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SUMMARY

Augmentations and other transformations of data, either in the input or latent space, are a critical

component of modern machine learning systems. While these techniques are widely used in practice

and known to provide improved generalization in many cases, it is still unclear how data manipula-

tion impacts learning and generalization. To take a step toward addressing the problem, this thesis

focuses on understanding and leveraging data augmentation and alignment for improving machine

learning performance and transfer. In the first part of the thesis, we establish a novel theoretical

framework to understand how data augmentation (DA) impacts learning in linear regression and

classification tasks. The results demonstrate how the augmented transformed data spectrum plays

a key role in characterizing the behavior of different augmentation strategies, especially in the

overparameterized regime. The tools developed in this aim provide simple guidelines to build new

augmentation strategies and a simple framework for comparing the generalization of different types

of DA. In the second part of the thesis, we demonstrate how latent data alignment can be used to

tackle the domain transfer problem, where training and testing datasets vary in distribution. Our

algorithm builds upon joint clustering and data-matching through optimal transport, and outper-

forms the pure matching algorithm baselines in both synthetic and real datasets. Extension of the

generalization analysis and algorithm design for data augmentation and alignment for nonlinear

models such as artificial neural networks and random feature models are discussed. This thesis

provides tools and analyses for better data manipulation design, which benefit both supervised and

unsupervised learning schemes.

xi



CHAPTER 1

INTRODUCTION

Data manipulation is a critical component in machine learning models. Although technologies

have advanced model architectures significantly in the recent decade, the understanding of how

data manipulation impacts machine learning is still relatively obscure. To take a step toward

addressing the problem, this thesis focuses on understanding and leveraging data manipulation

for machine learning. In the first part, we will analyze the popular data manipulation scheme,

the data augmentation (DA) by establishing a simple framework to study DA’s impacts on model

generalization. In the second part, we demonstrate how sole data manipulation facilitates machine

learning applications by developing a data alignment to tackle the domain transfer problem where

training and testing datasets vary in distribution.

The first part of our thesis will be centered around understanding the DA’s efficacy. Data

augmentation (DA), or the transformation of data samples before or during learning, is quickly

becoming a workhorse of both supervised [1, 2, 3] and self-supervised approaches [4, 5, 6, 7]

for machine learning (ML). It is critical to the success of modern ML in multiple domains, e.g.,

computer vision [1], natural language processing [8], time series data [9], and neuroscience [10, 6,

11]. This is especially true in settings where data and/or labels are scarce or in other cases where

algorithms are prone to overfitting [12]. While DA is perhaps one of the most widely used tools for

regularization, most augmentations are often applied in an ad hoc manner, and it is often unclear

exactly how, why, and when a DA strategy will work for a given dataset [13, 14]. Recent theoretical

studies have provided insights into the effect of DA on learning and generalization when augmented

samples lie close to the original data distribution [15, 16]. However, state-of-the-art augmentations

that are used in practice (e.g. data masking [17], cutout [18], mixup [19]) are stochastic and can

significantly alter the distribution of the data [20, 17, 21]. In this thesis, we address this challenge by

proposing a simple yet flexible theoretical framework for comparing the linear model generalization
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of a broad class of augmentations. Our framework is simultaneously applicable to:

1. General stochastic augmentations, e.g. [16, 22, 18, 17],

2. The classical underparameterized regime [23] and the

modern overparameterized regime [12, 24],

3. Regression [25, 26] and classification tasks [27, 28], and

4. Strong and weak distributional-shift augmentations [21].

To do this, we borrow and build on finite-sample analysis techniques of the modern overparame-

terized regime for linear and kernel models [25, 26, 27, 29]. Our theory reveals that DA induces

implicit, training-data-dependent regularization of a twofold type: a) manipulation of the spectrum

(i.e. eigenvalues) of the data covariance matrix, and b) the addition of explicit ℓ2-type regulariza-

tion to avoid noise overfitting. The first effect of spectral manipulation is often dominant in the

overparameterized regime, and we show through several examples how it can either make or break

generalization by introducing helpful or harmful biases. In contrast, the explicit ℓ2 regularization

effect always improves generalization by preventing possibly harmful overfitting of noise.

The second part of the study in the thesis is on the domain adaptation problem that leverages

the distribution alignment technique called optimal transport (OT) [30, 31]. The idea is to find a

map between the data points in both domains so that the model based on one domain can be applied

to the other through the map, hence avoiding the model retrain. The method then boils down to

finding the map, which can be found by solving a linear programming problem called the optimal

transport problem that admits a fast solver [32]. However, ordinary OT has several drawbacks,

including robustness issues where the map can be sensitive to outliers and noise and poor sampling

rate where the map is inaccurate when the number of data is sparse. Our proposal thus develops a

low-rank optimal transport method [33] that solves a robust mapping between two data distributions

to remedy these issues. The proposed algorithm also has shown better interpretability and sampling

complexity over the ordinary OT.

The rest of the thesis is organized as follows. The background is provided in Chapter 2. The

2



analysis of generalization with DA is presented in Chapter 3. We build up a novel analysis of

the DA through our studies and connect our theory to the others in the literature. We develop a

robust domain adaptation technique with OT in Chapter 4, where we introduce the latent optimal

transport (LOT). Then, we summarize our thesis in Chapter 5. Finally, in Chapter 5.2 we discuss

the extensions for future investigations.

3



CHAPTER 2

BACKGROUNDS

In many machine learning problems, we train a model to predict a target based on the training data in

common machine learning problems. The difference between the performance of a machine model

on the training and testing data is called its generalizability. When the distribution shift occurs

between the training and testing data, the outdated trained model will underperform dramatically,

resulting in poor model generalization. For example, concept drift is a common scenario when

either the covariates, target variables, or their distributions change through time [34, 35]. Without

careful consideration of the distribution change, a machine learning algorithm will fail hard than

expected. Therefore, coping with the distribution change in machine learning algorithmic design

has become essential to closing the gap between theory and practice.

Conventional techniques to deal with the problem are called domain adaption or transfer learning.

There are many great surveys on techniques of domain adaption and transfer learning [36, 37, 38, 39,

40, 41]. The seminal paper [37] categorize the transfer learning setting into inductive, transductive,

and unsupervised, depending on the type of the concept shifts and the information of the labels.

The most common trend of these methods is to learn common latent features aligning both domains

by an artificial neural network (ANN). [42, 43] consider using the shallow network to learn a

common space to match the data between the source and target. Other authors leverage deep

networks to learn and transfer representations in the inner layers of the deep learning models.

For instance, [44] extracts the convolution activation from a CNN to transfer the representations,

outperforming traditional baselines. The paper [41] provides a comprehensive survey on the deep

domain adaptation. A broader scope of strategies subsumes the deep domain adaptation is the

architecture design with the imposition of explicit invariance, e.g., cyclic and shift-invariance. These

methods [45, 46, 47, 48, 49, 50, 51, 52, 53] improve the generalizability and lead to many famous

models like VGG-16 [45], or ResNet [46].
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However, there are two major challenges in these approaches. 1. The domain alignment

procedure in most domain adaptation methods can not always be done when the data in the target

domain is sparse or lacking. 2. These methods often have high model complexity, e.g., complicated

architecture design and multiple classifiers, resulting in increased cost of model training. In our

proposal, we study two data centered approaches, each copes with one of the aforementioned

challenges, respectively. The first method we study is data augmentation (DA), and the second

method is domain adaptation with optimal transport (OT). Below we will review the background

and the related works of them in a sequence.

2.1 Improving Generalization with Data Augmentation

Data augmentation (DA) [1, 9, 54, 55, 56] has become a standard practice to improve model

generalization for both supervised, and unsupervised learning [57, 4] in modern machine learning

schemes. It creates synthetic instances based on training data, including color transformation,

random crops, and adversarial training with GAN. [1] is a perfect example summarizing the

prevalent image data augmentations for deep learning in practice. A research direction strives to

find the optimal augmentation among several candidates. [14] uses reinforcement learning to find

the optimal composite augmentation. [58] proposes the AutoAugment to search for improved data

augmentation policies. By treating the policy as hyperparameter search, [59] uses random search

while [60] uses Bayesian optimization to search for the optimal augmentation with lower cost than

the reinforcement learning methodology.

2.1.1 Theoretical understanding of data augmentation

Despite DA being simple and flexible, the investigations on when and what data augmentation

leads to an effective boost in generalization are mainly conducted on empirical study and remained

relatively elusive in theory. Without careful design, the literature has revealed that a non-suitable

DA can even lead to negative impact [61, 62]. The issue becomes more problematic when one faces

a less understood data domain. Therefore, DA has to be studied under a systematic mathematical
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framework in theory. In this regard, there are theoretical studies on DA. [63] analyzes the DA of

adding Gaussian noise, [15] analyzes DA as feature averaging in a kernel classification task. [64]

considers a composite of linear transformation of data and classifies common DA into label-invariant

(e.g., dropout, adding of Gaussian noise, random flips) and label-mixing methods (e.g., various

mixup augmentations [19, 65, 66]). They show that the label-preserving transformations improve

estimation by enlarging the span of the training data while label-mixing transformations improve

estimation by inducing a regularization effect. [63] considers the empirical risk minimization of a

classification task and answers the question of the robustness improvement in terms of the increase

of the margin. [16] uses group theory to show that DA leads to variance reduction by averaging

the loss through a group orbit, which implies a generalization improvement. [15] adopts kernel

theory to analyze the DA modeled by a Markov process and shows that kernel arises naturally

and effect of DA can be approximated by first-order feature averaging and second-order variance

regularization components. [67] studies the adversarial training with DA in a linear regression

model and characterizes DA’s effect on standard error (on unperturbed test inputs) and robust error

(over worst-case perturbations). [68] analyzes the covariate shift data augmentation, e.g., DA that

only changes the input but not the label) in linear regression, and characterize when the augmented

data can lead to a decrease of generalization. Furthermore, they propose X-regularization, which

uses unlabeled data to regularize the parameters towards the nonaugmented estimate. Inspired by

manifold learning, [69] proposes a new Hessian-based complexity of neural networks and shows

that data augmentation can reduce the metric. From an optimization landscape perspective, [70]

shows that data augmentation can improve the optimization landscape of neural network training.

2.1.2 Benign overfitting with data augmentation

Although there are many theories on explanation of the benefits of DA in machine learning.

The detailed analysis on how different DA and data spectrum affect the model generalization

is still unknown. For example, when is a class of DA better than others for a specific data

distribution? To unveil the mystery, we focus on the study the generalization of a linear regression

6



model in the overparametrization regime, where the number of model parameters is larger than

the number of training sample, in our preliminary work. We study on this model and regime

because of the tractability and that modern machine learning algorithms usually have the number

of parameters more than the number of samples. Furthermore, to separate the effect of DA from

explicit regularization, we will analyze unregularized regression. Unlike the conventional analysis

based on complexity generalization bound for underparametrized problem [71], we adopt the

modern analysis focusing on the overparametrization regime. These works are summarized in the

following. The line of works by [25, 26] strives for explaining the efficacy of the interpolation,

i.e., fitting training examples without regularization, in the overparametrization regime that seemly

contradicts the common wisdom in statistics that overfitting leads to poor generalization. They

term the phenomenon benign overfitting. They study the interpolater and ridge estimators in linear

regression and find that some proper spectrum of data covariance can lead to good generalization

with overfitting. Following their works, [72] studies the condition of good generalization with

constant step stochastic gradient descent in linear regression, which extends the study from a static

to a dynamic point of view. These works assume a more general distribution model and consider

the data covariance arbitrary, allowing for a full characterization of generalization between the

interplay of data covariance and modeling parameters. Another promising analytical tool is the

random matrix theory. Seminal works include [73, 74]. Unlike the finite analysis provided by works

on benign overfitting, random matrix theory gears toward the asymptotic regime, where the ratio of

the number of parameters and the sample approaches a fixed number. Although asymptotic, this

approach’s plus side is that it can often fully characterize the entire regime, whether it is over or

underparametrized. In [73], the authors consider the generalization of a linear regression model and

discover several interesting properties, including the occurrence of double-descent. [74] generalizes

the model to a random feature model that approximates better to the neural network in practice and

characterizes the generalization error asymptotically.
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2.2 Domain Adaptation with Optimal Transport

Unlike the DA strategies that modify the training data to simulate possible changes in data distri-

bution, our second focusing approach calibrates the model’s prediction when a data distribution

change occurs. As distribution shift can occur frequently, we want our calibration to be as cheap as

possible. This brings us to the domain adaptation technique with optimal transport (OT) [30, 31].

The approach is to find a map between the data in both domains so that we can apply the trained

model on the source domain to the data in the target domain through the map. In this way, the

method boils down to finding the map between the data domains, and this is where OT comes into

play. Although OT provides an off-the-shelf solution for our need, in our preliminary work [33], we

find that it is not robust to various transformations, outliers, and noise. This becomes a severe issue

when the testing data set is heavily shifted from the training data set. Hence, we develop a robust

distribution matching methodology to improve the ordinary OT in our preliminary work.

In the following, we will introduce our proposed method, the Latent Optimal Transport (LOT),

a robust distribution alignment technique. Before the introduction, we will first review the related

works and backgrounds of optimal transport.

2.2.1 Related works and background of optimal transport

Optimal transport (OT) [75] is a widely used technique for distribution alignment that learns a

transport plan which moves mass from one distribution to match another. With recent advances

in tools for regularizing and speeding up OT [76], this approach has found applications in many

diverse areas of machine learning, including domain adaptation [30, 31], generative modeling [77,

78], document retrieval [79], computer graphics [80, 81, 82], and computational neuroscience [83,

84].

While the ground metric in OT measures detailed variance in data points, it could be fragile to

outliers or noise, especially in high dimensions. To overcome this issue, additional cluster/class

structure can improve alignment or make transport more robust. Examples of methods that in-
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corporate additional structure into OT include approaches that leverage hierarchical structure or

cluster consistency [84, 85, 86], partial class information [31, 30], submodular cost functions [87],

and low-rank constraints on the transport plan [88, 89]. Because of the difficulty of incorporating

structure into OT, many of these methods need low-dimensional structure in data to be specified in

advance (e.g., estimated clusters or labels).

To simultaneously learn the low-dimensional structure and use it to constrain transport, [88, 33,

90] recently introduced low-rank OT that builds a factorization of the transport. The transport rank

has a natural interpretation of being the number of clusters/classes of the data. The transports admit

fast computations by combining the k-means clustering and iterative Bregman projections. Besides

the statistical benefits on the sampling rate studied in [88], [33] has shown that low-rank OT also

exhibits robustness against several data transformations, outliers, and noise.

2.2.2 Latent optimal transport

Now we introduce our algorithm Latent Optimal Transport, which belongs to the class of low-rank

transport approaches. Most datasets have a low-dimensional latent structure, but OT does not

naturally use it during transport. This motivates the idea that distribution alignment methods should

both reveal the latent structure in the data in addition to aligning these latent structures. Specifically,

we assume there exist latent points called anchors representing the source and target data. The

number of anchors defines the rank of the transportation, which can also represent the number of

clusters in each data domain. LOT then transports the data from the source to the target through

these anchors. Because these anchors restrict the way of transportation, the alignment between data

is less sensitive to the effects of outliers and various data transformations.

9



CHAPTER 3

UNDERSTANDING DATA AUGMENTATION IN LINEAR MODELS

3.1 Introduction

Data augmentation (DA), or the transformation of data samples before or during learning, is quickly

becoming a workhorse of both supervised [1, 2, 3] and self-supervised approaches [4, 5, 6, 7]

for machine learning (ML). It is critical to the success of modern ML in multiple domains, e.g.,

computer vision [1], natural language processing [8], time series data [9], and neuroscience [10, 6,

11]. This is especially true in settings where data and/or labels are scarce or in other cases where

algorithms are prone to overfitting [12]. While DA is perhaps one of the most widely used tools for

regularization, most augmentations are often applied in an ad hoc manner, and it is often unclear

exactly how, why, and when a DA strategy will work for a given dataset [13, 14].

Recent theoretical studies have provided insights into the effect of DA on learning and gener-

alization when augmented samples lie close to the original data distribution [15, 16]. However,

state-of-the-art augmentations that are used in practice (e.g. data masking [17], cutout [18], mixup

[19]) are stochastic and can significantly alter the distribution of the data [20, 17, 21]. Despite many

efforts to explain the success of DA in the literature [91, 92, 16, 15, 64], there is still a lack of a

comprehensive platform to compare different types of augmentations at a quantitative level.

In this paper, we address this challenge by proposing a simple yet flexible theoretical framework

for comparing the linear model generalization of a broad class of augmentations. Our framework

is simultaneously applicable to: 1. general stochastic augmentations, e.g. [16, 22, 18, 17], 2. the

classical underparameterized regime [23] and the modern overparameterized regime [12, 24], 3.

regression [25, 26] and classification tasks [27, 28], and 4. strong and weak distributional-shift

augmentations [21]. To do this, we borrow and build on finite-sample analysis techniques of the

modern overparameterized regime for linear and kernel models [25, 26, 27, 29]. Our theory reveals
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that DA induces implicit, training-data-dependent regularization of a twofold type: a) manipulation

of the spectrum (i.e. eigenvalues) of the data covariance matrix, and b) the addition of explicit

ℓ2-type regularization to avoid noise overfitting.

The first effect of spectral manipulation is often dominant in the overparameterized regime,

and we show through several examples how it can either make or break generalization by intro-

ducing helpful or harmful biases. In contrast, the explicit ℓ2 regularization effect always improves

generalization by preventing possibly harmful overfitting of noise.

3.1.1 Main contributions

Below, we outline and provide a roadmap of the main contributions of the first part of this thesis.

• We propose a new framework for studying generalization with data augmentation for linear

models by building on the recent literature on the theory of overparameterized learning [25,

93, 73, 29, 27, 28]. We provide natural definitions of the augmentation mean and covariance

operators that capture the impact of change in data distribution on model generalization in

Section 3.3.1, and sharply characterize the ensuing performance for both regression and

classification tasks in Sections 3.4.3 and 3.4.4, respectively.

• In Section 3.5.1, we apply our theory to provide novel and surprising interpretations of a broad

class of randomized DA strategies used in practice; e.g., random-masking [17], cutout [18],

noise injection [91], and group-invariant augmentations [16]. An example is as follows: while

the classical noise injection augmentation [91] causes only a constant shift in the spectrum,

data masking [17, 22], cutout [18] and distribution-preserving augmentations [16] tend to

isotropize the equivalent data spectrum. This isotropizing effect, as we discuss in Section

3.5.2, can be shown to create an especially high bias and therefore, harm generalization in the

overparameterized regime.

• In Section 3.5.3, we directly compare the impact of DA on the downstream tasks of regression

and classification and identify strikingly different behaviors. Specifically, we find that, while
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augmentation bias is mostly harmful in a regression task, its effect can be minimal for

classification. This together with the uniform variance improvement can be shown to yield

several helpful scenarios for classification. This is consistent with the fact that the empirical

benefits of strong augmentation have been observed primarily in classification tasks [21, 94].

• Our framework serves as a testbed for new DA approaches. As a proof-of-concept, in Section

3.5.2, we design a new augmentation method, inspired by isometries in random feature

rotation, that can provably achieve smaller bias than the least-squared estimator and variance

reduction on the order of the ridge estimator. Moreover, this generalization is robust in the

sense that it compares favorably with optimally tuned ridge regression for a much wider range

of hyperparameters).

• Finally, in Section 3.6 we complement and verify our theoretical insights through a number of

empirical studies that examine how multiple factors involving data, model and augmentation

type impact generalization. We compare our closed-form expression with augmented SGD

[15, 16, 4] and pre-computed augmentations [64, 95] In contrast to augmented SGD, we

find that adding more pre-computed augmentations can increase overfitting to noise, thus

producing “interpolation peaks” in the sense of [24].

Notation

We use n to denote the number of training examples and p to denote the data dimension. Given a

training data matrix X ∈ Rn×p where each row (representing a training example) is independently

and identically distributed (i.i.d.) and has covariance Σ := E[xx⊤], we denote PΣ
1:k−1 and PΣ

k:∞ as

the projection matrices to the top k− 1 and the bottom p− k+1 eigen-subspaces of Σ, respectively.

For convenience, we denote the residual Gram matrix by Ak(X;λ) = λIn +XPΣ
k:∞XT , where λ

is some regularization constant. Subscripts denote the subsets of column vectors when applied to

a matrix; e.g. for a matrix V we have Va:b := [va,va+1, . . . ,vb]. A similar definition applies to

vectors; e.g. for a vector x we have xa:b = [xa,xa+1, . . . ,xb]. The Mahalanobis norm of a vector is
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defined by ∥x∥H =
√
x⊤Hx. For a matrix A, diag(A) denotes the diagonal matrix with a diagonal

equal to that of A, Tr(A) denotes its trace and µi(A) its i-th largest eigenvalue. The symbols ≳

and ≲ are used to denote inequality relations that hold up to universal constants that do not depend

on n or p. All asymptotic convergence results are stated in probability.

More specific notation corresponding to our signal model is given in Section 3.4.1, and some

additional notation that is convenient to define for our analysis is postponed to Section 3.4.2.

3.2 Related work

We organize our discussion of related work into two verticals: a) historical and recent perspectives

on the role of data augmentation, and b) recent analyses of minimum-norm and ridge estimators in

the over-parameterized regime.

3.2.1 Data augmentation

Classical links between DA and regularization: Early analysis of DA showed that adding

random Gaussian noise to data points is equivalent to Tikhonov regularization [91] and vicinal

risk minimization [19, 92]; in the latter, a local distribution is defined in the neighborhood of each

training sample, and new samples are drawn from these local distributions to be used during training.

These results established an early link between augmentation and explicit regularization. However,

the impact of such approaches on generalization has been mostly studied in the underparameterized

regime of ML, where the primary concern is reducing variance and avoiding overfitting of noise.

Modern ML practices, by contrast, have achieved great empirical success in overparameterized

settings and with a broader range of augmentation strategies [1, 2, 3]. The type of regularization that

is induced by these more general augmentation strategies is not well understood. Our work provides

a systematic point of view to study this general connection without assuming any additional explicit

regularization, or specific operating regime.
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In-distribution versus out-of-distribution augmentations: Intuitively, if we could design an

augmentation that would produce more virtual but identically distributed samples of our data, we

would expect an improvement in generalization. Based on this insight and the inherent structure

of many augmentations used in vision (that have symmetries), another set of works explores the

common intuition that data augmentation helps insert beneficial group-invariances into the learning

process [52, 96, 97, 98, 99]. These studies generally consider cases in which the group structure

is explicitly present in the model design via convolutional architectures [52, 98] or feature maps

approximating group-invariant kernels [96, 97]. The authors of [16] propose a general group-

theoretic framework for DA and explain that an averaging effect helps the model generalize through

variance reduction. However, they only consider augmentations that do not alter (or alter by minimal

amounts) the original data distribution; consequently, they identify variance reduction as a sole

positive effect of DA. Moreover, their analysis applies primarily to underparameterized or explicitly

regularized models1.

Recent empirical studies have highlighted the importance of diverse stochastic augmentations

[20]. They argue that in many cases, it is important to introduce samples which are out-of-

distribution (OOD) [102, 103] (in the sense that they do not resemble the original data). In our

framework, we allow for cases in which augmentation leads to significant changes in distribution

and provide a path to analysis for such OOD augmentations that encompass empirically popular

approaches for DA [17, 18]. We also consider the modern overparameterized regime [24, 104]. We

show that the effects of OOD augmentations go far beyond variance reduction, and the spectral

manipulation effect introduces interesting biases that can either improve or worsen generalization

for overparameterized models.

Analysis of specific types of DA in linear and kernel methods: [15] propose a Markov process-

based framework to model compositional DA and demonstrate an asymptotic connection between

a Bayes-optimal classifier and a kernel classifier dependent on DA. Furthermore, they study the

1More recent studies of invariant kernel methods, trained to interpolation, suggest that invariance could either
improve [100] or worsen [101] generalization depending on the precise setting. Our results for the overparameterized
linear model (in particular, Corollary 17) also support this message.
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augmented empirical risk minimization procedure and show that some types of DA, implemented

in this way, induce approximate data-dependent regularization. However, unlike our work, they

do not quantitatively study the generalization of these classifiers. [105] also propose a kernel

classifier based on a notion of invariance to local translations, which produces competitive empirical

performance. In another recent analysis, [64] study the generalization of linear models with DA that

constitutes linear transformations on the data for regression in the overparameterized regime (but

still considering additional explicit regularization). They find that data augmentation can enlarge

the span of training data and induce regularization. There are several key differences between

their framework and ours. First, they analyze deterministic DA, while we analyze stochastic

augmentations used in practice [5, 16]. Second, they assume that the augmentations would not

change the labels generated by the ground-truth model, thereby only identifying beneficial scenarios

for DA (while we identify scenarios that are both helpful and harmful). Third, they study empirical

risk minimization with pre-computed augmentations, in contrast to our study of augmentations

applied on-the-fly during the optimization process [15, 16], which are arguably more commonly used

in practice. Our experiments in Section 3.6.4 identify sizably different impacts of these methods of

application of DA even in simple linear models. Finally, the role of DA in linear model optimization,

rather than generalization, has also been recently studied; in particular, [106] characterize how DA

affects the convergence rate of optimization.

The impact of DA on nonlinear models: Recent works aim to to understand the role of DA in

nonlinear models such as neural networks. [107] show that certain local augmentations induce

regularization in deep networks via a “rugosity”, or “roughness” complexity measure. While they

show empirically that DA reduces rugosity, they leave open the question of whether this alone is

an appropriate measure of a model’s generalization capability. Very recently, [95] showed that

training a two-layer convolutional neural network with a specific permutation-style augmentation

can have a novel feature manipulation effect. Assuming the recently posited “multi-view" signal

model [108], they show that this permutation-style DA enables the model to better learn the essential
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feature for a classification task. They also observe that the benefit becomes more pronounced for

nonlinear models. Our work provides a similar message, as we also identify the DA-induced data

manipulation effect as key to generalization. Because our focus in this work is limited to linear

models, the effect of data manipulation manifests itself purely through spectral regularization of

the data covariance. As a result of this spectral-regularization effect, we are also able to provide a

comprehensive general-purpose framework for DA by which we can compare and contrast different

augmentations that can either help or hurt generalization (while [95] only analyze a permutation-

style augmentation). We believe that combining our general-purpose framework for DA with a

more complex nonlinear model analysis is a promising future direction, and we discuss possible

analysis paths for this in Section 3.7.

3.2.2 Interpolation and regularization in overparameterized models

Minimum-norm-interpolation analysis: Our technical approach leverages recent results in

overparameterized linear regression, where models are allowed to interpolate the training data.

Following the definition of [104], we characterize such works by their explicit focus on models

that achieve close to zero training loss and which have a high complexity relative to the number

of training samples. Specifically, many of these works provide finite sample analysis of the risk

of the least squared estimator (LSE) and the ridge estimator [25, 26, 73, 93, 29]. This line of

research (most notably, [25, 26]) finds that the mean squared error (MSE), comprising the bias and

variance, can be characterized in terms of the effective ranks of the spectrum of the data distribution.

The main insight is that, contrary to traditional wisdom, perfect interpolation of the data may

not have a harmful effect on the generalization error in highly overparameterized models. In the

context of these advances, we identify the principal impact of DA as spectral manipulation which

directly modifies the effective ranks, thus either improving or worsening generalization. We build

in particular on the work of [26], who provide non-asymptotic characterizations of generalization

error for general sub-Gaussian design, with some additional technical assumptions that also carry

16



over to our framework2.

Subsequently, this type of “harmless interpolation” was shown to occur for classification

tasks [27, 110, 28, 111, 112, 113, 114]. In particular, [27, 112] showed that classification can be

significantly easier than regression due to the relative benignness of the 0-1 test loss. Our analysis

also compares classification and regression and shows that the potentially harmful biases generated

by DA are frequently nullified with the 0-1 metric. As a result, we identify several beneficial

scenarios for DA in classification tasks. At a technical level, we generalize the analysis of [27] to

sub-Gaussian design. We also believe that our framework can be combined with the alternative

mixture model (where covariates are generated from discrete labels [111, 28, 110]), but we do not

formally explore this path in this paper.

Generalized ℓ2 regularizer analysis: Our framework extends the analyses of least squares and

ridge regression to estimators with general Tikhonov regularization, i.e., a penalty of the form

θ⊤Mθ for arbitrary positive definite matrix M. A closely related work is [115], which analyzes

the regression generalization error of general Tikhonov regularization. However, our work differs

from theirs in three key respects. First, the analysis of [115] is based on the proportional asymptotic

limit (where the sample size n and data dimension p increase proportionally with a fixed ratio) and

provides sharp asymptotic formulas for regression error that are exact, but not closed-form and

not easily interpretable. On the other hand, our framework is non-asymptotic, and we generally

consider p≫ n or p≪ n; our expressions are closed-form, match up to universal constants and are

easily interpretable. Second, our analysis allows for a more general class of random regularizers

that themselves depend on the training data; a key technical innovation involves showing that the

additional effect of this randomness is, in fact, minimal. Third, we do not explicitly consider the

problem of determining an optimal regularizer; instead, we compare and contrast the generalization

characteristics of various types of practical augmentations and discuss which characteristics lead to

favorable performance.

2As remarked on at various points throughout the paper, we believe that the subsequent and very recent work
of [109], which weakens these assumptions further, can also be plugged with our analysis framework; we will explore
this in the sequel.
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In addition to explicitly regularized estimators, [115] also analyze the ridgeless limit for these

regularizers, which can be interpreted as the minimum-Mahalanobis-norm interpolator. In Sec-

tion 3.6.1 we show that such estimators can also be realized in the limit of minimal DA.

The role of explicit regularization and hyperparameter tuning: Research on harmless in-

terpolation and double descent [24] has challenged conventional thinking about regularization

and overfitting for overparameterized models; in particular, good performance can be achieved

with weak (or even negative) explicit regularization [116, 26], and gradient descent trained to

interpolation can sometimes beat ridge regression [117]. These results show that the scale of the

ridge regularization significantly affects model generalization; consequently, recent work strives to

estimate the optimal scale of ridge regularization using cross-validation techniques [118, 119].

As shown in classical work [91], ridge regularization is equivalent to augmentation with

(isotropic) Gaussian noise, and the scale of regularization naturally maps to the variance of Gaussian

noise augmentation. Our work links DA to a much more flexible class of regularizers and shows that

some types of DA induce an implicit regularization that yields much more robust performance across

the hyperparameter(s) dictating the “strength” of the augmentation. In particular, our experiments in

Section 3.6.2 show that random mask [17], cutout [18] and our new random rotation augmentation

yield comparable generalization error for a wide range of hyperparameters (masking probability,

cutout width and rotation angle respectively); the random rotation is a new augmentation proposed

in this work and frequently beats ridge regularization as well as interpolation. Thus, our flexible

framework enables the discovery of DA with appealing robustness properties not present in the

more basic methodology of ridge regularization.

Other types of indirect regularization: We also mention peripherally related but important

work on other types of indirect regularization involving creating fake “knockoff” features [120,

121] and dropout in parameter space [122, 123]. The knockoff methodology creates copies of

features (rather than augmenting data points) that are uncorrelated with the target to perform variable

selection. Dropout also induces implicit regularization by randomly dropping out intermediate
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neurons (rather than covariates, as does the random mask [17] augmentation) during the learning

process, and has been shown to have a close connection with sparsity regularization [123]. Overall,

these constitute methods of indirect regularization that are applied to model parameters rather than

data. An intriguing question for future work is whether these effects can also be achieved through

DA.

3.3 Problem Setup

In this section, we introduce the notation and setup for our analysis of generalization with data

augmentation (DA). We review the fundamentals of empirical risk minimization (ERM) without DA

and how augmentations affect the ERM procedure. Then, we derive a reduction to ridge regression

that paves the way for our analysis in Section 3.4.

3.3.1 Empirical risk minimization with data augmentation

Modern, high-dimensional ML models are commonly trained to minimize a combination of a)

prediction error on training data, and b) a measure of model complexity that favors “simpler" or

“smaller" models. This is encapsulated in the regularized empirical risk minimization objective,

expressed for linear models fθ(x) = ⟨x,θ⟩ as

θ̂ = argmin
θ

ℓ(Xθ,y) +R(θ), (3.1)

where ℓ is a loss function, X =

[
x1 . . . xn

]⊤
∈ Rn×p is the training data matrix that stacks the

n covariates, y ∈ Rn is the vector of observations/responses, θ ∈ Rp is the linear model parameter

that we want to optimize, and R(θ) is an explicit regularizer applied to the model. For example, the

popular ridge regression procedure uses R(θ;λ) = λ∥θ∥22, where λ is a tunable hyperparameter.

We will adopt the choice of squared loss function ℓ(Xθ,y) = ∥Xθ − y∥22 throughout this work,

owing to its mathematical tractability and recently observed competitiveness with the cross-entropy

loss even in classification tasks [124, 27, 28, 111].

19



Although the training objective of modern supervised ML models rarely includes explicit

regularization of the form (3.1) in practice, it does heavily rely on data augmentation (DA) to achieve

state-of-the-art performance [1, 12]. Mathematically speaking, an augmentation g : Rp → Rp is a

general mapping from the original data point x to a transformed data point g(x). In practice, an

augmentation function g is often stochastic and drawn at random from an augmentation distribution

denoted by G. Each time we augment the data, we randomly draw an instance of g ∼ G. For

example, the classical Gaussian noise injection augmentation [91] is stochastic and takes the form

g(x) = x+ n, where n is an isotropic Gaussian random variable.

One approach to implement augmentations is to pre-compute augmented data samples by

drawing a fixed number of augmentations before training and then including them along with

the original data points when training the model [64, 95]. Nowadays, it is more popular to apply

augmentations on the fly during training [16, 5], with different transformations applied stochastically

throughout the training procedure. This procedure, typically called augmented stochastic gradient

descent (aSGD), is widely used in practice [4, 16]. [16] showed that this algorithm can be viewed

as applying SGD to the objective of an augmented empirical risk minimization (aERM) problem:

θ̂ = argmin
θ

EG
[
∥G(X)θ − y∥22

]
. (3.2)

Above, G denotes a stacked data augmentation function applied to each row of the matrix, i.e.,

G(X) = [g1(x1) . . . , gn(xn)]
T ; we assume that the transformations gi are stochastic and are drawn

i.i.d. from an augmentation function distribution G. We would expect aSGD to converge to the

solution of (3.2), and conduct experiments to empirically verify this in Section 3.6.

We begin by defining the first and second-order statistics of an augmentation distribution. We

will show that these quantities play a key role in characterizing the solution to the aERM problem.

Definition 1 (Augmentation Mean and Covariance Operator). Consider a stochastic augmenta-

tion x 7→ g(x), where g is drawn randomly from an augmentation distribution G. We then define
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the augmentation mean and the covariance for a single data point x as

µG(x) := Eg∼G[g(x)], CovG(x) := Eg∼G

[
(g(x)− µG(x)) (g(x)− µG(x))

⊤
]
, (3.3)

where we use the subscript G to emphasize that the expectation is only over the randomness of the

augmentation function g. Furthermore, for a training data set X =

[
x1 . . . xn

]⊤
, we similarly

define the augmentation mean and covariance operators with respect to the data set as:

µG(X) := [µG(x1), µG(x2), . . . , µG(xn)]
⊤, CovG(X) :=

1

n

n∑
i=1

CovG(xi). (3.4)

Finally, we call an augmentation distribution unbiased on average3 if µG(x) = x.

With this notation introduced, we now explain why DA gives rise to implicit regularization. For

now we consider augmentation distributions that are unbiased on average for conceptual simplicity

and leave the extension to distributions that are biased on average to Section 3.4.3. For such

unbiased-on-average augmentation distributions, we can simply the objective (3.2) as:

EG[∥G(X)θ − y)∥22] = EG[∥ (G(X)− µ(X))θ + µ(X)θ − y)∥22]

= ∥µ(X)θ − y∥22 + ∥θ∥2nCovG(X) (3.5)

= ∥Xθ − y∥22 + ∥θ∥2nCovG(X), (3.6)

where the last two steps used the assumption that the augmentation distribution is unbiased on

average. From this expression, it is clear that DA produces an implicit, data-dependent regularization

∥θ∥2nCovG(X), defined by the augmentation covariance we just introduced. The heart of our analysis

is a detailed investigation of the implications of this data-dependent regularization on generalization.

3Note that this definition of bias is completely different from the bias-variance decomposition that manifests in
regression analysis, i.e., (3.12).
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3.3.2 Implications of a DA-induced regularizer and connections to ridge regression

In this section, we unpack the effects of the DA-induced regularizer ∥θ∥2nCovG(X). In general, we

note that the objective (3.5) can be viewed as a general Tikhonov regularization problem with a

possibly data-dependent regularizer matrix. Using this observation, we will show that this creates

the effects of (i) ℓ2 regularization (i.e. Tikhonov regularization with an identity regularizer matrix)

and (ii) data spectrum modification.

The first step is to explicitly connect the solution to a ridge regression estimator. Since our focus

is on stochastic augmentations, we assume that CovG(X) ≻ 0. Then, the objective (3.5) admits a

closed-form solution given by

θ̂aug = (X⊤X+ nCovG(X))−1X⊤y. (3.7)

We now use (3.7) to link the estimator θ̂aug to a ridge estimator by derivation below. For ease of

exposition, we suppress the dependency of CovG on the training data matrix X.

θ̂aug = (X⊤X+ nCovG(X))−1X)⊤y

= CovG
−1/2(nIp + CovG

−1/2X⊤XCovG
−1/2)−1CovG

−1/2X⊤y

= CovG
−1/2(nIp + X̃⊤X̃)−1X̃⊤y (where X̃ := XCovG

−1/2)

= CovG
−1/2θ̂ridge, where θ̂ridge := (nIp + X̃⊤X̃)−1X̃⊤y. (3.8)

Recall that Σ := Ex[xx
⊤] denotes the original data covariance. Then, it is easy to see that the

MSE ∥θ̂aug− θ∗∥2Σ is equivalent to ∥θ̂ridge−CovG
1/2θ∗∥2

CovG
−1/2ΣCovG

−1/2 . Suppose, for a moment,

that CovG were fixed (or independent of X). Then, (3.8) demonstrates an equivalence between the

solution of aERM and a ridge estimator with data matrix X̃, data covariance CovG
−1/2ΣCovG

−1/2,

ridge parameter4 λ = n, and true model CovG1/2θ∗ (in the sense that both solutions achieve the

same MSE). Therefore, in terms of generalization, we can view DA as inducing a two-fold effect: a)
4This demonstrates that negative regularization, which is studied in some recent work [26, 116] is not possible to

achieve through the DA framework.
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ℓ2 regularization at a scale that is proportional to the number of training samples (λreg = n), and b)

a modification of the original data covariance from Σ to CovG
−1/2ΣCovG

−1/2, which can sizably

change its spectrum (i.e. vector of eigenvalues in decreasing order).

It is important to note that this equivalence between solutions is only approximate since CovG

itself depends on X. We will justify and formalize this approximation in Section 3.4.2.

3.3.3 Practically used augmentations

Our framework can accommodate a number of different transformations and augmentations that are

used in practice, as long as they are only applied to covariates and not labels. In Table 3.1, we list

some common augmentations for which the closed-form expression for the solution to the aERM

objective is easily calculatable and interpretable.

Table 3.1: Examples of common augmentations for which we can compute an interpretable
closed-form solution to the aERM objective.

Augmentation function: g(x) Covariance operator: CovG(X)

Gaussian noise injection x+ n, n ∼ N (0, σ2I) σ2I

Correlated noise injection x+ n, n ∼ N (0,W) W

Unbiased random mask b⊙ x, bi ∼ Bernoulli(1− β) β
1−β

1
n
diag(X⊤X)

Pepper noise injection b⊙ x+ (1− b)⊙N (0, σ2) β
1−β

1
n
diag

(
X⊤X

)
+ βσ2

(1−β)2 I

Random Cutout zero-out k consecutive features p
p−k

1
n
M⊙X⊤X

Note that, in general, any regularization of the form ∥θ∥2A(X), where A(X) is some positive

semi-definite matrix dependent on X, can be achieved by a simple additive correlated Gaussian

noise augmentation where g(X) = X + N, N ∼ N (0,A(X)). Our focus in this paper is on

popular interpretable augmentations used in practice.

3.3.4 Novel augmentation design

Our framework can also serve as a testbed for designing new augmentations. As an example, we

introduce a novel augmentation that performs multiple rotations in random planes. Specifically, for
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an input x ∈ Rp, we perform the following steps:

1. Pick an orthonormal basis [u1,u2, . . . ,up] for the entire p-dimensional space uniformly at

random, i.e. from the Haar measure.

2. Divide the basis into sets of p
2

orthogonal planes U1,U2, . . . ,U p
2
, where Ui = [u2i−1,u2i].

3. Rotate x by an angle α in each of these planes Ui, i = 1, 2, . . . , p
2
.

Ultimately, the augmentation mapping is given by

g(x) =

p
2∏
i=1

[
I+ sinα(u2i−1u

⊤
2i − u2iu

⊤
2i−1) + (cosα− 1)(u2iu

⊤
2i + u2i−1u

⊤
2i−1)

]
x

=

I+ p
2∑
i=1

sinα(u2i−1u
⊤
2i − u2iu

⊤
2i−1) + (cosα− 1)(u2iu

⊤
2i + u2i−1u

⊤
2i−1)

x.

The induced augmentation covariance is given by CovG(X) = 4(1−cosα)
np

(
Tr
(
X⊤X

)
I−X⊤X

)
(full derivation in Section 3.8.5). Intuitively, this augmentation is composed of several local

data transformations that change the data spectrum in a mild way. We quantify its performance

in Corollary 19 and demonstrate that it performs favorably compared to optimally-tuned ridge

regression while being far more robust to hyperparameter choice, i.e. the value of the angle α.

3.4 Main Results

This section presents our meta theorems for the generalization performance of regression and

classification tasks. We consider estimators for augmentations which are unbiased-in-average and

biased-in-average separately, as they exhibit significant differences in terms of generalization. The

applications of the general theorem will be discussed in detail in Section 3.5. Table 3.2 provides the

road map of our main results and their applications in this and the next sections.
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3.4.1 Preliminaries

Recall that X ∈ Rn×p denotes the training data matrix with n i.i.d. rows comprising of the training

data. Each data point x ∈ Rp can be written as x = Σ1/2z, where we assume, without loss of

generality, that Σ is a diagonal matrix with non-negative diagonal elements λ1 ≥ λ2, · · · ≥ λp, and

z is a latent vector which is zero-mean, isotropic (i.e., E[z] = 0, E
[
zzT
]
= I), and sub-Gaussian

with sub-Gaussian norm σz. (Note that the assumption of diagonal covariance Σ is without loss of

generality because sub-Gaussianity is preserved under any unitary transformation; however, the

covariance induced by DA will frequently not remain diagonal).

Our analysis applies across the classical underparameterized regime (n ≥ p) and the modern

overparameterized regime (p > n); much of our discussion of consequences of DA will be centered

on the latter regime. We assume the true data generating model to be y = xTθ∗+ε, where ε denotes

the noise, which is also isotropic and sub-Gaussian with sub-Gaussian norm σε and variance σ2.

We believe that our non-asymptotic framework can be extended to more general kernel settings as

in the recent work of [109], where features are not assumed to be sub-Gaussian, but we leave this

extension to future work.

Error Metrics

In this work, we will focus on the squared loss training objective (3.2) for both regression and

classification tasks. While we make this choice for relative mathematical tractability, we note that it

is well-justified in practice as recent work [124, 27, 28, 111] has shown that the squared loss can

achieve competitive results when compared with the cross-entropy loss in classification tasks5. For

the regression task, we use the mean squared error (MSE), defined for an estimator θ̂ as:

MSE(θ̂) = Ex[(x
T (θ̂ − θ∗))2|X, ε], (3.9)

5We also believe that our analysis of the modified spectrum induced by DA suggests that such equivalences could
also be shown for aSGD applied on the cross-entropy v.s. squared loss, but do not pursue this path in this paper.
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Table 3.2: Road map of main results.

Regression Classification

Meta-Theorem:

Unbiased Estimator
Theorem 4 Theorem 9

Meta-Theorem:

Biased Estimator
Theorem 7 Theorem 11

Augmentation Case Studies
Cutout: Cor. 12, 15, 18

Compositions: Cor. 16

Cutout: Cor. 13, 14, 15

Group invariant: Cor. 17

Interplay with Signal Model Corollary 18 Corollary 45

Comparisons between Under-

& Over-parameterized regimes
Corollary 12, 14, 17

Comparisons between

Regression & Classification
Proposition 20, 21

Recall in the above that θ∗ denotes the true coefficient vector, ε denotes noise in the observed data,

and x denotes a test example that is independent of the training examples X. For classification, we

will use the probability of classification 0-1 error (POE) as the testing metric:

POE(θ̂) = Ex[I{sgn(x⊤θ̂) ̸= sgn(x⊤θ∗)}].

Spectral quantities of interest

Recent works studying overparameterized regression and classification tasks [25, 26, 27, 72]

have discovered that the spectrum, i.e. eigenvalues, of the data covariance play a central role in

characterizing the generalization error. In particular, two effective ranks, which are functionals of

the data spectrum and act as types of effective dimension, dictate the generalization error of both

underparameterized and overparameterized models. These are defined below.

Definition 2 (Effective Ranks, [25]). For any covariance matrix (spectrum) Σ, ridge regularization
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scale given by c, and index k ∈ {0, . . . , p− 1}, two notions of effective ranks are given as below:

ρk(Σ; c) :=
c+

∑
i>k λi

nλk+1

, Rk(Σ; c) :=
(c+

∑
i>k λi)

2∑
i>k λ

2
i

.

Using this notation, the risk for the minimum-norm least squares estimate from [25, 26] can be

sharply characterized as

MSE ≍ ∥θ∗ − Eε[θ̂|X]∥2Σ︸ ︷︷ ︸
Bias

+ ∥θ̂ − Eε[θ̂|X]∥2Σ︸ ︷︷ ︸
Variance

, where

Bias ≲ ∥θ∗
k:∞∥2Σk:∞

+ ∥θ∗
0:k∥2Σ−1

0:k
λ2k+1ρk(Σ; 0)2, Variance ≍ k

n
+

n

Rk(Σ; 0)
,

where k ≤ min(n, p) is an index that partitions the spectrum of the data covariance Σ into “spiked"

and residual components and can be chosen in the analysis to minimize the above upper bounds.

We note that the expression for the bias is matched by a lower bound upto universal constant factors

for certain types of signal: either random [26] or sparse [27].

Intuitively, this characterization implies a two-fold requirement on the data spectrum for good

generalization (in the sense of statistical consistency: MSE → 0 as n → ∞): it must a) decay

quickly enough to preserve ground-truth signal recovery (i.e. ensure that ρk is small, resulting in

low bias), but also b) retain a long enough tail to reduce the noise-overfitting effect (i.e. ensure that

Rk is large, resulting in low variance).

3.4.2 A deterministic approximation strategy for DA analysis

Our main results show that the DA framework naturally inherits the above principle. In other words,

the impact of DA on generalization (in both underparameterized and overparameterized regimes)

boils down to understanding the effective ranks of a modified, augmentation-induced spectrum. Our

starting point is the approximate connection between the aERM estimator and ridge estimator that

was established in Section 3.3.2. Out of the box, this does not establish a direct equivalence between

the MSE of the two estimators. This is because the implicit regularizer CovG that is induced by DA
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intricately depends on the data matrix X, which creates strong dependencies amongst the training

examples in the equivalent ridge estimator. A key technical contribution of our work is to show

that, in essence, this dependency turns out to be quite weak for a large class of augmentations that

are used in practice. Our strategy is to approximate the aERM estimator θ̂aug with an idealized

estimator θ̄aug that uses the expected augmentation covariance (over the original data distribution).

The two estimators are formally defined below:

θ̂aug = (µG(X)⊤µG(X) + nCovG(X))−1µG(X)⊤y, (3.10)

θ̄aug = (µG(X)⊤µG(X) + nEx[CovG(x)])
−1µG(X)⊤y, (3.11)

where x denotes a fresh data point. This admits a decomposition of the MSE into three error terms,

given by

MSE ≲ ∥θ∗ − Eε[θ̄aug|X]∥2Σ︸ ︷︷ ︸
Bias

+ ∥θ̄aug − Eε[θ̄aug|X]∥2Σ︸ ︷︷ ︸
Variance

+ ∥θ̂aug − θ̄aug∥2Σ︸ ︷︷ ︸
Approximation Error

. (3.12)

The bias and variance terms can be analyzed with relative ease through an extension of the techniques

of [25, 26] to general positive-semidefinite regularizers that are not dependent on the training data6

X, as we outlined in Section 3.3.2. We provide a novel analysis of the approximation error term in

Section 3.4.3 and show, for an arbitrary data covariance Σ and several popular augmentations, that

this approximation error is often dominated by either the bias or variance. As described in more

detail in Section 3.4.3, this domination implies that we can tightly characterize the MSE with upper

and lower bounds that match up to constant factors for these augmentations. Figure 3.1 confirms that

the approximation error is indeed negligible. In this plot, we show the decomposition corresponding

to the terms in (3.12) for random mask augmentation with different masking probabilities denoted

by β. We can see that the approximation error is small compared with other the error components.

6For this case, a related contribution lies in the work of [115]. Note that [115] provided precise asymptotics for
general regularizers in the proportional regime p ∝ n and focused on the question of the optimal Tikhonov regularizer,
while our focus is on more interpretable non-asymptotic bounds for the general regularizers that are induced by popular
augmentations. We believe that our framework could also yield identical proportional asymptotics for DA under an
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Figure 3.1: Decomposition of MSE into the bias, variance, and approximation error as in Theorem 4. Our
MSE bound is an extension of the traditional bias-variance decomposition by modifying the bias and variance terms
to correspond to an estimator with a deterministic regularizer and adding an additional approximation error term to
compensate for the error. In this figure, we show that for random mask augmentation with different dropout probability
β, the approximation error is small compared to the bias and variance (being at most 1/10 of each of these quantities in
this case), validating the efficacy of our proposed decomposition.

That the approximation error is negligible is an apriori surprising observation in the high-

dimensional regime, as the sample data augmentation covariance CovG(X) and its expectation

Ex[Covg(x)] are p-dimensional square matrices and p≫ n. We critically use the special structure

of the augmentations we study to show that despite this high-dimensional structure, it is common

for CovG(X) to converge to its expectation at a rate that depends mostly on n and minimally on p.

To show that our deterministic approximation is validated, i.e., the approximation error term is

negligible, we require the following technical assumption, which shows that a normalized version

of the empirical augmentation-induced covariance matrix converges as n, p→∞.

Assumption 1. Let the data dimension p grows with n at the polynomial rate p = nα for some

α > 1. Then, we assume that for any sequence of data covariance matrices {Σp}p≥1, the normalized

empirical covariance induced by the augmentation distribution converges to its expectation as

n→∞. More formally, we assume that

∆G :=

∥∥∥∥∥ 1nEx[CovG(x)]
− 1

2

n∑
i=1

CovG(xi)Ex[CovG(x)]
− 1

2 − Ip

∥∥∥∥∥→ 0 as n→∞ almost surely.

We note here that the above should be interpreted as the limit as both n and p grow together. For

our subsequent results to be meaningful, it is further required that this convergence is sufficiently

equivalent version of Assumption 1 for the proportional regime p ∝ n, but do not pursue this path in this paper.
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(e) Generalization of different augmenta-
tions. In this plot, we visualize the bias (x-axis),
variance (y-axis), and total MSE (color) for dif-
ferent augmentation and intensity in a regression
task. The background color indicates the gen-
eralization error. Lighter colors indicate better
performance.

Figure 3.2: Equivalent augmented data spectrum and generalization In plots (a)-(d), we visualize the regularized
augmented spectrum (defined in (3.14))) of Gaussian noise injection (N), pepper noise injection (P), random mask (M)
and the novel random rotation (R) introduced in Section 3.5.2, and their corresponding generalization in plot (e), where
the number followed by the abbreviation in the data point denotes its parameter. The LSE represents the baseline of
least-squared estimator without any augmentation.
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fast as n, p→∞. We will show (in Proposition 5, and with several concrete examples) that a wide

class of augmentations will satisfy this assumption and converge at the rate O
(√

logn
n

)
. We will

see that this rate is sufficient for our results to be tight in non-trivial regimes.

3.4.3 Regression analysis

With the connection of DA to ridge regression established in Section 3.3.2 and the deterministic

approximation method established in Section 3.4.2, we are ready to present our meta-theorem for

the regression setting. The results for the augmented estimators which are unbiased-in-average are

presented in Section 3.4.3, and biased-in-average augmented estimators are studied in Section 3.4.3.

The applications of the general theorem in this section will be discussed in detail in Section 3.5.

Regression analysis for general classes of unbiased augmentations

In this section, we present the meta-theorem for estimators induced by unbiased-on-average aug-

mentations (i.e., for which µG(x) = x) in Theorem 4. All proofs in this section can be found in

Section 3.8.2. To state the main result of this section, we introduce new notation for the relevant

augmentation-transformed quantities.

Definition 3 (Augmentation-transformed quantities). We define two spectral augmentation trans-

formed quantities, the covariance-of-the-mean-augmentation Σ̄, and augmentation-transformed

data covariance Σaug, by

Σ̄ := Ex[(µG(x)− Ex[µG(x)])(µG(x)− Ex[µG(x)])
⊤], (3.13)

Σaug := Ex[CovG(x)]
−1/2Σ̄Ex[CovG(x)]

−1/2, (3.14)

We also denote the eigenvalues of Σaug by λaug1 ≥ λaug2 ≥ · · · ≥ λaugp . Similarly, we define the

augmentation-transformed data matrix Xaug, and augmentation-transformed model parameter θ∗
aug
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as

Xaug := µG(X)Ex[CovG(x)]
−1/2, θ∗

aug := Ex[CovG(x)]
1/2θ∗. (3.15)

Note that since the rows of Xaug are still i.i.d., Xaug can be viewed as a modified data matrix with

covariance Σaug and Σ̄ = Σ if the augmentation is unbiased in average.

Armed with this notation, we are ready to state our meta-theorem.

Theorem 4 (High probability bound of MSE for unbiased DA). Consider an unbiased data

augmentation g and its corresponding estimator θ̂aug. Recall the definition

∆G := ∥Ex[CovG(x)]
− 1

2CovG(X)Ex[CovG(x)]
− 1

2 − Ip∥,

and let κ be the condition number of Σaug. Assume that the condition numbers for the matrices

Ak1(Xaug;n),Ak2(Xaug;n) are bounded by L1 and L2 respectively with probability 1− δ′, and that

∆G ≤ c′ for some constant c′ < 1. Then there exist some constants c, C depending only on σx and

σε, such that, with probability 1− δ′ − 4n−1, the test mean-squared error is bounded by

MSE ≲ Bias + Variance + ApproximationError, (3.16)

Bias

CxL4
1

≲

(∥∥∥PΣaug
k1+1:pθ

∗
aug

∥∥∥2
Σaug

+
∥∥∥PΣaug

1:k1
θ∗aug

∥∥∥2
Σ−1

aug

(ρaug
k1

)2

(λaug
k1+1)

−2 + (λaug
1 )−2(ρaug

k1
)2

)
,

Variance

σ2
εL

2
2C̃x

≲

(
k2
n

+
n

Raug
k

)
log n, Approx.Error ≲ κ

1
2∆G

(
∥θ∗∥Σ +

√
Bias + Variance

)
.

Above, we defined ρaug
k := ρk(Σaug;n) and Raug

k := Rk(Σaug;n) as shorthand.

Theorem 4 illustrates the critical role that the spectrum of the augmentation-transformed data

covariance Σaug plays in generalization. In Fig. 3.2, we visualize this impact for various types of

augmentations.
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When is our bound in Theorem 4 tight? A natural question is when and whether our bound

in Theorem 4 is tight. The tightness of the testing error for an estimator with a fixed regularizer is

established (under some additional assumptions on the data distribution, such as sub-Gaussianity

and constant condition number) in Theorem 5 of [26]. Hence, as long as the approximation error in

our theorem is dominated by either the bias or variance, then our bound will also be tight. Roughly

speaking this happens when the convergence of n−1CovG(X) to Ex[CovG(x)] is sufficiently fast

with respect to n. For interested readers, we have included the full technical condition in Lemma 35

of Section 3.8.1.

An important class of DA in practice involves independently augmenting each of the features.

This class subsumes many prevailing augmentations like random mask, salt-and-pepper, and

Gaussian noise injection. Because the augmentation covariance CovG(x) is diagonal for such

augmentations, we can simplify Theorem 4, as shown in the next proposition. The proposition

shows that this class of augmentation has a reordering effect on the magnitude (or importance) of

each feature.

Proposition 5 (Independent Feature Augmentations). Let g be an independent feature aug-

mentation, and π : {1, 2, . . . , p} → {1, 2, . . . , p} be the function that maps the original feature

index to the sorted index according to the eigenvalues of Σaug in a non-increasing order. Then,

data augmentation has a spectrum reordering effect which changes the MSE through the bias

modification:

Bias
CxL4

1

≲
∥∥θ∗π(k1+1:p)

∥∥2
Σπ(k1+1:p)

+
∥∥θ∗π(1:k1)∥∥2Ex[CovG(x)]2Σ

−1
π(1:k1)

(ρaug
k1

)2

(λaug
k1+1)

−2 + (λaug
1 )−2(ρaug

k1
)2
,

where π(a : b) denotes the indices of π(a), π(a+1), . . . , π(b). Furthermore, if the variance of each

feature augmentation Vargi(gi(x)) is a sub-exponential random variable with sub-exponential norm

σ2
i and mean σ̄2

i , ∀i ∈ {1, 2, . . . , p}, and p = O(nα) for some α > 0, then there exists a constant c,
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depending only on α, such that with probability 1− n−1,

∆G ≲ max
i

(
σ2
i

σ̄2
i

)√
log n

n
.

Proposition 5 gives a bound on the approximation error for independent feature augmentations

and finds that ∆G ≲
√

logn
n

. However, one might wonder whether the approximation error still

vanishes for stochastic augmentations that include dependencies between features. While we

do not provide such a guarantee for arbitrary augmentations, we present a general technique

that we later use to show that the approximation error is indeed vanishing for many popularly

used augmentations that include dependencies between features. Specifically, we consider the

decomposition CovG(X) = D +Q, where D is a diagonal matrix representing the independent

feature augmentation part. Then, we have

∆G ≲
∥D − ED∥+ ∥Q− EQ∥

µp(ExCovG(x))
. (3.17)

Further discussion on the approximation error for dependent feature augmentation, along with the

proof of Eq. (3.17), is provided in Appendix 3.8.6. We use Eq. (3.17) to show that the possibly

large error of the non-diagonal part ∥Q− EQ∥ resulting from a dependent feature augmentation

can be mitigated by the denominator µp(ExCovG(x)), for augmentations for which ExCovG(x) is

well-conditioned. We use this in Appendix 3.8.6 to characterize the approximation error for two

examples of augmentations that induce dependencies between features: a) the new random-rotation

augmentation that we introduced in Section 3.3.4, b) the cutout augmentation which is popular in

deep learning practice [18].

Regression analysis for general biased on average augmentations

All of our analysis thus far has assumed that the augmentation is unbiased on average, i.e. that

µG(x) = x. We now derive and interpret the expression for the estimator that is induced by a

general augmentation that can be biased. We introduce the following additional definitions.
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Definition 6. We define the augmentation bias and bias covariance induced by the augmentation g

as

ξ(x) := µg(x)− x, Covξ := Ex

[
ξ(x)ξ(x)⊤

]
. (3.18)

Since ξ(x) is not zero for a biased augmentation, the expression in (3.7) becomes more com-

plicated and we lose the exact equivalence to an ridge regression in (3.8)). This is because biased

DA induces a distribution-shift in the training data that does not appear in the test data. Our next

result for biased estimators, which is strictly more general than Theorem 4, will show that this

distribution-shift affects the test MSE through both covariate-shift as well as label-shift. To facilitate

analysis, we impose the natural assumption that the mean augmentation µ(x) remains sub-Gaussian.

Assumption 2. For the input data x, the mean transformation µ(x) admits the form µ(x) = Σ̄
1/2

z̄,

where Σ̄ is defined in Definition 3 and z̄ is a centered and isotropic sub-Gaussian vector with

sub-Gaussian norm σz̄.

We also recall the definition of the mean augmentation covariance Σ̄ := Ex[(µG(x)−Ex[µG(x)])(µG(x)−

Ex[µG(x)])
⊤]. Now we are ready to state our theorem for biased augmentations. The proof is de-

ferred to Appendix 3.8.2.

Theorem 7 (Bounds on the MSE for Biased Augmentations). Consider the estimator θ̂aug

obtained by solving the aERM in (3.2). Let MSEo(θ̂aug) denote the unbiased MSE bound in Eq.

(3.16) of Theorem 4, and recall the definition

∆G :=

∥∥∥∥∥ 1nEx[CovG(x)]
− 1

2

n∑
i=1

CovG(xi)Ex[CovG(x)]
− 1

2 − Ip

∥∥∥∥∥ .
Suppose the assumptions in Theorem 4 hold for the mean augmentation µ(x) and that ∆G ≤ c < 1.

Then with probability 1− δ′ − 4n−1 we have,

MSE(θ̂aug) ≲ R2
1 ·
(√

MSEo(θ̂aug) +R2

)2

,
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where

R1 = 1 + ∥Σ
1
2 Σ̄

− 1
2 − Ip∥ and

R2 =
√
∥Σ̄(Ex[CovG(x)])−1∥

(
1 +

∆G

1− c

)(√
∆ξ∥θ∗∥+ ∥θ∗∥Covξ

)
×

√ 1

λaug
k

+

√
λaug
k+1(1 + ρaugk )

(λaug
1 ρaug0 )2

 .

Our upper bound for the MSE in the biased augmentation case is a generalization of the bound

in [26] to the scenario with distribution-shift. This result shows that two different factors can cause

generalization error over and above the unbiased case: 1. covariate shift, which is reflected in the

multiplicative factor R1; this term occurs because we are testing the estimator on a distribution with

covariance Σ but our training covariates have covariance Σ̄ instead, 2. label shift, which manifests

itself as the additive error given by R2. This term arises from the training mismatch between the true

covariate observation and mean augmented covariate (i.e., X v.s. µG(X)). As a sanity check, we

can see that R1 = 1 and R2 = 0 when the augmentation is unbiased in average, i.e., µG(x) = x, ∀x,

since Σ = Σ̄, ∆δ = 0 and Covδ = 0. Thus, we directly recover Theorem 4 in this case. Whether

Theorem 7 is tight in general is an interesting open question for future work.

3.4.4 Classification analysis

In this subsection, we state the meta-theorem for generalization of DA in the classification task.

We follow a similar path for the analysis as in regression by appealing to the connection between

DA and ridge estimators and the deterministic approximation strategy outlined above. While the

results in this section operate under stronger assumptions, we provide a similar set of results to the

regression case. The primary aim of these results is to compare the generalization behavior of DA

between regression and classification settings, which we do in depth in Section 3.5.
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Classification analysis setup

We adopt the random signed model from [27], noting that we expect similar analysis to be possible

for the Gaussian-mixture-model setting of [111, 28] (we defer such analysis to a companion paper).

Given a target vector θ∗ ∈ Rd and a label noise parameter 0 ≤ ν∗ < 1/2, we assume the data are

generated as binary labels yi ∈ {−1, 1} according to the signal model

yi =


sgn(x⊤

i θ
∗) with probability 1− ν∗

− sgn(x⊤
i θ

∗) with probability ν∗
(3.19)

Just as in [27], we make a 1-sparse assumption on the true signal θ∗ = 1√
λt
et. We denote xsig := xt

to emphasize the signal feature. Motivated by recent results which demonstrate the effectiveness

of training with the squared loss for classification tasks [124, 27], we study the classification risk

of the estimator θ̂ which is computed by solving the aERM objective on the binary labels yi with

respect to the squared loss (Eq. (3.2)).

[27] showed that two quantities, survival and contamination, play key roles in characterizing the

risk, akin to the bias and variance in the regression task (in fact, as shown in the proof of Lemma 39,

the contamination term scales identically to the variance from regression analysis). The definitions

of these quantities are given below.

Definition 8 (Survival and contamination [27]). Given an estimator θ̂, its survival (SU) and

contamination (CN) are defined as

SU(θ̂) =
√
λtθ̂t, CN(θ̂) =

√√√√ p∑
j=1,j ̸=t

λjθ̂
2

j . (3.20)

For Gaussian data, [27] derived the following closed-form expression for the POE:

POE(θ̂) =
1

2
− 1

π
tan−1 SU(θ̂)

CN(θ̂)
. (3.21)
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Thus, the POE depends on the ratio between survival SU and contamination CN, essentially a kind of

signal-to-noise ratio for the classification task. In this work, we prove that a similar principle arises

when we consider training with data augmentation in more general correlated input distributions.

Formally, we make the following assumption on the true signal and input distribution for our

classification analysis.

Assumption 3. Assume the target signal is 1-sparse and given by θ∗ = 1√
λt
et. Additionally,

assume the input can be factored as x = Σ
1
2z, where Σ ⪰ 0 is diagonal, and z is a sub-Gaussian

random vector with norm σz and uniformly bounded density. We denote xsig = xt and xnoise =

[x1, . . . ,xt−1,xt+1, . . . ,xp]
T . We further assume that the signal and noise features are independent7,

i.e., xsig ⊥ xnoise.

Similar to the regression case, our classification analysis consists of 1) expressing the excess risk

in terms of θ̄aug, the estimator corresponding to the averaged augmented covariance Ex[Covg(x)],

2) arguing that the survival and contamination can be viewed as the equivalent quantities for a

ridge estimator with a modified data spectrum, and 3) upper and lower bounding the survival and

contamination of this ridge estimator. As in the case of regression analysis, step 1) is the most

technically involved.

Classification analysis for unbiased augmentations

Now, we present our main theorem for the classification task. The proof of this theorem is deferred

to Appendix 3.8.3.

Theorem 9 (Bounds on Probability of Classification Error). Consider the classification task

under the setting in Assumption 3. Recall that θ̂aug is the estimator solving the aERM objective

in (3.2) and the definition ∆G := ∥CovG(X) − Ex[Covg(x)]∥. Let t ≤ n be the index (arranged

according to the eigenvalues of Σaug) of the non-zero coordinate of the true signal, Σ̃aug be the

7As mentioned earlier, we expect that our framework can be extended beyond sub-Gaussian features to more general
kernel settings. Under the slightly different label model used in [109], we believe that the independence between signal
and noise features can also be relaxed.
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leave-one-out modified spectrum corresponding to index t, κ be the condition number of Σaug, and

X̃aug be the leave-one-column-out data matrix corresponding to column t.

Suppose data augmentation is performed independently for xsig and xnoise, and there exists a t ≤

k ≤ n such that with probability at least 1− δ, the condition numbers of nI+ X̃aug
k+1:p(X

aug
k+1:p)

⊤ and

nI+Xaug
k+1:p(X

aug
k+1:p)

⊤ are at most L, and that of X̃k+1:pΣk+1:pX̃
T
k+1:p is at most L1. Then as long as

∥θ̄aug−θ̂aug∥Σ = O(SU) and ∥θ̄aug−θ̂aug∥Σ = O(CN), with probability 1−δ−exp(−
√
n)−5n−1,

the probability of classification error (POE) can be bounded in terms of the survival (SU) and

contamination (CN), as

POE(θ̂) ≲
CN

SU

(
1 + σz

√
log

SU

CN

)
, (3.22)

where

λaug
t (1− 2ν∗)

(
1− k

n

)
L
(
λaug
k+1ρk(Σaug;n) + λaug

t L
) ≲ SU︸︷︷︸

Survival

≲
Lλaug

t (1− 2ν∗)

λaug
k+1ρk(Σaug;n) + L−1λaug

t

(
1− k

n

) , (3.23)√√√√ λ̃augk+1ρk(Σ̃
2

aug; 0)

L′2(λaug1 )2(1 + ρ0(Σaug;λ))2
≲ CN︸︷︷︸

Contamination

≲

√√√√(1 + SU2)L2

(
k

n
+

n

Rk(Σ̃aug;n)

)
log n

(3.24)

Furthermore, if x is Gaussian, then we obtain even tighter bounds:

1

2
− 1

π
tan−1 c

SU

CN
≤ POE(θ̂aug) ≤

1

2
− 1

π
tan−1 1

c

SU

CN
≲

CN

SU
, (3.25)

where c is a universal constant.

Remark 10. Based on the expression for the classification error for Gaussian data, we see that

the survival needs to be asymptotically greater than the contamination for the POE to approach

0 in the limit as n, p → ∞. We note that the general upper bound we provide matches the

tight upper and lower bounds for the Gaussian case up a log factor. Furthermore, the condition

∥θ̄aug− θ̂aug∥Σ = O(SU) and ∥θ̄aug− θ̂aug∥Σ = O(CN) is related to our condition for the tightness
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of our regression analysis, but a bit stronger (because our regression analysis only requires one of

these relations to be true). We characterize when this stronger condition is met in Lemma 42.

Based on the upper and lower bounds provided for SU and CN, we see that these quantities

depend crucially on the spectral properties of the induced covariance matrix Σaug. For favorable

classification performance, Theorem 9 also requires t ≤ n. This is a necessary product of our

analogy to a ridge estimator and is equivalent to requiring that θ∗aug lies within the eigenspace

corresponding to the dominant eigenvalues of the spectrum Σaug. Such requirements have also been

used in past analyses of both regression [26] and classification [27].

Classification analysis for general biased augmentations

As a counterpart of our regression analysis for estimators induced by biased-on-average augmen-

tations (i.e. µg(x) ̸= x), we would also like to understand the impact of augmentation-induced

bias on classification. Interestingly, the effect of this bias in classification turns out to be much

more benign than that in regression. As a simple example, consider a scaling augmentation of the

type g(x) := 2x. The induced bias is µg(x)− x = x, and the trained estimator θ̂aug is just half the

estimator trained with x, which, however, predicts the same labels in a classification task. Therefore,

we conclude that even with a large bias, the resultant estimator might be equivalent to the original

one for classification tasks. In fact, as we show in the next result, augmentation bias is benign for

the classification error metric under relatively mild conditions. The proof of this result is provided

in Appendix 3.8.3.

Theorem 11 (POE of biased estimators). Consider the 1-sparse model θ∗ = et. and let θ̂aug

be the estimator that solves the aERM in (3.2) with biased augmentation (i.e., µ(x) ̸= x). Let

Assumption 2 holds, and the assumptions of Theorem 9 be satisfied for data matrix µ(X). If the

mean augmentation µ(x) modifies the t-th feature independently of other features and the sign of the

t-th feature is preserved under the mean augmentation transformation, i.e., sgn (µ(x)t) = sgn (xt) ,
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∀x, then, the POE(θ̂aug) is upper bounded by

POE(θ̂aug) ≤ POEo(θ̂aug), (3.26)

where POEo(θ̂aug) is any bound in Theorem 9 with X and Σ replaced by µ(X) and Σ̄, respectively.

Note that the sign preservation is only required in expectation and not for every realization of

the augmentation, i.e., we only require Eg [g(x)t] has the same sign as xt, rather than requiring that

g(x)t have the same sign as xt for every realization of g. The latter label-preserving property is is

much more stringent and has been studied in [64]. At a high level, this result tells us that as long as

the signal feature preserves the sign under the mean augmentation, the classification error is purely

determined by the modified spectrum induced by DA.

In Fig. 3.3, we simulate the biased and unbiased random mask augmentation [17] and test

their performance in regression and classification tasks. We consider the 1-sparse model in R128

(i.e. p = 128) with isotropic Gaussian covariates. For the biased variant of random mask, we

use the masked estimator without the normalization factor (1 − β); therefore, the augmentation

mean is equal to µg(x) = (1 − β)x. From the figure, we see the bias can be very harmful in

regression, especially in the overparametrized regime (n ≤ 128), while the performance is identical

for classification. This experiment demonstrates the sharp differences in behavior between the

settings of Theorems 7 and 11. We discuss this observation further in Section 3.5.3.

3.5 The good, the bad and the ugly sides of data augmentation

In this section, we will use the meta-theorems established in Section 3.4.3 and 3.4.4 to get further

insight into the impact of DA on generalization. First, in Section 3.5.1, we derive generalization

bounds for many common augmentations. Then, in Section 3.5 we use these bounds to understand

when DA can be helpful or harmful. Finally, in Section 3.5.1 we conclude by discussing the complex

range of factors (the “ugly”) that play an important role in determining the effect of DA.
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3.5.1 Case studies: generalization of common DA

In this section, we present and interpret generalization guarantees for commonly used augmentations

including Gaussian noise injection, randomized mask, cutout, and salt-and-pepper noise. In

particular, we discuss whether these augmentations improve or worsen generalization compared to

the LSE estimator, beginning with regression tasks.

Gaussian noise injection

As a preliminary example, we note that Proposition 5 generalizes and recovers the existing bounds

on the ridge and ridgeless estimators [25, 26]. This is consistent with classical results [91] that show

an equivalence between augmented ERM with Gaussian noise injection and ridge regularization. For

completeness, we include the generalization bounds for Gaussian noise injection in Appendix 3.8.2.

Randomized masking

Next, we consider the popular randomized masking augmentation (both the biased and unbiased

variants), in which each coordinate of each data vector is set to 0 with a given probability, denoted by

the masking parameter β ∈ [0, 1]. The unbiased variant of randomized masking rescales the features

so that the augmented features are unbiased in expectation. This type of augmentation has been

widely used in practice [17, 125]8, and is a simplified version of the popular cutout augmentation

[18].

The following corollary characterizes the generalization error arising from the randomized

masking augmentation in regression tasks.

Corollary 12 (Regression bounds for unbiased randomized masking augmentation). Consider

the unbiased randomized masking augmentation g(x) = [b1x1, . . . , bpxp]/(1−β), where bi are i.i.d.

Bernoulli(1− β). Define ψ = β
1−β ∈ [0,∞). Let L1, L2, κ, δ′ be universal constants as defined in

8We note that a superficially similar implicit regularization mechanism is at play in dropout [126], where the
parameters of a neural network are set to 0 at random. In contrast to random masking, dropout zeroes out model
parameters rather than data coordinates.
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Theorem 4. Assume p = O(nα) for some α > 0. Then, for any set K ⊂ {1, 2, . . . , p} consisting of

k1 elements and some choice of k2 ∈ [0, n], there exists some constant c′, which depends solely on

σz and σε (the sub-Guassian norms of the covariates and noise), such that the regression MSE is

upper-bounded by

MSE ≲ ∥θ∗K∥
2
ΣK

+ ∥θ∗Kc∥2ΣKc

(ψn+ p− k1)2

n2 + (ψn+ p− k1)2︸ ︷︷ ︸
Bias

+

(
k2
n

+
n(p− k2)

(ψn+ p− k2)2

)
log n︸ ︷︷ ︸

Variance

+σ2
z

√
log n

n
∥θ∗∥Σ︸ ︷︷ ︸

Approx.Error

with probability at least 1− δ′ − n−1.

Noting that ψ = β
1−β increases monotonically in the mask probability β, Corollary 12 shows

that bias increases with the mask intensity β, while the variance decreases. Figure 3.1 empirically

illustrates these phenomena through a bias-variance decomposition. In fact, the regression MSE

is proportional to the expression for MSE of the least-squares estimator (LSE) on isotropic data,

suggesting that randomized masking essentially has the effect of isotropizing the data. As prior

work on overparameterized linear models demonstrates [29, 73, 25], the LSE enjoys particularly low

variance, but particularly high bias when applied to isotropic, high-dimensional data. For this reason,

random masking turns out to be superior to Gaussian noise injection in reducing variance, but much

more inferior in mitigating bias. We explore these effects and compare the overall generalization

guarantees of the two types of augmentations in depth in Section 3.6.2. Our experiments there show

striking differences in the manifested effect of these augmentations on generalization, despite their

superficial similarities.

We also not here that the approximation error is relatively minimal, of the order
√

logn
n

. It is

easily checked that the approximation error is dominated by the bias and variance as long as p≪ n2

(and hence the lower bounds of [26] imply tightness of our bound in this range). We next present

our generalization guarantees for the biased variant of the random masking augmentation. We verify

the behavior predicted by this corollary in Figure 3.3.
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Corollary 13 (Regression bounds for biased mask augmentation). Consider the biased random

mask augmentation g(x) = [b1x1, . . . , bpxp], where bi are i.i.d. Bernoulli (1− β)), and carry over

all the notation from Corollary 12. Then, the regression MSE is upper bounded by

MSE(θ̂aug) ≤
(√

MSEo + ψ

(
1 +

log n

n

)
·
((

λ1 +

∑
j λj

n

)
∥θ∗∥+ ∥θ∗∥Σ

))2

,

with probability at least 1− δ′ − n−1. Above, MSEo is the RHS of the bound in Corollary 12.

Finally, we characterize the generalization error of the randomized masking augmentation for

the classification task.

Corollary 14 (Classification bounds for random mask augmentation). Let θ̂aug be the estimator

computed by solving the aERM objective on binary labels with mask probability β, and denote

ψ := β
1−β . Assume p≪ n2. Then, with probability at least 1− δ − exp(−

√
n)− 5n−1

POE ≲ Q−1(1 +
√
logQ), (3.27)

where Q = (1− 2ν)

√
n

p log n

(
1 +

n

nψ + p

)−1

. (3.28)

In addition, if we assume the input data has Gaussian features, then we have tight generalization

bounds

POE ≍ 1

2
− 1

π
tan−1Q (3.29)

with the same probability.

Random cutout

Next, we consider the popularly used cutout augmentation [18], which picks a set of k (out of p)

consecutive data coordinates at random and sets them to zero. Interestingly, our analysis shows

that the effect of the cutout augmentation is very similar to the simpler-to-analyze random mask
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augmentation. The following corollary shows that the generalization error of cutout is equivalent

to that of randomized masking with dropout probability β = k
p
. The proof of this corollary can be

found in Appendix 3.8.2.

Corollary 15 (Generalization of random cutout). Let θ̂
cutout
k denote the random cutout estimator

that zeroes out k consecutive coordinates (the starting location of which is chosen uniformly at

random). Also, let θ̂
mask
β be the random mask estimator with the masking probability given by β. We

assume that k = O(
√

n
log p

). Then, for the choice β = k
p

we have

MSE(θ̂
cutout
k ) ≍ MSE(θ̂

mask
β ), POE(θ̂

cutout
k ) ≍ POE(θ̂

mask
β ).

This result is consistent with our intuition, as the cutout augmentation zeroes out k
p

coordinates

on average.

Composite augmentation: Salt-and-pepper

Our meta-theorem can also be applied to compositions of multiple augmentations. As a concrete

example, we consider a “salt-and-pepper” style augmentation in which each coordinate is either

replaced by random Gaussian noise with a given probability, or otherwise retained. Specifically,

salt-and-pepper augmentation modifies the data as g(x) = [x′
1, . . . ,x

′
p], where x′

i = xi/(1−β) with

probability 1− β and otherwise x′
i = N (µ, σ2)/(1− β). This is clearly a composite augmentation

made up of randomized masking and Gaussian noise injection. For simplicity, we only consider the

case where µ = 0, since it results in an augmentation which is unbiased on average. The regression

error of this composite augmentation is described in the following corollary, which is proved in

Appendix 3.8.2.

Corollary 16 ( Generalization of Salt-and-Pepper augmentation in regression). The bias,

variance and approximation error of the estimator that are induced by salt-and-pepper augmentation
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(denoted by θ̂pepper(β, σ
2)) are respectively given by:

Bias[θ̂pepper(β, σ
2)] ≲

(
λ1(1− β) + σ2

σ2

)2

Bias

[
θ̂gn

(
βσ2

(1− β)2

)]
,

Variance[θ̂pepper(β, σ
2)] ≲ Variance

[
θ̂gn

(
βσ2

(1− β)2

)]
,

Approx.Error[θ̂pepper(β, σ
2)] ≍ Approx.Error[θ̂rm(β)].

where θ̂gn(z
2) and θ̂rm(γ) denotes the estimators that are induced by Gaussian noise injection with

variance z2 and random mask with dropout probability γ, respectively. Moreover, the limiting MSE

as σ → 0 reduces to the MSE of the estimator induced by random masking (denoted by θ̂rm(β)):

lim
σ→0

MSE[θ̂pepper(β, σ
2)] = MSE[θ̂rm(β)].

Corollary 16 clearly indicates that the generalization performance of the salt-and-pepper aug-

mentation interpolates between that of the random mask and Gaussian noise injections, in the sense

that it reduces to random mask in the limit of σ → 0, and also has a comparable bias and variance to

Gaussian noise injection. More precisely, as we show in the proof of this corollary, this interpolation

property is a result of the fact that the eigenvalues of the augmented covariance are the harmonic

mean of the eigenvalues induced by random mask and Gaussian noise injection respectively, i.e.

λpepper(β, σ
2)−1 = λrm(β)

−1 + β−1λgn(σ
2)−1. (3.30)

3.5.2 The good and bad of DA: are they helpful or harmful?

Armed with generalization guarantees for many common augmentations, we now shift our focus to

identifying explicit scenarios in which DA can be helpful or harmful.
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The bad: the increase in bias might outweigh the variance reduction

In this section, we consider two different types of common augmentations that suffer from poor

generalization in the overparameterized regime. The first is the randomized masking augmentation,

whose generalization bounds we provided in Corollaries 12, 13 and 14. At a high level, the random

mask drops features uniformly and thus equalizes the importance of each feature. This makes

the data spectrum isotropic, i.e., Σaug = ψ−1 · diag(Σ)Σ diag(Σ)−1/2. Our corollaries show that

for regression tasks (and either the biased on unbiased variant of randomized masking), the bias

and the variance are given by O
(

(ψn+p)2

(n+p)2

)
and O

(
min(n

p
, p
n
)
)

respectively. From this, we can

draw the following insights: 1. the variance is always vanishing, and 2. the bias can be controlled

in the underparameterized regime p ≪ n by adjusting ψ but is otherwise non-vanishing in the

overparameterized regime p≫ n.

It is worth noting that these conclusions also manifest in the test MSE of the least-squares

estimator (LSE) on isotropic data in the overparameterized regime [29, 25, 73]. Specifically, in

the language of effective ranks, we observe that either isotropic data or the randomized masking

augmentation induces the effective ranks ρk = Θ
(
p
n

)
and Rk = Θ

(
(n+p)2

p

)
. While the large value

of Rk helps in variance reduction, the large value of ρk greatly increases the bias. As shown in the

experiments in Section 3.6.2, the increase in bias often outweighs the variance reduction and results

in the suboptimality of randomized masking relative to the more classical Gaussian noise injection

augmentation in many overparameterized settings.

The second class of augmentations that can be harmful is group-invariant augmentations, which

were extensively studied in [16] in the underparameterized or explicitly regularized regime. An

augmentation class G is said to be group-invariant if g(x) d
= x, ∀g ∈ G. For such a class, the

augmentation modified spectrum Σaug in Theorem 9 is given by

0 ⪯ Σaug = Σ− Ex[µG(x)µG(x)]
⊤ ⪯ Σ.

[16] argued that group invariance is an important reason why DA can help improve gener-
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alization and showed that such invariances can greatly reduce the variance of the DA-induced

estimator. However, the result below shows that such augmentations could generalize poorly, even

for classification tasks, in the overparameterized regime. The proof of this result is contained in

Appendix 3.8.3.

Corollary 17. [Group invariance augmentation in classification tasks] Consider Gaussian covari-

ates, i.e. x ∼ N (0,Σ) and consider the group-invariant augmentation given by g(x) = 1√
2
x+ 1√

2
x′

(where x′ is an independent copy of x). Then, under the assumptions of Theorem 9, the estimator

induced by this augmentation has classification error given by

POE ≍ 1

2
− 1

π
tan−1 SU

CN
, where (3.31)

SU ≍ (1− 2ν)
n

2n+ p
,

√
np

(n+ p)2
≲ CN ≲

√
(1 + SU2)

np log n

(n+ p)2
. (3.32)

with probability at least 1− δ − exp(−
√
n)− 5n−1.

Corollary 17 evaluates a specific type of group-invariant augmentation that is reminiscent of

the knockoff model augmentation [120]. For this example, it is clear that for the underparam-

eterized regime p ≤ n, SU=Θ(1) and CN=O(
√

p logn
n

) while for the overparameterized regime

p ≥ n, we have SU=Θ(n
p
) and CN=Ω(

√
n
p
). Therefore, there is a sharp transition of the survival-

to-contamination ratio between the two regimes. As the ratio is asymptotically zero in the overpa-

rameterized reigme, we find that group invariant augmentation can be harmful for generalization in

this case. Essentially, our result here shows that certain group-invariant augmentations have the

same “isotropizing” effect that was also observed in random masking, i.e., Σaug = Ip. As already

remarked on, this is an undesirable property in overparameterized settings, where it leads to high

bias (and low survival for classification [27]).

The good: some types of DA are superior to ridge regularization

In this section, we first use examples to analyze when an augmentation can be effective as a function

of the model structure. Then, we demonstrate a usage of our framework as a test bed for DA
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invention. Concretely, we propose a new augmentation that shows several desirable properties

expressed through generalization bounds and numerical simulations.

When is data augmentation helpful? To understand which types of augmentation might yield

favorable bounds, we consider, as in Corollary 18, the case of a nonuniform random masking

augmentation in which the features that encode signal are masked with a lower probability than

the remaining features. Specifically, we consider the k-sparse model where θ∗ =
∑

i∈IS αiei and

|IS | = k. Define the parameter ψ := β
1−β where β is the probability of masking a given feature.

Suppose that we employ a nonuniform mask across features, i.e. ψi = ψ1 if i ∈ IS and is equal to

ψ0 otherwise. Conceptually, a good mask should retain the semantics of the original data as much

as possible while masking the irrelevant parts. We can study this principle analytically through the

regression and classification generalization bounds for this type of non-uniform masking. Below we

present the regression result, and defer the proofs to Appendix 3.8.2 and the analogous classification

result to Corollary 45 in Appendix 3.8.3.

Corollary 18 (Non-uniform random mask in k-sparse model). Consider the k−sparse model

and the non-uniform random masking augmentation where ψ = ψ1 if i ∈ IS and ψ0 otherwise.

Then, if ψ1 ≤ ψ0, we have with probability at least 1− δ − exp(−
√
n)− 5n−1

Bias ≲

(
ψ1n+ ψ1

ψ0
(p− |IS |)

)2
n2 +

(
ψ1n+ ψ1

ψ0
(p− |IS |)

)2∥θ∗∥2Σ, Variance ≲
|IS |
n

+
n (p− |IS |)

(ψ0n+ p− |IS |)2
,

Approx.Error ≲

√
ψ1

ψ0

σ2
z

√
log n

n
∥θ∗∥Σ.

On the other hand, if ψ1 > ψ0, we have (with the same probability)

Bias ≲ ∥θ∗∥Σ2 , Variance ≲

(
ψ1

ψo

)2
+ |IS |

n(
ψ1

ψo
+ |IS |

n

)2 , Approx.Error ≲

√
ψ0

ψ1

σ2
z

√
log n

n
∥θ∗∥Σ

We can see that the bias decreases as the mask ratio ψ1/ψ0 between the signal part (IS) and
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the noise part decreases. This corroborates the idea that a successful augmentation should retain

semantic information as compared to the noisy parts of the data. Corollary 18 implies that for

consistency as n, p → ∞, we require 1
n
≪ ψ1

ψ0
≪ n

p
. This is because we must mask the noise

features sufficiently more than the the signal feature for the bias to be small, but the two mask

probabilities cannot be too different to allow the approximation error to decay to zero. We note that

the bound has a sharp transition—if we mask the signal more than the noise, the bias bound becomes

proportional to the null risk (i.e. the bias of an estimator that always predicts 0). Although the

previous augmentations that we studied (randomized masking, noise injection, and salt-and-pepper

augmentation) generally experience a trade-off between bias and variance as the augmentation

intensity increases, we observe that the nonuniform random mask can reduce both bias and variance

with appropriate parameter selection. However, while offering useful insight, this scheme relies

crucially on knowledge of the target signal’s sparsity and may be of limited practical interest.

Next, we give a concrete example of how an augmentation, random rotation, can yield favorable

performance without such oracle knowledge.

Using our framework as a test bed for new DA

We show here that our framework can be used as a testbed to quickly check the generalization of

novel augmentation designs. In Section 3.3.4 we introduced a novel augmentation that sequentially

rotates high dimensional vectors in p/2 independently chosen random planes. We demonstrate here

that this “random-rotation" augmentation enjoys good generalization performance regardless of

the signal model. The derivation of the estimator induced by this random-rotation augmentation is

deferred to Appendix 3.8.5.

Corollary 19 (Generalization of random-rotation augmentation). The estimator induced by the

random-rotation augmentation (with angle parameter α) can be expressed as

θ̂rot =

(
X⊤X+

4(1− cosα)

p

(
Tr
(
X⊤X

)
I−X⊤X

))−1

X⊤y.
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An application of Theorem 4 yields

Bias(θ̂rot) ≍ Bias(θ̂lse),

for sufficiently large p (overparameterized regime), as well as the variance bound

Var(θ̂rot) ≲ Var(θ̂ridge,λ),

Above, θ̂lse and θ̂ridge,λ denote the least squared estimator and ridge estimator with ridge intensity

λ = np−1(1− cosα)
∑

j λj . The approximation error can also be shown to decay as

Approx.Error(θ̂rot) ≲ max

(
1

n
,

λ1∑
j>1 λj

)
.

The proof of the bias and variance expressions are provided in Appendix 3.8.3, and the proof of

the approximation error is provided in Appendix 3.8.6 (this is the most involved step as random-

rotation augmentations induce strong dependencies among features). Corollary 19 shows that,

surprisingly, this simple augmentation leads to an estimator not only having the best asymptotic

bias that matches that of LSE, but also reduces variance on the order of ridge regression. Thus, this

estimator inherits the best of both types of estimators. Our experiments in Fig. 3.6 confirm this

behavior and also show an appealing robustness property of the estimator across hyperparameter

choice (i.e. value of rotation angle α).

3.5.3 The ugly: discrepancies in DA’s effect under multiple factors

The results of the previous two sections reveal that several factors influence the effect of DA on

generalization. Specifically, Section 3.5.2 shows that generalization performance often depends on

whether a problem is in the underparameterized or overparameterized regime. Section 3.5.2 shows

that generalization performance also intricately depends on the model structure. In this section,

we further show that the impact of DA on generalization also depends on the downstream task
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(a) Regression task (b) Classification task

Figure 3.3: Comparison of bias impact between regression and classification tasks In this figure, we simulate the
unbiased and biased random mask in regression and classification tasks. In (a), we show that the augmentation bias is
mostly harmful to the regression task, especially in the overparameterized regime where the sample number is less than
or equal to p = 128. In (b), however, the performance is identical with and without bias in the classification task. This
verifies the very different conclusions from Theorems 7 and 11.

(i.e. regression or classification).

Augmentation bias is less impactful in classification than regression. A comparison of the

generalization errors of biased and unbiased estimators in regression and classification, i.e., The-

orems 4, 7, 9 and 11 respectively, reveals that the bias of an estimator has a much more benign

effect on classification than regression. We plot the effect of augmentation bias on regression and

classification in Fig. 3.3. We observe that the bias is mostly harmful for regression, especially in the

overparameterized regime, but has no effect for classification. We also observe that it can be easier

to choose augmentation parameters for classification (i.e., a larger range of parameters can lead to

favorable performance).

Data augmentation is easier to tune in classification than regression. The results of [27]

showed that the choice of test loss function critically impacts generalization. Specifically, they

discovered that for the least squared estimator (LSE), there are cases where the model generalizes

well for the classification task but not for regression. We complement this study by comparing

generalization with DA in the two tasks. Specifically, we find that, for a given DA, the classification

loss is always upper-bounded by a lower bound for the regression MSE, implying that regression

is easier to train with DA than classification. Furthermore, we provide a concrete example of a

simple class of augmentations for which the regression MSE is constant, but the classification POE
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is asymptotically zero. Our findings are summarized in the following proposition. The proof can be

found in Appendix 3.8.4.

Proposition 20 (DA is easier to tune in classification than regression). Consider the 1-sparse

model θ∗ =
√

1
λt
et for Gaussian covariate with independent components and an independent

feature augmentation. Suppose that the approximation error is not dominant in the bounds of

Theorem 4 (simple sufficient conditions can be found in Lemma 35 in Appendix 3.8.1), and the

assumptions in the two theorems hold. Then, we have

POE(θ̂aug) ≲

√
(λaug

k+1ρk(Σaug;n))2 ·
(

n

Rk(Σaug;n)
+
k

n

)
log n,

MSE(θ̂aug) ≳ (λaug
k+1ρk(Σaug;n))

2 +

(
n

Rk(Σaug;n)
+
k

n

)
.

As a consequence, the regression risk serves as a surrogate for the classification risk up to a

log-factor:

POE(θ̂aug) ≲ MSE(θ̂aug)
√

log n. (3.33)

To illustrate the implications of this proposition, let us consider the isotropic Gaussian noise

injection augmentation with noise standard deviation σ and random mask with dropout probability

β to train the 1-sparse model with a decaying data spectrum Σii = γi, ∀i ∈ {1, 2, . . . , p}, where γ

is some constant satisfying 0 < γ < 1. Let θ̂gn and θ̂rm be the corresponding estimators. Then, a

direct consequence of Proposition 20 yields

lim
n→∞

lim
σ→∞

POE(θ̂gn) = 0 while lim
n→∞

lim
σ→∞

MSE(θ̂gn) = 1. (3.34)

Also, when p log n≪ n,

lim
n→∞

lim
β→1

POE(θ̂rm) = 0 while lim
n→∞

lim
β→1

MSE(θ̂rm) = 1. (3.35)
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(3.34) and (3.35) show that for both Gaussian noise injection and random mask augmentation,

extreme augmentations can achieve perfect generalization in classification but poor generalization

in regression.

It is worth noting that (3.34) in particular studies an augmentation that significantly changes the

data distribution. In particular, for Gaussian injection augmentations we have

W 2
2 (g(x),x)

p
−→∞ as n, σ →∞, (3.36)

where W2 denotes the 2-Wasserstein distance between the pre- and post-augmented distribution of

the data by the Gaussian noise injection. In Figs. 3.6(b) and (d), we compare the Gaussian injection

augmentation in the decaying spectrum γ = 0.95 for regression and classification, respectively.

We observe a sharp difference between classification and regression, where, as we increase the

augmentation intensity (i.e. variance of injected Gaussian noise), the MSE increases while the POE

converges to a stable value (the ratio between SU and CN stays the same), implying that careful

tuning is required for regression but not for classification.

Our second example that illustrates special benefits of DA in classification over regression

concerns non-uniform random masking. The proof of the following proposition is deferred to

Appendix 3.8.4.

Proposition 21 (Non-uniform random mask is easier to tune in classification than regression).

Consider the 1-sparse model θ∗ =
√

1
λt
et. Suppose the approximation error is not dominant in the

bounds of Theorem 4 (simple sufficient conditions can be found in Lemma 35in Appendix 3.8.1)

and the assumptions in the two theorems hold. Suppose we apply the non-uniform random mask

augmentation and recall the definitions of ψ and ψt as in Corollary 45. Then, if
√

p
n
≪ ψ

ψt
≪ p

n
,

we have

POE(θ̂rm)
n−→ 0 while MSE(θ̂rm)

n−→ 1. (3.37)

By allowing the augmentation parameters ψ and ψ1 to vary with n, the induced spectrum Σaug
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recovers the “bi-level” design, which was shown in Theorem 13 of [27] to separate classification

and regression performance. It is worth noting that in the case where the true sparsity pattern is

known, several augmentations (including nonuniform Gaussian noise injection, which incurs no

approximation error in our analysis) can give rise to the same consistency behavior described above.

As a takeaway, the corollaries in this section demonstrate that the choice of augmentation itself

can be more benign for classification tasks. Specifically, augmentations that are “biased on average”

may perform similarly to their unbiased counterparts; we cannot generally expect this behavior for

regression. Finally, we concluded this section by showing that our framework can be applied to

strongly out-of-distribution (OOD) augmentations, and show that strong distributional shift can

sometimes lead to improvements in classification generalization. We observe the same phenomenon

empirically in Fig. 3.6, where increasing the intensity of the augmentation improves generalization

and also increases the distributional shift.

3.6 Experiments

In this section, we complement our theoretical analysis with empirical investigations. In particular,

we explore: 1. Differences between aSGD which is used in practice and the closed-form aERM

solution analyzed in this paper, 2. Comparisons between the generalization of different types of

augmentations studied in this work, 3. Multiple factors that influence the efficacy of DA, including

signal structure and covariate spectrum, and 4. Comparisons between different augmentation strate-

gies, namely precomputed augmentations versus aERM. We provide our Python implementations in

https://github.com/nerdslab/augmentation-theory.

3.6.1 Convergence of aSGD solution to the closed-form solution

In this paper, we mathematically study a-ERM (the solution in Equation (3.2)); however, the solu-

tion used in practice is obtained by running a-SGD (Algorithm 1). In this set of experiments, we

investigate the convergence of Algorithm 1 to the solution of Eq. 3.2 to verify that our theory reflects

the solutions obtained in practice. To this end, we use an example in the overparameterized regime
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with p = 128 ≥ n = 64 with the random isotropic signal θ∗ ∼ N (0, Ip) and the observation noise

ϵ ∼ N (0, 0.25). We choose a decaying covariate spectrum of the form Σii ∝ γi, where γ is chosen

such that µp(Σ) = 0.6µ1(Σ). We want to understand the interplay between the convergence rate of

aSGD with batch and augmentation size (formally, the augmentation size is the number of augmen-

tations made for each draw of the training examples). We run the aSGD algorithm with different

batch sizes and augmentation sizes in the range given by (64, 1), (32, 2), . . . , (2, 32), (1, 64). Note

that the computation cost is proportional to the (batch size) × (augmentation size) per backward

pass. Fig. 3.4 illustrates the convergence rate in terms of the number of backward passes. We

observe that the convergence rates are fairly robust to different choices of batch and augmentation

sizes.

Algorithm 1: Augmented Stochastic Gradient Descent (aSGD)
input : Data xi, i = 1, . . . , n; Learning rates ηt, t = 1, . . . ; transformation

distribution G; batch size B; aug size H;
1 init θ̂ ← θ̂0

2 while termination condition not satisfied do
3 for k=1,...,n

B do
4 for i=1,...,B in the batch Bk do
5 Draw H augmentations gij ∼ G, j = 1, . . . ,H

6 θ̂t+1 ← θ̂t − ηt
B∑
i=1

H∑
j=1

∇θ(⟨θ, gij(xi)⟩ − yi)22|θ=θ̂t

Figure 3.4: Convergence of augmented stochastic gradient descent (a-SGD, Algorithm 1) as a function of the
number of backward passes to the closed-form solution of the a-ERM objective (Equation (3.2)). The result shows
fairly stable convergence across different batch sizes and augmentation copies per sample.
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A remark on the implicit bias of minimal or “weak" DA: It is well-known that Gaussian noise

injection approximates the LSE when the variance of the added noise approaches zero. Surprisingly,

however, this does not imply that all kinds of DA approach the LSE in the limit of decreasing

augmentation intensity. Suppose that the augmentation g is characterized by some hyperparameter ξ

that reflects the intensity of the augmentation (for e.g., mask probability β in the case of randomized

mask, or Gaussian noise standard deviation σ in the case of Gaussian noise injection), and that

CovG(X)/ξ−→Cov∞ as ξ → 0 for some positive semidefinite matrix Cov∞ that does not depend

on ξ. Then, the limiting estimator when the augmentation intensity ξ approaches zero is given by

θ̂aug
ξ→0−→ Cov−1

∞ X⊤ (XCov−1
∞ X⊤)† y. (3.38)

It can be easily checked that this estimator is the minimum-Mahalanobis-norm interpolant of the

training data where the positive semi-definite matrix used for the Mahalanobis norm is given by

Cov∞. Formally, the estimator solves the optimization problem

min
θ
∥θ∥Cov∞ s.t. Xθ = y (3.39)

Thus, the choice of augmentation impacts the specific interpolator that we obtain in the limit of

minimally applied DA. For example, the above formula can be applied to random mask with

Cov∞ = n−1diag(XTX) ≈ Σ.

Fig. 3.5 demonstrates that the MSE of the random mask does not converge to that of the LSE.

Instead, it converges to the light green curve which we abbreviate as M-LSE (for the masked least

squared estimator). To test whether these limits appear only in an aERM solution, we plot the

convergence path of aSGD with the random mask augmentation with masking probability β = 0.01.

We set the ambient dimension p, noise standard deviation σϵ, number of training examples n, and

learning rate η to be 128, 0.5, 64 and 10−5 respectively. We choose a decaying covariate spectrum
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Figure 3.5: aSGD convergence to aERM for small random mask. We simulate the convergence of aSGD for
random mask with dropout probability 0.01. We compare its converging estimator with the aERM limit (3.38)).

of the form Σii ∝ γi, where γ is chosen such that µp(Σ) = 0.2µ1(Σ). It is clear from the plot that

both aSGD and aERM converges to the M-LSE solution of (3.38)). The curves and the shaded area

denote the averaged result and the 90% confidence interval for 50 experiments. A caveat to this

result is that the convergence rate turns out to be relatively slow and highly sensitive to the learning

rate. A theoretical investigation of this behavior (and the optimization convergence of aSGD to

aERM more generally) is beyond the scope of this work and would be interesting to explore in the

future.

3.6.2 Comparisons of different types of augmentations

In this section, we compare the generalization of three canonical augmentations that we analyzed in

this work: 1) Gaussian noise injection [91], 2) random mask [17], and 3) random rotation (which

we introduced in Section 3.3.4). As in Section 3.6.1, we consider the random isotropic signal

θ∗ ∼ N (0, Ip). We compare regression and classification tasks; in the former, we set the noise

standard deviation as σε = 0.5 while in the latter, we set the label noise parameter as ν∗ = 0.1.

We consider diagonal covariance Σ and two choices of spectrum: 1. isotropic (i.e. Σ = Ip) and 2.
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decaying spectrum where Σii ∝ γi with γ = 0.95.

Figure 3.6 illustrates different trade-offs (bias/variance for regression, contamination/survival

for classification) for the three canonical augmentations. The hyperparameters for the respective

augmentations are: 1) the standard deviation σ ∈ R+ of the Gaussian noise injection, 2) the masking

probability β ∈ [0, 1] of the random mask, and 3) the rotation angle α ∈ [0, 90]. We can make the

following observations from Figure 3.6:

1. For isotropic data, all three augmentations achieve similar results in terms of generalization,

while for the case of decaying spectrum, Gaussian injection and random rotation outperform

the random mask when their respective hyperparameters are all optimally tuned.

2. In the regression task, for both choices of data distribution, Gaussian injection requires

careful hyperparameter tuning in the range of [0, 1.8] from R+ while the random mask

and random rotation augmentations are fairly robust in performance in the entire range of

the hyperparameter spaces. A possible explanation for this observation is that the random

mask and rotation hyperparameters are scale free of the data (while the noise injection

hyperparameter is not).

3. In the classification task, all the augmentations enjoy robust generalization guarantees with

respect to their hyperparameters. This verifies our theoretical observations in Propositions 20

and 21.

4. While noise injection enjoys better generalization when it is optimally tuned, random mask

is more robust in terms of generalization across hyperparameter choice. Our novel random

rotation augmentation achieves the best of both worlds across different data distributions

and tasks. In particular, it not only achieves a comparable generalization guarantee to noise

injection when optimally tuned, but also is robust with respect to hyperparameter choice

(like the random mask). This observation is consistent with the theoretical prediction of

Corollary 19.
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(a) Bias and variance distribution comparison in uniform covariate spectrum.

(b) Log survival and contamination distribution comparison in uniform covariate spectrum.

(c) Bias and variance distribution comparison in decaying covariate spectrum, γ = 0.95

(d) Log survival and contamination distribution comparison in decaying covariate spectrum, γ = 0.95

Figure 3.6: Adding Gaussian Noise vs. Random Mask v.s Random Rotation in different covariate spectra for
the regression and classification tasks. In this figure we plot the bias/variance (a), (c) and contamination/survival
distributions (b), (d) of Gaussian noise injection, random mask, and random rotation. The numbers reflect the respective
hyperparameters σ, β, α.
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3.6.3 When are augmentations effective?

In this section, we try to understand the impact of the true model θ∗ and the data covariance Σ on

the efficacy of different augmentations, focusing on the nonuniform random mask introduced in

Section 3.5.2. We set the ambient dimension to p = 128 and consider the noise standard deviation

σϵ = 0.5.

Effect of true model We study the impact of nonuniform masking on the 1-sparse model θ∗ = e1,

as depicted in Section 3.4.1 in the regression task and consider isotropic covariance Σ = Ip. We

vary the probability of the signal feature mask βsig while keeping the probability of the noise feature

mask β fixed at 0.2. The results are summarized in Fig. 3.7 and verify our analysis in Corollary

18 that noise features should be masked more compared to signal features so that the semantic

component in the data is preserved. Furthermore, we observe that the differences manifest primarily

in the bias, and the variance remains roughly the same. This is consistent with our variance bound

in Corollary 18, which depends only on the probability of the noise mask β.

Figure 3.7: Non-uniform random mask between signal and noise features. We illustrate different mask strategies
by varying the relative mask intensities of the signal and noise features. We see the signal position on the true model has
most impact on the bias for data augmentation. Furthermore, the result supports the principle that one should augment
the noise features more than the signal feature.

Effect of covariate spectrum Next, to understand the impact of the covariate spectrum, we

consider a setting with a decaying data spectrum Σii ∝ 0.95i. We generate the true model using the

random isotropic Gaussian θ∗ ∼ N (0, Ip) and run the experiment 100 times, reporting the average

result. We consider a bilevel masking strategy where the masking probability for the first half of
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features is set to β1, and the second half of features is set to βp. We vary the ratio between βp and β1

to investigate whether a feature with larger eigenvalue should be augmented with stronger intensity

or not. The result is presented in Fig. 3.8. We observe from this figure that it is more beneficial to

augment more for features with smaller eigenvalues.

Figure 3.8: Impact of covariance spectrum on the random mask in p = 128 dimensions. We investigate the
bi-level random mask strategies in data with decaying spectrum ∝ 0.95i. The first half of features are masked with
probability β1 while the rest are with βp. We vary the ratio between the intensity βp/β1. We observe that augmenting
more for features with higher variance benefits generalization.

3.6.4 Comparisons of pre-computing samples vs. augmented ERM

In our final set of experiments, we dig into the differences between pre-computing augmented

samples and creating augmentations on the fly (our analysis concerns the latter). Because modern

deep learning training usually relies on GPU computation, the overhead of doing augmentation

with CPU on the fly with optimization could become a bottleneck during training time. Hence, pre-

processing of the data becomes a plausible alternative. This is essentially equivalent to optimizing

an empirical notion of aERM:

1

aug size

aug size∑
i=1

[∥Gi(X)− y∥22] = ÊG[∥G(X)− y∥22]. (3.40)

For this experiment, we generate isotropic random signal θ∗ ∼ N (0, I128) and observation noise

with standard deviation σ = 0.5. For simplicity, we choose the isotropic covariate spectrum

Σ = I128. Fig. 3.9 shows regression performance in terms of MSE, bias, and variance as we

vary the augmentation size, which is the number of augmented copies of each original sample. In

Figs. 3.9 (a)-(b), we observe the well-known double descent peaks [93, 127] when the training
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number approaches the ambient dimension n = p = 128 for LSE, and observe that adding pre-

computed augmentation shifts these peaks to the left. The peak for a pre-computing method with

an augmentation size k is observed to be approximately at n = 128/k. Intuitively, this mode

of augmentation virtually increases the size of the training data: in particular, if we had 128/k

original data points the induced total training size (including original data points and augmentations)

becomes equal to (128/k)× k = 128.

Interestingly, both the magnitude of the peak and the width decrease as we increase the augmen-

tation size, and the peak almost disappears when k > 8. The general behavior of pre-computing is

observed to approach aERM as k increases. Another interesting observation is that, unlike LSE

which only has a double descent peak in the variance, pre-computing augmentations induces peaks

in both the bias and the variance. A possible explanation for peaks appearing even in the bias term is

that the variance induced by a finite number of augmentations is itself embedded in the bias term. In

more detail: let θ̂aug = θ̂aug(ε, g,X) be the augmentation estimator that depends on the observation

noise ε, finite augmentation g, and training data X. Then the bias term can be decomposed as

∥θ̂aug − Eε[θ̂aug|X]∥2Σ︸ ︷︷ ︸
Bias

≲ ∥θ̂aug − Eg,ε[θ̂aug|X]∥2Σ︸ ︷︷ ︸
Average augmentation bias

+ ∥Eε[θ̂aug|X]− Eg,ε[θ̂aug|X]∥2Σ︸ ︷︷ ︸
Finite augmentation variance

.

We defer a detailed mathematical study of these intriguing observations to future work.

3.7 Discussion

In this paper, we establish a new framework to analyze the generalization error of the linear model

with data augmentation in underparameterized and overparameterized regimes. We characterize

generalization error for both regression and classification tasks in terms of the interplay between the

characteristics of the data augmentation and spectrum of the data covariance. As a side product, our

results also generalize the recent line of research on harmless interpolation from ridge/ridgeless

regression to settings where the learning objectives are penalized by data dependent regularizers.

Through our analysis, we characterize when a DA can help or hurt generalization based on the
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(a) Normal adding Gaussian noise with σ = 1.

(b) Normal random mask with β = 0.3.

Figure 3.9: Pre-augmentation versus aERM in Gaussian Noise Injection and Random Mask. The estimators
based on aERM have monotonicity in generalization error with respect to the number of training samples, while
the pre-computing methods exhibit the double-descent phenomenon like least-squared estimators. We note that the
pre-computing methods shifts the error peak left compared with LSE. Also, the peak appears approximately at the
sample number equals to p

k , where k is the augmentation size.
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effective ranks of the augmented data spectrum. As concrete case studies, we show that in the

overparametrized regime, random mask and group invariant augmentations can be harmful due to

their isotropizing effect; on the other hand, our proposed random rotation augmentation is provably

beneficial for generalization and highly robust. Our framework also uncovers the nuanced impact of

DA on generalization as multiple factors, including the operating regimes, downstream tasks, and

signal positions, come into play. We find that generalization can exhibit huge discrepancies even

when the same type of DA has been employed.

There are several promising future directions that arise from our work. A first natural question

is to what extent our insights extend to the nonlinear realm. A near-term future direction consists

of extending our framework to kernel methods, which is often regarded as the first step toward

understanding complex nonlinear models. As remarked at through various points in this paper,

we believe the generalization analysis for a fixed estimator can be naturally extended; the more

interesting question lies in the understanding the regularizer and estimator induced by DA for kernel

models (that remain linear in feature-space but can be highly nonlinear in the data). Second, while

our work focuses on the aERM objective, pre-computing augmentations is a natural alternative

for which our preliminary experiments in Section 3.6.4 show intriguing differences in behavior.

Understanding the fundamental differences between the two paradigms is an essential next step in

comprehensively characterizing the effects of DA.

3.8 Technical Proofs and Derivations

We provide the detailed proofs in the following subsections.

3.8.1 General Auxiliary Lemmas

Notation For a data matrix X ∈ Rn×p with i.i.d. rows with covariance Σ, recall we denote PΣ
1:k−1

and PΣ
k:∞ as the projection matrices to the first k − 1 and the remaining eigen-subspaces of Σ,

respectively. In addition, we have defined two effective ranks ρk(Σ; c) =
c+

∑
i>k λi

nλk+1
, Rk(Σ; c) =

(c+
∑

i>k λi)
2∑

i>k λ
2
i

. For convenience, we denote the residual Gram matrix byAk(X;λ) = λIn+XPΣ
k:∞XT .

65



Lemma 22 (An useful identity for the ridge estimator [26]). For any matrix V ∈ Rp×k composed

of k independent orthonormal columns (therefore, V represents a k-dimensional subspace), the

ridge estimator θ̂ = (X⊤X+ λIp)
⊤X⊤y has the property:

(Ik +V⊤X⊤P−1
k XV)V⊤θ̂ = V⊤X⊤P−1

k y, (3.41)

where Pk := λIn +XV⊥(V⊥)⊤X⊤ and V⊥ is a p by p− k matrix satisfying (V⊥)⊤V = 0 and

(V⊥)⊤V⊥ = Ip−k.

Lemma 23 (Bernstein-type inequality for sum of sub-exponential variables). Let x1, . . . ,xn be

independent zero-mean sub-exponential random variables with sub-exponential norm at most σ2
x.

Then for every a = (a1, . . . , an) ∈ Rn and every t ≥ 0, we have

P

{∣∣∣∣∣
n∑
i=1

aixi

∣∣∣∣∣ ≥ t

}
≤ 2 exp

[
−cmin

(
t2

σ4
x∥a∥22

,
t

σ2
x∥a∥∞

)]

where c > 0 is an absolute constant.

Lemma 24 (Concentration of regularized truncated empirical covariance, Lemma 21 in [26]).

Suppose Z = [z1, z2, . . . , zp] ∈ Rn×p is a matrix with independent isotropic sub-gaussian rows with

norm σ. Consider Σ = diag (λ1, . . . , λp) for some positive non-increasing sequence {λi}pi=1.

Denote Ak = λIn +
∑

i>k λiziz
⊤
i for some λ ≥ 0. Suppose that it is known that for some

δ, L > 0 independent of n, p and some k < n with probability at least 1 − δ, the condition

number of the matrix Ak is at most L. Then, for some absolute constant c with probability at least

1− δ − 2 exp(−ct)

(n− tσ2)

L
λk+1ρk(Σ;λ) ≤ µn (Ak) ≤ µ1 (Ak) ≤

(
n+ tσ2

)
Lλk+1ρk(Σ;λ)

Lemma 25 (Concentration of leave-one-out empirical covariance). Under the same notations

and assumptions in Lemma 24, denote A−t := λIn +
∑

i ̸=t λiziz
⊤
i for some λ ≥ 0. Then for any
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t ≤ k ≤ n such that the condition number of Ak is bounded by L, we have

(n− tσ2)

L
λk+1ρk(Σ;λ) ≤ µn(A−t) ≤ µ1(A−t) ≤

(
n+ tσ2

)
Lλ1ρ0(Σ;λ)

Proof The lemma follows by Lemma 24 and the observations of µ1(A−t) ≤ µ1(A0)) and

A−t ⪰ Ak.

Lemma 26 (Concentration of matrix with independent sub-gaussian rows, Theorem 5.39 in

[128]). Let X be an n × k matrix (with n > k) whose rows xi are independent sub-gaussian

isotropic random vectors in Rk. Then for every t ≥ 0 such that
√
n − C

√
k − t > 0 for some

constant C > 0, we have with probability at least 1− 2 exp (−ct2) that

√
n− C

√
k − t ≤ smin(X) ≤ smax(X) ≤

√
n+ C

√
k + t

Here smin and smax denotes the minimum and maximum singular values and C, c > 0 are some

constants depend only on the sub-gaussian norm of the rows.

Lemma 27 (Concentration of the sum of squared norms, Lemma 17 in [26]). Suppose Z ∈

Rn×p is a matrix with independent isotropic sub-gaussian rows with norm σ. Consider Σ =

diag (λ1, . . . , λp) for some positive non-decreasing sequence {λi}pi=1. Then for some absolute

constant c and any t ∈ (0, n) with probability at least 1− 2 exp(−ct)

(
n− tσ2

)∑
i>k

λi ≤
n∑
i=1

∥∥∥Σ1/2
k:∞Zi,k:∞

∥∥∥2 ≤ (n+ tσ2
)∑
i>k

λi

Lemma 28 (Applications of Hanson-Wright inequality as done in [27]). Let ε be a random

vector composed of n i.i.d. zero-mean sub-gaussian variables with norm 1. Then,

1. there exists universal constant c > 0 such that for any fixed positive semi-definite matrix A,
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with probability 1− 2 exp(−
√
n), we have

∣∣ε⊤Aε− E
[
ε⊤Aε

]∣∣ ≤ c∥A∥n
3
4 .

2. there exists some universal constant C > 0 such that with probability at least 1− 1
n

ε⊤Aε ≤ C tr(A) log n.

Lemma 29 (Operator norm bound of matrix with sub-gaussian rows [26]). Suppose {zi}ni=1 is a

sequence of independent sub-gaussian vectors in Rp with ∥zi∥ ≤ σ. Consider Σ = diag (λ1, . . . , λp)

for some positive non-decreasing sequence {λi}pi=1 . Denote X to be the matrix with rows Σ1/2zi.

Then for some absolute constant c, for any t > 0 with probability at least 1− 4e−t/c

∥X∥ ≤ cσ

√√√√λ1(t+ n) +

p∑
j=1

λj.

3.8.2 Proofs of Regression Results

In this section, we will include essential lemmas in 3.8.2 to prove the main theorems for regression

analysis in the sections 3.8.2 and 3.8.2. Then, we will use these theorems to prove the propositions

and corollaries in sections 3.8.2 and 3.8.2, respectively.

Regression Lemmas

Lemma 30 (Sharpened bias of ridge regression, extension of [26]).

Bias

CxL4
1

≲
∥∥PΣ

k1+1:pθ
∗∥∥2

Σ
+
∥∥PΣ

1:k1
θ∗
∥∥2
Σ−1

ρ2k1(Σ;n)

(λk1+1)−2 + (λ1)−2ρ2k1(Σ;n)
(3.42)

Remark 31. The reason we modify the bound from [26] is twofold: 1. we consider non-diagonal

covariance matrix Σ. This is because even if the original data covariance is diagonal, the equivalent
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spectrum might become non-diagonal after the data augmentation. Therefore, we modify the bound

so that the eigenspaces of the data covariance matrix do not have to be aligned with the standard

basis. 2. As we show in our work, some augmentations, e.g. random mask, have the effect of making

the equivalent data spectrum isotropic. However, in this case, the bias bound in [26], as shown

below, can be vacuous as being almost the same as the null estimator so we modify the bound to

remedy the case.

Bias bound ≍
∥∥PΣ

k1+1:pθ
∗∥∥2

Σ
+
∥∥PΣ

1:k1
θ∗
∥∥2
Σ−1 λ

2
k1+1ρ

2
k1
(Σ;n)

=
∥∥PΣ

k1+1:pθ
∗∥∥2 + ∥∥PΣ

1:k1
θ∗
∥∥2 p− k1

n
≳ ∥θ∗∥22,

Proof This lemma is a modification to Theorem 1 in [26], where we only change slightly in the

estimation of the lower tail of the bias. For self-containment, we illustrate where we make the

change. Consider the diagonalization Σ = VDV⊤. Let V1, V2 be the matrices with columns

consisting of the top k eigenvectors of Σ and the remaining eigenvectors, respectively. Note that we

have V = [V1,V2], PΣ
1:k−1 = V1V

⊤
1 , and PΣ

k:∞ = V2V
⊤
2 . Moreover, we have V1V

⊤
1 +V2V

⊤
2 =

VV⊤ = Ip. Now, for the ridge estimator θ̂ = (X⊤X+λIp)
−1X⊤y, apply Lemma 22 with V = V1

to obtain

(Ik +V⊤
1 X

⊤Ak(Σ;λ)−1XV1)V
⊤
1 θ̂ = V⊤

1 X
⊤Ak(Σ;λ)−1y, (3.43)

where Ak(Σ;λ) := λIp +XV2V
⊤
2 X

⊤. As there will be no ambiguity of which covariance matrix

the residual spectrum corresponds to, we will just write Ak from now on.

To bound the bias, we split it into

Bias ≤ 2∥V1V
⊤
1 (Eε[θ̂]− θ∗)∥2Σ + 2∥V2V

⊤
2 (Eε[θ̂]− θ∗)∥2Σ, (3.44)

where the expectations are over the noise ε. Observe that the averaged estimator is Eε[θ̂] =

(X⊤X + λIp)
−1X⊤y, so we can apply Lemma 22 with θ̂ and y replaced by Eε[θ̂] and Xθ∗,
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respectively. As a result, we can write

(Ik +V⊤
1 X

⊤A−1
k XV1)V

⊤
1 Eε[θ̂] = V⊤

1 X
⊤A−1

k Xθ∗

= V⊤
1 X

⊤A−1
k X(V1V

⊤
1 +V2V

⊤
2 )θ

∗.

Now, subtracting V⊤
1 θ

∗ +V⊤
1 X

⊤A−1
k XV1V

⊤
1 θ

∗ from both sides of the above equation followed

by a left multiplication of V1 gives

V1V
⊤
1 (Eεθ̂ − θ∗) +V1V

⊤
1 X

⊤A−1
k XV1V

⊤
1 (Eεθ̂ − θ∗)

= V1V
⊤
1 X

⊤A−1
k XV2V

⊤
2 θ

∗ −V1V
⊤
1 θ

∗,

where we use the identity Ip = V1V
⊤
1 +V2V

⊤
2 .

Now multiply both sides with (Eεθ̂ − θ∗)⊤, the R.H.S. is

= (Eεθ̂ − θ∗)⊤V1V
⊤
1 Σ

1/2Σ−1/2X⊤A−1
k XV2V

⊤
2 θ

∗ − (Eεθ̂ − θ∗)⊤V1V
⊤
1 Σ

1/2Σ−1/2θ∗

≤ ∥V1V
⊤
1 (Eεθ̂ − θ∗)∥Σµn(Ak)

−1

√
µ1

(
V1V⊤

1 Σ
−1/2X⊤XΣ−1/2V1V⊤

1

)
∥XV2V

⊤
2 θ

∗∥

+ ∥V1V
⊤
1 (Eεθ̂ − θ∗)∥Σ∥V1V

⊤
1 θ

∗∥Σ−1 . (3.45)

Note that in the last term of the inequality, we have use the fact that

(Eεθ̂ − θ∗)⊤V1V
⊤
1 Σ

1/2Σ−1/2θ∗ = (Eεθ̂ − θ∗)⊤V1V
⊤
1 Σ

1/2Σ−1/2(V1V
⊤
1 +V2V

⊤
2 )θ

∗

= (Eεθ̂ − θ∗)⊤V1V
⊤
1 Σ

1/2Σ−1/2V1V
⊤
1 θ

∗.

On the other hand, the L.H.S. is

≥ λ−1
1 ∥V1V

⊤
1 (Eεθ̂ − θ∗)∥2Σ + (Eεθ̂ − θ∗)⊤V1V

⊤
1 X

⊤A−1
k XV1V

⊤
1 (Eεθ̂ − θ∗), (3.46)
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in which the second term is

= (Eεθ̂ − θ∗)⊤V1V
⊤
1 Σ

1/2V1V
⊤
1 Σ

−1/2X⊤A−1
k XΣ−1/2V1V

⊤
1 Σ

1/2V1V
⊤
1 (Eεθ̂ − θ∗)

≥ ∥V1V
⊤
1 (Eεθ̂ − θ∗)∥2Σ∥V1V

⊤
1 Σ

−1/2X⊤A−1
k XΣ−1/2V1V

⊤
1 ∥

≥ ∥V1V
⊤
1 (Eεθ̂ − θ∗)∥2Σµk(V⊤

1 Σ
−1/2X⊤A−1

k XΣ−1/2V1)

≥ ∥V1V
⊤
1 (Eεθ̂ − θ∗)∥2Σµ1(Ak)

−1µk(V
⊤
1 Σ

−1/2X⊤XΣ−1/2V1). (3.47)

Therefore, combining e.q. (3.45), (3.46) and (3.47), we have

∥V1V
⊤
1 (Eεθ̂ − θ∗)∥Σ

≤
µ−1
n (Ak)

√
µ1

(
V⊤

1 Σ
−1/2X⊤XΣ−1/2V1

)
∥XV2V

⊤
2 θ

∗∥+ ∥V1V
⊤
1 θ

∗∥Σ−1

λ−1
1 + µ−1

1 (Ak)µk(V⊤
1 Σ

−1/2X⊤XΣ−1/2V1)
.

Now, we turn to bound ∥V2V
⊤
2 (Eεθ̂ − θ∗)∥2Σ. The proof follows the same step as [26] except

we use projection matrices to accommodate for the non-diagonal covariance:

∥V2V
⊤
2 (Eεθ̂ − θ∗)∥2Σ ≲ ∥PΣ

k:∞θ∗∥2Σ︸ ︷︷ ︸
T1

+ ∥V2V
⊤
2 X

⊤(XX⊤ + λIn)
−1XV2V

⊤
2 θ

∗∥2Σ︸ ︷︷ ︸
T2

+ ∥V2V
⊤
2 X

⊤(XX⊤ + λIn)
−1XV1V

⊤
1 θ

∗∥2Σ︸ ︷︷ ︸
T3

T2 is bounded by

µ−2
n (Ak)∥XV2V

⊤
2 ΣV2V

⊤
2 X

⊤∥∥XV2V
⊤
2 θ

∗∥2Σ. (3.48)

For T3 on the other hand, recall XX⊤ + λIp = XV1V
⊤
1 X

⊤ +Ak. Then by the
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Sherman–Morrison–Woodbury formula, we have

(XX⊤ + λIp)
−1XV1

=
(
A−1
k −A−1

k XV1(Ik +V⊤
1 X

⊤A−1
k XV1)

−1V⊤
1 X

⊤A−1
k

)
XV1

= A−1
k XV1(Ik +V⊤

1 X
⊤A−1

k XV1)
−1.

Therefore,

∥V2V
⊤
2 X

⊤(XX⊤ + λIp)
−1XV1V

⊤
1 θ

∗∥2Σ

≤ µ−2
n (Ak)∥XV2V

⊤
2 ΣV2V

⊤
2 X

⊤∥∥XV1(Ik +V⊤
1 X

⊤A−1
k XV1)

−1V⊤
1 θ

∗∥22,

where

XV1(Ik +V⊤
1 X

⊤A−1
k XV1)

−1V⊤
1 θ

∗

(a)
= XV1(V

⊤
1 Σ

−1/2)(Σ1/2V1)(Ik +V⊤
1 X

⊤A−1
k XV1)

−1(V⊤
1 Σ

1/2)(Σ−1/2V1)V
⊤
1 θ

∗

(b)
= XΣ−1/2(Σ1/2V1)(Ik +V⊤

1 X
⊤A−1

k XV1)
−1(V⊤

1 Σ
1/2)(Σ−1/2V1)V

⊤
1 θ

∗

(c)
= XΣ−1/2V1(V

⊤
1 Σ

−1V1 +V⊤
1 Σ

−1/2X⊤A−1
k XΣ−1/2V1)

−1Σ−1/2V1V
⊤
1 θ

∗,

where (a) follows from V⊤
1 V1 = Ik, (b) from

XV1(V
⊤
1 Σ

−1/2)(Σ1/2V1) = X(V1V
⊤
1 +V2V

⊤
2 )Σ

−1/2Σ1/2V1 = XΣ−1/2Σ1/2V1

as V⊤
1 V2 = 0 and V1V

⊤
1 +V2V

⊤
2 = Ip, and (c) follows from the facts

XΣ−1/2Σ1/2V1 = XΣ−1/2V1

(
V⊤

1 Σ
1/2V1

)
(V⊤

1 Σ
1/2V1)

−1 = V⊤
1 Σ

−1/2V1.
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Therefore, we have

∥XV1(I+V⊤
1 X

⊤A−1
k XV1)

−1V⊤
1 θ

∗∥22

≤
µ1

(
V⊤

1 Σ
−1/2X⊤XΣ−1/2V1

)
λ−2
1 + µ−2

1 (Ak)µ2
k(V

⊤
1 Σ

−1/2X⊤XΣ−1/2V1)
∥PΣ

1:k−1θ
∗∥Σ−1 .

Now, adding all the terms above together, the bias is

Bias ≲
µ−2
n (Ak)µ1

(
V⊤

1 Σ
−1/2X⊤XΣ−1/2V1

)
∥XV2V

⊤
2 θ

∗∥22 + ∥V1V
⊤
1 θ

∗∥2
Σ−1

λ−2
1 + µ−2

1 (Ak)µ2
k(V

⊤
1 Σ

−1/2X⊤XΣ−1/2V1)

+ ∥XV2V
⊤
2 ΣV2V

⊤
2 X

⊤∥
µ−2
n (Ak)µ1

(
V⊤

1 Σ
−1/2X⊤XΣ−1/2V1

)
∥V1V

⊤
1 θ

∗∥2
Σ−1

λ−2
1 + µ−2

1 (Ak)µk

(
V⊤

1 Σ
−1/2X⊤XΣ−1/2V1

)2
+ ∥XV2V

⊤
2 ΣV2V

⊤
2 X

⊤∥µ−2
n (Ak)∥XV2V

⊤
2 θ

∗∥2Σ + ∥PΣ
k:∞θ∗∥2Σ,

where for the diagonal covariance Σ, the first two terms are sharpened with additional λ−2
1 in

the denominators as compared to [26]. As in [26], these terms can be bounded by concentration

bounds: µi
(
V⊤

1 Σ
−1/2X⊤XΣ−1/2V1

)
by Lemma 26, µj(Ak) by Lemma 24, ∥XV2V2∥22 and

∥XV2V
⊤
2 ΣV2V

⊤
2 X

⊤∥ by Lemma 27. The details can be found in the proof of MSE bound of [26].

Lemma 32 (Variance bound of ridge regression for non-diagonal covariance data [26]). Con-

sider the regression task with the model setting in Section 3 where the input variable x possi-

bly has non-diagonal covariance Σ with eigenvalues λ1 ≥ λ2 . . . λp. Given a ridge estimator

θ̂ = (X⊤X + λI)−1X⊤y and λ ≥ 0, if we know that for some k2, the condition number of

Ak2(X;λ) is bounded by L2 with probability 1− δ, where δ < 1− exp(−n/c2x), then there exists

some constant C̃x depending only on σx such that with probability at least 1− δ − n−1,

Variance

σ2
εL

2
2C̃x

≲

(
k2
n

+
n

Rk2(Σ;n)

)
log n. (3.49)
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Lemma 33 (Generalization bound of ridge regression for non-diagonal covariance data,

extension of [26]). Consider the regression task with the model setting in Section 3 where the input

variable x has possibly non-diagonal covariance Σ with eigenvalues λ1 ≥ λ2 . . . . Then, given a

ridge regression estimator θ̂ = (X⊤X + λI)−1X⊤y and λ ≥ 0, suppose we know that for some

k1 and k2, the condition numbers of Ak1(X;λ) and Ak2(X;λ) are bounded by L1 and L2 with

probability 1− δ, where δ < 1− exp(−n/c2x), then there exists some constants Cx, C̃x depending

only on σx such that with probability at least 1− n−1,

MSE ≲ CxL
4
1

(∥∥PΣ
k1+1:pθ

∗∥∥2
Σ
+
∥∥PΣ

1:k1
θ∗
∥∥2
Σ−1

ρ2k1(Σ;n)

(λk1+1)−2 + (λ1)−2ρ2k1(Σ;n)

)
︸ ︷︷ ︸

Bias

+ σ2
εL

2
2C̃x

(
k2
n

+
n

Rk2(Σ;n)

)
log n︸ ︷︷ ︸

Variance

(3.50)

Proof The statement is a direct combination of Lemma 30, 32 and the bias-variance decomposition

of MSE from [26].

Lemma 34 (Bounds on the approximation error for regression). Denote

θ̂aug := (X⊤X+ nCovG(X))−1X⊤y, θ̄aug := (X⊤X+ nExCovG(x))
−1X⊤y,

and κ the condition number of Σaug. Assume for some constant c < 1 that

∆G := ∥Ex[CovG(x)]
− 1

2CovG(X)Ex[CovG(x)]
− 1

2 − I∥ ≤ c.

Then the approximation error is bounded by,

∥θ̂aug − θ̄aug∥Σ ≲ κ
1
2∆G

(
∥θ∗∥Σ +

√
Bias(θ̄aug) +

√
Variance(θ̄aug)

)
.
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Proof For ease of notation, we denote D = CovG , D̄ = Ex[CovG(x)], and ∆ = D̄− 1
2DD̄− 1

2 − I.

Then

∥θ̂aug − θ̄aug∥Σ = ∥(X⊤X+ nD)−1X⊤y − (X⊤X+ nD̄)−1X⊤y∥Σ

= ∥(X⊤X+ nD)−1(X⊤X+ nD̄ −X⊤X− nD)(X⊤X+ nD̄)−1X⊤y∥Σ

= n∥Σ
1
2 D̄− 1

2 D̄
1
2 (X⊤X+ nD)−1D̄

1
2∆D̄

1
2 θ̄aug∥2,

≲ n∥Σ
1
2 D̄− 1

2∥∥D̄
1
2 (X⊤X+ nD)−1D̄

1
2∥∥∆∥∥D̄

1
2Σ− 1

2∥∥θ̄aug∥2

≲ nκ
1
2∆G∥θ̄aug∥Σ∥D̄

1
2 (X⊤X+ nD)−1D̄

1
2∥ (3.51)

By (3.57), ∥θ̄aug∥Σ can be bounded as,

∥θ̄aug∥Σ ≤ ∥θ∗∥Σ + ∥θ̄aug − θ∗∥Σ ≲ ∥θ∗∥Σ +
√

Bias(θ̄aug) +
√
Variance(θ̄aug).

It remains to bound ∥D̄ 1
2 (X⊤X+ nD)−1D̄ 1

2∥.

Now, observe

∥D̄
1
2 (X⊤X+ nD)−1D̄

1
2∥ =

(
µp

(
D̄

1
2 (X⊤X+ nD)−1D̄

1
2

)−1
)−1

=
(
µp

(
D̄− 1

2 (X⊤X+ nD)D̄− 1
2

))−1

≤
(
µp

(
D̄− 1

2 (X⊤X+ nD̄)D̄− 1
2

)
− ∥D̄− 1

2 (X⊤X+ nD̄ −X⊤X− nD)D̄− 1
2∥
)−1

.

However,

(
D̄

1
2 (X⊤X+ nD̄)−1D̄

1
2

)−1

= (X̃⊤X̃+ nI),

where X̃ has sub-gaussian rows with covariance Σaug. Hence, the first term is at least n, while the
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second term is just n∆G by definition. So by the assumption that ∆G < c for some c < 1, we have,

∥D̄
1
2 (X⊤X+ nD)−1D̄

1
2∥ ≲ 1

n
,

and finally we have,

∥θ̂aug − θ̄aug∥Σ ≲ κ
1
2∆G

(
∥θ∗∥Σ +

√
Bias(θ̄aug) +

√
Variance(θ̄aug)

)
.

Lemma 35 (Condition on bias/variance dominating error approximation). Suppose the condi-

tions of Theorem 4 hold. If

κ
1
2∆G

n
≪ min

(
Bias + Variance,

√
Bias + Variance

)
. (3.52)

Then there exists c′′ > 0 such that,

1

c′′
≤ Bias(θ̂aug) + Variance(θ̂aug)

Bias(θ̄aug) + Variance(θ̄aug)
≤ c′′. (3.53)

Proof The lemma follows from Theorem 4 with the observations:

κ
1
2∆G

(
∥θ∗∥Σ +

√
Bias(θ̄aug) +

√
Variance(θ̄aug)

)
n
≪ Bias(θ̄aug) + Variance(θ̄aug)
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Proof of Theorem 4

Theorem 4 (Bounds of Mean-Squared Error for Regression). Consider an unbiased data

augmentation g and its corresponding estimator θ̂aug. Recall the definition

∆G := ∥Ex[CovG(x)]
− 1

2CovG(X)Ex[CovG(x)]
− 1

2 − Ip∥,

and let κ be the condition number of Σaug. Assume with probability 1−δ′, we have that the condition

numbers for the matrices Ak1(Xaug;n), Ak2(Xaug;n) are bounded by L1 and L2 respectively, and

that ∆G ≤ c′ for some constant c′ < 1. Then there exist some constants c, C depending only on σx

and σε, such that, with probability 1− δ′ − 4n−1, the testing mean-squared error is bounded by

MSE ≲ Bias + Variance + ApproximationError,

Bias

CxL4
1

≲

(∥∥∥PΣaug
k1+1:pθ

∗
aug

∥∥∥2
Σaug

+
∥∥∥PΣaug

1:k1
θ∗aug

∥∥∥2
Σ−1

aug

(ρaug
k1

)2

(λaug
k1+1)

−2 + (λaug
1 )−2(ρaug

k1
)2

)
,

Variance

σ2
εL

2
2C̃x

≲

(
k2
n

+
n

Raug
k

)
log n, Approx.Error ≲ κ

1
2∆G

(
∥θ∗∥Σ +

√
Bias + Variance

)
,

where ρaug
k := ρk(Σaug;n) and Raug

k := Rk(Σaug;n).

Proof

MSE = Ex[(x
⊤(θ̂aug − θ∗))2|X, ε] = ∥θ̂aug − θ∗∥2Σ. (3.54)

Because the possible dependency of CovG(X) on X, we approximate the θ̂aug with the estimator

θ̄aug := (X⊤X+ nEx[CovG(x)])
−1X⊤y. Now, by the triangle inequality, the MSE can be bounded

as

MSE ≤ 2∥θ̄aug − θ∗∥2Σ + 2∥θ̂aug − θ̄aug∥2Σ (3.55)
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We can bound the first term by using its connection to ridge regression:

θ̂aug = (X⊤X+ nEx[CovG(x)])
−1X⊤y

= Ex[CovG(x)]
−1/2(nIp + Ex[CovG(x)]

−1/2X⊤XEx[CovG(x)]
−1/2)−1Ex[CovG(x)]

−1/2X⊤y

= Ex[CovG(x)]
−1/2(nIp + X̃⊤X̃)−1X̃⊤y (X̃ := XEx[CovG(x)]

−1/2)

= Ex[CovG(x)]
−1/2θ̂ridge, (θ̂ridge := (nIp + X̃⊤X̃)−1X̃⊤y). (3.56)

So the MSE becomes ∥θ̂ridge−Ex[CovG(x)]
1/2θ∗∥2Ex[CovG(x)]−1/2ΣEx[CovG(x)]−1/2 . These observations

have shown an approximate equivalence to a ridge estimator with data matrix X̃, which has data

covariance = Ex[CovG(x)]
−1/2ΣEx[CovG(x)]

−1/2, ridge intensity λ = n, and true model parameter

Ex[CovG(x)]
1/2θ∗. Hence, we can apply Lemma 33 to bound ∥θ̄aug−θ∗∥2Σ, where ∥Eε[θ̄aug]−θ∗∥2Σ

and ∥Eε[θ̄aug]− θ̄aug∥2Σ are exactly the bias and variance, in Theorem 4, respectively. Specifically,

we have,

∥Eε[θ̄aug]− θ∗∥2Σ ≲

CxL
4
1

(∥∥∥PΣaug
k1+1:pθ

∗
aug

∥∥∥2
Σaug

+
∥∥∥PΣaug

1:k1
θ∗aug

∥∥∥2
Σ−1

aug

ρ2k1(Σaug;n)

(λaug
k1+1)

−2 + (λaug
1 )−2ρ2k1(Σaug;n)

)
, (3.57)

∥Eε[θ̄aug]− θ̄aug∥2Σ ≲ σ2
εtL

2
2C̃x

(
k2
n

+
n

Rk2(Σaug;n)

)
. (3.58)

For the second error term ∥θ̂aug − θ̄aug∥2Σ, we apply Lemma 34.

Proof of Theorem 7

Theorem 7 (Bounds of MSE for Biased Estimator). Consider the estimator θ̂aug obtained by solv-

ing the aERM in (3.2). Let MSEo(θ̂aug) denote the unbiased MSE bound in Eq. (3.16) of Theorem 4,

C̄ := Ex[CovG(x)], and
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∆G = ∥n−1C̄− 1
2CovG(X)C̄− 1

2 − Ip∥.

Suppose the assumptions in Theorem 4 hold for the mean augmentation µ(x) and that ∆G ≤ c < 1.

Recall the definition of the mean augmentation covariance Σ̄ := Ex[(µg(x) − Ex[x])(µg(x) −

Ex[x])
⊤].Then with probability 1− δ′ − 4n−1 we have,

MSE(θ̂aug) ≲ R2
1 ·
(√

MSEo(θ̂aug) +R2

)2

,

where

R1 = 1 + ∥Σ
1
2 Σ̄

− 1
2 − Ip∥,

R2 =
√
∥Σ̄C̄−1∥

(
1 +

∆G

1− c

)(√
∆ξ∥θ∗∥+ ∥θ∗∥Covξ

)(√ 1

λaug
k

+

√
λaug
k+1(1 + ρk(Σaug;n))

(λaug
1 ρ0(Σaug;n))2

)
.

Proof

MSE(θ̂aug) = ∥θ̂aug − θ∗∥2Σ ≤

∥θ̂aug − θ∗∥Σ̄︸ ︷︷ ︸
L1

+
∣∣∣∥θ̂aug − θ∗∥Σ − ∥θ̂aug − θ∗∥Σ̄

∣∣∣︸ ︷︷ ︸
L2


2

.

Now we will bound L2 and L1 in a sequence. For the L2, denote ∆ = θ̂aug − θ∗, then

∣∣∣∥θ̂aug − θ∗∥Σ − ∥θ̂aug − θ∗∥Σ̄
∣∣∣ = ∣∣∣√∆⊤Σ∆−

√
∆⊤Σ̄∆

∣∣∣
=

∣∣∆⊤(Σ− Σ̄)∆
∣∣

∥∆∥Σ + ∥∆∥Σ̄
≤ ∥∆

⊤(Σ
1
2 − Σ̄

1
2 )∥∥(Σ

1
2 + Σ̄

1
2 )∆∥

∥∆∥Σ + ∥∆∥Σ̄

≤ ∥∆⊤(Σ
1
2 − Σ̄

1
2 )∥ ≤ ∥∆∥Σ̄∥Σ

1
2 Σ̄

− 1
2 − Ip∥ = ∥θ̂aug − θ∗∥Σ̄∥Σ

1
2 Σ̄

− 1
2 − Ip∥.

Hence, it remains to bound ∥θ̂aug − θ∗∥Σ̄ because

L1 + L2 ≤ (1 + ∥Σ
1
2 Σ̄

− 1
2 − Ip∥)∥θ̂aug − θ∗∥Σ̄. (3.59)
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Now observe that ∥θ̂aug − θ∗∥Σ̄ is just like the test error of an estimator where the covariate has

the distribution of µG(x). However, recall the caveat that when g is biased, there will be both

a covariate shift and a misalignment of the observations in the estimator. Therefore, we have

to take the latter into account. Specifically, recall that our observations y are, in fact, Xθ∗ + n.

To match the covariate distribution µG(x), we define ỹ = µ(X)θ∗ + n. Although we do not

actually observe ỹ, we can bound the error between observing y and ỹ. Therefore, we denote

θ̃aug := (µ(X)⊤µ(X) + CovG(X))−1µ(X)⊤ỹ. This is the biased estimator that uses the biased

augmentation g and also has an observation distribution that matches the covariate distribution.

Then,

∥θ̂aug − θ∗∥Σ̄ ≲ ∥θ̃aug − θ∗∥Σ̄︸ ︷︷ ︸
L3

+ ∥θ̂aug − θ̃aug∥Σ̄︸ ︷︷ ︸
L4

. (3.60)

Now, since θ̃aug has observations matching its covariate distribution µG(x), we can apply Theorem

4 to bound L3:

∥θ̃aug − θ∗∥Σ̄ ≤
√
MSEo, (3.61)

where MSEo is the bound in E.q. (3.16). It remains to bound L4. Note that this error arises from the

additive error between y and ỹ. Recall C̄ := Ex[CovG(x)], then,

∥θ̂aug − θ̃aug∥Σ̄ = ∥(µ(X)⊤µ(X) + CovG(X))−1µ(X)⊤(y − ỹ)∥Σ̄

= ∥Σ̄
1
2 (µ(X)⊤µ(X) + CovG(X))−1µ(X)⊤(y − ỹ)∥

≤ ∥Σ̄
1
2 (µ(X)⊤µ(X) + CovG(X))−1µ(X)⊤∥︸ ︷︷ ︸

L5

∥(y − ỹ)∥︸ ︷︷ ︸
L6

.
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We first bound L5,

∥Σ̄
1
2 (µ(X)⊤µ(X) + CovG(X))−1µ(X)⊤∥

≤ ∥Σ̄
1
2 (µ(X)⊤µ(X) + nC̄)−1µ(X)⊤∥︸ ︷︷ ︸

L7

+ ∥Σ̄
1
2 (µ(X)⊤µ(X) + CovG(X))−1µ(X)⊤ − Σ̄

1
2 (µ(X)⊤µ(X) + nC̄)−1µ(X)⊤∥︸ ︷︷ ︸

L8

.

Observe that

L7 = ∥Σ̄
1
2 (µ(X)⊤µ(X) + nC̄)−1µ(X)⊤∥ = ∥Σ̄

1
2 C̄− 1

2 (X̃X̃⊤ + nIn)
−1X̃∥

≤ ∥Σ̄
1
2 C̄− 1

2 (X̃X̃⊤ + nIn)
−1X̃1:k∥︸ ︷︷ ︸

L9

+ ∥Σ̄
1
2 C̄− 1

2 (X̃X̃⊤ + nIn)
−1X̃k+1:p∥︸ ︷︷ ︸

L10

,

where X̃ has sub-gaussian rows with covariance Σaug as defined in E.q. (3.14).

Now, we boundL9 andL10. For convenience, denote A = X̃X̃⊤+nIn and Ak = X̃k+1:pX̃
⊤
k+1:p+

nIn. By Woodbury matrix identity, we have

A−1X̃1:k = A−1
k X̃1:k(Ip + X̃⊤

1:kA
−1
k X̃1:k)

−1.

Hence, L9 is bounded by

∥Σ̄
1
2 C̄− 1

2 (X̃X̃⊤ + nIn)
−1X̃1:k∥ = ∥Σ̄

1
2 C̄− 1

2A−1
k X̃1:k(Ip + X̃⊤

1:kA
−1
k X̃1:k)

−1∥

≤ µn(Ak)
−1∥Σ̄

1
2 C̄− 1

2∥∥X̃1:k(Ip + X̃⊤
1:kA

−1
k X̃1:k)

−1∥

= µn(Ak)
−1∥Σ̄

1
2 C̄− 1

2∥∥Z̃1:k(Σ
−1
aug,1:k + Z̃⊤

1:kA
−1
k Z̃1:k)

−1Σ
− 1

2
aug, 1:k∥

≤ µn(Ak)
−1∥Σ̄

1
2 C̄− 1

2∥∥Σ− 1
2

aug,1:k∥∥Z̃1:k(Σ
−1
aug,1:k + Z̃⊤

1:kA
−1
k Z̃1:k)

−1∥, (3.62)

where Z̃ has sub-gaussian rows with isotropic covariance Ip. Now applying Lemma 26, we have,
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with probability 1− 5n−3,

∥Z̃1:k(Σ
−1
aug,1:k + Z̃⊤

1:kA
−1
k Z̃1:k)

−1∥ ≲ ∥Z̃1:k∥µ−1
k (Z̃⊤

1:kA
−1
k Z̃1:k)

≲ µ1(Ak)

√
n

µ−1
k (Z̃⊤

1:kZ̃1:k)
≲

µ1(Ak)√
n

.

Combining the above and E.q. (3.62) with Lemma 24, we have with probability 1− δ − 2n−3 that

L9 = ∥Σ̄
1
2 C̄− 1

2 (X̃X̃⊤ + nIn)
−1X̃1:k∥ ≲

√
∥Σ̄C̄−1∥
λaug
k n

, (3.63)

where λaug
k is the k-th eigenvalue of Σaug. On the other hand, by Lemma 24 and 29,

L10 = ∥Σ̄
1
2 C̄− 1

2 (X̃X̃⊤ + nIn)
−1X̃k+1:p∥ ≲

1

λaug
1 ρ0(Σaug;n)

√
∥Σ̄C̄−1∥(λaug

k+1n+
∑

j>k λ
aug
j )

n2

=

√
∥Σ̄C̄−1∥λaug

k+1(1 + ρk(Σaug;n))

n(λaug
1 ρ0(Σaug;n))2

,

with probability 1− δ′− exp(−ct) (where we set t := log n for the final theorem statement). Hence,

L7 ≤ L9 + L10 ≲

√
∥Σ̄C̄−1∥

n

(√
1

λaug
k

+

√
λaug
k+1(1 + ρk(Σaug;n))

(λaug
1 ρ0(Σaug;n))2

)
. (3.64)

Next, we bound L8:

∥Σ̄
1
2 (µ(X)⊤µ(X) + CovG(X))−1µ(X)⊤ − Σ̄

1
2 (µ(X)⊤µ(X) + nC̄)−1µ(X)⊤∥

= n∥Σ̄
1
2 (µ(X)⊤µ(X) + CovG(X))−1

(
n−1CovG(X)− C̄

)
(µ(X)⊤µ(X) + nC̄)−1µ(X)⊤∥

≲ n ∥Σ̄
1
2 (µ(X)⊤µ(X) + CovG(X))−1C̄

1
2∥︸ ︷︷ ︸

L11

∥n−1C̄− 1
2CovG(X)C̄− 1

2 − Ip∥

· ∥C̄
1
2 (µ(X)⊤µ(X) + nC̄)−1µ(X)⊤∥︸ ︷︷ ︸

L12

.

The term L11 is identical to (3.64) and can be bounded with that inequality. In the meantime, the
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term L12 = ∥Σ̄
1
2 (µ(X)⊤µ(X) + CovG(X))−1C̄

1
2∥ can be bounded by noting that,

µp

((
C̄

1
2 (µ(X)⊤µ(X) + CovG(X))−1C̄

1
2

)−1
)

≳ µp

((
C̄

1
2 (µ(X)⊤µ(X) + nC̄)−1C̄

1
2

)−1
)

− ∥C̄− 1
2 (µ(X)⊤µ(X) + nC̄)C̄− 1

2 − C̄− 1
2 (µ(X)⊤µ(X) + CovG(X))C̄− 1

2∥.

Here, by Lemma 24

µp

((
C̄

1
2 (µ(X)⊤µ(X) + nC̄)−1C̄

1
2

)−1
)

= µp

((
X̃⊤X̃+ nIp

))
≥ n (3.65)

Also,

∥C̄− 1
2 (µ(X)⊤µ(X) + nC̄)C̄− 1

2 − C̄− 1
2 (µ(X)⊤µ(X) + CovG(X))C̄− 1

2∥

= ∥C̄− 1
2CovG(X)C̄− 1

2 − nIp∥ = n∆G

Adding the above inequalities together, L8 is bounded by

∥Σ̄
1
2µ(X)(µ(X)⊤µ(X) + CovG(X))−1C̄

1
2 − Σ̄

1
2µ(X)(µ(X)⊤µ(X) + nC̄)−1C̄

1
2∥

≲
∆G

1−∆G

√
∥Σ̄C̄−1∥

n

(√
1

λaug
k

+

√
λaug
k+1(1 + ρk(Σaug;n))

(λaug
1 ρ0(Σaug;n))2

)
, (3.66)

by our assumption that ∆G ≤ c for some c < 1. E.q. (3.64) and (3.66) now imply

L5 = ∥Σ̄
1
2 (µ(X)⊤µ(X) + CovG(X))−1µ(X)⊤∥ ≤ L7 + L8

≲

√
∥Σ̄C̄−1∥

n

(√
1

λaug
k

+

√
λaug
k+1(1 + ρk(Σaug;n))

(λaug
1 ρ0(Σaug;n))2

)
·
(
1 +

∆G

1− c

)
. (3.67)
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On the other hand,

L6 = ∥y − ỹ∥ = ∥(µ(X)−X)θ∗∥ =
√
n∥θ∗∥n−1(µ(X)−X)(µ(X)−X)⊤

≤
√
n

(
∥θ∗∥

√
∥n−1(µ(X)−X)(µ(X)−X)⊤ − Covξ ∥+ ∥θ∗∥Covξ

)
≤
√
n
(√

∆δ∥θ∗∥+ ∥θ∗∥Covξ

)
, (3.68)

where Covδ is defined in Definition 6.

Combining E.q. (3.67) and (3.68), we obtain the following:

L4 = ∥θ̂aug − θ̃aug∥Σ̄ = L5 · L6 ≲
√
∥Σ̄C̄−1∥

(
1 +

∆G

1− c

)(√
∆ξ∥θ∗∥+ ∥θ∗∥Covξ

)
·

(√
1

λaug
k

+

√
λaug
k+1(1 + ρk(Σaug;n))

(λaug
1 ρ0(Σaug;n))2

)
(3.69)

Finally, putting together the results of Eq. (3.59), (3.60), (3.61) and (3.69) completes the proof.

Proof of Proposition 5

Proposition 5 (Independent Feature Augmentations). Let g be an independent feature aug-

mentation, and π : {1, 2, . . . , p} → {1, 2, . . . , p} be the function that maps the original feature

index to the sorted index according to the eigenvalues of Σaug in a non-increasing order. Then,

data augmentation has a spectrum reordering effect which changes the MSE through the bias

modification:

Bias
CxL4

1

≲
∥∥θ∗π(k1+1:p)

∥∥2
Σπ(k1+1:p)

+
∥∥θ∗π(1:k1)∥∥2Ex[CovG(x)]2Σ

−1
π(1:k1)

(ρaug
k1

)2

(λaug
k1+1)

−2 + (λaug
1 )−2(ρaug

k1
)2
,

where π(a : b) denotes the indices of π(a), π(a+1), . . . , π(b). Furthermore, if the variance of each

feature augmentation Vargi(gi(x)) is a sub-exponential random variable with sub-exponential norm

σ2
i and mean σ̄2

i , ∀i ∈ {1, 2, . . . , p}, and p = O(nα) for some α > 0, then there exists a constant c,
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depending only on α, such that with probability 1− n−3,

∆G ≲ max
i

(
σ2
i

σ̄2
i

)√
log n

n
.

Proof For independent feature augmentation, Ex[CovG(x)] is a diagonal matrix. Since the original

covariance Σ is also diagonal by our model assumption, the augmentation modified spectrum Σaug

is diagonal. Furthermore, the diagonal implies the projections to Σaug’s first k − 1 and the rest

eigenspaces are to the features π(1 : k − 1) and π(k, p). Lastly, because PΣaug commutes with

Ex[CovG(x)], we have

∥∥∥PΣaug
k1+1:pθ

∗
aug

∥∥∥2
Σaug

= (θ∗aug)
⊤P

Σaug
k1+1:pθ

∗
aug

= (θ∗)⊤D̄1/2P
Σaug
k1+1:pD̄

−1/2ΣD̄−1/2P
Σaug
k1+1:pD̄

1/2θ∗

= (θ∗)⊤P
Σaug
k1+1:pD̄

1/2D̄−1/2ΣD̄−1/2D̄1/2P
Σaug
k1+1:pθ

∗

= ∥PΣaug
k1+1:pθ

∗∥2Σ =
∥∥θ∗π(k1+1:p)

∥∥2
Σπ(k1+1:p)

,∥∥∥PΣaug
1:k1

θ∗aug

∥∥∥2
Σ−1

aug

= (θ∗)⊤P
Σaug
1:k1
D̄1/2D̄1/2Σ−1D̄1/2D̄1/2P

Σaug
1:k1

θ∗

=
∥∥θ∗π(1:k1)∥∥2Ex[CovG(x)]2Σ

−1
π(1:k1)

,

where D̄ = Ex[CovG(x)].

To prove the approximation error bound, we proceed as follows. By independence assump-

tion on feature augmentation, CovG(X) is diagonal. Hence, to bound ∆G, we only need to

control the diagonals of Q := n−1Ex[CovG(x)]
− 1

2CovG(X)Ex[CovG(x)]
− 1

2 − I. Now, denoting

D = n−1Ex[CovG(x)]
− 1

2CovG(X)Ex[CovG(x)]
− 1

2 , we have Q = D− I. For any i ∈ {1, 2, . . . , p},

Dii = n−1
∑n

j=1

Vargi (xji)

Ex[Vargi (x)]
, where xji is the i-th element of the j-th row of X. By our assump-

tions of Vargi(xji), j = 1, 2, . . . , n, being identical and independent sub-exponential random

variables with sub-exponential norm σ2
i and mean σ̄2

i . we can apply concentration bounds to

Qii =
1
σ̄i2

(
n−1

∑n
j=1 Vargi(xj)− Ex[Vargi(x)]

)
as it is a sum of i.i.d. sub-exponential random

variables with sub-exponential norm σi
2/σ̄2

i . Specifically, we apply the Bernstein inequality in
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Lemma 23 with t ∝ σ2
i

√
logn
n

to conclude that there exists a constant c′ such that, with probability

1− n−1, we have,

Qii =
1

σ̄i2

(
n−1

n∑
j=1

Vargi(xj)− Ex[Vargi(x)]

)
≤ c′

σ2
i

σ̄2
i

√
log n

n
. (3.70)

Then, we apply a union bound over i and obtain

∥∆G∥ ≤ max
i
∥Qii∥ ≲ max

i

(
σ2
i

σ̄2
i

)√
log n

n
,

with probability 1− n−1. Note that we can get the same error rate after the union bound as long as

p grows polynomially with n.

Proofs of Corollaries

Corollary 36 (Generalization of Gaussian Noise Injection ). Consider the data augmentation

which adds samples with independent additive Gaussian noise: g(x) = x+n, where n ∼ N (0, σ2).

The estimator is given by θ̂ = (X⊤X + σ2nIp)
−1X⊤y. Let L denote the condition number of

nσ2I + X1:kX
⊤
1:k. Then, we can bound the error as MSE ≤ Bias + Variance, where with high

probability

MSE ≲ ∥θ∗
k:∞∥2Σk:∞

+ ∥θ∗
0:k∥2Σ−1

0:k
λ2k+1ρ

2
k(Σ;nσ2) +R−1

k (Σ;nσ2) + kn−1.

Proof Since this belongs to the independent feature augmentation class, we can apply Corollary 5.

Below are the quantities in the corollary.

Ex[CovG(x)] = σ2I, θ∗
aug = σθ∗, Σaug = σ−2Σ, λaug = σ−2λ,
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hence,

ρaug
k = ρk(Σaug;n) =

n+
p∑

i=k+1

λaug
i

nλaug
k+1

=

nσ2 +
p∑

i=k+1

λi

nλk+1

= ρk(Σ;nσ2),

Raug
k = Rk(Σaug;n) =

(
n+

p∑
i=k+1

λaug
i

)2

p∑
i=k+1

(λaug
k+1)

2

=

(
nσ2 +

p∑
i=k+1

λi

)2

n
p∑

i=k+1

λ2k+1

= Rk(Σ;nσ2).

Note that Rk(Σ;nσ2) and ρk(Σaug;nσ
2) are the effective dimensions of the original spectrum for

ridge regression with regularization parameter nσ2, as defined in [26]. Finally, the approximation

error term is zero because ∆G = 0.

Corollary 12 (Generalization of random mask augmentation). Consider the unbiased random-

ized masking augmentation g(x) = [b1x1, . . . , bpxp]/(1− β), where bi are i.i.d. Bernoulli(1− β).

Define ψ = β
1−β ∈ [0,∞). Let L1, L2, κ, δ′ be universal constants as defined in Theorem 4. Assume

p = O(nα) for some α > 0. Then, for any set K ⊂ {1, 2, . . . , p} consisting of k1 elements and

k2 ∈ [0, n], there exists some constant c′, which depends solely on σz and σε (the sub-Guassian

norms of the covariates and noise), such that the regression MSE is upper-bounded by

MSE ≲ ∥θ∗K∥
2
ΣK

+ ∥θ∗Kc∥2ΣKc

(ψn+ p− k1)2

n2 + (ψn+ p− k1)2︸ ︷︷ ︸
Bias

+

(
k2
n

+
n(p− k2)

(ψn+ p− k2)2

)
log n︸ ︷︷ ︸

Variance

+σ2
z

√
log n

n
∥θ∗∥Σ︸ ︷︷ ︸

Approx.Error

with probability at least 1− δ′ − n−1.

Proof Random mask belongs to independent feature augmentation class, so we can apply Proposi-
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tion 5. We calculate the quantities used in the corollary.

Ex[CovG(x)] = ψdiag(Σ) = ψΣ, θ∗
aug = ψ1/2Σ1/2θ∗, Σaug = ψ−1I, λaug = ψ−1.

The effective ranks of the augmentation modified spectrum are

ρaug
k =

ψn+ p− k
n

, (3.71)

Raug
k =

(ψn+ p− k)2

p− k
. (3.72)

Now, we apply Proposition 5. Because random mask has effectively isotropized the spectrum,

the mapping π in the proposition can be chosen arbitrarily. Hence, we can chose π(1 : k1) to be

any set with k elements. For the approximation error term, we first note that κ = 1. Furthermore,

Vargi(xj) = ψx2
j . So, its subexponential norm is bounded by ψλjσ2

z , and its expectation is given by

ψλj . Putting all the pieces together, we derive the MSE bound as

Bias ≲ ∥θ∗K∥
2
ΣK

+ ∥θ∗Kc∥2ΣKc

(ψn+ p− k1)2

n2 + (ψn+ p− k1)2
,

Variance ≲
k2
n

+
n(p− k2)

(ψn+ p− k2)2
,

Approx. Error ≲ σ2
z

√
log n

n
∥θ∗∥Σ.

Corollary 15 (Bounds of random cutout). Let θ̂
cutout
k denote the random cutout estimator that

zeroes out k consecutive coordinates (the starting location of which is chosen uniformly at random).

Also, let θ̂
mask
β be the random mask estimator with the masking probability given by β. We assume

that k = O(
√

n
log p

). Then, for the choice β = k
p

we have

MSE(θ̂
cutout
k ) ≍ MSE(θ̂

mask
β ), POE(θ̂

cutout
k ) ≍ POE(θ̂

mask
β ).
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Proof This can be verified directly by noticing that for random cutout

ExCovG(x) =
k

p− k
diag(Σ),

while for random mask

ExCovG(x) = ψdiag(Σ).

Furthermore, the approximation is negligible when k ≪ min(
√

n
log p

, p√
n
) as shown in Appendix

3.8.6. Now, setting ψ = k
d−k gives β = k

p
.

Corollary 18 (Non-uniform random mask). Consider a general k−sparse model where θ∗ =∑
i∈IS αiei, where |IS | = k. Suppose we employ non-uniform random mask where ψ = ψ1 if

i ∈ IS and = ψ0 otherwise. Then, if ψ1 ≤ ψ0, we have

Bias ≲

(
ψ1n+ ψ1

ψ0
(p− |IS |)

)2
n2 +

(
ψ1n+ ψ1

ψ0
(p− |IS |)

)2∥θ∗∥2Σ,

Variance ≲
|IS |
n

+
n (p− |IS |)

(ψ0n+ p− |IS |)2
,

Approx.Error ≲

√
ψ0

ψ1

σ2
z

√
log n

n
∥θ∗∥Σ

while if ψ1 > ψ0, we have

Bias ≲ ∥θ∗∥2Σ, Variance ≲

(
ψ1

ψo

)2
+ |IS |

n(
ψ1

ψo
+ |IS |

n

)2 , Approx.Error ≲

√
ψ1

ψ0

σ2
z

√
log n

n
∥θ∗∥Σ

Proof Let Ψ denote the diagonal matrix with Ψi,i = ψ1 if i ∈ IS and ψ0 otherwise. Then, we apply
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Corollary 5 with:

Ex[CovG(x)] = Ψdiag(Σ) = ΨΣ, θ∗
aug = Ψ1/2Σ1/2θ∗, Σaug = Ψ−1.

Now as in the proof of Proposition 12, we calculate the effective ranks. For the k∗ partitioning

the spectrum, we choose k∗ = |IS | when ψ1 ≤ ψ0, while k∗ ≍ n for ψ1 > ψ0. The proof for the

approximation error term is identical to in the uniform random mask case.

Corollary 16 (Generalization of Pepper/Salt augmentation). The MSE components of the es-

timator that are induced by salt-and-pepper augmentation (denoted by θ̂pepper(β, σ
2)) have the

properties,

Bias[θ̂pepper(β, σ
2)] ≲

(
λ1(1− β) + σ2

σ2

)2

Bias

[
θ̂gn

(
βσ2

(1− β)2

)]
,

Variance[θ̂pepper(β, σ
2)] ≲ Variance

[
θ̂gn

(
βσ2

(1− β)2

)]
,

Approx.Error[θ̂pepper(β, σ
2)] ≍ Approx.Error[θ̂rm(β)].

where θ̂gn(z
2) and θ̂rm(γ) denotes the estimators that are induced by Gaussian noise injection with

variance z2 and random mask with dropout probability γ, respectively. Moreover, the limiting MSE

as σ → 0 reduces to the MSE of the estimator induced by random masking (denoted by θ̂rm(β)):

lim
σ→0

MSE[θ̂pepper(β, σ
2)] = MSE[θ̂rm(β)].

Proof Proposition 5 is applicable to salt/pepper augmentation. The related quantities in the

proposition are:

Ex[CovG(x)] = ψΣ+
ψσ2

1− β
I, θ∗

aug =

√
ψΣ+

ψσ2

1− β
Iθ∗, λaug

i =
λi

ψ(λi +
σ2

1−β )
.
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Observe that the expression of λaug
i implies that the augmented eigenvalues of salt/pepper augmenta-

tion is a harmonic sum of that of random mask and Gaussian noise injection,

λpepper(β, σ
2)−1 = λrm(β)

−1 + β−1λgn(σ
2)−1. (3.73)

Hence, the statement of MSE limit is clear as we take σ → 0 in (3.73) along with the fact that

λgn→∞. Now we prove the bias statement. By Proposition 5,

θ̂pepper(β, σ) ≲ ∥θ∗
k+1:p∥2Σk+1:p

+
∥∥θ∗π(1:k1)∥∥2Ex[CovG(x)]2Σ

−1
π(1:k1)

(λaug
k+1ρ

aug
k )2. (3.74)

In particular,

∥∥θ∗π(1:k1)∥∥2Ex[CovG(x)]2Σ
−1
π(1:k1)

=
∑
i≤k

(
ψλi +

ψσ2

1−β

)2
λi

(θ∗
i )

2, (3.75)

λaug
k+1ρ

aug
k =

n+
∑
i>k

λi

ψ(λi+
σ2

1−β
)

n
≤
n+

∑
i>k

λi

ψ σ2

1−β

n
. (3.76)

Now the result follows by combining Eq. (3.74), (3.75) and (3.76).

The variance statement can be proved using similar calculations. From Corollary 5, we only

need to compare Rk of salt/pepper with that of Gaussian noise injection. Without lose of generality,

we assume k is chosen in the corollary such that λi ≤ c′ σ
2

1−β for all i ≥ k for some constant c′. Then,

Rk ≥

(
n+

∑
i≥k

λi

ψ(λi+
σ2

1−β
)

)2

∑
i≥k

(
λi

ψ(λi+
σ2

1−β
)

)2 ≥

(
n+

∑
i≥k

λi

ψ((c′+1) σ2

1−β
)

)2

∑
i≥k

(
λi

ψ( σ2

1−β
)

)2 ≥ 1

(c′ + 1)2

(
n+

∑
i≥k

λi
βσ2

(1−β)2

)2

∑
i≥k

(
λi
βσ2

(1−β)2

)2 ,

The statement now follows by noting that the last quantity is the Rk of Gaussian noise injection

with noise variance βσ2

(1−β)2 up to a constant scaling factor.
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Finally, the approximation error statement holds because the augmented covariance is that of

random mask summed with a constant matrix.

Corollary 13 (Generalization of biased mask augmentation). Consider the biased random mask

augmentation g(x) = [b1x1, . . . , bpxp], where bi are i.i.d. Bernoulli(1-β). Define ψ = β
1−β ∈

[0,∞). Assume the assumptions in Corollary 12 hold. Then with probability 1− δ′ − 3pn−5, the

generalization error is upper bounded by

MSE(θ̂aug) ≤
(√

MSEo + ψ

(
1 +

log n

n

)
·
((

λ1 +

∑
j λj

n

)
∥θ∗∥+ ∥θ∗∥Σ

))2

,

where MSEo is the bound given in Corollary 12.

Proof This proof is a direct application of Theorem 7 by the two steps: First, plugging in

Σaug =
1− β
β

I, Σ̄ = (1− β)2Σ, ExCovG(x) = β(1− β)Σ.

Secondly, observing δ(x) = −βx, Covδ = β2Σ, so concentration bound in Lemma 29 gives that

∆δ ≲ β2

(
λ1n+

∑
j λj

n

)
.

3.8.3 Proofs of Classification Results

Classification Lemmas

Lemma 37 (Upper bound on probability of classification error for correlated sub-Gaussian

input). Consider the 1-sparse model θ∗ = 1√
λt
et described in Section 3.4.4 and input distribution

satisfying Assumption 3, where xsig = xt is the feature corresponding to the non-zero coordinate
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of θ∗. Given any estimator θ̂ having θ̂t ≥ 0, the probability of classification error (POE) is upper

bounded by

POE(θ̂) ≲
CN

SU

(
1 + σz

√
log

SU

CN

)
. (3.77)

Furthermore, if we assume x is Gaussian, then

POE(θ̂) =
1

2
− 1

π
tan−1 SU(θ̂)

CN(θ̂)
≤ CN(θ̂)

SU(θ̂)
. (3.78)

Proof

We first note that the assumption that θ̂t ≥ 0 is satisfied in the situations we consider, based on

the lower bounds on survival which we provide in Lemma 38. Assume without loss of generality

that xsig = xt = x1.

POE(θ̂) = P
(
sgn(xsig) ̸= sgn(⟨x, θ̂⟩)

)
= P

(
sgn(xsig) ̸= sgn(xsig(θ̂1 +

x2

xsig
θ̂2 + · · ·+

xp
xsig

θ̂p))

)
= P

(
θ̂1 +

x2

xsig
θ̂2 + · · ·+

xp
xsig

θ̂p < 0

)
= ExsigP

(
x2

xsig
θ̂2 + · · ·+

xp
xsig

θ̂p < −|θ̂1|
)
.

Now, because z′ := [ x2√
λ2
, x3√

λ3
, . . . , xp√

λp
] is a sub-Gaussian vector with norm σz, ⟨z′,u⟩ is a sub-

Gaussian variable with norm ∥u∥ for any fixed u. Let u = 1
xsig

[
√
λ2θ̂2,

√
λ3θ̂3, . . . ,

√
λpθ̂p], which,
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by assumption, is independent of z′. Then,

ExsigP
(

x2

xsig
θ̂2 + · · ·+

xp
xsig

θ̂p < −|θ̂1|
)

= ExsigP
(
⟨z′,u⟩ ≤ −|θ̂1|

)
≤ Exsig exp

− θ̂
2

1∑
j≥2 λj(

θ̂j

xsig
)2σ2

z


= Exsig exp

(
−

x2
sig

λ1σ2
z

SU(θ̂)2

CN(θ̂)2

)

≤ P(x2
sig < δ) + 3 exp

(
− δ

λ1σ2
z

SU(θ̂)2

CN(θ̂)2

)

≲

√
δ

λ1
+ 3 exp

(
− δ

λ1σ2
z

SU(θ̂)2

CN(θ̂)2

)
,

where the last inequality follows from the assumption that zsig has bounded density and a small ball

probability bound from [128, Exercise 2.2.10]. Choosing δ = λ1σ
2
z log

SU
CN

/
(
SU
CN

)2 yields the result.

The second statement follows from Proposition 17 in [27] and the bound tan−1(x) ≥ π
2
− 1

x
, for

all x > 0.

Lemma 38 (Survival of ridge estimator for dependent features). Consider the classification

task under the model and assumption described in Section 3.4.4 where Σ = diag(λ1, . . . , λp) and

the true signal θ∗ = 1√
λt
et is 1-sparse in coordinate t. Let θ̂ = X⊤(XX⊤ + λI)−1y be a ridge

estimator. Suppose for some t ≤ k ≤ n that λk+1ρk(Σ;λ) ≥ c for some constant c > 0, and with

probability at least 1− δ that the condition number of λI+Xk+1:pX
T
k+1:p is at most L, then with

probability 1− δ − exp(−
√
n), we have:

λt(1− 2ν∗)
(
1− k

n

)
L (λk+1ρk(Σ;λ) + λtL)

≲ SU(θ̂) ≲
Lλt(1− 2ν∗)

λk+1ρk(Σ;λ) + L−1λt
(
1− k

n

) . (3.79)

Proof Our bound is a generalization to Theorem 22 in [27] for correlated features and ridge

estimator. We only require the signal and noise features to be independent.
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Denote X̃ to be the matrix consisting of the columns of X except for the t-th column, and

A−t := X̃X̃T + λI. As the proof in [27], our proof begins with writing the SU in terms of a

quadratic form of signal vector and applying Hanson-Wright inequality, Lemma 28, by invoking the

independence between the signal and noise. The result is that, with probability 1− exp(−
√
n),

SU ≳
λt ·

(
(1− 2ν∗) tr

(
A−1

−t
)
− 2c1

∥∥A−1
−t
∥∥ · n3/4

)
1 + λt

(
tr
(
A−1

−t
)
+ c1

∥∥A−1
−t
∥∥ · n3/4

) and (3.80)

SU ≲
λt ·

(
(1− 2ν∗) tr

(
A−1

−t
)
+ 2c1

∥∥A−1
−t
∥∥ · n3/4

)
1 + λt

(
tr
(
A−1

−t
)
− c1

∥∥A−1
−t
∥∥ · n3/4

) , (3.81)

Now observe ∥A−1
−t∥ = µn(A−t)

−1, so by Lemma 25, we have

∥A−1
−t∥ ≲

L

nλk+1ρk(Σ;λ)
. (3.82)

By our assumption λk+1ρk(Σ;λ) ≥ c, we have

λ1ρ0(Σ;λ) = n−1

k∑
i=1

λi + λk+1ρk(Σ;λ) ≤ λk+1ρk(Σ;λ)(1 +
kλ1
nc

). (3.83)

Also, using the same Lemma and (3.83),

(1− k/n)(1 + kλ1
nc

)−1

Lλk+1ρk(Σ;λ)
≲

1− k/n
Lλ1ρ0(Σ;λ)

≲
n− k

µk+1(A−t)
≲ tr

(
A−1

−t
)
=

n∑
i=1

1

µi(A−t)
≲

n

µn(A−t)

≲
L

λk+1ρk(Σ;λ)
. (3.84)

Finally, plugging in the bounds in (3.84) and (3.82) into (3.80) completes the proof.

Lemma 39 (Contamination of ridge estimator for dependent features ). Consider the classifica-

tion task under the model and assumption described in Section 3.4.4 where Σ = diag(λ1, . . . , λp)

and the true signal θ∗ = 1√
λt
et is 1-sparse in coordinate t. Denote the leave-signal-out co-

variance and data matrix as Σ̃ = diag(λ1, . . . , λt−1, λt+1, . . . , λp) = diag(λ̃1, . . . , λ̃p−1) and
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X̃ = [X:1, . . . ,X:t−1,X:t+1, . . . ,X:p], respectively. Let θ̂ = X⊤(XX⊤ + λI)−1y be a ridge regres-

sion estimator. Suppose for some k ≤ n, with probability at least 1 − δ, the condition numbers

of X̃k+1:pΣk+1:pX̃
T
k+1:p and λI + X̃k+1:pX̃

T
k+1:p are at most L′ and L, respectively. Then with

probability 1− δ − 5n−1, we have:

√
λ̃k+1ρk(Σ̃

2
; 0)

L′2λ21(1 + ρ0(Σ;λ))2
≲ CN(θ̂) ≲

√
(1 + SU(θ̂)

2
)L2

(
k

n
+

n

Rk(Σ̃;λ)

)
log n. (3.85)

Proof We begin with the same argument as in Lemma 28 in [27] to write the CN as a quadratic

form of signal vector. For notation convenience, we denote the columns of X to be X:i, i ∈

{1, 2, . . . , p}, and define the leave-one-out quantities X̃ := [X:1, . . . ,X:t−1,X:t+1, . . . ,X:p], Σ̃ =

diag(λ1, . . . , λt−1, λt+1, . . . , λp), and Ã := X̃X̃⊤ + λI,. Then,

CN(θ̂)
2
≤ 2y⊤C̃y + 2SU2z⊤C̃z,

where z = λ
−1/2
t X:t and C̃ := Ã−1X̃Σ̃X̃Ã−1. Because of the sparsity assumption and the

independence between signal and noise features in Assumption 2, y and z are independent of C̃.

Furthermore, y and z are both sub-Gaussian random vector with norm 1 and independent features.

Now consider an ridge estimator with the observation vector ε without looking at the t-feature:

θ̂−t(ε) = (X̃X̃⊤ + λI)−1X̃⊤ε.

The first key observation here is that

y⊤C̃y = ∥θ̂−t(y)∥2Σ̃, z⊤C̃z = ∥θ̂−t(z)∥2Σ̃, (3.86)

so we can bound CN as long as we bound the ∥θ̂−t(ε)∥2Σ̃ for any sub-Gaussian vector ε independent

of X̃ and has unit norm. The second key observation is that ∥θ̂−t(ε)∥2Σ̃ is in fact the variance in the
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regression analysis.

As shown in Lemma 12 of [26],

∥θ̂−t(ε)∥2Σ̃ ≤
ε⊤Ã−1

k X̃0:kΣ̃
−1

0:kX̃
⊤
0:kÃ

−1
k ε

µn

(
Ã−1
k

)2
µk

(
Σ̃

−1/2

0:k X̃⊤
0:kX̃0:kΣ̃

−1/2

0:k

)2 + ε⊤Ã−1X̃k:∞Σ̃k:∞X̃⊤
k:∞Ã−1ε, (3.87)

where Ãk = X̃k+1:pX̃
⊤
k+1:p + λI. For self-containment, we sketch the proof on the variance bound.

For the first term, by Lemma 28, for some constant c1, with probability 1− 2n−1,

ε⊤Ã−1
k X̃0:kΣ̃

−1

0:kX̃
⊤
0:kÃ

−1
k ε ≲ tr

(
Ã−1
k X̃0:kΣ̃

−1

0:kX̃
⊤
0:kÃ

−1
k

)
log n

≲ µn(Ãk)
−2tr

(
X̃0:kΣ̃

−1

0:kX̃
⊤
0:k

)
log n ≲ µn(Ãk)

−2 · nk log n,

where the last follows from the concentration of sum of sub-Gaussian variables. On the other hand,

by Lemma 26, for some constant c2 > 0,

µn

(
Ã−1
k

)2
µk

(
Σ̃

−1/2

0:k X̃⊤
0:kX̃0:kΣ̃

−1/2

0:k

)2
= µ1

(
Ãk

)−2

µk

(
Σ̃

−1/2

0:k X̃⊤
0:kX̃0:kΣ̃

−1/2

0:k

)2
≳ µ1

(
Ãk

)−2

· (n)2,

with probability 1− 8 exp(−c2t).

So the first term is, for some constant c3 > 0, bounded by L2 k
n

with probability 1−16 exp(−c3t).

Similarly for the second term, again by Lemma 28, Lemma 24, and Lemma 27, we have for some

constant c4 > 0,

ε⊤Ã−1X̃k:∞Σ̃k:∞X̃⊤
k:∞Ã−1ε ≲ tr

(
Ã−1X̃k:∞Σ̃k:∞X̃⊤

k:∞Ã−1
)
log n

≲
L2

n2

1

λ̃2k+1ρ
2
k(Σ̃;λ)

· n
∑
i>k

λ̃2i log n ≲
L2n

Rk(Σ̃;λ)
log n,

with probability 1− 16 exp(−c4t).
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Combining all above, we deduce that

CN(θ̂)
2
≲ (1 + SU(θ̂)

2
)L2

(
k

n
+

n

Rk(Σ̃;λ)

)
log n. (3.88)

For the lower bound of CN(θ̂)
2
, as shown in [27],

CN(θ̂)
2
= y⊤Cy ≥ µn(C)∥y∥22 = nµn(C), (3.89)

where C = (XX⊤ + λI)−1X̃Σ̃X̃T (XX⊤ + λI)−1. Now, by Lemma 29, we have

µ1(XX⊤ + λI)−2 ≲
1

(λ1n+
∑p

j=1 λj + λ)2
≲

1

λ21n
2(1 + ρ0(Σ;λ))2

. (3.90)

Also, by the boundness assumption on the condition number of X̃Σ̃X̃⊤ and Lemma 24 we have

µn(X̃Σ̃X̃⊤) ≳
n

L′ λ̃k+1ρk(Σ̃
2
;λ), (3.91)

with probability 1− δ − n−1. Finally, the lower bound in the theorem is established by combining

eq. (3.90) and (3.91):

µn(C) ≥ µ1(XX⊤ + λI)−2µn(X̃Σ̃X̃⊤) ≳
λ̃k+1ρk(Σ̃

2
; 0)

L′2nλ21(1 + ρ0(Σ;λ))2
.

Lemma 40 (Probability of classification error of ridge estimator for dependent features).

Consider the classification task under the model and assumption described in Section 3.4.4 where

Σ = diag(λ1, . . . , λp) and the true signal θ∗ = 1√
λt
et is 1-sparse in coordinate t. Denote the leave-

one-out covariance and data matrix as Σ̃ = diag(λ1, . . . , λt−1, λt+1, . . . , λp) = diag(λ̃1, . . . , λ̃p−1)

and X̃ = [X:1, . . . ,X:t−1,X:t+1, . . . ,X:p], respectively. Let θ̂ = X⊤(XX⊤ + λI)−1y be a ridge
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estimator. Suppose for some t ≤ k ≤ n, with probability at least 1− δ, the condition numbers of

X̃k+1:pΣk+1:pX̃
T
k+1:p and λI+X̃k+1:pX̃

T
k+1:p are at most L′ and L, respectively and λk+1ρk(Σ;λ) ≥

c for some constant c > 0. Then with probability 1− δ − 5n−1, we have:

POE(θ̂) ≲
CN(θ̂)

SU(θ̂)

(
1 + σz

√
log

SU(θ̂)

CN(θ̂)

)
, (3.92)

λt(1− 2ν∗)
(
1− k

n

)
L (λk+1ρk(Σ;λ) + λtL)

≲ SU(θ̂)︸ ︷︷ ︸
Survival

≲
Lλt(1− 2ν∗)

λk+1ρk(Σ;λ) + L−1λt
(
1− k

n

) , (3.93)

√
λ̃k+1ρk(Σ̃

2
; 0)

L′2λ21(1 + ρ0(Σ;λ))2
≲ CN(θ̂)︸ ︷︷ ︸

Contamination

≲

√
(1 + SU(θ̂)

2
)L2

(
k

n
+

n

Rk(Σ̃;λ)

)
log n. (3.94)

Furthermore, if the distribution of the covariate x is Gaussian with independent features, then

POE(θ̂) =
1

2
− 1

π
tan−1 SU(θ̂)

CN(θ̂)
≤ CN(θ̂)

SU(θ̂)
.

Proof This is a direct combination of Lemma 37, 38, and 39.

Lemma 41 (Bounds on the survival-to-contamination ratio between θ̂aug and θ̄aug). Consider

an estimator θ̂aug that solves the objective (3.2). Denote its averaged approximation θ̄aug as in

(3.10). Suppose ∥θ̂aug − θ̄aug∥Σ = O(SU(θ̄aug)) and ∥θ̂aug − θ̄aug∥Σ = O(CN(θ̄aug)). Then, the

probability of classification error of θ̂aug can be bounded by:

1

EM

SU(θ̄aug)

CN(θ̄aug)
≤ SU(θ̂aug)

CN(θ̂aug)
≤ EM

SU(θ̄aug)

CN(θ̄aug)
, (3.95)

where EM:= exp
((

1 + ∥θ̂aug−θ̄aug∥Σ
CN(θ̄aug)

)(
1 + ∥θ̂aug−θ̄aug∥Σ

SU(θ̄aug)

)
− 1
)
∈ [1,∞] denotes the error multi-

plier.

Proof Without ambiguity, we will denote θ̂aug and θ̄aug as θ̂ and θ̄, respectively. Define f(θ) =

log ∥VT θ∥
∥UT θ∥ , where V = e1 and U = [e2, e3, · · · , ep]. Then, for any estimator θ, SU(θ)

CN(θ)
= exp(f(Σ1/2θ̂))
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By the mean value theorem we have

f(Σ1/2θ̂) = f(Σ1/2θ̄) +∇f(Σ1/2η)Σ1/2(θ̂ − θ̄), (3.96)

where η is on the line segment between θ̂ and θ̄. Our goal is to show that ∥∇f(Σ1/2η)∥∥θ̂ − θ̄∥Σ is

small. To this end, firstly, observe that the norm of f ’s gradient has a clean expression,

∥∇f(θ)∥ = 1

∥U⊤θ∥∥V⊤θ∥

∥∥∥∥∥U⊤θ∥VV⊤θ

∥V⊤θ∥
− ∥V

⊤θ∥UU⊤θ

∥U⊤θ∥

∥∥∥∥ (3.97)

=
1

∥U⊤θ∥∥V⊤θ∥

√
∥U⊤θ∥2
∥V⊤θ∥2

∥VV⊤θ∥2 + ∥V
⊤θ∥2

∥U⊤θ∥2
∥UU⊤θ∥2 (3.98)

=
∥θ∥

∥UT θ∥∥VTθ∥
. (3.99)

Hence,

∥∇f(Σ1/2η)∥∥θ̂ − θ̄∥Σ ≤
(∥Σ1/2θ̄∥+ t∥Σ1/2(θ̂ − θ̄)∥)∥θ̂ − θ̄∥Σ

(∥UTΣ1/2θ̄∥ − t∥UTΣ1/2(θ̂ − θ̄)∥)(∥VTΣ1/2θ̄∥ − t∥VTΣ1/2(θ̂ − θ̄)∥)

≤ (∥θ̄∥Σ + t∥θ̂ − θ̄∥Σ)∥θ̂ − θ̄∥Σ
(∥UTΣ1/2θ̄∥ − t∥θ̂ − θ̄∥Σ)(∥VTΣ1/2θ̄∥ − t∥θ̂ − θ̄∥Σ)

, (3.100)

for some t ∈ [0, 1]. Secondly, we use the assumption that CN(θ̄) = ∥UTΣ1/2θ̄∥ ≫ ∥θ̂ − θ̄∥Σ

and SU(θ̄) = ∥VTΣ1/2θ̄∥ ≫ ∥θ̂ − θ̄∥Σ for large enough n. Then, using the fact that ∥θ̄∥Σ ≍

SU(θ̄) + CN(θ̄), eq. (3.100) is bounded by

≲

(
1

SU(θ̄)
+

1

CN(θ̄)
+
∥θ̂ − θ̄∥Σ

CN(θ̄)SU(θ̄)

)
∥θ̂ − θ̄∥Σ

=

(
1 +
∥θ̂ − θ̄∥Σ
CN(θ̄)

)(
1 +
∥θ̂ − θ̄∥Σ
SU(θ̄)

)
− 1. (3.101)

Hence,

f(Σ1/2θ̂) ≥ f(Σ1/2θ̄)−

(
1 +
∥θ̂ − θ̄∥Σ
CN(θ̄)

)(
1 +
∥θ̂ − θ̄∥Σ
SU(θ̄)

)
+ 1, (3.102)
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and

SU(θ̂)

CN(θ̂)
≥ SU(θ̄)

CN(θ̄)
exp

(
1−

(
1 +
∥θ̂ − θ̄∥Σ
CN(θ̄)

)(
1 +
∥θ̂ − θ̄∥Σ
SU(θ̄)

))
:=

SU(θ̄)

CN(θ̄)

1

EM
. (3.103)

The upper bound follows by an identical argument.

Lemma 42. Let θ̂aug and θ̄aug be defined as in (3.10) for a classification task. Recall

∆G := ∥Ex[CovG(x)]
− 1

2CovG(X)Ex[CovG(x)]
− 1

2 − I∥,

and let κ be the condition number of Σaug. Assume ∆G < c for some constant c < 1. Then,

∥θ̄aug − θ̂aug∥2Σ ≤ κ∆2
G

(
SU(θ̄aug)

2
+ CN(θ̄aug)

2
)
. (3.104)

Proof For ease of notation, we denote D̄ := Ex[CovG(x)] and D = CovG[X]. Then,

∥θ̄aug − θ̂aug∥2Σ = ∆2
G∥Σ1/2(X⊤X+D)−1D̄1/2nD̄1/2(X⊤X+ D̄)−1X⊤y∥22

= n2∆2
G∥Σ1/2(X⊤X+D)−1Σ− 1

2Σ
1
2 (X⊤X+ D̄)−1X⊤y∥22

= n2∆2
G∥Σ1/2(X⊤X+D)−1D̄1/2D̄1/2Σ− 1

2Σ
1
2 θ̄aug∥22

≤ κ∆2
Gn

2

µp((X⊤X+D) D̄−1)2
∥θ̄aug∥2Σ ≤ κ∆2

G∥θ̄aug∥2Σ,

where, by the assumption ∆G < c, one can prove µp(
(
X⊤X+D

)
D̄−1)2 ≳ n2 similarly as in

Lemma 34. Finally, recalling Definition 8, we observe that

∥θ̄aug∥2Σ =

p∑
i=1

λi(θ̄aug)
2
i = SU(θ̄aug)

2
+ CN(θ̄aug)

2
.
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Remark 43. Comparing with Lemma 34, we see that the error between θ̂aug and θ̄aug for classifica-

tion and regression are exactly the same with SU2 and CN2 replaced by Bias and Var.

Proof of Theorem 9

Theorem 9 (Bounds on Probability of Classification Error). Consider the classification task

under the model and assumption described in Section 3.4.4 where the true signal θ∗ is 1-sparse. Let

θ̂aug be the estimator solving the aERM objective in (3.2). Denote ∆G := ∥CovG(X)−Ex[Covg(x)]∥,

let t ≤ n be the index (arranged according to the eigenvalues of Σaug) of the non-zero coordinate

of the true signal, Σ̃aug be the leave-one-out modified spectrum corresponding to index t, κ be the

condition number of Σaug, and X̃aug be the leave-one-column-out data matrix corresponding to

column t.

Suppose data augmentation is performed independently for xsig and xnoise, and there exists a t ≤

k ≤ n such that with probability at least 1− δ, the condition numbers of nI+ X̃aug
k+1:p(X

aug
k+1:p)

⊤ and

nI+Xaug
k+1:p(X

aug
k+1:p)

⊤ are at most L, and that of X̃k+1:pΣk+1:pX̃
T
k+1:p is at most L1. Then as long as

∥θ̄aug−θ̂aug∥Σ = O(SU) and ∥θ̄aug−θ̂aug∥Σ = O(CN), with probability 1−δ−exp(−
√
n)−5n−1,

the probability of classification error (POE) can be bounded in terms of the survival (SU) and

contamination (CN), as

POE(θ̂) ≲
CN

SU

(
1 + σz

√
log

SU

CN

)
, (3.105)

where

λaug
t (1− 2ν∗)

(
1− k

n

)
L
(
λaug
k+1ρk(Σaug;n) + λaug

t L
) ≲ SU︸︷︷︸

Survival

≲
Lλaug

t (1− 2ν∗)

λaug
k+1ρk(Σaug;n) + L−1λaug

t

(
1− k

n

) , (3.106)√√√√ λ̃augk+1ρk(Σ̃
2

aug; 0)

L′2(λaug1 )2(1 + ρ0(Σaug;λ))2
≲ CN︸︷︷︸

Contamination

≲

√√√√(1 + SU2)L2

(
k

n
+

n

Rk(Σ̃aug;n)

)
log n

(3.107)

Furthermore, if x is Gaussian and the augmentation modified spectrum Σaug is diagonal then we
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have tighter bounds of

1

2
− 1

π
tan−1 c

SU

CN
≲ POE(θ̂aug) ≲

1

2
− 1

π
tan−1 1

c

SU

CN
≲

CN

SU
, (3.108)

where c is a universal constant.

Proof We can prove the theorem by carefully walking through the proofs of Lemma 37, 38, 39,

and 41 and noting that the error multiplier defined in Lemma 41 is on the order of a constant under

the assumptions made in this theorem.

Proof of Theorem 11

Theorem 11 (POE of biased estimators). Consider the 1-sparse model θ∗ = et. and let θ̂aug be

the estimator that solves the aERM in (3.2) with biased augmentation (i.e., µ(x) ̸= x). Assume that

Assumption 2 holds, and the assumptions of Theorem 9 are satisfied for data matrix µ(X). If the

mean augmentation µ(x) modifies the t-th feature independently of other features and the sign of the

t-th feature is preserved under the mean augmentation transformation, i.e., sgn (µ(x)t) = sgn (xt) ,

∀x, then, the POE(θ̂aug) is upper bounded by

POE(θ̂aug) ≲ POEo(θ̂aug), (3.109)

where POEo(θ̂aug) is any bound in Theorem 9 with X and Σ replaced by µ(X) and Σ̄, respectively.

Proof First, from Lemma 37, we know that the POE can be written as a function of the SU and CN

of θ̂aug. Next, recall that from E. q. (3.7), the biased estimator is given by

θ̂aug = (µG(X)TµG(X) + nCovG(X))−1µG(X)Ty.
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Now, observe that this estimator is almost equivalent to the one with training covariates

µ(x1), µ(x2), . . . , µ(xn),

except that the observation vector y consists of the signs of x1,t,x2,t, . . . ,xn,t instead of ỹ, the signs

of µ(x1,t), µ(x2,t), . . . , µ(xn,t). However, y equals ỹ by our assumption that the sign of the t-th

feature is preserved under the mean augmentation transform. So we can bound the SU and CN of

θ̂aug by just utilizing the bounds in Theorem 9 with X and Σ replaced by µ(X) and Σ̄, respectively.

Proofs of Corollaries

Corollary 14 (Classification bounds for uniform random mask augmentation). Let θ̂aug be the

estimator computed by solving the aERM objective on binary labels with mask probability β, and

denote ψ := β
1−β . Assume p≪ n2. Then, with probability at least 1− δ − exp(−

√
n)− 5n−1

POE ≲ Q−1(1 +
√

logQ) where (3.110)

Q = (1− 2ν)

√
n

p log n

(
1 +

n

nψ + p

)−1

. (3.111)

In addition, if we assume the input data has independent Gaussian features, then we have tight

generalization bounds

POE ≍ 1

2
− 1

π
tan−1Q (3.112)

with the same probability.
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Proof We first note the following key quantities:

Ex[CovG(x)] = ψdiag(Σ) = ψΣ, θ∗
aug = ψ1/2Σ1/2θ∗, Σaug = ψ−1I, λaug = ψ−1,

and the effective ranks of the augmentation modified spectrum are

ρaug
k =

ψn+ p− k
n

, (3.113)

Raug
k =

(ψn+ p− k)2

p− k
. (3.114)

Substituting into Theorem 9 yields the formulas for the components of POE

SU ≍ (1− 2ν)
n

nψ + n+ p
, (3.115)√

np

(nψ + p)2
≲ CN ≲

√
(1 + SU2)

np log n

(nψ + p)2
(3.116)

(3.117)

It remains to check when the conditions ∥θ̂aug − θ̄aug∥Σ = O(SU) and ∥θ̂aug − θ̄aug∥Σ = O(CN)

are met. When p grows faster than n, we will have SU ≍ n
p

and CU ≲
√

n
p
. Then, using Lemma

42, we have

∥θ̂aug − θ̄aug∥Σ ≲ κ1/2∆G(SU + CN) (3.118)

≲ σ2
z

√
log n

n

√
n

p
(3.119)

So, the condition is met for p≪ n2.

Corollary 17 (Group invariant augmentation). An augmentation class G is said to be group-

invariant if g(x) d
= x, ∀g ∈ G. For such a class, the augmentation modified spectrum Σaug in
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Theorem 9 is given by

0 ⪯ Σaug = Σ− Ex[µG(x)µG(x)]
⊤ ⪯ Σ.

Consider the case where the input covariates satisfy x ∼ N (0,Σ). Let x′ be i.i.d. with x

and consider the group-invariant augmentation given by g(x) = 1√
2
x + 1√

2
x′. Then, under the

assumptions of 9 and with probability at least 1− δ− exp(−
√
n)− 5n−1, this augmented estimator

has generalization error

POE ≍ 1

2
− 1

π
tan−1 SU

CN
, where (3.120)

SU ≍ (1− 2ν)
n

2n+ p
,

√
np

(n+ p)2
≲ CN ≲

√
(1 + SU2)

np log n

(n+ p)2
. (3.121)

Proof By definition and the assumption of group invariance,

Σaug = Ex[CovG(x)] = ExEg[g(x)g(x)⊤ − Eg[g(x)]Eg[g(x)]⊤]

= EgEx[g(x)g(x)
⊤ − µG(x)µG(x)

⊤] = EgEx[xx
⊤ − µG(x)µG(x)

⊤]

= Σ− Ex[µG(x)µG(x)]
⊤.

The change of the expectation order follows from the Tonelli’s theorem, while the last inequality is

by the group invariance assumption. Now applying Theorem 9 completes the proof for Σaug.

Now, for the example in this corollary, first note that this is a group-invariant augmentation

as g(x) is Gaussian with the same mean and covariance as x. Direct calculations show that

µG(x) =
1√
2
x and Σaug =

1
2
Σ. Furthermore, CovG(X) = 1

2
Σ is a constant matrix so ∆G = 0 and

the approximation error is zero. Now applying Theorem 9 and 11 yields the result.

Corollary 19 (Generalization of random rotation). The estimator induced by the random-rotation
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augmentation (with angle parameter α) can be expressed as

θ̂rot =

(
X⊤X+

4(1− cosα)

p

(
Tr
(
X⊤X

)
I−X⊤X

))−1

X⊤y.

An application of Theorem 4 yields

Bias(θ̂rot) ≍ Bias(θ̂lse),

for sufficiently large p (overparameterized regime), as well as the variance bound

Var(θ̂rot) ≲ Var(θ̂ridge,λ),

Above, θ̂lse and θ̂ridge,λ denote the least squared estimator and ridge estimator with ridge intensity

λ = np−1(1− cosα)
∑

j λj . The approximation error can also be shown to decay as

Approx.Error(θ̂rot) ≲ max

(
1

n
,

1

tr(Σ)

)
.

Proof The proof is based on the application of Theorem 4, where

ExCovG(x) =
4(1− cosα)

p
(Tr(Σ)I−Σ), Σaug =

p

4(1− cosα)
Σ(Tr(Σ)I−Σ)−1.

Hence, λaug
i ≍

p
4(1−cosα)

λi∑
j λj

, and

Bias(θ̂rot)

≲ ∥θ∗
k+1:∞∥2Σk+1:∞

+
k∑
i=1

(θ∗
i

∑
j ̸=i λj)

2

λi

(
1 +

p

4(1− cosα)n

∑
j>k λj∑
j λj

)2(
4(1− cosα)

p

)2

≲ ∥θ∗
k+1:∞∥2Σk+1:∞

+
k∑
i=1

(θ∗
i

∑
j ̸=i λj)

2

λi

(∑
j>k λj

n
∑

j λj

)2

, for sufficiently large p

≍ ∥θ∗
k+1:∞∥2Σk+1:∞

+ ∥θ∗
1:k∥2Σ−1

1:k
λ2k+1ρk(Σ; 0)2 = Bias(θ̂lse),
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where the last equality is by Corollary 36 with λ = 0. The variance part can be proved similarly.

The approximation error bound is proved in Appendix 3.8.6.

Corollary 44 (Classification bounds for Gaussian noise injection). Consider the independent,

additive Gaussian noise augmentation: g(x) = x + n, where n ∼ N (0, σ2). Let Σ̃ be the leave-

one-out spectrum corresponding to index t. Then, with probability at least 1− exp(
√
n)− 5n−1,

SU ≍ (1− 2ν∗)
λt

λk+1ρk(Σ;nσ2) + λt
, (3.122)

CN ≲

√
(1 + SU2)

(
k

n
+

n

Rk(Σ̃;nσ2)

)
log n, (3.123)

(3.124)

and EM = 1.

Proof As in the regression analysis, we note that in this case, the key quantities are given by

Ex[CovG(x)] = σ2I, θ∗
aug = σθ∗, Σaug = σ−2Σ, λaug = σ−2λ,

and the effective ranks are given by

ρk(Σaug;n) = ρk(Σ;nσ2),

Rk(Σaug;n) = Rk(Σ;nσ2).

Finally, log(EM) is zero because ∆G = 0. Substituting the above quantities into the Theorem 9

yields the result.

Corollary 45 (Classification bounds for non-uniform random mask). Consider the case where
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the dropout parameter ψj =
βj

1−βj is applied to the j-th feature, and assume the conditions of

Theorem 9 are met. For simplicity, we consider the bi-level case where ψj = ψ for j ̸= t. Then,

with probability at least 1− δ − exp(
√
n)− 5n−1,

SU ≍ 1

ψ1 +
pψt

nψ
+ 1

(3.125)

CN ≲

√
(1 + SU2)

np log n

(nψ + p)2
(3.126)

Proof

Let Ψ denote the diagonal matrix with Ψi,i = ψ if i ̸= t and Ψt,t = ψt.

We can then compute the following key quantities:

Ex[CovG(x)] = ΨΣ, θ∗
aug = Ψ1/2Σ1/2θ∗, Σaug = Ψ−1,

and the effective ranks of the augmentation modified spectrum are

ρaug
k =

ψn+ p− k
n

, (3.127)

Raug
k =

(ψn+ p− k)2

p− k
. (3.128)

The approximation error bound proceeds as in the uniform random mask case. Substituting the

above quantities into Theorem 9 completes the proof.

3.8.4 Comparisons between Regression and Classification

Proof of Proposition 20

Proposition 20 (DA is easier to tune in classification than regression). Consider the 1-sparse

model θ∗ =
√

1
λt
et for Gaussian covariate with independent components and an independent

feature augmentation. Suppose that the approximation error is not dominant in the bounds of
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Theorem 4 (simple sufficient conditions can be found in Lemma 35 in Appendix 3.8.1) and the

assumptions in the two theorems hold, then,

POE(θ̂aug) ≲

√
(λaug

k+1ρk(Σaug;n))2 ·
(

n

Rk(Σaug;n)
+
k

n

)
log n,

MSE(θ̂aug) ≳ (λaug
k+1ρk(Σaug;n))

2 +

(
n

Rk(Σaug;n)
+
k

n

)
.

As a consequence, the regression risk serves as a surrogate for the classification risk up to a

log-factor:

POE(θ̂aug) ≲ MSE(θ̂aug)
√

log n. (3.129)

As concrete examples of the regression risk being a surrogate of classification risk, consider

Gaussian noise injection augmentation with noise standard deviation σ and random mask with

dropout probability β to train the 1-sparse model in the decaying data spectrum Σii = γi, ∀i ∈

{1, 2, . . . , p}, where γ is some constant satisfying 0 < γ < 1. Let θ̂gn and θ̂rm be the corresponding

estimators, then

lim
n→∞

lim
σ→∞

POE(θ̂gn) = 0 while lim
n→∞

lim
σ→∞

MSE(θ̂gn) = 1. (3.130)

Also, when p log n≪ n,

lim
n→∞

lim
β→1

POE(θ̂rm) = 0 while lim
n→∞

lim
β→1

MSE(θ̂rm) = 1. (3.131)

Furthermore, the augmentation of Gaussian injection has gone through significant distributional

shift where

W 2
2 (g(x),x)

p

n,σ−→∞, (3.132)
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in which W2 denotes the 2-Wasserstein distance between the pre- and post-augmented distribution

of the data by the Gaussian noise injection.

Proof We begin with proving the first statement. By our assumption that the approximation

error and error multiplier are not dominant terms in generalization errors, we can only consider

bias/variance and survival/contamination. By Proposition 5, the regression testing risk is bounded

by

MSE(θ̂aug) ≲ (λaug
k+1ρk(Σaug;n))

2 +

(
n

Rk(Σaug;n)
+
k

n

)
.

However, by the independence of the original data feature components and their augmentations and

the boundness assumption on ρk, Lemma 2, Lemma 3 and Theorem 5 in [26] shows that there is a

matching lower bound such that

MSE(θ̂aug) ≳ (λaug
k+1ρk(Σaug;n))

2 +

(
n

Rk(Σaug;n)
+
k

n

)
, (3.133)

for some k. On the other hand, by Theorem 9, we know that

POE(θ̂aug) ≲

√
(λaug

k+1ρk(Σaug;n))2 ·
(

n

Rk(Σaug;n)
+
k

n

)
log n, (3.134)

for any k. Now combining E. q. (3.133) and (3.134) along with the inequality x+ y ≥ 2
√
xy for

any x, y ≥ 0 proves the first statement.

To prove the second statement about θ̂gn, note that θ̂gn = (X⊤X + σ2nI)−1X⊤y → 0 almost

surely as σ →∞, so

MSE(θ̂gn) = ∥θ∗ − θ̂gn∥Σ
a.s.−→ ∥θ∗∥Σ = 1.

On the other hand, by Theorem 9, choose k = 0, then

SU(θ̂gn) ≳
n λt
σ2

n+
∑
λj
σ2 + nλt

σ2

, CN(θ̂gn) ≲
1

σ2

√
(
∑
λ2j)n log n

(n+
∑ λj

σ2 )2
,
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So,

POE(θ̂gn) ≤
CN(θ̂gn)

SU(θ̂gn)
≍ 1

λt

√
(
∑
λ2j) log n

n
×
n+

∑ λj
σ2 +

nλt
σ2

n+
∑ λj

σ2

, (3.135)

lim
n→∞

lim
σ→∞

POE(θ̂gn) = lim
n→∞

1

λt

√
log n

n(1− γ2)
= 0. (3.136)

We can prove the statement for θ̂rm similarly. When β → 1, θ̂rm = (X⊤X+ β
1−β diag[X

⊤X])−1X⊤y→

0 almost surely. So MSE approaches 1 almost surely. But by Corollary 14, we have

lim
n→∞

lim
β→1

POE(θ̂rm) = lim
n→∞

√
p log n

n
= 0. (3.137)

Finally, by the closed-form formula of Wasserstein distance between Gaussian distributions,

W2(g(x),x) = ∥(Σ+ σ2I)
1
2 −Σ

1
2∥2F = Ω(pσ2). (3.138)

Proof of Proposition 21

Proposition 21 (Non-uniform random mask is easier to tune in classification). Consider the

1-sparse model θ∗ =
√

1
λt
et. Suppose the approximation error is not dominant in the bounds

of Theorem 4 (simple sufficient conditions can be found in Lemma 35 in Appendix 3.8.1) and

the assumptions in the two theorems hold. Suppose we apply the non-uniform random mask

augmentation and recall the definitions of ψ and ψt as in Corollary 45. Then, if
√

p
n
≪ ψ

ψt
≪ p

n
,

we have

POE(θ̂rm)
n−→ 0 while MSE(θ̂rm)

n−→ 1. (3.139)
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Proof From Corollary 18, we have that the bias scales as

Bias ≲
(ψtn+ ψtp

ψ
)2

n2 + (ψtn+ ψtp
ψ
)2
≍

(ψtn+ ψtp
ψ
)2

(ψtn+ ψtp
ψ
)2

= 1,

where the second asymptotic equality uses the assumption that ψtp
ψ
≫ n. Hence the MSE approaches

a constant (here we use the fact that the MSE bound is tight when the approximation error is non-

dominant, as per [26]). Next we use the bounds in Corollary 45 to find that

SU ≍ 1

ψt +
pψt

nψ
+ 1
≍ 1

ψt +
pψt

nψ

, CN ≍
√

np

(nψ + p)2
.

So, if p≫ nψ, we have

SU

CN
≍ 1/ψt

(1/ψ)
√
p/n

=
ψ/ψt√
p/n
→∞,

and if p≪ nψ, we have

SU

CN
≍

nψ
pψt√
n
p

=
ψ/ψt√
p/n
→∞.

Since we assume we are operating in a regime where the approximation error and error multiplier

do not dominate, we can conclude that POE→ 0.

3.8.5 Derivations of Common Augmented Estimators

Proposition 46 (Common augmentation estimators). Below are closed-form expression of esti-

mators that solves (3.2) with common data augmentation.

• Gaussian noise injection with zero-mean noise of covariance W:

θ̂aug = (X⊤X+ nW)−1X⊤y
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• Unbiased random mask with mask probability β:

θ̂aug =

(
X⊤X+

β

1− β
diag(XTX)

)−1

X⊤y

• Unbiased random cutout with number of cutout features k:

(
X⊤X+

p

p− k
M⊙X⊤X

)−1

X⊤y,

where Mi,j =
k
p
− |j−i|1|j−i|<k−1+k1|j−i|≥k−1

p−k .

• Salt and Pepper (β, µ, σ2):

θ̂aug =

(
X⊤X+

β

1− β
diag

(
X⊤X

)
+

βσ2n

(1− β)2
I

)−1

X⊤y

• Unbiased random rotation with angle α:

θ̂aug =

(
X⊤X+

4(1− cosα)

p2
(
Tr
(
XX⊤) I−XX⊤))−1

X⊤y

Proof To prove all the unbiased augmented estimator formulas, it suffices to derive CovG(X).

Then,

θ̂aug = (X⊤X+ nCovG(X))⊤Xy.

Gaussian noise injection g(x) = x+ n, where n ∼ N (0,W). Therefore,

CovG(X) = n−1
∑
i

CovG(xi) = n−1
∑
i

Eni
[(xi + ni)(x+ ni)

⊤ − xix
⊤
i ] = W.

Unbiased random mask g(x) = (1− β)−1b⊙ x, where b has i.i.d. Bernoulli random variable

with dropout probability β in its component. The factor (1− β)−1 is to rescale the estimator to be
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unbiased. Hence,

CovG(X) = (1− β)−2n−1
∑
i

Ebi
[bib

⊤
i ⊙ xix

⊤
i − xix

⊤
i ]

= n−1
∑
i

(
β

1− β
I+ 11⊤ − 11⊤

)
⊙ xix

⊤
i = n−1 β

1− β
diag

(
X⊤X

)
Random cutout Define h(x) to be the random cutout of k consecutive features, then the unbiased

cutout can be written as g(x) = p
p−kh(x) as Ehh(x) = p−k

k
x. Now,

Covh(x) = Eh[h(x)h(x)⊤]−
(
p− k
p

)2

xx⊤.

Note that Ehh(x)h(x)⊤ = H⊙ xx⊤, where

Hij = P[xi is not cutout and xj is not cutout]

= P[a random k consecutive features does not cover i nor j]

=
p− k − |j − i|1|j−i|<k−1 − k1|j−i|≥k−1

p
.

Hence,

Covh(x) =

(
H−

(
p− k
p

)2

11⊤

)
⊙ xx⊤,(

H−
(
p− k
p

)2

11⊤

)
ij

=
p− k
p

k

p
−
|j − i|1|j−i|<k−1 + k1|j−i|≥k−1

p
,

and

CovG(x) =

(
p

p− k

)2

Covh(x)

=
p

p− k

(
k

p
−
|j − i|1|j−i|<k−1 + k1|j−i|≥k−1

p− k

)
⊙ xx⊤

=
p

p− k
M⊙ xx⊤.
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Salt and pepper This estimator can be derived similarly by combining the derivations of the

random mask and the injection of Gaussian noise by writing the augmentation as

g(x) = (1− β)−1 (b⊙ x+ (1− b)⊙ n) ,

where b has i.i.d. components of Bernoulli random variables with parameter β and n ∼ N (0, I).

Random rotation Given a training example x, we will consider rotating x by a angle α in p
2

random plane spanned by two randomly generated orthonormal vectors u and v. For rotation in

each one of the plan, the data transformation can be written by

h(x) = (I+ sinα(vu⊤ − uv⊤) + (cosα− 1)(uu⊤ + vv⊤))x. (3.140)

The bias of h is ∆ = Eu,v[h(x)] − x. We consider the unbiased transform g by subtracting the

bias from h where g(x) := h(x) − ∆. Since we consider random u and v, they are distributed

uniformly on the sphere of Rp but orthogonal to each other. The exact joint distribution of u and v

is intractable, but fortunately when p is large, we know from high dimensional statistics that they

are approximately independent vector of N (0, 1
p
I). We will thus use this approximation to facilitate

our derivation.

Firstly,

Eu,v[h(x)] = x+ Eu2(cosα− 1)uu⊤x = x+
2

p
x,

so the bias ∆ = 2
p
x which is small in high dimensional space. Secondly, subtracting ∆ from h, we

proceed to calculate the CovG(X) =
∑n

i=1 Covgi (xi)

n
according to Definition 1. After simplification,
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we have

Covgi(xi) = Egg(xi)g(xi)⊤

= Eu,v

[
sin2 α

(
vu⊤ − uv⊤)xx⊤(vu⊤ − uv⊤)

+ (cosα− 1)2
(
uu⊤ + vv⊤ − 2

p
I

)
xx⊤

(
uu⊤ + vv⊤ − 2

p
I

)]

= 2 sin2 α
(
Eu,v

[
⟨v,x⟩⟨u,x⟩uv⊤ − ⟨u,x⟩2vv⊤])

+ 2(cosα− 1)2
(
Eu,v

[
⟨u,x⟩2vv⊤ + ⟨v,x⟩⟨u,x⟩uv⊤ − 4

p
⟨u,x⟩ux⊤

]
+

2

p2
xx⊤

)
.

By direct calculations, we also have,

Eu,v

[
⟨u,x⟩2vv⊤] = Eu,v

[
⟨u,x⟩2

]
Eu,v[vv

⊤] =
∥x∥22
p2

,

Eu,v

[
⟨v,x⟩⟨u,x⟩uv⊤] = xx⊤

p2
.

Now, plugging in the terms into CovG(X) and multiplying the result by p
2

as there are p
2

rotations

completes the proof.

3.8.6 Approximation Error for Dependent Feature Augmentation

In this section, we demonstrate how to bound the approximation error for the augmentation of

dependent features using rotation in a random plane and cutout as two examples. At a high level,

we partition the augmented covariance operator into diagonal and nondiagonal parts D and Q (i.e.,
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CovG(X) = D +Q) and bound them separately:

∆G = ∥ExCovG(x)
−1/2(D +Q)ExCovG(x)

−1/2 − Ip∥

= ∥ExCovG(x)
−1/2(D +Q− ExCovG(x))ExCovG(x)

−1/2∥

≤ ∥D − ED∥+ ∥Q− EQ∥
µp(ExCovG(x))

, ∵ ED + EQ = ExCovG(x).

Approximation error of random rotations

In this section, we will walk through the steps to bound the approximation error for the random

rotation estimator. Specifically, we will prove that

CovG(X) =
4(1− cosα)

np

(
Tr
(
X⊤X

)
I−X⊤X

)
, ∆G ≲

λ1n+
∑

j λj

n
∑

j>1 λj
.

We follow the bound in E.q. (3.17) from the main text:

∆G ≲
∥D − ED∥+ ∥Q− EQ∥

µp(ExCovG(x))
,

where we decompose CovG(X) into diagonal and off-diagonal parts as CovG(X) = D + Q,

D = a
(
Tr
(
X⊤X

)
I+Diag(X⊤X)

)
, Q = a

(
X⊤X−Diag(X⊤X)

)
, and a = 4(1−cosα)

np
= Θ( 1

np
).

Using similar arguments in the proof of Proposition 5 for the independent feature augmentation,

the error of the diagonal part can be expressed as a sum of n independent subexponential variables

divided by Θ(np). Then, by the concentration bound in Lemma 23 we have,

∥D − ED∥ ≲ 1

p

√
log n

n
,

with probability 1− n−1.

On the other hand, by invoking Lemma 29, we also have,

∥Q− EQ∥ = ∥Q∥ ≲
λ1n+

∑
j λj

np
,
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with probability at least 1− 1
n

, using the fact that EQ = 0. Finally,

µp(ExCovG(x)) = 4(1− cosα)
Tr(Σ)−Σ

p
≥ 4(1− cosα)

∑
j>1 λj

p
,

so

∆G ≲
λ1n+

∑
j λj

n
∑

j>1 λj
,

with probability 1− 2n−1. Note that ∆G is o(1) for
∑

j>1 λj ≫ λ1.

Approximation error of random cutout

In this section, we turn our attention to the bound of the approximation error for random cutout,

where k consecutive features are cut out randomly by the augmentation. As the features are dropout

dependently, the random cutout belongs to the class of dependent feature augmentation. For

simplicity, we consider the unbiased random cutout, where the augmented estimator is rescaled by

the factor p
p−k (so µG(x) = x). The calculations in Section 3.8.5 show that

Ex[CovG(x)] =
k

p− k
diag(Σ), CovG(X) =

p

p− k
M⊙ X⊤X

n
, (3.141)

where M is a circulant matrix in which Mi,j =
k
p
− |j−i|1|j−i|<k−1+k1|j−i|≥k−1

p−k and ⊙ denotes the

element-wise matrix product (Hadamard product). Because Σ is diagonal we have,

∆G =
p

k
∥M⊙ (n−1Z⊤Z− Ip)∥,

where Z is a n by p matrix with i.i.d. subgaussian rows that has identity covariance I. Then

∆G =
p

k
·
(∥∥∥∥M̃⊙D +

k2

p(p− k)
n−1Z⊤Z

∥∥∥∥) ≤ p

k
·

∥∥∥M̃⊙D∥∥∥︸ ︷︷ ︸
L1

+

∥∥∥∥ k2

p(p− k)
n−1Z⊤Z

∥∥∥∥︸ ︷︷ ︸
L2

 ,

(3.142)
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where D is an almost diagonal circular matrix with Dij =
∑n

l=1
ZliZlj

n
− δij if |i − j| ≤ k and 0

otherwise, while M̃i,j = Mi,j +
k2

p(p−k) . Our decomposition strategy here is consistent with our idea

in the previous subsection, where we partition the matrix of interest into strong diagonal components

and weak off-diagonal components. However, in the random cutout case, approximately O(k) near

the diagonal components have a strong covariance with intensity of the order O(k
p
) while the rest

of the order O(k
2

p2
); hence, we gather all elements with strong covariance into the “diagonal” part.

Now we will bound L2 and L1 in a sequence.

Like in the previous section, L2 can be bounded by invoking the lemma 29 which gives

L2 ≲
k2

p(p− k)
n+ p

n
,

with probability 1− c
n

for some constant c > 0. For the bounds of L1, we first bound the elements

of D. For i ̸= j, since Z2
ki is sub-exponential we have

Di,j ≤
n∑
k=1

ZkiZkj
n

≤ n−1

√√√√ n∑
k=1

Z2
ki

√√√√ n∑
k=1

Z2
kj ≤ ε,

with probability exp(−nCε2) for some constant C by Lemma 23, where we have used Cauchy-

Schwartz inequality and ε will be determined below. The case where i = j is similar. As there are

O(pk) nonzero terms in D, we choose ε =
√

5 log pk
n

. Then, by union bounds over pk terms, we

obtain

Di,j ≤
√

5 log pk

n
, ∀i, j

with probability at least 1− 1
p3k3

. Next, denote A := M̃⊙D. Note that |Aij| ≲ k
p
ε for all |i−j| ≤ k
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and 0 otherwise. We will bound the operator norm of A. Consider any v with ∥v∥2 = 1,

∥Av∥2 =

√√√√ k∑
i=1

(
k∑
j=1

Aijvj)2 =

√√√√ k∑
i=1

(
∑

j∈i−k:i+k

Ai,jvj)2

≤

√√√√ k∑
i=1

(
∑

j∈i−k:i+k

A2
i,j)(

∑
j∈i−k:i+k

v2
j ) ≤

k

p

√√√√2kε2
k∑
i=1

∑
j∈i−k:i+k

v2
j

= O

(
k2

p
ε

)
,

where we have used the sparsity property that Aij = 0 if |j − i| > k. Therefore, L1 = ∥A∥ ≲

O(k
2

p
ε) = O

(
k2

p

√
5 log pk
n

)
. Now combining the bounds on L1 and L2 and (3.142) we arrive at the

result:

∆G ≲ k

√
log pk

n
,

with probability at least 1− c
n
− 1

p3k3
.

Remark 47. This approximation bound, together with Corollary 35, show that the approximation

error is dominated by the bias-variance (survival-contamination) if 1. over-parameterized regime

(p≫ n): p is upper bounded by some polynomial of n and k ≪
√

n
log p

, or 2. under-parameterized

regime (p≪ n): n is upper bounded by some polynomial of p and k ≪ p√
n

.
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CHAPTER 4

MODEL CALIBRATION WITH LOW-RANK OPTIMAL TRANSPORT

In this chapter, we describe our preliminary work on model calibration with optimal transport for

domain adaptation. The approach is to find a map between the data in both domains so that we can

apply the trained model on the source domain to the data in the target domain through the map. In

this way, the method boils down to finding the map between the data domains, and this is where OT

comes into play. To solve for the map, we propose a robust distribution alignment technique Latent

Optimal Transport (LOT) [33].

4.1 Optimal Transport

Optimal transport (OT) [75, 129, 32] is a distribution alignment technique that learns a transport

plan that specifies how to move mass from one distribution to match another. Specifically, consider

two sets of data points encoded in matrices, the source X = [x1, . . . ,xn] and the target Y =

[y1, . . . ,ym], where xi ∈ X , yj ∈ Y , ∀i, j. Assume they are endowed with discrete measures

µ =
∑N

i=1 p(xi)δxi
, ν =

∑M
j=1 p(yj)δyj

, respectively. The cost of transporting xi to yj is c(xi,yj),

where c denotes some cost function. OT considers the most cost-efficient transport by solving the

following problem:1

OTC(µ, ν) := min
P1=µ,PT 1=ν

⟨C,P⟩, (4.1)

where P := [p(xi,yj)]i,j is the source-to-target transport plan matrix (coupling), and C =

[c(xi,yj)]i,j is the cost matrix. When c(x,y) = d(x,y)p, where d is a distance function,Wp :=

OT1/p
C defines a distance called the p-Wasserstein distance. The objective in (4.1) is a linear pro-

gramming problem, where computation speed can be prohibitive if n is large [130]. A common
1The problem can be generalized to setting of continuous measures by OTc(µ, ν) = minγ∈G

∫
X×Y c(x, y)dγ(x, y),

G = {γ :
∫
Y dγ(x, y) = µ,

∫
X dγ(x, y) = ν}.

122



speedup is to replace the objective by an entropy-regularized proxy,

OTC,ε(µ, ν) : = min
P1=µ,PT 1=ν

⟨C,P⟩ − εH(P) = min
P1=µ,PT 1=ν

εKL(P||K), (4.2)

where K is the Gibbs kernel induced by the element-wise exponential of the cost matrix K :=

exp(−C/ε), H(P) := −
∑

ij Pij log(Pi,j) is the Shannon entropy, and ε is a user-specified hyper-

parameter that controls the amount of entropic regularization that is introduced. We can alternatively

write the objective function as a minimization of εKL(P∥K), where KL denotes the Kullback-

Leibler divergence. In practice, the entropy-regularized form is often used over the original objective

(4.1) as it admits a fast method called the Sinkhorn algorithm [76, 131]. Hence, we will use OT to

refer to the entropy-regularized form unless specified otherwise in the context.

Optimal Transport via Factored Couplings: Factored Coupling (FC) is proposed in [88]

to reduce the sample complexity of OT in high dimensions. Specifically, it adds an additional

constraint to (4.1) by enforcing the transport plan to be of the following factored form,

p(xi,yj) =
k∑
l=1

p(zl)p(xi|zl)p(yj|zl). (4.3)

This has a nice interpretation: zl serves as a common “anchor” that transportation from xi to yj

must pass through. It turns out that FC is closely related to the Wasserstein barycenter problem [132,

133, 134], minν
∑N

i=1W2
2 (µi, ν), where ν is the Procrustes mean to distributions µi, i = 1, . . . , N

with respect to the squared 2-Wasserstein distance. A crucial insight from [88] is that for N = 2,

the barycenter ν could approximate the optimal anchors to a transport plan of the form (4.3) that

minimizes the objective in (4.1).
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4.2 Latent Optimal Transport

4.2.1 Problem formulation

Now we introduce our robust transport method, Latent Optimal Transport (LOT). Consider data ma-

trices X and Y and their measures µ, ν. We introduce “anchors” through which points must

flow, thus constraining the transportation. The anchors are stacked in data matrices Zx :=

[zx1 , . . . , z
x
kx
], Zy := [zy1, . . . , z

y
ky
]. We denote the measures of the source and target anchors

as µz =
∑kx

m=1 p(z
x
m)δzxm and νz =

∑ky
n=1 p(z

y
n)δzyn . For any set A, we further denote ∆k

A :={∑k
i=1 ωiδai

:
∑k

i=1 ωi = 1, ωi ≥ 0, ai ∈ A,∀i
}

as the set of probability measures on A that has

discrete support of size up to k. Hence µz ∈ ∆kx
Zx

, νz ∈ ∆
ky
Zy

, where Zx (resp. Zy) is the space of

source (resp. target) anchors. If we interpret the conditional probability p(a|b) as the strength of

transportation from b to a, then, using the chain rule, the concurrence probability p(xi,yj) of xi

and yj can be written as,

p(xi,yj) =
∑
m,n

p(xi)p(z
x
m|xi)p(zyn|zxm)p(yj|zyn) =

∑
m,n

p(xi, z
x
m)

p(zxm, z
y
n)

p(zxm)p(z
y
n)
p(zyn,yj). (4.4)

When encoding these probabilities using a transport matrix P := [p(xi,yj)]i,j , the factorized form

(4.4) can be written as,

P = Pxdiag(u−1
z )Pzdiag(v−1

z )Py, (4.5)

where Px encodes transport from source space to source anchor space (i.e., p(xi, zxm)), Pz encodes

transport from source anchor space to target anchor space, Py encodes transport from target anchor

space to target space , and uz := [p(zx1), · · · , p(zxkx)], vz := [p(zy1), · · · , p(z
y
ky
)] encode the latent

distributions of anchors. To learn each of these transport plans, we must first designate the ground

metric used to define the cost in each of the three stages. The cost matrices Cx,Cy determine how

points will be transported to their respective anchors and thus dictate how the data structure will be

extracted. We will elaborate on the choice of costs in Section 4.2.2.
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We now formalize our proposed approach to transport in the following definition.

Definition 48. Let Cx, Cy denote the cost matrices between the source/target and their represen-

tative anchors, and let Cz denote the cost matrix between anchors. We define the latent optimal

transport (LOT ) problem as,

OTL(µ, ν) : = inf
µz∈∆kx

Zx
,νz∈∆

ky
Zy

{
OTCx(µ, µz) + OTCz(µz, νz) + OTCy(νz, ν)

}
,

where Zx and Zy are the latent spaces of the source and target anchors, respectively.2

The intuition behind Def. 48 is that we use OTCx(µ, µz) and OTCy(νz, ν) to capture group

structure in each space, and then OTCz(µz, νz) to align the source and target by determining the

transportation across anchors. Hence, LOT can be interpreted as an optimization of joint clustering

and alignment. The flexibility of cost matrices allows LOT to capture different structures and induce

different transport plans. In Section 4.3, we further show that LOT can be regarded as a relaxation of

an OT problem.

Next, we show some properties of LOT that highlight its similarity to a metric.

Proposition 49. Suppose the latent spaces Zx = Zy are the same as the original data spaces

X = Y , and the cost matrices are defined by Cx[a, b] = Cz[a, b] = Cy[a, b] = d(a, b)p, where p ≥ 1

and d is some distance function. If we define the latent Wasserstein discrepancy asWL
p := (OTL)

1/p
,

then there exist κ > 0 such that, for any µ, ν and ζ having latent distributions of support sizes up to

k, the discrepancy satisfies,

• WL
p (µ, ν) ≥ 0 , WL

p (µ, ν) =WL
p (ν, µ), WL

p (µ, ν) ≤ κ
(
WL

p (µ, ζ) +WL
p (ζ, ν)

)
.

The low-rank nature of LOT has a biasing effect that results inWL
p (µ, µ) > 0 for a general µ. We

can debias it by defining its variant W̃L
p (µ, ν) :=

((
WL

p (µ, ν)
)p − min

zk∈Φx

Wp
p (µ, zk)− min

z′k∈Φy

Wp
p (ν, z

′
k)

)1/p

,

where Φx = ∆kx
Zx

, Φy = ∆
ky
Zy

. The following property connects W̃L
p (µ, ν) to k-means clustering.

2This definition extends naturally to continuous measures by replacing cost matrix C with cost function c.
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Corollary 50. Under the assumptions of Proposition 49, if p = 2 and kx = ky = k, then ∀µ, ν,

we have W̃L
2 (µ, ν) ≥ 0. Furthermore, W̃L

2 (µ, ν) > 0 if their k-means centroids or sizes of their

k-means clusters differ.

4.2.2 Establishing a ground metric

In what follows, we will focus on the Euclidean space X = Y = Rd. Instead of considering every

source-to-target distance to build our transportation cost, we can use anchors as proxies for each

point. A well-established way of encoding the distance that each point needs to travel to get to

its nearest anchor, is to define the cost as: Cx = dMx ,Cz = dMz ,Cy = dMy , where dM denotes

the Mahalanobis distance: d2M(x,y) := (x− y)TM(x− y) and M is some positive semidefinite

matrix. The Mahalanobis distance generalizes the squared Euclidean distance and allows us to

consider different costs based on correlations between features. The framework of Mahalanobis

distance benefits from efficient metric learning techniques [135]; recent research also establishes

connections between it and robust OT [136, 137]. When a simple L2-distance is used (M = I), we

will denote this specific variant as LOT-L2.

When LOT moves source points through anchors, the anchors impose a type of bottleneck, and

this results in a loss of information that makes it difficult to estimate the corresponding point in the

target space. In cases where accurate point-to-point alignment is desired, we propose an alternative

strategy for defining the cost matrix Cz. The idea is to represent an anchor as the distribution of

points assigned to it. Specifically, we represent zx, zy as measures in Rd: z̃x =
∑N

i=1Px(xi|zx)δxi
,

z̃y =
∑M

j=1Py(yj|zy)δyj
. Then we measure the cost between anchors as the squared Wasserstein

distance between their respective distributions,

Cz := [W2
2 (Px(·|zxm),Py(·|zyn))]m,n. (4.6)

Besides the quantity itself, the transport plan returned by calculating Cz is also very important as

it provides accurate point-to-point maps. Since the cost matrix is now a function of Px and Py,
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Algorithm 3: Latent Optimal Transport - LOT
1 Input Data matrices X, Y; metric costs Mx,My,Mz; entropy regularization parameters
εx, εy, εz; initial anchors Zx,Zy.

2 while not converging do
3 (vec(Zx), vec(Zy))← Eqn. (4.8) Kx = {exp(−∥X[i]− Zx[j]∥2Mx

/εx)}i,j
4 Ky = {exp(−∥Y[i]− Zy[j]∥2My

/εy)}j,q
5 Kz = {exp(−∥Zx[i]− Zy[j]∥2Mz

/εz)}p,q
6 Px,Py,Pz ←UPDATEPLAN (Kx,Ky,Kz)

7 Return Px, Py, Pz, Zx, Zy
8 UPDATEPLAN (Kx,Ky,Kz)
9 Initialize αx ← 1N ; βx ← 1k1 ;αy ← 1k2; βy ← 1M ;αz ← 1k1 ; βz ← 1k2

10 while not converging do
11 αx ← µ⊘Kxβx; βy ← ν ⊘KT

y αy

12 uz ← ((αz ⊙Kzβz)⊙ (βx ⊙KT
xαx))

1
2

13 βx ← uz ⊘KT
xαx; αz ← uz ⊘Kzβz

14 vz ← ((αy ⊙Kyβy)⊙ (βz ⊙KT
z αz))

1
2

15 βz ← vz ⊘KT
z αz; αy ← vz ⊘Kyβy

16 Return Pi = diag(αi)Kidiag(βi), i ∈ {x, y, z}

we use an additional alternating scheme to solve the problem: we alternate between updating Cz

while keeping Px and Py fixed, and then updating Px,Py,Pz while keeping Cz fixed. An efficient

algorithm is presented in [33] to reduce the computation complexity. This variant, LOT-WA , can

yield better performance in downstream tasks that require precise alignment at the cost of additional

computation.

4.2.3 Algorithm

In the rest of this section, we will develop our main approach for solving the problem in Def. 48.

We provide an outline of the algorithm in Algorithm 2 and an implementation of the algorithm in

Python at: http://nerdslab.github.io/latentOT.

(1) Optimizing Px,Py and Pz: To begin, we assume that the anchors and cost matrices Cx,Cz,Cy

are already specified. Let Kx,Kz,Ky be the Gibbs kernels induced from the cost matrices
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Cx,Cz,Cy as in (4.2). The optimization problem can be written as,

min
uz ,vz ,Px,Pz ,Py

∑
i∈{x,y,z}

εiKL(Pi∥Ki),

subject to: Px1 = µ,PT
x1 = uz,Pz1 = uz,P

T
z 1 = vz,Py1 = vz,P

T
y 1 = ν. (4.7)

This is a Bregman projection problem with affine constraints. An iterative projection procedure

can thus be applied to solve the problem [138]. We present the procedure as UPDATEPLAN in

Algorithm 2, where Px,Pz,Py are successively projected onto the constrained sets of fixed marginal

distributions.

(2) Optimizing the anchor locations: Now we consider the case where we are free to select the

anchor locations in Rd. We consider the class of Mahalanobis costs described in Section 4.2.2. Let

Mx, Mz, My be the Mahalanobis matrices correspond to Cx, Cz, and Cy, respectively.

Given the transport plans generated after solving (4.7), we can derive the the first-order stationary

condition of OTL with respect to Zx and Zy. Let

A =


D(uz)⊗ (Mx +Mz) Pz ⊗Mz

−PT
z ⊗Mz D(vz)⊗ (My +Mz)


The update formula is given by


vec(Z∗

x)

vec(Z∗
y)

 = A−1 ×


(PT

x ⊗Mx)vec(X)

(Py ⊗My)vec(Y)

 , (4.8)

where vec(·) denotes the operator converting a matrix to a column vector, and D(·) denotes the

operator converting a vector to a diagonal matrix. Pseudo-code for the combined scheme can be

found in Algorithm 2.
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(3) Robust estimation of data transport: LOT provides robust transport in the target domain

by aligning the data through anchors, which can facilitate regression, and classification in down-

stream applications. We denote the centroids of the source and target by Qx = diag(u−1
z )PT

xX
T ,

Qy = diag(v−1
z )PyY

T . We propose the estimator X̂ :=
∑

m,n p(z
x
m, z

y
n|x)(Qy

m − Qx
n) =

diag(µ−1)Pxdiag((Pz1)
−1)Pz(Qy −Qx). In contrast to factored coupling [88], where Zx = Zy,

LOT is robust even when the source and target have different structures (see Table 4.1 MNIST-DU,

Figure 4.2).

4.3 Theoretical Analysis

LOT as a relaxation of OT: We now ask how the optimal value of our original rank-constrained

objective in (4.7) is related to the transportation cost defined in entropy-regularized OT. It turns out

their objectives are connected by an inequality described below.

Proposition 51. Let P be a transport plan of the form in (4.5). Assume that K is some Gibbs kernel

that satisfies,

KxKzKy ≤ K, (4.9)

where the inequality is over each entry. Then we have,

εKL(P∥K) ≤ε(KL(Px∥Kx) + KL(Pz∥Kz) + KL(Py∥Ky)) + ε(H(uz) +H(vz)),

where H(a) := −
∑

i ai log ai denotes the entropy.

The proposition shows that an OT objective, corresponding to a kernel K (resp. C), can be upper

bounded by three sub-OT problems defined by subsequent kernels Kx,Kz,Ky (resp. Cx,Cz,Cy)

that satisfies (4.9) (resp. exp(−Cx/ε) exp(−Cz/ε) exp(−Cy/ε) ≤ exp(−C/ε)).

Let us compare the upper bound given by Proposition 51 with Def. 48 and ignore the entropy

terms; we recognize that it is precisely the entropy-regularized objective of LOT . In other words,
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Figure 4.1: Results on Gaussian mixture models. In (a), we apply a rotation between the source and target, in
(b) we add outliers, in (c) we vary the ambient dimension, in (d) the target is set to have 8 components, and we vary
the number of components in the source to simulate source-target mismatch, in (e) we fix the rank to 10 and vary the
number of factors (anchors) used in the approximation. Throughout, we simulate data according to a GMM and evaluate
performance by measuring the classification accuracy (top) and computing the deviation between the transport plans
before and after the perturbations with respect to the Fröbenius norm (bottom).

with suitable cost matrices satisfying (4.9), LOT could be interpreted as a relaxation of an OT

problem in a decomposed form. We then ask what Cx, Cz, Cy should be to satisfy (4.9). In cases

where cost C is defined by the Lp-norm to the power p, the following corollary shows that the same

form suffices.

Corollary 52. Let d(x,y) := ∥x− y∥pp. Consider an optimal transport problem OTC,ε with cost

C[i, j] = d(xi,yj), where p ≥ 1. Then for a sufficiently small ε, the latent optimal transport

OTL with cost matrices, Cx[i,m] = 3p−1d(xi − zxm),Cz[m,n] = 3p−1d(zxm − zyn),Cy[n, j] =

3p−1d(zyn − yj) minimizes an upper bound of the entropy-regularized OT objective in (4.2).

Corollary (52) provides natural costs for LOT to be posed as a relaxation to a OT problem with

Lp norm. More generally, finding the optimal cost functions that obey (4.9) and minimize the gap in

the inequality in Proposition 51 is outside the scope of this work but would be an interesting topic

for future investigation.

Sampling complexity: Below we analyze LOT from a statistical point of view. Specifically, we

bound the sampling rate of OTL in Def. 48 when the true distributions µ and ν are estimated by

their empirical distributions.
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Proposition 53. Suppose X and Y have distributions µ and ν supported on a compact region Ω in

Rd, the cost functions cx(·, ·) and cy(·, ·) are defined as the squared Euclidean distance, and µ̂, ν̂

are empirical distributions of n and m i.i.d. samples from µ and ν, respectively. If the spaces for

latent distributions are equal to Zx = Zy = Rd, and there are kx and ky anchors in the source and

target, respectively, then with probability at least 1− δ,

Err ≤ C

√
k3maxd log kmax + log(2/δ)

N
, (4.10)

where Err = |OTL(µ, ν) − OTL(µ̂, ν̂)|, kmax = max{kx, ky}, N = min{n,m} and C ≥ 0 is

some constant not depending on N .

As shown in [139], the general sampling rate of a plug-in OT scales with N
1
d , suffering from the

“curse of dimensionality”. On the other hand, as evidence from [88], structural optimal transport

paves ways to overcome the issue. In particular, LOT achieves N− 1
2 scaling by regularizing the

transport rank.

4.4 Experiments

In this section, we conduct empirical investigations.

E1) Testing robustness to various data perturbations: To better understand how different

types of domain shift impact the transport plans generated by our approach, we considered different

transformations between the source and target. To create synthetic data for this task, we generated

multiple clusters/components using a k-dimensional Gaussian with random mean and covariance

sampled from a Wishart distribution, randomly projected to a 5-dimensional subspace. The source

and target are generated independently: we randomly sample a fixed number of points according to

the true distribution for each cluster. We compared the performance of the LOT variants proposed in

Section 4.2.2: LOT-L2 (orange curves) and LOT-WA (green curves) with baselines OT (blue curves)

and rank regularized factored coupling (FC) [140] (red curves) in terms of their (i) classification

rates and (ii) deviation from the original transport plan without perturbations, which we compute as
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Err(P−P0) = ∥P−P0∥F/∥P0∥F , where P0 is the transport plan obtained before perturbations.

The results are averaged over 20 runs, and a 75% confidence interval is used. See Appendix ?? for

further details.

When compared with OT, both our method and FC provide more stable class recovery, even

with significant amounts of perturbations (Figure 4.1). When we examine the error term in the

transport plan, we observe that, in most cases, the OT plan deviates rapidly, even for small amounts

of perturbations. Both FC and LOT appear to have similar performances across rotations while OT’s

performance decreases quickly. In experiment (b), we found that both LOT variants provide substan-

tial improvements on classification subject to outliers, implying the applicability of LOT for noisy

data. In experiment (c), we study LOT in the high-dimensional setting; we find that LOT-WA behaves

similarly to FC with some degradation in performance after the dimension increases beyond 70.

Next, in experiment (d), we fix the number of components in the target to be 10, while varying the

number in the source from 4 to 10. In contrast to the outlier experiment in (b), LOT-WA shows more

resilience to mismatches between the source and target. At the bottom of plot (d), we show the

2-Wasserstein distance (blue) and latent Wasserstein discrepancy (orange) defined in Proposition

49. This shows that the latent Wasserstein discrepancy does indeed provide an upper bound on the

2-Wasserstein distance. Finally, we look at the effect of transport rank on LOT and FC in (e). The

plot shows that the slope for LOT is flatter than FC while maintaining similar performances.

E2) Domain adaptation application: In our next experiment, we used LOT to correct for

domain shift in a neural network that is trained on one dataset but underperforms on a new but

similar dataset (Table 4.1, Figure 4.2). MNIST and USPS are two handwritten digits datasets that

are semantically similar but that have different pixel-level distributions and thus introduce domain

shift (Figure 4.2a). We train a multi-layer perceptron (MLP) on the training set of the MNIST

dataset, freeze the network, and use it for the remaining experiments. The classifier achieves 100%

training accuracy and a 98% validation accuracy on MNIST but only achieves 79.3% accuracy

on the USPS validation set. We project MNIST’s training samples in the classifier’s output space

(logits) and consider the 10D projection to be the target distribution. Similarly, we project images
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Table 4.1: Results for concept drift and domain adaptation for handwritten digits. The
classification accuracy and L2-error are computed after transport for MNIST to USPS (left) and
coarse dropout (right). Our method is compared with the accuracy before alignment (Original),
entropy-regularized OT, k-means plus OT (KOT ), and subspace alignment (SA).

MNIST-USPS MNIST-DU

Accuracy Accuracy L2 error

Original 79.3 72.6 0.72

OT 76.9 61.5 0.71

KOT 79.4 60.9 0.73

SA 81.3 72.3 -

FC 84.1 67.2 0.59

LOT-WA 86.2 77.7 0.56

from the USPS dataset in the network’s output space to get our source distribution. We study the

performance of LOT in correcting the classifier’s outputs and compare with FC , k-means OT (KOT)

[88], and subspace alignment (SA) [141].

In Table 4.1, we summarize the results of our comparisons on the domain adaptation task

(MNIST-USPS). Our results suggest that both FC and LOT perform pretty well on this task, with

LOT beating FC by 2% in terms of their final classification accuracy. We also show that LOT does

better than naive KOT . In Figure 4.2a, we use Isomap to project the distribution of USPS images

as well as the alignment results for LOT, FC , and OT. For both LOT and FC , we also display the

anchors; note that for LOT , we have two different sets of anchors (source, red; target, blue). This

example highlights the alignment of the anchors in our approach and contrasts it with that of FC .

Taking inspiration from studies in self-supervised learning [142, 143] that use different transfor-

mations of an input image (e.g., masking parts of the image) to build invariances into a network’s

representations, here we ask how augmentations of the images introduce domain shift and whether

our approach can correct/identify it. To test this, we apply coarse dropout on test samples in MNIST

and feed them to the classifier to get a new source distribution. We do this in a balanced (all digits in

source and target) and an unbalanced setting (2, 4, 8 removed from source, all digits in target). The
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Figure 4.2: Visualization of results on handwritten digits and examples of domain shift. (a) 2D projections of
representations formed in deep neural network before (top) and after different alignment methods (LOT , FC , OT). (b)
confusion matrices for LOT (top) and FC (bottom) after alignment. The transport plans are visualized for LOT (c) and
FC (d) in the unbalanced case.

results of the unbalanced dropout are summarized in Table 4.1 (MNIST-DU). In this case, we have

the features of the testing samples pre-transformation, and thus, we can compare the transported

features to the ground truth features in terms of their point-to-point error (L2 distance). In the

unbalanced case, we observe even more significant gaps between FC and LOT, as the source and

target datasets have different structures. To quantify these different class-level errors, we compare
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the confusion matrices for the classifier’s output after alignment (Figure 4.2b). By examining the

columns corresponding to the removed digits, we see that FC is more likely to misclassify these

images. Our results suggest that LOT has comparable performance with FC in a balanced setting and

outperforms FC in an unbalanced case.

The decomposition in both LOT and FC allows us to visualize transport between the source,

anchors, and the target (Figure 4.2c-d). This visualization highlights the interpretability of the

transport plans learned via our approach, with the middle transport plan Pz providing a concise

map of interactions between class manifolds in the unbalanced setting. With LOT (Figure 4.2c), we

find that each source anchor is mapped to the correct target anchor, with some minor interactions

with the target anchors corresponding to the removed digits. In comparison, FC (Figure 4.2d) has

more spurious interactions between source, anchors, and target.
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CHAPTER 5

CONCLUSION

5.1 Summary of Contributions

In this thesis, we establish frameworks and algorithms to understand and leverage data manipulation

to improve model generalization. We establish a framework to understand the data augmentation

(DA) in the first part of our proposal. Despite DA’s simplicity, when and what DA leads to

generalization improvement for a machine learning model remains elusive in theory; hence, we

study DA theoretically in linear regression, fully characterizing its generalization for different data

distributions and augmentation in our preliminary works. Furthermore, we propose to find the

optimal augmentation based on our analytical bound. In the second part of the thesis, we develop an

data-manipulation algorithm to improve model generalization for the domain adaptation problem.

Our method is an extension to the optimal transport (0T) technique . Although OT is effective for

domain adaptation by finding connections between data in the two domains, it is often vulnerable to

noise and outliers. We thus design a robust low-rank transport to improve upon the ordinary OT in

our preliminary works. We also provide substantial theoretical and empirical analysis to validate

our algorithm.

Our work paves way formodel generalization improvement through pure data manipulations,

and the key contributions can be summarized as follows:

• Establish simple framework to understand DA for linear regression and classifications.

• Show that DA has L2 regularization and change of spectrum effects.

• Provide analytical testbed for novel DA invention.

• Develop Low-rank transportation, more robust to outliers and transformations, which can be

used to calibrate models for domain adaptations.
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• The proposed OT extension is theoretically grounded with low sampling complexity and is an

interpretable relaxation of OT.

5.2 Future Works

For the future work of data manipulation for machine learning, we list two main research directions.

The first direction is to extend our results to the nonlinear model classes. However, we would

like to outline two main challenges. The first is the estimator derived from the learning objective

does not admit a closed-form solution. Hence, to study its generalization, we will have to analyze

the algorithms used to optimize the objective, so a joint consideration of learning dynamic and the

generalization analysis of the resultant estimators must be adopted. The second challenge is that

the optimization is nonconvex which might admits non-unique solution. Fully characterization of

the possible estimators will require additional advanced analytical technique. To bridge the gap

between linear model and artificial neural network (ANN), we think the random feature model is a

good candidate. The reason is that, intuitively, the model still preserves many aspect in linear model

when viewed in the feature space. Further, the connection of ANN and random feature model has

also been established through the theory of neural tangent kernel, which is an interesting direction

to pursue.

A second interesting direction is to consider the adaptive data manipulation strategy where the

augmentation adapts along with the learning process. There is a connection where adaptive gaussian

noise injection augmentation can induce sparsity to the learned model parameters. This opens the

question whether other adaptive augmentation strategy will lead to different properties of models.

The adaptive process will also call for a algorithmic design that might be based on feedback loop or

adversarial learning.

Lastly, in this thesis we show a data manipulation complements the model architecture design

that facilitates efficient machine learning algorithms. We would like to see how this technique can

be applied to more general domains or even the latent space of neural networks.

137



REFERENCES

[1] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep
learning,” Journal of Big Data, vol. 6, no. 1, pp. 1–48, 2019.

[2] V. Iosifidis and E. Ntoutsi, “Dealing with bias via data augmentation in supervised learning
scenarios,” Jo Bates Paul D. Clough Robert Jäschke, vol. 24, 2018.

[3] T. Liu, J. Fan, Y. Luo, N. Tang, G. Li, and X. Du, “Adaptive data augmentation for supervised
learning over missing data,” Proceedings of the VLDB Endowment, vol. 14, no. 7, pp. 1202–
1214, 2021.

[4] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive
learning of visual representations,” in International conference on machine learning, PMLR,
2020, pp. 1597–1607.

[5] J.-B. Grill et al., “Bootstrap your own latent: A new approach to self-supervised learning,”
arXiv preprint arXiv:2006.07733, 2020.

[6] M. Azabou et al., “Mine your own view: Self-supervised learning through across-sample
prediction,” arXiv preprint arXiv:2102.10106, 2021.

[7] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, “Barlow twins: Self-supervised learning
via redundancy reduction,” in International Conference on Machine Learning, PMLR, 2021,
pp. 12 310–12 320.

[8] S. Y. Feng et al., “A survey of data augmentation approaches for nlp,” arXiv preprint
arXiv:2105.03075, 2021.

[9] Q. Wen et al., “Time series data augmentation for deep learning: A survey,” arXiv preprint
arXiv:2002.12478, 2020.

[10] E. Lashgari, D. Liang, and U. Maoz, “Data augmentation for deep-learning-based electroen-
cephalography,” Journal of Neuroscience Methods, vol. 346, p. 108 885, 2020.

[11] R. Liu et al., “Drop, swap, and generate: A self-supervised approach for generating neural
activity,” Advances in Neural Information Processing Systems, vol. 34, pp. 10 587–10 599,
2021.

[12] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning
(still) requires rethinking generalization,” Communications of the ACM, vol. 64, no. 3,
pp. 107–115, 2021.

138



[13] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. R. Le, “Practical data augmentation with no
separate search,” arXiv preprint arXiv:1909.13719, 2019.

[14] A. J. Ratner, H. R. Ehrenberg, Z. Hussain, J. Dunnmon, and C. Ré, “Learning to compose
domain-specific transformations for data augmentation,” Advances in neural information
processing systems, vol. 30, p. 3239, 2017.

[15] T. Dao, A. Gu, A. Ratner, V. Smith, C. De Sa, and C. Ré, “A kernel theory of modern data
augmentation,” in International Conference on Machine Learning, PMLR, 2019, pp. 1528–
1537.

[16] S. Chen, E. Dobriban, and J. H. Lee, “A group-theoretic framework for data augmentation,”
Journal of Machine Learning Research, vol. 21, no. 245, pp. 1–71, 2020.

[17] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are scalable
vision learners,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 16 000–16 009.

[18] T. DeVries and G. W. Taylor, “Improved regularization of convolutional neural networks
with cutout,” arXiv preprint arXiv:1708.04552, 2017.

[19] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond empirical risk
minimization,” arXiv preprint arXiv:1710.09412, 2017.

[20] R. Gontijo-Lopes, S. J. Smullin, E. D. Cubuk, and E. Dyer, “Affinity and diversity: Quanti-
fying mechanisms of data augmentation,” arXiv preprint arXiv:2002.08973, 2020.

[21] J. Yuan, Y. Liu, C. Shen, Z. Wang, and H. Li, “A simple baseline for semi-supervised
semantic segmentation with strong data augmentation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 8229–8238.

[22] M. Assran et al., “Masked siamese networks for label-efficient learning,” arXiv preprint
arXiv:2204.07141, 2022.

[23] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of statistical
learning: data mining, inference, and prediction. Springer, 2009, vol. 2.

[24] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-learning practice
and the classical bias–variance trade-off,” Proceedings of the National Academy of Sciences,
vol. 116, no. 32, pp. 15 849–15 854, 2019.

[25] P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler, “Benign overfitting in linear regression,”
Proceedings of the National Academy of Sciences, vol. 117, no. 48, pp. 30 063–30 070,
2020.

139



[26] A. Tsigler and P. L. Bartlett, “Benign overfitting in ridge regression,” arXiv preprint
arXiv:2009.14286, 2020.

[27] V. Muthukumar, A. Narang, V. Subramanian, M. Belkin, D. Hsu, and A. Sahai, “Classifica-
tion vs regression in overparameterized regimes: Does the loss function matter?” Journal of
Machine Learning Research, vol. 22, no. 222, pp. 1–69, 2021.

[28] K. Wang and C. Thrampoulidis, “Binary classification of gaussian mixtures: Abundance of
support vectors, benign overfitting and regularization,” arXiv preprint arXiv:2011.09148,
2021.

[29] V. Muthukumar, K. Vodrahalli, V. Subramanian, and A. Sahai, “Harmless interpolation of
noisy data in regression,” IEEE Journal on Selected Areas in Information Theory, vol. 1,
no. 1, pp. 67–83, 2020.

[30] N. Courty, R. Flamary, and D. Tuia, “Domain adaptation with regularized optimal transport,”
in Machine Learning and Knowledge Discovery in Databases, Springer, 2014, pp. 274–289.

[31] N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy, “Optimal transport for domain
adaptation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 9,
pp. 1853–1865, 2017.

[32] G. Peyré, M. Cuturi, et al., “Computational optimal transport: With applications to data
science,” Foundations and Trends® in Machine Learning, vol. 11, no. 5-6, pp. 355–607,
2019.

[33] C.-H. Lin, M. Azabou, and E. L. Dyer, “Making transport more robust and interpretable by
moving data through a small number of anchor points,” Proceedings of machine learning
research, vol. 139, p. 6631, 2021.
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