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SUMMARY

The objective of this research is to design a sensor intelligence that is reliable in a re-

source constrained, unreliable environment. There are various sources of variations and

uncertainty involved in intelligent sensor system, so it is critical to build reliable sensor

intelligence. Many prior works seek to design reliable sensor intelligence by developing

robust and reliable task. This thesis suggests that along with improving task itself, task re-

liability quantification based early warning can further improve sensor intelligence. DNN

based early warning generator quantifies task reliability based on spatiotemporal character-

istics of input, and the early warning controls sensor parameters and avoids system failure.

This thesis presents an early warning generator that predicts task failure due to sensor hard-

ware induced input corruption and controls the sensor operation. Moreover, lightweight

uncertainty estimator is presented to take account of DNN model uncertainty in task re-

liability quantification without prohibitive computation from stochastic DNN. Cross-layer

uncertainty estimation is also discussed to consider the effect of PIM variations.

xix



CHAPTER 1

INTRODUCTION

Artificial Intelligence (AI) platforms [1], in particular, deep neural networks (DNNs), are

being increasingly deployed in real-time, safety-critical autonomous systems such as self-

driving cars, unmanned aerial vehicles, drones, robots, to name a few [2, 3]. As recent

DNNs include hundreds of megabytes parameters, processing-in-memory (PIM) is intro-

duced at the edge for better real-time processing and data communication reduction be-

tween cloud and edge. Unlike AI at cloud environments, AI in real-time edge devices need

to perform reliably under changing environmental conditions and robust against different

types of noise, while meeting stringent energy and time constraints. Hence, a critical chal-

lenge in adopting AI in safety-critical edge applications is to ensure its reliability even in

the resource constraint, unreliable environment.
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Figure 1.1: Sources of variations or uncertainties in unreliable sensor-NN processing
pipeline.

Various sources of variations and uncertainties are involved in sensor-neural network

pipeline and aggravate task predictions as illustrated in Figure 1.1. First, during data acqui-

sition, dynamic environmental conditions (e.g. rain[4], snow[5], fog[6]) (Figure 1.1(a)) or

sensor hardware oriented noise in sensing devices (e.g. fixed pattern noise, shot noise) [7,
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8, 9] (Figure 1.1(b)) change input features and aggravate task reliability [10]. Moreover,

non-ideal device properties in PIM accelerator change stored DNN weights in memory,

which affect multiply-accumulate operation and degrade task prediction quality [11, 12]

(Figure 1.1(c)). In addition, there is inherent uncertainty of DNN model due to a lack of

full understanding of the process that generated the training data and inherent complex-

ity/noise in the observation [13, 14] (Figure 1.1(d)). These variations and uncertainties

throughout the sensing pipeline cause unreliable task behavior that, at the worst case, can

lead to catastrophic system failures. Therefore, generating reliable intelligence at resource

constrained and unreliable environment is a major challenge for adoption of AI in real-time

environment.
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Uncertainty 
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Control 
Module
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Figure 1.2: Three proposed approaches for a reliable sensor intelligence: (a) enhancing
the robustness of the task, (b) adopting an early warning to predict task failure, and (c)
employing uncertainty to estimate task reliability.

The goal of the research is to enhance the reliability of AI platforms under limited re-

sources and dynamic environments at the edge. The research suggests three approaches

as illustrated in Figure 1.2. First, the research seeks to design DNN robust to input per-

turbations due to sensor hardware induced noise or non-ideal environment. In particular,

the research focuses on rain among various adversarial weather conditions, because rain
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streaks in a video change the input features with their unique spatiotemporal structure and

makes it challenging to be removed. Since Garg and Nayar [15] presented rain streak anal-

ysis and model based on photometric properties, significant progress have been made in

studying the characteristics of rain and removing rain from videos. Several prior works

have developed physical model of rain streaks [15, 16], while learning based algorithms

to remove rain have also been proposed [17, 4]. The prior efforts had mostly seek to re-

cover rain-removed sequences from rainy videos. Hence, developed algorithms have been

evaluated based on spatial similarity between clean and derained images using peak signal

to noise ratio or structural similarity criteria. However, high spatial similarity to clean im-

ages does not guarantee high performance on spatiotemporal tasks (e.g. action detection).

Therefore, further study is necessary for a rain removal for spatiotemporal tasks.

Besides, there are various types of noise in CMOS image sensors, such as photon shot

noise, dark current, thermal noise, flicker noise, quantization noise of analog-to-digital con-

verter (ADC), fixed pattern noise (FPN), etc. [18]. The resulting effect can be modeled as

noise injection on the input image of a DNN and their noise structures are highly depen-

dent on the design of the image sensor. Adding filters/pre-processors and augmenting data

with noise or perturbed data during training are well-known approaches to remove injected

noise[19, 20, 21]. These approaches require exact knowledge of perturbation statistics,

but such information is not available for sensor hardware induced noise. Most of the prior

works on denoising techniques consider only ideal noise in the image, such as impulse

noise, salt-and-pepper noise or Gaussian noise. Hence, further study is necessary on the

noise structure introduced by sensor hardware and consider this structure during training

and evaluation of a DNN.

Although, preceding methods help improve the reliability of the sensor intelligence,

they cannot eliminate all sources of failures. Therefore, a framework that allows to predict

task failure in advance would be helpful to avoid the system failure. Estimating input noise

level [22, 23] can be helpful to avoid the failure due to input noise, but the estimated noise
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variance, as performed in the the prior works, do not consider how much a task will be

affected due to noise. The effect of same perturbation on task is different depending on

the tasks (Table 1.1). Therefore, further study is essential to be able to predict unreliable

task outputs in advance and provide feedback to the sensors to avoid catastrophic failure in

safety-critical systems.

Table 1.1: Normalized accuracy of various tasks under Gaussian noise, image resolution,
and pixel noise.

PSNR
Image

Classification
Object

Detection
Action

Detection
Gaussian Noise 23.30 0.876 0.878 0.781
Image Resolution 23.30 0.438 0.564 0.838
Pixel Noise 23.30 0.860 0.873 0.857

Predictive uncertainty of DNN captures inherent noise in input data as well as the lack

of understanding of the model on the current input, so it can be a better measure of task

reliability [13]. However, quantifying uncertainty is challenging and requires unaccept-

able latency in real-time operations as it requires stochastic DNN such as Bayesian neural

networks or Monte-Carlo sampling of inference outputs[14]. Several prior works used

knowledge distillation of stochastic DNN to a deterministic DNN [24, 25]. However, these

works are distilling uncertainty of either classification or regression tasks, which are rela-

tively simple, and aim to implement a better task network that allows estimating uncertainty

rather than a lightweight uncertainty estimator for a larger task. Therefore, further studies

are necessary for light weight uncertainty estimation that allows to quantify model uncer-

tainty of a complex task at the edge, and provide feedback to the sensors to improve the

system reliability. Besides, device non-ideal properties in PIM accelerator also lead to un-

reliable task, but prior efforts on uncertainty estimations do not capture such uncertainty. It

is also necessary to quantify uncertainty that considers the effect of PIM variations as well

as variations at input features and DNN model uncertainty.

The rest of this document is organized as follows: In Chapter 2, the detailed back-
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ground and literature survey is presented. Chapter 3 and Chapter 4 discusses deep learning

techniques to improve task DNN robust. Chapter 5 presents early warning guided adaptive

sensor that predicts task failure due to input corruption in advance and controls sensor pa-

rameters. Chapter 6 discusses lightweight uncertainty estimation that considers the effect

of DNN model uncertainty and PIM variations in task reliability quantification. Finally,

Chapter 7 describes the key research contributions and future research directions.
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CHAPTER 2

LITERATURE SURVEY

2.1 Intelligent Sensor System

Vision is one of the richest sources to understand the world [26]. Processing of vision sig-

nals requires image sensors coupled with processing engines to extract useful information

from raw sensor data, and it allows many important applications including video surveil-

lance, traffic monitoring, people/object tracking, life assisted living. Traditional real-time

image/video processing requires powerful, high performance computing device with large

memory to compute a complex vision based task in real-time. With the advance of hard-

ware, these processors are replaced with low power MCUs, so the wireless transmission

becomes one of the major energy consumption of the whole system [27]. Therefore, the

concept of intelligent sensor system is suggested, where the processor is placed at the edge

with the sensor to reduce the cost of wireless transmission [26, 28]. Intelligent sensor ex-

tracts high-level information from sensor raw data at the edge, and only send the relevant

information to the host. It must operate under constrained resources (energy or bandwidth)

which can distort the data acquisition and lead to errors in processor outputs [29, 10].

2.1.1 Digital Pixel Sensor Arrays and 3D Integration

Digital pixel technologies and 3D integration of image sensor promise significant advances

on designing high-bandwidth and energy-efficient smart image sensors [30, 31, 32, 33].

Per-pixel readout, where each pixel is associated with its own read-out-integrated-circuits

(ROICs), have received attention to enable high frame rate [34, 35]. The 3D integration of a

digital pixel and its ROIC enables simultaneous readout and hence, leads to high-data-rate

image sensors as illustrated in Figure 2.1. Moreover, 3D integration of vision processing
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engines with the ROICs allows in-situ processing of the captured images. Recent efforts

have explored the feasibility of using in-sensor vision processing using 3D stacking of

DNN accelerators with the ROIC [30, 36].
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            Converter (PFC)
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            Accelerator

R
O

IC

ADC Output
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Figure 2.1: Structure of digital pixel based image sensor in 3D integration.

Device Non-Ideal Properties in Digital Pixel with Per-pixel ROIC

There are various sources of non-ideal properties in digital pixels such as shot noise, re-

set noise and fixed pattern noise (FPN) [7, 8, 9]. In particular, the research focuses on

the noise due to local process variation or mismatch in the per-pixel ROIC, referred to as

mismatch-induced noise (MIN). The research considers the MIN as an example because

the MIN shows a unique spatiotemporal noise pattern that is a unique property of per-pixel

ROICs. The spatial component arises from the mismatches between the ROICs. Therefore,

given the same photocurrent intensity, different ROICs generate varying outputs which ap-

pear as a spatial noise. Moreover, the noise introduced due to a fixed mismatch depends

on photocurrent intensity. As the photocurrent intensity for every ROIC varies with time

(due to lighting conditions), the noise introduced by the same per-pixel ROIC with a fixed

mismatch also varies with time. Hence, the intensity dependent nature of the noise man-

ifests as a temporal component. As discussed later, this complex spatiotemporal behavior

of MIN uniquely impacts the spatiotemporal tasks being performed by a DNN, and hence,
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MIN helps illustrate the feasibility and need for the cross-layer simulation developed in the

work.

The study notes that FPN observed in traditional image sensors, and the MIN discussed

in this research, are both due to local process variation or mismatch. However, a major

source of FPN in traditional column-read out based image sensors is the shared analog-to-

digital converter (ADC) in a column. MIN, as studied in this paper, does not have such

shared component and hence, are completely random across pixels. It is possible to have

a shared component, in particular, a counter, across few (for example, four) pixels in the

per-pixel read-out based digital sensors, but even such sharing is much less compared to an

ADC across a column with many pixels. Any pattern arising due to such sharing of counter

will only be limited to fine-grain locality of few (four) pixels.

2.1.2 Processing-in-Memory based Accelerators

Different from von Neumann architecture, PIMs directly integrate computation and mem-

ory so that memory module can perform computation in place. This memory-centric archi-

tecture particularly plays a critical role in data-intensive applications as it alleviate memory

bandwidth bottleneck and energy consumption from data transfer. Prior works suggested

various PIM designs using static random access memory (SRAM)[37, 38], dynamic ran-

dom access memory (DRAM)[39], and emerging non-volatile memory (eNVM) such as

resistive RAM (RRAM), phase change memory (PCM), ferroelectric field-effect transistor

(FeFET)[40, 41].

Device Non-Ideal Properties in Processing-in-Memory

One of the challenges of adopting PIM accelerators is their device non-ideal properties ag-

gravate DNN inference. For example, RRAM has stochastic variations of device resistance

due to stochastic nature of the generation and rupture of oxygen vacancies [42]. There

have been many prior efforts to mitigate the impact of device non-ideal properties on DNN
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inference. Some studies improved the robustness of DNN algorithms with noise in model

weights [11, 12] and others focused on accelerator designs for reliable DNN [43, 37]. Sim-

ulation frameworks are also developed to couple analog PIM accelerator designs with DNN

models [44, 45].

2.1.3 Computer Vision based Tasks

Computer vision based tasks extracts high-level information from digital images or video.

The research considers three vision based tasks, namely image classification, object detec-

tion, and action detection.

Image Classification

Image classification is a process to output a class or a probability that an input is in a

particular class. Many of the prior works on deep learning based image classifiers exploit

a stack of convolutional layers to extract the visual features followed by fully connected

layers [46, 47, 48, 49].

Object Detection

Object detection is the task that recognizes semantic objects, draws bounding boxes, and

assigns each of them class labels. There are two big approaches of techniques for ob-

ject detection; two-stage (e.g. faster R-CNN[50]) and single-stage detection (e.g. Single

Shot Detector (SSD[51])). Two-stage object detection first identify the potential bounding

boxes, then classify each boxes separately. Region proposal network (RPN) provides pro-

posals of potential locations of objects from convolutional feature map. Region of Interest

Pooling Layer (ROI Pooling) then extracts the region specific features for classification and

regression of bounding boxes. Single-step object detection combines detection and clas-

sification at the same time for a real-time operations. It takes intermediate feature maps

for predictions of detections and classifications. Non maximum suppression (NMS) keeps
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the predictions with high probability and eliminates those having low probability or dupli-

cated bounding boxes. In general, two-step object detectors perform better than single-step

detectors, but with the expense of larger computations and processing time.

Human Action Detection

Human Action Detection involves detecting human action with localizing both spatially

and temporally in a sequence of images. Object detection architectures are usually in-

corporated with temporal information and extended for action detection, such as R-CNN

networks [52], 3D Covolutional networks [53], and recurrent networks [54]. Temporal in-

formation is obtained from adding additional modality such as optical flow [55] or skeleton

data [56] to form a two-stream networks, or from using a video clip with fixed number of

frames [57].

Evaluation Metrics

Image Classification

• Accuracy: the proportion of true predictions among the total number of predictions

• F1 score: the harmonic mean of precision and recall

• Area Under the Receiver Operating Characteristics (AUROC): the area of ROC curve

that shows the trade-off between true positive rate and false positive rate across dif-

ferent confidence threshold

Object / Human Action Detection

• Mean average precision (mAP): Average precision (AP) is the area of the precision-

recall (PR) curve of a single class. mAP is the mean of all class AP.

Dataset

Image Classification CIFAR10 [58] and CIFAR100 [59] dataset are consists of 10, 100

classes, respectively, 500 training images and 100 testing images per class. Each images
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are 32x32 color images. Imagenet [60] dataset contains 1,281,167 training images, 50,000

validation images and 100,000 test images in 1000 classes.

Object Detection The Microsoft Common Objects in Context (MS COCO) [61] dataset

includes 118,287 frames for training, 5000 for validation and 40,670 for testing in 81 object

annotated classes.

Human Action Detection JHMDB-21 [62] dataset contains 928 clips of 21 actions such as

catch, pick, walk, and wave. UCF101-24 [63] dataset consists of 3207 untrimmed videos

with 24 sports actions such as diving, cricket, diving, biking.

2.2 Robust Deep Learning based Task

One of the common approaches to deal with the input noise injection of a DNN is adopting

an image denoising algorithm as a pre-processor. Many of the traditional image processing

techniques such as GSM [64], KSVD [65], BM3D [66] act as pre-processors, remove input

noise, and improve the quality of DNN input. Various filters like median filter [67] and bi-

lateral filter [68] are also presented. With the advance of deep learning, a variety of learning

based denoise networks are suggested using auto-encoders [19], residual learning [20], and

adversarial training [21]. All of these studies are evaluated on ideal noise, such as impulse

noise, salt-and-pepper or Gaussian noise. However, the input noise in edge environment,

for example sensor hardware induced noise or adversarial weather conditions (rain, fog,

haze), have different noise structure with the ideal noise. Therefore, pre-processors should

be evaluated with the real-world noise from the edge environment.

Besides, there are prior works that remove the input perturbations due to adversarial

weather conditions such as rain[4], snow[5], or haze[6]. The research particularly focuses

on rain removal, which is challenging due to the spatiotemporal characteristics of rain

streaks. Garg and Nayar [15] first presented comprehensive analysis of the visual effects

of rain and developed models that capture the dynamics and photometry of rain. They also

proposed hardware-based scheme to remove rain streaks, such as exposure time or depth
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of field control [16]. More recently, Liu et al. [4] first presented a DNN based rain removal

network, which uses spatiotemporal features for restoration of rain image sequence, and

further extended [69] to deal with dynamically detected video contexts. All of these studies

aim to transform rain image sequence to non rain sequence, so they are evaluated by the

spatial comparison between clean images and processed images. However, higher spatial

similarity does not guarantee better performance of action detection under rain.

2.3 Adaptive Image Sensor and Camera

Adaptive image sensor and camera controls its sensor parameter to reduce the input per-

turbation or save bandwidth/energy. Computational image sensor that detects the motion

and saturation and adaptively controls the integration time of each pixel is suggested to

eliminate motion blur and saturation [70]. Adaptive controls of the parameters such as

camera’s orientation/position is also proposed for the onboard vision system operating on

an unknown stage [71]. Motion-based image capturing methodology is presented using ac-

celerometer to decrease the motion blur and save energy of eyeglass mounted camera [72].

These works can adaptively control the sensor to reduce various input perturbations, but

they do not take account of the end task of the camera during the sensor parameter con-

trol. The effect of same perturbation on task might be different depending on the tasks

(Table 1.1), so the end task should be considered during the adaptive control of sensor.

Chalimbaud and Berry [73] selects readout of region of interest obtained from object

tracking algorithm. Wells and Chatterjee [74] controls the resolution of foreground and

background in multi-level based on the segmentation and object tracking algorithm. Mu-

dassar et al. [36] suggest a smart camera with task guided control of parameters by taking

the task result such as bounding boxes as the feedback information to the camera. How-

ever, the long latency of the end tasks (classification, object detection, object tracking, or

action detection) results in a long feedback latency, and hence, the overall throughput of

the camera must be low enough to accommodate the feedback from the task output.
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2.4 Uncertainty Estimation

Deep learning can be overconfident about its prediction [75, 76, 77, 78], which may result

in wrong predictions and ultimately lead to catastrophic outcomes, especially in safety-

critical applications. To mitigate such risks, estimating uncertainties along with task pre-

dictions is gaining attentions to understand what a model knows and does not know [13].

Uncertainty can be decomposed into two types, namely data and model uncertainty.

2.4.1 Data Uncertainty

Data uncertainty (or aleatoric uncertainty) captures complexity and noise inherent in ob-

servations, such as sensor noise or motion noise, so it cannot be reduced with more data

observations. Data uncertainty can further be categorized into homoscedastic uncertainty,

which is constant for different inputs, and heteroscedastic uncertainty, which depends on

the inputs to the model. Observation noise σ is learned as a function of the data using

non-Bayesian neural network with added weight decay parameterized by λ [13].

LNN(θ) =
1

N

N∑
i=1

1

2σ(xi)2
||yi − f(xi)||2 +

1

2
logσ(xi)

2 (2.1)

2.4.2 Model Uncertainty

Model uncertainty (or epistemic uncertainty) captures the lack of understanding of the

model on the current input. Stochastic neural networks trained with a Bayesian approach [13,

79], i.e., Bayesian neural networks (BNNs), replace deterministic model parameters with

distribution over model weights, for example a Gaussian prior distribution: W ∼ N (0, I).

Given a dataset X = {x1, ...,xN}, Y = {y1, ...,yN}, Bayesian inference is used to com-

pute the posterior over the model weights p(W|X,Y), which captures model uncertainty.

However, it is intractable to compute Bayesian inference, as marginal probability p(Y|X)

for computing posterior p(W|X,Y) = p(Y|X,W)p(W)/p(Y|X) cannot be evaluated
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analytically. Various approaches (e.g. variational inference [80, 81] and Markov chain

Monte Carlo [82]) are suggested to approximate posterior p(W|X,Y) to simple distribu-

tion q∗θ (W). However, these approaches still have difficulty to apply on large scale dataset.

Bayesian inference using dropout in neural networks (MC dropout) has been suggested

to model uncertainty through a standard DNN training procedures [14, 83]. Deep ensemble

[75] is a non-Bayesian approach that shows a high quality predictive uncertainty estimation

by random initialization of ensembles. However, these approaches still require processing

multiple models or multiple inference runs which spend large computational cost.

Besides, the concept of distillation [84] that transfers the knowledge of a large network

to a smaller network is adopted in [85, 86] to distill the knowledge of stochastic DNNs such

as ensemble networks or MC dropout to a deterministic DNN and quantify uncertainty with

less computational expenses. Some prior works approximate the distribution over predic-

tive distribution of stochastic DNNs to maintain the information of diversity in stochastic

DNNs and estimate model uncertainty [24, 25]. However, these works are distilling the

uncertainty of either classification or regression tasks, which are relatively simple.

14



CHAPTER 3

SPATIOTEMPORAL PREPROCESSING NETWORK FOR ACTION

DETECTION UNDER RAIN

3.1 Introduction

Action detection, which localizes and classifies activity on a video, is an important task in

many applications including autonomous vehicle, surveillance and sports analysis. Many

of these applications involve outdoor activities; where, adversarial weather condition such

as rain, snow, or fog can significantly degrade activity detection accuracy. Since Garg

and Nayar [15] presented rain streak analysis and model based on photometric properties,

significant progress have been made in removing rain from video. Several prior works have

developed physical model of rain streaks [15, 16, 87, 88], while learning based algorithms

to remove rain have also been proposed [89, 90, 17, 4]. The prior efforts had mostly seek

to recover rain-removed sequences from rainy videos. Hence, developed algorithms have

been evaluated based on spatial similarity between clean and derained images using peak

signal to noise ratio or structural similarity criteria. However, as demonstrated later, high

spatial similarity to clean images does not guarantee high performance on action detection.

Therefore, rain removal network for action detection remains an important problem.

This chapter studies the effect of rain on deep learning based action detection, and

propose a new rain removal network, hereafter referred to as, MoPE-Spatiotemporal, for

action detection under rain (Figure 3.1). The proposed network acts as a pre-processor and

uses spatiotemporal information for detection and removal of rain streaks, and improve

action detection accuracy. The work makes following key contributions:

• To the best of the knowledge, this is the first work to enhance performance of action

detection under rain.
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Figure 3.1: Framework of rain alert and removal network for action detection under rain.

• DNN based rain removal network is proposed that uses spatiotemporal features for

both detection and reconstruction of rain images through end-to-end training.

• Rain alert network is proposed that detects presence of rain and estimates (normal-

ized) strength of rain to predict confidence reduction on action detection.

The MoPE-Spatiotemporal is trained with JHMDB dataset [62] and rain layers from

RainSynLight25 and RainSynComplex25, which are synthesized with rain streaks models

[87, 91]. The end-to-end (MoPE-Spatiotemporal + action detection) network is evaluated

on synthesized video from JHMDB dataset and RainSynLight25. The experimental results

demonstrate that, the MoPE-Spatiotemporal improves action detection accuracy by 0.16 in

rainy scenes with minimal (0.005) degradation in accuracy for clear scenes.

3.2 Background on Rain Removal

Garg and Nayar [15] presented comprehensive analysis of the visual effects of rain and

developed models that capture the dynamics and photometry of rain. They also proposed

hardware-based scheme to remove rain streaks, such as exposure time or depth of field

control [16]. Zhang et al. [88] presented rain removal method using k-means clustering

based on chromatic and temporal properties of rain streaks. Barnum et al. [92] developed a
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model of rain streak shape and combined with statistical characteristics of rain in frequency

domain. Chen et al. [93] proposed a low-rank model from matrix to tensor structure to cap-

ture the spatio-temporally correlated rain streaks. Jiang et al. [94] presented a tensor based

approach by considering the overall directional tendency of rain streaks. Li et al. [95]

presented multiscale convolutional sparse coding based on intrinsic characteristics of rain

streaks, which multiscaled rain streaks sparsely scattered in repetitive local patterns. There

have also been several work based on learning based approach. Chen et al. [89] developed

deraining algorithm based on motion segmentation of dynamic scene using Gaussian mix-

ture model. Kim et al. [90] proposed to generate rain map from temporal correlation and

low rank matrix, and use support vector machine (SVM) to refine the rain map. Wei et al.

[17] assumed rain streaks has patch-based mixture of Gaussian distribution and it showed

good performance on various rain types. Most recently, Liu et al. [4] first presented a DNN

based rain removal network, which uses spatiotemporal features for restoration of rain im-

age sequence, and further extended [69] to deal with dynamically detected video contexts.

In addition, many studies have been done to remove rain on a single image. Zhu et al. [96]

suggested a joint bi-layer optimization method, and Luo et al. [97] utilized a wavelet tight

frame and shape prior for fast rain removal. Shen et al. [98] presented a novel convolu-

tional neural network based on wavelet and dark channel, and Chen et al. [99] proposed

an end-to-end gated context aggregation network with dilated convolution. However, all of

these studies aim to transform rain image sequence to non rain sequence, so they are eval-

uated by the spatial comparison between clean images and processed images. However, as

elaborated later, higher spatial similarity does not guarantee better performance of action

detection under rain.

3.3 Effect of Rain on Action Detection

The deep learning based action detection is primarily based on constructing class-specific

activity tubes from 2D detection network such as faster R-CNN [100, 101]. Use of two sep-

17



CNN

CNN

Convolution
ReLU

T = N-K

T = N

1. Backbone

2. Activity RPN

4. Activity 
Classification

3. ROI 
Pooling

Class 
Scores

Regression
C

3D ROI Pooling
GRU
Linear

CNN

res5res4

4 x 4 Avg Pool

C Concatenation

Proposals

Figure 3.2: Faster R-CNN based tubelet action detection network [105].

arate convolutional networks for RGB and optical flow images and fusing them to improve

recognition accuracy has also been proposed [55, 102]. Recently, integration of temporal

dimension to spatial dimension using 3D convolutional networks have been demonstrated

[103, 104]. However, all of these work consider only clean videos without considering

adversarial weather conditions.

This work first study the effect of rain on the accuracy of the baseline action detection

network. A recent tubelet action detection network with its Faster R-CNN variant is chosen

for action detection [105] as shown in Figure 3.2. At any time instant K set of images are

passed, in a sliding window manner, through a convolutional backbone to generate K fea-

ture maps. The feature map corresponding to the last frame in the stack is used to generate

activity proposals using an activity RPN. Proposals from the activity RPN are then used

to pool features from the feature stack. The pooled features are then transformed using

a gated recurrent unit (GRU). The output of the GRU is used to classify the action and

perform regression on the proposal bounding box. ResNet-101 si adopted as the convolu-

tional feature extractor. Features from res4 are used for generating activity proposals and

generating pooled features. Features after ROI pooling are then passed through res5 as per

standard practice for Faster RCNN. In the following experiments, K is set to 3.

The action detection network is pre-trained on JHMDB dataset and is evaluated on

synthesized rainy video from JHMDB dataset and RainSynLight25. Rain streaks on image
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(a) (b) (c) (d)

Figure 3.3: Sample results of action detection on a video. (a), (c) are clean videos and (b), (d)
are rain synthesized video from RainSynLight25. (a), (b) shows the action detection results without
rain removal network and (c), (d) shows the result with MoPE-Spatiotemporal. Green rectangles
indicate the recognized activity is correct and red rectangle indicates it is wrong.

(a) (b) (c)

Figure 3.4: Sample results of action detection under various rain without rain removal network.
Green rectangle indicates the recognized activity is correct and red rectangles indicate it is wrong.

sequence change the image content and affect action detection result as shown in Figure 3.3

(a), (b). Different rain configurations such as density, length, angle of rain streaks change

the action detection results and heavy rain shows large impact (Figure 3.4). The study

shows that rain streaks removal network is necessary for action detection, especially under

heavy rain.

3.4 Rain Alert and Removal Network

As shown in Figure 3.1, proposed network consists of Rain Alert Network and Rain Re-

moval Network. The rain removal network detects the rain streaks and estimates the rain-

removed image using spatiotemporal information. It outputs a derained image and feed to

action detection network. The rain alert network estimates strength (normalized) of rain

to inform the rain situation and notify that the confidence level of action detection is re-

duced due to rain. One of the challenges for using DNN to process rainy videos is that

the spatiotemporal configuration of rain can be highly diverse, and it is impossible to train
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Figure 3.5: (a) Structure of MoPE-Spatial and (b) J4R-Net [4].

the network with infinite kinds of rainy videos. To tackle this problem, rain layers set is

generated which includes hundreds of spatially varying rain layers. For each batch, rain

layers are randomly selected and added to original image sequence to emulate temporal

variations of rain. Thus, the network can be trained with highly spatiotemporally various

rain.

3.4.1 Spatial Pre-processing Based Rain Removal

First goal is to reduce the effect of rain by treating rain streaks as a spatial noise. Na et al.

has proposed mixture of preprocessor experts (MoPE) to remove ideal Gaussian noise on

images [10]. Their MoPE structure of [10] is adopted and trained with MS-COCO dataset

[61] and rain layers as shown in Figure 3.5(a) (MoPE-Spatial). The MoPE-Spatial shows

good performance on removing rain (Figure 3.6(b)) and thus good performance on object

detection under rain (Figure 3.6(d)). However, MoPE-Spatial fails on action detection un-

der rain as shown in Figure 3.7. It can detect human under rain, but recognizes as wrong

action. This is because MoPE-Spatial only use spatial features for rain removal. It brings

limitation on both 1) detection and 2) restoration of rain streaks. 1) MoPE-Spatial cannot

detect some rain streaks, especially under heavy rain where streaks are in high density and
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(a) (b) (c) (d)

Figure 3.6: Sample results of MoPE-Spatial on rain removal and object detection. (a) is rain
image and (b) is rain removal result of (a). Single Shot Detector [51] is adopted as object
detection network with mobilenet v1 [106] as backbone feature extractor in Tensorflow
API [107]. (c) is object detection result on clean image without rain removal and (d) is the
result on rain image with MoPE-Spatial.

(a) (b)

Figure 3.7: Sample results of MoPE-Spatial on action detection. (a) is the action detection
result on clean video and (b) is the result on rain video with MoPE-Spatial. Green rectangle
indicates the recognized action is correct and red rectangle indicates it is wrong.

often overlapped to each others, thus result different spatial feature. Also it leads to distor-

tion on non rain image, so requires additional gating network [10]. 2) MoPE-Spatial cannot

recover rain image to non rain image, because rain drops have size and occlude some area

of image. With spatial information only, it cannot see the information behind rain drops.

On the other hand, J4R-Net [4], recent DNN based rain removal network, uses spatiotem-

poral information for restoration of occluded region by using recurrent unit (Figure 3.5(b)).

However, J4R-Net still uses only spatial features for rain streaks detection. Therefore, fully

spatiotemporal rain removal network is necessary for action detection purpose.

3.4.2 Proposed Spatiotemporal Pre-processing Based Rain Removal

Figure 3.8 shows proposed rain removal network that exploits spatiotemporal informa-

tion to detect and recover occluded regions (MoPE-Spatiotemporal). Encoding-forecasting
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Figure 3.8: Rain removal network (MoPE-Spatiotemporal) structure.

structure [108] is used with 3 layers, 3 observations and 1 step predictions to generate one

derained image from three rain images. Rain streaks are detected during encoding process,

and restored during decoding. Reversing the order of encoding network during decoding

helps to preserve both global and local representations. Convolution GRUs [109] are used

to exploit spatiotemporal information over multiple images. 3×3 convolution or transposed

convolution layers with stride 2 and rectified linear unit (ReLU), are used as downsampling

and upsampling layers between ConvGRUs to capture spatial representation. Skip connec-

tions between convolution layers help preserve pixel wise information of original image.

Compared to MoPE-Spatial and J4R-Net, proposed rain removal network uses spatiotem-

poral information for both detection and restoration through end-to-end training.

As the proposed rain removal network uses spatiotemporal information for rain streaks

detection, it does not require gating network to prevent distortion on non-rain images as in

[10]. Instead, the gating network is adopted as rain alert network (Figure 3.9) to quantify

the amount of rain and notify the confidence drop during action detection. 31×31 receptive

field is used which is enough to detect rain streaks.

22



k3n16s1 k3n32s2 k3n64s2 k3n1s1

global mean 

+ sigmoid

Rain 

image
Normalized 

Output

convolution

instance normalization

leaky rectified linear unit

k: kernel size 

n: number of feature maps

s: stride for convolution

Figure 3.9: Rain alert network structure.

3.4.3 Loss Function and Training

For the rain synthesis function F : X → Y , derain function G : Y → X and its discrim-

inator D, several loss functions are used to train rain removal network - including pixel

difference loss (L2 loss), four level multi scale structural similarity (MS-SSIM) loss, and

adversarial loss [110]. Total loss function is defined as follows:

Lall(G,D|F ) = αLGAN(G,D|F ) + βLpixel(G|F ) + γLstructural(G|F ), (3.1)

LGAN(G,D|F ) = Ex∼pdata(x)[logD(x)] + Ey∼pdata(y)[log(1−D(G(y)))], (3.2)

Lpixel(G|F ) = ||G(F (x))− x||22, (3.3)

Lstructural(G|F ) = 1−MS-SSIM(G(F (x)), x). (3.4)

α, β, and γ are set to be 1, 0.3, and 0.7 respectively. Figure 3.10 shows that the training

loss converges after 30k epoch.

Rain alert is defined as a classification problem. For the rain alert function H , the
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Figure 3.10: Training loss behavior of MoPE-Spatiotemporal.

original image images x and the rainy images F (x), the loss function is defined as follows:

LRain alert(H) = − log(H(x))− log(1−H(F (x))) (3.5)

where the output of H is the result from the sigmoid function.

3.5 Experimental Results

In this section, experimental results of the proposed spatiotemporal pre-processing are

demonstrated for rain removal and action detection in rainy scenes. MoPE-Spatiotemporal

and rain alert network are trained with JHMDB dataset [62] and rain layers from Rain-

SynLight25 and RainSynComplex25, which are synthesized with rain streaks models [87,

91]. Rain removal is evaluated on synthesized rain images from RainSynLight25, Rain-

SynComplex25 to compare the results with previous work. Action detection network is

trained with JHMDB dataset and evaluated on synthesized video from JHMDB dataset and

RainSynLight25.

3.5.1 Rain Alert and Removal on Video

Rain alert network discriminates rain on an image and outputs the normalized amount of

rain in range of [0, 1], where, ’0’ means heavy rain and ’1’ means no rain. Figure 3.11
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0.9941 0.8639 1.924e-3 5.324e-4

Figure 3.11: Rain alert network outputs the normalized amount of rain. Yellow numbers at
right bottom shows the output of rain removal network for each images.

Table 3.1: PSNR comparison on RainSynLight25, RainSynComplex25.

JORDER [91] J4R-Net [4] MoPE-Spatial This Work
Dataset Light Complex Light Complex Light Complex Light Complex

PSNR (dB) 30.37 20.20 32.96 27.03 32.29 29.87 32.83 30.20

shows the output of rain detection network on various strength of rain.

Figure 3.12 shows sample results of MoPE-Spatiotemporal on rain removal. It is com-

pared with state-of-the-art DNN based rain removal methods, JORDER [91], J4R-Net [4],

and MoPE-Spatial using peak signal-to-noise ratio (PSNR) as comparison criteria (Ta-

ble 3.1). JORDER, MoPE-Spatial are single frame deraining methods and J4R-Net, MoPE-

Spatio temporal are video deraining methods. On RainSynLight25, MoPE-Spatiotemporal

and J4R-Net show comparable results which are better than MoPE-Spatial and JORDER.

This is because both MoPE-Spatiotemporal and J4R-Net use temporal feature to restore

rain streaks. Also, as most of the sequences in RainSynLight25 have light rain, temporal

feature is not critical on rain detection, which results proposed network and J4R-Net com-

parable. On the other hand, MoPE-Spatiotemporal shows the highest PSNR on RainSyn-

Complex25. This is because some of the sequences in RainSynComplex25 have heavy rain,

so rain streaks cannot be detected spatially, but temporally. Only MoPE-Spatiotemporal

can temporally detect rain streaks, thus shows the highest PSNR.
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Figure 3.12: Sample results of rain removal on example of RainSynLight25, RainSynCom-
plex25. Video is available in supplementary material.

3.5.2 Action Detection under Rain

Figure 3.13 shows sample results of action detection. Table 3.2 shows the accuracy of

action detection on clean and synthesized rainy videos with and without the rain removal

network. Action detection without the rain removal network shows high recognition ac-

curacy on clean videos, but the accuracy drops more than 0.15 under rain. MoPE-Spatial

without gating network improves accuracy by 0.12 under rain, but the accuracy on clean

video drops due to distortion on clean video. Gating network on MoPE-Spatial recovers

the accuracy on clean video. On the other hand, the proposed network spatiotemporally

detects rain streaks, so it maintains the accuracy on clean videos without gating network.

Also, MoPE-Spatiotemporal results in less than 0.015 accuracy drop under rain, which is

0.04 higher than using MoPE-Spatial. Figure 3.3 shows sample results of action detection.

Figure 3.3(a), (b) do not include rain removal network, so run activity is correctly recog-

nized when there is no rain, but recognized as climb stairs with high confidence under rain.

Figure 3.3(c), (d) include proposed network and the activity run is recognized regardless

of rain. Figure 3.14 shows sample results of rain removal and action detection on a real
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Figure 3.13: Sample results of action detection on JHMDB synthesized with RainSyn-
Light25, RainSynComplex25 rain layers. Green rectangle indicates the recognized activity
is correct and red rectangle indicates it is wrong. Video is available in supplementary ma-
terial.

Table 3.2: Action detection comparison on clean and rain videos. Action detection network
is trained only with clean videos.

mAP Baseline
MoPE-Spatial

w/o Gating Net.
MoPE-Spatial
w/ Gating Net. This Work

Clean 0.598 0.575 0.598 0.593
Rain 0.420 0.540 0.538 0.579

world rainy video from Youtube website1. Practical rain streaks are also well removed by

MoPE-Spatiotemporal (Figure 3.14(b)). Without proposed network, the activities are rec-

ognized as jump activities under rain (Figure 3.14(c)), and proposed pre-processor helps to

recognize run activities well under rain (Figure 3.14(d)).

Moreover, Table 3.1 and Table 3.2 show that MoPE-Spatial and MoPE-Spatiotemporal

show similar PSNR on rain removal, but action detection accuracy of MoPE-Spatiotemporal

under rain is better (0.04) than MoPE-Spatial. Hence, spatial similarity between clean and

derained images does not assure action detection performance under rain. To understand

whether a rain removal network improves action detection accuracy, one needs to evaluate

1https://www.youtube.com/
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(a) (b) (c) (d)

Figure 3.14: Sample results on a real world rainy video from Youtube website. (a) is orig-
inal practical rainy image and (b) is derained image using MoPE-Spatiotemporal. (c), (d)
show action detection results without and with MoPE-Spatiotemporal respectively. Green
rectangle indicates the recognized activity is correct and red rectangle indicates it is wrong.
Video is available in supplementary material.

performance of the end-to-end network.

3.6 Summary of the Section

In this section, DNN based fully spatiotemporal rain removal network is proposed for ac-

tion detection under rain. The proposed rain removal network, MoPE-Spatiotemporal, de-

tects rain streaks and recovers the non-rainy image using spatiotemporal features. A rain

alert network is integrated within MoPE-Spatiotemporal to estimate strength of the rain

(heavy to light) to predict the degradation of confidence during action detection. Experi-

mental results show better rain removal performance with MoPE-Spatiotemporal compared

to state-of-the-art methods and improved action detection accuracy under rain. It implies

that spatial similarity between clean and derained images does not guarantee action de-

tection performance under rain and this work is the first work to improve performance of

action detection under rain, to the best of the knowledge. Future work would be train-

ing/evaluating MoPE-Spatiotemporal and action detection network with rainy videos in

end-to-end manner, which may provide enhanced action detection under rain. Moreover,

light-weighted MoPE-Spatiotemporal for real-time problem would be necessary.
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CHAPTER 4

CROSS-LAYER NOISE ANALYSIS IN SMART DIGITAL PIXEL SENSORS

WITH INTEGRATED DEEP NEURAL NETWORK

4.1 Introduction

A critical challenge in designing smart image sensors is to ensure accurate processing even

under the image noise introduced from variations and non-idealities in the sensor (sensor

noise). There are various types of noise in CMOS image sensors, such as photon shot noise,

dark current, thermal noise, flicker noise, quantization noise of analog-to-digital converter

(ADC), fixed pattern noise (FPN), etc. [18, 111]. The resulting effect can be modeled

as noise injection on the input image of a DNN. Many works have proposed denoising

techniques to remove injected noise from the captured input image before applying to a

DNN [67, 112, 19, 20, 21]. However, the prior works have mostly considered ideal noise

in the image, such as impulse noise, salt-and-pepper noise or additive Gaussian white noise

(AWGN). On the other hand, the structure of sensor noise is highly dependent on the design

of the image sensor. Hence, it is important to study the noise structure introduced by sensor

hardware and consider this structure during training and evaluation of a DNN.

This section studies the effect of image sensor noise on DNN accuracy. There exists

different types of noise sources, and the extent of such noise depends on the design of the

pixel and ROIC. To limit the scope of the study while focusing on the need for cross-layer

(sensor and DNN) noise analysis, device mismatches are considered in readout circuits of

a digital pixel based image sensor in 3D integration [30, 31] (Figure 4.1) as an example.

Digital pixel technologies and 3D integration of image sensor promise significant advances

on designing high-bandwidth and energy-efficient smart image sensors [30, 31, 113, 114,

115, 33, 116]. Per-pixel readout, where each pixel is associated with its own read-out-
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Figure 4.1: Structure of digital pixel based image sensor in 3D integration.

integrated-circuits (ROICs), have received attention to enable high frame rate [30, 31, 113,

34, 35]. The 3D integration of a digital pixel and its ROIC enables simultaneous readout

and hence, leads to high-data-rate image sensors (Figure 4.1). Moreover, 3D integration of

vision processing engines with the ROICs allows in-situ processing of the captured images.

Recent efforts have explored the feasibility of using in-sensor vision processing using 3D

stacking of DNN accelerators with the ROIC [30, 36].

As an example of a noise source in digital pixel, this work focuses on the noise due to

device mismatches in digital pixel ROIC and resulting in the change of pixel intensities,

referring to mismatch-induced noise (MIN). This work showes that variations and non-

idealities of transistors in digital pixel based 3D sensors inject spatiotemporal noise on the

DNN input image and degrade the task performance. The key contributions are:

• Cross-layer simulation methodology is proposed that couples the circuit-based mod-

els of device mismatch in readout circuits (ROIC) of digital pixel image sensor and

noise-aware design of a DNN.

• Circuit simulation is performed to model the effect of device mismatch in the ROIC

of digital pixels and characterize the effect of ROIC design parameters on the image

noise.
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• Using the cross-layer simulation, this work studies the impact of hardware based

MIN on various DNNs of various neural architectures and tasks.

• Applications of the simulation methodology are explored on the design space explo-

rations of smart image sensors with integrated neural engines.

• This work shows that using circuit-based noise model, instead of a Gaussian noise,

during training of a DNN and design of denoising network result in more robust

performance in smart sensors.

The developed platform is evaluated with considering the CMOS image sensor designed

in 65nm CMOS technology. First, the impact of MIN is examined on DNN based image

classifiers in various architectures. Depth of model and residual blocks improve not only

task performance under noise, but robustness to change in noise level due to variations of

hardware parameters such as supply voltage or temperature in ROIC. Also, various DNN

based tasks are considered such as image classification, object detection, action detection,

and observe the impact of MIN on these tasks. Here, object/action detection refers to the

recognition, localization and classification of object/action on images. Complex task tends

to be susceptible to MIN with voltage/temperature variations in ROIC. This work further

shows that MIN show distinct noise structure compared to mathematical noise models (e.g.

AWGN), thus training a DNN with MIN using the proposed cross-layer simulation leads

to robust task performance.

4.2 Noise Simulation and Model of Digital Pixel

This section provides details of the digital pixel design and MIN that is considered as exam-

ples while presenting the proposed cross-layer simulation methodology. MIN is analyzed

from various device mismatches and how it is changed under voltage, temperature vari-

ations to associate the noise structure with hardware parameters. Also, hardware design
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based noise model is presented to generate sensor noise image from arbitrary image, and

how it is used for digital pixel-DNN cross-layer simulation.

4.2.1 An Illustrative Digital Pixel with Per-pixel Read-out

An example digital pixel is considered with per-pixel read-out consisting of a photodiode,

a photocurrent to frequency converter (PFC), and a counter as shown in Figure 4.2[30, 31].

The PFC with the counter is regarded as the per-pixel ROIC that performs A/D conversion.

Each pixel containing its own dedicated ROIC leads to simultaneous readout and results

in a high degree of parallelism. The detailed simulation waveform in PFC is shown in

Figure 4.3. A photodiode converts light to current and is modeled as a constant current

source. When TR1 is high, the capacitor at node FD discharges through the constant

photocurrent. Once FD discharges beyond the threshold voltage of M3, i.e. the voltage at

node FD falls below VDD − Vth,M3, ADC OUT starts going high. The inverter and M4

combination at ADC OUT result in a quick pull-up of the node. TR1, TR2 go to low

value and FD is pulled up. A low level at TR1 pulls down ADC OUT which sets TR2 to

high followed by TR1 going to high. The circuit repeats this process while EN is high. The

series of spikes generated at D1 act as the clock to an 8 bit counter. It generates a count

value equal to the number of pulses. The frequency of pulses is dependent on the rate of

discharge of FD. The ROIC response is hence proportional to the photocurrent.

The layout of the digital pixel along with photodiodes is shown in Figure 4.4. The

design considers the 3D image sensor architecture as illustrated in Figure 4.1. Since, the

counter and PFC are in different layers in 3D sensor platform, the ROIC layout dimension

is determined by the area of the counter which dominates the area. The PFC of the ROIC is

5.86µm x 6.65µm. The photodiode layout takes up a total of 15.1µm x 15.63µm of which

the active area of the diode is 13.91µm x 13.91µm. Note, 8-bit counter is synthesized

(15.1µm x 18.7µm) and further optimization of area may be possible with custom design.

Moreover, the design also shows the opportunities for sharing same counter across multiple
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4.2.2 Effect of Supply Voltage on ROIC

Reduction in supply voltage leads to increased delays of gates and reduced speed of oper-

ation in the ROIC. For the ROIC used in this work, the frequency of spikes is determined

by the rate of discharge of node FD and the subsequent turn ON of transistor M3. At a

lower supply voltage, a longer discharge of node FD is required before VDD − VTH,M3

can be reached. This results in slower pull-up of ADC OUT (Figure 4.5(a)) leading to

lower average pixel count at lower supply voltages compared to nominal. At higher levels

of photocurrent, the effect is especially prominent since the frequency of output spikes is

higher.

4.2.3 Effect of Temperature on ROIC

Increase in temperature leads to a twofold effect on MOS transistors; reduction of mobil-

ity which reduces device current, whereas decrease in threshold voltage that increases the

current. On the technology node this work uses for digital pixel design, the associative

current behavior is observed from the simulations on individual PMOS and NMOS tran-

sistors (Table 4.1). For low to moderate gate overdrive voltages, the device current mostly

34



(a) (b)

Figure 4.5: (a) Variation in pullup of ADC OUT with supply voltage at nominal temper-
ature and (b) variation in pullup of ADC OUT with temperature at low supply voltage.

Table 4.1: Percentage Increase in current of MOS transistor at 125◦C compared to 25◦C

PMOS NMOS

Supply
VGS VDD VDD − 0.4 VDD VDD − 0.4

0.6 17.2 477 11.9 407.9
1.0 -3.8 13.4 -6.9 9.2

increases with temperature increase, which implies the effect of reduced threshold voltage

is dominant. Moreover, the effect is more prominent at low supply voltage.

The operation of ROIC is dependent on the pull-up of node ADC OUT due to the

transistor M3 being switched ON as FD discharges through a constant photocurrent. The

discharge of FD creates a low to moderate overdrive for M3. The dominant effect on the

digital pixel circuit is thus the reduction in threshold voltage with increase in temperature.

With decrease of threshold voltage, M3 turns ON faster leading to faster pull-up of node

ADC OUT (Figure 4.5(b)) and gate delays in the ROIC also reduce, leading to more

frequent spikes and higher average count value at the output of the counter. This effect is

again more pronounced at lower supply voltages since a change in VTH has a greater effect

in a smaller overdrive.
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4.2.4 MIN in Digital Pixel ROIC

Random parameter mismatches in ROIC change the strengths of transistors and delays

in the gates. It results in a deviation in count value from the ideal which manifests as

MIN on output image. Note that the MIN from a digital pixel is introduced by the random

mismatches of each pixel, unlike traditional analog pixel based image sensors where FPN is

originated from the quantization errors and variations in the ADCs shared across a column

columns. Also, the MIN is dependent on the photo-intensity. The transistor M3 switches

based on the discharging current (photocurrent) and thus the switching time varies with the

photo-intensity. Subtracting a fixed offset value from the output, as is done in traditional

CDS, would not account for this variation.

Figure 4.6 shows simulation results of spatial distribution of MIN considering differ-

ent random instances of the ROIC dies (i.e. tier 2 and tier 3 of the 3D image sensor in

Figure 4.1). The each picture in Figure 4.6 illustrates the spatial variations of the counter

outputs from tier 3. The simulation considers mismatch in both tier 2 (PFCs) and tier 3

(counters), and assumes no correlation between process variations between two tiers. In

the rest of the discussion, each pictures are refered as an instance of the digital pixel ROIC;

however, it is important to remember that this instance includes both PFC and counter

tiers of Figure 4.1. Each pixel in an instance of the ROIC dies includes different device

mismatch, so the same level of photocurrent in the same ROIC instance displays different

pixel intensities. Also, same pixel in different instances of the ROIC experience different

extent of mismatch. Hence, different spatial patterns appear in different instances of ROIC

dies. Moreover, the deviation of pixel intensity becomes larger at the pixels with higher

photocurrent. White pixels in the original image become more visible and colorful with

MIN than black pixels with noise. Deviations in pixel intensity (count value) are statisti-

cally observed through SPICE Monte Carlo simulations at various photocurrent as shown

in Figure 4.7. Three levels of photocurrent are taken, namely 50nA, 500nA, 1.4µA, which

result in pixel intensities of 14, 99, 235, respectively at nominal voltage (1V) and tempera-
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Figure 4.6: Sample output images with MIN of two different images from various ROIC
mismatch.

ture (25◦C) without device mismatches. The count values show deviations through SPICE

Monte Carlo simulations. As noticed in Figure 4.6, high intensity pixels result in larger

deviations under mismatch. In addition, ROIC voltage and temperature aggravate device

mismatch and shift/change the distribution over count value. Reduction in supply voltage

increases transistor overdrive mismatches with threshold voltage variation that results in

high level of noise, thus higher variations of count value (Figure 4.7(a)). With increase in

temperature, the threshold voltage decreases and the mismatches become less pronounced

in the ROIC output (Figure 4.7(b)).

4.2.5 Modeling of MIN for Cross-layer Simulation

In order to couple DNN with MIN from digital pixel, hardware based noise modeling

methodology is adopted as suggested in [117] to generate noisy images from arbitrary

images. The results of circuit simulation are mapped to a DNN platform to incorporate

hardware noise into ideal images. Generating a digital pixel based noisy image is a pixel-

parallel process, and utilizes the fact that pixel intensity (counter output) COUT of a single

pixel is a function of the photocurrent Iph being sensed by the pixel, the ROIC supply

voltage V DD, the ROIC temperature T and the amount of mismatch σmismatch of a single
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pixel.

COUT = f(Iph, VDD, T, σmismatch) (4.1)

As illustrated in Figure 5.15, N iterations of Monte Carlo simulations on ROIC are pre-run

under various conditions and saved as a number of look-up-tables (LUTs) which contain

the correlation between photocurrent level and counter output at various ROIC supply volt-

ages and temperatures (f in Equation 4.1). Assuming the original image is the ideal output

from digital pixel under nominal voltage V NN, temperature 25◦C without device mismatch,

the amount of photocurrent being sensed by each pixel can be calculated from pixel inten-

sity (counter output) of input image using f−1 (Equation 4.1) at nominal condition (Fig-

ure 5.15(a)). This photocurrent can be treated as input current of ROIC with mismatch as

this work focuses on MIN which is derived from ROIC (Figure 5.15(b)).

To associate the Monte Carlo simulation results with digital pixels with random mis-

matches, ROIC mismatch matrix is introduced as follows.

Σmismatch = [σ0, 0
mismatch, σ

0, 1
mismatch, ..., σ

H-1, W-1
mismatch] (4.2)

ROIC mismatch matrix has same size as the original image (H ×W ), and each element

contains random integer from 1 to N . The integer i (1 ≤ i ≤ N ) at position (m,n) of ROIC

mismatch matrix (σm,n
mismatch = i) implies the same mismatch to i-th Monte Carlo iteration

at position (m,n) of digital pixel array. Given the ROIC mismatch matrix for a digital pixel

design and a photocurrent intensity, the pixel intensity with MIN can be calculated using f

(Equation 4.1) at a certain ROIC voltage, temperature condition.

Overall, from the correlation between photocurrent and pixel intensity f , proposed

hardware based model forms a new function F that maps between original image (Oorig)

and MIN image (OMIN ) under certain ROIC voltage (VDD), temperature (T ), and ROIC
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mismatch matrix (Σmismatch).

OMIN = F (Oorig, VDD, T,Σmismatch) (4.3)

4.3 Digital Pixel-DNN Cross-Layer Simulation

Using the hardware design based MIN model, digital pixel-DNN cross-layer simulation

flow is developed to consider MIN caused by mismatch in ROIC as shown in Figure 4.9.

This cross-layer simulation takes two steps; 1) generation of digital pixel output image and

2) training/evaluation of a DNN. During training of a DNN (algorithm 1), input images

are augmented with MIN before passing to the DNN. Adopting the hardware based noise

model (F ), the output image with MIN under certain hardware conditions can be easily

generated from an image. For each mini batch, a new ROIC mismatch matrix Σmismatch

is randomly generated to train a DNN with MIN from various ROIC mismatches. The

generated MIN image is feed to a DNN and the result is used for updating the model

weight. The whole process repeats until the loss converges. algorithm 1 shows training

a DNN for a certain voltage/temperature level for simplicity, but the DNN also can learn

the MIN from various voltage/temperature by changing voltage/temperature for each mini

batch during training. During evaluation (algorithm 2), input images are again augmented

with MIN using noise model (F ) before passing to the DNN. Note that all ROIC voltage,

temperature, and ROIC mismatch matrix are fixed to evaluate the DNN performance from a

certain smart sensor with certain hardware condition. This generated MIN image is passed

to the DNN and the output is used to evaluate the DNN performance.
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Algorithm 1: Digital Pixel-DNN Cross-Layer Train
Input : VROIC , TROIC

HardwareNoiseModelF (x, V, T,Σ)
TrainDataset{xi, yi}Ni=1

Output: ModelWeghtθ
θ ← InitWeight();
while not converged do

Sample a minibatch of size m as xs, ys;
Set Σmismatch by random;
/* generate MIN image */
xs ← F (xs, VROIC , TROIC ,Σmismatch);
/* deep learning */
ŷs ← FeedForward(xs, ys, θ);
∇θL← 1

m

∑
x,y∈xs,ys

Backprop(L, ŷ, y, θ);
θ ← θ − ϵ∇θL;

end
return θ;

Algorithm 2: Digital Pixel-DNN Cross-Layer Eval
Input : VROIC , TROIC ,Σmismatch

HardwareNoiseModelF (x, V, T,Σ)
TrainedModelθ
EvalDataset{xi, yi}Ni=1

Output: DNNPerformanceE
for xi ← EvalDataset{xi, yi}Ni=1 do

/* generate MIN image */
xi ← F (xi, VROIC , TROIC ,Σmismatch);
/* deep learning inference */
ŷi ← FeedForward(xi, yi, θ);

end
E ← EvalMetric(y, ŷ);
return E;

4.4 Simulation Results

Proposed digital pixel based MIN model is obtained from Monte Carlo simulations in 65nm

CMOS technology with 100 iterations. Three DNN based vision tasks are considered in

smart sensors, namely, image classification, object detection, and action detection. Digital
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pixel-DNN cross-layer simulation allows taking account of both hardware and algorithmic

parameters that affect the performance of a DNN. On one hand, MIN model is considered

at several supply voltage/temperature to capture the input noise characteristics on an image

based on hardware conditions. This section presents the effect of hardware oriented pa-

rameters on the DNN accuracy. On the other hand, DNNs of various architectures/tasks are

considered and noise removal pre-processor is added to observe the impact of MIN which

is dependent on algorithmic parameters.

4.4.1 Effect of MIN on Image Quality

Sensor Noise under Voltage/Temperature Variations

Figure 4.10 shows the noise behavior of sample images from digital pixels with the pixel

intensity histogram generated with the proposed hardware design based noise model. As

elaborated in previous section, a lower supply voltage results in a reduced average pixel

output and a higher temperature implies an increased average pixel output. These effects

are visible in the sample images in Figure 4.10 which show systematic shifts in the mean

for different temperature and supply voltage combinations. Visually, these effects manifest

as a change in image brightness. The impact at a reduced supply voltage of 0.6V is very

prominent. At 0.6V&25◦C, there is a reduction in the average pixel value compared to the

image at nominal voltage and temperature, which coupled with the addition of significant

noise arising from random mismatch, results in the appearance of multiple black dots in the

image. Reduction of impact of mismatches leads to lower noise at 0.6V&125◦C, and some

of the black dots disappear visually. From circuit simulations, the average pixel response at

0.6V&125◦C is higher than 1V&25◦C and is reflected in the mean of the generated images.

The impact of mismatches on ROIC operation at nominal voltage and temperature is less

pronounced and the effect of increase in temperature at nominal supply has lower impact

on the quality of image than at 0.6V supply.
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Figure 4.10: Sample images from digital pixels with PSNR and pixel intensity histogram
at various supply voltage and temperature.
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Comparison to Gaussian Noise Model

Figure 4.11 shows noisy images generated from Gaussian noise (AWGN) model and pro-

posed hardware based digital pixel noise model that show the same PSNR. Visually, noise

level of each pixel in an AWGN image is regular, whereas noise level in a digital pixel

based noisy image is uneven; some pixels show completely different color, yet other pix-

els nearly maintain their color. Histograms of pixel intensity show different behaviors of

two noise models. AWGN makes the pixel intensity distribution more regular in overall

intensities, but the digital pixel noise model shifts pixel intensities to lower values. This is

because AWGN adds Gaussian distributed noise which is equally likely to have positive or

negative value, but the proposed digital pixel noise model considers the hardware design of

digital pixels that reduces image intensity at low ROIC supply voltage.

4.4.2 Effect of MIN on Various DNN Architectures

Simulated DNN Architectures

The performance of a DNN is highly dependent on its architecture. Various image clas-

sifiers are considered, including Alexnet[46], VGG16[47], Resnet18[48], Resnet101[48],

and Mobilenetv2[49], to compare the robustness/susceptibleness of various DNNs on hard-

ware based noise. Pretrained models provided by Pytorch are adopted, which are only

trained with clean images, to observe the impact of sensor noise. Imagenet dataset[60] is

used to evaluate the performance of all the networks. Alexnet has five convolutional lay-

ers with three fully connected layers and shows the lowest accuracy on imagenet dataset.

VGG16 improves the accuracy with increased number of layers with the expense of number

of parameters/operations. Large fully connected layers at the end of Alexnet and VGG16

result in a large number of parameters with relatively less number of layers. Resnet in-

troduces residual blocks which reduce the gradient vanishing problem during training and

allow a deeper network with improved performance. Especially, Resnet101 shows the best
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Table 4.2: Comparison of DNN Architectures on Residucal Connections (Res), Number
of Parameters (Params), Number of Operations (Ops), and Accuracy on Imagenet Dataset
(Acc).

Res Params Ops (FLOP) Acc
Alexnet [46] ✗ 61.1M 0.716G 0.565
VGG16 [47] ✗ 138M 15.5G 0.716
Resnet18 [48] ✓ 11.7M 1.82G 0.698
Resnet101 [48] ✓ 44.6M 7.85G 0.773
Mobilenetv2 [49] ✓ 3.5M 0.320G 0.719

accuracy with the deepest model. Mobilenetv2 is one of the most popular architectures for

mobile and embedded vision applications, where the number of parameters and operations

are greatly reduced by adopting inverted residuals in v2 as well as depth-wise separable

convolutions in v1. Details on architectures are shown in Table 4.2.

Uniform Voltage Scaling in ROIC

Scaling supply voltage is considered of all ROICs in an image sensor into the same level

of voltage (Table 4.3). VGG16, Resnet18, Mobilenetv2 show the comparable accuracy at

1V, Alexnet results in the lowest, and Resnet101 gives the highest accuracy, as Alexnet is

the most shallow model and Resnet101 is the deepest one. When the supply voltage in

ROIC drops from 1V to 0.6V, the accuracy of these models drop in 70.9%, 61.4%, 48.7%,

30.2%, 52.4% respectively. This implies that Resnet101 is the most robust and Alexnet is

the most susceptible to change in supply voltage in smart sensors. In detail, it is observed

that the number of layers and residual blocks help better robustness to ROIC voltage. Mo-

bilenetv2 shows a comparable level of robustness to Resnet18 with less number of param-

eters/operations. Therefore, Resnet101 is desirable for high performance applications and

Mobilenetv2 for resource constrained applications. It shows that the proposed cross-layer

simulation can be used to design the DNN architecture.
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Table 4.3: Top-1 accuracy of Image Classifiers in Various Architectures under Various
ROIC Supply Voltage at 25◦C.

1V 0.9V 0.8V 0.7V 0.6V
Alexnet [46] 0.464 0.395 0.372 0.362 0.135
VGG16 [47] 0.591 0.501 0.487 0.501 0.228
Resnet18 [48] 0.599 0.535 0.526 0.527 0.307
Resnet101 [48] 0.711 0.666 0.659 0.658 0.496
Mobilenetv2 [49] 0.597 0.536 0.520 0.518 0.284

Table 4.4: Top-1 accuracy of Image Classifiers under Various ROIC Temperature at 0.6V.

25◦C 55◦C 125◦C
Alexnet [46] 0.135 0.244 0.401
VGG16 [47] 0.228 0.317 0.537
Resnet18 [48] 0.307 0.412 0.556
Resnet101 [48] 0.472 0.574 0.683
Mobilenetv2 [49] 0.284 0.409 0.551

Temperature in ROIC

This work considers the temperature change in ROIC and its impact on DNNs in various

architectures. At nominal voltage, as the noise level from digital pixels is hardly changed

with temperature (Figure 4.10), it does not show a meaningful impact on the task perfor-

mance. Temperature shows greater impact at low voltage (0.6V) as shown in Table 4.4.

Alexnet shows the poorest result and Resnet101 gives the best. As temperature increases

from 25◦C to 125◦C, image classification accuracy of each architectures increase in 2.97x,

2.36x, 1.81x, 1.45x, 1.94x, respectively due to the reduction of noise level. This result is

consistent with Table 4.3, where model depth and residual blocks in the model help the

robustness to the change in noise level.
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4.4.3 Effect of MIN on Various Computational Tasks

Simulated Tasks

Three computer vision tasks are considered, which are only trained with clean images, to

characterize the effect of ROIC induced sensor noise and show the need for cross-layer

noise analysis.

Image Classification. Image classification is a process to output a class or a probability

that an input is in a particular class. Many of the prior works on deep learning based image

classifiers exploit a stack of convolutional layers to extract the visual features followed by

fully connected layers. This section considers image classifiers in Resnet101[48].

Object Detection. Object detection is the task that recognizes semantic objects, draws

bounding boxes, and assigns each of them class labels. One of the most popular one-step

object detectors, SSD[51], combines detection and classification at the same time for a

real-time operation (Figure 4.12(a)). It takes intermediate feature maps for predictions of

detections and classifications. Non maximum suppression (NMS) keeps the predictions

with high probability and eliminates those having low probability or duplicated bound-

ing boxes. SSD with MobileNetv1[106] is adopted as a backbone feature extractor in the

following experiments.

Action Detection Human action detection involves detecting human action with localiz-

ing both spatially and temporally in a sequence of images. Faster R-CNN variant of tubelet

action detection network[57] with Resnet101[48] is chosen as a backbone extractor using k

set of images (Figure 4.12(b)). k feature maps from convolutional backbone are generated

and activity RPN uses the feature map corresponding to the last frame to generate activity

proposals. ROI pooling extracts features from k feature maps using the proposals and gated

recurrent unit is used for classification and regression of proposal bounding boxes. In the

following experiment, k is set to be 3.

Dataset. Imagenet dataset[60], MS-COCO 2014 dataset[61], and JHMDB dataset[62]
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Table 4.5: Task Performance under Various ROIC Supply Voltage at 25◦C. Top-1 accuracy
for image classification and mAP with IOU=0.5 is used for object/action detection.

1V 0.9V 0.8V 0.7V 0.6V
Image Classification 0.711 0.666 0.659 0.658 0.496
Object Detection 0.363 0.335 0.325 0.315 0.231
Action Detection 0.491 0.421 0.423 0.417 0.292

are used to evaluate the performance of image classification, object detection, and ac-

tion detection under digital pixel noise, respectively. Mean average precision (mAP) with

intersection-over-union (IOU) threshold 0.5 is used as a performance evaluation metric of

object detection and action detection.

Uniform Voltage Scaling in ROIC

Uniform voltage scaling is applied on smart sensors and the impact of sensor noise on

various DNN tasks is observed (Table 4.5). When the supply voltage drops from 1V to

0.6V, the performance of image classifier, object detection, and action detection decrease

in 30.2%, 36.4%, 40.5%, respectively. It is observe that the supply voltage change in

ROIC results in the biggest impact on action detection and smallest on image classification

tasks. This is because action detection is a more complicated process with a large number

of parameters/operations which makes it vulnerable to change in input noise level. The

results show that the proposed cross-layer simulation can be used to design the electrical

parameters of the ROIC, such as operating voltage. It also suggests the opportunity for

run-time scaling of supply voltage to trade-off accuracy with ROIC energy consumption.

Temperature in ROIC

Impact of ROIC temperature is examined on various DNN tasks. Again, the impact of

temperature at nominal voltage is trivial, so task accuracy at a low voltage (0.6V) is pre-

sented (Table 4.6). The noise level decreases with temperature increase, thus all the task

52



Table 4.6: Task Performance under Various ROIC Temperature at 0.6V. Top-1 accuracy for
image classification and mAP with IOU=0.5 is used for object/action detection.

25◦C 55◦C 125◦C
Image Classification 0.472 0.574 0.683
Object Detection 0.231 0.281 0.337
Action Detection 0.292 0.367 0.461

performance increases in 1.45x, 1.46x, 1.58x, respectively. Image classification is the most

robust and action detection is the most susceptible to change in temperature, which result is

consistent with the behavior on change in supply voltage (subsubsection 4.4.3). The results

show that proposed cross-layer simulation can be used to examine the robustness of a DNN

to the temperature variations in ROIC.

4.4.4 Reducing the Effect of Sensor Noise on DNN Accuracy

Re-training a DNN with Sensor Noise

Proposed digital pixel-DNN cross-layer simulation is used to show the effect of digital pixel

noise on a DNN and necessity to use it during DNN design and training phase. Several

DNNs are trained with no noise (Baseline), AWGN (AWGN DNN), and digital pixel noise

(Sensor DNN) and evaluate them with digital pixel noise as shown in Table 4.7, Table 4.8.

AWGN DNN is trained with AWGN variance of 0.09 and Sensor DNN is trained with 0.6V

ROIC supply voltage at nominal temperature which show the same PSNR. All the cases

are evaluated with noisy images from digital pixels under 0.6V supply voltage. Training

and evaluation of a DNN with MIN is elaborated in section 4.3. For all the tasks and ar-

chitectures, the accuracy drops as digital pixel noise is injected to input images. AWGN

DNN shows improved performance compared to Baseline, but Sensor DNN shows more

enhancement. Distinguished impact of hardware based noise compared to mathematical

noise on a DNN can be quantified by observing the performance improvement from AWGN

DNN to Sensor DNN. The accuracy of image classification improves by 43%, 40%, 28%,
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Table 4.7: Top-1 accuracy of Image Classifiers in Various Architecture on Digital Pixel
Noisy Images with DNNs Trained with No Noise (Baseline), AWGN (AWGN DNN), and
Digital Pixel Noise at 0.6V, 25◦C (Sensor DNN).

Baseline AWGN DNN Sensor DNN
Alexnet [46] 0.135 0.337 0.483
VGG16 [47] 0.228 0.451 0.633
Resnet18 [48] 0.307 0.537 0.687
Resnet101 [48] 0.496 0.578 0.687
Mobilenetv2 [49] 0.284 0.493 0.644

Table 4.8: Various Task Performance on Digital Pixel Noisy Images with DNNs Trained
with No Noise (Baseline), AWGN (AWGN DNN), and Digital Pixel Noise at 0.6V, 25◦C
(Sensor DNN). Top-1 accuracy for image classification and mAP with IOU=0.5 is used for
object/action detection.

Baseline AWGN DNN Sensor DNN
Image Classification 0.496 0.578 0.687
Object Detection 0.208 0.244 0.287
Action Detection 0.292 0.508 0.540

19%, 31% in each structure, respectively. Resnet101 shows less impact by training with

sensor noise, as batch normalization in its residual blocks can be treated as injecting noise

on input during training, thus improving robustness to input noise [118]. For DNNs of var-

ious tasks, the enhancement is 19%, 18%, 6.3% on image classification, object detection,

and action detection, respectively, so the impact of sensor noise on action detection is much

less than other tasks. This is because action detection exploits spatiotemporal features of

images and both AWGN and the digital pixel based noise model hardly distorts temporal

information, as they are spatial noise models which do not show temporal correlations. All

the DNN architectures and tasks show performance enhancement by training with digital

pixel noise, so it is necessary to exploit DNNs with image sensors.
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Table 4.9: Top-1 accuracy of Image Classifiers without and with Denoise Network at 25◦C.

w/o Denoise Net. w/ Denoise Net.
1V 0.6V 1V 0.6V

Alexnet [46] 0.464 0.135 0.512 0.402
VGG16 [47] 0.591 0.228 0.641 0.454
Resnet18 [48] 0.599 0.307 0.642 0.507
Resnet101 [48] 0.711 0.496 0.722 0.620
Mobilenetv2 [49] 0.597 0.284 0.641 0.485

Denoise Network with Sensor Noise

A denoising process can be considered as a pre-prossesing network to mitigate digital pixel

noise and increase a DNN performance. Na et al. [10] have proposed a mixture of pre-

processor experts (MoPE) to remove AWGN on images. MoPE architecture is adopted

as a pre-processing denoise network and trained with proposed digital pixel noise model,

which brings different impacts on various DNNs as shown Table 4.9, Table 4.10. For all

the architectures and tasks, the task performance increases with denoise process and the

improvement is larger at low voltage as the original noise level at 0.6V is much higher than

the noise level at 1V. For image classifiers in various architectures, they show 2.97x, 2.36x,

1.81x, 1.45x, 1.94x of increase in accuracy at 0.6V, which is consistent with Table 4.3. The

most susceptible model, Alexnet, takes the largest advantage and the most robust model,

Resnet101, shows the least impact from using denoise networks. For various tasks, denoise

network enhances task performance at 0.6V, by 1.25x, 1.27x, 1.74x, respectively. As the

action detection is highly affected by the change in noise level (Table 4.5, Table 4.6), it also

takes the most benefit from denoising. The results imply that digital pixel-DNN cross-layer

simulation can be coupled with a DNN based denoise network.
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Table 4.10: Task Performance without and with Denoise Network at 25◦C. Top-1 accuracy
for image classification and mAP with IOU=0.5 is used for object/action detection.

w/o Denoise Net. w/ Denoise Net.
1V 0.6V 1V 0.6V

Image Classification 0.711 0.496 0.722 0.620
Object Detection 0.363 0.231 0.376 0.272
Action Detection 0.491 0.292 0.559 0.508

Figure 4.13: Histogram of image classifier accuracy on MIN images from various ROIC
mismatches.

Chip-to-Chip Variations of DNN

MIN in digital pixels show different intensity deviations as well as different spatial pat-

terns in various ROIC instances as observed in previous section. Thus, their impact on a

DNN might be different as well. Image classifications (Resnet101[48]) with MIN from 100

ROIC instances and different mismatches are evaluated (Figure 4.13). DNN shows diverse

accuracy depending on the ROIC instance, though the variation of task accuracy (0.0311)

is not very large. Therefore, a DNN trained with MIN from random mismatches can be

used for various chips without significant loss of task accuracy.
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4.4.5 Case Study: RoI Based Supply Voltage Control

The concept of Region-of-Interest (RoI) based processing and feedback to camera is of-

ten used to improve performance or energy reduction [119, 120, 121, 122]. This section

considers RoI voltage control, where RoIs are feedback to each pixel to control the ROIC

supply voltage between nominal and low voltage as shown in Figure 4.14. The DNN per-

forms object/action detection on ROIC output images and feeds RoI information, such as

bounding box coordinates containing objects of interest, back to each pixel-parallel ROICs

to utilize for supply voltage control. ROIC supply voltage is set to nominal when corre-

sponding pixel is in RoI and set to low when it is in non-RoI. This is because nominal

voltage with low level noise helps object detection and low voltage helps saving energy.

RoI based noise controlled image, which shows some low noisy squares and high noisy

background, is used in the DNN and new RoI information is fed to ROIC for the next

frame. 3D integrated structure of image sensors where each pixel is associated with its own

ROICs allows RoI voltage control.

Table 4.11 and Table 4.12 compare uniform voltage scaling and RoI voltage control

in terms of the object/action detection accuracy and normalized ROIC energy consump-

tion. The results are evaluated on one sequence of images in the KITTI dataset [123] for

object detection and a JHMDB dataset for action detection. Hardware based digital pixel

noise model allows to explore the trade-off between the DNN accuracy and ROIC energy.

The energy is calculated for each pixel of a frame, as a function of its intensity and volt-

age, with the median energy from Monte Carlo simulations. RoI voltage control on both

object/action detection shows improved detection accuracy with 60%-68% energy saving

compared to uniform nominal voltage scaling, because low voltage is applied to non-RoI

which is usually much larger than the area of RoI.
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Figure 4.14: Overall scheme of RoI based supply voltage control.

Table 4.11: Object Detection Accuracy and Normalized ROIC Energy Consumption of
Uniform Voltage Scaling and RoI Voltage Control. Nominal V is set to 1V and Low V is
set to 0.6V.

Uniform Nominal V Uniform Low V RoI V
mAP 0.406 0.397 0.407
ROIC Energy 1 0.269 0.327

Table 4.12: Action Detection Accuracy and Normalized ROIC Energy Consumption of
Uniform Voltage Scaling and RoI Voltage Control. Nominal V is set to 1V and Low V is
set to 0.6V.

Uniform Nominal V Uniform Low V RoI V
mAP 0.491 0.292 0.393
ROIC Energy 1 0.282 0.400
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Table 4.13: Energy and DNN Accuracy (Top-1) of Two Pixel Designs with different area.

Baseline Pixel Large Pixel
ROIC Voltage 1V 0.6V 0.6V
Normalized Energy 1 0.31 0.496
Top-1 Accuracy 0.724 0.516 0.624

4.4.6 Case Study: Effect of ROIC Area on a DNN

Random mismatch due to device parameters reduces with increase in size of transistors.

Increase in device size in the PFC design can potentially reduce the effect of MIN but lead

to higher power dissipation. On the other hand, the decreased MIN can improve the DNN

performance. Energy-DNN tradeoff analysis of digital pixel ROIC is demonstrated using

the digital pixel-DNN cross-layer simulation framework as shown in Table 4.13. Digital

pixel design (Figure 4.2) is referred as Baseline Pixel, and a pixel with all devices of PFC

scaled by 4x larger widths as Large Pixel. Same dynamic range is ensured by adjusting the

frame rate. MIN models of both pixels are formulated with 30 iterations of SPICE Monte

Carlo simulations and adopted in cross-layer simulation. Resnet 101 [48] image classifier

is trained with clean images to observe the impact of MIN.

Baseline pixel results in degraded DNN accuracy (69%) at low ROIC voltage (0.6V).

Comparing baseline pixel and large pixel at 0.6V, the larger pixel shows 60% increase in

energy compared to the baseline at 0.6V, but shows an improvement of 20.9% in DNN

accuracy as MIN decreases in large devices. The large pixel shows the potential of design

space exploration to operate in a region of intermediate DNN accuracy while using lower

energy.

4.5 Summary of the Section

This section studied the effect of image noise derived from the digital pixels on the accuracy

of DNN based vision processing in smart sensors. A cross-layer simulation methodology is
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developed to couple circuit-level simulations of digital pixels with a DNN. The cross-layer

simulation allows extracting the circuit level noise models for accurate training/evaluation

of a DNN in smart sensors. Simulation results show that proposed hardware based noise

model has distinct noise structure compared to mathematical noise model, which implies

the necessity of the digital pixel-DNN cross-layer simulation. MIN from 3D digital pixel

is used as an example to demonstrate the proposed framework. Extensive design space

explorations in smart sensors is demonstrated to show the feasibility of the cross-layer sim-

ulation. Proposed cross-layer simulation is applied at various supply voltage/temperature

in ROIC to observe the change of noise structure by voltage/temperature variations and

its impact on DNNs of various tasks/architectures. The simulation results show that the

proposed platform can be used to design electrical parameters such as supply voltage of

ROIC or algorithmic parameters such as DNN architecture. Moreover, evaluation of RoI

based supply voltage control is demonstrated in smart sensors with accuracy/energy anal-

ysis. Proposed cross-layer framework can be extended to include other sources of noise

given the models of such noise.
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CHAPTER 5

EARLY WARNING GUIDED ADAPTIVE SENSOR

5.1 Introduction

Previous section discusses several approaches to design robust deep neural networks (DNNs).

Robust deep learning based tasks may help improve the reliability of the sensor system, but

it cannot eliminate all sources of failures. Using incorrect DNN output can lead to catas-

trophic system failure in a real-time environment even after expending significant latency

(and energy) to process complex DNNs [48, 50, 57].

Several approaches have been developed to estimate noise level in an image[124, 22,

23]. For example, a DNN can be trained to predict noise level in the image as illustrated

in Figure 5.2(a). However, the degradation of the quality a DNN due to input perturbations

varies depending on the type of perturbation and the task being performed as described in

Table 5.1. Under random perturbation, namely, additive white gaussian noise (AWGN) and

pixel noise (estimated using[125]) with same PSNR, object detector is the least affected

task and action detector is the largest affected task. On the other hand, action detector

results in the highest robustness with low resolution input. Hence, a framework to estimate

the effect of input perturbation must consider the target task.

In
p
u

t 
Im

ag
e

t
WarningNet

Task

Task

SAFE

Sensor control

Figure 5.1: Overview of application of WarningNet in autonomous system.
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Table 5.1: Normalized accuracy of various tasks under AWGN, image resolution, and pixel
noise.

PSNR
Image

Classification
Object

Detection
Action

Detection

AWGN 23.30 0.876 0.878 0.781
Image Resolution 23.30 0.438 0.564 0.838
Pixel Noise 23.30 0.860 0.873 0.857

(a)

(b)

Image Noise 

Level Estimator

Original

Noisy

Input Image

Random Noise

Random Noise Level ̂

GT Random Noise Level σ 

WarningNet

Task

Input Image

Original
Perturbed Task Behavior t

Task Behavior (   )

Labeling 

Metric

t̂

LTask

Random/Structured Perturbation

Figure 5.2: Frameworks to train (a) a noise level estimator and (b) a DNN based Warn-
ingNet.

This chapter presents an adaptive sensor that controls its operation using feedback from

an embedded and lightweight deep learning platform, referred to as the WarningNet (Fig-

ure 5.1). The WarningNet, a novel deep learning platform, exploits the input features to

estimate the statistical impact of input perturbations on tasks. Training methodology is

presented that brings task metrics into training process and trains WarningNet to estimate

task-specific accuracy degradation instead of only predicting noise levels at the input (Fig-

ure 5.2(b)). The WarningNet estimates the potential of task failure within a fraction of

time/energy required by the complex DNN for the end task, allowing fast and energy-

efficient warning generation.
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The functionality of the WarningNet is demonstrated on different DNN-based visual

inference tasks, namely, image classification, object detection, and action detection, under

AWGN, image resolution, and pixel operating voltage. Simulation results show that Warn-

ingNet can provide early warning of task failures with 67%-71% of accuracy in 21×−60×

shorter running time compared to the DNN based task.

Two case studies are presented to discuss the operation of the proposed adaptive sen-

sor considering a digital pixel image sensor with a per-pixel read-out circuit (ROIC). In

the adaptive sensor model, the ROIC of the sensor normally operates at resource-efficient

condition, for example, uses a reduced spatial resolution or a lower operating voltage. For

every sampled frame, the WarningNet predicts task accuracy. When the task failure is pre-

dicted, a feedback is generated to reduce input perturbations, for example, by increasing

sampling resolution or operating voltage. The better input quality improves accuracy of the

DNN for the end task, but at the expense of increased bandwidth and/or energy demands

of the sensors. Case studies show that the adaptive operation helps dynamically trade off

sensor bandwidth (sampling resolution) and ROIC energy (operating voltage) with task ac-

curacy during sensor operation. Therefore, the adaptive sensor prevents task failures when

required while maintaining resource-efficiency during rest of the operation.

5.2 WarningNet

5.2.1 Network Architecture and Training Method

WarningNet is trained to estimate the task behavior (t̂) based on the spatiotemporal char-

acteristics of image (Figure 5.2(b)). A clean image is augmented with random/structured

perturbation to train the network with perturbations. Based on the task output of the aug-

mented images, a labeling metric quantifies the impact of input perturbation on the task

as the ground truth task behavior (t). t is the statistical task performance of a given input

image. It is a continuous value in a range of 0 to 1, and 1 means the task network can

perform as on clean image and 0 means the task network cannot work at all.
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Figure 5.3: Architecture of WarningNet.

This chapter proposes a simple and lightweight DNN as the WarningNet architecture

to provide early warning within a fraction of time required by the end task (Figure 5.3).

WarningNet utilizes spatial and spatiotemporal features of input to estimate the behavior of

spatial and spatiotemporal tasks. The examples of spatial tasks include image classification

or object detection, while action detection represents spatiotemporal tasks. Convolutional

layers with 3×3 kernels and a recurrent unit are used for spatiotemporal feature extraction

and additional convolutional layer with linear regression is utilized to estimate the behavior

of task network (t̂).

Let t̂ and t denote the estimated task behavior and ground truth task behavior. L2 loss is

used to train the WarningNet as follows: LTask = ||t̂− t||22. For all the tasks, t̂ is normalized

with t̂ of original clean image, to reflect the task performance degradation exclusively by

the input perturbation.

5.2.2 Labeling Metrics for Ground Truth of Task Behavior

Labeling metric that generates ground truth task behavior should vary from task to task. Ba-

sic WarningNet architecture can consider labeling metrics of different tasks and be trained
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to estimate task behavior under various perturbation levels. In this thesis, WarningNets for

three tasks are presented.

Image Classification

As image classification only includes spatial information, an abbreviated version of Warn-

ingNet is used, where recurrent unit is eliminated and spatial features directly feed to the

convolutional layer followed by fully connected layers (spatial WarningNet). Given ground

truth label of task, Figure 5.4(a) shows that ground truth task behavior t is set to be the out-

put softmax probability of ground truth class. t is normalized with the t of original clean

image. t decreases as the input perturbation is aggravated, so it can represent the task

degradation due to input perturbation.

Object Detection

Similar to the case of image classification, object detection also uses only spatial features,

so spatial WarningNet is trained to estimate the statistical performance of object detection

under input perturbation. As shown in Figure 5.4(b), the bounding boxes with confidence

scores of overall classes on input image are given from object detection. When an es-

timated bounding box of ground truth class shows larger than 0.5 intersection of union

(IoU), the corresponding confidence score is selected as ground truth task behavior t for

training WarningNet. If there are more than one ground truth objects in an image, t is the

average of the corresponding confidence scores. t is then normalized with the t of original

clean image. The failure of object detection is determined by the error in drawing correct

bounding boxes of ground truth class. Hence, confidence score of the bounding box is used

to estimate the task behavior under input perturbation. If no such bounding box is detected,

t becomes 0.
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Figure 5.4: Labeling metrics to generate ground truth task behavior (t) of input image for
(a) image classification, (b) object detection, and (c) action detection.
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Action Detection

Similar to object detection aware WarningNet, confidence score is adopted as the ground

truth task behavior t. A detection is assumed successful when the corresponding estimated

bounding boxes of ground truth class show larger than 0.5 IoU (Figure 5.4(c)). Besides,

action detection is a spatiotemporal problem, so spatiotemporal version of the WarningNet

(Figure 5.3) is necessary for action detection.

5.3 Verification of WarningNet

WarningNet is verified for image classification, object detection, and action detection tasks

under AWGN as a sample perturbation to show its functionality. Resnet 101[48] is adopted

as image classification network and backbone feature extractor for object detection and

action detection. Faster R-CNN[50] and a faster R-CNN variant of tubelet action detec-

tion network[57] with 3 input images are used for object detection and action detection

network, respectively. Imagenet dataset[60], MS-COCO 2017 dataset[61], and JHMDB

dataset [62] are used for training and evaluation of WarningNet to estimate accuracy of

image classification, object detection, and action detection, respectively.

5.3.1 Task Behavior Estimation of Different Tasks

The task behavior metric (t̂) of WarningNet predicts the degradation of DNN accuracy due

to input perturbation. The task behavior (t̂) is decreased under high level of perturbation

(low PSNR) (Figure 5.5(a)), thus it shows correlation to the task accuracy (Figure 5.5(b)).

Moreover, WarningNet can estimate the task behavior of each task. As shown in Fig-

ure 5.5(a), WarningNet estimates that the object detection accuracy will degrade the least

and action detection will degrade the most under perturbation, which is consistent with the

result in Table 5.1. It also predicts the task behavior in frame basis in real-time. Figure 5.6

shows frame distributions over predicted task behavior on whole dataset under different
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Figure 5.5: (a) Estimated task behavior from WarningNet and (b) correlations to the nor-
malized task accuracy under AWGN.

PSNR. Degradation in PSNR significantly increases the variation in (t̂) for action detec-

tion, suggesting higher noise sensitivity than object detection or classification. The visual

examples in Figure 5.7 also illustrate the same observation, where task behavior metric (t̂)

(top left corner of the image) is higher for object detection than action detection for same

levels of noise/rain, and actual task result shows the same behavior.

5.3.2 Early Warning Generation

Based on the estimated task behavior metric (t̂), WarningNet generates warning W for the

given input as follows:

W (p̂, t̂) =


Warning t̂ < tTh

Pass t̂ > tTh

(5.1)

tTh is a threshold to the task behavior. As WarningNet is designed to predict the task

performance degradation due to input perturbation, it creates warning when the input is

estimated to result in unreliable task.

Table 5.2 shows the recall, precision, and accuracy of WarningNet’s early warning

for different tasks with tTh=0.5. WarningNet for object detection shows the highest re-
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Figure 5.7: Sample results of WarningNet for (a) object detection and (b) action detection
on clean/noisy input. Green rectangles indicate the detection is correct and red rectangle
indicates it is wrong. Yellow numbers at top left are the estimated task behavior by Warn-
ingNet.

call/precision on reliable input, but the lowest recall on unreliable input. This is because

object detection network has the largest robustness to the input perturbation (Table 5.1),

so WarningNet is optimistic when the input is perturbed. Likewise, WarningNet for ac-

tion detection is learned to be pessimistic, and results in the lowest recall/precision of no

warning and the highest recall/precision for warning on perturbed input. Overall, Warn-

ingNet shows accuracy of 0.67-0.71 of early warning while jointly estimating the type of

perturbation and the reliability to the task.

5.3.3 Tuning Pessimism/Optimism of Early Warning

The threshold task behavior (tTh) in equation (Equation 5.1) determines how much of per-

formance degradation by input perturbation is allowed for a reliable task. Large tTh make

WarningNet hardly accept performance degradation as reliable task (pessimistic), so the

recall of reliable perturbed input becomes close to 0 and the recall of unreliable perturbed
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Table 5.2: Recall, precision, and accuracy of early warning from WarningNet for various
tasks under AWGN (@tTh = 0.5).

Image
Classification

Object
Detection

Action
Detection

Recall
No warning 0.54 0.97 0.24

Warning 0.63 0.10 0.89

Precision
No warning 0.44 0.77 0.19

Warning 0.70 0.58 0.91

Accuracy 0.71 0.67 0.68

input close to 1. Likewise, small tTh considers most of perturbed input show reliable task

(optimistic), and the recall of no warning from perturbed input near to 1 and recall for warn-

ing from perturbed input to 0. If a tTh make two recalls equal, WarningNet is considered to

be neutral. Therefore, pessimism/optimism of WarningNet can be tuned by adjusting tTh.

Figure 5.8 describes the recalls of WarningNet on reliable/unreliable perturbed input

with a range of tTh. With tTh=0.5, which is the threshold for Table 5.2, WarningNet is

neutral for image classification, optimistic for object detection, and pessimistic for action

detection, which result is consistent with Table 5.2. Moreover, WarningNet for object

detection and action detection can be more neutral with higher and lower tTh, respectively.

The overall accuracy of image classification and action detection increases at a higher tTh,

but an opposite behavior is observed for object detection.

5.3.4 Computational Complexity

Table 5.3 demonstrates that WarningNet has 1500× less parameters, 19 × −57× less

number of operations, and 20×−60× shorter running time compared to DNNs themselves.

Actual run time on GPU (NVIDIA GeForce GTX 1080Ti) is measured and run time on

a DNN accelerator [126] is calculated based on the number of floating points. Hence,

WarningNet can provide early warning to the system within a fraction of time compared to
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Table 5.3: Computational complexity analysis. Input image size of 300×300 considered.

WarningNet
Image

Classification
Object

Detection
Action

Detection

# params (MB) 0.031 44.6 47.1 47.1
Ops (GFLOP) 0.735 14.6 15.1 41.9
Run Time on GPU (ms) 10 196 203 371
Run Time on Acc. (ms) 0.5 10.6 10.9 30.3

the target task networks.

5.4 Early Warning Guided Camera Control

In this section, two case studies of early warning guided camera parameter control are

demonstrated to provide adaptive low power sensor operations on image sequences. ILSVRC

2015 dataset [127] and JHMDB dataset [62] are used for train and evaluation of the Warn-

ingNet for object detection and action detection, respectively.

5.4.1 Case Study I: Sensor Resolution Control

Reducing image resolution helps save bandwidth between image sensor and processor.

When an image is subsampled in a factor of K2, each pixel of the low resolution image

shows the average pixel intensity of K by K pixels in the original image and results in K2

times less bandwidth (Figure 5.9(a)). However, low resolution image sacrifices some image

features that lead to the DNN performance degradation (Figure 5.10(a)). WarningNet for

sensor resolution control learns the task degradation compared to the nominal operation of

sensor as shown in Figure 5.10(a), Table 5.4(a). It can predict the unreliable task due to low

resolution input with 0.79 of accuracy (tTh = 0.7). The recall and accuracy can be tuned

with controlling tTh (Figure 5.11(a)).

The design of early warning guided resolution control in smart sensor is illustrated in

Figure 5.12. For each frame, the sensor operates at a low resolution as the default mode.
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Figure 5.9: Concept of controlling image resolution.

Table 5.4: Recall, precision, and accuracy of early warning from WarningNet for action
detection under image resolution and sensor noise (@tTh = 0.5).

(a) Image Resolution (b) Sensor Noise

Recall
No warning 0.84 0.57

Warning 0.66 0.43

Precision
No warning 0.84 0.22

Warning 0.66 0.66

Accuracy 0.79 0.60
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Figure 5.10: Sample results of WarningNet for action detection on nominal/low (a) image
resolution and (b) pixel voltage images. Green rectangles indicate the detection is correct
and red rectangles indicate it is wrong. Yellow numbers at top left are the estimated task
behavior by WarningNet.
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pixel noise with various tTh for action detection.
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Figure 5.12: Overall scheme of early warning guided sensor resolution control.

WarningNet estimates the task behavior of the frame under low resolution, and if the task

is predicted to be reliable (t̂ > tTh), the current frame is used for the task and there is no

feedback to the sensor. If the task is estimated to be unreliable (t̂ < tTh), all the pixels

are turned on to recover the loss of input feature by low resolution, and nominal resolution

image is used for the task. As the latency and number of operations of WarningNet is

much smaller than task networks (Table 5.3), the latency/energy overhead by WarningNet

is negligible.

Figure 5.9(b) shows an illustrative hardware realization of resolution control consider-

ing digital pixel sensors with per-pixel ADC (implemented as Pulsed Frequency Counter or

PFC). Sensor is divided into pixel blocks of size K×K. The PFC outputs of K×K pixels

are serialized and transmitted to the image processing engine via a single bus. Assuming a

sample rate of f frames per second and ‘8-bit’ per pixel, this results in K×K×8×f bits-

per-second of data rate on each of the output bus. Assuming, a total image size of N ×N

pixel, this results in a data rate of N ×N × 8× f . The architecture is modified to add a set

of de-multiplexers, an averaging circuit, and a multiplexer. The WarningNet output is used

to select the de-multiplexer and multiplexers such that, when low-resolution is acceptable

the pixel values from K × K pixels are averaged to create a single value which is then

transmitted to the processing engine resulting in an average bandwidth of [N
K
]× [N

K
]×8×f

bits-per-second for the entire sensor.
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Figure 5.13 demonstrates a case study of uniform low resolution sensor (Low Res.) and

early warning guided sensor with resolution control (Adaptive) for action detection on an

image sequence. During 0th-3rd frames, low resolution sensor fails to detect clap action as

it loses some useful input features. WarningNet predicts this task failure ahead of time, so

instead of passing the low resolution image to the task, it feeds back to the sensor, switches

to the nominal resolution, and uses the nominal resolution image for the task, resulting in

task success. It imposes bandwidth/energy overhead by utilizing both low and nominal

resolution images for a single scene as shown in the graph of bandwidth in Figure 5.13.

However, it prevents passing the low resolution image to the task which will consume

significant computation energy and still generate an in-correct result. During 4th-5th frames,

input features in low resolution are sufficient for detecting the action. WarningNet predicts

the task success with low resolution, so it stays at low resolution. It repeats for rest of the

frames.
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Figure 5.13: Case study of uniform low resolution sensor (Low Res.) and early warning guided sensor with sensor resolution control
(Adaptive) with tTh=0.5 for action detection on an image sequence. Green rectangles indicate the detection is correct and red rectangle
indicates it is wrong.
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Figure 5.14: Task performance (mAP) and normalized average bandwidth of uniform nom-
inal/low resolution sensor and WarningNet guided smart sensor with various tTh. Warn-
ingNet is turned off beyond tTh > 0.8.

Adjusting tTh of WarningNet allows trading off the average bandwidth and accuracy

of the adaptive sensor Figure 5.14. Small tTh tends to make WarningNet more optimistic

as discussed in subsection 5.3.3, so more frames are set to be in low resolution and result

in small bandwidth with low task accuracy. On the other hand, large tTh tends to be more

pessimistic, so more frames are in nominal resolution which show high task accuracy with

large bandwidth. At the extreme case of tTh=1, every image is considered to be unreliable,

so all frames are set at nominal resolution. Therefore, WarningNet is disabled for tTh >

0.8 and always operate at nominal resolution, eliminating the overhead of continuous re-

sampling of the frames.

5.4.2 Case Study II: Sensor Voltage Control

Scaling supply voltage of ROICs in image sensors is a common approach to save energy,

but at the same time, it increases the mismatches in devices which aggravates the noise in

pixels and deteriorates the task performance [125]. The WarningNet can be used to control

supply voltage in a frame-by-frame basis to ensure task reliability. Digital pixel sensor

with per-pixel PFC is considered to evaluate the adaptive sensor concept. A PFC receives
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the photo-current as an input and generates a spike train where the number of spikes is

proportional to the intensity of the photo-current. The key components within a PFC are

a set of delay elements. The threshold voltage mismatch in the delay elements (and other

circuits) results in a shift in the number of spikes, which in turn introduces noise in sensed

image. The supply voltage of the PFCs also modulates the internal delay and changes the

PFC output for a given photo-current. Moreover, as the delay variation due to threshold

voltage mismatch increases at a reduced supply voltage, the noise introduced by the ROIC

increases at a lower supply voltage.

Hardware based noise model in chapter 4 is adopted to generate noisy images con-

sidering threshold voltage mismatch. The pixel intensity sensed by the PFC (COUT ) is a

function of the photocurrent (Iph) being sensed by the pixel, the ROIC supply voltage V DD,

and the amount of mismatch σprocess in the pixel, given by: COUT = f(Iph, VDD, σprocess).

N iterations of Monte Carlo simulations on ROIC are pre-run under various conditions

and saved as a number of look-up-tables (LUTs) with various ROIC supply voltage, where

each LUT stores the correlation between photocurrent level and counter output. Figure 5.15

shows the process of generating digital pixel noise on a pixel of an image at position (m,n)

[128]. An array with random integers from 1 to N is generated in same size to input image

(process variations matrix), where integer i (1 ≤ i ≤ N ) at position (m,n) of process

variations matrix implies the same process variation to i-th Monte Carlo iteration at posi-

tion (m,n) of digital pixel array. Assuming the input clean image is the ideal output from

digital pixel under nominal voltage V NN and nominal process corner NN , the amount of

photocurrent being sensed by the pixel can be estimated from pixel intensity of input image

(Figure 5.15(a)). Using the estimated photocurrent and integer i from process variations

matrix, new pixel intensity with digital pixel noise at certain ROIC supply voltage V can

be obtained (Figure 5.15(b)). This new pixel intensity replaces the pixel at position (m, n)

(Figure 5.15(c)). Adopting the pixel noise model, the energy consumption at ROIC also can

be calculated as a function of its intensity and voltage, with the median energy from Monte
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Figure 5.15: Process of digital pixel based noise model generation.

Carlo simulations of each pixel. Figure 5.16 shows the sample noisy images from an array

of digital pixels at various ROIC supply voltages generated from the noise model. In the

experiments, the digital pixel based noise model is obtained from Monte Carlo simulations

in 65nm CMOS technology with 100 iterations.

WarningNet is trained to estimate the task performance degradation due to inputs from

ROIC at low voltage compared to the nominal operation of sensor as shown in Figure 5.10

(b), Table 5.4 (b). WarningNet results in relatively low accuracy (0.60), because the image

under nominal voltage also includes noise from the device mismatches which makes Warn-

ingNet difficult to distinguish the perturbation derived from low voltage. It is optimistic at

tTh=0.5 (Figure 5.11(b)).

The design of early warning guided sensor voltage control in smart sensor is illustrated

in Figure 5.17. Similar to the early warning guided sensor resolution control, the sensor

operates at a low voltage as the default mode for each frame. The image with high level

of noise from low voltage is passed to WarningNet, and if the WarningNet predicts the

reliable task with current noise level (t̂ > tTh), current image can be used for the task. If

it is estimated to be unreliable (t̂ < tTh), sensor voltage is switched to nominal voltage to
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Figure 5.16: Sample images from digital pixels and PSNR at various voltage.
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Figure 5.17: Overall scheme of WarningNet guided sensor voltage control.

reduce the noise, re-sample the image, and directly used for the task.

Figure 5.18 shows illustrative realizations of WarningNet based sensor voltage control.

One can control the global supply voltage applied to the entire ROIC between a nominal

and a low supply voltage based on the feedback from WarningNet. This could be achieved

by adding a global switch in the ROIC array to select between two pre-defined voltage

levels (nominal or low), where the WarningNet feedback control which switch is turned on.

Alternatively, an on-chip voltage regulator can be used, such as a low-dropout regulator, to

reduce the voltage from the nominal level, where the feedback from the WarningNet select

the reference voltage for the LDO.

Figure 5.19 demonstrates a case study of uniform low voltage sensor and early warning
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Figure 5.18: Concept of controlling sensor voltage.

guided sensor for action detection on an image sequence from JHMDB dataset. During

0th-1th frames, low voltage sensor can correctly detect pour action. WarningNet estimates

the task success, so stays in low voltage. For 2th-5th frames, the action loses its feature

critically under low voltage and fails the task. WarningNet takes the image before the task

and predicts the task failure, so it does not pass the task-failure image to task. Alternatively,

it switches the sensor supply voltage to nominal, gets the new image with reduced noise

level, and passes it through the task which may result in the correct detection. This process

causes extra energy consumption in sensor when the low voltage image is unreliable, be-

cause WarningNet looks into images from both low and nominal voltage. Moreover, one

can control the tTh of the WarningNet to trade off the average supply voltage, and hence,

average energy of the ROIC and the task accuracy as shown in Figure 5.20. This trade

off varies by the level of low voltage. If the low voltage is too low (0.6V), it allows low

energy consumption, but with low task accuracy due to large noise injection in the sensor

images. WarningNet predicts task failure for most of the low voltage images which leads

to continuous re-sampling of the frames from low tTh. Thus, WarningNet is disabled from

tTh > 0.2. On the other hand, if the low voltage is not low enough compared to the nominal

voltage (0.8V), it achieves high task accuracy, but does not save enough energy. Therefore,

WarningNet should be turned off from tTh > 0.6 to avoid the energy overhead due to the

re-sampling of the frames. When the low voltage is set to be an optimal level (0.7V), the

adaptive sensor can achieve the trade off with high task accuracy and low energy.
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Figure 5.19: Case study of uniform low voltage sensor (Low V) and early warning guided sensor with sensor voltage control (Adaptive)
with tTh=0.5 for action detection on an image sequence. Green rectangles indicate the detection is correct and red rectangle indicates it
is wrong.
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Figure 5.20: Task performance (mAP) and normalized average ROIC energy of uniform
nominal/low voltage sensor and WarningNet guided smart sensor with various tTh. Warn-
ingNet is turned off at high tTh.

5.4.3 Ablation Study

Spatiotemporal architecture of WarningNet (spatiotemporal WarningNet) helps to achieve

a better tradeoff between task accuracy and energy consumption in the adaptive sensor.

spatial WarningNet is implemented, where the recurrent unit is removed from Figure 5.3

and only uses spatial features to predict the task failure. Behaviors of two WarningNets are

compared in adaptive sensors controlling the sensor voltage. Spatiotemporal WarningNet

is more confident to low voltage inputs and allows higher task accuracy with lower energy

compared to the spatial WarningNet as shown in Figure 5.21. This is because spatiotempo-

ral WarningNet utilizes both spatial and temporal features which allows a better estimation

of task failure on low voltage images.

5.5 Summary of the Section

This chapter presents adaptive sensor that allows the control of sensor parameters such as

image resolution or pixel operating voltage through early warning of task failures due to

its low power operations. Early warning is generated by WarningNet, a novel lightweight
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Figure 5.21: Task performance (mAP) and normalized average ROIC energy of uniform
nominal/low voltage sensor and WarningNet guided smart sensor with various tTh. Warn-
ingNet is turned off beyond tTh > 0.8.

deep learning model that operates on a real-time input to provide early warning of risk of

task failure due to input perturbations. Simulation results show that WarningNet based early

warning can be used as a feedback to reduce average sensor bandwidth and/or energy while

ensuring task reliability. Future work can consider coupling WarningNet with Bayesian

uncertainty estimation methods to improve explainability of DNN tasks, and reliability of

smart sensor. Moreover, detailed hardware design and experimental demonstration of such

smart sensors is also an important direction for future research.
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CHAPTER 6

LIGHTWEIGHT UNCERTAINTY ESTIMATION

Previous section discusses early warning of task failure due to input perturbation and pre-

diction confidence is used as a measure of reliable task. However, recent deep learning

tends to be overconfident about its prediction [75, 76, 77, 78], which may result in wrong

quantification of task reliability. To mitigate such risks, estimating uncertainties along

with task predictions is gaining attentions to understand what a model knows and does not

know [13].

Uncertainty is decomposed into two types, namely data and model uncertainty. Data

uncertainty (aleatoric uncertainty) captures the complexity and noise inherent in the obser-

vations, while model uncertainty (epistemic uncertainty) captures the lack of understand-

ings of the model on the current input. Data uncertainty is easier to quantify, by adding

an additional variance output for each model output and using an appropriate loss function

[129, 130]. On the other hand, model uncertainty can detect out-of-distribution input, but

it requires stochastic neural networks trained with a Bayesian approach [13, 79, 80], i.e.,

Bayesian Neural Networks (BNNs), to explicitly model the posterior distribution over the

parameters. The exact computation of posterior is intractable, so various approximation ap-

proaches are suggested including variational inference [80, 81, 131, 77] and Markov chain

Monte Carlo [82, 132, 133], but they have difficulty to apply on large scale dataset.

Bayesian inference using dropout in neural networks (MC dropout) [14, 83] has been

suggested to model epistemic uncertainty through a standard DNN training procedures and

expanded to object detection in [134, 135]. Neural network is trained with dropout, and

the outputs from Monte Carlo sampling with dropout are evaluated. This can be viewed as

performing multiple stochastic outputs through the network. However, MC dropout still re-

quires high computational cost due to multiple forward passes during inference. Therefore,
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lightweight uncertainty estimation is necessary to predict task reliability with limited re-

sources. This chapter discusses lightweight uncertainty estimator that quantifies reliability

of image classifier and object detector, and includes the consideration of weight variations

in processing-in-memory (PIM) accelerator.

6.1 Lightweight Uncertainty Estimator for Image Classifier

6.1.1 Introduction

This section presents a concept of TrustNet, a module that can be added to a DNN to

generate (early) warning of potential failures (Figure 6.1). TrustNet seeks to estimate un-

certainty associated with detections from a DNN and generate warning when uncertainty is

high. The uncertainty of a task can be estimated using Monte Carlo (MC) sampling based

techniques such as dropout[13, 14, 136]. However, MC sampling requires running a task

network multiple times to estimate uncertainty which is prohibitive in real-time environ-

ment. TrustNet uses a set of neural networks to quickly estimate the uncertainty and predict

potential failures of the task DNN.
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6.1.2 Warning Generation

An illustrative implementation of the Trustnet contains two DNN based uncertainty es-

timators, SensorNet and ModelNet. SensorNet is designed to predict uncertainty due to

input perturbations, for example, noise, rain, snow, to name a few, within a fraction of time

required by the task DNN, and generates, early warning if input perturbation increases un-

certainty beyond a threshold (Figure 6.1). However, SensorNet cannot predict increased

model uncertainty, for example, due to out-of-distribution input. Second neural network is

added, ModelNet, to predict model uncertainty and generate warning related to associated

failures, for example, due to novel (out-of-distribution) inputs (Figure 6.1). ModelNet has

similar complexity as the task DNN and generates a reliability related warning around the

same time when the task DNN is completed. In summary, a reliability warning from Sen-

sorNet indicates perturbed input, while the warning from ModelNet indicates novel inputs

(along with including noisy inputs). Therefore, augmenting TrustNet with a task DNN

increases overall reliability of the autonomous platform.

A Bayesian model is implemented from a DNN based task network by using MC based

Concrete dropout [136] and adopt it as a teacher model. Teacher is only used during the

training, and SensorNet and ModelNet can predict the uncertainty behavior without running

multiple iterations of task network during the inference.

SensorNet

SensorNet is designed based on WarningNet, a lightweight DNN platform (Figure 6.2(a))

that is discussed in previous section. However, WarningNet predicts task accuracy based

on the confidence decrease of ground truth class by input perturbation; but predictive un-

certainty is a more well-known metric to quantify the task reliability. Therefore, SensorNet

is designed following the architecture of WarningNet (three convolutional layers followed

by one linear layer) and train with task uncertainty rather than confidence.

Task uncertainty u, which is used to train SensorNet, is obtained from the estimation of
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the teacher model fw(m) on input image x with M MC iterations and defined as follow:

u = −
∑
c

{ 1

M

∑
m

f c
w(m)(x)

}
ln
{ 1

M

∑
m

f c
w(m)(x)

}
(6.1)

where f c
w(m) denotes the c-th class output of fw(m). L2 loss is used to train the SensorNet

as follow where û denotes the estimated uncertainty from SensorNet:

L = ||û− u||22 (6.2)

ModelNet

ModelNet is trained to predict the expected class probability of a task based on the spa-

tial characteristics of image. Similar to SensorNet, a Bayesian model using MC dropout

is adopted as a teacher to teach the expected class probability (Figure 6.2(b)). Uncer-

tainty estimation can be obtained by calculating the class entropy of confidence estima-

tions. Compared to the prior works that distill a Bayesian model to improve accuracy and

calibrate uncertainty of a student network [85, 137], ModelNet is only trained to estimate

the uncertainty of a given task DNN, rather than the uncertainty of itself, and the estimated
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(a)

(b)

Figure 6.3: Sample images of (a) Gaussian noise (σ=0, 0.05, 0.10, 0.15), and (c) image
rotation (0◦, 20◦, 40◦, 60◦).

uncertainty should be calibrated to the accuracy of the task DNN. The training objective of

ModelNet is to only predict the expected class probability of teacher, even when teacher’s

prediction is wrong compared to the ground truth.

Let f c
w(m)(x), h

c(x) denote the c-th class output from teacher model fw(m) and Mod-

elNet h, respectively on input image x. Cross entropy error LCE and mean square error

LMSE are used to train the ModelNet as follows:

L = LCE + LMSE, (6.3)

LCE = −
∑
c

{ 1

M

∑
m

f c
w(m)(x)

}
lnhc(x), (6.4)

LMSE =
∑
c

||
{ 1

M

∑
m

f c
w(m)(x)

}
− hc(x)||22 (6.5)

ModelNet does not need to learn the teacher’s behavior under various input pertur-

bations. This allows to detect the out-of-distribution samples including the unexpected

distribution, which cannot be trained for SensorNet.
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Figure 6.4: Verification of TrustNet: (a-b) Comparison of accuracy of task network and
estimated uncertainty from (a) SensorNet and (b) ModelNet; and (c-d) correlation of the
uncertainty estimated by the DNN task and the uncertainty estimated from (c) SensorNet
and (d) ModelNet.

6.1.3 Experimental Results

Verification of Uncertainty Estimation

Uncertainty estimations of SensorNet and ModelNet are evaluated on Gaussian Noise and

image rotation, as an example of pixel-level and structured perturbations, respectively (Fig-

ure 6.3). Resnet-18 [48] based image classifier is considered as a target task network,

and train a MC dropout based Bayesian model considering CIFAR10 dataset [58]. This

Bayesian model is also a teacher of SensorNet and ModelNet to learn the task uncertainty.

SensorNet is trained with Gaussian noise only to observe the effect of known/unknown

input perturbation. ModelNet does not required input perturbation during training.
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As shown in Figure 6.4(a), both SensorNet and ModelNet can estimate the uncertainty

increase under Gaussian noise. Note, although SensorNet is trained on pixel-level noise,

ModelNet has not seen such perturbations during training. The estimated uncertainty is

linearly correlated to the uncertainty obtained from the teacher under low level of Gaussian

noise, but teacher model becomes overconfident on highly noisy images which decreases

the predictive uncertainty as illustrated in Figure 6.4(c). Such uncertainty decrease is not

desirable as the task accuracy continues to drop at the high noisy level. On the other

hand, as SensorNet is only trained with the uncertainty of low noise, it does not learn the

teacher’s overconfidence on high level of noise. As input perturbations are not involved

during the training of ModelNet, it also does not learn the teacher’s overconfidence on high

level of noise and predicts high uncertainty on highly noisy images. Besides, ModelNet

can correctly estimate the uncertainty increase on rotated images and its estimation shows

linear correlation to teacher’s estimation(Figure 6.4(b),(d)). In contrast, SensorNet predicts

similar uncertainty for image rotation with different angles, because SensorNet can only

predict the uncertainty for known types of perturbation. As rotated images are not included

during training, it cannot correctly predict.

Example of Real-Time Warning Generation

Based on the estimated uncertainty from SensorNet (ûsensor) and ModelNet (ûtrust), the

task is estimated to be reliable if the estimated uncertainty is lower than a threshold (û <

uTh). Figure 6.5 elaborates the performance of SensorNet and ModelNet on real world

videos. Figure 6.5(a) is a sample video where the Gaussian noise is added after 130-th

frame. Due to the noise injection, the confidence of ground truth class dog of the image

classifier is dramatically decreased and fails the task. Both SensorNet and ModelNet can

estimate the unreliable task after noise injection and raise warning by predicting the uncer-

tainty increase due to input noise. Figure 6.5(b) is a video of a dog slowly lying down. As

laid down dogs are not included in training dataset, the confidence of ground truth class dog

93



0

1

0

1

0 20 40 60 80 100 120 140 160
Frame

SensorNet ModelNet

0 50 100 150 200 250 300 350
Frame

SensorNet ModelNet

(b)

In
p
u
t 
Im

ag
e

In
p
u
t 
Im

ag
e

 

Warning

No Warning

Noisy Noisy

Noise Injection

(a)

Warning

No Warning

C
o
n

fi
d
e
n
ce

 

to
 G

T

C
o
n

fi
d
e
n
ce

 

to
 G

T

Figure 6.5: Confidence of ground truth class and estimated uncertainty from SensorNet and
ModelNet on example videos.
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Table 6.1: Computational complexity analysis ( Input image: 32×32; NVIDIA GeForce
GTX 1080Ti)

SensorNet ModelNet Task
MC Task
(5 iters)

# params (MB) 0.0055 11.17 11.17 11.17
Ops (GFLOP) 0.0017 0.557 0.557 2.784
Run Time (ms) 1.30 4.83 4.83 26.36

is slowly decreased and task fails. SensorNet cannot predict the task failure as such out-

of-distribution data is unknown, but ModelNet can detect it from the uncertainty increase.

Therefore, ModelNet can predict the uncertainty increase on the out-of-distribution.

Complexity of Networks

Table 6.1 shows that SensorNet has 2031× less number of parameters, 328× less number

of operations, and 3.7× shorter run time compared to the task network, so early warning of

sensor unreliability can be generated. ModelNet and the task network have same number

of parameters and run-time. However, as the task DNN needs to run in a MC loop (say 5

iterations), ModelNet can generate uncertainty estimate in 5.5× shorter run time.

6.1.4 Summary of the Section

6.2 Lightweight Uncertainty Estimator for Object Detection

6.2.1 Introduction

Probabilistic object detection [138] is a challenging task as it should quantify both spatial

and semantic uncertainty. Detector should be able to provide the variance of probabilistic

bounding boxes (spatial uncertainty), and the probability distribution over the classes for

each detections (semantic uncertainty).

This chapter proposes ModelNet that estimates model uncertainty of a complex DNN

based object detection without storing N models or running N forward passes. As shown
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Figure 6.6: Framework to train ModelNet by using task and MC dropout model.

in Figure 6.6, a stochastic DNN is first implemented, MC dropout model specifically, from

a target task model to quantify the model uncertainty of the task. ModelNet distills the

knowledge of MC dropout during training to estimate spatial/semantic uncertainties in a

single run. It is demonstrate that ModelNet learns uncertainty estimation from object de-

tectors in various architectures, namely SSD with Mobilenet-v1 and Resnet-50 backbone,

and Faster RCNN with Resnet-50 backbone, and the estimated uncertainties are highly

(>0.5) correlated to the one from MC dropout. It also show that model uncertainty from

ModelNet can detect shifted input distribution.

Furthermore, applications of ModelNet are presented for lightweighted probabilistic

object detection. If target task network is in a simple architecture, ModelNet can replace

the task network and provide probabilistic object detection. If the task network is in a

complex two-stage object detector, ModelNet can act as an uncertainty assistant of the task

network and quantifies uncertainty of task predictions. Experimental results show that the

probabilistic object detection using ModelNet can achieve calibration error [139, 140] of

0.008-0.018, Probability-based Detection Quality (PDQ) [138] of 9.6-10.8 with 38x-179x

less computational cost compared to MC dropout. Moreover, a case study of uncertainty
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driven adaptive sensor using ModelNet is demonstrated that allows object detection and

tracking.

Key contributions are:

• This chapter proposes ModelNet, a deterministic sampling-free DNN that distills the

predictive distribution of a stochastic DNN and allows to quantify spatial/semantic

model uncertainty of an object detector.

• This chapter presents two ways to adopt ModelNet; as a probabilistic object detector

that gives detection with uncertainty, or as an assistant of task network and provide

uncertainty of task prediction.

• Experimental results show that ModelNet allows probabilistic object detection with

38x-179x less computational cost compared to MC dropout.

• Case study shows that ModelNet allows uncertainty driven adaptive sensor for object

detection and tracking.

6.2.2 ModelNet

Network Architecture and Training Method

ModelNet adopts the concept of distilling predictive distribution of stochastic DNN [24,

25], and extends it for object detection to estimate the spatial and semantic uncertainties of

multiple objects. ModelNet distills from MC dropout, which approximates the Bayesian

inference and is easily applicable for large scale dataset. Output distributions from MC

dropout θ with R iterations can be considered as a set of samples from a distribution over

output distribution, which is implicit, and ModelNet ϕ explicitly parameterizes this dis-

tribution. Classification and localization outputs from MC dropoutθ at r-th iteration on

input x follow categorical pcls (Equation 6.6) and Gaussian likelihood preg (Equation 6.7)

97



as follows:

pcls(x;θ
(r)) = π(r) (6.6)

preg(x;θ
(r)) = N (µ(r), τ (r)−1) (6.7)

where π is class probability of categorical distribution and µ, τ are mean and variance of

Gaussian distribution, respectively.

The conjugate priors to the categorical and Gaussian likelihood, Dirichlet (Equation 6.8)

and Normal-Gamma (Equation 6.9) distribution, are adopted to model the distribution over

output distribution of MC dropout as follow:

pcls(π|x;ϕ) = Dir(π; â) (6.8)

preg(µ, τ |x;ϕ) = NG(µ, τ ; m̂, λ̂, α̂, β̂) (6.9)

where â is concentration parameter of Dirichlet distribution, and m̂, λ̂, α̂, β̂ are center,

precision multiplier, shape, scale parameter of Normal-Gamma distribution, respectively.

These hyper-parameters are parameterized by ModelNet.

SSD [51] with Mobilenet v1 [106] backbone is adopted for ModelNet. To model all

hyper-parameters of Normal-Gamma distributions from bounding box (bbox) regressor of

SSD, three more outputs are added in the regressor. Therefore, ModelNet outputs C+(1+

3) ∗ 4 parameters (â, m̂, λ̂, α̂, β̂) for each detections where C is the number of classes.

The predictive distribution of ModelNet is given by the expected categorical/Gaussian

distribution under the Dirichlet/Normal-Gamma distribution:

pcls(π
∗
c |x∗;ϕ) = Ep(πc|x∗;ϕ)[p(y|π)] = π̂c =

âc∑
c âc

preg(µ
∗|x∗;ϕ) = Ep(µ|x∗;ϕ)[p(y|µ, τ )] = µ̂ = m̂

preg(τ
∗|x∗;ϕ) = Ep(τ |x∗;ϕ)[p(y|µ, τ )] = τ̂ =

α̂

β̂
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As MC dropout models epistemic uncertainty and ModelNet distills this estimation, the

expected class entropy and expected variance of bbox coordinates from ModelNet can be

regarded as measures of the semantic and spatial model uncertainty, respectively. There-

fore, semantic (Equation 6.10) and spatial (Equation 6.11) model uncertainty obtained from

ModelNet are as follow:

H
[
Ep(πc|x∗;ϕ)[p(y|π)]

]
= −

∑
c

âc∑
c âc

ln

(
âc∑
c âc

)
(6.10)

σ̂2 =
1

τ̂
=

β̂

α̂
(6.11)

During the training, cross entropy loss LCE and smooth l1 loss LL1 are adopted to learn

the classification and localization from the ground truth class l and bbox coordinates b =

[bxmin, bymin, bxmax, bymax]
T . These two losses are necessary to keep high object detection

capability.

LCE = −
N∑
c=1

l ln
âc∑
c âc

,

LL1 = −
∑
||b− m̂||

ModelNet is also trained to minimize the negative log-likelihood of each categorical π(r)

and normal distributions µ(r), τ (r) from MC dropout at r-th iteration to learn the distribu-
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tion over categorical/normal distribution (LDir, LNG).

LDir = −
∫

p(π|x) ln p̂(π|x;ϕ)dπ

= −
N∑
c=1

ln Γ(âc)− ln Γ(âo)−
N∑
c=1

(âc − 1)Ep[ln πc],

LNG = −
∫ ∫

p(µ, τ |x) ln p̂(µ, τ |x;ϕ)dµdτ

= −α̂ ln β̂ − 1

2
ln

λ̂

2π
+ lnΓ(α̂)−

(
α̂− 1

2

)
Ep[ln τ ]

+

(
β̂ +

λ̂m̂2

2

)
rEp[τ ]− λ̂m̂Ep[τµ] +

λ̂

2
Ep[τµ

2]

Total loss is the weighted sum of these losses:

Lall = ϵ1LCE + ϵ2LL1 + ϵ3LDir + ϵ4LNG

where ϵ1, ϵ2, ϵ3, ϵ4 are empirically set to be 100, 10, 1, 100, respectively.

Generation of Training Labels

During training of ModelNet, ground truths (GTs) are utilized to maintain high quality

of object detection, and MC dropout predictions are used to learn uncertainty estimation.

In detail, probability distribution over classes and variance of bbox coordinates from MC

dropout have the notion of model uncertainty. Therefore, both GT (class label, bbox co-

ordinates) and MC dropout predictions (probability distribution over classes, variance of

bbox coordinates) are necessary to train ModelNet.

In order to teach object detection with uncertainty, a process to combine the GT with

the MC dropout results for each objects is necessary as illustrated in Figure 6.7. GTs and

MC dropout predictions are matched based on their bboxes with class predictions. For a GT

object, if there exist a MC dropout detection which bbox is highly overlapped (IOU>0.5)

with correct predicted class, the GT object is regarded to be detected. The uncertainty of the
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detected object can be seen as the uncertainty of the matched MC dropout detection, so the

output distribution of MC dropout is assigned to the GT. If there is no matched MC dropout

predictions, the GT object is regarded to be undetected. It is fair to assume that undetected

object is highly uncertain, so uniform distribution and large variance are assigned as the

probability distribution over classes and variance of bbox coordinates, respectively. The

false positive detections of MC dropout are ignored. These GT-uncertainty pairs obtained

from this process are used to train the ModelNet to learn the probabilistic object detection.
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Figure 6.7: Label generation to train ModelNet with ground truth and output distribution of MC dropout.
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6.2.3 Experimental Results

In this section, ModelNets are presented that estimate uncertainty of object detectors in

various architectures, namely SSD[51] with Mobilenet-v1[106]/Resnet-50[48] backbone,

and Faster RCNN[50] with Resnet-50 backbone. MC dropout models[14] of each object

detectors are also implemented by adding dropout layers after convolutional layers and

finetuning. MC dropout results are obtained through 40 Monte Carlo iterations, combined

with ground truths to generate training labels (Figure 5.2) and employed to train Model-

Nets. MS-COCO 2017 dataset [61] is used for training and evaluation of MC dropout and

ModelNet.

Computational Complexity

Table 6.2 presents the computational cost of ModelNet and task, MC dropout in vari-

ous architectures. ModelNet contains 1x-2.5x less number of parameters and 39x-986x

less number of operations than MC dropout. MC dropout requires monte carlo sampling

through multiple forward passes during inference, so the number of operations are drasti-

cally increases. The number of forward passes can be reduced, but with the poor quality

of detection and uncertainty. Moreover, MC dropout requires to have the same architecture

with its target task network to model uncertainty, so its computational cost increases with

more complex task. On the other hand, ModelNet distills the uncertainty knowledge of

MC dropout in its own architecture(SSD Mobilenet-v1), so the complexity of ModelNet

is remained same. Therefore, ModelNet has much smaller computational cost than MC

dropout.

Correlation to Predictions from MC dropout

ModelNet distills the output distribution of MC dropout, so their estimated uncertainties

should be matched. Estimated uncertainties from SSD based MC dropout and ModelNet

are plotted, both semantic and spatial uncertainty, and use Pearson correlation coefficient
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Table 6.2: Computational complexity analysis on ModelNet, and MC dropouts in various
architectures. Input image size of 300×300 is considered.

# params (MB) Ops (GFLOP)

ModelNet 16.69 2.6

MC dropout
SSD Mnetv1 16.53 101.6

SSD R50 23.15 465.6

FRCN R50 41.48 2564

to quantify their linear correlations as shown in Figure 6.8. Spatial uncertainty is plotted

as the average of four coordinates. For all the cases, they show high (> 0.6) correla-

tion, which implies that ModelNet can learn the uncertainty estimation from MC dropout.

Therefore, ModelNet can be used to quantify uncertainty of tasks in various architectures.

The correlation is higher when the ModelNet is in same architecture as MC dropout (SSD

Mobilenet-v1, Figure 6.8(a)), because it is easy for ModelNet to distill the predictive distri-

bution of same architecture. When MC dropout is in same detection architecture but with

larger backbone (SSD Resnet-50, Figure 6.8(b)), the correlation of semantic uncertainty

decreases, but is still large enough (> 0.6) to show their linear correlations.

Besides, distillation of predictive distribution from Faster RCNN to SSD is challeng-

ing as the output distribution from two detectors are in completely different shape due to

their architectural differences. Faster RCNN has region proposal network (RPN) that dis-

tinguishes potential objects and generates candidates of region of interests, which will be

further used to estimate the class and refined bounding box. Therefore, RPN filters out

many of the background instances and helps to increase the class confidence. On the other

hand, SSD considers a number of anchor boxes instead of using RPN, and estimating the

class and bounding box of each anchor boxes in a single shot. Most of the anchor boxes are

background instances and should be filtered out based on the class confidence. This fore-

ground/background imbalance problem decreases the class confidence in SSD. Therefore,
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SSD Resnet-50 based MC dropout and ModelNet.
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Figure 6.9: Histogram of class probability from object detectors with softmax temperature.
Detections from SSD with class probability less than 0.3 are ignored.

Faster RCNN tends to have large number of detections with high class probability, whereas

SSD tends to have many detections with low class probability as shown in Figure 6.9.

This makes challenging for SSD based ModelNet to distill the output distribution of Faster

RCNN. Softmax temperature of Faster RCNN is increased to change the shape of its pre-

dictive distribution. High temperature decreases the number of predictions with high class

probability and makes the distribution flatten, which becomes similar to the distribution of

SSD. T = 2 is used for the experiments.

The correlation of estimated uncertainty from Faster RCNN based MC dropout and

SSD based ModelNet is presented in Figure 6.10. The correlations are lower than the

correlation of SSD based MC dropout and ModelNet, but still large enough (> 0.5) to

show their linear correlations.

Detection of Shifted Data Distribution

Model uncertainty is useful to estimate if the model is running outside of its training dis-

tribution, so uncertainty from ModelNet on in-distribution and shifted-distribution data are

evaluated. COCO validation dataset [61] is used as in-distribution data. Various image

corruptions [141] are applied on COCO validation dataset at three intensity levels (C1, C3,

C5) as done in [142] to create artificially shifted datasets. Figure 6.11 shows histogram

of semantic/spatial uncertainty of ModelNet which is trained on the COCO train dataset.
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Figure 6.10: Correlation between the estimated uncertainty from Faster RCNN based MC
dropout and ModelNet.

The histogram of estimated uncertainty moves to the right as the input distribution shifts,

which implies that ModelNet can detect the shift of input data distribution and gives high

uncertainty.
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Figure 6.12: (a) Standard object detector, (b) ModelNet as probabilistic object detector,
and (c) ModelNet as uncertainty assistant.

Probabilistic Object Detection

Two ways of adopting ModelNet for probabilistic object detection are presented. A task

network predicts bounding boxes with classes, but it cannot estimate uncertainty of its

detections (Figure 6.12(a)). When the task network is in simple architecture, the task net-

work can be replaced with ModelNet and perform as a probabilistic object detector that

detects objects with spatial/semantic uncertainties (Figure 6.12(b)). When the task net-

work is a complex two-stage object detector, the low-complex ModelNet can assist the

task network to provide semantic/spatial uncertainty with a small computational overhead

(Figure 6.12(c)).

ModelNet as Probabilistic Object Detector

First, the task network can be in same architecture to the ModelNet (SSD Mobilenet-v1).

Probabilistic object detection from task, MC dropout, and ModelNet are compared in Ta-

ble 6.3(a). MC dropout detects the most number of true positives as it runs inference

multiple times, which also increases the number of false positives and leads to low mAP.

On the other hand, ModelNet results in the least number of false positives, because the
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distillation of semantic uncertainty from MC dropout helps to avoid predicting high con-

fidence on wrong class. mAP of ModelNet is comparable to the task as ModelNet is in

same architecture to the task and learns object detection from ground truths. ModelNet

shows about x10 smaller ClsMCE than task or MC dropout due to its small number of

false positives. RegCE of ModelNet is also the smallest as it correctly learns spatial un-

certainty during training: spatial uncertainty from MC dropout for certain boxes and high

uncertainty for uncertain boxes, which is described in subsubsection 6.2.2. PDQ provides

the combined evaluation of probabilistic object detection with spatial and label uncertainty,

and ModelNet shows 1.3x-2.7x higher PDQ than task and MC dropout.

When ModelNet estimates the uncertainty of task in same object detector architecture

but with larger backbone (SSD Resnet-50), ModelNet results in the lowest mAP due to

its small architecture (Table 6.3(b)). However, ModelNet can still learn the probabilistic

object detection from MC dropout and give uncertainty estimation with lower ClsMCE,

RegCE and comparable PDQ to MC dropout. Therefore, ModelNet can replace tasks in

same/more complex architecture and be adopted as a probabilistic object detector with

higher/comparable quality of uncertainty estimation compared to MC dropout. Sample

images of probabilistic object detection are presented in Figure 6.13.
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Table 6.3: Object detection of task, MC dropout in (a) SSD Mobilenet-v1, (b) SSD Resnet-50, (c) Faster RCNN Resnet-50, and Model-
Net. Input image size of 300×300 is considered for computational complexity analysis.

Task arch. TP ↑ FP ↓ mAP ↑ ClsMCE ↓ RegCE ↓ PDQ ↑ #params (MB) ↓ Ops (GFLOPS) ↓

(a) SSD Mnetv1
Task 11010 4264 18.8 0.0917 0.0846 3.56 41.48 64.11

MC dropout 12659 25936 15.9 0.1212 0.0229 7.58 41.48 2564
ModelNet 9893 2940 17.1 0.0182 0.0136 9.63 58.17 66.71

(b) SSD R50
Task 11486 2378 20.9 0.0761 0.0846 4.24 23.15 11.64

MC dropout 12314 4113 20.9 0.1337 0.0292 11.1 23.15 465.6
ModelNet 10228 3502 16.6 0.0144 0.0151 10.1 58.17 66.71

(c) FRCN R50

Task 22506 25623 32.9 0.1175 0.0803 5.96 41.48 64.11
MC dropout 25186 33256 34.4 0.1177 0.0307 15.9 41.48 2564
ModelNet 10617 4544 16.6 0.0079 0.0164 8.58 58.17 66.71

Task w/ ModelNet 22506 25623 32.9 0.1141 0.0235 10.8 58.17 66.71
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(a) MC dropout

(b) ModelNet

Figure 6.13: Sample probabilistic object detection results from (a) MC dropout and (b) ModelNet. All bounding boxes are shown with
the standard deviation rings along the contours of the gaussian.

112



ModelNet as Uncertainty Assistant for Probabilistic Object Detection

ModelNet can also be utilized as an uncertainty assistant to create probabilistic object de-

tector for complex networks as MC dropout could be prohibitively complex. The process

to form a probabilistic object detector using ModelNet as assistant (Task w/ ModelNet) is

very similar to the process of generating the training label (Figure 5.2), except the ground

truths and MC dropout results are now replaced by task predictions and ModelNet results,

respectively.

In the perspective of computational complexity, Task w/ ModelNet only has 1.4x more

number of parameters and 38x less number of operations compared to MC dropout (Ta-

ble 6.3). It gives same mAP as the task and comparable ClsMCE, RegCE to MC dropout.

Its PDQ is lower than MC dropout. This is because ModelNet has much less number of

true positives than task, so many of the task predictions in Task w/ ModelNet do not have

corresponding uncertainty from ModelNet and are considered to be uncertain. However,

ModelNet w/ Task still can provide good quality of uncertainty estimations with less com-

putational overhead.

6.2.4 Case Study: Uncertainty driven Adaptive Sensor

This section demonstrates an uncertainty driven adaptive sensor using ModelNet. In par-

ticular, the sensor controls the spatial resolution of pixel arrays. Low spatial resolution can

save bandwidth between image sensor and processor, but sacrifices useful image features

that can affect to the task accuracy. The design of proposed adaptive sensor is illustrated

in Figure 6.14. Sampled image from pixel arrays is used in ModelNet to detect objects

with uncertainty, and this estimation is employed in region-of-interest (RoI) predictor to

estimate RoI map for next frame. SSD Mobilenet-v1 is adopted as ModelNet architecture

which provides both detection and uncertainty predictions (subsubsection 6.2.3) in this sec-

tion, but task DNN with ModelNet as uncertainty assistant (subsubsection 6.2.3) also can

be employed. RoI predictor estimates the RoI map based on the detections and uncertainties
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Figure 6.14: Overall scheme of uncertainty driven adaptive sensor
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Figure 6.15: Variable spatial resolution sensor model.

on current frame and past frames. Based on the RoI map, variable spatial resolution control

is applied on read-out-circuits (ROICs) of pixel arrays, which remains high resolution in

RoIs and low resolution in non-RoIs (Figure 6.15). RoIs are the regions of detections with

low confidence (0.2 < conf < 0.7) or high uncertainty (> 1.5) from ModelNet. This

allows to capture more useful image features in uncertain regions and increase the task

accuracy with the expense of bandwidth.

The concept of uncertainty driven adaptive sensor has been presented in [143] to im-

prove object detection and tracking accuracy. It adopts MC dropout to quantify model

uncertainty and controls sensor operations. However, it does not consider the impact of

long latency from MC dropout. Sampling-based uncertainty estimation techniques like

MC dropout require multiple forward passes, so the latency becomes very long (1.46s).
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Figure 6.16: Impact of latency on object tracking of adaptive sensors using (a) MC dropout
and (b) ModelNet

The low frame rate (0.68fps) leads to the RoI prediction failure, thus affects to the object

detection and tracking on image sequences (Figure 6.16(a)). On the other hand, ModelNet

is a sampling-free approach, so it allows much higher frame rate (32fps) than MC dropout,

and RoI prediction becomes more reliable (Figure 6.16(b)). Table 6.4 compares the uncer-

tainty driven adaptive sensors using MC dropout [143] and ModelNet on ImageNet VID

dataset [127]. Adaptive sensors using MC dropout (A) and ModelNet (C) show compara-

ble accuracy on object detection and object tracking without the consideration of low frame

rate on MC dropout. However, MC dropout sensor results in 10x lower Mean Average Pre-

cision (mAP) than ModelNet sensor, and object tracking is failed when its long latency is

considered (B). Therefore, ModelNet allows object detection and tracking of uncertainty

driven adaptive sensor.

6.2.5 Summary of the Section

This section presents ModelNet, a deterministic sampling-free DNN that distills the knowl-

edge of a stochastic DNN and estimates model uncertainty of object detection, both spatial

and semantic uncertainty, with small computational cost. ModelNet can distill the pre-
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Table 6.4: Uncertainty driven adaptive sensors using MC dropout (A, B) and ModelNet
(C).

(A) (B) (C)

Feedback MC dropout MC dropout ModelNet
Frame Rate [fps] 32 0.68 32
mAP 31.0 3.1 31.2
MOTA 23.9 0 24.1

dictive distribution of MC dropout in various architectures, and also detect shifted input

distribution. ModelNet applications are demonstrated for probabilistic object detection; if

task network is in simple architecture, ModelNet can replace the task network and perform

as a probabilistic object detector with comparable/higher PDQ and 39x-179x less computa-

tional cost compared to MC dropout. When the task network is a complex, two-stage object

detection architecture, ModelNet can be employed as an uncertainty assistant to the task

network with 1.4x overhead of parameters and 38x less number of operations. Therefore,

ModelNet allows lightweighted, good quality of probabilistic object detection. Moreover,

estimated uncertainty from lightweight ModelNet can provide feedback to a sensor and

create an uncertainty driven control system. Future work is to develop ModelNet that can

estimate spatiotemporal uncertainty for reliable spatiotemporal probabilistic object detec-

tion for video surveillence.

6.3 Cross-layer Uncertainty Estimator

6.3.1 Introduction

In previous section, two types of lightweight uncertainty estimators, SensorNet and Model-

Net, are presented to quantify reliable task (Table 6.5). SensorNet provides fast prediction

from its light architecture of three convolutional layers with one linear layer, and allows to

detect sensor variations. ModelNet can predict unreliable task originated from both sensor
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Table 6.5: Sources of variations and uncertainties that can be detected by SensorNet, Mod-
elNet, and CLUE

Sensor Variations DNN Model Uncertainty PIM Variations

SensorNet ✓ ✗ ✗

ModelNet ✓ ✓ ✗

CLUE ✓ ✓ ✓

Input 
Image

Instance 1

Instance 2

Instance N

Distribution over 
Detections

CLUE
Detections & 
Uncertainties

Detection 1

Detection 2

Detection N

Figure 6.17: Overview of CLUE

variations and DNN model uncertainty. Besides, there is another source of unreliable task

that has not been considered yet, variations in processing-in-memory (PIM) accelerator as

discussed in chapter 1.

As recent DNNs include hundreds of megabytes parameters, PIMs promise better real-

time processing and data communication reduction between the cloud and edge. How-

ever, non-ideal device properties in PIM accelerator change stored DNN weights and affect

multiply-accumulate operation, which aggravate task reliability [11, 12, 43, 37, 44, 45].

Therefore, lightweight uncertainty estimator should be able to predict unreliable task origi-

nated from variations in PIM accelerators, as well as input noise injection and DNN model

uncertainty.

This section presents a Cross-layer Lightweight Uncertainty Estimator (CLUE) that

quantifies task uncertainty originated from both hardware (sensing device, accelerator)
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Figure 6.18: Cross-layer framework of DNN+NeuroSim [144]

oriented variations and DNN algorithm. Each instances of sensor system give differ-

ent detection results on a single input due to non-ideal properties in PIM (Figure 6.17).

DNN+NeuroSim [144] is used to simulate process variations in PIM and its impact on DNN

inference as shown in Figure 6.18. Detections from different instances can be considered

as a set of samples from distribution over predictive distribution of DNN with hardware

oriented variations. CLUE parameterize this distribution, so it can predict detection with

uncertainty without running multiple instances.

Key contributions are:

• Cross-layer lightweight uncertainty estimator (CLUE) is presented that quantifies

task reliability taking account of various sources of variations and uncertainties from

both hardware and DNN algorithm.

• CLUE is a deterministic sampling-free DNN that distills the knowledge of cross-

layer ensemble predictions.
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6.3.2 Cross-layer Lightweight Uncertainty Estimator

Task estimation from smart sensor pipeline with PIM is highly dependent to input features,

hardware variations (sensor noise, process variations in PIM accelerator), and DNN algo-

rithm (model uncertainty) - and CLUE should be able to estimate the task reliability under

these variations and uncertainties based on input features. Therefore, cross-layer simula-

tion framework is necessary to couple the impact on task from both hardware and algorithm

and train/evaluate CLUE. DNN+NeuroSim [144] is utilized to obtain DNN inference un-

der given task DNN and electrical parameters (e.g. supply voltage), and distribution over

predictive distributions from different PIM instances is used to train and evaluate CLUE.

CLUE: Network Architecture and Training Method

Adopting a concept of distilling distribution over predictive distribution from DNN ensem-

ble [24], CLUE learns the distribution over output distributions of PIM ensemble. Output

distributions θ from R different instances can be considered as a set of samples from a

distribution over output distribution, which is implicit, and CLUE ϕ explicitly parame-

terizes this distribution. Each output distributions from image classifier at r-th proces-

sor follows categorical pcls likelihood (Equation 6.12), and its conjugate prior, Dirichlet

(Equation 6.13), is used to model distribution over output distribution of PIM ensemble as

follows:

pcls(x;θ
(r)) = π(r), (6.12)

pcls(π|x;ϕ) = Dir(π; â) (6.13)

where π is class probability of categorical distribution and â is concentration parameter of

Dirichlet distribution and parameterized by CLUE.

Predictive distribution of CLUE is given by the expected categorical distribution under
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the Dirichlet distribution:

pcls(π
∗
c |x∗;ϕ) = Ep(πc|x∗;ϕ)[p(y|π)] = π̂c =

âc∑
c âc

Expected class entropy can be regarded as measures of processor uncertainty.

H
[
Ep(πc|x∗;ϕ)[p(y|π)]

]
= −

∑
c

âc∑
c âc

ln

(
âc∑
c âc

)
(6.14)

CLUE is trained to minimize negative log-likelihood of categorical π(r) from processor

ensemble with R instances to learn the distribution over categorical distribution (L).

L = −
∫

p(π|x) ln p̂(π|x;ϕ)dπ

= −
N∑
c=1

ln Γ(âc)− ln Γ(âo)−
N∑
c=1

(âc − 1)Ep[lnπc]

NeuroSim: Simulation Platform of Process Variations in PIM

The effects of process variations on PIM inference accuracy is evaluated using DNN+NeuroSim [144],

an integrated framework to benchmark PIM accelerators for DNNs covering a wide variety

of design options from device-level to circuit-level and up to algorithm-level. The frame-

work supports automatic algorithm to hardware mapping, and evaluates both chip-level

performance and inference accuracy with hardware constraints. As shown in Figure 6.19,

DNN is setup in python wrapper, with hardware non-idealities introduced during inference,

and the traces of synaptic weights and neural activations are unrolled, saved and sent to the

C++ based NeuroSim core, then partitioned and assigned to different locations of the chip

according to the automatic floor plan.

The hardware characteristics and settings like synaptic memory device variation, weight

precision, and ADC quantization are introduced in the accuracy evaluation. In this simu-

lation, 32nm SRAM is applied and its process variation at 0.9V and 0.65V VDD are 8.6%
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Figure 6.19: Framework structure of DNN+NeuroSim [144]

and 15% [145]. The read current variability of SRAM is inversely proportional to the over-

drive voltage. The process variation is Gaussian distributed between device to device, and

different random seeds are applied to the simulation of different chips. 8-bit weight, 8-bit

input and 10-bit ADC are assumed to ensure no accuracy loss. Besides accuracy estima-

tion, the system-level hardware performances like chip area, latency, energy consumption

and leakage, as well as energy efficiency and throughput are also evaluated with NeuroSim.

The device characteristics of 32nm technology node like current density and threshold volt-

age are distracted from SPICE simulations using PTM model [146] for both general 0.9V

and insufficient 0.65V VDD.

Effect of Chip-to-Chip Variations on Task DNN

Process variations in PIM hardware highly affect DNN predictions. Figure 6.20 shows

image classification of seven different PIMs on a single image from CIFAR10 [58]. Al-

though same DNN weights are used at each processors, the predictive distributions over

classes varies. For example, most chips at 0.9V correctly classifies the input image as

truck (Figure 6.20(a1)), but chip 1 predicts as frog with high confidence (>0.9). Such

chip-to-chip prediction deviation is also highly dependent to input features. Comparing

Figure 6.20(a1) and Figure 6.20(b1), more chips give incorrect predictions (chip 3, 5, 6) on

input 2. Moreover, electrical design parameters, such as supply voltage in processor, affect
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process variations and change prediction deviations. At low voltage (0.65V), more chips

(chip 1, 3, 4, 5, 6 in Figure 6.20(a2)) give incorrect predictions on same input image or

correctly predict with low confidence (chip 2 in Figure 6.20(b2)). Therefore, process vari-

ations in PIM accelerator have large impact on DNN inference, and such impact is highly

dependent to electrical design parameters of accelerator as well as input image features.

On a whole dataset, both accuracy and classification confidence are decreased under low

voltage with larger variances (Figure 6.21).
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Figure 6.20: Image classifications on a single image from seven different PIMs at (a) 0.9V and (b) 0.65V
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Figure 6.21: (a) Accuracy and (b) classification confidence under different voltage levels.
Error bars denote standard deviations of accuracy / confidence.

6.3.3 Experimental Results

This section presents experimental results on chip-to-chip variations and ModelNet that

distills the knowledge of chip-to-chip variations. We consider image classification as target

task and obtain inference results from SRAM-based PIM accelerators. These inferences

are used to train ModelNet. Both image classifiers in PIMs and ModelNet adopt Resnet-

18 [48] based image classifier architecture, and CIFAR10 dataset [58] is used for training

and evaluation.

As observed in Figure 6.21, process variations make DNN give incorrect prediction

with high confidence and this makes challenging for ModelNet to learn distribution under

process variations in PIM. Figure 6.22(a) shows confidence histogram of image classifica-

tion from PIM ensemble with 10 instances. Note that confidence frequencies are partic-

ularly high at n/10 (n=3, 4, 5, ..., 10) of confidence. This is because 10 instances mostly

predict with confidence of either 0 or 1 on both correct and incorrect predictions. In other

words, DNNs with process variations in PIM are over-confident to their predictions. This

makes challenging for ModelNet to learn the distribution of PIM ensemble during training,

as the shape of distribution is difficult to match with its likelihood. Therefore, more number

of samples from more instances are necessary to reduce the quantized-shape of distribution
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Figure 6.22: Confidence histogram from PIM ensemble with (a) 10 instances and (b) 20
instances.

(Figure 6.22(b)).

Evaluation of Estimated Uncertainty

CLUE distills the chip-to-chip variations in PIM, so it is necessary to evaluate the correla-

tion between predictions from PIM ensemble and CLUE as well as the quality of estimated

uncertainty. Estimated uncertainty from CLUE is linearly correlated with uncertainty ob-

tained from PIM ensemble with 0.67 of Pearson correlation coefficient.

Detection of Various Sources of Variations and Uncertainties

Uncertainty estimations from ModelNet and CLUE are presented under various sources of

variations and uncertainties in sensor-NN pipeline.

Input Noise Injection: Both dynamic edge environments and sensor hardware variations
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(a) Image Rotation (5◦, 10◦, 15◦, 20◦)

(b) Gaussian Noise (σ=0.02, 0.04, 0.06, 0.08)

Figure 6.23: Sample images with input noise injections.

result in input noise injections, and image rotation and Gaussian noise injection are consid-

ered as examples, respectively (Figure 6.23). As input images rotate with larger angle, task

accuracy decrease and both ModelNet and CLUE correctly predict unreliable task by esti-

mating higher uncertainty (Figure 6.24(a)). Similarly, with more Gaussian noise added to

input image, both ModelNet and CLUE correctly predict unreliable task (Figure 6.24(b)).

Therefore, both ModelNet and CLUE can detect task unreliability derived from dynamic

environment or sensor hardware variations. Also, note that CLUE always estimates higher

uncertainty than ModelNet. This is because CLUE takes account of task uncertainty de-

rived from PIM along with other sources of uncertainty that ModelNet considers.

DNN Model Uncertainty: Model uncertainty is useful to estimate if DNN is running

outside of its training distribution. To evaluate the ability to detect out-of-distribution inputs

of ModelNet and CLUE, we train another ModelNet and CLUE model with CIFAR10

dataset [58], excluding class of truck. These new ModelNet and CLUE correctly predict

low uncertainty on most of in-distribution inputs and high uncertainty on out-of-distribution

data as shown in Figure 6.25. Also, note that CLUE predicts higher uncertainty on both in-

distribution and out-of-distribution inputs than ModelNet, as it takes account of the impact
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Figure 6.24: Task accuracy and uncertainty estimations from CLUE/ModelNet under (a)
dynamic environment and (b) sensor hardware variations

of PIM variations along with the impact of other unreliabilities.

PIM Variations: Low supply voltage in PIM aggravates device mismatch in memory

cells which changes stored DNN model weights and results in low task accuracy as shown

in Figure 6.26. CLUE can correctly predict such unreliable task and provide high uncer-

tainty. On the other hand, ModelNet does not learn the effect of PIM variations on task

reliability, so it cannot predict the change.

Case Study

Figure 6.27 shows task predictions and corresponding uncertainty estimations from Mod-

elNet and CLUE on an image sequence. During early frames (0-90th frames), sitting dog

is correctly detected with high confidence by task, either when PIM variation is involved

or not. Both ModelNet and CLUE also correctly predict the reliable prediction. Noise is

injected from 70th frame and task prediction starts to degraded. When PIM variations are

not involved, task often shows correct predictions as input noise level is not critically high

(70-130th frames). On the other hand, task with PIM variations mostly fails as the impact

of input noise addition to the impact of PIM variations is critical enough to make task unre-

127



0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fr
eq
ue
nc
y

Uncertainty

Plane Car Cat Ship Truck (OOD)

(a) ModelNet

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Fr
eq
ue
nc
y

Uncertainty

Plane Car Cat Ship Truck (OOD)

(b) CLUE

Figure 6.25: Histogram of uncertainty estimation from CLUE on in-distribution (plane,
car, cat, ship) and out-of-distribution (truck) data

liable. ModelNet predicts small impact in uncertainty after noise injection, whereas CLUE

predicts high uncertainty. Dog starts to lie down (130th frame), and task starts to fail. Both

ModelNet and CLUE correctly predict unreliable task and give low certainty.

6.3.4 Summary of the Section

This section presents CLUE, cross-layer lightweight uncertainty estimator that quantifies

task reliability taking account of various sources of variations and uncertainties from hard-

ware and DNN algorithm. CLUE distills the distribution over prediction distribution of

PIM ensemble, using processor-DNN cross-layer simulations that considers the effect of

electrical parameters of accelerators (memory design, supply voltage, etc) on DNN infer-

ence. Experimental results show that CLUE not only can correctly estimate task uncertainty

due to sensor variations, DNN model uncertainty, and PIM variations, but can quantify the
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Figure 6.26: Task predictions and uncertainty estimation of ModelNet and CLUE under
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combined effect on task from each sources of variations/uncertainties.
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CHAPTER 7

CONCLUSION

This chapter summarizes the key contributions of this dissertation, and also identifies re-

lated future research goals.

In this thesis, algorithms and frameworks have been presented to design a reliable sen-

sor intelligent under limited resource and unreliable environment. Fully spatiotemporal

preprocessor and digital pixel-DNN cross-layer simulation methodology are suggested to

understand unique input corruptions and improve task robustness in adversarial edge en-

vironment. Concept of early warning is proposed to predict unreliable task due to input

distortion in advance and control sensor operation to avoid system failure. Lightweight un-

certainty estimator is presented to quantify task uncertainty without using complex stochas-

tic DNN, and cross-layer lightweight uncertainty estimator takes account of various sources

of variations and uncertainties from hardware and algorithm.

In Chapter3, rainy weather is considered as an example of adversarial environment

as rain drops in input images have size and occlude some area of image. Deep learning

based fully spatiotemporal rain removal network is suggested that uses spatiotemporal in-

formation for both detection and reconstruction of rain streaks through end-to-end training.

Experimental results show significant improve in action detection (0.15 mAP) under rain.

Moreover, sensor induced noise under limited resources has unique noise structure based

on the pixel hardware design, and it is distinguished from algorithm-based noise. Future

work will include robust task DNN without prior knowledge of specific noise structure.

In Chapter 4, PVT variations in readout circuit of digital pixels are considered as an ex-

ample of sensor hardware induced noise. Sensor hardware induced noise has distinct noise

structure compared to mathematical noise model, which implies the necessity of the digi-

tal pixel-DNN cross-layer simulation. Proposed digital pixel-DNN cross-layer simulation
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methodology takes account of the sensor hardware design and its PVT variations through

SPICE simulations. Extensive design space explorations in smart sensors is demonstrated

and shows that cross-layer simulation platform can be used to design electrical parameters

such as supply voltage of ROIC or algorithmic parameters such as DNN architecture.

Designing a robust deep learning-based tasks may help improve the reliability of the

sensor system, but it cannot eliminate all sources of failures. Therefore, it is essential to

predict task failure in advance to avoid a catastrophic system failure in safety-critical sys-

tems. Chapter 5 introduces a concept of early warning generation that aims to estimate task

failure. An early warning generator is presented, referred to as WarningNet, to estimate

potential task failures due to perturbations in the sensor data. This novel deep learning

platform exploits the input features to estimate the statistical impact of input perturbations

on tasks. Task metrics are brought into the training process of WarningNet. WarningNet

estimates the potential of task failure with 67-71% of accuracy in 21-60 times shorter run-

ning time required by the complex DNN for the end task, allowing fast and energy-efficient

warning generation. Moreover, early warning based adaptive sensor framework is devel-

oped, which controls pixel operation, such as sampling resolution or operating voltage to

adjust the resource efficiency (bandwidth, power) while maintaining high accuracy.

Chapter 6 discusses lightweight uncertainty estimator to take account of DNN model

uncertainty in task reliability quantification. Model uncertainty captures the lack of un-

derstanding of the model on the current input, but quantifying uncertainty is challeng-

ing and requires unacceptable latency in real-time operations. Deterministic sampling-free

DNN is suggested, called ModelNet, that distills the knowledge of a stochastic DNN and

estimates model uncertainty of object detection with small computational cost. Model-

Net distills the predictive distribution of MC dropout in various architectures resulted in

comparable/higher PDQ and 39x-179x less computational cost compared to MC dropout.

Therefore, ModelNet allows lightweight, good quality of probabilistic object detection.

Moreover, an uncertainty driven sensor control system is proposed that uses ModelNet pre-
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dictions to control sensor parameters and improve task accuracy. ModelNet based adaptive

sensor shows improved sensor control compared to using MC dropout, as it allows much

higher (x20) frame rate. In addition, cross-layer uncertainty estimator (CLUE) is proposed

to add the consideration of device non-ideal properties in PIM based accelerator while es-

timating task uncertainty. Future work will include lightweight CLUE for deployment on

dynamic noise. Additional timing/power analysis will be necessary to use CLUE estima-

tion operating at digital circuit.

This thesis discusses task reliability quantification that considers the impact of dynamic

environment, sensor noise, DNN model uncertainty, and PIM variations. Future work may

consider other sources of unreliabilities involved in sensing pipeline, such as data distor-

tion during data transmission between sensor and PIM. Moreover, uncertainty estimation

framework that can quantify uncertainty from each sources of unreliabilities may allow

causality analysis of unreliable task and closed-loop system that allows improved adaptive

control of system hardware. Uncertainty estimator may also allow online learning of DNN

based task to adaptively improve task estimation at given conditions.
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