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SUMMARY

The main objective of this research is to investigate the rich nonlinear dynamics of a

semiconductor laser diode (LD) subjected to time-delayed optoelectronic (OE) feedback,

emphasizing applications in microwave photonics and communications. A semiconductor

LD based OE feedback constitutes an oscillator that produces self-sustained optical output

modulation through the intrinsic nonlinearities of the system without needing any external

modulators. To explore the wide variety of dynamics in the optical intensity, the LD needs

to be perturbed out of the steady-state free-running behavior, so the photodetected optical

signal is appropriately amplified prior to feeding it back into the LD injection terminal. The

complex dynamics of such an oscillator have been studied theoretically and experimentally

in recent decades. In this work, however, we report several novel dynamical effects by

reëxamining this rich nonlinear system with state-of-the-art experiments and supported that

by comprehensive modelling.

In particular, we have identified operating conditions that exhibit high-order locking

between LD relaxation oscillations with harmonics of the feedback delay frequency for a

OE feedback with large delay. We also observe that this system exhibits a stepwise change

in LD oscillation frequency as the feedback level is varied. Further, upon varying the injec-

tion current near threshold, we also can generate a periodic pulse train with repetition rate

at the feedback delay frequency arising from gain-switching between the on and off states

of LD. This pulse train grows into pulse clusters as we increase the current. In addition,

driving a LD at very high currents and strong feedback results in square-wave pulses whose

repetition rate is determined by the feedback delay of the OE loop. The square-waves at

a fixed current have been shown to exhibit a double-peaked optical spectrum that depends

on the feedback level. These interesting discoveries advance the understanding of the non-

linear OE oscillator and could find applications in communications, sensing, measurement,

and spectroscopy.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Nonlinear dynamical studies with semiconductor laser diodes (LDs) is a widely explored,

albeit relatively new, area of research. Only in the last few decades has research in this area

grown with tremendous pace. The formal development of laser dynamical studies began

with the pioneering work of Haken in 1975 [1]. Inspired by Lorenz’s model [2] of convec-

tive fluids for atmospheric flows, Haken developed an analogous model to study nonlinear

laser dynamics. At that time, the discussion on dynamical studies revolved around the

concept of deterministic chaos, a phenomenon in which a very small change in initial con-

ditions of a nonlinear system leads to a very large difference in the subsequent evolution.

This sensitive dependence on initial conditions had been known to mathematicians since

the early 1900s, but it is to the credit of Henri Poincaré, an eminent French mathemati-

cian, who pointed out that the dynamical instability (or chaos) of a deterministic system

is merely a mathematical behavior and that it takes coupling of at least three dynamical

variables to cause such instability. From this point of view, semiconductor LDs can be

minimally described by only two coupled equations relating the intra-cavity photon and

carrier population, so another degree of freedom is essential to study nonlinear dynamical

behavior of LDs. Therefore, the concept of external and/or self-sustaining perturbations is

introduced.

Ways of perturbing the laser steady state, such as optical injection [3, 4], optical feed-

back [5], optoelectronic (OE) feedback [6], hybrid systems [7], and coupled lasers [8, 9]

have been extensively tested to increase the dimensionality of LDs and analyze their dy-

namical behavior. In optical injection, an optical isolator is placed between two lasers to
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destabilize only one LD of the two in a master-slave laser configuration. On the other hand,

in optical feedback, a mirror at a distance in front of a LD is used to reflect light and perturb

the photon population in the gain medium of LD. Meanwhile, in delayed OE feedback, the

injection current of LD is modulated with a signal created from its photodetected output.

Various combinations of these three basic techniques have been used to develop further

methods to destabilize the laser.

To generate periodic trains of optical pulses, many of these perturbation methods have

been employed to operate LDs in modes like gain-switching [10, 11], Q-switching [12, 13],

and mode-locking [14, 15]. Gain-switching is a phenomenon in which the laser emission

itself transiently depletes the gain, thus temporarily shutting down the optical output due to

the fast generation of photons compared to the slow replenishing of carriers by an external

current source in the gain medium. The result can be the periodic generation of optical

pulses at a well defined repetition rate. A different mechanism, Q-switching, which utilizes

modulation of the intra-cavity losses by placing a saturable absorber in series with the gain

medium, has been shown to be very useful for producing high power pulsed emission.

Third, mode-locking is routinely used for the generation of ultrashort pulses with low jitter

and is achieved by the locking of the phases of the longitudinal modes of the laser cavity.

The OE feedback in LD, a simple but rich testbed for the study of nonlinear dynamical

effects [6, 14, 15, 16, 17, 18, 19, 20, 21, 22], is particularly relevant to our current work.

In Fig. 1.1, a crude OE setup is presented as a concept in which the photodetected LD

output is passed through a series of amplifiers and attenuators before finally being used

to modulate the injection current. Sometimes, a pulsed inverter is used in the electronic

loop to control the feedback sign to be either positive [17] or negative [18, 19, 20, 21,

22]. Different measurement branches with optical/electrical splitters are created at different

points of the setup as required. The feedback signal is suitably amplified to increase the

feedback strength to a level that perturb the steady state of the laser. The feedback, the

length of the delay loop, the injection current, and the optical power level are among the
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variable parameters that are studied theoretically and experimentally.

Figure 1.1: Schematic diagram of a basic OE feedback setup with LD. The solid line
represents the electrical path and the dotted line represents the optical path. Both the DC
injection current and the feedback signal are combined before injection into the LD.

The OE feedback system is particularly useful for fields such as microwave (MW) pho-

tonics and communications because it can take advantage of the ability to self-generate

modulated optical signals with modulation frequency in the microwave regime. Such sys-

tems have benefits compared with conventional electrical systems in that they are compact,

cost less, are insensitive to electromagnetic interference, etc. These systems also offer the

convenience of using photonic technologies to provide functions in the microwave domain

which are often faster and more accurate. Despite these advantages, OE systems, espe-

cially those in which LD is the source of nonlinearity, have been studied with limited rigor

compared to optical feedback or optical injection. This encourages us to re-explore this

otherwise fascinating system in light of modern laboratory facilities and comprehensive

models.

1.2 Background

The OE feedback based on LD has been at the center of a large body of scientific literature

in the last few decades [23, 24, 16, 25]. On the one hand, such systems offer profound

sophistication when it comes to studying the underlying nonlinear phenomena [17, 18,
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19]; on the other hand, they offer a wide range of applications, from the generation of

photonic microwave oscillators [26, 27] to controlled broadband frequency chirps [28] and

in communications [29]. For a good overview of the optoelectronic system and its diverse

applications, see Ref. [30].

In retrospect, the inception of the OE feedback system can be traced back to the late

1960s, just ten years after the invention of the laser [31]. Early researchers noted that laser

output can be stabilized against external radio-frequency (rf) interference by photodetect-

ing the optical signal and feeding it back into the laser injection. Thus, the initial concept of

OE feedback stemmed merely to combat an undesirable trait in laser. Not long after, it was

found that this new type of feedback could do much more than stabilizing optical output

when researchers such as Paoli and Ripper [32, 33] reported on successfully suppressing

anharmonic relaxation oscillation (RO) of laser with OE feedback and thus producing nar-

row pulses in a GaAs injection laser.

The term optoelectronic oscillators (OEO) was coined to refer to this self-sustained

system built around a laser and composed of an optical and an electronic branch. Initially,

OEOs had a bandwidth below the GHz range, where the feedback loop provides a delay of a

few nanoseconds at most [32, 34]. This is the reason why the earliest systems intentionally

inserted an additional delay to keep it in a comparable range with the internal time scale

of the LD. One of the earliest model to describe the dynamics of a laser field in an optical

cavity was proposed by Ikeda [35]. Gibbs et al. [34] provided experimental confirmation

of Ikeda’s postulated ideas in an OEO with a low-pass filter. Just as in the original Ikeda

equation, the dynamic variable that Gibbs et al. considered was the phase of a optical field.

Surprisingly, the original system proposed by Ikeda was an all-optical system, but the basic

concept could be extrapolated for the OE system also. Ikeda dynamics for OEOs with

integrated Mach-Zehnder modulators (MZM) as the nonlinear element were then examined

for cases where the time delay is comparable to the response time of low-pass filtering

feedback loop and where it is much larger, respectively by Okada et al. [36] and Neyer
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et al. [37]. Researchers diverged in their choice of Ikeda variables; the RF voltage at the

MZM input, the wavelength of a tunable laser, length of the optical path are some of the

instances of Ikeda variables [36, 38, 37, 39] used to explore the OEOs.

Figure 1.2: Experimental setup for two different types of OEO. (a) MZM is the nonlinear
element in this most common implementation of Ikeda-like OEO, where the voltage Vrf at
the radio-frequency input is the dynamic variable. (b) Semiconductor LDs as the source
of nonlinearity in these OEOs, but they may still belong to the Ikeda class, based on the
feedback loop bandwidth and relaxation oscillation frequency. PC: polarization controller;
MZM: Mach-Zehnder modulator; DL: delay line; PD: photodiode; Amp: rf amplification;
MC: microwave coupler. (Taken from Ref. [30].)

A significant advance toward applications of OEOs was made by Yao et al. [26]; they

presented a system for ultrastable microwave generation using a narrowband OE system.

The concept of storing energy in fiber delay lines instead of rf-filters paved the way to better

purity and stability of rf-signals at room temperature. As shown in Fig. 1.2(a), a MZM was

seeded by a continuous-wave laser whose output signal is photodetected after a fiber delay

line [30]. Subsequent reports [40, 41, 42] illustrate the metrological performance of their

rf generator and the introduction of the acronym OEO. The phase modulation induced by

MZM is nonlinear with respect to the applied voltage, and although it has been widely used

5



as a source of passive nonlinearity in a large body of previous work, the semiconductor LD

itself can be used for the electrical/optical conversion required for an OEO. The accessibil-

ity of the injection current terminal allows modulation via a self-sustaining feedback path.

The two different architectures of OEOs are presented in Fig. 1.2 for comparison.

For OEOs where a semiconductor LD is the source of nonlinearity, two typical frequen-

cies play an outsized role in determining the dynamical properties. First, the relaxation

oscillation frequency fRO is the frequency of weakly damped oscillations measured at the

output of the solitary laser, in the absence of any feedback. Second, fτ = τ−1 is the inverse

of the round-trip time τ for the light to go from the laser through the external loop, and

back to the laser. fRO and fτ typically range in the GHz and MHz time scales. When fRO

and fτ are in a comparable range, the feedback can cause nonlinear nanosecond scale dy-

namics within the laser microcavity and still belongs to the Ikeda-like system [6, 10, 43].

As early as 1969, Broom [44, 45] reported on a resonant interaction between these two

frequencies. He stated that “the interaction would be strongest when fRO = n fτ where n is

a small integer” [44]. The hypothesis of such resonant instabilities if the delay is large was

revived in 2001 and 2003 by Liu and coworkers [17, 19] who explored the response of a

LD subject to an OE feedback on the injection current. They obtained bifurcation diagrams

where “frequency-locked regimes” appear as a result of a secondary bifurcation from a

branch of sustained RO oscillations. Resonant effects between fundamental frequencies

in a delayed feedback laser system may sufficiently stabilize the laser output as has been

recently demonstrated in Ref. [27].

Subsequent works by Liu et al. consider the distinction between negative [18, 20, 46]

and positive [17, 47] OE feedback. In the case of negative feedback, the fed-back current

is subtracted from J and is reported to be useful for optical short-pulse generation [14] by

stabilizing the dynamical states. In most of these reports, a quasiperiodic (QP) route to

chaos is observed. An exception is presented in Ref. [46] where a period-doubling route to

chaos is observed, albeit for a ring laser. For positive feedback, the fed-back current from
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Figure 1.3: Experimentally measured power spectra, phase portraits (with P and N be-
ing the normalized photon and carrier densities, respectively), and time series of different
pulsing states for a semiconductor laser with optoelectronic feedback. (a) Regular pulsing
(RP); (b) quasiperiodic pulsing (Q2); (c) quasiperiodic frequency-locked pulsing(Q-FL);
(d) frequency-locked pulsing (FL); (e) chaos. (Taken from Ref. [19].)

the OE loop is added back to J which results in early pulsing states explained by a gain-

switching mechanism [6]. The most common route to chaos with positive feedback is also

QP [17]. An illustration of dynamical states like regular-pulsing (RP), QP, quasi-frequency

locked (Q-FL), frequency locked (FL) and chaotic pulsing of a negative feedback system

from Ref. [19] is presented in Fig. 1.3. Although for positive feedback the dynamics

are not radically different, positive feedback setups have been found to lack a few of the

frequency-locked states that are common in negative feedback.

However, the chaotic dynamics of the OE system is explored with greater rigor in [48,

49, 50, 51]. In [48] it is reported that the time scale of the chaotic dynamics comes from
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the high-pass filters in the electronic loop. The idea is further explored [49] in terms of

the excitability of chaotic attractors. It is shown that the small chaotic background trig-

gers spontaneous excitable spikes in a chaotic but deterministic manner. In [50], controlled

generation of chaotic spikes is reported for OE feedback coupled by a periodic sinusoidal

signal. The work in [51] discusses the transition between regular and chaotic mixed-mode

states in response to the unavoidable system noise in a light-emitting diode with OE feed-

back. The reported theoretical and experimental evidence for slow-fast periodic oscillations

details the transition of these mixed-mode states to chaos. The conditions for the formation

of confined states with a large aspect ratio (known as localized structures (LS)) from pas-

sive mode-locked states are discussed in [52]. The key requirement for LS is described as

the coexistence of a stable off solution with the mode-locked solution.

Nonetheless, with appropriate modulation, LD is known to generate optical square-

waves (SWs) and has been well investigated in a variety of lasers such as vertical cavity

surface-emitting lasers (VCSEL) [53, 54, 55, 56, 57], edge-emiiting lasers (EELs) [58,

59, 60, 61, 62, 63], semiconductor ring lasers (SRLs) [64, 65], and quantum dot lasers

[66]. For VCSELs, polarization self-modulation can occur when polarization-rotated opti-

cal feedback is used to favor the switching between its orthogonal linearly polarized modes

[53, 54]. Rotation of only one of the two polarization modes, named cross-polarization

reinjection, leads to the generation of SWs [55, 56] resulting from the regular alternation in

time between the polarization modes. More robust SW generation (SWG) can be obtained

by further subjecting the VCSELs to polarization selective optical feedback [57]. Simi-

larly, when subjected to polarization-rotated optical feedback, EELs can exhibit TE-TM

mode switching leading to SWG [58, 59], with a repetition rate close to 2τ, where τ is the

delay of the optical feedback. Friart et al. have observed SWs at harmonics of this fun-

damental frequency τ−1 and demonstrated a selection of specific harmonics by employing

an additional, weak, conventional, optical feedback [60]. SW resulting from the regular

alternation between TE and TM modes have also been observed in two EELs subject to
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mutual polarization-rotated coupling [61, 62, 63]. In SRLs, SWG has been observed be-

tween its clockwise and counter-clockwise modes when delayed cross-feedback is applied

[64, 65]. Finally, SWs have also been observed in a quantum-dot laser subject to optical

injection [66]. In this case, the SWs are attributed to a thermally-induced breaking of a

bistable regime. OE feedback, however, has been sparsely explored [67, 68] to generate

optical SW pulses only with MZM configuration.

The current work is inspired by numerous of these contemporary studies with similar

experimental architecture. However, we focus on finding new experimental conditions to

identify previously unknown dynamical regimes and analyze them with comprehensive

numerical modelling. As we will see, our works contributes to a deeper understanding of

the OE system and offers several potential applications.

1.3 Scope and Organization

The remainder of the dissertation is organized as follows:

In Chapter 2, we discuss in detail the theoretical background necessary for modelling

resonance locking dynamics of a OE system. The experimental architecture of the OE

feedback is also discussed at length. This chapter is more theoretically oriented than the

rest of this dissertation, as it is intended to serve as a reference frame for modelling the

OE systems in the remaining chapters. Here we develop a model to explain the frequency

locking phenomenon between the RO and loop delay frequency for a negative OE system

with large delay, which is then verified experimentally.

In Chapter 3, we present a dynamic phenomenon involving discontinuous jumps in the

spectral domain of a LD with negative OE feedback. Such stepwise changes in radio and

optical frequency occur either abruptly between two limit cycles or progressively mediated

by a quasiperiodic state. The presence of hysteresis is detected as the feedback level is

ramped up and down. The numerical model is developed from the rate equation model

presented in the previous chapter and reproduces the experimental results with good agree-
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ment.

In Chapter 4, we focus the dynamic events that occur near the injection threshold for

positive OE feedback. A gain-switched pulsing begins to appear below the threshold and

has a repetition rate that depends solely on the feedback delay. Such pulsing enables the

generation of microwave combs with unprecedented resolution and is externally tunable.

Slowly increasing the injection current reveals a cluster of pulses above threshold that re-

solves into a regular pulsation that is determined by the RO frequency.

Chapter 5 presents the generation of optical square waves and their spectral character-

istics for a high injection current in the same OE configuration. A harmonic relationship is

observed between the repetition rate of the square waves and the feedback delay frequency.

In addition, for a given choice of injection current and feedback level, we have observed

optical spectral doublets associated with the square waves. Both experimental observations

are verified with numerical models, one for temporal and one for spectral features.

In Chapter 6, we draw a general conclusion, compare the experimental and numerical

results, and identify opportunities for prospective applications.
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CHAPTER 2

EXPERIMENTAL SETUP AND RESONANCE LOCKING DYNAMICS

In this chapter, we introduce the readers to the theory of the optoelectronic (OE) feedback,

which is necessary for understanding the remaining chapters of this dissertation. For in-

terested readers, the experimental setups of the OE system used to support the numerical

predictions is also illustrated at length, along with the necessary steps for measurement and

characterization. This is by no means a complete discourse of the nonlinear dynamics of

OE feedback (more detailed discussion can be found in [69, 30]), but rather is intended

to serve as a starting point for the ensuing discussion. Specifically, we discuss here the

onset of a pulse train with two frequencies, one the relaxation oscillation (RO) frequency

and the other a harmonic of the feedback loop delay frequency, through two successive

bifurcations by analyzing the rate equations for the dynamic degrees of freedom in a laser

subject to delayed OE feedback. While the first bifurcation is a primary Hopf bifurca-

tion to the ROs, a secondary Hopf bifurcation leads to a two-frequency regime in which a

low frequency proportional to the reciprocal of the delay resonates with the RO frequency.

We derive an amplitude equation that is valid near the first Hopf bifurcation point, and

numerically observe frequency locking. We explain this phenomenon mathematically by

formulating a closed system of ordinary differential equations from our amplitude equation.

Our results motivate new experiments with special attention to the first two bifurcations.

We experimentally observe (1) the frequency locking phenomenon as we pass the sec-

ondary bifurcation point, and (2) the nearly constant slow period as the amplitude of the

two-frequency oscillations grows. Our results analytically confirm previous observations

of frequency locking phenomena in lasers subject to delayed optical feedback.
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2.1 Introduction

Semiconductor laser diodes (LDs) are ubiquitous in science and engineering, but they dif-

fer in their fundamental design and types of applications. A first-hand introduction from

a purely experimental point of view is necessary to understand the dynamical studies and

the feasibility of the proposed applications. With this in mind, we begin this chapter with

a thorough discussion of the experimental setup that we have used throughout our works.

We also systematically present the measurement instruments and the equipment used. We

provide the basic characterization of the LD and the feedback system, which is necessary

for the coming discussion. In later chapters, we refer to this section for describing exper-

iments and mention only the distinctive aspects specific to the work at hand. Familiarity

with the tools should also help future interested readers to reproduce and invest on any

specific results.

However, our main goal in this chapter is to analyze the resonance locking effect be-

tween the relaxation oscillation frequency ( fRO) and the loop delay frequency ( fτ) when the

delay is large. To this end, we determine an amplitude equation that captures the primary

Hopf bifurcation and a secondary Hopf bifurcation to a two-frequency oscillatory regime.

While the first frequency is clearly the RO frequency, we show that the second frequency

is locked to the first one and remains nearly constant as we pass the secondary bifurcation

point. The fact that the period remains nearly constant when the bifurcation parameter is

changed, is unusual for a Hopf bifurcation problem. It reminds us of the generation of

square wave oscillations in nonlinear scalar DDEs, such as the Ikeda equation [70]. In

these problems, the period of the oscillations remains close to twice the delay, even though

the extrema of the oscillations are functions of the control parameter. However, here we

are not dealing with square waves, but with nearly harmonic oscillations, and a different

analysis is required.

The plan of this chapter is as follows. In section 2.2 we will provide a elaborate dis-
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cussion of the experimental arrangement. We then move to model the resonance locking

effects in section 2.3. In section 2.3.1, we formulate the laser equations and observe the

appearance of two-frequency oscillations. These observations then motivate a weakly non-

linear analysis where both the weak damping of the RO oscillations and the large delay are

taken into account. All mathematical details are relegated to the Appendix chapter B for

clarity. We derived a slow time amplitude equation which we investigate for two specific

cases. In section 2.3.2, we consider the simplest mathematically possible case where the

contribution of the RO damping rate is neglected. Its simplicity allows us to determine

analytically the primary and secondary Hopf bifurcations points. We then consider in sec-

tion 2.3.2 the more realistic case where the natural damping rate of the RO oscillations is

non-zero. Hopf bifurcations lead to stable branches of solutions of growing amplitude but

with a period that remains nearly constant. In section 2.3.3, we explain this phenomenon by

assuming that the slow-time delay is large and that the period of the oscillations is close to

twice this delay. Experimental results using a single mode laser subject to a delayed opto-

electronic feedback substantiate our findings by showing that the slow time period remains

constant as the feedback rate is increased as discussed in section 2.3.4.

2.2 Comprehensive Overview of the Experiment

2.2.1 The Laser

Two different types of semiconductor laser diodes (LDs) were used for the experiments

presented in this dissertation, a quantum-dash (Q-dash ) laser and a multiple quantum well

(MQW) laser. Although the Q-dash lasers are more similar to the MQW lasers than to

Q-dot lasers, we will describe them both here only for the purpose of application, i.e., we

will avoid a detailed discussion of their architecture and devote the scope on necessary

characterization.

The Q-dash laser used for our experiments is a single mode edge-emitting distributed

feedback (DFB) p-doped InAs/InP structure with a cavity length of 500 µm, operating at
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1550 nm. The DFB laser used has an active region consisting of a stack of six layers of

InAs quantum dashes, each layer embedded in an InGaAsP quantum well and separated by

InGaAsP barriers, and has a threshold current of Jth ∼ 33 mA at room temperature. The

side mode rejection ratio exceeded 40 dB over the entire pumping range of the experiments.

The MQW lasers are also edge-emitting, unpackaged single-mode DFB structures based on

a strained-layer InGaAsP/InP multi-quantum wells. The external slope efficiency is 0.22

mW/mA and Jth ∼ 20 mA measured at room temperature. Both lasers operate at 1550 nm,

and have low beam divergence. A regulated current source (Thorlabs LDC201CU) drives

the thermally stabilized LD. In addition, both being unpackaged, make them convenient for

measuring and modulating injection terminal voltage at radio frequency (RF) by external

or self-sustained means.

Relaxation Oscillation Frequency

Figure 2.1: Schematic diagram for the measurement of fRO with an electrical spectrum
analyzer (ESA).

The relaxation oscillation frequency fRO is the frequency of weakly damped oscillations

occurring in the output of the solitary laser and is a key parameter in LD dynamics. These

oscillation occur between the carrier and photon populations in the gain medium in a small-

signals analysis. We have determined it experimentally for both types of lasers used in our

experiments. The measurement is relatively simple and is shown in the Fig. 2.1. The

photodetected solitary LD output is fed into the electrical spectrum analyzer and the RO

frequency appears as an obvious bump in the electrical spectrum of LD intensity. As J

increases, fRO moves to a higher frequency, as shown in Fig. 2.2.
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Figure 2.2: fRO of solitary laser, experimental measurements (stars) and theoretical fit
(solide line); (a) Q-dash laser and (b) MQW laser.

2.2.2 Experimental Scheme

A regulated current source is used to drive the thermally stabilized LD. The injection cur-

rent, not to say, terminal voltage, is a physically relevant parameter for modulating the LD.

A linear polarizer (LP) mounted on a rotation stage is included in the optical path before

the PD to tune feedback level η. The optical isolators (OIs) are introduced to improve the

operating stability by preventing back reflections into the LD. The PD (12 GHz bandwidth)

includes a low-noise amplifier that pre-amplifies the photodiode output before sending it to

the cascade of amplifiers. The amplifiers (Amps) and attenuators boost the signal to a level

that can perturb the steady state of the laser in a safe operating region. The output of the

latter amplifier is directly fed to J using a bias tee (BT).

The parameter η is experimentally controlled through the linear polarizer (LP); it is af-

fected by the responsivity of the photodetector and the net gain of the components in the

electronic loop. Conventionally, η = 1 corresponds to full transmission by the linear polar-

izer. Rotating the LP allows a nonlinear control of the feedback level, since the attenuation
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Figure 2.3: Schematic diagram of experiment. CL: Collimation lens, BS: Beam splitter,
OI: Optical Isolator, FC: Fiber Coupler, PD: Photodiode, Amps: Amplifiers, BOSA: Bal-
anced Optical Spectrum Analyzer. A 50/50 beam splitter is used to monitor the optical
spectrum whereas a 50/50 RF splitter is used to monitor simultaneously the signal with
the oscilloscope (12 GHz bandwidth) and RF spectrum analyzer (26.5 GHz bandwidth).
The multimeter provides a means to monitor the effective feedback level by measuring the
PD bias voltage. Other splitters shown in the diagrams are used when required. All the
measurements are regulated remotely with a computer using Labview.

introduced varies as the cosine square of the angle (φ) between the LP and the direction of

polarization of the laser. Indeed, the effective feedback level is proportional to the quantity

presented as η (= cos2φ). For instance, full transmission (i.e. η = 1) corresponds to 26%

whereas η = 0.5 represents only 8.4% of the root-mean-squared current fed-back to the

injection terminal as determined from the PD bias monitor.

Loop Delay Frequency

As mentioned earlier, two frequencies play a prominent role in determining the dynamics

of a semiconductor LD with OE feedback, we have already illustrated the RO frequency,

now we will describe the experiment to measure the loop delay frequency fτ.

The experimental setup is shown in Fig. 2.4. The loop is opened at the RF arm of the
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BT and a square wave with fast rise time and high period is sent through the BT. The input

signal is monitored before the BT with a RF-splitter and the output signal at the end of

feedback loop. Two SMA cables are used to connect the input and output to a fast digital

storage oscilloscope; the cables needs to be exactly (that is, with optical delay difference

less than any relevant dynamical timescale) the same length and origin for this method to

work. The relative difference between the rising edges of the two signals represents the

delay τ in the feedback path. Of note, if the square wave period is smaller than the loop

delay, this procedure will fail to yield any reasonable result, so an estimation of the delay

prior to the experiment is required.

Figure 2.4: Schematic diagram for loop delay measurement. The loop is opened at the
rf-arm of the bias tee (combiner) for an external square wave pulse train injection, which is
detected after passing through the feedback loop, at the open end.

2.2.3 Devices

Familiarity with laboratory equipment and measurement instruments is essential for under-

standing any experiment. With this in mind, we will briefly describe the main equipment

used in the laboratory for our experiments.

(i) Photodetector The photodetector consists of an InGaAs PIN photodiode followed by

a GaAs HBT amplifier. This device, Newport 1544-B, is DC-coupled and has a rise

time of 32 ps, which is very fast for time domain characterization. The conversion
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gain is negative, the peak sensitivity is 0.85 A/W, and the 3-dB bandwidth ranges

from DC to 12 GHz. The high gain and well behaved response over a wide frequency

band make it a good choice for spectral measurements also.

(ii) Amplifiers A total of three amplifiers were used, one is Newport 1422-LF and the

other two are Microsemi UA0L30VM. The Newport 1422-LF is a non-inverting

traveling wave amplifier; it has a gain of 18 dB, a noise figure of 8 dB, and a pass-

band from 50 MHz to 20 GHz. This is a generic RF amplifier from Newport, but

it works well to amplify the PD output of the same manufacturer’s Model 1544-B.

Microsemi’s amplifier on the other hand, has a bandwidth from 100 kHz to 30 GHz,

a saturated output power of 23 dBm, and a gain of 30 dB.

(iii) Bias Tee It is a device that combines (separates) a DC signal with (from) a RF signal

and used to produce biasing voltages. The bias tee (BT) model used in our experi-

ment is Marki BT-0026. It has a low insertion loss of 0.8 dB and a wide operating

range of 0.01 GHz to 26.5 GHz. A special type of electrode (Cascade Microtech -

400u) is used to drive the modulated bias from BT to the LD.

(iv) Current Driver Thorlabs LDC200CU is a ultra low noise current driver for LD and

is used extensively for all our experiments. The current range is 0 to 100 mA and

can be operated from the front panel or from a computer via Labview. The back-

end connection and front panel must be adjusted depending on whether the LD is a

common-anode or a common-cathode architecture.

(v) Thermal Control To stabilize the temperature of the LD, the Thorlabs TED200C

thermoelectric temperature controller was used. This device uses a PID controller

for thermal stabilization and the P, I, and D portions of the control loop can be ad-

justed independently. It supports various thermal sensors, with NTC thermistors the

temperature is displayed in kW, with IC temperature sensors - in ◦C.

(vi) Digital Storage Oscilloscope The instrument responsible for most of our measure-

ments is the Agilent DS80804B, a 4-channel high-speed oscilloscope with 12 GHz
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bandwidth. It can reach up to a sampling rate of 40 GSa/s with 2 Mpts of megazoom

memory. It offers very low noise floor, low jitter measurement limit, and extremely

flat frequency response across the bandwidth.

(vii) Electrical Spectrum Analyzer The Anritsu MS2830A model is a broadband spectrum

analyzer with a operation bandwidth of 9 KHz−26.5 GHz and a resolution bandwidth

that varies from 1 Hz to 3 MHz.

(viii) Optical Spectrum Analyzer The Aragon Photonics Balanced Optical Spectrum An-

alyzer (BOSA 200C) is used for optical spectral measurements and provides an all-

optical resolution of 10 MHz with a wavelength accuracy of ±0.5 pm. This instru-

ment can operate in the T, S, C, L and O bands and has options for optical phase

measurements and spectral polarimetry.

2.3 Resonance Frequency Locking

The simplest laser system operating with a delayed feedback is the laser subject to an op-

toelectronic feedback on the injection current. By contrast to a laser subject to an optical

feedback from a distant mirror, the phase of the laser field plays a passive role, and only

the laser intensity needs to be taken into account [71]. This ideal setting was already con-

sidered in 1989 by Giacomelli et al. [23] who studied the Hopf bifurcation instabilities

both experimentally and theoretically in terms of feedback gain, delay, and pump param-

eter. Their model equations are equivalent to Eqs. (2.1) and (2.2) below 1, and particular

attention was devoted to the Hopf bifurcation frequencies. We note from their largest delay

case that the product of the Hopf bifurcation frequency and the delay is close to a large

multiple of 2π 2. This is the discussion we are presenting in rest of this chapter.

For a laser subject to an optoelectronic feedback, a Hopf bifurcation from a steady state

1The change of variables and parameters from ([23]) to Eqs. (2.1) and (2.2) are: X = 2
α I, Y = 1 + 2N,

t→ kt, γ→ k
γ , P = αa

2 , η = B, τ→ kτ.
2From the last line in Table 1 of [23], we compute ωHτ/(2π) ' Ωτ/(2π) = 1.789×5.87 = 10.45 which is

close to n = 10.
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is not the only mechanism generating time-periodic oscillations of the intensity. Isolated

branches of periodic solutions of higher amplitude may coexist with the Hopf bifurcation

branch [72]. As the delay is progressively increased, these isolated branches reduce in

amplitude. The large delay limit is clearly a singular limit of which we may take advantage

by modifying the classical weakly nonlinear analysis for a Hopf bifurcation. Indeed, we

realize that a relatively large delay not only perturbs the fast evolution of a basic oscillator

(here, the ROs) but also the slow evolution of the amplitude of the oscillations (here, the

slow damping of the ROs). A new two-time scale analysis was developed and led to a

slow time amplitude equation where a slow time delay appears [73]. All periodic solutions

of the original laser problem are now steady state solutions of this amplitude equation.

Asymptotic theories based on the large delay limit has become a topic of high interest

among physicists and mathematicians. It is worth mentioning that two distinct approaches

are possible (see Appendix A), from which we have chosen the one allowing us to analyze

high-order locking phenomena.

2.3.1 Laser equations

In dimensionless form, the laser rate equations for the intensity of the laser field I and the

carrier density N are given by [71]:

İ = 2NI, (2.1)

γṄ = P +ηI(t−τ)−N − (1 + 2N)I, (2.2)

where P = O(1) is the value of the pump parameter above threshold in the absence of

feedback (η = 0). γ = O(103) is the ratio of the carrier and photon lifetimes. η < 1 and

τ = O(103) represent the gain and the delay of the optoelectronic feedback, respectively.

Because of the large γ and large τ, these equations are delicate to solve numerically, as

we expect solutions exhibiting different time scales. A change of variable allows us to
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eliminate the large γ parameter multiplying Ṅ and reduces the size of the effective delay.

The new equations are derived in the Appendix B and are given by

ẏ = x(1 + y), (2.3)

ẋ = −y +η[1 + y(s− θ)]−εx
[
1 + 2P(1 + y)

]
, (2.4)

where x and y represents deviations of N and I from their steady state values. Dots now

mean differentiation with respect to s ≡ ωt where ω ≡
√

2P/γ� 1 is the relaxation oscilla-

tion frequency of the laser. The new parameters θ and ε are defined by

θ ≡ ωτ and ε ≡
ω

2P
� 1. (2.5)

Physically, Eqs. (2.3) and (2.4) with η= ε= 0 describe the laser’s natural ROs. The term

multiplying ε contributes to the slow damping of the relaxation oscillations in the absence

of feedback. The term multiplying η accounts for the delayed feedback.

Figure 2.5 shows the long-time numerical solution of Eqs. (2.3) and (2.4). The oscil-

lations are quasiperiodic with two distinct periods S 1 and S 2 (see Fig. 2.5) exhibiting a

ratio S 1/S 2 = 0.052 ∼ 1/20. They appear after a secondary bifurcation point of a branch of

S 1-periodic solutions. Simulations with progressively higher θ ∼ θn = 2nπ suggest that this

secondary bifurcation point ηS B verfies the scaling law

ηS B ∼
1
n

(n→∞). (2.6)

2.3.2 Weakly nonlinear analysis

The fact that ηS B→ 0 as θ→∞ motivates a weakly nonlinear analysis where

δ ≡ 1/(2n) (2.7)
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Figure 2.5: Numerically obtained quasiperiodic oscillations. Both (a) and (b), show devi-
ation x of the intensity I from its steady state value in different time scales for η = 0.025,
θ = 9.9×2π and ε = 0. The two periods are S 1 = 1.03 and S 2 = 19.81.

will be considered as a small parameter, and

η = δb, (2.8)

where b = O(1). Furthermore, we scale the small parameter ε in a similar way as

ε = δc, (2.9)

22



where c = O(1). The perturbation analysis is detailed in the Appendix B. We find that

x = δ1/2[iA(r)exp(is) + c.c.] +O(δ), (2.10)

where r ≡ δs is a slow time variable. The complex amplitude A(r) satisfies the following

equation

2i
dA
dr

=
1
3

A2A∗−Ab + bA(r−δθ)exp(−iθ)− ic(1 + 2P)A, (2.11)

which we now propose to explore. Equation (2.11) was previously derived (Eq. (19) in

[73]). Here, we concentrate on the quasiperiodic oscillations of the laser equations which

now correspond to periodic solutions of Eq. (2.11). Of particular interest is the period of

the oscillations.

No damping rate of the RO oscillations and perfect resonance

We first examine the simple case c = 0 and θ = θn = 2nπ. Introducing the decomposition

A = Rexp(iφ) into Eq. (2.11), we obtain from the real and imaginary parts

2Ṙ = bR(r−π) sin[φ(r−π)−φ], (2.12)

2φ̇ = −
R2

3
+ b−b

R(r−π)
R

cos[φ(r−π)−φ], (2.13)

where dot now means differentiation with respect to r.

These equations admit constant R solutions with phase φ = νr. In terms of time s, the

frequency of the basic RO oscillations in units of the the original time s now is 1 + δν.

Figure 2.6(a) shows two stable and one unstable branch emerging from b = 0. The two

stable branches depend on b and are given by (see Appendix B)

R =
√

6(b− ν), and ν = −1,−3, (2.14)

23



 

!

"

#

$

%

&#

&"

&!

 '  '"  '$  '(  ') !' 

!'*

"' 

"'!

 !"

 #"

 $"

T
/π

b

Figure 2.6: Bifurcation diagram of the steady state (black) and periodic (blue) solutions
of the slow time amplitude equations (Eqs. (2.12) and (2.13)). We use the decomposition
A = Rexp(iφ), where φ = νr is introduced in the text. Figure (a) represents the extrema of
R as a function of the scaled feedback strength b for θ = 2nπ. They have been obtained by
using the numerical continuation method [74]. Full and broken lines are stable and unsta-
ble solutions, respectively. The figure shows two stable branches of constant R solutions
emerging from b = 0. Circles are Hopf bifurcation points bH leading to stable oscillations
up to new bifurcation points bPD denoted by squares. Figure (b) represents the slow time
frequency correction ν for the first three branches of steady states namely, ν = −1,−2, and
−3. Figure (c) shows the period of the periodic solution bifurcating from R =

√
6(1 + b),

ν = −1 at bH = 1/3. The period remains constant as b further increases from bH .
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while the unstable branch is independent of b and admit the value

R =
√

12. (2.15)

The Hopf bifurcation point bH of Solution (Eq. (2.14)) with ν = −1 is determined analyti-

cally for arbitrary θ in the Appendix B. If θ = θn, it is located at

bH =
1
3
, (2.16)

and agrees with the numerical estimate in Fig. 2.6. The Hopf bifurcation frequency in units

of time r is equal to 1 meaning that the period of the oscillations at the bifurcation point

equals T = 2π. Figure 2.6(c) shows the period of the oscillations as their amplitude increases

(b > bH). Surprisingly, it remains close to 2π. This branch of periodic solutions changes

stability at a new bifurcation point bPD (squares in Fig. 2.6(a)). Simulations indicate that it

corresponds to a period doubling bifurcation.

Non-zero RO damping rate and near resonant conditions

We now consider the case c , 0 and θ close, but different from θn = 2nπ. Introducing the

decomposition A = Rexp(iφ) into Eq. (2.11), we obtain

2Ṙ = bR(r−δθ) sin[−θ+φ(r−δθ)−φ]− c(1 + 2P)R, (2.17)

2φ̇ = −
1
3

R2 + b−b
R(r−δθ)

R
cos[−θ+φ(r−δθ)−φ], (2.18)

where dot means differentiation with respect to r.

The solutions with R = const and φ = νr, in parametric form, are given by (ν is the
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Figure 2.7: Bifurcation diagram of the steady state and periodic solutions of Eqs. (2.17)
and (2.18). Scaled decomposition A = Rexp(iφ), where φ = νr is introduced in the text.
Figure (a) represents the extrema of R as a function of the scaled feedback strength b. The
parameter values are θ = 9.9×2π and P = 0.5. θ is close to θn = 2nπ with n = 10. This then
implies that δ = 1/(2n) = 1/20, c = 0.2 if ε = 0.01, and δθ = 0.99π. They have been obtained
by using the numerical continuation method [74]. The figure shows two stable branches of
constant R solutions emerging from limit points (triangles). The other notations and colors
are the same as in Fig. 2.6. Figure (b) represents the slow time frequency correction ν for
the first branch. Figure (c) shows the period of the periodic solutions bifurcating from the
two branches of constant R solutions. Note that only the first Hopf bifurcation leads to a
constant period as we increase b.
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parameter)

b = −
c(1 + 2P)

sin(θ+ νδθ)
, (2.19)

R2 = 3[−2ν+ b−bcos(θ+ νδθ)] ≥ 0. (2.20)

Figure 2.7 shows the bifurcation diagram for the extrema of R as a function of b. The

figure exhibits two Hopf bifurcations from two distinct branches of constant R solutions

(two left circles in Fig. 2.7). Both bifurcations are leading to stable oscillations which

become unstable at new bifurcation points (squares in Fig. 2.7).

Simulations of the amplitude Eq. (2.11), reformulated in terms of A = u+ iv, for long in-

tervals of time indicate that the secondary bifurcation is a period doubling bifurcation and is

followed by higher order instabilities (Fig. 2.8; only the bifurcation diagram corresponding

to the first Hopf bifurcation branch is shown for clarity).

We observe that the period of the first Hopf bifurcation branch remains constant as the

amplitude of the oscillations increases. The period is no more nearly equal to 2π but is

given by

T/π = 1.525 (bH < b < bPD). (2.21)

Accurate two parameter studies for θ close to θ = 10× 2π have been determined by

using a continuation method, and are shown in Fig. 2.9. In Fig. 2.9(a) the stable oscillations

of Eqs. (2.17) and (2.18) are bounded in the b versus θ plane by Hopf bifurcation lines

(solid), period-doubling bifurcation lines (dashed), and torus bifurcation lines (dotted). The

torus bifurcation leads to quasiperiodic oscillations. In this figure, the red delimits the

domain of stable periodic solutions connected to the first steady state branch that bifurcates

from zero if θc1 < θ < θc2 (θc1 = 8.94×2π and θc2 = 9.93×2π, see Fig. B.1 of the Appendix B

for the primary Hopf bifurcation lines). At the double Hopf bifurcation point θ = θc2 two

distinct steady state branches emerge from zero at the same value of b. If θ > θc2, a new

steady state branch becomes the first to appear from zero. The domain of stable oscillations
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Figure 2.8: Numerical bifurcation diagram of the extrema of R as a function of the scaled
feedback strength b for θ = 2nπ. Scaled decomposion A = Rexp(iφ), where φ = νr is in-
troduced in the text. Long-time simulations were obtained from Eq. (2.11) reformulated
in terms of the real and imaginary parts of A. The original values of the parameters are:
ε = 10−2, θ = 9.9×2π, and P = 0.5. θ is close to θn = 2nπ with n = 10 simplifying δ = 1/20,
c = 0.2, and δθ = 0.99π. The red lines are the constant R solutions given by Eqs. (2.19)
and (2.20).

for this new branch is indicated in blue in Fig. 2.9. A similar bifurcation scenario where a

new steady-state branch becomes first occurs if θ < θc1. Its domain of stable oscillations is

shown in orange in Fig. 2.9.

Figure 2.9(b) shows the period as a function of θ. At the intersections of the full and

dashed lines, the period is constant for the whole range of b where the corresponding pe-

riodic solutions are stable. The bifurcation diagram shown in Fig. 2.7 is for θ = 9.9× 2π

which corresponds to the intersection point of the red lines in Fig. 2.9. The periodic so-

lution which stability domain is bounded by the red area in Fig. 2.9 exhibits the constant

period as shown by the upper line in Fig. 2.7(c).
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Figure 2.9: (a): Domains of stable periodic solutions of Eqs. (2.17) and (2.18) in the (θ,b)
plane; (b): corresponding oscillation periods. Solid lines are the Hopf bifurcation lines
leading to the periodic solutions. Dashed (dotted) lines stand for period-doubling (torus)
bifurcation lines. The colored areas delimit the domains of stable oscillations. The red
domain is for the periodic solutions that bifurcate from the first steady state branch if
θc1 < θ < θc2. The other colors correspond to periodic solutions bifurcating from other
neighbouring branches of steady states. The black dots denote codimension-2 bifurcations
located at the cusps: DH are the double Hopf bifurcation points of the zero solution at θc1
and θc2; FT are the flip-torus bifurcation points of the periodic solutions. The parameters
are the same as in Fig. 2.7.
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2.3.3 Constant period

In this section, we reconsider Eqs. (2.12) and (2.13), which are written for the scaled devia-

tion of intensity I from their steady state values and plan to explain why the period remains

constant as we pass the Hopf bifurcation point. Our approach is similar to the analysis

of time periodic square wave solutions of scalar delay differential equations (DDEs). In

Eqs. (2.12) and (2.13), the delay equals π and will be treated as a large parameter.

We first introduce the variables R j and φ j ( j = 0,1,2) defined by

R0 ≡ R
(
r−

π

2

)
, R1 ≡ R(r), R2 ≡ R

(
r +

π

2

)
, (2.22)

φ0 ≡ φ
(
r−

π

2

)
, φ1 ≡ φ(r), and φ2 ≡ φ

(
r +

π

2

)
. (2.23)

We next consider two successive iterations of Eqs. (2.12) and (2.13), namely

2Ṙ1 = bR0 sin(φ0−φ1), (2.24)

2Ṙ2 = bR1 sin(φ1−φ2), (2.25)

2φ̇1 = −
R2

1

3
+ b−b

R0

R1
cos(φ0−φ1), (2.26)

2φ̇2 = −
R2

2

3
+ b−b

R1

R2
cos(φ1−φ2). (2.27)

The numerical simulations indicate that the period p of the oscillations is close to 2π. We

therefore write

p = 2π+α (2.28)

where the correction α is assumed small compared to 2π. With Eq. (2.28), the variables R0
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and R1 are expanded as

R0 ≡ R(r−π) = R
(
r−

p
2

+
α

2

)
= R

(
r−

p
2

)
+O(α), (2.29)

R2 ≡ R(r +π) = R
(
r +

p
2
−
α

2

)
= R

(
r +

p
2

)
+O(α). (2.30)

The periodicity condition now implies that

R2 = R0 (2.31)

in first approximation. Similarly

φ2 = φ0. (2.32)

With Eqs. (2.31) and (2.32), Eqs. (2.24) and (2.27) reduce to four ordinary differential

equations

2Ṙ1 = bR0 sin(φ0−φ1), (2.33)

2Ṙ0 = bR1 sin(φ1−φ0), (2.34)

2φ̇1 = −
R2

1

3
+ b−b

R0

R1
cos(φ0−φ1), (2.35)

2φ̇0 = −
R2

0

3
+ b−b

R1

R0
cos(φ1−φ0). (2.36)

Introducing Φ ≡ φ1−φ0, we may eliminate one equation

2Ṙ1 = −bR0 sin(Φ), (2.37)

2Ṙ0 = bR1 sin(Φ), (2.38)

2Φ̇ = −
R2

1−R2
0

3
−b

(
R0

R1
−

R1

R0

)
cos(Φ). (2.39)
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From Eqs. (2.37) and (2.38), we note a conservation relation given by

R2
0 + R2

1 = E, (2.40)

where E is a positive constant. Solving numerically Eqs. (2.12) and (2.13) for b = 0.5, we

find that E(r) ≡ R2(r) + R2(r−π) oscillates close to a constant:

E(r) = 16.32±0.02. (2.41)

Using R1 =

√
E−R2

0, we may further eliminate one equation and obtain

2Ṙ0 = b
√

E−R2
0 sin(Φ), (2.42)

2Φ̇ = (2R2
0−E)

1
3
−

b

R0

√
E−R2

0

cos(Φ)

 . (2.43)

One steady state is given by

Φ = π and R2
0 = E/2. (2.44)

From the linearized equation, we determine the characteristic equation for the growth rate

λ

4

λ2 + b

R2
0

3
+ b

 = 0. (2.45)

The 2π periodicity condition requires that λ = i and Eq. (2.45) simplifies as

−1 + b

R2
0

3
+ b

 = 0. (2.46)

We have verified that the expression of the steady state Eq. (2.14) and its bifurcation

point Eq. (2.16) identically satisfy Eq. (2.46). We conclude that Eqs. (2.42) and (2.43)

correctly predict the previously determined Hopf bifurcation point. By dividing Eqs. (2.42)

and (2.43), we obtain a first order equation for cos(Φ) as a function of R0. This equation
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Figure 2.10: (a): Numerical solution of the DDEs Eqs. (2.12) and (2.13). Scaled decompo-
sition A = Rexp(iφ), where φ = νr is introduced in the text. (b): Numerical solution of the
ODEs Eqs. (2.42) and (2.43) with E = 16.32, and initial conditions R0(0) = 3.61, Φ(0) = π.
Parameter b = 0.5.

can be integrated and its solution exhibits a new constant of integration C.

In summary, the analysis of the leading order equations indicates that the amplitude

and period of the oscillations depend on the values of two unknown constants E and C.

Therefore, we need to explore higher order problems and formulate two solvability con-

ditions with respect to E and C. The higher order problems will exhibit the correction of

the frequency α and we need the third condition. It is provided by the periodicity condi-

tion of R0 and φ0. The higher order analysis is beyond the scope of this paper. Our main

objective was the derivation of the ODEs Eqs. (2.42) and (2.43) from the original DDE

problem Eqs. (2.12) and (2.13). In order to substantiate our analysis, we have arbitrary

fixed the parameters E and C and solved Eqs. (2.42) and (2.43) for b = 0.5 with the goal

of finding the best fit to the numerical solution of the full Eqs. (2.12) and (2.13). The value

of E = 16.32 is motivated by Eq. (2.41)), and the value of C is determined by choosing the

initial conditions. Since the maximum of R appears when Φ = π,we consider Φ(0) = π and

only modify R(0) so that the period of the oscillations equals 2π. Fig. 2.10 compares the

time traces of the original DDEs and reduced ODEs. The agreement is excellent.
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2.3.4 Experiment and Results

Our mathematical analysis considered the rate equations for a semiconductor laser subject

to a delayed optoelectronic feedback and predicted a resonance locking effect between the

laser RO frequency and a much lower frequency appearing through a secondary bifurcation

mechanism. The latter is inversely proportional to the delay and exhibits a value that re-

mains nearly constant as we increase the control parameter. This unexpected property from

a bifurcation theory point of view motivates our experiments.

The experimental setup has already been presented in Fig. 2.3, so we will only highlight

the specifics of the resonance-locking experiments here. The Q-dash laser with Jth ∼ 33

mA, operating at 1550 nm is used for the experiment. The OE feedback consists of three

stages. The first stage corresponds to an optical path of 35 cm in free space, providing

∼1.17 ns delay. The second stage corresponds to a 35 cm of optical fiber cable that provides

∼1.73 ns delay and leads to a highly sensitive PD. The third stage is the electronic path that

starts with the PD and whose output is amplified before being routed back to the laser.

Amplification is accomplished by cascading the 18 dB Newport amplifier followed by a

30 dB Microsemi amplifier. The delay of the electronic path, which also includes 70 cm

of microwave coaxial cable and a high-frequency splitter (Mini-circuits ZX-10-2-183-S+),

was measured to be ∼5.67 ns. The total delay τ of the OE feedback loop is then estimated

using the technique discussed in section 2.2 to be 1.17 + 1.73 + 5.67 = 8.57 ns (±0.20 ns).

The experimental effective feedback level η here is a relative measure of the feedback

strength and cannot be directly compared to the theoretical η used in our analysis. The η

parameter is controlled by the linear polarizer (LP) mounted on a rotation stage. Rotation

of the LP provides nonlinear control of the feedback level, as the introduced attenuation

varies with the cosine squared of the angle between LP and the direction of polarization

of the laser. Finally, a 50/50 RF splitter (18 GHz) was used after the amplifier cascade

to simultaneously feed the laser back through the BT and to monitor the signal with the

oscilloscope.

34



-1

0

1

0

0.5

1

-1

0

1

0

0.5

0 2 4 6 8 10
Time (ns)

-1

0

1

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)

5 5.5 6 6.5 7 7.5 8
Frequency (GHz)

0

0.5

M
ag

ni
tu

de
 (

ar
b.

 u
ni

ts
)

(2.94 ns)-1

(2.94 ns)-1

(a)

(b)

(c)

Figure 2.11: Optical intensity (left column) and RF spectra (right column) at 68 mA of
pump current for various feedback levels: (a) η = 0.56, (b) η = 0.58, (c) η = 0.59.

The free running laser operates at 68 mA pump current, providing 4 mW output power.

For low feedback strength η, the laser output remains stable (apart from noise). Using LP as

a variable optical attenuator in the optical path, the feedback level η was increased until cw

operation was lost , and a Hopf bifurcation appears. The latter leads to sustained relaxation

oscillations. A regular, nearly-sinusoidal 5.9 GHz oscillation is obtained at η = 0.56 (see

Fig. 2.11(a)). The experimental feedback strength η is in arbitrary units, but is proportional

to the current fed back into the injection terminals. When η = 0.56, the fed back current is

approximately 15% the injection current.

As the level of feedback η is further increased, the generation of sidebands in the RF

spectra, spaced at approximately ∼0.34 GHz (slow period ∼2.94 ns), was observed indicat-

ing a new bifurcation transition. This bifurcation arises at η = 0.58 as the output displays

quasiperiodic intensity traces slightly affected by the noise in the system (Fig. 2.11(b)).

Further increase of the feedback sufficiently affects the amplitude of the slow envelope and

its shape. The slow period, however, remains constant for the whole feedback range. It is
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worth noting here that the slow period of the quasiperiodic oscillations ∼2.94 ns is nearly

three times smaller than that of the ∼8.57 ns as estimated delay time.
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Figure 2.12: Optical intensities (left) and RF spectra (right) for a range of pump currents
J and feedback levels: (a) J = 64 mA, η = 0.56, (b) J = 65 mA, η = 0.57, (c) J = 66 mA,
η = 0.58, (d) J = 67 mA, η = 0.59.

The effective time scales measured in the experiment result from 1 : 17 resonance be-

tween the low ∼0.34 GHz and large ∼5.9 GHz frequencies of the quasiperiodic oscillations.

In order to verify the model assumptions about the high-order resonant effect, we have also

varied the pump current which led to noticeable changes in the shape and amplitude of

the quasiperiodic oscillations. However, as shown in Fig. 2.12, the fast and slow funda-

mental frequencies were not affected as they remained fixed (to ∼5.9 GHz and ∼0.34 GHz,

respectively) for the whole range of the control parameters.

2.4 Conclusion

In this chapter, we introduce readers to delayed optoelectronic feedback experiments, fol-

lowed by a theoretical model that analytically proves and numerically and empirically

demonstrates that resonant locking between two fundamental laser frequencies, namely
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fRO and fτ, allows their ratio to remain constant despite increasing amplitude oscillations.

Understanding of SLs with optoelectronic feedback is a relatively undeveloped field com-

pared with purely optical feedback; however, understanding these effects is important from

the viewpoints of stabilizing desired dynamics, gaining insight into undesirable effects of

feedback, as well as to explore novel nonlinear dynamical effects.
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CHAPTER 3

STAIRCASE SPECTRAL DYNAMICS

A laser diode subjected to optoelectronic (OE) feedback in which some light is converted

to photocurrent that is fed back into the laser injection terminals can display periodic oscil-

lations in its optical intensity. In this chapter, we demonstrate experimental and numerical

evidence that, as the feedback level is varied, a step-wise change in the oscillation frequency

manifests itself in the output optical intensity. These transitions in the dynamics can either

correspond to an abrupt jump between two limit cycles (LCs), associated with a subcritical

torus bifurcation of a limit cycle, or to a progressive switching mediated by an intermediate

quasiperiodic state. Finally, when ramping the feedback level down, hysteresis is observed

in the sequence of switching events between the LCs. Such devices are of interest for

photonic microwave sources for wavelength-division multiplexed radio-over-fiber systems.

3.1 Introduction

This study presents experimental results for negative OE feedback showing discrete switch-

ing events between two dynamic states corresponding to stable LCs as the feedback strength

η is gradually varied. These switching events are manifested in the frequency dynam-

ics observed in the power spectrum of the photodetected optical intensity I(t), i.e., the rf

spectrum. Although discrete switching events in the rf frequency are well investigated for

optical feedback and can correspond to jumps between two LCs located around the same

external-cavity mode (ECM) [75, 76, 77, 78] or different ECMs [79], the dynamics of OE

feedback, and frequency switching in particular has been relatively sparsely explored. In

Refs. [75, 76, 77], rf frequency switching with optical feedback is attributed to noise-

induced hopping to a neighboring attractor separated by the feedback frequency fτ around

the same ECM. In Ref. [79], also with optical feedback, switching between LCs (also sep-
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arated by fτ) is experimentally observed around the same ECM as well as two different

ECMs as η is varied, which is closer to the scenario reported here. To our knowledge none

of the reports on OE feedback [17, 18, 19, 27] have presented the analysis of switching

between periodic states with distinct microwave frequencies.

Such tunable switching have multiple applications in microwave photonics and radio-

over-fiber (RoF) is one such application in which microwave-modulated optical signals

are transmitted over fiber links [80]. RoF thus avoids expensive antennas, is not subject

to losses of microwave waveguides or free-space propagation, and can provide access to

areas where radio links might otherwise be infeasible. Specifically, wavelength-division

multiplexed (WDM) systems are [81] to maximally exploit the optical bandwidth of fiber.

Such WDM-RoF systems will clearly benefit from microwave-modulated optical sources

that can be tuned to the center microwave frequency of the relevant bands. Such frequency

bands may be a few hundreds of MHz to a few GHz apart depending on the modulation of

the center microwave frequency of the various bands. This contribution can be used as a

photonic microwave source based on a LD with OE feedback whose microwave frequency

can be discretely tuned in steps on the hundred MHz to few GHz range. For appropri-

ate conditions of the feedback strength η, relaxation oscillations (RO) become undamped

resulting in a modulation of the output optical intensity I(t) in the GHz range. The RO

frequency fRO is modified by the nonlinear response of the gain medium as well as by the

feedback, and the modulation frequency can be tuned in ∼ 100 MHz steps. The tuning is

achieved based on the switching of the device dynamics between LCs that occur in certain

regimes when the feedback strength is varied.

More specifically, we focus on discrete transitions between LCs, manifested as stable

periodic state with multi-GHz oscillations in both the rf spectrum and in the optical modes.

The rf spectra exhibit sharp peaks at distinct frequencies close to fRO whereas the optical

spectra present a number of equidistant lines separated by fRO in optical frequency. We

observe transitions between LCs separated in frequency by small multiples of fτ that can
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either be abrupt or progressive as η is ramped up. In the latter case of a progressive transi-

tion, a mediating quasiperiodic regime is involved. The optical spectrum however, shows

shifting of the optical modes towards the solitary laser frequency at the switching events.

These two types of transitions are still observed when η is ramped down; however, the

values of η where a given switching event occur are lower, revealing hysteretic behavior.

Of note, although the rf switching can correspond to a frequency jump of about fτ, as in

the case of optical feedback, the underlying physics is found to differ significantly as no

external-cavity modes exist in the case of optoelectronic feedback.

The chapter is organized as follows. Section 3.2 presents the experimental setup; sec-

tion 3.3 describes the experimentally observed transitions between LCs; section 3.4 is de-

voted to the investigation of the results on the basis of a rate-equation model; finally, results

are discussed and conclusions are drawn in section 3.5.

3.2 Experimental Setup

We refer to the setup presented in Fig. 2.3 in Chapter 2 for this experiment, but highlight

here the details specific to the staircase spectral dynamics. The Q-dash laser with Jth ∼ 33

mA operating at 1550 nm is used for this experiment. The feedback loop is composed of

optical free-space, optical fiber, and electronic parts with total delay (τ) of 9.85 ns. The

electronic path which is composed of the SMA cable, photodetector (PD), amplifiers, and

microwave splitter contributes ∼ 6.9 ns to the delay. The PD includes a low-noise amplifier

that pre-amplifies the photodiode output before sending it to the cascade of amplifiers.

The 18 dB non-inverting amplifier from Newport followed by the PD and cascaded

with a 30 dB inverting amplifier from Microsemi are used to boost the signal to a level

that can perturb the steady state of the laser. The output of the latter amplifier is directly

added to J using a bias tee. The experimental effective feedback level η here is negative

and is a relative measure of the feedback strength that cannot be directly compared to the

theoretical η used in our analysis. Rotation of the LP provides nonlinear control of the
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feedback level, as the introduced attenuation varies with the cosine squared of the angle

between LP and the direction of polarization of the laser. Finally, two 50/50 rf splitters (18

GHz) were used after the amplifier cascade to simultaneously feed the laser back through

the BT and to monitor the signal with the oscilloscope and the elctrical spectrum analyzer.

The optical spectrum is monitored just after the LD with a beam splitter.

The loop delay frequency is determined as fτ = τ−1 = 101 MHz. The lower cut-off

frequency of the feedback loop is set by the 18 dB amplifier which is ∼ 50 MHz, whereas

the upper cut-off is limited by the bandwidth of 12 GHz PD.

3.3 Sequence of Dynamical regimes

Figure 3.1 shows (a) the experimental bifurcation diagram (BD), (b) the rf spectra of I(t),

and (c) the optical spectra of the laser obtained by and presented as a function of η ramping

up for J ∼ 2Jth. The BD, representing the colormap for the histogram of the local extrema

of I(t) at each η, reveals a sequence of dynamical regimes. Discrete changes in rf frequency

trending downward, occur at η = 0.52, 0.82, and 0.87 corresponding to switching between

LCs. In the next paragraphs, we describe the sequence of events associated with these

discrete changes in rf frequency.

To begin with Fig. 3.1(a), the OE system shows a CW lasing for η < 0.47; afterwards a

LC (LC1) appears as a periodic modulation of I(t) with frequency 6.165 GHz ( Fig. 3.1(b)

shows the rf frequencies). As a result of increasing η further (η ∼ 0.52), the laser switches

abruptly to another LC (LC2) with a different dominant rf frequency (6.067 GHz) separated

by fτ.

The LC2 persists until η ∼ 0.80, where another dynamical regime is reached, with the

same main rf frequency as in LC2, but numerous, strong, sidebands appear in the rf spec-

trum, corresponding to QP behavior (QP1) as reported in [17]. Thereafter, at η ∼ 0.82, we

observe a jump to a different LC (LC3) with dominant rf frequency (5.649 GHz). We refer

to this jump as a progressive switching event, as the transition does not occur directly be-
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Figure 3.1: (a) Experimental BD, (b) rf spectrum, and (c) optical spectrum with increasing
η, on a logarithmic color scale. CW: Continuous Waves, LC: Limit Cycle, QP: Quasiperi-
odic.

tween LC regimes. After the jump, for even larger η, LC3 gives way to another mediating

QP state (QP2) and finally, for η ∼ 0.87, LC4 with rf frequency 5.442 GHz is observed.

Meanwhile, the corresponding progression of optical lines, as shown in Fig. 3.1(c), is

going to be addressed now. The optical frequency in the η→ 0 limit is the solitary laser

frequency f0(η = 0); for convenience, f0(0) will be used to define the zero of the optical-

frequency scale. As η increases, additional optical lines appear, as is evident in Fig. 3.1(c).

These lines occur at frequencies fm(η) ≈ m fRO, with m an integer defining harmonics of

fRO.
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Indeed, the jumps in the rf spectra towards some lower frequency can be related to

the jumps in optical lines towards f0(0). Since the spectral separation between any two

optical lines are fRO, with a downward jump in rf spectra, the optical lines re-coordinate

themselves with a similar jump multiplied by their respective harmonic positions (e.g., if

f1(η) jumps by fτ, f2(η) evidently would have a jump of 2 fτ). Another point to be noted in

Fig. 3.1(c), at η = 0.58 the dominant optical frequency changes from f−1(η) to f−2(η) when

the BD hints the start of a period doubling regime.

In summary, we have seen one abrupt switching at η= 0.52 and two progressive switch-

ing at η = 0.82 and 0.87 between two LCs in the LD dynamics. In the ensuing sections,

we focus on these two different types of switching for detailed explanation and analysis,

exploiting the simultaneous measurement of I(t), the rf, and optical spectra.

3.3.1 Abrupt switching between two limit cycles

We focus here on the jump from LC1 to LC2 at η = 0.52. In order to elucidate the nature of

this jump, Fig. 3.2 shows the rf and optical spectra just before (LC1) and after (LC2) with

the corresponding time series for I(t) as the inset, which are approximately sinusoidal for

both LC1 and LC2. The rf frequency of oscillation switches abruptly from 6.165 GHz for

LC1 to 6.067 GHz for LC2. The frequency difference of 98 MHz is slightly less than fτ

which is similar to the case of optical feedback where the jumps in rf spectra are slightly

smaller than fτ [75]. In the optical spectra, we see a similar jump of the optical lines closer

to the mode near f0(0); evidently, distant modes jump in bigger steps (depending on their

location) to make the frequency separation between optical lines same as the new fRO. We

refer to this jump evidenced in the rf spectrum as an abrupt jump between two LCs.

3.3.2 Progressive switching between two limit cycles

In this section, we are going to describe the two progressive jumps observed in Fig. 3.1.

The first progressive jump occurs at η ∼ 0.82. Figure Fig. 3.2 shows the rf and optical
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Figure 3.2: Abrupt jump between LCs. (a), (b) η = 0.518 (LC1), (c), (d) η = 0.525 (LC2).
(a), (c) rf spectra (inset: corresponding intensity time traces), (b), (d) Optical spectra. From
(a) and (c), a downward jump of 98 MHz (∼ fτ) in rf oscillating frequency is observed
between the two LCs.

spectra before and after the jump. We notice a different type of transition from LC2 to LC3,

as it involves mediating dynamics QP1. QP1 gives way to limit cycle LC3, whose frequency

is smaller than that of LC2 by ∼ 4 fτ. Heuristically, the sidebands in the QP1 regime seem

to favor the appearance of jumps in frequency to distant bifurcation branches, leading to

frequency hops of more than fτ. Specifically, the fundamental frequency of LC3 (5.649

GHz) corresponds to the frequency of one of the sidebands of QP1. There appears to be a

1:15 resonance between the fast and slow frequencies of the QP1 dynamics, similar to the

frequency-locked regimes reported in Ref. [82] by some of the co-authors. The locking is

manifested in the time domain by the appearance of pulse-like oscillation with a 100 MHz

repetition rate.

The optical spectra of the regimes involved (LC2, QP1, LC3), reveal a series of optical
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Figure 3.3: First progressive jump. (a), (b) η ∼ 0.81 (QP1), (c), (d) η ∼ 0.824 (LC3). (a),
(c) rf spectra (inset: corresponding intensity time traces), (b), (d) optical spectra. From
(a) and (c), a downward jump of 418 MHz (∼ 4 fτ) in rf oscillating frequency is observed
between a QP and a LC. The inset in (a) is presented for a longer range of time to show the
presence of secondary oscillation in the time series. The inset in (b) shows enlarged peak
at f−2 evidencing the emergence of additional optical frequencies.

lines separated by 6 GHz, before the jump, corresponding to the rf frequency of LC2 and

after the jump, optical lines are separated by 5.6 GHz. In addition, the optical lines fm(η)

jump closer to f0(η) by m times 4 fτ. For the dominant optical line f−2(η), it jumps towards

f0(η) by ∼ 2× 4 fτ since it is the second harmonic of f0(η). Besides that, some of the

optical lines of QP1 have a multi-peaked appearance (inset of Fig. 3.3 (b)) that evidence

the emergence of additional optical frequencies.

The last jump at η ∼ 0.87, is shown in Fig. 3.4. The rf spectrum and its intensity time

series (Fig. 3.4(a), inset) highlight the quasiperiodic (QP2) nature of the dynamics before

the jump, with a main frequency at 5.649 GHz and sidebands separated by 100 MHz. After

the jump, limit cycle dynamics LC4 is reached, with a dominant frequency of 5.442 GHz.
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Figure 3.4: Second progressive jump. (a), (b) η ∼ 0.874 (QP2), (c), (d) η ∼ 0.876 (LC4).
(a), (c) rf spectra (inset: corresponding intensity time traces), (b), (d) optical spectra. From
(a) and (c), a downward jump of 207 MHz (∼ 2 fτ) in rf oscillating frequency is observed
between a QP and a LC. Similar to the previous figure the inset in (a) is presented for a
longer range of time to show the presence of secondary oscillation in the time series.

We thus observe again a jump of 207 MHz in rf frequency, corresponding to ∼ 2 fτ. To

be noted, QP1 in the previous progressive jump appears instantly after LC2, whereas QP2

evolves gradually from LC3 as we keep increasing η. Limit cycle LC3 develops increasingly

more sidebands, turning into a quasiperiodic state QP2, before finally shifting by ∼ 2 fτ (to

the less prominent second major sidebands, indicated by a red arrow in Fig. 3.4(a)) and

ended up yielding an ideal LC (LC4) all of a sudden.

Similar to the other bifurcations, the optical spectra before and after the jump ( Fig. 3.4(d))

show a series of optical lines and f−1(η) and f1(η) that are both separated by ∼ 5.67 GHz

from f0(η) before the jump scale down to 5.44 GHz after the jump. All the optical lines

jump closer to f0(η) by a multiple of 207 MHz depending on their harmonic positions as

before.
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Figure 3.5: (a) Reverse BD where η is ramped down from the maximum. (b) Corresponding
rf spectrum. Red arrows indicate the jumps in the ramping up direction of η.

3.3.3 Hysteresis and Robustness

We now discuss the presence of hysteresis in reference to the switches and the robustness

of our observation in this section. First, Fig. 3.5(a) and (b) shows the BD of I(t) and the rf

spectrum ramping η down adiabatically, in contrast to what is seen in Fig. 3.1(a) and (b) in

which η is ramped up. The frequencies of LCs seen in the rf spectra are the same as those

in Fig. 3.1 but the jumps tend to occur at different values of η.

Moreover, when η is ramped down, the first jump appearing at η = 0.73 is an abrupt

jump between two LCs; the second jump appearing at η = 0.62 is a progressive jump in-

volving a strong mediating QP state; and the last jump appearing at η = 0.55 is an abrupt

jump between two LCs as well. Therefore, we observe two abrupt jumps and one pro-

gressive jump ramping η down whereas there are one abrupt and two progressive jumps in
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ramping η up.

In addition, the BD also shows a qualitatively different trend when η is ramped down.

Indeed, when ramping η up the peak magnitude of I(t) increases steadily, then a sharp

increase in magnitude occurs parallel to the rf spectral jumps; when ramping η in the oppo-

site direction, however, the magnitude gradually decreases to a minima before jumping up

abruptly to a higher magnitude for all of the switches (compare Fig. 3.1(a) and Fig. 3.5(a)).

We have also verified experimentally the robustness of the results for different pump

currents J in the range 50 to 70 mA and have found similar sequences of bifurcations,

including the jumps discussed above. Of note, while abrupt transitions can either be a jump

in frequency by small multiples of fτ, progressive transitions are always found to imply

frequency jumps of non-unit multiples of fτ.

3.4 Laser model

Dynamical studies of delayed feedback systems have been investigated within the Eckhaus

instability framework [83, 84, 85, 86] as well as a rate equation model [75, 76, 77, 78].

We employ a rate-equation model for the laser with optoelectronic filtered feedback which

allows only high-frequency signals to pass through the feedback loop. The model is based

on that in [71], and consists of the following equations for the normalized optical intensity

I(t), the carrier density N(t), and the high-pass filtered intensity signal IF(t). They are given

by

İ(t) = 2N(t)I(t), (3.1)

İF(t) = −τF
−1IF(t) + İ(t), (3.2)

ε−1Ṅ(t) = P−ηIF(t−τ)−N(t)− (1 + 2N(t))I(t). (3.3)
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The dot means differentiation with respect to t = t̂/τph where t̂ is time, and τph is the photon

lifetime. P = J/Jth−1 is the pump above the threshold parameter; η is the feedback strength

(for consistency with experimental description, η > 0 is for negative feedback, and η < 0

is for positive feedback); τ is the feedback delay; ε is the ratio of the carrier and photon

lifetimes; τF
−1 is the low-cut (high-pass) filter bandwidth.

We determine the characteristic equation from the linearized Eqs. (3.1) to (3.3) for the

non-zero intensity steady state (I = P, IF = 0, N = 0) and find

(1 +τFλ)
{
λ2 +ε[λ+ 2P(1 +λ)]

}
−2εητF Pλe−τλ = 0. (3.4)

The stability boundaries correspond to the Hopf bifurcation condition λ = ±iωH , and the

Hopf frequency ωH can be determined from the transcendental equation which is given by

arctan
[1 + 2P(1 +τF)]εωH −τFω

3
H

[1 +ετF(1 + 2P)]ω2
H −2εP

= ωHτ+
π

2
−πM, (3.5)

where M is a non-negative integer number and indicates the existence of multiple Hopf

bifurcation branches in the dynamics. M is odd for the negative feedback (η > 0), and is

even for the positive feedback (η < 0).

The Hopf bifurcation point ηH can be determined analytically,

ηH =
ε+ 2εP(1 +τF)−τFω

2
H

2ετF PcosωHτ
. (3.6)

The discretization of the frequencies in Eq. (3.5) is parity-asymmetric with relation to the

feedback sign since different resonant conditions are formed by the parity of M in Eq. (3.5),

and cosωHτ term in Eq. (3.6).

In the long delay limit τ� 1 and when the filter cut-off frequency is smaller than the RO

frequency, i.e. ωROτF� 1, whereωRO = 1
2

√
8εP−ε2(1 + 2P)2 is the RO angular frequency

of the free-running laser (η = 0) [71], Eqs. (3.5) and (3.6) can be approximated, leading to

the following expressions
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ωH =

√
ω2

RO−γ
2
RO, (3.7)

ηH = ±
γROωRO

εP
, (3.8)

where γRO = 1
2ε(1+2P) is RO damping rate. Using section 3.4 and knowing the frequency

of the first limit cycle it is possible to easily determine the value of the ratio of the carrier

and photon lifetimes ε, and we estimated the following parameter values for the system:

ε = 0.095, τ = 1000, τF = 2000. It worth mentioning that the bifurcation border in this limit

is symmetric with respect to the sign of η which is not the case when the filtering is initially

absent from the system (i.e., IF(t) = I(t)) because then the steady state intensity depends on

η, and reads I = P/(1 +η).

Figure 3.6: Hopf bifurcation boundaries (black lines) in the (η,P) parameter plane calcu-
lated from Eqs. (3.5) and (3.6). (b) shows the enlarged region delimited by the dashed
rectangle in (a). The bold lines define the first bifurcation of the steady state. The thick
(thin) red line is the stable (unstable) CW solution at P = 0.945. The red circles (trian-
gles) are the Hopf bifurcation points leading to eventually stable (ever unstable) LCs. The
labels (1–4, B1–B4) correspond to the Hopf points leading to the LCs observed in numer-
ical integration, and shown in Fig. 3.8. The other parameters are: ε = 0.095, τ = 1000,
τF = 2000.

Figure 3.6 shows the Hopf bifurcation curves in (η,P) plane obtained by solving Eqs. (3.5)

and (3.6) within the range relevant to the experimental parameters, and the bifurcations of

the steady state at the value of pump about twice exceeding the threshold (P = 0.945). This
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Figure 3.7: Bifurcation diagrams showing the maxima and minima of intensity (a) and fre-
quency (b) of LCs arising from the Hopf bifurcations of steady state at P = 0.945 shown in
Fig. 3.6. Thick (thin) blue lines are stable (unstable) LCs, and blue circles are torus bifurca-
tions. The insets demonstrate enlarged areas delimited by dashed lines in the corresponding
figure. The upward (downward) arrows in (b) show the transitions for η increase (decrease)
during numerical integration as demonstrated in Fig. 3.8. For simplicity, the Hopf bifurca-
tions lying beyond the η range in Fig. 3.6, and corresponding LCs are not shown. The other
notations and parameters are the same as in Fig. 3.6.

steady state undergoes a sequence of the bifurcations each leading to appearance of a limit

cycle which we discuss further.

We analyze stability of the LCs arising from the Hopf bifurcations in Fig. 3.6 using

the numerical continuation package DDE-Biftool [74] (see Fig. 3.7). The LCs originating

from the Hopf bifurcations having the frequencies higher than the frequency of the first

Hopf bifurcation are ever unstable for the full range of η variation while the LCs arising

from the Hopf bifurcations with lower frequencies become eventually stable. The LCs

stabilize (destabilize) through torus bifurcations indicated in Fig. 3.7 by blue circles. This

forms the wide range of multistability, and hysteretic effects under cyclic η as has been

shown experimentally. The mechanism responsible for stabilization (destabilization) of the

LCs as the feedback parameter η increases (decreases) is similar to the Eckhaus instability

(see Appendix C for more detail).

To reproduce the experimental situation we directly integrated Eqs. (3.1) and (3.3) using

the fourth-order Runge-Kutta method. Parameter η was varied in a step-wise manner, with
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Figure 3.8: Numerical bifurcation diagram obtained by integration of Eqs. (3.1) and (3.3)
when η is increased (a, b) and decreased (c, d). (a, c) show the local extrema of intensity
I, and (b, d) demonstrate the frequency f defined as the inverse of time intervals between
two adjacent intensity maxima, where bold dots stand for the average values. CW – steady
state; LC – limit cycle; QP – quasiperiodic state. The insets in (a, c) show the exemplary
intensity time traces at η values given by the corresponding colored arrows: green – LC1 at
η = 0.621; purple – QP1 at η = 0.66; red – LC4 at η = 0.74; orange – QPB1 at η = 0.6175;
blue – LCB3 at η = 0.66; yellow – QPB4 at η = 0.67.

a step change δη = 5 ·10−4 every 4000τ. The time step was fixed to τ/5000. A white-noise

term with amplitude 10−5 (10−4) was added to Eqs. (3.1) and (3.3) to model the spontaneous

emission (feedback parasitic variations).

We follow the bifurcation sequence with increasing η as shown in Fig. 3.8. Similar

to the experiment, the CW state undergoes a supercritical Hopf bifurcation resulting in

a small amplitude stable limit cycle LC1 with frequency ∼ 60τ−1. The cycle grows in

amplitude with η increase, and undergoes an abrupt transition to a limit cycle LC2 having

the frequency ∼ 59τ−1. LC1 and LC2 are, therefore, separated by the feedback frequency

τ−1 as was experimentally observed. In turn, LC2 develops into a quasiperiodic state QP1
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through a supercritical bifurcation, and eventually collapses to the limit cycle LC3 with the

frequency ∼ 54τ−1. Therefore, QP1 is mediating transition from LC2 and LC3 which are

separated by ∼ 5τ−1, again very similar to the experiment. Finally, LC3 abruptly switches

to the limit cycle LC4 with the frequency ∼ 49τ−1.

Changing η in the opposite direction, we find a bifurcation sequence which is more

complicated and indicates hysteresis effect. The system follows the prolongated branch

of the limit cycle LC4 until a transition to a quasiperiodic state QPB4. It then follows a

sequence of progressive switching between LCs LCB3 → LCB2, LCB2 → LCB1, LCB1 →

LC2 intermediated by the quasiperiodic states QPB3, QPB2, and QPB1 correspondingly. The

transition ends with the limit cycle LC2 followed by a steady state solution. As is seen in

Fig. 3.7 the limit cycle LC2 has a very narrow region of instability between its origin and

the stabilizing torus point. As far as the system is drastically slowing down near the Hopf

bifurcation points, this is the reason why we observe transition from LC2 to the steady state

instead of LC1 for η decrease in Fig. 3.8.

The performed bifurcation analysis allowed us to identify and to classify multiple pe-

riodic and quasiperiodic solutions which are dense in space. It is worth emphasizing here

that switching between the LCs appears through torus bifurcations which either form me-

diating stable quasiperiodic state or lead to abrupt transition to a limit cycle. Both types of

transitions we experimentally confirmed. The stability analysis also explains why the ex-

perimental switching happens to the LCs with lower frequencies which become eventually

stable with the feedback strength increase as consistent with the Eckhaus mechanism. The

rf staircase scenario seen ramping η down fully corresponds to the major experimental fea-

tures. However, one notes that the middle traces of the experimental intensity of some limit

cycle regions appearing in the bifurcation diagrams of Figs. 3.1 and 3.5 are not present in

Fig. 3.8. This difference might be attributed to a number of factors such as the way filtering

is modeled, nonlinear effects such as gain compression and specificities of the quantum

dash medium that are not included in the model. Nevertheless, the overall one-parameter
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bifurcation scenario is in excellent qualitative agreement with the experiment, showing the

same characteristic dynamics, abrupt and progressive switching between LCs as well as the

hysteretic behavior.

3.5 Discussion and Conclusion

The nonlinear dynamics of a laser diode with time-delayed optoelectronic feedback are ex-

plored with a focus on switching events between LCs. These are manifested in change of

the dominant frequency of I(t). One possible type of switching is abrupt and corresponds to

a subcritical torus bifurcation of a limit cycle. The switching between microwave frequen-

cies in steps in the 100 MH range (shorter feedback times are expected to result in larger

frequency steps) is of interest to produce photonic microwave sources for WDM-RoF sys-

tems.

A progressive switching between two LCs is also observed in a certain range of η. This

transition involves a mediating quasiperiodic regime that bridges limit cycle branches. In

all scenarios the frequency of LCs decrease when η is increased. Hysteresis is observed in

the modulation frequency as the feedback strength η is ramped up or down. The possibility

to control discrete switching between microwave frequencies in the GHz range could find

applications in the field of microwave photonics.

Although we have reported discrete tunability from 5.44 GHz to 6.17 GHz in 100-

MHz steps as a function of feedback strength, the number of switching events and the

range of LC dynamics are observed to increase at higher J. The proposed photonics MW

generator is based on readily available off-the-shelf telecommunications components and

is more compact compared with arrangements based on optical injection [87, 88, 89]. The

range of tunability can be further improved by choosing appropriate lasers (e.g. VCSELs)

which may have fRO of several tens of GHz as it has been demonstrated in Ref. [87] using

dual-beam orthogonal optical injection. The system performance can also be improved by

employing low-noise electronic components (e.g. amplifiers). With this in mind, we point
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to our recent report [27] where utilization of optoelectronic feedback enabled sub-ps jitter

and typical phase noise in the range of −107 dBc/Hz at 10 kHz offset. A similar approach

could be used to improve the phase noise characteristics of the present oscillator.

55



CHAPTER 4

NEAR THRESHOLD DYNAMICS

In this chapter, we focus on the pulsing dynamics near the injection threshold of a semicon-

ductor laser diode with positive optoelectronic feedback. It is shown that such a system can

generate two distinct modes of periodic pulse train depending on the injection current J of

the laser, leading to microwave combs in two different regimes. For J near the threshold

current Jth, the pulse repetition rate frep is the inverse of the loop delay τ. This behavior

is attributed to feedback-induced gain switching ( fτ-pulsing) and leads to comb spacing

in the tens of MHz range. However, this fτ-pulsing begins to form a clump of pulses (or

a multiplet) with a repetition fτ, while the number of pulses in the multiplet continues to

grow with increasing laser pump J. These offbeat pulses terminate in the region of periodic

pulsing ( fRO-pulsing) dominated by the relaxation oscillation frequency when J ' 2Jth.

The absence of fRO in the dynamics near threshold and the appearance of periodically

separated multiplets are intriguing because they confirm a transition from gain-switched

operation to frequency-locked operation as a function of J. The potential for generating

pulse trains and associated microwave combs could have applications in metrology, optical

communications, optical sampling, and spectroscopy.

4.1 Introduction

The generation of periodic optical pulse trains [90, 91] for frequency combs [92] has at-

tracted much interest. It has been observed that the formation of pulse trains and conse-

quently frequency combs in semiconductor LDs arise from Q-switching [13], gain-switching

[6, 10, 11], and mode-locking [14, 16]. The realization of frequency combs by LDs enables

compact platforms for applications in mobile communications, radio-over-fiber systems,

and metrology [93, 94]. In particular, the resulting power spectral density |Ī( f )|2 of the op-
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tical intensity I(t) forms a microwave combs (MWC), where Ī( f ) is the Fourier transform

of I(t) and f is the frequency.

Gain-switching is achieved, in particular, by modulating the charge carrier density when

operating near the laser injection threshold. It results from a slow (ns time scale) accu-

mulation of carriers in the active region, followed by a fast (ps time scale) depletion by

stimulated emission. External modulation, electrical injection [95] or optical injection [10]

can be used to achieve gain switching. In addition, self-modulation by optoelectronic (OE)

feedback [6, 11] can also result in gain switching. In this last case, the repetition rate frep

is closely related to the feedback frequency fτ of the feedback loop. A much higher frep,

determined by the fRO and not related to a gain-switching mechanism but rather to an un-

derdamping of the ROs by the feedback, was also observed for a LD with OE or optical

feedback [14, 96, 18].

To simplify MWC generation, it is attractive to work with a single LD and without using

external modulation. However, the majority of the reports on MWCs with LDs employ a

master-slave laser configuration and/or make use of external MW signals [97, 98, 99, 100].

The highest quality MWCs have a bandwidth extending up to several tens of gigahertz with

MWC spacing frep in the few GHz range [98, 99, 100].

Although MWCs based on LDs have been demonstrated involving a variety of setups

and mechanisms, self-optical pulsing resulting from more than one mechanism with the

same experimental setup under different operating conditions has not to date been reported.

The present work demonstrates experimentally that a LD subjected to delayed OE feedback

can access two distinct regimes of pulse-train formation, viz. with repetition rate frep deter-

mined by fτ (henceforth fτ-pulsing) or by fRO ( fRO-pulsing). fτ-pulsing occurs when the

LD is biased close to the threshold current Jth and results from gain switching due to self-

modulation by the feedback on the injection current J. This kind of pulse train has been

relatively sparsely explored and has only been observed with positive feedback [6, 43]; in-

terestingly, frep can be tuned continuously by varying τ, and MWC spacing frep as low as
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a few tens of MHz can be obtained as shown in the current work. By contrast, fRO-pulsing

is observed when the LD is biased much higher than threshold [43, 23]. In this case, frep is

not solely dependent on fτ, but is related to the internal LD dynamics and the ROs. More

generally, various dynamical states have been observed when a LD with OE feedback is

biased well above Jth, including periodic dynamics, quasiperiodic and frequency-locked

dynamics based on rational fractions of fRO and fτ, and chaotic pulsing [17, 18, 20].

The pulse clustering near the vicinity of LD injection threshold can be introduced as

an Optoelectronic Neuron with time delayed OE feedback that fundamentally depends on

laser diode dynamics and the nonlinearity of the feedback loop. Similar cases of spiking is

investigated in Ref. [49] where it is shown that chaotic background can trigger excitable

spikes in a erratic but deterministic fashion. This regime of pulsation is shown to result

from an incomplete homoclinic scenario to a saddle-focus [48]. In summary, this part of

story develops around revisiting the physical mechanism underlying the fτ pulsing which

leads to initial formation of multiplets before the fRO-pulsing region.

4.2 Experiment

We follow the experimental setup presented in Fig. 2.3 of Chapter 2, but the details specific

to the near threshold dynamics are discussed here. The MQW laser with Jth ∼ 20 mA

operating at 1550 nm is used for the experiment. We present results for a total of two

delays (τ1 and τ2); the delay was changed using different fibers and SMA cables in the

loop. To increase the feedback strength, the output of the PD is sent to a cascade of two

30-dB inverting amplifiers (Microsemi UA0L30VM – 30 GHz) and to a 12-dB attenuator

(Minicircuts BW-S6W2+, dc -18 GHz). The signal at the output of the attenuator is then

passed to the MW input arm (26.5 GHz bandwidth) of the bias tee (BT), which adds the dc

injection current J to the feedback signal before passing it through an electrode (GSG 400,

Cascade Microtech) to the LD.

The feedback is positive, and we operate in a regime where the only significant nonlin-
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earities arise in the LD itself. We have verified that the feedback loop provides a neutral

filter over the experimentally relevant bandwidth. The feedback strength is measured as the

magnitude of the mean-squared current fed back to the LD injection terminals, referenced

to the dc value under open-loop conditions (see Ref. [101] for details) and varies between

∼20% and ∼25% for the two pulse regimes. The output is monitored after the PD with a

RF -splitter.

We will focus on operation of the laser up to ±15% of Jth, giving what we call fτ-

pulsing, and on a second regime called fRO-pulsing, which is observed in a narrow (∼1

mA) range for J ' 2Jth. The pulse repetition rate frep is measured from the rf spectrum of

the output intensity I(t) of the PD.

4.3 Results on Microwave Combs

The temporal evolution of I(t) for the two regimes is shown in Fig. 4.1. The fτ-pulsing

regime [Fig. 4.1(a)] shows a series of bright pulses with frep = fτ = 30 MHz, when a delay

τ = 32.8 ns is used. I(t) is near zero between pulses, since only when a pulse is fed back

into the injection terminal from the OE feedback loop does the gain rise above threshold as

described in Ref. [6]. By contrast, Fig. 4.1(b) illustrates an example of I(t) for fRO-pulsing

with J ' 2Jth showing frep ≈ 1.63 GHz which is within the range of fRO.

We now focus on characterizing the pulse trains. Specifically, we wish to characterize

them by means of figures of merit (FoM) that may impact the resulting MWCs. All char-

acteristics discussed here are obtained from the photodetected optical intensity I(t) at the

PD.

We are interested in the jitter characteristics of the pulse trains in the time and frequency

domains [102]. For this, we refer to the standard deviations of the instantaneous variation

in the amplitude I(t) or period TI(t) with respect to the mean [102], where TI(t) is the time

between the maxima of consecutive pulses. Specifically, the amplitude jitter is defined as

σamp = STD[I(t)−〈I(t)〉]/〈I(t)〉 and expressed in percentage, while the timing jitter isσtim =

59



STD[TI(t)−〈TI(t)〉], where 〈· · · 〉 denotes time averaging. Averages have been computed over

several hundred oscillations; specifically, 10 µs and 100 ns-long time series have been used

for fτ and fRO pulsing, respectively. We also characterize the full width at half maximum

(FWHM) of the pulses. The MWC bandwidth is determined by the difference between

the highest and lowest MW frequencies that fall within a predefined tolerance band (set to

±10-dB around the mean). As for flatness, although frequently used to describe MWCs

in a qualitative manner [97, 98, 99, 100], we have used a quantitative approach common

in audio engineering for tonal purity [103]. Flatness is obtained by dividing the arithmetic

mean of the peak heights in the power spectral density |Ī( f )|2 by their geometric mean. For

a perfectly flat MWC both geometric and arithmetic means would be equal, leading to a

flatness of 1.

Figure 4.1: Pulse trains I(t) in (a) fτ-pulsing: J = 17.93 mA, frep = fτ=30 MHz, and (b)
fRO-pulsing: J = 39.53 mA. frep = 1.63 GHz. Jth = 20 mA.

We first characterize the pulse trains for fτ-pulsing with threshold current Jth = 20 mA

and delay τ = 32.8 ns. Figure 4.2 shows (a) the amplitude jitter σamp, (b) the timing jitter

σtim and (c) FWHM as functions of J for fτ-pulsing. Notice the horizontal axis extends
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from J = 17.43 mA to 18.03 mA, all below Jth, and only within that narrow range does

pulse-train generation occur. The repetition rate frep is equal to fτ = 30 MHz (τ = 32.8

ns) in all the current range. We observe that σamp, σtim, and FWHM tend to decrease

moderately with J. σamp decreases from 15 % to 5 % and σtim decreases from 17 to 15 ps

as J increases. As J approaches Jth from below, we speculate that spontaneous-emission

noise plays a decreasing role compared with stimulated emission, explaining the improved

pulse train characteristics. Finally, we also verified that the FoMs discussed above are not

sensitive to the delay.

Figure 4.2: (a) Amplitude jitter σamp, (b) timing jitter σtim, and (c) FWHM of the pulses
for J . Jth i.e. fτ-pulsing. Similar notation in (d), (e) and (f) for J ' 2Jth i.e. fRO-pulsing.

We now consider fRO-pulsing, which is observed in the interval of 39 mA to 40 mA.

Jitter characteristics are shown in the right column of Fig. 4.2. We see no clear trend

in the variation with J in the range explored; however, we observe that σamp, σtim are

considerably and consistently smaller than in the case of fτ-pulsing. Finally, FWHM is

almost 10 ps smaller. This observation is consistent with observations reported in [104]

that compared MWCs resulting from gain-switched and frequency-locked states. The lower
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FoMs of the MWC for fτ-pulsing could result from the fact that the variation in pulse shape

and timing for gain-switching is relatively large due to the rôle of spontaneous emission

near threshold [105]. In any case, near Jth, one might expect fluctuations to play an outsized

rôle.

We now move to the frequency domain and focus on the MWCs viz., the two-sided

power spectral density |Ī( f )|2 of I(t). Key FoMs for MWCs, bandwidth and spectral flatness

results are presented for fτ-pulsing only since MWCs for fRO-pulsing have been widely

explored elsewhere [99, 100, 98, 104]. These show for fRO-pulsing flatness of ±5 dB

over a bandwidth of several tens of GHz [99, 100] as compared with our value of ±10 dB

over a 10 GHz bandwidth from a single LD source. By comparison, the results for fτ-

pulsing are noticeably worse than those for fRO-pulsing cited above, although the prospect

of improving the spectral flatness of fτ-pulsing by additional weak injection locking or a

similar scheme remains untested in the present report.

Figure 4.3: rf spectrum for fτ-pulsing: with (a) τ = τ1 = 32.87 ns (J = 17.90 mA) and (b)
τ = τ2 = 9.89 ns (J = 21.60 mA) and (c) for fRO-pulsing with delay τ1 at J=39.53 mA.
The FWHM linewidth of the first harmonic is ∼ 5 kHz for cases (a, b) and ∼ 4 kHz for (c).
The solid blue horizontal line is the mean of the peaks in the magnitude rf spectra, and the
dashed blue lines indicate the bandwidth for ±10-dB tolerance bounds.
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In Fig. 4.3(a) and (b), we represent the rf spectrum for fτ-pulsing with τ = τ1 = 32.87

ns (J = 17.90 mA) and τ = τ2 = 9.89 ns (J = 21.60 mA), respectively. The spectrum for

fRO-pulsing with τ1 delay (J=39.53 mA) is presented in (c). For fτ-pulsing, the rf spectra

are both flatter and broader for the shorter time delay τ2 based on the ±10-dB criterion:

we observe a bandwidth of 7.2 GHz with τ1 and 9.7 GHz with τ2. Flatness is also higher

for τ2. Bandwidth and flatness for τ1 and τ2 as J is varied are shown in Fig. 4.4. For the

longer delay τ1, the bandwidth varies within the 7 to 8 GHz range while the flatness varies

between 0.991 and 0.994; for the shorter delay τ2, the bandwidth of the MWC is between

8 to 10 GHz with a flatness between 0.993 and 0.997. We thus conclude that shorter τ

tends to lead to higher quality MWCs due perhaps toc smaller losses in shorter delay lines

as well as higher pulse-to-pulse correlation. For the case of fRO pulsing ( Fig. 4.3(c)) the

bandwidth is 8 GHz with a flatness of 0.994; these FoMs are similar to those obtained for

fτ-pulsing, though it must be noted the number of teeth in the comb is significantly smaller.

The linewidth, measured from the first harmonic, is found to be lower in the fRO-pulsing

case, as indicated in Fig. 4.3. Finally, we find that for fRO-pulsing, the current range in

which stable MWCs are observed decreases with τ. This phenomenon can be related to the

fact that branches of possible pulse train solutions become denser in parameter space with

increasing τ [101].

Figure 4.4: Bandwidth (BW) and flatness for fτ-pulsing with (a) τ1 = 32.87 ns and (b)
τ2 = 9.89 ns. The range of J where the periodic pulsing is found for the two cases are
different and shorter τ offers wider range of J.

The bandwidth we can achieve is limited both by the upper cutoff frequency of the PD

(12 GHz) and the fact that τ cannot be smaller than 9.89 ns, due to constraints imposed

by component sizes. As a consequence, the raw results from our unoptimized system do
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not offer MWCs showing the performance of Refs. [99, 100]. Specifically, the report in

Ref. [100] shows fRO-pulsing can result in MWCs as broad as 33.6 GHz using a master-

slave configuration. In comparison, the single LD with OE feedback in our experiment

offers a bandwidth of ∼10 GHz for fτ-pulsing. However, this regime offers comb-teeth

spacing that can be as small as few megahertz, which can be used in cases [106] where

such frequencies are desired. In addition, we have observed it is possible to have larger

bandwidth using a smaller τ, which could be expected to be as small as few ns by careful

design of the setup and proper placement and integration of components whenever possible.

4.4 Results on Pulse Clustering

The experimental arrangement is same as in the previous section, only the sweeping pa-

rameter J is operated in a range little above Jth. Only the traces for the highest loop delay

(i.e. τ =33.64 ns) is presented here. Figure 4.5 presents the near-threshold dynamical pro-

gression in the LD intensity traces. The system starts pulsing at the fundamental loop delay

τ = 33.64 ns at J = 19.60 mA, slightly below Jth. The process of pulsing below the lasing

threshold can be explained with gain switching mechanism [43, 10, 6, 11]. Carriers are

injected and accumulated in the gain medium of the LD with the OE feedback setup when

operating close to Jth. At small pump current (as small as 19.60 mA in our case) when

the laser emits miniscule amount of light, the resulting injected carrier density in the gain

medium can cause the laser to switch from below to above the lasing threshold. Once the

lasing threshold is reached, the stimulated emission process takes hold and results in, a fast

generation of bundles of photons and a relatively slow depletion of carrier from the active

medium, simultaneously. The depletion of carrier from the gain media switch the laser

back to below threshold limit but the newly formed bundles of photons are detected with

a PD in the OE loop and they are accumulated again in the gain media through the loop

resulting in a self sustained bootstrapped pulsation at fτ.

Gradual increase in the pump current provides a noticeable moderation in the pulsing
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Figure 4.5: Intermediate time traces between fτ and fRO pulsing showing a gradually in-
creasing size of pulse clusters is presented for increasing J. (a) singlet, J = 19.60 mA,
(b) doubley-1, J = 20.00 mA, (c) doublet-2, J = 20.60 mA, (d) triplet, J = 20.80 mA, (e)
quartet, J = 21.80 mA, (f) sextet, J = 22.40 mA, (g) J = 23.80 mA, and (h) J = 29.80 mA.
The period of pulse clusters from (a) – (f) is τ.

behavior as shown in Fig. 4.5(b). Instead of a single pulse train, we now see a doublet

pulse train, repeated however, by delay time τ and separated by 1.12 ns in (b) and 6.67 ns

in (c). Successive increment in the laser pump above the threshold provides multiplets with

n pulses repeated again by fτ, n being a increasingly bigger integer, as shown in Fig. 4.5(d

– g). These multiplet of pulses evolves into mix of two or more multiplets at higher J.

At the end of these range of dynamical states the laser enters into the periodic pulsing

state. Finally, Fig. 4.5(h) shows the well known periodic pulses at fRO/2 frequency. Notice

that, this dynamic state of the frequency-locked pulsing can be found by the popular rate

equation models. This includes a sequence of quasi-periodic and frequency locked states

which are discussed in details in [17, 18, 19, 14]. This last region is well investigated
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previously and reassures the validity of the dynamical evolution of two distinct pulsing

mechanism under the same setup.

Figure 4.6: A global view of the dynamics is shown with (a) the number of pulses per τ
and (b) the pulse repetition rate frep (in red dots) and the theoretical RO frequency (in the
solid white line) as a function of J; frep is defined as the number of pulses per second in a
time series and is scaled by two to compare with fRO. In (a), the focus is on the gradual
accumulation of pulses within a cluster, while in (b) a comparison with fRO and frep is
presented to distinguish the two pulse regimes.

The evolution of multiplets are observed to be a steady process over J as presented

in Fig. 4.6. Although the number of pulses are gradually building up for the range of J

presented, the overall trend clearly shows the two distinct regime of pulsation as discussed

above. The near-threshold cases are dominated by τ appearing as τ between the multiplets,

whereas at higher J, the pulsation is followed by fRO. From Fig. 4.6(a), we can see the

consistent increase of the number of pulses per τ which appears to be in no relation with

fRO. From Fig. 4.1(b) which compares the peak rf-spectra ( frep) with fRO, we can see that

the pulsing frequency approaches fRO at higher J, which is not the case when J is close to

Jth. Of note, frep is scaled twice to compare that with fRO. Moreover, the near-threshold

multiplets show their spectral peaks depending on their specific structure as shown in the

Fig. 4.6(b), this explains why the red dots near Jth is not following the same trend as the
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well behaved fRO.

We traced the origin of the multiplets to the round trip time scale between the two

30-dB amplifiers in the loop following the photodetector. The two amplifiers were tested

with different delay lines between them and the occurrence of multiplets was always found

in context with the round trip time between the amplifiers. The doublet in Fig. 4.5(b)

has a spacing of 1.12 ns, which is the exact round trip time between the two amplifiers

for that setup. As the intensity increases, the doublet in Fig. 4.5(c) appears as an integer

multiple of this timescale (1.12×6 ≈ 6.67 ns). The gradual formation of other multiplets is

a consequence of the increasing optical intensity with J and the internal time scale between

the two amplifiers as well.

4.5 Conclusion

In conclusion, we have demonstrated the principle whereby a LD with OE feedback can

access two disparate regimes with comb spacing frep differing by one or two orders of

magnitude. When J � Jth, frep is in the few GHz range and connected to fRO, and we

call this regime fRO-pulsing. When J . Jth, self-gain-switching leads to frep that is solely

determined by the loop time delay. We call this regime fτ-pulsing. By decreasing τ, frep

correspondingly increases, providing a mechanism for tuning the MWC spacing, which is

not strongly affecting the FoMs. For our type of system, frep in the tens to hundreds of

MHz range is accessible. Indeed, MWCs presented with this scheme are not comparable to

Refs. [99, 100] in terms of bandwidth, but this unique resolution that can be scaled down to

tens of megahertz, is an unprecedented finesse for cases where the resolution exhausts the

bandwidth. As τ decreases, there is also a modest increase of MWC bandwidth and flatness.

Moreover, by slightly increasing J, while remaining below threshold, jitter characteristics

improve. Nonetheless, formation of multiplets in a LD based OE system can open the

gateway to several interesting applications in sensing and computation. Theis unorthodox

transitional pulsing also shines a narrowly discussed regime of nonlinear LD dynamics.
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CHAPTER 5

OPTICAL SQUARE WAVES

In this chapter we discuss the temporal and spectral feature of self-sustained optical square

waves (SWs) in a semiconductor LD subjected to delayed optoelectronic (OE) feedback

on its injection current. This OE oscillator relies on nonlinear effects present in both the

LD and in the OE feedback loop through amplifier saturation. The repetition rate of the

SW is an integer multiple of the inverse of the loop delay, while the duty cycle can be

tuned with the current. In the spectral profile, we observe doublet optical spectra in a

SW regime depending on injection current and feedback strength. The doublet spectra

gradually grow into singlet near the extrema of feedback strength at a constant current. A

rate equation model reproduces qualitatively the spectral doublets. The appearance of the

optical spectrum doublet is attributed to the active medium gain saturation and refractive

index dependence on the carrier density.

5.1 Introduction

We demonstrate square-wave generation (SWG) with an edge-emitting LD subjected to OE

feedback on its injection current in this chapter. It is well known that OE feedback on a LD

leads to a distinctive set of dynamical features, including harmonic frequency locking [17],

chaotic spiking [48], and staircase-like changes in oscillation frequency [101], with multi-

ple applications, including short-pulse generation [14], sensing [107], and communications

[29]. Square wave generation was reported in Ref. [108], in which a large delay, result-

ing from a multi-km long optical fiber, led to numerous optical modes that combined into

the SW. A model that did not include any nonlinear dynamics of the laser itself success-

fully reproduced the experimental results [109]. Of note, a different kind of optoelectronic

feedback, employing an external MZM subjected to delayed OE feedback on its electrode,
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and where the nonlinearity originates from the MZM, has been explored for two mutually

coupled delay feedback system and shown to produce symmetric [67, 110] and asymmet-

ric [68] SWs with a repetition period determined by the ratio of delay time in each arm.

An MZM based single feedback system has been reported for strongly asymmetric square

waves with a constant period close to the delay time in Ref. [111].

Our work presents, for the first time to our knowledge, observation of SWG arising

in a LD with a short OE feedback and resulting from the interplay of LD dynamics and

filtering, saturation in the electronic part of the OE loop. It obviates the need for any com-

plex circuitry or external modulator such as an MZM, nor does it require any polarization

rotating element. We investigate SWG for various τ and observe that the repetition rate frep

of the SW changes from τ−1 to successive integer multiples of τ−1 as τ is increased. We

present the first four such cases where the repetition rate of the SW is frep = nτ−1, n = n(τ)

being the harmonic order, depending on τ, with n = 1,2,3,4. The reported SWs can have

frep as large as 145 MHz with a duty-cycle (DC) that is tunable up to ∼50 %. In addition,

pronounced hysteresis is observed when ramping J up and down; SWG occurs over a larger

range of J when J is ramped down than up. Rate-equation modeling taking into account

filtering and saturation in the amplifiers semi-quantitatively reproduces the experimentally

observed SWs and their harmonics. Based on the model, we attribute the origin of SWs to

the same branches of dynamical regimes observed for pulse-train generation, reported in

[101, 112].

SW generation by a variety of semiconductor LDs has been studied in recent years

but concentrated mostly on the temporal dynamics [62, 63, 59, 65, 66, 67]. SW spectral

dynamics in lasers with two polarization modes such as VCSEL, where the two intensity

plateaus are related to polarization modes with different optical frequencies due to birefrin-

gence, is discussed in [113, 114]. Otherwise, studies including optical spectra have been

sparse. In this chapter, we also present singlet and doublet optical spectra of SW in an edge

emitting LD under optoelectronic feedback in the presence of gain saturation. We have ver-
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ified the presence of optical doublets for several harmonic order n but present experimental

results for representative cases in this chapter.

Of note, optical doublets have been previously observed in SWs by mode-locked fiber

lasers [115, 116, 117, 118]. The first theoretical report of optical SW generation from a

fiber laser predicting optical doublets was presented in Ref. [119]. In Ref. [120], stabiliza-

tion of a single SW pulse in a fiber laser with anomalous dispersion leading to an optical

doublet was studied numerically. It was found that the frequencies of the lines within the

doublet remain the same, though the linewidths decreases with increasing J. The two fre-

quencies result from the frequency shift due to the nonlinear refractive index variation of

the anomalous dispersion fiber. Semaan et al. presented both experimental and numeri-

cal evidence of optical doublets in Ref. [117]. In a dissipative soliton resonance region in

a passively mode-locked fiber laser, a singlet-to-doublet transition with increasing J was

found. The model accounting for this behavior includes gain saturation, dispersion in the

refractive index, and nonlinearity in the losses [117].

The optical doublets in the current work are qualitatively comparable to double-peaked

optical spectra of SWs in fiber lasers (e.g. Ref. [116, 115, 117]); although, the peaks in

our report are separated by a few GHz, while the spacing in fiber lasers is on the order of a

few THz. We observe a comb like structure at frep frequency over the spectral peaks when

the SW DC is much smaller than 50%, a clear distinction with the spectra from fiber lasers

where any secondary oscillation is absent for the optical doublets, perhaps because of the

long fiber length.

In the remainder of this chapter, we present both the temporal and spectral dynamics of

SW in a semiconductor laser with OE feedback. Both experimental evidence and numerical

model for harmonic nature of the SWs and optical spectrum is discussed accounting for the

nonlinear amplification and filtering present in the electronic path, the LD refractive index

modulation depending on carrier density, and gain saturation.
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5.2 Experiment

We follow the experimental setup presented in Fig. 2.3 in Chapter 2, however we discuss

here the specifics related to the square wave experiments. The MQW laser with Jth ∼ 20

mA operating at 1550 nm is used for the experiment. For temporal features, we present

results for a total of four delays; the delay was changed using different SMA cables in the

electronic part of the loop. To increase the feedback strength, the output of the PD is sent

to a cascade of two 30-dB inverting amplifiers (Microsemi UA0L30VM – 30 GHz) and to

a 12-dB attenuator (Minicircuts BW-S6W2+, 0 -18 GHz). The two cascaded amplifiers

were chosen to explore the properties of the strong nonlinear OE feedback achieved by

the cumulative saturation of both amplifiers, while the attenuators were placed so as not to

overload the LD circuitry.

The dc-arm of the BT is fed by J, and the feedback signal feeds the ac-arm, these two

signals are added before passing it through an electrode (GSG 400, Cascade Microtech)

to the LD. The electrical signal is measured with an oscilloscope (12-GHz bandwidth, 40

GSa/s) after the PD and before the BT. The low-noise amplifier in the PD is inverting as

well as the two 30-dB amplifiers in the electronic loop, constituting a net negative feedback

signal. The LD architecture is anode grounded, which leads to an overall positive sign of the

feedback since injection-terminal voltage as well as the feedback signal are both negative.

The feedback strength is measured as the ratio between the mean-squared current fed

back and the laser pump current (see Ref. [101] for details) and is 18% – 25% for the SW

regime, resulting in a strong feedback signal. The feedback sign is positive. The overall

delay τ in the OE loop is varied in discrete steps from τ = 10.78 ns to τ = 33.64 ns, by using

fiber and SMA cables of different lengths. The delay is measured by directly injecting a

SW pulse from an external source through the AC-arm of BT and monitoring the output

at the end of the electronic branch under open-loop conditions (see section 2.2 for details).

The upper cut-off frequency of the OE loop is limited to 12 GHz by the PD, and the BT
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sets the lower cut-off frequency to 10 MHz.

5.3 Temporal Features

Figure 5.1: Optical intensity I(t) for fundamental repetition rate frep = τ−1 gain-switched
pulsing (left-column) and the corresponding SW pulsing (right-column) for various τ. The
delay for (a1) and (a2) is τ = 10.78 ns, for (b1) and (b2) is τ = 14.10 ns, for (c1) and c2) is
τ = 21.50 ns, and for (d1) and (d2) is τ = 33.64 ns. J = 19.80 mA for all the traces in left
column and J in the right column is (a2) J = 48.20 mA, (b2) J = 47.20 mA, (c2) J = 45.20
mA, and (d2) J = 48.20 mA.

Figure 5.1 shows the optical intensity I(t) measured at the PD for different delay lengths

and different current levels. The left-column corresponds to J ∼ Jth, leading to gain-

switched pulse trains, consistently to what we reported in Ref. [112], while higher J

(∼ 2.5Jth) is shown in the right column, and leads to the appearance of SWs. The de-

lay (with cable length l) is τ = 10.78 ns (l = 1.4 m) for (a1) and (a2), τ = 14.10 ns (l = 2

m) for (b1) and (b2), τ = 21.50 ns (l = 3.5 m) for (c1) and (c2), and τ = 33.64 ns (l = 6

m) for (d1) and (d2). We observe that as τ is increased, frep moves towards successive
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harmonics of τ−1 of increasing order n. Specifically, the repetition rates frep of the SWs

in the right column are (a2) frep = τ−1 = 1/10.641 ns = 94 MHz, (b2) frep = 2τ−1 = 1/6.95

ns= 144 MHz, (c2) frep = 3τ−1 = 1/7.07 ns = 141 MHz, and (d2) frep = 4τ−1 = 1/8.30 ns

= 120 MHz, for harmonics n = 1,2,3,4, respectively. An interpretation for the appearance

of the harmonics is that, for the smallest τ, the delay frequency τ−1 is large enough to not

be strongly attenuated by the lower end of the loop transfer function and oscillation at τ−1

is observed, while for larger τ, only harmonics of τ−1 make it through the lower cutoff and

are sustained by the loop.
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Figure 5.2: Dependence of SW DC for the harmonics presented as a function of J when it
is ramped downward. A roughly linear change in DC is noticed with respect to J.

The dependence of the DC on J is presented in Fig. 5.2 for the first four harmonics.

We stop increasing J at the very first appearance of SWs, then ramp downward to observe

the DC variation with J; for each τ, detecting the SWs for much lower values of J when J

is ramped down, reveals an evident hysteretic behavior. We observe that the DC increases

with J, and the variation is relatively faster at higher J for all cases of τ. The DC behaves

consistently for the four harmonics discussed above. We also observe that SWs tend to

persist for a larger range of J when τ is bigger (and thus for higher harmonics).

To confirm SWG is not the result of pulse-stacking, we computed the autocorrelation

of I(t) and found no underlying pulse signal. We also observed that, in an SW regime,
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the second amplifier saturates when J & 33 mA; specifically, the output of the PD is −4

dBm, which in turn leads the power level at the input of the second amplifier to cross the

saturation threshold of the amplifier. Amplifier saturation leads to signal clipping, which

is consistent with the observed SW behavior. While we have presented SW traces only for

delay values that correspond to the first four harmonics n = 1,2,3,4, other delays have been

tested, and we have observed that the repetition rate maintains a harmonic relation with τ,

and the harmonic order keeps increasing, in steps, with the delay.

5.3.1 Model

A realistic model was developed based on the models in [82, 101] previously used to de-

scribe LDs with OE feedback, and now accounting for the multilevel amplification, mul-

tistage high- and low-pass filtering of the electric signal, and the saturable nonlinearity in

the feedback loop, viz.,

İC(t) = 2N(t)IC(t), (5.1)

İFH,1(t) = −τFH
−1IFH,1(t) + İC(t), (5.2)

İFH,i(t) = −τFH
−1IFH,i(t) + İFH,i−1(t), (5.3)

İFL,1(t) = −τFL
−1(IFH,K(t)− IFL,1(t)), (5.4)

İFL, j(t) = −τFL
−1(IFL, j−1(t)− IFL, j(t)), (5.5)

ε−1Ṅ(t) = P− s tanh(kηIFL,M(t−τ))−N(t)− (1 + 2N(t))IC(t). (5.6)

The dot means differentiation with respect to time t, in units of the cavity photon life-

time τph. IC(t) is the normalized intracavity intensity of the laser field; N(t) is the normal-

ized carrier density; ε is the ratio of the photon and carrier lifetimes; P = (J/Jth − 1)/2 is

the pump parameter related to the threshold. Equations (5.2) and (5.5) describe multiple

high- and low-pass filters in the feedback loop. IFH,i(t) (IFL, j(t)) is the filtered electric sig-
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nal after the high- (low-) pass filter, i = 1...K ( j = 1...M) account for the K-th (M-th) order

high- (low-) pass filtering (IFH,0(t) = IC(t), IFL,0(t) = IFH,K(t)), and τH (τL) is the inverse of

the cut-off frequency of the high- (low-) pass filter.

The feedback signal modulates the pump in Eq. (5.6). Specifically, using sigmoid satu-

ration of the electric amplification, the feedback signal is described by s tanh[kηIFL,n(t−τ)]

where η is the coefficient of the intensity conversion to an electrical signal, and k is a small-

signal amplification coefficient of the first amplifier. It suggests that the feedback is close to

linear versus the delayed intensity under small kη, but saturates when the intensity is large.

In the latter case, the feedback is clamped, and the s parameter is the attenuation bounding

the modulus of the feedback value.

Our previous works did not consider the possible saturable nonlinearity in a delayed

optoelectronic feedback laser. It was, in particular, shown [82, 101] that in the vicinity of

Jth, the cw output becomes unstable through either subcritical or supercritical Hopf bifur-

cations leading to regimes of periodic pulse generation. The Hopf bifurcation frequencies

are close to multiples of the OE feedback frequency τ−1. Pulse generation in the vicinity

of Jth in the presence of feedback is known as gain switching and is widely used in appli-

cations [112]. Away from Jth, the multiple branches of the pulsed periodic solutions can

coexist, intersect, and evolve, leading to more complicated dynamics [101].

The characteristic roots λ of the system Eqs. (5.1) to (5.6) are found from

[2εP(1 +λ) +λ(ε+λ)](1 +τHλ)K[1 +τLλ(τLλ−1)M−1]

−2e−λτksηεPλKτK
H(τLλ−1)M−1 = 0

(5.7)

that is obtained by linearization of Eqs. (5.1) and (5.6) around steady state IC(t) = P,

IFH,i(t) = IFL, j(t) = N(t) = 0.

It follows from Eq. (5.7) that the saturation of the amplifiers does not affect the bi-

furcation structure of the modified model in Eqs. (5.1) to (5.6), which is essentially the

same as for the system without the saturable nonlinearity in the feedback loop (see [101]).
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Therefore, the SWs appear from the same Hopf bifurcation branches as the pulsed regimes

without feedback saturation [101], and ηe f f = ksη is the effective small-signal feedback

strength. The quasi-stable upper and lower laser intensity levels in the SWG regime I± =

P± s can be found from solving Eqs. (5.1) to (5.6) in the limit of large feedback signal

|kηIFL,n(t− τ)| � 1, and do not depend on the filtering parameters. If P < s, the SWs be-

come unstable since the lower intensity bound enters an unstable turn-off state.

Figure 5.3: BDs for extrema (a) and rf spectra (c) of IC(t) varying P (ηe f f = 2.5), and
BDs for minimum and maximum of periodic solutions (b) and frequency (d) varying ηe f f
(P = 0.7). The color scale in (c) is the spectral density in dB. In (b, d) black (red) corre-
sponds to the stable (unstable) steady-state; blue (yellow) corresponds to the stable (unsta-
ble) limit cycles. The red circles are the Hopf bifurcation points (only relevant bifurcations
are shown). τ = 5390 (corresponds to 10.78 ns), and the other parameters are given in the
text.

The model parameters are ε = 0.002 (corresponding to the τph = 2 ps, the carrier re-

laxation time of 1 ns, and the experimentally measured relaxation oscillation frequency),

s = 0.6 (corresponding to the maximum experimental feedback strength), k = 1000/0.6

(corresponding to the experimental 30 dB small-signal amplification). We employ the

fourth-order high-frequency filter (K = 4, M = 1), τL = 50 (corresponding to the cut-off

frequency of 10 GHz) and τH = 5000 (the cut-off frequency of 100 MHz) to match the

observation of the SWs at harmonics of fundamental frequency.

We perform the bifurcation analysis to illustrate the SWs appearance scenario. Fig-
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ure 5.3 shows the bifurcation diagrams (BDs) for varying the pump parameter (Fig. 5.3(a,

c)) at the fixed feedback strength, obtained via direct numerical integration, and BDs for

varying the feedback strength (Fig. 5.3(b, d)) at the fixed pump parameter, calculated by the

continuation technique [74]. The intensity BD (Fig. 5.3(a)) accompanied by rf spectra BD

(Fig. 5.3(c)) demonstrates the evolution of dynamics starting below the threshold with the

gain-switched pulses at τ−1 repetition rate, eventually leading to stable τ−1 SWs when P

becomes greater than s. Figure 5.3(b, d) reveals the scenario of the SWs appearance from

the Hopf bifurcations and also shows that only the SW harmonic at τ−1 becomes stable

when the feedback strength is high.

Figure 5.4: Theoretical IC(t) time traces. The parameters are (a1–d1) P = −0.02; (a2–d2)
P = 1;(a1, a2) τ = 5390 (corresponds to 10.78 ns); (b1, b2) τ = 7050 (14.10 ns); (c1, c2)
τ = 10750 (21.50 ns); (d1, d2) τ = 16820 (33.64 ns); η = 0.0025 (ηe f f = 2.5) for all the
figures. The other parameters are given in the text.

Figure 5.4 demonstrates the time traces of gain-switched operation in the vicinity of the

threshold and SW harmonics obtained for the delay values used in the experiment, showing

the qualitative agreement (see Fig. 5.1). The gain-switched pulses at repetition rates frep ∼

τ−1 are found below the threshold (Fig. 5.4(a1–d1)), and the SW harmonics of τ−1 appear
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for the high pump parameter values, with the SW harmonic order n increasing with the

increase of the delay time with n = 1 for τ = 5390 (corresponds to 10.78 ns) (Fig. 5.4(a2))

and τ = 7050 (14.10 ns) (Fig. 5.4(b2)); n = 2 for τ = 10750 (21.50 ns) (Fig. 5.4(c2)); n = 3

for τ = 16820 (33.64 ns) (Fig. 5.4(d2)).

By accounting for bandpass filtering and saturation in the electronic section of the feed-

back loop, a rate-equation model of the LD subjected to OE feedback has succeeded in

reproducing the experimental observation of SWG at the delay frequency or its multiples.

According to the model, SWs result from supercritical Hopf bifurcations, similar to those

leading to pulsed operation in [101]. Further, as the upper and lower plateaus of the SW

correspond to quasi-stable equilibrium points, the process leading to the SW can be de-

scribed as a feedback-driven bi-instability.

5.4 Spectral Features

The experimental setup is the same as in the previous section. For the measurement of

the optical spectrum, the LD output is split, half of which is used to measure the optical

spectrum (Aragon Photonics, BOSA-200C spectrum analyzer) and the other half leads into

the PD in the OE feedback loop and is used to monitor the optical intensity. The feedback

is positive and the spectral feature presented here corresponds to τ = 33.64 ns.

As mentioned above, doublets are observed for all harmonic orders n for which SW

generation occurs. For purposes of illustration, we show results for n = 4, i.e. frep = 4τ−1

[121]. In Fig. 5.5, we start with fixed η and explore the square-waves (left-hand panel) with

corresponding optical spectra (right-hand panel) as J is ramped down. In the left-hand

panels, the PD voltage V(t) is proportional to the AC component of the optical intensity

I(t) at currents (a) J = 48.40 mA, (b) J = 43.00 mA, (c) J = 37.6 mA, and (d) J = 32.20

mA. To observe the doublets presented in Fig. 5.5, we exploit the phenomena of hysteresis

reported in Ref. [121] by stopping to ramp the current up at a J when LD pulsing turns

into SWs and then ramping it down. The reason for ramping down is that at this J we
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Figure 5.5: PD output voltage V(t) tracking the time-dependent optical intensity I(t) (left-
column) and corresponding optical spectra (right-column) as J is ramped down with frep =

4τ−1 (fourth harmonic of τ−1). η is fixed at a moderately high value of 0.88 (arb. units).
From J = 48.40 mA (a) to J = 32.20 mA (d), J is decreased in 5.40 mA steps. The SW DC
decreases with J but frep remains fixed; the splitting ∆S of the optical doublet decreases
when J is ramped down. ∆F for the spectra is the optical frequency measured from 194.083
THz corresponding to the output of the LD slightly above Jth.

are close to the operating limit of PD. By being in a lower J, we can access the SWs in

a safe operating state of PD and explore the spectral dynamics. The following trends are

observed when J is ramped down: the amplitude of the SW modulation remains nearly the

same, the DC decreases while the repetition rate frep remains constant, and the distance

∆S between the spectral peaks only slightly decreases. The shape of the spectral doublets

remains practically unchanged but its location changes with the variation of J and shows

current-dependent 0.5 GHz/mA spectral blueshift because of thermal effects, as expected.

In Fig. 5.6 we show the effect of varying η and holding J constant at 48.40 mA; η is

(a) 0.97, (b) 0.88, (c) 0.75, (d) 0.59, (e) 0.41, and (f) 0.30. The description of the left and

right columns are same as in Fig. 5.5. Unlike the previous case where η was held fixed

with J ramped down, here, with J held fixed and η ramped down, there is a decrease in the

amplitude of the SWs. Another important difference is the evolution of the spectrum from

singlet to doublet and back to singlet, which we relate later to the DC of the SWs. When

the DC approaches 50%, the peak on the high-∆F side of the doublet gradually shifts to
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Figure 5.6: PD output voltage V(t) tracking the time-dependent optical intensity I(t) (left-
column) and corresponding optical spectra (right-column) for J = 48.40 mA as η is ramped
down (a) 0.97, (b) 0.88, (c) 0.75, (d) 0.59, (e) 0.41, (f) 0.30 is ramped down with frep = 4τ−1

(fourth harmonic of τ−1). The righthand frames are the corresponding optical spectra.
Note the appearance of doublets only for intermediate values of η with J held fixed. The
inset in (j) shows evidence of the SW repetition rate frep in the spacing of the small peaks
underlying the doublet.

higher ∆F and decreases in magnitude ultimately evolving to a singlet. However, when DC

falls below 50%, the peak on the high-∆F side increases in magnitude and the splitting ∆S

decreases.

Figure 5.7 shows the dependence of DC and ∆S on J and η holding the other parameter

fixed. DC appears to track ∆S . A perusal of Fig. 5.7 reveals that 20% to 60% variation

of DC in Fig. 5.7(a) leads to a minor variation of ∆S , but 30% to 50% variation of DC

in Fig. 5.7(b) leads to a much larger variation of ∆S . It suggests that DC and ∆S are not

directly correlated but are linked by a common cause which must be identified. Specifically,

the change with respect to η is almost parabolic for both DC and ∆S , Fig. 5.7(b). It appears

that varying η affects the amplifier saturation in a way that couples the changes in DC with

the amplitude of the SWs. In our case, the carrier density is modulated in the SW regime,
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Figure 5.7: On the right-hand scale, doublet splitting ∆S as functions of (a) J with η = 0.88
and (b) η with J = 48.40 mA. The left scale shows the duty-cycle for comparison.

thanks to gain saturation, modulating in turn the effective refractive index of the active

medium and affecting the optical phase and spectrum. In particular, with the decrease in

the amplitudes of the SW pulses in Fig. 5.6(a-d), the two peaks in the optical spectra

become similar in magnitude and move closer to each other in Fig. 5.6(g-j). We have

experimentally verified these trends for all other SW harmonics reported in Ref. [121]. In

the next section we account for the observed trends based on a model.

5.4.1 Model

To account for the observations discussed previously, we employ the single-mode semicon-

ductor laser model described in Ref. [122] with the addition of nonlinear filtered feedback

as in Ref. [121]. The model describes the coupled nonlinear dynamics of the carrier den-

sity N(t), the photon density E(t), and the optical phase Φ(t). The model of the laser with

feedback reads

Ṅ(t) =
Ibias + I f b

eVact
−R(N)−

υgg(N)E(t)
1 + εE(t)

+ FN(t), (5.8)

Ė(t) =

[
Γυgg(N)
1 + εE(t)

−
1
τp

]
E(t) +βΓBN2(t) + FE(t), (5.9)

Φ̇(t) =
a
2

[
Γυgg(N)−

1
τp

]
+ 2π

d f
dT

∆T + FΦ(t), (5.10)
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İFH,i(t) = −τH
−1IFH,i(t) + İFH,i−1(t), (5.11)

İFL, j(t) = −τL
−1(IFL, j(t)− IFL, j−1(t)), (5.12)

I f b = s tanh(kIFL,M(t−τ)− θ), (5.13)

where the dot means differentiation with respect to time t; Ibias is the injection current

(corresponds to J in the experiment); I f b is the feedback current, Vact is the volume of

the active region; e is the electron charge; R(N) is the carrier recombination rate; υg is

the light group velocity in the active medium; g(N) is the material gain; ε is the nonlinear

gain coefficient; Γ is the optical confinement factor; τp is the cavity photon lifetime; β

is the fraction of spontaneous emission coupled into the lasing mode; α is the linewidth

enhancement factor; d f /dT is the thermal variation of the emission frequency; ∆T is the

difference between the active region temperature under the operating conditions and under

the threshold current; FN(t), FE(t), and FΦ(t) are Langevin noise terms; IFH,i(t) [IFL, j(t)]

is the filtered electric signal after the high- (low-) pass filter, i = 1, · · · ,K ( j = 1, · · · ,M)

accounts for the K-th (M-th) order high- (low-) pass filtering [IFH,0(t) = ηpoutE(t), IFL,0(t) =

IFH,K(t)]; τH (τL) is the inverse of the cut-off frequency of the high- (low-) pass filter; η

is the feedback strength; k is a small-signal amplification coefficient of the amplifiers; s is

the maximum feedback current provided by an amplifier; θ is the signal asymmetry (offset)

parameter, and pout is the optical output power coefficient defined by

pout = η f
h f0Vact

Γτp
(5.14)

with h the Planck constant and f0 the lasing frequency.

In Eqs. (5.8) to (5.10), the Langevin terms FN(t), FE(t) and FΦ(t) represent additive
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stochastic noises from different sources, with the following correlation properties [122]:

〈Fi(t′)F j(t′)〉 = 2Di jδ(t′− t), (5.15)

〈Fi(t)〉 = 0, (5.16)

where δ(t) is the Dirac delta function and Di j are the diffusion coefficients associated with

the corresponding noise sources, with the subindexes i and j referring to the variables E, N

and Φ. The non-vanishing diffusion coefficients Di j have the following values:

DEE = βΓBN2E, (5.17)

DEN = −βBN2E, (5.18)

DNN =
βBN2E

Γ
+

1
Vact

(
R(N) +

Ibias + I f b

eVact

)
, (5.19)

DΦΦ =
βΓBN2

4E
. (5.20)

For simplicity, the noise terms are introduced for the laser only, and not for the feedback

loop.

The material gain g(N) is described by:

g(N) =
dg
dN

(N −Ntr), (5.21)

where dg
dN is the differential gain and Ntr the transparency carrier density. The carrier re-

combination R(N) is expressed by means of:

R(N) = AN + BN2 +CN3, (5.22)

where A, B and C are the non-radiative, the spontaneous, and the Auger recombination

coefficients, respectively.

The quasi-stable upper and lower intensities in the SW regime are determined by the
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total current injected (Ibias + I f b) at the maximum and minimum feedback signal that is

(Ibias + s) and (Ibias − s), respectively. Since the current is almost constant at the SW

plateaux, we can neglect the feedback terms in Eqs. (5.8) to (5.13) of model and define

the optical frequencies corresponding to the plateaux. For simplicity, in the further deriva-

tions we also neglect the spontaneous-emission contribution to the lasing mode (β→ 0).

The steady-state carrier density is given as

Ns = Ntr +
1 + εEs

k1
, (5.23)

where k1 =
dg
dN Γτpυg for brevity. The corresponding steady-state optical frequency is given

by

ωs = 2π
d f
dT

∆T +
αεEs

2τp
. (5.24)

The steady-state photon number is defined as

Es = U/V, (5.25)

U = Ibiask3
1 −Ak2

1k2(1 + k1Ntr)−Bk1k2(1 + k1Ntr)2−Ck2(1 + k1Ntr)3,

V = k2[k2
1(εA +

dg
dN

υg) + 2εk1B(1 + k1Ntr) + 3εC(1 + k1Ntr)2]

where k2 = eVact. Notice that high-order terms in ε were neglected for simplicity.

The difference in the steady-state photon number when the bias current is changed by

∆I is then equal to

∆Es =
∆Ik3

1

W
,

W = k2[k2
1(εA +

dg
dN

υg) + 2εk1B(1 + k1Ntr) + 3εC(1 + k1Ntr)2]. (5.26)

In turn, this will produce a corresponding separation between the frequencies of two square-
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wave levels:

∆ωs = 2π
d f
dT

∆T +
αε∆Es

2τp
. (5.27)

Table 5.1: Parameter values used for the modelling

Symbol Value Unit Symbol Value Unit
τp 4.34 ps α 3 –
Vact 2.3×10−17 m3 β 5.3×10−6 –
dg
dN 3.13×10−20 m2 d f

∆T 0 GHz/K
υg 8.56×107 m/s τ 33.64 ns
Ntr 1.3×1024 m−3 τH 1.0×10−8 s
A 9.52×108 s−1 τL 1.0×10−10 s
B 1.5×10−16 m3s−1 f0 193.36 THz
C 9.0×10−41 m6s−1 s 17 mA
ε 1.95×10−23 m3 k 1000/s –
Γ 0.06 – (K,M) (4,1) –

The model parameters presented in Table 5.1 were partly deduced from the experi-

mental relaxation-oscillation frequency, and partly taken from the literature. Numerical

simulations based on the model are shown in Fig. 5.8. For the parameters chosen, the

model shows SW generation at the third harmonic of τ−1, similar to what was reported in

Ref. [121]. Of note, the model also demonstrates the first and the second harmonics when

η is varied.

Asymmetrical DC suggests an asymmetry in the nonlinear amplification which is mod-

elled by a sigmoid function, Eq. (5.13). To model the asymmetry we introduce the θ pa-

rameter which shifts the sigmoid function towards a non-zero offset breaking the S-shaped

symmetry of the amplification. The variation of θ provides a change in DC as illustrated in

Fig. 5.8 for a set of θ values, but the amplitude of the SW and the doublet splitting remain

practically unaffected in accordance with the results in Fig. 5.5. The θ acts in a way re-

sembling the feedback offset phase responsible for the SW asymmetry in OE oscillators as

reported in Refs. [123, 111]. We propose that θ is linearly dependent on J via the (average)

current in the nonlinear feedback. The small variation of ∆S in Fig. 5.7(a) can be related
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Figure 5.8: Results obtained from Eqs. (5.8) to (5.13) with parameters in Table 5.1; the
injection current Ibias = 48.4 mA, and feedback strength η = 2.6× 10−3, and θ = −1.2 µW
(a, d), θ = 0 µW (b, e), θ = 1.2 µW (c, f). Black (red) curves in (a)–(c) show the optical
power poutE(t) (instantaneous frequency Φ̇(t)/(2π)). The optical power spectral densities
presented in (d)–(f) were obtained by applying Fourier transform to the complex electric
field amplitude

√
poutE(t)exp iΦ(t) and subsequent filtering with a Gaussian kernel of 10

MHz width to simulate the experimental spectrometer resolution.

to the spectral shift of the doublet, as in Fig. 5.5, and the dispersion effect.

Unlike the variation of the pump current, the variation of the feedback strength does not

result in a spectral shift of the low frequency peak in Fig. 5.6, whose location remains nearly

fixed. The increase of η after the Hopf bifurcation [121] results in a larger amplitude of the

SW and in a change of the SW profile: it is purely sine shaped at the Hopf bifurcation

and becomes more flat-top shaped. We have checked that the change of the profile may

have a strong effect on ∆S . The variation of DC in Fig. 5.7(b) with the feedback strength

increase is, therefore, affected by at least three factors: the changing SW profile (mostly at

lower feedback strength), the change of the SW amplitude and the current in the nonlinear

feedback, and the non-zero offset in the sigmoid function. The impact of the factors is

different at different values of η, resulting in a curvilinear function in Fig. 5.7(b).

To specify the mechanism of the spectral doublet appearance, we analyze the SW gen-
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eration. The SWs demonstrate two intensity plateaux that are defined by the minimum and

maximum total injected current levels (Ibias + s) and (Ibias − s) correspondingly. The gain

saturation, described by ε, leads to the increase of the carrier density N(t) with the photon

density E(t) increase, since more gain is needed to compensate the cavity losses. In turn,

this variation in SW operation leads to two distinct lasing frequencies associated with pla-

teux through the change in the gain-medium refractive index characterized by the linewidth

enhancement factor α. These frequencies form the two well-separated peak structure in the

optical spectrum.

Neglecting thermal dynamics (i.e., the dependence on ∆T and the corresponding fre-

quency shifts on the total current injected) and taking ∆I = 2s as the injection-current differ-

ence for a SW operation, we obtain the difference between the plateaux optical frequencies

∆S = ∆ωs/(2π) = 2.53 GHz which is close to ∆S in Fig. 5.8(d–f) and the experimentally

observed values. The difference between this value and simulation results is related to a

deviation of SW profile from an ideal flat-top oscillations.

5.5 Conclusion

In conclusion, we demonstrate SWG experimentally in a laser diode subjected to OE de-

layed feedback on its pump current. The repetition rate of the SWs is the inverse of the

delay, or a multiple of it, and the DC can be tuned in the range [∼ 20%,∼ 50%] by vary-

ing the pump. SW operation is observed when the feedback is strong and the laser biased

well-above threshold, leading to saturation of the amplification. Low-pass filtering in the

feedback loop can prevent SW oscillation with fundamental period τ and favor the appear-

ance of harmonic SW oscillations as the delay is increased. A modified laser rate-equation

model taking into account filtering and saturation in the optoelectronic feedback loop suc-

cessfully reproduces the observed SW oscillations. The model attributes the origin of the

square waves to a Hopf bifurcation similar to the one leading, close to threshold, to gain-

switched pulsations. The upper and lower plateaus of the SW correspond to quasi-stable
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equilibrium points, and the periodic switching between them is driven by the delayed feed-

back signal.

We also observe an optical doublet in the SW output from a LD with OE feedback

under certain feedback conditions. This behavior has been observed for frep = nτ−1 for all

n where square wave generation occurs. The duty cycle of the square wave appears to be

strongly correlated to the frequency spacing of the doublets. A nonlinear model shows that

the doublet originates in different laser frequencies in the high- and low-intensity states

in the SW. This change in frequency is due to the gain saturation effect and the carrier-

density dependence of the refractive index of the gain medium.The observation of a doublet

under SW operation may be of interest for compact photonic devices having applications in

metrology, sensing, and mapping. FM lidar is one such application that is robust to Doppler

shift in detecting moving objects in self-driving vehicles. The optical doublets presented

here can provide better accuracy because they combine the spectral shifts of two spectral

lines, rather than just one as in conventional FM lidars [124, 125].
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CHAPTER 6

CONCLUSION

In this dissertation, we have summarized our findings on the nonlinear dynamics of semi-

conductor LDs subjected to time-delayed optoelectronic feedback using state-of-the-art

experiments and extensive modelling. We have discovered a set of unique experimental

conditions for our system that lead to the unfolding of several novel nonlinear effects, and

we propose multiple applications of these effects in the fields of microwave photonics,

sensing, spectroscopy, and communications.

We have included a description of the experimental setup and the proper characteriza-

tion of the system in Chapter 2. We have also presented detailed development of a the-

oretical model explaining the higher-order harmonic frequency locking between the slow

and fast frequencies of a OE system and supported it with experimental results. The mod-

elling provides a theoretical basis for the analysis of a dynamical phenomena of the OE

feedback system and allows us to shed new light on a relatively unexplored area compared

to other types of feedback (e.g., optical feedback or external injection). The rate equation

model is developed for LD under delayed OE feedback to represent the onset of a fRO− fτ

frequency-locked region by two successive Hopf bifurcations. The first bifurcation leads

to a pulsation at fRO, while the second leads to fτ being in resonance with fRO. We derive

an amplitude equation that is valid near the first Hopf bifurcation and use it to observe the

frequency locking at the second Hopf bifurcation. These findings motivate our experiment

near the two bifurcation points. We have been able to find the initial conditions necessary

for the experiment to identify the frequency locking. We have also verified experimentally

the numerical finding that while the period of the slow oscillation remains the same, the

amplitude tends to increase with feedback level and injection current. Similar observations

have been made for LD based systems where an external cavity is formed by placing a
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mirror at some distance in front of the laser, but our results confirm the validity of such

locking effects beyond the well known optical feedback.

The staircase dynamics discussed in Chapter 3 is a direct result of our new insights into

the OE feedback system, which proposes a discrete-tuning photonic MW generator based

on readily available, off-the-shelf telecommunications components. This work focuses on

switching between LCs with dominant frequencies separated by a scale determined by fτ.

The presented dynamics for abrupt switching between two LCs corresponds to a subcritical

torus bifurcation. It is worth noting that similar abrupt switching between LCs has been

observed in lasers with optical feedback and involves either different LCs originating from

the same modes of the external cavity or LCs from different neighboring modes. However,

unlike optical feedback, we found discrete switching between two LCs mediated by an

intermediate quasiperiodic state. In all cases of discrete switching, the new frequency

is always smaller than the previous one, while the feedback level is increased, which is

related to the fact that the feedback system is negative. The system is tunable only in

the hundreds of MHz range. However, there are ways to improve tunability and phase

noise by choosing suitable lasers (e.g., VCSEL), as described in the text. Anyway, the

current work does not focus on the development of an ultrastable photonic MW source, but

on the discrete switching between LCs with dominant frequencies separated by a specific

frequency. Exploiting this phenomenon is of potential interest for future discretely tunable

photonic microwave sources that can be used in multichannel communications.

In Chapter 4, our work near the vicinity of the LD injection threshold revealed MWCs

and pulse clustering, both of which are of interest for dynamical studies and applications.

MWCs arise from gain-switched pulses whose repetition rate is external to the LD. The

bandwidth of such combs is found relatively limited compared to microwave combs from

mode-locked LDs, and a comparison is presented in the original discussion. Gain-switched

combs, however, provide tunability on the order of tens of MHz, which is unprecedented for

mode-locked LDs and highly desirable for some sensor applications in a narrow frequency
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range. To explain the origin of the multiplets, however, we have designed experiments to

match the doublets with one of the known time scales in the system. With repeated experi-

ments, we find that the intra-pulse spacing between the doublets is related to the delay time

between the two amplifiers in the feedback loop. A reasonable assumption would be that

the internal reflection between the amplifiers acts as a seed for the formation of multiplets

at low injection. A prospective experiment could be to determine this time scale with cer-

tainty by placing unmatched amplifiers to intentionally cause reflection of the RF signal

between them. The formation and control of multiplet pulsing in a LD based OE system

is of paramount importance as it can open the door to various applications in microwave

photonics, such as sensing and computing. This transition pulsing is unorthodox, as pre-

viously only fiber lasers with fine multiplet-like structures have been reported. Exploring

this phenomenon in LD sheds light on a little-discussed area of nonlinear dynamics in this

configuration.

However, in Chapter 5, while studying LD with higher injection current (J ≥ 2Jth) and

strong feedback, we found that gain saturation and nonlinear amplification of the feedback

loop lead to the generation of optical square waves. We present a modified rate equation

model that can successfully reproduce the discovered square waves and trace their origin to

a Hopf bifurcation branch similar to the one near threshold that generates the gain-switched

pulsing. In short, we have demonstrated a relatively simple and compact hybrid optoelec-

tronic system based on a laser with optoelectronic feedback that can generate optical and

electrical square waves with a repetition rate determined by the feedback delay and has

a duty cycle tunable by the current. For the spectral doublets associated with the square

waves, a nonlinear model that couples the carrier and photon density with the optical phase

shows that the doublet occurs at different laser frequencies in the high and low intensity

states of SW. This frequency change is due to gain saturation and the dependence of carrier

density on the refractive index of the gain medium. We have also experimentally found

a relation between the square wave duty cycles and the separation between the peaks in a

91



double-peaked optical spectra.

In summary, we have reported several nonlinear effects that have specific applications

in microwave photonics, sensing, and communications. We have also provided a numerical

framework to explain our experimental results and relate them to the vast literature in the

field of nonlinear dynamics. Indeed, for laser diodes with time-delayed feedback, it has

always been difficult to reconcile theory and experiment. Introducing an additional nonlin-

earity into the electronic part of the feedback makes the matching even more complicated.

There are many parameters that are difficult to characterize, and the typical theoretical treat-

ment, like ours, integrates over spatial dimensions in the gain medium. Often this type of

model is used to show trends, which is indeed the case, as we have successfully explained a

large portion of our experiments using these model. However, a point-by-point agreement

between such models and experiments is generally considered unrealistic.

Anyway, there are several ways to continue the current work and build on it. We have

used Q-dash and MQW lasers for our experiments, but other types of lasers (such as VC-

SELs) could be a way to improve the performance of some of the proposed applications.

Playing with the electronic amplifiers and tunable attenuators is also a way to study the

system in more detail. We have briefly encountered optical frequency combs for self-

sustaining square wave modulation at high J through the OE feedback, which can be ex-

tensively explored. In particular, we should further investigate the role of feedback level

and signal frequency on the enhancement of optical combs. At the next level, some of the

proposed devices can actually be realized and verified for real applications, along with the

rest.
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APPENDIX A

ASYMPTOTIC METHODS BASED ON THE LARGE DELAY LIMIT

Asymptotic methods for delay differential equations exhibiting a large delay take advantage

of the distinct time scales in the physical problem. In particular, Hopf bifurcation instabili-

ties have been studied in detail, and the predictions of their amplitude equations have been

successfully tested on several case studies. It is worth emphasizing that there exist two

distinct limits that provide valuable information in their domains of validity. We illustrate

these different approaches by considering Minorsky equation for a weakly damped and

weakly nonlinear oscillator [126]:

ÿ +εẏ + y = −εdẏ(t−τ) +εcẏ3(t−τ), (A.1)

where ε is small and τ is large.

Assuming discrete values τ = (1+2n)π, where n is a large integer, allows the derivation

of an amplitude equation in its simplest mathematical form. Specifically, we scale the delay

τ with respect to ε as τ = ε−1τ1, and find that the first Hopf bifurcation of Eq. (A.1) leads

to the solution [127]:

y = A(s)exp(it) + c.c.+O(ε), (A.2)

where the complex amplitude A depends on the slow time variable s = εt. It satisfies the

slow time equation

Ȧ =
1
2

[
−A + dA(s− s1)−3cA3(s− s1)

]
, (A.3)

where dot now means differentiation with respect to time s, and s1 ≡ ετ1 = O(1) or larger.

This equation is analyzed in [127] and reveals a cascade of primary and secondary bifurca-

tions.
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If we now analyze the stability of the zero solution of Eq. (A.3) using d as the bifurca-

tion parameter, we observe that the first Hopf bifurcation point dH → 1 as s1 →∞. The

nature of the bifurcation corresponds to an uniform instability according to Ref. [128]. In-

troducing the small parameter δ ≡ s−1
1 � 1, and expanding d as d = 1 + δ2d2 + ..., we may

construct a small amplitude solution of the form [83, 128]

A = δu(x, ν) +O(δ2) (A.4)

where x ≡ ε(1+ε/a+ε2/a2)t and ν ≡ δ3t are called pseudo-space and pseudo-time, respec-

tively [128]. The function u satisfies the Ginzburg-Landau (GL) equation

uν = 2uxx + b2u−3cu3, (A.5)

u(x−1) = u(x). (A.6)

An obvious question is how to relate the small parameters δ and ε. By considering δ = ε,

or equivalently, τ = ε−2τ2, and seeking a solution of Eq. (A.1) in powers of ε leads to

Eqs. (A.5) and (A.6) [127].

In summary, the limit τ = ε−1τ1 is leading to a slow time DDE for O(1) amplitude

multi-periodic solutions. On the other hand the limit, τ = ε−2τ2 is leading to a GL equa-

tion for small amplitude solutions. The latter allows to relate our DDE problem to spatially

extended systems [129, 16]. Here, we consider the first limit because it quantitatively de-

scribes the instabilities observed numerically, and allows us to analyze high-order locking

phenomena, manifested by the resonance between the multiple timescales in the laser sub-

ject to the optoelectronic feedback.
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APPENDIX B

THE LASER AMPLITUDE EQUATION AND ITS SOLUTIONS

B.1 Hopf bifurcations

We consider the rate equations for a semiconductor laser subject to a delayed optoelectronic

feedback [71]. In dimensionless form, they are given by

İ = 2NI, (B.1)

T Ṅ = P +ηI(t−τ)−N − (1 + 2N)I, (B.2)

where I is the intensity of the laser field and N is the carrier density. P ∼ 1 is the value

of the pump parameter above threshold in the absence of feedback (η = 0). T ∼ 103 is the

ratio of the carrier and photon lifetimes. η < 1 and τ ∼ 103 are the gain and the delay of the

optoelectronic feedback, respectively. By introducing the new variables x, y, and s defined

by

N ≡
ω

2
x, I ≡ P(1 + y), and s ≡ ωt (B.3)

where

ω ≡

√
2P
T

(B.4)

is the (angular) RO frequency, we may eliminate the large T parameter multiplying the left

hand side of Eq. (B.2). Specifically, we obtain the following equations for y and x

ẏ = x(1 + y), (B.5)

ẋ = −y +η[1 + y(s− θ)]−εx
[
1 + 2P(1 + y)

]
, (B.6)
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where

ε ≡
ω

2P
<< 1, and θ = ωτ. (B.7)

The non-zero intensity steady state is

(x,y) =

(
0,

η

1−η

)
. (B.8)

From the linearized equations, we determine the characteristic equation for the growth rate

λ. We find

λ2 +ελ

(
1 +

2P
1−η

)
+ 1−

η

1−η
[exp(−λθ)−1] = 0. (B.9)

The stability domains in the (η,θ) parameter space are bounded by Hopf bifurcation lines.

Introducing λ = iσ into Eq. (B.9), we obtain the Hopf conditions relating η and σ. They

are given by

−σ2 + 1−
η

1−η
[cos(σθ)−1] = 0, (B.10)

σε

(
1 +

2P
1−η

)
+

η

1−η
sin(σθ) = 0. (B.11)

Figure B.1 shows the stability domains for ε = 0.01 and for ε = 0 (8.5 < θ/(2π) < 11). As

ε→ 0, the Hopf stability boundaries are shrinking to straight lines. An analysis of Eq. (B.9)

with ε = 0 and η→ 0 leads to the stability condition

sin(θ) > 0 (ε = 0,η→ 0). (B.12)

This explains the sequential change of stability along the η = 0 axis in Fig. B.1(b).

If ε = 0, section B.1 are easily solved. We find three families of solutions given by
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Figure B.1: (a) Primary Hopf bifurcation lines in the interval 8.5 < θ/(2π) < 11 as we
increase η from zero (ε = 0.01 and P = 0.5). At double Hopf points DH (black dots), θc1 =

8.94×2π and θc2 = 9.93×2π, two distinct bifurcation lines are crossing. (b) Primary Hopf
bifurcation lines if ε = 0. They are given by Eq. (B.16) and Eq. (B.17) with n = 9, 10, 11,
and by Eq. (B.15). The shaded (white) areas in (a) and (b) denote the zones of unstable
(stable) steady state solutions.

(1): σθ = 2nπ (n = 1, ...), and σ = 1, (B.13)

(2): σθ = (2n + 1)π (n = 0, 1, ...)

and σ =

√
1 +

2η
1−η

, (B.14)

(3): η = 0, and σ = 1. (B.15)
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The three cases provide the vertical lines in Fig. B.1(b):

(1): θ = 2nπ (n = 1, ...), (B.16)

the lines

(2): θ =
(2n + 1)π√

1 +
2η

1−η

(n = 0, 1, ...), (B.17)

and the horizontal line Eq. (B.15).

B.2 Perturbation analysis

We next consider values of θ close to

θn ≡ 2nπ (B.18)

and wonder if a secondary bifurcation is possible. Numerical simulations of Eqs. (B.5)

and (B.6) suggest that such bifurcation appears at a value of η satisfying the scaling law

η ∼ n−1 for large n. It motivates a weakly nonlinear analysis where

δ ≡ 1/(2n) (B.19)

will be considered as a small parameter. To facilitate the algebra, it will be convenient to

eliminate x and formulate a second order delay differential equation for u ≡ ln(1 + y) only.

From Eqs. (B.5) and (B.6), we find that u satisfies

ü =1− exp(u) +ηexp[u(s− θ)]−εu̇[1 + 2Pexp(u)]. (B.20)

We are now ready to start our analysis. We introduce the new control parameters b = O(1)

and c = O(1) defined as

b ≡ ηδ−1, c ≡ εδ−1, (B.21)
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and seek a solution depending on two distinct time variables of the form

u = δ1/2u1(s,r) +δu2(s,r) + ..., (B.22)

where r ≡ δs is defined as a slow time variable. The δ1/2 power series in Eq. (B.22) and the

scaling of η, and r result from the fact that the desired amplitude equation only appears at

the third order of the perturbation analysis. The assumption of two independent time scales

implies the chain rule

ü = uss + 2δusr +δ2urr, (B.23)

where the subscripts s and r mean partial derivatives with respect to s and r. We also note

that

u(s− θ) = u(s− θ,r−δθ). (B.24)

Introducing Eq. (B.21)–Eq. (B.24) into Eq. (B.20) and equating to zero the coefficients of

each power δ1/2 lead to a sequence of linear problems for the unknown functions u1, u2,

and u3. They are given by

O(δ1/2) : u1ss + u1 = 0, (B.25)

O(δ) : u2ss + u2 = b−
u2

1

2
, (B.26)

O(δ3/2) : u3ss + u3 =

 bu1(s− θ,r−δθ)−u1u2−
u3

1
6 −2u1sr

−cu1s(1 + 2Pexp(u))

 . (B.27)

The solution of Eqs. (B.25) and (B.26) are

u1 =A(r)exp(is) + c.c., (B.28)

u2 =B(r)exp(is) + c.c.+ b−AA∗+
1
6

A2 exp(2is) + c.c. (B.29)

100



where A(r) and B(r) are two unknown amplitudes. In order to determine an equation for

A(r), we consider Eq. (B.27) and apply a solvability condition. We cannot neglect δθ in

u1(s− θ,r − δθ) because we assume θ close to θn = 2nπ and therefore δθ ∼ π is an O(1)

quantity. The solvability condition requires that there are no terms of the form exp(±is) in

the right hand side of Eq. (B.27). This condition leads to a delay differential equation for A

given by

2i
dA
dr

=
1
3

A2A∗−Ab + bA(r−δθ)exp(−iθ)− icA(1 + 2P). (B.30)

Introducing A = Rexp(iφ) into Eq. (B.30), we obtain from the real and imaginary parts, two

coupled equations for R and φ

2Ṙ =bR(r−δθ) sin[−θ+φ(r−δθ)−φ]− icR(1 + 2P), (B.31)

2φ̇ =−b
R(r−δθ)

R
cos[−θ+φ(r−δθ)−φ]−

1
3

R2 + b. (B.32)

B.3 Primary and secondary bifurcation (ε = 0)

For mathematically clarity, we now propose an analysis of Eqs. (B.31) and (B.32) with

c = 0. Time periodic solutions of the original laser Eqs. (B.5) and (B.6) correspond to

solutions of Eqs. (B.31) and (B.32) of the form

R = const, and φ = νr, (B.33)
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where ν is the frequency correction. Inserting Eq. (B.33) into Eqs. (B.31) and (B.32), we

obtain the conditions

sin(θ+ νδθ) = 0,

and

2ν = −
1
3

R2 + b−bcos(θ+ νδθ). (B.34)

We analyze these equations for θ close to θn by introducing

θ = θn +Θ, (B.35)

where 0 ≤ |Θ| < 2π. The possible solutions of Eq. (B.34) then are

(1): θn +Θ+ ν(δθn +δΘ) = 2nπ+Θ+ νπ+O(δΘ) = m2π, (B.36)

R2 = −6ν ≥ 0, (B.37)

(2): θn +Θ+ ν(δθn +δΘ) = 2nπ+Θ+ νπ+O(δΘ) = (2m + 1)π, (B.38)

R2 = −6ν+ 6b ≥ 0. (B.39)

The first case matches the stable Hopf bifurcation points at θ = θn if ν = 0 and Θ =

0 (m = n). If Θ > 0, the first solution is for m = n and ν = −Θ/π which provides

R2 = 6Θ/π > 0. (B.40)

If Θ < 0, the first solution is for m = n−1 and

ν = −(π+Θ)/π, (B.41)
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which then leads, using Eq. (B.39), to

R2 = 6[(π+Θ)/π+ b] > 0. (B.42)

In order to explore the onset of a bifurcation point from the periodic solution, we consider

the linearized equations from Eqs. (B.31) and (B.32). The characteristic equation for the

growth rate λ is obtained from the condition

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


−bsin(θ+ νδθ)

×exp(−λδθ)

−2λ


 bRcos(θ+ νδθ)

×[exp(−λδθ)−1]




−2
3R

− b
R cos(θ+ νδθ)

×[exp(−λδθ)−1]




−bR(r−δθ)

R sin(θ+γδθ)

×[exp(−λδθ)−1]

−2λ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (B.43)

The coefficients in Eq. (B.43) simplify, if we take into account the fact that sin(θ+νδθ) =

0 and cos(θ+νδθ) =−1 for the Hopf bifurcation appearing if Θ< 0. It leads to the following

equation for λ

0 =4λ2−
2
3

bR2[exp(−λδθ)−1] + b2[exp(−λδθ)−1]2. (B.44)

We are interested to find if a Hopf bifurcation for the slow time equations Eq. (B.31) and

Eq. (B.32) is possible. Recall that it will correspond to a secondary bifurcation of the

original laser Eqs. (2.4) and (B.5). To this end we introduce λ = iµ into Eq. (B.44) and

determine from the real and imaginary parts two conditions

0 =−4µ2−
2
3

bR2[cos(µδθ)−1] + b2
{
[cos(µδθ)−1]2− sin2(µδθ)

}
, (B.45)

0 =2bsin(µδθ)
{

1
3

R2−b(cos(µλθ)−1)
}
. (B.46)
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From Eq. (B.46), a first possibility is given by the condition sin(µδθ) = 0. It implies

(1): µδθ = 2kπ (k = 1,2, ...), (B.47)

(2): µδθ = (2k + 1)π (k = 0,1,2...). (B.48)

Eq. (B.47) is not possible because cos(µδθ) = 1, and Eq. (B.47) can be satisfied only if

µ = 0. We next consider Eq. (B.48) and take the lowest value of µ (k = 0) given by

µ = π/(δθ). (B.49)

From Eq. (B.45), we then obtain

4
(
−π2/(δθ)2 +

1
3

bR2 + b2
)

= 0. (B.50)

Using Eq. (B.35), we have

δθ = π+Θ/(2n). (B.51)

Substituting Eq. (B.42) into Eq. (B.50), we solve for b = bS B and find

bS B =
1
3

−π+Θ

π
+

√(
π+Θ

π

)2

+ 3

 . (B.52)

This secondary bifurcation is characterized by two frequencies namely, the frequency of

the basic periodic solution

ω1 = 1 +δν, (B.53)

and the slow time frequency

ω2 = δµ. (B.54)

Using Eq. (B.41) for ν, Eq. (B.19) for δ, Eq. (B.49) for µ, and Eq. (B.51) for δθ, we obtain
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from Eq. (B.53) and Eq. (B.54)

ω1 = 1−
π+Θ

2nπ
, (B.55)

ω2 =
δπ

δθ
=

π

2nδθ
=

1
2n

(
1−

Θ

2nπ

)
+O

[
(2n)−2

]
. (B.56)

The ratio of the frequencies clearly verifies the ratio

ω2

ω1
=

1
2n

+O
[
(2n)−2

]
, (B.57)

and parameter Θ does not appear in the leading approximation.
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APPENDIX C

ECKHAUS INSTABILITY

Eckhaus instability refers to the generic scenario observed in spatially extended and delayed

dynamic systems when multiple periodic regimes coexist, and their stability depends on

the frequency [128]. The general framework used to explore this scenario extends from

photonics, ecological and neural network based instances, and is based on multiple time

scales analysis in the vicinity of a Hopf bifurcation point as was demonstrated for a delayed

system in [83]. Figure C.1 illustrates that the observed sequence of torus bifurcations

leading to the stabilization of the limit cycles, and corresponding hysteretic behaviour,

when the feedback strength η is decreased, are consistent with this generic mechanism.

Figure C.1: Bifurcation diagrams obtained by numerical continuation for two different
values of delay τ: 1000 (blue) and 500 (orange). The vertical axis is given in units of
τ−1 = 0.001 for consistency with Fig. 3.7. Red line is the Hopf bifurcation line given by
Eq. (C.1). Thick (thin) blue and orange lines correspond to stable (unstable) limit cycles,
and the circles correspond to torus bifurcations. Green lines delimit the region of stable
periodic solutions. Periodic branches with lower frequencies are born from subcritical
Hopf bifurcations and extend beyond the red line. The other parameters are the same as in
Figs. 3.6 and 3.7.
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Figure C.1 shows an extended bifurcation diagram from Fig. 3.7(b) complemented with

a bifurcation diagram calculated for a smaller delay value τ = 500, which can still be con-

sidered large for the parameter range under consideration. The red line shows a continuity

of the Hopf frequency ωH described by:

η =

√
ω4

H −4εPω2
H +ε2

[
(4P2 +ω2

H(2P + 1)2
]

2εP
, (C.1)

which is derived from Eq. (3.5)–Eq. (3.6) under the assumption of ωROτ f � 1.

The green lines in Fig. C.1 connect the torus bifurcation points that lead to stabilization

or destabilization of the limit cycles, and approximate well the Eckhaus curve similar to

those demonstrated in [83, 128].
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