully connected layer. (E) The activations 

following the convolution operation were varied, with LeakyReLU performing 

most optimally. (F) The number of filters was varied from 1 to 32, with 5 

filters providing the most optimal performance with 92.53 ± 1.01%. 
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Figure 43 EEG classification with CNN. (A) High-pass filtered raw EEG data in time 

domain with features linearly rescaled between 0 and 1, labeled as SSVEP 

class ‘12.5 Hz’, along with a representative greyscale image. (B) Greyscale 

representation of output weights in the two layers of CNN as well as in the 

fully connected layer using the 2-CNN model for time domain data. (C) Table 

of softmax class outputs, indicating a correct choice with 99.89% probability. 

(D) CNN and SVM classification test accuracy using time domain data and 

cross-validating across all subjects. (E) CNN and SVM test accuracy on 

frequency-domain data, cross-validating across all subjects, with window 

lengths from 0.512 to 2.048 seconds. The displayed results are from the 

strongest SVM of the four tested (cubic kernel). (F) Confusion matrix 

representing results from offline accuracy test of time-domain data of data 

window length w=0.512s, with an overall accuracy of 94.54% (n=2700 

samples; 6 subjects, 450 samples each). (G) Confusion matrix representing 

results from real-time accuracy test of time-domain data of length w=0.512s, 

with an overall accuracy of 94.01% (n=2700 samples; 6 subjects, 450 samples 

each). 
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Figure 44 In vivo demonstration of wireless, portable BMI with human subjects. (A) 

Subject seated in a powered wheelchair with the LED stimulus array (B) and 

SKINTRONICS secured and conforming to the back of the neck (C). (D) 

Android user interface during training and evaluation, showing time-domain 

data, corresponding power spectrum, and output class. (E) EEG data recorded 

at each state, labeled as alpha rhythms, 11.1 Hz, 15.2 Hz, 12.5 Hz, 16.7 Hz 

SSVEP respectively. (F-H) Three target machines to control via SSVEP 

signals, including a wireless electronic wheelchair (F) with 5 classes (no 

action, forward, rotate counterclockwise, rotate clockwise, and reverse, and 

93 



 xiv 

wireless vehicle (G) with the same commands as the wheelchair, and 

PowerPoint presentation (H) with 5-class actions (no action, begin 

presentation, next slide, previous slide, and end presentation, respectively). To 

compare SKINTRONICS to commercial systems, the same optimized CNN 

procedure was performed on data from the BioRadio and ActiveTwo systems. 

A plot comparing the data from all three systems is shown in Figure 45, 

showing a clear gulf between the accuracies of the SKINTRONICS and the 

other two systems. This data is supported by the difference in SNR, as 

discussed previously. 

Figure 45 Comparison of classification accuracies of time domain data from 

SKINTRONICS, BioRadio and ActiveTwo systems using optimized CNN 

model. 
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Figure 46 Flowchart demonstrating information flow for training environment 100 

Figure 47 Default text speller interface layout. (A) Frequency of each stimulus tile in Hz 
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SUMMARY 

Advancing technology has increasingly allowed for individuals suffering from 

severe disabilities (e.g. locked-in syndrome) to allow for movement or communication. 

These technologies include low-power wireless protocols, wearable, battery powered 

devices, flexible electronics, biocompatible skin-interfaced materials and advanced 

machine learning techniques. Current non-invasive brain-machine interfaces are limited 

in scope, have limited functionality, and primarily only used in research environments. 

The more recent move towards wearable, wireless system has enabled greater mobility. 

However, issues remain – these systems are bulky, uncomfortable to wear, and often 

involve the use of messy conductive pastes and gels.  

In this dissertation, we introduce a flexible electronics platform, SKINTRONICS, 

with a comprehensive redesign of an EEG-based brain-machine interface with novel 

implementation of flexible EEG, flexible and stretchable interconnects, replica-molded 

microneedle electrodes, and advanced machine learning techniques for improved signal 

to noise ratio and reduced noise and motion artefacts. A set of general improvements and 

novel advancements are examined and applied in real-world electroencephalography-

based brain-machine interfaces. These real-world improvements and applications show 

potential for restoring function to and improving quality of life of severely disabled 

subjects. Wireless, wearable electroencephalograms and dry non-invasive electrodes can 

be utilized to allow recording of brain activity on a mobile subject to allow for 

unrestricted movement. Additionally, multilayer microfabricated flexible circuits, 

combined with a soft materials platform, provide imperceptible wearable electronics for 
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wireless, portable, long-term recording of brain signals. This dissertation focuses on 

sharing the study outcomes in soft materials, flexible electronics, and machine learning 

for universal brain-machine interfaces that could offer remedies in communication and 

movement for these individuals. 
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1 INTRODUCTION 

1.1 Overview 

Locked-in syndrome (LIS) is one of the greatest misfortunes a person can suffer. 

LIS describes a state of complete paralysis apart from blinking and eye movement[1]. 

Here, brain activity and cognitive function are usually unaffected, resulting in a state of 

pseudo-coma where a subject can neither move nor communicate, but are perfectly aware 

of their consciousness and environment (Figure 1A). Despite apparently normal cortical 

brain activity, the brain is cut off from accessing motor function, typically due to injury 

to the lower brain and brainstem. There are several causes of LIS in humans, including 

but not limited to: stroke of the brainstem, traumatic brain injury or hemorrhage, 

poisoning, and drug overdose. Diagnosis of LIS is enabled using brain activity analysis 

with instruments such as EEG to observe the sleep-wake patterns of the affected 

individuals.  
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Figure 1. Photo of subject with locked in syndrome wearing hair cap with electrodes.  

LIS cases are relatively rare, with occurrences of less than 1 in 100,000 in the 

Netherlands [2]. Based on this estimate, a rough estimate of the total number of 

occurrences in the world is likely no more than 80,000 individuals. However, due to the 

severity of the condition and lack of available therapeutics, it is considered a valuable 

endeavor to pursue technological advancement to allow these individuals to move or 

communicate. The research generated towards this end has provided, and will continue to 

provide, valuable information about the nature of brain and its activity. Furthermore, 

breakthroughs in this field will allow for dramatic improvements in quality-of-life for 

these afflicted individuals. There is additionally great potential to spawn technological 

advancements which may be utilized by a much greater population, potentially allowing 

for improvements in communication throughput. These advances may further improve 

quality of life and productivity for future generations.   
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One of the most important developments is that of the brain-machine interface 

(BMI). A BMI utilizes measurements of brain activity in order to bypass motor function 

to control machines such as computers or prosthetic devices. BMIs offer a potential 

solution to subjects with severe physical disability such as LIS or quadriplegia, restoring 

some level of movement and communication to these individuals, improving quality of 

life.  

Recent advances in technology have allowed for the use of lightweight flexible 

electronics and dry compliant electrodes for improved biopotential signal acquisition. 

EEG design has trended towards wearables with wireless functionality since the 

standardization of common wireless protocols such as Bluetooth [3]. In general, a 

combination of miniaturization and other improvements have led away from benchtop 

amplifiers and electrode cap EEGs, favoring compact, battery-powered designs. Dry 

electrodes offer excellent, consistent long term performance compared with gel-based 

electrodes[4-6]; provided the skin preparation, and amplifier, shielding and electrode 

configurations are adequate [5, 7]. Lightweight sensors with minimal cabling also greatly 

reduces dragging or movement artefacts that are common with poorly configured 

conventional EEG [8].  

Further advancements include that of flexible electronics, soft materials, and 

advanced electronics fabrication techniques that provide additional functionality while 

also reducing production costs. Initially, flexible hybrid electronics were fabricated using 

conventional microfabrication techniques such as sputter material deposition and 

photolithography. New methods for additive manufacturing (such as aerosol jet printing), 

and alternate etching methods (e.g. femtosecond laser micromachining) greatly improve 
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process speed and potential throughput [9-11]. Additionally, use of materials such as 

polydimethylsiloxane (PDMS) allows for fast high-quality replica-molding of 

conventionally expensive cleanroom-based microfabricated structures for higher 

component production rates[12]. Advancements in computing power have allowed for 

processing of real-time environments for wearable and wireless virtual reality headsets. 

The use of virtual reality allows researchers to tackle specific problems where the 

interface user’s attention needs to be maximized, or where immersion is critical[10, 13, 

14]. Computational advances, combined with advanced machine learning techniques, 

such as convolutional neural networks [15, 16], also allow for real-time classification of 

highly complex problems for real-time control of interfaces. In this thesis, we will 

explore how these advancements are integrated into a single, robust, multifaceted BMI 

system.  

1.2 Problem Statement and Objectives 

In order to communicate with LIS subjects, current communication schemes 

involve the use of AEIOU boards or similar non-technological approaches as shown in 

Figure 2, where a caretaker uses the limited eye movement of a subject to select letters, 

by calling out the rows, and then letters and looking for an affirmative eye motion. Such 

methods are slow and tedious, with a subject only being able to spell a few words per 

minute. This greatly limits the ability of subjects to communicate their intentions and can 

be vastly improved with brain-machine interfaces (BMI).   
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Figure 2. AEIOU alphabet board. The assistant calls out the colors and the patient signals 

the required color by an eye movement. The assistant then sequentially calls out the 

letters on that line. The chosen letters are written down to formulate a sentence, question, 

or statement (adapted under fair use[17]). 

Electroencephalography (EEG) is a common non-invasive method of acquiring 

brain electrical activity, which results in a few critical tradeoffs when compared with 

invasive interfacing methods (e.g. implanted electrodes; electrocorticography). Most 

importantly, signal quality is greatly diminished when compared to electrodes implanted 

directly into brain or nerve tissue. Additionally, there is a significant reduction in spatial 

resolution due to the physical distance as well as multiple barriers (brain fluids, skull, 

skin, etc.), between the signal source and electrodes. With EEG, electrical activity 

records the summation of excitatory and inhibitory postsynaptic potentials in apical 

dendrites of pyramidal neurons in the more superficial layers of the cortex. Large areas of 

the cortex must be activated synchronously to generate enough of a potential change to be 

measured at the scalp. This problem is intuitively understood through the inverse square 

law[18]. Based on these limitations, neurons deep in the cortex are unable to significantly 

influence scalp EEG signals, limiting the range of EEG-based BMI paradigms[19].   
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Currently available mobile EEG systems[20-22] are still limited by their bulky 

size and use rigid electronics and housings with a great number of electrodes. 

Conventional EEG used in research and medical application typically involve bulky 

headgear and interface with the scalp through cluster of metal electrodes (Figure 3). 

These systems are often bulky, heavy and uncomfortable to wear. They often require 

large, rigid electronics either attached to the system, or connected to benchtop electronics 

using long lead wires. Often, electrodes are interfaced with the scalp using conductive 

gels or pastes to adequately capture the signal. These gels and pastes are messy and 

experience signal degradation over time, preventing long-term use. Further, hair 

thickness and density and skin quality cause significant impedance variation between 

subjects and even between electrode locations the same subject. Overall, conventional 

systems require extensive time for setup and are inconvenient and uncomfortable to use. 
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Figure 3. Overview of conventional EEG setups. (A) Demonstration of applying gel to 

one of many electrode locations on a conventional haircap EEG. (B) Conventional bench-

top EEG with long electrode lead wires and haircap setup. (C) Wireless, wearable 

headset-based EEG with minimal wiring and dry electrodes.  

In order to be considered a viable alternative to non-technical solutions (e.g. 

AEIOU board), the interface must allow for significantly advanced information transfer 

rates and must also not be a burden on the subject or caretakers (which are not always 

professionals, e.g. family members). The AEIOU board uses 28 targets. From this we can 

estimate a range for potential information transfer rates based on the communicators’ 
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abilities and a range of cognitive states available, we can estimate a range of average 

target selection times of between 5 and 15 seconds per target. Assuming perfect accuracy, 

we can use the formula in the Appendix chapter Calculation of Information Transfer Rate 

to calculate the potential information throughput to be between 19-60 bits/min, with 60 

being exceptionally fast performance, and the average being around 24 bits/min. As a 

result, this system sets the bar for brain-machine interface performance. At a minimum, 

BMIs can offer the ability to replace such systems, allowing for more free-flowing 

communication at similar bit rates. However, BMIs have demonstrated the potential for 

much higher information throughputs with the ability to allow for up to 40 targets at 

intervals of 0.8s, for transfer rates up to 325 bits/min[23].  

As stated in the problem statement, the objective of the research was to enhance 

the performance of brain-machine interfaces by studying the performance benefits of 

flexible electronics, soft skin-compliant materials, advanced machine learning 

techniques. Based on the literature review, analysis of the capabilities of the available 

technology, certain requirements and specifications were created in order to maximize the 

performance of an EEG-based interface. First, gel or paste based electrodes were 

excluded in favor of dry electrodes, due to vastly improved long-term impedance 

consistency, and potentially improved impedance density. Dry electrodes also provide the 

added benefit of requiring less time to setup and clean and is therefore more convenient 

to an EEG operator. Dry electrodes allow for a “set-and-forget” type EEG system that 

requires minimum maintenance once setup and can be used for extended periods of times, 

with some dry electrode systems allowing for weeks of continuous wear[24]. Second, 

flexible electronics were preferred for all components including electrodes and electrode 
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leads. Flexible electrodes allow for conformal skin-contact, typically resulting in 

improved signal to noise ratio, reduced motion artefacts and improved performance[25]. 

Additionally, it was hypothesized that device miniaturization could improve performance 

due to fewer sources of noise across the entire device and reducing the distance between 

the data acquisition and signal source is crucial to high-quality data recordings[26].  

Further, advanced machine learning techniques, such as deep convolutional neural 

networks, would be evaluated for their potential to improve feature extraction and 

classification of subtle components within time-domain EEG signals. Additionally, the 

implementation of virtual reality as a means of immersive subject training and its 

potential use as a unique stimulus platform is explored in this thesis. Overall, the goal of 

this thesis is to use to create new technologies for a non-invasive BMI system for at-

home use allowing for control of devices such as computers or electric wheelchairs on a 

day-to-day basis. Such a system has the potential to greatly improve the quality of life of 

individuals with LIS, by providing them with much needed ability to move and connect 

with others.  

1.3 Thesis Organization 

This thesis is organized into a literature review chapter, and chapters 

corresponding to each major experiment performed as a part of this thesis. The next 

chapter, Chapter 2, will cover the literature review, covering topics such as the target 

demographic for this research (Locked-in Syndrome), and exploration of each of the 

individual technologies used in this thesis (Brain-machine interfaces, 

electroencephalography (EEG), EEG electrodes, and soft, flexible electronics). Chapter 3 
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describes an attempt to design a BMI based on motor imagination (MI) using flexible 

hybrid electronics and a VR immersive training environment. Chapter 4 demonstrates a 

5-class SSVEP-based BMI for the purposes of accurate control of an electric wheelchair. 

Chapter 5 expands greatly upon the research from Chapter 4, using 33 targets in order to 

control a VR-based text speller for communication. Finally, the thesis is ended with a 

summary detailing the novelties introduced and proposal of future work that may expand 

upon this research. After the references section, an Appendix chapter contains text, tables 

and figures that were extraneous to the dissertation’s main text.  
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2 LITERATURE REVIEW 

2.1 Locked-In Syndrome 

Locked-in syndrome is a serious syndrome of an underlying disease, typically injury to 

the ventral pons, and typically an infarction, hemorrhage or trauma of some kind[17]. LIS 

is characterized by quadriplegia and anarthria (inability to speak or vocalize)[17]. The 

subject’s consciousness is otherwise normal, and they can slowly communicate via blinks 

or eye movements. Without technological assistance, communication with these patients 

is very slow, typically making use of an AEIOU board, where the subject indicates the 

row and column of the letter or symbol they would like to communicate as the 

communicator reads them out (see Chapter 1 for more details). Overall, quality of life for 

LIS subjects is poor, and there is no standard treatment or cure for the condition. Out of 

105 cases examined by Das et al., only 29 showed some form of recovery and two 

showed complete recovery, although this is anomalous and not well understood[27].   

2.2 Brain-Machine Interfaces (BMI) 

A brain machine interface (BMI) is a communication system using data acquired directly 

from brain activity which allows humans to interact with their surroundings without the 

involvement of peripheral nerves and muscles. BMI can be used to relay a person’s 

intentions to external devices such as computers, speech synthesizers, assistive 

appliances, and neural prostheses, which is highly attractive for helping patients with 

severe disabilities, like LIS. There are two broad categories used to classify BMIs: 

invasive and non-invasive.  
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2.2.1 Invasive vs. Non-invasive Signal Acquisition 

Invasive methods include electrode implants, such as a microelectrode arrays[28], or 

electrodes placed deep in the cortex[29]. However, invasive systems are costly to develop 

and highly risky to patients. In this thesis, non-invasive EEG-based BMIs will be the 

primary focus, as implanted devices are outside of the scope of this research. 

2.3 Electroencephalography-based BMI 

Most current BMIs obtain brain activity through electroencephalography (EEG). 

EEG is the most widely used neuroimaging modality, due to its high temporal resolution, 

portability, low cost, and low user risk. BMIs based on EEG consist of a set of sensors 

that acquire electroencephalography signals from different brain areas. However, the 

quality of electroencephalography signals is affected by scalp, skull, and many other 

layers as well as background noise. Reducing noise is critical to recording representative 

EEG signals which reflect localized brain activity. The primary challenge to designing 

high quality EEG is the reduction of noise introduction, and removal of common mode 

noise using driven right-leg circuitry, passive or active shielding and other design 

methods.  

These noninvasive approaches have successfully been applied to severely and 

partially paralyzed patients allowing for basic communication and control[30]. Despite 

the outstanding utility of non-invasive approaches in BMI applications, full motor 

recovery has been limited, due to the limit resolution of brain information acquired from 

noninvasive EEG. Invasive recording methods such as electrocorticography or 

intracortical neuron recording improve the quality of brain signals monitored by BMIs. 
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Most researchers agree that movement restoration through prostheses with multiples 

degrees of freedom can only be achieved through invasive approaches[31]. Due to 

fundamental physical limitations based on the inverse square law, it is likely that non-

invasive modalities can never be as powerful as invasive ones. Further refinement in 

recording, processing and analysis will likely improve performance of both invasive and 

non-invasive methods. The latest research shows that invasive modalities have inherent 

advantages in neuroprosthesis control applications[32]. 

2.3.1 Paradigms: Exogenous Stimulation 

P300  

P300 is an event-related potential (ERP) that may be utilized in BMIs as it provides an 

easy-to-discern amplitude fluctuation that lasts about 300ms, hence the name[33]. In a 

synchronized system, P300 can be used in a text-speller type interface by sequentially 

flashing letters. A P300 is elicited when a viewed letter flashes, the timing of which helps 

the classification algorithm indicate which target was selected[34]. P300 has been well 

explored in the field of BMI[33], and is outside the scope of this dissertation.  

SSVEP 

An SSVEP-based BMI enables the user to select one of numerous application-dependent 

commands, for example, moving a cursor on a computer screen. Each command is 

associated with a visual stimulus with distinctive properties such as frequency or phase. 

The stimuli are simultaneously presented to the user who selects a command by focusing 

attention on the corresponding stimulus. When the user focuses their attention on the 
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stimulus, an SSVEP is elicited which manifests as oscillatory components in the user's 

EEG, localized from the primary visual cortex, matching the frequency or harmonics of 

that stimulus frequency [35]. SSVEPs can be detected by preprocessing (e.g., band-pass 

filtering), removing artifacts, and extracting features (e.g., using power spectral analysis), 

and then classification. BMI performance is assessed in terms of classification accuracy, 

selection time, and the number of available targets. These can be aggregated into a single 

indicator, namely the information transfer rate [36, 37]. In SSVEP-based BMIs, the 

classification accuracy is mostly influenced by the signal-to-noise ratio (SNR), and the 

separability in the properties of the stimuli. The classification speed depends on the time 

it takes for the signal to be recognizable as belonging to a unique target and is highly 

limited by noise. Increasing the number of targets increased the number of possible 

commands at the cost of classification accuracy and speed. 

2.3.2 Paradigms: Endogenous Stimulation 

Motor Imagery 

Motor imagery, also called motor imagination is a useful BMI paradigm as it does not 

require any external stimulus for a BMI user to control the interface. There is now 

sufficient evidence that MI, the mental rehearsal of physical movement tasks, when 

combined with physical therapy leads to enhanced motor outcomes for stroke survivors 

and may represent a new approach to functional recovery after stroke[38]. EEG-based 

BMI can provide real-time measure and classification of MI as a neurofeedback to aid 

motor task execution [39]. These sensorimotor rhythms are oscillations in the EEG in the 

alpha (8 to 12 Hz) and beta (18 to 26 Hz) bands. Modulations in these bands are observed 
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during motor action, mentally rehearsal, or imagined movements. Distinct phenomena 

such as event-related desynchronization (ERD) and synchronization (ERS) are clearly 

detectable on EEG during MI in healthy subjects[40]. Recent studies demonstrate that 

ERD and ERS can be enhanced by closing the sensorimotor loop using proprioceptive 

[41] or haptic feedback [42].  

Motor imagery is somewhat controversial due to the wide variance in subject 

performance. Allison and Neuper discuss the limitations in dealing with motor imagery 

performance in detail [43]. Performance predictors for different control paradigms have 

been documented in the literature [44]. Within the same BMI system, especially with MI, 

some subjects cannot achieve satisfactory performance, which is referred to as BMI 

“illiteracy”. Therefore, it is necessary to understand why different subject groups perform 

achieve different BMI performance outcomes. Allison and Neuper[43] also reported that 

subjects with low performance show fewer prominent features than those who perform 

better, thus resulting in poor class recognition. Overall, the literature demonstrates that 

motor imagery can be functional to a reasonable segment of the general population, but 

for those with poor response, alternative paradigms should be sought.  

2.4 Flexible Electronics 

2.4.1 Fabrication Methods 

In this section, various fabrication methods are discussed regarding the production of 

flexible electronics and flexible components. There are two main branches of fabrication 

processes: additive and subtractive. In the following sections, a few of these are analysed 
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with a focus on processes that are significant towards development of a brain-machine 

interface.  

Conventional Cleanroom-based Methods 

Microfabrication and photolithography methods involve a meticulous series of 

cleaning, metallization, oxidation, spin casting, light exposure, and etching and 

developing. These processing steps create possibilities for contamination. Successful 

fabrication results in the completion of a device capable of sensing, stimulating, or 

communicating signals.  

Common procedure for soft electronic fabrication involves starting with a silicon 

wafer by cleaning and spin coating several layers of polymers, such as a sacrificial 

polymer. Afterwards, e-beam evaporation or sputtering deposition is used for metal 

deposition. A layer of positive or negative photoresist is spun atop this layer, then 

exposed with ultraviolet (UV) light through a chrome photomask. Next, the metal is 

etched using a wet etching process, resulting in metal ion waste while the patterns on the 

substrate remain. The photoresist is cleaned off and the process continues or is completed 

and ready for the transfer process. 

Microfabrication and photolithography are robust fabrication methods which 

result in significant material waste. This can have far reaching environmental effects [45] 

and may well be financially detrimental[46]. This process is also time consuming due to 

the many adding and subtracting processing steps. Therefore, additive methods are 

preferable as an alternative by streamlining the process and reducing harmful 

environmental waste. These methods must be adequately assessed for its advantages and 

disadvantages in the fields of speed, resolution, and reliability. 
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Additive Manufacturing: Aerosol-Jet Printing 

Aerosol jet printing (AJP) uses mass flow controllers to direct nitrogen gas into 

either ultrasonic or pneumatic atomizers. This inert gas enables transportation of 

aerosolized inks for deposition through a nozzle without affecting the inks’ properties. 

An ultrasonic atomizer (UA) relies on excitation from a piezoelectric transducer, 

transferring the energy through a temperature-controlled water bath medium. This allows 

for reliable atomization of inks of varying viscosities; up to 5 cP. This range may be 

expanded using higher bath temperatures.  

Alternatively, pneumatic atomizers (PA) can atomize inks up to 1000 cPs. This 

allows for far greater versatility than UA printing or inkjet printing. A PA pushes 

nitrogen down a stem out of a diffuser using high velocity flow, while the ink is sucked 

up through the diffuser hole. This process creates ink agglomerates of various size that 

are filtered through a virtual impactor and HEPA filter. The smaller agglomerates pass 

through the deposition head onto the substrate.  

Most polymers consist of very low surface energy particles which requires precise 

tailoring of the surface tension of the ink that is deposited on a polymer. Other materials, 

like metals, have relatively high surface energy which allow for easier ink deposition. 

Therefore, inks must be tailored to wet the surface properly to prevent breaks or 

disconnections by utilizing either a low surface tension ink or a high energy substrate. 

High throughput deposition with AJP requires fine control over multiple variables. Many 

researchers working on microscale devices like antennas[47], strain sensors[48], and 

biological samples[49] do not require rapid deposition rates or platen velocities. In this 
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thesis, fabrication of thin, skin-based Ag electrodes is discussed. A materials 

characterization study of AJP inks after sintering is also investigated for its electrical 

conductivity and mechanical elastic modulus.  

Replica Molding 

Replica molding (REM) is a form of soft lithography utilizing materials like 

polydimethylsiloxane (PDMS) to create microscale devices by duplicating the structure 

of a mold[50]. REM is typically used to efficiently mold patterns with features up to a 

nano-scale (≤100 nm)[51] that often are difficult to replicate for other forms of molding, 

such as injection molding. The most commonly used organic polymer for REM is PDMS. 

A range of products ranging from CDs to biomedical devices are fabricated using REM.  

The most significant advantage to REM is that you can create many replica devices from 

one master mold. This means that the process can be scaled up very quickly with very 

few master molds; which often are created using the slower and more expensive 

conventional lithography-based methods. As a result, REM greatly increases production 

and fabrication throughput. Another major advantage is that REM is compatible with a 

wide variety of polymers and compounds, making it highly versatile and flexible. REM 

can also create molds that cover a wide range of nonlinear surfaces and is also not limited 

by size constrains (e.g. wafer sizes). Therefore, REM is a very valuable structure 

replicating technique capable of a wide array of materials for a wide variety of uses[50, 

52, 53]. 
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3 BRAIN-MACHINE INTERFACE BASED ON MOTOR 

IMAGINATION 

3.1 Background and Overview 

In this chapter, we focus on the application of Skintronics to a Motor Imagery-

based BMI. An overview of this Skintronics system is shown in Figure 4. The complete 

interface in Figure 4A-B includes a flexible wireless circuit, placed on top of the 

elastomeric band on the crown of the head for maximized isolation from the body. A 

fabricated soft circuit in Figure 4C demonstrates high mechanical flexibility when 

mounted on an index finger. A combination of metallization, laser-cutting process, and 

transfer-printing step allows fabricating reliable membrane interconnectors. A robust 

connection between the circuit and multiple FMNEs is enabled by stretchable 

interconnectors. A schematic illustration in Figure 4D shows the optimized locations of 

FMNEs based on the analysis of publicly available MI data and experimental results. A 

flowchart of the overall setup and data flow are shown in Figure 4E, towards control of a 

VR game via real-time MI data. 



 20 

 

Figure 4. Overview of the wireless scalp system for motor imagery brain signal detection, 

featuring fully portable electronics, stretchable interconnectors, and flexible microneedle 

arrays. A) An illustration of a subject wearing scalp electronics and a VR headset with a 

close-up of stretchable interconnectors (top-right photo) and a flexible microneedle 

electrode (bottom-right photo). B) A zoomed-in photo of an array of microneedles along 

with a magnified SEM image of the needles (inset). C) A picture of a flexible wireless 

circuit with integrated chips, showing mechanical compliance of the membrane circuit. 

D) Locations (top view) of the microneedle electrodes for classification of motor imagery 

brain signals, including six recording channels, one reference (REF) and one ground 

(GND). E) A flow chart describing the entire data processing sequence from EEG 

recording to the control of targets in a virtual reality system via a machine learning 

classification algorithm (convolutional neural network, CNN). 
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As mentioned in Chapter 2, Motor imagery offers a strong stimulus-free paradigm 

for BMIs. The primary advantage is that there is no requirement for obtrusive stimuli in 

the way of the BMI user, resulting in more precise visual closed-loop interfaces. We 

demonstrate this principle by having subjects control a simple rhythm-based video game. 

Here, the interface’s performance is greatly enhanced using soft, compliant electronics, 

flexible PI-based microneedles, allowing for reduced skin-electrode impedance density, 

resulting in improved SNR and classification accuracy. Virtual reality addresses subject 

variance in detectable EEG response to motor imagery by providing clear, consistent 

visuals and instant biofeedback. The combination with convolutional neural network-

machine learning provides a real-time, continuous motor imagery-based brain-machine 

interface. With four human subjects, the scalp electronic system offers a high 

classification accuracy (93.22±1.33% for four classes), allowing wireless, real-time 

control of a virtual reality game.  

3.2 Skintronics Concept and Design Principles 

In conventional EEG, large rigid electronics and housings cause discomfort and 

inconvenience, long lead wires lead to motion and dragging artefacts, and finally, gel 

electrodes show significant depreciation in impedance and signal quality over time. The 

concept behind Skintronics is a fully flexible and fully conformal EEG system, aiming to 

improve on each of these points. First, miniaturization reduces noise sources by reducing 

the locations from which noise can be introduced, while also minimizing electrode leads 

and distance between the signal source and data acquisition device. When wires are used, 

only compliant, flexible and stretchable microfabricated interconnectors are used to 

prevent dragging or motion artefacts, as they stretch and bend with subject movement. 
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All electrodes are based on dry, capacitive measurement, and are optimized to flex in 

order to maximize contact on curved surfaces, such as the scalp.  

Towards this end, we introduce SKINTRONICS, a skin-like flexible electronics 

platform, enabling seamless, portable EEG recording with enhanced signal quality 

performance over a multitude of commercial systems. An illustrative overview is 

presented in Figure 5. Addition of novel time-domain analysis using convolutional neural 

networks allows for real-time, accurate classification of various SSVEP and MI data, as 

will be shown in later chapters. As previously mentioned, the philosophy of this design 

includes application of all-flexible components and reduced size, weight and distance 

between components in order to significantly reduce locations where noise could be 

introduced and insulated the device components from noise sources.  
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Figure 5. An illustrative overview of the Skintronics-based BMI. Subjects are trained on 

various BMI paradigms in an immersive virtual reality environment and wear a 

minimalist headgear with flexible hybrid electronics for the data acquisition, with flexible 

microneedle electrodes, and stretchable interconnectors.  
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3.3 Methods for MI-based BMI 

3.3.1 Electrode reduction via input perturbation analysis 

As described in the literature review, motor imagery activity is primarily focused 

in the motor cortex region, requiring electrodes in various locations of the temporal lobe. 

As mentioned in the stated goals of this research, reducing the system complexity is a 

desired goal, and reducing the number of required measurement electrodes is a process 

towards that end. However, this is largely non-trivial. Some of the best performance from 

MI interfaces comes from large EEG clusters of a dozen or more electrodes. In this 

section, demonstration of reduction of number of measurement electrodes through the 

analysis of large EEG clusters using input perturbation analysis is discussed.  

44-channels data out of 128 channels from 13 subjects were considered, as 

performed in the prior work (High-Gamma Dataset) [16]. A flow-chart demonstrating the 

data flow process is shown in Figure 6. The full dataset is simply preprocessed using a 

3rd-order Butterworth bandpass filter, with corner frequencies at 4 Hz and 30 Hz, and 

split into windows of 4 seconds (Figure 6A). A convolutional neural network (CNN) with 

standard convolutions on the first layer, with a filter size of (10, 1), followed by four 

spatial convolutional layers, is used to train the full dataset (Figure 6B). A generator then 

cycles through the data channels, eliminating the remaining channels in order to calculate 

the output perturbation on the selected channels (Figure 6C). This data is then fed into the 

trained network, and the output perturbations are compared (Figure 6D) with the true 

expected outputs to generate the relative perturbations for that channel (Figure 6E). These 

relative perturbations are summed by the channel to generate a final perturbation value 



 25 

(Figure 6F), for each of the channels to be compared and ranked, as demonstrated in 

(Figure 6G). These electrode positions correspond with custom positions on the 128-

channel system (waveGuard, ANT Neuro) used in the referenced paper [16].  

The classification accuracy for 44 channels was 84.88±2.30%. Using the input 

perturbation analysis described, the classification accuracy was calculated again using the 

top-6 and top-4 channels with the same network architecture, resulting in accuracies of 

81.70±3.17%, and 78.70±2.87% (Figure 7). The final electrode positions for our main 

study was based on analysis of this and other public motor imagery datasets, as well as 

some empirical experimentation to determine the optimal 6-electrode setup, shown in 

Figure 8. The approximate positions of the electrodes corresponding with the standard 

10-10 electrode placement system [54] are Fz, C5, C3, C4, C6, and POz, with the 

reference electrode at Cz, and the ground electrode placed at the mastoid. This setup is 

optimized for capturing event-related synchronization and desynchronization relating to 

separate hands and both feet, as well as capturing overall alpha rhythm activity. The setup 

was determined to reduce the number of electrodes and complexity of the setup as much 

as possible without significant reduction in classification performance.  
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Figure 6. Optimized channel selection process. (A) A complete 44-channel MI dataset is 

(B) trained on a spatial-CNN model. (C) A generator is used to cycle through the 

channel, setting the remaining channels as inactive, and (D) passed through the trained 

classifier. (E) The output perturbations are then compared with the true outputs, resulting 

in the relative perturbation, (F) which is summed over the classes to get the per-class 

perturbations for each channel. (G) A bar chart of each channel's relative perturbations is 

shown with the top-6 channels labeled. 
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Figure 7. Demonstration of channel reduction based on input perturbation analysis. Using 

a known dataset of 44 channels (left), we perform input perturbation analysis and rank 

the top-6 and top-4 channels (right), demonstrating the results of 81.70±3.17% from the 

top-6, and 78.70±2.87% from the top-4; a relatively small performance penalty based on 

the original 84.88±2.30% from 44 channels.  

 

Figure 8. Locations of electrodes, including Fz, C5, C3, C4, C6, and POz, with the 

reference electrode at Cz, and the ground electrode placed at the mastoid. 
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3.3.2 Flexible microneedle electrodes 

Here we introduced the components for the Skintronics fully portable scalp-based 

electronics system optimized for capture of motor imagination data. The component 

interfacing the human body with the electronics is the electrode, therefore it was the 

component of primary focus. The objective was to reduce electrode impedance density, a 

relative measure of impedance based on surface contact area typically measured in 

kΩ∙cm2. Here, we introduce a novel flexible microneedle electrode design (FMNE). In 

this study, we compared performance of conventional paste-based EEG electrodes with 

optimized dry electrodes. This serves to demonstrate advantages of using dry electrodes 

on hairy scalp areas. Optimal parameters for potential microneedle electrodes were 

selected based on a review of literature (Chapter 2), and experiments varying parameters 

on a square-pyramid needle design (summarized in Table 1).  

Table 1. Comparison of impedance and impedance density of microneedle electrodes of 

varying height, with fixed base width of 200µm, and pitch of 500µm (14x14 array). 

Electrode 500um 

MN 

600µm 

MN 

700 µm 

MN 

800 µm 

MN 

MVAP 

electrode 

Flat gold 

film 

Area (mm2) 49 49 49 49 96 49 

Impedance 

(kΩ) 

43.6 35.7 29.7 23.3 20.8 129.3 

Impedance 

Density 

(kΩ-cm2) 

21.4 17.5 14.6 11.4 20.0 63.4 

The determined optimal parameters include a high-aspect-ratio needle of a square-

pyramid shape with a height of 850µm and base width of 350µm. This design allows for 

successful penetration of the stratum corneum, significantly reducing contact impedance, 

and reducing variance of surface skin condition. An array of FMNEs are constructed via 
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a micro-replica-molding process on polyimide, followed by a coating of thin-film 

conductive metals (Cr and Au). The fabrication process is discussed in the following sub-

section and illustrated in Figure 9 with photos of the process and close-up photos of the 

finalized microneedle electrodes in Figure 10.  

Figure 9. Fabrication process of an array of flexible microneedle electrodes 
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Figure 10. (A) Photos of electrode fabrication processes and (B) a collage of optical 

images of the finalized electrodes from various angles. The impedance and impedance 

density of microneedles are summarized in Table 1. 

Fabrication of flexible microneedle electrodes 

Fabrication involves cleaning a negative PDMS microneedle array mold 

(MicroPoint, Singapore) with IPA and drying at 60 °C for 10 minutes. Positive mold is 

made from negative PDMS mold using epoxy resin (ExpoxAcast, Smooth On, Inc). From 

the epoxy resin positive mold, arrays of multiple PDMS (Sylgard 184, Dow Corning) 
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negative molds are made in order to increase production throughput. PDMS negative 

molds are bonded to glass slides using a thin layer of PDMS. PDMS molds are then 

treated with ambient air plasma for 2 minutes. From here, polyimide (PI 2610, HD 

Microsystems) diluted at a ratio of 4:1 in N-Methyl-2-pyrrolidone are applied and cured 

in very thin layers. The PI is compressed flat in the mold with a small fitted weight. The 

layers are then soft-baked at 100°C for 10 minutes, and hard-baked at 200°C for 1 hour 

before applying a new coating of PI. This process is completed for a total of four layers, 

before the PI flexible microneedle array can be removed from the mold. Last, Cr/Au (5 

nm/200 nm) is sputtered on both sides of the needles in order to produce the final 

needles. The entire process takes over 6 hours for a set of 16 needles, making the 

throughput relatively low for a micro-replica molding process. Improvements to 

microneedle production using process and material optimizations are discussed in later 

chapters.  

Flexible microneedle electrode performance assessment 

Experimental studies demonstrate the mechanical and electrical characteristics of 

the fabricated FMNE. High resolution close-up photos are given in Figure 12, showing 

the needle tip, before and after tissue insertion. In this study, a porcine skin was used to 

test the mechanical robustness with 100 insertions. Aside from cosmetic blemishes due to 

porcine tissue fluids, the FMNE tips' shape and electrical coating remained intact. A 

quantitative mechanical test in Figure 13 validates the SEM observation by measuring the 

required fracture force in buckling. A total of five fabricated FMNEs could withstand an 

averaged applied force up to 626 mN, which is well above the skin insertion force (20 – 

167 mN) of a single microneedle [55, 56]. Another mechanical test of cyclic bending of 
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FMNEs (Figure 11) supports the mechanical robustness in tissue insertion. The needle 

electrode was continuously bent up to 100 times with a radius of curvature of 5 mm while 

measuring the change of electrical resistance. The result shows a negligible resistance 

shift of less than 0.6 Ω. The prior works [25, 57] proved that gold-based electrodes, 

mounted on the skin surface, are safe to use due to their excellent biocompatibility. 
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Figure 11. Flexibility evaluation of a microneedle electrode. (A) Photo of a test specimen 

structure for microneedle electrode cyclic bending test. (B) Schematic of a cross-section 

of the test specimen. (C) Picture of cyclic bending test setup in which the motorized 

testing rig continuously bends and un-bends the test specimen over a cylinder with a 5 

mm bending radius. (D) Resistance data over 100 bending cycles (top), and a close-up of 

data over three cycles (bottom), showing the minimal fluctuation of resistance in the 

microneedle electrode. 
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Figure 12. A series of SEM close-up images microneedle electrode tip: unused (left, 

inset: zoom-in view of the tip), after ten insertions into porcine skin (middle), and after 

100 insertions into the tissue (right). 

 

Figure 13. Buckling force evaluation of a single microneedle electrode. (A) Buckling 

force testing setup in which the motorized force gauge applies an axial force upon a 

single microneedle electrode and measures the axial force until its fracture. (B) Photos of 

a single microneedle before (left) and after (right) the buckling test. (C) The buckling test 

data of five different single microneedle test specimens where buckling fracture begins at 

the peak force value. 

An additional experimental study was conducted to validate the safety of skin-

penetrating electrodes, FMNE, via a cytotoxicity test (details in Figure 14). An additional 
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48-hour test on human skin is performed to demonstrate minimal skin immune reaction, 

with skin redness fading after 1 hour (details in Figure 15). Human keratinocytes were 

seeded on the electrodes and cultured for over five days. For the immunofluorescent 

labeling, cells were fixed and incubated with Alexa Fluor 555 Phalloidin and Hoechst for 

two hours, and the cytotoxicity was quantified with a PrestoBlue Cell Viability reagent. 

The summarized results show that the difference in cell densities and morphologies 

between the control and a gold coated FMNE is negligible. Also, the measured 

cytotoxicity between the two samples shows no significant difference, capturing the 

electrodes' safety for human study.  

 

Figure 14. Cytotoxicity results. (A) Immunofluorescent Hoescht labeling of human 

keratinocyte cells after 5-day culture experiment in contact with Gold-coated FMNA 

electrode. (B) Control experiment data of immunofluorescent Hoescht labeling of human 

keratinocyte cells after 5-day culture. (C) Fluorescence measurements that quantify 

cytotoxicity with cell viability reagent for FMNA electrodes vs. control. 
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Figure 15. Microneedle electrode wearing results. (A) Photo of redness on skin after 48-

hours continuous wear of gold flexible microneedle electrode (left) and fading redness 

after 1-hour post release (right). (B) Thermal image (FLIR) showing skin temperature 

after 1 hour of wearing microneedle electrode behind the ear. (C) Thermal image 

showing skin temperature after 48 hours of wearing microneedle electrode on the skin 

(wrist). 

For a high-quality recording of brain signals, the impedance between the electrode 

and skin should be low, demonstrating an intimate contact. Two types of electrodes 

(FMNE and conventional Ag/AgCl) were utilized in this study by mounting both on 

human subjects' scalps. As summarized in Figure 16A and Figure 16B, the FMNE could 

maintain the skin-electrode contact impedance levels even after one hour of continuous 

use in EEG detection. The impedance density (ID, kΩ-cm2) was calculated by using the 

measured impedance (Z, kΩ) and contact area (A, cm2): 𝐼𝐷 = 𝑍 ∗ 𝐴. To prove the 
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enhanced performance of the FMNE in EEG recording, two types of electrodes were used 

to measure signals on POz and Cz for two minutes simultaneously. The recorded alpha 

rhythms (Figure 16C) show an average signal-to-noise-ratio (SNR) of 13.7 ± 2.6 dB (top 

graph) and 9.9 ± 1.8 dB (bottom graph) for a dry FMNE case and a wet Ag/AgCl cup 

electrode with conductive paste, respectively. Overall, the skin-penetrating FMNE shows 

more reliable, higher performance signal recording than the conventional, gel-based 

metal electrode.  

 

Figure 16. A) Skin–electrode contact impedance that compares the performance between 

FMNE and conventional Ag/AgCl cup electrodes (error: standard deviation with n = 4 

subjects). B) Calculated impedance density from data (A), showing a dramatic increase of 

the impedance change from the conventional electrode. C) SNR comparison of EEG 

alpha rhythms measured by FMNE (top) and conventional Ag/AgCl electrodes (bottom). 

3.3.3 Flexible and stretchable interconnects 

As mentioned in the literature review and problem statement, a longstanding and 

unresolved problem of EEG design involve motion artefacts introduced in lead wires. 

These artefacts are introduced downstream of the signal source and are therefore difficult 

to manage. Apart from circuit-related solutions (i.e. use of active electrodes), and design-

based solutions (size reduction, eliminating free-standing wires and high levels of 
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integration), there is additional opportunity to reduce noise through redesign of 

interconnects between the electrode and data acquisition circuit. Here, we introduce a 

novel flexible and stretchable interconnector designed to reduce motion noise and allow 

for significant mechanical compliance, reducing sources of noise from mechanical 

stressors. 

The fabrication of a stretchable interconnector uses a micro-machining process 

with a femtosecond laser cutter (WS-Flex USP, OPTEC), which offers higher throughput 

and lower cost than the conventional microfabrication in a cleanroom.  A substrate for the 

interconnector is prepared by an electron-beam evaporating Cr/Au (5nm/200nm) on a 2-

mil PI film (200HPP-ST, DuPont). The metal-coated PI film is then laminated on a 

PDMS-coated PET film to hold the material during the laser cutting process. Once an 

array of stretchable interconnectors is patterned on the metal-coated PI film, excess 

materials other than the patterned interconnectors are manually peeled off from the 

PDMS-coated PET film. With water-soluble tape, the interconnectors are transfer-printed 

on a soft elastomer substrate (Ecoflex 00-30, Smooth-On, Inc.), and areas other than their 

contact pads are encapsulated with an additional layer of elastomer. The interconnectors 

are electrically connected to the electrode and sensor with silver paint (Fast Drying Silver 

Paint, Ted Pella). An illustration of the fabrication process is shown in Figure 17. 
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Figure 17. Overview of stretchable interconnector fabrication process. 

Analysis of stretchable interconnector performance 

Photos in Figure 18A capture the stretchability of up to 100% strain that the 

fabricated interconnector can manage without plastic deformation. With the help of an 

out-of-plane buckling, the thin-film connector, enclosed by a low-modulus elastomer, 

shows mechanical reliability upon cyclic stretching when measured by a digital force 

gauge (EMS303, Mark-10) and a multimeter (DMM7510, Tektronix). Details of the 

mechanical testing method appear in Materials and Methods. The result in Figure 18B 

shows the change of electrical resistance of the interconnector with an applied tensile 

strain of 60% and 100 cyclic loadings; each full cycle takes ~15 seconds (Figure 19). The 

level of resistance fluctuation during cycles was very consistent with less than 60 mΩ 

change, and the total resistance change after 100 cycles is about 70 mΩ. In addition, the 

interconnector's end-to-end resistance was monitored during a maximum strain test. As 

shown in Figure 18C, the stretchable connector shows a yielding after 200% strain, which 
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is eventually fractured at ~275% strain. Close-ups of the interconnect wire at the 

maximum strain in Figure 20 captures the failure point close to the contact pads. Overall, 

the presented data set demonstrates a reliable mechanical performance of the stretchable 

interconnector that integrates multiple sensors with a wireless circuit. The maximum 

stretchability is well beyond what would be realistically expected from the scalp-

wearable application [4, 58].  

 

Figure 18. Characterization of stretchable EEG interconnectors. A) Photos of stretching 

of a stretchable EEG interconnector up to 100%. B) Electrical measurement of resistance 

change of the interconnector with 60% strain for 100 cycles, showing negligible changes 

in resistance. The inset shows the resistance change over a single stretch cycle. C) 

Measurement of electrical resistance change of the interconnector, showing mechanical 

fracture after 250% of tensile stretching. 
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Figure 19. Experimental setup of a stretching test. (A) Motorized test stand (ESM303, 

Mark-10), multimeter, and laptop data acquisition setup for stretch testing of stretchable 

interconnects. (B) A two-inch segment of stretchable interconnects secured between two 

binder clips pre-strain (left), and at 60% strain (right). (C) Change in resistance over 100 

stretching cycles with 60% strain. 

 

Figure 20. Close-up photos of a flexible interconnector with an excessive strain. (A) An 

entire view of an interconnector at 275% strain. (B) Close-up of the failure point near the 

contact pad. 

The primary drawback of this design is the fact that it tangles easily and often, 

resulting in difficult handling. In order to prevent issues tangling during setup, they are 

coated in elastomer, resulting in excessive motion artefacts, which would be much 
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reduced without the elastomers. These issues are addressed in a later chapter with a 

tangle-free design.  

3.3.4 Flexible Skintronics data acquisition device 

The fabrication process for the data acquisition component of the Skintronics 

interface is detailed in Figure 21. The flexible wireless circuit maintains functionality 

even with an excessive bending up to 180 degrees with a radius of curvature of 1.5 mm, 

which is supported by both computational and experimental studies (Figure 22A–C). 

More importantly, this device shows robust mechanical reliability from an experimental 

study with 100 bending cycles, quantitatively measured by the change of electrical 

resistance (Figure 22D–E). 
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Figure 21. Fabrication process of a flexible wireless Skintronics circuit using 

conventional cleanroom fabrication techniques.  
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Figure 22. Mechanical characterization of a flexible circuit. (A) Computational 

mechanics modeling data of a circuit bent at the location with components and 

interconnects, demonstrating 180° bending with a radius of curvature of 1.5 mm. (B) 

Close-up area from (A). (C) Photos of a circuit undergoing bending by following the 

computational modeling. (D) Mechanical test stand setup for cyclic bending, with 

multimeter and laptop for measuring resistance. (E) Resistance data over 100 bending 

cycles (top), and a close-up of data over a single cycle (bottom), showing the minimal 

fluctuation of resistance. 
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3.3.5 Experimental setup 

Three MI tasks were included in the experimental classes as well as alpha 

rhythms (the subject has eyes closed) for a total of four classes towards controlling our 

interface. Alpha rhythms were used as a null class in tasks where the subject wanted to 

pause control over some target. For the non-VR examination, subjects were asked to 

imagine the actions of opening and closing their hands, as well as depressing a pedal with 

both feet in the first person for the tasks. With the VR examination, the subjects were 

provided with clear visual guidance on what they should be imagining, using animated 

disembodied limbs within the normal field of view that a subject could view their own 

limbs. When recording with conventional Ag/AgCl electrodes, each subjects' skin was 

cleaned by gently rubbing with an alcohol wipe, and dead skin cells were removed using 

an abrasive gel (NuPrep, Weaver and Co.) in order to maintain a contact impedance 

below 10 kΩ on all electrodes. The abrasive gel was removed using an alcohol wipe and 

the surface dried using a clean paper towel. On the other hand, for the FMNEs, the only 

skin preparation conducted was a gentle rub of the electrode location with an alcohol 

wipe. The EEG data were recorded using a custom application running on an Android 

Tablet (Samsung Galaxy Tab S4), using Bluetooth Low Energy wireless communication. 

This study was conducted by following the approved IRB protocol (#H19553) at the 

Georgia Institute of Technology. For all experiments, data were sampled at 500 Hz, and 

down sampled to 250 Hz for analysis and classification. Training data involves 

continuous recording of a single task for one minute. The subject begins with their eyes 

closed to target alpha rhythms. After one minute, an auditory cue lets the subject know to 

open their eyes; then, they may watch for visual cues to follow the MI instructions. Two 



 46 

seconds of training data were discarded between each class to allow the subject time to 

react to the new cues.  For all four classes, this process takes four minutes per trial, and 

the process is the same with and without the use of a VR headset. To train the SVM and 

CNN models, training data were subdivided into window sizes of 1, 2, and 4 seconds to 

gauge accuracy over multiple window sizes, with 50% overlap between consecutive 

windows. There are approximately 112 4-second samples per trial for the training set for 

a total of 560 samples per subject. Therefore, there are 2240 samples for all four subjects.  

3.4 Preprocessing and classification of MI brain activity with CNNs 

Recent studies in multichannel, MI EEG classification suggest that using CNNs 

on preprocessed time-domain data provides the most accurate results [16, 59-61]. For 

validation of the machine-learning performance, we compared CNNs with conventional 

feature-extraction methods via power spectral density analysis (PSDA) and support 

vector machines (SVM). Two types of spatial CNN (Figure 23A) and conventional CNN 

(Figure 23B) methods were also compared since spatial convolutions to classify 

multiclass MI data was introduced by a recent study (17). We used data recorded from 

four subjects using FMNEs, preprocessed via a bandpass filter (3rd-order Butterworth, 4 – 

33 Hz). The spatial CNN method achieved very high accuracy (93.22 ± 1.33%), whereas 

the standard CNN performed poorly in direct comparison (68.51 ± 3.89%), as shown in 

Figure 23C–D. This result suggests that the spatial-CNN method's modified architecture 

is better at extracting spatial information features from the multichannel MI data.  
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Figure 23. Comparison of CNN architectures and performance. (A) CNN architecture 

featuring multiple spatial convolution operations (Spatial-CNN), indicated with a ‘*’ 

symbol. (B) Standard CNN architecture with normal convolution operations along with 

the time-domain signals (Standard-CNN). (C) Confusion matrix demonstrating Spatial-

CNN classifier performance on the FMNE dataset (n = 2240 samples from 4 subjects, 

560 samples per subject, window length w = 4 s). (D) Confusion matrix demonstrating 

Standard-CNN classifier performance on the FMNE dataset (n = 2240 samples from 4 

subjects, 560 samples per subject, window length w = 4 s). 

Regarding feature extraction, PSDA demonstrates event-related 

desynchronization (ERD) and event-related synchronization (ERS) across MI classes 

when assessing six-channel data (Figure 24). However, not all ERS/ERD events are 
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apparent in this data, suggesting more subtle features obscured within the time-domain 

data. Additional results in Table 2 show that PSDA performs very poorly when compared 

with filtered time-domain data classified via CNN.  

Table 2. PSDA and Cubic SVM Classification Results, Ag/AgCl with Conductive Paste 

Electrodes, 4-second time windows. 

Subject Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average Standard Error 

1 66.67% 73.72% 61.54% 70.51% 68.59% 68.21% 1.82% 

2 83.97% 81.41% 85.90% 83.33% 73.08% 81.54% 2.00% 

3 81.41% 83.20% 89.74% 80.13% 82.69% 83.43% 1.49% 

4 80.40% 79.60% 72.44% 75.00% 64.74% 74.44% 2.53% 

Mean      76.90% 1.96% 
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Figure 24. PSDA feature comparison of four EEG classes, demonstrating the presence of 

ERS/ERD in the form of power spectrum shifts for many of the samples shown (n=112 

samples).   

3.4.1 Feature extraction and classification  
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Data analysis involved power spectral density estimation using the Welch method 

[62], as described in prior work [58]. Here, the data is down sampled to 250 Hz, then 

preprocessed using a 3rd-order Butterworth bandpass filter from 4 Hz to 33 Hz and 

segmented into four-second windows with a 50% overlap between consecutive windows. 

Power spectral density estimation is then performed using 512-point overlapping Hann 

windows. This PSDA data is then trained using a SVM with a Cubic polynomial kernel 

function. For all CNN-based classifiers, the data is simply preprocessed using a 3rd-order 

Butterworth bandpass filter from 4 Hz to 33 Hz and segmented into four-second windows 

with a 50% overlap between consecutive windows. 

3.4.2 Cross-validation of classification algorithms 

A five-fold cross-validation scheme was used in all classification models, with 

four recordings being used for training and the fifth used for validation, across all five 

recordings. For the CNN, the batch size used was 64, and the training was run for 200 

epochs or aborted early if the classification of the validation data did not improve for 20 

epochs.  

3.5 Results of MI-based BMI 

Figure 26 shows a summarized set of preprocessing and classification of MI data 

with CNNs. An illustration in Figure 26A shows a spatial CNN model’s detail with 

hidden layers of brain signals acquired from six EEG channels. This model demonstrates 

the capability of decomposing spatial features from multiple dipolar sources of the motor 

cortex. The comparison data in Figure 26B shows the different accuracies between three 

basic preprocessing methods and one with PSDA. Details on the PSDA preprocessing is 
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provided in Materials and Methods. In this comparison, the spatial-CNN with filtering 

shows better accuracy than PSDA. The results in Figure 25 compare the classification 

results with PSDA and SVM with a cubic kernel function on conventional Ag/AgCl 

electrodes and FMNEs, showing a better accuracy from the FMNE dataset (4-second 

windows).  

 

Figure 25. Comparison of classification results with PSDA and SVM with a cubic kernel 

function on conventional Ag/AgCl electrodes and FMNEs, showing a better accuracy 

from the FMNE dataset (4-second windows). 

The graph in Figure 26C compares the spatial-CNN method's classification 

accuracy between the conventional Ag/AgCl electrodes and the newly developed FMNEs 

across multiple window lengths (1, 2, and 4 s). Error bars show a standard error from four 

subjects. All data sets that compare the performance between Ag/AgCl electrodes and 

FMNEs appear in Figure 27. Two confusion matrices in Figure 26D-E compare the 

performance of Ag/AgCl electrodes and FMNEs in classification accuracies with four 

classes. The real-time accuracy test of motor image brain data shows an overall accuracy 

of 89.65% and 93.22% for Ag/AgCl and FMNEs, respectively (2,240 samples, window 

length = 4 seconds, and 4 human subjects). Overall, the outstanding performance of EEG-
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based MI classification with the soft scalp electronics (Skintronics) exceeds the results 

from prior works (Table 3). 

 

Figure 26. Preprocessing and classification of motor imagery brain signals with CNNs. 

A) Detailed illustration of a spatial CNN model with hidden layers of brain signals 

acquired from six EEG channels. This model demonstrates the capability of decomposing 

spatial features from multiple dipolar sources of the motor cortex. B) Comparison of 

spatial-CNN classification accuracy of four cases, including raw data, high-pass filtered 

data (HPF), band-pass filtered data (Bandpass), and power spectral density analysis 

(PSDA) across multiple window lengths (1, 2, and 4 s). Error bars show a standard error 

from four subjects. C) Comparison of spatial-CNN classification accuracy between the 

conventional Ag/AgCl gel electrodes and the newly developed FMNE across multiple 

window lengths (1, 2, and 4 s). Error bars show a standard error from four subjects. D) A 

confusion matrix representing results from the real-time accuracy test of motor image 

brain data, acquired by conventional Ag/AgCl electrodes, with an overall accuracy of 

89.65% (N = 2,240 samples, window length = 4 seconds, and 4 human subjects). E) A 

confusion matrix representing results from the real-time accuracy test of motor image 

brain data, acquired by FMNE, with an overall accuracy of 93.22% (N = 2,240 samples, 

window length = 4 seconds, and 4 human subjects). 
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Figure 27. Comparison of the performance between Ag/AgCl electrodes and FMNEs 

across multiple window lengths (1, 2, and 4 seconds). 
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3.5.1 Demonstration of real-time control of VR video game 

Cross-platform software development engine Unity (version 2018.4) was used to 

create the VR application for use with the Samsung Gear VR (Connected to a Samsung 

S7 mobile phone device). The 3D models of the hands and feet were created and 

animated with Maya version 2018. The VR application utilizes Bluetooth technology to 

exchange data with the controller application on the tablet pc. When the controller 

application detects an action such as "right-hand movement" or "eyes closed" from the 

user EEG signal, the application will send a byte array corresponding to that action 

through the connected Bluetooth channel to the VR application to inform them of the 

player action. In the VR game, cubes with 4 different colors (Blue, Green, Red, Yellow) 

will be generated, each corresponding to an action (feet movement, left-hand movement, 

right-hand movement, eyes closed) that is required from the users. The game lasts a total 

of 240 seconds. After the initial 1 second, the game will spawn a new cube every 4 

seconds. The users need to provide the correct action through the EEG sensors in 

response to the color of the cube. For example, for a green cube, the user needs to move 

their left hand. When they perform a correct action, a green "correct" text will be 

displayed, and the cube will disappear, and the user will receive 1 point. For a wrong 

action, a red-colored "Wrong" text will be shown as feedback. 

The combination of the high-performance electronics and the CNN-based 

machine learning allows for seamless integration of the system with a VR interface. The 

experimental study in Figure 29 shows the result of a VR implementation for MI training 

and real-time control of a video game. An overview of a study setup in Figure 29A 

captures a subject wearing the Skintronics system, real-time EEG data measured from six 



 55 

electrodes (top inset), and an example of a VR interface (middle inset). A customized 

Android application provides real-time, continuous motoring of 6-channel MI signals 

(screenshot shown in Figure 28). Examples of the training and testing processes of a VR 

game are shown in Figure 29B-D; a modified view of VR visuals is given to a subject 

with text and animation prompts. A video game interface, designed for MI response 

testing, shows clear color-coded visual cues as well as a text prompt. The summarized set 

of graphs in Figure 29E shows an accuracy comparison between non-VR setup and VR 

setup (two types of electrodes) classified with the spatial-CNN model. 

Figure 28. Android interface demonstrating real-time data plotting. 
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Figure 29. Virtual reality (VR) implementation for motor imagery training and real-time 

control of a video game demonstration. A) An overview of a study setup, including a 

subject wearing the Skintronics, real-time EEG data measured from six electrodes (top 

inset), an example of a VR interface (middle inset), and a photo of a subject wearing a 

VR headset (bottom-right inset). (B-D) Examples of the training and testing processes of 

a VR game. B) A modified view of VR visuals provided to test a subject with text and 

animation prompts. C) A video game interface designed for MI response testing with 

clear color-coded visual cues as well as a text prompt. D) An example of evaluation 

output according to the target class. E) An accuracy comparison between non-VR setup 

and VR setup (two types of electrodes) classified with Spatial-CNN model, 

demonstrating superior performance of VR as a training implement (n = 2240 samples 

from 4 subjects, 560 samples per subject, window length w = 4 s).  
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The result demonstrates superior performance of VR as a training implement 

(2240 samples from 4 subjects, 560 samples per subject, window length w = 4 s). At the 

same time, additional accuracy improvement is observed with the FMNE and VR setup. 

The enhanced accuracy would come from an immersive VR program with disembodied 

hands and feet shown within the subject's field of view in approximately the same 

position as their existing limbs. During the study, a subject could gently rotate or tilt their 

head to glance at the hands or feet as their focus requires.  

3.6 Conclusion 

The presented research in this chapter demonstrates a highly accurate 

classification of a four-class, MI-based BMI with as few as six channels. The Skintronics 

system provides a competitive accuracy and information transfer rate (ITR) with low 

response times (93.22 ± 1.33% for 4 seconds of data; ITR = 23.02 ± 1.11 bit/min). This 

study also shows a subject playing a rhythm-type video game where they must perform 

MI tasks in a specific prompted order within specific timing intervals to score points. 

Using 4-second windows, subjects could achieve high scores, only missing a few points 

per 5-minute game session. Subjects indicated that controlling the interface required a 

minimal effort on MI visualization.  

The excellent signal reproduction with minimal artifacts may be attributed to the 

monolithic and compliant nature of the Skintronics. In conventional systems with rigid 

electronics and inflexible wiring, motion causes stress concentration at the skin-electrode 

interface. These stresses, when combined with conventional gel-based electrodes, cause 

significant skin-electrode impedance variations, resulting in motion artifacts. Where 
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dangling wires are involved, the influence of gravity compounds these issues. The newly 

developed FMNEs in the Skintronics provide an improved SNR by penetrating through 

the most superficial skin layers composed of dry and dead skin cells. By penetrating these 

layers and placing the conductive portion of the electrodes well within the dermis, we 

could significantly reduce the impedance density while allowing for smaller electrodes 

than the conventional setting and improving spatial resolution for MI detection. When 

compared head-to-head against the gold-standard Ag/AgCl gel electrodes, the FMNE 

achieved superior SNR. At the start of data acquisition, Ag/AgCl electrodes with abrasive 

gel to remove the superficial dead skin layer were favored. However, with the gel 

degrading over time, and as the impedance density and classification results show, the 

FMNE outperformed the conventional electrodes in every respect. 

Additionally, an optimized training configuration in the form of an immersive VR 

environment resulted in a vast improvement in the system performance. The VR 

environment appears to have allowed subjects to visualize MI tasks better and easily 

focus on the training process. As a result, VR data is of higher quality, achieving superior 

classification performances as shown in Table 3. Without the visual cues from the VR 

headset, typically, MI signals could only be sustained for a few seconds at a time purely 

from imagination. With the VR headset, it allows the experimenters to record continuous, 

high-quality MI activity from one class for a minute at a time and could continue for an 

indefinite amount of time. Overall, the VR-based data yielded much higher quality data, 

resulting in optimal classification outcomes. Even after removing the headset, subjects 

could maintain excellent accuracy in test demonstrations, as shown in the video game 

demonstration.  
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Table 3. Performance comparison between the Skintronics and reported values for EEG-

based MI classification. 

Reference Year 
Accuracy 

(%) 

# of 

electrodes 

# of 

classes 

Length 

(s) 

# of 

subjects 

ITR 

(bits/min) 

This work 2020 93.22 ± 1.33 6 4 4 4 23.02 ± 1.11 

[63] 2019 83.0 22 4 4 9 16.09* 

[60] 2017 86.41 ± 0.77 28 2 3 2 8.53 ± 0.42* 

[64] 2016 77.6 ± 2.1 3 2 2 9 6.98 ± 1.18* 

[65] 2016 84.0 3 2 2 9 10.97* 

[66] 2019 95.4 128 4 2 9 49.74* 

[16] 2017 84.0 44 4 4 9 16.68* 

 

As presented in this work, MI detection is advantageous in BMI paradigms since 

MI signals can be spontaneously produced by individuals, unlike with evoked potentials. 

Therefore, MI offers more significant potential as a general-purpose interface. However, 

a fundamental limitation is reconstructing poor-quality signals from the scalp to interpret 

motor cortex activity. In the next chapter, a more viable paradigm, steady-state visually 

evoked potentials (SSVEP) are studied towards increasing practicability and information 

throughput. Further drawbacks from this research include the arduous fabrication process 

of the PI-based microneedle electrodes, and the tangle-prone interconnect design. Both 

issues are considered and studied in the following chapter.  
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4 SSVEP-BASED BMI FOR WHEELCHAIR CONTROL 

4.1 Background and overview 

SSVEP signals require the use of steady-state flickering stimuli to elicit responses 

in the BMI user. These signals are then captured and classified to control the interface. 

However, inherent variation amongst human brains causes difficulty in implementation 

of electroencephalography (EEG) into a universal brain-machine interface (BMI). 

Existing SSVEP systems suffer from inconsistent signal quality, burdensome preparation 

time with many electrodes, and discomfort caused by rigid wires and metal electrodes in 

a hair cap. Additionally, leading classification methods require training on a per-subject 

or per-session basis. Although recent machine learning techniques offer a simpler EEG 

arrangement with fewer electrodes, these EEG devices still involve intrusive and heavy 

headgear, equipped with separate non-portable electrical hardware. The objective of this 

chapter is to demonstrate the potential for implementation of Skintronics as well as 

reduction to as few as 2 to 4 measurement electrodes while maintaining highly accurate 

classification. The first experiment will demonstrate a simple, 5-target setup for 

controlling an electric wheelchair to navigate an indoor environment. The second 

experiment increases the number of targets to 33 for controlling a text speller in a virtual 

reality environment.  

Here, we introduce the first example of a fully portable, flexible, skin-like hybrid 

scalp electronics (referred to as ‘SKINTRONICS’) that includes a low-profile, flexible 

circuit, an ultrathin aerosol-jet printed skin electrode, and three flexible conductive 

polymer electrodes for mounting on the hairy scalp (occipital lobe). The primary novelty 
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is the miniaturized fully integrated packaging of all the required electronics within a low-

profile skin-conformal wearable device. This low profile isolates it from most motion or 

cable related artifacts found with other EEG systems, allowing for superior SNR over 

long recordings. The number of electrodes was limited to reduce the profile of the 

electronics, and to allow for ease of setup. The SKINTRONICS is capable of competitive 

information transfer rates with as few as two data channels. We demonstrate a new 

capability to train deep convolutional neural networks (CNN) offline and integrate them 

into wireless mobile devices for a real-time, universal EEG classification. Additionally, 

optimization of the system setup and classification model enables a highly competitive 

information transfer rate[67] (122.1 ± 3.53 bits min-1 channel-1) using only two channels, 

far fewer than most other systems achieving similar values. With ever-improving mobile 

processing power, the combination of many-channel SKINTRONICS with integrated 

universal BMI, demonstrates possible implications for the use in portable EEG-based 

neuroprosthetics, real-time diagnosis of neurological disorders, or neuro-assisted learning 

(classroom support). 

4.2 Development of 5-target SSVEP-based motor wheelchair interface 

Figure 30 shows an overview of the wireless, portable scalp electronics for 

SSVEP-based BMI. The fully flexible, wearable system enables real-time long-range 

wireless data acquisition and accurate classification of SSVEP with a high information 

transfer rate from only two recording channels. The extreme mechanical compliance and 

small form factor of the wearable SKINTRONICS with a low-power circuit on scalp 

allows significant reduction of noise and electromagnetic interference, compared to the 

existing portable EEG systems with rigid electronic components[22, 68-70]. 
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Additionally, the use of conformal electronic components allows for easy wearability on 

the back of the neck, or on other skin locations. This emphasis on ergonomics makes it 

preferable for long-term wear versus rigid PCBs or other devices with heavy plastic 

enclosures that have to be clipped-on or worn in other uncomfortable manner. The photo 

in Figure 30A captures the design concept of the scalp electronics that minimize the 

contact area (only 2 channels) on the scalp for a comfortable, dry EEG recording. The 

electrodes are connected to the SKINTRONICS through flexible thin film cables, which 

are routed under the headband and connected on the right side of the device. Shorter 

secured interconnects result in reduction of noise introduced through cable movement. 

We utilize a set of dry, flexible elastomeric electrodes (Cognionics) that make intimate 

contact to the hairy region, resulting in long-term EEG recording[71]. In addition, a skin-

conformal, aerosol-jet printed electrode with improved skin adhesion reduces motion 

artifacts and enhances skin-electrode contact impedance. This electrode acts as a driven 

bias, therefore its ability to capture EEG is out of the scope of this paper and not tested. 

Overall, the integrated electronics on the scalp, in conjunction with a deep-learning 

algorithm, demonstrates the feasibility of this device for real-time, highly accurate in vivo 

BMI via SSVEP data from two channels.  
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Figure 30. Overview of the system architecture featuring fully portable, wireless scalp 

electronics. (A) Photo of a subject who has flexible wireless electronics 

(SKINTRONICS) conformed to the back of the neck with dry hair electrodes under a 

fabric headband and a membrane electrode on the mastoid, connected via thin film 

cables. (B) Neural network-based topographical map that indicates EEG signal 

amplitudes. (C) Photo capturing the ultrathin, flexible wireless electronics on skin, with 

an inset demonstrating device flexibility while handling. (D) Aerosol-jet printed 

stretchable, skin-like electrode with an open-mesh structure (inset). (E) Images showing 

gentle splaying of the conductive flexible elastomer legs of a dry hair electrode when 

slight downward pressure is applied, allowing the legs to separate the hair and the 

Ag/AgCl tipped legs to achieve good contact with the scalp. (F) Illustration (left) 

showing electrode positions on a posterior view of the brain and highlighted occipital 

lobe and flow chart (right) describing the entire process of EEG-enabled brain-machine 

interfaces. 
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The optimal electrode locations may be determined by a deep CNN analysis of 

32-channel EEG data from a conventional signal mapping (Figure 30B and details in 

Figure 30A-C). This process is not required for this SSVEP interface but is used to 

validate the selected scalp locations used for the two-channel setup. The electrode 

positions represented in Figure 30B (O1, Oz, O2) were determined empirically in 

preliminary tests to have consistently high SNR across all tested subjects. The system is 

designed to be universal for all subjects; and should not require retraining between 

subjects or sessions. The methods used here to isolate the best electrodes from a larger 

cluster of electrodes is a noteworthy, as it does not require prior knowledge of the signal 

type. This is most useful when trying to reduce the number of channels in a system, but 

the signal’s features are not obvious or are difficult to decompose by conventional 

methods. 

The representative sample of a topographical scalp captures the largest signal 

weights on the O1, O2, and Oz channels (data of other EEG mapping from six human 

subjects appear in Figure 31). These results are consistent with other topographical maps 

in a prior work[72]. For a deep neural network analysis, data was sampled at 256 Hz and 

the reference was set at Oz for the best results. The optimal electrode location was 

determined by a CNN trained to classify from all 32-channels (architecture listed in Table 

4). The trained weights for each channel could then be extracted and plotted using a 

topographical mapping algorithm provided by open EEGLAB (open source 

software)[73]. Details of this method are explained in Appendix under   
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Topographic Scalp Mapping using Deep Learning. This multi-channel quantitative EEG 

study retrospectively verifies the optimal two electrode locations that were used in the 

two-channel EEG study. 

Table 4. 2-CNN-Mapping: Convolutional Neural Network Model for Weight Extraction 

from 32-channel SSVEP Datasets. Using time domain data, we are able to optimize 

classification of real-time EEG data. Although the average accuracy was low across six 

subjects, we can generate mappings consistent with published literature regarding 

SSVEP.  

Layer Name Layer Description 

Input Time Domain Input: [32 x length(w)] 

Conv1 [1 x 8] conv, 32 ReLU Units, Stride [1 x 1] 

Pool1 [1 x 2] Max Pooling, Stride [1 x 2] 

Conv2 [1 x 4] conv, 64 ReLU Units, Stride [1 x 1] 

Pool2 [1 x 2] Max Pooling, Stride [1 x 2] 

FC Fully Connected Layer, 1024 ReLU Units, 50% Dropout 

Softmax 5-way softmax output 

The miniaturized, multi-channel flexible electronic system (Figure 30C), 

encapsulated in a soft elastomeric membrane, was fabricated by using the combination of 

microfabrication techniques[74], material transfer printing[74], and hard-soft component 

integration[75]. This manufacturing process makes a skin-conformal, unobtrusive, and 

comfortable device to the wearer. Prior to the fabrication, the circuit design was validated 

on a printed board to confirm the optimized layout with matching antenna circuitry 

(Figure 32A), along with the optimized components for a protocol of 2.45 GHz Bluetooth 

low energy. The reflection coefficient (S11), plotted in Figure 32B, has a local minimum 

at 2.449 GHz of -29.68 dB, which allows for excellent telemetry at reasonably large 

ranges. 
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Figure 31. Topographical mapping of EEG signals using convolutional neural networks. 

(a) 32-channel cap EEG setup on test subject. (b) Weights extracted from the 2-CNN-

Mapping convolutional neural network. From 32 convolutional filters used across all 

channels, the average weights for each point are summed, resulting in the weight 

mappings for each of the six subjects as illustrated in (c). The color scale represents the 

rescaled average neural network weights based on n=200 samples (40 samples per class). 

(d) shows the mappings generated for all 6 subjects, labeled correspondingly. 
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Figure 32. Antenna Matching Circuitry for SKINTRONICS wireless EEG. (A) shows the 

components in the antenna matching configuration optimized for use with the thin 

multilayer flexible SKINTRONICS format. (B) Shows reflection coefficient (S11) 

measurement with a network analyzer in air, with the device placed flat on a glass slide. 

The details of the device fabrication and encapsulation processes appear in the 

Appendix under   
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Device Fabrication Process (identical to the one presented in Chapter 3) and step-

by-step illustration is shown in Figure 33. The EEG recording setup for two channels (O1 

– Oz and O2 – Oz; Figure 30B) incorporates an aerosol jet-printed skin-like electrode and 

elastomeric hair electrodes. The highly conformal membrane electrode (Figure 30D) is 

placed at the right mastoid to serve as driven ground (details of the electrode fabrication 

in the Appendix under   
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Fabrication of Skin Electrodes via Aerosol Jet Printing).  

 

Figure 33. A schematic representation of the microfabrication and the assembly 

processes. Conventional microfabrication processes are used to construct the flexible 

circuit board. The PDMS-coated wafer surface allows the completed circuit boards to be 

peeled off and transferred onto a glass slide, where the reflow soldering of the chip 
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components is carried out. The soldered board is detached from the glass slide and fully 

encapsulated with elastomer. 

With adequate skin preparation, conformal contact provided by these electrodes 

allow for superior skin impedance (less than 20 kΩ), and therefore lower noise in signal 

recording and transmission. In addition, there are only three scalp electrodes, effectively 

secured by using a single headband, which allows the electrode to splay its legs, 

separating and moving hair, to make effective contact with the scalp as demonstrated in 

Figure 30E. A flow chart in Figure 30F summarizes a high-level overview of data 

collection, processing, wireless transfer, and machine control. The wireless telemetry unit 

uses a Bluetooth low-energy microcontroller (nRF52832, Nordic Semiconductor) due to 

its high throughput, low latency, low power draw and wireless range[75]. The Bluetooth 

low-energy protocol supports wireless synchronization of multiple devices to support 

greater numbers of channels[76], with each SKINTRONICS device capable of supporting 

up to eight channels. This flexibility in the number of channels and devices that can be 

synchronized makes it optimal for biopotential paradigms where multiple signals need to 

be recorded simultaneously at different locations. For EEG recording, a front-end 

integrated circuit (ADS1299, Texas Instruments) was used, which is a low-noise 24-bit 

analog-to-digital converter with a built-in bias drive, which supports up to eight 

differential-input channels. The design also incorporates second-generation low-noise 

instrumentation amplifiers as the first gain stage (INA828, Texas Instruments).  

4.2.1 Quantitative study of device mechanics and reliability 

To build a portable, wearable scalp electronics, intimate skin integration is critical 

while allowing the wearer to conduct everyday activity. It must also maintain its ability to 
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acquire high fidelity EEG along with wireless transmission of data while under bending. 

In this work, we subject the electronics to 180° bending up to 1.3 mm in radius of 

curvature, well beyond the bending experienced during skin deformation on the back of 

the neck. Similar mechanical tests are performed on the hair electrode and skin-like 

electrode to ensure long-term mechanical stability on the skin application. Computational 

finite element analysis (FEA) was used to design the electronic circuit and wearable 

electrode, which provided an optimal design to endure continuous mechanical 

deformation. Afterwards, a set of experiments demonstrated the mechanical reliability of 

the SKINTRONICS (Figure 34), including microscope investigation, resistance 

measurement, and received signal strength indication (RSSI). The flexible electronic 

circuit shows a great mechanical stability upon cyclic bending along the vertical axis for 

the first location (Figure 34A-D) and second location (Figure 34E-H). Details of the 

bending points appear in Figure 34A. With a complete folding of the device at the 

bending radius of 1.3 mm (Figure 34A), the device shows no adverse effects, as 

supported by the FEA result (Figure 34B) with negligible change in the maximum 

principal strain (<0.1%). The change of electrical resistance of the interconnects in Figure 

34A is measured during the cyclic loading and unloading process (Figure 34C), which 

also shows consistent resistance with the maximum change of 0.06 Ω.  



 72 

 

Figure 34. Mechanical flexibility and stretchability of the scalp electronics. (A) Photo of 

the electronics bent at first location along the vertical axis, as shown in the inset photo, 

between microcontroller and ADC integrated circuits, demonstrating 180° bending 

(radius of curvature: 1.3 mm). (B) FEA of fine mesh structure simulating 180° bending in 

(A) with same radius resulting in minimal strain at the interconnects (scale bar: maximum 

principal strain). (C) Measurement of electrical resistance for the device in (A) under 

cyclic bending between 0 and 180°, showing negligible changes in resistance. (D) RSSI 

response at 0° and 180° with different distances up to 15 meters (n = 3 samples). (E) 

Device bent at the second location along the vertical axis, as shown in the inset photo, 

between ADC and amplifiers (radius of curvature: 1.3 mm). (F) FEA of the flexible 

structure simulating 180° bending with minimal strain (scale bar: maximum principal 

strain). (G) Measurement of cyclic bending effect on the device in (E) by recording the 

change of electrical resistance. (H) RSSI response up to 15 meters at 0° and 180° 

bending. (I) 15.2 Hz SSVEP data recorded without (top) and with 180° bending (bottom). 

(J) Hair-based elastomer electrode under compression. (K) Corresponding load and 

unload curves showing a negligible peak change in resistance over a 6-second cycle. (L) 

Subunit of a skin-mounted electrode under 100% stretching in experiment and FEA, 

showing no mechanical failure. (M) 180° bending test of the electrode, showing less than 

2% strain in FEA and no mechanical defects in experimental observation. 
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Additionally, the RSSI measurement monitors the wireless signal quality under 

180° bending up to 15 meters (Figure 34D), showing that the device maintains 

connectivity at distances over 10 meters. Details of the mechanical bending configuration 

are shown in Figure 35. Another location of the electronics shows 180° bending with the 

radius of 1.6 mm (Figure 34E). The corresponding FEA in Figure 34F shows similar 

results to the first location, and the interconnects are intact after bending. Figure 34G 

shows the resistance measurements at this location where the maximum change in 

resistance is 0.09 Ω, indicating the stability of the interconnects during cyclic bending. 

The RSSI investigation (Figure 34H) validates the device’s functionality with distances 

up to 15 meters. The resistance measurements at each location after 100 bending cycles 

are shown in Figure 35C, showing a slight increase in resistance, from 1.19 to 1.51 Ω at 

location 1, and from 1.08 to 1.38Ω at location 2. Furthermore, recorded SSVEP data 

(stimulus at 15.2 Hz) compares the effect of cyclic bending of the electronics (Figure 

34I), which shows negligible change in the signal quality. The elastomeric hair-based 

electrodes underwent cyclic compression testing while monitoring resistance from the 

connector to a single leg of the electrode.  
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Figure 35. Mechanical Testing Setup and Additional Results. (A) Picture of device 

conformed to skin, with lines indicating the two locations of bending. (B) 180° bending 

test setup, with the device attached to glass slides, and attached wires for resistance 

measurements. (C) Resistance measurements on cyclic bending after 100 cycles 

completed at two bending locations, indicated by the legend. 

The setup is shown in Figure 36, with the process described as follows: For cyclic 

compression of the hair electrode a motorized tension/compression test stand (ESM303, 

Mark-10, USA) was used to push the electrode with a controlled displacement of 2 mm. 

Two conductive film wires (HST-9805210, Elform, USA) were attached with silver paint 

(PELCO Conductive Silver Paint, Ted Pella, USA) to monitor the resistance across one 

of the flexible legs using a digital multimeter (DMM7510, Keithley Instruments, USA). 

Placed between two metal compression plates, the hair electrode underwent a repeated 

compression of 1000 cycles, with each cycle lasting approximately 6 seconds. Figure 36 

shows the testing setup used for this experiment with multimeter and laptop for recording 
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results (Figure 36A), and the positioning of the electrode between the compression plates. 

(Figure 36B).  

 

Figure 36. Compression Test Setup for Elastomeric Hair-based Electrodes. (A) Motorized 

tension/compression test stand setup with benchtop digital multimeter and laptop to 

measure resistance. (B) Placement of elastomeric hair-based electrodes between 

compression plates of test device. 

 

The results from this test are shown in Figure 37, with the entire captured 

resistance data shown in Figure 37A, showing a general decrease in resistance over the 

test period. A single cycle in this process is expanded in Figure 37B, showing how the 

resistance increases under compression for the first three seconds, and returns to normal 

on decompression. A moving average is computed using a window of 90 samples 

(approximately 6 seconds) to show the reduction in resistance over 1000 cycles, showing 

a drop of -4.46kΩ.   
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Figure 37. Data from Compression Test of Elastomeric Hair-based Electrodes. (a) 

Resistance data measured across single leg of the elastomeric hair-based electrodes, with 

(b) showing a representative resistance curve for a single compression cycle. (c) is a 

smoothed curve computed from a moving average of (a), using a 6-second (90 sample) 

moving average, showing the drift in resistance over extensive mechanical usage. 

A maximum compression of 2 mm, followed by release over a 6-second period 

(Figure 34J), was repeated for 1000 cycles, simulating the maximum compression 

exhibited during EEG recording. During a single cycle of compression, the peak change 

in resistance was only 4.1 kΩ (Figure 34K). Even with 1,000 cycles, the uncompressed 

resistance changed a total of 4.46 kΩ (less than 10% of the initial resistance; Figure 37). 

The conductive elastomeric electrodes showed excellent resilience to mechanical stress 

and were still capable of measuring EEG after the test was completed. These results are 

supported by prior studies evaluating the robustness of these electrodes in high-density 

multichannel systems[77]. 

For EEG recording, a skin-like silver electrode undergoes multi-modal bending 

and stretching on the skin (mastoid), considering the ultrathin epidermis on that area with 

time-dynamics movements with the ear. For bending tests, a setup similar to the one used 

in Figure 35 for testing SKINTRONICS was used. For biaxial stretching, the device is 

placed in a custom-built biaxial stretcher (Figure 38), where opposite ends of a completed 
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electrode are silver pasted to copper wires that are connected to a digital multi-meter for 

resistance measurements.  

 

Figure 38. Biaxial Stretching Test Setup for Skin Electrodes. (a) Custom device for 

biaxial stretching with a flexible skin-based electrode on an elastomer placed between the 

4 clamps. (b) shows a close-up of the device with attached copper wire (using silver 

paste) for resistance measurement.  

Biaxial stretching caused the resistance to increase as expected as the 

interconnects thinned, followed by a fracture at over 60% strain (Figure 39). Resistance 

change during bending was also measured, showing stability under complete folding at a 

small radius. The summary of the experimental and computational study in Figure 34L-M 

validates the structural safety of the printed electrode, with over 50% biaxial strain and 

up to 180° bending at the radius of 250 µm. FEA results show the maximum strain under 

1% in any region of the electrode, while microscopic observation captures no fracture 

lines. Overall, the computational and experimental study demonstrates the mechanical 

stability of the SKINTRONICS, including both electrodes and wireless circuit, 

suggesting that the device is resilient enough for normal use with human subjects. 
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Figure 39. Data from Biaxial Stretching and Bending of Skin Electrodes. (a) electrode 

near 60% biaxial stretching before fracturing, as shown in (b). (c) experimental stretching 

shows deformation of the silver causing an increase in resistance. (d) Bending 180° 

increases the resistance due to the deformation of the skin-electrode but releasing that 

stress brings the resistance back down. 

4.2.2 Analysis of device performance 

We measure SSVEP at four frequencies (11.1, 12.5, 15.2, and 16.7 Hz), and alpha 

rhythms to test the robustness of a system to specifically decode SSVEP. We use alpha 

rhythms as the null class (no target interface action), intended for the user to relax their 

eyes in case of fatigue. Due to the overlapping frequency ranges between alpha rhythms 

(8 – 12 Hz) and intended SSVEP classes[78], the decoding process becomes more 

complex and error-prone to conventional machine learning techniques. Therefore, 

SSVEP frequencies below 11.1 Hz were not used due to frequency overlap with alpha 

rhythms. Here, the average accuracy is 86.44%, giving an ITR of 120.3 bits per minute. 

However, these frequencies were not included in the final system as they were considered 
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extraneous, and some subjects had trouble focusing on these higher frequency stimuli. It 

was studied that the risk of short bursts of alpha rhythms could cause false positive 

results in these ranges[79]. The converse case is also a concern, where intentional alpha 

rhythms (subject has eyes closed) are incorrectly interpreted as SSVEP within the alpha 

frequency band. Despite many prior works showing SSVEP-based systems within the 

alpha rhythm range, there has been limited study regarding confusion between SSVEP 

and alpha rhythm classification. 

The new electronic system, SKINTRONICS, is benchmarked against two state-

of-the-art EEG monitoring devices. The first is a 32-channel EEG system (ActiveTwo 

System, Biosemi B.V.), using water-based conductive gels (SignaGel, Parker 

Laboratories) and the second is a wireless, portable system (BioRadio, Great Lakes 

NeuroTechnologies) that allows for 8 channels in a referential montage. We demonstrate 

the functionality and performance of the SKINTRONICS via the direct comparison with 

those commercial systems. The ActiveTwo 32-channel system uses Ag/AgCl active 

electrodes to represent the gold standard, benchtop EEG system, while the BioRadio uses 

dry, flexible elastomeric electrodes (Cognionics) as a control to compare the performance 

of the SKINTRONICS. Figure 40 summarizes the comparison of SSVEP captured using 

a single occipital lobe channel (O1-Oz), by three different systems. 
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Figure 40. Analysis of the device performance in signal quality, feature extraction and 

classification accuracy. Three data sets for a conventional hair cap system (ActiveTwo; 

1st column), bulky clip-on wireless system (BioRadio; 2nd column), and our 2-channel 

SKINTRONICS (3rd column). (A-C) Periodograms of 50 samples from 12.5 Hz SSVEP 

signals overlaid over each other, with peaks highlighted with red circles; this comparison 

illustrates our device’s ability to target and capture SSVEP signals without excessive 

noise precisely and consistently. (D-F). Average signal-to-noise ratio (SNR) with four 

SSVEP classes, across all six tested subjects. Error bars represent standard error of the 

mean (n=60 recordings; 6 subjects, 10 recordings each). (G) Two-channel SSVEP data at 

12.5 Hz in time domain by using 4 Hz Butterworth high-pass filter and removed baseline 

drift. (H) Further preprocessing in the form of frequency-analysis including a single-

window periodogram. (I) Welch power-spectral density analysis (PSDA) overlapping 

periodogram. (J) Cross-spectral density analysis (CSDA) of both channels. Note that the 

cross-spectral input includes the normal Welch power spectrum, resulting in three feature 

sets to the 1-layer CNN. (K) Comparison of classification accuracy between four 

preprocessing methods, shown in (G-J). The points on the graph are the mean accuracies 
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from 36 trials from all 6 test subjects. Error bars represent standard error of the mean (n = 

36 trials). 

The side-to-side comparison of data captures the superior performance of the 

SKINRONICS (Figure 40A-C) with the consistent and overlapping peaks at 12.5 Hz 

from the first channel (O1-Oz). In these panels, periodograms from 50 consecutive 1-

second sample windows with 128 ms overlap from a single subject are overlaid on a 

single graph to demonstrate the signal variance from each of the three devices. Signal-to-

noise ratio (SNR) analysis (Figure 40D-F) for all 6 subjects was performed offline in a 

numerical program (MATLAB, MathWorks). SNR was calculated from a continuously 

recorded 10-second sample, using the computed periodogram with 2048-point (8.192 sec) 

overlapping windows for each of the four stimuli. Data for each subject were recorded 

consecutively on the same day, starting with the ActiveTwo, followed by the BioRadio, 

and finally the SKINTRONICS. Care was taken to record all the trials within the shortest 

timespan, to reduce the possibility of bias in recording, as the EEG response is known to 

vary over the course of a day. The recordings from all three devices were performed 

within two hours. The setup time for the ActiveTwo was about half an hour for each 

subject. The BioRadio and SKINTRONICS systems were easier to set up due to the use 

of fewer electrodes, and both took about 15 minutes to set up for each subject. The time 

required to record all the training and test data was about 13.5 minutes, for each system, 

with each individual trial being 75 seconds, with a minute break in between each of the 

six trials. Set up time includes skin preparation time and checking the electrode 

impedance before starting trials. 

Among the three systems, the SKINTRONICS shows the highest average SNR 

(46.6 ± 2.16 dB) from four SSVEP classes, measured with 6 human subjects (Figure 
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40D-F). This shows that SKINTRONICS SNR is a significant improvement over the 

conventional gel-based system (ActiveTwo; 16.94 ± 4.60 dB) and the portable wireless 

system with dry electrodes (BioRadio; 28.89 ± 2.28 dB). The dramatic difference in SNR 

is due to the novelty of the form-factor and conformal mounting of the SKINTRONICS, 

such that it is isolated from external electromagnetic interference, movement artifacts, 

and drift of gel electrodes. Here, the use of much shorter wires connecting the electrodes 

to the ADC in the SKINTRONICS provides the main difference in signal quality. The 

BioRadio and ActiveTwo devices both have long wires that are affected by minute 

movements of the head. As the short wires on the SKINTRONICS are secured to the 

head using the headband, and the device is also secured to the head, these movement 

artifacts are far less pronounced. A summary comparing the cable lengths of the different 

systems are given in Table 5. As the short wires on the SKINTRONICS are secured to 

the head using the headband, and the device is also secured to the head, these movement 

artifacts are far less pronounced. Due to its relatively low power requirements, the low-

profile SKINTRONICS runs off a single Li-Po battery (capacity: 40 mAh) with minimal 

power supply interference. This ensemble effect causes the device to specifically target 

EEG signals with minimized noise.  

Table 5. List of EEGs and Cable Length for Each System. 

System Name Cable Length Active Electrodes 

ActiveTwo 140 cm Yes 

BioRadio 100 cm No 

SKINTRONICS 18 cm No 

The conformal lamination of the SKINTRONICS on the back of a subject’s neck 

is another factor to isolate excessive motion artifacts, compared to bulky portable device 

(belt clip-on device; BioRadio). This arrangement also places the device close to the 
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signal source on the scalp, minimizing introduction of noise before the first gain stage. 

Devices using dry electrodes typically require active shielding on high-impedance input 

amplifiers and electrodes to protect from interference and noise [80, 81]. However, the 

use of elastomer as passive shield, combined with the use of a low-impedance ground 

effectively provides the same results with dry and non-contact electrodes [81]. Using 

tiny, thin film cables allow the device to significantly reduce potential noise input by 

simply reducing the overall size of the device. A reduction in size and complexity serves 

to reduce noise levels in electrophysiological measurement systems, as the device and 

cables act as antennae that pick up electromagnetic interference[82]. Additionally, longer 

cables that are not properly secured may cause dragging and drift artifacts due to 

movement [83]. Overall, the results comparing the SKINTRONICS with two commercial 

systems, suggest that a low-profile, portable device garners superior SNR to larger 

systems that require longer leads and higher capacity power source.  

To further quantify the SKINTRONICS performance, we conducted a canonical 

correlation analysis (CCA; details in the Appendix under   
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Frequency component analysis with CCA). Our system achieves an average 

accuracy of 89.6 ± 2.1% at the shortest data length of 0.512 seconds for four SSVEP 

classes over 6 human subjects (details of original datasets appear in Figure 41). The 

primary metric used to establish the efficacy of the EEG system is information transfer 

rate (ITR), calculated in bits per unit time (details may be found in the Appendix under 

Calculation of Information Transfer Rate). For each instruction relayed through the 

interface, the incoming EEG data was evaluated three times, every 64 ms. As actions are 

taken if three consecutive windows are consistent, it provides an additional layer of 

protection for the user of the interface to reduce likelihood of incorrect commands 

transmitted to targets. Using this method, the 4-class classification results using CCA 

results in an ITR of 77.63 ± 5.32 bits per minute, with window length, w=0.94 s, adjusted 

for gaze-shifting (+300 ms) and confusion protection (+128 ms).  

 

Figure 41. Feature representations using power and cross-spectral analyses. (A) A filtered 

EEG sample encoded with a noisy 15.2 Hz SSVEP signal in channels O1 and O2. (B) A 

simple periodogram using a window of equivalent length (single window periodogram). 

(C) The cross-spectral estimate of the single-windowed periodograms. This result may be 
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improved by using windows of 0.5-second length with 50% overlap (Welch’s method), as 

seen in (D). Now, the 15.2 Hz peak is better represented, but still contains a peak around 

11Hz. Taking the cross spectral estimate with Welch’s method gives us (E), which most 

closely represents the intended frequency content. In this example, the baseline CNN 

trained for classifying cross-spectral density data predicts the correct class. The labels 

show the predicted class and softmax output probabilities, where red represents a false 

classification output, and green represents the correct output. 

To  improve upon the classification accuracy achieved using CCA, we utilized 

support vector machines (SVMs) and CNN[20]. Analysis includes comparison of time-

domain and frequency-domain data using identical windows from the initial source in the 

form of single-window periodogram analysis and Welch power spectral density analysis 

(PSDA). A final coherence-based method, cross-spectral density analysis (CSDA) was 

also implemented due to its ability to analyze the coherence of multiple channels, 

allowing for more precise frequency decomposition versus single-channel PSDA. Time 

domain signals were preprocessed using 3rd order Butterworth high-pass filter with a 

cutoff frequency of 4 Hz to remove DC offset and baseline drift. Due to the high quality 

of the source signals, no other digital filtration was found to significantly improve 

classification. These feature extraction methods are used to compare the learned feature-

extraction capability of CNN versus manual feature extraction with SVMs using various 

kernel functions (linear, quadratic, cubic, Gaussian).  

The procedure for gathering training data involved a continuous EEG recording 

with 15 seconds for each class, separated by auditory cues. The classes were recorded in 

order of alpha rhythms, for the first 15 seconds, followed by 15 seconds of gazing at four 

different LED stimuli. Here, each recording where all five classes are performed 

constitutes a single trial. This trial was performed 6 times for each subject. Note that the 

experimental method for gathering training data is not the same as the experimental 
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testing method. To train the convolutional neural networks, the training data were sub-

divided into window sizes of 128, 192, 256, 384, 512 data points (corresponding to 0.512, 

0.768, 1.024, 1.536, 2.048 sec data windows) were selected to gauge changes in accuracy 

over different window sizes. Empirical data from the SKINTRONICS suggested that 

training from a continuous stimulus was significantly more effective use of training data 

than a faster (< 1 second) cue-guided task. This may be because the relevant SSVEP 

features required for training are most optimal during these longer sessions of looking at 

the stimulus. The recording procedure for training and test data allowed for an additional 

0.3 seconds for gaze-shifting between stimuli. From the training set, there were 2700 

samples from each subject used, 450 samples from each of the 6 recordings. Therefore, 

for 5 subjects, a single training epoch consisted of training on 13,500 samples. For testing 

classification performance, a total of 30 individual stimuli were presented, for a total of 

0.704 seconds, which allowed for classification of three consecutive 0.512ms samples. 

This was used as a safety mechanism for the control interface, where action would only 

be taken with a majority decision (2 or more classes match). Combined with gaze shift 

time, that brings the length of the window used up to 0.94 seconds (0.512+0.3+0.128 s). 

This same process was repeated for all the different window lengths. As a result, for each 

subject there were 450 samples of test data per trial for each window length, 90 for each 

class.  

The aim of this research is to show the universal capability to classify SSVEP 

from two channels on any subject. Therefore, 6-fold cross-validation is performed on a 

subject-to-subject basis with five subjects’ training data used to train the model, and the 

remaining subject’s test data used for evaluation. This validation method was performed 
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with both the CNN and the SVM models. For the CNN, the training involved feeding a 

training batch of 256 and a test batch of 100 samples in each iteration. Following 3000 

training iterations (approximately 57 epochs), or, if no validation improvement occurs 

after 150 training steps, the training terminates. The test sets are subsequently evaluated 

for accuracy. Figure 40G-K demonstrates each of these preprocessing and analysis 

methods by using a 1.024-sec segment at 12.5 Hz SSVEP. Two-channel (O1-Oz and O2-

Oz) time-domain data (Figure 40G) is converted to a single-window periodogram (Figure 

40H), PSDA (Figure 40I), and CSDA (Figure 40J). The summary of resulting accuracies 

from 4 datasets appears in Figure 40K. These preliminary results suggest that the basic 

network most effectively extracts features from CSDA and time-domain data. In this 

example, details of the feature extraction of four types of methods are summarized in 

Figure 42. A noisy sample at 15.2 Hz is incorrectly classified when evaluated in time-

domain, single periodogram, CSDA, and PSDA. However, the correct output is achieved 

with the combination of CSDA and using overlapping window (Figure 42E). The details 

of PSDA and CSDA methods are shown in Section S6 and Section S7, respectively.  
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Figure 42. Hyperparameter Optimization of 1 Layer Convolutional Neural Network. (A) 

Different learning rates between 1e-2 and 1e-4 were tested in, followed by number of 

units in the fully connected layer in (B). (C) Dropout regularization in between 25% and 

75% is then added and analyzed. (D) Different activations in the fully connected layer are 

added. It appears that ReLU activation performs more optimally in the fully connected 

layer. (E) The activations following the convolution operation were varied, with 

LeakyReLU performing most optimally. (F) The number of filters was varied from 1 to 

32, with 5 filters providing the most optimal performance with 92.53 ± 1.01%. 
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4.2.3 Grid-search optimization of CNN 

With shared weights, CNN can detect features on either channel at any location, 

while keeping the size of the network relatively small[84]. In all models, these filters and 

other trained variables were optimized through the use of an optimization algorithm with 

a constant learning rate (Adam, learning rate=0.001, ß1=0.9, ß2=0.999)[85], and error was 

calculated using the cross-entropy loss function. The input to the network is a 2D array of 

(n, 2), where n is the number of data points for a window sampled at 250 Hz (e.g. n=128, 

for a window length of 0.512s), and the 2 represents each of the two channels.  As 

summarized in Figure 43, multiple convolutional layers allow for detection of low-level 

features that cannot be detected with a single filter. It also allows for down-sampling and 

collection of relevant activations from previous layers, to be classified by a fully-

connected layer. This work optimizes the baseline CNN through two stages of 

improvements, adjusting components and hyperparameters on a single layer. A grid 

search approach was used because training for such a small dataset could be completed in 

a few minutes on consumer hardware, and it was reasonably efficient to find an optimal 

solution. First the optimum parameters are determined for a CNN with 1 convolutional 

layer and 1 fully connected layer before the output layer. This model is then expanded to 

multiple layers, as needed, to further improve accuracy. In Figure 43A, we represent 

‘active’ features using a gray-scale representation of the time-series data. Here, 50 2D-

convolutions are performed across each channel, resulting in 100 outputs total. An 

additional 100 2D convolutions are performed on the second convolutional layer, 

resulting in the outputs shown in Figure 43B. A fully connected layer of 1,024 units is 

produced, followed by a fully connected output layer with 5-class SoftMax activation 
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(Figure 43C). Mean accuracy results from SVM and CNN models for time-domain and 

CSDA data are shown in Figure 43D and Figure 43E, respectively. Of the four SVM 

kernel types tested, the highest accuracy results were chosen (cubic kernel) to be 

displayed for all results. 
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Figure 43. EEG classification with CNN. (A) High-pass filtered raw EEG data in time 

domain with features linearly rescaled between 0 and 1, labeled as SSVEP class ‘12.5 

Hz’, along with a representative greyscale image. (B) Greyscale representation of output 

weights in the two layers of CNN as well as in the fully connected layer using the 2-CNN 

model for time domain data. (C) Table of softmax class outputs, indicating a correct 

choice with 99.89% probability. (D) CNN and SVM classification test accuracy using 

time domain data and cross-validating across all subjects. (E) CNN and SVM test 

accuracy on frequency-domain data, cross-validating across all subjects, with window 

lengths from 0.512 to 2.048 seconds. The displayed results are from the strongest SVM 

of the four tested (cubic kernel). (F) Confusion matrix representing results from offline 

accuracy test of time-domain data of data window length w=0.512s, with an overall 

accuracy of 94.54% (n=2700 samples; 6 subjects, 450 samples each). (G) Confusion 

matrix representing results from real-time accuracy test of time-domain data of length 
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w=0.512s, with an overall accuracy of 94.01% (n=2700 samples; 6 subjects, 450 samples 

each). 

This serves to establish universal applicability for the acquisition of SSVEP using 

only two-channel SKINTRONICS. Multiple support vector machines were used to train 

the same datasets as were used to train the CNN. The same subject-to-subject cross-

validation scheme was used for all training models. The results show the SVM models 

able to achieve high accuracies with frequency-domain features for all kernel types. 

However, the linear SVM failed to classify time domain signals beyond trivial accuracies. 

Overall, the optimized 2-layer CNN was superior in all situations, due to its inherent 

ability to extract low-level features through shared weights and its ability to detect many 

features that standalone SVMs cannot. Based on this evidence, this system and 

classification model can be trained on a small group of individuals and used in universal 

SSVEP-based BMI applications. To further emphasize these offline results, a confusion 

matrix, representing the results from the shortest data window input (w = 0.512 seconds) 

is summarized in Figure 43F where the wireless scalp system achieves a high accuracy 

(94.54 ± 0.90%) for a corresponding information transfer rate of 122.1 ± 3.53 bits per 

minute. In comparison, real-time cue-guided SSVEP test data across all six subjects 

shows the accuracy of 94.01 ± 3.6% (Figure 43G). These results show a consistent level 

of accuracy even with real-time classification, which allows for precise control over 

different interface targets, including an electronic wheelchair, wireless mini-vehicle 

(Figure 44). 
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Figure 44. In vivo demonstration of wireless, portable BMI with human subjects. (A) 

Subject seated in a powered wheelchair with the LED stimulus array (B) and 

SKINTRONICS secured and conforming to the back of the neck (C). (D) Android user 

interface during training and evaluation, showing time-domain data, corresponding power 

spectrum, and output class. (E) EEG data recorded at each state, labeled as alpha 

rhythms, 11.1 Hz, 15.2 Hz, 12.5 Hz, 16.7 Hz SSVEP respectively. (F-H) Three target 

machines to control via SSVEP signals, including a wireless electronic wheelchair (F) 

with 5 classes (no action, forward, rotate counterclockwise, rotate clockwise, and reverse, 

and wireless vehicle (G) with the same commands as the wheelchair, and PowerPoint 

presentation (H) with 5-class actions (no action, begin presentation, next slide, previous 

slide, and end presentation, respectively). To compare SKINTRONICS to commercial 

systems, the same optimized CNN procedure was performed on data from the BioRadio 

and ActiveTwo systems. 
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A plot comparing the data from all three systems is shown in Figure 45, showing 

a clear gulf between the accuracies of the SKINTRONICS and the other two systems. 

This data is supported by the difference in SNR, as discussed previously. 

 

Figure 45. Comparison of classification accuracies of time domain data from 

SKINTRONICS, BioRadio and ActiveTwo systems using optimized CNN model.  

4.3 Results of 5-target SSVEP-based navigation interface 

In this work, we demonstrate the feasibility of the SKINTRONICS for a portable, 

wireless BMI via SSVEP from 6 human subjects (Figure 44). For the experiments, 

subjects were seated in front of the LED stimulus setup, about 0.8 m away from their 

head at eye level where all four stimuli are presented simultaneously (Figure 44A). A 

subject conducts five tasks; gazing at each LED stimuli, and a null task (eyes closed, for 
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alpha rhythms) and gazing four LED locations (Figure 44B), while the SKINTRONICS 

securely conforms to the back of the subject’s neck (Figure 44C). The EEG data is 

recorded, displayed and saved in real-time, along with the corresponding classification 

outputs on an Android-based mobile device (Figure 44D). Impedances between the hair 

mount electrodes to ground were maintained below 20 kΩ. Due to the use of flexible 

contacts of the scalp-mounted dry electrode and skin-like electrode on the mastoid, we 

maintained relatively low skin-electrode contact impedance. For all experiments, we used 

250 Hz sampling rate. An Android-based operating system was selected to demonstrate 

functionality and feasibility of a fully portable, wireless BMI. The SSVEP data 

transmitted from the SKINTRONICS was received by a Bluetooth enabled smartphone 

(Samsung Galaxy S7). The data was preprocessed and fed into the trained CNN for 

classification on the smartphone. The output of the classification was directly used to 

control the interface target. A set of representative EEG data from 5 classes appears in 

Figure 44E, including alpha waves and 5 SSVEP data of 11.1, 15.2, 12.5, and 16.7 Hz. A 

subject uses these data to control three target machines, including a wireless electronic 

wheelchair (Pronto, Invacare; Figure 44F), a wireless mini vehicle (Minidrone, Parrot; 

Figure 44G). For the electronic wheelchair and wireless vehicle, the methods of control 

are the same as they are both two-wheel drive vehicles. When the subject has their eyes 

closed, the vehicle does not move, and only begin to move once SSVEP is classified by 

the central processing device. The top LED (11.1 Hz) is used to program the forward 

motion of the wheelchair and vehicle. The right-facing 15.2 Hz LED results in a counter-

clockwise rotation, while the left-facing 12.5 Hz results in a clockwise rotation. The final 

16.7 Hz LED operates the reverse functionality. For the presentation control interface, the 
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top LED initiates the start of the presentation, the right LED proceeds forward through 

the slides, and the left LED reverts to the previous slide. Lastly, the bottom LED 

terminates the presentation. This simple functional interface illustrates the potential of the 

SKINTRONICS to be easily implemented in many rehabilitation applications, as the 

controls can be easily reassigned to any target with equivalent or fewer targets. 

Additionally, this method can be scaled up to include a greater number of classes, which 

was previously not possible due to a lack of signal quality. Overall, subjects were able to 

achieve highly accurate and precise real-time control of three target machines with 94.01 

± 3.6% accuracy at 0.512-second intervals and 96.24 ± 3.4% at 1.024-second intervals. 

Subjects with various hair types and conditions were selected to ensure the electrodes 

could perform in various scenarios. A table detailing the hair types of each of the subjects 

is shown in Table 6.  

Table 6. Subject Information: Ethnicity and Hair Conditions. This table demonstrates the 

variety of hair conditions among the subjects and shows the consistent SNR achieved 

using the SKINTRONICS system. 

Subject 

Number 

Ethnicity Hair 

thickness 

Hair Length Mean SNR (dB) 

S1 Caucasian Sparse Long 40.1±4.9 

S2 Asian Dense Short 54.9±2.4 

S3 Caucasian Dense Short 37.2±9.1 

S4 Caucasian Sparse Very Short 60.4±2.2 

S5 Caucasian Dense Short 64.2±1.5 

S6 Asian Dense Short 60.3±3.9 

4.4 Discussion and Analysis 

The collection of materials presented here reports that a fully portable, wireless, 

ergonomic SKINTRONICS offers highly accurate, real-time monitoring of SSVEP on the 

scalp for a BMI. The flexible hybrid electronic system integrates a highly conformal 
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wireless circuit on the back of the neck, a skin-like membrane electrode on the mastoid, 

and three flexible conductive electrodes on the occipital lobe. The extremely small form 

factor and associated portability of the low-power SKINTRONICS makes it less prone to 

interference and movement artifacts. The adherence to the skin and mechanically 

compliant electrodes allows for reasonable flexion and movements without any 

significant artifacts added to the EEG signals. Provided these advantages, locations of 

highest signal density may be targeted with fewer electrodes, producing high resolution 

signals from the areas of highest signal density. The electrode configuration is designed 

to target a consistently high SSVEP SNR across all subjects. A custom optimized 

algorithm using deep-learning CNN provides real-time, highly accurate classification of 

SSVEP and a highly efficient information transfer rate with only two channels (122.1 ± 

3.53 bits per minute; Table 7), enabling precise control of a wireless wheelchair, 

motorized mini-car, and a presentation software. To mitigate risk of collisions or 

accidents when piloted by motor-limited subjects, the wheelchair can use collision 

prevention systems incorporating infrared or other proximity sensors[86]. Additionally, 

the wheelchair can be bound to a specific set of paths to prevent accidents arising from 

misclassification.  

This result is significant due to the decreased number of channels used when 

compared to other systems and is also fully integrated for comfort and a low profile. Due 

to the decreased number of channels, correlation-based analyses such as canonical 

correlation analysis (CCA) and task-related component analysis (TRCA) could not be 

used with 2 channels. This control demonstrated by healthy subjects may easily be 

learned by subjects with weak or nonexistent motor control (locked-in syndrome), 
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requiring only movement of the eyes and closure of the eyelids. Using high-quality 

signals over a targeted two channels, combined with an optimum classification method, 

we can achieve a high accuracy with limited information, generalized enough to be used 

with any subject, demonstrating the possibility of a universal BMI.  

Table 7. Comparison of information transfer rate (ITR) between the SKINTRONICS and 

reported values. 

 Year 
Accuracy 

(%) 

Length 

(sec) 
# of classes 

# of 

channels 

ITR 

(bits/min) 

This work 

(SKINTRONICS) 
2019 94.54 0.94 5 2 

122.1 ± 

3.53 

Nakanishi et al.[87] 2018 89.83 0.8 40 9 
325.33 ± 

38.17 

Chen et al.[88] 2015 91.09 1 40 9 
270.0 ± 

61.8 

Bevilacqua et al.[89] 2014 95.61 2 3 4 38.44* 

Kwak et al.[20] 2017 99.19 2 5 8 67.13* 

Volosyak et al. [90] 2011 96.79 2 5 8 
61.70 ± 

32.68 

Lin et al. [91] 2007 73.00 1.5 9 8 60.74* 

Bin et al. [92] 2009 95.30 2 5 8 58.6 ± 9.6 

4.5 Conclusion 

Overall, this research reports fundamental strategies to design an ergonomic, 

portable EEG system for a broad range of rehabilitation and therapeutic applications. 

Future studies would focus on investigation of including a greater number of classes and 

reducing eye strain by using a virtual reality headset to immerse the subject into the 

training environment.   
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5 SSVEP-BASED VR TEXT SPELLER FOR COMMUNICATION 

5.1 Virtual Reality Environment 

As shown in the previous two sections, we can see the potential in using flexible 

electronics for EEG data acquisition. Additionally, we showed that SSVEP, despite its 

limitations of requiring a stimulus in front of the subject, can still be utilized for 

navigation purposes. However, there were many issues with these systems, as will be 

detailed. First, the PI-based needles have many issues including poor yield, low mold 

lifespan and a generally tedious and wasteful process, which is tackled and discussed in a 

later section. The serpentine interconnects are only insulated on one side, and therefore 

require some additional coating after processing in order to function correctly. Uncoated 

interconnects were prone to tangling and were very difficult to untangle. Elastomer 

coatings often caused more artefacts through electrostatic effects[26], and defeated the 

purpose of using thin, insulated interconnectors. Finally, SSVEP interfaces work well for 

applications such as navigation, where a few targets are needed to move in a few 

directions but are not useful where more commands are needed. In this section we are 

going to demonstrate how we attempted to solve each of these shortfalls and created an 

optimal, fully mobile SSVEP-based text speller VR interface with a multitude of 

potential real-world applications. 

A virtual reality environment provides many advantages that a simple computer 

screen does not. Firstly, it allows for an immersive environment allowing a BMI user to 

focus on the task at hand, which has been shown to vastly improve classification 

accuracy and BMI literacy[13, 43]. Secondly it has an interesting property where each 
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eye does not see the same screen; each eye sees a separate display, which is demonstrated 

in order to effectively double throughput.  

5.1.1 Stage 1: 11-target stimulus environment  

To test the feasibility of using VR as a stimulus for a high-throughput SSVEP-

based interface, a VR training environment was developed using a cross-platform 

software development engine (Unreal Engine 4.26, Epic Games Inc.). The paradigm used 

is shown in Figure 46. Here the mobile tablet features as a data collector and central 

processor. Data is transferred from the EEG devices to the tablet where it is processed 

and classified in real-time and the results are transmitted to the target headset.  

 

Figure 46. Flowchart demonstrating information flow for training environment 

In this first stage, the aim is to establish feasibility using a 10-target SSVEP 

stimulus setup, using standard stimuli (both eyes experience same visuals), listed in Table 

8. In this experiment, each stimulus is presented one at a time for four seconds each, 

separated by 2 seconds to allow the subject to relax. These trials were recorded 20 times 

for a total of 22 minutes of data per subject. The stimulus data is then segmented into 

windows of various length and classified using a CNN with spatial filters (see Feature 
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extraction and classification in Chapter 3). The results from a 5-fold cross-validation 

scheme based on the Stage 1 data recorded is presented in Table 9. 

Table 8. List of Targets and Stimuli for Stage 1 VR Training Setup 

Class #:  Desc Lfreq Lphase Rfreq Rphase 

0 Eyes Closed N/A 

1 Stage1_1 10.0 0.00 same same 

2 Stage 1_2 10.8 1.75 same same 

3 Stage 1_3 11.6 1.50 same same 

4 Stage 1_4 12.4 1.25 same same 

5 Stage 1_5 13.2 1.00 same same 

6 Stage 1_6 14.0 0.75 same same 

7 Stage 1_7 14.8 0.50 same same 

8 Stage 1_8 15.6 0.25 same same 

9 Stage 1_9 16.4 1.85 same same 

10 Stage 1_10 17.2 1.60 same same 

Table 9. Demonstration of cross-fold validation of 11-class Stage 1 dataset using Spatial 

CNN with 1-second windows.  

Subject 1 2 3 4 5 Mean Std. 

Error 

ITR 

(bits/min) 

S1 99.3% 91.5% 99.0% 99.0% 99.9% 98.3% 0.7% 197.0 

S2 94.6% 96.1% 91.3% 96.1% 95.6% 93.7% 1.8% 174.5 

S3 97.5% 99.1% 98.6% 98.7% 99.0% 98.2% 0.4% 196.2 

S4 88.6% 90.2% 88.5% 94.3% 93.5% 90.8% 1.0% 162.5 

S5 93.0% 89.3% 96.6% 97.2% 97.9% 94.9% 0.8% 179.9 

S6 98.2% 93.7% 98.2% 97.4% 95.7% 97.2% 0.5% 191.1 

S7 96.0% 81.4% 98.9% 99.4% 99.7% 96.4% 1.6% 186.9 

S8 97.2% 76.9% 95.0% 81.5% 94.6% 90.8% 2.1% 162.7 

Average 
     

95.04% 1.11% 180.6 

5.1.2 Stage 2: 9-target dual-stimulus concept  

For the second stage of testing, we introduced the per-eye stimulus system, where, for 

each stimulus, each eye would be presented with a different frequency, and each class 

would have a unique combination of frequencies for the left and right eye. In theory, if 

the information is retained to the same degree when compared to that of a single-
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frequency stimulus, this allows us to effectively double the information we can pass 

through this BMI-based system. The details of which frequencies are used in which eye 

are shown in Table 10, and the cross-validation results are presented in Table 11. 

Table 10. List of Targets and Stimuli for Stage 2 (per-eye) VR Training Setup 

Class #:  Desc Lfreq Lphase Rfreq Rphase 

0 Eyes Closed N/A 

1 Stage 2_1 10.0 0.00 16.9 1.00 

2 Stage 2_2 11.1 1.75 15.8 0.75 

3 Stage 2_3 12.2 1.50 14.7 0.50 

4 Stage 2_4 13.3 1.25 13.6 0.25 

5 Stage 2_5 14.4 1.00 12.5 0.00 

6 Stage 2_6 15.5 0.75 11.4 1.75 

7 Stage 2_7 16.6 0.50 10.3 1.50 

8 Stage 2_8 17.7 0.25 9.2 1.25 

Table 11. Demonstration of cross-fold validation of 9-class Stage 2 dataset using Spatial 

CNN with 1-second windows. 

Subject 1 2 3 4 5 Mean 

Std. 

Error 

ITR 

(bits/min) 

S1 92.6% 92.6% 91.8% 94.6% 95.5% 94.3% 0.6% 177.4 

S2 96.9% 92.4% 94.7% 96.8% 95.6% 95.7% 0.5% 183.5 

S3 94.0% 83.0% 91.7% 90.0% 93.4% 91.9% 1.1% 167.2 

S4 93.3% 94.2% 92.1% 96.7% 89.7% 93.2% 0.7% 172.4 

S5 92.0% 83.7% 97.6% 93.9% 94.9% 91.4% 1.3% 165.2 

S6 66.8% 71.9% 74.4% 79.6% 70.9% 70.4% 1.9% 96.0 

S7 95.0% 88.4% 95.1% 98.7% 98.4% 96.0% 0.9% 185.2 

S8 64.8% 63.7% 62.4% 70.2% 59.9% 65.3% 1.1% 82.6 

Average      87.29% 1.01% 149.2 
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5.1.3 Stage 3: Final 33-target Text Speller  

The final text speller setup uses a combination of matched frequencies in both eyes and 

per-eye stimuli, as shown in Figure 47, where the rows in red show standard SSVEP 

stimuli, and the rows in blue show the per-eye stimuli; where the number given first is the 

frequency of the stimulus presented to the left eye, and the number after the ‘/’ is the 

frequency of the stimulus presented to the right eye.  

 

Figure 47. Default text speller interface layout. (A) Frequency of each stimulus tile in Hz 

and (B) corresponding command on default English keyboard.  

5.2 Tangle-resistant high-throughput interconnects 

As mentioned previously, the main issues with the interconnects included an issue where 

the serpentine interconnects are only insulated in one side, and therefore require some 

additional coating after processing to function correctly. Uncoated interconnects were 

prone to tangling and were very difficult to untangle. Elastomer coatings often caused 
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more artefacts through electrostatic effects[26], and defeated the purpose of using thin, 

insulated interconnectors. Therefore, the connectors were redesigned to prevent tangling, 

insulation of both sides of the conductor, and improve overall robustness at the cost of 

reducing maximum strain before yield. These connecters were then evaluated in a similar 

manner as the connectors in Chapter 3, as shown in Figure 48. 
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Figure 48. Characterization of stretchable EEG interconnectors. A) Photos showing test 

setup with benchtop DMM connected to sample. The sample is connected using ACF 

cables using silver paint. B) Measurement of electrical resistance change showing 

mechanical fracture after ~65% of tensile stretching. C) Cyclic tensile stretching of up to 

20% strain for 100 cycles, with minimal resistance changes. D) Peak resistance change 

per cycle over 100 cycles.   

5.2.1 Performance analysis 

5.3 Biocompatible, flexible epoxy microneedle 

In Chapter 3, replica molding of PI microneedle arrays was demonstrated. Despite the 

excellent impedance and signal quality outcomes, this process had many serious 

drawbacks, making it impractical for large scale manufacturing. PI 2610 is a polymer 

based in a highly volatile solvent, NMP. As a result, the PI must be settled, and the NMP 

slowly evaporated in vacuum-then-bake cycles in order to mold high quality needles. 

Unfortunately, this process is extremely sensitive to ambient temperature and other 

variables out of the control of a basic laboratory environment. Many air bubbles remained 

in a significant number of samples resulting in low yield. Even from the high-quality 

needles, the thickness of the PI backing varied between 100µm to 1mm, due to manual 

deposition of PI in layers. There is potential for such a process to be automated, 

optimizing for exact depositions in highly controlled air pressure and temperature 

enclosures, but that process would be highly costly and impractical. Another major 

problem is that baking PI in the PDMS molds destroys the molds, with the molds only 

usable for three cycles; needle quality diminishing each cycle. Additionally, the process 

is difficult to parallelize due to requirement of specialized processes like plasma 

treatment. Needle quality is highly variable with a yield of less than 50%.  
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To resolve this problem, a new needle material was acquired with similar 

mechanical properties to PI but optimized for replica molding. An epoxy (EP4CL-

80MED, Master Bond Inc.) was selected due to its excellent mechanical properties, and 

its ISO 10993-5 compliance, designed for biomedical applications. Additionally, this 

epoxy was compared with another epoxy on hand (EpoxAcast 670 HT) for a low-cost 

alternative. The use of an epoxy greatly simplified the fabrication process, as the molds 

only must be filled once and cured at 90°C for 2 hours. Additionally, due to its low 

temperature curing process the lifespan of the PDMS molds may be extended. With the 

improved process, small 7x7mm squares of 0.5 mil thick PI sheets were cut, and an 

excess quantity of EP4CL epoxy was placed in the PDMS molds. A square PI sheet and 

plunger weight was added on top and compressed in order to fill the PDMS mold cavity 

and push out excess epoxy, leaving only the thin PI backing.  

5.3.1 Performance analysis 

The EP4CL is a unique 1-part epoxy system that demonstrates strong mechanical 

properties including tensile strength of 6500 psi, and a tensile modulus of over 450,000 

psi. Additionally, it features a Shore hardness rating of around 95, making it an excellent 

alternative to PI. Additionally, it has a relatively low viscosity (50-150 cPs) at room 

temperature, making it easier to handle and work with, when compared with conventional 

2-part epoxies like EpoxAcast. Finally, the most significant improvement over PI is the 

short fabrication time, with the needles capable of finalization after a low temperature 

cure of 60 minutes at 80-85°C. Lastly, it features a linear shrinkage of less than 0.5%, 

whereas PI contracts significantly during the hard baking process.  
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As a result of the improved design, the microneedle portion retained low 

impedance density of 9.5±1.6 kΩ-cm2 averaged across all subjects, similar in 

performance to the PI-based needles 9.7±3.3 kΩ-cm2. The primary advantage to the 

epoxy is the high yield and lower cost due to longer mold lifespan. However, EP4CL-

80MED is significantly more brittle than PI-based needles, and therefore is only capable 

of a bending radius of 8.0 before fracturing. A summary comparing different microneedle 

electrodes to conventional cup and paste electrode are shown in Table 12. 

Table 12. Comparison of electrode characteristics used in testing. 

Needle type Yield Biocompatibility Flexibility 

(radius of 

curvature) 

Impedance Density 

(kΩ-cm2) 

Conventional 

cup/paste 

N/A Good None 37.6±10.7, changes 

over time 

PI-2610 42% Excellent[93]  5.0 mm 9.7±3.3, consistent 

Epoxacast 670 

HT 

80% Poor  Not flexible 26.0±7.6, 

consistent 

EP4CL-

80MED 

96% Excellent 8.0 mm  9.5±1.6, consistent 

5.4 Results 

Accuracy performance from the system demonstrates high SNR and significantly 

improved classification accuracy over the conventional EEG electrodes. We demonstrate 

the feasibility of using customizable stimuli for a virtual reality-based interface by 

recording 33-class SSVEP from 6 human subjects. Subjects were asked to sit comfortably 

and wear the VR headset and await instruction. Then the stimuli were presented to the 

subject at regular intervals where the subject would glance at each of them in turn. An 

overview of the setup is shown in Figure 49A, with the top row of flexible microneedle 

electrodes residing under a thin headband, and the lower row residing below the strap of 
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the VR headset. A screenshot of the SSVEP-based keyboard in the VR environment is 

shown in Figure 49B. A closeup of the epoxy-based microneedle electrode is presented in  

Figure 49C. Closeups of the behavior of the stretchable tangle-resistant interconnect is 

shown in Figure 49D. Finally, the same Skintronics EEG devices used in Chapter 3 is 

used again in this project due to its small footprint, versatility and high SNR.  
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Figure 49. Overview of refined Skintronics system. (A) Subject wearing Skintronics EEG 

interface and VR headset. (B) Cropped screenshot of VR text speller interface (C) 

closeup of new epoxy microneedle electrode (uncoated). (D) closeup of tangle-resistant 

interconnector peeling from substrate. (E) closeup photo showing Skintronics EEG 

flexibility. (F) demonstration stretching from relaxed state (left) to 40% strain on 

interconnector (right).  

The completed experimental setup involves the Skintronics device placed at the 

back of the neck, as seen in Figure 49. The stretchable interconnects are routed from the 

EEG under and around the VR headset to the electrodes on the scalp. The placement of 

the electrodes is meant to target each hemisphere of the brain in order to measure signals 

biased to one side (due to the per-eye stimulus system). Electrode placement with relative 

positions based on the 10-10 system are shown in Figure 50. These positions were 

selected based on the anatomy and the fact that for some of the stimuli each eye would be 
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viewing a different stimulus, therefore it was important for the setup to have a bilateral 

setup, where certain channels can measure data from the center outwards, which are more 

center-biased, and some channels that measure exclusively to one hemisphere, and hence 

left- or right-biased.  

 

Figure 50. Relative electrode positions of 4-channel bilateral SSVEP setup. 

For classification, the same Spatial-CNN architecture was used from the motor 

imagery project (See Chapter 3), adjusted for 4-channel input and shorter input lengths. 

An illustration of this architecture and its hidden layers are presented in Figure 51. 
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Figure 51. Spatial-CNN architecture and revealed hidden layers, as well as output 

demonstrating accurate classification from a 33-class dataset.  

 Data recorded with this setup from 6 subjects demonstrates an average accuracy 

of 91.07±0.63% with 1-second windows, resulting in an information transfer rate of 
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249.7 ± 4.4 bits/min. This ranks among the highest throughputs in the current published 

literature as shown in Table 13. The overall results are shown in  

Table 14. 

Table 13. Comparison of information transfer rate (ITR) between the new VR-based 

SKINTRONICS and reported values. 

 Year 
Accuracy 

(%) 
Length (sec) # of classes 

# of 

channels 

ITR 

(bits/min) 

This work 

(SKINTRONICS) 
2021 91.19 1.00 33 4 

250.5 ± 

3.2 

Mahmood et al.  

[58] 
2019 94.54 0.94 5 2 

122.1 ± 

3.53 

Nakanishi et al. 

[87] 
2018 89.83 0.8 40 9 

325.33 ± 

38.17 

Chen et al. 

[88] 
2015 91.09 1 40 9 

270.0 ± 

61.8 

Bevilacqua et al. 

[89] 
2014 95.61 2 3 4 38.44* 

Kwak et al. 

[20] 
2017 99.19 2 5 8 67.13* 

Volosyak et al. 

[90] 
2011 96.79 2 5 8 

61.70 ± 

32.68 

Lin et al. 

[91] 
2007 73.00 1.5 9 8 60.74* 

Bin et al. 

[92] 
2009 95.30 2 5 8 58.6 ± 9.6 

Wang et al. 

[94] 
2010 97.20 3.08 16 10 72.2 

 

Table 14. Overall results from 33-class VR-text speller directed training task.  

Subject 1 2 3 4 Mean ITR (bits/min) 

S1 97.36% 93.56% 92.46% 90.64% 93.50% 262.4 

S2 90.53% 96.71% 87.11% 93.33% 91.92% 254.1 

S3 88.88% 90.76% 93.31% 90.91% 90.97% 249.3 

S4 94.41% 90.18% 86.76% 88.91% 90.07% 244.8 

S5 92.27% 86.57% 88.75% 90.41% 89.50% 242.1 

Average 
    

91.19±1.42% 250.5±3.2 
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5.5 Conclusion 

The goals of this project were to attempt to maximize throughput of an SSVEP-

based BMI by optimization of various components from prior work. Several major 

limitations from the first two projects were identified. Materials and processes were 

developed in order to resolve these issues. Overall, the system achieved very high 

information throughput thanks to its use of innovative combination of flexible electronics 

and clever use of VR stimulus setup. As shown in Table 13, our system ranks among the 

best SSVEP-based BMIs. Examples demonstrating superior information transfer rates are 

based on conventional benchtop EEG systems with twice as many electrodes and highly 

synchronized, purpose-built stationary systems. Our Skintronics systems offers the 

portability and VR reality interface to accomplish virtually any task. There is great 

potential for VR environments to rehabilitate individuals with LIS and allow them to 

freely interact with others by their own will, and to browse the internet freely (see mock-

up in Figure 52).  
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Figure 52. User interface demonstrating a potential use for an SSVEP-based BMI, 

allowing a user to browse the web through their VR headset; in this example, watching a 

video online. 

 The ability to freely interact with the internet and other people on their own 

command can provide much needed feelings of control, resulting in improved quality of 

life for individuals afflicted with LIS.   
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6 FUTURE WORK 

6.1 Summary and original contribution 

This thesis demonstrates a significant advancement in the state of non-invasive brain-

machine interfaces. The combination of flexible, hybrid electronics (Skintronics) allows 

for comfortable capture of high-quality signals from the scalp. Multiple setups show high 

SNR when compared with conventional EEG and conventional electrode setups. In the 

first study, a combination of a VR immersive environment is used with animated visuals 

to allow for improved motor imagination, and therefore improved BMI literacy. In the 

next study, we introduced a novel wheelchair control interface using an entirely flexible 

EEG setup. In the final study, we expanded upon the prior work, and created a VR-based 

text speller interface with a total of 33 targets. The demonstration of this interface shows 

the advantages of a fully mobile system with many potential applications.  Overall, many 

novelties were introduced by my research over these three projects, which are listed in 

the following sections.   

6.1.1 Novelties – Overall 

1. First fully flexible and skin-wearable EEG system, with all individual 

components being flexible, skin-friendly and compliant, including dry 

electrodes and stretchable interconnects while also demonstrating resistance to 

environment noise and motion artefacts.  
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2. First published data demonstrating performance advantage of fully flexible 

wearable Skintronics interface over conventional rigid EEG and gel- or paste-

based electrodes. 

3. Laser-cut interconnects for rapid fabrication of electronics with low layer-

complexity, such as stretchable interconnects used in Chapters 3 and 5.  

6.1.2 Novelties – Chapter 3  

1. First development and demonstration of an immersive training environment to 

boost subject BMI performance, along with a video game test environment 

that provides audio-visual feedback of user performance and accuracy.  

2. Highly accurate CNN classification system based on spatial convolutions for a 

small number (6) of channels using minimal signal preprocessing, resulting in 

highly competitive information throughputs among published MI-based BMIs. 

3. Novel use of input perturbation for reducing channels with minimal 

classification performance penalty.   

6.1.3 Novelties – Chapter 4 

1. First published use of fully flexible and dry-electrode based BMI, where all 

components were skin-wearable, skin-compliant and dry (no gels or pastes).   

2. Demonstration of highly accurate classification using simple CNN optimized 

using a grid-search process.  

3. First demonstration of highly accurate real-time control of wheelchair 

interface with SSVEP-based fully flexible BMI.  
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4. Novel use of hidden-layer analysis towards generating topographical EEG 

mappings and selecting optimal channels. 

6.1.4 Novelties – Chapter 5 

1. Implementation of a cloud-based ML pipeline for wearable EEG-based BMI 

training and classification model deployment.  

2. Introducing novel utility of VR headset as a stimulus, presenting different 

stimuli to each eye simultaneously; effectively doubling stimulus-based 

information throughput.  

3. Development of immersive VR-based stimulus and video game environments 

for subject training and testing.  

4. Method for rapid fabrication of fully insulated ultrathin stretchable 

interconnects based on tangle-resistant design.  

6.1.5 Future Direction 

The Future of Flexible Electronics Fabrication 

The future of flexible electronics fabrication appears promising. In the last few years, we 

have seen a large increase in productivity in this field, and the trend appears to be 

increasing. New methods for rapid prototyping such as inkjet and aerosol-jet printing, 

screen printing, as well as femtosecond laser cutting are just a few new methods aimed at 

tackling the financial and time costs of cleanroom-based processes (see Figure 53).  

 As mentioned in this dissertation, aerosol-jet printing offers the ability to print a 

variety of materials using inks with a range of viscosities. This additive process saves 



 118 

much time, and a single machine can be used to print fully functional multilayer 

circuits[95]. Laser etching also allows for high speed etching of materials, even with 

complex three-dimensional geometries. This thesis demonstrated one example of a 

potential use case in the printing of flexible and stretchable multilayer interconnectors.  

Inkjet printing offers methods for deposition of inks like AJP, but deposits droplets based 

on drop properties only. Nozzles and inks are typically designed together, and a range of 

materials can be printed including PI, silver nanoparticle or nanowires, Cu, graphene, 

CNTs and more. This process is typically faster than AJP and may be useful for high 

throughput production beyond the prototyping stage. Overall, with an increasing toolkit, 

the fabrication of flexible devices will become easier and faster over time.  

 

Figure 53. Proposed advanced manufacturing techniques for future Skintronics-type and 

flexible hybrid electronics.  

The Future of BMI 

As mentioned in the literature review chapter, non-invasive brain-machine 

interfaces suffer from intrinsic problems related to signal acquisition, primarily due to the 

inverse square law and poor spatial resolution and lack of depth resolution. These 
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problems can be approached using dense EEG arrays with smaller needle-based 

electrodes with very low impedance with better surface spatial resolution and advanced 

algorithms and statistical models to attempt to reconstruct greater information. However, 

for the purposes of minimalist, practical wearable EEG setups, this is becoming less and 

less likely. Additionally, no algorithm or statistical model can make up for the complete 

loss and mixing of low amplitude signals crucial to BMI functionality. Additionally, 

many brain signals and action potentials occur in frequency ranges outside of what can be 

reasonably sampled using a small, wearable multichannel system. It is worth nothing that 

most companies currently developing BMIs are doing so using some type of implanted 

devices as seen in the Table 15 below. This is not a surprise, due to the limitations 

mentioned previously. 

Table 15. Select Companies Developing BMIs and related technologies. Bold text 

indicates an implanted device. Adapted from Smalley[96]. 

Company Name Device Type Status 

CorTec AirRay ECoG implant FDA Approved 

Blackrock 

Microsystems 

Utah Array Intracortical implant FDA Approved 

Ad-Tech Medical Epilepsy/LTM ECoG implant FDA Approved 

Synchron Stentrode Intravascular 

implant 

Early clinical 

feasibility study 

(ongoing) 

NeuroNexus 

Technologies 

Matrix Array Intracortical implant Preclinical 

Iota Biosciences Neural dust Wireless 

microimplants 

Preclinical 

Neurolutions IpsiHand EEG Clinical 

Additionally, implants are more logical for patients who have life-long illnesses 

like LIS, as it makes far more sense to develop an implanted system that can provide 

functionality over an extended time period. Cost-benefit analyses will vary depending on 
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severity of illness and how rapidly the technology improves. It is possible that non-

invasive EEG may become obsolete with the rise of small minimally invasive implants 

such as the stent implant from Synchron.  
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A APPENDIX 

A.1 Calculation of Information Transfer Rate 

BMIs are generally assessed based on their information transfer rate (ITR), measured in 

bits/min and their classification accuracy.[97] ITR is calculated as follows: 

2 2 2

1 60 bits
log log (1 ) log

1 min

A
ITR N A A A

N w

 −    
= + + −     

−    
 

where N is the number of targets, A is the accuracy, and w is the combined size of the 

classified windows in seconds, and the gaze shift time[98].   
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A.2 Topographic Scalp Mapping using Deep Learning 

When using as few as two EEG data channels (3 measurement electrodes), it is 

important to verify that the electrode locations are optimal for that subject. Therefore, 4-

class SSVEP examinations were undertaken with a 32-channel EEG (ActiveTwo System, 

Biosemi B.V., Amsterdam), with setup shown in Figure 30A. A convolutional neural 

network (CNN) is then trained to classify the data. From the trained network, relevant 

weights correlated to information presence may be extracted and associated to specific 

channels. Electrode placement is then decided based on the channel locations with the 

most significant weights. The architecture used is a 2-layer deep convolutional neural, 2-

CNN-Mapping, with max pooling using only vector kernels. The input was split into 

epochs of 300 data points (1.172 seconds at 256 Hz). Each epoch was high pass filtered at 

4 Hz and normalized from the range of 0 to 1. Therefore, the inputs were 32 channels x 

300 data points, and convolutions were performed along the time domain signal to 

prevent data mixing across channels. The weights are extracted from the feature maps 

formed in the first convolution layer. The sum of weights of all feature maps was 

obtained as we have 32 feature maps in the first convolution layer. We used the first 

convolution layer as the feature maps are still in the same shape as the input before max-

pooling. The weights for each feature map were calculated using the following formula. 

𝑤𝑙 stands for window length, which is 300 and 𝑝 is the number of channels. 

𝑊𝑝 = ∑ 𝑤(𝑝,𝑞) 
𝑞=𝑤𝑙
𝑞=0 , where 0 ≤ 𝑝 < 32  and  0 ≤ 𝑞 < 𝑤𝑙 

To get the total weight 𝑊 for each channel 𝑝 per participant, we then sum the 

weights of all feature maps 𝑟 in the first convolution layer which has 32 feature maps as 
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expressed in equation: 𝑊 = ∑ (𝑊𝑝)𝑟
32
𝑟=1 . A resulting scale shows the activation weights 

for each channel over the 32 feature maps. The topographic maps created from the 

weights extracted from the trained model shows the regions with highest weights are 

situated around the virtual cortex region of the human brain. This exercise is meant to be 

a proof-of-concept method for mapping biopotential signals from a range of sources with 

the intention of reducing the number of electrodes and amount of data to process. 
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A.3 Device Fabrication Process 

Device fabrication procedure is illustrated in Figure 21 and Figure 33. This process is 

roughly the same for each Skintronics device discussed in Chapters 3-5. Detail 

procedures involved with device preparation is described here: 

a) Microfabrication of the thin-film circuit boards 

1. Spincoat PDMS on a cleaned silicon wafer at 3000 rpm for 30 sec. 

2. Cure the PDMS-coated wafer on a 150 °C hot plate for 5 min. 

3. Perform oxygen plasma treatment to render the PDMS hydrophilic. 

4. Spincoat polyimide at 4000 rpm for 1 min and bake in a vacuum oven at 

250 °C for 3 hr including ramping steps.  

5. Sputter 500 nm copper for the 1st metal layer. 

6. Spincoat photoresist (SC1827) at 3000 rpm for 30 sec and bake it on a 110 

°C hot plate for 1 min. 

7. Expose UV with the 1st metal pattern (ground) using a mask aligner 

(MA6). 

8. Develop the exposed photoresist with developer (MF-319). 

9. Etch exposed copper with copper etchant (APS-100, diluted 1:1 with DI 

water) and strip photoresist. 

10. Spincoat polyimide at 850 rpm for 1 min bake in a vacuum oven at 250 °C 

for 3 hr including ramping steps. 

11. Spincoat polyimide at 850 rpm for 1 min bake in a vacuum oven at 250 °C 

for 3 hr including ramping steps. 

12. Spincoat photoresist (AZP4620) at 1000 rpm for 30 sec and bake it on a 

95 °C hot plate for 4 min. 

13. Expose UV with the 1st via pattern using a mask aligner (MA6). 

14. Develop the exposed photoresist with developer (AZ400K, diluted with 4 

parts of DI water). 

15. Oxygen plasma etch exposed PI using reactive ion etching (Plasma-

Therm) and strip photoresist. 

16.  Sputter 1.5 µm copper for the 2nd metal layer. 

17. Spincoat photoresist (AZP462) at 3000 rpm for 30 sec and bake it on a 95 

°C hot plate for 4 min. 

18. Expose UV with the 2nd metal pattern using a mask aligner (MA6). 

19. Develop the exposed photoresist with developer (AZ400K, diluted with 4 

parts of DI water). 

20. Etch exposed copper with copper etchant (APS-100, diluted 1:1 with DI 

water) and strip photoresist. 

21. Spincoat polyimide at 4000 rpm for 1 min and bake in a vacuum oven at 

250 °C for 3 hr including ramping steps.  

22. Spincoat photoresist (AZP462) at 2000 rpm for 30 sec and bake it on a 95 

°C hot plate for 4 min. 

23. Expose UV with the solder pad exposure pattern using a mask aligner 

(MA6). 

24. Develop the exposed photoresist with developer (AZ400K, diluted with 4 

parts of DI water). 
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25. Oxygen plasma etch exposed PI using reactive ion etching (Plasma-

Therm) and strip photoresist. 

26. Completed circuits are peeled-off from the PDMS wafer and transferred 

onto a glass slide for chip assembly. 

 

b) Flexible circuit board assembly using reflow soldering 

1. Openings of the stainless-steel stencil is aligned to the exposed copper 

pads. 

2. Solder paste is dispensed onto the stencil is dragged across the stencil with 

a razor blade. 

3. Chip components are placed on the board. 

4. Using a programmable hot plate, the components are reflow soldered by 

ramping the hot plate from 100 °C to 170 °C at an increment of 10 °C with 

a 1 min dwell period at each temperature. 

5. Soldered board is rinsed with acetone and isopropyl alcohol and dried with 

a stream of nitrogen. 

6. The board is detached from the glass slide and is attached to a thin layer of 

elastomer (Ecoflex). 

 

c) Dry electrode integration and device encapsulation 

1. Flexible film cables are obtained by cutting the cables into individual 

strips. 

2. PDMS is applied on the backside of the strips, where the conductive trace 

is exposed, and cured. 

3. Using silver paint, the flexible device and the dry electrode are bonded on 

the two ends of the cables. 

4. Small amount of epoxy is applied to the tip of the cable on the dry 

electrode side to enhance the attachment. 

5. Ecoflex is applied on top of the circuit for full device encapsulation.  
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A.4 Fabrication of Skin Electrodes via Aerosol Jet Printing 

Silver skin electrodes were printed using an Aerosol Jet Printer (AJ200, Optomec, 

Albuqeurque, NM). This additive manufacturing process involves depositing polyimide 

and silver nanoparticle ink in xylene onto a glass slide prepared with spin-coated 

Polymethyl methacrylate (PMMA A7). The PMMA is then dissolved for 15 minutes in 

an acetone bath at room temperature, and the finished electrodes are transferred to an 

elastomer (Ecoflex Gel, Smooth-On, USA) using water-soluble poly-vinyl alcohol (PVA) 

tape (3M, Maplewood, Minnesota).  

Step-by step instructions:  

1. Clean glass slide or silicon wafer with acetone and IPA. 

2. Plasma clean at 18 W for 30 seconds.  

3. Spin coat PMMA in Anisole at 4000 RPM. 

4. Bake the 700 nm PMMA at 180 °C for 2.5 minutes. 

5. Align sample onto platen stage of the AJ200 and leave platen stage at 70 °C. 

6. Change deposition head to 300 µm nozzle. 

7. Enable the pneumatic atomizer to print polyimide 2545 5:1 mixture with N-

methyl-2-pyrrolidone. 

8. Turn on sheath flow rate and 100 SCCM, atomizer flow rate at 1500 SCCM, and 

exhaust at 1470 SCCM. 

9. Print two to five layers of the polyimide patterns at 10 mm/s on the PMMA 

substrate. 

10. Ensure atomization is dense on the side of the pneumatic atomizer. 

11. Cure the polyimide at 250°C in an ambient oven for 1 hour. 

12. Change deposition head to 150 µm nozzle. 

13. Align fiducial markers of the polyimide layer to deposit the silver layer. 

14. Enable the ultrasonic bath on the AJ200 at 30°C. 

15. Turn on sheath flow rate between 5 SCCM and 30 SCCM. 

16. Turn on atomizer flow rate between 15 SCCM and 30 SCCM 

17. Turn on atomizer current at .6 Amps. 

18. Run the silver ink pattern at 10 mm/s on the polyimide patterns. 

19. Sinter the silver ink at 200 °C for 1 hour 

20. Place a Texwipe and a glass slide to sandwich the samples for the acetone bath. 

21. Place the samples in an acetone bath for 1 hour at 60 °C. 

22. Prepare a sheet of PVA by laminating onto a glass slide.  
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23. Heat treat at 100 °C for 1 minute to remove wrinkles and release stress. 

24. Spin coat Ecoflex gel (1:1) at 2000 RPM for 1 min. 

25. Let cure at room temperature for 2 hours. 

26. Remove the samples from the acetone bath and apply water soluble tape onto the 

electrodes. 

27. Transfer the electrodes onto the Ecoflex gel elastomer and dissolve the tape. 

28. Attach anisotropic conductive film (ACF) wires to the electrode pads using silver 

paint. 
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A.5 Frequency component analysis with CCA 

Canonical correlation analysis (CCA) is a well-established method for decoding SSVEP 

signals using frequency component analysis[72, 91, 92]. For two multidimensional 

random variables, X and Y, and corresponding linear combinations 
T

xx X W=
 and 

T

yy X W=
 CCA generates pairs of linear combinations Wx and Wy, for sets X and Y such 

that the correlation between the two canonical variables is maximized. CCA may be used 

to classify where an unlabeled dataset may be classified using ‘template’ datasets for 

each class. In this case, the unlabeled SSVEP dataset is the recorded training data, and 

that is compared against template reference signals which is generated using the sine and 

cosine functions, including only the first and second harmonics. 
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Therefore, we find the maximum canonical correlation, ρ, with respect to Wx and Wy 
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To determine the output class, we find the index of the maximum correlation from ρ: 

argmax  ,       0,  1, 2, ..., Kfit i
i

y i= =
 

 where classes i correspond to frequencies from reference signals f0, f1, …, fK.[91, 92] 
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