
RELIABILITY AND SECURITY OF

COMPUTE-IN-MEMORY BASED

DEEP NEURAL NETWORK

ACCELERATORS

A Dissertation

Presented to

The Academic Faculty

by

Shanshi Huang

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

School of Electrical and Computer Engineering

Georgia Institute of Technology

December 2022

© Shanshi Huang 2022

 RELIABILITY AND SECURITY OF

COMPUTE-IN-MEMORY BASED

DEEP NEURAL NETWORK

ACCELERATORS

Approved by:

Dr. Shimeng Yu, Advisor

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Dr. Callie Hao

School of Electrical and Computer

Engineering

Georgia Institute of Technology

Dr. Saibal Mukhopadhyay

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Dr. Ada Gavrilovska Habl

School of Computer Science

Georgia Institute of Technology

Dr. Tushar Krishna

School of Electrical and Computer

Engineering

Georgia Institute of Technology

 Date Approved: September 26, 2022

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my advisor Dr.

Shimeng Yu for his invaluable advice, unreserved support, and meticulous guidance

throughout this whole journey. He is the most intelligent, rigorous and hardworking person

I have ever met in my life. He has set an excellent example for me regarding what a good

researcher (and person) should be. I believe what I have learned from he will benefit me

for life. Besides, this endeavor would not have been possible without the financial support

of the Semiconductor Research Corporation and National Science Foundation.

I am also very grateful to the rest of my dissertation and proposal committee: Dr.

Callie Hao, Dr. Saibal Mukhopadhyay, Dr. Ada Gavrilovska Habl, Dr. Tushar Krishna, Dr.

Sung Kyu Lim, for their insightful comments and encouragement. My sincere thanks also

go to Dr. Meng-fan Chang and Dr. Jae-sun Seo for their recommendations and our exciting

collaborations.

I thank my former and current labmates for the kind help and wonderful time that

we experienced together: Dr. Xiaoyu Sun, Dr. Xiaochen Peng, Dr. Panni Wang, Dr. Wonbo

Shim, Dr. Jae Hur, Dr. Sola Woo, Yandong Luo, Wantong Li, Anni Lu, Yuan-Chun Luo,

Gihun Choe, Chinsung Park, Po-Kai Hsu, Janak Sharda, Jungyoun Kwak, James Read,

Vaidehi Garg, Omkar Phadke, Junmo Lee.

Last but not the least, to my parents Jin and Qin, and my husband Hongwu, thank

you for supporting and encouraging me throughout this whole journey and my life. I would

not have made it without you.

 iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

LIST OF TABLES vi

LIST OF FIGURES vii

SUMMARY xi

CHAPTER 1. Introduction 1
1.1 Motivation 2
1.2 CIM basics 3

1.3 CIM reliability and security issues 5
1.3.1 Compute-in-memory reliability issues 5
1.3.2 Compute-in-memory security issues 11

1.4 Thesis overview 13

CHAPTER 2. Hardware-Aware Quantization/Mapping Strategies for Compute-

in-Memory Accelerators 17
2.1 Motivation 17
2.2 Low precision neural network 17

2.3 Neural network mapping 21
2.3.1 MAC mapping in CIM 22

2.3.2 Analog-to-digital conversion 32
2.3.3 Post-ADC digital processing 34

2.4 Evaluation results 36
2.4.1 Hardware trade-offs among different mapping strategies 36
2.4.2 Hardware trade-offs with different ADC configurations 40

2.5 Summary 45

CHAPTER 3. Performance Recovery under Process Variation 46

3.1 Motivation 46
3.2 Recover the performance below variation 46

3.2.1 ADC offset variation modelling 46

3.2.2 On-chip fine-tune 49
3.2.3 Performance recovery 51

3.3 Summary 53

CHAPTER 4. Achieving High In-Situ Training Accuracy and Energy Efficiency

with Analog Non-Volatile Synaptic Devices 55
4.1 Motivation 55
4.2 Non-idealities for in-situ training accuracy 56

4.2.1 Asymmetry/nonlinearity in conductance tuning 57
4.2.2 D2D variation and C2C variation 59
4.2.3 Update step size 60

 v

4.2.4 ADC quantization 60

4.3 Training on chip 61

4.3.1 Training-on-chip architectures 61
4.3.2 Segmented calculation 63

4.4 Evaluation and discussion 65
4.4.1 Software evaluation 65
4.4.2 Hardware evaluation 69

4.5 Summary 74

CHAPTER 5. Secure XOR-CIM Engine: Compute-in-Memory SRAM

Architecture with Embedded XOR Encryption 76
5.1 Motivation 76
5.2 Secure XOR-CIM inference engine 76

5.2.1 Secure inference engine system 76
5.2.2 Secure XOR-CIM inference engine architecture 80

5.3 Hardware implementation of XOR-CIM core 81
5.3.1 6T Dual-WL SRAM bit-cell 81

5.3.2 Decrypting input generator 82
5.3.3 ADC pair resolution 83
5.3.4 Dynamic reference array 84

5.4 Evaluation and discussion 84
5.4.1 Methodology and setup 84

5.4.2 Hardware performance of the XOR-CIM core 85
5.4.3 Overhead for secure communication 86
5.4.4 Vulnerability of XOR key bit sharing 88

5.5 Conclusion 90

CHAPTER 6. Secure eNVM-CIM Engine: Exploiting Process Variations to

Protect Machine Learning Inference Engine from Chip Cloning and Adversarial

Attack 91

6.1 Motivation 91
6.2 Vulnerability of eNVM-based CIM chip 91

6.2.1 Chip cloning attack 91

6.2.2 Adversarial attack 93
6.3 Security benefit 94

6.3.1 Protect machine learning inference engine from chip cloning 94
6.3.2 Mitigating transferability of adversarial examples 96

6.4 Summary 100

CHAPTER 7. Conclusion 101
7.1 Key contribution 101

7.2 Future work 103

REFERENCES 105

 vi

LIST OF TABLES

Table 1 - Average percentage of weights updated per iteration. 53

Table 2 - Hardware overhead for fine-tuning of one epoch. 53

Table 3 - Survey of representative analog synapses reported in the literature

with weight precision, P/D, and C2C variations.

60

Table 4 - Hardware performance benchmark (Training). 73

Table 5 - Benchmark hardware performance among Normal-CIM, near-

memory compute, and XOR-CIM.

86

Table 6 - Hardware performance of on-chip blocks at 28nm for implementing

the entire ResNet-18 secure inference engine.

87

Table 7 - Accuracy performance under C&W attack (𝑳𝟐). 98

Table 8 - C&W attack on VGG-8 with different distance matrices. 99

 vii

LIST OF FIGURES

Figure 1 - CIM basics. (a) A basic mixed-signal CIM array for VMM

acceleration (b) Mapping from a convolutional layer to the CIM

subarrays.

4

Figure 2 - Thesis overview 14

Figure 3 - Accuracy performance vs. network quantization approaches with

(a) 8-bit weight/8-bit input and (b) 2-bit weight/8bit input.

21

Figure 4 - Subarray structures for different mapping (data representation)

methods: (a) Case1: 2’s complement extended representation (b)

Case2: differential-pair data representation (c) Case3: shifted

unsigned INT.

27

Figure 5 - Input distribution of different quantization methods on (a) VGG-8

network and (b) ResNet-18 network.

28

Figure 6 - Hardware mapping with input-dependent cancellation for (a)

Case2: differential-pair data representation; (b) Case3: shifted

unsigned INT; (c) Case1: 2’s complement extended representation

for binary digit.

31

Figure 7 - Accuracy performance vs. on/off ratio with (a) Case1: 2’s

complement extended representation (b) Case2: differential-pair data

representation (c) Case3: shifted unsigned INT.

32

Figure 8 - Hardware performance (energy efficiency, throughput, area

overhead) vs. different design options (quantization methods,

mapping methods, cell precision) with no ADC quantization loss.

38

Figure 9 - Accuracy performance vs. ADC precision for different design

options (quantization methods, mapping methods, cell precision).

41

Figure 10 - Hardware performance (energy efficiency, throughput, area

overhead) vs. different design options (quantization methods,

mapping methods, cell precision) with tolerable ADC quantization

loss.

42

Figure 11 - Accuracy performance vs. ADC precision with nonlinear

quantization for different design options (quantization methods,

mapping methods, cell precision).

44

 viii

Figure 12 - (a) Latch-based current-mode SA. (b) Sense pass rate for 5-bit

ADC.

47

Figure 13 - (a) Sense pass rate to Iref offset conversion. (b) Sigma/mu of the

Gaussian distribution of Iref offset converted from sense pass rate.

48

Figure 14 - Simulated ADC output with offset sampled from the Iref

distribution.

49

Figure 15 - On-chip fine-tuning dataflow. 50

Figure 16 - Accuracy before fine-tuning for (a) Flash-ADC and (b) SAR-ADC. 52

Figure 17 - Retraining curve of (a) Flash-ADC with 2-bit weights; (b) SAR-

ADC with 2-bit weights; (c) SAR-ADC with 4-bit weights; (d) SAR-

ADC with 8-bit weights.

52

Figure 18 - Non-idealities of analog synaptic devices in (b) eNVM array for in-

memory computing with (a) asymmetric and non-linear conductance

tuning, device-to-device (D2D) variation, and cycle-to-cycle (C2C)

variation and (c) ADC quantization error. A reference column by

subtraction is used to represent negative weights.

56

Figure 19 - (a) Conductance update trend without momentum. (b) Conductance

update trend with momentum. (c) Weight distribution without

asymmetry/nonlinearity. (d) Weight distribution with P/D = +3/-3

for Conv layer 3 for the VGG-8 network at epoch=185.

57

Figure 20 - Three types of undesired ΔW sign change during training. 58

Figure 21 - ADC quantization example. 61

Figure 22 - (a) On-chip training architecture with naïve step-by-step dataflow

(case1). (b) On-chip training architecture with segmented on-chip

accumulation and updates (case2).

63

Figure 23 - Example of input and error feature map reload for case2 segmented

gradient calculation.

64

Figure 24 - The number of DRAM access bits for each layer under different

global buffer sizes from 16 kB to 1024 kB for case1 (naïve) and

case2 (segmented gradient calculation) schemes.

65

Figure 25 - (a) Accuracy vs. momentum factor β. (b) Accuracy vs. device

nonlinearity factor under asymmetry. (c) Training traces w/wo

momentum, D2D variation and big batch size=4000.

66

 ix

Figure 26 - (a) Accuracy vs. momentum precision. (b) Accuracy vs. device

weight (gradient) precision. (c) Accuracy vs. C2C variation.

Momentum β =0.9 is applied.

67

Figure 27 - Statistical weight update pattern (ΔW vs. W) in one batch for

different P/D, C2C variance, and weight (gradient) precision. (a)

When C2C variation is small for devices with small P/D and high

precision. (b) When C2C variation is large for devices with large P/D

and high precision and case (c) When C2C variation is large for

devices with small P/D and low precision.

68

Figure 28 - (a) Training traces for different ADC resolutions. (b) Training

traces when asymmetry/nonlinearity, D2D variation, C2C variation,

momentum, and ADC quantization effects are combined.

69

Figure 29 - (a-c) Energy breakdown for case1 (naïve) dataflow. (b-f) Energy

breakdown for case2 (segmented calculation) dataflow.

70

Figure 30 - Area breakdown for (a) case1 (naïve) dataflow (b) case2

(segmented calculation) dataflow.

71

Figure 31 - Energy efficiency vs. global buffer size for case1, case2, and hybrid

scheme.

72

Figure 32 - Energy breakdown for hybrid dataflow with the portion of

momentum in the weight update highlighted.

73

Figure 33 - Energy consumption & energy efficiency vs. training batch size. 74

Figure 34 - The two-party system of the CIM inference engine and the cloud

database, and the possible threats of model leaking on the system.

77

Figure 35 - Communication protocol for the secure SRAM-based CIM

inference engine.

79

Figure 36 - Secure XOR-CIM inference engine architecture. 80

Figure 37 - (a) Dual-WL 6T SRAM cell. (b) Decrypting input signal generator. 83

Figure 38 - Inference accuracy vs. ADC resolution. 83

Figure 39 - Latency, energy and area breakdown for the secure inference

engine.

87

Figure 40 - Inference accuracy vs. portion of network encrypted. 88

Figure 41 - Illustration of weight encryption for 4-bit weight. 89

 x

Figure 42 - The hamming distance between the predefined key and the key

found by frequency analysis with several weights sharing one key.

89

Figure 43 - Chip-cloning attack that bypass the expensive process of data/label

collection and model training.

92

Figure 44 - The treat of generating adversarial examples from one chip and

affecting all the rest chips.

94

Figure 45 - Inference accuracy distribution of software-trained model with

ADC offset.

96

Figure 46 - Three adversarial attack scenarios: Case1: attack the original model

in software and apply the examples on a fine-tuned chip; Case2:

attack the digital model read out from a fine-tuned chip and apply

the generated examples on a fine-tuned chip; Case3: attack the model

on-chip directly in a hybrid way and apply the generated examples

on another fine-tuned chip.

96

 xi

SUMMARY

The proposed research aims to explore the reliability and security issues in

compute-in-memory (CIM) design for accelerating deep neural network (DNN)

algorithms. On one side, this research focuses on investigating and overcoming the impact

of non-idealities in CIM designs. We first explore the design space of the CIM inference

accelerator's quantization and mapping strategies. Several typical design options are

analyzed and compared from both the software and hardware performance sides. Some

design options are more robust and hardware friendly than others, inspiring further

improvement in quantization and mapping strategies. The first work considers non-ideal

effects from quantization and mapping strategies, with ideal circuits and devices assumed.

Considering a more real-life situation, reliability issues caused by non-ideal circuits are

studied. Specifically, the process variation is introduced to ADCs of the CIM inference

engine, which causes the ADC offset. The effect of ADC offset on the software

performance is evaluated, and an on-chip fine-tuning solution is proposed to compensate

for the performance degradation. Embracing the benefit of on-chip fine-tuning, we explore

the possibility of directly training on-chip of CIM accelerators with analog synapses under

the non-idealities of devices and circuits. The in-situ training is proven feasible even under

asymmetry/nonlinearity, device-to-device (D2D) variation, cycle-to-cycle (C2C) variation,

and a limited number of states.

On the other side, security vulnerabilities and countermeasures for SRAM-based

CIM and eNVM-based CIM inference engines are investigated. The SRAM-based

inference engine must download the model each time after power-on as it is volatile. Thus,

 xii

we propose an XOR-CIM-based inference engine working in a two-party system, in which

encryption and authentication are adopted considering data transmission between servers

and edge devices. The eNVM-based engines mainly suffer from the information leaking

problem brought by raw data stored in non-volatile memory. Inspired by the necessary on-

chip fine-tuning to recover the accuracy loss brought by the process variation, a physical

unclonable function (PUF)-like scheme is proposed against the weight cloning attack and

to mitigate the transferability of the adversarial examples.

 1

CHAPTER 1. Introduction

Although the concept of machine learning (ML) was proposed a long time ago, its

development was lagging due to the limited hardware computing power until graphics

processing units (GPUs) were introduced to this area [1]. In recent years, remarkable

breakthroughs in machine learning have encouraged applications in various fields, such as

computer vision, autonomous vehicles, and natural language processing. These successes

in software, in turn, have motivated the development of hardware accelerators from the

cloud to the edge. As machine learning models become more and more powerful, their

implementations also tend to be more and more data-intensive. Thus, the frequent data

movement becomes the bottleneck of the accelerators based on the conventional von

Neumann platforms (e.g., CPUs/GPUs). As an alternative solution, compute-in-memory

(CIM) attracts more and more attention since it merges the compute units directly into

memory units, alleviating the memory wall problem.

The principle of CIM for machine learning acceleration is that the crossbar structure

of the memory array could effectively support dot-product operations, which take an

extensive part of the calculations in most machine learning applications. Various CIM

architectures have been proposed to support different kinds of tasks [2, 3, 4, 5]. This work

mainly focuses on the CIM acceleration for the currently most popular machine learning

technique, the deep convolutional neural network (DNN). Also, among different types of

CIM, this work focuses on the mixed-signal CIM approach, which first processes vector-

matrix multiplications (VMMs) in the analog domain and then digitizes the outputs at the

edge of the array for further processing.

 2

1.1 Motivation

The concept of edge computing is becoming increasingly popular in this era of big

data and machine learning. On one side, it could reduce bandwidth usage and latency in

communication. On the other side, it allows applications on edge to be optimized for a

particular environment timely.

The most well-known application adopting edge computing is Internet-of-Things

(IoT), where the calculations can be done locally in edge smart devices such as

smartphones, smart watches, smart home appliances and so on. Powered by machine

learning techniques, IoT could mimic intelligent behavior with less human intervention.

While IoT does not necessarily require edge computing, processing data locally will greatly

improve calculation efficiency and reduce data transfer. It also reduces the risk of personal

information leakage, as many smart devices could reflect the owner's behavior and privacy.

Another application that embraces edge computing is wearable medical devices, which

care a lot for real-time response and privacy. Machine learning applications have been

demonstrated to be efficient for various medical purposes. With edge computing, these

applications could be personalized to everyone's health condition for better performance.

Besides user specialization, edge computing is also beneficial for environmental

adaptation. For example, the traffic signals of an intersection could be optimized based on

the movements, time series, and environmental variables. For cloud computing, the data

from different locations need to be transformed to the centralized server, and then the

optimized traffic flow is sent back, introducing big data transfer and delayed response.

Thus, edge computing is also suitable in this scenario. Like most planning applications,

traffic signals planning could also be powered by machine learning algorithms.

 3

CIM is a promising solution for accelerating these DNN-based machine learning

applications at the edge, considering its power efficiency. However, it behaves differently

from traditional digital circuits, requiring more cross-layer designs from algorithm levels

to hardware implementations. As CIM essentially adopts mixed-signal computations, non-

ideal effects are naturally introduced, which could hamper the accuracy. Thus, performance

cannot be guaranteed when applications developed in pure digital processors are directly

mapped to CIM processors. Thus, how to mitigate non-ideal effects and improve the

reliability of CIM engines to maintain the software performance are remaining problems.

On the other side, edge devices suffer from higher security risks than the data center

considering their usage environment. While treats are the same whether the edge devices

are CIM or digital based, the same solution may not be suitable for both. Due to the weight

stationary and parallelism computing nature of the CIM, it needs to be taken care of

differently to avoid hurting its efficiency. Generally, the on-chip DNN model, trained with

extensive resources, is identified as a valuable asset to be protected. Effective and

lightweight countermeasures are desirable to prevent DNN model leaking and reverse

engineering.

1.2 CIM basics

The CIM structure discussed throughout this research is based on the mixed-signal

calculation unit demonstrated in Figure 1 (a). It utilizes the crossbar structure of the

memory array to accelerate vector-to-matrix multiplications (VMMs) in the analog

domain. More precisely, the components of a matrix (weights) will be mapped to the

memory cells in the array. The scalars in the vector (inputs) will be applied to the cells

 4

through the horizontal wires of the array, which are generally the word lines (WLs) of the

array. An analog signal will be generated at each cross-point to multiply the input and

weight. Generally, the analog signal can be a current generated based on Kirchoff's law.

The analog signals from the same column will be accumulated through the horizontal

wires, which are usually the array's bit lines (BLs). This way, the array's output will be

analog signals proportional to the VMM results.

fG11IN[0]

IN[1]

IN[2]

IN[n]

Yi[0]

Yi[1]

Yi[2]

Yi[n]

W11
Head switch matrix

C
trl

MUX

W11 W21 W31 Wm1

W12

W13

W1n Wmn

ADC

In
p

u
t

d
ri

ve
r(

&
 D

A
C

)

Shift-add

IN[0]

IN[1]

IN[N] Isum= i

IN/W is in digit format (= k-bit)

To
 u

pp
er level

...

...

...

...

...

..
.

...
W

H

F

E

K

K

Kernel Depth = CoutLayer <n>

...

...

..
.

K

K

...

......

... ...

... + +

• IFM size = W*H*Cin, Kernel size = K*K*Cin*Cout,

OFM size = E*F*Cout

• Number of sub-matrix = K*K

• Number of subarray= (Cin/M)*(Cout/M)

• OFM = Partial-sum

• Parital-sum = segment of Partial-sum

sub-matrix

IFMs

OFMs

C
in

IF
M

s

IF
M

s

Partial-sumPartial-sum

Kernel Depth = Cout

C
in

Cout Cout

Array Partition

...

M

M

sub-array

...

<<

.. segment of Partial-sum

(a)

(b)

Figure 1 - CIM basics. (a) A basic mixed-signal CIM array for VMM acceleration (b)

Mapping from a convolutional layer to the CIM subarrays.

 5

The CIM structure could accelerate the DNN-based applications, which usually

contain a lot of VMM operations in the Convolutional (CONV) layers and Fully-Connected

(FC) Layers. The operations in FC layers are VMMs in nature. However, the CONV layers

usually have to stretch the 4D kernel to a 2D matrix. Considering a weight kernel of a

CONV layer has the size 𝑘1 × 𝑘2 × 𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡, the operation of the CONV layer could be

viewed as VMM between input vectors and a 2D weight matrix with size

(𝑘1 × 𝑘2 × 𝐶𝑖𝑛) × 𝐶𝑜𝑢𝑡 in principle. In general, this stretched 2D matrix could be much

bigger than the CIM array size (𝑀 × 𝑀) and thus has to be cut into multiple subarrays.

Different stretching/cutting methods have been proposed based on the architecture and data

flow. In this research, we adopt the method demonstrated in Figure 1 (b), which views the

weight array as 𝑘1 × 𝑘2 2D sub-matrixs with size 𝐶𝑖𝑛 × 𝐶𝑜𝑢𝑡 first. A sub-matrix could be

further divided into multiple subarrays. In this way, there will be in total 𝑘1 × 𝑘2 × (𝐶𝑖𝑛/

𝑀) × (𝐶𝑜𝑢𝑡/𝑀) subarrays per weight digit needed for the layer.

1.3 CIM reliability and security issues

1.3.1 Compute-in-memory reliability issues

Many CIM architectures have been proposed based on various memory types.

Generally, static-random-access-memory (SRAM) and emerging non-volatile memories

(eNVMs) are popular for in-memory computing. On one side, eNVMs are alluring due to

their non-volatility, high density, low leakage, and multilevel programmability. On the

other hand, the SRAM is highlighted with the fast write speed, low write energy, scalability

to more advanced tech nodes, and flexibility of function integration as it is CMOS-based.

SRAM-based and eNVMs-based CIM accelerators could suffer from common or peculiar

 6

limitations in mixed-signal computation, such as ADC quantization loss, IR drop, read

disturbance, process variations, etc.

ADCs will introduce non-idealities into the CIM accelerators regardless of the device

used. First, it is usually impractical to use full-precision ADCs in the CIM array

considering their size and energy consumption. Reducing the ADC precision will introduce

quantization errors, which may diminish the performance of the DNN on-chip. Techniques

have been explored to reduce the required ADC precisions while maintaining performance.

The ISSAC [6] design reduces the ADC from full precision by 1-bit using weight encoding.

The encoding method first checks whether the weights are collectively large for each

column of weights. If not, the weights are stored in their original form. Otherwise, the

weights are saved in a “flipped” form. In such a method, even with the maximal inputs, the

sum of products always yields an MSB of 0, and the 1-bit lower precision ADCs would not

introduce quantization error. Later, the AEPE [7] design proposes further reducing the

ADCs’ precision at a balanced expense of accuracy degradation. By checking the statistics

of the DNN value, they find that the most significant bits (MSBs) carry much less

information (which means most of the MSBs are small or even zeros) than the least

significant bits (LSBs). Thus, a bounding method that only keeps the least significant bits

was used to reduce the ADC precision. Evaluation results show that this bounding method

introduces negligible accuracy loss with up to 2-bit quantization loss for big networks such

as AlexNet [8], VGG-16 [9], and ResNet-50 [10] for ImageNet classification. In [11], Sun

et al. utilize non-linear quantization to minimize the ADC precision with negligible

accuracy. The non-linear levels are determined via the Lloyd-Max algorithm and mapped

by a look-up table. It is shown that for MLP on MNIST classification, the ADC precision

 7

can be reduced by 3-5 bits according to the subarray size. For the CNN on CIFAR-10, the

acceptable ADC loss is within the range of 2 to 4 bits for different subarray sizes. The prior

works are mainly targeted at inference accelerators. For the training engines, the weight

statistics vary with time, especially at the beginning, requiring a relatively higher ADC

quantization precision.

Another concern caused by digitization is the input offset on analog readout circuits

(i.e., sense amplifier) caused by process variations. This offset bias the ADC’s references

away from their desired value, thus introducing ADC quantization errors. To overcome

this problem, Yin et al. [12] compensate for this offset by fine-tuning the references after

fabrication. An automatic algorithm is proposed to generate the correction step

proportional to the difference between the ideal and actual ADC outputs, scaled by a factor

decreasing with correcting iterations. One drawback of this method is that, while the offset

is static after fabrication for certain sense amplifiers (SAs), they are random across

different SAs. Thus, the references need to be fine-tuned for each SA on-chip. Advanced

sensing offset cancellation techniques are proposed with increased circuit complexity as a

replacement. For example, a triple-margin small-offset current-mode sense amplifier

(TMCSA) is proposed in [13], and a dual-bit small-offset current-mode sense amplifier

(DbSO-CSA) is proposed in [14]. Compared to the traditional CSA design, which

compares input’s and reference’s current in two symmetric branches, these advanced

designs sense the current difference in the same branch: the input current is copied to the

pull-up/pull-down circuit while the reference current is copied to the pull-down/pull-up

circuit. In this case, the offset between the input pairs of two branches is avoided. In

addition, the TMCSA could amplify the current difference by three times to tolerant small

 8

read/sense margins, while the DbSO-CSA uses two reference currents to generate a 2bit

sense result, reducing the number of references and sense time.

Wire resistance is also a common problem in all CIM accelerators and will be more

and more severe as technode scales down. The wire resistance will cause IR drop, making

currents contributed by the cells vary across different cross-points. Liu et al. propose

compensation methods for IR-drop in [15]. For the inference engine, they fine-tune the

resistance of the cell to make the combination of cell and wire resistance close to the ideal

value to represent the weight. For the inference engine, they fine-tune the resistance of the

cell to make the combination of cell and wire resistance close to the ideal value to represent

the weight. For the training compensation, the programming width is modulated by the cell

location, considering the IR drop of the writing voltage. Still, the resistance of the cell is

targeted at a value that makes the combination of cell and wire resistance represent the

weight. Instead, He et al. treat the IR drop as noise and utilize the noise robustness of the

neural network to eliminate its effect [16]. They approximate the IR drop as an additive

Gaussian noise at the edge of the crossbar arrays and train the network with noise injected.

Tested on a LetNet-5 on MNIST classification, the network still converges with noise

injected and shows much better IR-drop robustness.

Besides, some non-idealities are caused by circuit structures and thus vary from one

design to another. One drawback is the nonlinearity in the analog output signal caused by

the readout circuits. For example, if resistors or capacitors are used as loads of current

mirrors or convert the current to voltage, the readout currents/voltages may saturate as

partial sums increase. One straightforward solution is to map ADCs’ references

accordingly, considering the nonlinearity, as shown in [17]. Instead, Yoon et al. [18]

 9

propose a readout circuit with input-aware current control and a feedback amplifier to force

linear output voltage at the expense of increased energy consumption.

Read disturbances exist in both SRAM-based and eNVM-based CIMs but work

differently. For the 6T-SRAMs, the VMM is implemented by activating several rows

simultaneously. If the bit line (BL) voltage drops below the write margin due to numerous

pull-down branches, the nodes storing “1” will be flipped. One straightforward way to

avoid data flipping is to limit the voltage swing on BL, decreasing the voltage difference

between different partial sums. A more practical way is to use SRAM cells with the

decoupled read port, as in many previous works [19] [20] [21]. The read disturbance of

eNVMs defines the phenomenon that the read current gradually shifts the cell’s

conductance. As presented in [22], a higher read current will cause a larger shift, indicating

that a small read voltage is preferred. However, as a drawback, the sense margin of the

ADCs will be limited. Chen et al. [23] point out that the single-level cell is preferred over

the multilevel cell in terms of robustness to read-disturb. The work in [22] also observes

that the middle levels have a relatively weak disturbing immunity.

Another issue in 6T SRAM is the distinct behaviors between input “1” multiplied by

weight “0” and input “0” multiplied by weight “1”. When the input is “1”, it is represented

as the on-state of the access transistor. Thus, if the weight stored in the Q node is “0”, there

will be a discharge path contributed by this “0-1” combination. On the contrary, if the input

is “0”, the access transistor will be off, and no discharge/charge path will exist. This

asymmetry will cause input-dependent analog output shift and make it hard to design ADC

references. Similar to the read disturbance problem, this issue could be solved by the

decoupled read port for product operation.

 10

Compared to SRAM, eNVM suffers from more device non-idealities. Some non-

idealities matter only in training, while others degrade the inference performance. First of

all, the eNVM cells have limited dynamic ranges, which defines the on/off ratio between

the maximum conductance (𝐺𝑚𝑎𝑥) and the minimum conductance (𝐺𝑚𝑖𝑛). As the cells use

different conductance levels to encode weights, the dynamic range will limit the number

of levels the cell can represent. For example, STT-MRAM usually has a small on/off ratio

and can only be used as binary cells, while ReRAM can be used as multi-level cells [24].

Another issue caused by the small dynamic range is the small difference between the

currents contributed by 𝐺𝑚𝑎𝑥 and 𝐺𝑚𝑖𝑛. Normally, the weight “0” is represented by 𝐺𝑚𝑖𝑛

and 0V represents input "0". In this case, input “0” will contribute no current, while the

𝐺𝑚𝑖𝑛 with non-zero input will still cause some current. If the on/off ratio is big, the current

contributed by non-zero input and weight “0” can be neglected. Otherwise, the 𝐺𝑚𝑖𝑛 will

cause the same input-dependent analog output shift problem as the 6T SRAM. In [25], a

dynamic reference generation scheme was used to solve this problem. Instead, Luo et al.

[26] find that the current contributed by 𝐺𝑚𝑖𝑛 could be substracted and has a very limited

impact on the performance if a reference column is used. Furthermore, while a single

dynamic range is reported as the average case for a type of device, different cells of the

same device could have conductance variation. Luckily, this variation is tolerable in two

aspects. On one side, the neural network itself is noise-robust to some extent. On the other

side, this variation can be mitigated by the write-verify scheme to write the cell [27]. Apart

from the dynamic range, data retention is also a concern that limits the number of levels of

the cell.

 11

The eNVM cells can be viewed as analog synapses in training. The number of levels

defines the smallest step that can be taken to update the cell value. The dynamic range still

matters, and a high on/off ratio is desired. On the contrary, retention is no longer a problem

since the cell is updated frequently. For most eNVMs, the trajectory for potentiation and

degradation is non-linear and asymmetrical [28]. As reported by [29], the non-linear but

symmetrical update of weight conductance will not cause a big accuracy loss for training.

At the same time, the non-linearity combined with asymmetry will greatly degrade the

training performance. From the hardware side, people solve this by introducing capacitors

to hold part of the weights during training as it is much more linear, such as PCM+3-

transistor-1-capacitor [30] or 2-transistor-1-FeFET [31]. From the software side, a tiki-taka

algorithm is proposed for the training with non-linearity/asymmetry [32]. Moreover, each

cycle’s conductance change could be different even for the same writing pulses,

introducing noise in weight update. Finally, the endurance of the cell will also limit the

training performance.

1.3.2 Compute-in-memory security issues

Besides the reliability issues related to the CIM architecture, various security

concerns different from the traditional von Neuman architecture are also introduced. As

mentioned before, the CIM architecture takes advantage of the crossbar structure to

accelerate the VMM operation with weight stored at the cross point, which forces the

weights stored in memory to stay in their raw format. However, using CIM on edge devices

makes it unsafe to directly save the data in raw format, especially for eNVM-based CIM.

 12

In [33], the authors propose a defense method to thwart the Replication Attack

against the memristor-based neuromorphic computing system (MNCS). Their system

assumes the drone with the ability of on-chip training instead of inference only. The drone

is initially untrained and needs to request the training datasets from the base station. Before

the drone is used for inference, a secure session will be established under some

authentication protocols. An encrypted training set will be sent to the drone, where it will

be decrypted for training. The well-trained model on-chip will fail to work after N times of

inferences due to the read disturbance. Then, the drone must require the training set again

to recover the performance. The authors claim that the MNCS could defend against

eavesdropping and spoofing attacks by utilizing authentication and encryption protocols.

The probing attack is also considered impossible because of the high density of memristors

and compact 3D stack structure. The only concern is the chosen input attack, which uses

the drone to generate custom input/output pairs to infer the weights. Once the network is

well-trained for the memristor-based system, anyone with physical access to the drone

could generate input/output pairs using it. These pairs could be used to infer the model one-

chip. To defend against this kind of attack, they designed their MNCS such that the drone

would work well for N times. After that, the accuracy will degrade rapidly and need to be

recovered with the training set from the base station. If an adversary obtains a drone with

a well-trained model, he/she cannot pass the authentication protocol to get the set. Thus,

he/she could get no more than N pairs of data, which are not enough for the weight

inference.

On the contrary, another work [34] still treats the probing attack as a threat and

proposes a framework consisting of sparse fast gradient encryption (SFGE) method and

 13

runtime encryption scheduling (RES) scheme to defend against it. The model stored on-

chip is encrypted with a small offset added to some of the weights in the proposed

framework. The key of SFGE is composed of the encrypted location and the encrypted

sign. The sign is found through the gradient so that the performance of the model on-chip

could be killed by just tuning a small number of weights with a small value. The encryption

of SFGE is just the addition of the weights and the key, while the decryption is the

subtraction. There will be a trade-off between the overhead and the encryption

effectiveness for this SFGE method. The paper shows that different networks might require

a different number of weights per layer to be encrypted to achieve desired performance

degradation. Overall, the bottom line of the requirement is small compared to the whole

network and thus makes the overhead acceptable. During the calculation, the weight is

decrypted to the raw format for CIM operation. Thus, the RES is used to avoid the

adversary interrupting the system during runtime and getting an unprotected model on-

chip. Thanks to DNNs’ layer-by-layer nature, the decryption/encryption of the weights

could also be done in this way. Thus, only one layer is in plaintext during runtime and will

be immediately encrypted after work. The RES will hide the decryption of the next layer

and the encryption of the previous layer under the operation of the current layer. Thus, the

latency overhead is small.

1.4 Thesis overview

This thesis addresses the reliability and security issues related to CIM accelerators.

The reliability issues caused by non-idealities from architecture, circuits, and devices are

discussed with improvement methods proposed. Security vulnerabilities are considered

 14

based on the device type used for the CIM accelerator. Lightweight countermeasures are

proposed correspondingly. The thesis is organized as shown in Figure 2.

Figure 2 - Thesis overview

Chapter 1 gives an overview of the background of the thesis, including the

motivation for studying the reliability and security issues in CIM accelerators, the basics

of CIM for DNN accelerations, and the state-of-the-art works related to the reliability and

security of CIM.

Chapter 2 discusses the design flow and typical options for mapping the DNNs to

the CIM architectures [35]. The reliability and hardware performance of combinations of

two quantization methods (i.e., DF and WAGE) and three number mapping schemes (2's

complement, differential pair, and shifted unsigned INT) are evaluated. Different ADC

schemes (linear vs. nonlinear) are also studied for better implementation. The evaluation

results show that the energy efficiency could be improved by ~2× with 1.2~1.6× throughput

and 5%~25% smaller area by optimizing the design options of DNNs mapping only.

 15

Different reliability under small on/off ratios and ADC quantization are also shown for

different design options.

Chapter 3 introduces the effect of process variation on the CIM accelerator, which

mainly causes the sense amplifier (SA) mismatch and, thus, the analog-to-digital converter

(ADC) offset [36]. A model of generating ADC offset from the sense pass rate tested from

SA is proposed. With the proposed model, the software performance of CIM accelerators

with different ADC topologies (SAR-ADC and Flash-ADC) is evaluated. Flash-ADC

shows better robustness under process variation. Meanwhile, a hybrid fine-tuning scheme

is proposed to compensate for the accuracy degradation caused by ADC offset.

Chapter 4 explores the potential of on-chip training with analog-synapse-based

CIM [37, 38]. The non-idealities like nonlinearity/asymmetry of potentiation and

depression, device-to-device variation, cycle-to-cycle variations, and ADC quantization

for both inference and backpropagation are studied for training. The momentum solution

with stochastic gradient quantization is proposed to overcome the drawbacks of software

performance caused by the non-idealities. In addition, a segmented gradient calculation

method is proposed to reduce the DRAM access in training to maintain the hardware

performance.

Chapter 5 presents a lightweight SRAM-based CIM inference engine with a

protocol for chip authentication and key processing [39, 40]. An XOR-CIM core is

demonstrated with Dual-WL 6T SRAM cells, which integrate the XOR decryption into the

CIM operation. By utilizing the XOR-CIM core, the model in transmission and stored on-

 16

chip could always be encrypted. The overhead from protocol and protection is proven small

on energy, latency, and area by utilizing partial encryption.

Chapter 6 presents the vulnerabilities and countermeasures specific to eNVM-

based CIM accelerators [36, 41]. The chip-cloning attack and transferability of adversarial

examples are demonstrated as threats to the eNVM-based CIM chip for edge devices. The

on-chip fine-tuning to recover the performance degradation under process variation are

proved efficient in defending these two treats with very small hardware overhead.

Finally, Chapter 7 summarizes the contribution of this thesis. Future work is also

proposed in this chapter.

 17

CHAPTER 2. Hardware-Aware Quantization/Mapping Strategies

for Compute-In-Memory Accelerators

2.1 Motivation

Various CIM designs implemented with different kinds of memory cells have been

recently proposed for edge inference of CNN [6, 7, 42], and several macro chips have been

demonstrated with impressive energy efficiency [11, 12, 43]. While there is a demanding

interest in CIM accelerators, studies mostly focus on hardware development on the macro

level. However, due to the analog processing manner in the CIM crossbar structure,

mapping a DNN model from a digit system to CIM macros is not straightforward. Thus,

neural network mapping (NNM) strategies are needed to fill the gap between them. In

previous CIM works, each design applies variations of the mapping strategies based on the

designers' intuitions, which cover merely a small portion of NNM's large design space.

There is no clear reason why some options are chosen over others, making it hard for the

following designers to do a comprehensive early-stage NNM design instead of random

attempts. However, mapping methods could introduce different quantization losses or

reliability under non-ideal effects, leading to different hardware and software performances

for the same task. It is important to understand the reasons causing these differences for

better mapping strategies designed for good hardware performance and reliability.

2.2 Low precision neural network

 Today’s AI researchers tend to improve the DNN’s software performance with

larger and larger networks without considering the hardware cost, making them originally

 18

unfriendly for edge devices with limited area and power budgets. To solve this problem,

people propose compact network structures [44, 45] or quantization on large networks [46,

47, 48, 49] to reduce the computation and memory costs. The compact networks are

unsuitable for CIM-based inference engines since they still adopt floating-point

computations that are not friendly to the crossbar structure of the CIM array. Moreover,

they usually contain depth-wise convolution layers, which have small fan-in and thus are

not efficient to be implemented with CIM arrays. On the contrary, quantized networks are

hardware friendly to CIM accelerators as they usually assume fixed-point VMM operations

with low precision parameters.

We can view the network quantization as a process to map the high-precision

floating-point inputs/weights to the low-precision fixed-point inputs/weights without

hurting the models’ software performance. Previous works [47, 48, 49, 46, 50, 51] have

proved that DNNs could be quantized to 1~8 bit weights/inputs with negligible accuracy

loss. Theoretically, the hardware performance could be improved by decreasing the VMM

parameters’ precision. Thus, most network quantization algorithms are aimed at

minimizing the parameters’ precision. However, the scalability of aggressive quantization

methods to large networks for complicated tasks could be a problem. Normally, the

network quantization approaches could be sorted into post-training quantization or

quantization-aware training. On average, the latter category has presented a more

aggressive precision reduction, with some even adopting binary input/weight [50, 51].

Considering the generality of a practical design from the hardware’s perspective, less

aggressive quantization-aware training methods with good scalability and flexibility will

be preferred for the CIM inference engine [47, 48, 49, 46]. These works usually directly

 19

use the parameters’ precision to evaluate the efficiency of hardware performance

improvement without real evaluations done on the hardware side. There is no clue whether

quantization methods can make a difference in real implementation under the same

parameter precision. In this work, we compared two typical quantization-aware training

algorithms and discussed their properties from the hardware’s perspective.

 𝑌 = 𝐶 ∙ (𝑋 + 𝐷) (1)

Linear quantization could be viewed as an affine map from the real value (𝑌) to the

quantized value (𝑋) as equation 1 in a general format [47]. X generally represents a sub-

range of 𝑌 since it has lower precision than 𝑌, which we call a quantization range. The

quantization range selection is critical to the software performance of the quantized

networks. From previous work, there will not be a big change in the statistics of the DNN’s

weights during training, and quantizing them into a range between [−1,1] will not cause a

significant loss in the software performance. Compared to the weights, inputs could vary a

lot during training and across different network structures and normally require careful

quantization range selection with some preprocesses for quantization.

We group the quantization methods into two categories based on whether the

quantization range is flexible. The first one uses a fixed range across all the layers, which

could be viewed as a fixed-point quantization. This method is possible since there are

normally some normalization layers before the CONV/FC layers in DNNs, so the

CONV/FC layers will see similar statistics during training and across layers. A typical

example is the WAGE method [46], which always clips the input range to [−1,1] with

some factors for normalization between layers. Since these normalization factors are pre-

 20

calculated before training and kept fixed during training, the scalability of WAGE is proven

poor as the network goes deep or the network structure becomes complicated. The

upgraded WAGE [52] introduces batch-normalization (BN) (i.e., WAGEBN) to replace

the fixed normalization factor while still keeping the [−1,1] input quantization range. As

BN will calculate the normalization factor on the fly, the new version becomes more robust

across different networks. However, BN only works on the mean and standard deviation

of the inputs to format the statistics instead of fitting the output into the quantization range

we picked. Thus, when passing the BN output to the CONV/FC layer, there might still be

some overflow or underflow loss that hurts the software performance.

 On the contrary, the other category tries to dynamically decide the quantization

range from the input statistics during training. In [48], this quantization with a dynamically

decided range is called a dynamic fixed-point (DF) number scheme. This DF could be

explained by equation 1 as different input (𝑌) range are mapped to the same fixed-point

number set 𝑋 by using flexible 𝐶. This method requires extra calculation to decide the

dynamic ranges during training. Once the training is done, the ranges are fixed during

inference but could differ from layer to layer. As the range is directly calculated from the

inputs, it will have less probability of causing a big overflow or underflow loss. There are

different ways to decide the dynamic ranges from the inputs. In this work, we assume the

simplest one, which takes the maximum value of the absolute inputs.

 This work compared the hardware performance of these two quantization methods,

namely WAGE and DF, as illustrations to show that the quantization method will affect

the data distribution and further change the hardware performance even though the same

precision is adopted. Figure 3 shows the software-trained accuracy results of these two

 21

quantization methods on the VGG-8 network for CIFAR-10 classification and the ResNet-

18 network for CIFAR-100/ImageNet (subset) classification. Both quantization methods

could achieve the floating-point baseline accuracy with 8-bit input and 2 to 8-bit weight.

WAGE WAGE(BN) DF(BN)
20%

40%

60%

80%

100%

WAGE WAGE(BN) DF(BN)
20%

40%

60%

80%

100%

A
c

c
u

ra
c

y

 VGG-8+CIFAR-10

 ResNet-18+CIFAR-100

 ResNet-18+IMAGENET(subset)

8-bit weight

8-bit input

 VGG-8+CIFAR-10

 ResNet-18+CIFAR-100

 ResNet-18+IMAGENET(subset)

2-bit weight

8-bit input

(a) (b)

Figure 3 - Accuracy performance vs. network quantization approaches with (a) 8-bit

weight/8-bit input and (b) 2-bit weight/8bit input.

2.3 Neural network mapping

After quantizing the high-precision floating-point parameters (Y) of the CONV/FC

layers into low-precision fixed-point values (X), it will be much easier to map them to the

CIM macro. We divide the mapping of DNN to the CIM architectures into three steps.

Firstly, as most of the CIM architectures for DNN adopt a mixed-signal scheme that

conducts MAC operations in the analog domain, we need to decide how to map the inputs

and weights of MAC operations into the analog representations. Then, as some inter-layer

operations, such as BN, ReLU, and pooling functions, are still done in the digital domain,

we need to define the process of converting the analog MAC results back to digital signals,

namely, the ADC scheme. Finally, for a functional DNN engine, we must define the

components used to do the digital processing. Although the hardware implementations

 22

could vary from design to design, their principles are common. In this work, we summarize

some typical options from the previous designs and show their trade-offs.

2.3.1 MAC mapping in CIM

2.3.1.1 Number system in CIM.

We treat the mapping from MACs to the CIM array as a three-component decision:

the number system, the number representation, and the analog mapping method. While

digital computer systems are typically binary number systems, the CIM architecture could

support high-precision digits in the MAC operation due to analog calculation. In other

words, inputs or weights for MAC operation in CIM could be two or more bits per digit.

Here, we use digits to denote the units of inputs/weights for one operation in real hardware

implementation. An 8-bit number requires eight digits if a binary unit is assumed, while

four digits with 2-bit units. Input digits could be multi-bits by equipping input-encoding

circuits such as DACs, while weight digits could be increased by adopting high-precision

memory cells. For a fixed input/weight precision, higher precision input digits will require

fewer computation cycles, and higher precision weight digits could reduce the needed

memory capacity for a model. While increasing the digits' precision looks beneficial for

both inputs and weights, the precision of analog MAC outputs will also be increased. As

the circuit's dynamic range is usually limited, increasing the MAC output precision will

reduce the noise margin and increase the ADC resolution and overhead. Theoretically,

increasing the digits' precision for weights (cells) or inputs has the same impact on

increasing the full precision of MAC outputs. However, it is more expensive to increase

the input digit precision considering the encoding circuits than utilizing high-precision

 23

memory cells for high-precision weight digits from a hardware resources point-of-view.

Generally, reducing the hardware cost is more critical than speeding up the computation

for the resource-constrained edge devices. Thus, the number system we employ for the

CIM architectures discussed in this work will be binary inputs with flexible precision

weights.

2.3.1.2 Number representation in CIM.

As both WAGE and DF utilize a symmetric quantization range around zero, we use

N-bit integers (INT) as 𝑋 (in equation 1) to keep consistency and for easy representation

in hardware. Different zero-centered input or weight quantization ranges of Y could be

mapped to INT with different scalar values 𝐶. In this way, the CIM arrays always see INT

operators for MAC operation. Then, we must decide how to encode these INT numbers in

the CIM system. The first scheme that comes to mind would be the two’s complement

representation, as it is the most widely used one in the traditional digital computer for

integer representation and calculation. The two’s complement representation can naturally

encode the sign in the binary sequence for signed calculation. However, sign extension is

required for operands in multiplication, making it inefficient for CIM architecture. Instead,

since CIM adopts digit-decomposed MAC operations, we could utilize the weighted sum

representation of the two’s complement data for calculation, as shown in equation 2. This

way, all the digits in MAC operations are unsigned, and the signed bases will be introduced

after the MAC of digits is done. In more detail, considering the multiplication of input and

weight in binary format as equation 2, the unsigned bit-wise multiplication (AND) results

𝑏𝑛 of different rows will be accumulated first as a bit-wise partial sum. Then, these bit-

wise partial sums will be scaled by their bases 2𝑛, which could be simply realized by a

https://en.wikipedia.org/wiki/Integer_(computer_science)

 24

shift operation in the binary domain. The scaled results could be directly accumulated to

the final partial sum if they have positive bases. Otherwise, an additive inverse operation

must be applied first.

𝑥 = 𝑏𝑁−1 ∙ (−2𝑁−1) + ∑ 𝑏𝑛 ∙ 2𝑛

𝑁−2

𝑛=0
 (2)

While 2’s complement representation is binary, this weighted sum format could be

extended to arbitrary-precision digits by grouping k bits together, resulting in high-

precision digits with the power of 2𝑘 bases. As an illustration, a 2-bit digit representation

is shown below in equation 3. Two adjacent binary bits 𝑏2𝑛+1, 𝑏2𝑛 could be combined as

one 2-bit digit 𝑑𝑛 ∈ [0,1,2,3] with a new base (22)𝑛. However, this combination is only

true when the bases of bits have the same sign. Thus, for the most significant bit 𝑏𝑁−1, it

could not be grouped with its neighbor 𝑏𝑁−2. In this case, 𝑏𝑁−1 and 𝑏𝑁−2 could still be

viewed as 2-bit digits to keep consistency with the rest digits but only utilize part of the

number range. Any signed INT could be represented by the 2-bit digits as equation 4, with

even N assumed to illustrate the ungroupable MSB.

 𝑏2𝑛+1 ∙ 22𝑛+1 + 𝑏2𝑛 ∙ 22𝑛 = (𝑏2𝑛+1𝑏2𝑛) ∙ 22𝑛 = 𝑑𝑛(22)𝑛 (3)

𝑥 = 𝑏𝑁−1 ∙ (−2𝑁−1) + 𝑏𝑁−2 ∙ (2𝑁−2) + ∑ 𝑑𝑛(22)𝑛

𝑁−2
2

−1

𝑛=0
 (4)

For easy reference later, we call this 2’s complement extended representation method

Case1, which has been adopted in previous CIM designs [53, 54]. A more general format

for this representation is shown in equation 5. Considering an N-bit number represented by

 25

k-bit digits in this format, ⌈(𝑁 − 1)/𝑘⌉ + 1 terms are needed in total. Here, the number of

terms could be viewed as the number of cycles needed to represent full precision inputs or

the number of cells needed for full precision weights. The array structure needed to support

this representation is shown in Figure 4 (a).

𝑥 = 𝑏𝑁−1 ∙ (−2𝑁−1) + ∑ (𝑑𝑛) ∙ (2𝑘)𝑛,

⌈
𝑁−1

𝑘
⌉−1

𝑛=0
 𝑑𝑛

∈ [0,1,2, … , 2𝑘−1]

(5)

Since the sign bit could not be grouped with other bits for high-precision digit

extension of the two’s complement representation, we could avoid it by grouping the

positive and negative weights separately and using the operator to represent the sign

information. In other words, the signed number could be represented by a differential pair

of two unsigned numbers at the digit level, as shown in equation 6, referred to as Case2.

The 𝑑𝑛
+ will represent the digits from a positive weight with the corresponding 𝑑𝑛

− to be

zero, while a negative weight will have 𝑑𝑛
− to represent its absolute value with zero 𝑑𝑛

+.

The number of terms will become ⌈(𝑁 − 1)/𝑘⌉ in this case. However, since each term

denotes a pair, the number of cycles or cells needed will be doubled. When 𝑘 is small,

corresponding to 𝑁 , this method may cause a big hardware overhead. A basic array

structure of Case2 is shown in Figure 4 (b), and this differential-pair data representation is

frequently used in CIM designs [42, 55].

𝑥 = ∑ (𝑑𝑛

+ − 𝑑𝑛
−) ∙ (2𝑘)𝑛

⌈
𝑁−1

𝑘
⌉−1

𝑛=0
, 𝑑𝑛

+, 𝑑𝑛
− ∈ [0,1,2, … , 2𝑘−1] (6)

 26

An alternative solution to avoid sign bit is to avoid negative values of X, which utilize

the shift D (shown in equation 1) to map Y to unsigned INT as X. The digit-level

representation of the unsigned INT is shown in equation 7. The shifted unsigned

representation, referred to as Case3, requires ⌈𝑁/𝑘⌉ terms for the high-precision extension,

which is the smallest among these three methods for k>1. However, it will cause an extra

MAC computation because of the shift D. Considering an example of mapping the weights

to the unsigned INT, a positive shift 𝐷𝑤 is used to map the weight 𝑊𝑟 to 𝑋𝑤
𝑟 (equation 8),

where the superscript 𝑟 denotes the weight from different rows. Then, the MAC operation

between the weights (Case3) and inputs (Case1) will become equation 9, which is the MAC

of unsigned weights and signed inputs with an additional MAC term between the inputs

and the shift. If inputs are also represented in Case3, more additional MACs will be

introduced. Figure 4 (c) shows an array structure for Case3 that utilizes a dummy column

of 𝐷𝑤 to generate term ∑ 𝐷𝑤 × 𝐼𝑁𝑟
𝑟 . The subtraction could be done in the digital domain.

Ref. [6] has adopted this scheme for the CIM array design.

𝑥 = ∑ 𝑑𝑛 ∙ (2𝑘)𝑛

⌈
𝑁
𝑘

⌉−1

𝑛=0
 (7)

 𝑋𝑤
𝑟 = 𝑊𝑟 + 𝐷𝑤 (8)

 ∑(𝑋𝑤
𝑟 − 𝐷𝑤) × 𝐼𝑁𝑟

𝑟

= ∑ 𝑋𝑤
𝑟 × 𝐼𝑁𝑟

𝑟

− ∑ 𝐷𝑤 × 𝐼𝑁𝑟

𝑟

 (9)

As discussed in 2.3.1.1, we utilize binary inputs with flexible precision weight digits

in this paper, considering the hardware limitation. For simple hardware implementation,

we always use two’s complement representation for input since it is naturally compatible

 27

with binary data in the digital system. In other words, inputs always utilize the Case1

mapping strategy while Case1 to Case3 will be evaluated for weight mapping.

W
L/

B
L

Sw
it

ch
 M

a
tr

ix

ADC

Adder

Shift
Register

ADC

Adder

Shift
Register

SL Switch Matrix

ADC

Adder

Shift
Register

Dummy

(c)

W
L/

B
L

Sw
it

ch
 M

a
tr

ix
ADC

Adder

Shift
Register

ADC

Adder

Shift
Register

SL Switch Matrix

W
L/

B
L

Sw
it

ch
 M

a
tr

ix

ADC ADC

SL Switch Matrix

Sub Sub

Positive Negative

d+ d-

(b)

W
L/

B
L

Sw
it

ch
 M

a
tr

ix

ADC

Adder

Shift
Register

ADC

Adder

Shift
Register

SL Switch Matrix

(a)

Figure 4 - Subarray structures for different mapping (data representation) methods: (a)

Case1: 2’s complement extended representation (b) Case2: differential-pair data

representation (c) Case3: shifted unsigned INT.

2.3.1.3 Hardware implementation

To realize the operation in circuits, we still need to decide how the real signal encodes

the parameter digits. As we utilize binary inputs to avoid extra encoding circuits, the “0”

and “1” could be represented separately by 0V and a read voltage Vread. In this way, the

CIM structure could automatically skip the zero digit in the input since the input “0” will

not contribute current to the partial sum and thus consume no energy. Thus, a higher portion

of “0” in the inputs means less energy consumed during calculation. In other words, high

sparsity in inputs is preferred. The sparsity of the input will be directly affected by the

quantization method due to the quantization range, as shown in Figure 5. Compared to DF,

which dynamically calculates the quantization range, WAGE utilizes a hard-clipped range

and thus has wider spread inputs with fewer “0” input digits. Thus, even though different

quantization methods can achieve similar software performance with the same parameter

precision, they can still have different real hardware performances due to input statistics.

 28

Figure 5 - Input distribution of different quantization methods on (a) VGG-8 network and

(b) ResNet-18 network.

Conversely, weight digits are usually encoded to different cell conductance.

Generally, small weight digits will be mapped to low conductance values, contributing

smaller currents than large conductance cells under input “1”. Thus, the sparsity of the

weights is also preferred for high energy efficiency. In this work, we hard-clip the weights

into [-1,1] for both WAGE and DF as we do not see much performance or distribution

difference across quantization schemes. As a result, the difference in hardware

performance between quantization methods is mainly caused by the input statistics. Other

techniques, such as pruning [56] or training with a regularizer [57], may be adopted to

improve energy efficiency from the weight side.

While the quantization methods affect inputs more than weights, the mapping

methods matter much to weights. Equation 10 shows a general format of mapping a k-bit

weight digit 𝑑𝑛 to a certain conductance value 𝐺𝑛 of a k-bit eNVM cell.

𝐺𝑛 = 𝑑𝑛 × ∆𝐺 + 𝐺𝑚𝑖𝑛 , 𝑑𝑛 ∈ [0, 2𝑘 − 1], ∆𝐺 =

𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛

2𝑘 − 1
 (10)

 29

In this format, the conductance of the eNVM cells is divided into 2𝑘 levels between

𝐺𝑚𝑎𝑥 and 𝐺𝑚𝑖𝑛, and the minimum weight digit “0” is mapped to a non-zero conductance

value 𝐺𝑚𝑖𝑛. Thus, mapping from digits to the cell conductance is a shifted scaling with a

shift 𝐺𝑚𝑖𝑛. By integrating this representation into the digit-wise analog MAC operation of

the 𝑖𝑡ℎ digit of input and 𝑛𝑡ℎ digit of weight across different rows (𝑟), we could see that

the first term is proportional to the MAC results in the digits domain with a second input-

dependent output shift term generated in the real circuit implementation, as shown in

equation 11.

 𝐼𝑖,𝑛 = ∑ 𝑉𝑖
𝑟

𝑟

(𝑑𝑛
𝑟 × ∆𝐺 + 𝐺𝑚𝑖𝑛) = ∑ 𝑉𝑖

𝑟

𝑟

(𝑑𝑛
𝑟 × ∆𝐺) + ∑ 𝑉𝑖

𝑟

𝑟

𝐺𝑚𝑖𝑛
(11)

This input-dependent output shift will make the summed current (𝐼𝑖,𝑛) for the same

ideal partial sum vary with input patterns, which could cause difficulty in ADC design. The

variation contributed by the shift term may be negligible when the on/off ratio of the cell

is high with low cell precision, in which case the ∆𝐺 is much larger than 𝐺𝑚𝑖𝑛. However,

for cells with a low on/off ratio or high precision, the current caused by this shift term could

be comparable with the main part, causing overlaps among the analog output of different

partial sums. As a result, a fixed reference ADC will introduce quantization errors when

converting the analog signal back to the digital domain, harming the accuracy performance.

The flexible reference ADC could solve this problem with additional hardware [39].

Conversely, this input-dependent output shift could be canceled according to the mapping

method with no penalty.

 30

Mathematically, Case2 and Case3 mapping methods could digit-wisely cancel 𝐺𝑚𝑖𝑛

in nature. As shown in equation 12, the shift term will be canceled between the positive

and negative digits for the differential pairs (Case2).

 𝐼𝑖𝑛 = ∑ 𝑉𝑖
𝑟

𝑟

(𝑑𝑛
𝑟+ × ∆𝐺 + 𝐺𝑚𝑖𝑛) − ∑ 𝑉𝑖

𝑟

𝑟

(𝑑𝑛
𝑟− × ∆𝐺 + 𝐺𝑚𝑖𝑛)

 = ∑ 𝑉𝑖
𝑟

𝑟

(𝑑𝑛
𝑟+ × ∆𝐺) − ∑ 𝑉𝑖

𝑟

𝑟

(𝑑𝑛
𝑟− × ∆𝐺)

(12)

Similarly, the input-dependent output shift term could also be canceled by the

dummy column D in the Case3 approach, as shown in equation 13.

 𝐼𝑖𝑗 = ∑ 𝑉𝑖
𝑟

𝑟

(𝑑𝑛
𝑟 × ∆𝐺 + 𝐺𝑚𝑖𝑛) − ∑ 𝑉𝑖

𝑟

𝑟

(𝑑𝐷𝑛
𝑟 × ∆𝐺 + 𝐺𝑚𝑖𝑛)

 = ∑ 𝑉𝑖
𝑟

𝑟 (𝑑𝑛
𝑟 × ∆𝐺) − ∑ 𝑉𝑖

𝑟
𝑟 (𝑑_𝐷𝑛

𝑟 × ∆𝐺)

(13)

There is no digit-wise cancellation in the Case1 implementation. However, this

shifted term will be diminished by the shift-add operation across weight digits with

different bases, as shown in equation 14. Considering the input digit (𝑉𝑖) applied to the

binary weights digits from the same full precision weights, a common term (∑ 𝑉𝑖
𝑟

𝑟 𝐺𝑚𝑖𝑛)

will be generated with different bases. By grouping the bases first, we could see that the

full precision shift will only be a small term compared to the full precision MAC result

since the bases will cancel each other. However, as the digit precision increases, the

cancellation among bases will decrease. In this case, inspired by Case3, we could use a

dummy column of all-𝐺𝑚𝑖𝑛 cells to cancel the input-dependent output shift term.

 31

𝑰𝒊 = 𝑰𝒊𝑵−𝟏 ∙ (−𝟐𝑵−𝟏) + ∑ 𝑰𝒊𝒋 ∙ 𝟐𝒋

𝑵−𝟐

𝒏=𝟎

𝑰𝒊𝒔𝒉𝒊𝒇𝒕
= ∑ 𝑽𝒊

𝒓

𝒓

𝑮𝒎𝒊𝒏 ∙ (−𝟐𝑵−𝟏) + ∑ ∑(𝑽𝒊
𝒓

𝒓

𝑮𝒎𝒊𝒏) ∙ 𝟐𝒏
𝑵−𝟐

𝒏=𝟎

 = ∑ 𝑽𝒊
𝒓

𝒓 𝑮𝒎𝒊𝒏 (∑ ∙ 𝟐𝒏𝑵−𝟐
𝒏=𝟎 − 𝟐𝑵−𝟏) = − ∑ 𝑽𝒊

𝒓
𝒓 𝑮𝒎𝒊𝒏

(14)

V1

V4

V2

V3

V1xGmin + V2xGmin +
V3x(ΔGxGmin) + V4xGmin

V1

V4

V2

V3

V1xGmin + V2x (ΔG+Gmin)
+ V3xGmin + V4xGmin

V1

V4

V2

V3

V1xGmin + V2xGmin +
V3x(ΔG+Gmin) + V4xGmin

V1

V4

V2

V3

V1xGmin + V2xGmin +
V3xGmin + V4x(ΔG+Gmin)

4 2 1-8

(4V2xΔG - 6V3xΔG + V4xΔG) - V1xGmin -V2xGmin - V3xGmin -V4xGmin

V1

V4

V2

V3

V1

V4

V2

V3

V1x(ΔG+Gmin) +V2x Gmin
+V3xGmin +V4xGmin

V1xGmin + V2x (ΔG+Gmin)
+ V3xGmin + V4xGmin

V1xΔG - V2x ΔG

V1

V4

V2

V3

V1

V4

V2

V3

V1x(ΔG+Gmin) +V2x Gmin
+V3xGmin +V4xGmin

V1xGmin + V2xGmin +
V3xGmin + V4xGmin

Dummy

V1xΔG

Positive Negative

MSB of Weight LSB of Weight

Digit 0

Digit 1

(a) (b)

(c)

Figure 6 - Hardware mapping with input-dependent cancellation for (a) Case2: differential-

pair data representation; (b) Case3: shifted unsigned INT; (c) Case1: 2’s complement

extended representation for binary digit.

As a more straightforward illustration, we use an example of 4-row accumulation,

assuming 4-bit weight with binary digits, to show shift cancellation for different mapping

methods in Figure 6. Here, we ignore the impact of ADC quantization on cancellation

effectiveness. No mismatch will be introduced to the equations (12-14) shown above if the

 32

cancellation is made before ADC, but it is hard to realize the cancellation in the analog

domain. While the ADC is considered and subtraction is done in the digital domain, the

shift may not be fully canceled because of the ADC quantization error. Proper ADC

precision is required to make the remaining shift small in this case.

1 10 100 1000
0%

20%

40%

60%

80%

100%

1 10 100 1000
0%

20%

40%

60%

80%

100%

1 10 100 1000
0%

20%

40%

60%

80%

100%

A
c
c

u
ra

c
y

ON/OFF ratio

 1bit

 2bit

 4bit

 4bit

 (dummy)

VGG-8

CIFAR-10

Case1:

 Two's Comp

A
c
c

u
ra

c
y

ON/OFF ratio

 1bit

 2bit

 4bit

VGG-8

CIFAR-10

Case2:

 Differential Pair

A
c
c

u
ra

c
y

ON/OFF ratio

 1bit

 2bit

 4bit

VGG-8

CIFAR-10

Case3:

 Unsigned Shift

Figure 7 - Accuracy performance vs. on/off ratio with (a) Case1: 2’s complement extended

representation (b) Case2: differential-pair data representation (c) Case3: shifted unsigned

INT.

Figure 7 shows the accuracy performance of the VGG-8 network with 1/2/4-bit

weight digits under different cell on/off ratios and number representations methods. As

expected, the Case1 method could maintain the accuracy with binary cells until a very

small on/off ratio. The robustness disappears as the cell precision increases since the base

cancellation no longer holds. For the 4-bit per-cell condition, a more than 1000 on/off ratio

is needed for negligible accuracy loss. Luckily, we could release the on/off ratio

requirement back to ~10 for the Case1 mapping method with 4-bit cells by utilizing an all-

zero dummy column. For Cases2 and Case3, as the digit-wise 𝐺𝑚𝑖𝑛 cancellation

mechanism will not disappear with increased cell precision. The accuracy could be

maintained across different precision settings with a large on/off ratio range, as shown in

Figure 7 (b) (c).

2.3.2 Analog-to-digital conversion

 33

The conversion from the analog to the digital domain is the most important part of

the mixed-signal CIM and is also the hardware performance bottleneck. As mentioned in

2.3.1.1, the efficiency of the analog MAC could be improved by utilizing high-precision

digits, which could either accelerate the computation or reduce the required CIM arrays.

However, this will also increase the precision of the partial sum, requiring a high-resolution

ADC for lossless conversion. Generally, as the ADC is area-consuming, it is hard to fit one

ADC for every column pitch. A common solution is to have several columns share one

ADC through a multiplexer at the expense of reduced column-wise parallelism. Since the

ADC area is usually proportional to its precision, the higher the ADC precision adopted in

the CIM array, the lower the column-wise parallelism. Besides the area, as illustrated in

previous work [58], the ADC also dominates the energy consumption and latency in CIM

design, which increases with the ADC precision. Finally, due to the limited dynamic range,

the noise margin will also decrease with increased ADC precision, introducing more ADC

quantization errors and hurting the software performance.

Two strategies could be used in analog output digitization to release this ADC

limitation caused by the lossless conversion of a high-precision partial sum. The first one

avoids high-precision partial sums by utilizing low-precision digits and reducing the

number of rows open in parallel [59]. In this case, only a low-precision ADC is needed for

the lossless conversion. This technique is mainly used to relieve the noise margin problem

and fits more ADCs into peripheral circuits of a single array, leading to high column-wise

parallelism. However, this will neither reduce the energy consumption nor speed up the

calculation as the row-wise parallelism is sacrificed. As lossless conversion with a high

noise margin is utilized in this method, the software performance of this method could be

 34

guaranteed across different structures or tasks. The other method gives up the lossless

conversion as DNN is generally sparse and noise-tolerated. Due to the sparsity, the partial

sum distribution will be concentrated around part of its representation range, giving us

room to reduce the ADC precision. As an example mentioned in 1.3.1, AEPE [7] cut MSBs

of the partial sums as they are “0”s in most cases. In addition, because of the noise

tolerance, even if the ADC quantization loss changes the partial sum, the final software

performance could still be maintained. There is no guarantee of how much quantization

loss each network could tolerate, so the reliability issue will be introduced if ADC

quantization loss is allowed. In principle, we want to minimize the effect of ADC

quantization loss on the software performance with the possible maximum ADC precision

reduction. Statistically, the quantization error of the partial sum could be minimized by

fitting the ADC quantization to the partial sum distribution. Based on this fact, Sun et al.

[11] use the Lloyd-Max algorithm to find nonlinear references for quantization. While this

method could reduce the expectation of the partial sum quantization error than linear

quantization, a look-up table (LUT) is needed to map the ADC levels to real digital values

for further processing. By allowing the quantization loss in the analog to digital conversion,

both the noise margin and the parallelism will be maintained with reduced energy

consumption and latency from ADC. However, since the acceptable quantization loss is

based on its effect on the software performance, we need to explore the best settings for

each task and model. Furthermore, since the ADC precision loss is achieved from the

partial sum distribution, it could also vary for the same task and model when adopting

different quantization and mapping methods.

2.3.3 Post-ADC digital processing

 35

After conversion, ADC outputs will be further processed in the digital domain.

Mostly, digital circuits could be fixed-point or floating-point. The fixed-point circuit will

be more area and energy efficient than the floating-point unit (FPU). Similar to the

CONV/FC layer, other operations of DNNs are originally floating-point in general-purpose

processors. Further processes are needed when mapping some functions (e.g., BN) to fixed-

point circuits. Thus, for simple implementation, we combine the fixed-point circuits with

FPUs to support different functions in this work.

No matter which mapping scheme is used, if the weight/input digit precision is

smaller than the parameter precision, the digit-wise MAC results need to be shifted &

added by the digital circuit. Moreover, if the weight matrix partition is employed, the partial

sums from different subarrays are added using pure digit circuits. These operations could

be fixed-point, whose precisions are affected by the ADC design. If the ADC adopts linear

quantization references, the ADC output will be used directly as the digital signal. Thus,

the ADC precision straightly decides the following digital circuits’ precision. However, for

nonlinear ADC quantization, the output of LUT will decide the digital signal precision,

which is normally higher than the ADC precision. Thus, while the nonlinear ADC shows

more aggressive ADC precision reduction, it may cause increased overhead in the

following fixed-point digital circuits. The CIM combined with the shift & add and sub-

array addition will compromise the CONV/FC layer computation. Thus we could say the

whole CONV/FC layer is fixed-point.

According to the network structure or quantization method, some intermediate

functions, such as BN and/or scaling, must be applied between two layers of Conv/FC.

From previous works [49] [46], it is hard to convert these functions to fixed-point without

 36

further processing or adopting high precision. Also, compared to the CONV/FC layers,

these functions only take a small part of the computations in DNNs. Since this work mainly

focuses on the CIM structure for CONV/FC operation, which dominates the system-level

performance, we use a FPU to support these operations. We also assume that if there are

back-to-back BN and Scaling in the network, they will be merged into one FPU operation,

which could further reduce the hardware consumption of these operations.

2.4 Evaluation results

2.4.1 Hardware trade-offs among different mapping strategies

Hardware performances across different design options are first evaluated with full

precision ADC. All the designs are evaluated at the 22nm node in DNN+NeuroSim V1.3

[60] with RRAM CIM arrays. The device’ Ron/Roff is assumed to be 6kΩ/900kΩ [61].

For different networks discussed in this work, we choose the array size to be the minimum

kernel 𝑖𝑛𝑝𝑢𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑑𝑒𝑝𝑡ℎ × 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑑𝑒𝑝𝑡ℎ of the network (except for the

first layer) for better memory efficiency. Our evaluations have been done on VGG8 for

CIFAR10 classification and ResNet18 for CIFAR100 and IMAGENET (partial)

classification. Without specification, the parameter precision is 8-bit/8-bit for

inputs/weights (8b-W/8b-IN).

In this assumption of the similar CIM macro and lossless ADC, the hardware

performance differences are purely caused by quantization or mapping methods. According

to Figure 7 (a), a dummy column is necessary for Case1 under 4-bit cell precision under

the utilized RRAM on/off ratio. Figure 8 summarizes the trends of the chip area, energy

efficiency, and throughput across different design settings. First, under the same design

 37

options, we find that DF always reports better energy efficiency than WAGE. This result

matches our observation in section 2.3.1.3 that there are more “0”s in the DF’s input bits

compared to WAGE, making the former more energy efficient. At the same time, the

quantization algorithms make little difference in the area overhead/throughput, which is

mainly affected by the hardware resource overhead/dataflow. Compared to WAGE, DF

needs one more step of input scaling. However, as the scale is merged with BN and

CONV/FC layer computation hardware dominates the chip area/processing time, the

difference is almost negligible. Thus, we could conclude that DF quantization is a better

choice than WAGE considering better energy efficiency with full-precision ADC.

Figure 8 (a-c) show the chip areas of different networks/tasks under different

hardware settings. When 1-bit cells are adopted, the number of terms (in equations 5-7) is

the same for all the mapping methods. Case2’s chip area is much bigger than the rest two

since it takes two memory arrays to represent one weight digit term. Case3 is slightly bigger

than Case1 because of the additional dummy column. As the cell precision increases, Case1

needs one more term than the other two and an extra dummy column for 𝐺𝑚𝑖𝑛 cancellation.

Thus, the difference between Case1 and Case2 gradually decreases, and Case3 becomes

the most area efficient. In conclusion, with full precision ADC, Case2 is dominant in the

area overhead. Case1 is more area efficient when cell precision is low, while case3 is better

when cell precision is high.

 38

Figure 8 - Hardware performance (energy efficiency, throughput, area overhead) vs.

different design options (quantization methods, mapping methods, cell precision) with no

ADC quantization loss.

 As the CIM is proposed as an energy-efficient edge accelerator, we care more about

the energy efficiency results in Figure 8 (d-f). Since extra hardware means more

components to consume power, Case1 gives the best energy efficiency for the 1-bit cell

precision, with Case2 being the worst. However, as energy efficiency is also affected by

the input/weight statistics, the area overhead and energy efficiency trends do not strictly

match. When the cell precision goes high, Case1 worsens because of the extra sign bit,

while Case3 wins again in energy efficiency.

We also observe that the throughput has no clear trend across cell precisions and

mapping methods, as shown in Figure 8 (g-i). By analyzing the latency contribution of each

 39

stage, we find that the CIM system's latency mainly consists of the array latency and the

network-on-chip (NOC) latency. Unlike the area and energy cost dominated by array

computing, the array latency and the NOC latency could be comparable under some

settings. On the array side, the latency is highly affected by peripheral circuits such as

ADC. If full-precision ADC is considered with the same cell/input precision, the array

latency will be almost the same across mapping methods. The array latency will increase

when ADC precision increases with the cell precision. NOC's latency is jointly determined

by the number of bits to transmit, the wire length, and the interconnection network

complexity. The chip area related to mapping methods has already been discussed before.

Under the same parameter precision, the higher the cell precision is, the smaller the chip

size will be, as fewer weight arrays are required. As a result, the NOC latency should

decrease as the wire length and interconnection network complexity tend to be reduced.

However, the increased cell precision will also raise the ADC's full precision, leading to

wider output bit width. More cycles will be needed for data transfer under the fixed bus

width, and the NOC latency will be increased. As a result, the NOC latency has no clear

increase or decrease trend with the cell precision, leading to an unclear trend for system

throughput.

In conclusion, we could optimize the design options for neural network

quantization/mapping without ADC quantization loss based on previous findings. The

quantization method giving higher sparsity is always preferred under the same parameter

precision. With a certain quantization approach, when the cell precision is low related to

the weight precision, Case1 is suggested. Case3 should be considered as the cell precision

increases for better energy efficiency and area overhead. The optimal design option for the

 40

three evaluated networks/tasks could achieve a 29%~45% improvement in energy

efficiency from the worst ones with 4%~40% area reduction and 4%~25% speedup under

the same cell precision.

2.4.2 Hardware trade-offs with different ADC configurations

As discussed in 2.3.2, the hardware performance of the CIM accelerator can be

improved by allowing quantization loss in the analog-to-digital conversion without hurting

the software performance. The quantization reference should fit the partial sum

distribution, which the network, task, quantization, and weight mapping methods could

impact, to maximize the precision reduction. Thus, there is no straightforward way to

decide the proper ADC precision reduction except for testing by simulation from case to

case. In this work, we assume the same ADC references set for different layers of the

network and different components of the MAC, considering the reference generation

overhead. We sweep the ADC precision for different networks/tasks/hardware settings to

check the effect on the software accuracy (Figure 9).

There is no consistent trend between WAGE and DF about which one is more ADC

quantization robust across different hardware settings. If we assume the minimum accepted

accuracy for each task to be 90%, 67%, and 83% for CIFAR-10, CIFAR-100, and

ImageNet (subset) classification, the minimum ADC precision required is quite similar

between WAGE and DF, which means no more than 1-bit difference. In other words, the

quantization methods show different robustness to the ADC quantization loss because of

the different parameter statistics. However, this difference is insufficient to cause a

significant difference in ADC precision requirements.

 41

1 2 3 4 5 6 7
0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8
0%

20%

40%

60%

80%

100%

3 4 5 6 7 8 9
0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7

0%

20%

40%

60%

80%

2 3 4 5 6 7 8

0%

20%

40%

60%

80%

3 4 5 6 7 8 9

0%

20%

40%

60%

80%

1 2 3 4 5 6 7

0%

20%

40%

60%

80%

100%

2 3 4 5 6 7 8

0%

20%

40%

60%

80%

100%

3 4 5 6 7 8 9

0%

20%

40%

60%

80%

100%

A
c
c

u
ra

c
y

ADC Precision (bit)

WAGE:

 CASE1

 CASE2

 CASE3

DF:

 CASE1

 CASE2

 CSAE3

VGG-8

CIFAR-10

1bit Cell

~90%

A
c
c

u
ra

c
y

ADC Precision (bit)

WAGE:

 CASE1

 CASE2

 CASE3

DF:

 CASE1

 CASE2

 CSAE3

VGG-8

CIFAR-10

2bit Cell

~90%

A
c
c

u
ra

c
y

ADC Precision (bit)

WAGE:

 CASE1

 CASE2

 CASE3

DF:

 CASE1

 CASE2

 CSAE3

VGG-8

CIFAR-10

4bit Cell

~90%

A
c
c

u
ra

c
y

ADC Precision (bit)

WAGE:

 CASE1

 CASE2

 CASE3

DF:

 CASE1

 CASE2

 CSAE3

ResNet-18

CIFAR-100

1bit Cell

~67%

A
c
c

u
ra

c
y

ADC Precision (bit)

WAGE:

 CASE1

 CASE2

 CASE3

DF:

 CASE1

 CASE2

 CSAE3

ResNet-18

CIFAR-100

2bit Cell

~67%

A
c
c

u
ra

c
y

ADC Precision (bit)

WAGE:

 CASE1

 CASE2

 CASE3

DF:

 CASE1

 CASE2

 CSAE3

ResNet-18

CIFAR-100

4bit Cell

~67%

A
c
c

u
ra

c
y

ADC Precision (bit)

WAGE:

 CASE1

 CASE2

 CASE3

DF:

 CASE1

 CASE2

 CSAE3

ResNet-18

ImageNet

1bit Cell

~83%

A
c
c

u
ra

c
y

ADC Precision (bit)

WAGE:

 CASE1

 CASE2

 CASE3

DF:

 CASE1

 CASE2

 CSAE3

ResNet-18

ImageNet

2bit Cell

~83%

A
c
c

u
ra

c
y

ADC Precision (bit)

WAGE:

 CASE1

 CASE2

 CASE3

DF:

 CASE1

 CASE2

 CSAE3

ResNet-18

ImageNet

4bit Cell

~83%

Figure 9 - Accuracy performance vs. ADC precision for different design options

(quantization methods, mapping methods, cell precision).

On the contrary, mapping methods affect ADC precision significantly. Under the

same quantization method, Case2 is almost the most robust one to ADC quantization loss

across different cell precision. Again, Case1 is good when the cell precision is low, while

Case3 is better with high cell precision. The big difference among these mapping methods

considering ADC quantization is caused by the fact that Case1 and Case3 see two

significantly different partial sum distributions from the CIM array. For Case1, the digit

encodes the sign bit always contains a binary value. Thus, when the cell precision is high,

the partial sum distribution generated from the sign digit and other digits will be very

different, requiring a high-precision ADC to cover both cases. Similarly, the partial sum

distribution of the dummy column differs from the data columns in Case3, especially when

 42

the cell precision is low. Thus, Case1 and Case3 ADC quantization could be improved by

applying different ADC for the sign array or dummy column at the expense of additional

ADC references.

Figure 10 - Hardware performance (energy efficiency, throughput, area overhead) vs.

different design options (quantization methods, mapping methods, cell precision) with

tolerable ADC quantization loss.

Next, we evaluate the hardware performance with optimized ADC precision. Figure

10 (a-c) show a similar trend with the full precision ADC case on the overhead area.

However, since the ADC dominates the area CIM array, the area overhead of Case2

becomes less dominant compared to the other two cases as it could tolerate higher ADC

precision reduction. From the energy efficiency result in Figure 10 (d-f), Case1 is still the

best choice considering energy efficiency for low-precision cells. As the cell precision

 43

increase, Case2 shows better energy efficiency, benefiting from the aggressive ADC

precision reduction.

In the 4-bit per cell case, this ADC difference even makes Case2 of WAGE

outperform Case1/Case3 of DF, which has higher input sparsity. Thus, we could say that

these quantization/mapping design options collectively determine the energy efficiency of

the CIM accelerator. Finally, the different ADC precision makes the array latency vary

across mapping strategies, making the throughput even harder to predict (Figure 10 (g-i)).

To further reduce the ADC precision to improve the hardware performance, we also

test the nonlinear ADC quantization, as mentioned in [11]. In detail, the partial sums from

all layers in a network are collected, and the Lloyd-Max algorithm is used to find the

nonlinear quantization levels from these partial sums. The accuracy results of different

tasks are shown in Figure 11. Compared to the linear quantization (Figure 9), the accuracy

of Case1/Case2 methods drops slower with nonlinear quantization. Unanticipated, the

nonlinear quantization does not work for Case3 in our test. We think this is because Case3

hires dummy columns to shift the unsigned output back to the signed partial sum. While

the dummy columns are important for correct output, their outputs are not statistically

dominant in the partial sum distribution. As a result, the nonlinear quantization levels will

be ignorant of these dummy statistics, causing big quantization errors. These quantization

errors will be global biases and cause big differences in partial sums. Again, a potential

solution could be assigning different ADCs for dummy output at the expense of hardware

overhead for additional reference.

 44

Figure 11 - Accuracy performance vs. ADC precision with nonlinear quantization for

different design options (quantization methods, mapping methods, cell precision).

Another unforeseen finding is that there could be an initial loss of nonlinear

quantization accuracy when the ADC precision is high for some settings (e.g., the accuracy

performance shown in Figure 11 (e) from 6-bit to 4-bit). The problem is that when we

exploit the Lloyd-Max algorithm to find the nonlinear quantization levels, we fit them to

the distribution of a collected partial sum from different layers. However, when the

quantization is applied in a certain layer, it will change the input distributions of the

following layers. Thus, the global nonlinear quantization levels are no longer the best fit

for the following partial sums. In other words, the software performance of nonlinear

quantization by the Lloyd-Max algorithm is not guaranteed for high ADC precision across

different networks and tasks, making it an unsafe choice. Also, even for good-performing

 45

settings, there is generally no more than 1 bit saving on the ADC precision from linear

quantization. Moreover, the nonlinear quantization requires LUT and higher precision

fixed-point circuits for the following computation, introducing extra hardware overhead.

According to these results and analysis, we can infer that nonlinear ADC quantization

could not effectively benefit CIM designs.

2.5 Summary

This work demonstrates a basic flow of the algorithm-to-hardware mapping from

DNN to the CIM architecture. The design space of this flow is explored to provide a deeper

insight into the system-level CIM design. In detail, we analyze the effect of parameter

statistics on the hardware performance by comparing two software quantization methods

(i.e., DF and WAGE) with three number mapping schemes (2's complement, differential

pair and shifted unsigned INT). We also compare the effectiveness of linear and nonlinear

ADC quantization schemes. Our evaluation results show that the quantization/mapping

options are very important in determining the statistics of the weight and input digits used

in the CIM operations. On one side, these statistics will determine the energy consumed by

the array. On the other side, they will determine the partial sum distribution and directly

affect the ADC precision needed, leading to different robustness under ADC quantization

loss and hardware performance. Also, linear ADC is preferred over nonlinear ADC,

considering the hardware overhead, limited precision reduction, and reliability across

tasks. Tested on three different tasks, the optimized design options for neural network

mapping can improve energy efficiency by ~2× and throughput by 1.2~1.6× while reducing

5%~25% area overhead from the worse cases.

 46

CHAPTER 3. Performance Recovery under Process Variation

3.1 Motivation

In the previous section, we only introduce the effect of quantization and mapping

methods on CIM architecture's software and hardware performance. The circuits and

devices are assumed ideal in the evaluation, which is not true in real life. As mentioned in

1.3.1, the non-ideal circuits and devices could degrade the software performance of the

CIM accelerators. From prior works, one of the non-idealities in circuits is that the process

variation can introduce ADC offset and hurt the network performance. In this work, we

analyze the ADC offset in circuits and compensate for the software performance loss

caused by it using software and hardware co-optimization.

3.2 Recover the performance below variation

3.2.1 ADC offset variation modelling

Generally, two ADC topologies are popular in CIM architectures: Flash-ADC and

successive-approximation-register (SAR)-ADC. For an N-bit ADC, a Flash-ADC utilizes

2𝑁 − 1 comparators to generate a thermometer code, which must be encoded to a binary

signal, while the SAR-ADC uses one comparator but N cycles to generate a binary

sequence directly. Due to its high sense speed and low power consumption, the sense

amplifier (SA) is regularly used as the comparator in ADC. Different kinds of SAs could

be used in CIM, which could generally be grouped into the current-mode sense amplifier

(CSA) and the voltage-mode sense amplifier (VSA) based on the input signals.

 47

0 5 10 15 20 25 30 35

50%

60%

70%

80%

90%

100%

P
a

s
s

 R
a

te

Patrial Sum

 W/L=2

 W/L=3

 W/L=4

Local MC Points: 200

Technode: TSMC 40nm

Ron: 20k

(a) (b)

DOUT

PRE PRE

VCLP VCLP

SAEN

IBL IREF

MUX

VDD

DOUT_B
QQ_B

P1 P2

N1 N2

N3
BL

N4
BL_B

W/L W/L W/L W/L

W/LW/L

W/LW/L

Figure 12 - (a) Latch-based current-mode SA. (b) Sense pass rate for 5-bit ADC.

Figure 12 (a) demonstrates a simple CSA with a small overhead area. In principle,

this structure should be symmetric. When the two branches see different pull-down

currents, the side with a larger pull-down current will produce the final output “1” while

the other will get “0”. However, the mismatch of the two branches caused by process

variation can overwhelm the difference between the pull-down currents and cause wrong

output, namely ADC error. In a case study of a 5-bit ADC in Figure 12 (b), the sense pass

rate, which is defined as the percentage of correctly sensing the 𝐼𝐵𝐿 comparing to its nearest

𝐼𝑅𝐸𝐹, will decrease with the increase of the partial sum. A similar trend is reported on the

silicon data, and we think two reasons could explain it. One is that as the partial sum

increases, the corresponding 𝐼𝐵𝐿 and its nearest 𝐼𝑅𝐸𝐹 will also increase. There will be a big

voltage drop on the transistors of the SA, making the voltage difference caused by the ADC

offset dominate. Another one is that, as the 𝐼𝐵𝐿 increases, it will gradually saturate due to

the readout circuit, making the current difference between different partial sums smaller,

leaving less room between 𝐼𝐵𝐿 and 𝐼𝑅𝐸𝐹.

In this work, a model is proposed for the SA offset caused by the process variation

for simulation. We assume that the offset of the SA could be converted to the shift of

reference current away from its ideal value. The output will be wrong if the reference shifts

 48

to the other side of the partial sum (Psum). Suppose the reference shift follows the Gaussian

distribution. In that case, the sense pass rate could be interpreted as the cumulative

probability that references smaller than Psum, as shown by the green shaded part in Figure

13 (a). Then, the Gaussian distribution could be uniquely defined by the mean, the ideal

value, and the standard deviation, inferred from the sense pass rate.

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

s
ig

m
a

/m
u

 f
o

r
Ir

e
f

S
h

if
t

D
is

tr
ib

u
ti

o
n

Normalized Reference Current(mu)

 Sigma/mu for W/L = 4

 Sigma/mu for W/L = 3

 Sigma/mu for W/L = 2

(a)
153 4 5 6 7 8 9 10 11 12 13 14

Integration of
this region will
be pass rate of

the SA

 Iref shift distribution of ref = 5.5

 Iref shift distribution of ref = 10.5

REF = 5.5 Psum = 6

REF = 10.5 Psum = 11

Partial Sum (b)

Figure 13 - (a) Sense pass rate to Iref offset conversion. (b) Sigma/mu of the Gaussian

distribution of Iref offset converted from sense pass rate.

Since the SA offset is a static offset caused by manufacturing, it will not change with

time. For a 5-bit Flash-ADC, as one SA is used for each reference level, different references

could shift in different directions by different distances. On the contrary, the SAR-ADC

uses the same SA for different levels. Thus, all the references should be shifted to the same

side with dependent steps. Based on this fact, if the Flash ADC is assumed in the design,

we will sample one offset for each reference from the corresponding Gaussian distribution.

As to SAR ADC, one offset is sampled from the Gaussian distribution of a certain reference

with non-zero standard deviation, and the offset of the rest levels will be scaled by the

sigma/mu of each level, as shown in Figure 13. Figure 14 shows the ideal ADC output vs.

ADC output with offset based on the proposed method to integrate process variation into

ADC simulation. The Flash-ADC has less ADC error than the SAR-ADC since the

 49

independently biased levels could compensate for each other. Here, the thermometer-to-

binary encoder is simply an adder tree. Increasing the transistor size will also reduce offset

caused by variation and thus reduce ADC error.

Figure 14 - Simulated ADC output with offset sampled from the Iref distribution.

3.2.2 On-chip fine-tune

According to the previous chapter, ADCs play an important role in CIM’s hardware

and software performance to accelerate DNN. From the software perspective, full precision

ADC is preferred to avoid quantization loss, while low precision ADC is preferred for

hardware for low area and energy overhead. As mentioned before, the process variation

could introduce ADC offset, causing ADC errors upon ADC quantization loss. As

discussed in 1.3.1, the ADC offset could be compensated by adjusting the ADC references

or circuit techniques. The former is concerned with generating different references for

every ADC on-chip, and the latter will introduce a bigger area overhead. In this work,

5 10 15 20 25 30

0

10

20

30

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

 Outliers

Ideal ADC Output

A
c

u
ta

l
A

D
C

 O
u

tp
u

t
w

it
h

 O
ff

s
e
t

SAR ADC

W/L = 10

5 10 15 20 25 30

0

10

20

30

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

 OutliersA
c

tu
a
l
A

D
C

 O
u

tp
u

t
w

it
h

 O
ff

s
e
t

Ideal ADC Output

SAR ADC

W/L = 8

5 10 15 20 25 30

0

10

20

30

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

 OutliersA
c

tu
a
l
A

D
C

 O
u

tp
u

t
w

it
h

 O
ff

s
e
t

Ideal ADC Output

Flash ADC

W/L = 10

5 10 15 20 25 30

0

10

20

30

A
c

tu
a
l
A

D
C

 O
u

tp
u

t
w

it
h

 O
ff

s
e
t

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

 Outliers

Flash ADC

W/L = 8

Ideal ADC Output(a) (b)

(c) (d)

 50

instead of solving the problem from the ADC side, we utilize the DNN’s property of self-

adaption to noise.

Figure 15 - On-chip fine-tuning dataflow.

Since there are generally many ADCs on-chip, it is time-consuming to read out the

exact offset for pure software compensation. Thus, an easier way is the on-chip/off-chip

hybrid fine-tuning to include the ADC offset automatically. The basic flow is shown in

Figure 15: two copies of weights are obtained in this system, one on-chip and the other in

software (local processor). The on-chip inference will be conducted for a specific chip with

ADC offset captured, whose output will be used to calculate the loss concerning the real

label. The backpropagation will be performed in pure software with a copy of the weights.

After that, the weight gradients can be calculated in software with the input feature maps

(generated by inference on-chip) and the error feature maps (generated by backpropagation

off-chip). The backpropagation and gradient calculation are done in floating-point as they

are software-based. Finally, the weights in the software platform and on-chip will be

updated by the gradient from a batch of images simultaneously. The weights on-chip can

be updated with write-verify to achieve an accurate value.

Accuracy
recovered

Attacker

Steal on-chip
model

Apply on
other chips

Not working!
(accuracy low)

Hybrid chip fine-tune

Inference chipInput Feature
Maps (Y1...Yn)

loss

Local processor

B
a

ckp
ro

p
ag

atio
n

+
G

rad
ien

t ca
lcu

la
tio

n

Updated
weight

Fo
rw

ard

Input Image

Chips with
variation

Training
data

 51

3.2.3 Performance recovery

The PyTorch platform and NeuroSim framework are used for software and hardware

effectiveness evaluation, respectively. We present the VGG-8 network for CIFAR-10

dataset classification with 8-bit activations (input) and 2-8 bit weights. The low precision

scheme of inference on-chip is similar to the WAGE algorithm and could get ~92%

accuracy for all precision settings. For the hardware-related settings, binary RRAM with

Ron=20kΩ and Roff =2MΩ [61] is used for the CIM array. The cell variation is not

included since the aggressive write-verify [27] programming scheme is assumed.

Assuming a software-trained network (software baseline) is loaded to chips with

ADC variation, accuracy loss will be introduced to the on-chip network, as shown in Figure

16. Comparing the Flash-ADC and SAR-ADC under the same transistor size (W/L), the

former will always introduce smaller accuracy degradation. This trend matches the

observation that Flash-ADC introduces smaller ADC errors because of level compensation.

For the same reason, the inference accuracy will increase as the transistor size increases.

Retrain curves of Flash-ADC and SAR-ADC with different transistor sizes are

shown in Figure 17. The Flash-ADC recovers fast for all the W/L under test with small

initial accuracy drops. Meanwhile, the fine-tuning effectiveness varies with the precision

of the weight and W/L for the SAR-ADC. In all three weight precision settings, when the

W/L is too small, the fine-tuning could not fully recover the accuracy due to big variations.

The situation will improve as the variation decreases with the increase of W/L. In

conclusion, hybrid fine-tuning could compensate for the accuracy loss caused by process

variation. Its effectiveness is decided by the ADC typologies and transistor size of the SA.

 52

Figure 16 - Accuracy before fine-tuning for (a) Flash-ADC and (b) SAR-ADC.

0 100 200
0%

20%

40%

60%

80%

100%

A
c

c
u

ra
c
y

Finetune Iteration

 W/L=2

 W/L=3

 W/L=4

SAR ADC

8bits weights

1epoch ~ 250 Iter

(a)

0 100 200
0%

20%

40%

60%

80%

100%

A
c
c

u
ra

c
y

Finetune Iteration

 W/L=2

 W/L=3

 W/L=4

Flash ADC

2bits weights

1epoch ~ 250 Iter

0 100 200
0%

20%

40%

60%

80%

100%

A
c
c

u
ra

c
y

Finetune Iteration

 W/L=2

 W/L=3

 W/L=4

SAR ADC

2bits weights

1epoch ~ 250 Iter

0 100 200
0%

20%

40%

60%

80%

100%

A
c
c

u
ra

c
y

Finetune Iteration

 W/L=2

 W/L=3

 W/L=4

SAR ADC

4bits weights

1epoch ~ 250 Iter

(b)

(c) (d)

Figure 17 - Retraining curve of (a) Flash-ADC with 2-bit weights; (b) SAR-ADC with 2-

bit weights; (c) SAR-ADC with 4-bit weights; (d) SAR-ADC with 8-bit weights.

Unlike training from scratch, fine-tuning here is limited to one epoch considering the

overhead introduced. Table 1 list the percentage of changed weight per iteration, namely,

the number of cells that need to be programmed. The percentage will increase as the weight

bits increase, yet small for all layers and settings, making the overhead of fine-tuning the

network acceptable.

 53

Table 1 - Average percentage of weights updated per iteration.

Table 2 - Hardware overhead for fine-tuning of one epoch.

Weight precision 2bit 4bit 8bit

Feedforward
(Inference)

Energy Efficiency(TOPS/W) 13.31 6.78 3.43

Throughput(FPS) 1644.27 1399.54 1217.61

Area(mm^2) 53.18 92.20 176.80

Total Energy Consumption(J) 4.63 9.08 17.94

Total Latency(s) 30.41 35.73 41.06

Weight update
(Retrain)

Total Energy Consumption(J) 0.0015 0.0043 0.0323
Total Latency(s) 2.12 3.55 6.73

For the hardware evaluation, in the on-chip inference stage, Ron=20k/Roff=2M and

0.2V read voltage are assumed for 128×128 subarrays with 5-bit ADCs. During the weight

update stage, write-verify programming with five pulses on average for SET and RESET

of the RRAM cell is used with 300ns of 3V write voltage. Table 2 shows the hardware

performance reported by NeuroSim with the corresponding settings. Overall, the overhead

caused by fine-tuning is acceptable.

3.3 Summary

2bit weight 4bit weight 8bit weight

Conv1 0.127% 0.325% 1.954%
Conv2 0.055% 0.126% 0.835%
Conv3 0.055% 0.105% 0.382%
Conv4 0.053% 0.073% 0.444%
Conv5 0.044% 0.048% 0.280%
Conv6 0.025% 0.024% 0.150%

FC1 0.012% 0.015% 0.077%
FC2 0.038% 0.083% 0.351%

Overall 0.020% 0.025% 0.142%

 54

In this work, we explored ADC offset modeling under process variation and

evaluated their effects on the software performance. It has been found that the ADC

structure will affect its robustness to the process variation. In detail, the Flash-ADC will

see less performance degradation than SAR-ADC under the same variation levels. The

process variation will cause bigger ADC offset under smaller SA transistor sizes and thus

cause severer software performance loss. Thus, the performance of CIM under process

variation could be guaranteed by utilizing big transistors in ADC at the expense of area

overhead. As an alternative solution, fine-tuning on-chip is proposed to recover the

accuracy loss caused by the ADC offset. The accuracy of the model on-chip could be fully

recovered unless the transistor is too small in a bad ADC structure. We also evaluate the

overhead of the weight fine-tuning in both time and energy, which is shown to be

acceptable in the chip testing phase.

 55

CHAPTER 4. Achieving High In-Situ Training Accuracy and

Energy Efficiency with Analog Non-Volatile Synaptic Devices

4.1 Motivation

As illustrated in section 3.2.3, we know that on-chip fine-tuning could help to recover

the software performance degradation caused by the ADC offset. Also, training with noise

injected can help to eliminate the effect of other non-idealities, such as IR drop [16] and

device variations [62]. Thus, if the CIM accelerators could directly support training, these

reliability issues could be solved at no expense. On the other side, there is currently no

good-for-all model that could work in any circumstance. Thus, the models used in real life

tend to be personalized by incremental learning or network fine-tuning, which also prefers

the ability to train on-chip for edge devices.

It is relatively easy to equip the SRAM-based CIM with the ability to learn [63] as it

is binary and easy to write. On the contrary, using eNVMs for representative DNN models

to achieve high in-situ training accuracy remains a grand challenge today [64]. Also, unlike

the inference-only chip, training must maintain many intermediate data, making DRAM

access unavoidable. The DRAM access could limit the computing efficiency brought by

the CIM. This work comprehensively studies these non-ideal effects and seeks possible

hardware-aware algorithmic solutions for in-situ training with eNVMs. Additionally, a

segmented calculation scheme is used to maintain the performance for training on-chip,

showing that the in-situ training with eNVMs is promising, considering both the software

and hardware performance.

 56

 s=5%

 s=1%

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

li
z
e

d
 C

o
n

d
u

c
ta

n
c

e

C2C variation

P/D=+5/-5

of Pulse(normalized)

V1

V2

Vm

InI2I1

In
p

u
t

V
e

ct
o

r

Iref

ADC Quantized
Partial Sum

A
D

C

A
D

C

0 40

0 10-10

0 40

0 40

0 40

IrefIi

After ADC After ADC

Before ADC Before ADC

(a)

(b) (c)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

li
z
e

d
 C

o
n

d
u

c
ta

n
c

e

of Pulse(mormalized)

D2D variation

3s = +/-1.5

Nonlinearity

Mean = 3

Std =0.5

 D (-1~-9)
 P (+1~+9)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
a

li
z
e

d
 C

o
n

d
u

c
ta

n
c

e

of Pulse(normalized)

GLTP

+9

-9

+1
-1

+5

-5

GLTD

Figure 18 - Non-idealities of analog synaptic devices in (b) eNVM array for in-memory

computing with (a) asymmetric and non-linear conductance tuning, device-to-device

(D2D) variation, and cycle-to-cycle (C2C) variation and (c) ADC quantization error. A

reference column by subtraction is used to represent negative weights.

4.2 Non-idealities for in-situ training accuracy

This work aims to realize the training through stochastic gradient descent (SGD) on

the analog eNVM-based CIM platform. The main bottleneck is located in the weight update

step. For training on-chip, the desired weight change (∆W), calculated from the gradient,

is mapped to the number of pulses to change the cell conductance (∆G). Some key

challenges of CIM with analog synaptic devices are shown in Figure 18. The eNVM cells

introduce non-idealities such as asymmetry/nonlinearity, device-to-device (D2D)

variation, cycle-to-cycle (C2C) variation, and a limited number of states. These non-ideal

effects could make cell conductance change with a real weight change (∆𝑊𝑛𝑖) shift from

ΔW without the expensive write-and-verify scheme, making the training procedure on the

 57

eNVM-based CIM platform different from the software case. Besides, ADCs introduce

quantization errors for both forward and backward propagations, making them worse than

inference-only engines.

Figure 19 - (a) Conductance update trend without momentum. (b) Conductance update

trend with momentum. (c) Weight distribution without asymmetry/nonlinearity. (d) Weight

distribution with P/D = +3/-3 for Conv layer 3 for the VGG-8 network at epoch=185.

4.2.1 Asymmetry/nonlinearity in conductance tuning

The asymmetry/nonlinearity implies that the conductance change varies with the

current state and the change direction under the same write pulse. Depending on the

trajectory's distance from the linear case, a nonlinearity factor (NL) is labeled from 0 to 9.

The trends are distinct for potentiation and depression (P/D) and are labeled as +/-, as

shown in Figure 18 (a) by the blue/red curves. Demonstrated in the prior work [29],

asymmetry is the key fact that causes significant accuracy loss instead of nonlinearity. We

 58

propose a hypothesis as an intuitive explanation for this phenomenon. For a memory device

approaching the Gmax/Gmin by consecutive positive/negative pulses, a negative/positive

pulse (as defined by a sign change in ΔW) will make a large drop/increase in the

conductance because of asymmetry/nonlinearity, as shown in Figure 19 (a). As a result, it

is statistically easier for the device to return to the middle conductance range than approach

Gmax or Gmin. This hypothesis can be validated by comparing the weight distribution

trained with P/D=0 and P/D=+3/-3, as shown in Figure 19 (c) (d).

Thus, with asymmetry/nonlinearity, any undesired sign change for ΔW will make the

training oscillate and should be avoided. In general, three types of ΔW sign change are

undesired in the training process: 1) sampling error of batches; 2) oscillation around local

minima; 3) oscillation around global minima (Figure 20).

 a. some bad batch give opposite gradient
direction against the rest, could happen

anywhere

b. oscillation around
local minima

c. oscillation
around global

minima

Weight Space

E
rr

o
r

o
f

lo
ss

 f
u

n
ct

io
n

Figure 20 - Three types of undesired ΔW sign change during training.

To thwart the undesired sign change, we utilize "momentum" by increasing ΔW

along the direction of a constant sign, as shown in equation (15). While momentum could

eliminate the first two types of undesired sign change, the oscillation around the global

minima is unavoidable, whereas it could be mitigated by momentum combined with

stochastic quantization. As shown in Figure 19 (a) and (b), without momentum, the

direction and probability of weight update are decided directly by the gradient. If the

 59

gradient is small, the weight update barely happens. It can be hard to approach Gmax/Gmin

since the ΔG is gradually saturated. Moreover, any sign change of gradient could lead to a

big jump-back towards the middle conductance. With momentum, it will decide the

direction and probability of weight updates. On one side, the momentum will accumulate

gradients in the same direction. Thus the probability of going in that direction will be higher

and higher, making it easier to approach global minima around Gmax/Gmin. Conversely,

when the conductance exceeds the global minima and leads to an opposite gradient, it will

first decrease the potentiation/depression probability instead of directly flipping the sign.

Although overshooting is also undesired, it will be small because of the saturation nature

of the potentiation/depression curve. As a result, momentum with stochastic quantization

compensates for the asymmetry/nonlinearity of the conductance tuning.

∆𝑊(𝑡) = 𝛽∆𝑊(𝑡 − 1) + (1 − 𝛽) ∙ (−

𝜕𝐿

𝜕𝑊
) (15)

4.2.2 D2D variation and C2C variation

The NL of P/D could be different from cell to cell for the same type of device, which

is defined as D2D variation. Such variation is static, and the DNN model could self-adapt

to it. A more severe problem is the C2C variation, which causes ∆G to vary upon each

pulse. When the ∆G variation overwhelms the direction that the momentum defines, a

positive update step may end up with a decreased conductance, resulting in a loss increase.

The C2C variation could be viewed as a temporal noise injected into the weight update,

which is tolerable when small. Training will become a random search when the C2C

 60

variation is too big. Typical C2C values for some representative devices are shown in Table

3.

Table 3 - Survey of representative analog synapses reported in the literature with weight

precision, P/D, and C2C variations.

Analog synapse reported ΔW precision C2C P/D

HZO FeFET [65] 32=5bit 0.5% 1.75/1.46

2T-1FeFET [31] 64=6bit 0.5% 0.85/0.85

2PCM+3T1C [30] 64=6bit 1.5% 0.2/-0.2

Epi-RAM [66] 64=6bit 2% 0.5/-0.5

RRAM [67] 128=7bit 3.7% 0.04/-0.63

ECRAM [68] 1000=10bit <0.5% 0.347/0.268

4.2.3 Update step size

Although the cell for training is viewed as an analog synapse with continuous

conductance, the programming pulse could not be arbitrarily small. In other words, the

programming pulse is a lower bound of ∆W for each update. The applicable number of

pulses of a certain device generally defines the cell precision for the inference case.

However, in the training case, it affects the gradient precision (strictly speaking, the ∆W

precision considering the learning rate and the use of momentum). Table 3 surveys

representative device technologies ranging from 5-bit to 10-bit. Higher precision is

preferred for more precise network fine-tuning.

4.2.4 ADC quantization

Since the synapse for training is analog, even a single cell is high-precision. ADCs'

full precision will be big for the summed current of all the rows. In addition, since a signed

weight in DNN is mapped to a single cell conductance that is always positive, Case3

number representation from section 2.3.1.2 must be used for this analog synapse. A

 61

reference column is adopted to the partial sums back to the zero-centered region. This shift

could be done in either the analog or digital domain after ADCs, as shown in Figure 18 (c).

This work assumes the latter, as analog subtraction is not easy to accomplish. However,

the positively accumulated current may have different means for different DNN layers and

have a wider dynamic range than the zero-centered partial sums, making the dynamic range

requirement of ADC higher.

Reference
 Output

Array
Output

21.3 24.5

aref

ai

bref

bi

22 23 2521 24

22 23 2521 24

Difference
before ADC

Difference
after ADC

-0.7

-1

1.5

1

ADC REF

Figure 21 - ADC quantization example.

We use linear ADC quantization for training and set the ADC references for zero

quantization bias on the reference column output (𝐼𝑟𝑒𝑓). This reference set, combined with

the round-down ADC conversion of partial sum, makes the output bias towards negative

(Figure 21). Biasing towards negative will deactivate more neurons than it should and

prevent training from convergence since many activation functions will cut the negative

path, such as ReLU and sigmoid. To solve this problem, round-center quantization could

be done by adding +1 to the LSB of all the negative partial sums.

4.3 Training on chip

4.3.1 Training-on-chip architectures

 62

The SGD training process of DNN consists of four steps, namely, feedforward (FF),

error calculation (EC), gradient calculation (GC), and weight update (WU). The FF and

EC steps could be considered convolutions with the same but transposed weight matrices.

Thus, previous works either use two copies of transposed weights [55] or a transposable

CIM array to support FF and EC calculation [63]. The latter is preferred for the CIM

training platform with analog synapses since it is hard to copy the weights because of the

cell variations and limited precision of periphery circuits.

The GC process could also be viewed as a convolution operation between the input

feature map (IFM) and error feature map (EFM) from the same image. This convolution

could still be implemented in the CIM structure with EFM stored as “weights.” Unlike FF

and EC, which always have network weights participate in the convolution for different

images, the GC convolution sees different operands for each image. As a result, using

eNVM-based CIM in the GC stage is no longer efficient as the “weights” (EFM) need to

be frequently updated. Instead, it will be more practical to implement GC with digital

circuits or SRAM-based CIM.

Finally, the cell's conductance is fine-tuned based on the gradients from a batch of

images in the WU stage. One-time writing is assumed in this work since we take the

nonlinearity/asymmetry and variation into account. Although programming overhead for

eNVMs is high, the batch-training manner of SGD makes the WU process less dominant

in training.

Figure 22 (a) shows a naïve dataflow for training that conducts these four steps one

by one. Compared to the inference, DRAM access is unavoidable in training with SGD

 63

considering a batch size bigger than one. The IFMs/EFMs for each image must be saved

to DRAM in the FF/BP stage and loaded for gradient calculation at the GC stage. Then,

the calculated gradients will be saved to DRAM and loaded to the chip in the WU stage for

accumulation across different images. Finally, momentum is loaded on the chip, updated

by the accumulated gradient, used to update the cell conductance, and then saved back to

DRAM for the next iteration. These data movements kill the energy efficiency of CIM in

the naïve dataflow.

La
ye

r1

La
ye

r2

La
ye

r8 Gradient
Calculation

Unit

Gradient
Accumulator

1 2 3 4

(a)

La
ye

r1

La
ye

r2

La
ye

r8 Gradient
Calculation

Unit

Gradient
Accumulator

1 2 3 4

(b)
IFM EFM G M

Global buffer

DRAM
IFM EFM

G

G M

segmented
Accum.

1 :FF DRAM access 2 :EC DRAM access 3 :GC DRAM access 4 :WU DRAM access

DRAM

Global buffer

G: weight gradient M: Momentum

Case 1 Case 2

Figure 22 - (a) On-chip training architecture with naïve step-by-step dataflow (case1). (b)

On-chip training architecture with segmented on-chip accumulation and updates (case2).

4.3.2 Segmented calculation

To alleviate the massive DRAM accesses in training, a segmented gradient

calculation data flow (case2) is proposed, as shown in Figure 22 (b). The new scheme

adopts the same flow for FF and EC, making no difference in DRAM access for IFMs ①

and EFMs ②. However, the GC and WU are interleaved (Figure 22 (b) step ③) to calculate

the gradient and update the network's weights segmentally. In more detail, as there is no

need to update the weights of the whole network at once, gradients from one layer will be

calculated, accumulated, and used to update the momentum to tune the cell conductance

 64

part by part. The part will be small enough so that its gradients can be held on-chip in the

global buffer, eliminating the DRAM access of the gradient.

(a). gradient matrix w/o
segmentation (size:6*4)

(b). gradient matrix w/ segmentation
(cut into 2 sub-matrix of 6*2)

(c). gradient matrix w/ segmentation
(cut into 4 sub-matrix of 3*2)

Load once IFM Load twice
IFM Load twice

EFM Load twice

Figure 23 - Example of input and error feature map reload for case2 segmented gradient

calculation.

One concern of the segmented gradient calculation is the reloading of IFMs/EFMs.

In the naïve dataflow, the IFMs/EFMs need only be loaded once back to the chip for the

gradient calculation. However, if the layer’s gradient matrix is cut into pieces, some feature

maps (IFMs and/or EFMs) may need to be reloaded, as shown by an example in Figure 23.

Then, there will be a trade-off between DRAM access for FMs and DRAM access for

gradients. Generally, if the weight size is much larger than the IFM/EFM, such as in FC

and deep CONV layers, reloading FMs is more economical. Otherwise, it will be better to

allow gradient access, taking shallow CONV layers as an example.

To cover all cases, we consider a hybrid scheme that optimizes the GC and WU flow

layer wisely, which means the one with less DRAM access between naïve flow and

segmented calculations will be applied to each layer. An example of the number of DRAM

access across different layers in the VGG-8 network for CIFAR-10 classification is shown

in Figure 24. As expected, case1 overwhelms case2 in the shallow layer when the global

 65

buffer is small, while case2 always wins for deep layers. As global buffer size increases,

case2 will be better as the gradients of the whole layer could be fitted into the global buffer.

1 2 3 4 5 6 7 8
103

104

105

106

107

108

N
u

m
 B

it
s
 o

f
D

A
R

M
 A

c
c
e

s
s

Layer

 case1

 case2 16kB

 case2 32kB

 case2 64kB

 case2 128kB

 case2 256kB

 case2 512kB

 case2 1024kB

Figure 24 - The number of DRAM access bits for each layer under different global buffer

sizes from 16 kB to 1024 kB for case1 (naïve) and case2 (segmented gradient calculation)

schemes.

4.4 Evaluation and discussion

We evaluate the analog-synapse-based CIM platform using the VGG-8 network

training on CIFAR-10 classification. From the training perspective, we assume inputs

(IFM), errors (EFM), and gradients of the CONV/FC layer are quantized while weights are

floating-point (analog cell). In the following content, we will no longer emphasize that

weights are floating-point in training. Instead, we use weight precision to imply gradient

precision to keep consistent with inference. We modify WAGE [46] to integrate all the

non-idealities of eNVM-based CIM. The default setting uses 8-bit weight (gradient) and 8-

bit IFM/EFM from the hardware point-of-view. Without specification,

nonlinearity/asymmetry is analyzed with P/D=+3/-3. The ADC quantization is introduced

at the edge of each 128x128 array except for the first layer. With a batch size = 200, the

ideal software baseline could achieve 92% using WAGE quantized training.

4.4.1 Software evaluation

 66

We first evaluate the effectiveness of momentum on nonlinearity/asymmetry

compensation. Training results with different momentum factors for P/D=+3/-3 and

P/D=0/0 are shown in Figure 25 (a). With 𝛽 equals 0.9, the accuracy of P/D=+3/-3 is

significantly boosted while P/D=0/0 is slightly affected, validating that momentum could

degrade the accuracy loss caused by nonlinearity/asymmetry. Consequently, 0.9 is used for

𝛽 in the rest simulations. Afterward, in Figure 25 (b), various NL factors are tested under

asymmetry. By fine-tuning the learning rate to control the number of weights updated for

each iteration, ~87% accuracy is still achievable up to extreme P/D=+9/-9.

Figure 25 - (a) Accuracy vs. momentum factor β. (b) Accuracy vs. device nonlinearity

factor under asymmetry. (c) Training traces w/wo momentum, D2D variation and big batch

size=4000.

To further validate our hypothesis of undesired sign change, we evaluate the training

process with a very big batch size. In this case, the batch sampling noise will be diminished.

As shown in Figure 25 (c), a batch size = 4000 is used to train the network with P/D=+3/-

3. Since the batch size increases, the number of epochs is enlarged correspondingly to

achieve the same number of weight updates. We could see from the result that the big batch

size could achieve higher accuracy than the smaller one under P/D=+3/3 and 𝛽 = 0. But

 67

still, it can not get a result as good as the momentum solution. The same figure shows the

training result with a D2D variation around P/D=+3/-3 with a 0.5 standard deviation by the

blue curve. The trend is very similar to the P/D=+3/-3 case without variation, showing that

D2D variation is not a concern if nonlinearity/asymmetry is no longer a problem.

Figure 26 - (a) Accuracy vs. momentum precision. (b) Accuracy vs. device weight

(gradient) precision. (c) Accuracy vs. C2C variation. Momentum β =0.9 is applied.

We also apply quantization on momentum to reduce the memory overhead to hold it

and the energy overhead caused by loading/storing it for each WU iteration. Unlike

gradients, momentums need to be quantized statically instead of stochastically, introducing

a higher precision requirement. Figure 25 (a) shows that 10~12 bits are required for

momentums to avoid accuracy loss.

Then, we evaluate the cell precision effect on training. As mentioned before, cell

precision defines the updating step size in training—the lower the precision, the bigger the

step. Surprisingly, even down to 4-bit weight (gradient) is still feasible under fine-tuned

learning rate, as shown in Figure 26 (b).

 68

-1.0 -0.5 0.0 0.5 1.0
-0.4

-0.2

0.0

0.2

0.4

D
W

n
i

Weight

P/D=+3/-3

C2C variation std=5%

weight(grad.) precision=8

Large weight(grad.) precision

Large C2C Var

Small P/D

-1.0 -0.5 0.0 0.5 1.0
-0.4

-0.2

0.0

0.2

0.4

D
W

n
i

Weight

P/D=+3/-3

C2C variation std=5%

weight(grad.) precision=4

Small weight(grad.) precision

Large C2C Var

Small P/D

-1.0 -0.5 0.0 0.5 1.0
-0.4

-0.2

0.0

0.2

0.4

D
W

n
i

Weight

P/D=+6/-6

C2C variation std=5%

weight(grad.) precision=8

Large weight(grad.) precision

Large C2C Var

Large P/D

-1.0 -0.5 0.0 0.5 1.0
-0.4

-0.2

0.0

0.2

0.4

D
W

n
i

Weight

P/D=+3/-3

C2C variation std=1%

weight(grad.) precision=8

Large weight(grad.) precision

Small C2C Var

Small P/D

(a) (b)

(c) (d)

Bad points that
ΔW sign flipped

The ΔWni for the Weights w/o C2C variation added
The real ΔWni for the Weights that should have negative ΔW if no C2C variation added
The real ΔWni for the Weights that should have positive ΔW if no C2C variation added

Figure 27 - Statistical weight update pattern (ΔW vs. W) in one batch for different P/D,

C2C variance, and weight (gradient) precision. (a) When C2C variation is small for devices

with small P/D and high precision. (b) When C2C variation is large for devices with large

P/D and high precision and case (c) When C2C variation is large for devices with small

P/D and low precision.

We find that the effect of C2C variation highly depends on NL level and weight

precision. Since the drawback of C2C variation is to flip the desired shift direction of the

conductance, a big update step will have a lower probability of being exceeded by the

variation. We can see this from the results shown in Figure 26 (c). Low precision and high

NL devices are more robust as C2C variation increases since they imply greater

conductance change. To better understand this, we check a batch of ΔWni vs. W with

different NL, C2C, and cell precision. As shown in Figure 27, the color denotes the weight

update direction according to the gradient. The red ones need an increase while the blue

 69

ones should be decreased. The y-axis of each dot means the real weight change mapped

from conductance change with nonlinearity/asymmetry and C2C variation. The desired

weight update direction is flipped when a red/blue dot has a negative/positive ΔWni. We

could see that bigger NL, smaller weight (gradient) precision, and smaller C2C variation

are desired for fewer cross-over points.

Figure 28 - (a) Training traces for different ADC resolutions. (b) Training traces when

asymmetry/nonlinearity, D2D variation, C2C variation, momentum, and ADC quantization

effects are combined.

Ultimately, we explore the ADC requirements for training with analog synapses. If

round-down quantization is used instead, the accuracy is only 85%, even with 11bit ADC.

By using the round-center quantization, ADC precision could be reduced to 8bit with ~87%

accuracy.

In summary, we train a network with all the non-ideal effects combined with the

momentum and ADC quantization. A remarkable result of 86% accuracy for in-situ

training with practical eNVMs is still achievable, as shown in Figure 28 (b).

4.4.2 Hardware evaluation

 70

While in-situ training with analog synapse is promising from the software side, it is

not applicable if the hardware overhead is high. Thus, we evaluate the hardware

performance with the NeuroSim+DNN v2.1 platform.

Figure 29 - (a-c) Energy breakdown for case1 (naïve) dataflow. (b-f) Energy breakdown

for case2 (segmented calculation) dataflow.

Figure 29 compares the energy consumption breakdown of the naïve scheme (case1)

and the segmented gradient calculation scheme (case2) with a global buffer big enough to

hold the gradient of the largest layer. The FF and BP energy consumptions are the same

for these two cases. From Figure 29 (a) and (d), we can see that the GC and WU processes

consume most of the energy in case1 while the corresponding parts are much smaller in

 71

case2. Figure 29 (b) and (c), which report the energy breakdown for GC/WU separately,

show that the energy consumed by DRAM access takes ~99% due to the gradients and

FMs load/saving. For the similar breakdown in Figure 29 (e) and (f) for case2, although

the DRAM access energy is still dominant due to the IFMs/EFMs, it reduces significantly

as the gradient is eliminated.

A corresponding area breakdown comparison is shown in Figure 30. The difference

only lies in the global buffer size. We could see that the DRAM energy reduction of the

demonstrated case2 is at the terrible expense of the global buffer size and thus greatly

increases the total area.

Figure 30 - Area breakdown for (a) case1 (naïve) dataflow (b) case2 (segmented

calculation) dataflow.

To find a balanced trade-off point of energy consumption reduction and the area

overhead, we plot the energy efficiency and chip area concerning the global buffer size for

case1, case2, and the hybrid scheme as mentioned in 4.3.2 in Figure 31. The case2 and the

hybrid scheme always beat case1 regarding energy efficiency. Due to the shallow layers,

the hybrid scheme is slightly better than case2 for a very small global buffer. The difference

fades away with the increase of the global buffer size. As the global buffer size increase,

 72

the increase of energy efficiency gradually saturates while the growth of chip area is

exponential. Thus, the global buffer size is selected corresponding to the highest energy

efficiency/area ratio, which is around 576 kB for the VGG-8 network example.

10 100 1000 10000
0

5

10

15

20

25

30 Case1 TOPS/W

 Case2 TOPS/W

 Hybrid TOPS/W

 Chip Area

Global Buffer For Accum(kB)

E
n

e
rg

y
 E

ff
ic

ie
n

c
y

 (
T

O
P

S
/W

)

~512kB

TOPS/W/mm2

for Hybrid Case

50

100

150

200

250

300

A
re

a
(m

m
2
)

Figure 31 - Energy efficiency vs. global buffer size for case1, case2, and hybrid scheme.

Since the efficiency of the hybrid scheme of case1and case2 is highly dependent on

the network structure, a benchmark of hardware performance of different DNN models is

presented in Table 4. Four divergent configurations are picked to compare: 1) small feature

maps + small networks (CIFAR-10 + VGG-8), 2) big feature maps + big networks

(ImageNet + VGG-16), 3) small feature maps + big networks (CIFAR-10 + ResNet-18),

4) big feature maps + small networks (ImageNet + ResNet-18). The hybrid scheme

achieves higher energy efficiency than the naïve design for all four cases. As the segmented

gradient calculation scheme prefers a bigger gradient size than the IFM/EFM size,

configurations 1 and 3 see a greater improvement than configurations 2 and 4. From the

area side, the global buffer in case 1 is set by the biggest FM, while the highest

efficiency/area ratio decides the hybrid case. The area increase for configurations with big

IFM/EFM (2, 4 with IMAGENET) is smaller than the small ones (1, 4 with CIFAR-10)

since their starting point is already high.

 73

Table 4 - Hardware performance benchmark (Training).

Technode: 40nm ADC:8bit

Ron/Roff: 100K/1M Readvoltage:0.5V

Write Pulse Voltage: 1.6V/1.5V Write Pulse Width: 50ns/50ns

Network VGG-8 VGG-16 ResNet-18

Parameter Size ~13M ~138M ~11M

dataset CIFAR-10 ImageNet CIFAR-10 ImageNet

ArraySize 128x128 64x64 64x64 64x64

Input Size 32x32 224x224 32x32 224x224

Case1

TOPS/W 2.11 3.63 0.15 4.39

Global Buffer 128kB 3136kB 64kB 784kB

Area(𝑚𝑚2) 71.52 1014.19 99.35 292.38

Hybrid

TOPS/W 23.59 11.10 7.74 10.408

Accu. Buffer 512 kB 2048 kB 256 kB 512 kB

Global Buffer

(Accu. Buffer)

576kB

(512kB)

3616kB

(2048kB)

288kB

(256kB)

904kB

(512kB)

Area(𝑚𝑚2) 86.995 1033.716 110.233 296.997

Figure 32 - Energy breakdown for hybrid dataflow with the portion of momentum in the

weight update highlighted.

As the software performance section discussed, momentum is important for high in-

situ training accuracy. While the segmented gradient calculation scheme could eliminate

the off-chip talk of the gradient, the DRAM access of momentum is unavoidable. In the

WU stage, the momentum is loaded to the chip, recalculated with the gradient, used for

weight update, and then saved back for the next iteration. Figure 32 shows the energy

 74

breakdown of training with the hybrid scheme assuming a 572 kB global buffer (512kB for

accumulation) to highlight the momentum overhead. If we only consider the WU step, the

energy consumption by loading/saving momentum is dominant, as shown in Figure 32 (b).

However, from Figure 32 (a), the WU part is small among all four steps, thanks to the batch

operation. As the batch size decreases, the number of WU will increase for one epoch,

introducing more momentum transfer. As a result, the WU will be more dominant and

significantly decrease energy efficiency (Figure 33). Moreover, a small batch size will

introduce more batch sampling errors, which is unfriendly to the analog synapses with

nonlinearity/asymmetry. Thus, the proper batch size is desired from both the software and

hardware point-of-views.

0.0

3.0x1010

6.0x1010

9.0x1010

1.2x1011

1.5x1011

1.8x1011

2.1x1011

2.4x1011

2.7x1011

3.0x1011

 WU Energy Consumption

 GC Energy Consumption

 EC Energy Consumption

 FF Energy Consumption

Batch Size

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

p
J
)

Update for 200 Images

200 100 50 25 10 5 2 1
0

10

20

30

 E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

T
O

P
S

/W
)

Energy Efficieny

Figure 33 - Energy consumption & energy efficiency vs. training batch size.

4.5 Summary

We explore the reliability of in-situ training with eNVMs for embedded AI platforms

in this work. First, momentum solves the critical bottleneck for training brought by

asymmetry/nonlinearity and D2D variation. High cell precision is not urgent but is still

preferred. C2C variation is tolerable to some degree based on the devices’ properties.

 75

Further device engineering to suppress it is still desirable, especially for high-precision

cells. ADC resolution needs to be carefully considered for good training performance. For

the VGG-8 training for CIFAR-10 classification, 86% accuracy is achievable under non-

idealities, including P/D=+/-3 asymmetry and nonlinearity, 0.5 D2D variation, 3% C2C

variation, and 8bit ADC quantization. This result suggests that the training with eNVMs is

still reliable under device and circuit non-idealities.

This work also discusses the training architecture for the CIM with analog synapses.

With optimized dataflow by segmentally performing gradient calculation and weight

update, the high energy brought by CIM could still be maintained for training. Energy

efficiency 25.24 TOPS/W was reported for training VGG-8 on the CIFAR-10 dataset. With

a properly chosen batch size for training, the hardware cost of the introduced momentum

training could be minimized to < 4.2% energy overhead on-chip.

 76

CHAPTER 5. Secure XOR-CIM Engine: Compute-in-Memory

SRAM Architecture with Embedded XOR Encryption

5.1 Motivation

In a typical scenario, the training of the DNNs is done in the cloud, which does not

worry about energy consumption and resource availability. After that, edge devices

download the well-trained model for inference. The CIM has been proven to be a good

choice for such edge devices. However, new security challenges are raised by this

communication, such as the DNN model leaking. As is known, a well-trained model could

be a business property or preserve sensitive information, making its protection urgent.

Encryption is an elementary choice to protect sensitive data in communication.

However, decryption could be difficult on lightweight edge devices, especially for big

neural networks. Also, for CIM-based edge devices, the balance between storing the data

in an encrypted format and conducting parallel operations on raw data is challenging.

This work has developed a lightweight yet efficient countermeasure to protect DNN

models in a two-party system of the cloud and the SRAM-based CIM accelerated inference

engines. The overhead brought by the protection is shown to be small for all aspects

concerning throughput, energy efficiency, and area.

5.2 Secure XOR-CIM inference engine

5.2.1 Secure inference engine system

 77

G
e

t
th

e
re

ge
is

te
re

d
 C

h
ip

Clone fake chip

S
p

o
o

fi
n

g
 a

tt
a

ck
 1

Inference Engine

Insecure Channel

Cloud Database

2

3

P
ro

b
in

g A
tta

ck
 &

C

h
o

se
n

 In
p

u
t A

tta
ck

Figure 34 - The two-party system of the CIM inference engine and the cloud database, and

the possible threats of model leaking on the system.

The two-party system studied in this work consists of an SRAM-based XOR-CIM

inference engine and a cloud database with well-trained models, as shown in Figure 34.

The inference engine needs to download the models from the cloud, but the two parties’

communication channel is assumed to be insecure. Thus, this model is under the threat of

the eavesdropping attack (Figure 34 ①), which gathers sensitive information by

monitoring the unprotected channel. Encryption could be used as a defense against this

kind of attack. However, edge devices’ limited power & resource and the increasing DNN

model size make the decryption overhead a considerable problem for the DNN inference

engine. Thus, to protect the DNN model in transmission, XOR encryption is hopeful as the

hardware overhead caused by its decryption is tiny. While being hardware friendly, the

protection brought by XOR encryption could be very weak in a bad protocol. Theoretically,

one-time-pad could not be cracked as the messages are XORed with truly random keys.

Sharing a key between two messages will immediately degrade the security brought by

XOR encryption. However, generating truly random keys and distributing them between

the two parts is difficult. Instead, the stream cipher is better by applying XOR encryption

with a pseudo-random sequence as the key. In this case, only a random seed needs to be

 78

generated and shared between two parties, which is much shorter than the key. A key

generating and distribution protocol is used for our two-party system like this: A random

seed is first generated on-chip at the inference engine utilizing the SRAM power-on states

as an entropy source. This seed is encrypted and sent to the cloud. The cloud uses this seed

to generate a pseudo-random sequence to encrypt the DNN model. Then, the encrypted

model is transmitted to the inference engine. Simultaneously, the same pseudo-random

sequence is generated on-chip on the inference engine and will be used for further CIM

calculation.

The countermeasure used for the eavesdropping attack leaves the adversaries a space

to apply the spoofing attack by pretending to be a good user to require information from

the cloud (Figure 34 ②). Thus, authentication is necessary for building communication.

Strong PUF with tremendous challenge-response pairs is a popular choice for

authentication from the hardware perspective. While the SRAM on-chip could also be used

as a PUF, it is a weak PUF with very limited challenge-response pairs. Luckily, a weak

PUF-based authentication protocol is proposed in [69], which we modified to support the

inference engine authentication in our system.

Finally, a specific problem with portable devices is that anyone can physically access

them. Thus, the adversary could get a registered device and fool the system if only the

hardware information is used in the authentication (Figure 34 ③). Considering the device

could be stolen, some user-aware-only information is included in our modified protocol. In

this work, the key used to encrypt the seed for stream cipher is assumed user-aware-only.

The cloud has a corresponding key exchanged in a secure channel in advance for correct

 79

decryption. In this case, for the adversary who does not know the key, the decrypted seed

on the cloud will not be wrong, and the seed on-chip could not decrypt the model correctly.

Instead of a power-down device, the adversary may get a chip with a model already

downloaded in an idle state. We do not assume the model on-chip is wiped during the idle

state to avoid big download overhead. However, considering the security issue, the key

sequence could not be held on-chip. Only the encrypted seed is saved on-chip. The seed is

decrypted when the chip returns to work, and the pseudo-random key sequence is

regenerated. The adversary could not get the seed as he/she does not know the key. He/she

could neither do the probing attack and chosen input attack on the model as the model

saved on-chip is encrypted. In this work, we do not assume the adversary could get a

working inference obsessed by the authorized user as it is too strong.

Figure 35 - Communication protocol for the secure SRAM-based CIM inference engine.

 80

The protocol we used is summarized as shown in Figure 35. Compared to the original

reverse secure sketch [69] protocol, the random number used to defend the replay attack is

replaced by our random seed and thus is encrypted instead of transmitted in raw format.

The cloud database saves the weak PUF response 𝑦𝑖 and key to decrypt the seed 𝑘′ in

advance. In the end, the additional steps for model transmission and restoration are added.

5.2.2 Secure XOR-CIM inference engine architecture

: step1 dataflow

: step2 dataflow

: step3 dataflow

SRAM-BASED
CIM core

AES

G
E

N

C
M

PSHA

HASH_DRBG

...
u1'

DRBG: deterministic random
number generator; GEN: side
information generator; SHA:
Hash Algorithm module; AES:
AES module; CMP: comparator

: step4 dataflow

SRAM-BASED
CIM core

AES

G
EN

C
M

PSHA

HASH_DRBG

...

ci, wi
k

yi

seedi

wi

Step1: One part of the SRAM power-on
states is used as the PUF response yi . Then,
yi will be converted to side information wi -
by the GEN block. At the same time, another
part of SRAM power-on states is used as
entropy source to generate a random seedi
by the SHA block. Seedi will be encrypted by
the AES with the key k to generate ci. Finally,
ci will be sent to the cloud with the wi.

SRAM-BASED
CIM core

AES

G
EN

C
M

PSHA

HASH_DRBG

...
u1

u1'

yi

IDi,ri

seedi

wi

SRAM-BASED
CIM core

AES

G
EN

C
M

PSHA

HASH_DRBG

... u2

yi

IDi,ri

SRAM-BASED
CIM core

AES

G
EN

C
M

PSHA

HASH_DRBG

...
ksi

Step2: The engine receives u1 and a random
number ri from the cloud. It hashes the ri
with the yi , wi , seedi and a predefine user
IDi . The hashed result u1 will be compared
with u1 in the comparator (CMP).

Step3: The engine hashes the yi generated
from step1 with IDi and ri received in step2.
The generated u2 will be sent to the cloud

Step4: After the authentication is verified,
the chip generates the key stream ks i on
chip by the loop in DRBG and sends it to the
CIM core.

Figure 36 - Secure XOR-CIM inference engine architecture.

The inference engine architecture is designed as shown in Figure 36. It mainly

consists of five parts: 1) A SRAM-based CIM core for inference; 2) A generator (GEN)

for side information generation for the PUF response; 3) a HASH-based deterministic

random bit generator (DRBG) module for pseudo-random number generation; 4) an

Advanced Encryption Standard (AES) module for seed encryption/decryption and 5) a

comparator (CMP) to check if two messages are the same. It needs to be highlighted that

the SHA256 block in the DRBG module is reused for three purposes in the protocol. Firstly,

it will be used for the true random seed generation that compresses the power-on states of

SRAM cells as the entropy source. Then, it is used as a simple HASH function, as the

 81

protocol requires. Finally, it serves as part of the DRBG for pseudo-random bit sequence

generation. This reuse could reduce the area overhead brought by the secure protocol.

5.3 Hardware implementation of XOR-CIM core

The heart of our inference engine is the CIM core. As described by the protocol, the

model downloaded and saved in idle mode is encrypted with the XOR-based stream cipher.

To perform correct VMM operations, the plaintext of the weights should be used for

calculation. One method to deal with it is to decrypt the model before using it for inference,

resulting in raw data saved in the memory. In this case, the model must be read out and

encrypted again if it enters the idle mode, introducing additional overhead. Another method

is always to save the encrypted model in memory but to adopt near-memory calculations

with decryption, losing the parallelism brought by CIM.

This work proposes an architecture to support CIM directly on the model encrypted

by the XOR-based stream cipher, named XOR-CIM. XOR-CIM utilizes the modified dual

word lines (WLs) 6T SRAM to apply the key on the inputs instead of decrypting the

weights directly.

5.3.1 6T Dual-WL SRAM bit-cell

As mentioned before, we apply the key bits on the inputs instead of decrypting the

weights. Assuming weight bits encrypted by key bits, the straightforward way to conduct

VMM is to decrypt them first, as shown in equation 15. By playing a small trick (equation

16), the product-and-sum of inputs and decrypted weights could be converted to the

product-and-sum of encoded inputs and encrypted weights.

 82

 𝒘𝒆 = 𝒘 ⊕ 𝒌

 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑆𝑢𝑚 = ∑ 𝐼𝑛 ∙ (𝑤𝑒 ⊕ 𝑘) (16)

 𝑷𝒂𝒓𝒕𝒊𝒂𝒍 𝑺𝒖𝒎 = ∑ 𝑰𝒏 ∙ (𝒘𝒆̅̅ ̅̅ ∙ 𝒌 + 𝒘𝒆 ∙ �̅�)

= ∑(𝑰𝒏 ∙ 𝒘𝒆̅̅ ̅̅ ∙ 𝒌 + 𝑰𝒏 ∙ 𝒘𝒆 ∙ �̅�)

= ∑(𝑰𝒏 ∙ 𝒌) ∙ 𝒘𝒆̅̅ ̅̅ + ∑(𝑰𝒏 ∙ �̅�) ∙ 𝒘𝒆

(17)

In the reformed calculation, the 𝒘𝒆 and 𝒘𝒆̅̅ ̅̅ are directly used in the product-and-sum

operation while the input 𝑰𝒏 is modulated by the key 𝒌. Owing to the latch structure of

SRAM, the 𝒘𝒆 and 𝒘𝒆̅̅ ̅̅ are naturally available when the encrypted weights are saved. The

original product-and-sum is divided into two parts, utilizing either side of the SRAM

column separately for CIM operation. However, these two parts see different inputs since

one side takes 𝑰𝒏 ∙ 𝒌 while the other side takes 𝑰𝒏 ∙ �̅�. That is why the dual WL cells, as

shown in Figure 37 (a), are required in this work. One drawback of this structure is that the

weights in the same row must share the key bit as their input is shared for parallelism. A

discussion will be presented later to prove that this key reuse will not degrade the protection

strength of XOR-CIM in practice.

5.3.2 Decrypting input generator

There are two modes that the XOR-CIM needs to work in: the memory mode and the

XOR-CIM mode. The encrypted data is written into the array in memory mode. Thus the

Dual-WL SRAM cell should work in the same way as the conventional 6T SRAM, which

means the WL and WL̅̅̅̅̅ should work in the same phase: both be “1” or “0”. In the CIM,

the inputs to WL and WL̅̅̅̅̅ are encoded by the 𝑘 and �̅� separately. When the 𝐼𝑛 is “0”, both

 83

inputs are “0”. But when the 𝐼𝑛 is “1”, they could not both be “1” because of the

complimentary 𝑘 and �̅�. The circuit presented in Figure 37 (b) is used to generate the input

signal to support both modes.

Input

key

SE

SE

SE

SE

SE

SE: mode select

WL

WL

BL BL

(a) (b)

SE=1: XOR-CIM mode
SE=0: Memory mode

Figure 37 - (a) Dual-WL 6T SRAM cell. (b) Decrypting input signal generator.

Figure 38 - Inference accuracy vs. ADC resolution.

5.3.3 ADC pair resolution

Compared to the Normal-CIM, the XOR-CIM uses both sides of SRAM for CIM

operation. Consequently, a pair of ADCs are needed for each column, which seems to

double the number of ADCs for one array. However, by checking the accuracy concerning

ADC precision, we find that to achieve negligible software performance loss caused by

ADC quantization loss, Normal-CIM needs one more bit for the single ADC than the ADC

 84

pair used in XOR-CIM. Since the area and energy consumption brought by ADC is

exponentially proportional to the precision, the ADC overhead of these XOR-CIM and

Normal-CIM should be similar. This trend is proven on ImageNet classification with

ResNet-18 and VGG-11, and CIFAR-10 classification with VGG-8, as shown in Figure

38.

5.3.4 Dynamic reference array

The Dual-WL 6T SRAM cell works the same way as the 6T SRAM for CIM

operation. Namely, inputs are applied on the access transistor, and the data at the storage

nodes represent weights. Thus, it suffers from the same read disturbance and input-

dependent analog output shift problem mentioned in 1.3.1. Low WL access voltage is used

to avoid fast voltage drop on BL/BL̅̅̅̅ while the one-side access nature of Dual-WL 6T cell

could further reduce read disturbance. Inspired by [25], a dynamic reference array is

adopted to solve the input-dependent analog output shift problem.

5.4 Evaluation and discussion

5.4.1 Methodology and setup

We tested ResNet-18, VGG-11, and VGG-8 models for XOR-CIM hardware

performance and protection overhead. The XOR-CIM system-level hardware performance

is evaluated using a modified NeuroSim [20] with the XOR-CIM subarray calibrated in

SPICE using a 28nm foundry process. 16-bit inputs & 16-bit weights for the first and last

layer and 8-bit inputs & 8-bit weights for the rest layers are assumed for the networks to

guarantee no accuracy loss after quantization. For the ImageNet classification case, 4-bit

 85

and 5-bit ADC resolutions are used for XOR-CIM and Normal-CIM settings, respectively.

At the same time, the precision decreases to 2-bit and 3-bit ADC for CIFAR-10

classification. Inside the XOR-CIM core, several 64×64 subarrays constitute the processing

element (PE) according to the weight precision. At the subarray level, the multi-bit

activations are fed sequentially with outputs accumulated with shift & add circuits to get

VMMs of high-precision input and 1-bit weight. Another shift-add on the PE level

accumulates the outputs of different weight subarrays to get the final high-precision VMM

result. Considering the broad use of 3×3 kernel size, a group of 9 PEs forms a tile so that

most layers could fit in exactly multiple tiles [70]. Adder trees accomplish further addition

among tiles, and an H-tree undertakes communication. After each CONV/FC layer,

pooling and/or activations are done by digital modules.

5.4.2 Hardware performance of the XOR-CIM core

A benchmark of our proposed XOR-CIM architecture with three baselines is shown

in Table 5. The Normal-CIM uses the conventional 6T SRAM to do CIM operations

without encryption. The Normal-CIM (Dual-WL) mode means the array consists of Dual-

WL 6T SRAM cells, but only one side is used for conventional CIM operation. Still, no

encryption is supported in this mode. The near-memory calculation reads the encrypted

weight, decrypts it, and conducts the product-and-sum using digital circuits. For all three

evaluated networks, the throughputs of all the CIM cases are similar, while 3~4 times better

than the near-memory case due to the high parallelism of the CIM operation. Compared to

the 6T SRAM array, the Dual-WL 6T SRAM is more area-consuming, increasing the total

area for both XOR-CIM and Normal-CIM (Dual-WL). Also, the circuits for encryption are

not included for both Normal-CIM cases, introducing an area overhead to XOR-CIM.

 86

However, the increment is still acceptable, limited to 2.5%~11.25% based on the network

structure. Nevertheless, the near-memory case has the largest area due to the additional

MAC units. Interestingly, the Dual-WL 6T SRAM is more energy-efficient than the normal

6T case, improving the XOR-CIM by 22%~56%. We think the reason is that the Normal-

CIM operation will open both access transistors during calculation, causing a waste of

energy on BL̅̅̅̅ . This assumption has been approved by comparing the Normal-CIM (Dual-

WL)’s and Normal-CIM’s energy efficiency results.

Table 5 - Benchmark hardware performance among Normal-CIM, near-memory compute,

and XOR-CIM.

Technode: 28nm Precision 8-bits

 Normal-CIM
Normal-CIM

(Dual-WL)
Near Memory XOR-CIM

ResNet-

18

TOPS/W 2.03 3.23 1.54 2.86

GOPS 770 770 236 770

Area(𝑚𝑚2) 200 226 296 205

VGG-11

TOPS/W 1.55 2.04 0.7 1.9

GOPS 1,212 1,212 314 1,212

Area(𝑚𝑚2) 1,638 1,730 2,172 1,692

VGG-8

TOPS/W 3.53 6.92 2.36 5.53

GOPS 2,985 2,985 943 2,985

Area(𝑚𝑚2) 160 169 257 178

5.4.3 Overhead for secure communication

The hardware costs of the XOR-CIM core, SHA256, DRBG, GEN, and AES are

shown in Table 6. Taking ResNet-18 as an example, the breakdowns for latency, energy,

and area are shown in Figure 39, considering the whole network is encrypted while only

one inference is running in the XOR-CIM core. The results show that, for encryption and

authentication, the energy and area cost is relatively small while the processing time

 87

occupies almost 38%. Thus, the latency overhead becomes the bottleneck of our secure

inference engine.

Table 6 - Hardware performance of on-chip blocks at 28nm for implementing the entire

ResNet-18 secure inference engine.

 CIM core SHA256

[40]

DRBG

[40]

GEN

[17]

AES

[41]

Area (𝒎𝒎𝟐) 205 0.0197 0.0575 0.0014 0.0028

Power (mW) 269.2 11.12 10.00 0.654 0.45

Latency (ns) 1.12E6 43.86 2.78E4 1.33 7.65

Figure 39 - Latency, energy and area breakdown for the secure inference engine.

However, the assumption we make here is relatively aggressive. On one side, it is

impractical to run only one inference for each download. Thus, this setup time consumption

could be amortized by inferencing more images. On the other side, encrypting the DNN

model for protection is not necessary. We can look for a balance point in practice between

hardware overhead and security level. By exploring the impact on inference accuracy, we

find that only a single layer’s encryption could greatly degrade the accuracy, as shown in

Figure 40 (a)-(f). We further reduce the encrypted fragment inside a kernel window and

find that, to some layers, 6/9 of the layer being encrypted is enough to ruin the functionality

of the network Figure 40 (g)-(l).

 88

Figure 40 - Inference accuracy vs. portion of network encrypted.

5.4.4 Vulnerability of XOR key bit sharing

As aforementioned, the CIM operation naturally forces the weight in the same row

to share a key bit, which increases the vulnerability of being cracked by frequency analysis.

As shown in Figure 41, the natural weight distribution of a layer is zero-centered. However,

XOR encryption will make the weights symmetry along the dashed line. In other words,

there should originally be more digit 0 in the raw weights. The XOR encryption increased

the number of digit 1 by flipping the weight digits seeing a key bit 1, making the encrypted

model have an equal portion of digits 0 and 1. Thus, the distribution of the weight bits

encrypted by the same key could imply if the key bit is 1 or 0.

 89

0000

1111 0001

1110 0010

1101 0011

1100 0100
1011 0101

0000 1 1111

1111 1 0000

XOR will make the 2's
complementary weights
flip between two value

Figure 41 - Illustration of weight encryption for 4-bit weight.

Figure 42 - The hamming distance between the predefined key and the key found by

frequency analysis with several weights sharing one key.

Figure 42 shows the percentage of the key incorrectly restored using the method

above (Hamming distance between the real key and the restored key over the key length).

We could observe that the more weights share the key, the easier it is to infer it. However,

while it is desired to have all columns work simultaneously for a CIM array, it is rare to

manage it in the real chip due to the pitch mismatch between the column and the periphery

circuits. In our 64x64 subarray setting, every eight columns are assumed to share one set

of periphery circuits. Therefore, only eight weights in the same row have to share one key

bit instead of 64. From the result, sharing 8 bits could still maintain around a 35%

 90

difference between the real and restored keys for some layers. This result could be

combined with the previous results of partial encryption to analyze the necessary portion

of the encryption. Applying a random key to attack the XOR encryption will lead to ~50%

bits match. If 6/9 of the layer encrypted is enough to protect the network, it means 33%

mismatch could maintain the low accuracy of the encrypted network. The prior results are

evaluated with no key bit sharing. Considering that a key bit shared among 8 bits will

reduce the 50% mismatch to 35%, at least one layer needs to be encrypted.

5.5 Conclusion

Our research proposes an SRAM-based XOR-CIM Inference Engine with a protocol

for secure communication with cloud databases as a two-party system. The protocol is

modified from the reverse secure sketch protocol for key processing of the XOR-based

stream cipher and chip authentication. Correspondingly, the accelerator architecture is

presented with function module sharing to reduce overhead. As the core of the inference

engine, XOR-CIM is proposed to support CIM operation directly on XOR encrypted

weight, with similar throughput, small area overhead, and better energy efficiency than the

conventional 6T SRAM-based CIM accelerator. Finally, the overhead and risk introduced

by the proposed inference engine are analyzed to prove its feasibility.

 91

CHAPTER 6. Secure eNVM-CIM Engine: Exploiting Process

Variations to Protect Machine Learning Inference Engine from Chip

Cloning and Adversarial Attack

6.1 Motivation

Unlike the SRAM-based CIM engine, which needs to download the DNN model for

each power-on, the eNVM-based CIM could always hold the weights on-chip. While this

non-volatility is attractive to the edge DNN accelerator, eNVM subarrays suffer from the

same information leakage problem as those used for memory-only purposes.

We integrate XOR-cipher into the array for the SRAM-based CIM architecture as

the weight and inversed weight naturally exist on-chip. For the eNVM-based CIM

architecture, weights are generally mapped to the cell's conductance. Thus, there is no

straightforward way to perform analog computations on digitally encrypted weights as in

the SRAM case. In this work, we explore the vulnerabilities of eNVM-based CIM chips

and propose a lightweight countermeasure to defend against them.

6.2 Vulnerability of eNVM-based CIM chip

6.2.1 Chip cloning attack

Data privacy is generally a problem for eNVMs when raw data is stored on-chip

without encryption [6]. This problem will be severer for edge devices as they are not always

used in a secure environment. Thus, for the CIM inference engine with memory cells

holding raw weights of DNN models, there will be potential threats of chip cloning.

 92

Figure 43 - Chip-cloning attack that bypass the expensive process of data/label collection

and model training.

As aforementioned, the DNN model stored in the eNVM-based inference engine

could be the business property of the model owner, considering the substantial efforts of

gathering the training data/label and training the network. If the adversary can get an

eNVM-based device, he/she could read out the model’s weights as they are saved in raw

format in the non-volatile cells. Then the adversary could reprogram (clone) the weights to

another chip without going through the expensive data gathering and model training

procedure, which is defined as the chip cloning attack in this work (Figure 43).

In theory, this goal can be achieved by the micro-probing attack. According to [7],

the high density of eNVM cell array may make it challenging to directly probe a single cell

Servers

Collecting
data

Send to
cloud

Model
training

Send to
local users

Attacker

Obtain well-
trained model

Expensive steps can
be skipped just by

chip clone!

Applied on
other devices

 93

without physically damaging the neighboring cells. Alternatively, the adversary could

directly read out the weights row by row by probing the digital output from the periphery,

e.g. the analog-to-digital converter (ADC). Normally, the ADC used for the partial sum

computation does not require super high resolution [8] and thus will have information loss

for row-by-row reading. However, due to the non-idealities of the eNVM cell writing, a

high-resolution ADC is usually required in eNVM-based CIM for the write-verify scheme

to minimize the cell conductance variations when loading the DNN models on-chip. This

ADC could become a vulnerable spot later.

6.2.2 Adversarial attack

Besides the model's weights, the leaked model could cause some security problems

considering the functionality. While deep neural networks (DNNs) have achieved

outstanding progress in various applications, there is a growing concern regarding

adversarial attacks, which aim to fool the model with manipulated inputs [71] while not

affecting human decisions. Currently, adversarial attacks are generally grouped into two

categories considering the information of the target model exposed to the adversary. If the

adversary has full access to the DNN model architecture and weights, it is called the white-

box attack [72, 73]. If the adversary has only external access to the network (e.g., input and

output), it will be categorized as a black-box attack. The white-box attack could achieve

higher success rates than the black-box attack [72], while it is rarer to happen in real life.

Generally, it is not easy for adversaries to access a private model in the data center or the

cloud. However, regarding the eNVM-based CIM inference engine, the edge devices are

physically accessible by anyone and thus could leak the model information at high risk.

Extra algorithmic calculations could be used to defend against the white-box attack at the

 94

expense of speed and power overhead, which is undesired for the edge device with a limited

power budget and demanding a real-time response. Instead of on-chip defending against

the adversarial attack, this work is concerned with the transferability of the adversarial

examples among chips loading the same model. Normally, the chips are designed for mass

use, which means chips with the same structure and loaded with the same model will be

widely equipped in different edge devices. Thus, adversaries only need to get the DNN

model from a certain chip, and then they could generate adversarial examples that could

fool the rest of the chips. As a result, all the chips could be disabled by a single weak point

as shown in Figure 44.

Figure 44 - The treat of generating adversarial examples from one chip and affecting all

the rest chips.

6.3 Security benefit

6.3.1 Protect machine learning inference engine from chip cloning

As illustrated in Chapter 3, we know that the ADC offset caused by process variation

will degrade the model accuracy on-chip and can be compensated by on-chip fine-tuning.

After fine-tuning, the model weights on-chip will be different from the original model and

other chips because of the different ADC offset patterns. Inspired by PUF, We could utilize

this fine-tuning under ADC offset to protect the model on-chip against chip cloning. In

more detail, we view the fine-tuning of the model on-chip as a process to fit the model

 95

exactly against each chip's unique ADC offset pattern. As a result, the model only works

under a certain chip with the specific ADC offset pattern. Since the ADC offset caused by

the process variation is unclonable, the model on-chip will also become unclonable.

However, due to the noise robustness of DNNs, they may still work under different offset

patterns. Thus, the ADC structure adopted on-chip must satisfy the following three

requirements to defend against the chip cloning attack. First, the ADC offset should be big

enough to cause an obvious accuracy loss on the original model. Second, the model on-

chip should be able to fully recover the accuracy after fine-tuning. Finally, when the fine-

tuned model is cloned to other chips, it should have a bad performance so that the cloning

could be identified as failed. Referring to Figure 17, only SAR-ADC with certain transistor

sizes can achieve the first two conditions and be used as candidates for the chip-cloning

defense. Then we need to check if these settings could satisfy the final requirement.

According to Figure 17, SAR-ADCs with W/L=4 for 2-bit weights and W/L=3 for

4/8-bit weights are candidates to defend against the chip cloning attack. First, more chip

samples with specified ADCs are fine-tuned to check the generality of accuracy recovery

under these settings, as shown in Figure 45 (a). More than 90%, 89%, and 87% accuracy

could be achieved for these three cases separately across several retaining tests. Then, the

weight cloning attack is assumed on these fine-tuned chips, which is to read out the weights

on-chip by the probing attack and apply them to other fake chips with the same settings but

different ADC offset patterns. Figure 44 (b) shows that the retrained models have a

relatively low accuracy of 20%~40% on other chips. It is worth noticing that this fine-

tuning differs from fine-tuning the network to be more noise-robust by injecting noise. The

noise pattern caused by ADC offset is static instead of stochastic during training. The fine-

 96

tuned model is overfitted to the specific pattern instead of becoming more noise-robust.

Thus different ADC offset patterns will cause an accuracy drop again.

2bits(W/L=4) 4bits(W/L=3) 8bits(W/L=3)
0%

20%

40%

60%
 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

A
c
c

u
ra

c
y

Weight Precision(SA Size)

2bits(W/L=4) 4bits(W/L=3) 8bits(W/L=3)
86%

88%

90%

92%

A
c
c

u
ra

c
y

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

Weight Precision(SA Size)(a) (b)

Figure 45 - Inference accuracy distribution of software-trained model with ADC offset.

6.3.2 Mitigating transferability of adversarial examples

Figure 46 - Three adversarial attack scenarios: Case1: attack the original model in software

and apply the examples on a fine-tuned chip; Case2: attack the digital model read out from

a fine-tuned chip and apply the generated examples on a fine-tuned chip; Case3: attack the

model on-chip directly in a hybrid way and apply the generated examples on another fine-

tuned chip.

The white-box adversarial attack is more efficient than the black-box attack as it

utilizes the network weights to generate adversarial examples. Correspondingly, these

adversarial examples are more closely related to the model's weights. To compensate for

 97

the accuracy loss caused by ADC offset, the weights will be chip-wisely different by fine-

tuning. This chip-to-chip variation could bring us a byproduct: the chip will be robust to

the adversarial examples transferred from other chips or software baselines. Explicitly,

even if the adversary gets the software model or a certain chip and attacks the model/chip

instance to generate some adversarial examples, he/she could not use the same examples

to fool other chip instances due to the uniqueness of the DNN model on each chip.

We evaluate the proposed transferability mitigation method with VGG-8 and

DenseNet-40 networks for the CIFAR-10 dataset. The VGG-8 model has 8-bit activations

and 2-bit weights, while 8-bit activation and 8-bit weight are adopted for DenseNet-40.

Both networks could achieve ~92% accuracy as software baseline on CIFAR-10

classification. We evaluate a white-box attack called Carlini and Wagner (C&W) Attack

[73] on these two models assuming three different scenarios as shown in Figure 46: Attack

original model; Attack retrained digital model; Attack retrained chip. Here, model0 means

the original model trained in software without chip variations and will be loaded to all the

chips as an initial condition. The chips will be fine-tuned to recover the accuracy

degradation caused by ADC offset. Considering a certain fine-tuned chip1, if the model on

chip1 is read out, it will be different from model0 because of fine-tuning, and we refer to

this new model as model1. Finally, we use chip2 to denote a fine-tuned chip with a distinct

ADC offset pattern from chip1.

Table 7 presents accuracy results after fine-tuning and the performance under three

attack cases with different ADC settings. As shown in the table, chip accuracy could be

generally recovered to baseline accuracy (above 90%) by retraining for all cases. Unlike

the chip-cloning defense case, the big accuracy drop is unnecessary for this adversarial

 98

examples transferability mitigation purpose. Thus, there are no strict requirements on ADC

except for fine-tuning to recover the accuracy loss caused by ADC offset. In the case1

scenario, the adversarial attack is applied to the original software baseline model (model0).

It can be seen that the attack is quite effective and degrade the classification accuracy to

~0%. However, when applying the generated adversarial examples on chip1, the retrained

network on-chip can still preserve relatively high accuracy (~75% for VGG-8, ~84% for

DenseNet-40) on these manipulated inputs.

Table 7 - Accuracy performance under C&W attack (𝑳𝟐).

Chip Information Attack original model

Chip

config.

ADC

type
W/L

Retrained

accuracy

Software

Attack(model0)

Attack

on chip1

VGG-8

A SAR 9 89.39%

0.61%

73.95%

B SAR 10 90.87% 75.12%

C Flash 9 91.36% 74.10%

D Flash 10 91.46% 74.40%

DenseNet-40(k=24)

A SAR 9 91.04%

0%

84.59%

B SAR 10 91.52% 83.11%

C Flash 9 91.50% 85.56%

D Flash 10 91.81% 84.19%
Attack retrained digital model Attack retrained chip

Chip

config.

Digital

accuracy

(model1)

Software

Attack(model1)

Attack

On chip1

Chip2 acc. after

attack

Attack on

chip1

VGG-8

A 74.75% 0.09% 83.43%

0%

62.10%

B 83.89% 0.24% 78.78% 64.80%

C 89.31% 0.15% 65.73% 65.10%

D 90.54% 0.21% 51.22% 64.30%

DenseNet-40(k=24)

A 20.04% 0% 87.69%

0%

87.20%

B 35.25% 0% 89.52% 85.25%

C 62.71% 0% 87.62% 86.80%

D 85.07% 0% 84.65% 86.30%

 99

For attack case 2, the adversary is assumed to have access to a fine-tuned chip (chip1)

but could only conduct the adversarial attack in software. Thus, he/she first reads out the

retrained model (model1), which has been fine-tuned to fit the ADC variation on chip1 and

then uses it to generate adversarial examples. There will be an accuracy degradation for the

model1 since it ignores the contribution of ADC offset on-chip. Its digital accuracy can be

further decreased to ~0% by the C&W attack. However, while applying these pure

software-generated adversarial examples back to chip1, it can maintain relatively high

accuracy thanks to the ADC variation. In attack case 3, we assume the adversary could

generate adversarial examples from the model on-chip (chip2) directly using a hybrid way.

The inference is performed on chip2, and a software platform conducts backpropagation.

This hybrid attack is similar to hybrid fine-tuning. Under such a scenario, the chip under

attack will be disabled with 0% accuracy, but other fine-tuned chips (chip1) could maintain

a certain accuracy.

Table 8 - C&W attack on VGG-8 with different distance matrices.

Attack original model Attack retrained chip

Software

attack

Attack on

chip1

Chip2 acc.

after attack

Attack on

chip1

Acc. before attack 91.96% 88.10% 90.50% 90.78%

C&W

attack

𝑳𝟎 attack 0.57% 73.54% 0.26% 71.30%

𝑳𝟐 attack 0.68% 74.23% 0.02% 63.40%

𝑳∞ attack 2.61% 73.35% 0.88% 70.10%

We further vary the distance matrices used in the C&W attack on VGG-8

(𝑳𝟎, 𝑳𝟐, 𝑳∞) and, as shown in Table 8, the proposed defense is effective regardless of the

used norm type.

 100

6.4 Summary

This chapter identifies two threats to eNVM-based machine learning inference

engines: the chip cloning attack and the transferability of adversarial examples. We propose

a PUF-like scheme that comes free with the on-chip fine-tuning to recover the accuracy

loss caused by the process variation. On one side, the fine-tuned model could maintain high

accuracy on each chip instance, while its performance will significantly degrade on other

chip instances with cloned weights. Thus, the threat of chip-cloning is released. On the

other side, accompanied by accuracy recovery, updated weights on-chip will vary from

chip to chip. As a result, the transferability of the adversarial examples is strongly

suppressed by fine-tuning. While the classification accuracy of the original attacked

chip/models drops to almost 0%, the software performance of other chips could still be

maintained to some extent.

 101

CHAPTER 7. Conclusion

7.1 Key contribution

This thesis is focused on the reliability and security issues of CIM accelerators. These

two aspects are equally important for using the CIM accelerators as edge devices

practically. They could also be combined so that protections come free with the techniques

to improve reliability, reducing the implementation overhead. The contributions of this

thesis include:

We define the basic design flow of algorithm-to-hardware mapping of CIM and

explore its design space. Two quantization methods with three mapping approaches are

demonstrated for hardware performance evaluation. Detailed analysis of these results

provides a deeper insight into the reliable and hardware-friendly system-level CIM design.

While this analysis is done for CIM, some common ideas could be expanded to accelerators

in other domains, such as purely digital architectures. First, as some digital accelerators

adopt zero-skip schemes to reduce power consumption, quantization methods with higher

input sparsity could also help decrease their real computation energy efficiency. Second, a

similar bit-wise MAC could be implemented in the digital domain with AND gate and

adder-tree, followed by the shift-adders. All the number representation schemes could be

applied to it with binary digits. This way, a potential precision reduction could be applied

to the adder-trees based on the ADC results. Finally, the tolerance of ADC precision loss

implies that besides quantizing the inputs and weights, further precision loss during product

accumulation is possible even under the traditional MAC operation in digital, which could

introduce hardware overhead reduction on the accumulator.

 102

After that, we introduce process variations into the CIM inference engine, which will

cause ADC offset and thus hurt the software performance. To recover the inference

accuracy, we proposed a hybrid on-chip fine-tuning method. It is shown that the on-chip

fine-tuning is beneficial to compensate for the ADC offset effects. Other works also show

that training with noise injected to mimic the effect of memory cell variations and IR drops

could also recover the DNN performance on-chip. As a result, we propose to train the

network directly on the chip. We find that the non-idealities of the devices and circuits will

degrade the training accuracy, and the DRAM access will hurt its energy efficiency.

Momentum is utilized during training to overcome the performance degradation caused by

non-idealities, and we propose a segmented update scheme to reduce the DRAM access.

This performance recovery is specific to the analog operations since the digital system

normally has a good noise margin for signal recovery and thus faces much fewer non-ideal

effects. Also, it takes advantage of the DNN’s noise tolerance and self-adaption properties

to obtain good performance under non-idealities. However, the segmented gradient

calculation and weight update scheme could be applied to any system to reduce the DRAM

access for training.

To protect the raw on-chip weights in CIM inference designs, we first aim to develop

a secure SRAM-based XOR-CIM engine with a modified reverse secure sketch protocol

to enable on-chip authentication and key processing for XOR-based stream cipher

encrypted models. The evaluation results show that the proposed XOR-CIM could enhance

security, achieving comparable energy efficiency and no throughput loss, with negligible

area overhead compared to conventional CIM designs with no protection. The concept of

using a complex encryption method to encrypt the seed while using a relatively simple one

 103

to encrypt the big model could be applied to any edge device to reduce the encryption

overhead. In addition, this XOR-cipher integrated SRAM can also be used for memory

purposes to hold encrypted data on-chip. It can save the extra operation for standalone

XOR decryption of the data. However, the energy improvement from Dual-WL SRAM

cells for memory purposes may not be big because of the single-row operation.

Unlike the SRAM-based CIM engine, it is hard to integrate encryption into the

eNVM-based CIM engine. Inspired by the necessary retraining to recovery accuracy under

process variation, we propose a PUF-like scheme against the weight cloning attack and

mitigate the transferability of the adversarial example. The individual chip can maintain

high accuracy after fine-tuning, while its performance will significantly degrade on other

chip instances with cloned weights. The fine-tuned chips also become more robust to the

adversarial examples generated from the pure software model or different chips. While we

utilize the ADC offset pattern to provide the PUF-like specification of the model, any other

unclonable source from hardware could be integrated into the model and achieve the same

purpose as the ADC offset. As a result, this protection is not limited to the CIM but is

possible for all DNN accelerators.

7.2 Future work

While CIM accelerators have shown superior performance and efficiency over

conventional digital computing systems, the transition from von Neumann architectures to

in-memory computing platforms involves cross-layer considerations from hardware to

software. We believe further efforts need to be spent in several directions to enable the

widespread use of CIM.

 104

Firstly, considering the immaturity of the eNVMs technologies, CIM architectures

necessitate an integrated mapping of various non-idealities to explore software/hardware

co-designs that can deal with devices' unavoidable reliability issues. While different works

have explored parts of non-idealities in their work, it is desired to have a flexible and all-

sided simulator to cover different cases of non-idealities for better early-stage estimation

of CIM design.

Secondly, further exploration of the security vulnerabilities and countermeasures in

CIM is desired to allow the in-memory computing solution to be used in real-world

computing systems. Also, these methods, including the solutions proposed in this work,

should not be validated only in simulation but also with real chip implementation.

Finally, system-level CIM should be evaluated for big-scale tasks. Currently, most

of the CIM is demonstrated for small networks. For complicated tasks, the performance of

both software/hardware is evaluated in a hybrid way, which integrates the macro-level

silicon data into the simulator to predict the system-level result. To move CIM from the

research community to industry, it is important to validate its strength in silicon with real-

life tasks. Thus, validating a big-scale system-level CIM prototype chip is one of the most

import future tasks for researchers in this area.

 105

REFERENCES

[1] Dave Steinkrau, Patrice Y. Simard, Ian Buck, "Using GPUs for Machine Learning

Algorithms," in Proceedings of the Eighth International Conference on Document

Analysis and Recognition, 2005.

[2] Zhao Wang, Yijin Guan, Guangyu Sun, Dimin Niu, Yuhao Wang, Hongzhong

Zheng, Yinhe Han, "GNN-PIM: A Processing-in-Memory Architecture for Graph

Neural Networks," in Conference on Advanced Computer Architecture, 2020.

[3] Jin Luo, Weikai Xu, Yide Du, Boyi Fu, Jiahao Song, Zhiyuan Fu, Mengxuan Yang,

Yiqing Li, Le Ye, Qianqian Huang, Ru Huang, "Energy- and Area-efficient Fe-

FinFET-based Time-Domain Mixed-Signal Computing In Memory for Edge

Machine Learning," in IEEE International Electron Devices Meeting (IEDM), San

Francisco, 2021.

[4] Han Zhao, Zhengwu Liu, Jianshi Tang, Bin Gao, Ying Zhou, Peng Yao, Yue Xi, He

Qian, Huaqiang Wu, "Implementation of Discrete Fourier Transform using RRAM

Arrays with Quasi-Analog Mapping for High-Fidelity Medical Image

Reconstruction," in IEEE International Electron Devices Meeting (IEDM), San

Francisco, 2021.

[5] Ming-Chun Hong, Le-Chih Cho, Chih-Sheng Lin, Yu-Hui Lin, Po-An Chen, I-Ting

Wang, Pei-Jer Tzeng, Shyh-Shyuan Sheu, Wei-Chung Lo, Chih-I Wu, Tuo-Hung

Hou, "In-Memory Annealing Unit (IMAU): Energy-Efficient (2000 TOPS/W)

Combinatorial Optimizer for Solving Travelling Salesman Problem," in IEEE

International Electron Devices Meeting (IEDM), San Francisco, 2021.

[6] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian, John

Paul Strachan, Miao Hu, R. Stanley Williams, Vivek Srikumar, "ISAAC: A

Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in

Crossbars," in ACM/IEEE Annual International Symposium on Computer

Architecture (ISCA), Seoul, 2016.

[7] Shibin Tang, Shouyi Yin, Shixuan Zheng, Peng Ouyang, Fengbin Tu, Leiyue Yao,

JinZhou Wu, Wenming Cheng, Leibo Liu, Shaojun Wei, "AEPE: An area and power

 106

efficient RRAM crossbar-based accelerator for deep CNNs," in IEEE Non-Volatile

Memory Systems and Applications Symposium (NVMSA), Hsinchu, 2017.

[8] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, "ImageNet Classification with

Deep Convolutional Neural Networks," in Annual Conference on Neural Information

Processing Systems, Lake Tahoe, 2012.

[9] Karen Simonyan, Andrew Zisserman, "Very Deep Convolutional Networks for

Large-Scale Image Recognition," in International Conference on Learning

Representations, San Diego, 2015.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, "Deep Residual Learning for

Image Recognition," in Conference on Computer Vision and Pattern Recognition

(CVPR), Las Vegas, 2016.

[11] Xiaoyu Sun, Shihui Yin, Xiaochen Peng, Rui Liu, Jae-sun Seo, Shimeng Yu,

"XNOR-RRAM: A scalable and parallel resistive synaptic architecture for binary

neural networks," in Design, Automation & Test in Europe Conference & Exhibition

(DATE), Dresden, 2018.

[12] Shihui Yin, Xiaoyu Sun, Shimeng Yu, Jae-Sun Seo, "High-Throughput In-Memory

Computing for Binary Deep Neural Networks With Monolithically Integrated

RRAM and 90-nm CMOS," IEEE Transactions on Electron Devices, vol. 67, no. 10,

pp. 4185 - 4192, 2020.

[13] Cheng-Xin Xue, Wei-Hao Chen, Je-Syu Liu, Jia-Fang Li, Wei-Yu Lin, et al., " 1Mb

Multibit ReRAM Computing-In-Memory Macro with 14.6ns Parallel MAC

Computing Time for CNN Based AI Edge Processors," in IEEE International Solid-

State Circuits Conference - (ISSCC), San Francisco, 2019.

[14] Cheng-Xin Xue, Tsung-Yuan Huang, Je-Syu Liu, Ting-Wei Chang, et al., "A 22nm

2Mb ReRAM Compute-in-Memory Macro with 121-28TOPS/W for Multibit MAC

Computing for Tiny AI Edge Devices," in IEEE International Solid- State Circuits

Conference - (ISSCC), San Francisco, 2020.

[15] Beiye Liu, Hai Li, Yiran Chen, Xin Li, Tingwen Huang, Qing Wu, Mark Barnell,

"Reduction and IR-drop compensations techniques for reliable neuromorphic

 107

computing systems," in IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), San Jose, 2014.

[16] Zhezhi He, Jie Lin, Rickard Ewetz, Jiann-Shiun Yuan, Deliang Fan, "Noise Injection

Adaption: End-to-End ReRAM Crossbar Non-ideal Effect Adaption for Neural

Network Mapping," in IEEE/ACM Design Automation Conference (DAC), New

York, 2019.

[17] Shihui Yin, Zhewei Jiang, Jae-Sun Seo, Mingoo Seok, "XNOR-SRAM: In-Memory

Computing SRAM Macro for Binary/Ternary Deep Neural Networks," IEEE Journal

of Solid-State Circuits, vol. 55, no. 6, pp. 1733 - 1743, 2020.

[18] Jong-Hyeok Yoon, Muya Chang, Win-San Khwa, Yu-Der Chih, Meng-Fan Chang,

Arijit Raychowdhury, "A 40nm 64Kb 56.67TOPS/W Read-Disturb-Tolerant

Compute-in-Memory/Digital RRAM Macro with Active-Feedback-Based Read and

In-Situ Write Verification," in IEEE International Solid- State Circuits Conference

(ISSCC), San Francisco, 2021.

[19] Avishek Biswas, Anantha P. Chandrakasa, "Conv-RAM: An energy-efficient SRAM

with embedded convolution computation for low-power CNN-based machine

learning applications," in IEEE International Solid - State Circuits Conference -

(ISSCC), San Francisco, 2018.

[20] Xin Si, Jia-Jing Chen, Yung-Ning Tu, Wei-Hsing Huang, et al., "Twin-8T SRAM

Computation-In-Memory Macro for Multiple-Bit CNN-Based Machine Learning,"

in IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco,

2019.

[21] Akhilesh Jaiswal, Indranil Chakraborty, Amogh Agrawal, and Kaushik Roy, "8T

SRAM Cell as a Multibit Dot-Product Engine for Beyond Von Neumann

Computing," IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 27, no. 11, pp. 2556 - 2567, 2019.

[22] Wonbo Shim, Yandong Luo, Jae-sun Seo, Shimeng Yu, "Impact of Read Disturb on

Multilevel RRAM based Inference Engine: Experiments and Model Prediction," in

2020 IEEE International Reliability Physics Symposium (IRPS), Dallas, 2020.

 108

[23] Wei-Hao Chen, Chunmeng Dou, Kai-Xiang Li, Wei-Yu Lin, et al., "CMOS-

integrated memristive non-volatile computing-in-memory for AI edge processors,"

Nature Electronics, vol. 2, p. 420–428 , 2019.

[24] Bing Li, Bonan Yan, Hai Li, "An Overview of In-memory Processing with Emerging

Non-volatile Memory for Data-intensive Applications," in Great Lakes Symposium

on VLSI , Tysons Corner, 2019.

[25] Wei-Hao Chen, Kai-Xiang Li, Wei-Yu Lin, Kuo-Hsiang Hsu, Pin-Yi Li, et al., "A

65nm 1Mb nonvolatile computing-in-memory ReRAM macro with sub-16ns

multiply-and-accumulate for binary DNN AI edge processors," in IEEE International

Solid - State Circuits Conference - (ISSCC), San Francisco, 2018.

[26] Yandong Luo, Xiaochen Peng, Ryan Hatcher, Titash Rakshit, Jorge Kittl, Mark S.

Rodder, Jae-Sun Seo, Shimeng Yu, "A Variation Robust Inference Engine Based on

STT-MRAM with Parallel Read-Out," in IEEE International Symposium on Circuits

and Systems (ISCAS), Seville, 2020.

[27] Wangxin He, Shihui Yin, Yulhwa Kim, Xiaoyu Sun, Jae-Joon Kim, Shimeng Yu,

Jae-Sun Seo, "2-Bit-Per-Cell RRAM-Based In-Memory Computing for Area-

/Energy-Efficient Deep Learning," IEEE Solid-State Circuits Letters, vol. 3, pp. 194

- 197, 2020.

[28] Pai-Yu Chen, Xiaochen Peng, Shimeng Yu, "NeuroSim: A Circuit-Level Macro

Model for Benchmarking Neuro-Inspired Architectures in Online Learning," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,

no. 12, pp. 3067 - 3080, 2018.

[29] Xiaoyu Sun, Shimeng Yu, "Impact of Non-Ideal Characteristics of Resistive Synaptic

Devices on Implementing Convolutional Neural Networks," IEEE Journal on

Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 3, pp. 570 - 579,

2019.

[30] Stefano Ambrogio, Pritish Narayanan, Hsinyu Tsai, Robert M. Shelby, Irem Boybat,

Carmelo di Nolfo, et al, "Equivalent-accuracy accelerated neural-network training

using analogue memory," Nature, vol. 558, p. 60–67, 2018.

 109

[31] Xiaoyu Sun, Panni Wang, Kai Ni, Suman Datta, Shimeng Yu, "Exploiting Hybrid

Precision for Training and Inference: A 2T-1FeFET Based Analog Synaptic Weight

Cell," in IEEE International Electron Devices Meeting (IEDM), San Francisco, 2018.

[32] Tayfun Gokmen, Wilfried Haensch, "Algorithm for training neural networks on

resistive device arrays," Frontiers in neuroscience, vol. 14, no. 103, 2020.

[33] Chaofei Yang, Beiye Liu, Hai Li, Yiran Chen, Mark Barnell, Qing Wu, Wujie Wen,

Jeyavijayan Rajendran, "Thwarting Replication Attack Against Memristor-Based

Neuromorphic Computing System," IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems , vol. 39, no. 10, pp. 2192 - 2205, 2020.

[34] Yi Cai, Xiaoming Chen, Lu Tian, Yu Wang, Huazhong Yang, "Enabling Secure in-

Memory Neural Network Computing by Sparse Fast Gradient Encryption," in

IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

Westminster, 2019.

[35] Shanshi Huang, Hongwu Jiang, Shimeng Yu, "Hardware-aware

Quantization/Mapping Strategies for Compute-in-Memory Accelerators," ACM

Transactions on Design Automation of Electronic Systems, accepted, 2022.

[36] Shanshi Huang, Xiaochen Peng, Hongwu Jiang, Yandong Luo, Shimeng Yu,

"Exploiting Process Variations to Protect Machine Learning Inference Engine from

Chip Cloning," in IEEE International Symposium on Circuits and Systems (ISCAS),

2021.

[37] Shanshi Huang, Xiaoyu Sun, Xiaochen Peng, Hongwu Jiang, Shimeng Yu,

"Overcoming Challenges for Achieving High in-situ Training Accuracy with

Emerging Memories," in Design, Automation & Test in Europe Conference &

Exhibition (DATE), Grenoble, 2020.

[38] Shanshi Huang, Xiaoyu Sun, Xiaochen Peng, Hongwu Jiang, Shimeng Yu.,

"Achieving High In Situ Training Accuracy and Energy Efficiency with Analog Non-

Volatile Synaptic Devices," ACM Transactions on Design Automation of Electronic

Systems, vol. 27, no. 4, pp. 1-19, 2022.

[39] Shanshi Huang, Hongwu Jiang, Xiaochen Peng, Wantong Li, Shimeng Yu, "XOR-

CIM: Compute-In-Memory SRAM Architecture with Embedded XOR Encryption,"

 110

in IEEE/ACM International Conference On Computer Aided Design (ICCAD), San

Diego, 2020.

[40] Shanshi Huang, Hongwu Jiang, Xiaochen Peng, Wantong Li, Shimeng Yu, "Secure

XOR-CIM Engine: Compute-In-Memory SRAM Architecture With Embedded XOR

Encryption," IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 29, no. 12, pp. 2027-2039, 2021.

[41] Shanshi Huang, Hongwu Jiang, Shimeng Yu, "Mitigating Adversarial Attack for

Compute-in-Memory Accelerator Utilizing On-chip Finetune," in IEEE Non-Volatile

Memory Systems and Applications Symposium (NVMSA), 2021.

[42] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu

Wang, Yuan Xie, "PRIME: A Novel Processing-in-memory Architecture for Neural

Network," in International Symposium on Computer Architecture, Seoul, 2016.

[43] Win-San Khwa, Yen-Cheng Chiu, Chuan-Jia Jhang, Sheng-Po Huang, Chun-Ying

Lee, Tai-Hao Wen, Fu-Chun Chang, Shao-Ming Yu, Tung-Yin Lee, Meng-Fan

Chang, "A 40-nm, 2M-Cell, 8b-Precision, Hybrid SLC-MLC PCM Computing-in-

Memory Macro with 20.5-65.0 TOPS/W for Tiny-Al Edge Devices," in IEEE

International Solid-State Circuits Conference (ISSCC), San Francisco, 2022.

[44] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,

Tobias Weyand, Marco Andreetto, Hartwig Adam, "MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications," in arXiv, 2017.

[45] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun, "ShuffleNet: An Extremely

Efficient Convolutional Neural Network for Mobile Devices," in Conference on

Computer Vision and Pattern Recognition, Salt Lake City, 2018.

[46] Shuang Wu, Guoqi Li, Feng Chen, Luping Shi, "Training and inference with integers

in deep neural networks," in International Conference on Learning Representations

(ICLR), Vancouver, 2018.

[47] Jacob, Benoit, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew

Howard, Hartwig Adam, Dmitry Kalenichenko, "Quantization and training of neural

 111

networks for efficient integer-arithmetic-only inference," in Conference on Computer

Vision and Pattern Recognition (CVPR), Salt Lake City, 2018.

[48] M. Courbariaux, Y. Bengio, J.-P. David, "Training deep neural networks with low

precision multiplications," in workshop contribution at International Conference on

Learning Representations (ICLR), San Diego, 2015.

[49] Ron Banner, Itay Hubara, Elad Hoffer, Daniel Soudry, "Scalable Methods for 8-bit

Training of Neural Networks," in Neural Information Processing Systems (NIPS),

Montreal, 2018.

[50] I. Hubara, M. Courbariaux, D Soudry, R. El-Yaniv, Y. Bengio, "Binarized Neural

Networks," in 30th Conference on Neural Information Processing Systems (NIPS),

Barcelona, 2016.

[51] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, "XNOR-Net: ImageNet

Classification Using Binary Convolutional Neural Networks," in European

Conference on Computer Vision (ECCV), Amsterdam, 2016.

[52] Yukuan Yang, Lei Deng, Shuang Wu, Tianyi Yan, Yuan Xie, Guoqi Li, "Training

high-performance and large-scale deep neural networks with," Neural Networks, vol.

125, pp. 70-82, 2020.

[53] Jian-Wei Su, Xin Si, Yen-Chi Chou, Ting-Wei Chang, Wei-Hsing Huang, et al., "A

28nm 64Kb Inference-Training Two-Way Transpose Multibit 6T SRAM Compute-

in-Memory Macro for AI Edge Chips," in International Solid- State Circuits

Conference, San Francisco, 2020.

[54] Xin Si, Jia-Jing Chen, Yung-Ning Tu, Wei-Hsing Huang, Jing-Hong Wang, Yen-

Cheng Chiu, et al., "A Twin-8T SRAM Computation-In-Memory Macro for

Multiple-Bit CNN-Based Machine Learning," in International Solid- State Circuits

Conference, San Francisco, 2019.

[55] Ming Cheng, Lixue Xia, Zhenhua Zhu, Yi Cai, Yuan Xie, Yu Wang, Huazhong

Yang, "TIME: A Training-in-Memory Architecture for RRAM-Based Deep Neural

Networks," IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 38, no. 5, pp. 834-847, 2019.

 112

[56] Song Han, Huizi Mao, William J Dally, "Deep Compression: Compressing Deep

Neural Networks with Pruning, Trained Quantization and Huffman Coding," in

International Conference on Learning Representations, San Juan, 2016.

[57] Hanbo Sun, Zhenhua Zhu, Yi Ca, Xiaoming Chen, Yu Wang, Huazhong Yang, "An

Energy-Efficient Quantized and Regularized Training Framework For Processing-

In-Memory Accelerators," in Asia and South Pacific Design Automation Conference

(ASP-DAC), Beijing, 2020.

[58] Xiaochen Peng, Shanshi Huang, Hongwu Jiang, Anni Lu, Shimeng Yu,

"DNN+NeuroSim V2.0: An End-to-End Benchmarking Framework for Compute-in-

Memory Accelerators for On-Chip Training," IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 40, no. 11, pp. 2306-2319,

2021.

[59] Wantong Li, Shanshi Huang, Xiaoyu Sun, Hongwu Jiang, Shimeng Yu, "Secure-

RRAM: A 40nm 16kb Compute-in-Memory Macro with Reconfigurability, Sparsity

Control, and Embedded Security," in Custom Integrated Circuits Conference, Austin,

2021.

[60] Anni Lu, Xiaochen Peng, Wantong Li, Hongwu Jiang, Shimeng Yu, "NeuroSim

Simulator for Compute-in-Memory Hardware Accelerator: Validation and

Benchmark," frontiers in Artificial Intelligence, 2021.

[61] Shihui Yin, Yulhwa Kim, Xu Han, Hugh Barnaby, Shimeng Yu, Yandong Luo,

Wangxin He, Xiaoyu Sun, Jae-Joon Kim, Jae-sun Seo, "Monolithically Integrated

RRAM- and CMOS-Based In-Memory Computing Optimizations for Efficient Deep

Learning," IEEE Micro, vol. 39, no. 6, pp. 54 - 63, 2019.

[62] Yun Long, Xueyuan She, Saibal Mukhopadhyay, "Design of Reliable DNN

Accelerator with Un-reliable ReRAM," in Design, Automation & Test in Europe

Conference & Exhibition (DATE), Florence, 2019.

[63] Hongwu Jiang, Xiaochen Peng, Shanshi Huang, Shimeng Yu, "CIMAT: A Compute-

In-Memory Architecture for On-chip Training Based on Transpose SRAM Arrays,"

IEEE Transactions on Computers , vol. 69, no. 7, pp. 944 - 954, 2020.

 113

[64] Jiyong Woo, Shimeng Yu, "Resistive Memory-Based Analog Synapse: The Pursuit

for Linear and Symmetric Weight Update," IEEE Nanotechnology Magazine , vol.

12, no. 3, pp. 36-44, 2018.

[65] Matthew Jerry, Pai-Yu Chen, Jianchi Zhang, Pankaj Sharma, Kai Ni, Shimeng Yu,

Suman Datta, "Ferroelectric FET analog synapse for acceleration of deep neural

network training," in IEEE International Electron Devices Meeting (IEDM), San

Francisco, 2017.

[66] Shinhyun Choi, Scott H. Tan, Zefan Li, Yunjo Kim, Chanyeol Choi, Pai-Yu Chen,

Hanwool Yeon, Shimeng Yu, Jeehwan Kim, "SiGe epitaxial memory for

neuromorphic computing with reproducible high performance based on engineered

dislocations," Nature Materials, vol. 17, pp. 335-340, 2018.

[67] Wei Wu, Huaqiang Wu, Bin Gao, Peng Yao, Xiang Zhang, Xiaochen Peng, Shimeng

Yu, He Qian, "A Methodology to Improve Linearity of Analog RRAM for

Neuromorphic Computing," in IEEE Symposium on VLSI Technology, Honolulu,

2018.

[68] Jianshi Tang, Douglas Bishop, Seyoung Kim, Matt Copel, Tayfun Gokmen, Teodor

Todorov, SangHoon Shin, Ko-Tao Lee, Paul Solomon, Kevin Chan, Wilfried

Haensch, John Rozen, "ECRAM as Scalable Synaptic Cell for High-Speed, Low-

Power Neuromorphic Computing," in IEEE International Electron Devices Meeting

(IEDM), San Francisco, 2019.

[69] Roel MAES, Physically Unclonable Functions, Springer-Verlag Berlin Heidelberg,

2013.

[70] Xiaochen Peng, Rui Liu, Shimeng Yu, "Optimizing Weight Mapping and Data Flow

for Convolutional Neural Networks on RRAM Based Processing-In-Memory

Architecture," in IEEE International Symposium on Circuits and Systems (ISCAS),

Sapporo, 2019.

[71] Ian Goodfellow,Jonathon Shlens,Christian Szegedy, "Explaining and Harnessing

Adversarial Examples," in International Conference on Learning Representations ,

San Diego, 2015.

 114

[72] Joan Bruna, Christian Szegedy, Ilya Sutskever, Ian Goodfellow, Wojciech Zaremba,

Rob Fergus, Dumitru Erhan, "Intriguing properties of neural networks," in

International Conference on Learning Representations, Banff\, 2014.

[73] Nicholas Carlini, D. Wagner, "Towards Evaluating the Robustness of Neural

Networks," in IEEE Symposium on Security and Privacy (SP), San Jose, 2017.

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	SUMMARY
	CHAPTER 1. Introduction
	1.1 Motivation
	1.2 CIM basics
	1.3 CIM reliability and security issues
	1.3.1 Compute-in-memory reliability issues
	1.3.2 Compute-in-memory security issues

	1.4 Thesis overview

	CHAPTER 2. Hardware-Aware Quantization/Mapping Strategies for Compute-In-Memory Accelerators
	2.1 Motivation
	2.2 Low precision neural network
	2.3 Neural network mapping
	2.3.1 MAC mapping in CIM
	2.3.1.1 Number system in CIM.
	2.3.1.2 Number representation in CIM.
	2.3.1.3 Hardware implementation

	2.3.2 Analog-to-digital conversion
	2.3.3 Post-ADC digital processing

	2.4 Evaluation results
	2.4.1 Hardware trade-offs among different mapping strategies
	2.4.2 Hardware trade-offs with different ADC configurations

	2.5 Summary

	CHAPTER 3. Performance Recovery under Process Variation
	3.1 Motivation
	3.2 Recover the performance below variation
	3.2.1 ADC offset variation modelling
	3.2.2 On-chip fine-tune
	3.2.3 Performance recovery

	3.3 Summary

	CHAPTER 4. Achieving High In-Situ Training Accuracy and Energy Efficiency with Analog Non-Volatile Synaptic Devices
	4.1 Motivation
	4.2 Non-idealities for in-situ training accuracy
	4.2.1 Asymmetry/nonlinearity in conductance tuning
	4.2.2 D2D variation and C2C variation
	4.2.3 Update step size
	4.2.4 ADC quantization

	4.3 Training on chip
	4.3.1 Training-on-chip architectures
	4.3.2 Segmented calculation

	4.4 Evaluation and discussion
	4.4.1 Software evaluation
	4.4.2 Hardware evaluation

	4.5 Summary

	CHAPTER 5. Secure XOR-CIM Engine: Compute-in-Memory SRAM Architecture with Embedded XOR Encryption
	5.1 Motivation
	5.2 Secure XOR-CIM inference engine
	5.2.1 Secure inference engine system
	5.2.2 Secure XOR-CIM inference engine architecture

	5.3 Hardware implementation of XOR-CIM core
	5.3.1 6T Dual-WL SRAM bit-cell
	5.3.2 Decrypting input generator
	5.3.3 ADC pair resolution
	5.3.4 Dynamic reference array

	5.4 Evaluation and discussion
	5.4.1 Methodology and setup
	5.4.2 Hardware performance of the XOR-CIM core
	5.4.3 Overhead for secure communication
	5.4.4 Vulnerability of XOR key bit sharing

	5.5 Conclusion

	CHAPTER 6. Secure eNVM-CIM Engine: Exploiting Process Variations to Protect Machine Learning Inference Engine from Chip Cloning and Adversarial Attack
	6.1 Motivation
	6.2 Vulnerability of eNVM-based CIM chip
	6.2.1 Chip cloning attack
	6.2.2 Adversarial attack

	6.3 Security benefit
	6.3.1 Protect machine learning inference engine from chip cloning
	6.3.2 Mitigating transferability of adversarial examples

	6.4 Summary

	CHAPTER 7. Conclusion
	7.1 Key contribution
	7.2 Future work

	REFERENCES

