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SUMMARY 

The proposed research aims to explore the reliability and security issues in 

compute-in-memory (CIM) design for accelerating deep neural network (DNN) 

algorithms. On one side, this research focuses on investigating and overcoming the impact 

of non-idealities in CIM designs. We first explore the design space of the CIM inference 

accelerator's quantization and mapping strategies. Several typical design options are 

analyzed and compared from both the software and hardware performance sides. Some 

design options are more robust and hardware friendly than others, inspiring further 

improvement in quantization and mapping strategies. The first work considers non-ideal 

effects from quantization and mapping strategies, with ideal circuits and devices assumed. 

Considering a more real-life situation, reliability issues caused by non-ideal circuits are 

studied. Specifically, the process variation is introduced to ADCs of the CIM inference 

engine, which causes the ADC offset. The effect of ADC offset on the software 

performance is evaluated, and an on-chip fine-tuning solution is proposed to compensate 

for the performance degradation. Embracing the benefit of on-chip fine-tuning, we explore 

the possibility of directly training on-chip of CIM accelerators with analog synapses under 

the non-idealities of devices and circuits. The in-situ training is proven feasible even under 

asymmetry/nonlinearity, device-to-device (D2D) variation, cycle-to-cycle (C2C) variation, 

and a limited number of states. 

On the other side, security vulnerabilities and countermeasures for SRAM-based 

CIM and eNVM-based CIM inference engines are investigated. The SRAM-based 

inference engine must download the model each time after power-on as it is volatile. Thus, 



 xii 

we propose an XOR-CIM-based inference engine working in a two-party system, in which 

encryption and authentication are adopted considering data transmission between servers 

and edge devices. The eNVM-based engines mainly suffer from the information leaking 

problem brought by raw data stored in non-volatile memory. Inspired by the necessary on-

chip fine-tuning to recover the accuracy loss brought by the process variation, a physical 

unclonable function (PUF)-like scheme is proposed against the weight cloning attack and 

to mitigate the transferability of the adversarial examples.  
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CHAPTER 1. Introduction 

Although the concept of machine learning (ML) was proposed a long time ago, its 

development was lagging due to the limited hardware computing power until graphics 

processing units (GPUs) were introduced to this area [1]. In recent years, remarkable 

breakthroughs in machine learning have encouraged applications in various fields, such as 

computer vision, autonomous vehicles, and natural language processing. These successes 

in software, in turn, have motivated the development of hardware accelerators from the 

cloud to the edge. As machine learning models become more and more powerful, their 

implementations also tend to be more and more data-intensive. Thus, the frequent data 

movement becomes the bottleneck of the accelerators based on the conventional von 

Neumann platforms (e.g., CPUs/GPUs). As an alternative solution, compute-in-memory 

(CIM) attracts more and more attention since it merges the compute units directly into 

memory units, alleviating the memory wall problem.  

The principle of CIM for machine learning acceleration is that the crossbar structure 

of the memory array could effectively support dot-product operations, which take an 

extensive part of the calculations in most machine learning applications. Various CIM 

architectures have been proposed to support different kinds of tasks [2, 3, 4, 5]. This work 

mainly focuses on the CIM acceleration for the currently most popular machine learning 

technique, the deep convolutional neural network (DNN). Also, among different types of 

CIM, this work focuses on the mixed-signal CIM approach, which first processes vector-

matrix multiplications (VMMs) in the analog domain and then digitizes the outputs at the 

edge of the array for further processing. 
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1.1 Motivation 

The concept of edge computing is becoming increasingly popular in this era of big 

data and machine learning. On one side, it could reduce bandwidth usage and latency in 

communication. On the other side, it allows applications on edge to be optimized for a 

particular environment timely.  

The most well-known application adopting edge computing is Internet-of-Things 

(IoT), where the calculations can be done locally in edge smart devices such as 

smartphones, smart watches, smart home appliances and so on. Powered by machine 

learning techniques, IoT could mimic intelligent behavior with less human intervention. 

While IoT does not necessarily require edge computing, processing data locally will greatly 

improve calculation efficiency and reduce data transfer. It also reduces the risk of personal 

information leakage, as many smart devices could reflect the owner's behavior and privacy. 

Another application that embraces edge computing is wearable medical devices, which 

care a lot for real-time response and privacy. Machine learning applications have been 

demonstrated to be efficient for various medical purposes. With edge computing, these 

applications could be personalized to everyone's health condition for better performance. 

Besides user specialization, edge computing is also beneficial for environmental 

adaptation. For example, the traffic signals of an intersection could be optimized based on 

the movements, time series, and environmental variables. For cloud computing, the data 

from different locations need to be transformed to the centralized server, and then the 

optimized traffic flow is sent back, introducing big data transfer and delayed response. 

Thus, edge computing is also suitable in this scenario. Like most planning applications, 

traffic signals planning could also be powered by machine learning algorithms. 
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CIM is a promising solution for accelerating these DNN-based machine learning 

applications at the edge, considering its power efficiency. However, it behaves differently 

from traditional digital circuits, requiring more cross-layer designs from algorithm levels 

to hardware implementations. As CIM essentially adopts mixed-signal computations, non-

ideal effects are naturally introduced, which could hamper the accuracy. Thus, performance 

cannot be guaranteed when applications developed in pure digital processors are directly 

mapped to CIM processors. Thus, how to mitigate non-ideal effects and improve the 

reliability of CIM engines to maintain the software performance are remaining problems.  

On the other side, edge devices suffer from higher security risks than the data center 

considering their usage environment. While treats are the same whether the edge devices 

are CIM or digital based, the same solution may not be suitable for both. Due to the weight 

stationary and parallelism computing nature of the CIM, it needs to be taken care of 

differently to avoid hurting its efficiency. Generally, the on-chip DNN model, trained with 

extensive resources, is identified as a valuable asset to be protected. Effective and 

lightweight countermeasures are desirable to prevent DNN model leaking and reverse 

engineering. 

1.2 CIM basics 

The CIM structure discussed throughout this research is based on the mixed-signal 

calculation unit demonstrated in Figure 1 (a). It utilizes the crossbar structure of the 

memory array to accelerate vector-to-matrix multiplications (VMMs) in the analog 

domain. More precisely, the components of a matrix (weights) will be mapped to the 

memory cells in the array. The scalars in the vector (inputs) will be applied to the cells 
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through the horizontal wires of the array, which are generally the word lines (WLs) of the 

array. An analog signal will be generated at each cross-point to multiply the input and 

weight. Generally, the analog signal can be a current generated based on Kirchoff's law. 

The analog signals from the same column will be accumulated through the horizontal 

wires, which are usually the array's bit lines (BLs). This way, the array's output will be 

analog signals proportional to the VMM results.   
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Figure 1 - CIM basics. (a) A basic mixed-signal CIM array for VMM acceleration (b) 

Mapping from a convolutional layer to the CIM subarrays.  
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The CIM structure could accelerate the DNN-based applications, which usually 

contain a lot of VMM operations in the Convolutional (CONV) layers and Fully-Connected 

(FC) Layers. The operations in FC layers are VMMs in nature. However, the CONV layers 

usually have to stretch the 4D kernel to a 2D matrix. Considering a weight kernel of a 

CONV layer has the size 𝑘1 × 𝑘2 × 𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡, the operation of the CONV layer could be 

viewed as VMM between input vectors and a 2D weight matrix with size 

(𝑘1 × 𝑘2 × 𝐶𝑖𝑛) × 𝐶𝑜𝑢𝑡 in principle. In general, this stretched 2D matrix could be much 

bigger than the CIM array size (𝑀 × 𝑀) and thus has to be cut into multiple subarrays. 

Different stretching/cutting methods have been proposed based on the architecture and data 

flow. In this research, we adopt the method demonstrated in Figure 1 (b), which views the 

weight array as 𝑘1 × 𝑘2 2D sub-matrixs with size 𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡 first. A sub-matrix could be 

further divided into multiple subarrays. In this way, there will be in total 𝑘1 × 𝑘2 × (𝐶𝑖𝑛/

𝑀) × (𝐶𝑜𝑢𝑡/𝑀) subarrays per weight digit needed for the layer.  

1.3 CIM reliability and security issues 

1.3.1 Compute-in-memory reliability issues 

Many CIM architectures have been proposed based on various memory types. 

Generally, static-random-access-memory (SRAM) and emerging non-volatile memories 

(eNVMs) are popular for in-memory computing. On one side, eNVMs are alluring due to 

their non-volatility, high density, low leakage, and multilevel programmability. On the 

other hand, the SRAM is highlighted with the fast write speed, low write energy, scalability 

to more advanced tech nodes, and flexibility of function integration as it is CMOS-based. 

SRAM-based and eNVMs-based CIM accelerators could suffer from common or peculiar 
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limitations in mixed-signal computation, such as ADC quantization loss, IR drop, read 

disturbance, process variations, etc.  

ADCs will introduce non-idealities into the CIM accelerators regardless of the device 

used. First, it is usually impractical to use full-precision ADCs in the CIM array 

considering their size and energy consumption. Reducing the ADC precision will introduce 

quantization errors, which may diminish the performance of the DNN on-chip. Techniques 

have been explored to reduce the required ADC precisions while maintaining performance. 

The ISSAC [6] design reduces the ADC from full precision by 1-bit using weight encoding. 

The encoding method first checks whether the weights are collectively large for each 

column of weights. If not, the weights are stored in their original form. Otherwise, the 

weights are saved in a “flipped” form. In such a method, even with the maximal inputs, the 

sum of products always yields an MSB of 0, and the 1-bit lower precision ADCs would not 

introduce quantization error. Later, the AEPE [7]  design proposes further reducing the 

ADCs’ precision at a balanced expense of accuracy degradation. By checking the statistics 

of the DNN value, they find that the most significant bits (MSBs) carry much less 

information (which means most of the MSBs are small or even zeros) than the least 

significant bits (LSBs). Thus, a bounding method that only keeps the least significant bits 

was used to reduce the ADC precision. Evaluation results show that this bounding method 

introduces negligible accuracy loss with up to 2-bit quantization loss for big networks such 

as AlexNet [8], VGG-16 [9], and ResNet-50 [10] for ImageNet classification. In [11], Sun 

et al. utilize non-linear quantization to minimize the ADC precision with negligible 

accuracy. The non-linear levels are determined via the Lloyd-Max algorithm and mapped 

by a look-up table. It is shown that for MLP on MNIST classification, the ADC precision 
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can be reduced by 3-5 bits according to the subarray size. For the CNN on CIFAR-10, the 

acceptable ADC loss is within the range of 2 to 4 bits for different subarray sizes. The prior 

works are mainly targeted at inference accelerators. For the training engines, the weight 

statistics vary with time, especially at the beginning, requiring a relatively higher ADC 

quantization precision. 

Another concern caused by digitization is the input offset on analog readout circuits 

(i.e., sense amplifier) caused by process variations. This offset bias the ADC’s references 

away from their desired value, thus introducing ADC quantization errors. To overcome 

this problem, Yin et al. [12] compensate for this offset by fine-tuning the references after 

fabrication. An automatic algorithm is proposed to generate the correction step 

proportional to the difference between the ideal and actual ADC outputs, scaled by a factor 

decreasing with correcting iterations. One drawback of this method is that, while the offset 

is static after fabrication for certain sense amplifiers (SAs), they are random across 

different SAs. Thus, the references need to be fine-tuned for each SA on-chip. Advanced 

sensing offset cancellation techniques are proposed with increased circuit complexity as a 

replacement. For example, a triple-margin small-offset current-mode sense amplifier 

(TMCSA) is proposed in [13], and a dual-bit small-offset current-mode sense amplifier 

(DbSO-CSA) is proposed in [14]. Compared to the traditional CSA design, which 

compares input’s and reference’s current in two symmetric branches, these advanced 

designs sense the current difference in the same branch: the input current is copied to the 

pull-up/pull-down circuit while the reference current is copied to the pull-down/pull-up 

circuit. In this case, the offset between the input pairs of two branches is avoided. In 

addition, the TMCSA could amplify the current difference by three times to tolerant small 
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read/sense margins, while the DbSO-CSA uses two reference currents to generate a 2bit 

sense result, reducing the number of references and sense time. 

Wire resistance is also a common problem in all CIM accelerators and will be more 

and more severe as technode scales down. The wire resistance will cause IR drop, making 

currents contributed by the cells vary across different cross-points. Liu et al. propose 

compensation methods for IR-drop in [15]. For the inference engine, they fine-tune the 

resistance of the cell to make the combination of cell and wire resistance close to the ideal 

value to represent the weight. For the inference engine, they fine-tune the resistance of the 

cell to make the combination of cell and wire resistance close to the ideal value to represent 

the weight. For the training compensation, the programming width is modulated by the cell 

location, considering the IR drop of the writing voltage. Still, the resistance of the cell is 

targeted at a value that makes the combination of cell and wire resistance represent the 

weight. Instead, He et al. treat the IR drop as noise and utilize the noise robustness of the 

neural network to eliminate its effect [16]. They approximate the IR drop as an additive 

Gaussian noise at the edge of the crossbar arrays and train the network with noise injected. 

Tested on a LetNet-5 on MNIST classification, the network still converges with noise 

injected and shows much better IR-drop robustness.  

Besides, some non-idealities are caused by circuit structures and thus vary from one 

design to another. One drawback is the nonlinearity in the analog output signal caused by 

the readout circuits. For example, if resistors or capacitors are used as loads of current 

mirrors or convert the current to voltage, the readout currents/voltages may saturate as 

partial sums increase. One straightforward solution is to map ADCs’ references 

accordingly, considering the nonlinearity, as shown in [17]. Instead, Yoon et al. [18] 
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propose a readout circuit with input-aware current control and a feedback amplifier to force 

linear output voltage at the expense of increased energy consumption.  

Read disturbances exist in both SRAM-based and eNVM-based CIMs but work 

differently. For the 6T-SRAMs, the VMM is implemented by activating several rows 

simultaneously. If the bit line (BL) voltage drops below the write margin due to numerous 

pull-down branches, the nodes storing “1” will be flipped. One straightforward way to 

avoid data flipping is to limit the voltage swing on BL, decreasing the voltage difference 

between different partial sums. A more practical way is to use SRAM cells with the 

decoupled read port, as in many previous works [19] [20] [21]. The read disturbance of 

eNVMs defines the phenomenon that the read current gradually shifts the cell’s 

conductance. As presented in [22], a higher read current will cause a larger shift, indicating 

that a small read voltage is preferred. However, as a drawback, the sense margin of the 

ADCs will be limited. Chen et al. [23] point out that the single-level cell is preferred over 

the multilevel cell in terms of robustness to read-disturb. The work in [22] also observes 

that the middle levels have a relatively weak disturbing immunity. 

Another issue in 6T SRAM is the distinct behaviors between input “1” multiplied by 

weight “0” and input “0” multiplied by weight “1”. When the input is “1”, it is represented 

as the on-state of the access transistor. Thus, if the weight stored in the Q node is “0”, there 

will be a discharge path contributed by this “0-1” combination. On the contrary, if the input 

is “0”, the access transistor will be off, and no discharge/charge path will exist. This 

asymmetry will cause input-dependent analog output shift and make it hard to design ADC 

references. Similar to the read disturbance problem, this issue could be solved by the 

decoupled read port for product operation.  
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Compared to SRAM, eNVM suffers from more device non-idealities. Some non-

idealities matter only in training, while others degrade the inference performance. First of 

all, the eNVM cells have limited dynamic ranges, which defines the on/off ratio between 

the maximum conductance (𝐺𝑚𝑎𝑥) and the minimum conductance (𝐺𝑚𝑖𝑛). As the cells use 

different conductance levels to encode weights, the dynamic range will limit the number 

of levels the cell can represent. For example, STT-MRAM usually has a small on/off ratio 

and can only be used as binary cells, while ReRAM can be used as multi-level cells [24]. 

Another issue caused by the small dynamic range is the small difference between the 

currents contributed by 𝐺𝑚𝑎𝑥 and 𝐺𝑚𝑖𝑛. Normally, the weight “0” is represented by 𝐺𝑚𝑖𝑛 

and 0V represents input "0". In this case, input “0” will contribute no current, while the 

𝐺𝑚𝑖𝑛 with non-zero input will still cause some current. If the on/off ratio is big, the current 

contributed by non-zero input and weight “0” can be neglected. Otherwise, the 𝐺𝑚𝑖𝑛 will 

cause the same input-dependent analog output shift problem as the 6T SRAM. In [25], a 

dynamic reference generation scheme was used to solve this problem. Instead, Luo et al. 

[26] find that the current contributed by 𝐺𝑚𝑖𝑛 could be substracted and has a very limited 

impact on the performance if a reference column is used. Furthermore, while a single 

dynamic range is reported as the average case for a type of device, different cells of the 

same device could have conductance variation. Luckily, this variation is tolerable in two 

aspects. On one side, the neural network itself is noise-robust to some extent. On the other 

side, this variation can be mitigated by the write-verify scheme to write the cell [27]. Apart 

from the dynamic range, data retention is also a concern that limits the number of levels of 

the cell. 
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The eNVM cells can be viewed as analog synapses in training. The number of levels 

defines the smallest step that can be taken to update the cell value. The dynamic range still 

matters, and a high on/off ratio is desired. On the contrary, retention is no longer a problem 

since the cell is updated frequently. For most eNVMs, the trajectory for potentiation and 

degradation is non-linear and asymmetrical [28]. As reported by [29], the non-linear but 

symmetrical update of weight conductance will not cause a big accuracy loss for training. 

At the same time, the non-linearity combined with asymmetry will greatly degrade the 

training performance. From the hardware side, people solve this by introducing capacitors 

to hold part of the weights during training as it is much more linear, such as PCM+3-

transistor-1-capacitor [30] or 2-transistor-1-FeFET [31]. From the software side, a tiki-taka 

algorithm is proposed for the training with non-linearity/asymmetry [32]. Moreover, each 

cycle’s conductance change could be different even for the same writing pulses, 

introducing noise in weight update. Finally, the endurance of the cell will also limit the 

training performance.   

1.3.2 Compute-in-memory security issues 

Besides the reliability issues related to the CIM architecture, various security 

concerns different from the traditional von Neuman architecture are also introduced. As 

mentioned before, the CIM architecture takes advantage of the crossbar structure to 

accelerate the VMM operation with weight stored at the cross point, which forces the 

weights stored in memory to stay in their raw format. However, using CIM on edge devices 

makes it unsafe to directly save the data in raw format, especially for eNVM-based CIM.  
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In [33], the authors propose a defense method to thwart the Replication Attack 

against the memristor-based neuromorphic computing system (MNCS). Their system 

assumes the drone with the ability of on-chip training instead of inference only. The drone 

is initially untrained and needs to request the training datasets from the base station. Before 

the drone is used for inference, a secure session will be established under some 

authentication protocols. An encrypted training set will be sent to the drone, where it will 

be decrypted for training. The well-trained model on-chip will fail to work after N times of 

inferences due to the read disturbance. Then, the drone must require the training set again 

to recover the performance. The authors claim that the MNCS could defend against 

eavesdropping and spoofing attacks by utilizing authentication and encryption protocols. 

The probing attack is also considered impossible because of the high density of memristors 

and compact 3D stack structure. The only concern is the chosen input attack, which uses 

the drone to generate custom input/output pairs to infer the weights. Once the network is 

well-trained for the memristor-based system, anyone with physical access to the drone 

could generate input/output pairs using it. These pairs could be used to infer the model one-

chip. To defend against this kind of attack, they designed their MNCS such that the drone 

would work well for N times. After that, the accuracy will degrade rapidly and need to be 

recovered with the training set from the base station. If an adversary obtains a drone with 

a well-trained model, he/she cannot pass the authentication protocol to get the set. Thus, 

he/she could get no more than N pairs of data, which are not enough for the weight 

inference.  

On the contrary, another work [34] still treats the probing attack as a threat and 

proposes a framework consisting of sparse fast gradient encryption (SFGE) method and 
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runtime encryption scheduling (RES) scheme to defend against it. The model stored on-

chip is encrypted with a small offset added to some of the weights in the proposed 

framework. The key of SFGE is composed of the encrypted location and the encrypted 

sign. The sign is found through the gradient so that the performance of the model on-chip 

could be killed by just tuning a small number of weights with a small value. The encryption 

of SFGE is just the addition of the weights and the key, while the decryption is the 

subtraction. There will be a trade-off between the overhead and the encryption 

effectiveness for this SFGE method. The paper shows that different networks might require 

a different number of weights per layer to be encrypted to achieve desired performance 

degradation. Overall, the bottom line of the requirement is small compared to the whole 

network and thus makes the overhead acceptable. During the calculation, the weight is 

decrypted to the raw format for CIM operation. Thus, the RES is used to avoid the 

adversary interrupting the system during runtime and getting an unprotected model on-

chip. Thanks to DNNs’ layer-by-layer nature, the decryption/encryption of the weights 

could also be done in this way. Thus, only one layer is in plaintext during runtime and will 

be immediately encrypted after work. The RES will hide the decryption of the next layer 

and the encryption of the previous layer under the operation of the current layer. Thus, the 

latency overhead is small. 

1.4 Thesis overview 

This thesis addresses the reliability and security issues related to CIM accelerators. 

The reliability issues caused by non-idealities from architecture, circuits, and devices are 

discussed with improvement methods proposed. Security vulnerabilities are considered 



 14 

based on the device type used for the CIM accelerator. Lightweight countermeasures are 

proposed correspondingly. The thesis is organized as shown in Figure 2. 

 

Figure 2 - Thesis overview 

Chapter 1 gives an overview of the background of the thesis, including the 

motivation for studying the reliability and security issues in CIM accelerators, the basics 

of CIM for DNN accelerations, and the state-of-the-art works related to the reliability and 

security of CIM. 

Chapter 2 discusses the design flow and typical options for mapping the DNNs to 

the CIM architectures [35]. The reliability and hardware performance of combinations of 

two quantization methods (i.e., DF and WAGE) and three number mapping schemes (2's 

complement, differential pair, and shifted unsigned INT) are evaluated. Different ADC 

schemes (linear vs. nonlinear) are also studied for better implementation. The evaluation 

results show that the energy efficiency could be improved by ~2× with 1.2~1.6× throughput 

and 5%~25% smaller area by optimizing the design options of DNNs mapping only. 
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Different reliability under small on/off ratios and ADC quantization are also shown for 

different design options. 

Chapter 3 introduces the effect of process variation on the CIM accelerator, which 

mainly causes the sense amplifier (SA) mismatch and, thus, the analog-to-digital converter 

(ADC) offset [36]. A model of generating ADC offset from the sense pass rate tested from 

SA is proposed. With the proposed model, the software performance of CIM accelerators 

with different ADC topologies (SAR-ADC and Flash-ADC) is evaluated. Flash-ADC 

shows better robustness under process variation. Meanwhile, a hybrid fine-tuning scheme 

is proposed to compensate for the accuracy degradation caused by ADC offset. 

Chapter 4 explores the potential of on-chip training with analog-synapse-based 

CIM [37, 38]. The non-idealities like nonlinearity/asymmetry of potentiation and 

depression, device-to-device variation, cycle-to-cycle variations, and ADC quantization 

for both inference and backpropagation are studied for training. The momentum solution 

with stochastic gradient quantization is proposed to overcome the drawbacks of software 

performance caused by the non-idealities. In addition, a segmented gradient calculation 

method is proposed to reduce the DRAM access in training to maintain the hardware 

performance.     

Chapter 5 presents a lightweight SRAM-based CIM inference engine with a 

protocol for chip authentication and key processing [39, 40]. An XOR-CIM core is 

demonstrated with Dual-WL 6T SRAM cells, which integrate the XOR decryption into the 

CIM operation. By utilizing the XOR-CIM core, the model in transmission and stored on-
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chip could always be encrypted. The overhead from protocol and protection is proven small 

on energy, latency, and area by utilizing partial encryption. 

Chapter 6 presents the vulnerabilities and countermeasures specific to eNVM-

based CIM accelerators [36, 41]. The chip-cloning attack and transferability of adversarial 

examples are demonstrated as threats to the eNVM-based CIM chip for edge devices. The 

on-chip fine-tuning to recover the performance degradation under process variation are 

proved efficient in defending these two treats with very small hardware overhead. 

Finally, Chapter 7 summarizes the contribution of this thesis. Future work is also 

proposed in this chapter. 
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CHAPTER 2. Hardware-Aware Quantization/Mapping Strategies 

for Compute-In-Memory Accelerators 

2.1 Motivation 

Various CIM designs implemented with different kinds of memory cells have been 

recently proposed for edge inference of CNN [6, 7, 42], and several macro chips have been 

demonstrated with impressive energy efficiency [11, 12, 43]. While there is a demanding 

interest in CIM accelerators, studies mostly focus on hardware development on the macro 

level. However, due to the analog processing manner in the CIM crossbar structure, 

mapping a DNN model from a digit system to CIM macros is not straightforward. Thus, 

neural network mapping (NNM) strategies are needed to fill the gap between them. In 

previous CIM works, each design applies variations of the mapping strategies based on the 

designers' intuitions, which cover merely a small portion of NNM's large design space. 

There is no clear reason why some options are chosen over others, making it hard for the 

following designers to do a comprehensive early-stage NNM design instead of random 

attempts. However, mapping methods could introduce different quantization losses or 

reliability under non-ideal effects, leading to different hardware and software performances 

for the same task. It is important to understand the reasons causing these differences for 

better mapping strategies designed for good hardware performance and reliability.  

2.2 Low precision neural network 

 Today’s AI researchers tend to improve the DNN’s software performance with 

larger and larger networks without considering the hardware cost, making them originally 
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unfriendly for edge devices with limited area and power budgets. To solve this problem, 

people propose compact network structures [44, 45] or quantization on large networks [46, 

47, 48, 49] to reduce the computation and memory costs. The compact networks are 

unsuitable for CIM-based inference engines since they still adopt floating-point 

computations that are not friendly to the crossbar structure of the CIM array. Moreover, 

they usually contain depth-wise convolution layers, which have small fan-in and thus are 

not efficient to be implemented with CIM arrays. On the contrary, quantized networks are 

hardware friendly to CIM accelerators as they usually assume fixed-point VMM operations 

with low precision parameters.  

We can view the network quantization as a process to map the high-precision 

floating-point inputs/weights to the low-precision fixed-point inputs/weights without 

hurting the models’ software performance. Previous works [47, 48, 49, 46, 50, 51] have 

proved that DNNs could be quantized to 1~8 bit weights/inputs with negligible accuracy 

loss. Theoretically, the hardware performance could be improved by decreasing the VMM 

parameters’ precision. Thus, most network quantization algorithms are aimed at 

minimizing the parameters’ precision. However, the scalability of aggressive quantization 

methods to large networks for complicated tasks could be a problem. Normally, the 

network quantization approaches could be sorted into post-training quantization or 

quantization-aware training. On average, the latter category has presented a more 

aggressive precision reduction, with some even adopting binary input/weight [50, 51]. 

Considering the generality of a practical design from the hardware’s perspective, less 

aggressive quantization-aware training methods with good scalability and flexibility will 

be preferred for the CIM inference engine [47, 48, 49, 46]. These works usually directly 
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use the parameters’ precision to evaluate the efficiency of hardware performance 

improvement without real evaluations done on the hardware side. There is no clue whether 

quantization methods can make a difference in real implementation under the same 

parameter precision. In this work, we compared two typical quantization-aware training 

algorithms and discussed their properties from the hardware’s perspective. 

 𝑌 = 𝐶 ∙ (𝑋 + 𝐷) (1) 

Linear quantization could be viewed as an affine map from the real value (𝑌) to the 

quantized value (𝑋) as equation 1 in a general format [47]. X generally represents a sub-

range of 𝑌 since it has lower precision than 𝑌, which we call a quantization range. The 

quantization range selection is critical to the software performance of the quantized 

networks. From previous work, there will not be a big change in the statistics of the DNN’s 

weights during training, and quantizing them into a range between [−1,1] will not cause a 

significant loss in the software performance. Compared to the weights, inputs could vary a 

lot during training and across different network structures and normally require careful 

quantization range selection with some preprocesses for quantization.  

We group the quantization methods into two categories based on whether the 

quantization range is flexible. The first one uses a fixed range across all the layers, which 

could be viewed as a fixed-point quantization. This method is possible since there are 

normally some normalization layers before the CONV/FC layers in DNNs, so the 

CONV/FC layers will see similar statistics during training and across layers. A typical 

example is the WAGE method [46], which always clips the input range to [−1,1] with 

some factors for normalization between layers. Since these normalization factors are pre-
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calculated before training and kept fixed during training, the scalability of WAGE is proven 

poor as the network goes deep or the network structure becomes complicated. The 

upgraded WAGE [52] introduces batch-normalization (BN) (i.e., WAGEBN) to replace 

the fixed normalization factor while still keeping the [−1,1] input quantization range. As 

BN will calculate the normalization factor on the fly, the new version becomes more robust 

across different networks. However, BN only works on the mean and standard deviation 

of the inputs to format the statistics instead of fitting the output into the quantization range 

we picked. Thus, when passing the BN output to the CONV/FC layer, there might still be 

some overflow or underflow loss that hurts the software performance.  

 On the contrary, the other category tries to dynamically decide the quantization 

range from the input statistics during training. In [48], this quantization with a dynamically 

decided range is called a dynamic fixed-point (DF) number scheme. This DF could be 

explained by equation 1 as different input (𝑌) range are mapped to the same fixed-point 

number set 𝑋 by using flexible 𝐶. This method requires extra calculation to decide the 

dynamic ranges during training. Once the training is done, the ranges are fixed during 

inference but could differ from layer to layer.  As the range is directly calculated from the 

inputs, it will have less probability of causing a big overflow or underflow loss. There are 

different ways to decide the dynamic ranges from the inputs. In this work, we assume the 

simplest one, which takes the maximum value of the absolute inputs. 

 This work compared the hardware performance of these two quantization methods, 

namely WAGE and DF, as illustrations to show that the quantization method will affect 

the data distribution and further change the hardware performance even though the same 

precision is adopted. Figure 3 shows the software-trained accuracy results of these two 
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quantization methods on the VGG-8 network for CIFAR-10 classification and the ResNet-

18 network for CIFAR-100/ImageNet (subset) classification. Both quantization methods 

could achieve the floating-point baseline accuracy with 8-bit input and 2 to 8-bit weight.  
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Figure 3 - Accuracy performance vs. network quantization approaches with (a) 8-bit 

weight/8-bit input and (b) 2-bit weight/8bit input.  

2.3 Neural network mapping 

After quantizing the high-precision floating-point parameters (Y) of the CONV/FC 

layers into low-precision fixed-point values (X), it will be much easier to map them to the 

CIM macro. We divide the mapping of DNN to the CIM architectures into three steps. 

Firstly, as most of the CIM architectures for DNN adopt a mixed-signal scheme that 

conducts MAC operations in the analog domain, we need to decide how to map the inputs 

and weights of MAC operations into the analog representations. Then, as some inter-layer 

operations, such as BN, ReLU, and pooling functions, are still done in the digital domain, 

we need to define the process of converting the analog MAC results back to digital signals, 

namely, the ADC scheme. Finally, for a functional DNN engine, we must define the 

components used to do the digital processing. Although the hardware implementations 
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could vary from design to design, their principles are common. In this work, we summarize 

some typical options from the previous designs and show their trade-offs. 

2.3.1 MAC mapping in CIM 

2.3.1.1 Number system in CIM. 

We treat the mapping from MACs to the CIM array as a three-component decision: 

the number system, the number representation, and the analog mapping method. While 

digital computer systems are typically binary number systems, the CIM architecture could 

support high-precision digits in the MAC operation due to analog calculation. In other 

words, inputs or weights for MAC operation in CIM could be two or more bits per digit. 

Here, we use digits to denote the units of inputs/weights for one operation in real hardware 

implementation. An 8-bit number requires eight digits if a binary unit is assumed, while 

four digits with 2-bit units. Input digits could be multi-bits by equipping input-encoding 

circuits such as DACs, while weight digits could be increased by adopting high-precision 

memory cells. For a fixed input/weight precision, higher precision input digits will require 

fewer computation cycles, and higher precision weight digits could reduce the needed 

memory capacity for a model. While increasing the digits' precision looks beneficial for 

both inputs and weights, the precision of analog MAC outputs will also be increased. As 

the circuit's dynamic range is usually limited, increasing the MAC output precision will 

reduce the noise margin and increase the ADC resolution and overhead. Theoretically, 

increasing the digits' precision for weights (cells) or inputs has the same impact on 

increasing the full precision of MAC outputs. However, it is more expensive to increase 

the input digit precision considering the encoding circuits than utilizing high-precision 
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memory cells for high-precision weight digits from a hardware resources point-of-view. 

Generally, reducing the hardware cost is more critical than speeding up the computation 

for the resource-constrained edge devices. Thus, the number system we employ for the 

CIM architectures discussed in this work will be binary inputs with flexible precision 

weights.  

2.3.1.2 Number representation in CIM. 

As both WAGE and DF utilize a symmetric quantization range around zero, we use 

N-bit integers (INT) as 𝑋 (in equation 1) to keep consistency and for easy representation 

in hardware. Different zero-centered input or weight quantization ranges of Y could be 

mapped to INT with different scalar values 𝐶. In this way, the CIM arrays always see INT 

operators for MAC operation. Then, we must decide how to encode these INT numbers in 

the CIM system. The first scheme that comes to mind would be the two’s complement 

representation, as it is the most widely used one in the traditional digital computer for 

integer representation and calculation. The two’s complement representation can naturally 

encode the sign in the binary sequence for signed calculation. However, sign extension is 

required for operands in multiplication, making it inefficient for CIM architecture. Instead, 

since CIM adopts digit-decomposed MAC operations, we could utilize the weighted sum 

representation of the two’s complement data for calculation, as shown in equation 2. This 

way, all the digits in MAC operations are unsigned, and the signed bases will be introduced 

after the MAC of digits is done. In more detail, considering the multiplication of input and 

weight in binary format as equation 2, the unsigned bit-wise multiplication (AND) results 

𝑏𝑛 of different rows will be accumulated first as a bit-wise partial sum. Then, these bit-

wise partial sums will be scaled by their bases 2𝑛, which could be simply realized by a 

https://en.wikipedia.org/wiki/Integer_(computer_science)
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shift operation in the binary domain. The scaled results could be directly accumulated to 

the final partial sum if they have positive bases. Otherwise, an additive inverse operation 

must be applied first. 

 
𝑥 = 𝑏𝑁−1 ∙ (−2𝑁−1) + ∑ 𝑏𝑛 ∙  2𝑛

𝑁−2

𝑛=0
 (2) 

While 2’s complement representation is binary, this weighted sum format could be 

extended to arbitrary-precision digits by grouping k bits together, resulting in high-

precision digits with the power of  2𝑘 bases. As an illustration, a 2-bit digit representation 

is shown below in equation 3. Two adjacent binary bits 𝑏2𝑛+1, 𝑏2𝑛 could be combined as 

one 2-bit digit 𝑑𝑛  ∈ [0,1,2,3] with a new base (22)𝑛. However, this combination is only 

true when the bases of bits have the same sign. Thus, for the most significant bit 𝑏𝑁−1, it 

could not be grouped with its neighbor 𝑏𝑁−2. In this case, 𝑏𝑁−1 and 𝑏𝑁−2 could still be 

viewed as 2-bit digits to keep consistency with the rest digits but only utilize part of the 

number range. Any signed INT could be represented by the 2-bit digits as equation 4, with 

even N assumed to illustrate the ungroupable MSB.  

 𝑏2𝑛+1 ∙ 22𝑛+1 + 𝑏2𝑛 ∙ 22𝑛 = (𝑏2𝑛+1𝑏2𝑛) ∙  22𝑛 =  𝑑𝑛(22)𝑛 (3) 

 
𝑥 = 𝑏𝑁−1 ∙ (−2𝑁−1) + 𝑏𝑁−2 ∙ (2𝑁−2) + ∑ 𝑑𝑛(22)𝑛

𝑁−2
2

−1

𝑛=0
 (4) 

For easy reference later, we call this 2’s complement extended representation method 

Case1, which has been adopted in previous CIM designs [53, 54]. A more general format 

for this representation is shown in equation 5. Considering an N-bit number represented by 
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k-bit digits in this format, ⌈(𝑁 − 1)/𝑘⌉ + 1 terms are needed in total. Here, the number of 

terms could be viewed as the number of cycles needed to represent full precision inputs or 

the number of cells needed for full precision weights. The array structure needed to support 

this representation is shown in Figure 4 (a).  

 
𝑥 = 𝑏𝑁−1 ∙ (−2𝑁−1) + ∑ (𝑑𝑛) ∙  (2𝑘)𝑛,

⌈
𝑁−1

𝑘
⌉−1

𝑛=0
 𝑑𝑛  

∈ [0,1,2, … , 2𝑘−1] 

(5) 

Since the sign bit could not be grouped with other bits for high-precision digit 

extension of the two’s complement representation, we could avoid it by grouping the 

positive and negative weights separately and using the operator to represent the sign 

information. In other words, the signed number could be represented by a differential pair 

of two unsigned numbers at the digit level, as shown in equation 6, referred to as Case2. 

The 𝑑𝑛
+ will represent the digits from a positive weight with the corresponding 𝑑𝑛

− to be 

zero, while a negative weight will have 𝑑𝑛
− to represent its absolute value with zero 𝑑𝑛

+. 

The number of terms will become ⌈(𝑁 − 1)/𝑘⌉ in this case. However, since each term 

denotes a pair, the number of cycles or cells needed will be doubled. When 𝑘 is small, 

corresponding to 𝑁 , this method may cause a big hardware overhead. A basic array 

structure of Case2 is shown in Figure 4 (b), and this differential-pair data representation is 

frequently used in CIM designs [42, 55]. 

 
𝑥 = ∑ (𝑑𝑛

+ − 𝑑𝑛
−) ∙  (2𝑘)𝑛

⌈
𝑁−1

𝑘
⌉−1

𝑛=0
,   𝑑𝑛

+, 𝑑𝑛
−  ∈ [0,1,2, … , 2𝑘−1] (6) 
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An alternative solution to avoid sign bit is to avoid negative values of X, which utilize 

the shift D (shown in equation 1) to map Y to unsigned INT as X. The digit-level 

representation of the unsigned INT is shown in equation 7. The shifted unsigned 

representation, referred to as Case3, requires ⌈𝑁/𝑘⌉ terms for the high-precision extension, 

which is the smallest among these three methods for k>1. However, it will cause an extra 

MAC computation because of the shift D. Considering an example of mapping the weights 

to the unsigned INT, a positive shift 𝐷𝑤 is used to map the weight 𝑊𝑟 to 𝑋𝑤
𝑟  (equation 8), 

where the superscript 𝑟 denotes the weight from different rows. Then, the MAC operation 

between the weights (Case3) and inputs (Case1) will become equation 9, which is the MAC 

of unsigned weights and signed inputs with an additional MAC term between the inputs 

and the shift. If inputs are also represented in Case3, more additional MACs will be 

introduced. Figure 4 (c) shows an array structure for Case3 that utilizes a dummy column 

of 𝐷𝑤 to generate term ∑ 𝐷𝑤 × 𝐼𝑁𝑟
𝑟 . The subtraction could be done in the digital domain. 

Ref. [6] has adopted this scheme for the CIM array design. 

 
𝑥 = ∑ 𝑑𝑛 ∙  (2𝑘)𝑛

⌈
𝑁
𝑘

⌉−1

𝑛=0
 (7) 

 𝑋𝑤
𝑟 =  𝑊𝑟 +  𝐷𝑤 (8) 

 ∑(𝑋𝑤
𝑟 −  𝐷𝑤 )  × 𝐼𝑁𝑟

𝑟

= ∑ 𝑋𝑤
𝑟 × 𝐼𝑁𝑟

𝑟

− ∑  𝐷𝑤 × 𝐼𝑁𝑟

𝑟

 (9) 

As discussed in 2.3.1.1, we utilize binary inputs with flexible precision weight digits 

in this paper, considering the hardware limitation. For simple hardware implementation, 

we always use two’s complement representation for input since it is naturally compatible 
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with binary data in the digital system. In other words, inputs always utilize the Case1 

mapping strategy while Case1 to Case3 will be evaluated for weight mapping.  
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Figure 4 - Subarray structures for different mapping (data representation) methods: (a) 

Case1: 2’s complement extended representation (b) Case2: differential-pair data 

representation (c) Case3: shifted unsigned INT. 

2.3.1.3 Hardware implementation 

To realize the operation in circuits, we still need to decide how the real signal encodes 

the parameter digits. As we utilize binary inputs to avoid extra encoding circuits, the “0” 

and “1” could be represented separately by 0V and a read voltage Vread. In this way, the 

CIM structure could automatically skip the zero digit in the input since the input “0” will 

not contribute current to the partial sum and thus consume no energy. Thus, a higher portion 

of “0” in the inputs means less energy consumed during calculation. In other words, high 

sparsity in inputs is preferred. The sparsity of the input will be directly affected by the 

quantization method due to the quantization range, as shown in Figure 5. Compared to DF, 

which dynamically calculates the quantization range, WAGE utilizes a hard-clipped range 

and thus has wider spread inputs with fewer “0” input digits. Thus, even though different 

quantization methods can achieve similar software performance with the same parameter 

precision, they can still have different real hardware performances due to input statistics.   
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Figure 5 - Input distribution of different quantization methods on (a) VGG-8 network and 

(b) ResNet-18 network. 

Conversely, weight digits are usually encoded to different cell conductance. 

Generally, small weight digits will be mapped to low conductance values, contributing 

smaller currents than large conductance cells under input “1”. Thus, the sparsity of the 

weights is also preferred for high energy efficiency. In this work, we hard-clip the weights 

into [-1,1] for both WAGE and DF as we do not see much performance or distribution 

difference across quantization schemes. As a result, the difference in hardware 

performance between quantization methods is mainly caused by the input statistics. Other 

techniques, such as pruning [56] or training with a regularizer [57], may be adopted to 

improve energy efficiency from the weight side.  

While the quantization methods affect inputs more than weights, the mapping 

methods matter much to weights. Equation 10 shows a general format of mapping a k-bit 

weight digit 𝑑𝑛 to a certain conductance value 𝐺𝑛 of a k-bit eNVM cell.  

 
𝐺𝑛 = 𝑑𝑛 × ∆𝐺 + 𝐺𝑚𝑖𝑛 , 𝑑𝑛 ∈ [0, 2𝑘 − 1],   ∆𝐺 =

𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛

2𝑘 − 1
 (10) 
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In this format, the conductance of the eNVM cells is divided into 2𝑘 levels between 

𝐺𝑚𝑎𝑥 and 𝐺𝑚𝑖𝑛, and the minimum weight digit “0” is mapped to a non-zero conductance 

value 𝐺𝑚𝑖𝑛. Thus, mapping from digits to the cell conductance is a shifted scaling with a 

shift 𝐺𝑚𝑖𝑛. By integrating this representation into the digit-wise analog MAC operation of 

the 𝑖𝑡ℎ digit of input and 𝑛𝑡ℎ digit of weight across different rows (𝑟), we could see that 

the first term is proportional to the MAC results in the digits domain with a second input-

dependent output shift term generated in the real circuit implementation, as shown in 

equation 11. 

 𝐼𝑖,𝑛 = ∑ 𝑉𝑖
𝑟

𝑟

(𝑑𝑛
𝑟 × ∆𝐺 + 𝐺𝑚𝑖𝑛) =  ∑ 𝑉𝑖

𝑟

𝑟

(𝑑𝑛
𝑟 × ∆𝐺) +   ∑ 𝑉𝑖

𝑟

𝑟

𝐺𝑚𝑖𝑛 
(11) 

This input-dependent output shift will make the summed current (𝐼𝑖,𝑛) for the same 

ideal partial sum vary with input patterns, which could cause difficulty in ADC design. The 

variation contributed by the shift term may be negligible when the on/off ratio of the cell 

is high with low cell precision, in which case the ∆𝐺 is much larger than 𝐺𝑚𝑖𝑛. However, 

for cells with a low on/off ratio or high precision, the current caused by this shift term could 

be comparable with the main part, causing overlaps among the analog output of different 

partial sums. As a result, a fixed reference ADC will introduce quantization errors when 

converting the analog signal back to the digital domain, harming the accuracy performance. 

The flexible reference ADC could solve this problem with additional hardware [39]. 

Conversely, this input-dependent output shift could be canceled according to the mapping 

method with no penalty. 
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Mathematically, Case2 and Case3 mapping methods could digit-wisely cancel 𝐺𝑚𝑖𝑛 

in nature. As shown in equation 12, the shift term will be canceled between the positive 

and negative digits for the differential pairs (Case2).  

 𝐼𝑖𝑛 = ∑ 𝑉𝑖
𝑟

𝑟

(𝑑𝑛
𝑟+ × ∆𝐺 + 𝐺𝑚𝑖𝑛) − ∑ 𝑉𝑖

𝑟

𝑟

(𝑑𝑛
𝑟− × ∆𝐺 + 𝐺𝑚𝑖𝑛) 

       = ∑ 𝑉𝑖
𝑟

𝑟

(𝑑𝑛
𝑟+ × ∆𝐺) − ∑ 𝑉𝑖

𝑟

𝑟

(𝑑𝑛
𝑟− × ∆𝐺) 

(12) 

Similarly, the input-dependent output shift term could also be canceled by the 

dummy column D in the Case3 approach, as shown in equation 13. 

 𝐼𝑖𝑗 = ∑ 𝑉𝑖
𝑟

𝑟

(𝑑𝑛
𝑟 × ∆𝐺 + 𝐺𝑚𝑖𝑛) − ∑ 𝑉𝑖

𝑟

𝑟

(𝑑𝐷𝑛
𝑟 × ∆𝐺 + 𝐺𝑚𝑖𝑛) 

     = ∑ 𝑉𝑖
𝑟

𝑟 (𝑑𝑛
𝑟 × ∆𝐺 ) − ∑ 𝑉𝑖

𝑟
𝑟 (𝑑_𝐷𝑛

𝑟 × ∆𝐺 )        

(13) 

There is no digit-wise cancellation in the Case1 implementation. However, this 

shifted term will be diminished by the shift-add operation across weight digits with 

different bases, as shown in equation 14. Considering the input digit (𝑉𝑖) applied to the 

binary weights digits from the same full precision weights, a common term (∑ 𝑉𝑖
𝑟

𝑟 𝐺𝑚𝑖𝑛) 

will be generated with different bases. By grouping the bases first, we could see that the 

full precision shift will only be a small term compared to the full precision MAC result 

since the bases will cancel each other. However, as the digit precision increases, the 

cancellation among bases will decrease. In this case, inspired by Case3, we could use a 

dummy column of all-𝐺𝑚𝑖𝑛 cells to cancel the input-dependent output shift term. 
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𝑰𝒊 = 𝑰𝒊𝑵−𝟏 ∙ (−𝟐𝑵−𝟏) + ∑ 𝑰𝒊𝒋 ∙  𝟐𝒋

𝑵−𝟐

𝒏=𝟎
 

𝑰𝒊𝒔𝒉𝒊𝒇𝒕
= ∑ 𝑽𝒊

𝒓

𝒓

𝑮𝒎𝒊𝒏 ∙ (−𝟐𝑵−𝟏) + ∑ ∑(𝑽𝒊
𝒓

𝒓

𝑮𝒎𝒊𝒏) ∙  𝟐𝒏
𝑵−𝟐

𝒏=𝟎
 

       = ∑ 𝑽𝒊
𝒓

𝒓 𝑮𝒎𝒊𝒏 (∑ ∙  𝟐𝒏𝑵−𝟐
𝒏=𝟎 − 𝟐𝑵−𝟏) = − ∑ 𝑽𝒊

𝒓
𝒓 𝑮𝒎𝒊𝒏   

(14) 
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Figure 6 - Hardware mapping with input-dependent cancellation for (a) Case2: differential-

pair data representation; (b) Case3: shifted unsigned INT; (c) Case1: 2’s complement 

extended representation for binary digit. 

As a more straightforward illustration, we use an example of 4-row accumulation, 

assuming 4-bit weight with binary digits, to show shift cancellation for different mapping 

methods in Figure 6. Here, we ignore the impact of ADC quantization on cancellation 

effectiveness. No mismatch will be introduced to the equations (12-14) shown above if the 
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cancellation is made before ADC, but it is hard to realize the cancellation in the analog 

domain. While the ADC is considered and subtraction is done in the digital domain, the 

shift may not be fully canceled because of the ADC quantization error. Proper ADC 

precision is required to make the remaining shift small in this case. 
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Figure 7 - Accuracy performance vs. on/off ratio with (a) Case1: 2’s complement extended 

representation (b) Case2: differential-pair data representation (c) Case3: shifted unsigned 

INT. 

Figure 7 shows the accuracy performance of the VGG-8 network with 1/2/4-bit 

weight digits under different cell on/off ratios and number representations methods. As 

expected, the Case1 method could maintain the accuracy with binary cells until a very 

small on/off ratio. The robustness disappears as the cell precision increases since the base 

cancellation no longer holds. For the 4-bit per-cell condition, a more than 1000 on/off ratio 

is needed for negligible accuracy loss. Luckily, we could release the on/off ratio 

requirement back to ~10 for the Case1 mapping method with 4-bit cells by utilizing an all-

zero dummy column. For Cases2 and Case3, as the digit-wise 𝐺𝑚𝑖𝑛  cancellation 

mechanism will not disappear with increased cell precision. The accuracy could be 

maintained across different precision settings with a large on/off ratio range, as shown in 

Figure 7 (b) (c). 

2.3.2 Analog-to-digital conversion 
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The conversion from the analog to the digital domain is the most important part of 

the mixed-signal CIM and is also the hardware performance bottleneck. As mentioned in 

2.3.1.1, the efficiency of the analog MAC could be improved by utilizing high-precision 

digits, which could either accelerate the computation or reduce the required CIM arrays. 

However, this will also increase the precision of the partial sum, requiring a high-resolution 

ADC for lossless conversion. Generally, as the ADC is area-consuming, it is hard to fit one 

ADC for every column pitch. A common solution is to have several columns share one 

ADC through a multiplexer at the expense of reduced column-wise parallelism. Since the 

ADC area is usually proportional to its precision, the higher the ADC precision adopted in 

the CIM array, the lower the column-wise parallelism. Besides the area, as illustrated in 

previous work [58], the ADC also dominates the energy consumption and latency in CIM 

design, which increases with the ADC precision. Finally, due to the limited dynamic range, 

the noise margin will also decrease with increased ADC precision, introducing more ADC 

quantization errors and hurting the software performance.  

Two strategies could be used in analog output digitization to release this ADC 

limitation caused by the lossless conversion of a high-precision partial sum. The first one 

avoids high-precision partial sums by utilizing low-precision digits and reducing the 

number of rows open in parallel [59]. In this case, only a low-precision ADC is needed for 

the lossless conversion. This technique is mainly used to relieve the noise margin problem 

and fits more ADCs into peripheral circuits of a single array, leading to high column-wise 

parallelism. However, this will neither reduce the energy consumption nor speed up the 

calculation as the row-wise parallelism is sacrificed. As lossless conversion with a high 

noise margin is utilized in this method, the software performance of this method could be 
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guaranteed across different structures or tasks. The other method gives up the lossless 

conversion as DNN is generally sparse and noise-tolerated. Due to the sparsity, the partial 

sum distribution will be concentrated around part of its representation range, giving us 

room to reduce the ADC precision. As an example mentioned in 1.3.1, AEPE [7] cut MSBs 

of the partial sums as they are “0”s in most cases. In addition, because of the noise 

tolerance, even if the ADC quantization loss changes the partial sum, the final software 

performance could still be maintained. There is no guarantee of how much quantization 

loss each network could tolerate, so the reliability issue will be introduced if ADC 

quantization loss is allowed. In principle, we want to minimize the effect of ADC 

quantization loss on the software performance with the possible maximum ADC precision 

reduction. Statistically, the quantization error of the partial sum could be minimized by 

fitting the ADC quantization to the partial sum distribution. Based on this fact, Sun et al. 

[11] use the Lloyd-Max algorithm to find nonlinear references for quantization. While this 

method could reduce the expectation of the partial sum quantization error than linear 

quantization, a look-up table (LUT) is needed to map the ADC levels to real digital values 

for further processing. By allowing the quantization loss in the analog to digital conversion, 

both the noise margin and the parallelism will be maintained with reduced energy 

consumption and latency from ADC. However, since the acceptable quantization loss is 

based on its effect on the software performance, we need to explore the best settings for 

each task and model. Furthermore, since the ADC precision loss is achieved from the 

partial sum distribution, it could also vary for the same task and model when adopting 

different quantization and mapping methods.  

2.3.3 Post-ADC digital processing 
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After conversion, ADC outputs will be further processed in the digital domain. 

Mostly, digital circuits could be fixed-point or floating-point. The fixed-point circuit will 

be more area and energy efficient than the floating-point unit (FPU). Similar to the 

CONV/FC layer, other operations of DNNs are originally floating-point in general-purpose 

processors. Further processes are needed when mapping some functions (e.g., BN) to fixed-

point circuits. Thus, for simple implementation, we combine the fixed-point circuits with 

FPUs to support different functions in this work. 

No matter which mapping scheme is used, if the weight/input digit precision is 

smaller than the parameter precision, the digit-wise MAC results need to be shifted & 

added by the digital circuit. Moreover, if the weight matrix partition is employed, the partial 

sums from different subarrays are added using pure digit circuits. These operations could 

be fixed-point, whose precisions are affected by the ADC design. If the ADC adopts linear 

quantization references, the ADC output will be used directly as the digital signal. Thus, 

the ADC precision straightly decides the following digital circuits’ precision. However, for 

nonlinear ADC quantization, the output of LUT will decide the digital signal precision, 

which is normally higher than the ADC precision. Thus, while the nonlinear ADC shows 

more aggressive ADC precision reduction, it may cause increased overhead in the 

following fixed-point digital circuits. The CIM combined with the shift & add and sub-

array addition will compromise the CONV/FC layer computation. Thus we could say the 

whole CONV/FC layer is fixed-point. 

According to the network structure or quantization method, some intermediate 

functions, such as BN and/or scaling, must be applied between two layers of Conv/FC. 

From previous works [49] [46], it is hard to convert these functions to fixed-point without 
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further processing or adopting high precision. Also, compared to the CONV/FC layers, 

these functions only take a small part of the computations in DNNs. Since this work mainly 

focuses on the CIM structure for CONV/FC operation, which dominates the system-level 

performance, we use a FPU to support these operations. We also assume that if there are 

back-to-back BN and Scaling in the network, they will be merged into one FPU operation, 

which could further reduce the hardware consumption of these operations.  

2.4 Evaluation results 

2.4.1 Hardware trade-offs among different mapping strategies 

Hardware performances across different design options are first evaluated with full 

precision ADC. All the designs are evaluated at the 22nm node in DNN+NeuroSim V1.3 

[60] with RRAM CIM arrays. The device’ Ron/Roff is assumed to be 6kΩ/900kΩ [61]. 

For different networks discussed in this work, we choose the array size to be the minimum 

kernel 𝑖𝑛𝑝𝑢𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑑𝑒𝑝𝑡ℎ × 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑑𝑒𝑝𝑡ℎ of the network (except for the 

first layer) for better memory efficiency. Our evaluations have been done on VGG8 for 

CIFAR10 classification and ResNet18 for CIFAR100 and IMAGENET (partial) 

classification. Without specification, the parameter precision is 8-bit/8-bit for 

inputs/weights (8b-W/8b-IN). 

In this assumption of the similar CIM macro and lossless ADC, the hardware 

performance differences are purely caused by quantization or mapping methods. According 

to Figure 7 (a), a dummy column is necessary for Case1 under 4-bit cell precision under 

the utilized RRAM on/off ratio. Figure 8 summarizes the trends of the chip area, energy 

efficiency, and throughput across different design settings. First, under the same design 
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options, we find that DF always reports better energy efficiency than WAGE. This result 

matches our observation in section 2.3.1.3 that there are more “0”s in the DF’s input bits 

compared to WAGE, making the former more energy efficient. At the same time, the 

quantization algorithms make little difference in the area overhead/throughput, which is 

mainly affected by the hardware resource overhead/dataflow. Compared to WAGE, DF 

needs one more step of input scaling. However, as the scale is merged with BN and 

CONV/FC layer computation hardware dominates the chip area/processing time, the 

difference is almost negligible. Thus, we could conclude that DF quantization is a better 

choice than WAGE considering better energy efficiency with full-precision ADC.  

Figure 8 (a-c) show the chip areas of different networks/tasks under different 

hardware settings. When 1-bit cells are adopted, the number of terms (in equations 5-7) is 

the same for all the mapping methods. Case2’s chip area is much bigger than the rest two 

since it takes two memory arrays to represent one weight digit term. Case3 is slightly bigger 

than Case1 because of the additional dummy column. As the cell precision increases, Case1 

needs one more term than the other two and an extra dummy column for 𝐺𝑚𝑖𝑛 cancellation. 

Thus, the difference between Case1 and Case2 gradually decreases, and Case3 becomes 

the most area efficient. In conclusion, with full precision ADC, Case2 is dominant in the 

area overhead. Case1 is more area efficient when cell precision is low, while case3 is better 

when cell precision is high. 
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Figure 8 - Hardware performance (energy efficiency, throughput, area overhead) vs. 

different design options (quantization methods, mapping methods, cell precision) with no 

ADC quantization loss. 

 As the CIM is proposed as an energy-efficient edge accelerator, we care more about 

the energy efficiency results in Figure 8 (d-f). Since extra hardware means more 

components to consume power, Case1 gives the best energy efficiency for the 1-bit cell 

precision, with Case2 being the worst. However, as energy efficiency is also affected by 

the input/weight statistics, the area overhead and energy efficiency trends do not strictly 

match. When the cell precision goes high, Case1 worsens because of the extra sign bit, 

while Case3 wins again in energy efficiency.  

We also observe that the throughput has no clear trend across cell precisions and 

mapping methods, as shown in Figure 8 (g-i). By analyzing the latency contribution of each 
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stage, we find that the CIM system's latency mainly consists of the array latency and the 

network-on-chip (NOC) latency. Unlike the area and energy cost dominated by array 

computing, the array latency and the NOC latency could be comparable under some 

settings. On the array side, the latency is highly affected by peripheral circuits such as 

ADC. If full-precision ADC is considered with the same cell/input precision, the array 

latency will be almost the same across mapping methods. The array latency will increase 

when ADC precision increases with the cell precision. NOC's latency is jointly determined 

by the number of bits to transmit, the wire length, and the interconnection network 

complexity. The chip area related to mapping methods has already been discussed before. 

Under the same parameter precision, the higher the cell precision is, the smaller the chip 

size will be, as fewer weight arrays are required. As a result, the NOC latency should 

decrease as the wire length and interconnection network complexity tend to be reduced. 

However, the increased cell precision will also raise the ADC's full precision, leading to 

wider output bit width. More cycles will be needed for data transfer under the fixed bus 

width, and the NOC latency will be increased. As a result, the NOC latency has no clear 

increase or decrease trend with the cell precision, leading to an unclear trend for system 

throughput. 

In conclusion, we could optimize the design options for neural network 

quantization/mapping without ADC quantization loss based on previous findings. The 

quantization method giving higher sparsity is always preferred under the same parameter 

precision. With a certain quantization approach, when the cell precision is low related to 

the weight precision, Case1 is suggested. Case3 should be considered as the cell precision 

increases for better energy efficiency and area overhead. The optimal design option for the 
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three evaluated networks/tasks could achieve a 29%~45% improvement in energy 

efficiency from the worst ones with 4%~40% area reduction and 4%~25% speedup under 

the same cell precision. 

2.4.2 Hardware trade-offs with different ADC configurations 

As discussed in 2.3.2, the hardware performance of the CIM accelerator can be 

improved by allowing quantization loss in the analog-to-digital conversion without hurting 

the software performance. The quantization reference should fit the partial sum 

distribution, which the network, task, quantization, and weight mapping methods could 

impact, to maximize the precision reduction. Thus, there is no straightforward way to 

decide the proper ADC precision reduction except for testing by simulation from case to 

case. In this work, we assume the same ADC references set for different layers of the 

network and different components of the MAC, considering the reference generation 

overhead. We sweep the ADC precision for different networks/tasks/hardware settings to 

check the effect on the software accuracy (Figure 9).  

There is no consistent trend between WAGE and DF about which one is more ADC 

quantization robust across different hardware settings. If we assume the minimum accepted 

accuracy for each task to be 90%, 67%, and 83% for CIFAR-10, CIFAR-100, and 

ImageNet (subset) classification, the minimum ADC precision required is quite similar 

between WAGE and DF, which means no more than 1-bit difference. In other words, the 

quantization methods show different robustness to the ADC quantization loss because of 

the different parameter statistics. However, this difference is insufficient to cause a 

significant difference in ADC precision requirements.  
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Figure 9 - Accuracy performance vs. ADC precision for different design options 

(quantization methods, mapping methods, cell precision).  

On the contrary, mapping methods affect ADC precision significantly. Under the 

same quantization method, Case2 is almost the most robust one to ADC quantization loss 

across different cell precision. Again, Case1 is good when the cell precision is low, while 

Case3 is better with high cell precision. The big difference among these mapping methods 

considering ADC quantization is caused by the fact that Case1 and Case3 see two 

significantly different partial sum distributions from the CIM array. For Case1, the digit 

encodes the sign bit always contains a binary value. Thus, when the cell precision is high, 

the partial sum distribution generated from the sign digit and other digits will be very 

different, requiring a high-precision ADC to cover both cases. Similarly, the partial sum 

distribution of the dummy column differs from the data columns in Case3, especially when 
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the cell precision is low. Thus, Case1 and Case3 ADC quantization could be improved by 

applying different ADC for the sign array or dummy column at the expense of additional 

ADC references.  

 

Figure 10 - Hardware performance (energy efficiency, throughput, area overhead) vs. 

different design options (quantization methods, mapping methods, cell precision) with 

tolerable ADC quantization loss. 

Next, we evaluate the hardware performance with optimized ADC precision. Figure 

10 (a-c) show a similar trend with the full precision ADC case on the overhead area. 

However, since the ADC dominates the area CIM array, the area overhead of Case2 

becomes less dominant compared to the other two cases as it could tolerate higher ADC 

precision reduction. From the energy efficiency result in Figure 10 (d-f), Case1 is still the 

best choice considering energy efficiency for low-precision cells. As the cell precision 
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increase, Case2 shows better energy efficiency, benefiting from the aggressive ADC 

precision reduction. 

In the 4-bit per cell case, this ADC difference even makes Case2 of WAGE 

outperform Case1/Case3 of DF, which has higher input sparsity. Thus, we could say that 

these quantization/mapping design options collectively determine the energy efficiency of 

the CIM accelerator. Finally, the different ADC precision makes the array latency vary 

across mapping strategies, making the throughput even harder to predict (Figure 10 (g-i)). 

To further reduce the ADC precision to improve the hardware performance, we also 

test the nonlinear ADC quantization, as mentioned in [11]. In detail, the partial sums from 

all layers in a network are collected, and the Lloyd-Max algorithm is used to find the 

nonlinear quantization levels from these partial sums. The accuracy results of different 

tasks are shown in Figure 11. Compared to the linear quantization (Figure 9), the accuracy 

of Case1/Case2 methods drops slower with nonlinear quantization. Unanticipated, the 

nonlinear quantization does not work for Case3 in our test. We think this is because Case3 

hires dummy columns to shift the unsigned output back to the signed partial sum. While 

the dummy columns are important for correct output, their outputs are not statistically 

dominant in the partial sum distribution. As a result, the nonlinear quantization levels will 

be ignorant of these dummy statistics, causing big quantization errors. These quantization 

errors will be global biases and cause big differences in partial sums. Again, a potential 

solution could be assigning different ADCs for dummy output at the expense of hardware 

overhead for additional reference. 



 44 

 

Figure 11 - Accuracy performance vs. ADC precision with nonlinear quantization for 

different design options (quantization methods, mapping methods, cell precision).   

Another unforeseen finding is that there could be an initial loss of nonlinear 

quantization accuracy when the ADC precision is high for some settings (e.g., the accuracy 

performance shown in Figure 11 (e) from 6-bit to 4-bit). The problem is that when we 

exploit the Lloyd-Max algorithm to find the nonlinear quantization levels, we fit them to 

the distribution of a collected partial sum from different layers. However, when the 

quantization is applied in a certain layer, it will change the input distributions of the 

following layers. Thus, the global nonlinear quantization levels are no longer the best fit 

for the following partial sums. In other words, the software performance of nonlinear 

quantization by the Lloyd-Max algorithm is not guaranteed for high ADC precision across 

different networks and tasks, making it an unsafe choice. Also, even for good-performing 
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settings, there is generally no more than 1 bit saving on the ADC precision from linear 

quantization. Moreover, the nonlinear quantization requires LUT and higher precision 

fixed-point circuits for the following computation, introducing extra hardware overhead. 

According to these results and analysis, we can infer that nonlinear ADC quantization 

could not effectively benefit CIM designs.  

2.5 Summary 

This work demonstrates a basic flow of the algorithm-to-hardware mapping from 

DNN to the CIM architecture. The design space of this flow is explored to provide a deeper 

insight into the system-level CIM design. In detail, we analyze the effect of parameter 

statistics on the hardware performance by comparing two software quantization methods 

(i.e., DF and WAGE) with three number mapping schemes (2's complement, differential 

pair and shifted unsigned INT). We also compare the effectiveness of linear and nonlinear 

ADC quantization schemes. Our evaluation results show that the quantization/mapping 

options are very important in determining the statistics of the weight and input digits used 

in the CIM operations. On one side, these statistics will determine the energy consumed by 

the array. On the other side, they will determine the partial sum distribution and directly 

affect the ADC precision needed, leading to different robustness under ADC quantization 

loss and hardware performance. Also, linear ADC is preferred over nonlinear ADC, 

considering the hardware overhead, limited precision reduction, and reliability across 

tasks. Tested on three different tasks, the optimized design options for neural network 

mapping can improve energy efficiency by ~2× and throughput by 1.2~1.6× while reducing 

5%~25% area overhead from the worse cases.  
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CHAPTER 3. Performance Recovery under Process Variation 

3.1 Motivation 

In the previous section, we only introduce the effect of quantization and mapping 

methods on CIM architecture's software and hardware performance. The circuits and 

devices are assumed ideal in the evaluation, which is not true in real life. As mentioned in 

1.3.1, the non-ideal circuits and devices could degrade the software performance of the 

CIM accelerators. From prior works, one of the non-idealities in circuits is that the process 

variation can introduce ADC offset and hurt the network performance. In this work, we 

analyze the ADC offset in circuits and compensate for the software performance loss 

caused by it using software and hardware co-optimization.  

3.2 Recover the performance below variation  

3.2.1 ADC offset variation modelling  

Generally, two ADC topologies are popular in CIM architectures: Flash-ADC and 

successive-approximation-register (SAR)-ADC. For an N-bit ADC, a Flash-ADC utilizes 

2𝑁 − 1 comparators to generate a thermometer code, which must be encoded to a binary 

signal, while the SAR-ADC uses one comparator but N cycles to generate a binary 

sequence directly. Due to its high sense speed and low power consumption, the sense 

amplifier (SA) is regularly used as the comparator in ADC. Different kinds of SAs could 

be used in CIM, which could generally be grouped into the current-mode sense amplifier 

(CSA) and the voltage-mode sense amplifier (VSA) based on the input signals. 
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Figure 12 - (a) Latch-based current-mode SA. (b) Sense pass rate for 5-bit ADC.  

Figure 12 (a) demonstrates a simple CSA with a small overhead area. In principle, 

this structure should be symmetric. When the two branches see different pull-down 

currents, the side with a larger pull-down current will produce the final output “1” while 

the other will get “0”. However, the mismatch of the two branches caused by process 

variation can overwhelm the difference between the pull-down currents and cause wrong 

output, namely ADC error. In a case study of a 5-bit ADC in Figure 12 (b), the sense pass 

rate, which is defined as the percentage of correctly sensing the 𝐼𝐵𝐿 comparing to its nearest  

𝐼𝑅𝐸𝐹, will decrease with the increase of the partial sum. A similar trend is reported on the 

silicon data, and we think two reasons could explain it. One is that as the partial sum 

increases, the corresponding 𝐼𝐵𝐿 and its nearest 𝐼𝑅𝐸𝐹 will also increase. There will be a big 

voltage drop on the transistors of the SA, making the voltage difference caused by the ADC 

offset dominate. Another one is that, as the 𝐼𝐵𝐿 increases, it will gradually saturate due to 

the readout circuit, making the current difference between different partial sums smaller, 

leaving less room between 𝐼𝐵𝐿 and 𝐼𝑅𝐸𝐹.  

In this work, a model is proposed for the SA offset caused by the process variation 

for simulation. We assume that the offset of the SA could be converted to the shift of 

reference current away from its ideal value. The output will be wrong if the reference shifts 
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to the other side of the partial sum (Psum). Suppose the reference shift follows the Gaussian 

distribution. In that case, the sense pass rate could be interpreted as the cumulative 

probability that references smaller than Psum, as shown by the green shaded part in Figure 

13 (a). Then, the Gaussian distribution could be uniquely defined by the mean, the ideal 

value, and the standard deviation, inferred from the sense pass rate.  
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Figure 13 - (a) Sense pass rate to Iref offset conversion. (b) Sigma/mu of the Gaussian 

distribution of Iref offset converted from sense pass rate.  

Since the SA offset is a static offset caused by manufacturing, it will not change with 

time. For a 5-bit Flash-ADC, as one SA is used for each reference level, different references 

could shift in different directions by different distances. On the contrary, the SAR-ADC 

uses the same SA for different levels. Thus, all the references should be shifted to the same 

side with dependent steps. Based on this fact, if the Flash ADC is assumed in the design, 

we will sample one offset for each reference from the corresponding Gaussian distribution. 

As to SAR ADC, one offset is sampled from the Gaussian distribution of a certain reference 

with non-zero standard deviation, and the offset of the rest levels will be scaled by the 

sigma/mu of each level, as shown in Figure 13. Figure 14 shows the ideal ADC output vs. 

ADC output with offset based on the proposed method to integrate process variation into 

ADC simulation. The Flash-ADC has less ADC error than the SAR-ADC since the 
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independently biased levels could compensate for each other. Here, the thermometer-to-

binary encoder is simply an adder tree. Increasing the transistor size will also reduce offset 

caused by variation and thus reduce ADC error.  

 

Figure 14 - Simulated ADC output with offset sampled from the Iref distribution. 

3.2.2 On-chip fine-tune 

According to the previous chapter, ADCs play an important role in CIM’s hardware 

and software performance to accelerate DNN. From the software perspective, full precision 

ADC is preferred to avoid quantization loss, while low precision ADC is preferred for 

hardware for low area and energy overhead. As mentioned before, the process variation 

could introduce ADC offset, causing ADC errors upon ADC quantization loss. As 

discussed in 1.3.1, the ADC offset could be compensated by adjusting the ADC references 

or circuit techniques. The former is concerned with generating different references for 

every ADC on-chip, and the latter will introduce a bigger area overhead. In this work, 
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instead of solving the problem from the ADC side, we utilize the DNN’s property of self-

adaption to noise.  

 

Figure 15 - On-chip fine-tuning dataflow. 

Since there are generally many ADCs on-chip, it is time-consuming to read out the 

exact offset for pure software compensation. Thus, an easier way is the on-chip/off-chip 

hybrid fine-tuning to include the ADC offset automatically. The basic flow is shown in 
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software (local processor). The on-chip inference will be conducted for a specific chip with 
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off-chip). The backpropagation and gradient calculation are done in floating-point as they 

are software-based. Finally, the weights in the software platform and on-chip will be 

updated by the gradient from a batch of images simultaneously. The weights on-chip can 

be updated with write-verify to achieve an accurate value.  

Accuracy 
recovered

Attacker

Steal on-chip 
model

Apply on 
other chips

Not working!
(accuracy low)

Hybrid chip fine-tune

Inference chipInput Feature 
Maps (Y1...Yn)

loss

Local processor

B
a

ckp
ro

p
ag

atio
n

+
G

rad
ien

t ca
lcu

la
tio

n

Updated 
weight

  

Fo
rw

ard

Input Image

Chips with 
variation

Training 
data 



 51 

3.2.3 Performance recovery 

The PyTorch platform and NeuroSim framework are used for software and hardware 

effectiveness evaluation, respectively. We present the VGG-8 network for CIFAR-10 

dataset classification with 8-bit activations (input) and 2-8 bit weights. The low precision 

scheme of inference on-chip is similar to the WAGE algorithm and could get ~92% 

accuracy for all precision settings. For the hardware-related settings, binary RRAM with 

Ron=20kΩ and Roff =2MΩ [61] is used for the CIM array. The cell variation is not 

included since the aggressive write-verify [27] programming scheme is assumed.  

Assuming a software-trained network (software baseline) is loaded to chips with 

ADC variation, accuracy loss will be introduced to the on-chip network, as shown in Figure 

16. Comparing the Flash-ADC and SAR-ADC under the same transistor size (W/L), the 

former will always introduce smaller accuracy degradation. This trend matches the 

observation that Flash-ADC introduces smaller ADC errors because of level compensation. 

For the same reason, the inference accuracy will increase as the transistor size increases.   

Retrain curves of Flash-ADC and SAR-ADC with different transistor sizes are 

shown in Figure 17. The Flash-ADC recovers fast for all the W/L under test with small 

initial accuracy drops. Meanwhile, the fine-tuning effectiveness varies with the precision 

of the weight and W/L for the SAR-ADC. In all three weight precision settings, when the 

W/L is too small, the fine-tuning could not fully recover the accuracy due to big variations. 

The situation will improve as the variation decreases with the increase of W/L. In 

conclusion, hybrid fine-tuning could compensate for the accuracy loss caused by process 

variation. Its effectiveness is decided by the ADC typologies and transistor size of the SA.  
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Figure 16 - Accuracy before fine-tuning for (a) Flash-ADC and (b) SAR-ADC.  
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Figure 17 - Retraining curve of (a) Flash-ADC with 2-bit weights; (b) SAR-ADC with 2-

bit weights; (c) SAR-ADC with 4-bit weights; (d) SAR-ADC with 8-bit weights. 

Unlike training from scratch, fine-tuning here is limited to one epoch considering the 

overhead introduced. Table 1 list the percentage of changed weight per iteration, namely, 

the number of cells that need to be programmed. The percentage will increase as the weight 

bits increase, yet small for all layers and settings, making the overhead of fine-tuning the 

network acceptable. 
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Table 1 - Average percentage of weights updated per iteration. 

 

Table 2 - Hardware overhead for fine-tuning of one epoch. 

Weight precision 2bit 4bit 8bit

Feedforward
(Inference)

Energy Efficiency(TOPS/W) 13.31 6.78 3.43

Throughput(FPS) 1644.27 1399.54 1217.61

Area(mm^2) 53.18 92.20 176.80

Total Energy Consumption(J) 4.63 9.08 17.94

Total Latency(s) 30.41 35.73 41.06

Weight update
(Retrain)

Total Energy Consumption(J) 0.0015 0.0043 0.0323
Total Latency(s) 2.12 3.55 6.73

 

For the hardware evaluation, in the on-chip inference stage, Ron=20k/Roff=2M and 

0.2V read voltage are assumed for 128×128 subarrays with 5-bit ADCs. During the weight 

update stage, write-verify programming with five pulses on average for SET and RESET 

of the RRAM cell is used with 300ns of 3V write voltage. Table 2 shows the hardware 

performance reported by NeuroSim with the corresponding settings. Overall, the overhead 

caused by fine-tuning is acceptable.  

3.3 Summary 

 
2bit weight 4bit weight 8bit weight 

Conv1 0.127% 0.325% 1.954% 
Conv2 0.055% 0.126% 0.835% 
Conv3 0.055% 0.105% 0.382% 
Conv4 0.053% 0.073% 0.444% 
Conv5 0.044% 0.048% 0.280% 
Conv6 0.025% 0.024% 0.150% 

FC1 0.012% 0.015% 0.077% 
FC2 0.038% 0.083% 0.351% 

Overall 0.020% 0.025% 0.142% 
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In this work, we explored ADC offset modeling under process variation and 

evaluated their effects on the software performance. It has been found that the ADC 

structure will affect its robustness to the process variation. In detail, the Flash-ADC will 

see less performance degradation than SAR-ADC under the same variation levels. The 

process variation will cause bigger ADC offset under smaller SA transistor sizes and thus 

cause severer software performance loss. Thus, the performance of CIM under process 

variation could be guaranteed by utilizing big transistors in ADC at the expense of area 

overhead. As an alternative solution, fine-tuning on-chip is proposed to recover the 

accuracy loss caused by the ADC offset. The accuracy of the model on-chip could be fully 

recovered unless the transistor is too small in a bad ADC structure. We also evaluate the 

overhead of the weight fine-tuning in both time and energy, which is shown to be 

acceptable in the chip testing phase. 
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CHAPTER 4. Achieving High In-Situ Training Accuracy and 

Energy Efficiency with Analog Non-Volatile Synaptic Devices 

4.1 Motivation 

As illustrated in section 3.2.3, we know that on-chip fine-tuning could help to recover 

the software performance degradation caused by the ADC offset. Also, training with noise 

injected can help to eliminate the effect of other non-idealities, such as IR drop [16] and 

device variations [62]. Thus, if the CIM accelerators could directly support training, these 

reliability issues could be solved at no expense. On the other side, there is currently no 

good-for-all model that could work in any circumstance. Thus, the models used in real life 

tend to be personalized by incremental learning or network fine-tuning, which also prefers 

the ability to train on-chip for edge devices.  

It is relatively easy to equip the SRAM-based CIM with the ability to learn [63] as it 

is binary and easy to write. On the contrary, using eNVMs for representative DNN models 

to achieve high in-situ training accuracy remains a grand challenge today [64]. Also, unlike 

the inference-only chip, training must maintain many intermediate data, making DRAM 

access unavoidable. The DRAM access could limit the computing efficiency brought by 

the CIM. This work comprehensively studies these non-ideal effects and seeks possible 

hardware-aware algorithmic solutions for in-situ training with eNVMs. Additionally, a 

segmented calculation scheme is used to maintain the performance for training on-chip, 

showing that the in-situ training with eNVMs is promising, considering both the software 

and hardware performance. 
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Figure 18 - Non-idealities of analog synaptic devices in (b) eNVM array for in-memory 

computing with (a) asymmetric and non-linear conductance tuning, device-to-device 

(D2D) variation, and cycle-to-cycle (C2C) variation and (c) ADC quantization error. A 

reference column by subtraction is used to represent negative weights. 

4.2 Non-idealities for in-situ training accuracy 

This work aims to realize the training through stochastic gradient descent (SGD) on 

the analog eNVM-based CIM platform. The main bottleneck is located in the weight update 

step. For training on-chip, the desired weight change (∆W), calculated from the gradient, 

is mapped to the number of pulses to change the cell conductance (∆G). Some key 

challenges of CIM with analog synaptic devices are shown in Figure 18. The eNVM cells 

introduce non-idealities such as asymmetry/nonlinearity, device-to-device (D2D) 

variation, cycle-to-cycle (C2C) variation, and a limited number of states. These non-ideal 

effects could make cell conductance change with a real weight change (∆𝑊𝑛𝑖) shift from 

ΔW without the expensive write-and-verify scheme, making the training procedure on the 
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eNVM-based CIM platform different from the software case. Besides, ADCs introduce 

quantization errors for both forward and backward propagations, making them worse than 

inference-only engines. 

 

Figure 19 - (a) Conductance update trend without momentum. (b) Conductance update 

trend with momentum. (c) Weight distribution without asymmetry/nonlinearity. (d) Weight 

distribution with P/D = +3/-3 for Conv layer 3 for the VGG-8 network at epoch=185. 

4.2.1 Asymmetry/nonlinearity in conductance tuning 

The asymmetry/nonlinearity implies that the conductance change varies with the 

current state and the change direction under the same write pulse. Depending on the 

trajectory's distance from the linear case, a nonlinearity factor (NL) is labeled from 0 to 9. 

The trends are distinct for potentiation and depression (P/D) and are labeled as +/-, as 

shown in Figure 18 (a) by the blue/red curves. Demonstrated in the prior work [29], 

asymmetry is the key fact that causes significant accuracy loss instead of nonlinearity. We 
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propose a hypothesis as an intuitive explanation for this phenomenon. For a memory device 

approaching the Gmax/Gmin by consecutive positive/negative pulses, a negative/positive 

pulse (as defined by a sign change in ΔW) will make a large drop/increase in the 

conductance because of asymmetry/nonlinearity, as shown in Figure 19 (a). As a result, it 

is statistically easier for the device to return to the middle conductance range than approach 

Gmax or Gmin. This hypothesis can be validated by comparing the weight distribution 

trained with P/D=0 and  P/D=+3/-3, as shown in Figure 19 (c) (d). 

Thus, with asymmetry/nonlinearity, any undesired sign change for ΔW will make the 

training oscillate and should be avoided. In general, three types of ΔW sign change are 

undesired in the training process: 1) sampling error of batches; 2) oscillation around local 

minima; 3) oscillation around global minima (Figure 20).  
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Figure 20 - Three types of undesired ΔW sign change during training. 

To thwart the undesired sign change, we utilize "momentum" by increasing ΔW 

along the direction of a constant sign, as shown in equation (15). While momentum could 

eliminate the first two types of undesired sign change, the oscillation around the global 

minima is unavoidable, whereas it could be mitigated by momentum combined with 

stochastic quantization. As shown in Figure 19 (a) and (b), without momentum, the 

direction and probability of weight update are decided directly by the gradient. If the 
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gradient is small, the weight update barely happens. It can be hard to approach Gmax/Gmin 

since the ΔG is gradually saturated. Moreover, any sign change of gradient could lead to a 

big jump-back towards the middle conductance. With momentum, it will decide the 

direction and probability of weight updates. On one side, the momentum will accumulate 

gradients in the same direction. Thus the probability of going in that direction will be higher 

and higher, making it easier to approach global minima around Gmax/Gmin. Conversely, 

when the conductance exceeds the global minima and leads to an opposite gradient, it will 

first decrease the potentiation/depression probability instead of directly flipping the sign. 

Although overshooting is also undesired, it will be small because of the saturation nature 

of the potentiation/depression curve. As a result, momentum with stochastic quantization 

compensates for the asymmetry/nonlinearity of the conductance tuning. 

 
∆𝑊(𝑡) = 𝛽∆𝑊(𝑡 − 1) + (1 − 𝛽) ∙ (−

𝜕𝐿

𝜕𝑊
) (15) 

4.2.2 D2D variation and C2C variation 

The NL of P/D could be different from cell to cell for the same type of device, which 

is defined as D2D variation. Such variation is static, and the DNN model could self-adapt 

to it. A more severe problem is the C2C variation, which causes ∆G to vary upon each 

pulse. When the ∆G variation overwhelms the direction that the momentum defines, a 

positive update step may end up with a decreased conductance, resulting in a loss increase. 

The C2C variation could be viewed as a temporal noise injected into the weight update, 

which is tolerable when small. Training will become a random search when the C2C 
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variation is too big. Typical C2C values for some representative devices are shown in Table 

3. 

Table 3 - Survey of representative analog synapses reported in the literature with weight 

precision, P/D, and C2C variations. 

Analog synapse reported ΔW precision C2C P/D 

HZO FeFET [65] 32=5bit 0.5% 1.75/1.46 

2T-1FeFET [31] 64=6bit 0.5% 0.85/0.85 

2PCM+3T1C [30] 64=6bit 1.5% 0.2/-0.2 

Epi-RAM [66] 64=6bit 2% 0.5/-0.5 

RRAM [67] 128=7bit 3.7% 0.04/-0.63 

ECRAM [68] 1000=10bit <0.5% 0.347/0.268 

4.2.3 Update step size 

Although the cell for training is viewed as an analog synapse with continuous 

conductance, the programming pulse could not be arbitrarily small. In other words, the 

programming pulse is a lower bound of ∆W for each update. The applicable number of 

pulses of a certain device generally defines the cell precision for the inference case. 

However, in the training case, it affects the gradient precision (strictly speaking, the ∆W 

precision considering the learning rate and the use of momentum). Table 3 surveys 

representative device technologies ranging from 5-bit to 10-bit. Higher precision is 

preferred for more precise network fine-tuning.   

4.2.4 ADC quantization 

Since the synapse for training is analog, even a single cell is high-precision. ADCs' 

full precision will be big for the summed current of all the rows. In addition, since a signed 

weight in DNN is mapped to a single cell conductance that is always positive, Case3 

number representation from section 2.3.1.2 must be used for this analog synapse. A 
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reference column is adopted to the partial sums back to the zero-centered region. This shift 

could be done in either the analog or digital domain after ADCs, as shown in Figure 18 (c). 

This work assumes the latter, as analog subtraction is not easy to accomplish. However, 

the positively accumulated current may have different means for different DNN layers and 

have a wider dynamic range than the zero-centered partial sums, making the dynamic range 

requirement of ADC higher.  

Reference
 Output

Array 
Output

21.3 24.5

aref

ai

bref

bi

22 23 2521 24

22 23 2521 24

Difference  
before ADC

Difference  
after ADC

-0.7

-1

1.5

1

ADC  REF

 

Figure 21 - ADC quantization example.  

We use linear ADC quantization for training and set the ADC references for zero 

quantization bias on the reference column output (𝐼𝑟𝑒𝑓). This reference set, combined with 

the round-down ADC conversion of partial sum, makes the output bias towards negative 

(Figure 21). Biasing towards negative will deactivate more neurons than it should and 

prevent training from convergence since many activation functions will cut the negative 

path, such as ReLU and sigmoid. To solve this problem, round-center quantization could 

be done by adding +1 to the LSB of all the negative partial sums. 

4.3 Training on chip 

4.3.1 Training-on-chip architectures 
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The SGD training process of DNN consists of four steps, namely, feedforward (FF), 

error calculation (EC), gradient calculation (GC), and weight update (WU). The FF and 

EC steps could be considered convolutions with the same but transposed weight matrices. 

Thus, previous works either use two copies of transposed weights [55] or a transposable 

CIM array to support FF and EC calculation [63]. The latter is preferred for the CIM 

training platform with analog synapses since it is hard to copy the weights because of the 

cell variations and limited precision of periphery circuits.  

The GC process could also be viewed as a convolution operation between the input 

feature map (IFM) and error feature map (EFM) from the same image. This convolution 

could still be implemented in the CIM structure with EFM stored as “weights.” Unlike FF 

and EC, which always have network weights participate in the convolution for different 

images, the GC convolution sees different operands for each image. As a result, using 

eNVM-based CIM in the GC stage is no longer efficient as the “weights” (EFM) need to 

be frequently updated. Instead, it will be more practical to implement GC with digital 

circuits or SRAM-based CIM. 

Finally, the cell's conductance is fine-tuned based on the gradients from a batch of 

images in the WU stage. One-time writing is assumed in this work since we take the 

nonlinearity/asymmetry and variation into account. Although programming overhead for 

eNVMs is high, the batch-training manner of SGD makes the WU process less dominant 

in training.  

Figure 22 (a) shows a naïve dataflow for training that conducts these four steps one 

by one. Compared to the inference, DRAM access is unavoidable in training with SGD 
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considering a batch size bigger than one. The IFMs/EFMs for each image must be saved 

to DRAM in the FF/BP stage and loaded for gradient calculation at the GC stage. Then, 

the calculated gradients will be saved to DRAM and loaded to the chip in the WU stage for 

accumulation across different images. Finally, momentum is loaded on the chip, updated 

by the accumulated gradient, used to update the cell conductance, and then saved back to 

DRAM for the next iteration. These data movements kill the energy efficiency of CIM in 

the naïve dataflow. 
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Figure 22 - (a) On-chip training architecture with naïve step-by-step dataflow (case1). (b) 

On-chip training architecture with segmented on-chip accumulation and updates (case2). 

4.3.2 Segmented calculation 

To alleviate the massive DRAM accesses in training, a segmented gradient 

calculation data flow (case2) is proposed, as shown in Figure 22 (b). The new scheme 

adopts the same flow for FF and EC, making no difference in DRAM access for IFMs ① 

and EFMs ②. However, the GC and WU are interleaved (Figure 22 (b) step ③) to calculate 

the gradient and update the network's weights segmentally. In more detail, as there is no 

need to update the weights of the whole network at once, gradients from one layer will be 

calculated, accumulated, and used to update the momentum to tune the cell conductance 
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part by part. The part will be small enough so that its gradients can be held on-chip in the 

global buffer, eliminating the DRAM access of the gradient.  

(a). gradient matrix w/o 
segmentation (size:6*4)

(b). gradient matrix w/ segmentation 
(cut into 2 sub-matrix of 6*2)

(c). gradient matrix w/ segmentation 
(cut into 4 sub-matrix of 3*2)

Load once IFM Load twice
IFM Load twice

EFM Load twice

 

Figure 23 - Example of input and error feature map reload for case2 segmented gradient 

calculation. 

One concern of the segmented gradient calculation is the reloading of IFMs/EFMs. 

In the naïve dataflow, the IFMs/EFMs need only be loaded once back to the chip for the 

gradient calculation. However, if the layer’s gradient matrix is cut into pieces, some feature 

maps (IFMs and/or EFMs) may need to be reloaded, as shown by an example in Figure 23. 

Then, there will be a trade-off between DRAM access for FMs and DRAM access for 

gradients. Generally, if the weight size is much larger than the IFM/EFM, such as in FC 

and deep CONV layers, reloading FMs is more economical. Otherwise, it will be better to 

allow gradient access, taking shallow CONV layers as an example.  

To cover all cases, we consider a hybrid scheme that optimizes the GC and WU flow 

layer wisely, which means the one with less DRAM access between naïve flow and 

segmented calculations will be applied to each layer. An example of the number of DRAM 

access across different layers in the VGG-8 network for CIFAR-10 classification is shown 

in Figure 24. As expected, case1 overwhelms case2 in the shallow layer when the global 
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buffer is small, while case2 always wins for deep layers. As global buffer size increases, 

case2 will be better as the gradients of the whole layer could be fitted into the global buffer. 
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Figure 24 - The number of DRAM access bits for each layer under different global buffer 

sizes from 16 kB to 1024 kB for case1 (naïve) and case2 (segmented gradient calculation) 

schemes. 

4.4 Evaluation and discussion 

We evaluate the analog-synapse-based CIM platform using the VGG-8 network 

training on CIFAR-10 classification. From the training perspective, we assume inputs 

(IFM), errors (EFM), and gradients of the CONV/FC layer are quantized while weights are 

floating-point (analog cell). In the following content, we will no longer emphasize that 

weights are floating-point in training. Instead, we use weight precision to imply gradient 

precision to keep consistent with inference. We modify WAGE [46] to integrate all the 

non-idealities of eNVM-based CIM. The default setting uses 8-bit weight (gradient) and 8-

bit IFM/EFM from the hardware point-of-view. Without specification, 

nonlinearity/asymmetry is analyzed with P/D=+3/-3. The ADC quantization is introduced 

at the edge of each 128x128 array except for the first layer. With a batch size = 200, the 

ideal software baseline could achieve 92% using WAGE quantized training. 

4.4.1 Software evaluation 
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We first evaluate the effectiveness of momentum on nonlinearity/asymmetry 

compensation. Training results with different momentum factors for P/D=+3/-3 and 

P/D=0/0 are shown in Figure 25 (a). With 𝛽  equals 0.9, the accuracy of P/D=+3/-3 is 

significantly boosted while P/D=0/0 is slightly affected, validating that momentum could 

degrade the accuracy loss caused by nonlinearity/asymmetry. Consequently, 0.9 is used for 

𝛽 in the rest simulations. Afterward, in Figure 25 (b), various NL factors are tested under 

asymmetry. By fine-tuning the learning rate to control the number of weights updated for 

each iteration, ~87% accuracy is still achievable up to extreme P/D=+9/-9.  

 

Figure 25 - (a) Accuracy vs. momentum factor β. (b) Accuracy vs. device nonlinearity 

factor under asymmetry. (c) Training traces w/wo momentum, D2D variation and big batch 

size=4000. 

To further validate our hypothesis of undesired sign change, we evaluate the training 

process with a very big batch size. In this case, the batch sampling noise will be diminished. 

As shown in Figure 25 (c), a batch size = 4000 is used to train the network with P/D=+3/-

3. Since the batch size increases, the number of epochs is enlarged correspondingly to 

achieve the same number of weight updates. We could see from the result that the big batch 

size could achieve higher accuracy than the smaller one under P/D=+3/3 and 𝛽 = 0. But 
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still, it can not get a result as good as the momentum solution. The same figure shows the 

training result with a D2D variation around P/D=+3/-3 with a 0.5 standard deviation by the 

blue curve. The trend is very similar to the P/D=+3/-3 case without variation, showing that 

D2D variation is not a concern if nonlinearity/asymmetry is no longer a problem.  

 

Figure 26 - (a) Accuracy vs. momentum precision. (b) Accuracy vs. device weight 

(gradient) precision. (c) Accuracy vs. C2C variation. Momentum β =0.9 is applied. 

We also apply quantization on momentum to reduce the memory overhead to hold it 

and the energy overhead caused by loading/storing it for each WU iteration. Unlike 

gradients, momentums need to be quantized statically instead of stochastically, introducing 

a higher precision requirement. Figure 25 (a) shows that 10~12 bits are required for 

momentums to avoid accuracy loss. 

Then, we evaluate the cell precision effect on training. As mentioned before, cell 

precision defines the updating step size in training—the lower the precision, the bigger the 

step. Surprisingly, even down to 4-bit weight (gradient) is still feasible under fine-tuned 

learning rate, as shown in Figure 26 (b).  
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Figure 27 - Statistical weight update pattern (ΔW vs. W) in one batch for different P/D, 

C2C variance, and weight (gradient) precision. (a) When C2C variation is small for devices 

with small P/D and high precision. (b) When C2C variation is large for devices with large 

P/D and high precision and case (c) When C2C variation is large for devices with small 

P/D and low precision. 

We find that the effect of C2C variation highly depends on NL level and weight 

precision. Since the drawback of C2C variation is to flip the desired shift direction of the 

conductance, a big update step will have a lower probability of being exceeded by the 

variation. We can see this from the results shown in Figure 26 (c). Low precision and high 

NL devices are more robust as C2C variation increases since they imply greater 

conductance change. To better understand this, we check a batch of ΔWni vs. W with 

different NL, C2C, and cell precision. As shown in Figure 27, the color denotes the weight 

update direction according to the gradient. The red ones need an increase while the blue 
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ones should be decreased. The y-axis of each dot means the real weight change mapped 

from conductance change with nonlinearity/asymmetry and C2C variation. The desired 

weight update direction is flipped when a red/blue dot has a negative/positive ΔWni. We 

could see that bigger NL, smaller weight (gradient) precision, and smaller C2C variation 

are desired for fewer cross-over points. 

 

Figure 28 - (a) Training traces for different ADC resolutions.  (b) Training traces when 

asymmetry/nonlinearity, D2D variation, C2C variation, momentum, and ADC quantization 

effects are combined. 

Ultimately, we explore the ADC requirements for training with analog synapses. If 

round-down quantization is used instead, the accuracy is only 85%, even with 11bit ADC. 

By using the round-center quantization, ADC precision could be reduced to 8bit with ~87% 

accuracy.  

In summary, we train a network with all the non-ideal effects combined with the 

momentum and ADC quantization. A remarkable result of 86% accuracy for in-situ 

training with practical eNVMs is still achievable, as shown in Figure 28 (b). 

4.4.2 Hardware evaluation 
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While in-situ training with analog synapse is promising from the software side, it is 

not applicable if the hardware overhead is high. Thus, we evaluate the hardware 

performance with the NeuroSim+DNN v2.1 platform.  

 

Figure 29 - (a-c) Energy breakdown for case1 (naïve) dataflow. (b-f) Energy breakdown 

for case2 (segmented calculation) dataflow. 

Figure 29 compares the energy consumption breakdown of the naïve scheme (case1) 

and the segmented gradient calculation scheme (case2) with a global buffer big enough to 

hold the gradient of the largest layer. The FF and BP energy consumptions are the same 

for these two cases. From Figure 29 (a) and (d), we can see that the GC and WU processes 

consume most of the energy in case1 while the corresponding parts are much smaller in 
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case2. Figure 29 (b) and (c), which report the energy breakdown for GC/WU separately, 

show that the energy consumed by DRAM access takes ~99% due to the gradients and 

FMs load/saving. For the similar breakdown in Figure 29 (e) and (f) for case2, although 

the DRAM access energy is still dominant due to the IFMs/EFMs, it reduces significantly 

as the gradient is eliminated.  

A corresponding area breakdown comparison is shown in Figure 30. The difference 

only lies in the global buffer size. We could see that the DRAM energy reduction of the 

demonstrated case2 is at the terrible expense of the global buffer size and thus greatly 

increases the total area. 

 

Figure 30 - Area breakdown for (a) case1 (naïve) dataflow (b) case2 (segmented 

calculation) dataflow. 

To find a balanced trade-off point of energy consumption reduction and the area 

overhead, we plot the energy efficiency and chip area concerning the global buffer size for 

case1, case2, and the hybrid scheme as mentioned in 4.3.2 in Figure 31. The case2 and the 

hybrid scheme always beat case1 regarding energy efficiency. Due to the shallow layers, 

the hybrid scheme is slightly better than case2 for a very small global buffer. The difference 

fades away with the increase of the global buffer size. As the global buffer size increase, 



 72 

the increase of energy efficiency gradually saturates while the growth of chip area is 

exponential. Thus, the global buffer size is selected corresponding to the highest energy 

efficiency/area ratio, which is around 576 kB for the VGG-8 network example. 
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Figure 31 - Energy efficiency vs. global buffer size for case1, case2, and hybrid scheme. 

Since the efficiency of the hybrid scheme of case1and case2 is highly dependent on 

the network structure, a benchmark of hardware performance of different DNN models is 

presented in Table 4. Four divergent configurations are picked to compare: 1) small feature 

maps + small networks (CIFAR-10 + VGG-8), 2) big feature maps + big networks 

(ImageNet + VGG-16), 3) small feature maps + big networks (CIFAR-10 + ResNet-18), 

4) big feature maps + small networks (ImageNet + ResNet-18). The hybrid scheme 

achieves higher energy efficiency than the naïve design for all four cases. As the segmented 

gradient calculation scheme prefers a bigger gradient size than the IFM/EFM size, 

configurations 1 and 3 see a greater improvement than configurations 2 and 4. From the 

area side, the global buffer in case 1 is set by the biggest FM, while the highest 

efficiency/area ratio decides the hybrid case. The area increase for configurations with big 

IFM/EFM (2, 4 with IMAGENET) is smaller than the small ones (1, 4 with CIFAR-10) 

since their starting point is already high.  
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Table 4 - Hardware performance benchmark (Training). 

Technode: 40nm   ADC:8bit 

Ron/Roff: 100K/1M Readvoltage:0.5V 

Write Pulse Voltage: 1.6V/1.5V    Write Pulse Width: 50ns/50ns 

Network VGG-8 VGG-16 ResNet-18 

Parameter Size ~13M ~138M ~11M 

dataset CIFAR-10 ImageNet CIFAR-10 ImageNet 

ArraySize 128x128 64x64 64x64 64x64 

Input Size 32x32 224x224 32x32 224x224 

Case1 

TOPS/W 2.11 3.63 0.15 4.39 

Global Buffer 128kB 3136kB 64kB 784kB 

Area(𝑚𝑚2) 71.52 1014.19 99.35 292.38 

Hybrid 

TOPS/W 23.59 11.10 7.74 10.408 

Accu. Buffer 512 kB 2048 kB 256 kB 512 kB 

Global Buffer 

(Accu. Buffer) 

576kB 

(512kB) 

3616kB 

(2048kB) 

288kB 

(256kB) 

904kB 

(512kB) 

Area(𝑚𝑚2) 86.995 1033.716 110.233 296.997 

 

Figure 32 - Energy breakdown for hybrid dataflow with the portion of momentum in the 

weight update highlighted. 

As the software performance section discussed, momentum is important for high in-

situ training accuracy. While the segmented gradient calculation scheme could eliminate 

the off-chip talk of the gradient, the DRAM access of momentum is unavoidable. In the 

WU stage, the momentum is loaded to the chip, recalculated with the gradient, used for 

weight update, and then saved back for the next iteration. Figure 32 shows the energy 
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breakdown of training with the hybrid scheme assuming a 572 kB global buffer (512kB for 

accumulation) to highlight the momentum overhead. If we only consider the WU step, the 

energy consumption by loading/saving momentum is dominant, as shown in Figure 32 (b). 

However, from Figure 32 (a), the WU part is small among all four steps, thanks to the batch 

operation. As the batch size decreases, the number of WU will increase for one epoch, 

introducing more momentum transfer. As a result, the WU will be more dominant and 

significantly decrease energy efficiency (Figure 33). Moreover, a small batch size will 

introduce more batch sampling errors, which is unfriendly to the analog synapses with 

nonlinearity/asymmetry. Thus, the proper batch size is desired from both the software and 

hardware point-of-views. 
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Figure 33 - Energy consumption & energy efficiency vs. training batch size. 

4.5 Summary 

We explore the reliability of in-situ training with eNVMs for embedded AI platforms 

in this work. First, momentum solves the critical bottleneck for training brought by 

asymmetry/nonlinearity and D2D variation. High cell precision is not urgent but is still 

preferred. C2C variation is tolerable to some degree based on the devices’ properties. 
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Further device engineering to suppress it is still desirable, especially for high-precision 

cells. ADC resolution needs to be carefully considered for good training performance. For 

the VGG-8 training for CIFAR-10 classification, 86% accuracy is achievable under non-

idealities, including P/D=+/-3 asymmetry and nonlinearity, 0.5 D2D variation, 3% C2C 

variation, and 8bit ADC quantization. This result suggests that the training with eNVMs is 

still reliable under device and circuit non-idealities. 

This work also discusses the training architecture for the CIM with analog synapses. 

With optimized dataflow by segmentally performing gradient calculation and weight 

update, the high energy brought by CIM could still be maintained for training. Energy 

efficiency 25.24 TOPS/W was reported for training VGG-8 on the CIFAR-10 dataset. With 

a properly chosen batch size for training, the hardware cost of the introduced momentum 

training could be minimized to < 4.2% energy overhead on-chip.  
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CHAPTER 5. Secure XOR-CIM Engine: Compute-in-Memory 

SRAM Architecture with Embedded XOR Encryption 

5.1 Motivation 

In a typical scenario, the training of the DNNs is done in the cloud, which does not 

worry about energy consumption and resource availability. After that, edge devices 

download the well-trained model for inference. The CIM has been proven to be a good 

choice for such edge devices. However, new security challenges are raised by this 

communication, such as the DNN model leaking. As is known, a well-trained model could 

be a business property or preserve sensitive information, making its protection urgent.  

Encryption is an elementary choice to protect sensitive data in communication. 

However, decryption could be difficult on lightweight edge devices, especially for big 

neural networks. Also, for CIM-based edge devices, the balance between storing the data 

in an encrypted format and conducting parallel operations on raw data is challenging. 

This work has developed a lightweight yet efficient countermeasure to protect DNN 

models in a two-party system of the cloud and the SRAM-based CIM accelerated inference 

engines. The overhead brought by the protection is shown to be small for all aspects 

concerning throughput, energy efficiency, and area. 

5.2 Secure XOR-CIM inference engine 

5.2.1 Secure inference engine system 
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Figure 34 - The two-party system of the CIM inference engine and the cloud database, and 

the possible threats of model leaking on the system. 

The two-party system studied in this work consists of an SRAM-based XOR-CIM 

inference engine and a cloud database with well-trained models, as shown in Figure 34. 

The inference engine needs to download the models from the cloud, but the two parties’ 

communication channel is assumed to be insecure. Thus, this model is under the threat of 

the eavesdropping attack (Figure 34 ①), which gathers sensitive information by 

monitoring the unprotected channel. Encryption could be used as a defense against this 

kind of attack. However, edge devices’ limited power & resource and the increasing DNN 

model size make the decryption overhead a considerable problem for the DNN inference 

engine. Thus, to protect the DNN model in transmission, XOR encryption is hopeful as the 

hardware overhead caused by its decryption is tiny. While being hardware friendly, the 

protection brought by XOR encryption could be very weak in a bad protocol. Theoretically, 

one-time-pad could not be cracked as the messages are XORed with truly random keys. 

Sharing a key between two messages will immediately degrade the security brought by 

XOR encryption. However, generating truly random keys and distributing them between 

the two parts is difficult. Instead, the stream cipher is better by applying XOR encryption 

with a pseudo-random sequence as the key. In this case, only a random seed needs to be 
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generated and shared between two parties, which is much shorter than the key. A key 

generating and distribution protocol is used for our two-party system like this: A random 

seed is first generated on-chip at the inference engine utilizing the SRAM power-on states 

as an entropy source. This seed is encrypted and sent to the cloud. The cloud uses this seed 

to generate a pseudo-random sequence to encrypt the DNN model. Then, the encrypted 

model is transmitted to the inference engine. Simultaneously, the same pseudo-random 

sequence is generated on-chip on the inference engine and will be used for further CIM 

calculation. 

The countermeasure used for the eavesdropping attack leaves the adversaries a space 

to apply the spoofing attack by pretending to be a good user to require information from 

the cloud (Figure 34 ②). Thus, authentication is necessary for building communication. 

Strong PUF with tremendous challenge-response pairs is a popular choice for 

authentication from the hardware perspective. While the SRAM on-chip could also be used 

as a PUF, it is a weak PUF with very limited challenge-response pairs. Luckily, a weak 

PUF-based authentication protocol is proposed in [69], which we modified to support the 

inference engine authentication in our system.  

Finally, a specific problem with portable devices is that anyone can physically access 

them. Thus, the adversary could get a registered device and fool the system if only the 

hardware information is used in the authentication (Figure 34 ③). Considering the device 

could be stolen, some user-aware-only information is included in our modified protocol. In 

this work, the key used to encrypt the seed for stream cipher is assumed user-aware-only. 

The cloud has a corresponding key exchanged in a secure channel in advance for correct 
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decryption. In this case, for the adversary who does not know the key, the decrypted seed 

on the cloud will not be wrong, and the seed on-chip could not decrypt the model correctly.  

Instead of a power-down device, the adversary may get a chip with a model already 

downloaded in an idle state. We do not assume the model on-chip is wiped during the idle 

state to avoid big download overhead. However, considering the security issue, the key 

sequence could not be held on-chip. Only the encrypted seed is saved on-chip. The seed is 

decrypted when the chip returns to work, and the pseudo-random key sequence is 

regenerated. The adversary could not get the seed as he/she does not know the key. He/she 

could neither do the probing attack and chosen input attack on the model as the model 

saved on-chip is encrypted. In this work, we do not assume the adversary could get a 

working inference obsessed by the authorized user as it is too strong. 

 

Figure 35 - Communication protocol for the secure SRAM-based CIM inference engine. 
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The protocol we used is summarized as shown in Figure 35. Compared to the original 

reverse secure sketch [69] protocol, the random number used to defend the replay attack is 

replaced by our random seed and thus is encrypted instead of transmitted in raw format. 

The cloud database saves the weak PUF response 𝑦𝑖  and key to decrypt the seed 𝑘′ in 

advance. In the end, the additional steps for model transmission and restoration are added. 

5.2.2 Secure XOR-CIM inference engine architecture 

: step1 dataflow

: step2 dataflow

: step3 dataflow
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DRBG: deterministic random 
number generator; GEN: side 
information generator; SHA: 
Hash Algorithm module; AES: 
AES module; CMP: comparator
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Step1: One part of the SRAM power-on 
states is used as the PUF response yi . Then, 
yi  will be converted to side information wi -
by the GEN block. At the same time, another 
part of SRAM power-on states is used as 
entropy source to generate a random seedi 
by the SHA block. Seedi will be encrypted by 
the AES with the key k to generate ci. Finally, 
ci will be sent to the cloud with the wi.    
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Step2: The engine receives u1 and a random 
number ri from the cloud. It hashes the ri  
with the yi , wi , seedi and a predefine user 
IDi . The hashed result u1   will be compared 
with u1 in the comparator (CMP).

Step3: The engine hashes the yi  generated 
from step1 with  IDi and ri received in step2. 
The generated u2 will be sent to the cloud 

Step4: After the authentication is verified, 
the chip generates the key stream ks i on 
chip by the loop in DRBG and sends it to the 
CIM core.

 

Figure 36 - Secure XOR-CIM inference engine architecture. 

The inference engine architecture is designed as shown in Figure 36. It mainly 

consists of five parts: 1) A SRAM-based CIM core for inference; 2) A generator (GEN) 

for side information generation for the PUF response; 3) a HASH-based deterministic 

random bit generator (DRBG) module for pseudo-random number generation; 4) an 

Advanced Encryption Standard (AES) module for seed encryption/decryption and 5) a 

comparator (CMP) to check if two messages are the same. It needs to be highlighted that 

the SHA256 block in the DRBG module is reused for three purposes in the protocol. Firstly, 

it will be used for the true random seed generation that compresses the power-on states of 

SRAM cells as the entropy source. Then, it is used as a simple HASH function, as the 
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protocol requires. Finally, it serves as part of the DRBG for pseudo-random bit sequence 

generation. This reuse could reduce the area overhead brought by the secure protocol.  

5.3 Hardware implementation of XOR-CIM core 

The heart of our inference engine is the CIM core. As described by the protocol, the 

model downloaded and saved in idle mode is encrypted with the XOR-based stream cipher. 

To perform correct VMM operations, the plaintext of the weights should be used for 

calculation. One method to deal with it is to decrypt the model before using it for inference, 

resulting in raw data saved in the memory. In this case, the model must be read out and 

encrypted again if it enters the idle mode, introducing additional overhead. Another method 

is always to save the encrypted model in memory but to adopt near-memory calculations 

with decryption, losing the parallelism brought by CIM. 

This work proposes an architecture to support CIM directly on the model encrypted 

by the XOR-based stream cipher, named XOR-CIM. XOR-CIM utilizes the modified dual 

word lines (WLs) 6T SRAM to apply the key on the inputs instead of decrypting the 

weights directly.  

5.3.1 6T Dual-WL SRAM bit-cell 

As mentioned before, we apply the key bits on the inputs instead of decrypting the 

weights. Assuming weight bits encrypted by key bits, the straightforward way to conduct 

VMM is to decrypt them first, as shown in equation 15. By playing a small trick (equation 

16), the product-and-sum of inputs and decrypted weights could be converted to the 

product-and-sum of encoded inputs and encrypted weights. 
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 𝒘𝒆 = 𝒘 ⊕ 𝒌  

 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑆𝑢𝑚 =  ∑ 𝐼𝑛 ∙ (𝑤𝑒 ⊕ 𝑘) (16) 

 𝑷𝒂𝒓𝒕𝒊𝒂𝒍 𝑺𝒖𝒎 =  ∑ 𝑰𝒏 ∙ (𝒘𝒆̅̅ ̅̅ ∙ 𝒌 + 𝒘𝒆 ∙ �̅�)

=  ∑(𝑰𝒏 ∙ 𝒘𝒆̅̅ ̅̅ ∙ 𝒌 + 𝑰𝒏 ∙ 𝒘𝒆 ∙ �̅�)

=   ∑(𝑰𝒏 ∙ 𝒌) ∙ 𝒘𝒆̅̅ ̅̅ + ∑(𝑰𝒏 ∙ �̅�) ∙ 𝒘𝒆 

(17) 

In the reformed calculation, the 𝒘𝒆 and 𝒘𝒆̅̅ ̅̅  are directly used in the product-and-sum 

operation while the input 𝑰𝒏 is modulated by the key 𝒌. Owing to the latch structure of 

SRAM, the 𝒘𝒆 and 𝒘𝒆̅̅ ̅̅  are naturally available when the encrypted weights are saved. The 

original product-and-sum is divided into two parts, utilizing either side of the SRAM 

column separately for CIM operation. However, these two parts see different inputs since 

one side takes 𝑰𝒏 ∙ 𝒌 while the other side takes 𝑰𝒏 ∙ �̅�. That is why the dual WL cells, as 

shown in Figure 37 (a), are required in this work. One drawback of this structure is that the 

weights in the same row must share the key bit as their input is shared for parallelism. A 

discussion will be presented later to prove that this key reuse will not degrade the protection 

strength of XOR-CIM in practice. 

5.3.2 Decrypting input generator 

There are two modes that the XOR-CIM needs to work in: the memory mode and the 

XOR-CIM mode. The encrypted data is written into the array in memory mode. Thus the 

Dual-WL SRAM cell should work in the same way as the conventional 6T SRAM, which 

means the WL and  WL̅̅̅̅̅ should work in the same phase: both be “1” or “0”. In the CIM, 

the inputs to WL and  WL̅̅̅̅̅ are encoded by the 𝑘 and �̅� separately. When the 𝐼𝑛 is “0”, both 
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inputs are “0”. But when the 𝐼𝑛  is “1”, they could not both be “1” because of the 

complimentary 𝑘 and �̅�. The circuit presented in Figure 37 (b) is used to generate the input 

signal to support both modes. 

Input

key

SE

SE

SE

SE

SE

SE: mode select

WL

WL

BL BL

(a) (b)

SE=1: XOR-CIM mode
SE=0: Memory mode

 

Figure 37 - (a) Dual-WL 6T SRAM cell. (b) Decrypting input signal generator. 

 

Figure 38 - Inference accuracy vs. ADC resolution. 

5.3.3 ADC pair resolution 

Compared to the Normal-CIM, the XOR-CIM uses both sides of SRAM for CIM 

operation. Consequently, a pair of ADCs are needed for each column, which seems to 

double the number of ADCs for one array. However, by checking the accuracy concerning 

ADC precision, we find that to achieve negligible software performance loss caused by 

ADC quantization loss, Normal-CIM needs one more bit for the single ADC than the ADC 
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pair used in XOR-CIM. Since the area and energy consumption brought by ADC is 

exponentially proportional to the precision, the ADC overhead of these XOR-CIM and 

Normal-CIM should be similar. This trend is proven on ImageNet classification with 

ResNet-18 and VGG-11, and CIFAR-10 classification with VGG-8, as shown in Figure 

38. 

5.3.4 Dynamic reference array 

The Dual-WL 6T SRAM cell works the same way as the 6T SRAM for CIM 

operation. Namely, inputs are applied on the access transistor, and the data at the storage 

nodes represent weights. Thus, it suffers from the same read disturbance and input-

dependent analog output shift problem mentioned in 1.3.1. Low WL access voltage is used 

to avoid fast voltage drop on BL/BL̅̅̅̅  while the one-side access nature of Dual-WL 6T cell 

could further reduce read disturbance. Inspired by [25], a dynamic reference array is 

adopted to solve the input-dependent analog output shift problem. 

5.4 Evaluation and discussion 

5.4.1 Methodology and setup 

We tested ResNet-18, VGG-11, and VGG-8 models for XOR-CIM hardware 

performance and protection overhead. The XOR-CIM system-level hardware performance 

is evaluated using a modified NeuroSim [20] with the XOR-CIM subarray calibrated in 

SPICE using a 28nm foundry process. 16-bit inputs & 16-bit weights for the first and last 

layer and 8-bit inputs & 8-bit weights for the rest layers are assumed for the networks to 

guarantee no accuracy loss after quantization. For the ImageNet classification case, 4-bit 
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and 5-bit ADC resolutions are used for XOR-CIM and Normal-CIM settings, respectively. 

At the same time, the precision decreases to 2-bit and 3-bit ADC for CIFAR-10 

classification. Inside the XOR-CIM core, several 64×64 subarrays constitute the processing 

element (PE) according to the weight precision. At the subarray level, the multi-bit 

activations are fed sequentially with outputs accumulated with shift & add circuits to get 

VMMs of high-precision input and 1-bit weight. Another shift-add on the PE level 

accumulates the outputs of different weight subarrays to get the final high-precision VMM 

result. Considering the broad use of 3×3 kernel size, a group of 9 PEs forms a tile so that 

most layers could fit in exactly multiple tiles [70]. Adder trees accomplish further addition 

among tiles, and an H-tree undertakes communication. After each CONV/FC layer, 

pooling and/or activations are done by digital modules.  

5.4.2 Hardware performance of the XOR-CIM core 

A benchmark of our proposed XOR-CIM architecture with three baselines is shown 

in Table 5. The Normal-CIM uses the conventional 6T SRAM to do CIM operations 

without encryption. The Normal-CIM (Dual-WL) mode means the array consists of Dual-

WL 6T SRAM cells, but only one side is used for conventional CIM operation. Still, no 

encryption is supported in this mode. The near-memory calculation reads the encrypted 

weight, decrypts it, and conducts the product-and-sum using digital circuits. For all three 

evaluated networks, the throughputs of all the CIM cases are similar, while 3~4 times better 

than the near-memory case due to the high parallelism of the CIM operation. Compared to 

the 6T SRAM array, the Dual-WL 6T SRAM is more area-consuming, increasing the total 

area for both XOR-CIM and Normal-CIM (Dual-WL). Also, the circuits for encryption are 

not included for both Normal-CIM cases, introducing an area overhead to XOR-CIM. 
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However, the increment is still acceptable, limited to 2.5%~11.25% based on the network 

structure. Nevertheless, the near-memory case has the largest area due to the additional 

MAC units. Interestingly, the Dual-WL 6T SRAM is more energy-efficient than the normal 

6T case, improving the XOR-CIM by 22%~56%. We think the reason is that the Normal-

CIM operation will open both access transistors during calculation, causing a waste of 

energy on BL̅̅̅̅ . This assumption has been approved by comparing the Normal-CIM (Dual-

WL)’s and Normal-CIM’s energy efficiency results.  

Table 5 - Benchmark hardware performance among Normal-CIM, near-memory compute, 

and XOR-CIM. 

Technode: 28nm Precision 8-bits 

  Normal-CIM 
Normal-CIM 

(Dual-WL) 
Near Memory XOR-CIM 

ResNet-

18 

TOPS/W 2.03 3.23 1.54 2.86 

GOPS 770 770 236 770 

Area(𝑚𝑚2) 200 226 296 205 

VGG-11 

TOPS/W 1.55 2.04 0.7 1.9 

GOPS 1,212 1,212 314 1,212 

Area(𝑚𝑚2) 1,638 1,730 2,172 1,692 

VGG-8 

TOPS/W 3.53 6.92 2.36 5.53 

GOPS 2,985 2,985 943 2,985 

Area(𝑚𝑚2) 160 169 257 178 

5.4.3 Overhead for secure communication 

The hardware costs of the XOR-CIM core, SHA256, DRBG, GEN, and AES are 

shown in Table 6. Taking ResNet-18 as an example, the breakdowns for latency, energy, 

and area are shown in Figure 39, considering the whole network is encrypted while only 

one inference is running in the XOR-CIM core. The results show that, for encryption and 

authentication, the energy and area cost is relatively small while the processing time 
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occupies almost 38%. Thus, the latency overhead becomes the bottleneck of our secure 

inference engine. 

Table 6 - Hardware performance of on-chip blocks at 28nm for implementing the entire 

ResNet-18 secure inference engine. 

 CIM core SHA256 

[40] 

DRBG 

[40] 

GEN 

[17] 

AES 

[41] 

Area (𝒎𝒎𝟐) 205 0.0197 0.0575 0.0014 0.0028 

Power (mW) 269.2 11.12 10.00 0.654 0.45 

Latency (ns) 1.12E6 43.86 2.78E4 1.33 7.65 

 

 

Figure 39 - Latency, energy and area breakdown for the secure inference engine. 

However, the assumption we make here is relatively aggressive. On one side, it is 

impractical to run only one inference for each download. Thus, this setup time consumption 

could be amortized by inferencing more images. On the other side, encrypting the DNN 

model for protection is not necessary. We can look for a balance point in practice between 

hardware overhead and security level. By exploring the impact on inference accuracy, we 

find that only a single layer’s encryption could greatly degrade the accuracy, as shown in 

Figure 40 (a)-(f). We further reduce the encrypted fragment inside a kernel window and 

find that, to some layers, 6/9 of the layer being encrypted is enough to ruin the functionality 

of the network Figure 40 (g)-(l).   
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Figure 40 - Inference accuracy vs. portion of network encrypted. 

5.4.4 Vulnerability of XOR key bit sharing 

As aforementioned, the CIM operation naturally forces the weight in the same row 

to share a key bit, which increases the vulnerability of being cracked by frequency analysis. 

As shown in Figure 41, the natural weight distribution of a layer is zero-centered. However, 

XOR encryption will make the weights symmetry along the dashed line. In other words, 

there should originally be more digit 0 in the raw weights. The XOR encryption increased 

the number of digit 1 by flipping the weight digits seeing a key bit 1, making the encrypted 

model have an equal portion of digits 0 and 1. Thus, the distribution of the weight bits 

encrypted by the same key could imply if the key bit is 1 or 0.  
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Figure 41 - Illustration of weight encryption for 4-bit weight. 

 

Figure 42 - The hamming distance between the predefined key and the key found by 

frequency analysis with several weights sharing one key. 

Figure 42 shows the percentage of the key incorrectly restored using the method 

above (Hamming distance between the real key and the restored key over the key length). 

We could observe that the more weights share the key, the easier it is to infer it. However, 

while it is desired to have all columns work simultaneously for a CIM array, it is rare to 

manage it in the real chip due to the pitch mismatch between the column and the periphery 

circuits. In our 64x64 subarray setting, every eight columns are assumed to share one set 

of periphery circuits. Therefore, only eight weights in the same row have to share one key 

bit instead of 64. From the result, sharing 8 bits could still maintain around a 35% 
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difference between the real and restored keys for some layers. This result could be 

combined with the previous results of partial encryption to analyze the necessary portion 

of the encryption. Applying a random key to attack the XOR encryption will lead to ~50% 

bits match. If 6/9 of the layer encrypted is enough to protect the network, it means 33% 

mismatch could maintain the low accuracy of the encrypted network. The prior results are 

evaluated with no key bit sharing. Considering that a key bit shared among 8 bits will 

reduce the 50% mismatch to 35%, at least one layer needs to be encrypted. 

5.5 Conclusion 

Our research proposes an SRAM-based XOR-CIM Inference Engine with a protocol 

for secure communication with cloud databases as a two-party system. The protocol is 

modified from the reverse secure sketch protocol for key processing of the XOR-based 

stream cipher and chip authentication. Correspondingly, the accelerator architecture is 

presented with function module sharing to reduce overhead. As the core of the inference 

engine, XOR-CIM is proposed to support CIM operation directly on XOR encrypted 

weight, with similar throughput, small area overhead, and better energy efficiency than the 

conventional 6T SRAM-based CIM accelerator. Finally, the overhead and risk introduced 

by the proposed inference engine are analyzed to prove its feasibility. 
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CHAPTER 6. Secure eNVM-CIM Engine: Exploiting Process 

Variations to Protect Machine Learning Inference Engine from Chip 

Cloning and Adversarial Attack 

6.1 Motivation 

Unlike the SRAM-based CIM engine, which needs to download the DNN model for 

each power-on, the eNVM-based CIM could always hold the weights on-chip. While this 

non-volatility is attractive to the edge DNN accelerator, eNVM subarrays suffer from the 

same information leakage problem as those used for memory-only purposes.  

We integrate XOR-cipher into the array for the SRAM-based CIM architecture as 

the weight and inversed weight naturally exist on-chip. For the eNVM-based CIM 

architecture, weights are generally mapped to the cell's conductance. Thus, there is no 

straightforward way to perform analog computations on digitally encrypted weights as in 

the SRAM case. In this work, we explore the vulnerabilities of eNVM-based CIM chips 

and propose a lightweight countermeasure to defend against them. 

6.2 Vulnerability of eNVM-based CIM chip  

6.2.1 Chip cloning attack 

Data privacy is generally a problem for eNVMs when raw data is stored on-chip 

without encryption [6]. This problem will be severer for edge devices as they are not always 

used in a secure environment. Thus, for the CIM inference engine with memory cells 

holding raw weights of DNN models, there will be potential threats of chip cloning.  
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Figure 43 - Chip-cloning attack that bypass the expensive process of data/label collection 

and model training. 

As aforementioned, the DNN model stored in the eNVM-based inference engine 

could be the business property of the model owner, considering the substantial efforts of 

gathering the training data/label and training the network. If the adversary can get an 

eNVM-based device, he/she could read out the model’s weights as they are saved in raw 

format in the non-volatile cells. Then the adversary could reprogram (clone) the weights to 

another chip without going through the expensive data gathering and model training 

procedure, which is defined as the chip cloning attack in this work (Figure 43). 

In theory, this goal can be achieved by the micro-probing attack. According to [7], 

the high density of eNVM cell array may make it challenging to directly probe a single cell 
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without physically damaging the neighboring cells. Alternatively, the adversary could 

directly read out the weights row by row by probing the digital output from the periphery, 

e.g. the analog-to-digital converter (ADC). Normally, the ADC used for the partial sum 

computation does not require super high resolution [8] and thus will have information loss 

for row-by-row reading.  However, due to the non-idealities of the eNVM cell writing, a 

high-resolution ADC is usually required in eNVM-based CIM for the write-verify scheme 

to minimize the cell conductance variations when loading the DNN models on-chip. This 

ADC could become a vulnerable spot later.  

6.2.2 Adversarial attack 

Besides the model's weights, the leaked model could cause some security problems 

considering the functionality. While deep neural networks (DNNs) have achieved 

outstanding progress in various applications, there is a growing concern regarding 

adversarial attacks, which aim to fool the model with manipulated inputs [71] while not 

affecting human decisions. Currently, adversarial attacks are generally grouped into two 

categories considering the information of the target model exposed to the adversary. If the 

adversary has full access to the DNN model architecture and weights, it is called the white-

box attack [72, 73]. If the adversary has only external access to the network (e.g., input and 

output), it will be categorized as a black-box attack. The white-box attack could achieve 

higher success rates than the black-box attack [72], while it is rarer to happen in real life. 

Generally, it is not easy for adversaries to access a private model in the data center or the 

cloud. However, regarding the eNVM-based CIM inference engine, the edge devices are 

physically accessible by anyone and thus could leak the model information at high risk. 

Extra algorithmic calculations could be used to defend against the white-box attack at the 
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expense of speed and power overhead, which is undesired for the edge device with a limited 

power budget and demanding a real-time response. Instead of on-chip defending against 

the adversarial attack, this work is concerned with the transferability of the adversarial 

examples among chips loading the same model. Normally, the chips are designed for mass 

use, which means chips with the same structure and loaded with the same model will be 

widely equipped in different edge devices. Thus, adversaries only need to get the DNN 

model from a certain chip, and then they could generate adversarial examples that could 

fool the rest of the chips. As a result, all the chips could be disabled by a single weak point 

as shown in Figure 44.  

 

Figure 44 - The treat of generating adversarial examples from one chip and affecting all 

the rest chips.  

6.3 Security benefit 

6.3.1 Protect machine learning inference engine from chip cloning 

As illustrated in Chapter 3, we know that the ADC offset caused by process variation 

will degrade the model accuracy on-chip and can be compensated by on-chip fine-tuning. 

After fine-tuning, the model weights on-chip will be different from the original model and 

other chips because of the different ADC offset patterns. Inspired by PUF, We could utilize 

this fine-tuning under ADC offset to protect the model on-chip against chip cloning. In 

more detail, we view the fine-tuning of the model on-chip as a process to fit the model 
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exactly against each chip's unique ADC offset pattern. As a result, the model only works 

under a certain chip with the specific ADC offset pattern. Since the ADC offset caused by 

the process variation is unclonable, the model on-chip will also become unclonable. 

However, due to the noise robustness of DNNs, they may still work under different offset 

patterns. Thus, the ADC structure adopted on-chip must satisfy the following three 

requirements to defend against the chip cloning attack. First, the ADC offset should be big 

enough to cause an obvious accuracy loss on the original model. Second, the model on-

chip should be able to fully recover the accuracy after fine-tuning. Finally, when the fine-

tuned model is cloned to other chips, it should have a bad performance so that the cloning 

could be identified as failed. Referring to Figure 17, only SAR-ADC with certain transistor 

sizes can achieve the first two conditions and be used as candidates for the chip-cloning 

defense. Then we need to check if these settings could satisfy the final requirement. 

According to Figure 17, SAR-ADCs with W/L=4 for 2-bit weights and W/L=3 for 

4/8-bit weights are candidates to defend against the chip cloning attack. First, more chip 

samples with specified ADCs are fine-tuned to check the generality of accuracy recovery 

under these settings, as shown in Figure 45 (a). More than 90%, 89%, and 87% accuracy 

could be achieved for these three cases separately across several retaining tests. Then, the 

weight cloning attack is assumed on these fine-tuned chips, which is to read out the weights 

on-chip by the probing attack and apply them to other fake chips with the same settings but 

different ADC offset patterns. Figure 44 (b) shows that the retrained models have a 

relatively low accuracy of 20%~40% on other chips. It is worth noticing that this fine-

tuning differs from fine-tuning the network to be more noise-robust by injecting noise. The 

noise pattern caused by ADC offset is static instead of stochastic during training. The fine-
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tuned model is overfitted to the specific pattern instead of becoming more noise-robust. 

Thus different ADC offset patterns will cause an accuracy drop again.    

2bits(W/L=4) 4bits(W/L=3) 8bits(W/L=3)
0%

20%

40%

60%
 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

A
c
c

u
ra

c
y

Weight Precision(SA Size)

2bits(W/L=4) 4bits(W/L=3) 8bits(W/L=3)
86%

88%

90%

92%

A
c
c

u
ra

c
y

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

Weight Precision(SA Size)(a) (b)  

Figure 45 - Inference accuracy distribution of software-trained model with ADC offset. 

6.3.2 Mitigating transferability of adversarial examples 

 

Figure 46 - Three adversarial attack scenarios: Case1: attack the original model in software 

and apply the examples on a fine-tuned chip; Case2: attack the digital model read out from 

a fine-tuned chip and apply the generated examples on a fine-tuned chip; Case3: attack the 

model on-chip directly in a hybrid way and apply the generated examples on another fine-

tuned chip.  

The white-box adversarial attack is more efficient than the black-box attack as it 

utilizes the network weights to generate adversarial examples. Correspondingly, these 

adversarial examples are more closely related to the model's weights. To compensate for 
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the accuracy loss caused by ADC offset, the weights will be chip-wisely different by fine-

tuning. This chip-to-chip variation could bring us a byproduct: the chip will be robust to 

the adversarial examples transferred from other chips or software baselines. Explicitly, 

even if the adversary gets the software model or a certain chip and attacks the model/chip 

instance to generate some adversarial examples, he/she could not use the same examples 

to fool other chip instances due to the uniqueness of the DNN model on each chip. 

We evaluate the proposed transferability mitigation method with VGG-8 and 

DenseNet-40 networks for the CIFAR-10 dataset. The VGG-8 model has 8-bit activations 

and 2-bit weights, while 8-bit activation and 8-bit weight are adopted for DenseNet-40. 

Both networks could achieve ~92% accuracy as software baseline on CIFAR-10 

classification. We evaluate a white-box attack called Carlini and Wagner (C&W) Attack 

[73] on these two models assuming three different scenarios as shown in Figure 46: Attack 

original model; Attack retrained digital model; Attack retrained chip. Here, model0 means 

the original model trained in software without chip variations and will be loaded to all the 

chips as an initial condition. The chips will be fine-tuned to recover the accuracy 

degradation caused by ADC offset. Considering a certain fine-tuned chip1, if the model on 

chip1 is read out, it will be different from model0 because of fine-tuning, and we refer to 

this new model as model1. Finally, we use chip2 to denote a fine-tuned chip with a distinct 

ADC offset pattern from chip1.  

Table 7 presents accuracy results after fine-tuning and the performance under three 

attack cases with different ADC settings. As shown in the table, chip accuracy could be 

generally recovered to baseline accuracy (above 90%) by retraining for all cases. Unlike 

the chip-cloning defense case, the big accuracy drop is unnecessary for this adversarial 
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examples transferability mitigation purpose. Thus, there are no strict requirements on ADC 

except for fine-tuning to recover the accuracy loss caused by ADC offset. In the case1 

scenario, the adversarial attack is applied to the original software baseline model (model0). 

It can be seen that the attack is quite effective and degrade the classification accuracy to 

~0%. However, when applying the generated adversarial examples on chip1, the retrained 

network on-chip can still preserve relatively high accuracy (~75% for VGG-8, ~84% for 

DenseNet-40) on these manipulated inputs.  

Table 7 - Accuracy performance under C&W attack (𝑳𝟐). 

 

Chip Information Attack original model 

Chip 

config. 

ADC 

type 
W/L 

Retrained  

accuracy 

Software 

Attack(model0) 

Attack 

on chip1 

VGG-8 

A SAR 9 89.39% 

0.61% 

73.95% 

B SAR 10 90.87% 75.12% 

C Flash 9 91.36% 74.10% 

D Flash 10 91.46% 74.40% 

DenseNet-40(k=24) 

A SAR 9 91.04% 

0% 

84.59% 

B SAR 10 91.52% 83.11% 

C Flash 9 91.50% 85.56% 

D Flash 10 91.81% 84.19%  
Attack retrained digital model Attack retrained chip 

Chip 

config. 

Digital 

accuracy 

(model1) 

Software 

Attack(model1) 

Attack 

On chip1 

Chip2  acc. after 

attack 

Attack on 

chip1 

VGG-8 

A 74.75% 0.09% 83.43% 

0% 

62.10% 

B 83.89% 0.24% 78.78% 64.80% 

C 89.31% 0.15% 65.73% 65.10% 

D 90.54% 0.21% 51.22% 64.30% 

DenseNet-40(k=24) 

A 20.04% 0% 87.69% 

0% 

87.20% 

B 35.25% 0% 89.52% 85.25% 

C 62.71% 0% 87.62% 86.80% 

D 85.07% 0% 84.65% 86.30% 
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For attack case 2, the adversary is assumed to have access to a fine-tuned chip (chip1) 

but could only conduct the adversarial attack in software. Thus, he/she first reads out the 

retrained model (model1), which has been fine-tuned to fit the ADC variation on chip1 and 

then uses it to generate adversarial examples. There will be an accuracy degradation for the 

model1 since it ignores the contribution of ADC offset on-chip. Its digital accuracy can be 

further decreased to ~0% by the C&W attack. However, while applying these pure 

software-generated adversarial examples back to chip1, it can maintain relatively high 

accuracy thanks to the ADC variation. In attack case 3, we assume the adversary could 

generate adversarial examples from the model on-chip (chip2) directly using a hybrid way. 

The inference is performed on chip2, and a software platform conducts backpropagation. 

This hybrid attack is similar to hybrid fine-tuning. Under such a scenario, the chip under 

attack will be disabled with 0% accuracy, but other fine-tuned chips (chip1) could maintain 

a certain accuracy.  

Table 8 - C&W attack on VGG-8 with different distance matrices. 

 

Attack original model Attack retrained chip 

Software 

attack 

Attack on 

chip1 

Chip2 acc. 

after attack 

Attack   on 

chip1 

Acc. before attack 91.96% 88.10% 90.50% 90.78% 

C&W 

attack 

𝑳𝟎 attack 0.57% 73.54% 0.26% 71.30% 

𝑳𝟐 attack 0.68% 74.23% 0.02% 63.40% 

𝑳∞ attack 2.61% 73.35% 0.88% 70.10% 

We further vary the distance matrices used in the C&W attack on VGG-8 

(𝑳𝟎, 𝑳𝟐, 𝑳∞) and, as shown in Table 8, the proposed defense is effective regardless of the 

used norm type. 
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6.4 Summary 

This chapter identifies two threats to eNVM-based machine learning inference 

engines: the chip cloning attack and the transferability of adversarial examples. We propose 

a PUF-like scheme that comes free with the on-chip fine-tuning to recover the accuracy 

loss caused by the process variation. On one side, the fine-tuned model could maintain high 

accuracy on each chip instance, while its performance will significantly degrade on other 

chip instances with cloned weights. Thus, the threat of chip-cloning is released. On the 

other side, accompanied by accuracy recovery, updated weights on-chip will vary from 

chip to chip. As a result, the transferability of the adversarial examples is strongly 

suppressed by fine-tuning. While the classification accuracy of the original attacked 

chip/models drops to almost 0%, the software performance of other chips could still be 

maintained to some extent. 
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CHAPTER 7. Conclusion 

7.1 Key contribution 

This thesis is focused on the reliability and security issues of CIM accelerators. These 

two aspects are equally important for using the CIM accelerators as edge devices 

practically. They could also be combined so that protections come free with the techniques 

to improve reliability, reducing the implementation overhead. The contributions of this 

thesis include: 

We define the basic design flow of algorithm-to-hardware mapping of CIM and 

explore its design space. Two quantization methods with three mapping approaches are 

demonstrated for hardware performance evaluation. Detailed analysis of these results 

provides a deeper insight into the reliable and hardware-friendly system-level CIM design. 

While this analysis is done for CIM, some common ideas could be expanded to accelerators 

in other domains, such as purely digital architectures. First, as some digital accelerators 

adopt zero-skip schemes to reduce power consumption, quantization methods with higher 

input sparsity could also help decrease their real computation energy efficiency. Second, a 

similar bit-wise MAC could be implemented in the digital domain with AND gate and 

adder-tree, followed by the shift-adders. All the number representation schemes could be 

applied to it with binary digits. This way, a potential precision reduction could be applied 

to the adder-trees based on the ADC results. Finally, the tolerance of ADC precision loss 

implies that besides quantizing the inputs and weights, further precision loss during product 

accumulation is possible even under the traditional MAC operation in digital, which could 

introduce hardware overhead reduction on the accumulator. 
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After that, we introduce process variations into the CIM inference engine, which will 

cause ADC offset and thus hurt the software performance. To recover the inference 

accuracy, we proposed a hybrid on-chip fine-tuning method. It is shown that the on-chip 

fine-tuning is beneficial to compensate for the ADC offset effects. Other works also show 

that training with noise injected to mimic the effect of memory cell variations and IR drops 

could also recover the DNN performance on-chip. As a result, we propose to train the 

network directly on the chip. We find that the non-idealities of the devices and circuits will 

degrade the training accuracy, and the DRAM access will hurt its energy efficiency. 

Momentum is utilized during training to overcome the performance degradation caused by 

non-idealities, and we propose a segmented update scheme to reduce the DRAM access. 

This performance recovery is specific to the analog operations since the digital system 

normally has a good noise margin for signal recovery and thus faces much fewer non-ideal 

effects. Also, it takes advantage of the DNN’s noise tolerance and self-adaption properties 

to obtain good performance under non-idealities. However, the segmented gradient 

calculation and weight update scheme could be applied to any system to reduce the DRAM 

access for training. 

To protect the raw on-chip weights in CIM inference designs, we first aim to develop 

a secure SRAM-based XOR-CIM engine with a modified reverse secure sketch protocol 

to enable on-chip authentication and key processing for XOR-based stream cipher 

encrypted models. The evaluation results show that the proposed XOR-CIM could enhance 

security, achieving comparable energy efficiency and no throughput loss, with negligible 

area overhead compared to conventional CIM designs with no protection. The concept of 

using a complex encryption method to encrypt the seed while using a relatively simple one 
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to encrypt the big model could be applied to any edge device to reduce the encryption 

overhead. In addition, this XOR-cipher integrated SRAM can also be used for memory 

purposes to hold encrypted data on-chip. It can save the extra operation for standalone 

XOR decryption of the data. However, the energy improvement from Dual-WL SRAM 

cells for memory purposes may not be big because of the single-row operation.  

Unlike the SRAM-based CIM engine, it is hard to integrate encryption into the 

eNVM-based CIM engine. Inspired by the necessary retraining to recovery accuracy under 

process variation, we propose a PUF-like scheme against the weight cloning attack and 

mitigate the transferability of the adversarial example. The individual chip can maintain 

high accuracy after fine-tuning, while its performance will significantly degrade on other 

chip instances with cloned weights. The fine-tuned chips also become more robust to the 

adversarial examples generated from the pure software model or different chips. While we 

utilize the ADC offset pattern to provide the PUF-like specification of the model, any other 

unclonable source from hardware could be integrated into the model and achieve the same 

purpose as the ADC offset. As a result, this protection is not limited to the CIM but is 

possible for all DNN accelerators. 

7.2 Future work 

While CIM accelerators have shown superior performance and efficiency over 

conventional digital computing systems, the transition from von Neumann architectures to 

in-memory computing platforms involves cross-layer considerations from hardware to 

software. We believe further efforts need to be spent in several directions to enable the 

widespread use of CIM.  
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Firstly, considering the immaturity of the eNVMs technologies, CIM architectures 

necessitate an integrated mapping of various non-idealities to explore software/hardware 

co-designs that can deal with devices' unavoidable reliability issues. While different works 

have explored parts of non-idealities in their work, it is desired to have a flexible and all-

sided simulator to cover different cases of non-idealities for better early-stage estimation 

of CIM design.  

Secondly, further exploration of the security vulnerabilities and countermeasures in 

CIM is desired to allow the in-memory computing solution to be used in real-world 

computing systems. Also, these methods, including the solutions proposed in this work, 

should not be validated only in simulation but also with real chip implementation.  

Finally, system-level CIM should be evaluated for big-scale tasks. Currently, most 

of the CIM is demonstrated for small networks. For complicated tasks, the performance of 

both software/hardware is evaluated in a hybrid way, which integrates the macro-level 

silicon data into the simulator to predict the system-level result. To move CIM from the 

research community to industry, it is important to validate its strength in silicon with real-

life tasks. Thus, validating a big-scale system-level CIM prototype chip is one of the most 

import future tasks for researchers in this area.  
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