
SEQUENTIAL DECISION MAKING WITH STRATEGIC AGENTS AND LIMITED
FEEDBACK

A Dissertation
Presented to

The Academic Faculty

By

Bhuvesh Kumar

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology

December 2022

© Bhuvesh Kumar 2022

SEQUENTIAL DECISION MAKING WITH STRATEGIC AGENTS AND LIMITED
FEEDBACK

Thesis committee:

Dr. Jacob Abernethy (Co-advisor)
School of Computer Science
Georgia Institute of Technology

Dr. Jamie Morgenstern (Co-advisor)
Paul G. Allen School of Computer Science
& Engineering
University of Washington

Dr. Vidya Muthukumar
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Dr. Florian Schäfer
School of Computational Science and En-
gineering
Georgia Institute of Technology

Dr. Sahil Singla
School of Computer Science
Georgia Institute of Technology

Date approved: December 11, 2022

For my parents

ACKNOWLEDGMENTS

I am most thankful to my advisors, Jacob Abernethy and Jamie Morgenstern, who have

been very supportive throughout my journey. I am grateful to have great advisors who were

very generous with their time even while being involved with multiple projects and were

also very kind to have been very supportive during my personal times of struggles as well.

I would like to thank the members of my thesis committee, Sahil Singla, Vidya Muthuku-

mar, and Florian Schäferfor their help in the preparation of this work. They helped to shed

new light on many of my ideas and gave me very valuable feedback about my thesis.

I am thankful to all coauthors I have had the pleasure of working with. I thank all my

friends and fellow grad students at Georgia Tech.

I am thankful for my Atlanta family members, Lindsey and Dorene who have always

motivated me to be the best version of myself and have given me a home away from home.

Lastly, I would like to of course thank my family, especially my parents for always

helping, encouraging, and putting up with any endeavor I have pursued throughout my life,

and my brother and sister-in-law who have always been by my side cheering me on.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . x

List of Figures . xi

Summary . xiii

Chapter 1: Introduction and Background . 1

1.1 Sequential Decision-Making with Agents 3

1.2 Sequential Decision-Making with Strategic Agents 8

1.3 Sequential Decision-Making with expensive Feedback 11

1.4 Sequential decision-making in a limited feedback environment while ensur-
ing fairness . 12

I Sequential Decision-Making with Strategic Agents 14

Chapter 2: Revenue Maximization in Repeated Auctions with Strategic Bidders 15

2.1 Introduction . 15

2.2 Model and Preliminaries . 18

2.2.1 Mechanism Design Basics . 20

2.2.2 Related works . 28

2.2.3 Differential Privacy Background 29

v

2.3 Revenue Maximization on Similar Distributions 30

2.4 Utility-Approximate Bayesian Incentive Compatibility 35

2.4.1 Differentially Private Distribution Estimation 36

2.4.2 Incentive Guarantees for Utility-Approximate BIC Algorithm . . . 40

2.4.3 Revenue Guarantees for Utility-Approximate BIC Algorithm 44

Chapter 3: Observation-Free Attacks on Stochastic Bandits 48

3.1 Introduction . 48

3.2 Preliminaries . 52

3.2.1 Related Works . 57

3.3 Observation-Free Attack . 58

3.4 Vulnerability of Mean Based Bandit Algorithms 60

3.5 Attack on Stochastic Bandit Algorithms 61

3.5.1 Attack on UCB Algorithm . 61

3.5.2 Attack on ϵ-greedy Algorithm . 62

3.5.3 Attack on Thompson Sampling Algorithms 63

3.6 Experiments . 64

3.7 Attack agnostic to mean rewards of arms 67

Chapter 4: Bridging Truthfulness and Corruption Robustness in Multi-Arm
Bandit Mechanisms . 69

4.1 Introduction . 69

4.2 Model and Preliminaries . 71

4.3 Truthful corruption-robust ϵ−Greedy . 74

vi

4.4 Experiments . 80

Chapter 5: Optimal Spend Rate Estimation and Pacing for Ad Campaigns with
Budgets . 83

5.1 Introduction . 84

5.1.1 Main Contributions . 85

5.1.2 Related Work . 87

5.2 Setting and Preliminaries . 89

5.2.1 Outline of the Solution . 91

5.2.2 Preliminaries . 96

5.3 Approximating Optimal Spend Rates . 98

5.3.1 Approximating spend functions . 100

5.3.2 Tighter results for Constant Prices 102

5.4 Pacing using Approximate Spend Rates 103

5.5 Slow-moving Distributions . 109

5.6 Experiments . 113

5.6.1 Datasets . 114

5.6.2 Results . 115

II Sequential Decision-Making with Expensive Feedback 118

Chapter 6: Active Online Learning . 119

6.1 Introduction . 119

6.2 Notation, Setting, and Background . 127

6.2.1 Basics: Prediction with Expert Advice, and Hedge 127

vii

6.2.2 Prediction Matrix Compactness 129

6.2.3 Online active learning with experts 132

6.3 Algorithm And Performance Guarantee 133

6.3.1 An Overview of ActiveHedge . 133

6.3.2 Regret and Label Guarantees . 136

6.3.3 Proof of Corollary 6.3.1.1 . 144

6.4 Calculating compactness . 145

6.5 Experiments . 147

6.5.1 Results on synthetic data . 147

6.5.2 Results on realistic data . 150

III Sequential Decision-Making in a Limited Feedback Environ-
ment while Ensuring Fairness 152

Chapter 7: Group Fairness of Exposure in Bandits 153

7.1 Introduction . 153

7.2 Setting . 155

7.2.1 New Fairness Regret Definition . 156

7.2.2 Explore then Exploit Algorithm 158

Appendices . 163

Chapter A: Missing proofs and additional experiments from Chapter 3 164

A.1 Missing Proofs . 164

A.1.1 Proof for Theorem 3.4.1 . 164

A.1.2 Proof for Theorem 3.5.1 . 170

viii

A.1.3 Proof for Theorem 3.5.2 . 171

A.1.4 Proof for Theorem 3.5.3 . 173

A.2 Chernoff Bounds . 174

A.3 Additional Experiments . 175

Chapter B: Missing proofs and additional experiments from Chapter 5 178

B.1 Characterizing the optimal pacing strategy and budget allocation in expectation178

B.2 Detailed Algorithms . 180

B.2.1 EpisodicAdaptivePacing: Adaptive pacing using a spend plan 180

B.3 Experiment on Synthetic Data . 183

B.3.1 Datasets . 183

B.3.2 Results . 183

References . 186

ix

LIST OF TABLES

3.1 Corruption level parameters for different algorithms 64

5.1 Utility relative to the ex-post optimal strategy over all runs of the episodic
realistic datasets. 115

B.1 Descriptions of synthetic datasets used for experiments. 183

x

LIST OF FIGURES

3.1 Empirical behaviors of arms in different algorithms. (a), (b) is for UCB
algorithm; (c), (d) is for ϵ-greedy algorithm; (e), (f) is for Thompson sam-
pling algorithm. (a), (c), (e) focus on the time when the rewards are being
corrupted. (b), (d), (f) focus on the time when the attack stops. 66

3.2 The number of rounds the optimal arm gets selected. (a1), (a2) is for
UCB algorithm, (b1), (b2) is for ϵ-greedy algorithm, and (c1), (c2) is for
Thompson sampling algorithm. 67

4.1 The click through rates of the arms selected for synthetic experiments . . . 80

4.2 The welfare regret of Explore then Commit (Explore-Commit), Algorithm 5
(Eps-Greedy(sep), and ϵ−Greedy that uses the data from explore rounds as
well. The sub-figure on the left represents the uncorrupted case where the
subfigure on the right represents the corrupted dataset where the first 300
rounds are corrupted . 81

5.1 End-to-end performance on realistic datasets. 114

6.1 Labels queried and the cumulative mistakes of ActiveHedge, Hedge, and
Cesa-Bianchi et al. [1](CL05) on 3 different synthetic datasets. Hedge
queries label in every round and is not shown in Labels queried plots to
maintain readability. 148

6.2 Labels queried and the cumulative mistakes of ActiveHedge, Hedge, and
Cesa-Bianchi et al. [1](CL05) in on real datasets. The sub-figures on the
left are the results on MNIST’s test-dataset where each expert is small
random forests made of small depth trees trained on MNIST’s train-dataset.
Similarly, the results in right sub-figure are on CIFAR-10’s test-dataset
where each expert is a convolutions neural network trained on CIFAR-10’s
train-dataset. Hedge queries label in every round and is not shown in Labels
queried plots to maintain readability. 149

xi

A.1 The attack which knows the mean reward of the target arm against (a) UCB
algorithm, (b) Thompson sampling algorithm, and (c) ϵ-greedy algorithm. . 176

A.2 The modified attack which knows the mean reward of the target arm against
(a1),(a2) UCB algorithm, (b1),(b2) Thompson sampling algorithm, and
(c1),(c2) ϵ-greedy algorithm. 177

B.1 Performance of the end-to-end pacing system as a function of the size of training
data. We plot the ratio of the optimal utility that our pacing system is able to obtain
as a function of the number of training samples in the rate rate estimation phase.
The budget is represented as budget_frac, i.e. B = budget_frac*C̄. We can see that
1) with increasing samples, the performance improves quickly 2) the budget level is
important for the overall performance. 185

B.2 Comparing performance of our algorithm labeled as Changing spend (this), fixed
spend rate [81] labeled as Fixed spend (BG19) and no pacing labeled as Truthful
on synthetic datasets. See Table B.1 for details on datasets. Each datapoint in
the scatter plot refers to one experiment where we plot the fraction of the optimal
utility obtained by the pacing strategy as a function of the budget buy_all_budget
represents C̄. In each of these cases, our method achieves a higher fraction of
optimal utility than either no pacing (truthful bidding) or fixed spend rate pacing
strategies ([81]) over nearly all ratios of the budget relative to the cost of all
impressions. 185

xii

SUMMARY

Sequential decision-making is a natural model for machine learning applications where

the learner must make online decisions in real-time and simultaneously learn from the

sequential data to make better decisions in the future. Classical work has focused on variants

of the problem based on the data distribution being either stochastic or adversarial, or based

on the feedback available to the learner’s decisions which could be either partial or complete.

With the rapid rise of large online markets, sequential learning methods have increasingly

been deployed in complex multi-agent systems where agents may behave strategically to

optimize for their own personal objectives. This has added a new dimension to the sequential

decision-making problem where the learner must account for the strategic behavior of the

agents it is learning from who might want to steer its future decisions in their favor.

This thesis aims to design effective online decision-making algorithms from the point

of view of both the system designers aiming to learn in environments with strategic agents

and limited feedback and also the strategic agents seeking to optimize personal objectives.

In Part I of the thesis, we focus on repeated auctions and design mechanisms where the

auctioneer can effectively learn in presence of strategic bidders, and conversely, address

how agents can bid in repeated auctions or use data-poisoning attacks to maximize their

own objectives.

In Part II, we consider an online learning setting where feedback about the learner’s

decisions is expensive to obtain. We introduce an online learning algorithm inspired by

techniques from active learning that can fast forward a small fraction of more informative

examples ahead in the queue. This allows the learner to obtain the same performance as

the optimal online algorithm but only by querying feedback on a very small fraction of

points. Finally, in Part III of the thesis, we consider a new learning objective for stochastic

multi-arm bandits that promotes merit-based fairness in opportunity for individuals and

groups.

xiii

CHAPTER 1

INTRODUCTION AND BACKGROUND

With the rise of internet platforms, we as humans interact with machine learning algorithms

every day. Whenever we use a video-watching app, an algorithm recommends us a video;

whenever we do online shopping, machine learning algorithms rank the search results;

whenever we book a ride using a ride-sharing app, an algorithm decides which driver will

come to pick us up and how much it would cost us for the ride.

Whenever we think of systems where machine learning algorithms are used to make

decisions, the most commonly considered framework that we might imagine is that a

machine learning model is trained on some dataset that the learner has access to, and then

the trained model is deployed in the world where it keeps making decisions. This setting

does not consider a fundamental question: How does the learner get access to this dataset?

A more realistic situation in fact is that machine learning systems constantly interact

with the environment they are deployed in and sequentially learn from the feedback they

get about the decisions they make. A video-watching app would make recommendations to

people using the app, but would also monitor which of the recommended videos people are

actually watching to learn from the feedback and update itself. This is called the sequential

decision-making problem where the learner has to make online decisions in real time and

simultaneously learn from the sequentially arriving data to make better decisions in the

future.

Classical literature on sequential decision-making has focused on understanding the

problem by studying it across two axes. The first axis is the distribution of the sequential

data, which could be either stochastic [2], that is coming from a fixed distribution that

doesn’t change with time, or the data could be adversarial, i.e. worst case in nature [3]. If an

online ad exchange is trying to decide which advertisements to show to people based on how

1

likely an advertisement will get clicked, it is reasonable to assume that the person on the

other side of the advertisement is a random sample from a population, thus is a stochastic

sample from a fixed distribution. On the other hand, if a stockbroker is trying to decide

whether to go long or short on a stock, the sequence of future stock prices is usually not

stochastic across time and thus can be adversarial in nature.

The second axis along which the sequential decision-making problem is studied is based

on the feedback the learner gets about their decisions. When an advertisement exchange

decides to show one of the advertisements to a user, it only gets feedback about what the

user thought about that particular advertisement that the exchange chose out of all possible

advertisements. The learner cannot infer any information about what would have happened

if they had chosen some other advertisement, thus the learner can only update their beliefs

about the ad it chose Whereas for the stockbroker who is trying to decide whether to go long

or short, even if they go long, they get to see the exact price of the stock on the next day, and

calculate home much money they would have made if they had gone short instead. An even

harder case is when the learner gets no feedback about their decisions or the feedback is very

expensive to obtain. Consider an algorithm that is responsible for hate speech monitoring on

a social media platform. After the algorithm blocks a post, in most cases it gets no feedback

on whether it was right or wrong, and to obtain any feedback, the algorithm would have to

take the help of a human reviewer who can actually classify if the content was violating

some platform policy or not.

Increasingly, machine learning algorithms are now being deployed in complex socio-

economic environments where they interact with agents and make sequential decisions that

the agents may care about. Facebook and Google run millions of online ad auctions a day

and multiple advertisers bid for multiple ad slots to show their ads to the users. Here the goal

of the ad exchange, which is to maximize revenue, does not necessarily align with the goals

of the advertisers. In such scenarios, if the learner or the ad exchange aims to learn from the

actions of other agents so that it can make better decisions in the future, it has to take into

2

account the fact that the agents care about their own utilities. Thus agents participating in

the system may behave strategically in hopes of changing the future decisions of the learner

that are more favorable to them.

This has added a new dimension to the decision-making problem where the learner

interacting with strategic agents must account for the fact their desirable outcomes may not

necessarily be the desired outcomes for the agents present in the system. If the learner aims

to learn from the agents in such a setting, then they have to design algorithms that are aware

of the incentives of the strategic agents present in the system.

Let’s formalize the setting where a learner makes sequential decisions while interacting

with multiple agents.

1.1 Sequential Decision-Making with Agents

Let’s consider a learner who is using an Algorithm named A to sequentially make decisions

in an environment over T rounds while interacting with n agents.

In each round t ∈ [T], the environment selects a true circumstance φt from a set of

possible circumstances Φ. The circumstance φt denotes the true information about the

current round t in which the learner has to make a decision, but the learner does not have

access to φt. If the learner is trying to predict whether to go long or short on the stock at the

beginning of day t, then φt ∈ R represents the change in the price of the stock by the end of

the day t. If the learner is trying to decide which advertisement to select out of n possible

ads with the aim of choosing advertisements that get clicked, then φt ∈ {0, 1}n represents

the information if each possible ad i ∈ [n] if selected in this round, would get clicked or not

(that is φt
i = 1 or φt

i = 0).

Even though the learner doesn’t have access to φt, the learner gets information by

interacting with n agents who are present in the system. In each round t, for each agent,

i ∈ [n], the environment sets vti representing agent i’s belief about the circumstances in

round t from the set of all possible beliefs V . Recall the example of a learner trying to decide

3

what position to take on a stock, and let’s assume they have access to n stock experts. Here

each stock expert has a prediction vti ∈ {1,−1} representing the expert’s recommendation

to the stockbroker on going long or short on the stock. The stockbroker can use the advice

of these experts to make decisions. On the other hand, in the online ad exchange problem if

the ad exchange is auctioning the ad slots and these n agents are the advertisers who want to

bid for these ad slots, then vti ∈ R represents how much an advertiser i values the ad slot in

round t. Thus vt = (vt1, v
t
2, · · · , vtn) ∈ Vn represents the vector of beliefs of all agents in

round t.

Instead of directly reporting the belief vti to the learner, each agent i relays message bti

to the learner where bti may or may not be equal to vti . Here, bt = (bt1, v
t
2, · · · , btn) ∈ Vn

represents the vector of reported beliefs of all agents in round t. In the ad exchange example,

btn represents the bid reported by an advertiser for the ad slot in round t, which could be

different from how much they actually value the slot.

The algorithm A used by the learner can be defined as a function of all the information

the learner has access to before the beginning of this round. Since the learner only has

access to information from the previous rounds, the information available to the learner

using algorithm A is represented by history Ht
A ∈ H where H is the set of all possible

histories.

In each round t, the learner uses A : H→ P to select a policy θt = A(Ht
A) from the set

of all possible policies P . A policy θ ∈ P is a function from the reported message space Vn

of the n agents to the set of possible decisions D the learner can make in any round. The

learner uses the selected policy θt to make the decision θt(bt) in round t.

In the stock market example, based on the historical performance of the different stock

experts, the learner’s policy θt represents how much money to invest in each stock expert’s

recommended plan; in the ad exchange example, the θt represents the function used by the

learner to decide which advertiser wins the ad impression and how much they pay based on

the reported bids bt.

4

At the end of the round t, the learner is rewarded rt(θt, bt,vt, φt) ∈ R where rt(θt, bt,vt, φt)

is the reward obtained by the learner in round t when they used policy θt to make the de-

cision when the agents’ belief was vt, the agents’ reported message was bt, and the true

circumstance was φt. The learner wants to maximize their total reward over all rounds

t. In the stock market example, the reward is the total profit generated by the learner by

investing money according to policy θt and in the ad exchange example, the reward is the

total revenue generated by the ad exchange.

Other than the reward, the learner can also receive additional feedback about the policies

it could have chosen in this round. The set of the complete feedback possible at round t

is Ft = {rt(θ, bt,vt, φt)|θ ∈ P}, that is for each possible policy θ that the learner could

have chosen, what would have been the reward obtained by the learner in the current

round. Instead of observing the complete set Ft, the learner observes feedback F t
A which

is a subset of Ft. In the full-information setting, the learner observes the full feedback

in each round, that is F t
A = Ft for all t ∈ [T]. In contrast, if the learner observes only

F t
A = {rt(θt, bt,vt, φt)}, that is, it only receives feedback about the policy θt it chose and

not about any other policy that it could have chosen, then it’s called the bandit-feedback

setting. For example, in the stockbroker example, since the learner can observe the real

stock prices at the end of the day, they can also calculate how much reward it would have

made if they had invested by following a policy θ ̸= θt, whereas in the ad exchange example

if the final payment received by the ad exchange depends on the fact if the ad got clicked

or not, then the learner gets no information about the ads it did not choose. The feedback

set Ft in fact can in fact be empty, where the learner gets no feedback in most rounds, or it

is expensive for the learner to obtain feedback. For example, in the case of online content

moderation that we alluded to earlier, the learner requires a human reviewer to provide the

correct label for the content under consideration which can be expensive. In such settings,

the learner wants to minimize the label cost as well while maximizing the total reward.

Using the definition of F t
A, we can formalize the historyHt

A available to the learner in

5

round t. In the beginning at t = 1, the learner has no information, that isH1
A = {}. In every

round t, the learner observes the policy it chose θt, the reported bids bt, and the feedback it

received F t
A. Thus, for t > 1, the information available to learner before the start of round

can be given by the recursive definition: Ht
A = Ht−1

A ∪ {(θt−1, bt−1,F t−1
A)}

Other than the learner, every agent i also obtains utility uti(θ
t, bt,vt, φt) where uti(θ

t, bt,vt, φt)

is the utility of agent i in round t, when the when the agents’ belief was vt, the agents’

reported message was bt, and the true circumstance was φt. For the rest of the thesis, we use

the words learner, algorithm, or A interchangeably to refer to the learner who is interacting

with one of the n agents. We use the word agent to refer to one of the n agents interacting

with the learner in the T round process. To summarize the setting, in each round t :

1. Environment sets true circumstance φt ∈ Φ

2. Environment sets vt = (vt1, v
t
2, · · · , vtn) ∈ Vn where vti ∈ V is agent i’s belief about

the circumstances in round t

3. Simultaneously, the learner uses algorithm A to select policy θt = A(Ht
A) ∈ P

4. Agents reports message bt = (bt1, v
t
2, · · · , btn) ∈ Vn to the learner where bti is the

message reported by agent i

5. Learner uses the policy to make decision θt(bt) ∈ D and is rewarded rt(θt, bt,vt, φt)

6. Every agent i ∈ [n] obtains utility uti(θ
t, bt,vt, φt)

7. Learner observers feedback F t
A ⊆ {rt(θ, bt,vt, φt)|θ ∈ P}

For measuring the performance of a learner using Algorithm A, a standard notion of

regret is used in sequential decision-making that compares the reward obtained by following

the algorithm with the best possible reward the learner could have obtained by following a

fixed policy θ in each round. That is, for a learner using algorithm A to make decisions for

T rounds, the regret is given as follows.

6

REGA(T) =
T∑
t=1

rt(θt, bt,vt, φt)−min
θ∈P

T∑
t=1

rt(θ, bt,vt, φt)

A key desirable property we want is for the regret of the learner using algorithm A,

REGA(T) to be o(T). This equates to the following:

lim
T→∞

REGA(T)

T
= 0 (1.1)

If an algorithm satisfies Eq. (1.1), then it means that as T →∞, the average reward of

the algorithm converges to the average reward of the optimal policy.

All the problems that we study in this thesis can be modeled as an instance of the

general framework we described above. Here the learner wants to maximize their reward

rt(θt, bt,vt, φt) over all rounds whereas agents care about their utilities uti(θ
t, bt,vt, φt)

summed up over all rounds they participate in. If the decisions made by the learner in future

rounds depend on the messages reported by the n agents in the current round, then the agents

might be incentivized to behave strategically if leads to favorable outcomes in the future for

them even at the cost of some utility for the current rounds.

The goal of this thesis is to analyze the sequential decision-making problem with multiple

agents in socio-economic settings. Formally, we try to answer the following questions:

1. How can learners perform effective decision-making in the presence of strategic

agents?

2. How can agents behave strategically to optimize for their own utility in sequential

decision-making?

3. How much feedback is actually needed for the learner to effectively learn when the

labels are expensive?

4. Can we make sequential decision-making algorithms that operate under limited feed-

back more fair in the decisions they make?

7

Thus, the contributions presented in this thesis can be divided into three themes:

• Part I: Sequential Decision-Making with Strategic Agents

• Part II: Sequential Decision-Making with expensive Feedback

• Part III: Sequential decision-making in a limited feedback environment while

ensuring fairness

In the following sections, we summarize our contributions to the three settings and set

up a roadmap for the thesis as well.

1.2 Sequential Decision-Making with Strategic Agents

In the sequential decision-making framework that we discussed in the last section, if the

agents care about their own utilities, then they may aim to behave strategically to obtain

more favorable outcomes. The choice of the policy θt chosen by the learner using algorithm

A depends on the historyHt
A available to the learner.

If the algorithm A uses the reported messages bt of the agents and the feedback F t
A to

select the policy θτ for rounds τ > t, then the agents can potentially behave strategically in

round t so that the algorithm selects more favorable policies for them in rounds τ > t even

at the cost of losing some utility in the current round if it leads to a higher total utility. This

creates extra challenges for the learner who now has to account for the strategic data it’s

receiving. In Part I of the thesis, we study sequential decision-making in the presence of

strategic agents from the point of view of both the agents aiming to manipulate the learning

algorithms and the system designers aiming to learn in presence of strategic agents.

There are two prominent forms of strategic gaming that the agents can employ in sequen-

tial decision-making settings to increase their individual payoff, potentially compromising

the rewards of the learner.

First, agents can misreport their true beliefs, that is report message bti ̸= vti , which is

their true belief about the current round. If misreporting this information can lead to higher

8

individual payoffs then agents will possibly do so. If the algorithm A uses the reported

messages bt, to select future policies, then agents who are aware of algorithm A being

employed by the learner can report messages bt ̸= vt to influence the historiesHτ
A for τ > t,

aiming to influence the algorithm into making more favorable decisions for them.

Another attack aims to manipulate the feedback F t
A that the learner observes by cor-

rupting the feedback using unfair means. For example, if an ad exchange is trying to select

ads based on their average clickiness, an agent may create a robot that either clicks their

own ads or does not click competing ads to adversarially bias the learning algorithm and

make their own ad seem more desirable to the algorithm. Thus an adversarial agent can

aim to influence the learner by changing the click results from φt ∈ {0, 1}n to a corrupted

φ̃t ∈ {0, 1}n, and thus altering the learner’s feedback from F t
A = {rt(θt, bt,vt, φt)} to

F̃ t
A = {rt(θt, bt,vt, φ̃t)}. This in turn changes the history of the learner Hτ

A for rounds

τ > t, hopefully leading to better outcomes for the adversarial agent.

We work with online ad auctions in an ad exchange as a running example for this theme

of the thesis. We start with this work in Chapter 2, where we consider a revenue-maximizing

auction in the repeated setting with strategic buyers. Consider an ad exchange sequentially

auctioning ad impressions and multiple advertisers may participate in many of the rounds of

the T round auction. In a single-round auction, the revenue-maximizing auction defined by

Myerson [4] requires the auctioneer to have full knowledge of the true priors of the agents’

values for the item up for auction. Since we are in the sequential setting, a learner may try to

learn the prior aiming to run more revenue-generating auctions in the future. We show that

by using tools from differential privacy for strategic robustness, we can limit the extra utility

a learner can obtain from strategic manipulation. Thus, we design an algorithm where every

agent can only gain a very small amount by trying to optimize for the optimal bid. Under

this guarantee, if the bidders are willing to let go of the small extra utility, we are able to

show a diminishing average revenue regret of the algorithm when compared to Myerson’s

auction, which is the per-round Bayesian revenue-maximizing auction. This chapter is based

9

on work published in Abernethy et al. [5].

In Chapter 3 we consider the second form of manipulation, where the agents use data

poisoning attacks to manipulate a sequential learner. Consider an online ad auction where

the ad exchange is deciding which ad to select based on how likely an ad gets clicked by a

random user. This is an instance of a multi-arm bandit problem. We show that a large class

of multi-arm bandit algorithms are vulnerable to adversaries who without even observing

the arm chosen by the algorithm, an adversarial agent can make the algorithm suffer linear

(Ω(T)) regret by corrupting only a sublinear number of rounds. We also show that for many

commonly used multi-arm bandit algorithms, the adversary can go a step further and by

only corrupting a sublinear number of arms, it can make the algorithm choose an arm of the

adversary’s choosing for all but o(T) rounds. This chapter is based on work published in Xu

et al. [6].

In Chapters 2 and 3 we separately consider strategic agents who report their bids

untruthfully to influence the learner or agents who instead of strategic bidding use unfair

data corruptions attacks to influence a sequential decision algorithm into choosing decisions

they prefer. In Chapter 4, we study pay-per-click ad auctions where agents bids for ad

impressions but only pay if their ad impressions actually get clicked. Thus, agents can

employ both a) strategic bidding to influence the learning outcomes and b) strategic data

poisoning attacks to corrupt the feedback obtained by the learner by manipulating the click

outcomes. We show that an exploration separated ϵ−greedy style algorithm 1) is truthful,

2) recovers the Õ(T 2/3) lower bound in the absence of data corruptions, and 3) is robust to

adversarial corruption attacks. This chapter is based on work presented in Abernethy et al.

[7].

In Chapter 5, we take on the role of advertisers participating in online ad auctions and

design bidding strategies in setting where the advertisers want to maximize their utility

but are also constrained by a total budget on how much they can spend during the entire

campaign. We give an end-to-end budget management system to show that in realistic

10

settings where the market conditions change with time, historical data can be used to plan

out how the advertiser should spread their budget across time. We show that these plans can

then be combined with bidding strategies from the stochastic setting to obtain vanishing

regret in realistic non-stationary environments. This chapter is based on results presented in

Kumar et al. [8].

1.3 Sequential Decision-Making with expensive Feedback

In Part II, we switch gears, and instead of strategic feedback, we consider the settings

where the feedback about the learner’s decisions is hard to obtain. We consider the classical

problem of multiclass prediction with expert advice, but with an active learning twist in

Chapter 6. The classic algorithm for online learning with expert advice is commonly known

as Hedge [9], although variants are often referred to as exponential weights or weighted

majority [10].

One of the downsides of Hedge, as with many online learning algorithms, is that it is

not label efficient: the learning process requires that we observe the target yt on each round.

Obtaining individual labels can, quite often, be very expensive to the learner; indeed this is

central to why we design prediction algorithms in the first place.

Active learning, which refers broadly to a family of frameworks in which the learning

algorithm can make selective label queries, are designed precisely with the goal of minimiz-

ing the number of needed labels while achieving a suitable learning performance[11, 12,

13, 14, 15, 16, 17, 18]. The key idea is that we do not necessarily need to have a batch of

labeled examples prior to training, in many natural scenarios the algorithm may be able to

actively engage with the labeling process to query labels on a set of unlabelled examples. It

is worth noting up front that nearly all work on active learning has imagined a batch setting,

where the algorithm is evaluated only at the end of the learning process, in expectation, on

new samples. This is surprising, in particular, given that active learning methods are by

their nature online, as they seek to iteratively refine their learning process and selection of

11

samples. But thus far there has been no work on putting active learning algorithms to the

test in a no-regret setting of prediction with expert advice, where the algorithm’s decision is

evaluated at each round of the sequence, and where the expert’s predictions, as well as the

labels, can be non-stochastic and potentially chosen by an adversary.

We aim to remedy this gap and show that there is a natural framework for active learning

in the no-regret setting of prediction with expert advice with strong learning guarantees as

well as bounded label complexity. First, we define a notion of complexity of the experts’

predictions, somewhat akin to the disagreement coefficient, that provides a key tool in

obtaining a provable guarantee; we refer to this as compactness for a parameter ζ ≥ 1

that measures the active learnability of the prediction matrix. The ζ compactness of the

prediction matrix is closely related to the disagreement coefficient considered in batch active

learning framework [19, 11] and can be thought of as a combinatorial counterpart in the

online setting. We give an algorithm that is an active version of Hedge and obtains the exact

same regret as Hedge, but only uses O(ζL∗) labels where L∗ is the number of mistakes

made by the best expert, compared to the (T) labels queried by Hedge. The results presented

in Chapter 6 have been published in Kumar et al. [20].

1.4 Sequential decision-making in a limited feedback environment while ensuring

fairness

In Part III of the thesis, we consider a multi-arm bandit setting where instead of just

optimizing for the total reward over all rounds, the learner wants to make decisions that

also satisfy some notion of fairness. Wang et al. [21] introduce a multi-arm bandit setting

where the goal of the learner is to select each agent with probability proportional to a

monotonically increasing function of their mean reward. For example, consider an algorithm

that is deciding which products to rank higher in search results on an online shopping

platform. If two products have a similar quality but one is slightly better than the other, then

a traditional multi-arm bandit algorithm aimed at maximizing the reward will always select

12

the product with slightly higher quality, whereas it would be fairer to give some exposure

to the slightly worse product too with a probability proportional to how good the product

actually is. We show that if arms belong to a certain group, i.e. being products of the same

company, then agents can game the fairness notion given in Wang et al. [21] and add near

duplicates products to their lineup to increase their total exposure. To counter this, we

introduce a group-based notion of fairness that says each group should also be selected

proportional to a function of the quality of the arms in the group. This notion limits the kind

of manipulation possible by duplication. We propose a new notion of fairness regret that

promotes fairness of exposure to both groups and individual arms show that an ϵ-greedy

style algorithm obtains O(T 2/3) fairness regret. This chapter is based on an ongoing project

[22].

13

Part I

Sequential Decision-Making with

Strategic Agents

14

CHAPTER 2

REVENUE MAXIMIZATION IN REPEATED AUCTIONS WITH STRATEGIC

BIDDERS

In this chapter, we study the problem of learning in repeated auctions to maximize revenue.

The classical approach to maximizing revenue requires a known prior distribution on the

demand of the bidders, although recent work has shown how to replace the knowledge of a

prior distribution with a polynomial sample. However, in an online setting, when buyers

can participate in multiple rounds, standard learning techniques are susceptible to strategic

manipulation: bidders can improve their long-term wellbeing by manipulating the trajectory

of the learning algorithm through bidding. For example, they may be able to strategically

adjust their behavior in earlier rounds to achieve lower, more favorable future prices. Such

non-truthful behavior can hinder learning and harm revenue. In this chapter, we show how

tools from differential privacy, mechanism design, and sample complexity can be combined

to give a repeated auction that (1) learns from bidders’ past bids, (2) is approximately

revenue-optimal, and (3) strategically robust, as it incentivizes bidders to behave truthfully.

This chapter is based on work published in Abernethy et al. [5].

2.1 Introduction

When we observe prices in market settings—stock exchanges, farmers’ markets, ad auctions—

we understand that these prices were not chosen arbitrarily. Rather, the seller (auctioneer,

market maker, etc.) selected these prices after observing a stream of previous transactions,

which provide relevant information about the demands of buyers that are key to maximizing

income as well as managing available inventory. The process of setting prices from a

growing database of previous sales is fundamentally a learning problem, with all of the

typical trade offs akin to bias versus variance, etc. However, in the case of repeated auctions,

15

there is one additional challenge: market participants are often quite aware of the underlying

learning procedures employed by the auctioneer and can seek to benefit using deceptive

bidding strategies. Buyers, in other words, can act strategically to influence the learning

procedures which could lead to more favorable outcomes for them. The agents can there-

fore lead the algorithm into strategic overfitting introducing additional hurdles to learning

problem at hand.

Consider the example where an online ad exchange is selling T ad impressions sequen-

tially by running T auctions. In each round n advertisers who are interested in showing theirs

ads to the users participate in auction and bid for the impression based on how much they

value it. Advertisers are also interested in multiple ad impressions so they may participate

in multiple rounds of the auction. In this case, the ad exchange or the auctioneer wants to

maximize the total revenue they obtain over the T rounds, but advertisers only care about

their own their own total utility over all the rounds of auction they participate in. The goals

of the learner and the agents don’t necessarily match. If the auctioneer plans on learning

from the reported bids of the agents, hoping to run better revenue generating auctions in the

future, the agents can take advantage of the situation and bid untruthfully aiming to increase

their own total utility instead.

Under Bayesian assumptions where agents only act once, auction pricing has been well

understood since the work of Myerson [4], who characterized the truthful revenue-optimal

scheme and showed that it is a function of the prior distribution of how much bidders value

the item in auction. Thus, if an auctioneer aims to obtain expected revenue close to Myerson

[4]’s auction, it needs to learn information about the prior distributions of agents’ values.

Frequentist alternatives to this model have been introduced in recent years [23, 25, 26, 27,

28, 29, 30, 31, 32, 24], with the goal of designing auctions with good revenue guarantees if

one does not have a prior but instead is given only samples from the underlying distribution.

These methods, however, still imagine only a one-shot mechanism, and are not robust to

multi-round strategic behavior of bidders.

16

In this chapter, we design multiround auction-learning algorithms that exhibits theoretical

guarantees that limit a buyer’s ability to manipulate the mechanism towards their own benefit.

Our results aim to nudge the development of optimal auctions closer to realistic environments

where such mechanisms are deployed. We employ tools from differential privacy as our

core technique to control the impact of any individual buyer’s strategy on her utility in

future participation. A differentially private mechanism ensures that that the output of a

computation has only a small dependence on any one input data point.

Privacy has previously been used as a tool to achieve truthfulness in a variety of game

theoretic environments [33], including mechanism design [34, 35], mediated games [36, 37],

and market design [38, 39, 40, 41]. Our seller’s learning algorithm is differentially private

with respect to bid data, which limits the effect of each player’s bid on future choices of

single-round auctions, thus disentangling incentives across rounds. In this sense, we use

differential privacy not as a tool for information security but instead for robustness; this, in

turn, yields the desired incentive guarantees.

Summary of our results Our main contribution in this chapter is the first computation-

ally tractable algorithm for learning nearly-optimal Bayesian revenue-maximizing auctions

with an approximate truthfulness guarantee in a repeated setting. We are able to show the

following:

Theorem 2.1.1 (Informal). We give a learning algorithm A which guarantees that

1. there exists an approximate equilibrium in which all bidders report their true values.

That is, assuming all bidders behave truthfully, a agent can obtain only O(ϵ) total

extra utility in future rounds by deviating from the truthful bidding a single round, and

2. under truthful bidding, with probability at least 1− α, the average expected revenue

of A is

Rev ≥ OPT− β − n2Õ

(
1√
T

+
1

Tϵ

)

17

where OPT is optimal expected revenue of Myerson [4] in a single round, β is a small

discretization parameter that can be set as o(T)

Along the way to this result, we provide several useful technical lemmas for comparing

the revenue of mechanisms on two similar distributions, and comparing the revenue of two

similar mechanisms on any fixed distribution which may be of independent interest.

Before we expand on these results and provide the technical details or our contributions,

we formally introduce the setting under consideration in 2.2 and provide a quick background

on mechanism design in Section 2.2.3 which will help us formalize what it means for a

bidder to behave strategically, or why a bidder may behave strategically, and what it means

to design algorithms which can deter strategic behavior.

2.2 Model and Preliminaries

We consider a T round auction, where in each round, the seller or auctioneerA is auctioning

a single item to n bidders. Each bidder participating in this auction is interested in one copy

of the of the item in each round but can participate in future rounds as well. In each round t,

the following interactions occur between the seller A and the bidders:

1. The environment sets vt = (vt1, v
t
2, · · · , vtn) where for each i ∈ [n], vti ∈ V ⊆ R is

sampled from a fixed distribution Di and represents the amount that the bidder i is

willing to pay for the item, or the value for the bidder i in round t

2. The seller A selects an auction mechanismMt := (xt, pt) where xt : Vn → X is an

allocation rule which takes in a vector of bids b and returns a feasible allocation of

the items, where xti(b) is 1 if the bidder i receives the item and 0 otherwise. Similarly

pt : Vn → Rn is a payment rule, which takes the bid profile b and outputs a vector of

payments demanded of each player

3. Bidders report bids bt = (bt1, b
t
2, · · · , btn) where bti ∈ V ⊆ R is the bid reported by

bidder i

18

4. The seller decides who all won the auction using the allocation xt(bt) where xti(b
t)

is 1 if i receives the item and 0 otherwise. Each bidder i is also charged a payment

pti(b
t) regardless of whether they won the item or not.

As a conclusion of each round t, the revenue obtained by the seller in round t is

r(Mt := (xt, pt), bt,vt) =
n∑
i

pti(b
t)

The utility obtained by an agent i is the value vti if they wins the item minus the price

pti(b
t) they has to pay regardless, that is,

ui(Mt := (xt, pt), bt,vt) = vti · xti(bt)− pti(bt)

Since the seller is limited to selling J items in each round, the feasible set of allocationsX

is {x ∈ {0, 1}n, ∥x∥1 <= J}. We let D = D1×· · ·×Dn denote the product distribution of

value distributions, and we use v to denote a vector of values sampled from this distribution.

Furthermore, we let v−i denote v with the i-th element removed, and use (v′i,v−i) to denote

the same vector with v′i replacing the i-th element. We also assume that the values and bits

in each round are bounded between 0 and h, i.e V = [0, h]

We say that an agent i behaves truthfully if they report their true value in each round to

the learner, i.e. bti = vti . In this setting, the seller aims to maximize their total revenue in

all T rounds of auctions, while each agent wants to maximize their total utility from all the

rounds in which they participate. If the choice of mechanismMτ made by the algorithm

in round τ > t is a function of bidder’s reports bt, it may incentivize bidders to behave

strategically and misreport their bids, bti ̸= vti , if leads to better outcomes for them in the

future. Thus, any algorithm must account for the incentives of the bidders that may lead

them to report strategically and make the algorithm’s learning process harder.

In fact, even in the absence of any learning, strategic agents may have incentives to

misreport their bids to maximize their own utility. In the following subsection, we introduce

19

preliminaries about mechanism design starting from a single round auction and extending

the ideas to repeated auctions that help us formalize some of these notions.

The setting under consideration is similar to Liu et al. [42] where a bidder from any

population may appear several times over the course of the T rounds, drawing a fresh value

each time. In this setting, bidders may have an incentive to misreport their values in order to

change the mechanism in future rounds, and their potential reward for doing so depends on

the number of future rounds in which they expect to participate. Amin et al. [43] show that

very little can be done when a bidder participates in every round, so we assume this cannot

occur. Formally:

Assumption 2.2.1. No bidder participates in more than k rounds of the T -round auction.

2.2.1 Mechanism Design Basics

Let’s start with a single round auction with n bidders. As discussed earlier, one can view a

mechanism (auction)M := (x, p) as having two components:

• A possibly randomized allocation rule x : Vn → X , which takes in a vector of (bids)

b and returns a feasible allocation of the items, where xi(b) is 1 if i wins the item and

0 otherwise; and

• A payment rule p : Vn → Rn, which takes b and returns a vector p(b) where pi(b) is

the payment to charged to bidder i.

The protocol followed in a single-round auction is the following:

1. The seller selects a mechanismM := (x, p) that is public to the bidders

2. Bidders select strategy σ = (σ1, · · · , σn) as a response toM where σi : V → V is

the strategy bidder i will use to calculate their bid as a function of their value.

3. The environment sets bidders’ values v = (v1, v2, · · · , vn) ∼ D

20

4. Bidders report bid b = σ(v) := (σ1(vi), · · · , σn(vn))

The auctioneer’s revenue from the mechanism is

r(M := (x, p), b,v) =
n∑
i

pi(b) (2.1)

We make the standard assumption that the bidders have quasi-linear utility: for a vector

of bids b (which may not necessarily match the values v), bidder i’s utility for allocation

x(b) and payment p(b) is

ui(M := (x, p), b,v) = vi · xi(b)− pi(b) (2.2)

As the auctioneer has to make the MechanismM public as part of rules of the game, the

bidders can choose their strategy σ as a response toM.

Another measure of importance is the social welfare of the auction that is defined as the

total sum of utilities of all bidders and the revenue of the seller. Formally, the welfare of an

auctionM is:

w(M := (xt, pt), bt,vt) =
n∑
i

vti · xti(bt) (2.3)

In this chapter, we focus on revenue maximization but we will discuss more about

welfare maximization in Chapter 4.

We now introduce the notion of a truthful mechanism. In mechanism design, a truthful

mechanism is also called an incentive-compatible mechanism, and there are different notions

of incentive compatibility based on how strict the requirements are. Let’s define one of

the strictest but but simple notions of truthfulness called Dominant Strategy Incentive

Compatible.

Definition 2.2.1 (Truthful mechanism (DSIC)). A mechanism M is dominant strategy

incentive compatible if for every agent i, for any strategy profile σ = (σ1, · · · , σn), for any

21

value profile v, it must hold that

ui(M, (vti ,σ−i(v−i),v) ≥ ui(M,σ(v),v)

In simpler words, Definition 2.2.1 states that a mechanismM is truthful if for every

bidder i, irrespective of the strategy followed by other bidders, it is always in the bidders

best interest to bid bi = vi. If an auctionM is not truthful, the bidders may follow a strategy

where bi = σi(vi) ̸= vi.

Since we are in the Bayesian setting where the values v are sampled from a fixed

distribution D, assuming for the moment that the bidders bid their true values v, we can

define the expected revenue of a mechanismM as the expectation of the payments received,

Definition 2.2.2 (Expected Revenue). The expected revenue of a MechanismM with bids

sampled from D is

Rev(M;D) := Ev∼D[
∑n

i=1 pi(v)]

Let us now recall a classical result in Bayesian-optimal mechanism design when the

seller’s goal is to maximize revenue. Myerson [4] essentially fully characterized the solution

in this setting. The interested reader can learn more in Hartline [44]; we briefly review

these results here in two pieces. The first piece states that payments in truthful mechanisms

essentially depend solely on the allocation function.

Theorem 2.2.2 (Payment Identity, Myerson [4]). A mechanismM is truthful (DSIC) if and

only if for all bidders i and bid profile b

1. It has a monotone allocation rule, that is x(bi, b−i) is monotone non decreasing in bi

and

2. Payments satisfy pi(b) = bi · xi(bi, b−i)−
∫ bi
0
xi(z, b−i)dz + pi(0, b−i)

The second key result is that for truthful mechanisms, the expected revenue can be

written in terms of welfare in a remapped virtual value space. We overload the notation for

22

a distribution and Di(x) represents the cumulative density function of Di at x, and di(vi)

denotes the probability density function.

Theorem 2.2.3 (Myerson [4]). For any truthful mechanism M: = (x, p) with bidder

values distributed according to D, the expected revenue from player i can be written as

Ev∼D[ϕi(vi)xi(v)], where ϕi(vi) is the virtual value, given by ϕi(vi) = 1 − 1−Di(vi)
di(vi)

. So,

Rev(M;D) = Ev∼D[
∑

i ϕi(vi)xi(v)].

We will use the notationM∗
D to denote the revenue-optimal mechanism for distribution

D,—Myerson provides a precise construction of this auction.

Definition 2.2.3 (Myerson’s Auction). Fixing a prior distribution D, given a value pro-

file v Myerson’s revenue-optimal mechanism M∗
D calculates virtual values ϕi(vi) =

ϕi(vi) = 1 − 1−Di(vi)
di(vi)

and (a) selects the feasible allocation which maximizes virtual

welfare [
∑

i ϕi(vi)xi(v)] according to the virtual values and (b) charges payments according

to the Payment Identity of Theorem 2.2.2.

From Theorem 2.2.2, we know that for a truthful auction, allocation function x(bi, b−i)

should be monotonically non-decreasing in bi. Thus, to implement Myerson’s allocation

rule truthfully, we require that the virtual value function for each agent i, that is, ϕi(v) =

1− 1−Di(v)
di(v)

should be a monotonically non-decreasing function of v. This is in general true

for a large class of distributions, called regular distributions.

Assumption 2.2.4. For each population i ∈ [n], the value distribution Di is regular, that is,

the virtual value function ϕi(v) = 1− 1−Di(v)
di(v)

is a monotone non decreasing function of v.

Regularity of value distributions is a standard assumption in auction design ([4]), but

even when the distributions are not regular, Myerson’s auction can be implemented by

calculating ironed virtual values such that the allocation rule becomes monotone while

maximizing the true virtual welfare. We refer the reader to Hartline [44, Chapter 3] for a

detailed exposition on this topic.

23

This implies that the optimal expected revenue for a truthful auction is Rev(M∗
D;D)

whereM∗
D is the Myerson’s auction described by Definition 2.2.3. An important conclusion

from this discussion is that the truthful expected revenue-maximizing auction, i.e. Myerson’s

auction required the seller to know information about the exact prior D of the bidder’s values.

Several alternatives to this model have been introduced in recent years [23, 25, 26, 27, 28,

29, 30, 31, 32, 24], with the goal of designing auctions with good revenue guarantees if one

does not have a prior but instead only samples from the underlying distribution are given.

These methods learn use these samples to select mechanismM, however, they still imagine

only a one-shot mechanism, assuming all the bids in their dataset are truthful reports. Thus,

these methods are not robust to the multi-round strategic behavior of bidders.

Since the seller aims to maximize their total expected revenue, we can generalize the

notion of expected revenue given in Definition 2.2.2 to account for untruthful mechanisms

as well. Let us assume that a single round mechanism is M which may or may not be

truthful, and true values are sampled from D, and each agent uses a fixed strategy σi. This

is equivalent to the bidder reporting bids which are samples from another distribution Fi

where a sample bi from Fi is generated by sampling vi from Di and returns σi(vi). Thus, for

a mechanismM with bids b being sampled from the bid distribution F = Fi × · · · × Fn,

the expected revenue can be written as Rev(M;F) := Ev∼F [
∑n

i=1 pi(v)]

The mechanism design preliminaries discussed so far are for one shot games where

players do not observe the past actions of others and adjust their strategy accordingly. We

now turn our attention to multi-round play; we need to expand our notion of player behavior

and strategy. In the multi-round auction setting, we described at the beginning of this section,

in each round t the Algorithm A selects a new auctionMt possibly as a function of their

observed historyHt
A which includes all the reported past bids ({bτ ; τ ≤ t}) and the choice

of mechanisms the algorithm made in the past ({Mτ ; τ ≤ t}). In the multi-round auction

protocol, the exact auctionMt that will be selected in each round is not public to the bidders

at the beginning of the complete T-round auction, but how the algorithm A selects the

24

auctions is made public. In our setting, the learner starts with no prior information about

the bidders value distributions, thus to maximize revenue A has to learn from the bidder’s

report so that it runs better auctions in the future rounds and obtain more expected revenue.

In response to the choice of algorithm A, the bidders will now possibly follow an

adaptive strategy σ = {σt
i , i ∈ [n], t ∈ [T]}, such that the strategy followed by agent i in

round t, σt
i not only is a function of the current value vti , but also accounts for the history

Ht
i of their observations. We assume that the agents observe their own outcomes xi(bt)

and pi(bt) in the rounds in which they participate, but not the full historical data used by

the designer to produce the mechanism each round. Thus, the history Ht
i in round t for

each agent i then consists of all their reported bids bτi , their own allocation xti(b
τ), and their

payments pti(b
τ) for each round τ ≤ t in which they participated previously. Given a history

Ht
i and a value vti in the current round t for agent i, we denote the bid of agent i using a

strategy σt
i as σt

i(v
t
i ; Ht

i). We suppress the dependence on history when clear from context

and denote the bid of bidder i in round t using strategy σt
i as σt

i(v
t
i).

The repeated auction version of Dominant Strategy Incentive Compatibility (Defini-

tion 2.2.1) would imply that for every agent i, for any realization of values for values

v1, · · · ,vT and competing bids bt−i, the agents total utility is maximized by bidding truth-

fully in every round. Since, we are in a Bayesian setting where the values are being

sampled in a stochastic manner, we consider a Bayesian version of equilibrium and incentive

compatibility.

Informally, using an algorithmA, a profile of strategies σ is an equilibrium for this game

if in every round t, for every agent i, and every historyHt
i that agent i might have observed

previously, if all agents follow strategy σ, then agent i’s strategy in round t, σt
i maximizes

their expected total utility over the current and future rounds. Here the expectation is taken

over the randomness of agent i’s beliefs about other agents, as well as the future values of

all agents. Formally, let U t
i (σ, v

t
i ,Ht

i) denote the total expected utility of agent i in rounds

τ > T when every bidder follows strategy σ, given their value of vti in the current round

25

and their observed historyHt
i. Note that since we make the assumption that agent i in round

T is from a population characterized by Di, but each particular agent only participates in

k of the T round auction (Assumption 2.2.1). Let Ct
i ⊆ [T] be the set of auctions that the

agent i from round t also participates in. Assumption 2.2.1 implies that for every i ∈ [n] and

t ∈ [T], |Ct
i | ≤ K. Thus the agent i in round t only sums over the utilities from the rounds

it will participate in to calculate future utility U t
i (σ, v

t
i ,Ht

i).

U t
i (σ, v

t
i ,Ht

i) = E[vt
−i,v

τ ,··· ,vT][
∑

τ≥t∩Ct
i

ui(Mτ ,στ (vτ),vτ)] (2.4)

Note that in Eq. (2.4), the expectation is still taken over all round τ ≥ t and over the

private values of other bidders in this round vt
−i to account for the expected behavior of the

algorithm and the other agents that participate in the auction.

Let (σ̃t
i ,σ−(i,t)) be the strategy when the agent i deviates from the strategy σ in round t,

for all other agents and rounds, the strategy followed is σ. The total expected utility of the

agent i from the current and all future rounds now becomes

U t
i ((σ̃

t
i ,σ−(i,t)), v

t
i ,Ht

i) = E[vt
−i,v

t+1,··· ,vN][ui(Mt, (σ̃t
i(v

t
i),σ

τ
−i(v

t
−i)),v

t) +
∑

τ>t∩Ct
i
ui(Mτ ,στ (vτ),vτ)]

Here we have suppressed the dependence on historyHτ
j for each agent j ∈ [n] and rounds τ

and the historyHτ
A for the algorithm A where the algorithm A selects the mechanismMt

in round t as a function of it’s observed historyHτ
A. It is implied that the expected future

utility calculated by agent i takes into account whatever the observed histories could be

for other agents and algorithm A. Changing the strategy of agent i even in a single round

t, can affect the observed histories hτj of all agents j ∈ [n] (including i) and the observed

history of the algorithm Hτ
A for future rounds τ ≥ t, thus affecting the decision made by

other bidders and the algorithm in future rounds. Therefore, when calculating their expected

utility, the learner must consider that changing their strategy in a single round can change

the future bids of other bidders and the mechanisms selected by algorithm A even if the

26

other bidders have committed to a strategy in advance.

Definition 2.2.4 (Perfect Bayesian Nash Equilibrium (BNE)). A profile of strategies σ =

{σt
i ; i ∈ [n], t ∈ [T]} is an η-approximate Perfect Bayesian equilibrium if for every agent i,

round t, historyHt
i, value vti , given that strategy σ−(i,t) is followed by all other agents and

in all rounds, then σt
i(v

t
i ; Ht

i) approximately maximizes agent i’s total expected utility from

future rounds up to an additive η. That is U t
i (σ, v

t
i ,Ht

i) ≥ U t
i ((σ̃

t
i ,σ−(i,t)), v

t
i ,Ht

i)− η for

any alternate strategy σ̃t
i . If η = 0, we say that σ is an exact Perfect Bayesian Equilibrium.

This implies that a strategy σ in Perfect BNE if for every bidder i and for every history

of the game, if all other bidders besides i behave according to the strategy σ, then playing

σt
i is expected utility-maximizing behavior for the bidder i in round t. On the other hand, an

η-approximate Perfect Bayesian equilibrium implies that if an agent i deviates from strategy

σt
i , then they can get at most η extra utility in and future rounds. Using the definition of the

approximate equilibrium, we now define a notion of approximate truthfulness or incentive

compatibility for the multi-round auction.

Definition 2.2.5 (η-utility-approximate BIC). An algorithm A is η utility-approximately

Bayesian incentive compatible if the strategy profile where every agent bids truthfully in

every history is an η-approximate Perfect Bayesian equilibrium.

Definition 2.2.5 of η-utility-approximate BIC guarantees that all bidders bidding truth-

fully in all rounds is an (approximate) Bayes-Nash equilibrium (BNE). In other words, if

an agent deviates from truthful bidding in any round t and tries to bid strategically, then

they only gain an extra η compared to the utility they would have obtained if they had bid

truthfully in this round. It does not make any statement about how far the optimal bid could

be from the truthful bid if the agents do, in fact, behave strategically.

Using the definition for expected revenue (Definition 2.2.2) for a single round mechanism,

if using algorithmA that selects the mechanismMt in round t, and if the strategic behaviour

of bidders results in bid distributions F t in round t, then total expected revenue of the

27

algorithm A can be given by

RevA(T) =
T∑
t=1

Rev(Mt;F t)

To measure the performance of our algorithm, we use a standard notion of expected

regret that compares the average expected revenue of our algorithm A with the expected

per round revenue of a revenue optimal auction that knows the distribution D. Here the

benchmark corresponds to Myerson’s auction which is the revenue maximizing truth auction

in the bayesian setting.

Definition 2.2.6 (Expected Regret). For a given algorithm A, that selects mechanismMt

in round t, given that the true bidder values are sampled from D and the bidders behave

strategically, resulting in a bid distribution F t in round t, the expected regret of A over all

T rounds is given by

REGA(T) = T · Rev(M∗
D;D)−

T∑
t=1

Rev(Mt;F t)

whereM∗
D is the Myerson’s auction described by Definition 2.2.3.

2.2.2 Related works

Liu et al. [42] study the same problem of revenue maximization in repeated auctions where

bidders may appear more than once but only optimize over simpler class of mechanisms

like posted prices or anonymous reserves. Our work optimizes over a substantially more

complicated space of with the benchmark being Myerson’s auction, which is the revenue-

maximizing auction in the Bayesian setting. We do leverage several of their novel ideas, such

as maintaining a differentially private internal state to guarantee approximate truthfulness.

With repeated appearances of each buyer, our auction learning problem comes to resem-

ble dynamic mechanism design. In Bergemann and Valimaki [45] a truthful mechanism

is given that exactly maximizes social welfare in a dynamic environment, and Kakade et

28

al. [46] and Pavan et al. [47] extended this mechanism to maximize revenue. In contrast,

our mechanism approximately maximizes revenue in a dynamic environment with much

looser assumptions on buyers’ value distributions, but compares to the weaker per-round

benchmark of the optimal single-shot revenue. A similar problem is considered in Kanoria

and Nazerzadeh [48], where they consider a repeated auction with strategic bidders and

complete with the single round Myerson’s auction revenue but they assume that all bidders

have the same value distribution and thus optimize over a simpler class of reserve price

auction.

2.2.3 Differential Privacy Background

We now provide some basics on differential privacy, our main technique that helps guarantee

approximate truthfulness in equilibrium. We refer to a database Z ∈ Zn as a collection of

data from n individuals, and we say that two databases are neighboring if they differ in at

most one entry, i.e. they differ in one of the data points of one of the individual.

Definition 2.2.7 (Differential Privacy [49]). An algorithm (mapping) A : Zn → R is

(ϵ, δ)-differentially private if for neighboring databases Z,Z ′ ∈ Zn and subsets of possible

outputs S ⊆ R, we have P[A(Z) ∈ S] ≤ exp(ϵ)P[A(Z ′) ∈ S] + δ. Further, if δ = 0 we

say that A is ϵ-differentially private.

The parameter ϵ quantifies the algorithm’s privacy guarantee; smaller ϵ corresponds to

stronger privacy. As a special case of Definition 2.2.7, the database may arrive online (e.g.,

bids in each round) and the algorithm may produce its output online (e.g., allocations and

payments in each round). In this case, we still require Definition Definition 2.2.7 to hold

with respect to the entire algorithmic process. See Chan et al. [50] and Dwork et al. [51] for

a formal treatment of differential privacy for streams. A key property of differential privacy

is that it is robust to post-processing.

Lemma 2.2.5 (Post-processing [49]). Let A : Zn → R be an (ϵ, δ)-differentially private

29

algorithm and let f : R → R′ be a random function. Then f ◦ A : Zn → R′ is also

(ϵ, δ)-differentially private.

Lemma 2.2.5 is a powerful tool that says that if we compute function on the output of a

differentially private algorithm, the composite function is still differentially private.

The final tool we borrow from differential privacy is the ability to maintain a histogram

estimate of values which arrive one at a time. The primary technique for reporting counts

involves data structures known as tree-based aggregations [51, 50]. This protocol is a

differentially private method for calculating the cumulative sum of elements from 1 to t for

any t ≤ T , for which at any round t the protocol can return an estimate of the number of

elements prior to round t, for which the entire execution is differentially private. We provide

more details about our instances of these algorithms in Section 2.4.1.

Before we present our algorithm for repeated auctions, we first show results in Section 2.3

that show that for a single round auctions, truthful mechanisms have similar expected

revenue on similar distributions. These tools will help us design an approximate revenue

maximization auction.

2.3 Revenue Maximization on Similar Distributions

In this section, we introduce tools we willl need to argue that the revenue of our mechanism

is approximately optimal. In particular, we describe how one can compare the revenue of a

fixed, well-behaved mechanism on two similar product distributions D and D̄. This will

imply that the problem of optimizing with respect to D̄ will yield approximately optimal

revenue with respect to D. These results are broadly stated and should be of independent

interest.

More formally, we will consider distributions that are close in ℓ∞ distance, and mecha-

nisms which are well-behaved in the sense that allocating one agent leads to the exclusion

of others. The relevant definitions follow. Recall that we overload the notation and D and

Definition 2.3.1 (τ -closeness). We call two distributionsD and D̄ τ -close if ∥D−D̄∥∞ ≤ τ .

30

Definition 2.3.2 (Competitiveness). A truthful mechanism is competitive if for any valuation

profile v and any pair of bidders i and j, the allocation probability xi(v) for bidder i is a

non-increasing function of vj .

In multi-unit settings, mechanisms that exactly maximize virtual surplus for any mono-

tone virtual value function (e.g. ironed Myerson virtual value) satisfy this property. Given

these definitions, we may state the main result of this subsection:

Theorem 2.3.1. Let M be a competitive mechanism, and let D and D̄ be two product

distributions of values such that for every bidder i, Di and D̄i are τ -close. Then the expected

revenue ofM on D is within an additive 2n2hτ of the revenue fromM on D̄. That is,

|Rev(M;D)− Rev(M; D̄)| ≤ 2n2hτ .

In fact, we prove a stronger statement than Theorem 2.3.1: we show that the revenue

from each bidder is within 2nhτ in each mechanism. To prove this stronger statement, we

argue from the perspective an individual bidder, and consider three steps. First, we show

that switching the distributions of all other bidders from D−i to D̄−i does not significantly

change i’s allocation probability. We then show that because of the relationship between

allocation and payments in truthful mechanisms an insignificant change in allocation proba-

bility implies an insignificant change in revenue. We then show that switching bidder i’s

distribution from Di to D̄i does not significantly impact the revenue of any mechanism. The

result will follow from the triangle inequality. We begin with the first of our three steps by

defining new notation for the allocation probability secured by each bidder in expectation

over the other bidders.

Definition 2.3.3 (Interim allocation rule). LetM = (x,p) be a mechanism for the single-

round game. For any value vi, the interim allocation rule for i at vi is given by xi(vi) =

Ev−i
[xi(v)].

Our first step is to show that each bidder’s interim allocation rule under competitive

mechanisms is robust to small changes in other bidders’ value distributions. Formally:

31

Lemma 2.3.2. Let D−i and D̄−i be value distributions for bidders other than i, with Dj

and D̄j τ -close for all j ̸= i. Consider any truthful competitive mechanism, and let xi(·)

and x̃i(·) denote the interim allocation rules of bidder i under D−i and D̄−i, respectively.

Then for any value vi, |xi(vi)− x̃i(vi)| ≤ (n− 1)τ .

Proof. We will consider changing the value of just one bidder, j, and observing the impact on

the interim allocation rule of bidder i. The lemma will follow from repeating this argument

once for each bidder other than i. To show that slightly changing bidder j’s distribution has

a minimal effect, we write the following sequence of equalities and inequalities, which we

justify afterward.

xi(vi) =

∫ h

0

Ev−i,j
[xi(v)]Dj(vj) dvj

= Ev−i,j
[xi(v)]Dj(vj)

∣∣∣h
0
−
∫ h

0

d
dvj

Ev−i,j
[xi(v)]Dj(vj) dvj

= Ev−i,j
[xi(vi, h,v−i,j)]−

∫ h

0

Ev−i,j
[d
dvj
xi(v)]Dj(vj) dvj

≥ Ev−i,j
[xi(vi, h,v−i,j)]−

∫ h

0

Ev−i,j
[d
dvj
xi(v)](D̄j(vj)− τ) dvj

= Ev−i,j
[xi(vi, h,v−i,j)]−

∫ h

0

Ev−i,j
[d
dvj
xi(v)]D̄j(vj) dvj − τ

= Ev−i,j
[xi(v)]F̃j(vj)

∣∣∣h
0
−
∫ h

0

Ev−i,j
[d
dvj
xi(v)]D̄j(vj) dvj − τ

=

∫ h

0

Ev−i,j
[xi(v)]D̃

′
j(vj) dvj − τ

The reasoning is as follows. The first equality is from the definition of the interim allocation

rule xi(vi). The second and third equalities follow by integration by parts and interchanging

the derivative and integral, respectively. The third inequality follows from the τ -closeness of

Dj and D̄j , and from the fact that d
dvj
xi(v) ≤ 0 by the competitiveness of the mechanism.

The remaining equalities follow from the same reasoning as the first three. Hence, changing

bidder j’s value distribution from Dj to D̄j can decrease bidder i’s allocation probability by

at most τ . A symmetric argument bounds the increase. Further applying this same argument

32

to all bidders other than i, one at a time, implies the lemma.

The payment identity (Theorem 2.2.2) characterizes the payments of an individual bidder

with a realized type in a truthful mechanism, and shows that this payment is completely

determined by the allocation rule the agent faces. Taking expectations over the values of

other agents yields a characterization of an agent’s expected payments in terms of their

interim allocation rule. This characterization will allow us to show that the revenue from

any bidder under two similar interim allocation rules is similar.

Corollary 2.3.2.1 (of Theorem 2.2.2). In any truthful mechanism, for any bidder i with

value vi, the expected revenue of bidder i satisfies:

Ev−i
[pi(v)] = vixi(vi)−

∫ vi

0

xi(z) dz + Ev−i
[pi(0,v−i)] (2.5)

Lemma 2.3.3. Let xi and x̃i be interim allocation rules for bidder i such that |xi(vi) −

x̃i(vi)| ≤ τ for all vi ∈ [0, h]. If Ev−i
[pi(0,v−i)] = 0 under both allocation rules, then for

any value vi, the expected payments made by a bidder with that value differ by at most 2viτ

under the two allocation rules.

Proof. By Eq. (2.5), the difference in revenue between the two mechanisms is given by

vi(xi(vi)− x̃i(vi))−
∫ vi

0

(xi(z)− x̃i(z)) dz.

The first term is at most viτ . Moreover the second term is at most
∫ vi
0
τ dz, which is equal

to viτ .

Combining Lemma 2.3.2 and Lemma 2.3.3 yields:

Corollary 2.3.3.1. Let D−i and D̄−i be value distributions for bidders other than i, with

Dj and D̄j τ -close for all j ̸= i. Consider any truthful competitive mechanismM where

the bidders with value 0 make no payments. Then the expected revenue ofM from bidder i

differs by at most 2(n− 1)hτ .

33

We finally show that holding other bidders’ value distributions fixed and switching bidder

i from value distribution Di to a τ -close distribution D̄i yields similar revenue. Formally:

Lemma 2.3.4. Let Di and D̄i be τ -close value distributions for bidder i. For any truthful

mechanismM and any value distributions D−i for other bidders, the expected revenue from

bidder i under Di ×D−i and D̄i ×D−i differ by at most hτ .

To prove Lemma 2.3.4, we use a standard characterization of a bidder’s expected

payments in a truthful mechanism, which can be obtained by integrating (Eq. (2.5)) over all

values vi and integrating by parts.

Corollary 2.3.4.1 (of Theorem 2.2.2). In any truthful mechanism where bidders with value

0 make no payments, for any bidder i with value distribution Di, the expected revenue from

bidder i is given by

Ev[pi(v)] =

∫ h

0

x′i(vi)Ri(vi) dvi (2.6)

where Ri(vi) is bidder i’s price posting revenue function, given by Ri(vi) = vi(1−Di(vi))

Proof of Lemma 2.3.4. By Eq. (2.6), the difference in expected revenue between the two

distributions is given by

∫ h

0

x′i(vi)vi(D̄i −Di) dvi ≤ hτ

∫ h

0

x′i(vi) dvi

Since
∫ h

0
x′i(vi) dvi ≤ 1, the result follows.

Now that we have all the necessarily results, we can prove the result for the main theorem

in this subsection (Theorem 2.3.1)

Proof of Theorem 2.3.1. Combining Corollary 2.3.3.1 with Lemma 2.3.4 and using the

triangle inequality implies that the revenue of any individual bidder i differs by at most

2(n − 1)hτ + hτ ≤ 2nhτ under D rather than D̄. Summing over all bidders yields the

desired bound.

34

2.4 Utility-Approximate Bayesian Incentive Compatibility

In this section, we give an online algorithm (Algorithm 1) for learning the optimal auction

that is approximately utility-approximate BIC. The main idea is to use differential privacy

to explicitly control the amount of information the auctioneer takes forward from round t to

later rounds. We do so by using differentially privacy as a tool for algorithmic stability. In

Section 2.2, we learned that to run the Bayesian revenue maximizing auction, that is, the

Myerson’s auction, the seller needs full information about the prior D of the values of the

bidders.

In Section 2.3, we showed that truthful mechanisms have similar revenue on bid dis-

tributions that are close in their cumulative density function values. One naive approach

that the algorithm A could take in round t is to use the previously reported bids bτ for

τ < t and construct empirical estimates H t
i about the distribution Di for each population

and run a Myerson’s auction based on the empirical estimate. This algorithm is prone to

strategic manipulation by bidders as they can misreport their bids in earlier rounds, and

make the empirical distribution converge to a distribution which leads to better outcomes for

them. In other words, there are no systems in place to deter strategic behavior and the future

outcomes can drastically be changing even one reported in the bid.

We overcome this challenge, by maintaining a differentially private estimate H̃ t
i of

each empirical bid distribution instead and choosing future auctions based only on this

differentially private estimate. Since differential privacy limits how the outcomes of the

algorithm change based on changing the input, from the perspective of any bidder, his

behavior in the round t has very little chance of affecting any of the auctions selected in

subsequent rounds. In round t, we run Myerson’s mechanism with prior H̃ t
i to compute

allocations and payments. Thus, the one-shot mechanism in round t is exactly incentive

compatible with respect to the current round.

In Algorithm 1, since we need plan to estimate the value distribution, the first step we do

35

is that every reported bid is rounded down to a multiple of β. Let D′ denote the distribution

obtained by rounding down D to nearest multiple of β. Devanur et al. [32] showed that the

optimal revenue obtained from a rounded down distribution is only O(β) from the optimal

revenue on the original distribution. We use this fact formally later in the revenue analysis.

Thus in round t, we maintain a differentially private estimate H̃ t
i of Di but only on the

rounded-down support. The algorithm then uses the Myerson’s mechanism (Definition 2.2.3)

defined by this differentially private estimate to decide the allocation and payment in round

t. We want our estimates to be private, but also informative enough to help us run better

auctions in the future. We showed in Section 2.3 that help us show that similar distributions

lead to similar revenue in auctions, thus a good estimate H̃ t
i of the optimal value distributions

leads to good approximation to the optimal revenue.

Algorithm 1: Utility-Approximate BIC Online Auction
Parameters: discretization β, privacy ϵ, upper bound h, rounds T
Initialize: H̃0

i ← Uniform(0, h) for i = 1, · · · , n
for t = 1, · · · , T do

Receive bid profile vt = (vt1, . . . , v
t
n), rounded down to integer multiple of β

Run Myerson (Definition 2.2.3) with H̃ t−1 as prior and vt as bid for
allocations/payments.

for i = 1, . . . , n do
Update H̃ t

i via two-fold tree aggregation (Algorithm 2), giving as input vti
end

end

To maintain differentially private estimates, we use a standard tree-based aggregation

protocol (Dwork et al. [51]) which we explain in detail in the following subsection.

2.4.1 Differentially Private Distribution Estimation

We now describe a differentially private procedure for estimating value distributions H̃ t
i

for each bidder population. This corresponds to the final operation in each round of our

mechanism (Algorithm 1). Recall that the value distribution for bidder population i rounded

down to the nearest multiple of is D′
i, and that D′

i has finite support {0, β, 2β, · · · , h} of

36

size h/β + 1, and thus the estimates H̃ t
i . we maintain will have the same finite support. For

now, we work under the assumption that bids are truthfully reported values, which we later

validate with the incentive guarantees shortly.

Let H t
i be the empirical (non-private) estimate of D′

i at round t. The following lemma

establishes that the empirical distribution of rounded values provides a good estimate of the

true distribution of rounded values, with respect to the supremum norm ∥·∥∞.

Lemma 2.4.1. Let H t
i be the empirical distribution of t i.i.d. samples from D′

i. Then, with

probability at least 1− α, ∥D′
i −H t

i∥∞ ≤

√
log

2
α

2t
.

Proof. This is a direct result of the Dvoretzky-Kiefer-Wolfowitz inequality [52], which

establishes the concentration of the empirical CDF for any distribution.

Two-fold tree aggregation Standard tree-based aggregation [51, 50] maintains online

counts of a single quantity (e.g., continuously releasing the number of 1s in a stream of bits

as they come) in a differenially private manner. A naive approach to report these cumulative

counts of bits so far in a (ϵ, δ)-differenitally private manner would require the algorithm

to add noise to each reported cumulative sum leading to an error O(
√
T
ϵ
) over T reports.

Tree-based aggregation methods can achieve the same differential privacy guarantees by

adding noise to partial sums instead of the exact outputs, and can achieve the same (ϵ, δ)

differential privacy guarantees with only O(polylog(T)
ϵ

) error over T reports.

The two-fold tree aggregation [42] to maintain an online estimate of the CDF of a

probability distribution D′ in a differentially private manner by doing the cummulative sum

across two axes, the values and time. Informally, one achieves this by maintaining a private

counter for each bin in a histogram over possible values which might update the counters.

Since D′ has a discrete support of {0, β, 2β, · · · , h}, the non-private empirical CDF H t
i can

be described by a simple (increasing) step function, with steps occurring at integer multiples

of β. To compute H t
i (u), the empirical CDF at value u, we need only count the number

of samples from v1i , · · · , vti which are less than u, i.e., H t
i (u) = (

∑t
τ=1 1{vτi ≤ u})/t.

37

Two-fold tree aggregation allows us to privately maintain these cumulative sums for all

points u ∈ {β, 2β, · · · , h} in the support of our distributions.

The algorithm maintains n instances of the two-fold tree aggregation procedure, one

for each bidder population, where each instance has its own distinct internal state. The ith

instance maintains H̃ t
i in round t. In each round t, the mechanism receives a value profile vt.

For each population i, vti is used to update the internal state of population i’s tree aggregation

instance.

The algorithm is given formally in Algorithm 2, and requires the following additional

notation. Consider any t ∈ [T] with binary representation (t⌈log T ⌉, . . . , t1, t0). That is,

t =
∑⌈log T ⌉

0 tj2
j . Let jt be the lowest nonzero bit, and let

Λt =
{
t− 2jt + 1, t− 2jt + 2, · · · , t− 1, t

}
.

We also define the set,

Γt = {t′ : t′ = t−
h−1∑
j=0

tj2
h, h = 1, . . . , ⌈log T ⌉}.

We note that Γt has size at most ⌈log T ⌉, and the set [t] can be described as the union of

⌈log T ⌉ such sets, i.e., [t] = ∪j∈ΓtΛj . In other words, we have constructed subsets such that

In two-fold tree aggregation, we have these aggregations over two axes: time t and

value u. Thus we maintain h
β
· T partial sums, denoted in Algorithm 2 as internal states

Atq = H t
i (u) for u = qβ. One sample vti contributes to at most log h

β
log T partial sums, and

each H̃ t
i (u) can be written as a sum of at most log h

β
log T partial sums.

The following lemma shows that Algorithm 2 is differentially private, and guarantees

that privacy is maintained throughout the entire run of the algorithm and is a key result that

we will use to prove the incentive compatibility of the algorithm.

Lemma 2.4.2 (Liu et al. [42]). The entire stream of estimates {H̃ t
i}Tt=1 output by Algorithm 2

is
(
ϵ, ϵ

T

)
-differentially private with respect to the input stream of bids {vti}Tt=1.

38

Algorithm 2: Two-fold tree aggregation for population i [42]
Input: discretization parameter β, privacy parameter ϵ, upper bound on support h,
number of rounds T

Internal State: Noisy partial sums Atq for all t ∈ [T] and q ∈
[
h
β

]
Initialize: Set ρ =

8 log T log
h
β

ϵ

√
ln

T log T log
h
β

ϵ
and sample Atq ∼i.i.d. N (0, ρ2) for all

t and q
for t = 1, · · · , T do

Receive vti = pβ for some p ∈
[
h
β

]
for j, k satisfying t ∈ Λj and p ∈ Λk do

Ajk = Ajk + 1
end
for q ∈

[
h
β

]
do

Sample νtq ∼ N (0, ((log h
β
+ 1) (log T + 1)− |Γt||Γq|)ρ2)

end

Output H̃ t
i , the estimated CDF: H̃ t

i (x) :=
∑
j∈Γt

∑
k∈Γq

Ajk + νtq
t

, where

q = ⌊x/β⌋.
end

The construction of Algorithm 2 ensures that every value H̃ t
i (u) is obtained by perturb-

ing H t
i (u) with the t-normalized sum of Gaussian variables, each with variance ρ2. The

total number of Gaussian noise terms added to obtain H̃ t
i (u) is no more than log h

β
log T

because the sets Γt and Γq used in the final output of Algorithm 2 have size at most

⌈log T ⌉ and ⌈log h/β⌉, respectively. That is, for each fixed u, we have H̃ t
i (u)−H t

i (u) ∼

N
(
0, ρ

2

t2
log h

β
log T

)
. Lemma 2.4.3 uses this fact to bound the distance between H t

i and

H̃ t
i .

Lemma 2.4.3. After t rounds, for a fixed population i, with probability at least 1− α the

empirical distribution H t
i and the differentially private estimate H̃ t

i produced by Algorithm 2

will satisfy ∥∥∥H t
i − H̃ t

i

∥∥∥
∞
≤ ρ

t

√
log h

β
log T

√
2 log

(
2h
βα

)
,

for ρ =
8 log T log

h
β

ϵ

√
ln

T log T log
h
β

ϵ
.

39

Proof. For a Gaussian random variable Z ∼ N (µ, ρ2) it holds that P[|Z − µ| > xρ] ≤

2 exp(−x2/2), by a standard tail bound. We apply this inequality to each point u ∈

{0, β, 2β, · · · , h} to see that, with probability at least 1− βα
h

, we have |H t
i (u)− H̃ t

i (u)| ≤
ρ
t

√
log h

β
log T

√
2 log

(
2h
βα

)
. Applying a union bound over all of the h

β
values of u completes

the proof.

We can now combine the previous lemmas to relate the distributions H̃ t
i and D′

i.

Lemma 2.4.4. After t rounds Algorithm 1, it holds with probability at least 1− α that

∥∥∥H̃ t
i −D′

i

∥∥∥
∞
≤ γt for every i ∈ [n] ,

where γt =
√

log
n
α

2t
+ ρ

t

√
log h

β
log T

√
2 log

(
2hn
βα

)
and ρ =

8 log T log
h
β

ϵ

√
ln

T log T log
h
β

ϵ
.

Proof. Applying the triangle inequality inLemma 2.4.3 and Lemma 2.4.1 gives the bound

for a single bidder population i, and a union bound over all bidder populations n proves the

lemma.

In the remainder of this section, the same definition of γt will be used.

2.4.2 Incentive Guarantees for Utility-Approximate BIC Algorithm

As a corollary of Lemma 2.4.2, we can claim the following result:

Theorem 2.4.5. The stream of estimates {H̃ t}Tt=1 maintained by Algorithm 1 and the stream

of mechanism {Mt}Tt=1 chosen by Algorithm 1 is (ϵ, ϵ/T)-differentially private with respect

to the stream of input bids {vt}Tt=1

Proof. Algorithm 1’s only record of bids which persists across rounds is its distribution

estimate H̃ t. In each round, it chooses an auction as a post-processing step over those

estimated distributions. The two-fold tree aggregation step is (ϵ, ϵ/T)-differentially private

by Lemma 2.4.2. Thus, by changing just one bid vti , only the private estimate H̃ t of

40

that bidder is changed and thus algorithm’s post-processing to estimate the virtual value

distribution and select future auctions is (ϵ, ϵ/T)-differentially private by Lemma 2.2.5.

Now that we have shown that the estimates {H̃ t}Tt=1 and thus the choice of Mecha-

nisms {Mt}Tt=1 is is differentially private, we can use the result to argue about incentive

compatibility of the Algorithm 1. We emphasize that Theorem 2.4.5 does not claim that

Algorithm 1 is itself differentially private, it only states that the procedure rests on a differ-

entially private subroutine. This distinction is critical: our algorithm is not differentially

private in its selection of allocations and payments in round t. However, the information the

mechanism carries forward (namely, the estimated empirical distribution) is maintained in a

differentially private manner. This is sufficient for guaranteeing that bidders’ behavior in

round t does not significantly affect which auctions are selected in later rounds. This will

allow us to prove a utility-approximate BIC guarantee.

We note that if our mechanism were (ϵ, 0)-differentially private then a result of [34],

stating that any (ϵ, 0)-DP mechanism is 2ϵ-dominant strategy incentive compatible.

Two issues arise if one were to try this approach in our setting. First, the entire mech-

anism is not differentially private as discussed above. A bidder i’s behavior might have

significant impact on other bidder’s allocations and payments, and those bidders may as a

result choose to behave differently in later rounds based on that information. Thus we relax

to the weaker incentive guarantee of utility-approximate BIC, avoiding the issue of other

bidders behaving differently in response to activity from earlier rounds. Second, the stream

of estimates maintained by our mechanism is (ϵ, δ)-differentially private for δ = ϵ/T > 0

and not (ϵ, 0)-differentially private which is necessary for the result of [34] to hold.

Theorem 2.4.6. Algorithm 1 is khϵ
(
2 + 1

T

)
-utility approximate BIC when ϵ < 1.

Proof. Consider a bidder deciding how to bid in round t. They have three considerations:

how their behavior will affect (1) the learning algorithm in future rounds, (2) the behavior

of other bidders in future rounds, and (3) their utility in round t.

41

Since we seek to show that the mechanism is utility-approximate BIC, we can assume

all other bidders behave truthfully in every history (by Definition 2.2.5). Therefore, other

bidders will not change their behavior in future rounds, and the value of (2) is 0. The value

of (3) is also 0 because the empirical Myerson auction run in each round t is chosen to be

exactly truthful as a one-shot (static) mechanism, so no payer can gain anything extra in

their expected utility from the current round by misreporting her bid. Thus the only utility a

player can gain by lying about her value is from (1).

Next we analyze (1). Since our mechanism’s differential privacy guarantee limits the

extent to which a player i’s report in round t affects H̃s
i for each s > t, and hence limits how

it affects future choices of the mechanism, this allows us to control the amount of future

utility she can gain from misreporting at t. Consider the change in this player’s utility in

all rounds s > t ∩ Ct
i that results from changing her bid from her true value vti to any other

misreport ṽti . Let Y be the event that the bidder i bids truthfully in round t, and let Ȳ be the

event that she misreports.

Let Futt(Y) and Futt(Ȳ) respectfully be the total utility the bidder achieves in all future

rounds conditioned on events Y and Ȳ . That is,

Futt(Y) = E[A,vτ ,··· ,vT][
∑

τ>t∩Ct
i

ui(Mτ ,vτ ,vτ)|Y]

and

Futt(Ȳ) = E[A,vτ ,··· ,vT][
∑

τ>t∩Ct
i

ui(Mτ ,vτ ,vτ)|Ȳ]

Let S be the set of all possible outcomes s (that is, choice of future mechanisms) from

all future rounds of the auction that this bidder may participate in. That is, outcome s is

a vector of mechanisms s = (Mτ
s)τ>t+1∩Ct

i
, and let w(s) be the utility the bidder from

outcome s ∈ S, that is

w(s) = E[vτ ,··· ,vT][
∑

τ>t∩Ct
i

ui(Mτ
s ,v

τ ,vτ)]

42

. We can now bound the player’s gain in expected utility from lying by bounding the

expected value of u(Ȳ).

Futt(Ȳ) =
∫
S w(s)P

[
s|Ȳ
]
ds

≤
∫
S
w(s)(eϵP[s|Y] + ϵ

T
)ds

≤
∫
S w(s)((1 + 2ϵ)P[s|Y] + ϵ

T
)ds

= (1 + 2ϵ)Futt(Y) +

∫
S
w(s) ϵ

T
ds

≤ Futt(Y) + 2ϵkh+ kh ϵ
T
.

The first inequality follows from the (ϵ, δ)-DP guarantee of Theorem 2.4.5, the second

from the fact that eϵ ≤ (1 + 2ϵ) for ϵ < 1, and the final inequality from the fact that

each bidder participates in at most k rounds and her maximum utility is any round is h,

so both Futt(Y) and
∫
S w(s)ds are upper bounded by kh. Thus the maximum change in

utility over all future rounds between any two behaviors in the current round is therefore

2ϵkh+ kh ϵ
T
= khϵ(2 + 1

T
).

Thus, the overall utility the bidder might gain from misreporting in round t is khϵ(2+ 1
T
),

which converges to 2khϵ as T →∞.

Now that we have proven that Algorithm 1 is khϵ
(
2 + 1

T

)
utility approximate BIC, it

implies that bidders can gain very little extra utility by deviating from the truthful strategy.

In Section 2.3, we showed that similar distributions lead to similar revenue, using the tools

we have discussed so far, we can now prove the revenue guarantee for Algorithm 1 assuming

bidders don’t go for this extra khϵ
(
2 + 1

T

)
utility and just bid truthfully.

43

2.4.3 Revenue Guarantees for Utility-Approximate BIC Algorithm

Using the tools developed in Section 2.3, we can now bound the expected revenue of

Algorithm 1. Since we already proved that Algorithm 1 is khϵ
(
2 + 1

T

)
, it implies that

bidders can gain very little extra utility by deviating from the truthful strategy. On the other

hand, to bid optimally in each round t, the bidder i would need to know the exact priors and

strategies of the other bidders, and solve an optimization problem to get the optimal utility

to estimate a optimal bidding strategy. If their estimates are incorrect, then the resulting

strategy could infact lead to lower utility than the one obtained by truthful bidding. Thus,

if an algorithm is approximately BIC, such as Algorithm 1, it is reasonable to assume that

the bidders will not try to optimize for the small extra utility of khϵ
(
2 + 1

T

)
and just bid

truthfully.

Thus for the revenue analysis of Algorithm 1, we assume that the bidders report their true

bids in each round. Recall that we use Rev(M;D) to denote the expected revenue generated

by the mechanismM on a value (bid) distribution D, and that D and D′ respectively denote

the joint distributions of true values and true values rounded down to the nearest multiple of

β. LetM∗
H̃t ,M∗

D′ , andM∗
D be the truly revenue-optimal mechanisms for the distributions

H̃ t, D′, and D, respectively. In each round of our mechanism, we get a sample from D′

and run Myerson’s auction with H̃ t as the prior; that is, we runM∗
H̃t , hence the expected

revenue of Algorithm 1 in round t is Rev(M∗
H̃t ;D

′). Based on the regret definition given in

Definition 2.2.6 of Regret, the regret of algorithm can be given by

REGA(T) = T · Rev(M∗
D;D)−

T∑
t=1

Rev(M∗
H̃t ;D

′)

Here Rev(M∗
D;D) is the expected revenue of running a Myersons auction with the correct

prior D which is the revenue maximizing auction in the bayesian setting.

We now present the main results of this section, Theorem 2.4.7 that bounds the average

regret of Algorithm 1.

44

Theorem 2.4.7. With probability at least 1− α, for regular distributions D, value upper

bound h, number of bidders n„ discretization β and privacy parameter ϵ < 1, the regret of

Algorithm 1 (A) satisfies

REGA(T)

T
≤ β + 4hn2Õ

(
1√
T

+
1

Tϵ

)

Notice that as T → ∞, the term 4hn2Õ
(

1√
T
+ 1

Tϵ

)
→ 0. Thus, if we set β, small

enough such that βT is o(T), we can get sub-linear regret comapred to the optimal revenue.

To prove the main revenue guarantee of Utility-Approximate BIC Online Auction

presented in Algorithm 1, i.e Theorem 2.4.7, we present a few lemmas to bound the

difference in revenue obtained in each round and then sum it over the T rounds to bound the

average expected revenue.

In each round, Algorithm 1 runs the optimal mechanism for H̃ t, but discretized value

profiles are sampled from D′. The following lemma uses results from Section 2.3 to show

that the expected revenue of runningM∗
H̃t on samples from H̃ t is not much worse that

runningM∗
D′ on samples from D′.

Lemma 2.4.8. With probability at least 1−α, |Rev(M∗
H̃t ; H̃

t)−Rev(M∗
D′ ;D′)| ≤ 2hn2γt.

Proof. We start by re-writing the revenue difference we wish to bound,

|Rev(M∗
H̃t ; H̃

t)− Rev(M∗
D′ ;D′)| as follows,

|(Rev(M∗
H̃t ; H̃

t)− Rev(M∗
H̃t ;D

′)) + (Rev(M∗
H̃t ;D

′)− Rev(M∗
D′ ;D′))|.

For the first term inside the absolute value, Lemma 2.4.4 says that with probability

at least 1 − α,
∥∥∥D′

j − H̃ t
j

∥∥∥
∞
≤ γt for all j, and therefore D′

j and H̃ t
j are γt-close for all

j. Applying Theorem 2.3.1 gives that Rev(M∗
H̃t ; H̃

t) − Rev(M∗
H̃t ;D

′) ≤ 2hn2γt with

the same probability. The second term is 0 because Rev(M∗
H̃t ;D

′) ≤ Rev(M∗
D′ ;D′),

sinceM∗
D′ is the revenue-optimal mechanism for D′. Therefore, we get Rev(M∗

H̃t ; H̃
t)−

45

Rev(M∗
D′ ;D′) ≤ 2hn2γt.

A symmetric argument using M∗
D′ , gives that Rev(M∗

D′ ;D′) − Rev(M∗
H̃t ; H̃

t) ≤

2hn2γt, which completes the proof.

Now we present a result from Devanur et al. [32] (generalized to multiple item auction)

which states that discretization of the value space by rounding down to nearest multiple

of β only reduces the optimal revenue by an additive factor of β for a single item auction.

Intuitively, since bids are always rounded down, this can result in a loss of at most β revenue

from each of the rounds.

Lemma 2.4.9 (Devanur et al. [32]). Rev(M∗
D′ ;D′) ≥ Rev(M∗

D;D)− β.

Combining these results, we can now bound the expected revenue of our mechanism for

a fixed round.

Lemma 2.4.10. With probability at least 1−α, the expected revenue obtained by Algorithm 1

in the tth round, Rev(M∗
H̃t ;D

′), satisfies,

Rev(M∗
H̃t ;D

′) ≥ Rev(M∗
D;D)− βJ − 4hn2γt,

for γt =
√

log
n
α

2t
+ ρ

t

√
log h

β
log T

√
2 log

(
2hn
βα

)
and ρ =

8 log T log
h
β

ϵ

√
ln

T log T log
h
β

ϵ
.

Proof. Using Lemma 2.4.8 gives,

Rev(M∗
H̃t ;D

′) ≥ Rev(M∗
D′ ;D′)− 4hn2γt,

and applying Lemma 2.4.9 gives,

Rev(M∗
H̃t ;D

′) ≥ Rev(M∗
D;D)− β − 4hn2γt.

46

Now that we have bounded the expected revenue in a fixed round t, we can bound

the average revenue over T rounds with a union bound over all the rounds to obtain a

guarantee for the average expected reveunue of our Algorithm 1 and prove the main theorem

Theorem 2.4.7.

Proof of Theorem 2.4.7. We start by instantiating Lemma 2.4.10 for every round t in-

stantiated with failure probability α/T . Then taking a union bound over all T rounds

and summing over t, ensures that with probability 1 − α, 1
T

∑T
t=1 Rev(M∗

H̃t ;D
′) ≥

Rev(M∗
D;D) − β − 4hn2

T

∑T
t=1 γt for γt =

√
log

n
α

2t
+ ρ

t

√
log h

β
log T

√
2 log

(
2hn
βα

)
and

ρ =
8 log T log

h
β

ϵ

√
ln

T log T log
h
β

ϵ

In the remainder of the proof, we bound 1
T

∑T
t=1 γt. (Recall that the α in Lemma 2.4.10

is α/T here.)

1
T

∑T
t=1 γt =

1
T

∑T
t=1

(√
log

nT
α

2t
+ ρ

t

√
log h

β
log T

√
2 log

(
2hnT
βα

))

≤

√
2 log

nT
α

T
+ 2ρ log T

T

√
log h

β
log T

√
2 log

(
2hnT
βα

)
= Õ

(
1√
T

+
1

Tϵ

)

The first inequality comes from the facts that
∑T

t=1
1√
t
≤ 2
√
T and

∑T
t=1

1
t
= HT ≤

log T + 1 ≤ 2 log T . The following equality come from plugging in the expression of ρ and

combining terms.

Thus, in this chapter we showed that using tools from differential privacy and sample

complexity, we can design an utility approximate BIC mechanism that leads to sub-linear

revenue regret. Thus, the algorithm is able to limit the amount of strategic power the agents

have over the learning procedure. In Chapter 3, we consider and alternative form of strategic

behavior by the agents where instead of playing by the rules of the game and misreporting

the information that was asked for them, the agent acts as an adversary and uses data

corruption attacks.

47

CHAPTER 3

OBSERVATION-FREE ATTACKS ON STOCHASTIC BANDITS

In Chapter 2, we saw that a learner can use tools from differential privacy to prevent

strategic manipulation from agents who might misreport their bids or private beliefs. In

this chapter, we consider an alternate view of strategic behavior where instead of untruthful

reporting, the agent uses unfair data poisoning attacks to corrupt the feedback obtained

by the learner to influence future decisions of the learner towards their favor. Specifically,

study data corruption attacks on stochastic multi arm bandit algorithms. We show that

any bandit algorithm that makes decisions just using the empirical mean reward, and the

number of times that arm has been pulled in the past can suffer from linear regret under

data corruption attacks. We further show that various popular stochastic multi arm bandit

algorithms such UCB, ϵ-greedy and Thompson Sampling satisfy this sufficient condition

and are thus prone to data corruption attacks. We further analyse the behaviour of our attack

for these algorithms and show that using only o(T) corruptions, an adversarial agent can

force these algorithms to select a potentially non-optimal target arm preferred by the attacker

for all but o(T) rounds. This chapter is based on work published in Xu et al. [6].

3.1 Introduction

Recall the online ad auctions example that we have been considering in Chapters 1 and 2. In

Chapter 2 we discussed the case where the seller is selling the online ad impressions through

repeated auction setting where strategic agents aim to misreport their values to make future

decisions more favorable to them. In online advertisements, one of the main goals of the

advertisers is that they want their ads to be shown and eventually clicked by as many users

as possible and similarly the ad exchanges want to display ads that gets clicked more as that

brings them more business and hence revenue. As a consequence, one important factor that

48

ad exchanges consider while deciding which ads to choose is the average clickiness of an ad.

Consider a case where instead of auctioning the ad impressions, the ad exchange or

the learner is sequentially over T rounds is trying to decide what ad to choose from K

possible advertisements based on their clickiness. A reasonable assumption is made that

the audience for the ad impressions is stochastic, thus, conditioned that an advertisement

i ∈ K gets selected to be displayed, it gets clicked with a fixed probability ρi called the

click-through-rate (CTR) of the advertisement. Notice that after the learner chooses an

advertisement i, it only gets click feedback about the ad is actually chose. It gets no answer

to question that if arm j ̸= i was selected, then would it have received a click? Here the

partial feedback model is called bandit feedback as the learner only receives information

about the arms they chose. The advertisers want their ads to be selected more often, but they

are not directly involved in the decision making protocol with the learner just deciding the

ads based on the click results they get from the ads. In this case, instead of using untruthful

reporting, the agents can try to influence the learning process by manipulating the feedback

received by the learner.

Multi-armed bandit problems provide a foundational framework for understanding

sequential decision making. In the classical setting, on each round of the decision process a

learner selects an action (arm,advertiser,agent) from various alternatives and, upon making

this choice, receives some scalar-valued feedback/reward for the chosen action but no

additional information. Algorithms for such multi-armed bandits have been widely adopted

in various applications, including recommender systems [53, 54, 55, 56] and in numerous

modern industry and business applications [57, 58]

As we saw in the example above, a common model assumption for bandit problems is

that the reward associated with an arm is a stochastic quantity drawn from fixed distribution

associated with each arm, and that this random variable is independent of the learner’s

previous actions. The online ad example we just described where each ads gets clicked

with a fixed time independent probability, is an example of the stochastic setting called

49

the stochastic multi-arm bandit setting. Another model generally studied is the adversarial

setting where the feedback is adversarially generated, thus leading to worst case sequences.

The stochastic model is often criticized for being unrealistic: data collected in a sequence

rarely satisfy the independent, identically-distributed (IID) assumption, and it would be

naïve to think that corruptions never occur. The advertisers want their ads to be selected

more often, but they are not directly involved in the decision making protocol with the

learner as the learner is just deciding the ads based on the click results they get from the

ads. In this case, instead of using untruthful reporting, the agents can try to influence the

learning process by manipulating the feedback received by the learner. One does not have

to look hard to find pertinent examples on click fraud in online advertising [59], where the

agents corrupt the a subset of the clicks observed by the decision maker by using click bots

or unfair means. For example, an advertiser may hire a click farm to artificially click on

some of their ads and do ghost impressions of other advertisers so that their click through

rate goes up and the competitors click through rate goes down.

The adversarial model, on the other hand, is considered highly pessimistic in contexts

where we expect learning to be reasonably possible. Researchers have begun to consider

intermediate model assumptions, where the input data is generally assumed to be stochastic

for the most part, yet a small fraction of malicious corruptions will occur, such as the

click fraud example we discussed above. One more such example is fake reviews in online

recommendation systems [60, 61, 62, 63].

Understanding adversarial attacks against machine learning algorithms is critical de-

signing robust systems that can be deployed in the wild. There is a long line of work on

understanding adversarial data-poisoning attacks against deep learning algorithms [64, 65,

66], supervised learning algorithms [67, 68], and more recently for multi-armed bandit

problems . Perhaps the most popular algorithm for the stochastic multi-armed bandit setting,

UCB [69], has a tight theoretical guarantee on its performance (i.e. its regret). Despite

all this, it has been shown indeed that UCB is highly vulnerable to data corruption attacks

50

[70, 71]. In short, with only a handful of corruptions on the reward feedback given to the

learning, UCB can be tricked into directing most of its choices onto a sub-optimal arm.

Adversarial corruptions for multi arm bandit strategies have been studied across two axes:

one line of work focus on designing and analysing different techniques to attack existing

bandit algorithms [70, 71, 72, 73], while the other focuses on designing robust algorithms

that can perform well under various levels of data corruption [74, 75, 76].

Notwithstanding these prior lines of work, there remains a major gap in the corruption

models considered for such adversarial attacks on bandit algorithms. Most existing results

assume that the adversary (corruption agent) is given full knowledge of the arm chosen

by the learner and can perform a targeted corruption based on the arm selected algorithm.

It has indeed been shown that all no-regret stochastic bandit algorithms are vulnerable to

such powerful adversaries [71]. On the other hand, the development of robust algorithms

(e.g. [74, 75]) have obtained guarantees only under a weaker adversary, one that can

only corrupt the reward feedback before observing the arm selected by the learner. There

has been no work, to our knowledge, that has tried to design adversarial attacks against

popular stochastic bandit algorithms under the weaker adversary. For algorithms that are

deterministic, which select each arm via a non-random function of prior observations, there

is no relevant distinction between the strong and weak adversarial models. But given that

randomization is a common and important tool in algorithm design, in this work we consider

attacks against both randomized and non-randomized algorithms.

With this in mind, the goal of the present chapter is to design a strategy for adversarial

attack which (a) is effective against a very broad range of multi-armed bandit algorithms

and (b) fits within the weaker adversary model.

Summary of our results We show that if a stochastic bandit algorithm makes its

decisions as a function of a natural statistic, the empirical mean reward and the number

of pulls of each arm, then such an algorithms is fully vulnerable to the corruption attacks.

51

This family of bandit algorithms is indeed quite broad, and we show that most of the

popular classical strategies—UCB, ϵ-greedy, and Thompson sampling [77], all of which we

analyze—fall within this framework and are thus similarly vulnerable.

We further show that using by corrupting only o(T) rounds, our attack can force these

algorithms to select a specific arm preferred by the adversary (target arm) for all but o(T)

rounds. We believe this reveals what is a core flaw inherent in many bandit algorithms,

and these insights can thus help to design more robust learning algorithms in this and other

settings.

3.2 Preliminaries

Let’s begin by formally defining the stochastic multi arm bandit setting. A principal (or

learner) faces a sequential decision making problem where it needs to select one out of K

actions or arms at each of the T rounds. The principal gets a reward in each round based on

the arm chosen in that round. Formally, at each round t,

1. The learner decides a distribution πt ∈ ∆K over the K arms

2. The environment generates a reward vector rt = (rt1, . . . , r
t
K) (not observable to the

principal) where rti ∈ [0, 1] is the reward the principal will receive if arm i is picked

3. The learner then selects an arm I t ∼ πt and receives the corresponding reward rtIt and

does not observe the rest of the values in rt

For each arm i, in any round t, the reward rti obtained by the learner receives for selecting

an arm i is a sample from a fixed distribution such that E[rti] = µi where µi is unknown to

the learner. Thus by selecting the arm I t in round t, the expected reward of the learner is µIt

Let µ = (µ1, . . . , µK) be the mean reward vector that includes mean rewards of all arms.

To characterize the performance of a bandit algorithm, similar to Chapter 2, a notion of

regret is introduced. The regret of a bandit algorithm is defined as the gap between the

52

total expected reward of the algorithm and the expected reward of the algorithm that always

selects the arm with the highest mean reward in each round.

Definition 3.2.1 (Regret). For a bandit Algorithm A, the regret over T rounds is defined as:

REGA(T) = T ·max
i
µi −

T∑
t=1

µIt

where I t is the arm chosen by the algorithm in round t.

Let arm i∗ be the optimal arm, i.e. i∗ = argmaxi µi. Next we introduce the notion

of adversarial attacks in the stochastic bandit setting. The adversarial attack is a form of

data corruption where a malicious agent intends to manipulate the behavior of the bandit

algorithm by corrupting the reward vector rt generated by the environment. Specifically,

the adversary can change the reward vector rt to another corrupted reward vector r̂t =

(r̂t1, . . . , r̂
t
K) such that r̂ti ∈ [0, 1] for all i. We say that the round t is corrupted if the adversary

changes the reward for at least one of the arms, i.e. ∥rt − r̂t∥1 > 0. Let C be the total

number of rounds that the adversary corrupts, that is C =
∑T

t=1 1{∥rt − r̂t∥1 > 0}. We

call C the corruption level of the bandit algorithm. Algorithm 3 gives a general framework

for adversarial attacks against stochastic multi-arm bandits.

Algorithm 3: Framework for bandit learning with data poisoning attack
Parameters :Number of rounds T , bandit algorithm A, adversary M
for t = 1, . . . , T do

Environment generates the reward vector rt

if Weak attack then
Adversary M replace the reward vector by r̂t

end
Bandit algorithm A selects arm I t

if Strong attack then
Adversary M observe I t and replace the reward vector by r̂t

end
Bandit algorithm A receives reward r̂tIt

end

Importantly, we assume that the adversary corrupts the reward without observing the

53

arm selected by the adversary. That is, we restrict to the class of adversaries that perform a

Weak Attack as defined by Algorithm 3. Formally, the protocol between the learner and the

adversary at each round t = 1, . . . , T is as follows:

1. The learner decides a distribution πt ∈ ∆K over K arms.

2. The environment generates a stochastic reward rt.

3. The adversary corrupts the reward, and the corrupted reward becomes r̂t

4. The learner picks an arm I t from the distribution πt and receives corrupted reward r̂tIt

Next we give definitions to measure the robustness of an algorithm against adversarial

data corruption attacks and the power of attack methods. To characterize the performance of

an algorithm under any possible adversarial attack, we introduce the definition of vulnerable

algorithms.

Definition 3.2.2 (Vulnerable bandit algorithms). We say a bandit algorithm A is vulnerable

if there exists an instance and an adversary such that the adversary with C = o(T) corruption

level can induce linear regret REGA(T) = Ω(T) on the bandit algorithm in expectation.

To characterize the performance of an adversarial attack, we need to consider the bandit

algorithm it attempts to attack as well. The adversarial attacks that we consider in this work

have a goal which is one step harder than just making the bandit algorithm obtain linear

regret. The adversary has a favorite arm (that we call the target arm) and the adversary’s

goal is ensure that the bandit algorithm selects the target arm for most of the rounds of the

algorithm. We say a bandit algorithm B is completely vulnerable to an adversarial attack

A, if with probability at least 1 − δ(T), with δ(T) = o(1), the adversary can make the

algorithm pick the target arm specified by the adversary for all but o(T) rounds by using

only C = o(T) corruption level.

We now introduce a framework that is typically employed by a large class of traditional

stochastic multi arm bandit algorithms. Since the goal of the bandit algorithm is to incur low

54

regret, to do so, it needs to figure out which arms lead to high expected rewards and then it

also needs to ensure that it selects the arm with highest expected reward in most rounds. This

leads to an exploration vs exploitation trade-off in the goals of the algorithm. In most cases,

bandit algorithms rely on two statistics of each arm to balance the trade-off between explore

and exploit: the empirical estimates on mean rewards and the corresponding variance on

the estimates. The empirical means indicate which arm is likely to be the optimal, and

the variances indicate how much confidence the algorithm has about its estimates. The

variance of the estimate can be characterized by the number of samples the algorithm has

access to for estimating the empirical means. The number of samples for each arm is exactly

equal to the number of times that arm is selected by the learner in the stochastic setting. So

typically, a wide class of stochastic multi arm bandit algorithms make decisions based on

the empirical mean and number of selections for each arm. We call this class of algorithms

as Mean based algorithms. Before introducing the formal definition, let us characterize the

information the bandit algorithm has access to when making decisions in a round t. Let It

denote the information the algorithm has access to while making decisions in round t. Using

the information It, the algorithm generates a probability distribution πt over the arms where

for each arm i, πt(i|It) is the probability that the arm i is selected in the current round t

when the information available is It.

Since in each round t, the algorithm chooses an arm I t and then obtains the corresponding

reward rtIt , the information obtained by the algorithm in round t is (I t, rtIt). Thus before

making a decision in round t, the algorithm has access to all the information received in the

rounds so far. Let us denoteHt
A = {(I1, r1I1), . . . , (I t−1, rt−1

It−1)} as the history available to

the algorithm Aup till round t and it is exactly the information that the bandit algorithm

has access to when making the decision in this round, i.e. It = Ht
A. Thus for the bandit

algorithm, the decisions made in round t can be characterized by πt(i|It) = πt(i|Ht
A).

Let nt−1
i =

∑t−1
τ=1 1{Iτ = i} denote the number of rounds arm i gets picked by the

algorithm before round t, and let µ̄t−1 =
∑t−1

τ=1 r
τ
i 1{Iτ=i}

nt−1
i

be the empirical mean of the arm i

55

by round t. We can define Mean based algorithms as follows.

Definition 3.2.3 (Mean based algorithms). We say an algorithm is a mean based algorithm

if

1. Its policy depends only on the empirical means µ̄t−1
i and number of times each arm i

is selected nt−1
i of all the arms. In other words for each arm i,

πt(i|Ht
A) = πt(i|nt−1

1 , µ̄t−1
1 , . . . , nt−1

K , µ̄t−1
K)

2. For each arm i, the probability that it is selected is monotonically increasing in its

empirical mean, i.e.

πt(i| . . . , nt−1
i , µ̄t−1

i , . . .) ≥ πt(i| . . . , nt−1
i , µ̄′t−1

i , . . .)

if µ̄t−1
i ≥ µ̄′t−1

i

3. For each sub-optimal arm i, the probability that it is selected is monotonically

decreasing on number of selections, i.e

πt(i| . . . , nt−1
i , µ̄t−1

i , . . .) ≤ πt(i| . . . , n′t−1
i , µ̄t−1

i , . . .)

if nt−1
i ≥ n′t−1

i and µ̄t−1
i < max µ̄t−1

j∈[K].

In Definition 3.2.3, condition 1. implies that the algorithm’s decisions only depends on

the empirical mean and the number of pulls of each arm so far. Condition 2. implies that

if the empirical mean of the arm is higher, if every other statistic remains the same, then

the probability that the arm gets selected only increases. Condition 3. implies that if the

arm is empirically sub-optimal, then if the number of samples used to obtain that estimate

increases, then the algorithm is more confident about the fact the arm is sub-optimal, then

the probability that the arm gets selected can only decrease.

Many classical bandit algorithms such as UCB, ϵ-greedy, and Thompson sampling fall

56

into the framework of mean based algorithms. In the next section we introduce our attack

methodology using the adversary in consideration. Using the attack, we can show that all

mean based algorithms are vulnerable to data corruptions attacks. In subsequent sections we

prove stronger guarantees for a number of classical multi arm bandit algorithms by showing

that UCB, ϵ-greedy, and Thompson Sampling algorithms are completely vulnerable to our

attacks as long as the mean reward of the target arm is not too small.

3.2.1 Related Works

Compared to the most related works of Jun et al. [70], Liu and Shroff [71], and Garcelon

et al. [73] which also study adversarial attacks against bandit algorithms, there are three

fundamental differences. The first difference is that this line of work assumes that the

adversary can observe the actions of the bandit algorithms, that is they consider a weak

adversary (that is, strong attack as defined by Algorithm 3). This allows the adversary

to attack the algorithms based on whether a particular arm is selected or not. Without

such ability, to simulate their attack, the adversary need to corrupt all rounds if the bandit

algorithm is randomized. The second difference is the corruption model. In their model, the

corruption is counted only for the arm which is selected, while in our model, if in a round

an arm is corrupted but not selected by the bandit algorithm, we still count it as a corrupted

rounds. Based on our notion of corruption, the corruption budget is T for the attackers who

need to corruption every round even if most of its corruption is not observed by the algorithm.

The third difference is that the attacks in this line of works never apply corruptions on the

target arm. Although this makes the target arm more preferred by the bandit algorithm, the

negative side effect is that the amount of corruption they can apply on the non target arms

is limited because they are picked less often, and thus they may have to keep attacking the

algorithm. In our attack, the adversary corrupts all the arms at the beginning, making all

arms look similar, thus even non-target arms are picked often enough in the early phase of

the attack. This allows the adversary to apply enough corruptions on the non-target arms so

57

that the estimates cannot recover even after the attack stops. Through this attack, we show

that all mean based algorithms which make decisions only based on estimates of empirical

means are vulnerable to adversarial data corruption attacks. Liu and Shroff [71] provide a

similar conclusion for the offline setting by analyzing a few specific algorithms. Also note

that in the offline setting considered in Liu and Shroff [71], the algorithm receives a batch of

data with size T at once, and goal of the adversary is to manipulate the algorithm’s choice at

the T + 1 round, which is very different to the online setting.

3.3 Observation-Free Attack

In this section we introduce a data poisoning attack that we call the Observation-Free Attack

(Algorithm 4) which doesn’t explicitly observe the behavior of the bandit algorithm while

deciding how to corrupt rewards.

The attack is separated into three phases. In the first phase that lasts for C1 rounds, the

attack aims at making the algorithm receive a lot of low rewards from the optimal arm so

that the empirical estimate of the optimal arm’s mean reward is as low as possible and that

the confidence of the algorithm over its estimate is high. To ensure that the optimal arm is

picked enough times, we attack all arms which makes all arms appear equally bad to the

algorithm. Explicitly, we set reward to be 0 for all arms in all the rounds in the first phase.

In the second phase that lasts for C2 rounds, the attack tries to make the target arm

distinguishable from the other arms. That is, it wants the algorithm to think that the empirical

reward of the target arm is much better than all other arms. The corresponding way is to

set the reward as 1 for that target arm and 0 for all other arms. Let ĩ be target arm, then the

corrupted reward r̂t in second phase is set as eĩ ∈ [0, 1]K where eĩ is the vector with 1 at

the index ĩ and 0 everywhere else. By the end of the first two phases, the adversary has

tried to ensure that empirical mean of all arms except the target arm is very low with high

confidence and that the empirical mean of the target arm is much higher than the other arms.

In the third phase, the adversary does nothing and hopes that the algorithm selects the

58

target arm for most of the rounds and no other arm can recover from the initial corruption

applied to their rewards in the first two phases. So the attack only corrupts the initial C1+C2

rounds and the corruption level is C1 + C2.

Algorithm 4: Observation-Free Attack
Parameters :Number of rounds T , Mean rewards vector µ̄, bandit algorithm A,

target arm i
Compute parameters C1 and C2 for the given T, µ̄, A.
for t = 1, . . . , T do

Environment generates the reward vector rt

if t ≤ C1 then
r̂t ← (0, . . . , 0) /* Set reward as 0 for all arms */

end
else if C1 < t ≤ C1 + C2 then

r̂t ← eĩ /* Set reward as 0 for all arms but the
target arm. The reward for the target arm is 1

*/
end
else

r̂t ← rt /* No corruption is applied */
end
Bandit algorithm A selects arm I t and receives reward r̂tIt

end

C1 and C2 are the two parameters that the adversary needs to tune based on the bandit

algorithm under consideration and the rewards of the arms. For the sake of analysis, we

assume that adversary has access to the mean reward for each of the arms, i.e the adversary

knows µ = (µ1, . . . , µK) before the start of the bandit learning algorithm. If the adversary

has access to the mean rewards, then the adversary doesn’t even need to access the realized

rewards from any of the rounds to decide its strategy. If the adversary does not have access

to the mean rewards before the start of the process, then we show in appendix 3.7 that while

corrupting the first few rounds, the adversary can observe the realized rewards to effectively

estimate the mean rewards. Using the estimates, the adversary can set the parameters C1

and C2 of Algorithm 4 in an adaptive manner.

59

3.4 Vulnerability of Mean Based Bandit Algorithms

In this section we show the main result of this paper that all mean based bandit algorithms

are vulnerable. In another word, any algorithm that only makes decisions that depend only

on the empirical means of the arms so far and the number of time each arm has been pulled

so far are not robust.

Theorem 3.4.1. For any mean based bandit algorithm that achieves sub-linear regret in

the absence of data-corruptions, there always exists an instance with an adversary data

corruption attack such that the algorithm will suffer linear regret REGA(T) = Ω(T) in

expectation.

To prove the theorem, we show there exist three instances such that the algorithm must

suffer linear regret in at least one of the three instances. We apply observation free attack in

the first instance. In the second instance, we only attack the first few rounds and show that

algorithm either suffers from linear regret in this instance, or almost always picks the target

arm at the second phase in the first instance. In the third instance, we apply no attack and

show that either the algorithm suffers from linear regret in this instance, or only picks the

optimal arm for a few rounds at the third phase in the first instance. Then if the algorithm

guarantees sub-linear regret in the second and the third instance, then it must suffer from

linear regret in the first instance.

Here we provide an intuition for why mean based algorithms are vulnerable. Mean

based algorithms make decisions based on estimates on arms mean value and error from

variance. However, the adversary could introduce additional bias to the estimates which is

unknown to and omitted by the algorithms. Such bias could keep the estimates far from the

real value for most of time through only small amounts of corruption, hence the algorithm

will always makes poor decisions, which leads to big regret. We provide the exact proof

details in Section A.1.

So far we have shown that the observation free attack can induce linear regret on the

60

algorithm in some instances with Ω(1) probability if such algorithm perform well in some

other instances. Actually, the observation free attack is more powerful when attacking some

specific mean based algorithms. In the next section we will show that UCB, ϵ-greedy, and

Thompson sampling algorithms are completely vulnerable to the attack, that is, as long as

the target arm has Ω(1) mean reward, the adversary with low corruption level is able to

manipulate the bandit algorithm to almost always pick the target arm with high probability.

Also, note that the famous EXP3 algorithm is robust in this setting as it can work even in

the fully adversarial setting which includes this setting as a special case. Unlike the other

classical algorithms we have just mentioned, EXP3 algorithm is not a mean-based algorithm

as it doesn’t use the empirical mean of rewards to make decisions.

3.5 Attack on Stochastic Bandit Algorithms

In this section we analyze the performance of the Observation-Free attack on different

classical stochastic multi arm bandit algorithms including UCB, ϵ-greedy, and Thompson

sampling algorithms. We show how we can tune the parameters C1 and C2 for each of the

algorithm and present the corresponding guarantees on the vulnerability of the algorithms

when subjected to our attacks.

3.5.1 Attack on UCB Algorithm

The UCB algorithm [69] is probably the most popular stochastic multi arm bandit algorithm.

UCB works by maintaining upper confidence bounds on the empirical means of the arms’

rewards and chooses the arm with the highest UCB value in each round. Formally, the arm

selection rule of a standard UCB algorithm is the following.

I t =

t, if t ≤ K

argmaxi{µ̄t−1
i +

√
log T

nt−1
i

}, otherwise
(3.1)

where µ̄t−1
i and nt−1

i are the empirical mean and number of times selected so far for arm

61

i by round t. Ties can be broke arbitrarily. Let arm i∗ be the optimal arm, and arm ĩ be the

target arm. Let µ = µĩ denote the mean reward of the target arm for the rest of the paper.

Theorem 3.5.1. When an adversary applies data corruption attack on UCB algorithm with

the attack given by Algorithm 4, by choosing appropriate C1 and C2, with corruption level

C = O(K log T
µ2) where µ is the mean reward of the target arm, the UCB algorithm pulls the

target arm for all but O(K log T
µ2) rounds with probability at least 1− 1/T .

The proof ideas for the analysis of attack on UCB algorithm and the other two algorithms

mentioned later this section are similar. During the first stage where t ≤ C1, each arm will

get selected for around C1/K rounds and the empirical mean for all arms will be 0. During

the second phase where C1 < t ≤ C1+C2, the adversary starts injecting high reward for the

target arm and still keeps corrupting the other arms’ rewards to 0. The target arm will have

the highest mean and thus will get picked most frequently. C2 is chosen to be big enough

such that the empirical mean of target arm will never be lower than its true mean with high

probability. At the end of the second phase, all arms other than the target arm have been

corrupted heavily. During the last stage where t > C1 + C2, since the target arm has a high

enough empirical mean, it gets picked the most often. By choosing C1 and C2 appropriately,

we can ensure that even if the other arms are explore in the third phase, they get picked so

infrequently that their empirical mean cannot recover by the end of the T rounds to be better

than that of the target arm. Thus, the target arm will be empirically optimal arm throughout

the last phase and thus will be chosen the most often.

3.5.2 Attack on ϵ-greedy Algorithm

In ϵ-greedy Algorithm, with some probability ϵ, the algorithm decides to randomly select

an arm to explore. Otherwise, the algorithm picks the am which is empirically best so far.

Formally, the arm-selection rule of ϵ-greedy algorithm with an explore rate ϵ is:

62

I t =

draw uniform[K], w.p.ϵ

argmaxi{µ̄t−1
i }, otherwise

(3.2)

Theorem 3.5.2. When an adversary applies data corruption attack on ϵ-greedy algorithm

with the attack given by algorithm 4, by choosing appropriate C1 and C2, with corruption

level C = Õ(Tϵ/µ+K) where Õ hides log T terms and µ is the mean reward of the target

arm, the ϵ-greedy algorithm pulls the target arm for all but Õ(Tϵ/µ) + K) rounds with

probability at least 1− 2K+2
T

.

For ϵ-greedy algorithm, in the absence of corruption, appropriate choice of ϵ is important

to ensure sub-linear regret. The Tϵ term in unavoidable in the regret of epsilon greedy thus

to ensure sub-linear regret in the absence of corruptions, the ϵ chosen by the learner has to

be such that Tϵ is sub-linear. This also implies that our corruption level is also sub-linear. A

typical choice is ϵ = O(T 2/3), then the corresponding level for the attack is Õ(T 2/3/µ+K),

and the target arm will be selected for all but Õ(T 2/3/µ +K) rounds with probability at

least 1− 2K+2
T

.

3.5.3 Attack on Thompson Sampling Algorithms

Here we analyze the Thompson sampling algorithm on Bernoulli Bandits with Beta Distri-

bution as posterior distribution [77]. In this setting, the reward from picking an arm i in any

round is a Bernoulli random variable with mean µi. Let µ̄i be the empirical mean reward

of arm i and ni be the number of rounds when arm i is picked. At round t, for every arm

i, the algorithm samples θti from the posterior distribution B(µ̄i · ni + 1, (1− µ̄i) · ni + 1)

associated with the arm. Here B(·, ·) is a beta distribution. Then the algorithm chooses the

arm with the highest sampled value, that is, I t = argmaxi θ
t
i .

Theorem 3.5.3. When an adversary applies data corruption attack on the Thompson

sampling algorithm with the attack given by algorithm 4, by choosing appropriate C1 and

C2, with corruption level C = O(2
K log T
µ2) where µ is the mean reward of the target arm, the

63

Thompson sampling algorithm will pull the target arm for all but O(2
K log T
µ2) rounds with

probability at least 1− 2K+1
T

.

The theorems in this section conclude that as long as 1
µ2 is sub linear in T where µ is

the mean reward for the target arm, then an adversary using the observation free attack that

ensure can the algorithms picks a target arm of their choice for all but o(T) rounds with

high probability. In the following section, we experimentally evaluate the performance of

the difference algorithms when subjected to the observation free attack.

3.6 Experiments

In this section, to intuitively illustrate the behavior of algorithms under corruption by our

adversary algorithm, we run simulations attacking UCB, ϵ-greedy and Thompson Sampling

algorithm. Each algorithm is tested under the same artificial instance with 2 arms, with

means µ1 = 0.9 and µ2 = 0.8. The arm 1 is the optimal arm and we set arm 2 as the target

arm for the adversary. We set T = 50000 and the corresponding parameters (C1, C2) for

each of the algorithm is listed in Table 3.1.

Algorithm C1 C2

UCB 34 66
ϵ-greedy 150 150

Thompson Sampling 34 66

Table 3.1: Corruption level parameters for different algorithms

In Figure 3.1, we plot some key statistics about the arms as a function of the iterations

that can help us understand the behaviour of the algorithms under the attacks. In Figure

3.2, we plot the number of times the optimal arm is pulled is chosen till round t, i.e. nt
i∗

with the iteration t on the x axis in both the settings. We consider the case when there is no

attack and how the number changes when we do attack the algorithm. In both Figure 3.1

and Figure 3.2, the top row zooms in on the iterations in phase 1 and 2, i.e. the corrupted

rounds whereas the bottom row shows the behaviour till the horizon T .

64

UCB Algorithm

In UCB algorithm, the main statistic used by the algorithm is the UCB on the arms’

mean reward. In each round, the arm with the highest UCB value is picked. In sub-figures

(a1) and (a2) in Figure 3.1, we plot the UCB values for both the target arm and optimal

arm. We can see sub-figures (a1) that in the first phase, i.e. t ≤ C1 the UCB value for both

the arms decreases to a value close to 0. Then in the next phase as we start injecting high

rewards for the target arm, the UCB value for the target arm grows but it remains close to 0

for the optimal arm. In the third phase, after the corruption rounds, in sub-figures (a2) we

can see that till the end of the horizon, UCB value of the target arms remains greater than

that of the optimal arm. Even the mean of the target arm decreases towards in the direction

of the real mean, it never fall below the UCB of the optimal arm. In sub-figures (a1) and

(a2) of Figure 3.2, we plot the the number of cumulative times the optimal arm gets pulled

by the round t. In sub-figure (a1) of Figure 3.2, we can see that in the second phase, as we

start injecting higher rewards in the target arm, the algorithm completely stops choosing

the optimal arm. After the second phase also, we can see in sub-figure (a2) of Figure 3.2

that the optimal arm never almost never gets pulled. In the absence of corruptions, UCB

algorithm performs very well and the optimal arm is pulled almost always.

ϵ-greedy Algorithm

In ϵ-greedy Algorithm, the key value to an arm’s performance is its empirical mean.

When there are two arms, the arm with higher empirical mean will be picked with probability

1− ϵ/2. In sub-figures (b1) and (b2) of Figure 3.1, we plot the empirical mean for both the

target arm and optimal arm. Similar to UCB we see than in Phase 1, the empirical means

concentrate around 0, then the empirical mean for target arm increases in phase 2, and then

the target arm remains the empirically optical arm till the end of horizon. Similar behaviour

is seen in the number of times the optimal arm gets pulled. We see in sub-figures (b1) and

(b2) of Figure 3.2 that under the attack, after Phase 1, the optimal arm gets picked very

infrequently (only in explore rounds) whereas in the absence of corruptions, the optimal arm

65

is picked almost always.

Thompson sampling Algorithm

In Thompson Sampling algorithm, the algorithm maintains a Beta distribution for each

arm. Based on the Beta distribution for the two arms, in sub-figures (c1) and (c2) of Figure

3.1, we plot the approximate probability that a sample from the empirical Beta distribution

associated with the optimal arm is greater than a sample from the empirical Beta distribution

of the target arm. Again, similar to UCB, we can see that in sub-figure (c1) of Figure 3.1

that after Phase 1, the probability that the optimal arm is chosen drops close to zero. In

sub-figure (c2) of Figure 3.1, we observe that the optimal arm can never recover from the

corruption and the probability that it gets selected remains close to 0. This is reflected in

sub-figures (c1) and (c2) of Figure 3.2 where we can see that under attack, after phase 1,

the optimal arm never gets picked whereas in the absence of corruptions, the optimal arm is

picked almost always.

Figure 3.1: Empirical behaviors of arms in different algorithms. (a), (b) is for UCB
algorithm; (c), (d) is for ϵ-greedy algorithm; (e), (f) is for Thompson sampling algorithm.
(a), (c), (e) focus on the time when the rewards are being corrupted. (b), (d), (f) focus on the
time when the attack stops.

To demonstrate how different algorithms behave with and without the existence of

adversary, we plot the counts of the number of rounds the optimal arm gets picked versus

66

time in figure 3.2.

Figure 3.2: The number of rounds the optimal arm gets selected. (a1), (a2) is for UCB
algorithm, (b1), (b2) is for ϵ-greedy algorithm, and (c1), (c2) is for Thompson sampling
algorithm.

3.7 Attack agnostic to mean rewards of arms

We assumed in Section 3.3 that the adversary has access to mean rewards of each arm which

is required to set the parameters of Algorithm 4. We can introduce a slight modification

on the original attack such that the new attack can be agnostic to the mean rewards while

maintaining similar performance.

The modified observation free attack works as follows. The attack is still separated

into three phases and applies corruption in the same way as before. At the beginning C1 is

set to be infinite so that the attack can estimate the mean reward µ of the target arm, and

once an accurate estimate is formed, the attack can set C1 and C2 based on the estimate.

The question is how to decide the time τ when the estimating ends. Here is some intuition

how we set τ . Let nt denote the number of rounds the target arm gets selected by round

t. The adversary can have a lower confidence bound on the mean reward of the target arm

as µLCB = µ̄ −
√

log T
nt

. By Hoeffding inequality, with probability at least 1 − 2/T 2, we

have µ̄ ∈ [µ −
√

log T
nt
, µ +

√
log T
nt

], which implies µLCB ∈ [µ − 2
√

log T
nt
, µ]. Note that

67

√
log T
nt

diminishes from positive from infinite to 0 as nt grows, so there exists a turning

n∗
t such that

√
log T
n∗
t
< µ/4 and

√
log T
n∗
t−1

> µ/4. Based on this fact, the attack can stop

estimating when µLCB ≥ 2
√

log T
nt

becomes true. At this time, with probability at least

1− 2/T , µLCB ∈ [µ/2, µ], in another word, µLCB = O(µ). Then the attack can set C1 and

C2 by setting the mean reward for the target arm as µLCB. If the time τ to set C1 is already

greater than C1, then let C1 = τ and determine new C2 based on the new C1 and µLCB

correspondingly.

Lemma 3.7.1. When attacking UCB algorithm with the new attack, with corruption level

C = O(K log T
µ2), the UCB algorithm will pull the target arm for all but O(K log T/µ2)

rounds with probability at least 1−3/T . When attacking ϵ-greedy algorithm, with corruption

level C = Õ(Tϵ+K), the ϵ-greedy algorithm will pull the target arm for all but Õ(Tϵ+K)

rounds with probability at least 1− 2K + 4/T . When attacking UCB algorithm with the

new attack, with corruption level C = O(2
K log T
µ2), the Thompson sampling algorithm will

pull the target arm for all but O(2
K log T
µ2) rounds with probability at least 1− 3/T .

As we show earlier, with probability at least 1− 2/T , the true mean reward of the target

arm satisfies µ ∈ [µ̄−
√

log T
nt
, µ̄+

√
log T
nt

]. If this is true, then when the adversary determines

C1 and C2,
√

log T
nt
≥ µ/2, which is equivalent to nt ≤ 4 log T

µ2 . Note that in all the three

algorithms mentioned above, nt is at least t/K −
√
t log T with probability at least 1− 1/T .

So the time when the adversary determine C1 and C2 is at most 16K log T
µ2 +K2 log T , and

µLCB ≥ µ/2. Since µLCB ≤ µ, we have µLCB = Ω(µ). If this C1 is larger than the current

time τ , the algorithm will stay in phase 1 until C1 and behave exactly the same as the old

attack with µ replaced by µLCB, which results in corruption level with the same order. If

this C1 is less than the current time τ , then the algorithm will set C1 = τ instead. In this

case τ is of the same order as C1 of the old attack since τ = O(C1) for C1’s in attacking all

algorithms, the corruption level the new attack needs is still of the same order of the old one,

and the probability that the new attack would fail is 2/T greater than the old one because of

the chance that the estimation of µ is inaccurate.

68

CHAPTER 4

BRIDGING TRUTHFULNESS AND CORRUPTION ROBUSTNESS IN

MULTI-ARM BANDIT MECHANISMS

In Chapter 2, we considered strategic manipulation by agents who report their bids un-

truthfully in repeated auctions. Then in Chapter 3 we considered another form of strategic

manipulation where instead of strategic bidding, agents used unfair data corruption attacks

to influence a bandit learning algorithm into choosing an arm of their choosing. In this

chapter, we study pay-per-click ad auctions where agents bids for ad impressions but only

pay if their ad impression actually gets a click. Thus, agents can employ both a) strategic

bidding to influence the learning outcomes and b) strategic data poisoning attacks to corrupt

the feedback obtained by the learner by manipulating the click outcomes. We show that

exploration separated ϵ−Greedy style algorithm that 1) is truthful, 2) recovers the Õ(T 2/3)

lower bound in the absence of data corruptions, and 3) is robust to adversarial corruption

attacks. This chapter is based on work presented in Abernethy et al. [7].

4.1 Introduction

Recalling the online ad auctions example we have been working with previously, consider

an online ad exchange that is repeatedly selling T ad impressions over T rounds to one

of K advertisers who participate in each round of the auction. In 2, we discussed how

in repeated auctions, agents can misreport their bids hoping to obtain better outcomes in

the future. Then in 3, we considered the setting where there is no direct bidding involved

and the agent, but the agent can still use data poisoning attacks to manipulate a sequential

learning algorithm. In this chapter, we consider a repeated pay-per-click auction with the

goal of social welfare maximization over all rounds. Pay-per-click auctions as it says in the

name, describe a class of auctions where once an ad is selected, the advertiser only makes a

69

payment to the ad exchange if the ad actually gets clicked.

Let us give a rough overview of the challenges of this setting when the ad platform aims

to maximize social welfare. Social welfare is defined as the sum of utilities of the bidders

and the seller. When the platform selects an ad to display to the user, the advertiser is only

charged in the event that the user finds the advertisement of interest and then clicks on it.

Advertisers may have a different value for clicks, thus, the social welfare generated by every

click is not the same. The learner relies on the advertisers to truthfully report these values to

the learner. We need to specify model parameters for these two events: assume that each ad

i generates a click by a random user with probability ρi (the click-through-rate), and in the

event, the ad is clicked the user makes a purchasing decision of some value. We assume that

for simplicity, each agent i’s value for a click is a constant µi across all rounds with.

One of the central challenges of designing ad auctions is that these two parameters are

not known in advance, the principal needs to carefully manage the explore-exploit trade-off

for the click statistics and design algorithms that incentivize bidders to report their value

truthfully.

The agents can employ two forms of gaming to increase their individual payoff in

this, potentially compromising social welfare. First, typically agents know their intrinsic

value µ(a) and make a bid based on that; if misreporting this information can lead to

higher individual payoff then agents will possibly do so. As a result, a line of work has

focused on designing truthful multi-armed bandit mechanisms, i.e., making truth-telling a

payoff-maximizing bidding strategy and thus rendering such attacks ineffective [78, 79].

Another attack aims to manipulate the feedback that the principal observes. For example,

as shown in Chapter 3, an agent may create a bot that either clicks her own ads or does not

click competing ads to adversarially bias the click-through-rate estimates and make the ad

seem less desirable to the principal. A separate line of work has designed algorithms that

are robust to the presence of such adversarial corruptions in the data [74, 75].

Notice that in absence of corruptions, if we assume all agents i report their values

70

µi truthfully, then the problem translates exactly into the stochastic multi-arm bandit we

introduced in 3.2, where each action i has an expected social welfare of ρiµi. Thus, Devanur

and Kakade [78] and Babaioff et al. [79] showed that the pay-per-click auction setting can be

thought of as a mechanism version of multi-arm bandits, where in addition to usual explore

and exploit trade-offs the auctioneers also need to account for strategic bidding

4.2 Model and Preliminaries

We consider a single-slot pay-per-click (PPC) ad auction, consisting of repeated auctions

with T rounds and K advertisers or agents. At each round, the advertisers compete for an ad

impression and the auctioneer or principal selects one advertiser to display and a payment

to charge.

Classical PPC setting. In the stochastic setting for PPC auctions, each advertiser or agent

j is associated with a click-through-rate (CTR) ρj which determines the probability of

getting clicked if she is selected by the principal; the click-through rates are unknown to the

principal. More formally, at round t, each agent j makes a bid btj and the principal displays

the ad of agent I t and charges a payment pt which is not allowed to be above btIt . The click

indicator ct is a Bernoulli random variable with mean ρIt that is 1 when the displayed ad

gets clicked and 0 otherwise; if the click occurs, the agent pays pt otherwise she does not

pay anything (this is why the auction is called pay-per-click). Each agent j is also associated

with a value µj that is fixed across rounds. We refer to this mean as mean value (or mean

income). Agents are assumed to bid in a way that maximizes their expected utility which is

assumed to be quasilinear, i.e., value they obtain minus payment. As introduced in Chapter 2,

the welfare is defined as the total utility of all bidders and the seller. Thus, if a click happens,

i.e ct = 1, then the welfare of the round is equal to the value of the arm selected in round t,

i.e. µIt . Thus, by selecting an I t, the expect welfare of the algorithm in round t is ρItµIt

71

PPC with adversarial corruptions. We extend the classical PPC setting to allow for

adversarial corruptions in observed rewards. Following the model of [74] that we also

considered in Chapter 3, we assume that an adversary can corrupt the results of the clicks

ct. The adversary can observe all the history of past outcomes until round t as well as the

principal’s distribution at round t but does not have access to the random selection of arm at;

this is consistent to the adversarial bandit literature. The adversary has a corruption budget

C which we term corruption level and captures the number of rounds that the adversary is

allowed to corrupt. The corruption level is unknown to the principal.

Regret and performance of mechanism. The principal’s performance is evaluated by

regret which captures the loss in performance due to the principal not knowing the click-

through-rates in advance. If the principal had access to the click-through-rates then the

welfare-maximizing option is to select the agent j that has the highest utilization µjρj , thus

the welfare regret of an algorithm A that chooses arm I t in round t can be given by

Definition 4.2.1. For an algorithm A that chooses arm I t in round t, the welfare regret is

given by

REGA(T) = T ·max
j
ρjµj −

T∑
t=1

ρatµat

Truthfulness requirement. In multi-armed bandit mechanisms such as pay-per-click

auctions, it is important to induce the agents to not misreport their value; if the mechanism

exploits the bidding pattern of an agent in order to charge them higher prices, then this

creates incentive to the bidders to shade their bids which may cause the mechanism to

experience unpredictable behavior. As a result, a desirable property in mechanism design is

truthfulness which suggests that truth-telling is a dominant strategy for the agent, i.e., she

cannot increase her utility by misreporting her value. The following definition quantifies

this requirement for the case where the agents know their value means.

72

Definition 4.2.2 (Truthful Mechanism). A mechanism is truthful if for any sets of click-

through-rates and value means, click realizations, value realizations, every agent j obtains

higher expected utility by bidding her true value btj = µj at every round, irrespective of how

other bidders bid; in other words, if the mechanism is truthful, misreporting does not help

any agent.

The above definition means that truthful bidding is a dominant strategy for the agents

when they know their value. It’s a much stronger notion of truthfulness than the η-utility-

approximate BIC notion we introduce in 2.2.5

A typical way to achieve truthfulness when repeatedly interacting with the same set of

agents is exploration separation.

Definition 4.2.3 ([80]). For a bandit algorithm A, we define influential rounds of A as the

rounds from which the click realizations effects the future allocation of the algorithm. An

algorithm A is called exploration-separated if for any click realization, all the decisions in

any influential rounds are independent of the bids reported by the bidders.

Thus, for exploration-separated algorithms, the decisions in the "explore" rounds should

not depend on the bids of the bidders.

The classical mechanism based on this approach for the uncorrupted case [80] is a

weighted second-price auction.The mechanism first explores each arm uniformly for N

rounds, then it subsequently selects the arm with the highest weight and charges a payment

corresponding to the bid that would have incurred the second weight.

In the presence of adversarial corruptions, any mechanism with deterministic allocation

rule is "vulnerable". Lemma 4.2.1 below specifies this fact.

Lemma 4.2.1. For any mechanism with deterministic allocation rule, there always exists an

instance and a corruption with sub-linear budget such that the mechanism will suffer linear

welfare regret.

73

Proof. Choose an instance (1) where there are only two arms. Their CTR’ s are ρ1 = 0.5,

ρ2 = 0, values are µ1 = 1, µ2 = 1. Let N be the expectation of the number of rounds that

the second arm is selected. So the expectation of welfare regret is 0.5N . If N is linear in T ,

then the mechanism suffers linear regret in this case. If N is sub-linear in T , then choose

another instance (2) where ρ′1 = 0.5, ρ′2 = 1, µ′
1 = 1, µ′

2 = 1. Whenever the algorithm

select arm 2, the adversary set the click result to be no click 0. Then for the mechanism, the

instance is just the same as instance (1), so the second arm will be picked for N times in

expectation. To make this happen, the level of corruption is N which is sub-linear, and the

regret for the mechanism is 0.5(T −N) which is linear.

In order to handle adversarial corruptions, we have to use mechanism with randomized

allocation rules. A simple idea is to use a truthful version of ϵ-greedy algorithm.

4.3 Truthful corruption-robust ϵ−Greedy

Inspired by the explore then commit algorithms of Devanur and Kakade [78] and Babaioff et

al. [80], we introduce a truthful version of ϵ-Greedy inspired mechanism as 5. The algorithm

sets a fixed probability ϵ and with probability ϵ, it explores by selecting a random arm

uniformly and charges no price to the bidder irrespective of the click result.

In exploit rounds, the algorithm selects arm I t ← argmaxj(ρ̂
t
j · btj). In case of a click,

it charges a weighted second price from arm I t, that is, pt =
smaxj(ρ̂

t
j ·btj)

ρ̂t
It

. Otherwise, the

payment is 0 (as is required by the PPC setting).

To make the algorithm exploration-separated, we ensure that the bids and allocations in

explore rounds are random, and we ensure that no click results from exploit rounds are used

for future auctions.

74

Algorithm 5: Truthful ϵ-greedy MAB Mechanism
Parameters :Number of arms K, Number of rounds T , exploration rate ϵ

Initialize :Set ρ̂0j ← 0, n0
j ← 0 for all j ∈ [K]

for t = 1, . . . , T do
Receive bid btj from arm j for all j ∈ [K]

ℓt ←

1 w.p. ϵ

0 otherwise
/* Explore or exploit */

if ℓt = 1 then

/* ... Exploration Round ... */

I t ← j uniformly at random for j ∈ [K] /* Select arm */

Receive click result ct

Charge pt ← 0 /* Payment */

for j ∈ [K] do /* Update empirical mean */

nt
j ← nt−1

j;ℓ + 1{j=It}

ρ̂tj ← ρ̂t−1
j +

ct · 1{j=It} − ρ̂t−1
j

nt
j

end

else

/* ... Exploitation Round ... */

at ← argmaxj(ρ̂
t
j · btj) /* Select arm */

Receive click result ct

Charge price pt ←

smaxj(ρ̂

t
j ·btj)

ρ̂t
It

if ct = 1

0 otherwise
/* Payment */

end

end

Lemma 4.3.1. Algorithm 5 is a truthful mechanism.

Proof. Since bids affect only the current round, the arms do not have incentive to strategically

75

bid to influence future outcomes. We now analyze the effect of the bids on the current round.

If the round is an exploration round, then the bid is irrelevant as the allocation is random and

the payment is 0. If the round is an exploitation round, we employ a weighted second price

auction which is strictly truthful for any set of weights (bids do not affect these weights). As

a result, Algorithm 5 is truthful.

Welfare guarantee. For the welfare guarantee (Theorem 4.3.3), we first show that the

empirical means ρ̂tj used by Algorithm 5 are always, with high probability, close the true

CTR’ s ρj for all agents j.

Lemma 4.3.2. If the corruption level for the mechanism is C, letC ′ = C+max{C, 6 log(T)K/ϵ}

and wt =
√

2K log(T)
tϵ

+ 2C′

t
. With probability at least 1 − 2(K + 1)/T , for all t >

24 log(T)K/ϵ, ρ̂tj ∈ [ρj − wt, ρj + wt] for all j ∈ [K].

Proof sketch. Denote nt
j as the times of the jth arm get selected in explore rounds. The

expectation of nt
j is Ent

j
[=]tϵ/K. By Chernoff lower tail from Lemma A.2.1, taking δ = 1/2,

then we have P[{]nt
j <

tϵ
2K
} ≤ 1/T 2 when t ≥ 24K log T/ϵ. Denote Ct

j as the amount

of corruption that the jth arm received when it gets selected in explore rounds by round t.

The expectation of Ct
j is no greater than ϵC

K
. If C < 6K log T/ϵ, by Chernoff lower tail,

taking δ = 6K log T
Cϵ

, we have P[{]Ct
j >

ϵ
K
(C + 6K log T

ϵ
)} ≤ 1/T 2; if C > 6K log T/ϵ, take

δ =
√

6K log T
Cϵ

, we have P[{]Ct
j >

2ϵC
K
} ≤ 1/T 2.

Combing above, when t ≥ 24K log T/ϵ, with probability at least 1− 2K/T , we have

nt
j > tϵ

2K
and Ct

j < (C + max{C, 6K log T
ϵ
})K

ϵ
for all j ∈ [K] and t ∈ [T]. Denote

C ′ = C + max{C, 6K log T
ϵ
}. Then by Hoeffding’s inequality, we have P[{]|ρ̂tj − ρj| <√

log T
tϵ
2K

+ 2C′

t
} ≥ 1− 2(K + 1)/T for all j ∈ [K] and t ≥ 24K log T/ϵ ∈ [T]. By setting

wt =
√

log T
tϵ
2K

+ 2C′

t
, the statement of the Lemma is recovered.

Now we present the welfare guarantee for Algorithm 5.

Theorem 4.3.3. The expected welfare regret REGA(T) of Algorithm 5 under corruption

76

level C satisfies

REGA(T) ≤ Tϵ+

√
8KT log T

ϵ
+ 4C ′ log T +

24K log T

ϵ

where C ′ = C +max{C, 6 log(T)K/ϵ}. Setting ϵ = T−1/3(K log T)1/3,

REGA(T) ≤ Õ
(
K1/3T 2/3 + C

)

where Õ(·) hides polylog(T) terms.

Proof of Theorem 4.3.3. Recall that REGA(T) = Tρ1µ1 −
∑

t ρatµat where at is the arm

picked at round t. Let’s divide the REGA(T) into the regret from exploration rounds

WELREG explore(T) and the regret from exploitation rounds WELREG exploit(T).

The expected number of explore rounds is Tϵ. Thus WELREG explore(T) ≤ Tϵ.

Define "good" event G such that at every round t ≥ 24K log T/ϵ, for every arm j,

ρ̂tj ∈ [ρj − wt, ρj + wt] is true. Using Lemma 4.3.2, G happens with probability at least

1− 2(K+1)
T

. The regret from rounds where t < 24K log T/ϵ can be bound by 24K log T/ϵ,

and henceforth we only focus on the rounds t ≥ 24K log T/ϵ where event G is defined.

When G is true and t ≥ 24K log T/ϵ, the regret from this round is bound by:

Rt = ρ1µ1 − ρatµat

≤ (ρ̂1 + wt)µ1 − (ρ̂at − wt)µat

≤ wt(µ1 + µat)

≤ 2wt

(4.1)

The first inequality use Lemma 4.3.2, and the second inequality use the fact that ρ̂1µ1 ≤

ρ̂atµat . Summing it over t gives an upper bound on the regret from exploit rounds when G

77

is true and t > 24K log T/ϵ:

R exploit|G(T) ≤
T∑
t=1

2wt ≤ 2(

√
2KT log T

ϵ
+ 2C ′ log T).

When event G doesn’t occur, R exploit|G(T) is at most T . We get

WELREG exploit(T) ≤ 24K log T/ϵ+ P[{]G} · (2(
√

2KT log T

ϵ
) + 2C ′ log T) + P[{]G}T

≤ 24K log T/ϵ+ 2(

√
2KT log T

ϵ
) + 2C ′ log T) + 2(K + 1).

(4.2)

Adding WELREG exploit(T) and WELREG exploit(T), we get

R(T) ≤ Tϵ+ 24K log T/ϵ+ 2

√
2KT log T

ϵ
+ 4C ′ log T + 2(K + 1).

Take ϵ = T−1/3(K log T)1/3, we have

REGA(T) ≤ (1+2
√
2)T 2/3(K log T)1/3+4C ′ log T +24K log T 2/3T 1/3 log T +2(K+1).

Proof. Recall that REGA(T) = Tρ1µ1 −
∑

t ρatµat where at is the arm picked at round t.

Let’s divide the REGA(T) into the regret from exploration rounds WELREG explore(T) and

the regret from exploitation rounds WELREG exploit(T).

The expected number of explore rounds is Tϵ. Thus WELREG explore(T) ≤ Tϵ.

Define "good" event G such that at every round t ≥ 24K log T/ϵ, for every arm j,

ρ̂tj ∈ [ρj − wt, ρj + wt] is true. Using Lemma 4.3.2, G happens with probability at least

1− 2(K+1)
T

. The regret from rounds where t < 24K log T/ϵ can be bound by 24K log T/ϵ,

and henceforth we only focus on the rounds t ≥ 24K log T/ϵ where event G is defined.

When G is true and t ≥ 24K log T/ϵ, the regret from this round is bound by:

78

WELREGt
exploit = ρ1µ1 − ρatµat

≤ (ρ̂1 + wt)µ1 − (ρ̂at − wt)µat

≤ wt(µ1 + µat)

≤ 2wt

(4.3)

The first inequality use Lemma 4.3.2, and the second inequality use the fact that ρ̂1µ1 ≤

ρ̂atµat . Summing it over t gives an upper bound on the regret from exploit rounds when G

is true and t > 24K log T/ϵ:

WELREG exploit|G(t) ≤
T∑
t=1

2wt ≤ 2(

√
2KT log T

ϵ
+ 2C ′ log T).

When event G doesn’t occur, WELREG exploit|Ḡ(T) is at most T . We get

WELREG exploit(T) ≤ 24K log T/ϵ+ P[{]G} · (2(
√

2KT log T

ϵ
) + 2C ′ log T) + P[{]G}T

≤ 24K log T/ϵ+ 2(

√
2KT log T

ϵ
) + 2C ′ log T) + 2(K + 1).

(4.4)

Adding WELREG exploit|G(T) and WELREG exploit|Ḡ(T), we get

REGA(T)Tϵ+ 24K log T/ϵ+ 2

√
2KT log T

ϵ
+ 4C ′ log T + 2(K + 1).

Take ϵ = T−1/3(K log T)1/3, we have

WELREG(T) ≤ (1+2
√
2)T 2/3(K log T)1/3+4C ′ log T+24K log T 2/3T 1/3 log T+2(K+1).

Note that the welfare regret degrades gracefully as the corruption level increases. It is

Õ(T 2/3) when C = 0 and the leading term in T remains Õ(T 2/3) as long as C ≤ O(T 2/3).

79

We also note that for C > T 2/3, the regret grows linear with C, and the regret bound doesn’t

depend on the instance.

4.4 Experiments

In this section, we present empirical analysis of the performance of our proposed algorithm

5 on synthetic data. We compare Algorithm 5, which is the truthful ϵ−greedy mechanism

given in this work with the explore then commit algorithm given by Babaioff et al. [79], and

a version of Algorithm 5 that also uses the data from exploit rounds to make updates, and is

thus not exploration separated or truthful.

0 1 2 3 4 5 6
Arm Id

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
lic

k
Th

ro
ug

h
R

at
e

(c
tr)

 o
f a

rm
s

Description of Synthetic Dataset

Figure 4.1: The click through rates of the arms selected for synthetic experiments

Synthetic Dataset Description We consider 7 arms with different click through rates

sampled from [0, 1]. The exact click through rates are represented in Fig. 4.1. We set µi = 1

for each i. We consider two instances of the problem, one where there is no adversarial

corruption, and one where we use the observation free attack (4) from Chapter 3. We set

the time horizon as T = 2000 for both the datasets and repeat each experiment 10 times.

When we apply the corruption, for setting Chapter 3’s parameters, we set c1 = 150, that is

80

for for the first 1000 rounds we set the reward of every arm as 0 and we set c2 = 150 with

favorable arm 1. That is, for all arms other than arm 1, the corrupted reward is 0. For both

the datasets, for all algorithms, we assume that all the bidders report their bids truthfully.

Algorithm 5 and the explore then commit algorithm given by Babaioff et al. [79] are indeed

truthful, but the non-separated version of Algorithm 5 is not.

Figure 4.2: The welfare regret of Explore then Commit (Explore-Commit), Algorithm 5
(Eps-Greedy(sep), and ϵ−Greedy that uses the data from explore rounds as well. The sub-
figure on the left represents the uncorrupted case where the subfigure on the right represents
the corrupted dataset where the first 300 rounds are corrupted

Results summary The results are presented in Fig. 4.2. We can observe that under no

corruptions, all three algorithms are able to converge to best arm.

In contrast, if we compare the results to the corrupted case, we can see that Explore then

Commit and the ϵ−Greedy that is not "exploration-separated" get highly corrupted. Even

though the number of corruption rounds (300) is less than the explore round of Explore then

Commit, the algorithm is never able to recover from the attack.

For Algorithm 5’s version that is not exploration separated, since it uses data from

exploitation rounds as well, it is still susceptible to data corruption attacks. Even though

in the absence of corruption and strategic behavior, an exploration separated ϵ-Greedy

algorithm has the same asymptotic guarantee as an ϵ-Greedy that uses data from exploitation

rounds as well, in the presence of corruptions, the extra data turns out to be harmful for the

81

non exploration separated version of the algorithm. In fact, Theorem 3.5.2 from Chapter 3

shows that that ϵ−Greedy algorithm that uses data in explore rounds can lead to sublinear

regret.

Thus, in this case, along with ensuring truthfulness , Exploration-separation allowed us

to be more robust to adversarial corruptions as well.

82

CHAPTER 5

OPTIMAL SPEND RATE ESTIMATION AND PACING FOR AD CAMPAIGNS

WITH BUDGETS

Online ad platforms offer budget management tools for advertisers that aim to maximize the

number of conversions given a budget constraint. As the volume of impressions, conversion

rates, and prices vary over time, these budget management systems learn a spend plan (to

find the optimal distribution of budget over time) and run a pacing algorithm which follows

the spend plan.

This chapter considers two models for impressions and competition that varies with

time: a) an episodic model which exhibits stationarity in each episode, but each episode can

be arbitrarily different from the next, and b) a model where the distributions of prices and

values change slowly over time. We present the first learning theoretic guarantees on both

the accuracy of spend plans and the resulting end-to-end budget management system. We

present four main results: 1) for the episodic setting we give sample complexity bounds for

the spend rate prediction problem: given n samples from each episode, with high probability

we have |ρ̂e − ρe| ≤ Õ
(

1
n1/3

)
where ρe is the optimal spend rate for the episode, ρ̂e is

the estimate from our algorithm, 2) we extend the algorithm of Balseiro and Gur [81] to

operate on varying, approximate spend rates and show that the resulting combined system

of optimal spend rate estimation and online pacing algorithm for episodic settings has regret

that vanishes in the number of historic samples n and the number of rounds T , 3) for non-

episodic but slowly-changing distributions we show that the same approach approximates the

optimal bidding strategy up to a factor dependent on the rate-of-change of the distributions

and 4) we provide experiments on realistic data from a large online ad platform, showing

that our algorithm outperforms both static spend plans and non-pacing across a wide variety

of settings. This chapter is based on results presented in Kumar et al. [8].

83

5.1 Introduction

Online advertising is a massive industry worth around $140 billion dollars in 2020 in the

United States alone [82]. Advertisers bidding within large online platforms are usually

constrained by budget, and must decide how to distribute this budget over time as the supply

and demand of impressions change. For example, there are more users online during the day

than at night, leading to a variable density of impressions opportunities (see e.g. Figure 1 in

Liu and Hill [83]). Furthermore, users may be more likely to interact with an ad outside

of working hours, leading to those impressions generating more value for advertisers (e.g.

Table 2 in Liu and Hill [83]). Finally, competition for impressions may vary over the course

of the day, as other advertisers may allocate more budget to high-value periods (e.g. Figures

2 and 3 in Agarwal et al. [84]).

The temporal effects have led to a variety of work on constructing spend plans for a

campaign which learn how to distribute a budget over time [85, 86, 84, 87]. Generally, the

approach taken in these works is twofold: first, they use some model (e.g. a high dimensional

time series model) to forecast the number of impression opportunities over the course of a

day. This is taken as the spend plan. Secondly, they use a pacing algorithm, which tries to

match the empirical spend rate to the spend plan. Lee et al. [87] modify the bid to control

spend, while Agarwal et al. [84] modify their participation probability to control spend.

There are several limitations to the above approaches. First, they model the density

of impression opportunities assuming that value per user and price per user is roughly

constant. Considerable evidence [83, 84] refutes this assumption, suggesting that conversion

rates and prices change over time. Second, their work focuses on empirical rather than

theoretical results, limiting our understanding about which settings we can predict the

resulting algorithms to have good performance. This motivates the problem that we study in

this paper: Can we identify non-stationary settings for which we can provably learn a spend

plan that approximates the optimal distribution of budget, and where the end-to-end system

84

provably performs well?

More formally: We study the problem of computing optimal spend plans from a learning-

theoretic perspective in two settings: an episodic model, and a model in which price and

value distributions change smoothly over time. For the first, we consider an advertiser with

budget B that participates in a sequence of T single-item second-price auctions, called

rounds. These auctions are divided into E episodes of τ = T
E

rounds1. Each episode e ∈ [E]

has a fixed product distribution Qe = Fe × De, with values vt ∼ Fe for vt ∈ [0, h] and

independently prices pt ∼ De in pt ∈ R+. Prices and values within an episode are i.i.d.,

while prices and values across episodes are independently, but not identically, distributed.

Let ρ = B
T

be the average spend per round of a strategy spending budget B over T rounds.

For all e, fe and de denote the probability density functions (pdf) of distributions Fe and

De respectively. Second, we consider a non-episodic setting, where all distributions are

guaranteed to change smoothly: each round has a product distribution Qt = F t ×Dt with

the property that ∥F t+1 − F t∥ ≤ ζ , and ∥dt+1 − dt∥ ≤ θ for all t ∈ [T].

For both settings, we ask: First, can we accurately estimate an optimal spend allocation?

Second, given an (approximately) optimal spend plan, can we implement a pacing algorithm

that satisfies the budget constraint and achieves vanishing regret compared to the ex-post

optimal?

5.1.1 Main Contributions

Our main contributions are as follows.

• Episodic Setting. We propose a pair of algorithms 1) ApproxSpendRate, an offline

algorithm that estimates the optimal spend plan on n samples, and 2) EpisodicAdap-

tivePacing, an online algorithm that adaptively follows the spend plan over T new

auctions, that jointly have regret vanishing in n and T , compared to the best bidding

1We assume equal sized episodes to simplify the presentation of the paper. Our results can be generalized
to different sized episodes where the size of episodes can also be estimated.

85

strategy in hindsight. The formal statement appears as Theorem 5.4.4 in Section 5.4

and relies on the following additional results:

– Estimating Optimal Spend Plan. In Section 5.3 we bound the accuracy of

constructing of an optimal spend plan. We give an algorithm ApproxSpendRate,

that given n samples from each episode, with probability at least 1− 2E
n

, produces

a spend plan that satisfies |ρ̂e − ρe| ≤ (E +1) · Õ
(

1
n1/3

)
where ρe is the optimal

spend rate for the episode, ρ̂e is the estimate from our algorithm and E is the

number of episodes.

– Online Pacing Algorithm on Spend Plan. In Section 5.4 we then give an

adaptive pacing algorithm EpisodicAdaptivePacing that takes an (approximately

accurate) spend plan, and implements a bidding strategy that follows this spend

plan over T new auctions. The regret of this algorithm vanishes in n and T with

respect to the best bidding strategy in hindsight.

• Slow-moving Distributions. In Section 5.5, for slow-moving distributions we learn a

spend plan as if the data came from an episodic model with number of episodes E.

The end-to-end performance achieves a constant factor approximation of the to the

best bidding strategy in hindsight, where the constant factor depends on the rate at

which the distributions change.

• Experiments on Realistic Data. Finally, in Section 5.6 we present experiments on

realistic data from a large online advertising platform. We compare the performance

of our method to the Balseiro and Gur [88] algorithm (which neither estimates nor

uses a spend plan as it was designed for adversarial and stationary settings). Our

method compares favorably to the ex-post optimal strategy and outperforms other

methods in a wide variety of settings.

86

5.1.2 Related Work

Optimal Spend Rate Estimation. There are number of works that aim to estimate optimal

spend rates for budget pacing [85, 86, 84, 87]. Ma et al. [85] and Agarwal et al. [86]

primarily focus on the on the spend plan estimation. Both of these papers aim to forecast

user visits, which correlates strongly with the number of impression opportunities. They

do this using time series modeling techniques for users within the targeting criteria of a

campaign. These works do not attempt to estimate how conversion rates or prices for ad

opportunities change over time. Lee et al. [87] and Agarwal et al. [84] combine user visit

estimates with an online pacing algorithm to match the spend rate to the user visit rate.

Similar to the approaches below, Lee et al. [87] uses a multiplicative shading strategy (i.e.

bidding α · vt instead of vt) to control spend, while Agarwal et al. [84] participate in each

auction with a parameterized probability to control spend. None of these papers give formal

guarantees on the performance of the end-to-end budget management system.

Online Algorithms for Pacing. Work on pacing algorithms has only focused on

guarantees for pacing algorithms in absence of a spend plan. In many cases, for repeated

second-price auctions, the optimal pacing strategy in hindsight is a multiplicative shading

strategy (i.e. bidding α · vt for the auction at time t for a fixed α ≤ 1 that does not vary

over time) [89, 90, 91, 81, 92]. Balseiro and Gur [81] were the first to give online learning

algorithms that approximate this best response. For i.i.d. value and price distributions,

they give an online algorithm with regret O(T 1/2). Similar guarantees are also shown by

Balseiro et al. [93] who achieve O(T 1/2) regret for stationary value and price distributions

setting without assuming independence between values and prices. There are few works

that give provable guarantees for non-stationary competition and values. Balseiro and Gur

[81] consider the case of adversarial values and prices and show that no algorithm can

achieve sub-linear regret with respect to any benchmark that obtains more than B
Th

fraction

of the utility obtained by using the optimal strategy with the power of hindsight (where h

is an upper bound on the value). They also give an algorithm which obtains the Õ(T 1/2)

87

upper bound on the regret with respect to B
Th

fraction of the optimal. Balseiro et al. [93]

considers both an ergodic setting and a periodic setting where regret grows as Õ(T 1/2). Their

algorithms do not construct a spend plan and instead rely on the fact that at a macro-level the

expected optimal spend rate is constant. By contrast, in our setting obtaining no-regret may

depend on saving enough budget for the end of the campaign (for example to reach users on

the weekend for a week-long campaign). Only by explicitly constructing an approximately

optimal spend plan can one give guarantees for such campaigns.

Conitzer et al. [94] show that for individual first-price single-item auctions, multiplicative

shading yields the Eisenberg-Gale outcome of the corresponding Fisher market (though

generally multiplicative shading is not a best response in this setting). Gao et al. [95] give

an online learning algorithm for this setting that results in this equilibrium and can be run in

a decentralized way by each advertiser individually.

While bid modification yields the an optimal strategy for a bidder, an alternative way to

respect a budget constraint is to limit the number of auctions a bidder participates in. Mehta

et al. [96] give revenue guarantees for the online matching problem where users (in this case,

impressions for sale) arrive one at a time and the auction selects a winner who pays their

bid; once a bidder has exhausted their budget they will no longer be selected as a winner.

Subsequently bidder selection has been applied to more general settings [97, 98, 99, 100].

Since truthful bidding is not a best response for advertisers in bidder selection mechanisms,

this line of work is less directly relevant to our work.

In the previous two lines of work, advertisers know the value they have for an impression

when they bid. A separate line of work considers a bandit setting, where the value is only

revealed to advertisers after they win an auction. Amin et al. [101] and Tran-Thanh et al.

[102] give theoretical guarantees for discrete value distributions. Flajolet and Jaillet [103]

extend these results to continuous distributions. Finally, Nuara et al. [104] and Avadhanula

et al. [105] consider the problem of allocating budget across different channels. The different

channels have different distributions and as such bear some similarity to the setting we

88

consider. However, since all channels are simultaneous available and each channel is i.i.d.,

the spend rate remains constant over time (cf. our setting where spend rates change).

Equilibrium Analysis In addition to the work on online algorithms, there’s a growing

body of work that analyzes the equilibria of pacing systems under the assumption that all

advertisers use the same bid-shading approach, e.g. [106, 107, 108, 92, 94, 109, 110]. The

framework of Balseiro et al. [111] studies stationary equilibria and characterize Bayesian

optimal mechanisms that satisfy budget constraints.

5.2 Setting and Preliminaries

We study the problem of designing a bidding algorithm for budget-constrained advertisers in

non-stationary settings. This bidding algorithm aims to maximize utility subject to a given

budget constraint B. The algorithm participates in a sequence of T single-item second-price

auctions2. We refer to each auction as a round. In the following we present the notation

for the episodic setting that we study, the non-episodic setting is formally introduced in

Section 5.5.

In every round t ∈ [T], the bidder observes a value vt for the impression opportunity3

and submits a bid bt to the auctioneer. Let pt be the highest competing bid for the impression

opportunity. When bt ≥ pt the bidder wins, spends pt, and gains utility ut = vt − pt.

Otherwise she loses, pays 0, and gains utility ut = 0. The bidder’s goal is to maximize their

utility subject to the sum of expenditures across T rounds being at most B.

A strategy σ of the bidder is a sequence of deterministic4 mappings σ1, . . . , σt where

σt uses the information that is available to bidder in round t to produce bid btσt . We focus

2Our model captures additional settings, including posted prices and second-price auctions with reserve
prices, but for ease of exposition we consider second-price auctions throughout.

3vt could capture the value v that the advertiser has for a conversion times the probability of a conversion of
the impression opportunity. The latter may depend on context like the user or a search query and is estimated
by the platform.

4While all of our algorithms are deterministic, the lower bound in Lemma 5.2.1 can be extended to
randomized mappings as well. For ease of exposition, our algorithms use only deterministic strategies.

89

attention on strategies that respect the budget constraint.

Definition 5.2.1 (Budget-feasibly Strategy). σ is budget feasible if
∑T

t=1 1 {btσt ≥ pt} pt ≤

B for any realized values v = v1, . . . , vt and prices p = p1, . . . , pt.

A strategy’s utility is simply its total utility over T rounds.

Definition 5.2.2 (Performance of a Strategy). For a given budget feasible strategy σ, it’s

performance on a realized sequence of values v and prices p is given by

πσ (v;p) =
T∑
t=1

1
{
btσt > pt

}
(vt − pt). (5.1)

As benchmark, we consider the best (fractional) allocation in hindsight on the realized

values v and prices p. While the benchmark may appear to be strong, it is commonly used

in the budget pacing literature.

Definition 5.2.3 (Hindsight Strategy Benchmark). The performance of the hindsight strategy

H on a realized sequence of values v and prices p is given by

πH (v;p) = max
x∈[0,1]T

T∑
t=1

(vt − pt)xt s.t.
T∑
t=1

ptxt ≤ B

Here xt ∈ [0, 1] represents a fractional allocation of impression opportunities. We

measure the regret of a strategy compared to the benchmark in expectation over the values

and prices. We use the notion of α-regret proposed by [112], a multiplicative notion:

Definition 5.2.4 (α-regret). For strategy σ and α ∈ (0, 1], the α-regret with respect to the

hindsight strategy is:

α-REGσ(T) = αE
[
πH (v,p)

]
− E[πσ (v,p)]

Where the expectation is over (v,p) sampled from Q⃗, that is, (vt, pt) in episode e is

sampled from Qe = Fe × De.Our algorithm first constructs a spend plan prior to the T

90

auctions, using historical data. The accuracy of the spend plan will be a function of the

sample size our algorithm is given.

Definition 5.2.5 (Sample Complexity). The sample complexity of achieving a given approx-

imation factor 1− ϵ is the minimum number of samples m such that there exists an (offline)

learning algorithm A with the desired approximation.

Of particular interest are algorithms where both the α-regret is sublinear in T , and

additionally, α approaches 1 using a polynomial number of samples. We overload the term

“vanishing regret” for such situations.

Definition 5.2.6 (Vanishing Regret). A strategy σn (which has access to n samples from Q⃗)

has vanishing regret if (1− ϵ)-REGσm(T) = o(T) and m ∈ O(poly(ϵ−1)).

5.2.1 Outline of the Solution

As mentioned previously, our algorithm first produces a spend plan from data, then uses a

pacing algorithm to meet that spend plan. The former is an offline learning problem that

happens before the campaign starts. The latter is an online algorithm that operates on the

spend plan and realized expenditures. Before going into these components, it is informative

to understand why this decomposition in a spend plan and pacing algorithm makes sense.

Why Historical Data is Needed. Balseiro et al. [111] have studied pacing for non-

stationary distributions without using historical data. Could the episodic setting that we’re

studying be amenable to positive results without historical data too? Unfortunately this is

not the case. The following is an example with two episodes for deterministic algorithms.

We generalize the example in the lemma that follows.

Example 5.2.1. Consider two instances of the episodic setting characterized by the episodic

distributions, I = (Q1, Q2) and I ′ = (Q1, Q
′
2) (where Q = F ×D). All the distributions

consist of a single atom: prices distributions D1 = D2 = D′
2 and yield 1 with probability 1.

The value generated by F1 is 2, by Q2 is 1 and by Q′
2 is 3.

91

Consider a buyer with budget B = 1
2
T , thus they can buy precisely half the impression

opportunities. In both instances, the first episode yields utility 2− 1 = 1 per round that is

won, but the second episode differs for the two instances. For I , the per-round utility when

the bidder wins is 1− 1 = 0, while for I ′ it is 3− 1 = 2.

So if the bidder faces the first instance, she needs to win all but a sublinear (in T) number

of rounds in episode 1 for vanishing regret, but if she faces the second instance she may win

at most a sublinear number of rounds in the first episode. Since she doesn’t know which

instance she faces until she enters episode 2, any strategy must incur Ω(T) regret on at least

one of I , I ′.

The example above can be generalized to a stronger result for instances with more

episodes and that includes randomized algorithms.

Lemma 5.2.1. Any strategy σ that only depends on the historyHt = (vi, bi, pi)t−1
i=0 ∪ vt in

round t, for a large enough T , and budget B such that 0 < ρ = B
T
< h, for any number of

episodes E, for any ϵ such that 1− ϵ > max{ ρ
h
, 1
E
}, there exists an instance of the episodic

setting with distributions Q⃗ = (Q1, · · · , QE) such that

(1− ϵ)-REGσ(T) ≥ Ω(T).

Proof. In an adversarial setting where the values and prices are arbitrary, in each round t,

Balseiro and Gur [81, Theorem 1] show that for any strategy σ such that σt depends only on

the historyHt, for a large enough T , for any budget B satisfying ρ = B
T
< h where h is the

upper bound on the values, for any ϵ such that (1− ϵ) > ρ
h

, there exists adversarial values v

and p such that (1− ϵ)πH (v;p)− πσ (v;p) ≥ Ω(T).

Note that if ρ ≥ h then truthful bidding is feasible and achieves the optimal utility. When

ρ < h, then the above result says that there exists a barrier of ρ
h

such that for any strategy

σ that only depends on the history, there always exists an instance where σ cannot obtain

better than ρ
h

fraction of the optimal utility. In other words, if the budget constraint is active,

92

the lower the budget, the smaller the fraction of the optimal budget constrained utility the

advertiser can hope to attain.

Since we don’t make any assumptions about how distributions Qe are related across the

episodes, we can extend the analysis and the adversarial case example of Balseiro and Gur

[81, Theorem 1] to work in the episodic setting and show that similar lower bounds can

be shown for such strategies in our setting as well. Specifically, in the proof of Balseiro

and Gur [81, Theorem 1], the adversarial example has the value vt fixed as h for all T

rounds, and the price profile is samples from a distribution such that the T round auction

is divided into m episodes. When h
E
≤ ρ = B

T
< h, then by setting m = E in the proof

for Balseiro and Gur [81, Theorem 1], we can recover the guarantee that there exists an

instance such that ϵ-REGσ(T) ≥ Ω(T) for 1 − ϵ ≥ ρ
h
. If 0 < ρ < h

E
, then the complete

example is scaled down by replacing h with h′ = ρE. Note that since ρ < h
E

, we have that

h′ < h, thus the example is valid. We also get that h′

E
≤ ρ = B

T
< h′. Thus, we obtain that

ϵ-REGσ(T) ≥ Ω(T) for 1− ϵ ≥ ρ
h′ =

1
E

.

Since algorithms in the episodic setting that only operate on the immediate history fail

to have vanishing regret, we use access to historical data in the form of samples from the

distribution.

Why Spend Plans are Needed. With access to samples from the distribution, one could

still attempt to design an algorithm that does not involve a spend plan. Recall from the

related work that ex-post the optimal bidding strategy is to bid β∗ · vt for some constant β∗.

So what if we used samples to estimate this β and used this directly? The following lemma

shows that this yields linear regret with constant probability.

Lemma 5.2.2. There exists an instance of the episodic setting with distributions Q⃗ =

(Q1, Q2) such that the ex-ante optimal pacing multiplier β∗ incurs O(T).

Proof. Consider a two episode setting with τ = T/2 rounds in each episode and total budget

as B = T/2. Let the price of each item in both the episodes be 1. For the first episode, let

93

the value of each item be 2 and in the second episode, the item has value 4 with probability

1/2 and value 0 with probability 1/2.

The ex-post optimal strategy strategy, or the hindsight strategy buys all v = 4 items in

the second episode, and half of the 2 value items in the first episode, for expected value

T
2
· 4 · 1

2
+ T

2
· 2 · 1

2
= 3T

2
, i.e. a utility of 3T

2
− T

2
= T . Any fixed shading pacing strategy

must either win all or none of the items in the first episode. In the former case, the strategy

has no budget for episode 2, resulting in total utility of T
2
· 2 − T

2
= T

2
. When the pacing

strategy loses all first episode impressions, enough budget remains to win all the 4 value

items in second episode, for expected utility of T
2
· 4 · 1

2
− T

2
= T

2
.

So, any fixed shading parameter earns expected utility at most T
2

. Thus, the regret of any

fixed multiplicative pacing algorithm will be T − T
2
= T

2
= Ω(T).

Instead we construct an intermediate spend plan and combine this with an adaptive

pacing algorithm; an approach we outline next.

Outline of the Solution using Spend Plans. To understand the optimal spend plan, we

first introduce the notation of spend functions which represent the expected expenditure of

strategies that shade by a fixed shading multiplier.

Definition 5.2.7 (Spend Function). Consider a fixed pacing strategy σµ that always bids

bt = 1
µ+1

·
vt and is not restricted by any budget constraints. The expected expenditure of σµ

in a single round in episode e is

Ge(µ) = Ev∼Fe,p∼De [1 {v ≥ (1 + µ)p} p] (5.2)

=

∫ h

0

(1− Fe((1 + µ)p)) · p · de(p)dp. (5.3)

Definition 5.2.8 (Optimal Spend Rates). Given an episodic setting where the ex-post optimal

bidding strategy is to bid β∗ · vt, we define ρ = ρ1, · · · , ρE as optimal spend rates if for all

e, ρe = Ge(µ
⋆), where 1

1+µ⋆ = β∗.

94

In simpler words, the optimal spend plan is characterized by the optimal spend rates

ρ = ρ1, · · · , ρE , such that the ρe is equal to expected expenditure of the ex post optimal

bidding strategy in a single round in episode e. We define the dual of the expectation of the

optimization problem in Definition 5.2.3 as

Ψ(µ) = Ev,p

[
T∑
t=1

(
vt − (1 + µ)pt

)+
+ µB

]
. (5.4)

The ex-post optimal bidding strategy σµ⋆ bids vt

1+µ⋆ where µ⋆ is the dual minimizer (Ψ(µ⋆) =

infµ≥0Ψ(µ)), which spends the complete budget in expectation:

τ
E∑

e=1

Ge(µ
⋆) = τ

E∑
e=1

ρe = B, (5.5)

where ρ1, · · · , ρE are the optimal spend rates. Refer to Appendix B.1 for a detailed exposi-

tion about the characterization of the optimal spend rates through the dual of the problem.

Knowing the optimal spend rates can help decompose the entire campaign into smaller

budget constrained campaigns for each episode where the distributions of values and prices

remain stationary. The exact formulation of optimal spend rates requires complete knowl-

edge of the distributions Q⃗ = (Q1, · · · , QE) which is not available, instead we have access

to historic samples from the distribution Q⃗. This is reasonable to assume as we are designing

this framework for large online ad exchanges which usually have access to a lot of historical

data. Our solution is is a two step pipeline:

1. Approximate optimal spend rates: Use historical samples from Q⃗ to approximate

optimal spend rates ρ = ρ1, · · · , ρE as ρ̂ = ρ̂1, · · · , ρ̂E .

2. Adaptive pacing with spend rates: Use the approximate spend rates to construct an

online pacing algorithm that runs on realized impressions.

95

5.2.2 Preliminaries

We will use some results on uniform convergence and pacing for i.i.d. settings in this paper.

Dvoretzky-Kiefer-Wolfowitz (DKW) Inequality

The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [113, 52] gives a uniform convergence

bound on the empirical cumulative distribution function.

Lemma 5.2.3 (DKW Inequality). Given n samples X1, X2, . . . , Xn from a distribution F .

The empirical cdf on the samples is given by F̂ (x) = 1
n

∑n
i=1 1 {Xi < x}. With probability

at least 1− δ ∥∥∥F − F̂∥∥∥ ≤
√

log
2
δ

2n
.

Kernel Density Estimation

While the DKW inequality 5.2.3 gives strong uniform convergence bounds on the cdf of

a distribution, bounding the probability density function (pdf) of a distribution is more

challenging. A common approach to do this is to use Kernel Density Estimation (KDE)

[114, 115]. Let D be the distribution with pdf d that we want to estimate as d̂. Formally

the Kernel Density Estimation is defined below for scalar distributions which we use in our

setting.

Definition 5.2.9 (Kernel Density Estimation). Given a kernel K, scalar s, and n samples

X1, · · · , Xn from the distribution D, the KDE is given by

d̂(x) =
1

n · s

n∑
i=1

K

(
x−Xi

s

)
.

While most results on KDE are for bounding the mean squared error (Ed

[
(d̂− d)2

]
),

recent work by Jiang [116] gives a uniform convergence guarantee for KDE. We present a

simplified version of their result below.

96

Lemma 5.2.4 ([116]). If d is Lipschitz and bounded i.e. there exists a constant C1 such that

|d(x)− d(x′)| ≤ C1|x− x′| for x, x′ ∈ R and ∥d∥ ≤ C2 for some constant C2, then there

exists a constant C ′ (that depends on K, C1, C2, and some other constants), such that with

probability at least 1− 1/n and by setting s = n−1/3, the kernel density estimate d̂ satisfies

that

∥∥∥d̂− d∥∥∥ ≤ C ′
(
s+

√
logn
ns

)
= Õ

(
1

n1/3

)
.

provided that K is spherically symmetric, non-increasing, and has exponential decay (i.e.

K(x) = k(|x|) where k : R+ → R
+ is a non decreasing function s.t. for all u > uη,

k(u) ≤ Cη exp(−uη) for some fixed η, Cη, and uη)

A number of popular kernel choices such that Gaussian, exponential, uniform, and

many more satisfy the requirements of Lemma 5.2.4. While the Lipschitz requirement

appears strong, a large number of common distributions such as the normal distribution,

Cauchy distribution, exponential distributions and lognormal distributions have Lipschitz

and bounded pdfs.

Balseiro-Gur Pacing Algorithm

Consider a setting with just one episode such that the values and prices in every round t are

sampled from fixed stationary distributions F and D. Balseiro and Gur [81] give an adaptive

pacing algorithm based on minimizing the dual Ψ(µ). In every round t, the algorithm bids

vt

1+µt and the pacing parameter µt is updated using a projected gradient decent style update

in the direction that minimizes the dual.

Lemma 5.2.5 ([81]). If the value and prices in each round are samples from a stationary

distribution such that Ψ(µ) is thrice differentiable in µ with bounded gradients and is

strongly convex, then using the Adaptive Pacing algorithm from Balseiro and Gur [81] with

η = O(T−1/2) results in strategy A with

97

E
[
πH (v,p)

]
− E[πσ (v;p)] ≤ O(

√
T).

5.3 Approximating Optimal Spend Rates

We first turn our attention to estimating optimal spend plans in the episodic setting. Given n

samples from Q⃗, we will divide our budget B across E episodes by estimating target spend

rates (ρ̂1, . . . , ρ̂E) that approximate the optimal spend rates (ρ1, . . . , ρE) additively. The

main theorem we’ll prove in this section is the following.

Theorem 5.3.1. Given B, T , E, sample oracles Fe and De, where de is Lipschitz and

bounded, sampling budget n, K, setting s = O(n−1/3), w.p. ≥ 1− 2E
n

, for each episode e,

ApproxSpendRate returns ρ̂e s.t.

|ρ̂e − ρe| ≤ (E + 1) · Õ
(

1

n1/3

)
.

ApproxSpendRate (Algorithm 6) is based on the fact that the ex-post optimal bidding

strategy spends the complete budget in expectation. The resulting algorithm consists of

three main steps: i) use historical samples to approximate spend functions Ge(µ) for each

episode as Ĝe(µ), ii) use Eq. (5.5) to approximate µ⋆ as µ̂, and iii) estimate the expected

spend per round for each episode using the approximate spend functions and µ̂.

Algorithm 6: ApproxSpendRate
Input: Budget B, rounds T , episodes E, sampling oracles Fe, De,Kernel K, scalar
s

for e = 1, . . . , E do
Samples n values V⃗ = (V1, V2, . . . , Vn) ∼ Fe

Samples n prices P⃗ = (P1, P2, . . . , Pn) ∼ De

Ĝe(µ)← ApproxSpendSP(n, V⃗ , P⃗ ,K, s)
end
Ĝ(µ)← 1

E

∑E
e=1 Ĝe(µ)

µ̂ = minµ s.t. Ĝ(µ) ≤ B
T

return (ρ̂1, . . . , ρ̂E) where ∀e, ρ̂e ← Ĝe(µ̂)

98

Before we discuss how to approximate the spend functions Ge(µ), in Lemma 5.3.2 we

show that a good approximation of Ge(µ) allows for a good approximation of the optimal

spend rates ρ1, . . . , ρE .

Lemma 5.3.2. In Algorithm 6, for each episode e if the estimated episodic spend function

Ĝe obtained the end of Line 15 satisfies
∥∥∥Ĝe −Ge

∥∥∥ ≤ γ, then for each e, the algorithm

returns spend rate ρ̂e such that |ρ̂e − ρe| ≤ (E + 1)γ.

Proof. The proof progresses in two steps: First, we show that the episodic guarantee in the

premise of the lemma yields a bound for the overall spend function. Next, we show that the

approximate spend functions when evaluated on µ̂⋆ yield provable bounds on the resulting

episodic spend rates, where µ̂⋆ is the optimal pacing parameter learned using the estimated

overall spend function.

First note that the episodic bounds yield a bound on the overall spend function Ĝ().

|Ĝ(µ)−G(µ)| = | 1
E

E∑
1

Ĝe(µ)−
1

E

E∑
1

Ge(µ)| (5.6)

=
1

E
|

E∑
1

(Ĝe(µ)−Ge(µ))|

≤ 1

E

E∑
1

|Ĝe(µ)−Ge(µ)| (5.7)

≤ 1

E
· E · γ (5.8)

= γ (5.9)

Where Eq. (5.6) follows from the definition of Ĝ(µ) and Eq. (B.6), Eq. (5.7) follow from

the triangle inequality, and Eq. (5.8) follows from the fact that
∥∥∥Ĝe −Ge

∥∥∥ ≤ γ. Since this

holds for arbitrary µ, this implies that
∥∥∥Ĝ−G∥∥∥ ≤ γ.

Using Eq. (B.7), and the formulation of the algorithm, we know that Ĝ(µ̂) = G(µ⋆) = B
T

,

and Eq. (5.9) implies |Ĝ(µ̂)−G(µ̂)| ≤ γ. Combining the two, we get |G(µ̂)−G(µ⋆)| ≤ γ

It can easily be shown that for any episode e, Ge(µ) = E(v,p)∼Qe [1 {v ≥ (1 + µ)p} p] is

99

a monotonically decreasing function in µ. Consider µ1 ≤ µ2, since all values v and prices p

are non-negative, for any v and p, 1 {v ≥ (1 + µ2)p} p ≤ 1 {v ≥ (1 + µ1)p} p.

So there are two possible case, 1) µ⋆ < µ̂ or µ⋆ ≥ µ̂.

Consider Case 1) i.e. µ⋆ < µ̂, then

|G(µ̂)−G(µ⋆)| = G(µ⋆)−G(µ̂) (5.10)

=
1

E

E∑
e=1

(Ge(µ
⋆)−Ge(µ̂))

≥ 1

E
max

e
(Ge(µ

⋆)−Ge(µ̂)) (5.11)

Where Eq. (5.10) and Eq. (5.11) follow from the monotonicity of G and Ge. Similarly, using

the other direction for the case µ⋆ ≥ µ̂, we get that for every e,

|Ge(µ̂)−Ge(µ
⋆)| ≤ E · |G(µ̂)−G(µ⋆)| ≤ E · γ

Now consider |ρ̂e − ρe| for some e,

|ρ̂e − ρe| = |Ĝe(µ̂)−Ge(µ
⋆)|

= |Ĝe(µ̂)−Ge(µ̂) +Ge(µ̂)−Ge(µ
⋆)|

≤ |Ĝe(µ̂)−Ge(µ̂)|+ |Ge(µ̂)−Ge(µ
⋆)|

≤ γ + E · γ

Thus, for all e, it holds that |ρ̂e − ρe| ≤ (E + 1)γ.

5.3.1 Approximating spend functions

Recall from Definition 5.2.7 that for an episode e with value distribution Fe and price

distribution De,

Ge(µ) =
∫ h

0
(1− Fe((1 + µ)p)) · p · de(p) dp.

100

This implies that if we can approximate Fe and de, we can use Eq. (5.3) to approximate

Ge(µ). In Algorithm 7, we use the empirical estimate F̂e of Fe, and use Kernel Density

Estimation to approximate de as d̂e.

Algorithm 7: ApproxSpendSP: Stochastic prices.
Input:(V1, . . . , Vn): values samples, (P1, . . . , Pn): price samples, Kernel function
K, scalar s
d̂(p)← 1

n·s
∑n

i=1K
(
p−Pi

s

)
F̂ (v)← 1

n

∑n
i=1 1 {Vi < v}

Ĝ(µ)←
∫ h

0
p(1− F̂ ((1 + µ)p))d̂(p)

return Ĝ(µ)

The estimate of the spend function satisfies the following uniform convergence bound.

Lemma 5.3.3. Given n samples from Fe andDe (where de is Lipschitz and bounded), setting

s = O(n−1/3) ApproxSpendSP (Algorithm 7) returns the approximate episodic spend

function Ĝe such that with probability at least 1−2/n it holds that
∥∥∥Ĝe −Ge

∥∥∥ ≤ Õ
(

1
n1/3

)
.

Proof. Consider any µ ≥ 0, with probability at least 1− 2E
n

,

|Ĝe(µ)−Ge(µ)|

= |
∫ h

0

(1− Fe((1 + µ)p)) · p · de(p) dp−
∫ h

0

(1− F̂e((1 + µ)p)) · p · d̂(p) dp|

≤
∫ h

0

|(1− Fe((1 + µ)p)) · de(p)− (1− F̂e((1 + µ)p))d̂e(p)| · p dp

≤
∫ h

0

(
|de(p)− d̂e(p)|+ |F̂e((1 + µ)p)d̂e(p)− Fe((1 + µ)p)de(p)|

)
· p dp

≤
∫ h

0

(
Õ

(
1

n1/3

)
+ Õ

(
1

n1/3

)
+ Õ

(
1

n1/2

)
+ Õ

(
1

n5/6

))
· p dp

= h · Õ
(

1

n1/3

)
= Õ

(
1

n1/3

)

where the first and second inequality follow from triangle inequality. For the third step,

we use the PDF and CDF concentration bounds, and the fact for any 0 ≤ a, b, c, d ≤ 1,

101

|ab− cd| ≤ |c− a|+ |d− b|+ |(c− a).(d− b)|.

Here Õ notation hides the polylog(n) terms along with constants like h, C ′ from

Lemma 5.2.4 and ∥de∥.

Combining the results of results of Lemma 5.3.2 and Lemma 5.3.3 completes the proof of

Theorem 5.3.1. Theorem 5.3.1 implies that using n historical samples, we can approximate

the optimal spend rates up to an additive factor that goes down at the rate of Õ(n−1/3). In

section 5.3.2, we show that in a simpler setting with constant prices, we can obtain a tighter

error bound that goes down at the rate of Õ(n−1/2).

5.3.2 Tighter results for Constant Prices

We consider a simpler setting where within an episode the price per impression is fixed as

p and only the value is sampled from distribution Fe. For the setting where all prices in

episode e are p, the spend function (Definition 5.2.7) simplifies to:

Ge(µ) = (1− Fe((1 + µ)p)) · p.

To estimate Ge(µ) we only need to estimate Fe((1 + µ)p); we give the procedure Ap-

proxSpendFP in Algorithm 8. The concentration guarantees for Ge(µ) follow from a

straightforward application of the DKW inequality (Lemma 5.2.3).

Algorithm 8: ApproxSpendFP: Approximate spend for constant prices.
Input: Number of samples n, (V1, . . . , Vn): values samples, p: price of each
impression

Goal: Estimate G(µ) = E(v)[1 {v ≥ (1 + µ)p} p]
F̂ (v) = 1

n

∑n
i=1 1 {Vn < v} // Empirical cdf estimate for

values

Ĝ(µ) = p(1− F̂ ((1 + µ)p)) // Estimate spend function

return Ĝ(µ)

Lemma 5.3.4. Given n value samples from Fe and price p, ApproxSpendFP (Algorithm 8)

returns the approximate episodic spend function Ĝe such that with probability at least 1− α

102

it holds that ∥∥∥Ĝe −Ge

∥∥∥ ≤ p

√
log

2
α

2n
.

Proof. Using the DKW inequality (Lemma 5.2.3), with probability at least 1− α, we have∥∥∥F̂e − Fe

∥∥∥ ≤√ log
2
α

2n
. Consider any µ ≥ 0, we have

|Ĝe(µ)−Ge(µ)| = |((1− F̂e(1 + µ)p)− 1 + Fe((1 + µ)p)) · p|

= p · |F̂e((1 + µ)p)− Fe((1 + µ)p)|

≤ p ·

√
log

2
α

2n
.

Combining the results of results of Lemma 5.3.4 and Lemma 5.3.2, we can show a

tighter analogue of Theorem 5.3.1 for the constant price setting.

Theorem 5.3.5. Given an episodic setting with fixed prices p and parameters B, T , E,

sampling oracles Fe, sampling budget n, K, with probability at least 1− δ, for each episode

e, by replacing ApproxSpendSP (Algorithm 7) with ApproxSpendFP (Algorithm 8) (at Line

7), ApproxSpendRate (Algorithm 6) returns spend rate ρ̂e such that:

|ρ̂e − ρe| ≤ (E + 1)p ·

√
log

2E
δ

2n
.

5.4 Pacing using Approximate Spend Rates

Now that we have learned the spend rates, in this section we show how we can adapt the

Adaptive Pacing Algorithm of [81] to work with changing spend rates ρ′1, · · · , ρ′E which

approximate the optimal spend rates.

The main idea is that using our learned spend rates, we can efficiently divide the budget

across the episodes and then within each episode, we work with the budget assigned to us,

and use the adaptive pacing algorithm of Balseiro and Gur [81] as subroutine. We present

103

this algorithm as EpisodicAdaptivePacing (Algorithm 9), a detailed version of which appears

as Algorithm 16 in Appendix B.2.

Algorithm 9: EpisodicAdaptivePacing
Input: Budget B, rounds T , episodes E, spend plan (ρ′1, . . . , ρ

′
E), step size η, max

shading µ̄.
µi ← [0, µ̄], BUDGET1 ← B, τ ← T

E
, B̂1 ← ρ′1 · τ

for t = 1, . . . , T do
e← ⌈t/E⌉
Observe value vt

Post bid bt ← min
{

vt

1+µt , B̂e,BUDGETt
}

Observe expenditure zt

µt+1 ← PROJ[0,µ̄][µ
t − η(ρ′e − zt)]

B̂e ← B̂e − zt, BUDGETt+1 ← BUDGETt − zt
if t (mod E) = 0 then

B̂e+1 ← ρ′e+1 · τ + B̂e

end
end

At the beginning of the campaign, we instantiate an overall budget BUDGET as the total

budget of the campaign and an episodic budget B̂1 for the first episode. The budget for each

episode is limited ahead of time and if algorithm runs out of the episodic budget B̂e, then it

cannot buy more item in this episode, even though it may have leftover budget for the whole

campaign. The intuition behind this is that the budget assigned to each episode is based on

the (approximation of) the optimal spend rate. If there is left over budget after an episode

ends, then the budget is simply carried forward to the next episode.

In each episode, the adaptive pacing algorithm tries to match the spend in each round

to target spend rate of that round. Intuitively the algorithm works by taking the equivalent

of a Stochastic Gradient Descent step in the direction of the negative of the gradient of the

Lagrangian of that episode. Note that here the Lagrangian dual /average Lagrangian dual for

each episode is different as is characterised by the budget for that episode. We can now show

that if the spend rate estimates are good, then the resulting strategy has vanishing regret.

Definition 5.4.1 (Admissible Distributions). Joint distribution Q⃗ such that the dual function

104

Ψe(µ,Be) = E(v,p)∼Qe

[
τ (v − (1 + µ)p)+ + µBe

]
is thrice differentiable in µ for all e and

Be with bounded gradients and is strongly convex, where price distribution De is atomic

with all mass on p, or de is Lipschitz and bounded.

Lemma 5.4.1. If the spend rates used by Algorithm 9 satisfy ρe ≥ ρ′e ≥ (1 − ω)ρe,

with parameters B, T , E resulting in strategy A, and Q⃗ satisfies Definition 5.4.1 where

ρ1, · · · , ρE are the optimal spend rates, then setting ϵ = ω, we have

(1− ϵ)-REGA(T) ≤ Õ
(√

ET
)
.

To prove the lemma, we need the following additional result:

Lemma 5.4.2. If ρe ≥ ρ′e ≥ (1− ω)ρe, it holds that

inf
µ≥0

Ψe(µ, τρ
′
e) ≥ (1− ω) inf

µ≥0
Ψe(µ, τρe).

where Ψe(µ,Be) = E(v,p)∼Qe

[
τ (v − (1 + µ)p)+ + µBe

]
.

Proof. Let the optimizer of Ψe(µ, τρ
′
e) be µ′. We know that the optimizer of Ψe(µ, τρe) is

µ⋆. Note that since ρe > ρ′e, using monotonicity of the spend functions, µ⋆ < µ′ Consider

Ψe(µ
′, τρ′e)− (1− ω)Ψe(µ

⋆, τρe)

= τE(v,p)∼Qe

[
(v − (1 + µ′)p)+ + µ′ρ′e − (1− ω) (v − (1 + µ⋆)p)+ − (1− ω)µ⋆ρe

]
= τE(v,p)∼Qe

[
(µ′ρ′e − µ⋆(1− ω)ρe) + (v − (1 + µ′)p)+ − (v − (1 + µ⋆)p)+ + ω (v − (1 + µ⋆)p)+

]
= τE(v,p)∼Qe

[
(µ′ρ′e − µ⋆(1− ω)ρe)− 1 {µ⋆p ≤ v − p ≤ µ′p} (v − (1 + µ⋆)p) + ω (v − (1 + µ⋆)p)+

]
≥ 0

Proof of Lemma 5.4.1. Let’s assume we divide the budgetB into budgetsBe for all episodes

e ∈ [E]. This results in an online budget constraint bid pacing problem for each individual

105

episode. Let Ψe(µ,Be) = E(v,p)∼Qe

[
τ (v − (1 + µ)p)+ + µBe

]
denote the episodic dual

function for episode e when the budget for episode e is Be. Similar to spend functions, if

the budget allocation is optimal, that is Be = τρe, we can decompose the dual Ψ(µ) =

Ev,p[ψ(µ)] across episodes by using episodic dual functions Ψe(µ,Be).

Ψ(µ) = Ev,p

[(
T∑
t=1

(
vt − (1 + µ)pt

)+)
+ µB

]
(5.12)

= Ev,p∼Q⃗

 E∑
e=1

(
eτ∑

t=(e−1)τ+1

(
vt − (1 + µ)pt

)+
+ µρe)

 (5.13)

= τ
E∑

e=1

E(v,p)∼Qe

[
(v − (1 + µ)p)+ + µρe

]
(5.14)

=
E∑

e=1

E(v,p)∼Qe

[
τ (v − (1 + µ)p)+ + µτρe

]
(5.15)

=
E∑

e=1

Ψe(µ, τρe) (5.16)

Equation 5.13 follows from Equation B.7; and Equation 5.16 follows from the definition

of Ψe(µ,Be). Thus Ψe(µ, τρe) is the dual for the episode when the budgetBe for the episode

is τρe.

Let Ψe(µ
⋆
e) = minµ≥0Ψe(µ

⋆
e, τρe). Using KKT conditions, similar to Equation 5.5, we

can show that if µ⋆
e > 0 for all e ∈ [E], then for all e ∈ [E](

∂Ψe(µ, τρe)

∂µ

)
µ⋆
e

= τρe − τGe(µ
⋆
e) = 0

=⇒ ρe = Ge(µ
⋆
e)

=⇒ Ge(µ
⋆) = Ge(µ

⋆
e)

Thus µ⋆ satisfies the KKT conditions for Ψe(µ, τρe) as well. This furthermore implies

that µ⋆ is an optimizer for Ψe(µ, τρe). This results in the following conclusion:

Ψ(µ⋆) =
E∑

e=1

Ψe(µ
⋆, τρe) =

E∑
e=1

Ψe(µ
⋆
e, τρe) (5.17)

106

This implies that if the budget allocation across each episode is τρe, i.e optimal, then the

optimal value of the dual can be obtained by optimizing the dual of each of the episode.

Let the strategy obtained by using our techniques be called A. A uses spend rates ρ′e in

each episode and assigns budget according to these rates. Once the budget has been divided,

the behaviour of A in each episodes is independent of the other episodes. Hence we can

divide the utility obtained by A across the episodes, i.e. πA (v,p) =
∑E

e=1 π
Ae
e (ve,pe).

Where πAe
e (ve,pe) =

∑eτ
t=(e−1)τ+1 [1 {btA > pt} (vt − pt)] and Ae is the strategy in-

duced by A on episode e by limiting the budget for Ae as ρ′eτ .

Thus Ae is just the adaptive pacing strategy given in Balseiro and Gur [81], being run

for episode e with spend rate ρ′e. Since things are i.i.d within the episode, we can directly

use the results of [81]. The corresponding dual induced by the episodic sub-problem with

budget τρ′e is

Ψe(µ, τρ
′
e) = E(v,p)∼Qe

[
τ (v − (1 + µ)p)+ + µτρ′e

]
.

The expected utility of Ae in episode e is given by E(v,p)∼Qe

[
πAe
e (ve,pe)

]
. We use a

corollary of Lemma 5.2.5 which implies that by fixing the budget for episode e as τρ′e, using

η = O(τ−1/2), we have

inf
µ≥0

Ψe(µ, τρ
′
e)− πAe

e (ve,pe) ≤ O(
√
τ)

We know show that if the estimates ρ′e are good, the optimal of the episodic dual with

budget τρ′e is not too less compared to optimal episodic dual when the budget of the episode

is τρe. Using Lemma 5.4.2, for an episode e

(1− ω) inf
µ≥0

Ψe(µ, τρe)− E(v,p)∼Qe

[
πAe
e (ve,pe)

]
= O(

√
τ).

107

Summing over all rounds and using Equation 5.17 we get,

(1− ω) inf
µ≥0

Ψ(µ)− E(v,p)

[
πA (v,p)

]
= Õ

(√
ET
)
.

Using weak duality (Equation B.3), we have

(1− ω)Ev,p

[
πH (v,p)

]
− E(v,p)

[
πA (v,p)

]
= Õ

(√
ET
)
.

Putting Everything Together. The final missing component is that the spend rate estimator

yields an additive guarantee, while the pacing algorithm expects a multiplicative guarantee.

We give a transformation for the the spend plan in Algorithm 10. Lemma 5.4.3 shows that

this yields the multiplicative guarantee.

Algorithm 10: End-to-end algorithm
Input: Budget B, rounds T , episodes E, sampling oracles Fe and De, per-episode

sampling budget n, Kernel K, scalar s, step size η, max shading param µ̄
(ρ̂1, . . . , ρ̂E)← ApproxSpendRate(B, T,E, Fe, De, n,K, s)

ρ̂′e =
(ρ̂e+∆)B∑
e(ρ̂e+∆)τ

for all e ∈ 1, . . . E.
EpisodicAdaptivePacing(B, T,E, (ρ̂′1, . . . , ρ̂

′
E), η, µ̄)

Lemma 5.4.3. Given spend rates ρ̂e such that |ρe−ρ̂e| ≤ ∆ for all e, then ρ̂′e =
(ρ̂e+∆)B∑
e(ρ̂e+∆)τ

≥

(1− 2∆T
B

)ρe for all e.

Proof. From the premise it follows that

ρe ≤ ρ̂e +∆ ≤ ρe + 2∆. (5.18)

Similarly, scaling all sides by the constant B∑
e(ρ̂e+∆)τ

, the inequalities continue to hold:

ρeB∑
e(ρ̂e +∆)τ

≤ (ρ̂e +∆)B∑
e(ρ̂e +∆)τ

≤ (ρe + 2∆)B∑
e(ρ̂e +∆)τ

. (5.19)

108

Using these observations we can derive the multiplicative lower bound:

ρ̂′e =
(ρ̂e +∆)B∑
e(ρ̂e +∆)τ

(by definition)

≥ ρeB∑
e(ρ̂e +∆)τ

(by Eq. 5.19)

≥ ρeB∑
e(ρe + 2∆)τ

(since ρ̂e +∆ ≤ ρe + 2∆ by Eq. 5.18)

=
ρeB

(
∑

e ρe + 2∆) τ

=
ρeB(

B
τ
+ 2∆

)
τ

(τ
∑

e ρe = B, Eq. B.7)

=
ρe

1 + 2∆T
B

≥
(
1− 2∆T

B

)
ρe.

We can now restate our main result formally, which follows from Lemma 5.3.4, Lemma 5.3.3,

Lemma 5.4.1, and Lemma 5.4.3.

Theorem 5.4.4 (Main Theorem). Consider the episodic setting with parameters B, T , E,

and n samples from Q⃗ satisfying Definition 5.4.1. Setting s = O(n−1/3) and η = O(τ−1/2),

with probability at least 1− δ, Algorithm 10 has (1− ϵ)-REGA(T) ≤ Õ
(√

ET
)

with

• ϵ = (E+1)pT
B

√
2 log 2E/δ

n
= Õ(1

n1/2) for the constant-price setting, yielding vanishing

regret, and

• ϵ = Õ(1
n1/3) and δ = 2E

n
for the stochastic-price setting, yielding vanishing regret.

5.5 Slow-moving Distributions

In this section, we consider a setting where the value and price distributions changes at every

time step. In this setting, we still consider an advertiser with budget B who participates in T

auctions. Each round t has a product distribution Qt = F t×Dt, where F t is the distribution

109

over impression value vt ∈ [0, h] and Dt over the highest competing bid pt ∈ R+. Thus, the

T round setting is characterized by distribution Q⃗ = (Q1, · · · , Qt). We consider settings

where this distribution changes slowly over time.

Definition 5.5.1 ((ζ, θ)−slow-moving distribution). A T round campaign distribution Q⃗ =

(Q1 · · · , Qt) is called (ζ, θ)−slow moving if for all t = 1, · · · , T − 1, we have∥∥F t+1 − F t
∥∥ ≤ ζ and

∥∥dt+1 − dt
∥∥ ≤ θ. (5.20)

Even though the value and price distributions change in every round, since Q⃗ is slow

moving, we can generate approximately accurate spend plans by treating ranges of auctions

as episodes. While the distribution in these episodes aren’t stationary, the learned spend

plan is approximately accurate as the distribution is slow-moving.

Algorithm 11: Spend Prediction and Pacing for Slowly Changing Distribution
Input: Budget B, Total rounds T , Number of episodes to divide into E, Sampling

oracles F t for values and Dt for prices, sampling budget n, Kernel K, scalar s,
step size η, max shading param µ̄

Divide T into E episodes of size τ = T
E

Construct episodic sampling oracles F̃e =
1
τ

∑(e+1)τ
t=e.τ+1 F

t and D̃e =
1
τ

∑(e+1)τ
t=e.τ+1D

t

(ρ̂1, . . . , ρ̂E)← ApproxSpendRate(B, T,E, F̃e, D̃e, n,K, s)

ρ̂′e =
(ρ̂e+∆)B∑
e(ρ̂e+∆)τ

for all e ∈ 1, . . . E.
EpisodicAdaptivePacing(B, T,E, (ρ̂′1, . . . , ρ̂

′
E), η, µ̄)

Definition 5.5.2 (Admissible Moving Distributions). Joint distribution Q⃗ s.t. it satisfies

definition 5.4.1 and for any rounds i and j that fall in the same episode, the spend function

is strongly monotone, i.e. (µ′ − µ)(Gi(µ)−Gj(µ
′)) > C(µ′ − µ)2 for some constant C.

As per definition 5.2.7, the average spend function for rounds in episode e can be given

as Ge(µ) =
1
τ

∑(e+1)τ
t=e.τ+1 E(v,p)∼Qt [1 {v ≥ (1 + µ)p} p] and for the ex-post optimal bidding

strategy of bidding vt

1+µ⋆ , we have

τ

E∑
e=1

Ge(µ
⋆) = τ

E∑
e=1

ρe = B. (5.21)

110

where ρ1, · · · , ρE are the optimal spend rates. The accuracy of the spend plan now depends

on the choice for E and parameters ζ and θ that capture how fast the distribution is changing.

Lemma 5.5.1. Given B, T , sampling oracles F t and Dt such that Q⃗ is (ζ, θ)−slow moving,

number of episodes to break into E, n, K, then with probability at least 1 − 2E
n

, using

Algorithm 11, in Line 4, ApproxSpendRate (Algorithm 6) returns spend rates ρ̂e such that

for every episode e,

|ρ̂e − ρe| ≤ (E + 1) · Õ
(

1

n1/3
+
T (ζ + θ)

E

)

provided dt is Lipschitz and bounded by setting s = n−1/3.

Proof. Consider F̃e =
1
τ

∑(e+1)τ
t=e.τ+1 F

t. For any round t belonging to episode e, we have

∥∥∥F t − F̃e

∥∥∥ =
1

τ

∥∥∥∥∥∥τ.F t −
(⌊t/τ⌋+1)∗τ∑
x=⌊t/τ⌋∗τ+1

F x

∥∥∥∥∥∥ ≤ 1

τ

(⌊t/τ⌋+1)∗τ∑
x=⌊t/τ⌋∗τ+1

∥∥F x − F t
∥∥ ≤ ζτ

2
. (5.22)

Similarly, for any round t belonging to episode e we have

∥∥∥dt − d̃e∥∥∥ ≤ θτ

2
. (5.23)

Let F̂e be the empirical cdf obtained using n samples from F̃e. Using the DKW inequality

(Lemma 5.2.3), with probability at least 1−α, we have
∥∥∥F̂e − F̃e

∥∥∥ ≤√ log
2
α

2n
. Similarly, let

d̂e be the kernel density estimate of d̃e obtained using n samples. Using Lemma 5.2.4, with

probability at least 1 − 1
n

, we have
∥∥∥d̂e − d̃e∥∥∥ = Õ

(
1

n1/3

)
. Combining the concentration

results with Eq. (5.22) and Eq. (5.23), we that that with probability at least 1− 2E
n

, for all

episodes e

∥∥∥F t − F̂e

∥∥∥ ≤√ log
n
E

2n
+
ζτ

2
and

∥∥∥dt − d̂e∥∥∥ ≤ Õ

(
1

n1/3

)
+
θτ

2
. (5.24)

Consider the episodic spend function induced by F̂e and d̂e as Ĝe(µ). For all episodes e,

111

with probability at least 1− 2E
n

, we have

|Ge(µ)− Ĝe(µ)|

= |1
τ

(e+1)τ∑
t=e.τ+1

∫ h

0

(1− F t((1 + µ)p)) · p · dt(p) dp−
∫ h

0

(1− F̂e((1 + µ)p)) · p · d̂e(p) dp|

≤ 1

τ

(e+1)τ∑
t=e.τ+1

|
∫ h

0

(1− F t((1 + µ)p)) · p · dt(p) dp−
∫ h

0

(1− F̂e((1 + µ)p)) · p · d̂e(p) dp|

≤ 1

τ

(e+1)τ∑
t=e.τ+1

∫ h

0

|(1− F t((1 + µ)p)) · dt(p)− (1− F̂e((1 + µ)p))d̂e(p)| · p dp

≤ 1

τ

(e+1)τ∑
t=e.τ+1

∫ h

0

(
|dt(p)− d̂e(p)|+ |F̂e((1 + µ)p)d̂e(p)− F t((1 + µ)p)dt(p)|

)
· p dp

≤ 1

τ

(e+1)τ∑
t=e.τ+1

∫ h

0

(
Õ

(
1

n1/3

)
+
θτ

2
+ Õ

(
1

n1/3

)
+
θτ

2

)
· p dp

+
1

τ

(e+1)τ∑
t=e.τ+1

∫ h

0

(√
log

n
E

2n
+
ζτ

2
+ Õ

(
ζτ

n1/3

)
+ Õ

(
θτ

n1/2

)
+ Õ

(
1

n5/6

))
· p dp

= h · Õ
(
ζτ + 1

n1/3
+ ζτ + θτ

)
= Õ

(
ζτ + 1

n1/3
+ ζτ + θτ

)

where the first, second, and third inequality follow from triangle inequality. For the fourth

step, we use Eq. (5.24) and the fact for any 0 ≤ a, b, c, d ≤ 1, |ab− cd| ≤ |c− a|+ |d− b|+

|(c− a).(d− b)|. Using Lemma 5.3.2, we get that for all e, with probability at least 1− 2e
n

,

we have |ρ̂e − ρe| ≤ (E + 1) · Õ
(

ζτ
n1/3 +

τ(ζ+θ)
E

)
.

Now that we have approximate spend rates, we can use the estimates to divide the budget

across the smaller episodes and use EpisodicAdaptivePacing (Algorithm 9) to perform

online pacing. Combining all the guarantees, we can show the following main result for this

setting.

Theorem 5.5.2. For the pacing setting with parameters B, T , Q⃗, number of episodes to

112

break into E, Kernel K, if Q⃗ is (ζ, θ)−slow moving and satisfies Definition 5.5.2, given

n samples from Q⃗, by setting s = n−1/3 and η = τ−1/2, with probability at least 1 − 2E
n

,

Algorithm 11 resulting in strategy A has (1 − ϵ)-REGA(T) ≤ Õ
(√

ET
)

with ϵ = 2ET
B
·

Õ
(

1
n1/3 +

T (ζ+θ)
E

)
.

Theorem 5.5.2 is implied by combining Lemma 5.5.1, Lemma 5.4.3, and Lemma 5.4.1.

Theorem 5.5.2 implies our results for the episodic setting can be extended to obtain results

for more general settings. We can also observe that in this case, the ϵ in (1− ϵ)-REGA(T)

doesn’t converge to 0 as n grows, since the nonstationarity within an episode does not

decrease with more samples.

5.6 Experiments

We now present empirical study of the performance of our proposed algorithm on realistic

data from a large online ad platform; further experiments on synthetic data appear in

Appendix B.3. We compare the performance of four algorithms, three online and the ex-post

optimal benchmark.

• Estimated Spend Plan (our method). We implement ApproxSpendSP using the

KDE algorithm and the empirical CDF function from statsmodels [117] and run

EpisodicAdaptivePacing on the estimated spend plan.

• Linear Spend Plan. Given a target budget B, the spend rate in each auction is B
T

, then

run EpisodicAdaptivePacing. The cumulative spend plan is linear and this algorithm

is essentially equivalent to the one proposed by Balseiro and Gur [81].

• No Bid Shading. The algorithm will bid their value in each auction until they run out

of budget.

• Ex-post Optimal Pacing. Given realized vt, pt for t ∈ [T], the algorithm buys

impressions ordered by bang-per-buck (vt/pt) until the budget is spent.

113

Figure 5.1: End-to-end performance on realistic datasets.

We compare the utility of the first three algorithms to the ex-post optimal pacing algorithm

(the fourth algorithm), reporting the relative utility as a number ∈ [0, 1].

5.6.1 Datasets

We collected value and price data on a large online advertising platform for 50 campaigns

over the course of a single day. We generate instances by taking prices and values and

resample and rescale the data at 10 minute intervals to ensure that a fixed bid over that time

period yields the same expected value and expected spend on the transformed and original

data. To generate an instance, we specify E, T, and n and sample from the transformed

dataset.

• Episodic Data. From the preprocessed data described above, we generate episodic

data (cf. Sections 5.3 and 5.4) as follows: We use E = 12 episodes (each representing

2 hours), and let n = T
E
= 10, 000.

• Non-episodic Data. For the non-episodic setting (cf Section 5.5) we generate

the training and test data differently. For the training data, we use Etrain = 12 and

n = 12000. For the online part of the algorithm, we use Eonline = 144 episodes,

T
Eonline

= 1000.

Let C be the spend of a campaign which buys all positive utility impressions; for each

instance we pick a budget fraction x ∼ U [0, 1.1] and set the budget to x · C.

114

Table 5.1: Utility relative to the ex-post optimal strategy over all runs of the episodic realistic
datasets.

Our Method Linear Spend Plan

mean 92.5% 89.0%
p10 85.5% 85.1%
p25 94.0% 88.6%
p50 97.4% 92.7%
p75 98.5% 95.2%
p90 99.1% 96.6%

Discussion on the Realistic Data. The realistic instances differ in two ways from the

setting for which we have theoretical guarantees. Firstly, there is no guarantee that the data

satisfies the “admissible distribution” conditions in Definition 5.4.1. Secondly, like in all

realistic data, it may be possible that there are correlations between price and value. For

example, if there is a user that is particularly likely to engage with ads, both the advertisers

value as well as the competing bids for that user may be high. By studying a setting that

captures these real-world properties we aim to shed light on the performance of our approach

under realistic conditions.

5.6.2 Results

Episodic Setting In Table 5.1 we give summary statistics over 5 runs for each of the 50

campaigns and in Figure 5.1a we show 50 runs for two chosen representative campaigns.

We focus on Table 5.1 first. For each of “Linear Spend Plan” and “Estimated Spend Plan

(our method)” we plot summary statistics for the percentage of utility obtained compared

to the “Ex-post Optimal Pacing” benchmark. Both Linear Spend Plans and our Estimated

Spend Plans capture a large fraction of the optimal utility attainable (on average 89.0% and

92.5%). Our method does beat linear spend plans across the board. In particular the median

utility of our method is higher than the 90th percentile for linear spend plans.

For two representative campaigns, we’ve plotted runs on 50 generated instances in

Figure 5.1a. Each plot is a scatter plot for instances generated from a particular campaign.

115

We’ve chosen 50 budget fractions uniformly between 0 and 1.1 and generate new training

and online data. We run all 4 algorithms on this generated instance, and plot the utility of

“no bid shading”, “linear spend plan” and “estimated spend plan (our method)” as a fraction

of the utility of “ex-post optimal pacing”. So each of the 50 instances yields 3 data points

on the scatter plot, where the x axis corresponds to the budget fraction and y to the relative

utility.

For very small budget fractions, all method tend to do poorly. This is consistent with

Theorem 5.4.4 where the error grows as the budget gets smaller. As budgets are bounded

away from 0, both linear spend plans and estimated spend plans perform close to optimal,

with estimated spend plans outperforming linear spend plans across the board. Recall that

for these realistic instances, the distributions are not guaranteed to to satisfy Definition 5.4.1,

and that prices and values may be correlated (while learning assumes that prices and values

are independent). The fact that our method perform well despite this is promising for

deployment in real systems.

Non-episodic Data In the previous section we looked at episodic instances that were

generated from realistic data. We now look at what happens when the underlying data is

non-episodic, but we estimate a spend plan as if the underlying data was episodic. One

may do this in the real world where we treat each hour as a separate episode, even when

the distribution slowly changes during that hour. For the same campaigns that were shown

earlier, we generate data with 144 episodes (so each represents 10 minutes) and estimate

a spend plan as if the data came from an instance with 12 episodes (each representing 2

hours). So the estimated spend plan has constant spend for each 2-hour block, even though

this consisted of 12 episodes of 10 minutes each. The results are in Figure 5.1b. Both

our method and the Linear Spend Plans perform noticeably worse than on episodic data.

In particular, the utility of our Estimated Spend Plans is no longer close too 100% of the

Ex-post Optimal Pacing utility, but hovers around 90% or so. However, our algorithm still

116

outperforms the Linear Spend Plan benchmark by quite a margin on a lot of the instances.

117

Part II

Sequential Decision-Making with

Expensive Feedback

118

CHAPTER 6

ACTIVE ONLINE LEARNING

In this chapter we tackle the challenge of online learning when the true labels are expensive

to obtain. We consider the classical problem of multiclass prediction with expert advice, but

with an active learning twist. In this new setting the learner will only query the labels of a

small number of examples, but still aims to minimize regret to the best expert as usual; the

learner is also allowed a very short burn-in phase where it can fast-forward and query certain

highly-informative examples. We design an algorithm that utilizes Hedge (aka Exponential

Weights) as a subroutine, and we show that under a very particular combinatorial constraint

on the matrix of expert predictions we can obtain a very strong regret guarantee while

querying very few labels. This constraint, which we refer to as ζ-compactness, or just

compactness, can be viewed as a non-stochastic variant of the disagreement coefficient,

another popular parameter used to reason about the sample complexity of active learning in

the IID setting. We also give a polynomial time algorithm to calculate the ζ-compactness of

a matrix up to an approximation factor of 3. The results presented in this chapter have been

published in Kumar et al. [20].

6.1 Introduction

The problem of multiclass prediction with expert advice has emerged as a simple yet

powerful framework for reasoning about sequential decision tasks. We imagine we have

a set of N experts, at each round there are K possible outcomes, and where each expert j

makes a prediction Xt,j ∈ [K] at time t about an unknown label yt ∈ [K]. Our learning

task is to emit our own estimate ŷt ∈ ∆k of yt, that takes into account the advice of each

expert along with their historical performance up until this time point. The simple goal is:

can we predict well, in the long run, relative to the expert who performs optimally over the

119

full sequence of predictions, despite that we do not know in advance which expert is best?

Moreover, what can we guarantee even when some of these experts may be predicting in

an arbitrary or perhaps adversarial fashion? These questions have received a great deal of

attention over the past two decades.

The classical algorithm for this problem is commonly known as Hedge [9], although

variants are often referred to as exponential weights or weighted majority. While we give a

precise description in Algorithm 12, Hedge is quite simple to explain in words: the algorithm

combines the predictions of all the experts on a given round by taking their weighted average,

where the weight of an expert exponentially decays according to the number of previous

mistakes. Important details must be addressed, such as the exponential decay factor and

what to do with fractional predictions, but a great deal of research has made one point very

clear: Hedge is essentially the minimax optimal algorithm for the problem of prediction with

expert advice.

One of the downsides of Hedge, as with many online learning algorithms, is that it is not

label efficient: the learning process requires that we observe the target yt on each round.

Obtaining individual labels can, quite often, be very expensive to the learner; indeed this is

central to why we design prediction algorithms in the first place. Active learning, which

refers broadly to a family of frameworks in which the learning algorithm can make selective

label queries, are designed precisely with the goal of minimizing the number of needed

labels while achieving a suitable learning performance. The key idea is that we do not

necessarily need to have a batch of labelled examples prior to training, in many natural

scenarios the algorithm may be able to actively engage with the labelling process to query

labels on a set of unlabelled examples. The classical Binary Search algorithm is, in some

sense, an active learning algorithm to find an element in a sorted list.

It would be hard to argue against the wealth of empirical results showing the benefits

of active learning [118, 119, 120, 121, 122]. At the same time, while our theoretical

understanding of the label-efficiency gains achieved using this new learning model has been

120

studied in a range of scenarios [11, 12, 13, 14, 15, 16, 17, 18], our progress towards a

full-fledged concrete mathematical foundation of active learning has been relatively slow. A

persistent challenge is that precisely identifying scenarios in which active label querying

can provide provable benefits, versus those where it necessarily can not, has proven quite

difficult [12, 14]. The one notable exception is disagreement-based active learning [123]: it

has been shown that, as long as the binary hypothesis class possesses a particular property

with respect to the underlying probability distribution, known as the disagreement coefficient,

a recursive algorithm can “zoom in” to the optimal hypothesis and achieve faster learning

with lower label complexity. While the disagreement coefficient is somewhat difficult to

define, the theoretical work associated to this framework has been perhaps the crowning

achievement of the area.

In the following section we give longer outline of the existing work in this area. But it is

worth noting up front that nearly all work on active learning has imagined a “batch” setting,

where the algorithm is evaluated only at the end of the learning process, in expectation, on

new samples. This is surprising, in particular, given that active learning methods are by

their nature online, as they seek to iteratively refine their learning process and selection of

samples. But thus far there has been no work on putting active learning algorithms to the

test in a no-regret setting of prediction with expert advice, where the algorithm’s decision is

evaluated at each round of the sequence, and where the expert’s predictions as well as the

labels can be non-stochastic and potentially chosen by an adversary.

In the present paper we aim to remedy this gap, and show that there is a natural framework

for active learning in the no-regret setting of prediction with expert advice with strong

learning guarantees as well as bounded label complexity. First, we define a notion of

complexity of the experts’ predictions, somewhat akin to the disagreement coefficient, that

provides a key tool in obtaining a provable guarantee; we refer to this as compactness for a

parameter ζ ≥ 1. Quite notably, this quantity can be efficiently estimated up to a constant

factor!

121

Theorem 6.1.1 (Informal). There is a polynomial time algorithm to calculate the compact-

ness ζ of a matrix up to an approximation factor of 3.

Second, we define “no-regret active learning” by laying out what we believe is the

appropriate analogue to the batch setting. To put it briefly, we imagine a scenario in which

the learner must still make sequential predictions on an M -length list of examples, but with

the following modifications: (a) the learner is given the sequence of all experts’ predictions

in advance, (b) the learner can only query the true label yt on a small number of examples,

and (c) the learner is given a very short burn-in period where it can “fast-forward” to

future rounds in order to query particularly-informative examples. It is this last feature that

makes our setting truly active, as this term is used in the batch setting, since the learner can

recursively seek out useful datapoints. After the short burn-in, however, the learner must

play the remainder of the sequence in its original order while querying only a small fraction

of the labels.

Third, we propose an online learning algorithm for this setting, ActiveHedge, that leans

heavily on Hedge as a subroutine yet uses dramatically fewer label queries. We are able to

show the following:

Theorem 6.1.2 (Informal). Assume we must predict a sequence of labels in [K], we have

N experts who have provided predictions (in [K]) on all M examples, and the prediction

matrix X ∈ [K]M×N is ζ-compact for some ζ ≥ 1. If some expert makes only ϵM mistakes,

for some ϵ > 0, then with probability ≥ 1− ρ algorithm ActiveHedge guarantees that

1. with burn-in period of only O(ζ logN log 1
ϵ
) rounds,

2. no more than O
(
ζϵMpolylog(N

ϵζρ
)
)

label queries,

3. can achieve regret O
(√

ϵM lnN + lnN
)

.

Assuming the prediction matrix X is ζ-compact for a reasonably-sized constant ζ , this

theorem states that the regret of ActiveHedge is indeed no worse than Hedge, yet requires a

dramatically lower label complexity: roughly Õ(ζϵM) queries are needed. The only extra

122

power we give the learner is a very brief burn-in period, roughly Õ(ζ) rounds, where it can

do active exploration of future examples. We now give an illustrative example to view this

setting in comparison with more classical batch active learning.

Batch vs Online Active Learning Before we dive into the related work and our results,

let us lay out an intriguing scenario. Imagine that a worldwide viral pandemic has recently

emerged, and a drug company has been working furiously for months to develop a vaccine

to provide immunity to the novel virus. The company has been able to design two candidate

vaccines, A and B, has proven to federal regulators that both drugs are safe enough to study

in humans, but there’s a challenge: some people have a mild allergic reaction to vaccine A

but not B, and everyone else has a similar allergic reaction to vaccine B but not A, but this

only occurs months after exposure. The company knows that the allergic reaction is based

on one of thousands of possible genetic variants, yet must determine quickly which is the

relevant gene. Unfortunately there are only two ways to determine if the allergic reaction

will occur: (a) wait months to inquire with the patient, or (b) run an expensive test after

administering the vaccine that determines immediately whether the allergic reaction will

occur.

In this scenario, the “experts” (hypotheses) correspond to candidate genes, a recipient

of the vaccine is an example, the true label is their sensitivity to A or B, and the label

query cost is incurred by the expensive test needed to detect a future allergic reaction. We

introduce this challenge because it helps to highlight the distinction between the two modes

of active learning, the classical batch framework and our online setting.

1. If the company decides to take a batch active learning approach, they would begin by

asking random members of the population to submit their genetic profile and sign up

for a vaccine study, but with only a small chance to be selected. The company would

then adaptively filter applicants, zero in on particularly-suitable individuals with the

relevant genetic information, administer one of the two vaccines, and then immediately

123

give the expensive test to detect for future allergic reactions. A population-wide

vaccine administration protocol can then be developed once the key gene in question

is determined.

2. The online approach is more aggressive: the company announces that anyone who

would like to be vaccinated will have the opportunity, but they must submit a certified

genetic profile in advance, arrive at the local mall on a Saturday by 11am, and then

wait in a line. All are promised to receive one of the two vaccines, with the goal of

minimizing potential allergic reaction; some recipients will be given the expensive

test to quickly determine this. Also, all participants are told that a small number may

be brought to the front of the line so that more medically-informative candidates are

treated first; this is the “burn-in” phase which we’ll discuss more in Section 6.2.

The typical way that medical procedures are tested and refined is using the first protocol, but

we would argue1 that the second is superior in how it accounts for and manages the costs

and benefits of both vaccine recipients and developers. The batch active learning framework

has generally been focused on simply minimizing the number of label queries (expensive

tests) in order to achieve ϵ accuracy on future examples, but prediction errors that occur

in the study phase are not accounted for in the loss objective. The online active learning

framework, on the other hand, does not distinguish between study participants and regular

vaccine recipients – the goal is simply to induce the least number of allergic reactions at the

smallest possible testing cost over the long term.

It is important to note that batch active learning methods, including disagreement-based

learning we describe below, can not immediately be applied in the online setting. Batch

active learning only considers label query costs in the training phase and prediction error

costs in the testing phase. Another relevant distinction is that our results do not rely on any

IID assumption – indeed since the algorithm is allowed to move certain examples ahead in

1We want to emphasize that we are not proposing to change the drug design and trial framework, as this
involves a host of ethical and legal issues not considered here. Rather, drug development provides a useful
hypothetical to consider the relative costs of testing and accuracy in an adaptive experimentation problem.

124

the queue adaptively, new examples are almost certain to be non-independent.

Related Work We briefly survey prior work in the general area of active learning. We will

describe salient aspects of these works, and outline how our paper differs from these existing

approaches in terms of framework, method, and theory. At a fundamental level, active

learning deals with label efficient learning, namely, identifying a good predictor, h∗, from

within a hypothesis class, H, based on selectively choosing examples to query for labels.

Within this context, a number of methods under a variety of scenarios and assumptions have

been studied.

There has been a great deal of work in this area, yet we limit our survey here to a few

important themes, in order to draw contrasts and parallels to our setting. Label efficient

learning has been considered in pool-based [124, 123], streaming [125, 19, 126] and online

scenarios [127, 128, 129]. Pool and stream-based scenarios have been considered largely

within the setting of IID examples and/or labels, whereas online methods have been consid-

ered under probabilistic [129] as well as adversarial [127] label noise assumptions. A number

of approaches including disagreement-based [126, 130, 11, 18, 131, 13], margin-based [132,

133, 134, 135, 136, 12], importance-sampling-based [126, 137], and multiplicative-weight

update-based [127] and other online [138, 129] based methods.

In much of the pool and streaming based methods, the underlying assumption is that

the examples and labels, are or can be, drawn IID from some fixed unknown distribution,

with labels hidden from the learner. The learner after making a number of label requests,

not exceeding, say U , outputs a predictor ĥ. In this line of work, the active-learning

protocol is based on comparing ĥ against the Bayes optimal predictor on an independent

labeled sequence. While there is a rich history of methods, which have been explored

under a variety of label noise assumptions, the setting of our work is quite different, in

that we make no probabilistic assumptions on the data generation process or label noise;

and our active learning protocol, in contrast to these works, does not require independence

125

between training and test scenarios. In particular, our protocol follows the online regret

setting, and the incorrect predictions are penalized on the dataset available to the learner

during the training process. On the other hand, our proposed method and theoretical results

are fundamentally related to the so called disagreement based methods, and leverages

key insights of Hanneke’s disagreement coefficient [123]. In particular, we develop the

notion of ζ-compactness, which can be interpreted, in some sense, as a deterministic

and combinatorial version of disagreement coefficient. Nevertheless, since we make no

probabilistic assumptions all previous disagreement-based methods, we cannot leverage

classical empirical risk minimization bounds in our context. For this reason, we draw upon

insights from the Hedge algorithm and its associated regret bounds, which are agnostic to

such probabilistic assumptions.

Our work is also closely related to the label efficient online learning methods, which

have been analyzed both under unbiased probabilistic noise as well as adversarial noise

assumptions. [1] describes a selective sampling method within the framework of online

regret minimization for bounded loss functions. The learner plays M rounds and at time

t gets an input xt, and can decide to seek a label, while being aware of the overall label

budget U . Within this setting, leveraging a variant of the Hedge algorithm, and with no

additional assumptions on data process, [1] provides regret guarantees, which scale as

M
√

log(N)
U

for N experts (number of hypothesis). A number of online variants to this

selective sampling approach have been proposed. [128, 129] introduce probabilistic noise

assumptions, and in particular assume that the regression function is linear, and the label

noise is unbiased and independent of other examples or queries. The linearity of the

regression function together with independent label noise allows them to leverage recursive

least-squares techniques. Similar to these works, we also consider a regret-minimization

techniques. Different from [128, 129] we make no probabilistic assumptions on label noise.

[139, 140] consider the same setting as that of selective sampling where the learner can

request the label after making the predictions in each round but don’t give any theoretical

126

guarantees on the label complexity. In contrast to [1] we assume data from all the N rounds

are available to the learner a priori. In addition, we impose the notion of ζ-compactness on

the dataset of experts’ predictions via a concept closely related to disagreement coefficient,

which allows for dramatic improvements in label efficiency. As a matter of comparison,

say the optimal expert makes ϵM errors, then the existing selective sampling results with

budget U = O(ϵM), would lead to a regret equal to
√

M log(N)
ϵ

in comparison to our result

suggesting
√
ϵM log(N). Nevertheless, improvement in our result can be attributed to the

additional imposition of ζ-compactness.

6.2 Notation, Setting, and Background

For the remainder of the paper, we will consider a matrix X ∈ [K]M×N that represent the

predictions of a set of N experts on a sequence of M rounds. We will use the notation Xt

to refer to the tth row of X, although we will often index rows using the letter i or I . We

write Xi,j to denote the (i, j)th entry of X. Alongside this matrix will be an (unknown)

sequence of labels y1, . . . , yM ∈ [K]. We require a loss function ℓ : ∆K × [K]→ R, and

for simplicity we restrict our attention to the absolute loss ℓ(ŷ, y) := 1
2
∥ŷ − δy∥1. Here

δy ∈ {0, 1}K is the indicator vector, with all zeros except a 1 in the y-th coordinate.

6.2.1 Basics: Prediction with Expert Advice, and Hedge

In the classical setting of prediction with expert advice, the learner receives prediction

vector Xt at round t, makes a prediction ŷt ∈ ∆K , observes the true label yt, and suffers

the loss ℓ(ŷt, yt). Each expert j suffers a loss as well, ℓ(Xt,j, yt), and note that this loss is

conveniently the 0-1 loss as well, 1[Xt,i ̸=yt]. The algorithm wants to choose the predictions

ŷ1, . . . , ŷM in order to minimize the regret:

REGalg :=
M∑
t=1

ℓ(ŷt, yt)− min
j∈[N]

M∑
t=1

ℓ(Xt,j, yt).

127

At times it will be convenient to refer to the cumulative loss of expert j as LM
j =∑M

i=1 ℓ(Xi,j, yi). Similarly, the loss of the algorithm is LM
Hedge =

∑M
t=1 ℓ(ŷt, yt)

Algorithm 12: Hedge

Input: η > 0 /* learning rate parameter */

Init: w⃗0 = [1, . . . , 1] /* N initial weights */

for t = 1, . . . ,M do
Xt ← Preds(t) /* Receive expert predictions */

ŷt ← HedgePredict(Xt, w⃗)
yt ← QueryLabel(t)
w⃗ ← HedgeUpdate(w⃗,Xt, yt, η)

end
Procedure HedgePredict(x⃗, w⃗)

p⃗←
[

w1∑N
i=1 wj

, . . . , wN∑N
i=1 wj

]
/* p⃗ ∈ ∆N */

ŷ ← p⃗ · ONEHOT(x⃗) /* Weighted multiclass pred */

/* OneHot converts multiclass preds x⃗ ∈ [K]N to one-hot matrix encoding ∈ (∆K)N */

return ŷ /* ŷ is a probability vec in ∆K */

Procedure HedgeUpdate(w⃗, x⃗, y, η)
/* Decrease weight of incorrect experts */

for j = 1, . . . , N do
w+

j ← wj exp(−η1[xj ̸=y])

end
return w⃗+

We have already discussed Hedge, the most well-known algorithm for the problem of

prediction with expert advice. We lay this out in full detail in Algorithm 12, with two

important subroutines, HedgeUpdate and HedgePredict, that will be needed later.

Theorem 6.2.1. Assume we know a quantity L∗ such that minj=1,...,N L
M
j ≤ L∗. Then,

choosing η = log
(
1 +

√
2 lnN
L∗

)
Algorithm 12 guarantees

LM
Hedge − min

j=1,...,N
LM
j ≤

√
2L∗ lnN + lnN. (6.1)

This is, in many respects, a fundamental bound. We know, for example, that this can not

be made any tighter, even up to constants [141].

128

6.2.2 Prediction Matrix Compactness

In the typical adversarial learning setting we assume that the experts’ predictions and labels

are chosen in some arbitrary fashion. On the other hand, it is well understood that to

obtain any reasonable learning result in an active label-efficient mode one requires stronger

assumptions on the input data. In our framework of prediction with expert advice this will

mean we must constrain the matrix X in an appropriate fashion. Let us now describe a

particular condition on X, which we call compactness, that measures a purely combinatorial

property of the space of predictions.

Definition 6.2.1. Given X ∈ [K]M×N , and for any subset V ⊆ [N] of experts, the points of

contention of V is the set

POCX(V) := {i ∈ [M] | ∃j, j′ ∈ V : Xi,j ̸= Xi,j′}

For any set of experts, the points of contention are the collection of examples where at

least two of the experts in the set disagree.

Definition 6.2.2 (ζ- Compactness). For some ζ ≥ 1, we say that an expert prediction matrix

X is ζ-compact if it satisfies

|POCX(V)|
maxj,j′∈V |POCX({j, j′})|

≤ ζ (6.2)

for each V ⊂ [N] with |V | ≥ 2. We refer to the compactness of X as the smallest ζ for

which inequality (6.2) holds.

Given a prediction matrix X, the compactness of X controls the divergence between two

key quantities of a group of experts V : the total number of points of contention of all of V

versus the largest number of points of contention over any pair in the group. In one sentence,

the matrix X is ζ-compact if the size of the contentious set for any subset of experts is never

129

ζ larger than that of the most contentious pair of experts in it. Here are two illuminating

examples that illustrate matrix compactness:

1. Let K = 2, M = N and let X be the identity matrix, with all 0 entries except 1s on

the diagonal. The compactness of this matrix is M
2

, unfortunately, which is very large.

That’s because if you take V = [N] we see that POCX(V) = [M] the whole set of

examples. But for any pair j, j′ we have POCX({j, j′}) = {j, j′}. In other words,

any group of experts has as many points of contention as members in the group, but

any pair of experts will disagree on only two points. This is indeed a very hard case

for active learning, as individual examples are not very informative.

2. Continue to letM = N and now let X be the upper triangular matrix with all 1s on and

above the diagonal, and 0s below. This is a very compact matrix, with ζ = 1! That’s

because for any subset V we have POCX(V) = POCX({min(V),max(V)}), i.e. the

points of contention in V is identically the points of contention for the largest-index

and smallest-index experts in the set.

Following point 1 above, we can give a simple bound on the compactness of any expert

prediction matrix X.

Theorem 6.2.2. For any matrix X ∈ [K]M×N , for M ≥ 2, the compactness of X is less

than or equal to min {M,N}

Proof. If for a set of experts V , if |V | ≤ 2 then |POCX(V)| = DIAM(v). Assume V has all

unique experts. For any set V ∈ [N], |POCX(V)| ≤M , thus ζ ≤M .

For any V , we show that |POCX(V)| ≤ |V |DIAM(V). Let show this by induction over

the size of V . For |V | ≤ 2, the base cases are direct. Assume that it is true for some V , i.e.

|POCX(V)| ≤ |V |DIAM(V). If we add one more expert h to this set, then two cases are

possible, a) DIAM(V + h) = DIAM(V) or b) DIAM(V + h) > DIAM(V).

a) DIAM(V + h) = DIAM(V)

We can show that |POCX(V + h)| ≤ |POCX(V)| + DIAM(V). If this is not true, i.e.

if |POCX(V + h)| > |POCX(V)| + DIAM(V) then h disagrees with all j ∈ V on at least

130

DIAM(V) + 1 points which are not in POCX(V). Thus POCX(h, j) ≥ DIAM(V) + 1 >

DIAM(V) which would imply DIAM(V + h) > DIAM(V) which is a contradiction. Thus

|POCX(V + h)| ≤ |V + h|DIAM(V + h)

b) DIAM(V + h) > DIAM(V)

The extra points added in POCX(V) by adding h is bounded by DIAM(V + h). We get

|POCX(V + h)| ≤ |POCX(V)|+ DIAM(V + h)

≤ |V |DIAM(V) + DIAM(V + h)

≤ |V + h|DIAM(V + h)

This implies for any V , |POCX(V)| ≤ DIAM(V)|V |. Since |V | ≤ N , ζ ≤ N .

Comparison to the Disagreement Coefficient. As we mentioned early in the paper,

one of the major theoretical accomplishments in the literature on label-efficient statistical

learning is the work on disagreement-based active learning, first introduced by [11] with

several followup works [131, 14, 19, 123, 142]. The key quantity of interest in this work is

known as the disagreement coefficient, a scalar that measures the difficulty of active learning

with respect to a particular hypothesis class and data distribution. What was shown all

the way back to [11] was that this coefficient controls the label complexity of learning on

the given task, and they show several examples where the disagreement coefficient is of

reasonable size.

While we developed our notion of compactness independently, and with a different

model in mind, we later realized that in the case of binary classification our definition can in

some sense be viewed as a “derandomization” of Hanneke’s disagreement coefficient; we

make this more precise in the proposition below. The compactness ζ of a prediction matrix

X does not depend on any notion of IID sampling from an underlying data distribution,

as ζ is purely a combinatorial property of the experts’ predictions which could have been

adversarially chosen. And, while there is some resemblance between the burn-in procedure

131

in Phase I of ActiveHedge and the A2 algorithm of [11], our results are not at all comparable:

the goal of our work was to produce an algorithm that suffers low regret, as it is forced to

make a prediction and suffer loss on each example, and be robust against non-stochastic

sequences of data.

Proposition 6.2.2.1. Consider a binary expert prediction matrix X with compactness ζ.

Construct a data distribution D which generates an x, y pair by uniformly sampling x as

a row of X and let y be the corresponding label. We can considers the set of experts as

an N -sized hypothesis classH. Then the disagreement coefficient of (D,H), as defined by

[11], is 2ζ where ζ is the compactness of X.

6.2.3 Online active learning with experts

Let us now specify the details of our framework for active learning with expert advice. It

can be described in terms of the vanilla Hedge setting, but with three key modifications:

1. The sequence of expert predictions, specified by X, can be precomputed and is given to

the learner in advance of the prediction task.

2. The learner aims to make only a small number of label queries, limiting the number of

times yt is observed.

3. We allow a very brief burn-in period, which we call Phase I, where the learner can

“fast-forward” to act on particular examples, and query their labels, out of turn. In Phase

II the learner then plays the remaining points, which are the vast majority, in the order

they are given, with the occasional label query if needed.

Modification 1 above is not unusual and arises naturally in settings where the experts are

a set of pre-selected deterministic hypotheses, the rounds/examples are given by a queue of

contexts/input vectors, and we can pre-evaluate each hypothesis on each context (the vaccine

development scenario given in the introduction is another such example). Modification 2

captures the underlying goal that we want to skip the potentially-expensive step of obtaining

the correct multiclass label in all but a small fraction of rounds; adding this modification

132

alone is often referred to as label efficient online learning, e.g. [143].

Modification 3 is perhaps the most unusual in the context of adversarial online learning,

where one assumes that the learner the sequence of examples and labels is chosen in an

adversarial fashion. But we would argue that this is actually necessary to achieve any kind

of non-trivial guarantee: without a small number of fast-forward rounds, the adversary

can simply postpone all informative examples to the end of the sequence, at which point

querying their labels would provide no benefit to the learner. Indeed we show that the

burn-in period can be extremely short, no more than roughly O(ζ logN log 1
ϵ
) where ζ is

the compactness of X, in order to obtain the same regret as Hedge with vastly fewer label

queries (roughly Õ(ζϵM)).

Note that if we don’t allow a burn in phase, the lower bounds of Cesa-Bianchi et al. [1,

Theorem 13] apply to the online active learning setting as well. This implies that if we don’t

allow a burn-in phase, then to guarantee the same
√
2ϵM lnN regret as Hedge, any algorithm

would require at least C·M
ϵ

labels for some constant C. Since ϵ ≤ 1, C·M
ϵ

= Ω(M). Thus,

without a burn-in period, any algorithm would require Ω(M) labels to get the same regret

guarantee as Hedge. Since Hedge also request O(M) labels, there would be no advantage in

using anything other than Hedge.

6.3 Algorithm And Performance Guarantee

Henceforth we will let b denote the index of the best expert, i.e. b = argminj∈[N] L
M
j , and

that the number of mistakes satisfies LM
b ≤ ϵM.

6.3.1 An Overview of ActiveHedge

We present a multiplicative style algorithm ActiveHedge, described precisely in Algorithm

13. First let us give a high-level intuitive description of the procedure. ActiveHedge is divided

into two phases.

1. Phase I. This is the so-called burn-in period, where the algorithm can fast-forward

133

to future examples out of turn. On each such example, the algorithm must still make

a prediction, and can then query the label. This phase, while short, is done in small

epochs of length k = O(ζ log(N/ρ)), with a total of T = O(log(1/ϵ)) epochs. In a

given epoch τ the algorithm has a set of “candidate experts” V τ who have predicted

reasonably well thus far. To reduce the number of candidate experts, the algorithm

samples future rounds from the points of contention of V τ , makes a Hedge prediction

on each, and then queries the label. At the end of the epoch the algorithm discards any

experts in V τ whose average error was above a given threshold. On the next epoch we

shrink the threshold and consider the new set of candidate experts V τ+1, and sample

examples from the new set POCX(V
τ+1), etc.

2. Phase II. At the start of this phase the algorithm has a relatively small set of candidate

best experts, V T, that were selected in Phase I, and with high probability b remains in

V T and also every expert in V T agrees with b on all but O(ϵM) examples. With the

burn-in segment over the algorithm now plays the remaining examples, which make

up the vast majority, in their original (adversarial) order; rounds played in Phase I are

skipped. Uses a very simple prediction strategy:

(a) if the example i is in POCX(V
T), we use Hedge to make a prediction on this

example, we query the label yi, and we do a Hedge update on the weights;

(b) if i /∈ POCX(V
T), we simply use an arbitrary expert j∗ ∈ V T and use Xi,j∗ as

our prediction.

The choice in condition (b) might seem unusual, but recall that all experts in V T agree

on examples i /∈ POCX(V
T). As long as we did not accidentally evict b from our

candidate experts in Phase I, the prediction Xi,j∗ will match that of Xi,b. Therefore on

these rounds we should suffer no regret.

134

Algorithm 13: ActiveHedge

Parameters :ϵ, η, k,T, ζ
Input :X ∈ [K]M×N

Initialize :V 0 ← [N], t← 0, DONE ← ∅
/* //// PHASE I //// Recursively shrink candidate experts */

for τ = 0, . . . ,T− 1 do
Zτ

j ← 0 (∀j ∈ [N]) /* #errs expert j at epoch τ */

for c = 0, · · · , k − 1 do
I ∼ POCX(V

τ) /* Sample w/ replacement */

if I /∈ DONE then
ŷI ← HedgePredict(XI , w⃗

t)
yI ← QueryLabel(I)
w⃗t+1 ← HedgeUpdate(w⃗t, XI , yI , η)
t← t+ 1 /* increment hedge update count */

DONE ← DONE ∪ {I}
end
Zτ

j ← Zτ
j + 1[XI,j ̸=yI] ∀j ∈ V τ

end

δτ ← M

2|POCX(V τ)|

(
1

2τ+1ζ
− ϵ
)

/* Update thresh */

V τ+1 ←
{
j ∈ V τ : Zτ

j /k ≤ δτ
}

/* Shrink V */

end
/* //// PHASE II //// Play all remaining rounds */

Select j∗ ∈ V T arbitrarily
for i = 1, . . . ,M do

if i ∈ DONE then
continue /* skip if example already done */

else if i ∈ POCX(V
T) then

ŷi ← HedgePredict(Xi, w⃗
t)

yi ← QueryLabel(i)
w⃗t+1 ← HedgeUpdate(w⃗t, Xi, yi, η)
t← t+ 1 /* increment hedge update count */

else
ŷi ← ONEHOT(Xi,j∗) /* use default expert j∗ */

/* One-hot encoding required so that ŷi ∈ ∆K */

end
end

135

6.3.2 Regret and Label Guarantees

We now present the regret and label complexity guarantee for ActiveHedge (Algorithm 13)

Theorem 6.3.1. Assume we have ϵ, ρ > 0, y⃗, and ζ-compact matrix X such that 10ϵζ ≤ 1

and for some b ∈ [N] we have
∑

i∈[M] 1[Xi,b ̸=yi] ≤ ϵM . We set the ActiveHedge params

k :=
⌈
192ζ log

(
N
ρ
log 1

10ϵζ

)⌉
, T :=

⌈
log 1

10ϵζ

⌉
and

η := log
(
1 +

√
2 lnN
ϵM

)
.

(6.3)

Then with probability at least 1− ρ:

1. the number of calls to QueryLabel is no more than

O
(
ζ log

(
N
ρ
log 1

10ϵζ

)
log 1

10ϵζ
+ ϵζM

)

2. the length of Phase I is no more than Tk which, up to logarithmic terms, is Õ(ζ)

rounds;

3. and finally we have that

REGActiveHedge ≤
√
2ϵM lnN + lnN.

Corollary 6.3.1.1. If the burn-in phase in ActiveHedge is limited to only B rounds, then we

can achieve the same regret as Hedge with label complexity Õ(B + M
2B/ζ).

Theorem 6.3.1 states that ActiveHedge achieves the same regret guarantee as Hedge with

high probability while using considerably less labels. Hedge requires a label complexity of

M , where as for a small ϵ and ζ , the label complexity of ActiveHedge is closer to Õ(ζϵM).

Before we give the proof of Theorem 6.3.1, we give a basic sketch of the proof. The

basic idea is that we divide the regret analysis and the label complexity analysis into the

regret and label complexity of the two phases.

136

In Phase I, using induction, we show that with high probability, the size of the candidate

experts set V τ shrinks in every round and the best expert is always present in V τ . After the

end of the Phase I, we have narrowed down to the set of candidate experts V T so that with

high probability |POCX(V
T)| = O(ζϵM), using compactness, yet still b ∈ V T. In Phase II

we only request the labels for the examples that are in POCX(V
T), thus the label complexity

of Phase II is bounded by O(ϵζM).

Bounding the regret of ActiveHedge is surprisingly easy, since for all examples played in

Phase I as well as for those played in Phase II from POCX(V
T), we appeal directly to Hedge

where we have an optimal bound. In many examples in Phase II, where i /∈ POCX(V
T), we

make a prediction that (with high probability) agrees with expert b and thus we suffer no

regret on these rounds.

It should be noted that even though the guarantees in Theorem 6.3.1 are dependent on

the knowledge of ϵ and ζ for initializing the parameters K and T of Algorithm 13, for our

proofs to follow through, we just an upper bound on the error rate ϵ of the best expert, and

similarly for the compactness ζ . In Theorem 6.4.1, we give a polynomial time algorithm to

approximate ζ; this can be used to initialize Algorithm 13. Using ϵ′ > ϵ in Theorem 6.3.1,

we still get the same regret guarantee of
√
2ϵM lnN + lnN that still depends on ϵ, but the

label complexity will now be O
(
ζ log

(
N
ρ
log 1

10ϵ′ζ

)
log 1

10ϵ′ζ
+ ϵ′ζM

)
.

To give the formal proof of Theorem 6.3.1, we need a few preliminary lemmas.

Lemma 6.3.2. If a set of experts H1 is a subset of another set of experts H2, then

POCX(H1) ⊆ POCX(H2)

Proof. If i ∈ POCX(H1), then there exist two experts j, j′ ∈ H1, such that Xi,j ̸= Xi,j′ .

Since H1 ⊆ H2, j, j′ ∈ H2, hence i ∈ POCX(H2).

In each epoch τ of Phase I, we maintain a set of candidate experts V τ and a set of

candidate points POCX(V
τ) we might query the labels for. For ease of notation, let

Sτ = POCX(V
τ), DIAM(V) := maxj,j′∈V |POCX({j, j′})|, and for any experts j, j′,

137

let dist(j, j′) = |POCX({j, j′})|.

For the purpose of analysis, we partition the set V τ into two sets. Let

Bτ =
{
j ∈ V τ | dist(b, j) > M

2τ+1ζ

}

and also Bτ = V τ \Bτ .

Intuitively, Bτ are the experts which are far from the best expert and thus they make

more mistakes and we want to remove them. Using an inductive analysis, we will show that

in each epoch, with high probability, we can shrink the set of candidate experts, i.e for all τ ,

V τ+1 ⊆ Bτ and that we never remove the best expert b, i.e b ∈ V τ+1. For the rest of the

section, we set k = ⌈192ζ log(N
ρ
log 1

10ϵζ
)⌉, T = ⌈log 1

10ϵζ
⌉ and η = log(1 +

√
2 lnN
ϵM

)

In the following lemma, we show that the size of the set of candidate points sampled

from in epoch τ is bounded.

Lemma 6.3.3. If V τ ⊆ Bτ−1, then |Sτ | ≤ M
2τ−1

Proof. By definition, Sτ = POCX(V
τ). Since V τ ⊆ Bτ−1, using Lemma 6.3.2, Sτ ⊆

POCX(Bτ−1). By definition, of Bτ−1, these experts are at a distance of at most M
2τ ζ

from

the best expert, the diameter of this set is at most M
2τ−1ζ

. Using definition of ζ−compactness,

|POCX(Bτ−1)| ≤ ζ · M
2τ−1ζ

= M
2τ−1 . Hence |Sτ | ≤ M

2τ−1 .

Now we show that in expectation, any expert in Bτ makes a large number of mistakes in

epoch τ which we will use to obtain a high probability bound.

Lemma 6.3.4. If b ∈ V τ then for any j in Bτ , if Zτ
j is the number of mistakes made in

epoch τ , then E
[
Zτ

j

]
≥ k

|Sτ |(
M

2τ+1ζ
− ϵM)

Proof. Since j ∈ V τ and b ∈ V τ , By definition of Sτ = POCX(V
τ), if for some i,

Xi,j ̸= Xi,b, then i ∈ Sτ . b makes at-most ϵM mistakes, so in the worst case, j can disagree

with b on these points and be correct, but it has to be wrong on at least M
2τ+1ζ

− ϵM points in

Sτ as it disagrees with b on M
2τ+1ζ

points in Sτ .

138

We samples k points from Sτ . Let the examples samples in epoch τ be (I1, · · · , Ik), then

Zτ
j =

∑k
c=1 1[XIc,j ̸=yIc], =⇒ E

[
Zτ

j

]
=
∑k

c=1E
[
1[XIc,j ̸=yIc]

]
=
∑k

c=1 P[XIc,j ̸= yIc] ≥∑k
c=1

1
Sτ (

M
2τ+1ζ

− ϵM) = k
Sτ (

M
2τ+1ζ

− ϵM)

Lemma 6.3.5. If b ∈ V τ and V τ ⊆ Bτ−1 then with probability at least 1 − ρ|Bτ |
N log 1

10ϵζ

,

V τ+1 ⊆ Bτ

Proof. For a fixed j ∈ Bτ , by definition the number of mistakes, Zτ
j =

∑k
c=1 1[XIc,j ̸=yIc].

The probability that we keep j in V τ+1 is

P
[
Zτ
j

k
≤ 1

2|Sτ |(
M

2τ+1ζ
− ϵM)

]
=P
[
Zτ
j

k
− 1

|Sτ |(
M

2τ+1ζ
− ϵM) ≤ − 1

2|Sτ |(
M

2τ+1ζ
− ϵM)

]
≤P
[
Zτ
j

k
− E

[
Zτ
j

k

]
≤ − 1

2|Sτ |(
M

2τ+1ζ
− ϵM)

]
≤ exp(− k

12
(

M
2τ+1ζ

− ϵM
2|Sτ |

)) (Chernoff Lower tail)

≤ exp(− k

12
(
1− 2τ+1ζϵ

8ζ
)) (as |Sτ | ≤ M

2τ−1
)

≤ exp(− k

12
(
1

16ζ
)) (as τ < log2

1

10ϵζ
)

=
ρ

N log 1
10ϵζ

(as k = 192ζ log(
N

ρ
log

1

10ϵζ
))

Thus, with probability at least 1− ρ

N log 1
10ϵζ

, Zτ
j > δτ , thus j /∈ V τ+1. A union bound over

j ∈ Bτ gives the proof.

So far in the inductive process we have shown that we shrink V τ to only keep experts

from Bτ . Now we show that with high probability, we never remove the best expert b.

Lemma 6.3.6. If Zτ
b is the number of mistakes made in epoch τ by the best expert b, then

E[Zτ
b] ≤ kϵM

Sτ

Proof. Since the best expert makes at-most ϵM mistakes, in the worst case all of these ϵM

examples are present in Sτ . Since we samples k points from St, Zτ
b =

∑k
c=1 1[XIc,b ̸=yIc]

=⇒ E[Zτ
b] =

∑k
c=1 E

[
1[XIc,b ̸=yIc]

]
=
∑k

c=1 P[XIc,b ̸= yIc] ≤
∑k

c=1
ϵM
Sτ = kϵM

Sτ

139

Lemma 6.3.7. If b ∈ V τ and V τ ⊆ Bτ−1 then with probability at least 1 − ρ

N log 1
10ϵζ

,

b ∈ V τ+1

Proof. The probability that b is not present in V τ+1 is

P
[
Zτ
b

k
≥ 1

2|Sτ |(
M

2τ+1ζ
− ϵM)

]
=P
[
Zτ
b

k
≥ ϵM

2|Sτ |(
1

2τ+1ϵζ
− 1)

]
≤P
[
Zτ
b

k
≥ E

[
Zτ
b

k

]
1
2
(1
2τ+1ϵζ

− 1)
]

≤ exp(− kϵM
6|Sτ |

1

2
(

1

2τ+1ϵζ
− 3)) (Chernoff upper tail)

≤ exp(−k
3
(

M
2τ+1ζ

− 3ϵM

2|Sτ |
))

≤ exp(−k
3
(
1− 2τ+13ζϵ

8ζ
)) (as |Sτ | ≤ M

2τ−1
)

≤ exp(−k
3
(
1

16ζ
)) (as τ < log2

1

10ϵζ
)

=
ρ

N log 1
10ϵζ

(as k = 192ζ log(
N

ρ
log

1

10ϵζ
))

Combining the two results, we can prove the inductive step.

Lemma 6.3.8. If b ∈ V τ and V τ ⊆ Bτ−1, then with probability at least 1− ρ

log 1
10ϵζ

, b ∈ V τ+1

and V τ+1 ⊆ Bτ

Proof. Union bound over Lemma 6.3.5 and 6.3.7.

We consider the base case and show that even in the first round, we shrink V 0 to get V 1

and that we don’t remove b.

Lemma 6.3.9. With prob. ≥ 1− ρ

log 1
10ϵζ

, V 1 ⊆ B0 and b ∈ V 1

Proof. δ0 = k
2
(1
2ζ
− ϵ). For any fixed j ∈ B0, E

[
Z0

j

]
≥ k(1

2ζ
− ϵ) (6.3.4). Probability that

140

j ∈ V 1 is

P
[
Z0
j

k
≤ 1

2
(1
2ζ
− ϵ)

]
≤P
[
Z0
j

k
− E

[
Z0
j

k

]
≤ −1

2
(1
2ζ
− ϵ)

]
≤ exp(− k

12
(
1− 2ζϵ

4ζ
)) (Chernoff lower tail)

≤ exp(− k

12
(
1

8ζ
)) (as 1− 2ζϵ > 1/2)

≤ ρ

N log 1
10ϵζ

(as k = 192ζ log(
N

ρ
log

1

10ϵζ
))

Thus with probability at least 1− ρ

N log 1
10ϵζ

, j /∈ V 1

For b, E[Z0
b] ≤ k

ϵ
. Probability that b /∈ V 1

P
[
Z0
b

k
≥ 1

2
(1
2ζ
− ϵ)

]
≤P
[
Z0
b

k
− E

[
Z0
b

k

]
≥ 1

2
(1
2ζ
− 3ϵ)

]
≤ exp(−k

3
(
1− 6ζϵ

4ζ
)) (Chernoff lower tail)

≤ exp(−k
3
(
1

8ζ
)) (as 1− 6ζϵ > 1/2)

≤ ρ

N log 1
10ϵζ

(as k = 192ζ log(
N

ρ
log

1

10ϵζ
))

Thus with probability at least 1− ρ

N log 1
10ϵζ

, b ∈ V 1

Union bound over j ∈ B0 and over b proves the statement of the lemma.

Now that we have proved the inductive step and the base case, we can use these results

to state the result for Phase I.

Lemma 6.3.10. In ActiveHedge (algorithm 13), when Phase I ends after T = 1
10ϵζ

epochs,

with probability at least 1− ρ, b ∈ V T and for all j ∈ V T , dist(b, j) ≤ 10ϵM

Proof. Using induction and union bound over τ = 1, · · · ,T for Lemmas 6.3.9 and 6.3.8,

we get that with probability at least 1− ρ,

141

b ∈ V T, and V T ∈ BT−1 ⊆
{
j ∈ [M] | dist(b, j) ≤ M

2Tζ

}
Using T = log(1

10ϵζ
), we get M

2Tζ
= M

2
log(1

10ϵζ
)
ζ
= 10ϵM

Now that we have shown that at the end of Phase I, i.e the burn-in period, we have

considerably shrunk down our set of candidate experts and thus confusing points. We can

prove Theorem 6.3.1.

Since, ActiveHedge (Algorithm 13) is divided into two phases, a portion of the regret

is incurred in each phase. The examples we predict and request labels for in Phase I

are denoted by the set DONE at the end of Phase I. So the portion of regret incurred in

Phase I be RI =
∑

i∈DONE(ℓ(ŷi, yi) − ℓ(Xi,b, yi)). For Phase II, the points are either in

ST = POCX(V
T) where we make hedge updates and request for labels, or they are not

in POCX(V
T), and we use an arbitrary expert j∗ ∈ V T to make predictions. Let the

regret on the points in POCX(V
T), i.e. the points of contention for V T in phase II be

Rcon =
∑

i∈([M]\DONE)∩ST(ℓ(ŷi, yi)− ℓ(Xi,b, yi)) and the total regret for the points in Phase

II not in POCX(V
T) be Ragree =

∑
i∈([M]\DONE)\ST(ℓ(ŷi, yi)− ℓ(Xi,b, yi))

Proof of Theorem 6.3.1. First, let’s show the regret bound,

Regret Bound:

Since REGActiveHedge = RI + Rcon + Ragree, let’s consider the terms individually.

• RI and Rcon: We are using Hedge (Algorithm 12) to make predictions and make updates.

If we re-sample a point for which we have already made a prediction, we do not incur loss

on it again. We know that LM
b ≤ ϵM , hence L∗ = ϵM is an upper bound on the loss of the

best expert in RI + Rcon as well. Setting η = log
(
1 +

√
2 lnN
ϵM

)
, we can directly use the

142

regret bound of Theorem 6.2.1, to show that

RI + Rcon =
∑

i∈DONE∪ST

(ℓ(ŷi, yi)− ℓ(Xi,b, yi))

≤
∑

i∈DONE∪ST

ℓ(ŷi, yi)− min
j∈[N]

∑
i∈DONE∪ST

ℓ(Xi,j, yi)

≤
√
2ϵM lnN + lnN

• Ragree: Using Lemma 6.3.10, with probability at least 1 − ρ, the best expert b ∈

V T. Since ST = POCX(V
T), all the experts present in V T agree on [M] \ ST. Since

([M]\DONE)\ST ⊆M\ST all the experts in V T agree on all examples in ([M]\DONE)\ST.

Thus for all i ∈ ([M] \ DONE) \ ST, for any j ∈ V T, Xi,j = Xi,b. This is also true for j∗

selected before the start of Phase II, We get

Ragree =
∑

i∈([M]\DONE)\ST

(ℓ(ŷi, yi)− ℓ(Xi,b, yi))

=
∑

i∈([M]\DONE)\ST

ℓ(Xi,j∗ , yi))− ℓ(Xi,b, yi))

=
∑

i∈([M]\DONE)\ST

ℓ(Xi,b, yi))− ℓ(Xi,b, yi)) = 0

Thus with probability at least 1− ρ,

REGActiveHedge ≤
√
2ϵM lnN + lnN

Label complexity:

Let’s consider the number of labels requested in each phase.

• Phase I:

Since number of epochs T = log 1
10ϵζ

and in each epoch we request the label for

k = 192ζ log(N
ρ
log 1

10ϵζ
) examples, the number of labels requested is Phase I is at most

192ζ log(N
ρ
log 1

10ϵζ
) log 1

10ϵζ
. This is also the size of the burn-in period.

143

• Phase II:

Using Lemma 6.3.10, with probability at least 1 − ρ, for every j ∈ V T , dist(b, j) ≤

10ϵM , thus DIAM(V T) ≤ 20ϵM . Using the definition of ζ-compactness,

|ST| = |POCX(V
T)| ≤ ζDIAM(V T) ≤ 20ϵζM

. Since we only request labels for the examples in POCX(V
T), the number of labels

requested in Phase II is bounded by |POCX(V
T)|, which is less than or equal to 20ϵζM

Hence with probability at least 1− ρ, the number of labels requested in Phase II is at

most 20ϵζM

Combining the label complexity for each of the phase, with probability at least 1− ρ,

the number of labels requested by Algorithm 13 is at most

O

(
ζ log

(
N

ρ
log

1

10ϵζ

)
log

1

10ϵζ
+ ϵζM

)

Note that the regret bound and the label complexity result hold simultaneously with

probability at least 1− ρ.

We can now also prove Corollary 6.3.1.1 using the ideas developed in the analysis of

Theorem 6.3.1.

6.3.3 Proof of Corollary 6.3.1.1

Proof. In ActiveHedge (Algorithm 13), in the results of Theorem 6.3.1, the learner is allowed

to set the length of the burn-in period itself, i.e. it can decide how many examples that we

actually need to actively select and move ahead in the queue. The burn-in phase in Theorem

6.3.1 is set in such a way that it minimizes the overall label complexity of the the algorithm

required to get the same regret bound as Hedge.

If instead of giving the learner the freedom to set its own length of Phase I, if the learner

is only given a budget B of number of examples it can move ahead in the queue, then by

144

setting k = Õ(ζ) and T = B/k, the size of the burn-in phase becomes B. At the end of

Phase I, in this case, the size of the set of points of contentions, that is |POCX(V
T)| is

Õ(M
2B/ζ) (Lemma 6.3.3). Thus, the total samples queried would be Õ(B + M

2B/ζ).

Similar to Theorem 6.3.1, since we don’t make any mistakes on the points outside

POCX(V
T) in Phase II, the number of mistakes is bounded by the mistakes made by Hedge,

resulting in the same regret guarantee.

6.4 Calculating compactness

Algorithm 14: Calculate compactness
Input: X ∈ [K]M×N /* Expert prediction matrix */

Init: ζ̃ ← 0
for all pairs j, j′ ∈ [N] do

Vj,j′ ← {j, j′} /* Initialize Vj,j′ */

/* Add experts with distance from j ≤ dist(j, j′) */

Vj,j′ ← Vj,j′ ∪ {h|dist(h, j) ≤ dist(j, j′)}
/* Add experts with distance from j′ ≤ dist(j, j′) */

Vj,j′ ← Vj,j′ ∪ {h|dist(h, j′) ≤ dist(j, j′)}
ζj,j′ ←

|POCX(Vj,j′)|
DIAM(Vj,j′)

/* Update ζ̃ if a bigger ratio is found */

if ζj,j′ > ζ̃ then
ζ̃ ← ζj,j′

end
end
Return: ζ̃

The compactness of an expert prediction matrix is a combinatorial quantity which is

easy to compute for some concept classes, but in the worst case it might be hard to compute

exactly as we have a supremum over all subsets of experts. We present an algorithm that

gives a 3-approximation of the compactness in polynomial time.

For the remainder of this section and the appendix, for any V ⊂ [N] let DIAM(V) :=

maxj,j′∈V |POCX({j, j′})| and for any experts j, j′, let dist(j, j′) = |POCX({j, j′})|.

145

Theorem 6.4.1. If the input matrix X to Algorithm 14 is ζ-compact, then Algorithm 14

returns ζ̃ such that ζ
3
≤ ζ̃ ≤ ζ in runtime O (N4M)

Proof. Consider the subset

V ∗ = argmax
V,DIAM(V)>0

|POCX(V)|
DIAM(V)

Let h1, h2 ∈ V ∗ be the experts such that dist(h1, h2) = DIAM(V ∗). For any h′ ∈ V ∗,

dist(h′, h1) ≤ DIAM(V) and dist(h′, h2) ≤ DIAM(V), hence h′ ∈ Vh1,h2 , i.e V ∗ ⊆ Vh1,h2

in Algorithm 14. This gives us that |POCX(Vh1,h2)| ≥ |POCX(V
∗)|

Since we include all experts that are at a distance of at most dist(h1, h2) from h1 or h2,

the diameter DIAM(Vh1,h2) ≤ 3dist(h1, h2) = 3DIAM(V ∗)

Using these two facts, we get |POCX(Vh1,h2
)|

DIAM(Vh1,h2
)
≥ |POCX(V ∗)|

3DIAM(V ∗)
= ζ

3

We consider all pairs of experts in Algorithm 14, hence the ζ̃ returned satisfies

ζ̃ ≥ |POCX(Vh1,h2)|
DIAM(Vh1,h2)

≥ ζ

3

For the upper bound, since the ζ̃ returned is |POCX(Vj,j′)|
DIAM(Vj,j′)

for some j, j′, it is obvious that

ζ̃ ≤ max
V,DIAM(V)>0

|POCX(V)|
DIAM(V)

= ζ

The run time comes from the fact that we consider all O(N2) pairs of experts and for any

subset V ⊆ [N], |POCX(V)| can be computed in O(|V |M) and DIAM(V) can be computed

in O(|V |2M)

As stated earlier, for initializing Algorithm 13 for the results in Theorem 6.3.1, we just

need an upper bound on the ζ-compactness. Using Algorithm 14, we can obtain an estimate

ζ̂ = 3ζ̃ such that ζ ≤ ζ̂ ≤ 3ζ .

146

6.5 Experiments

We provide preliminary experiments to compare ActiveHedge (Algorithm 13), with standard

Hedge (Algorithm 12) and the label efficient algorithm given by Cesa-Bianchi et al. [1]. We

first present results on synthetic data in Section 6.5.1 and then provide more evidence on

realistic datasets MNIST [144] and CIFAR-10 [145] in Section 6.5.2

6.5.1 Results on synthetic data

For synthesis data, we create synthetic prediction matrices by considering different hypothe-

sis classes for experts.

We consider three different classes of experts for our experiments. In Fig. 6.1: a) we

consider linear classifiers passing through the origin as experts. We uniformly N sample

linear classifiers from a unit sphere centred at origin. We then sample M points from a unit

sphere and classify each point using the N experts to create the expert prediction matrix

X. Similarly, in Fig. 6.1: b), we consider multi-dimensional thresholds as experts where a

point x ∈ Rd is labeled 1 by an expert h ∈ Rd if xi ≥ hi∀i ∈ [d]. The experts are sampled

by sampling thresholds uniformly between 0 and 1. In both the cases, ActiveHedge is able

to achieve similar accuracy to Hedge and achieves better performance than Cesa-Bianchi et

al. [1] in terms of both regret and label complexity.

We also consider the more adversarial case in Fig. 6.1: c), where the expert prediction

matrix has an identity matrix like structure with ζ = O(N). Here the expert prediction

matrix is designed such that only one of the experts labels each point as 1, and every expert

classifies approximately equal number of points as 1. Even in this adversarial case where

the ζ compactness is very high, ActiveHedge out performs the competition. Thus happens

because even though the ζ compactness is high, it also implies that by removing an expert

from consideration, we also remove a significant fraction of points we are confused on. This

allows us to quickly converge to the optimal expert. All experiments are repeated 100 times,

147

0 2500 5000 7500 10000

0

500

1000

1500

2000
Labels queried

0 2500 5000 7500 10000
0

25

50

75

100

125

150

175
a) E

xperts: Linear C
lassifiers

Cumulative mistakes

0 2500 5000 7500 10000

0

500

1000

1500

2000

2500

3000

0 2500 5000 7500 10000

0

100

200

300

400

b) E
xperts: Thresholds

0 2500 5000 7500 10000
Rounds

0

1000

2000

3000

4000

5000

0 2500 5000 7500 10000
Rounds

0

10

20

30

40

50

c) E
xperts: Identity

ActiveHedge Hedge CL05

Figure 6.1: Labels queried and the cumulative mistakes of ActiveHedge, Hedge, and Cesa-
Bianchi et al. [1](CL05) on 3 different synthetic datasets. Hedge queries label in every
round and is not shown in Labels queried plots to maintain readability.

148

Figure 6.2: Labels queried and the cumulative mistakes of ActiveHedge, Hedge, and Cesa-
Bianchi et al. [1](CL05) in on real datasets. The sub-figures on the left are the results
on MNIST’s test-dataset where each expert is small random forests made of small depth
trees trained on MNIST’s train-dataset. Similarly, the results in right sub-figure are on
CIFAR-10’s test-dataset where each expert is a convolutions neural network trained on
CIFAR-10’s train-dataset. Hedge queries label in every round and is not shown in Labels
queried plots to maintain readability.

149

with M = 10000 and N = 100 and d = 10. We use upper bounds for ζ and ϵ and other

parameters are set optimally. For all these experiments, ActiveHedge required less than 10%

of the labels with the burn-in phase being less than 2% of the points.

6.5.2 Results on realistic data

For experiments on realistic dataset, similar to the results on synthetic data, we use different

classes of experts to create our prediction matrices but instead of artificially generating

points, we consider real datasets (MNIST [144] and CIFAR-10 [145]) and experts as models

trained specifically on these datasets. Both MNIST and CIFAR-10 have 50000 images in

the train split, and 10000 images in the test split.

For MNIST, we train 10 different random forests with small depth trees (2 to 12 trees,

with depth 3) on the train set and use these trained classifiers as experts to create the expert

prediction matrix on the test split of MNIST. Thus, M = 10000 and N = 10 for this

experiment.

Similary for CIFAR-10, we use 10 pre-trained Convolutional neural network models

of different depths trained on CIFAR-10 and use the test split for CIFAR-10 to create the

expert prediction matrix with M = 10000 and N = 10 for this experiment as well. We

repeated both the experiments 10 times and report the results in Fig. 6.2.

The left sub-figures of Fig. 6.2 represent the result on MNIST dataset and we observe

that ActiveHedge (13) converges on the best expert in the burn-in phase itself and thus never

queries any more labels after the burn-in phase. The regret of ActiveHedge is also similar

to the regret of Hedge which queries the labels in every round. We also calculate the exact

ζ-compactness of the prediction matrix and in this case, the matrix is only 1.43 (shows as θ

in Fig. 6.2).

Similary, the right sub-figures of Fig. 6.2 represent the result on CIFAR-10 which is a

more complicated datasets than MNIST. In this experiment as well the regret of ActiveHedge

is also similar to the regret of Hedge and the label efficient learner given in Cesa-Bianchi

150

et al. [1], but the label compolexity is much smaller than either of the competition. For

this experiment as well, the prediction matrix had a very small ζ-compactness of 2.32. The

small values of ζ-compactness in both the experiments also validates our assumption that ζ

can be thought of as a small constant in many realistic settings.

151

Part III

Sequential Decision-Making in a Limited

Feedback Environment while Ensuring

Fairness

152

CHAPTER 7

GROUP FAIRNESS OF EXPOSURE IN BANDITS

In this chapter, we consider the fairness aspect of sequential decision-making. Specifically,

we consider a new group-based notion of fairness that promotes exposure in multi-arm

bandits. Instead of the usual goal that maximizes reward, this new notion of fairness in

exposure ensures that all groups or individuals get opportunities based on their actual quality.

This chapter is based on an ongoing project [22].

7.1 Introduction

In the traditional multi-arm bandit setting that we introduced in Chapter 3, there are K arms

a ∈ [K] with mean rewards µ∗
a ∈ [0, 1]. In each round t = 1, · · · , T ,

• Learners sets a distribution πt ∈ ∆K over the K arms

• Learner selects arm at ∼ πt

• Learner receives reward rt with E[rt] = µ∗
at

The standard goal for a learner in a multi-arm bandit setting is to maximize the total

expected reward, i.e.
∑T

t=1 µ
∗
at which is equivalent to minimizing regret, i.e. maxa∈[K] Tµ

∗
a−∑T

t=1 µ
∗
at .

Recent work of Wang et al. [21] introduced a new goal that promotes more fair choices

by the learner that just aiming to maximize reward. Wang et al. [21] introduce merit based

fairness-of-exposure in the stochastic multi-armed bandit setting, but at an individual fairness

level. In this setting, the learner wants to learn a strategy π∗ (which is a distribution over

153

arms) such that for any two arms a and a′ with mean reward µ∗
a and µ∗

a′ , we have

π∗(a)

f(µ∗
a)

=
π∗(a′)

f(µ∗
a′)
. (7.1)

Here, f : R→ R>0 is a monotonically increasing function which the learner knows and an

example could be f(µ) = µ, in which case we want arms to be selected with probability

proportional to their mean reward. Given the true means, the strategy π∗ is uniquely

determined by Eq. (7.1) [21, Theorem 3.1.1].

Consider a scenario where a company A and company B have two products, let’s

say cellphones listed on a marketplace. Every time a user searches for "cellphone" on

the platform, the platform selects one of the cellphones listed on the store as the top

recommendation. Here we can assume that given a product is selected as a response to the

search query, there is a stochastic reward that the platform receives by selecting that product.

This stochastic reward encapsulates whether the chosen product was sold or not, or if, how

much revenue or profit the platform made. Thus, this setting can be modeled as a stochastic

multi-arm bandit problem where each product has an expected reward. Let’s consider a

case that one of the products of A has an expected reward 0.51 and the product of B has an

expect reward of 0.49. If we follow the standard notion of reward maximization, the ideal

distribution would be to pick the product of company A in each round. Even though the

products of companies A and B are very similar in terms of expected reward, but the product

of company A gets all of the exposure. This might not be considered a very fair outcome,

and the problem is exacerbated when we are talking about people and not products.

Under the fairness notion given by Wang et al. [21], assuming f(x) = x for now, in

the case we just described, the ideal distribution π∗ would ensure that product of company

A gets 51% of the time and product from company B gets picked 49% of the time, which

could be considered fairer.

Now consider the situation where B knows that the marketplace is using a strategy that

154

gives fairness in exposure to products based on their quality. B tries to game the system and

launches a new product, which is very similar to their old product but is considered an arm

for the learner. Now A has one product with a 0.51 expected reward and B has two products

listed with 0.49 expected reward each. Under the fairness definition given by Wang et al.

[21], B would now get about 66% of the total exposure whereas the A would only get 33%.

Thus this notion of fairness is prone to manipulation.

To overcome this issue, want to consider a group-based extension of the fairness goals

where each arm belongs to a group.

7.2 Setting

We give a description of the ideal group constraints that a policy π must satisfy to be

considered fair. We call this setting the group fairness of exposure in multi arm bandits

setting.

Formally, generalizing the model of [21], there are K arms a ∈ [K]. The average mean

reward of an arm a be µ∗
a ∈ [0, 1]. There are m groups and each arm a belongs to exactly

one group G ⊆ [K], given by G(a). Let G be the set of groups. Let µ⃗∗
G = (µ∗

a)a∈G be the

vector of all the mean rewards for arms inside the group. At the group level we have a group

aggregate function g : [0, 1]∗ → R. For the optimal stationary policy π∗, we want that the

probability that the selected arm belongs to this group G is proportional to g(µ⃗∗
G), that is for

any two groups G and G′, we want that

Pa∼π∗ [a ∈ G]
g(µ⃗∗

G)
=
Pa∼π∗ [a ∈ G′]

g(µ⃗∗
G′)

.

We also have arm specific functions f and for a and a′ belonging to the same group (that

is G(a) = G(a′)) with individual means µ∗
a and µ∗

a′ , we want

π∗(a)

f(µ∗
a)

=
π∗(a′)

f(µ∗
a′)

155

Similar to the arm based fairness setting, given the true means, the optimal policy is one

fixed policy that can be calculated as follows:

Fact 7.2.1. Given mean rewards µ∗
a, functions g(·), f(·), and group identities G(·), the fair

policy π∗ is given by

π∗(a) =
g(⃗µ∗

G(a))∑
G′∈G g(µ⃗

∗
G′)
· f(µ∗

a)∑
a′∈G(a) f(µ

∗
a′)

We can also show that the group fairness of exposure setting

Lemma 7.2.2. The group fairness of exposure in multi arm bandits the setting proposed in

Wang et al. [21], as when g(µ⃗∗
G) =

∑
a∈G f(µ

∗
a), we recover their setting.

To measure how fair a policy is, we define a notion of fairness regret measures the errors

made by the learner in deciding it’s policy πt. Since a policy is uniquely defined by the

means of the arm, we define the regret as a function of the policy made using mean vector

µt as

7.2.1 New Fairness Regret Definition

To weigh both group and individual fairness constraints, an intuitive fairness regret definition

of algorithm A is

Definition 7.2.1 (Fairness Regret). For an algorithm A that chooses the fair policy given by

fixing the mean reward estimate as µt in round t, the fairness regret over T rounds is defined

as:

FRT
A =

T∑
t

(∑
G∈G

(
|Π(G, µt)− Π(G, µ∗)|+Π(G, µ∗) ·

∑
a∈G

|Γ(a, µt)− Γ(a, µ∗)|

))

156

where

Π(G, µ) := Pa∼πµ [a ∈ G] =
g(µ⃗G)∑

G′∈G g(µ⃗G′)

and

Γ(a, µ) := Px∼πµ [x = a|x ∈ G(a)] = f(µa)∑
a′∈G(a) f(µa′)

The
∑

G∈G (|Π(G, µt)− Π(G, µ∗)|) part represent the group fairness part of the regret.∑
a∈G |Γ(a, µt)− Γ(a, µ∗)| is the individual fairness part of the regret for a group G which

is weighed by Π(G, µ∗) which is probability of that group being selected by the optimal

policy π∗.

The learn also wants to maximize the reward, but only with respect to the optimal fair

policy π∗. Thus, we have a new definition for reward regret which measures the difference

between an algorithm’s expect reward and the reward of the optimal fair policy π∗

Definition 7.2.2 (Reward Regret). For an algorithm A that chooses the fair policy given by

fixing the mean reward estimate as µt in round t, the reward regret over T rounds is defined

as:

RRT
A =

T∑
t=1

∑
a∈[K]

π∗(a)µ∗
a −

T∑
t=1

∑
a∈[K]

πt(a)µ∗
a

Lower bound Since our setting is a generalization of [21]’s setting, the Ω(
√
T) lower

bound still applies for both reward and fairness regret. It is not clear if this lower bound is

tight.

Lemma 7.2.3. Lower bound Since our setting is a generalization of [21]’s setting, the

Ω(
√
T) lower bound still applies for both reward and fairness regret.

Assumption 7.2.4. g is a scalar function of average means in the group

let us assume g is a scalar function of the average mean reward of the arms inside the

group, i.e. µ∗
G =

∑
a∈G µ∗

a

|G| . Similar to assumptions of Wang et al. [21], for the rest of the

chapter, we assume that f is L-Lipschitz and g is Lg-Lipschitz and lower bounded by γg.

157

lower bounded by γ and g is a scalar function of the average mean rewards, i.e , is

Lg-Lipschitz and lower bounded by γg

7.2.2 Explore then Exploit Algorithm

We first present a simple explore then exploit style algorithm that explores each arm for K

rounds then at the end of the explore phase, it uses the empirical means to construct the

optimal policy using Fact 7.2.1.
Algorithm 15: Explore then Exploit

Input: Number of arms K, rounds T , functions f(·), g(·), group identities G(·), N

for t = 1, · · · , KN do

if t ≤ KN then
Select arm at = t mod K

else
∀a, µt

a = µ̂a =
∑KN

τ=1 1{aτ=a}r
τ/N

πt(a) =
g(⃗µt

G(a)
)∑

G′∈G g(µ⃗t
G′)
· f(µt

a)∑
a′∈G(a) f(µ

t
a′)

Select arm at ∼ πt

end

Receive reward rt

end

Theorem 7.2.5. If f is L-Lipschitz, lower bounded by γ and g is a scalar function of the

average mean rewards, is Lg-Lipschitz and lower bounded by γg, using an explore-then-

exploit algorithm (Algorithm 15) with a fixed exploration of N = Õ(T 2/3), the fairness

regret satisfies the following upper bound:

E[FRT
A] ≤ 2T 2/3(K log T)1/3

(
L

γ
+
Lg

γg

)2/3

Proof. The algorithm under consideration here is as follows:

1. For the first KN rounds, pick each arm N times (with N to be specified later)

158

2. For t > NK, for each arm a, set µt
a = µ̂a where µ̂a is the empirical mean reward of

arm a from the explore rounds and set πt(a) =
g(⃗µt

G(a)
)∑

G′∈G g(µ⃗t
G′)
· f(µt

a)∑
a′∈G(a) f(µ

t
a′)

Using Hoeffding’s inequality, for a fixed arm a, w.p. at least 1− 1
T 4 ,

|µ∗
a − µ̂a| ≤

√
2 log T

N

Let E be the event that for all arms a, |µ∗
a − µ̂a| ≤

√
2 log T

N
. Using union bound,

P [E] ≥ 1− 1
T 3 (assuming K ≤ T). Let’s assume that event E is true. Recall that the fairness

regret is given by

FRT
A =

T∑
t

(∑
G∈G

(
|Π(G, µt)− Π(G, µ∗)|+Π(G, µ∗) ·

∑
a∈G

|Γ(a, µt)− Γ(a, µ∗)|

))

Consider the term,
∑T

t

(∑
G∈G

(
Π(G, µ∗) ·

∑
a∈G |Γ(a, µt)− Γ(a, µ∗)|

))
. Using the same

steps as in Wang et al. [21][Theorem 3.2.2], for a fixed group G and t > KN , we can show

that,

∑
a∈G

|Γ(a, µt)− Γ(a, µ∗)| ≤
∑
a∈G

|µt
a − µ∗

a|LΓ(a, µ∗)

γ

=
∑
a∈G

|µ̂a − µ∗
a|LΓ(a, µ∗)

γ

≤
∑
a∈G

LΓ(a, µ∗)

γ

√
2 log T

N

159

Summing over all groups and rounds,

T∑
t

∑
G∈G

∑
a∈G

Π(G, µ∗) · |Γ(a, µt)− Γ(a, µ∗)|

≤ 2KN +
T∑

t=2KN+1

∑
G∈G

∑
a∈G

LΠ(G, µ∗)Γ(a, µ∗)

γ

√
2 log T

N

= 2KN +
T∑

t=KN+1

∑
a∈[K]

Lπ∗(a)

γ

√
2 log T

N

≤ 2KN +
TL

γ

√
2 log T

N

Similarly, we can show that for t > KN ,

∑
G∈G

(
|Π(G, µt)− Π(G, µ∗)|

)
≤
∑
G∈G

|µt
G − µ∗

G|LgΠ(G, µ
∗
G)

γg
=
∑
G∈G

|µ̂G − µ∗
G|LgΠ(G, µ

∗
G)

γg

(7.2)

where µ̂G =
∑

a∈G µ̂a

|G| . Considering |µ̂G − µ∗
G|, we have

|µ̂G − µ∗
G| =

∣∣∣∣∑a∈G µ̂a

|G|
−
∑

a∈G µ
∗
a

|G|

∣∣∣∣ ≤ ∑a∈G |µ̂a − µ∗
a|

|G|
≤
√

2 log T

N

Summing over all rounds t and groups we get

T∑
t

∑
G∈G

(
|Π(G, µt)− Π(G, µ∗)|

)
≤ 2KN +

T∑
t=KN+1

∑
G∈G

|µ̂G − µ∗
G|LgΠ(G, µ

∗
G)

γg

≤ 2KN +
TLg

γg

√
2 log T

N

Adding both the terms, with probability at least 1− 1
T 3 ,

FRT
A ≤ 4KN +

TL

γ

√
2 log T

N
+
TLg

γg

√
2 log T

N

≤ 4T 2/3(K log T)1/3
(
L

γ
+
Lg

γg

)2/3

The upper bound is obtained by setting N =
(
T
K

)2/3
(log T)1/3

(
L
γ
+ Lg

γg

)2/3
.

160

Using similar ideas, we can show an upper bound for the reward regret of Algorithm 15

as well. We need one one small result before that, that shows that if you points are close

then their multiples are close as well.

Lemma 7.2.6. Let a, b, a′, b′ > 0 such that |a− a′| ≤ δa, and |b− b′| ≤ δb, then

|ab− a′b′| ≤ |a|δb + |b|δa + δaδb

Theorem 7.2.7. If f is L-Lipschitz, lower bounded by γ and g is a scalar function of the

average mean rewards, is Lg-Lipschitz and lower bounded by γg, using an explore then

exploit algorithm (Algorithm 15) with fixed exploration of N = Õ(T 2/3), the reward regret

satisfies the following upper-bound:

RRT
A ≤ 4T 2/3(K log T)1/3

(
L

γ
+
Lg

γg

)2/3

Proof.

RRT
A =

T∑
t=1

∑
a∈[K]

π∗(a)µ∗
a −

T∑
t=1

∑
a∈[K]

πt(a)µ∗
a

≤
T∑
t=1

∑
a∈[K]

|π∗(a)− πt(a)|µ∗
a

≤
T∑
t=1

∑
a∈[K]

|π∗(a)− πt(a)|

Using Hoeffding’s inequality, for a fixed arm a, w.p. at least 1− 1
T 4 ,

|µ∗
a − µ̂a| ≤

√
2 log T

N

Let E be the event that for all arms a, |µ∗
a − µ̂a| ≤

√
2 log T

N
. Using union bound,

P [E] ≥ 1− 1
T 3 (assuming K ≤ T). Let’s assume that event E is true. For a fixed group G,

161

let |Π(G, µ∗)− Π(G, µ̂)| ≤ ∆G and for a fixed arm a, let |Γ(a, µ∗)− Γ(a, µ̂)| ≤ ϵa

Consider a fixed arm a and round t > TK,

|π∗(a)− πt(a)| = |Π(G(a), µ∗)Γ(a, µ∗)− Π(G(a), µ̂)Γ(a, µ̂)|
Lemma 7.2.6

≤ Π(G(a), µ∗)ϵa + Γ(a, µ∗)∆G(a) +∆G(a)ϵa

≤ Π(G(a), µ∗)ϵa +∆G(a) +∆G(a)ϵa

Summing over all arms a ,

∑
a∈[K]

|π∗(a)− πt(a)|

≤
∑
a∈[K]

(Π(G(a), µ∗)ϵa +∆G(a) +∆G(a)ϵa)

≤
∑
a∈[K]

LΠ(G(a), µ∗)Γ(a, µ∗)

γ

√
2 log T

N
+
Lg

γg

√
2 log T

N
(1 +

L

γ

√
2 log T

N
)

≤ L

γ

√
2 log T

N
+
Lg

γg

√
2 log T

N

(
1 +

L

γ

√
2 log T

N

)

Summing over T , we get

RRT
A ≤ 2KN + T

(
L

γ

√
2 log T

N
+
Lg

γg

√
2 log T

N

(
1 +

L

γ

√
2 log T

N

))

≤ 4T 2/3(K log T)1/3
(
L

γ
+
Lg

γg

)2/3

The upper bound is obtained by setting N =
(
T
K

)2/3
(log T)1/3

(
L
γ
+ Lg

γg

)2/3
.

162

Appendices

163

APPENDIX A

MISSING PROOFS AND ADDITIONAL EXPERIMENTS FROM CHAPTER 3

A.1 Missing Proofs

We now prove the main result about the vulnerability of mean based algorithms (Theorem

3.4.1). That is, for any mean based bandit algorithm that achieves sub-linear regret in

the absence of data-corruptions, there always exists an instance where an adversarial data

corruption attack with o(T) corruption level can make the algorithm suffer linear regret

REGA(T) = Ω(T) in expectation.

A.1.1 Proof for Theorem 3.4.1

Proof. Denote the two arms in instances with two arms as a1 and a2. Given an instance

where the means of both arms are 0. For any constant C1, there is always at least one arm

such that it gets at least C1/2 picks with probability at least 1/2, denote such arm as a1. We

consider an instance (1) where a1 is the optimal arm:

µ(1)
a2

= µ,

µ(1)
a1
> µ(1)

a2
.

We will perform the observation free attack on instance (1). In the first phase of attack,

the rewards are always 0 for any arm. By the end of the first case, for instance (1), from the

way we set a1, we have with probability at least 1/2, the following will happen:

n(1)
a1
≥ C1

2
, µ̂(1)

a1
= 0,

164

n(1)
a2
≤ C1

2
, µ̂(1)

a2
= 0.

Let G1 be the event that the above is true in instance (1), we know that P{G1} ≥ 1/2.

Next, consider another instance (2) where the mean reward of a2 is 1, and the mean

reward of other arm is 0:

µ(2)
a1

= 0,

µ(2)
a2

= 1.

For instance (2), we corrupt the first C1 rounds and set the rewards to be 0 for all arms,

then stop corruption. Let N (2)
1 be the number of rounds when the algorithm pick arm 1 after

the corruption ends. Let f1 be the value such that P{N (2)
1 ≥ f1} = 1/2. The expected

regret of the algorithm is at least R(2)(T) ≥ 1/2f1. So f1 ≤ 2R(2)(T), which has to be

sublinear or otherwise the algorithm has linear expected regret in instance (2).

Next we focus on the second phase of attack in instance (1). Let C2 = f1 + αC1 where

α is a parameter to be specified later. Up the end of this phase, what happened in (1) is

the same as that in (2). So with probability 1/2, a1 is picked for less than f1 rounds in this

phase. Denote such Event as G2, then P{G2} = 1/2. If both G1 and G2 are true, by the

end of the second phase of attack, the following is true :

n(1)
a1
≥ C1

2
, µ̂(1)

a1
= 0,

n(1)
a2
≥ αC1, µ̂

(1)
a2
≥ 2α

2α + 1
.

Next we focus on the last phase of attack in instance (1) where the corruption is ended.

For any value of n, if a2 get picked for n times in this phase, then by Hoeffding inequality

inequality, with probability at least 1 − 1/T , the reward from these n rounds is at least

µn−
√

log(T)n for any n ≤ T . Set α =
log(T)
2µC1

+µ
4

1−µ/2
, the corresponding empirical mean of a2

165

satisfies

µ̄ =
C1 · α + nµ−

√
n log(T)

C1(α + 1/2) + n
≥ µ/2.

That is, in the last phase, with probability at least 1−1/T , the empirical mean of a2 is always

greater than µ/2. Let G3 denote the event where the above happens, so P{G3} ≥ 1− 1/T .

Before proceeding, we introduce an instance (3) where the reward of arm a1 is always

µ/4 and the reward of a2 is always µ/2. Let nt
1 and nt

2 be the number of rounds a1 and a2

get selected by round t. Define random variables {Y1, . . . , YT/2} where Yn is nt
1 if exists

a t such that nt
2 = n, and T − n if such t doesn’t exists. It is clear that P{Yn < 0} = 0,

P{Yn < T} = 1, and P{Yn < x} ≤ P{Yn < x}+ 1. So we could always find an integer

k such that P{YT/2 < k} = 1/2, and such k must be sublinear in T or otherwise the

regret in instance (3) will be linear. Yn also satisfies Yn ∈ [Yn−1, Yn−1 + 1, . . . , T − n], and

P{Yn = Yn−1 + i|Yn−1 = yn−1} ≥ P{Yn = Yn−1 + j|Yn−1 = yn−1} for all 0 ≤ i ≤ j and

yn−1. The purpose of introducing instance (3) is to show that if the algorithm have sublinear

regret in this instance, then with probability 1/2, it won’t pick a1 for more than k times.

Then in stance (1), by choosing big enough C1 and C2, with probability at least 1/2, it won’t

pick a1 for more than k times, so the algorithm will have linear regret in instance (1).

Now back to instance (1) and set C1 = (8/µ− 2)k, so at the beginning of the last phase,

a1 has already been picked for at least (4/µ− 1)k rounds. Then the empirical mean of a1

will not exceed µ/4 before it get at least k picks from this phase. Then by the definition

of mean based algorithm, we know that before a1 get its kth pick, the probability a1 get

picked in instance (1) is always less than that in instance (3) for the same number of rounds

a2 get picked. Let nt
1 and nt

2 as the number of rounds arm a1 and a2 get picked in the

last phase by round t. Define random variables {Z1, . . . , ZT/2} in the same way as Yn

where Zn = nt
1 if exists t such that nt

2 = n and Zn = T − n if such t doesn’t exists. Zn

also satisfies Zn ∈ [Zn−1, Zn−1 + 1, . . . , T − n], and P{Zn = Zn−1 + i|Zn−1 = zn−1} ≥

P{Zn = Zn−1 + j|Zn−1 = zn−1} for all 0 ≤ i ≤ j and zn−1. The relation between Zn

and Yn satisfies: P{Zn = x|Zn−1 = x} ≥ P{Yn = x|Yn−1 = x} for all x ≤ k and

166

P{Zn = x + i|Zn−1 = x} ≤ P{Yn = x + i|Yn−1 = x} for all i > 0 and x + i ≤ k.

Intuitively, Zn “grows” slower than Yn before it exceeds k, so Yn is more likely to reach k

than Zn. Next are we going to strictly prove that P{YT/2 ≤ k} ≤ P{ZT/2 ≤ k}.

Note that P{Yn ≤ k} depends on P{Ym|Ym−1} for all m ≤ n. The idea of the proof is

to show that by substituting each P{Ym|Ym−1} by P{Zm|Zm−1}, the probability of P{Yn ≤

k} will increase. We introduce another series of random variables {F 1
1 , . . . , F

1
T/2} where

{F 1
n} is almost the same as {Yn} except that P{F 1

m|F 1
m−1} = P{Zm|Zm−1} for a specific

m. We want to show that P{YT/2 ≤ k} ≤ P{F 1
T/2 ≤ k}. After that, we can construct

{F 2
n} which is almost the same as {F 1

n} except for P{F 2
m′|F 1

m′−1} = P{Zm′ |Zm′−1} where

m′ ̸= m. For the same reason we will have P{F 1
T/2 ≤ k} ≤ P{F 2

T/2 ≤ k}. Repeat this

process until {F T/2
n } which is the same as {Zn}, then we have P{YT/2 ≤ k} ≤ P{F 1

T/2 ≤

k} ≤ P{F 2
T/2 ≤ k} ≤ . . . ≤ P{F T/2

T/2 ≤ k} = P{ZT/2 ≤ k}. Next we will prove that

P{YT/2 ≤ k} ≤ P{F 1
T/2 ≤ k}.

First, we can write P{YT/2 ≤ k} as

P{YT/2 ≤ k}

=
k∑

x=0

P{YT/2 ≤ k|Ym−1 = x} · P{Ym−1 = x}

=
k∑

x=0

P{Ym−1 = x} ·
k∑

y=x

P{Yn ≤ k|Ym = y, Ym−1 = x} · P{Ym = y|Ym−1 = x}

=
k∑

x=0

P{F 1
m−1 = x} ·

k∑
y=x

P{F 1
n ≤ k|F 1

m = y} · P{Ym = y|Ym−1 = x}

167

The difference between P{YT/2 ≤ k} and P{F 1
T/2 ≤ k} can be written as

P{YT/2 ≤ k} − P{F 1
T/2 ≤ k}

=
k∑

x=0

P{F 1
m−1 = x} ·

k∑
y=x

P{F 1
n ≤ k|F 1

m = y}·

(P{Ym = y|Ym−1 = x} − P{F 1
m = y|F 1

m−1 = x})

k∑
y=x

P{F 1
n ≤ k|F 1

m = y} · (P{Ym = y|Ym−1 = x} − P{F 1
m = y|F 1

m−1 = x})

=P{Yn ≤ k|Ym = y} · (P{Ym = x|Ym−1 = x} − P{F 1
m = x|F 1

m−1 = x})

+
k∑

y=x+1

P{F 1
n ≤ k|F 1

m = y} · (P{Ym = y|Ym−1 = x} − P{F 1
m = y|F 1

m−1 = x})

=P{Yn ≤ k|Ym = y} ·
T−m∑
z=x+1

(P{F 1
m = z|F 1

m−1 = x} − P{Ym = z|Ym−1 = x})

+
k∑

y=x+1

P{F 1
n ≤ k|F 1

m = y} · (P{Ym = y|Ym−1 = x} − P{F 1
m = y|F 1

m−1 = x})

≤P{Yn ≤ k|Ym = y} ·
y∑

z=x+1

(P{F 1
m = z|F 1

m−1 = x} − P{Ym = z|Ym−1 = x})

+
k∑

y=x+1

P{F 1
n ≤ k|F 1

m = y} · (P{Ym = y|Ym−1 = x} − P{F 1
m = y|F 1

m−1 = x})

=
k∑

y=x+1

(P{F 1
n ≤ k|F 1

m = x} − P{F 1
n ≤ k|F 1

m = y})P{F 1
m = y|F 1

m−1 = x}

−
k∑

y=x+1

(P{F 1
n ≤ k|F 1

m = x} − P{F 1
n ≤ k|F 1

m = y})(P{Ym = y|Ym−1 = x})

We can directly have P{F 1
m = y|F 1

m−1 = x} − P{F 1
m = y|F 1

m−1 = x} ≤ 0, for the

other term, we have:

168

P{F 1
n ≤ k|F 1

m = x}

= P{F 1
n ≤ k|F 1

m+1 ≤ k, F 1
m = x} · P{F 1

m+1 ≤ k|F 1
m = x}

= P{F 1
n ≤ k|F 1

m+1 ≤ k} · P{F 1
m+1 ≤ k|F 1

m = x}

≥ P{F 1
n ≤ k|F 1

m+1 ≤ k} · P{F 1
m+1 ≤ k|F 1

m = y}

= P{F 1
n ≤ k|F 1

m = y}

So eventually we have

P{YT/2 ≤ k} − P{F 1
T/2 ≤ k}

=
k∑

x=0

P{F 1
m−1 = x} ·

k∑
y=x

P{F 1
n ≤ k|F 1

m = y} · (P{Ym = y|Ym−1 = x}

− P{F 1
m = y|F 1

m−1 = x})

≤
k∑

x=0

P{F 1
m−1 = x} ·

k∑
y=x+1

(P{F 1
n ≤ k|F 1

m = x}

− P{F 1
n ≤ k|F 1

m = y})(P{F 1
m = y|F 1

m−1 = x} − P{Ym = y|Ym−1 = x})

≤ 0

As discussed before, by the same process we have P{F 1
T/2 ≤ k} − P{F 2

T/2 ≤ k} ≤ 0

and so on. So P{YT/2 ≤ k} ≤ P{F 1
T/2 ≤ k} ≤ P{F 2

T/2 ≤ k} ≤ . . . ≤ P{F T/2
T/2 ≤ k} =

P{ZT/2 ≤ k}. Next we will prove that P{YT/2 ≤ k} ≤ P{F 1
T/2 ≤ k}. That is, with

probability at least 1/2, in instance (1), a2 will be picked for more than T/2 rounds and by

that time a1 is picked for less than k rounds.

Suppose the algorithm guarantee sublinear regret in instances (2) and (3). Let µ = 1/2

and the mean reward of the optimal arm as 1, set C1 = 14k and C2 = f1 +
3
4
log(T) + 7

3
k,

the expected regret for the algorithm in instance (1) is at least T/16.

169

A.1.2 Proof for Theorem 3.5.1

Proof. Let 1 as the index of the target arm. Under the adversarial attack, in the first phase of

attack when t ≤ C1, the empirical mean of any arm will always be 0, so the empirical upper

confidence for each arm j satisfies

UCBt
j = µ̂t

j +

√
log T

nt
j

=

√
log T

nt
j

.

It is clear that argmaxj UCBt
j = argminj n

t
j . So an arm could get its n + 1th pick only

after all other arms get selected at least n times. That is, arms will be selected in turn. Hence,

when t = C1 + 1, all arms will be selected for C1/K times.

In the second phase of attack When C1 < t ≤ C1 + C2, the empirical mean of the target

arm is increasing whenever it get selected while that of the others remain 0. If we choose

C1 ≥ 4 log T
K

, then the upper confidence bound of the target arm 1 when it gets n picks at this

period satisfies:

UCBt
1 = µ̂t

1 +

√
log T

nt
1

=
n

n+ 4 log T/K2
+

√
log T

C1/K + n

≥

√
log T

C1/K
= UCBt

i ̸=1

So the target arm will get all theC2 picks at this period. We chooseC1 = max{K log(T)

µ2
1

, 4 log T
K
},

so that the upper bound of other arms at the end of the second phase will be no greater than

µ1. Considering the fact that K ≥ 2 and µ1 ≤ 1, we have C1 =
K log(T)

µ2
1

. Then we choose

C2 =
µ1

1−µ1
C1 so that at the end of the second phase, the empirical mean of the second arm

is its true mean µ1

In the last phase of attack when t > C1 + C2, we will show that the target arm will be

picked for all rounds with a high probability. When the target arm get n picks in this phase,

170

by Hoeffding inequality, with probability at least 1− 1/T , the total reward generated from

these n rounds is greater than µ1n−
√
n log T for any value of n < T . Denote the number

of rounds the target arm get picked before t = C1 + C2 as m, then the upper bound of the

target arm satisfies

UCBt
j = µ̂t

1 +

√
log T

nt
1

≥ µ1 −
√
n log T

n+m
+

√
log T

n+m
> µ1.

Therefore the target arm’s upper confidence bound is always the highest no matter how many

times it get picks in the last phase, which means it will always get picked with probability at

least 1− 1/T .

In conclusion, to defeat UCB algorithm, the observation free attack corrupt the first

max{K log(T)

µ2
1

, 4 log T
K
}/(1− µ1) rounds, and the number of rounds arm other than the target

get selected is less than (K−1) log(T)

µ2
1

with probability at least 1− 1
T

.

A.1.3 Proof for Theorem 3.5.2

Proof. We refer to the rounds where the algorithm randomly pick an arm from all arms

as “explore” rounds. Under the corruption from adversary algorithm, in the first phase of

attack when t < C1, all arms have the same probability to get picked because their empirical

means are all 0. So each arm will get picked no less than

n1 = C1/K −
√
C1 log T

rounds and no more than

n2 = C1/K +
√
C1 log T

with probability at least 1− K
T

given by Hoeffding inequality. Next we will discuss the case

where the above is true.

In the second phase of attack when C1 < t ≤ C1 + C2, once the target arm get one pick,

171

its empirical mean will be the highest, and it will be selected with probability at least 1− ϵ.

With probability at least 1− 1/T , the target arm will get its first pick after K log(T) rounds.

After that, with probability at least 1− 1/T , the target arm will get picked for at least

n(C2) = (C2 −K log(T))(1− ϵ)−
√
C2 log(T)

times. Denote µ as the empirical mean of the target arm, to simplify the analysis, we choose

C2 big enough such that the target arm can get picked at least n3 = max{ log T
µ2 , n2

µ
1−µ
}

times during this period. The reason we choose this n3 is to make sure that the empirical

mean of target arm is high enough when t > C1 + C2, which will be shown later. To make

sure n(C2) ≥ n3, we can choose

C2 = K log T +
2n3

1− ϵ

.

In the last phase of attack when t > C1+C2, we want to find a lower bound on empirical

mean of the target arm. Note that n3 ≥ 4 log T
µ2 , so that empirical mean of the target arm at the

beginning of this phase t = C1 +C2 + 1 is greater than µ. Denote the number of rounds the

target arm get picked after t = C1 + C2 as m, the empirical mean of the target arm satisfies:

µ̂ ≥ µn3 + µm−
√
m log T

n3 +m

= µ−
√
m log T

n3 +m

≥ µ− 0.5

√
log T

n3

= 0.5µ

Therefore, before an arm other than the target arm has its empirical mean greater than

0.5µ, the probability it get picked is ϵ/K. We want C1 to be big enough such that the

empirical means of other arm are always less than µ/2 in the last phase. From Hoeffding

172

inequality, with probability at least 1− 1/T , an arm will get picked from explore rounds

for at most T log Tϵ/K rounds. If the arm never get picked from the exploit rounds, its

empirical mean satisfies:

µ̂i ≤
T log Tϵ/K

T log Tϵ/K + n1

.

Set

C1 = T log Tϵ(4/µ− 2),

such that

n1 = (T log Tϵ/K)(2/µ− 1),

then we have µ̂i ≤ µ/2. So with this C1, with probability at least 1−K/T , the empirical

mean of other arms never exceed that of the target arm hence get not picks from the explore

rounds. Based on such C1, the corresponding C2 is

C2 = K log T +
2

1− ϵ
(max{ log T

µ2
,

µ

1− µ
(C1/K +

√
C1 log T)})

With such C1 and C2, the ϵ-greedy algorithm will pick arms other than the target arm by

at most C1 + Tϵ+
√
C2 log T times with probability at least 1− (2K + 2)/T .

A.1.4 Proof for Theorem 3.5.3

Proof. Let 1 be the index of the target arm. When t < C1, we want to show that all arms

will get picked for around C1/K rounds. Let’s start with the case where K = 2. Denote

∆t as the difference of number of rounds the other get picked, and ∆t+1 −∆t as δt. The

probability that the arm which get more picked before get picked this round is no greater

than 1/2. That is, if ∆t ≥ 0, P{δt = 1} ≤ 1/2 and P{δt = −1} ≥ 1/2; if ∆t ≤ 0,

P{δt = 1} ≥ 1/2 and P{δt = −1} ≤ 1/2. Since ∆t=C1+1 =
∑C1

t=1 δ
t, with probability at

least 1− 1/T , ∆t=C1+1 ≤
√
C1 log T . In the case where K > 2, we can define ∆t

i,j and δti,j

as the ∆t and δti,j arm i and j, and by similar argument we have with probability at least

173

1− 1/T , ∆t=C1+1
i,j ≤

√
C1 log T . This means at round t = C1 + 1, with probability at least

1−K/T , the number of rounds any arm get picked is no less than

n1 =
C1 − (K − 1)

√
C1 log T

K

, and no greater than

n2 =
C1 + (K − 1)

√
C1 log T

K
.

When C1 < t ≤ C1 + C2, denote Xj as the number of rounds between the target arm

get its (j − 1)th and jth pick. After the target arm get its (j − 1)th pick before its jth

pick, in the worst case, its beta distribution is B(j, 1 + n2), and that of any other arm is

B(1, 1 + n1). By simple arithmetic calculation, we have when j = 1, P{θ1 < θi} = β
1+β

,

and when j ≥ 2, P{θ1 < θi} ≤ 1
jβ

where β = n1+1
n2+1

, so P{θ1 > θi ̸=1} ≥ (1 − 1
jβ
)K−1.

When j = 1, we have P{θ1 > θi ̸=1} ≥ (β
1+β

)K−1. The probability that the target arm

be selected is at least 1/2K−1, When j < 1
β(1−21−K)

:= n3, and at least 1/2K−1. when

j ≥ n3. With probability at least 1 − 1/T , the target arm will be picked for at least

(C2 − n3(
β

1+β
)1−K log T)/2−

√
C2 log T rounds.

We selectC1 andC2 to be large enough such that with high probability, when t > C1+C2,

θ1 > µ/2 and θi ̸=1 < µ/2, so that the target arm will get all the picks. We set C1 =
4 log T
µ2 ,

and C2 = n3(
β

1+β
)1−K log T +2 µ

1−µ
C1, then by t = C1+C2, arms other than the target arm

is picked for at least n1 times, and the target arm’s is picked for at least n2 times with mean

no less than µ. By result from [77], this can ensure that with probability at least 1−K/T ,

θti ̸=1 < µ/2 and θt1 > µ/2 true for all rounds. So with probability at least 1− (2K + 1)/T ,

the target arm will get all picks when t > C1 + C2, with C1 and C2 as given above.

A.2 Chernoff Bounds

Lemma A.2.1 (Chernoff Bounds). Let X1, . . . , Xn be independent random variables, and

Xi lies in the interval [0, 1]. Define X =
∑n

i=1Xi and denote E[X] = µ. For any δ ∈ [0, 1],

174

we have Chernoff lower tail:

Pr{X < (1− δ)µ} ≤ exp(−µδ
2

3
)

and we have Chernoff upper tail:

Pr{X > (1 + δ)µ} ≤

exp(−µδ

3
) for δ > 1

exp(−µδ2

3
) for δ ∈ [0, 1]

The proofs for the inequalities in Lemma A.2.1 can be found in Theorem 4.4 and

Theorem 4.5 of [146]

A.3 Additional Experiments

Here we run both attack methods with or without knowing the mean reward µ of the target

arm against UCB, Thompson sampling, and ϵ-greedy bandit algorithms in different instances,

where ϵ is set to be T 2/3 in ϵ-greedy algorithm. For each pair of attack method and bandit

algorithm, we run the experiments in three instances where there are two arms, and the

mean reward for the optimal arm is always 1 while the mean reward for the target arm

is µ = 0.3, 0.5, 0.7 respectively. First we verify that our main attack algorithm 4 indeed

manipulates the behavior of the bandit algorithms as the theory suggests. The parameters for

this attack method is given by theorem 3.5.1 when attacking UCB algorithm, theorem 3.5.2

when attacking ϵ-greedy algorithm, and theorem 3.5.3 when attacking Thompson sampling

algorithm. In figure A.1, for this attack method, we plot the number of rounds n when

the non-target arm get selected versus the total number of rounds T for UCB algorithm in

subfigure (a1), Thompson sampling algorithm in subfigure (a2), and ϵ-greedy algorithm in

subfigure (a3). The plots show that there is a linear dependence between n and log(T) in

(a1) and (b1), and between n and T 2/3 in (c1), which agrees with our theoretical guarantee.

Each experiment is repeated for 100 times.

175

Next we show that the modified attack which needs to estimate µ can also manipulate

the algorithms without using a high corruption budget. In figure A.2, in subfigures a1),

b1) and c1), we plot the number of corruption rounds needed by the algorithm vs the total

number of rounds T in the case when the algorithm doesn’t know the true mean µ for the

bandit algorithms UCB, Thompson Sampling, and ϵ-Greedy respectively. In subfigures a2),

b2) and c2), we plot the corresponding number of times the non target arm was pulled for

the corresponding corruption levels in the plots a1), b1) and c1) respectively. The plots show

that even when the algorithm doesn’t the mean reward, there is still a linear dependence

between the corruption level C and log(T) in (a1) and (b1), and between C and T 2/3 in

(c1), and similarly a linear dependence between the number of times the non-target arm is

pulled n and log(T) in (a2) and (b2), and between n and T 2/3 in (c2). These results show

that, along with strong theoretical guarantees, our attack methodologically also perform

well empirically.

Figure A.1: The attack which knows the mean reward of the target arm against (a) UCB
algorithm, (b) Thompson sampling algorithm, and (c) ϵ-greedy algorithm.

176

Figure A.2: The modified attack which knows the mean reward of the target arm against
(a1),(a2) UCB algorithm, (b1),(b2) Thompson sampling algorithm, and (c1),(c2) ϵ-greedy
algorithm.

177

APPENDIX B

MISSING PROOFS AND ADDITIONAL EXPERIMENTS FROM CHAPTER 5

B.1 Characterizing the optimal pacing strategy and budget allocation in expectation

Recalling that the optimal strategy on the realized values and prices is obtained by the

hindsight strategy H (definition 5.2.3). The Lagrangian dual of the optimization problem in

definition 5.2.3 is given by:

ψ(µ) =

[
T∑
t=1

(
vt − (1 + µ)pt

)+]
+ µB (L(KP)) (B.1)

Where we define (z)+ to be max {z, 0}. The dual is obtained from the Lagrangian by setting

xt = 1 for all t such that vt − (1 + µ)pt ≥ 0, i.e. winning all impressions with value greater

than (1 + µ) times the price which can be done by bidding bt = vt/(1 + µ).

By weak duality, we have

πH (v,p) ≤ inf
µ≥0

ψ(µ) (B.2)

Since v and p are being sampled from the fixed distribution defined by Q⃗, taking

expectation over equation B.2 and using Jensen’s inequality, we get

Ev,p

[
πH (v,p)

]
≤ Ev,p

[
inf
µ≥0

ψ(µ)

]
≤ inf

µ≥0
Ev,p[ψ(µ)] (B.3)

Let Ψ(µ) = Ev,p[ψ(µ)] and µ⋆ be the minimizer of Ψ(µ). Assuming Ψ(µ) to be

differentiable, using Karush-Kuhn-Tucker conditions, we have µ⋆ ≥ 0, Ψ′(µ⋆) ≥ 0, and

µ⋆Ψ′(µ⋆) = 0. If µ⋆ = 0, it implies that we are effectively not constrained by the budget and

truthful bidding achieves the optimal utility in expectation as it wins all items with positive

utility.

178

The gradient of Ψ(µ) can be written as

Ψ′(µ) = B −G(µ)

where

G(µ) = Ev,p

[
T∑
t=1

1
{
vt ≥ (1 + µ)pt

}
pt

]

We call G(µ) the overall spend function. By definition, G(µ) is the expected expenditure

over all the T rounds when buying all items such that vt ≥ (1 + µ)pt, obtained by bidding

bt = vt/(1 + µ). The KKT complementary slackness condition implies that if µ⋆ > 0, then

Ψ′(µ⋆) = 0 i.e.

G(µ⋆) = B (B.4)

This implies that the strategy with a fixed pacing multiplier that bids bt = vt/(1 + µ⋆)

achieves better expected utility than the expected utility of the hindsight strategy H . If

truthful bidding is not optimal (i.e µ⋆ > 0), then the expected expenditure of this strategy is

B. Not that the expenditure guarantee for the optimal fixed shading strategy is only satisfied

in expectation, i.e. it spends budget B in expectation.

For the rest of the theoretical claims, we restrict ourselves to the case that µ⋆ > 0. The

case µ⋆ = 0 implies that the budget constraint is not binding, so truthful bidding is the

optimal strategy. Our algorithm will naturally adapt to this setting as well.

Let G(µ) = G(µ)
T

be the average spend in each round (over the whole campaign) if we

buy all items such that vt ≥ (1 + µ)pt. Equation B.4 implies that for the optimal dual

variable µ⋆ > 0,

G(µ⋆) =
B

T
. (B.5)

Using Definition 5.2.7, Ge(µ) = E(v,p)∼Qe [1 {v ≥ (1 + µ)p} p]. Ge(µ) is the expected

spend per round in an episode e if the dual variable is µ, corresponding to the strategy which

bids by multiplicatively shading the value vt by a factor of 1
1+µ

and ends up buying all the

179

impressions in the episode with value per unit spent at least (1 + µ). In our framework,

the spend function can be decomposed across the episodes by introducing episodic spend

functions. We show this decomposition below:

G(µ) = Ev,p∼Q⃗

[
T∑
t=1

1
{
vt ≥ (1 + µ)pt

}
pt

]

= Ev,p∼Q⃗

 E∑
e=1

eτ∑
t=(e−1)τ+1

1
{
vt ≥ (1 + µ)pt

}
pt

=

E∑
e=1

eτ∑
t=(e−1)τ+1

E(vt,pt)∼Qe

[
1
{
vt ≥ (1 + µ)pt

}
pt
]

= τ
E∑

e=1

E(v,p)∼Qe [1 {v ≥ (1 + µ)p} p]

= τ
E∑

e=1

Ge(µ)

=⇒ G(µ)

T
=

1

E

E∑
e=1

Ge(µ)

=⇒ G(µ) =
1

E

E∑
e=1

Ge(µ)

(B.6)

where Ge(µ) = E(v,p)∼Qe [1 {v ≥ (1 + µ)p} p] is the episodic spend function. This defini-

tion helps us to define the optimal budget allocation as Be = τGe(µ
⋆) = τρe where ρe is the

optimal spend rate for episode e given by ρe = Ge(µ
⋆). Note that if µ⋆ > 0, using Equation

5.5, we have

τ

E∑
e=1

ρe = τ

E∑
e=1

Ge(µ
⋆) = G(µ⋆) = B (B.7)

B.2 Detailed Algorithms

B.2.1 EpisodicAdaptivePacing: Adaptive pacing using a spend plan

We present ApproxSpendRate (Algorithm 6) which uses historical data to compute approxi-

mately optimal spend rates (ρ̂1, . . . , ρ̂E) from samples.

180

Algorithm 16: EpisodicAdaptivePacing: Adaptive pacing using a spend plan.
Input: Budget B, rounds T , episodes E, spend plan (ρ′1, . . . , ρ

′
E), step size η, max

shading param µ̄
µi ← [0, µ̄] // Initialize shading multiplier

BUDGET1 ← B // Overall remaining budget left for campaign

τ ← T
E

// Impressions in each episode

B̂1 ← ρ′1 · τ // Remaining budget for episode 1

for t = 1, . . . , T do
e← ⌈t/E⌉ // Current episode

Observe value vt

Post bid bt ← min
{

vt

1+µt , B̂e,BUDGETt
}

Observe expenditure zt

µt+1 ← PROJ[0,µ̄][µ
t − η(ρ′e − zt)] // Update shading parameter

B̂e ← B̂e − zt // Update remaining budget

BUDGETt+1 ← BUDGETt − zt
if t (mod E) = 0 then

B̂e+1 ← ρ′e+1 · τ + B̂e // Carry over left-over budget

end
end

For each episode e, the subroutine ApproxSpendSP (Algorithm 7) estimates the episodic

spend functionGe(µ) as a function of µ using the historic samples V⃗ and P⃗ . For fixed prices,

we use a simpler episodic spend prediction function estimate ApproxSpendFP (Algorithm

8). Both functions try to estimate Ge(µ) and return an empirical approximate of Ge(µ) we

denote as Ĝe(µ).

Then using the structure of overall average spend function G(µ), (Equation B.6), we can

construct an approximation of the overall average spend function Ĝ(µ) as
∑E

e=1 Ĝe(µ)

E
. Based

on our discussion about the optimal structure of the problem, for optimal dual variable µ⋆,

we know that G(µ⋆) = B
T

(Equation 5.5). Using our empirical estimate Ĝ(µ), we compute

µ̂, an empirical estimate of µ⋆. We can compose our approximations to form ρ̂e = Ĝe(µ̂),

an approximation to Ge(µ
⋆) = ρe.

181

Algorithm 17: ApproxSpendRate: Approximate optimal spend rates
Input: Budget B, Total rounds T , Number of episodes E, Episodic sampling

oracles Fe for values and De for prices, Per episode sampling budget n, Kernel K,
scalar s

Goal: Estimate optimal spend rates (ρ1, . . . , ρE)
if in the constant-price setting then

for e = 1, . . . , E do
Samples n values V⃗ = (V1, V2, . . . , Vn) ∼ Fe

Set price p ∼ De

Ĝe(µ) = ApproxSpendFP(n, V⃗ , p) // Estimate episodic spend function

end
end
else

for e = 1, . . . , E do
Samples n values V⃗ = (V1, V2, . . . , Vn) ∼ Fe

Samples n prices P⃗ = (P1, P2, . . . , Pn) ∼ De

Ĝ(µ) = ApproxSpendSP(n, V⃗ , P⃗ ,K, s) // Estimate episodic spend function

end
end

Ge(µ) =
∑E

e=1 Ĝe(µ)

E
// Construct overall average spend function

µ̂ = minµ s.t. Ge(µ) ≤ B
T

// Estimating the optimal dual variable

for e = 1, . . . , E do
ρ̂e = Ĝe(µ̂) // Expected spend rate in episode for the estimated dual variable

end
return (ρ̂1, . . . , ρ̂E)

182

Table B.1: Descriptions of synthetic datasets used for experiments.

Data set Value distributions Fe Price distributions De

uniform_v_fix_p Uniform dist over [le, re] Fixed price p
normal_v_fix_p N (µv,e, σ

2
v,e) Fixed price p

lognorm_v_fix_p Lognormal(µv,e, σ
2
v,e) Fixed price p

uniform_v_normal_p Uniform dist over [le, re] N (µp,e, σ
2
p,e)

normal_v_normal_p N (µv,e, σ
2
v,e) N (µp,e, σ

2
p,e)

lognorn_v_maxlognorm_p Lognormal(µv,e, σ
2
v,e) maxk∈[K] Lognormal(µk,e, σ

2
k,e)

B.3 Experiment on Synthetic Data

We now consider synthetic datasets that meet the definition of admissable distributions from

Definition 5.4.1.

B.3.1 Datasets

We create synthetic datasets to test the performance of the algorithms under consideration.

For the values, we consider three distributions: uniform, normal, and lognormal. For the

prices, we consider three settings: fixed prices (our analysis focuses on this setting before

generalizing), normally distributed prices, and the max of multiple draws from a lognormal

distribution.1 We combine these into 6 synthetic datasets, see Table B.1. We divide the time

horizon into 10 episodes, i.e. E = 10 with differing parameters of distributions for each

episode and use T = 1000.

B.3.2 Results

The values and prices were generated in the same way as above. For each dataset, we run

simulations where we a budget for the campaign is drawn uniformly from [0, C̄], where

C̄ is the expenditure of the campaign that bids truthfully in each auction. Then we run

1Prior work, e.g. [147], suggest that bids in ad auctions typically follow a lognormal distribution. The
combination of lognormal values with max-of-lognormal-draws as prices is a realistic simulation of auction
environment which is captured in the lognorn_v_maxlognorm_p dataset.

183

all the pacing algorithms for this dataset sample and budget level. We repeat this process

150 times to get 150 data points per dataset for each algorithm. We plot the ratio of the

optimal utility that the pacing system is able to obtain as a function of the budget level in

Figure B.2. Our algorithm outperforms both benchmarks almost everywhere. The only

time where the “Truthful” benchmark performs better are in situations where the advertiser

has enough budget to buy (almost) all impressions. There is one area where “Fixed spend

(BG19)” outperforms our algorithm. It happens for the “normal_v_normal_p” dataset when

B ≥ 0.8 · C̄; we do not have an explanation why this particular range performs poorly.

Efficiency of Offline Training To understand how the performance of our end-to-end

pacing is dependent on the numbers of samples available in the spend plan estimation phase,

we plot the ratio of the optimal utility that the pacing system is able to obtain as a function

of the number of training samples in Figure B.1. We consider 4 different budget levels: let

C̄ be the expenditure of the campaign that bids their value in each auction, we consider

budgets xC̄ for x ∈ {0.25, 0.5, 0.75, 1.0}.

Figure B.1 shows the effect of varying the training set size, where a sample in the training

set corresponds to a value and price draw from each episode. Two things are clear from the

results: 1) with increasing samples, the performance improves quickly, and 2) the budget

level is important for the overall performance as the optimal budget allocation problem gets

harder for smaller budgets. Finally, it does appear that the performance hits a plateau. This

is likely due to the online part of the algorithm which does not scale with increased offline

learning sample size.

184

Figure B.1: Performance of the end-to-end pacing system as a function of the size of training
data. We plot the ratio of the optimal utility that our pacing system is able to obtain as a function
of the number of training samples in the rate rate estimation phase. The budget is represented as
budget_frac, i.e. B = budget_frac*C̄. We can see that 1) with increasing samples, the performance
improves quickly 2) the budget level is important for the overall performance.

0.0

0.2

0.4

0.6

0.8

1.0

Ut
lit
y
/ O

pt
 U
til
ity

dataset = uniform_v_fix_p dataset = normal_v_fix_p dataset = lognorm_v_fix_p

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
budget/buy_all_budget

0.0

0.2

0.4

0.6

0.8

1.0

Ut
lit
y
/ O

pt
 U
til
ity

dataset = uniform_v_normal_p

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
budget/buy_all_budget

dataset = normal_v_normal_p

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
budget/buy_all_budget

dataset = lognorm_v_maxlognorm_p
Algorithm

Truthful
Fixed spend (BG19)
Changing spend (this)

Figure B.2: Comparing performance of our algorithm labeled as Changing spend (this), fixed spend
rate [81] labeled as Fixed spend (BG19) and no pacing labeled as Truthful on synthetic datasets.
See Table B.1 for details on datasets. Each datapoint in the scatter plot refers to one experiment
where we plot the fraction of the optimal utility obtained by the pacing strategy as a function of the
budget buy_all_budget represents C̄. In each of these cases, our method achieves a higher fraction of
optimal utility than either no pacing (truthful bidding) or fixed spend rate pacing strategies ([81])
over nearly all ratios of the budget relative to the cost of all impressions.

185

REFERENCES

[1] N. Cesa-Bianchi, G. Lugosi, and G. Stoltz, “Minimizing regret with label efficient
prediction,” IEEE Transactions on Information Theory, vol. 51, no. 6, pp. 2152–
2162, 2005.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The nonstochastic mul-
tiarmed bandit problem,” SIAM Journal on Computing, vol. 32, no. 1, pp. 48–77,
2002. eprint: https://doi.org/10.1137/S0097539701398375.

[3] S. Arora, E. Hazan, and S. Kale, “The multiplicative weights update method: A
meta-algorithm and applications,” Theory of computing, vol. 8, no. 1, pp. 121–164,
2012.

[4] R. B. Myerson, “Optimal auction design,” Mathematics of operations research,
vol. 6, no. 1, pp. 58–73, 1981.

[5] J. D. Abernethy, R. Cummings, B. Kumar, S. Taggart, and J. H. Morgenstern, “Learn-
ing auctions with robust incentive guarantees,” in Advances in Neural Information
Processing Systems, 2019, pp. 11 587–11 597.

[6] Y. Xu, B. Kumar, and J. D. Abernethy, “Observation-free attacks on stochastic
bandits,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[7] J. Abernethy, B. Kumar, T. Lykouris, and Y. Xu, “Bridging truthfulness and corruption-
robustness in multi-armed bandit mechanisms,” Incentives in Machine Learning
Workshop, ICML 2020,

[8] B. Kumar, J. Morgenstern, and O. Schrijvers, “Optimal spend rate estimation and
pacing for ad campaigns with budgets,” arXiv preprint arXiv:2202.05881, 2022.

[9] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-line learn-
ing and an application to boosting,” in European conference on computational
learning theory, Springer, 1995, pp. 23–37.

[10] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,” Information
and computation, vol. 108, no. 2, pp. 212–261, 1994.

[11] S. Hanneke, “A bound on the label complexity of agnostic active learning,” in
Proceedings of the 24th international conference on Machine learning, ACM, 2007,
pp. 353–360.

[12] C. Zhang, “Efficient active learning of sparse halfspaces,” arXiv preprint, 2018.
arXiv: 1805.02350.

186

https://doi.org/10.1137/S0097539701398375
https://arxiv.org/abs/1805.02350

[13] S. Hanneke and L. Yang, “Surrogate losses in passive and active learning,” arXiv
preprint, 2012. arXiv: 1207.3772.

[14] S. Hanneke, “Rates of convergence in active learning,” The Annals of Statistics,
pp. 333–361, 2011.

[15] S. R. Kulkarni, S. K. Mitter, and J. N. Tsitsiklis, “Active learning using arbitrary
binary valued queries,” Machine Learning, vol. 11, no. 1, pp. 23–35, 1993.

[16] V. Koltchinskii, “Local rademacher complexities and oracle inequalities in risk
minimization,” The Annals of Statistics, vol. 34, no. 6, pp. 2593–2656, 2006.

[17] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, “Selective sampling using the
query by committee algorithm,” Machine learning, vol. 28, no. 2-3, pp. 133–168,
1997.

[18] S. Dasgupta, D. J. Hsu, and C. Monteleoni, “A general agnostic active learning
algorithm,” In Advances in neural information processing systems, pp. 353–360,
2008.

[19] M.-F. Balcan, A. Beygelzimer, and J. Langford, “Agnostic active learning,” in
Proceedings of the 23rd international conference on Machine learning, ACM, 2006,
pp. 65–72.

[20] B. Kumar, J. D. Abernethy, and V. Saligrama, “Activehedge: Hedge meets ac-
tive learning,” in International Conference on Machine Learning, PMLR, 2022,
pp. 11 694–11 709.

[21] L. Wang, Y. Bai, W. Sun, and T. Joachims, “Fairness of exposure in stochastic
bandits,” in International Conference on Machine Learning (ICML), 2021.

[22] B. Kumar, M. Kleindessner, J. Abernethy, and M. Kearns, “Group fairness of
exposure in multi-arm bandits,” Under Preparation, 2022.

[23] E. Elkind, “Designing and learning optimal finite support auctions,” in Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA
’07, New Orleans, Louisiana: Society for Industrial and Applied Mathematics, 2007,
pp. 736–745, ISBN: 978-0-898716-24-5.

[24] Y. A. Gonczarowski and N. Nisan, “Efficient empirical revenue maximization in
single-parameter auction environments,” in Proceedings of the 49th Annual ACM
Symposium on Theory of Computing, ser. STOC ’17, 2017, pp. 856–868.

187

https://arxiv.org/abs/1207.3772

[25] R. Cole and T. Roughgarden, “The sample complexity of revenue maximization,”
in Proceedings of the forty-sixth annual ACM symposium on Theory of computing,
ACM, 2014, pp. 243–252.

[26] M.-F. Balcan, A. Blum, J. D. Hartline, and Y. Mansour, “Mechanism design via
machine learning,” in Foundations of Computer Science, 2005. FOCS 2005. 46th
Annual IEEE Symposium on, IEEE, 2005, pp. 605–614.

[27] P. Dhangwatnotai, T. Roughgarden, and Q. Yan, “Revenue maximization with a
single sample,” Games and Economic Behavior, vol. 91, pp. 318–333, 2015.

[28] J. Morgenstern and T. Roughgarden, “Learning simple auctions,” in Conference on
Learning Theory, 2016, pp. 1298–1318.

[29] M.-F. Balcan, T. Sandholm, and E. Vitercik, “Sample complexity of automated
mechanism design,” in Advances in Neural Information Processing Systems, 2016,
pp. 2083–2091.

[30] J. H. Morgenstern and T. Roughgarden, “On the pseudo-dimension of nearly optimal
auctions,” in Advances in Neural Information Processing Systems, 2015, pp. 136–
144.

[31] J. Hartline and S. Taggart, Non-revelation mechanism design, arXiV preprint 1608.01875,
2016.

[32] N. R. Devanur, Z. Huang, and C.-A. Psomas, “The sample complexity of auctions
with side information,” in Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing, ACM, 2016, pp. 426–439.

[33] R. Cummings, “Differential privacy as a tool for truthfulness in games,” XRDS,
vol. 24, no. 1, pp. 34–37, Sep. 2017.

[34] F. McSherry and K. Talwar, “Mechanism design via differential privacy,” in Foun-
dations of Computer Science, 2007. FOCS’07. 48th Annual IEEE Symposium on,
IEEE, 2007, pp. 94–103.

[35] K. Nissim, C. Orlandi, and R. Smorodinsky, “Privacy-aware mechanism design,”
in Proceedings of the 13th ACM Conference on Electronic Commerce, ser. EC ’12,
ACM, 2012, pp. 774–789.

[36] M. Kearns, M. Pai, A. Roth, and J. Ullman, “Mechanism design in large games:
Incentives and privacy,” in Proceedings of the 5th Conference on Innovations in
Theoretical Computer Science, ser. ITCS ’14, ACM, 2014, pp. 403–410.

188

[37] R. Cummings, M. Kearns, A. Roth, and Z. S. Wu, “Privacy and truthful equilib-
rium selection for aggregative games,” in Proceedings of the 11th International
Conference on Web and Internet Economics, ser. WINE ’15, 2015, pp. 286–299.

[38] R. Cummings, S. Ioannidis, and K. Ligett, “Truthful linear regression,” in Proceed-
ings of The 28th Conference on Learning Theory, ser. COLT ’15, 2015, pp. 448–
483.

[39] S. Kannan, J. Morgenstern, R. Rogers, and A. Roth, “Private pareto optimal ex-
change,” in Proceedings of the Sixteenth ACM Conference on Economics and Com-
putation, ser. EC ’15, 2015, pp. 261–278.

[40] D. Xiao, “Is privacy compatible with truthfulness?” In Proceedings of the 4th
conference on Innovations in Theoretical Computer Science, ACM, 2013, pp. 67–
86.

[41] Y. Chen, S. Chong, I. A. Kash, T. Moran, and S. Vadhan, “Truthful mechanisms
for agents that value privacy,” ACM Transactions on Economics and Computation
(TEAC), vol. 4, no. 3, p. 13, 2016.

[42] J. Liu, Z. Huang, and X. Wang, “Learning optimal reserve price against non-myopic
bidders,” in Advances in Neural Information Processing Systems, 2018, pp. 2038–
2048.

[43] K. Amin, A. Rostamizadeh, and U. Syed, “Learning prices for repeated auctions
with strategic buyers,” in Advances in Neural Information Processing Systems, 2013,
pp. 1169–1177.

[44] J. Hartline, “Mechanism design and approximation,” Book draft. October, vol. 122,
2013.

[45] D. Bergemann and J. Valimaki, “The dynamic pivot mechanism,” Econometrica,
vol. 78, no. 2, pp. 771–789, 2010.

[46] S. Kakade, I. Lobel, and H. Nazerzadeh, “Optimal dynamic mechanism design and
the virtual-pivot mechanism,” Operations Research, vol. 64, no. 4, pp. 837–854,
2013.

[47] A. Pavan, I. Segal, and J. Toikka, “Dynamic mechanism design: A Myersonian
approach,” Econometrica, vol. 82, no. 2, pp. 601–653, 2014.

[48] Y. Kanoria and H. Nazerzadeh, “Dynamic reserve prices for repeated auctions:
Learning from bids,” arXiv preprint arXiv:2002.07331, 2020.

189

[49] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity
in private data analysis,” in Theory of cryptography conference, Springer, 2006,
pp. 265–284.

[50] T.-H. H. Chan, E. Shi, and D. Song, “Private and continual release of statistics,”
ACM Transactions on Information and System Security (TISSEC), vol. 14, no. 3,
p. 26, 2011.

[51] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum, “Differential privacy under
continual observation,” in Proceedings of the forty-second ACM symposium on
Theory of computing, ACM, 2010, pp. 715–724.

[52] P. Massart, “The tight constant in the dvoretzky-kiefer-wolfowitz inequality,” The
annals of Probability, pp. 1269–1283, 1990.

[53] D. Bouneffouf, A. Bouzeghoub, and A. L. Gançarski, “A contextual-bandit algorithm
for mobile context-aware recommender system,” in International conference on
neural information processing, Springer, 2012, pp. 324–331.

[54] L. Li, D. Wang, T. Li, D. Knox, and B. Padmanabhan, “Scene: A scalable two-
stage personalized news recommendation system,” in Proceedings of the 34th in-
ternational ACM SIGIR conference on Research and development in Information
Retrieval, 2011, pp. 125–134.

[55] J. Kawale, H. H. Bui, B. Kveton, L. Tran-Thanh, and S. Chawla, “Efficient thompson
sampling for online matrix-factorization recommendation,” in Advances in neural
information processing systems, 2015, pp. 1297–1305.

[56] L. Li, W. Chu, J. Langford, and X. Wang, “Unbiased offline evaluation of contextual-
bandit-based news article recommendation algorithms,” in Proceedings of the fourth
ACM international conference on Web search and data mining, 2011, pp. 297–306.

[57] S. S. Villar, J. Wason, and J. Bowden, “Response-adaptive randomization for multi-
arm clinical trials using the forward looking gittins index rule,” Biometrics, vol. 71,
no. 4, pp. 969–978, 2015.

[58] E. M. Schwartz, E. T. Bradlow, and P. S. Fader, “Customer acquisition via display
advertising using multi-armed bandit experiments,” Marketing Science, vol. 36,
no. 4, pp. 500–522, 2017.

[59] H. Haddadi, “Fighting online click-fraud using bluff ads,” ACM SIGCOMM Com-
puter Communication Review, vol. 40, no. 2, pp. 21–25, 2010.

[60] K. C. Wilbur and Y. Zhu, “Click fraud,” Marketing Science, vol. 28, no. 2, pp. 293–
308, 2009.

190

[61] N. Kshetri, “The economics of click fraud,” IEEE Security & Privacy, vol. 8, no. 3,
pp. 45–53, 2010.

[62] T. Lappas, “Fake reviews: The malicious perspective,” in International Conference
on Application of Natural Language to Information Systems, Springer, 2012, pp. 23–
34.

[63] T. Lappas, G. Sabnis, and G. Valkanas, “The impact of fake reviews on online
visibility: A vulnerability assessment of the hotel industry,” Information Systems
Research, vol. 27, no. 4, pp. 940–961, 2016.

[64] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083,
2017.

[65] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning in computer
vision: A survey,” IEEE Access, vol. 6, pp. 14 410–14 430, 2018.

[66] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and defenses for
deep learning,” IEEE transactions on neural networks and learning systems, vol. 30,
no. 9, pp. 2805–2824, 2019.

[67] H. Dai et al., “Adversarial attack on graph structured data,” arXiv preprint arXiv:1806.02371,
2018.

[68] X. Liu, S. Si, X. Zhu, Y. Li, and C.-J. Hsieh, “A unified framework for data poisoning
attack to graph-based semi-supervised learning,” arXiv preprint arXiv:1910.14147,
2019.

[69] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed
bandit problem,” Machine learning, vol. 47, no. 2, pp. 235–256, 2002.

[70] K.-S. Jun, L. Li, Y. Ma, and J. Zhu, “Adversarial attacks on stochastic bandits,” in
Advances in Neural Information Processing Systems, 2018, pp. 3640–3649.

[71] F. Liu and N. Shroff, “Data poisoning attacks on stochastic bandits,” arXiv preprint
arXiv:1905.06494, 2019.

[72] Y. Ma, K.-S. Jun, L. Li, and X. Zhu, “Data poisoning attacks in contextual bandits,”
in International Conference on Decision and Game Theory for Security, Springer,
2018, pp. 186–204.

[73] E. Garcelon et al., “Adversarial attacks on linear contextual bandits,” Advances in
Neural Information Processing Systems, vol. 33, 2020.

191

[74] T. Lykouris, V. Mirrokni, and R. Paes Leme, “Stochastic bandits robust to adversarial
corruptions,” in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, 2018, pp. 114–122.

[75] A. Gupta, T. Koren, and K. Talwar, “Better algorithms for stochastic bandits with
adversarial corruptions,” arXiv preprint arXiv:1902.08647, 2019.

[76] S. Kapoor, K. K. Patel, and P. Kar, “Corruption-tolerant bandit learning,” Machine
Learning, vol. 108, no. 4, pp. 687–715, 2019.

[77] S. Agrawal and N. Goyal, “Analysis of thompson sampling for the multi-armed
bandit problem,” in Conference on learning theory, 2012, pp. 39–1.

[78] N. R. Devanur and S. M. Kakade, “The price of truthfulness for pay-per-click
auctions,” in Proceedings of the 10th ACM conference on Electronic commerce,
2009, pp. 99–106.

[79] M. Babaioff, Y. Sharma, and A. Slivkins, “Characterizing truthful multi-armed
bandit mechanisms,” SIAM J. Comput., vol. 43, no. 1, pp. 194–230, 2014.

[80] M. Babaioff, Y. Sharma, and A. Slivkins, “Characterizing truthful multi-armed
bandit mechanisms,” SIAM J. Comput., vol. 43, no. 1, pp. 194–230, 2014.

[81] S. R. Balseiro and Y. Gur, “Learning in repeated auctions with budgets: Regret
minimization and equilibrium,” Management Science, vol. 65, no. 9, pp. 3952–3968,
2019.

[82] Statista, Online advertising revenue in the united states from 2000 to 2020, https:
//www.statista.com/statistics/183816/us-online-advertising-revenue-since-2000/,
2020.

[83] J. Liu and S. Hill, “Moment marketing: Measuring dynamics in cross-channel ad
effectiveness,” Available at SSRN 3670024, 2020.

[84] D. Agarwal, S. Ghosh, K. Wei, and S. You, “Budget pacing for targeted online
advertisements at linkedin,” in Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2014, pp. 1613–1619.

[85] X. Ma et al., “Large-scale user visits understanding and forecasting with deep
spatial-temporal tensor factorization framework,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019,
pp. 2403–2411.

192

https://www.statista.com/statistics/183816/us-online-advertising-revenue-since-2000/
https://www.statista.com/statistics/183816/us-online-advertising-revenue-since-2000/

[86] D. Agarwal, D. Chen, L.-j. Lin, J. Shanmugasundaram, and E. Vee, “Forecasting
high-dimensional data,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, 2010, pp. 1003–1012.

[87] K.-C. Lee, A. Jalali, and A. Dasdan, “Real time bid optimization with smooth
budget delivery in online advertising,” in Proceedings of the Seventh International
Workshop on Data Mining for Online Advertising, 2013, pp. 1–9.

[88] S. R. Balseiro and Y. Gur, “Learning in repeated auctions with budgets: Regret
minimization and equilibrium,” in Proceedings of the 2017 ACM Conference on
Economics and Computation, ser. EC ’17, Cambridge, Massachusetts, USA: ACM,
2017, pp. 609–609, ISBN: 978-1-4503-4527-9.

[89] P. Rusmevichientong and D. P. Williamson, “An adaptive algorithm for selecting
profitable keywords for search-based advertising services,” in Proceedings 7th ACM
Conference on Electronic Commerce (EC-2006), Ann Arbor, Michigan, USA, June
11-15, 2006, 2006, pp. 260–269.

[90] J. Feldman, S. Muthukrishnan, M. Pal, and C. Stein, “Budget optimization in search-
based advertising auctions,” in Proceedings of the 8th ACM conference on Electronic
commerce, 2007.

[91] K. Hosanagar and V. Cherepanov, “Optimal bidding in stochastic budget constrained
slot auctions,” in Proceedings 9th ACM Conference on Electronic Commerce (EC-
2008), Chicago, IL, USA, June 8-12, 2008, 2008, p. 20.

[92] V. Conitzer, C. Kroer, E. Sodomka, and N. E. Stier-Moses, “Multiplicative pacing
equilibria in auction markets,” in Conference on Web and Internet Economics
(WINE’18), Oxford, UK, 2018.

[93] S. Balseiro, H. Lu, and V. Mirrokni, “Dual mirror descent for online allocation
problems,” in International Conference on Machine Learning, PMLR, 2020, pp. 613–
628.

[94] V. Conitzer et al., “Pacing equilibrium in first-price auction markets,” in Proceedings
of the 2019 ACM Conference on Economics and Computation, ser. EC ’19, Phoenix,
AZ, USA: ACM, 2019, pp. 587–587, ISBN: 978-1-4503-6792-9.

[95] Y. Gao, C. Kroer, and A. Peysakhovich, Online market equilibrium with application
to fair division, 2021. arXiv: 2103.12936 [cs.GT].

[96] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani, “Adwords and generalized online
matching,” Journal of the ACM (JACM), vol. 54, no. 5, 2007.

193

https://arxiv.org/abs/2103.12936

[97] Z. Abrams, S. S. Keerthi, O. Mendelevitch, and J. A. Tomlin, “Ad delivery with bud-
geted advertisers: A comprehensive lp approach.,” Journal of Electronic Commerce
Research, vol. 9, no. 1, 2008.

[98] Y. Azar, B. Birnbaum, A. R. Karlin, and C. T. Nguyen, “On revenue maximization
in second-price ad auctions,” in Algorithms - ESA 2009, A. Fiat and P. Sanders,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 155–166, ISBN:
978-3-642-04128-0.

[99] A. Goel, M. Mahdian, H. Nazerzadeh, and A. Saberi, “Advertisement allocation for
generalized second-pricing schemes,” Oper. Res. Lett., vol. 38, no. 6, pp. 571–576,
Nov. 2010.

[100] C. Karande, A. Mehta, and R. Srikant, “Optimizing budget constrained spend in
search advertising,” in Proceedings of the Sixth ACM International Conference on
Web Search and Data Mining, ser. WSDM ’13, Rome, Italy: ACM, 2013, pp. 697–
706, ISBN: 978-1-4503-1869-3.

[101] K. Amin, M. Kearns, P. Key, and A. Schwaighofer, “Budget optimization for spon-
sored search: Censored learning in mdps,” arXiv preprint arXiv:1210.4847, 2012.

[102] L. Tran-Thanh, A. Chapman, A. Rogers, and N. R. Jennings, “Knapsack based
optimal policies for budget–limited multi–armed bandits,” in Twenty-Sixth AAAI
Conference on Artificial Intelligence, 2012.

[103] A. Flajolet and P. Jaillet, “Real-time bidding with side information,” in Proceedings
of the 31st International Conference on Neural Information Processing Systems,
Curran Associates Inc., 2017, pp. 5168–5178.

[104] A. Nuara, F. Trovò, N. Gatti, and M. Restelli, Online joint bid/daily budget optimiza-
tion of internet advertising campaigns, 2020. arXiv: 2003.01452 [cs.LG].

[105] V. Avadhanula, R. Colini-Baldeschi, S. Leonardi, K. Abinav Sankararaman, and
O. Schrijvers, “Stochastic bandits for multi-platform budget optimization in online
advertising,” in The World Wide Web Conference, 2020.

[106] M. Cary et al., “Greedy bidding strategies for keyword auctions.,” in EC, J. K.
MacKie-Mason, D. C. Parkes, and P. Resnick, Eds., ACM, 2007, pp. 262–271, ISBN:
978-1-59593-653-0.

[107] C. Borgs, J. Chayes, N. Immorlica, K. Jain, O. Etesami, and M. Mahdian, “Dynamics
of bid optimization in online advertisement auctions,” in Proceedings of the 16th
international conference on World Wide Web, 2007.

194

https://arxiv.org/abs/2003.01452

[108] S. Balseiro, A. Kim, M. Mahdian, and V. Mirrokni, “Budget management strategies
in repeated auctions,” in Proceedings of the 26th International World Wide Web
Conference, Perth, Australia, 2017.

[109] M. Babaioff, R. Cole, J. Hartline, N. Immorlica, and B. Lucier, “Non-quasi-linear
agents in quasi-linear mechanisms,” arXiv preprint arXiv:2012.02893, 2020.

[110] X. Chen, C. Kroer, and R. Kumar, The complexity of pacing for second-price
auctions, 2021. arXiv: 2103.13969 [cs.GT].

[111] S. Balseiro, A. Kim, M. Mahdian, and V. Mirrokni, “Budget-constrained incen-
tive compatibility for stationary mechanisms,” in Proceedings of the 21st ACM
Conference on Economics and Computation, 2020, pp. 607–608.

[112] S. M. Kakade, A. T. Kalai, and K. Ligett, “Playing games with approximation
algorithms,” SIAM Journal on Computing, vol. 39, no. 3, pp. 1088–1106, 2009.

[113] A. Dvoretzky, J. Kiefer, and J. Wolfowitz, “Asymptotic minimax character of the
sample distribution function and of the classical multinomial estimator,” The Annals
of Mathematical Statistics, pp. 642–669, 1956.

[114] R. A. Davis, K.-S. Lii, and D. N. Politis, “Remarks on some nonparametric estimates
of a density function,” in Selected Works of Murray Rosenblatt, Springer, 2011,
pp. 95–100.

[115] E. Parzen, “On estimation of a probability density function and mode,” The annals
of mathematical statistics, vol. 33, no. 3, pp. 1065–1076, 1962.

[116] H. Jiang, “Uniform convergence rates for kernel density estimation,” in International
Conference on Machine Learning, PMLR, 2017, pp. 1694–1703.

[117] S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical modeling with
python,” in 9th Python in Science Conference, 2010.

[118] B. Settles, “From theories to queries: Active learning in practice,” in Active Learning
and Experimental Design workshop In conjunction with AISTATS 2010, 2011, pp. 1–
18.

[119] H. T. Nguyen and A. Smeulders, “Active learning using pre-clustering,” in Pro-
ceedings of the twenty-first international conference on Machine learning, 2004,
p. 79.

[120] M. Wang and X.-S. Hua, “Active learning in multimedia annotation and retrieval: A
survey,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2,
no. 2, pp. 1–21, 2011.

195

https://arxiv.org/abs/2103.13969

[121] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell, “Active learning with gaussian
processes for object categorization,” in 2007 IEEE 11th International Conference
on Computer Vision, IEEE, 2007, pp. 1–8.

[122] X. Li and Y. Guo, “Adaptive active learning for image classification,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 859–
866.

[123] S. Hanneke, “Theory of disagreement-based active learning,” Foundations and
Trends® in Machine Learning, vol. 7, no. 2-3, pp. 131–309, 2014.

[124] B. Settles, “Active learning,” Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning, vol. 6, no. 1, pp. 1–114, 2012.

[125] D. Cohn, L. Atlas, and R. Ladner, “Improving generalization with active learning,”
Machine learning, vol. 15, no. 2, pp. 201–221, 1994.

[126] A. Beygelzimer, S. Dasgupta, and J. Langford, “Importance weighted active learn-
ing,” ArXiv, vol. abs/0812.4952, 2008.

[127] N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, “Worst-case analysis of selective
sampling for linear classification,” Journal of Machine Learning Research, vol. 7,
pp. 1205–1230, Jul. 2006.

[128] N. Cesa-Bianchi, C. Gentile, and F. Orabona, “Robust bounds for classification via
selective sampling,” in Proceedings of the 26th annual international conference on
machine learning, ACM, 2009, pp. 121–128.

[129] O. Dekel, C. Gentile, and K. Sridharan, “Selective sampling and active learning
from single and multiple teachers,” Journal of Machine Learning Research, vol. 13,
pp. 2655–2697, Sep. 2012.

[130] A. Beygelzimer, D. J. Hsu, J. Langford, and T. Zhang, “Agnostic active learning
without constraints,” Advances in Neural Information Processing Systems, pp. 199–
207, 2010.

[131] S. Hanneke, Adaptive rates of convergence in active learning. In COLT. Citeseer,
2009.

[132] S. Dasgupta, A. T. Kalai, and C. Monteleoni, “Analysis of perceptron-based active
learning,” in International Conference on Computational Learning Theory, 2005,
pp. 249–263.

[133] M.-F. Balcan, A. Broder, and T. Zhang, “Margin based active learning,” in Interna-
tional Conference on Computational Learning Theory, 2007, pp. 35–50.

196

[134] M.-F. Balcan and P. Long, “Active and passive learning of linear separators under
log-concave distributions,” in Conference on Learning Theory, 2013, pp. 288–316.

[135] P. Awasthi, M. F. Balcan, and P. M. Long, “The power of localization for efficiently
learning linear separators with noise,” in Proceedings of the forty-sixth annual ACM
symposium on Theory of computing, ACM, 2014, pp. 449–458.

[136] P. Awasthi, M.-F. Balcan, N. Haghtalab, and R. Urner, “Efficient learning of linear
separators under bounded noise,” in Conference on Learning Theory, 2015, pp. 167–
190.

[137] C. Cortes, G. DeSalvo, C. Gentile, M. Mohri, and N. Zhang, “Region-based ac-
tive learning,” in The 22nd International Conference on Artificial Intelligence and
Statistics, 2019, pp. 2801–2809.

[138] L. Yang, “Active learning with a drifting distribution,” In Advances in Neural
Information Processing Systems, pp. 2079–2087, 2011.

[139] P. Zhao, S. Hoi, and J. Zhuang, “Active learning with expert advice,” arXiv preprint
arXiv:1309.6875, 2013.

[140] S. Hao, P. Hu, P. Zhao, S. C. Hoi, and C. Miao, “Online active learning with expert
advice,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 12,
no. 5, pp. 1–22, 2018.

[141] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games. Cambridge uni-
versity press, 2006.

[142] S. Hanneke and L. Yang, “Minimax analysis of active learning,” The Journal of
Machine Learning Research, vol. 16, no. 1, pp. 3487–3602, 2015.

[143] D. Sculley, “Online active learning methods for fast label-efficient spam filtering.,”
in CEAS, vol. 7, 2007, p. 143.

[144] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun. com/exdb/mnist/,
1998.

[145] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny
images,” 2009.

[146] M. Mitzenmacher and E. Upfal, Probability and computing: Randomization and
probabilistic techniques in algorithms and data analysis. Cambridge university
press, 2017.

197

[147] M. Ostrovsky and M. Schwarz, “Reserve prices in internet advertising auctions:
A field experiment,” in Proceedings of the 12th ACM conference on Electronic
commerce, 2011, pp. 59–60.

198

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction and Background
	Sequential Decision-Making with Agents
	Sequential Decision-Making with Strategic Agents
	Sequential Decision-Making with expensive Feedback
	Sequential decision-making in a limited feedback environment while ensuring fairness

	I Sequential Decision-Making with Strategic Agents
	2 | Revenue Maximization in Repeated Auctions with Strategic Bidders
	Introduction
	Model and Preliminaries
	Revenue Maximization on Similar Distributions
	Utility-Approximate Bayesian Incentive Compatibility

	3 | Observation-Free Attacks on Stochastic Bandits
	Introduction
	Preliminaries
	Observation-Free Attack
	Vulnerability of Mean Based Bandit Algorithms
	Attack on Stochastic Bandit Algorithms
	Experiments
	Attack agnostic to mean rewards of arms

	4 | Bridging Truthfulness and Corruption Robustness in Multi-Arm Bandit Mechanisms
	Introduction
	Model and Preliminaries
	Truthful corruption-robust -Greedy
	Experiments

	5 | Optimal Spend Rate Estimation and Pacing for Ad Campaigns with Budgets
	Introduction
	Setting and Preliminaries
	Approximating Optimal Spend Rates
	Pacing using Approximate Spend Rates
	Slow-moving Distributions
	Experiments

	II Sequential Decision-Making with Expensive Feedback
	6 | Active Online Learning
	Introduction
	Notation, Setting, and Background
	Algorithm And Performance Guarantee
	Calculating compactness
	Experiments

	III Sequential Decision-Making in a Limited Feedback Environment while Ensuring Fairness
	7 | Group Fairness of Exposure in Bandits
	Introduction
	Setting

	Appendices
	A | Missing proofs and additional experiments from Chapter 3
	Missing Proofs
	Chernoff Bounds
	Additional Experiments

	B | Missing proofs and additional experiments from Chapter 5
	Characterizing the optimal pacing strategy and budget allocation in expectation
	Detailed Algorithms
	Experiment on Synthetic Data

	References

