
RISK NEUTRAL AND RISK AVERSE STOCHASTIC OPTIMIZATION

A Dissertation
Presented to

The Academic Faculty

By

Yi Cheng

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology

December 2022

© Yi Cheng 2022

RISK NEUTRAL AND RISK AVERSE STOCHASTIC OPTIMIZATION

Thesis committee:

Dr. Alexander Shapiro
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Guanghui Lan
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Alp Muharremoglu

Amazon.com

Dr. Lauren N. Steimle
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Dr. Enlu Zhou
School of Industrial and Systems Engi-
neering
Georgia Institute of Technology

Date approved: November 23, 2022

It was the best of times, it was the worst of times.

Charles Dickens

To my parents

ACKNOWLEDGMENTS

Throughout the years at Georgia Tech, I have received a lot of help, support and en-

lightenment from many people. In the paragraphs that follow, I would like to point out a

few of them that I am particularly indebted to.

First and foremost, I want to express my deepest gratitude to my advisors Alexander

Shapiro and Guanghui (George) Lan, who “push” me to the critical point of intellectual

drive and ignite the engine for my academic and personal edification. The first conversation

with Alex was about human history, scattered with universe evolution. I found myself

inadvertently keep asking questions (may be quite stupid as I barely knew those), leaving

him more constraints to stay on the seat for a long time. He did not complain. On the

contrary, he was so patient and generously gave his understandings and answers in an

amiable tone. Later, Alex introduced to me the research area of “Stochastic Programming”

where I spot great interest and determined to unfold my Ph.D. journey with exploring its

related topics. During the years of study, I enjoyed those “randomized” meetings with

Alex (during the pandemic, switched on by the musical Skype notification sound), where

he often inspired me to test new ideas, encouraged me to envision broader horizons and

gave constructive feedback. I have been so fortunate to be advised by him and nourished

from his insights and critical thoughts. The greatest lessons I have learned from George

are relentless pursuit of high-quality research and insistence on qualified details. The first

few meetings with George were often fused together discussion of first order methods that

were of “highest order of confusion” (to me), my sudden clicked with the problems after his

hints and his wholehearted encouragement at the end of the meetings. Under his guidance, I

have overcome a lot of obstacles and gradually established a systematic way of conducting

research and presenting results. I am so grateful that I can learn from George, a role model

that endlessly fuels me to fight for higher standards and continuous progress. I would

like to thank the rest of my committee members, Alp Muharremoglu, Lauren Steimle and

v

Enlu Zhou for always being very supportive to me and providing insightful and constructive

comments to my thesis. I would like to thank my collaborators, Edwin Romeijn and Vincent

Guigues. Edwin introduced me the challenging healthcare problem which motivated me to

develop the research in projection-free methods and provided a new perspective to evaluate

related results. Vincent is a very pragmatic and rigorous researcher who has unique and

interesting ideas in the area of stochastic programming.

I would like to thank Jiachen Shi, Hairong Wang and Buse Eylul Oruc Aglar for their

friendship. They keep encouraging me whenever there are ups or downs and accompany me

for the best and worst of the times. There are many other friends that I owe gratitude to. The

list includes Jimmy Zhang, Lingquan Ding, Georgios Kotsalis, Ray Liu, Zhiqiang Zhou,

Di Wu, Shixuan Zhang, who are always offering their help in research and job seeking,

providing me with valuable perspectives of life and beyond. I would like to thank Akane

Fujimoto, Prakirt Jhunjhunwala, Sajad Khodadadian, Chungjae Lee, Yan Li, Shancong

Mou, Cindy Azuero Pedraza, Yuyang Shi, Zilong Wang, Shaowu Yuchi, Keyu Zhu and

other fellow students in the cohort that shared the joys (and of course sorrows) in the days

and nights at ISyE Main 341. I would like to thank Judy, Yihan, April, Kim, Yongxin

and Haotian who have been very helpful during my times in Seattle. I would like to thank

Yiguo, Ke, Ci, Zaiwei, Chenghao and Scott, who add to my experience a museum-like and

dishes-and-champagne-style layer (thanks to many get-together dinners, trips with them),

that weave in both lasting laughter and lucid thoughts. Never would I forget my friends

Peilin, Wenhao and Yunru, who have been standing by me for more than ten years.

Last but not least, my greatest gratitude goes to my family. I am deeply indebted to

my partner Yijiang, for his trust, respect and unconditional love. He is like starry nights

that accompany me through the journey. “It’s amazing how he can speak right to my heart.

Without saying a word, he can light up the dark.” I would like to thank my parents, who

show me the greatest virtues of mankind, help me comprehend the creed of freedom and

shape my independence to live, strong will to thrive.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xi

List of Figures . xiv

Summary . xv

Chapter 1: Introduction . 1

1.1 Multistage Stochastic Program . 1

1.1.1 Risk Neutral Stochastic Program 1

1.1.2 Risk Averse Stochastic Program 4

1.2 Computational Methods for Solving Stochastic Program 8

1.2.1 Stochastic Dual Dynamic Programming (SDDP) 8

1.2.2 Projection-free Methods for Risk Averse Single-stage Problem . . . 12

Chapter 2: Upper Bounds for Risk Neutral Multistage Stochastic Program . . . 15

2.1 Overview . 15

2.2 Dual Bounds for Finite-horizon Multistage Stochastic Program 16

2.2.1 Dynamic Programming Equations of the Dual 17

2.2.2 Dynamics of Lagrangian Multipliers 21

vii

2.2.3 Sensitivity Analysis . 23

2.3 Dual SDDP . 24

2.3.1 Dual SDDP for Problems with Uncertainty in bt and Bt 24

2.3.2 Dual SDDP for Problems with Uncertainty in All Parameters 29

2.3.3 Dual SDDP for Problems with Interstage Dependent Cost Coefficients 30

2.4 Dual Bounds for Periodical Multistage Stochastic Program 32

2.5 Periodical Dual SDDP . 37

2.5.1 Trial Points Selection . 39

2.5.2 Cutting Plane Algorithm . 39

2.5.3 Trust-bound Strategy . 40

2.6 Numerical Results . 41

2.6.1 Inventory Model . 41

2.6.2 Hydro-thermal Generation Problem 52

2.7 Proofs of Auxiliary Results . 62

2.7.1 Properties of the Multiplicative Autoregressive Process. 62

2.7.2 Proof of Lemma 2.3.1. 63

2.7.3 Proof of Proposition 2.3.1. 65

2.7.4 Proof of Theorem 2.3.1 . 69

Chapter 3: Upper Bounds for Risk Averse Multistage Stochastic Program 70

3.1 Overview . 70

3.2 Risk-neutral Stochastic Optimal Control 72

3.3 Risk-averse Stochastic Optimal Control 78

viii

3.3.1 Risk-averse Setting . 78

3.3.2 Statistical Upper Bounds on the Value of the Policy 80

3.3.3 Q-factor Approach . 83

3.4 Numerical Experiments . 85

Chapter 4: Sample Complexity of Stationary Stochastic Programs 90

4.1 Overview . 90

4.2 Stationary Stochastic Programs . 91

4.3 Sample Complexity Analysis . 92

4.3.1 Risk Averse Case . 96

4.4 Inventory Model . 97

4.4.1 Risk Averse Case . 99

4.5 Numerical Illustration . 100

4.5.1 Test Cases and Experimental Settings 100

4.5.2 Risk Neutral Case . 102

4.5.3 Risk Averse Case . 104

Chapter 5: Projection-free Methods for Convex Functional Constrained Opti-
mization . 112

5.1 Overview . 112

5.2 Level Conditional Gradient Method . 117

5.3 Outer Loop of LCG . 118

5.4 Conditional Gradient Oracle . 122

5.4.1 CGO for Smooth Functions . 123

ix

5.4.2 CGO for Structured Nonsmooth Functions 132

5.5 Overall Complexity . 142

5.6 Modified Level Conditional Gradient Method 147

5.6.1 Outer Loop Iteration Complexity of MLCG 149

5.7 Auxiliary Lemmas . 151

Chapter 6: Projection-free Methods for Nonconvex Functional Constrained Op-
timization . 153

6.1 Overview . 153

6.2 Nonconvex Functional Constrained Optimization Problem 154

6.3 Proximal Point Methods for Nonconvex Functional Constrained Problem . . 155

6.3.1 Exact Proximal Point Method . 155

6.3.2 Inexact Proximal Point Method . 158

6.4 Direct Nonconvex Conditional Gradients Method 163

6.5 Numerical Experiments . 169

6.5.1 Portfolio Selection . 169

6.5.2 IMRT Treatment Planning . 176

References . 187

x

LIST OF TABLES

2.1 Lower bound Lb and upper bound Ub computed by Primal SDDP and upper
bounds computed by Dual SDDP penalties vt,k = 1000 along iterations. . . 44

2.2 Time needed (in seconds) to obtain a solution of relative accuracy ε with
Primal SDDP and Dual SDDP with penalties vt,k = 1000. 44

2.3 Convergence results of MC-primal and TS-dual 46

2.4 Upper and lower bounds at the last iteration of Primal SDDP. 48

2.5 Comparison between optimal Lagrange multipliers from Primal SDDP and
Dual SDDP with penalties. 49

2.6 Sensitivity of the optimal value with respect to ϕ and µ by the two methods. 49

2.7 Inventory problem: evolution of bounds of primal and dual periodical pro-
grams. 51

2.8 Lower bound Lb and upper bound Ub computed by Primal SDDP and upper
bounds computed by variants of Dual SDDP along iterations. All costs have
been divided by 106. 57

2.9 Relative error as a function of the number of iterations for Primal SDDP,
Dual SDDP 1, and Dual SDDP 2. 57

2.10 CPU time (in seconds) needed to obtain a solution of relative accuracy ε
with Primal SDDP and variants of Dual SDDP. 59

2.11 Hydro-thermal problem with γ = 0.8: deterministic bounds of primal and
dual periodical programs. 60

2.12 Hydro-thermal problem with γ = 0.9906: deterministic bounds of primal
and dual periodical programs. 62

xi

3.1 Convergence of convex combination of expectation and AV@R problem
for different λ. 88

3.2 Convergence of KL-divergence problem for different ϵ. 89

4.1 Risk neutral case: convergence of solving SAA problems. 103

4.2 Risk neutral case: sample standard deviations of optimal values of M =
100 SAA problems. 105

4.3 Risk neutral case: theoretical standard deviation of the optimal value func-
tion for the inventory problem. 106

4.4 Risk averse case: convergence of solving SAA problems. 108

4.5 Risk averse case: sample standard deviations of optimal values ofM = 100
SAA problems. 110

4.6 Risk averse case: theoretical standard deviation of the optimal value func-
tion for the inventory problem. 110

6.1 Features of the stock market dataset. 173

6.2 Results of solving model (Card-Free-Convex) by LCG. 174

6.3 Results of solving model (Card-Free-Nonconvex) by DNCG and IPP-LCG. 174

6.4 Results of solving model (Card-Convex) by LCG. 175

6.5 Results of solving model (Card-Nonconvex-1) by IPP-LCG. 175

6.6 Results of solving model (Card-Nonconvex-2) by DNCG. 175

6.7 Results of solving model (Card-Convex) by CoexDurCG. 176

6.8 Features of the synthetic dataset . 181

6.9 Results of applying LCG on the synthetic dataset at iteration 1000. 182

6.10 Results of applying CoexDurCG on synthetic data with Φ = 0.005 at itera-
tion 1000. 183

6.11 Treatment plans constructed by LCG on Prostate dataset with different Φ. . 184

xii

6.12 Results of applying LCG on Prostate dataset. 185

6.13 Treatment plans constructed by DNCG with different initial conditions on
Prostate dataset. 186

6.14 Results of applying DNCG and LCG initial+ DNCG on Prostate dataset. . 186

xiii

LIST OF FIGURES

2.1 Graph of V2 and of V γ
2 for γ = 1, 100, 1000. 28

2.2 Cumulative CPU time along iterations of Primal SDDP and Dual SDDP
with penalizations vt,k = 1000. 45

2.3 Evolution of primal and dual bounds for interstage dependent cost process . 46

2.4 Top left: upper and lower bounds computed by Primal SDDP and upper
bounds computed by Dual SDDP 1, Dual SDDP 2, and Dual SDDP
3, for the first 20 iterations; Top right: same outputs for iterations 21,. . . , 150;
Bottom: same outputs for iterations 151,. . . , 1000. 56

2.5 Cumulative CPU time for Primal SDDP, Dual SDDP 1, Dual SDDP 2, and
Dual SDDP 3. 58

2.6 Hydro-thermal problem with γ = 0.9906: evolution of deterministic bounds
of primal and dual periodical multistage stochastic programs. The orange
line is obtained by smoothing the dual bounds (in blue) to exhibit the de-
scending trend. 61

3.1 Evolution of lower and upper bounds for convex combination of expecta-
tion and AV@R problem when λ = 0.5. 88

4.1 Normal probability plot (Q-Q plot) for the risk neutral hydro-thermal problem107

4.2 Risk averse case: bounds evolution of the SAA problems of the inventory
problem. 109

4.3 Normal probability plot (Q-Q plot) for the risk averse hydro-thermal problem111

xiv

SUMMARY

In this thesis, we focus on the modeling, computational methods and applications of

multistage/single-stage stochastic optimization, which entail risk aversion under certain cir-

cumstances. Chapters 2-4 concentrate on multistage stochastic programming while Chapter

5-6 deal with a class of single-stage functional constrained stochastic optimization prob-

lems.

First, we investigate the deterministic upper bound of a Multistage Stochastic Linear

Program (MSLP). We first present the Dual SDDP algorithm, which solves the Dynamic

Programming equations for the dual and computes a sequence of nonincreasing determin-

istic upper bounds for the optimal value of the problem, even without the presence of

Relatively Complete Recourse (RCR) condition. We show that optimal dual solutions can

be obtained using Primal SDDP when computing the duals of the subproblems in the back-

ward pass. As a byproduct, we study the sensitivity of the optimal value as a function of

the involved problem parameters. In particular, we provide formulas for the derivatives

of the value function with respect to the parameters and illustrate their application on an

inventory problem. Next, we extend to the infinite-horizon MSLP and show how to con-

struct a deterministic upper bound (dual bound) via the proposed Periodical Dual SDDP.

Finally, as a proof of concept of the developed tools, we present the numerical results of

(1) the sensitivity of the optimal value as a function of the demand process parameters; (2)

conduct Dual SDDP on the inventory and the Brazilian hydro-thermal planning problems

under both finite-horizon and infinite-horizon settings.

Second, we propose a construction of the statistical upper bound for the optimal value

of risk-averse Stochastic Optimal Control (SOC) problems. This outlines an approach to a

solution of a long standing problem in that area of research. The bound holds for a large

class of convex and monotone conditional risk mappings. We show the validity of the

statistical upper bound to solve a real-world stochastic hydro-thermal planning problem.

xv

Third, we discuss sample complexity of solving stationary stochastic programs by the

Sample Average Approximation (SAA) method. We investigate this in the framework of

Stochastic Optimal Control (in discrete time) setting. In particular we derive a Central

Limit Theorem type asymptotics for the optimal values of the SAA problems. The main

conclusion is that the sample size, required to attain a given relative error of the SAA

solution, is not sensitive to the discount factor, even if the discount factor is very close

to one. We consider the risk neutral and risk averse settings. The presented numerical

experiments confirm the theoretical analysis.

Fourth, we propose a novel projection-free method, referred to as Level Conditional

Gradient (LCG) method, for solving convex functional constrained optimization. Differ-

ent from the constraint-extrapolated conditional gradient type methods (CoexCG and Co-

exDurCG), LCG, as a primal method, does not assume the existence of an optimal dual

solution, thus improving the convergence rate of CoexCG/CoexDurCG by eliminating the

dependence on the magnitude of the optimal dual solution. Similar to existing level-set

methods, LCG uses an approximate Newton method to solve a root-finding problem. In

each approximate Newton update, LCG calls a conditional gradient oracle (CGO) to solve

a saddle point subproblem. The CGO developed herein employs easily computable lower

and upper bounds on these saddle point problems. We establish the iteration complexity of

the CGO for solving a general class of saddle point optimization. Using these results, we

show that the overall iteration complexity of the proposed LCG method isO
(

1
ϵ2
log(1

ϵ
)
)

for

finding an ϵ-optimal and ϵ-feasible solution of the considered problem. To the best of our

knowledge, LCG is the first primal conditional gradient method for solving convex func-

tional constrained optimization. For the subsequently developed nonconvex algorithms in

this thesis, LCG can also serve as a subroutine or provide high-quality starting points that

expedites the solution process.

Last, to cope with the nonconvex functional constrained optimization problems, we de-

velop three approaches: the Level Exact Proximal Point (EPP-LCG) method, the Level

xvi

Inexact Proximal Point (IPP-LCG) method and the Direct Nonconvex Conditional Gradi-

ent (DNCG) method. The proposed EPP-LCG and IPP-LCG methods utilize the prox-

imal point framework and solve a series of convex subproblems. By solving each sub-

problem, they leverage the proposed LCG method, thus averting the effect from large La-

grangian multipliers. We show that the iteration complexity of the algorithms is bounded by

O
(

1
ϵ3
log(1

ϵ
)
)

in order to obtain an (approximate) KKT point. However, the proximal-point

type methods have triple-layer structure and may not be easily implementable. To alleviate

the issue, we also propose the DNCG method, which is the first single-loop projection-

free algorithm for solving nonconvex functional constrained problem in the literature. This

algorithm provides a drastically simpler framework as it only contains three updates in

one loop. We show that the iteration complexity to find an ϵ-Wolfe point is bounded by

O
(
1/ϵ4

)
. To the best of our knowledge, all these developments are new for projection-free

methods for nonconvex optimization. We demonstrate the effectiveness of the proposed

nonconvex projection-free methods on a portfolio selection problem and the intensity mod-

ulated radiation therapy treatment planning problem. Moreover, we compare the results

with the LCG method proposed in Chapter 6. The outcome of the numerical study shows

all methods are efficient in jointly minimizing risk while promoting sparsity in a rather

short computational time for the real-world and large-scale datasets.

Some of the contents of the thesis can be found in [1, 2, 3, 4, 5].

xvii

CHAPTER 1

INTRODUCTION

In this chapter, we introduce the background and discuss the motivation for the thesis.

Specifically, we present the mathematical formulations for multistage stochastic programs

under various settings and extend our discussion to the risk averse case for both single-stage

and multistage models in Section 1.1. In Section 1.2, we review existing methodologies and

challenges for solving both multistage and single-stage programs.

1.1 Multistage Stochastic Program

Multistage stochastic program (MSP) provides a framework for making decisions under

uncertainty where the decision space is typically high dimensional and the uncertainty is

modeled by general stochastic processes.

1.1.1 Risk Neutral Stochastic Program

We start with the mathematical formulation of a multistage stochastic linear program with

T stages:

min
xt∈Xt

E
[∑T

t=1 γ
t−1c⊤t xt

]
s.t. A1x1 = b1,

Btxt−1 + Atxt = bt, t = 2, ..., T.

(1.1)

Here vectors ct = ct(ξt) ∈ Rnt , bt = bt(ξt) ∈ Rmt and matrices Bt = Bt(ξt), At = At(ξt)

are functions of random process ξt ∈ Rdt , t = 1, ..., T , and γ ∈ (0, 1) is the discount

factor. We denote by ξ[t] = (ξ1, ..., ξt) the history of the data process up to time t and by

E|ξ[t] the corresponding conditional expectation. The optimization in (1.1) is performed

over functions (policies) xt = xt(ξ[t]) ∈ Rnt , t = 1, ..., T, of the data process satisfying

1

the feasibility constraints. Vector ξ1 and the first stage solution x1 are deterministic, i.e.,

the first stage decision is made before knowing (observing) realizations of the data process

ξ2, ..., ξT .

We review two cases regarding problem (1.1) where T is finite and infinite. In particu-

lar, when T = 1, (1.1) becomes a single-stage stochastic model. For multistage stochastic

program under both settings, we make the following assumptions throughout the thesis

unless stated otherwise.

(A0) We assume that the random data process {ξt} is stagewise independent and that the

probability distribution of ξt, t = 2, · · · , T do not depend on our decisions.

(A1) (Relatively Complete Recourse) For every xt−1 ≥ 0 the set {xt : Bt(ξt)xt−1 +

At(ξt)xt = bt(ξt), xt ≥ 0} is nonempty for all ξt ∈ Ξt and t ≥ 2.

(A2) (i) There exist bounded sets Xt ⊂ Rnt such that adding the constraints xt ∈ Xt,

t = 1, ..., T , to the problem (1.1) does not change its optimal value; (ii) the cost

functions ct : Ξt → R, t = 1, ..., T , are bounded.

In applications the sets Xt typically are sufficiently large boxes containing the considered

decision variables. Of course, if functions ct(·) are constants, the boundedness condition

(A2)(ii) holds automatically.

Problem (1.1) leads to optimization over implementable policy. Under stagewise de-

pendence assumption on the data process {ξt} and some regularity condition (to justify the

interchange fo the expectation and the infimum/minimum),problem (1.1) is equivalent to

the following nested formulation:

min
x1∈X 1

c⊤1 x1 + E
[

inf
x2∈X 2

γc⊤2 x2 + E
[
· · ·+ E

[
inf

xT∈XT

γT−1c⊤T xT

]]]
, (1.2)

where X 1 := Xt

⋃
{xt : Btxt−1+Atxt = bt}. When the number T of stages is finite, based

on problem (2.2), it is possible to write the following dynamic programming equations (cf.,

2

[6, Remark 3, Chapter 3.1.1]). At stage t = T, ..., 2, the value functionQt(xt−1, ξt) is given

by the optimal value of the problem

min
xt∈Xt

c⊤t xt + γQt+1(xt)

s.t. Btxt−1 + Atxt = bt,

(1.3)

with

Qt+1(xt) = E
[
Qt+1(xt, ξt+1)

]
(1.4)

and QT+1(·) ≡ 0. At the first stage the following problem should be solved

min
x1∈X1

c⊤1 x1 + γQ2(x1)

s.t. A1x1 = b1.

(1.5)

When T = 1, the multistage formulation regarding (1.1) collapses to a single-stage

model, which can be written, in a more generic way, as

min
x∈X

f(x) := E [F (x, ξ)]

s.t. hi(x) ≤ 0, i = 1, · · · ,m.
(1.6)

Here f : X → R is proper lower semicontinuous function (not necessarily convex), h :=

(h1; · · · ;hm), hi : X → R, i = 1, · · · ,m are proper lower semicontinuous and convex

functions, X ⊆ Rn is a nonempty compact convex set. We call problem (1.6) either convex

or nonconvex functional constrained optimization depending on whether f is convex or not.

For the convex case, the objective function f is not necessarily differentiable. On the other

hand, we assume f to be a differentiable function with Lipschitz continuous gradients for

the nonconvex setting. Throughout the thesis, we assume that the distribution of the random

variable ξ for the single-stage model (1.6) is discrete with finite number of realizations. In

this way, the corresponding model can be transformed into a deterministic one and we focus

our attention on developing efficient algorithms to solve such model.

3

1.1.2 Risk Averse Stochastic Program

So far we have introduced stochastic optimization problems that optimize over the expected

value, that is, risk-neutral optimization problem. One downside of the approach is that,

when it comes with high fluctuations of specific realizations of the stochastic process, it

fails to manage the heavy quantiles, also interpreted as risk. This drives us to develop

optimization models and methods that consider risk aversion.

Risk Measures. Let (Ω,F , P) be a probability space and let Z be a linear space of

F-measurable functions (random variables) Z : Ω → R. A risk measure is a function

R : Z → R which assigns to a random variable Z a real number representing its risk. Typ-

ical example of the linear space Z is the space of random variables with finite p-th order

moments, denoted Lp(Ω,F , P), p ∈ [1,∞). It is said that risk measure R is convex if it

possesses the properties of convexity, monotonicity, and translation equivariance. If more-

over it is positively homogeneous, then it is said that risk measureR is coherent (coherent

risk measures were introduced in [7]). We can refer to [8] and [9] for a thorough discussion

of risk measures.

In this thesis we consider a class of convex risk measures which can be represented in

the following parametric form:

R(Z) = inf
θ∈Θ

EP [Ψ(Z, θ)], (1.7)

where Θ ⊂ Rk and Ψ : R × Θ → R is a real valued function. The notation EP in (1.7)

emphasizes that the expectation is taken with respect to the probability measure (distribu-

tion) P of random variable Z. We consider risk measures of the form (1.7) for every time

period. That is, for every t = 1, ..., T , we consider a probability space (Ωt,Ft, Pt), and risk

4

measure1

Rt(Zt) = inf
θt∈Θ

EPt [Ψ(Zt, θt)], Zt ∈ Zt, (1.8)

defined on the respective linear space of random variables, say Zt := Lp(Ωt,Ft, Pt).

We make the following assumptions.

(C) (i) The set Θ is a nonempty closed convex. (ii) For every Zt ∈ Zt, t = 1, ..., T , the

expectation in the right hand side of (1.8) is well defined and the infimum is finite

valued. (iii) The function Ψ(z, θ) is convex in (z, θ) ∈ R×Θ. (iv) For every θ ∈ Θ,

the function Ψ(·, θ) is monotone nondecreasing, i.e., if z1 ≤ z2 then Ψ(z1, θ) ≤

Ψ(z2, θ). (v) For every z, a ∈ R,

inf
θ∈Θ

Ψ(z + a, θ) = a+ inf
θ∈Θ

Ψ(z, θ).

Extended polyhedral risk measures, introduced in [10], are also of form (1.7).

Proposition 1.1.1. Assumptions (B) and (C) imply that the functional R, defined in (1.7),

satisfies the axioms of convex risk measures2.

Proof. It follows from assumption (C)(iii) that E[Ψ(Z, θ)] is convex in (Z, θ) ∈ Z×Θ,

and hence its minimum over convex set Θ is convex. That is, the functional R : Z →

R is convex. By Assumptions (B) and (C)(iv) the functional R is monotone, i.e., if

Z,Z ′ ∈ Z are such that Z ≥ Z ′ almost surely (a.s.), with respect to the measure P , then

R(Z) ≥ R(Z ′). Assumptions (B) and (C)(v) imply the translation equivariance property,

i.e.,R(Z + a) = R(Z) + a for any Z ∈ Z and a ∈ R. □

Moreover, Assumption (C)(iv) implies that R is consistent with the stop-loss order

meaning that if Z1 ≤icx Z2 thenR(Z1) ≤ R(Z2) where the relation≤icx between random

1It is possible to consider different parametric sets Θt and different functions Ψt for different time periods.
For the sake of simplicity, we consider the same set Θ and function Ψ, this is in line with the examples below.
On the other hand, the probability distributions Pt could be different for different time periods.

2In fact, in our construction of the statistical upper bound we do not need the translation equivariance
property. We assume this property in order forR to satisfy the standard axioms of convex risk measures.

5

variables (representing losses) is given by

Z1 ≤icx Z2 ⇐⇒ E[f(Z1)] ≤ E[f(Z2)]

for any nondecreasing convex function f such that the respective expectations are well

defined (see [11, 12]). For random variables representing incomes, the stop-loss order is

replaced with the second order stochastic dominance, see for instance [11, 12, 10].

Recall that Z,Z ′ ∈ Z are said to be distributionally equivalent (with respect to the

reference measure P) if P (Z ≤ z) = P (Z ′ ≤ z) for all z ∈ R. It is said that a functional

R : Z → R is law invariant if R(Z) = R(Z ′) for any distributionally equivalent Z,Z ′ ∈

Z . It follows immediately from the definition (1.8) thatRt, is a function of its cdf Ft(z) =

Pt(Zt ≤ z), and hence is law invariant. For every t, consider the direct product P1×· · ·×Pt

of probability measures and the corresponding space Z1 × · · · × Zt. Conditional mapping

Rt|ξ[t−1]
: Zt → Zt−1 is defined as a counterpart of the law invariant functional Rt, t =

1, ..., T . Since ξ0 is deterministic, R1|ξ0 = R. The associated nested functional is defined

in the composite form

R(·) := R1|ξ0

(
R2|ξ[1]

(
· · ·RT |ξ[T−1]

(·)
))
. (1.9)

We refer to [9, section 7.6] for a detailed discussion of constructions of such conditional

mappings and nested functionals. Note that in this framework the process ξ1, ..., ξT , viewed

as a random process with respect to the reference probability distributions, is stagewise

independent with Pt being the marginal distribution of ξt.

There is a large class of risk measures which can be represented in the parametric form

(1.7).

Example 1.1.1. The Average Value-at-Risk measure

AV@Rα(Z) = inf
θ∈R

E
[
θ + α−1[Z − θ]+

]
, α ∈ (0, 1), (1.10)

6

is of form (1.7) with Ψ(z, θ) = θ + α−1[z − θ]+, and Θ = R, Z = L1(Ω,F , P).

Example 1.1.2. A convex combination of the expectation and of Average Value-at-Risk

measures given by

R(Z) := λ0E[Z] +
k∑

i=1

λiAV@Rαi
(Z),

where λi are positive numbers with
∑k

i=0 λi = 1, and αi ∈ (0, 1). Here R is of form (1.7)

with Θ = Rk, Z = L1(Ω,F , P), and Ψ(z, θ) = λ0z +
∑k

i=1 λi
(
θi + α−1

i [z − θi]+
)
.

Example 1.1.3 (ϕ-divergence). Another example is risk measures constructed from ϕ-

divergence ambiguity sets (cf., [13],[14],[9, section 7.2.2]). Let ϕ : R → R+ ∪ {+∞}

be a convex lower semicontinuous function such that ϕ(1) = 0 and ϕ(x) = +∞ for x < 0.

By duality arguments the ditributionally robust functional associated with the ambiguity

set determined by the respective ϕ-divergence constraint with level ϵ > 0 can be written in

the form (1.7) with

Rϵ(Z) = inf
µ,λ>0

{λϵ+ µ+ λEP [ϕ
∗((Z − µ)/λ)]} , (1.11)

θ = (µ, λ), λ > 0, and Ψ(z, θ) = λϵ+ µ+ λϕ∗((Z − µ)/λ), where ϕ∗ is the conjugate of

ϕ. In particular for the Kullback-Leibler (KL)-divergence, ϕ(x) = x lnx − x + 1, x ≥ 0,

and

Rϵ(Z) = inf
µ,λ>0

{
λϵ+ µ+ λe−µ/λEP [e

Z/λ]− λ
}
. (1.12)

Given λ > 0 the minimizer over µ in (1.12) is given by µ = λ lnEP [e
Z/λ] and hence

Rϵ(Z) = inf
λ>0

{
λϵ+ λ lnEP [e

Z/λ]
}
. (1.13)

Risk measures in the above examples are positively homogeneous, and hence are co-

herent.

Example 1.1.4. Let u : R → [−∞,+∞) be a proper closed concave and nondecreasing

7

utility function with nonempty domain. The functional

R(Z) := inf
θ∈R

{
θ − E[u(Z + θ)]

}
,

is of form (1.7) with Θ = R and Ψ(z, θ) = θ − u(z + θ). This risk measure is convex,

but is not necessarily positively homogeneous. It can be viewed as the opposite of the OCE

(Optimized Certainty Equivalent (see [15]).

Utilizing the nested functional (1.9), the risk averse multistage programming problem

can be written as

min
x1∈X 1

c⊤1 x1 +R2

(
inf

x2∈X 2

c⊤2 x2 +Rt

(
· · ·+RT

(
inf

xT∈XT

c⊤T xT

)))
, (1.14)

where X 1 := Xt

⋃
{xt : Btxt−1 + Atxt = bt}. Based on (1.14), the risk averse counterpart

of dynamic programming equations (1.3) can be written as (recall assumption (A0))

Qt(xt−1, ξt) = inf
xt∈Xt

{c⊤t xt + γQt+1(xt) : Btxt−1 + Atxt = bt}, (1.15)

for t = T, ..., 1 with Qt(xt−1) = Rt(Qt(xt−1, ξt)), QT+1 ≡ 0.

1.2 Computational Methods for Solving Stochastic Program

1.2.1 Stochastic Dual Dynamic Programming (SDDP)

For a multistage stochastic program, in order to make the problem solvable, we need to first

discretize the underlying stochastic process if it has very large/infinite number of realiza-

tions. For stagewise independent data process, we discretize it using the Sample Average

Approximation (SAA) [16], which generates an independent identically distributed (i.i.d.)

random sample of a random vector ξt at stage t and employs the sample average to approx-

8

imate the expectation for each stage. We refer to the problem with discretized stochastic

process by the SAA approach as the SAA problem. If the distribution of ξt has finite sup-

port, we naturally obtain the sample average formulation of the model in terms of finite

number of realizations. The dynamic programming equations for the SAA problem can be

written as

Q̂tj(xt−1) = inf
xt∈Xt

{ĉ⊤tjxt + γQ̂t+1(xt) : B̂tjxt−1 + Âtjxt = b̂tj}, j = 1, · · · , Nt (1.16)

with

Q̂t+1(xt) =
1

Nt+1

Nt+1∑
j=1

Q̂t+1,j(xt), (1.17)

t = 2, · · · , T and Q̂T+1(·) ≡ 0. At the first stage, we solve

min
x1∈X1

{c⊤1 x1 + γQ̂2(x1) : A1x1 = b1}, (1.18)

which gives the optimal value of the SAA problem. Here ξ̂tj := (ĉtj, Âtj, B̂tj, b̂tj), j =

1, · · · , Nt is a random sample of ξt. We denote this random sample for the SAA construc-

tion by SN .

We will discuss applying the SDDP method to the SAA problem rather than the original

problem if the embedded stochastic process does not have finite number of realizations. In

the discussion of the SDDP method, we will concentrate on the computational properties of

applying it to a finitely generated problem. The statistical properties of the sample average

approximation can be addressed separately. In brief, it is pointed out in [17] that under mild

regularity conditions, the sample complexity of the SAA approach is O
(
ϵ−2(T−1)

)
, which

is the order of the number of scenarios (i.e.
∏T

t=2Nt) required for a first stage solution of

the SAA problem to be ϵ-optimal for the true problem. In Chapter 3, we will discuss the

sample complexity in particular for the discounted stationary stochastic program.

SDDP algorithm was first suggested in [18] to solve the dynamic programming equa-

9

tions, which is based on the nested cutting plane method of [19] and consists with a for-

ward step and a backward step at each run. Recent developments in [20] have shown that

the complexity of the method is linearly dependent on the number of the stages T , How-

ever, when the number of state variables is large, it is still challenging to solve the dynamic

programming equations of the SAA problem.

To illustrate, in the backward step of the algorithm, at stage t, given trial solution x̄t and

the current approximation Qt(·) of Q̂t(·), the optimal value and subgradient are computed

and participate in constructing a new supporting plane at the corresponding trial point. The

cutting plane approximation of the value function is then updated by the maximum of the

supporting planes obtained so far. In the forward step of the algorithm, for a generated

sample path ξ̂t of realizations of the random data process, starting with x0 the trial points

are generated by computing a minimizer x̄t of the right-hand side of (1.16) with Q̂t(·)

replaced by Qt(·).

According to the assumption of the relatively complete recourse (A1), x̄t = x̄(ξ[t]), t =

1, · · · , T is a feasible implementable policy for the considered SAA problem. As a result,

the expected value E
[

T∑
t=1

γt−1c⊤t x̄t

]
gives an upper bound for the optimal value of the

SAA problem. In practice, a subsample SM of SN is generated with replacement in the

forward step, where SM := {ξ̂tj, t = 2, · · · , T, j = 1, · · · ,M} (recall that SAA problem

is constructed from a random sample SN) and the optimal values vj :=
T∑
t=1

ĉ⊤tjx̄tj, j =

1, · · · ,M are computed accordingly. Then

[
v̄ − zα/2σ̂/

√
M, v̄ + zα/2σ̂/

√
M
]

(1.19)

constitutes an approximate 100(1−α) confidence interval for the optimal value of the SAA

problem. Here v̄ := 1
M

M∑
j=1

vj , σ̂ :=

√
1

M−1

M∑
j=1

(vj − v̄)2 and zα denotes the (1−α)- quantile

of the standard normal distribution. In addition, the upper end of the confidence interval

in (1.19) gives an upper bound of the optimal value of the SAA problem. In this way, a

10

relative gap is computed so as to guide the stopping of the SDDP algorithm. Specifically,

let Q̂1 be the optimal value of the first stage model computed in the backward step, which

is the lower bound of the optimal value of the SAA problem. Then

gap =
v̄ + zα/2σ̂/

√
M − Q̂1

Q̂1

× 100%. (1.20)

If the gap is below some given precision ϵ, the SDDP algorithm terminates, which indicates

that the SAA problem is solved with accuracy ϵ with confidence of about 1 − α. We refer

to [21] for further analysis of the method and to [22] for implementation details.

For the multistage stochastic programs that inherit periodical stochastic processes and

with discount factor very close to 1, the computational effort to reduce the gap becomes

prohibitive. This motivates us to develop the deterministic upper bounds based on the dual

formulation and will be detailed in Chapter 2.

So far, we have presented a framework of the SDDP method for the risk neutral mul-

tistage stochastic programs. As for the risk averse case, it can be handled with an SDDP

type method with additional but simple modifications on top. To illustrate, in the backward

step, given trial points x̄t−1 and current lower approximation Qt+1(·), we can obtain the

optimal values by solving the corresponding minimization problem given below

Q
t
(x̄t−1, ξ

j
t) = min

xt∈X
{ĉ⊤tjxt + γQt+1(xt) : B̂tjx̄t−1 + Âtjxt = b̂tj}, j = 1, · · · , Nt (1.21)

as well as the subgradients gjt of Q
t
(·, ξjt) at x̄t−1. The approximation Qt is updated as

follow. First, we obtain the value of the current cost-to-go function as Rt(Qt
(x̄t−1, ξt)).

11

Take the risk measure (1− λ)E[·] + λCVaRα(·) as an example,

Rt(Qt
(x̄t−1, ξt)) =

1− λ
N

N∑
j=1

Q
t
(x̄t−1, ξ

j
t) + λQ

t
(x̄t−1, ξ

(κ)
t)

+
λ

αN

N∑
j=κ+1

(
Q

t
(x̄t−1, ξ

(j)
t)−Q

t
(x̄t−1, ξ

(κ)
t)
)
,

(1.22)

where Q
t
(x̄t−1, ξ

(j)
t) are ordered statistics such that Q

t
(x̄t−1, ξ

(1)
t) ≤ · · · ≤ Q

t
(x̄t−1, ξ

(N)
t)

and κ := ⌈(1 − α)N⌉. Then we compute the gradients under the same measure of Rt

and compute the supporting planes accordingly at the trial points in a similar manner as

in SDDP for risk neutral problem. We present a more detailed SDDP type algorithm for

risk-averse SOC problem in Chapter 3.

1.2.2 Projection-free Methods for Risk Averse Single-stage Problem

In spite of their importance in a variety of different applications, the algorithmic studies for

solving single-stage risk averse functional constrained problems are still limited. When the

dimension of the decision variables x is large, one natural choice for solving problem (1.6)

would be first-order methods. These methods only require first-order information of the

objective and constraint functions, and have been widely used in large-scale data analysis

and machine learning applications due to their scalibility. Most of these first-order methods

require the projection over the feasible set X (see [23]), which results in two significant

limitations when applied to sparse optimization. First, the projection step often destroys

the sparsity requirement in the sense that they cannot guarantee a sparse solution trajectory.

Second, projection-based methods often require the computation of full gradients, which

can be computationally expensive, and sometimes is not even possible.

To avoid these issues associated with projection-based algorithms, a common practice

is to opt for the projection-free (a.k.a. conditional gradient) methods, which were pio-

neered in the work [24] and subsequently developed in [25, 26, 27, 28, 29, 30]. We refer

12

to [31] for a more comprehensive review of the method. Such algorithms eschew projec-

tions in favor of linear optimization. To be more specific, at each step, given the current

iterate, these algorithms move towards an extreme point of a feasible set when optimizing

a linear approximation of the objective function, and then update the iterate as a convex

combination of the selected extreme points. As a consequence, each solution generated

by these algorithms possesses sparse or low-rank properties. The generation of a sparse

solution trajectory is one of the crucial properties that make projection-free methods stand

out in sparse optimization, since this will enable the practitioners to choose one sparse so-

lution from the trajectory. Another appealing property is that these algorithms only require

the computation of one gradient component rather than the full gradient in many sparse

optimization problems.

Unfortunately, the simplicity of existing projection-free methods comes with two major

limitations. The first one is that it only demonstrates efficiency in convex problems with

simple feasible set without functional constraints. To address this issue, [31] proposed

several novel constraint-extrapolated conditional gradient type methods (CoexCG and Co-

exDurCG) that handle the convex optimization with more involved functional constraints.

However, these algorithms assume the existence of an optimal dual solution and the iter-

ation complexity of the algorithms depends on the magnitude of a possibly large optimal

dual solution associated with the function constraints. The second significant limitation is

the lack of efficient projection-free methods in dealing with nonconvex optimization prob-

lems with functional constraints.

Methodologies developed for convex functional constrained problem lie in several lines.

One research direction has been directed to exact/quadratic penalty and augmented La-

grangian methods [32, 33, 34, 35], etc., which require to solve the penalty subproblems

and obtain the solutions therein. Instead of solving a more complicated penalty problem, a

saddle-point reformulation of the original convex functional constrained problem is tackled

by primal-dual type methods [36, 37, 38, 39, 40]. However, these methods require the pro-

13

jection over X and depend on the dual space, whose diameter may be large. Alternatively,

the convex problem can be reformulated as a root finding problem and are suggested to

be solved by level-set methods [41, 42, 43, 44, 45, 29, 46, 47]. In particular, [46] devel-

oped a projection-based level-set method that maintains a feasible solution at each iteration.

However, their method relies on a relatively strong assumption of feasibility guarantee and

requires an estimate of the optimality gap of the problem. Other variants in solving the con-

vex subproblems of the root finding problem include accelerated gradient descent methods

[48] and bundle methods [49, 50, 51], which resort to either an complicated quadratic pro-

gram or a costly projection onto the feasible set.

Nonconvex problems have attracted much attention due to their empirical merits in im-

portant applications (see, e.g., [52, 53]). Algorithms are developed mainly in two different

ways. One is to solve the problems indirectly within the framework of proximal point meth-

ods [54, 55, 56, 57, 58, 39], which approximate the problems with convex subproblems

and may have nested structure that impedes efficient implementation. Direct approaches

for solving nonconvex problems have also been studied in parallel (see e.g., [59, 60, 61, 62,

63]). However, these methods mainly focus on solving unconstrained problems or prob-

lems with simple feasible sets, which are not applicable to our setting. Existing methods

for nonconvex optimization with function constraints all require projections (see, e.g., [64]

and references therein), whereas current projection-free methods can only handle simple

feasible sets for nonconvex optimization (see, e.g., [65] and [23, Section 7.1]).

Using ideas from conditional gradient sliding methods [66, 67, 68], one can possibly

leverage projection-based scheme to solve convex and nonconvex functional constrained

problems. Although the conditional gradient sliding type methods might improve the num-

ber of gradients evaluation and maintains the optimal number of calls of linear optimization

(LO) oracle, they would require to compute and store the full gradients, which is not appli-

cable in our case.

14

CHAPTER 2

UPPER BOUNDS FOR RISK NEUTRAL MULTISTAGE STOCHASTIC

PROGRAM

2.1 Overview

Duality plays a key role in optimization. For generic optimization problems, weak duality

allows to bound the optimal value, even when there is a duality gap between the primal and

dual optimal values. In the context of multistage stochastic programs, duality was studied

in [69] , see also [6] for a review. More recently, the sensitivity analysis of multistage

stochastic programs was discussed in [70] and [71], where the sensitivity analysis is based

on Lagrange multipliers associated with the value functions.

In this chapter, we study the dual of the risk neutral mutistage stochastic linear pro-

gram (MSLP) and introduce Dual SDDP exercised on the dual formulation for computing

a sequence of convergent (deterministic) upper bounds for the optimal value (see [1]). The

developed approach proved to be especially useful in the infinite horizon setting when the

discount factor is very close to one. On the contrary, the conventional statistical upper

bounds fails (cf., [2]). This is important for evaluating accuracy of the obtained solutions

and stopping criteria. In particular, by running Primal SDDP and Dual SDDP in parallel,

we are able to compute a deterministic lower bound (LB) and a deterministic upper bound

(UB) of the MSLP. When the relative gap between the LB and UB is close enough (within

some precision), it provides a valid stopping criteria, which implies that the algorithm (Par-

allel Primal SDDP and Dual SDDP) solves for an approximately optimal primal solution

of the MSLP and such solution can be obtained from the forward pass of Primal SDDP.

As a byproduct, we apply the developed methodology to sensitivity analysis of the optimal

values.

15

The rest of this chapter is organized as follows. In Section 2.2 we describe the construc-

tion of the dual bounds for MSLP in finite-horizon setting. We also study the dynamics of

Lagrange multipliers which is of important application in the sensitivity analysis. Then

we present Dual SDDP and its variants in Section 2.3. In Section 2.4 and Section 2.5, we

extend our analysis and methodology to the infinite-horizon setting, where the duality of

periodical MSLP and the corresponding SDDP-type algorithm will be studied. Finally in

Section 2.6 we report numerical results on testing the proposed algorithms on an inventory

problem and the Brazilian hydro-thermal planning problem.

2.2 Dual Bounds for Finite-horizon Multistage Stochastic Program

Consider problem (1.1) with xt ∈ Xt replaced by xt ≥ 0 and the discount factor γ = 1.

The Lagrangian of problem (1.1) is

L(x, π) = E
[∑T

t=1 c
⊤
t xt + π⊤

t (bt −Btxt−1 − Atxt)
]

(2.1)

in variables1 x = (x1(ξ[1]), . . . , xT (ξ[T])) and π = (π1(ξ[1]), . . . , πT (ξ[T])) with the conven-

tion that x0 = 0. Dualization of the feasibility constraints leads to the following dual of

problem (1.1) [6, Chapter 3.2.3]:

max
π

E
[∑T

t=1 b
⊤
t πt
]

s.t. A⊤
T πT ≤ cT ,

A⊤
t−1πt−1 + E|ξ[t−1]

[
B⊤

t πt
]
≤ ct−1, t = 2, ..., T.

(2.2)

The optimization in (2.2) is over policies πt = πt(ξ[t]), t = 1, ..., T .

Suppose further the process ξ1, ..., ξT is stagewise independent (i.e., random vector

ξt+1 is independent of ξ[t], t = 1, ..., T − 1), and distribution of ξt has a finite support,

{ξt,1, . . . , ξt,Nt} with respective probabilities pt,j , j = 1, ..., Nt, t = 2, ..., T . We denote by

1Note that since ξ1 is deterministic, the first-stage decision x1 is also deterministic; we write it as x1(ξ[1])
for uniformity of notation, and similarly for π1.

16

At,j, Bt,j, ct,j, bt,j the respective scenarios corresponding to ξt,j .

Since the random process ξt, t = 1, ..., T , has a finite number of realizations (scenarios),

problem (1.1) can be viewed as a large linear program and (2.2) as its dual. By the standard

theory of linear programming we have the following.

Proposition 2.2.1. Suppose that problem (1.1) has a finite optimal value. Then the optimal

values of problems (1.1) and (2.2) are equal to each other and both problems have optimal

solutions.

2.2.1 Dynamic Programming Equations of the Dual

We can write the following DP equations for the dual problem (2.2). At the last stage

t = T , given πT−1 and ξ[T−1], we need to solve the following problem with respect to πT :

max
πT

E[b⊤T πT]

s.t. A⊤
T πT ≤ cT ,

A⊤
T−1πT−1 + E

[
B⊤

T πT
]
≤ cT−1.

(2.3)

Since ξT is independent of ξ[T−1], the random parameters in (2.3) are functions of the

marginal distribution of ξT , and are independent of ξ[T−1]. Also it is assumed that ξT has a

finite support. Therefore problem (2.3) can be written in terms of scenarios, corresponding

to the marginal distribution of ξT , as follows

max
πT,1,...,πT,NT

NT∑
j=1

pT,jb
⊤
T,jπT,j

s.t. A⊤
T,jπT,j ≤ cT,j, j = 1, ..., NT ,

A⊤
T−1πT−1 +

NT∑
j=1

pT,jB
⊤
T,jπT,j ≤ cT−1.

(2.4)

The optimal value VT (πT−1, ξT−1) and an optimal solution2 (π̄T,1, . . . , π̄T,NT
) of prob-

2Note that problem (2.4) may have more than one optimal solution. In case of finite number of scenarios
the considered linear program always has a solution provided its optimal value is finite.

17

lem (2.4) are functions of vectors πT−1 and cT−1 and matrix AT−1. And so on going back-

ward in time, using the stagewise independence assumption, we can write the respective

dynamic programming equations for t = T − 1, ..., 2, as

max
πt,1,...,πt,Nt

Nt∑
j=1

pt,j
[
b⊤t,jπt,j + Vt+1(πt,j, ξt,j)

]
s.t. A⊤

t−1πt−1 +
Nt∑
j=1

pt,jB
⊤
t,jπt,j ≤ ct−1,

(2.5)

with Vt(πt−1, ξt−1) being the optimal value of problem (2.5). Finally at the first stage the

following problem should be solved

max
π1

b⊤1 π1 + V2(π1, ξ1). (2.6)

These dynamic programming equations can be compared with the dynamic program-

ming equations for primal problem (1.1), where the respective value functionQt(xt−1, ξt,j),

j = 1, ..., Nt, is given by the optimal value of

min
xt≥0

c⊤t,jxt +Qt+1(xt)

s.t. Bt,jxt−1 + At,jxt = bt,j,

(2.7)

with QT+1(·) ≡ 0, and for t = T − 1, ..., 1,

Qt+1(xt) := E[Qt+1(xt, ξt+1)] =
Nt∑
j=1

pt+1,jQt+1(xt, ξt+1,j).

Let us make the following observations about the dual problem: (1) unlike in the primal

problem, the optimization (maximization) problems (2.4) and (2.5) do not decompose into

separate problems with respect to each πt,j and should be solved as one linear program

with respect to (πt,1, ..., πt,Nt); (2), the value function Vt(πt−1, ξt−1) is a concave function

of πt−1; (3) if At and ct, t = 2, ..., T , are deterministic, then Vt(πt−1) is only a function of

18

πt−1.

The following definition of Relatively Complete Recourse (RCR) is applied to the dual

problem. Recall that we assume that the set of possible realizations (scenarios) of the data

process is finite.

Definition 2.2.1. We say that a sequence π̄t, t = 1, ..., T , is generated by the forward step if

π̄1 ∈ Rm1 and π̄t coincides with some πt,j , j = 1, ..., Nt, t = 2, ..., T , where πt,1, . . . , πt,Nt

is a feasible solution of the respective dynamic program (2.5) for t = 2, ..., T −1, and (2.4)

for t = T . We say that the dual problem (2.2) has Relatively Complete Recourse (RCR)

if at every stage t = 2, ..., T , for any generated πt−1 by the forward step, the respective

dynamic program has a feasible solution at stage t for every realization of the random

data.

Without RCR, the value of Vt(πt−1, ξt−1) could go to infinity for a generated πt−1 and

ξt−1 = ξt−1,j . Unfortunately, it could happen that the dual problem does not have the RCR

property even if the primal problem does, even in the two-stage case. Indeed, the infea-

sibility of problem (2.4) could due to its last constraint, but not because of the remaining

ones since the primal problem is feasible and bounded below. Therefore by the LP duality

theorem, the dual problem is feasible and has a finite optimal value. A toy example below

illustrates this case.

Example 2.2.1. Even both the controls and the states are bounded above and below in

the primal model, it is possible that the dual model does not satisfy RCR . Consider the

two-stage inventory problem in (2.57) with bounded xt, yt, namely

xt ≤ xt ≤ x̄t,

y
t
≤ yt ≤ ȳt.

(2.8)

In the model, ct = 1.5 + cos(πt
6
), dtj = (5 + 0.5t)(1.5 + 0.1ztj), where {ztj}M=5

j=1 is a

sample from the standard Gaussian distribution. The boundaries and initial values are set

19

as (xt, x̄t) = (−100, 100), (y
t
, ȳt) = (−100, 100), x0 = 10. The corresponding dual is

given by the following

−c1x0 +max E[
T=2∑
t=1

dtπt − dtµ1
t + dtµ

2
t + x̄tu

x
t − xtlxt + ȳtu

y
t − ytl

y
t]− x0µ3

1

−πt−1 + uxt−1 − lxt−1 + E[µ3
t] = −at, t = 2

πt − µ3
t − µ1

t + µ2
t + uyt − l

y
t = at, t = 1, 2

−πT + uxT − lxT = 0

µ1
t ≥ −gt, t = 1, 2

µ2
t ≥ −ht, t = 1, 2

µ1
t , µ

2
t , µ

3
t , u

x
t , l

x
t , u

y
t , l

y
t ≤ 0, t = 1, 2

(2.9)

From simple simulation, we observe that given a feasible first stage solution (π1, u
x
1 , l

x
1) =

(199.818, 0, 0), the second stage problem is infeasible. Therefore, in this instance, the

second stage dual problem is not always feasible given any feasible first stage solutions.

Hence it does not satisfy RCR.

The RCR is crucial for an implementation of the SDDP algorithm. One way to deal

with the problem of absence of RCR in numerical procedures is to use the following penalty

approach. Consider the following relaxation of problem (2.4):

ṼT (πT−1, ξT−1) = max
πT,1,...,πT,NT

,, ζT≥0

NT∑
j=1

pT,jb
⊤
T,jπT,j − v⊤T ζT

s.t. A⊤
T,jπT,j ≤ cT,j, j = 1, ..., NT ,

A⊤
T−1πT−1 +

NT∑
j=1

pT,jB
⊤
T,jπT,j ≤ cT−1 + ζT ,

(2.10)

where vT is a vector with positive components. For ζT large enough, the last constraint of

problem (2.10) is satisfied. Consequently problem (2.10) is always feasible and hence its

20

optimal value ṼT (πT−1, ξT−1) > −∞. We also have that

ṼT (πT−1, ξT−1) ≥ VT (πT−1, ξT−1), (2.11)

with the equality holding if ζT = 0 in the optimal solution of (2.10). If VT (πT−1,ξT−1)

is finite, this equality holds if the components of vector vT are large enough (see Lemma

2.7.1).

Similarly, problems (2.5) can be relaxed to

max
πt,1,...,πt,Nt ,ζt≥0

Nt∑
j=1

pt,j

[
b⊤t,jπt,j + Ṽt+1(πt,j, ξt,j)

]
− v⊤t ζt

s.t. A⊤
t−1πt−1 +

Nt∑
j=1

pt,jB
⊤
t,jπt,j ≤ ct−1 + ζt,

(2.12)

with vector vt having positive components. In that way, the infeasibility problem is avoided

and by (2.11) the obtained value gives an upper bound for the optimal value of the dual

problem. Note that for sufficiently large vectors vt this upper bound coincides with the

optimal value of the dual problem (Lemma 2.7.1).

2.2.2 Dynamics of Lagrangian Multipliers

Let us consider for the moment the two-stage setting, i.e., T = 2. The primal problem can

be written as

min
x1≥0

c⊤1 x1 + E [Q(x1, ξ2)] s.t. A1x1 = b1, (2.13)

where Q(x1, ξ2) is the optimal value of the second-stage problem

min
x2≥0

c2(ξ2)
⊤x2 s.t. B2(ξ2)x1 + A2(ξ2)x2 = b2(ξ2). (2.14)

The Lagrangian of problem (2.14) is

L(x1, x2, λ, ξ2) = c2(ξ2)
⊤x2 + λ⊤(b2(ξ2)−B2(ξ2)x1 − A2(ξ2)x2).

21

In the dual form, Q(x1, ξ2,j) is given by the optimal value of the problem

max
λ2,j

(b2,j −B2,jx1)
⊤λ2,j s.t. c2,j − A⊤

2,jλ2,j ≥ 0. (2.15)

We have that if x1 = x̄1 is an optimal solution of the first stage problem, then optimal

Lagrange multipliers π2,j are given by the optimal solution λ̄2,j of problem (2.15).

This can be extended to the multistage setting of problem (1.1) (recall that the stagewise

independence condition is assumed). At the last stage t = T , given optimal solution x̄T−1,

the following problem should be solved

min
xT≥0

cT (ξT)
⊤xT s.t. BT (ξT)x̄T−1 + AT (ξT)xT = bT (ξT). (2.16)

For a realization ξT = ξT,j , the dual of problem (2.16) reads

max
λT,j

(bT,j −BT,jx̄T−1)
⊤λT,j s.t. cT,j − A⊤

T,jλT,j ≥ 0. (2.17)

We then have that πT,j are given by the optimal solution λ̄T,j of problem (2.17). At stage

t = T − 1, given optimal solution x̄T−2, the following problem is supposed to be solved

(see (2.7))

min
xT−1≥0

cT−1(ξT−1)
⊤xT−1 +QT (xT−1)

s.t. AT−1(ξT−1)xT−1 = bT−1(ξT−1)−BT−1(ξT−1)x̄T−2.

(2.18)

We have that QT (·) is a convex piecewise linear function. Therefore for every realization

ξT−1 = ξT−1,j it is possible to represent (2.18) as a linear program and hence to write

its dual. The optimal Lagrange multipliers of that dual give the corresponding Lagrange

multipliers πT−1,j . And so on for other stages going backward in time. That is, we have the

following.

Remark 2.2.1. If (x̄1, ..., x̄T (ξ[T])) is an optimal solution of the primal problem, then for

22

xt−1 = x̄t−1 the Lagrange multiplier πt,j is given by the respective Lagrange multiplier of

problem (2.7).

2.2.3 Sensitivity Analysis

In this part, we discuss an application of the duality analysis to a study of sensitivity of

the optimal value to small perturbations of the involved parameters. Suppose now that the

data ct(ξt, θ), bt(ξt, θ), Bt(ξt, θ),At(ξt, θ) of problem (1.1) also depend on parameter vector

θ ∈ Rk Denote by ϑ(θ) the optimal value of the parameterized problem (1.1) considered as

a function of θ, and by S(θ) and D(θ) the sets of optimal solutions of the respective primal

and dual problems. Recall that the sets S(θ) and D(θ) are nonempty provided the optimal

value ϑ(θ) is finite. Consider the directional derivative

ϑ′(θ, h) = lim
τ↓0

ϑ(θ + τh)− ϑ(θ)
τ

of ϑ(·) at θ in direction h. Recall that ϑ(·) is (Gâteaux) differentiable at θ iff ϑ′(θ, h) exists

for all h ∈ Rk and is linear in h, in which case ϑ′(θ, h) = h⊤∇ϑ(θ).

Let L(x, π, θ) be the corresponding Lagrangian (see (2.38)) considered as a function of

θ. Then we have the following formula for the directional derivatives of the optimal value

function (e.g., [72, Proposition 4.27]).

Proposition 2.2.2. Suppose that the data functions are continuously differentiable func-

tions of θ, and for a given θ = θ̄ the optimal value ϑ(θ̄) is finite and the sets S(θ̄) and D(θ̄)

of optimal solutions are bounded. Then

ϑ′(θ̄, h) = max
π∈D(θ̄)

min
x∈S(θ̄)

h⊤∇θL(x, π, θ̄). (2.19)

In particular if S(θ̄) = {x̄} and D(θ̄) = {π̄} are singletons, then ϑ(·) is differentiable at

θ̄ and

∇ϑ(θ̄) = ∇θL(x̄, π̄, θ̄). (2.20)

23

2.3 Dual SDDP

In this section, using the results of 2.2, we discuss an adaptation of the cutting planes

approach for the approximation of the value functions of the dual problem, similar to the

standard SDDP method. More specifically, we develop Dual SDDP and its variants for

cases with different under lying uncertainty.

2.3.1 Dual SDDP for Problems with Uncertainty in bt and Bt

In this part, we consider the case where only bt and Bt are functions of ξt, and hence

are random. We first state in the following the result that under some mild condition,

the optimal value of (2.5) (resp. (2.6)) does not change by adding the box constraints

πt ≤ πt,j ≤ πt (resp. π1 ≤ π1 ≤ π1).

Lemma 2.3.1. Suppose that the optimal value of primal problem (1.1) is finite and that

there exists feasible x̂ > 0. Then for every t = 1, . . . , T , there exist πt, πt ∈ Rmt such that

adding box constraints πt ≤ πt ≤ πt the dual problem (2.5) is unchanged (i.e., has the

same optimal value)

Consequently, we can reformulate the dual problem by adding the box constraints on

the dual variables.

Recall that it is assumed that the number of scenarios is finite and hence problem (1.1)

can be viewed as a large linear program. The assumption of existence of feasible x̂ > 0

means that problem (1.1) possesses a feasible solution with all components being strictly

positive. If, the equality constraints of problem (1.1) are linearly independent, then the

aforementioned strict feasibility condition implies that the set of optimal solutions of the

dual problem (i.e., the set of Lagrange multipliers) is bounded, see for instance [73]. On

the other hand, in the above lemma the linear independence condition is not assumed. A

proof of Lemma 2.3.1 and a way to obtain the corresponding bounds πt, πt can be found in

2.7.

24

As mentioned earlier, a difficulty to solve the dual problem with an SDDP type method

is that RCR may not be satisfied by the dual problem, even if RCR holds for the primal.

We propose Dual SDDP with penalizations to deal with the issue.

Dual SDDP with penalizations solves the dual problem (2.4)-(2.6) by directly exercis-

ing on the approximation problem (2.10) and (2.12) when t > 1 with box constraints on

the dual variables according to Lemma (2.3.1). To illustrate, it contains a forward pass

which generates trial points and a backward pass which computes cutting planes for the

value functions. On top of that, it introduces slack variables in the constraints which may

become infeasible for some past decisions in the subproblems solved in the forward passes.

Slack variables are penalized in the objective function with positive penalizing coefficients

vt,k. Therefore, at each iteration, all subproblems solved in forward and backward passes

are always feasible. At iteration k, concave value functions Vt, t = 2, . . . , T , are approxi-

mated by polyhedral upper bounding functions V k
t such that:

V k
t (πt−1) = min

0≤i≤k
θ
i

t + ⟨β
i

t, πt−1⟩ (2.21)

where θ
i

t and β
i

t are respectively real numbers and vectors. In the following, we present the

detailed scheme of Dual SDDP.

Initialization. For t = 2, . . . , T, take V 0
t as an affine upper bounding function for Vt

and V 0
T+1 ≡ 0. Set iteration counter k to 1.

Step 1: forward pass of iteration k (computation of dual trial points). For the first

stage of the forward pass, we compute an optimal solution πk
1 of

V k
1 = max

π1

b⊤1 π1 + V k−1
2 (π1), s.t. π1 ≤ π1 ≤ π1. (2.22)

For stage t = 2, . . . , T − 1, generate a realization ξt,jt(k) from ξt. Given πk
t−1, and

25

compute

V k
t = max

πt,1,...,πt,Nt , ζt≥0

Nt∑
j=1

pt,j
[
b⊤t,jπt,j + V k−1

t+1 (πt,j)
]
− v⊤t,kζt

s.t. A⊤
t−1π

k
t−1 +

Nt∑
j=1

pt,jB
⊤
t,jπt,j ≤ ct−1 + ζt,

πt ≤ πt,j ≤ πt, j = 1, ..., Nt.

(2.23)

An optimal solution of the problem above has Nt components (πt,1, πt,2, . . . , πt,Nt) for

πt. Take πk
t according to the probability mass function from πt,1, . . . , πt,Nt .

Step 2: backward pass of iteration k (computation of new cuts). For t = T , let

(xT , xT−1,Ψ,Ψ) be an optimal solution of the dual of (2.23) as follows 3:

V
k

T (π
k
T−1) = min

xT ,xT−1,Ψ,Ψ
x⊤T−1(cT−1 − A⊤

T−1π
k
T−1) + E[c⊤T xT +Ψ

⊤
πT −Ψ⊤πT]

s.t. ATxT +BTxT−1 +Ψ−Ψ = bT ,

0 ≤ xT−1 ≤ vT,k, xT ,Ψ,Ψ ≥ 0

(2.24)

The new cut coefficients for VT is given by

β
k

T = −AT−1xT−1, θ
k

T = V
k

T (π
k
T−1)− ⟨β

k

T , π
k
T−1⟩.

For t = T − 1, . . . , 2, compute an optimal solution (xt−1, ν,Ψ,Ψ) of

V
k

t (π
k
t−1) = min

xt−1,ν,Ψ,Ψ
x⊤t−1

[
ct−1 − A⊤

t−1π
k
t−1

]
+ E

[
k∑

i=0

νiθ
i

t+1 +Ψ
⊤
πt −Ψ⊤πt

]

s.t. Btxt−1 −
k∑

i=0

νiβ
i

t+1 −Ψ+Ψ = bt,

k∑
i=0

νi = 1,Ψ,Ψ ≥ 0,

ν0, . . . , νk ≥ 0, 0 ≤ xt−1 ≤ vt,k,

(2.25)
3We suppressed the dependence of the optimal solution on T and k to alleviate notation.

26

and

β
k

t = −At−1xt−1, θ
k

t = V
k

t (π
k
t−1)− ⟨β

k

t , π
k
t−1⟩.

Step 3: Do k ← k + 1 and go to Step 1.

The validity of the cuts computed in the backward pass of Dual SDDP with penaliza-

tions is shown in Proposition 2.3.1.

Proposition 2.3.1. Consider Dual SDDP algorithm with penalizations vt,k ≥ 0. Let As-

sumptions (A1) and (A2) hold. Then for every t = 2, . . . , T , the sequence V k
t is a non-

increasing sequence of upper bounding functions for Vt, i.e., for every k ≥ 1 we have

Vt ≤ V k
t ≤ V k−1

t and therefore (V k) (recall that V k−1 is the optimal value of (2.22)) is a

nonincreasing sequence of deterministic upper bounds on the optimal value of (1.1).

To understand the effect of the sequence of penalizing parameters (vt,k) on Dual SDDP

with penalizations, we define the following DP equations (see also Lemma 2.7.1 in Section

2.7):

V γ
T (πT−1) =

max
πT,1,...,πT,NT

,, ζT≥0

NT∑
j=1

pT,jb
⊤
T,jπT,j − γe⊤ζT

s.t. A⊤
T,jπT,j ≤ cT,j, j = 1, ..., NT ,

A⊤
T−1πT−1 +

NT∑
j=1

pT,jB
⊤
T,jπT,j ≤ cT−1 + ζT ,

(2.26)

for t = 2, . . . , T − 1:

V γ
t (πt−1) =

max

πt,1,...,πt,Nt ,ζt≥0

Nt∑
j=1

pt,j
[
b⊤t,jπt,j + V γ

t+1(πt,j)
]
− γe⊤ζt

s.t. A⊤
t−1πt−1 +

Nt∑
j=1

pt,jB
⊤
t,jπt,j ≤ ct−1 + ζt,

(2.27)

and we define the first-stage problem

max
π1

π⊤
1 b1 + V γ

2 (π1), (2.28)

27

-5 -4 -3 -2 -1 0 1 2 3 4 5
-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

True Bellman function
gamma=1
gamma=100
gamma=1000

Figure 2.1: Graph of V2 and of V γ
2 for γ = 1, 100, 1000.

where e is a vector of ones and γ is a positive real number. As we will see below, V γ
t can be

seen as an upper bounding concave approximation of Vt which gets “closer” to Vt when γ

increases. Therefore, Dynamic Programming can be used to solve these DP equations and

obtain good approximations of functions Vt and V γ
t . To obtain these approximations, we

need to obtain approximations of the domains of functions Vt and compute approximations

of these functions on a set of points in that domain.

To observe the impact of penalizing term γ on V γ
t , we run Dynamic Programming both

on DP equations (2.4), (2.5), (2.6) and on DP equations (2.26), (2.27), (2.28) for γ = 1,

100, and 1000, on an instance of the inventory problem with T = 20 and Nt = 20. The

corresponding graphs of V2 (bold dark solid line) and of V γ
2 for γ = 1, 100, 1000, are rep-

resented in 2.1. We observe that all functions V γ
2 are, as expected, concave upper bounding

functions for V2 finite everywhere. We also see that on the domain of V2, V
γ
2 gets closer

to V2 when γ increases and eventually coincides with V2 on this domain when γ is suffi-

ciently large. Similar graphs were observed for remaining functions Vt, V
γ
t , t = 3, . . . , T .

Therefore, convergence of Dual SDDP with penalizations requires the coefficients vt,k to

become arbitrarily large. Proof of the following theorem is given in Section 2.7.

Theorem 2.3.1. Consider optimization problem (1.1) and Dual SDDP with penalizations

applied to the dual of this problem. Let Assumptions (A1) and (A2) hold. Assume that

samples ξℓt , t = 2, . . . , T , ℓ ≥ 1, in the forward passes are independent, that vt,k+1 ≥ vt,k

28

for all t, k, and that limk→+∞ vt,k = +∞ for all stage t. Then the sequence V k is a

deterministic sequence of upper bounds on the optimal value of (1.1) which converges

almost surely to the optimal value of this problem.

The “deterministic” upper bounds V k are functions of the randomly generated samples

and as such can be viewed as random variables. By the standard theory of SDDP, these

bounds converge almost surely to the optimal value of the dual problem, and hence, of the

primal problem.

We refer to Section 2.6 for examples of sequences vt,k used to solve an hydro-thermal

and an inventory problem.

2.3.2 Dual SDDP for Problems with Uncertainty in All Parameters

We have seen in Section 2.2 on how to write DP equations for the dual problem of a MSLP

when all data (At, Bt, ct, bt) in (ξt) is random. In this situation, cost-to-go functions Vt

are functions Vt(πt−1, ξt−1) of both past decision πt−1 and past value ξt−1 of process (ξt).

Also recall that functions Vt(·, ξt−1) are concave for all ξt−1. Therefore, Dual SDDP with

penalizations from the previous section must be modified as follows. For each stage t =

2, . . . , T, instead of computing just one approximation of a single function (function Vt),

we now need to compute approximations of Nt functions, namely concave value functions

Vt(·, ξt−1j), j = 1, . . . , Nt. The approximation V k
t,j computed for Vt(·, ξt−1,j) at iteration k

is a polyhedral function V k
t,j given by:

V k
t,j(πt−1) = min

0≤i≤k
θ
i

t,j + ⟨β
i

t,j, πt−1⟩.

Therefore more computational effort is needed. However, the adaptations of the method

can be easily written. More specifically, at iteration k, in the forward pass, dual trial points

are obtained replacing Vt(·, ξt−1,j) by V k−1
t,j and in the backward pass a cut is computed at

stage t for Vt(·, ξt−1,jk) with jk satisfying ξt−1,jk = ξ̃kt−1 where ξ̃kt−1 is the sampled value of

29

ξt−1 at iteration k.

2.3.3 Dual SDDP for Problems with Interstage Dependent Cost Coefficients

We consider problems of form (1.1) where costs ct affinely depend on their past while

bt are stagewise independent. Specifically, suppose that ct follow a multiplicative vector

autoregressive process of form

ct = εt ◦
(∑p

j=1 Φt,jct−j + µt

)
, (2.29)

with (x ◦ y)i = xiyi denoting the componentwise product, and where matrices Φt,j and

vectors µt ≥ 0 as well as c1, . . . , c2−p ≥ 0 are given.

We assume that the process (bt, εt) is stagewise independent and that the support of

bt, εt is the finite set

{(bt,1, εt,1), . . . , (bt,Nt , εt,Nt)},

with εt,i > 0 and pt,i = P{(bt, εt) = (bt,i, εt,i)}, i = 1, . . . , Nt. For some values of Φt,j

(for instance for matrices with nonnegative entries), this guarantees that all realizations of

the price process {ct} are positive. The developments which follow can be easily extended

to other linear models for {ct}, for instance ARIMA or AR models, see ([74]) for the

definition of state vectors of minimal size for generalized linear models.

Using the notation ct1:t2 = (ct1 , ct1+1, . . . , ct2−1, ct2) for t1 ≤ t2 integer, for the cor-

responding primal problem (of the form (1.1)), we can write the following DP equations:

define QT+1 ≡ 0 and for t = 2, . . . , T ,

Qt(xt−1, ct−p:t−1) = Ebt,εt

[
Qt(xt−1, ct−p:t−1, bt, εt)

]
(2.30)

30

where Qt(xt−1, ct−p:t−1, bt, εt) is given by

min
xt≥0

[
εt ◦

(p∑
j=1

Φt,jct−j + µt

)]⊤
xt +Qt+1

(
xt, ct+1−p:t−1, εt ◦

(p∑
j=1

Φt,jct−j + µt

))
Atxt +Btxt−1 = bt,

(2.31)

while the first-stage problem is

min
x1≥0

c⊤1 x1 +Q2(x1, c2−p:1)

A1x1 = b1.

Standard SDDP does not apply directly to solve DP equations (2.30)-(2.31) because

functions Qt given by (2.30)-(2.31) are not convex. Nevertheless, we can use the Markov

Chain discretization variant of SDDP (computational details can be found in [22]) to solve

DP equations (2.30)-(2.31). On the other hand, as pointed above, it is possible to apply

SDDP for the dual problem with the added state variables. Along the lines of 2.2.1, we can

write DP equations for the dual, now with function Vt depending on πt−1, ct−1, . . . , ct−p.

The following DP equations for the dual of (1.1) with (ct) of form (2.29) can be be

written. For the last stage T , we have to solve the problem:

max
πT1,...,πTNT

NT∑
j=1

pTjπ
⊤
TjbTj

A⊤
T πTj ≤ εTj ◦ (µT +

∑p
ℓ=1ΦTℓcT−ℓ) , j = 1, ..., NT ,∑NT

j=1 pTjB
⊤
T πTj ≤ cT−1 − A⊤

T−1πT−1,

(2.32)

with optimal value VT (πT−1, cT−p:T−1).

Next for stage t = 2, . . . , T − 1, given Vt+1, we need to solve the problem

max
πt1,...,πtNt

Nt∑
j=1

ptj

(
π⊤
tjbtj + Vt+1

(
πtj, ct+1−p:t−1, εtj ◦ (µt +

∑p
ℓ=1Φtℓct−ℓ)

))
s.t.

∑Nt

j=1 ptjB
⊤
t πtj ≤ ct−1 − A⊤

t−1πt−1,

(2.33)

31

while the first stage problem is

max
π1

π⊤
1 b1 + V2(π1, c2−p:1). (2.34)

These functions are concave and therefore we can apply Dual SDDP with penalizations

to these DP equations to build polyhedral approximations of these functions Vt of form

V k
t (πt−1, ct−1, . . . , ct−p) = min

0≤i≤k
θit + ⟨βi

t,0, πt−1⟩+
p∑

j=1

⟨βi
t,j, ct−j⟩ (2.35)

at iteration k.

We conclude this section highlighting some advantages and disadvantages of Dual

SDDP compared to Primal SDDP. For Dual SDDP, a stage t subproblem is coupled across

scenarios 1, . . . , Nt and hence is larger. If ct and At are random then with Dual SDDP we

must store NT , rather than one, sets of cuts at each stage. As a result of the last two is-

sues, the computational effort per iteration is larger for Dual SDDP but fewer iterations are

required. On the other hand, Dual SDDP computes deterministic valid upper bounds and

provides a feasible dual policy. Also, similarly to primal SDDP which provides statistical

upper bounds (for a minimization problem) on the optimal value of the Multistage Stochas-

tic Program, Dual SDDP provides statistical lower bounds (for a maximization problem).

2.4 Dual Bounds for Periodical Multistage Stochastic Program

Consider (1.1) for the infinite horizon setting of T =∞. On top of Assumptions (A0)-(A2),

we make the following assumptions about the periodical behavior:

(A3) The random vectors ξt and ξt+m have the same distribution for t ≥ 2 (recall that ξ1 is

deterministic).

(A4) The sequence of functions bt(·), Bt(·), At(·) and ct(·) has period m, i.e., these func-

tions are the same for t = τ and t = τ +m, t ≥ 2.

32

Of course, if functions ct(·) are constants, the boundness condition (A4)(ii) holds automati-

cally. Under assumptions (A3) and (A4), the value functionsQt(·, ·) andQt+m(·, ·), and the

expected value functionsQt(·) andQt+m(·), are the same for all t ≥ 2, withQm+2(·) set to

Q2(·). This leads to the following periodical variant of Wald-Bellman (WB) equations for

the value functions (cf., [75]):

Qτ (xτ−1) = E[Qτ (xτ−1, ξτ)], (2.36)

with

Qτ (xτ−1, ξτ) = inf
xτ≥0

{
c⊤τ xτ + γQτ+1(xτ) : Bτxτ−1 + Aτxτ = bτ

}
, (2.37)

for τ = 2, ...,m + 1, and Qm+2 replaced by Q2 for τ = m + 1. It is possible to show

that there exists a unique set of value functions Qτ (xτ−1, ξτ), Qτ (xτ−1), τ = 2, ...,m + 1,

satisfying these WB equations and that these value functions are convex in xτ−1 (cf., [76]).

The first stage solution is obtained by solving problem (1.5) with Q2(·) being the solution

of these WB equations.

In order to solve the WB equations (2.36) - (2.37), a cutting plane algorithm was sug-

gested in [76]. That algorithm can be viewed as a variant of the Stochastic Dual Dynamic

Programming (SDDP) method. An upper bound for the optimal value in that algorithm

is based on a statistical estimate of the value of the current iterate approximation of the

optimal policy. When the discount factor γ is close to one, the convergence is slow and

the computational effort to reduce the optimality gap becomes prohibitive. This motivates

development of dual upper bounds as discussed below.

To construct the upper bound, we first set the stage number of T to be finite and then

we pass to a limit. The Lagrangian of problem (1.1) is

L(x, π) = E
[∑T

t=1 γ
t−1c⊤t xt + π⊤

t (bt −Btxt−1 − Atxt)
]

(2.38)

33

in variables x = (x1(ξ[1]), . . . , xT (ξ[T])) and π = (π1(ξ[1]), . . . , πT (ξ[T])) with the conven-

tion that x0 = 0. Dualization of the feasibility constraints leads to the following dual of

problem (1.1) (cf., [6, Section 3.2.3]):

max
π

E
[∑T

t=1 b
⊤
t πt
]

s.t. A⊤
T πT ≤ γT−1cT ,

A⊤
t−1πt−1 + E|ξ[t−1]

[
B⊤

t πt
]
≤ γt−2ct−1, t = 2, ..., T.

(2.39)

The optimization in (2.39) is over policies πt = πt(ξ[t]), t = 1, ..., T . Note that in the

considered framework of finite number of scenarios, problem (1.1) can be viewed as a

large linear program and problem (2.2) as its dual. By the theory of linear programming

we have that the optimal values of primal problem (1.1) and its dual (2.2) are equal to each

other.

It is convenient for the subsequent analysis to make change of variables λt = γ−(t−1)πt,

t = 1, ..., T , in order to remove the powers of γ in the right hand sides of the feasibility

constraints. In terms of variables λt problem (2.39) can be written as

max
λ

{
E
[∑T

t=1 γ
t−1b⊤t λt

]
= b⊤1 λ1 + γE|ξ1

[
b⊤2 λ2 + ...+ γE|ξ[T−1]

[b⊤T λT]
]}

s.t. A⊤
T λT ≤ cT ,

A⊤
t−1λt−1 + γE|ξ[t−1]

[
B⊤

t λt
]
≤ ct−1, t = 2, ..., T.

(2.40)

Recall that the process ξ1, ..., ξT is assumed to be stagewise independent, and distribution of

ξt has a finite support, Ξt = {ξ1t , . . . , ξNt
t }, with respective probabilities ptj , j = 1, ..., Nt,

t = 2, ..., T . We denote by Aj
t , B

j
t , c

j
t , b

j
t the respective scenarios corresponding to ξjt .

We can write the following DP equations for the dual problem (2.40) (cf. Section 2.2).

At the last stage t = T , given λT−1 and ξ[T−1], we need to solve the following problem with

34

respect to λT :

max
λT

E[b⊤T λT]

s.t. A⊤
T λT ≤ cT ,

A⊤
T−1λT−1 + γE

[
B⊤

T λT
]
≤ cT−1.

(2.41)

In terms of scenarios the above problem can be written as

max
λT1,...,λTNT

NT∑
j=1

pTj(b
j
T)

⊤λTj

s.t. A⊤
TjλTj ≤ cTj, j = 1, ..., NT ,

A⊤
T−1λT−1 + γ

NT∑
j=1

pTj(B
j
T)

⊤λTj ≤ cT−1.

(2.42)

The optimal value VT (λT−1, ξT−1) and an optimal solution (λ̄T1, . . . , λ̄TNT
) of problem

(2.42) are functions of vectors λT−1 and cT−1 and matrix AT−1. And so on going backward

in time, using the stagewise independence assumption, we can write the respective dynamic

programming equations for t = T − 1, ..., 2, as

max
λt1,...,λtNt

Nt∑
j=1

ptj
[
(bjt)

⊤λtj + γVt+1(λtj, ξtj)
]

s.t. A⊤
t−1λt−1 + γ

Nt∑
j=1

ptj(B
j
t)

⊤λtj ≤ ct−1,

(2.43)

with Vt(λt−1, ξt−1) being the optimal value of problem (2.43). Note that unlike the primal

problem, the dynamic equations of the dual problem do not decompose into individual

scenarios - the optimization problem (2.43) is formulated jointly with respect to the dual

variables λt1, . . . , λtNt .

Finally at the first stage the following problem should be solved

max
λ1

b⊤1 λ1 + γV2(λ1). (2.44)

Note that if At and ct are deterministic, then Vt+1(λt) does not depend on ξt.

Now consider the infinite horizon case T = ∞. Consider first when m = 1. In that

35

case the random process ξt is i.i.d. with the corresponding scenarios ξj = (Aj, Bj, cj, bj),

j = 1, ..., N , which do not depend on t ≥ 2. The WB equations for the value function

V (λj, ξ
j) of the dual problem then become

V (λ, ξj) = sup
λ1,...,λN

{
N∑
k=1

pk
[
(bk)⊤λk + γV (λk, ξ

k)
]
: (Aj)⊤λ+ γ

N∑
k=1

pk(B
k)⊤λk ≤ cj

}
,

(2.45)

j = 1, ..., N . Note that solution V (λ, ξj) of this equation is concave in λ, and if Aj ≡ A

and cj ≡ c are deterministic, then V (λ) does not depend on ξj and is given by the equation

V (λ) = sup
λ1,...,λN

{
N∑
k=1

pk
[
(bk)⊤λk + γV (λk)

]
: A⊤λ+ γ

N∑
k=1

pk(B
k)⊤λk ≤ c

}
. (2.46)

Consider the general case of m ≥ 1. Then the WB equations for the value functions of

the dual problem are

Vτ (λτ−1, ξ
j
τ−1) = sup

λτ1,...,λτNτ

{ Nτ∑
k=1

pτk
[
(bkτ)

⊤λτk + γVτ+1(λτk, ξ
k
τ)
]
:

(Aj
τ−1)

⊤λτ−1 + γ
Nτ∑
k=1

pτk(B
k
τ)

⊤λτk ≤ cjτ−1

}
,

(2.47)

for τ = 2, ...,m+1, and Vm+2 replaced by V2. IfAj
τ ≡ Aτ and cjτ ≡ cτ , τ = 2, ...,m+1, are

deterministic, then value functions do not depend on Aτ and cτ and are given by equations

Vτ (λτ−1) = sup
λτ1,...,λτNτ

{ Nτ∑
k=1

pτk
[
(bkτ)

⊤λτk + γVτ+1(λτk)
]
: A⊤

τ−1λτ−1+γ
Nτ∑
k=1

pτk(B
k
τ)

⊤λτk ≤ cτ−1

}
,

(2.48)

for τ = 2, ...,m+ 1, and Vm+2 replaced by V2.

Remark 2.4.1. Under the specified assumptions, there is no duality gap between the pri-

mal and dual problems also in the case of the infinite number of stages (when T = ∞).

Indeed, by assumption (A2)(i) the considered decision variables xt(·) can be restricted to

the respective bounded sets Xt. Together with the periodical assumption this implies that

xt(·) can be viewed as bounded for all t and almost every realization of the random data

36

process. By the boundedness of the cost functions (assumption (A2)(ii)), this implies that

there is a constant κ > 0 such that |ct(·)xt(·)| ≤ κ for all t and almost every realization of

the random data process. Thus we can bound the difference between the optimal values of

problem (1.1) for the infinite and finite number T of stages as follows

∣∣∣E [∑∞
t=T+1 γ

t−1c⊤t xt
] ∣∣∣ ≤∑∞

t=T+1 γ
t−1κ = κγT/(1− γ). (2.49)

Let ϑT be the optimal value of the primal problem (1.1). By (2.49) we have for T < T ′ that

|ϑT ′ − ϑT | ≤ κγT/(1− γ). (2.50)

It follows that ϑT is a Cauchy sequence, and hence tends to a finite limit ϑ∞ as T →∞.

By invoking the no duality gap property of (finite dimensional) linear programs we have

that ϑT is also the optimal value of the dual problem for any finite T . It follows that the

optimal value of the dual problem tends to the same ϑ∞ as T →∞.

2.5 Periodical Dual SDDP

In this section we provide a detailed discussion of the periodical Dual SDDP method with

period m ≥ 1. In particular, we elaborate on the trial point selection in the forward step and

cutting plane method in the backward step of the algorithm. We refer to 1 for the scheme

of Periodical Dual SDDP.

37

Algorithm 1 Periodical Dual SDDP with penalization

1: Given sample size Nτ and discretizations {ujτ , vjτ , bjτ , Aj
τ , B

j
τ , C

j
τ}Nτ

j=1, for τ =

2, · · · ,m+ 1.

2: Initialization of cutting planes: V0
τ = LargeBound, τ = 2, · · · ,m+ 1, V0

m+2 = V0
2.

3: for k = 1, 2, . . . do

4: for t = 1, · · · , T do ▷ Forward Pass

5: if t = 1 then τ = 1

6: else τ ≡ (t mod m)

7: end if

8:

{λtj}Nτ
j=1 = argmax{

Nτ∑
j=1

pτjb
j
τ

⊤
λtj + γVk−1

τ+1(λt)− rkτ
⊤
ντ :

Aτ−1
⊤λ̄t−1 + γ

Nτ∑
j=1

pτjB
j
τ

⊤
λtj − ντ ≤ cτ−1}

9: Select forward solutions λ′t ← λtĵ

10: end for

11: Trial points selection: (λ̄1, · · · λ̄m)← (λ′ℓ, λ
′
ℓ+1, · · · , λ′ℓ+m−1)

12: for τ = m+ 1, · · · , 2 do ▷ Backward Pass

13:

(V τ (λ̄τ−1), gτ) = max{
Nτ∑
j=1

pτjb
j
τ

⊤
λτj + γVk

τ+1(λτ)− rkτ
⊤
ντ :

Aτ−1
⊤λ̄τ−1 + γ

Nτ∑
j=1

pτjB
j
τ

⊤
λτj − ντ ≤ cτ−1}

14:
Update cutting planes: Vk

τ ← {α ∈ Vk−1
τ : α ≤

Nτ−1∑
j=1

pτ−1jψτj(λτ−1j),

ψτj(λτ−1j) = g⊤τ (λτ−1j − λ̄τ−1) + V τ (λ̄τ−1)}

15: if τ = 2 then update cutting planes: Vk
m+2 ← {α ∈ Vk−1

m+2 : α ≤
Nm+1∑
j=1

pm+1jψ2j(λm+1j),

ψ2j(λm+1j) = g⊤2 (λm+1j − λ̄1) + V 2(λ̄1)}
16: end if

17: end for

18: Deterministic bound V k
1 = max{b⊤1 λ1 + γVk

2(λ1)}

19: end for
38

2.5.1 Trial Points Selection

In the forward step, we fix a finite value for the number of stages T , and solve the cor-

responding T -stage problems. The obtained feasible solutions of the dual problem are

state variables {λtj}. Note that in the dual setting each optimization problem at stage

t = 2, · · · , T , is not separable with respect to solution corresponding to each (discretized)

sample. For each stage t ≥ 2, by selecting λ′t := λtĵ with probability pτ ĵ , ĵ ∈ {1, · · · , Nτ},

where τ = t (mod m), we construct a set of solutions {λ′t : t = 2, · · · , T}. Next, con-

sider T stages divided into consecutive groups with period m, that is, {(ℓ, ℓ + 1, · · · , ℓ +

m − 1) : ℓ = 1,m + 1, 2m + 1, 3m + 1, · · · , ℓ + m − 1 ≤ T}. Randomly select ℓ

from {1,m + 1, 2m + 1, · · · , ℓ + m − 1 ≤ T}, then we construct a group of trial points

{λ̄ℓ+τ−1 : τ = 1, · · · ,m}.

2.5.2 Cutting Plane Algorithm

To deal with the issue of possible violation of the Relatively Complete Recourse (RCR),

a penalty term ν is introduced for the dual problem with objective coefficient r. With the

penalty term, the value function at each stage τ is finite valued on a compact set formed by

linear constraints, thus maximum is attainable. The WB equations can be written as, for

τ = m+ 1, · · · , 2,

Vτ (λτ−1) = max
λτ , ντ≥0

Nτ∑
j=1

pτj

(
bjτ

⊤
λτj + γVτ+1(λτj)

)
− rτ⊤ντ

s.t. Aτ−1
⊤λτ−1 + γ

Nτ∑
j=1

pτjB
j
τ
⊤
λτj − ντ ≤ cτ−1,

(2.51)

where Vfm+2(·) is replaced by V2(·). For τ = 1, the problem is deterministic and can be

written as

V1 = max
λ1

b⊤1 λ1 + γV2(λ1). (2.52)

For each stage τ ∈ {1, 2, · · · ,m + 1}, given a current upper approximation Vτ+1(·)

39

of the value function Vτ+1(·) and a trial point λ̄τ−1, new cuts {ψτj(·)} are constructed by

computing the (sub)gradient gτ at λ̄τ−1 of the current estimate of the value function. That

is,

ψτj(λτ−1j) := g⊤τ (λτ−1j − λ̄τ−1) + V τ (λ̄τ−1), j = 1, · · · , Nτ−1, (2.53)

and a new supporting plane for Vτ (·) at λ̄τ−1 is generated by {ψτj} as

lτ (λτ−1) :=

Nτ−1∑
j=1

pτ−1jψτj(λτ−1j), (2.54)

where

V τ (λ̄τ−1) = max
λτ , ντ≥0

Nτ∑
j=1

pτjb
j
τ
⊤
λτj + γVτ+1(λτ)− rτ⊤ντ

s.t. Aτ−1
⊤λ̄τ−1 + γ

Nτ∑
j=1

pτjB
j
τ
⊤
λτj − ντ ≤ cτ−1,

(2.55)

with λτ = [λτ1, · · · , λτj, · · · , λτNτ]. Then the collection of supporting planes of Vτ (·) is

updated by Vτ (·)← min{Vτ (·), lτ (·)}. Specifically, cutting plane approximation for value

function at stage m+ 2 is equal to the approximation at stage 2 by the periodic property.

2.5.3 Trust-bound Strategy

Note that for each τ ∈ {2, · · · ,m+1}, Vτ (·) is formed by the minimum of piecewise linear

functions, and hence problem (2.55) can be formulated as a linear programming problem.

Suppose at iteration k in the backward step, we are solving the following problem at stage

τ :

max
Nτ∑
j=1

pτjb
j
τ
⊤
λτj + γατ+1 − rτ⊤ντ

s.t. A⊤
τ−1λ̄τ−1 + γ

Nτ∑
j=1

pτjB
j
τ
⊤
λτj − ντ ≤ cτ−1,

ατ+1 ≤ lsτ+1(λτ), s = 1, · · · , k,

(2.56)

40

where lsτ+1(·) denotes the supporting plane generated at iteration s ≤ k. Consequently, we

obtain optimal value of ατ+1, denoted by α̃k
τ+1, as the best upper approximation for value

function at stage τ + 1 for current iteration.

If the algorithm restarts after the k-th iteration, then all the generated cuts are eliminated

and for each stage τ, τ = 2, · · · ,m + 1, value function V τ is set to α̃k
τ . The algorithmic

scheme is the same after each restart.

2.6 Numerical Results

In this section, we report numerical results obtained by applying Dual SDDP and its pe-

riodical counterpart to the inventory problem and to the Brazilian interconnected power

system problem. In addition, we present numerical sensitivity analysis on a parameterized

inventory problem. For problems with periodical data process, we test the algorithms with

different discount factors. In both models, convergence is measured by the relative gap

computed by deterministic upper bound of the dual problem and deterministic lower bound

of the primal problem unless stated otherwise.

2.6.1 Inventory Model

Consider the classical inventory model (cf., [77])

min
yt≥xt−1

E
[

T∑
t=1

γt−1
(
ct(yt − xt−1) + bt[Dt − yt]+ + ht[yt −Dt]+

)]
s.t. xt = yt −Dt, t = 1, ..., T,

(2.57)

where ct, bt, ht are ordering cost, backorder penalty cost and holding cost per unit, respec-

tively and [·]+ := max{·, 0}. Here xt denotes the current inventory level, in particular x0

denotes the initial level, yt− xt−1 represents the order quantity at stage t, and D1, ..., DT is

the demand process.

In order to formulate model (2.57) as a linear program and hence to construct its dual,

41

we proceed as follows. An equivalent formulation of (2.57) is to replace [Dt − yt]+ and

[yt − Dt]+ with wt ≥ 0 and vt ≥ 0, respectively, and simultaneously to add feasibility

constraints yt + wt ≥ Dt and yt − vt ≤ Dt. The Lagrangian of this problem then becomes

L(p, d) = E

[
T∑
t=1

γt−1
(
ct(yt − xt−1) + btwt + htbt +Ψt(p, d)

)]
, (2.58)

where

Ψt(p, d) := πt(Dt + xt − yt) + µt(yt − xt−1) + ut(yt + wt −Dt) + st(Dt + vt − yt),

p := (p1(ξ1), · · · , pT (ξT)), d := (d1(ξ1), · · · , dT (ξT)) with pt(ξt) := (xt(ξt), yt(ξt), wt(ξt), vt(ξt))

and dt(ξt) := (πt(ξt), µt(ξt), ut(ξt), st(ξt)). Dualization of feasibility constraints and change

of variables dt ← γ−(t−1)dt result in the following periodical multistage linear stochastic

inventory dual model

max
π,µ,u,s

E
[

T∑
t=1

γt−1Dt(πt − ut + st)

]
− c1x0 − µ1x0

s.t. πt − µt − ut + st = ct,

−ut ≤ bt, −st ≤ ht, µt, ut, st ≤ 0, t = 1, · · · , T,

−γ−1πt−1 + E[µt] = −ct, t = 2, · · · , T.

(2.59)

Next we present results for finite-horizon setting (including sensitivity analysis) and infinite-

horizon setting, which are based on various assumption and modeling of the underlying

demand process. For all experiments, we set ct = cos(t
6
) + 1.5, bt = 2.8, ht = 0.2, ∀t and

an initial condition x0 = 10.

Dual SDDP under Finite-horizon Setting

We assume the following settings for the finite-horizon setting. The demands are discrete

random variables such that at the first stage, D1 is assumed to be deterministic with D1 =

42

5.5 and Dj
t = α + βξjt , t = 2, · · · , T , where α = 9.0, β = 0.6. Values ξjt , j = 1, ..., 50,

are generated by taking random samples of size 50 from the uniform distribution on the

interval [0, 1] independently for each t = 2, · · · , T . The assigned probabilities ptj = 0.02

are the same for all t = 2, · · · , T and j. Moreover, under this setting the discount factor γ

is 1.

We run Primal and Dual SDDP on a larger instance with T = 100 and Nt = 100 for

600 iterations. We terminate the Primal SDDP when the gap is < 0.1, where the gap is

defined as Ub−Lb
Ub

with Ub and Lb corresponding to upper and lower bounds computed by

the Primal SDDP along iterations. Specifically, the lower bound Lb is the optimal value

of the first stage problem and the upper bound Ub is the upper end of a 97.5%-one-sided

confidence interval on the optimal value obtained using the sample of total costs computed

by all previous forward passes.

The evolution of the upper bounds computed along the iterations of Dual SDDP (with

penalizations vt,k = 1000) and of the upper and lower bounds computed by Primal SDDP

are reported in Table 2.1 for iterations 2, 3, 5, 10, 50, 100, 200, 300, 400, 500, and 600. We

observe that for the first 100 iterations, the upper bound decreases more quickly with the

Dual SDDP. More precisely, we fix confidence levels ε = 0.2, 0.15, 0.1, 0.05, 0.01, and

for each confidence level, we compute the time needed, running Primal and Dual SDDP

in parallel, to obtain a solution with relative accuracy ε stopping the algorithm when the

upper bound Ub D computed by Dual SDDP and the lower bound Lb, computed by Primal

SDDP, satisfies (Ub D-Lb)/Ub D< ε. The results are reported in Table 2.2. In this table,

we also report the time needed to obtain a solution of relative accuracy ε using only the

information provided by Primal SDDP, stopping the algorithm when (Ub-Lb)/Ub< ε.

We observe that when ε is small (0.05 and 0.01) the smallest CPU time is obtained

combining Primal SDDP with Dual SDDP with penalizations. For ε = 0.05 and 0.01, 600

iterations are even not enough to get a solution of relative accuracy ε using Primal SDDP.

In Figure 2.2, we report the cumulative CPU time along iterations of all methods. We

43

Table 2.1: Lower bound Lb and upper bound Ub computed by Primal SDDP and upper
bounds computed by Dual SDDP penalties vt,k = 1000 along iterations.

Iteration
Primal
SDDP

Lb

Primal
SDDP

Ub

Dual SDDP
with

penalties
2 656.4 25 443 20 015
3 713.1 19 340 20 012
5 3361.8 14 800 19 993
10 5330.1 10 662 16 452
50 5483.1 6 594.5 5500.9

100 5483.5 6 039.2 5484.8
200 5483.6 5 762.4 5484.2
300 5483.7 5 671.0 5484.0
400 5483.7 5 625.3 5483.9
500 5483.7 5 597.9 5483.8
600 5483.7 5 579.9 5483.8

Table 2.2: Time needed (in seconds) to obtain a solution of relative accuracy ε with Primal
SDDP and Dual SDDP with penalties vt,k = 1000.

ε Primal SDDP
Dual SDDP with

penalties vt,k = 1000
0.2 300.2 35.8
0.15 459.8 41.2
0.1 825.6 48.3
0.05 2366.2 61.5
0.01 - 103.2

see that each iteration requires a similar computational bulk and the CPU time increases

exponentially with the number of iterations.

Dual SDDP for Inventory Problem with Interstage Dependent Cost Coefficients We

consider a variant of the inventory model (2.57) with interstage dependent cost coeffi-

cients.The cost ct is modeled by a Markovian random process such as

ct = ϵt · (θct−1 + µ), t = 1, · · · , T, (2.60)

44

Iteration
0 100 200 300 400 500 600

C
um

ul
at

iv
e

tim
e

(s
.)

0

5000

10000

15000

Primal SDDP
Dual SDDP with penalties
Dual SDDP with feasibility cuts

嶃
o

irnnso1 。ㄧ .

_
o

o
o
o
o
o

o
o

o
o

o
o

o
o
o

o
o
o

o
o

o

o

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o

o

o
o

o
o

0
0

0
0

0
.

o
o

o
o
o

o
o

o
o

o
o

o
o

o
o

o
o

_
…
…
…
…
…

。
o.co

0
0
0
°
"

。
"

_ _ _ _
__ _ 豐

⼀
⼀⼀-_-

三 ˙
_

i t i i
遘

Figure 2.2: Cumulative CPU time along iterations of Primal SDDP and Dual SDDP with
penalizations vt,k = 1000.

where ϵt follows the log-normal distribution with mean 1.0 and variance 2.0 for all t and

θ ∈ (0, 1), µ > 0. In this model, we assume all other parameters, bt, ht and the demand

Dt are deterministic. As mentioned in 2.3.3, the dual formulation of the inventory problem

brings the random cost coefficients into the right-hand side of the model. By treating the

random costs as state variables, the value functions become concave and can be directly

solved by Dual SDDP with penalizations. This is in contrast to the primal problem where

such approach destroys convexity of the respective value functions.

To illustrate the convergence of Dual SDDP applied to this problem with interstage de-

pendent random process, we ran the algorithm on the T = 12-stage inventory problem with

self-generated data under parameter (θ, µ) = (0.001, 0.1). Moreover, we also present nu-

merical results obtained solving the primal model with a Markovian approximation variant

of SDDP, as described in ([22]).

We discretize the random process in both the primal and dual models with Nt = 100

for t = 2, · · · , T . For the dual model, {ϵjt}t,j are generated in a stage-wise independent

manner from the lognormal distribution. To apply Markovian SDDP on the primal, we

deploy 100, 000 sample paths to train the transition matrix with 100 Markov states.

Figure 2.3 shows the evolution of the deterministic primal (lower) bound and the dual

45

Table 2.3: Convergence results of MC-primal and TS-dual

Iter. Primal LB. Dual UB. Gap(%)
10 53.4104 73.6759 27.51

100 56.8763 57.5192 1.11
180 56.8763 57.4734 1.04

(upper) bound while 2.3 details the values of the bounds and the relative gaps throughout

different iterations. It can be noticed that after some iterations, the Markovian primal prob-

lem and the dual problem converge with relatively small gap, which confirms the viability

of the dual approach. In addition, our dual approach provides a valid upper bound for

problems with interstage dependent cost processes, while for Markovian SDDP, it is still

unclear how to compute a valid upper bound for such problems.

Figure 2.3: Evolution of primal and dual bounds for interstage dependent cost process

Sensitivity Analysis

In the classical setting the demand process is assumed to be stagewise independent, i.e.,

Dt+1 is assumed to be independent of D[t] = (D1, ..., Dt) for t = 1, ..., T − 1. In order

to capture the autocorrelation structure of the demand process it is tempting to model it as,

say first order, autoregressive process Dt = µ + ϕDt−1 + ϵt, where errors ϵt are assumed

to be a sequence i.i.d (independent identically distributed) random variables. However this

46

approach may result in some of the realizations of the demand process to be negative, which

of course does not make sense. One way to deal with this is to make the transformation

Yt := logDt and to model Yt as an autoregressive process. A problem with this approach

is that it leads to nonlinear equations for the original process Dt, which makes it difficult

to use in the numerical algorithms discussed below.

We assume that the demand is modeled as the following multiplicative autoregressive

process

Dt = ϵt(ϕDt−1 + µ), t = 1, ..., T, (2.61)

where ϕ ∈ (0, 1), µ ≥ 0 are parameters and D0 ≥ 0 is given. The errors ϵt are i.i.d

with log-normal distributions having means and standard deviations given by E[ϵt] = 1 and

Var(ϵt) = σ2 > 1, respectively. This guarantees that all realizations of the demand process

are positive. It is possible to view (2.61) as a linearization of the log-transformed process

logDt, with parameters ϕ and µ are estimated from the data (cf., [78]). See in Section 2.7

for a discussion of statistical properties of the process (2.61).

The process (2.61) involves parameters ϕ and µ which are estimated from the data.

As such, these parameters are subject to estimation errors. This raises the question of

the sensitivity of the optimal value ϑ(θ) = ϑ(ϕ, µ) of the corresponding problem (??)

viewed as a function of θ = (ϕ, µ). Using Proposition 2.2.2, derivatives ∂ϑ(ϕ, µ)/∂ϕ and

∂ϑ(ϕ, µ)/∂µ are given by

∂ϑ(ϕ, µ)/∂ϕ = ∂L(x̄, ȳ, π̄)/∂ϕ = E
[∑T

t=1 π̄tϵtDt−1

]
, (2.62)

∂ϑ(ϕ, µ)/∂µ = ∂L(x̄, ȳ, π̄)/∂µ = E
[∑T

t=1 π̄tϵt

]
, (2.63)

where (x̄, ȳ) is an optimal solution of the primal problem and π̄ are the corresponding La-

grange multipliers. With these derivatives at hand, asymptotic distributions of the estimates

of ϕ and µ can be translated into the asymptotics of the optimal value in a straightforward

way by application of the Delta Theorem (cf., [79]).

47

Consider an instance of the model with T = 10 stages and with optimal value ϑ(θ) for

the two-dimensional parameter vector θ = (ϕ, µ). Our goal is to compute derivatives (2.62)

and (2.63) solving the primal and dual problems by respectively Primal and Dual SDDP.

We consider 4 instances with (ϕ, µ) = (0.01, 0.1), (0.01, 3.0), (0.001, 0.1), and (0.001, 3.0).

The remaining parameters of these instances are those from the previous section. We

discretize both the primal and dual problem into Nt = 100 samples for each stage t =

2, . . . , 10. We take the relative error ε = 0.01 for the stopping criterion and use 10 000

Monte Carlo simulations to estimate the expectations in (2.62), (2.63). For Primal SDDP,

the upper bound Ub and lower bound Lb at termination are given in Table 2.4 for the four

instances.

Table 2.4: Upper and lower bounds at the last iteration of Primal SDDP.

Bound Instance 1 Instance 2 Instance 3 Instance 4
Ub 17.9176 478.687 15.3940 404.242
Lb 17.9163 475.017 15.3927 402.913

The optimal mean values of Lagrangian multipliers for the demand constraints com-

puted, for a given stage t ≥ 2, averaging over the 10 000 values obtained simulating 10 000

forward passes after termination, are given in 2.5. In this table, LM stands for the multipliers

obtained using Primal SDDP as explained in Remark 2.2.1 and Dual stands for the multi-

pliers obtained using Dual SDDP with penalties. The fact that the multipliers obtained are

close from both methods coins the validity of the two alternatives to compute derivatives

of the value function of a multistage stochastic linear program.

With optimal dual solutions {π̄t} and the realizations of {Dt} and {ϵt} at hand, we

are able to compute the sensitivity of the optimal value with respect to ϕ and µ, using

(2.62) and (2.63), with expectations estimated for 10 000 Monte Carlo simulations. We

benchmark our method against the finite-difference method. Specifically, for value function

ϑ, the finite-difference method approximates the derivative with respect to u0 by v′(u0) ≈
v(u0+δ)−v(u0−δ)

2δ
for some small δ.

48

Table 2.5: Comparison between optimal Lagrange multipliers from Primal SDDP and Dual
SDDP with penalties.

Stage Instance 1 Instance 2 Instance 3 Instance 4
LM Dual LM Dual LM Dual LM Dual

2 0.2465 0.2373 1.6701 1.66959 0.0444 0.0328 1.666 1.666
3 0.3218 0.31095 1.4098 1.4120 0.1421 0.1340 1.406 1.409
4 0.3268 0.3221 0.9862 0.9861 0.19439 0.18974 0.984 0.984
5 0.3086 0.3058 0.6330 0.6329 0.2145 0.2128 0.6327 0.6327
6 0.3408 0.3412 0.49998 0.499897 0.2708 0.2717 0.4999 0.4998
7 0.5026 0.5051 0.63397 0.63397 0.4378 0.4418 0.6339 0.6339
8 0.7047 0.7049 0.8348 0.8340 0.6404 0.6413 0.8349 0.8334
9 0.8985 0.9032 1.0322 1.0343 0.83501 0.8401 1.0315 1.0343

10 1.1022 1.1037 1.2302 1.2365 1.03926 1.04091 1.23 1.23

The sensitivity of the optimal value of the inventory problem with respect to (ϕ, µ)

is displayed in 2.6. In this table, S-ϕ and S-µ denote the derivatives with respect to ϕ

and µ computed by our method, and fd-ϕ, fd-µ denote the derivatives computed by the

finite-difference method. In order to measure the difference between the two methods,

we also compute S-gap-ϕ and S-gap-µ, where S-gap-ϕ := |fd-ϕ−S-ϕ|
|fd-ϕ| × 100% and S-gap-

µ := |fd-µ−S-µ|
|fd-µ| × 100%.

Table 2.6: Sensitivity of the optimal value with respect to ϕ and µ by the two methods.

Instance fd-ϕ S-ϕ S-gap-ϕ(%) fd-µ S-µ S-gap-µ(%)
1 403.604 401.094 0.622 164.578 164.158 0.255
2 10 716.111 10 671.262 0.419 185.346 184.847 0.270
3 269.514 269.443 0.026 134.646 134.463 0.136
4 7 780.570 7 770.274 0.132 158.017 158.001 0.0101

We observe that the derivatives obtained by both methods are close to each other, espe-

cially when ϕ and µ are small. This is because small ϕ and µ gives rise to less variability

in the demand. Note also that the finite-difference method is more time consuming since

it requires computing the optimal value twice. Instead, our method only needs to solve

the model once. Moreover, computing the Lagrange multipliers does not significantly con-

sume CPU time, as they are generated as a by-product of Primal SDDP. Alternatively, as

discussed above, one can compute the optimal multipliers using Dual SDDP with penalties.

49

Another drawback of the finite-difference method lies in its numerical instability. Indeed,

the method is more accurate when δ is very small. However, the division by a very small

number generates bias while our approach is more stable.

Periodical Dual SDDP

Consider model (2.59) with infinite horizon T =∞ and period m = 12. At the first stage,

D1 is assumed to be deterministic with D1 = 5.5. At stages τ = 2, · · · ,m+ 1, we assume

the following setting. The demands are discrete random variables such that Dj
τ = α+ βξjτ ,

where α = 9.0, β = 0.6, and values ξjτ , j = 1, ..., 50, are generated by taking random

samples of size 50 from the uniform distribution on the interval [0, 1] independently for

each τ = 2, · · · ,m + 1. The assigned probabilities pτj = 0.02 are the same for all τ and

j. cτ = cos(π
6
τ) + 1.5 for τ = 2, · · · ,m + 1. For t ≥ m + 2 the above setting is repeated

periodically with period m = 12. Optimization of (2.59) is performed over the respective

policies satisfying the feasibility constraints.

We conduct experiments with the following values of the discount factor: γ = 0.8,

γ = 0.9906, γ = 0.9990, γ = 0.9999. These settings aim at investigating the rate of

convergence in an empirical sense when discount factor approaches one. To solve the dual

problem we apply the periodical Dual SDDP algorithm with penalization (see 1 in Section

2.5), equipped with penalty parameter sequence: rkt = 104, t = 1, 2, · · · , for every iteration

k.

In 2.7, we use ‘Primal-PSDDP’ and ‘Dual-PSDDP’ to denote the periodical Primal

SDDP and Dual SDDP algorithms, respectively. Deterministic (upper) bounds of the dual

and deterministic (lower) bound of the primal problem are represented by (D.-UB.) and (D.-

LB), respectively. For example, Dual-PSDDP(D.-UB.) refers to the deterministic (upper)

bound output from periodical Dual SDDP. Gap(%) is computed by

Dual-PSDDP(D.-UB.)− Primal-PSDDP(D.-LB)
Dual-PSDDP(D.-UB.)

× 100%. (2.64)

50

Different rows of the table are associated with different discount factors. At each row,

we display deterministic bounds of the primal and dual problems when the algorithm sta-

bilizes. The results in the table suggest that as the discount factor approaches one, the

convergence slows down. This is not surprising and such effect is well known. On the

other hand, results in Table 2.7 show that when the algorithm stabilizes, the optimality gap

does not differ much in scale even when the discount factor is close to one. It can also be

seen that the optimal value of the problem is almost proportional to (1 − γ)−1. This of

course is in accordance with the geometric series view of the considered problem (2.57).

Table 2.7: Inventory problem: evolution of bounds of primal and dual periodical programs.

γ Dual-PSDDP(D.-UB.) Primal-PSDDP(D.-LB.) Gap(%)

0.8 43.783186 43.782698 1.115×10−3

0.9906 1173.345945 1173.204425 1.206×10−2

0.9990 11059.03217 11051.86157 6.485×10−2

0.9999 110590.2919 110514.1413 6.886×10−2

When the discount factor γ approaches one (e.g., γ = 0.999, γ = 0.9999), our ex-

periments indicate that the convergence is much slower than for smaller discount factors.

In order to deal with this we apply the trust-bound strategy to the periodical Dual SDDP

algorithm, as it drastically saves CPU time and yields a faster convergence (see Remark

2.6.1 below and 2.5.3).

Remark 2.6.1 (trust-bound strategy). The Periodical Dual SDDP algorithm starts by set-

ting an initial (constant) upper bound for the value functions, and proceeds by adding cuts

during the iterations. In order to make sure that this initial upper bound is bigger than the

respective optimal values, the corresponding constant is taken to be sufficiently large. After

a significant number of cuts are generated, large linear programs should be solved at con-

secutive iterations, and this slows down the progress of the numerical procedure. An idea is

to restart the algorithm after a certain number of iterations by removing all generated cuts

and setting the current upper bounds of the value functions at each stage of the optimization

51

problem. This strategy worked quite well especially when the discount factor was close to

one.

Remark 2.6.2. When the discount factor is very close to one, it becomes very challenging

to compute the classical statistical upper bound for the optimal value especially of large-

scale problems. To illustrate this, consider for instance the inventory model (2.59) with

γ = 0.999 and period m = 12, and its statistical upper bound (with 95% confidence

level). When the algorithm for solving the primal model stabilizes, we evaluate value of

the constructed policy on the discretized model using Monte Carlo simulation with number

of simulations equal to 3000.

Note that when γ = 0.999, the error of a finite horizon approximation is of order

O
(
γT/(1− γ)

)
(cf., [76]), which is small enough (≈ 0.045) only when T ≥ 10000. The

CPU time to compute the statistical upper bound using T = 10000 exceeds 24 hours. If we

decrease T to 5000, the CPU time to compute the statistical bound is around 18.7 hours.

However, the obtained statistical bound turns out to be smaller than the primal deterministic

bound, which indicates that such T is too small to provide a valid upper bound. On the other

hand, a valid (deterministic) upper bound obtained by solving the dual problem employing

the periodical Dual SDDP method with trust bound strategy, only consumes CPU time

3040 seconds, which is less than 1 hour with the corresponding relative gap less than 0.1%.

2.6.2 Hydro-thermal Generation Problem

In this section we consider the Brazilian Inter-connected Power System operation plan-

ning problem discussed in [80]. This problem is much larger than the inventory problem

considered in the previous part. The original problem has T = 120 stages correspond-

ing to 10 years of monthly planning with the discount factor γ = 0.9906 (this discount

factor corresponds to the annual discount rate of 12%), and 4 state variables representing

energy equivalent reservoirs of four interconnected main regions. The random data pro-

cess is represented by the respective 4-dimensional vectors of monthly inflows. We assume

52

that the monthly inflows are stagewise independent and are sampled from 4-dimensional

log-normal distributions calibrated by the historical data.

Similar to the illustration in the inventory case, we present results of applying Dual

SDDP and Periodical Dual SDDP on the problem with finite horizon and infinite horizon,

respectively.

Primal and Dual Optimization Models

The explicit primal model of the infinite-horizon problem with discount factor γ = 0.9906

is the following:

min
T∑
t=1

γt−1

[
4∑

i=1

bisi,t +
4∑

i=1

4∑
j=1

ejdfi,j,t +
4∑

i=1

ui
∑
k∈Ωi

gi,k,t +
5∑

i=1

5∑
j=1

cj,iexj→i,t

]

s.t. for t = 1, 2, · · · , T,∑
k∈Ωi

gi,k,t + qi,t +
4∑

j=1

dfi,j,t −
5∑

j=1

exi→j,t +
5∑

j=1

exj→i,t = di,t, i = 1, · · · , 4,

5∑
j=1

exj→5,t −
5∑

j=1

ex5→j,t = 0,

qi,t + si,t + vi,t − vi,t−1 = ai,t i = 1, · · · , 4,

si,t ≥ 0, i = 1, · · · , 4,

0 ≤ vi,t ≤ v̄i, i = 1, · · · , 4,

0 ≤ qi,t ≤ q̄i, i = 1, · · · , 4,

0 ≤ dfi,j,t ≤ d̄fi,j, i, j = 1, · · · , 4,

0 ≤ exi→j,t ≤ ēxi,j, i, j = 1, · · · , 4,

g
i
≤ gi,k,t ≤ ḡi, i = 1, · · · , 4, k ∈ Ωi.

(2.65)

We refer to [80] and [76] for the details of the primal model and variables/parameters

notations correspondingly.

53

By writing the Lagrangian of (2.65) and dualization of the feasibility constraints, the

dual model can be written as

max
T∑
t=1

γt−1

[
4∑

i=1

(
di,tλi,t + v̄ixi,t + q̄ioi,t +

4∑
j=1

d̄fjhi,j,t +
∑
k∈Ωi

(ḡizi,k,t + g
i
ωi,k,t) + ai,tµi,t

)

+
5∑

i=1

5∑
j=1

ēxi,jfi,j,t

]
+

4∑
i=1

ai,1µi,1 +
4∑

i=1

vi,0yi,1

s.t. for t = 1, · · · , T,

µt,i ≤ bi, i = 1, · · · , 4,

λi,t + µi,t + oi,t ≤ 0, i = 1, · · · , 4,

λi,t + hi,j,t ≤ ej, i, j = 1, · · · , 4,

λi,t + zi,k,t + ωi,k,t = ui, i = 1, · · · , 4, k ∈ Ωi,

for i ∈ {1, · · · , 5}, j ∈ {1, · · · , 5},

if i = j : fi,j,t ≤ ci,j,

if i ̸= j, (i, j) ≤ 4 : −λi,t + λj,t + fi,j,t ≤ ci,j,

if i ̸= j, i = 5, j < 5 : λj,t − ηt + fi,j,t ≤ ci,j,

if i ̸= j, i < 5, j = 5 : λi,t + ηt + fi,j,t ≤ ci,j,

xi,t ≤ 0, i = 1, · · · , 4,

oi,t ≤ 0, i = 1, · · · , 4,

hi,j,t ≤ 0 i, j = 1, · · · 4,

zi,k,t ≤ 0, i = 1, · · · 4, k ∈ Ωi,

ωi,k,t ≥ 0, i = 1, · · · 4, k ∈ Ωi,

fi,j,t ≤ 0, i, j = 1, · · · , 5,

for t = 2, · · · , T,

µi,t−1 + xi,t−1 − γE [µi,t] ≤ 0, i = 1, · · · , 4.

(2.66)

54

Here in (2.66), we denote the states as {xi,t, i = 1, · · · , 4} and {µi,t, i = 1, · · · , 4} for t =

1, 2 · · · , T . Control variables are denoted by {λi,t}, {oi,t}, {hi,j,t}, {zi,k,t}, {ωi,k,t}, {fi,j,t}

and {yi,1}. In both models, initial stored energy vi,0 and initial inflow ai,1, i = 1, · · · , 4

are given and inflow at := (a1,t, · · · , a4,t), t = 2 · · · , T is periodical and modeled as

stagewise independent stochastic process, such that at ∼ lognormal(µτ ,Στ) for each t if

t mod m = τ , τ = 2, · · ·m + 1, where µτ and Στ is the mean and covariance matrix of

log of the historical inflow data for each month, respectively.

Dual SDDP under Finite-horizon Setting

We solve this problem using Dual SDDP and Primal SDDP for comparison. For Dual

SDDP, a general procedure to define sequences of penalizations (vt,k) ensuring convergence

of the corresponding Dual SDDP method is to take vt,k = γ0α
k−1e, k ≥ 1, t = 2, . . . , T ,

with α > 1, γ0 > 0. For numerical reasons, we also take a large upper bound U for these

sequences and use

vt,k = min(U, γ0α
k−1)e, k ≥ 1, t = 2, . . . , T. (2.67)

Three variants of Dual SDDP are considered: for the first variant, denoted by Dual

SDDP 1, vt,k are as in (2.67) with γ0 = 104, α = 1.3, U = 1010. To illustrate the fact

that for constant sequences vt,k = γ0, Dual SDDP converges (resp. does not converge)

for sufficiently large constants γ0 (resp. sufficiently small constants γ0) we also define two

other variants corresponding to U = +∞, γ0 = 109, α = 1, and U = +∞, γ0 = 106,

α = 1, in (2.67), respectively denoted by Dual SDDP 2 and Dual SDDP 3.

We run Dual SDDP for 1000 iterations and Primal SDDP for 3000 iterations. The evo-

lution of the upper and lower bounds computed by the methods for the first 1000 iterations

is given in Figure 2.4.4.

Further, the values of these bounds for different iterations are reported in Table 2.8.

4The upper bounds for Primal SDDP are computed as explained in 2.6.1

55

Iteration
2 4 6 8 10 12 14 16 18 20

#108

0

2

4

6

8

10

12

 Dual SDDP 2

 Dual SDDP 3

 Dual SDDP 1
 Primal SDDP

Iteration
20 40 60 80 100 120 140 160

#108

0

2

4

6

8

10

12

 Dual SDDP 2

 Dual SDDP 3

 Dual SDDP 1

 Primal SDDP

Iteration
100 200 300 400 500 600 700 800 900 1000

#107

2

3

4

5

6

7

8

 Dual SDDP 3

 Primal SDDP

 Dual SDDP 2

 Dual SDDP 1

Figure 2.4: Top left: upper and lower bounds computed by Primal SDDP and upper bounds
computed by Dual SDDP 1, Dual SDDP 2, and Dual SDDP 3, for the first 20 iter-
ations; Top right: same outputs for iterations 21,. . . , 150; Bottom: same outputs for itera-
tions 151,. . . , 1000.

We observe that parameter γ0 for Dual SDDP 3 is too small to allow this method to

converge to the optimal value of the problem whereas the other two variants Dual SDDP

1 and Dual SDDP 2 of Dual SDDP converge. Naturally, these methods start with large

upper bounds but after a few tens of iterations the upper bounds with Dual SDDP 1 and

Dual SDDP 2 are better than the upper bound computed by Primal SDDP. In particular,

it is interesting to notice that the best (lowest) upper bounds are obtained with the variant

of Dual SDDP that uses adaptive penalizations, i.e., penalizations that increase with the

number of iterations before reaching value U in (2.67).

We also report in Table 2.9 the relative error UpperM (i)−LowerSDDP(i)

UpperM (i)
for iterations i = 100,

200, 300, 400, 500, 800, and 1000 for all methods M where UpperM(i) and LowerSDDP(i)

are respectively the upper bound computed by method M at iteration i and the lower bound

56

Table 2.8: Lower bound Lb and upper bound Ub computed by Primal SDDP and upper
bounds computed by variants of Dual SDDP along iterations. All costs have been divided
by 106.

Iteration
Primal
SDDP

Lb

Primal
SDDP

Ub
Dual SDDP 1 Dual SDDP 2 Dual SDDP 3

2 1.317 143.98 1000.2 1000.2 1000.2
5 5.5588 109.36 1000.2 1000.2 994.04

10 14.032 81.728 360.40 1000.2 495.08
50 23.670 41.346 54.999 1000.2 96.720

100 24.787 35.502 36.322 64.072 82.494
150 25.111 32.447 30.685 35.595 79.465
200 25.249 30.672 29.076 30.404 78.059
250 25.374 30.079 28.215 28.943 76.917
300 25.436 29.434 27.710 28.030 76.344
350 25.477 29.014 27.309 27.532 75.852
400 25.526 28.626 27.110 27.188 75.526
1000 25.703 27.175 26.304 26.335 74.292
3000 25.798 26.883 - -

computed by Primal SDDP at iteration i. For iterations 300 and forwards, the relative error

is much smaller with variants of Dual SDDP, meaning that Primal SDDP overestimates the

optimality gap.

However, each iteration of Dual SDDP takes more time as can be seen in Figure 2.5

which reports the cumulative CPU time for all methods. To illustrate, running Dual and

Primal SDDP in parallel, we can compute the time needed to obtain a solution of relative

accuracy ε using the standard stopping criterion for Primal SDDP (see ([81])) or using the

Table 2.9: Relative error as a function of the number of iterations for Primal SDDP,
Dual SDDP 1, and Dual SDDP 2.

Iteration Primal SDDP Dual SDDP 1 Dual SDDP 2
100 0.30 0.32 0.61
200 0.18 0.13 0.17
300 0.14 0.08 0.09
400 0.11 0.06 0.06
500 0.09 0.05 0.05
800 0.07 0.03 0.03

1000 0.05 0.02 0.02

57

Iteration
0 100 200 300 400 500 600 700 800 900 1000

#105

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 Dual SDDP 2

 Dual SDDP 1

 Dual SDDP 3

 Primal SDDP

Figure 2.5: Cumulative CPU time for Primal SDDP, Dual SDDP 1, Dual SDDP 2, and Dual
SDDP 3.

lower bound from Primal SDDP and the upper bound from Dual SDDP, and computing

the relative error obtained with these bounds each time a new bound (either lower bound or

upper bound) is computed. The results are reported in Table 2.10. We see that due to the fact

that Dual SDDP iterations are more time consuming, for all relative accuracies but one, the

use of the stopping criterion based on Dual SDDP upper bounds is more computationally

burdened. From this experiment, performed on a larger problem (in terms of size of the

state vector and number of control variables for each stage) than the inventory problem, it

seems that the use of Dual SDDP for a stopping criterion of Primal SDDP will decrease the

overall computational bulk only for small problems (which have a limited to small number

of controls, state variables, and scenarios).

Finally, as an evidence of the fact that RCR does not hold for the dual of the inventory

and thehydro-thermal problem, we observed that the maximal and mean values of ∥ζkt ∥1

along iterations, where ζkt is an optimal value of ζt in (2.23) for iteration k, are positive for

some stages.

58

Table 2.10: CPU time (in seconds) needed to obtain a solution of relative accuracy ε with
Primal SDDP and variants of Dual SDDP.

ε Primal SDDP Dual SDDP 1 Dual SDDP 2
0.3 515 1 042 4 133
0.2 1 167 1 895 7 446
0.15 1 659 2 910 9 882
0.1 3 168 5 114 16 387

0.075 5 359 8 003 22 457
0.05 11 124 15 738 35 113
0.04 45 391 23 449 51 381

Periodical Dual SDDP

Here we follow the periodical variant of this problem discussed in [76] with period m = 12

corresponding to the monthly cycle of one year.

We apply the periodical Dual SDDP (1) to solve the SAA of the dual problem, with 50

samples per stage. In order to approximate the infinite horizon setting, we run T = 120

stages in the forward pass. The error of that finite horizon approximation is of order

O
(
γT/(1− γ)

)
(cf., [76]). By exploring the periodical behavior, we only need to perform

optimization on m stages in the backward pass to approximate the value functions. Objec-

tive coefficients of the penalty terms in the algorithm are chosen as {rkτ} = 1×109 through

out all stages and all iterations. The initial upper bounds of value functions approximation

is set as 1× 109 for all stages.

Empirical results are reported for two cases: γ = 0.8 and γ = 0.9906. We solve the

first model without applying trust-bound strategy. It can be observed that the periodical

Dual SDDP method, with the trust-bound strategy, signifies fast convergence in the dual

problem, especially when the discount factor is close to one. As it was discussed in the

previous section, for γ = 0.9906 in order to employ the classical statistical upper bound

procedure, the corresponding time horizon T should be so large that makes it computation-

ally infeasible.

Table 2.11 reports deterministic bounds and relative gaps of primal and dual problems

59

Table 2.11: Hydro-thermal problem with γ = 0.8: deterministic bounds of primal and dual
periodical programs.

Iter. Dual-PSDDP Primal-PSDDP Gap(%)
(D.-UB.)(×106) (D.-LB.)(×106)

100 20.454 6.261 69.39
200 11.959 6.589 44.90
300 9.499 6.739 29.06
400 8.602 6.824 20.67
500 8.182 6.851 16.26
800 7.616 6.897 9.43
1000 7.477 6.915 7.51
1500 7.328 6.941 5.28

with γ = 0.8 for iterations 100, 200, 300, 400, 500, 800, 1000, 1500. We use same notations

here as in Table 2.7.

In Figure 2.6 we demonstrate evolution of deterministic primal and dual bounds pro-

duced by the algorithm in solving the hydro-thermal problem with discount factor γ =

0.9906. To solve the dual problem, we utilize the trust-bound strategy by restarting the

algorithm every 100 iterations and run the algorithm for 1900 iterations in total when the

gap is smaller than given precision 6%.

In view of the evolution of the dual bounds displayed by the figure, we add a few

remarks. First, it can be observed that the dual bounds are monotonically decreasing in each

epoch (between two consecutive restarts). Such property is not maintained by consecutive

restarts, that is, at the beginning of current restart, the dual bound may be larger than the

one at the end of the last restart. A reason for this is that the re-initialized bounds of the

value functions are still larger than the potential tightest upper bounds of the problem. It

should be noticed that the displayed dual bound is the optimal value of the value function

at the first stage while at each restart only value functions from stage 2 and onwards are

initialized using the information from the last iteration. Therefore, at the beginning of each

restart, the multistage problem is re-optimized and a new optimal value of the first stage

problem is computed. Secondly, it can be seen from the figure that the algorithm converges

60

Figure 2.6: Hydro-thermal problem with γ = 0.9906: evolution of deterministic bounds of
primal and dual periodical multistage stochastic programs. The orange line is obtained by
smoothing the dual bounds (in blue) to exhibit the descending trend.

faster in the first few restarts and becomes slower afterwards. The algorithm stabilizes and

precludes the dual bound from descending below the primal lower bound.

In Table 2.12, we present results of the values of both deterministic bounds and the

relative gaps at iterations 100, 500, 1000, 1200, 1500, 1700, 1900 and the algorithm is ter-

minated when the gap is smaller than a given precision 6%. It could be observed that

the computed gaps are significantly better than the ones in Table 2.11, even with a larger

discount factor. This is due to the employed trust-bound strategy.

61

Table 2.12: Hydro-thermal problem with γ = 0.9906: deterministic bounds of primal and
dual periodical programs.

Iter. Dual-PSDDP Primal-PSDDP Gap(%)

(D.-UB.)(×108) (D.-LB.)(×108)

100 8.7443 2.4405 72.09

500 6.5912 3.2941 52.61

1000 4.7428 3.3995 28.32

1200 4.2559 3.4213 19.61

1500 3.8719 3.448 10.95

1700 3.6315 3.4601 4.72

1900 3.5621 3.4698 2.59

2.7 Proofs of Auxiliary Results

In this section, we discuss some statistical properties of the multiplicative autoregressive

process (2.61), and prove Lemma 2.3.1, Proposition 2.3.1, and 2.3.1.

2.7.1 Properties of the Multiplicative Autoregressive Process.

Consider the multiplicative autoregressive process (2.61). Note that under the specified

conditions the demand process is not stationary. Indeed, since the errors ϵt are i.i.d. and

E[ϵt] = 1 we have that E[Dt] = ϕE[Dt−1] + µ and

Var(Dt) = E
[
Var
(
ϵt(ϕDt−1 + µ)|Dt−1

)]
+Var [E(ϵt(ϕDt−1 + µ)|Dt−1)]

= E [σ2(ϕDt−1 + µ)2] + Var(ϕDt−1 + µ)

= σ2E [(ϕDt−1 + µ)2] + ϕ2Var(Dt−1).

(2.68)

It follows that E[Dt] converges to µ/(1 − ϕ) as t → ∞. Suppose, for example, that

µ = 0. Then Dt = ϵtϕDt−1 = D0ϕ
t
∏t

τ=1 ϵτ , t = 1, ..., T, E[Dt] = D0ϕ
t → 0, and

62

Var(Dt) = D2
0ϕ

2t[(1 + σ2)t − 1]. Therefore if ϕ2(1 + σ2) < 1, then Var(Dt) → 0; and if

ϕ2(1 + σ2) > 1, then Var(Dt)→∞ provided D0 > 0.

We need more notations to proceed to the proofs of the mentioned theoretical results.

We introduce the sequence of functions for t = 2, . . . , T , with the first constraint A⊤
T πT,j ≤

cT omitted for t < T ,

V
k

t (πt−1) :=

max
πt,1,...,πt,Nt , ζt

Nt∑
j=1

pt,jb
⊤
t,jπt,j − v⊤t,kζt

s.t. A⊤
t πt,j ≤ ct, j = 1, . . . , Nt,

A⊤
t−1πt−1 +

Nt∑
j=1

pt,jB
⊤
t,jπt,j ≤ ct−1 + ζt,

ζt ≥ 0, πt ≤ πt,j ≤ πt, j = 1, . . . , Nt.

(2.69)

Due to the finite support assumption of the distribution of ξt, t = 2, · · · , T , we can represent

the scenarios for ξ1, ξ2, . . . , ξT , by a scenario tree of depth T + 1where the root node n0

associated to stage 0 (with decision x0 taken at that node) has one child node n1 associated

to the first stage. We denote byN the set of nodes and for a node n of the tree, by F (n) the

parent node, by (xn, πn) a primal-dual pair at that node and by ξn the realization of process

(ξt) at node n (this realization ξn contains in particular the realizations cn of ct, bn of bt, An

of At, and Bn of Bt).

2.7.2 Proof of Lemma 2.3.1.

If the optimal value of primal problem (1.1) is finite then the optimal value of the corre-

sponding dual problem is finite which implies that there is a bounded dual solution and

ensures the existence of πt and πt.

Now assume there is x̂ > 0 feasible for (1.1). Let 1 ≤ t ≤ T and let us fix a node m of

stage t. Let Am such that constraints Amxm +BmxF (m) = bm are rewritten in the compact

form Amx = bm in terms of vector x = (xn)n∈N of decision variables in the scenario tree.

63

The dual function obtained dualizing the coupling constraints of node m is given by

θ(πm) = min E[c⊤x] + π⊤
m(Amxm +BmxF (m) − bm), x ∈ Sm,

for Sm = {x = (xn)n∈N : x ≥ 0} ∩ Am where

Am = {x = (xn)n∈N : Anxn +BnxF (n) = bn, ∀n ̸= m,n ∈ N}.

By Linear Programming Duality, the optimal value Q1(x0) of primal problem (1.1) is

the optimal value of the dual problem

max
πm∈Rmt

θ(πm), (2.70)

which can clearly be written as

Q1(x0) = max
πm

{θ(πm) : πm = Amx− bm, x ∈ Aff(Sm)}, (2.71)

where Aff(Sm) is the affine hull of Sm. We now bound the optimal solutions of dual

problem (2.71). Since (2.70) and (2.71) have the same optimal values, adding these bounds

as constraints on πm in (2.70) does not change its optimal value. Since x̂ > 0 there is r > 0

such that

B(x̂, r) ⊆ {x ≥ 0}. (2.72)

We argue that Aff(Sm) = Am. Indeed, the inclusion Aff(Sm) ⊆ Am is clear. Now if

x ∈ Am then if x = x̂ we have that x ∈ Sm ⊆ Aff(Sm) and if x ̸= x̂, recalling that

x̂ ∈ Am satisfies (2.72) we have that

y := x̂+
r

2

x− x̂
∥x− x̂∥

∈ Am ∩ B(x̂, r) ⊆ Sm.

64

Therefore x belongs to the line that contains y and x̂ with y, x̂ belonging to Sm which

implies x ∈ Aff(Sm) and Aff(Sm) = Am.

It follows that

B(x̂, r) ∩ Aff(Sm) = B(x̂, r) ∩ Am ⊆ Sm

and that there is ρ∗(m) > 0 such that

B(0, ρ∗) ∩ (AmAm − bm) ⊆ Am(B(x̂, r) ∩ Am)− bm.

Let π̄m be an optimal solution of problem (2.71) and let z = 0 if π̄m = 0 and z = − π̄m

∥π̄m∥2ρ∗

otherwise. Observe that z ∈ B(0, ρ∗) ∩ (AmAm − bm) and therefore z ∈ Am(B(x̂, r) ∩

Am) − bm ⊆ AmSm − bm and z can be written z = Amx̃ − bm for x̃ ∈ B(x̂, r) ∩ Sm.

Denoting by V any finite lower bound on the optimal value Q1(x0), it follows that

V ≤ Q1(x0) = θ(π̄m) ≤ E[c⊤x̃] + π̄⊤
m(Amx̃− bm)

≤ E[c⊤x̂] + r
∑T

t=1 E[∥ct∥2] + π̄⊤
mz

= E[c⊤x̂] + r
∑T

t=1 E[∥ct∥2]− ρ∗(m)∥π̄m∥2

which gives for every node n of stage t that

∥π̄n∥2 ≤ max
m∈Nodes(t)

E[c⊤x̂]− V + r
∑T

t=1 E[∥ct∥2]
ρ∗(m)

with corresponding box constraints πt, πt where Nodes(t) are the nodes of stage t. □

2.7.3 Proof of Proposition 2.3.1.

We show by induction on k that Vt ≤ V k
t for t = 2, . . . , T . For k = 0 these relations hold

by definition. Assume that for some k ≥ 1 we have Vt ≤ V k−1
t for t = 2, . . . , T . We

show by backward induction on t that Vt ≤ V k
t for t = 2, . . . , T . Observe that for any

πT−1, optimization problem (2.69) with optimal value V
k

T (πT−1) is feasible. Indeed, since

65

primal problem (1.1) is feasible and has a finite optimal value, the corresponding dual

problem is feasible which implies that there is πT,1, . . . , πT,NT
satisfying A⊤

T πT,j ≤ cT ,

πT ≤ πT,j ≤ πT , j = 1, . . . , NT , and for every such points we can find ζT ≥ 0 satisfying

the remaining constraints in (2.69). Therefore V
k

T (πT−1) is finite for every πT−1 and is the

optimal value of the corresponding dual optimization problem, i.e., for any πT−1 we get

V
k

T (πT−1) =

min

α,δ,Ψ,Ψ
δ⊤(cT−1 − A⊤

T−1πT−1) + c⊤T
∑NT

j=1 αj +
∑NT

j=1Ψ
⊤
j πT −

∑NT

j=1Ψ
⊤
j πT

s.t. ATαj + pT,jBT,jδ −Ψj +Ψj = pT,jbT,j, j = 1, . . . , NT ,

0 ≤ δ ≤ vT,k, αj,Ψj,Ψj ≥ 0, j = 1, . . . , NT .

Using this dual representation and the definition of θ
k

T , β
k

T , we get for every πT−1:

θ
k

T + ⟨βk

T , πT−1⟩ ≥ V
k

T (πT−1). (2.73)

Recalling representation (2.69) for V
k

T (πT−1), observe that for every πT−1 ∈ dom(VT)

we have V
k

T (πT−1) ≥ VT (πT−1) whereas for πT−1 /∈ dom(VT) we have VT (πT−1) = −∞

while V
k

T (πT−1) is finite, which shows that for every πT−1 we have V
k

T (πT−1) ≥ VT (πT−1),

which, combined with (2.73) and the induction hypothesis, gives

V k
T (πT−1) ≥ VT (πT−1)

for everyπT−1.

Now assume that V k
t+1(πt) ≥ Vt+1(πt) for all πt for some t ∈ {2, . . . , T − 1}. We

want to show that V k
t (πt−1) ≥ Vt(πt−1) for all πt−1. First observe that for every πt−1,

linear program (2.69) with optimal value V
k

t (πt−1) is feasible and has a finite optimal value.

Therefore we can express V
k

t (πt−1) as the optimal value of the corresponding dual problem

66

given by

min
δ,ν,Ψ,Ψ

δ⊤
[
ct−1 − A⊤

t−1πt−1

]
+
∑k

i=0 θ
i

t+1

∑Nt

j=1 νi(j) +
∑Nt

j=1Ψ
⊤
j πt −

∑Nt

j=1Ψ
⊤
j πt

s.t. pt,jBt,jδ −
k∑

i=0

νi(j)β
i

t+1 −Ψj +Ψj = pt,jbt,j, j = 1, . . . , Nt,

k∑
i=0

νi(j) = pt,j,Ψj,Ψj ≥ 0, j = 1, . . . , Nt,

ν0, . . . , νk ≥ 0, 0 ≤ δ ≤ vt,k.

(2.74)

Using this representation of V
k

t and the definition of θ
k

t , β
k

t , we obtain for every πt−1:

θ
k

t + ⟨β
k

t , πt−1⟩ ≥ V
k

t (πt−1). (2.75)

Next, recalling representation (2.69) for V
k

t (πt−1) and the induction hypothesis, we get

V
k

t (πt−1) ≥ V̂ k
t (πt−1) (2.76)

where

V̂ k
t (πt−1) :=

max
πt,1,...,πt,Nt , ζt

Nt∑
j=1

pt,j
(
b⊤t,jπt,j + Vt+1(πt,j)

)
− v⊤t,kζt

s.t. A⊤
t−1πt−1 +

Nt∑
j=1

pt,jB
⊤
t,jπt,j ≤ ct−1 + ζt,

ζt ≥ 0, πt ≤ πt,j ≤ πt, j = 1, ..., Nt.

Similarly to the induction step t = T , for every πt−1, we have

V̂ k
t (πt−1) ≥ Vt(πt−1). (2.77)

Combining (2.75), (2.76), and (2.77) with the induction hypothesis, we obtain V k
t (πt−1) ≥

Vt(πt−1) for all πt−1 which achieves the proof of the induction step t.

67

In particular V k−1
2 ≥ V2 which implies that V k−1 is greater than or equal to the optimal

value of dual problem (2.2) which is also, by linear programming duality, the optimal value

of primal problem (1.1). □

The proof of 2.3.1 is based on the following lemma:

Lemma 2.7.1. Suppose that the multistage problem (1.1) has a finite optimal value. Then

for sufficiently large values of the components of vectors vt, in the dynamic equations

(2.12), the optimal value of the multistage problem defined by these dynamic equations

coincides with the optimal value of the original problem (1.1).

Proof. As it was already mentioned, since it is assumed that the number of scenarios

is finite, we can view problem (1.1) as a large linear program (deterministic equivalent)

written under the form

min
x
c⊤x s.t. Ax = b, x ≥ 0. (2.78)

Also since (1.1) has a finite optimal value, it has a nonempty set of optimal solutions and

there is a bounded optimal solution of (2.78). Let us fix such an optimal solution x̄. We

have that problem (2.78) can be written

min
x
c⊤x s.t. Ax = b, 0 ≤ x ≤ x̄. (2.79)

The dynamic programming equations (2.4) - (2.6) represent the standard dual of (1.1). We

can also think about that dual as a large linear programming problem of the form (this is

the dual of (2.78)):

max
π

b⊤π s.t. A⊤π ≤ c. (2.80)

Similarly the deterministic equivalent of penalized dynamic equations (2.12) can be written

as:

max
π,ζ

b⊤π − v⊤ζ s.t. A⊤π ≤ c+ ζ, ζ ≥ 0. (2.81)

Next, from optimality conditions of linear programs, (x, π) is an optimal primal-dual pair

68

for (2.78)-(2.80) if and only if

x⊤(A⊤π − c) = 0, Ax = b, x ≥ 0, A⊤π ≤ c. (2.82)

The corresponding optimality conditions for (2.81) are

x⊤(A⊤π − c− ζ)− ζ⊤γ = 0, A⊤π ≤ c+ ζ, ζ ≥ 0, Ax = b, x ≥ 0, γ ≥ 0, x = v − γ.

(2.83)

Now let π̄ be an optimal dual solution, i.e., an optimal solution of (2.80). Then (2.82) is

satisfied with (x, π) = (x̄, π̄). It follows that if v ≥ x̄, then (x, π, ζ, γ) = (x̄, π̄, 0, v − x̄)

with ζ = 0 satisfies (2.83), and hence (π̄, ζ̄) = (π̄, 0) is an optimal solution of (2.81)

showing that the optimal value of (2.81) is b⊤π̄ = c⊤x̄, i.e., the optimal value of (2.78).

We obtain that for v ≥ x̄, the optimal values of problems (2.80) and (2.81) do coincide.

Observe that the dual of (2.81) is given by

min
x
c⊤x s.t. Ax = b, 0 ≤ x ≤ v,

and for v ≥ x̄, this linear program has the same optimal value as (2.79), which, as we have

seen, is equivalent to primal problem (1.1). □

2.7.4 Proof of Theorem 2.3.1

Dual SDDP with penalizations is SDDP applied to Dynamic Programming equations cor-

responding to a linear program with finite optimal value, satisfying relatively complete

recourse with discrete uncertainties of finite support. Since samples ξ̃kt in Dual SDDP

with penalizations are independent, we can follow the convergence proof of SDDP for lin-

ear programs from [82] to obtain that V k converges to the optimal value of the penalized

linear programs, which, by Lemma 2.7.1 (observe that the Lemma can be applied since

limk→+∞ vtk = +∞), is the optimal value of (1.1). □

69

CHAPTER 3

UPPER BOUNDS FOR RISK AVERSE MULTISTAGE STOCHASTIC PROGRAM

3.1 Overview

For risk-neutral problems and a discrete finite sample space, a standard stopping criterion

for SDDP is based on a deterministic lower bound and a statistical upper bound on the

optimal value of the problem, computed at each iteration of the method. For nested risk-

averse problems, a deterministic lower bound can be computed as in the risk-neutral case,

but to the best of our knowledge, no computationally feasible statistical upper bound has

been proposed so far for SDDP.

Of course, in theory the value of the constructed approximate policy can be computed

by evaluating the risk at each node of the scenario tree. However, this computation rapidly

becomes prohibitive with increase of the number of stages and the resulting in exponential

growth of the number of possible realizations of the stochastic data process. A deterministic

upper bound on the value of the approximate risk-averse policy was proposed in [83] on the

basis of inner approximations of the value functions. which is a natural extension of similar

constructions for two stage programs (e.g., [84, section 9.5]). The bounds in [85, 86] were

developed for risk-neutral problems, and recently extended to risk-averse problems in [87].

However, the computational bulk required to compute the deterministic bounds from [83]

and [87] for risk-averse problems increases rapidly with increase of the number of stages,

the number of realizations of the stochastic data per stage, and the dimension of the state

vectors. The goal of this chapter is to fill this gap proposing an efficiently computable

statistical upper bound for SDDP applied to nested-risk averse stochastic problems. This

will be possible for a large class of monotone convex risk measures that will be studied.

Our developments will be derived for Stochastic Optimal Control (SOC) modeling,

70

instead of the Multistage Stochastic Programming approach often used in the SDDP and

related methods. The SOC is classical with applications documented in a large number of

publications (e.g., [88]). We would like to emphasize that many problems discussed in the

Stochastic Programming (SP) literature, can be formulated in the SOC framework. One

such example is the classical inventory model (it is presented from both points of view

in Sections 1.2.3 and 7.6.3 in [9]). Another such example is the hydro-thermal planning

problem. One modification in applying an SDDP type algorithm to SOC problems is the

fact that it is not necessary anymore to solve the dual problems to compute the required

subgradients of the cost-to-go functions. More importantly, from the point of view of the

SDDP type algorithms, applied to risk-averse problems, there is an important difference

between the SOC modeling, as compared with the SP approach. A straightforward attempt

for computation of statistical upper bounds in the SP framework resulted in an exponential

growth of the involved bias with increase of the number of stages, which made it practically

useless (cf., [89]). On the other hand, we are going to demonstrate that in the SOC frame-

work it is possible to construct such statistical upper bound in a computationally feasible

way.

The outline of the chapter is the following. In Section 3.2, we present the class of

risk-neutral SOC problems and describe the SDDP type approach for solving this class of

problems. In Section 3.3, we present the risk-averse SOC problem and describe the SDDP

algorithm for this problem. In Section 3.3.2, we derive our statistical upper bound. Finally,

in Section 3.4 we present numerical results where our upper bound is computed along

iterations of SDDP type algorithm to solve a risk-averse real-life hydro-thermal planning

problem.

We use the following notation. By ξ[t] := (ξ1, ..., ξt) we denote the history of a process

(ξt) up to time t. By IA(x) we denote the indicator function of a set A, i.e., IA(x) = 0 if

x ∈ A, and IA(x) = +∞ otherwise. For a ∈ R, [a]+ := max{a, 0}.

71

3.2 Risk-neutral Stochastic Optimal Control

Consider the classical Stochastic Optimal Control (SOC) (discrete time, finite horizon)

model (e.g., [88]):

min
π∈Π

Eπ

[
T∑
t=1

ct(xt, ut, ξt) + cT+1(xT+1)

]
, (3.1)

where Π is the set of polices satisfying the constraints

Π =
{
πt = πt(ξ[t−1]) : πt = (xt, ut), ut ∈ Ut, xt+1 = Ft(xt, ut, ξt), t = 1, ..., T

}
.

(3.2)

Here variables xt ∈ Rnt , t = 1, ..., T + 1, represent the state of the system, ut ∈ Rmt , t =

1, ..., T , are controls, ξt ∈ Rdt , t = 1, ..., T , are random vectors, ct : Rnt×Rmt×Rdt → R,

t = 1, ..., T , are cost functions, cT+1(xT+1) is a final cost function, Ft : Rnt×Rmt×Rdt →

Rnt+1 are (measurable) mappings and Ut is a (nonempty) subset of Rmt . Values x1 and ξ0

are deterministic (initial conditions); it is also possible to view x1 as random with a given

distribution, this is not essential for the following discussion. The optimization in (3.1) is

performed over policies π ∈ Π determined by decisions ut and state variables xt considered

as functions of ξ[t−1] = (ξ1, ..., ξt−1), t = 1, ..., T , and satisfying the feasibility constraints

(3.2). For the sake of simplicity, in order not to distract from the main message of the paper,

we assume that the control sets Ut do not depend on xt.

It is possible to extend the analysis to the general case, where the control sets are

functions of the state variables. Consider the setting where the control set depends on

the state variables. That is, consider the extension of problem (3.1) - (3.2), where the

feasibility constraints ut ∈ Ut are replaced by ut ∈ Ut(xt) with Ut : Rnt ⇒ Rmt be-

ing a (measurable) point to set mapping, t = 1, ..., T . By changing the cost functions to

c̄t(xt, ut, ξt) := ct(xt, ut, ξt) + IUt(xt)(ut), we can write the corresponding problem in the

72

following form

min
π

Eπ

[
T∑
t=1

c̄t(xt, ut, ξt) + cT+1(xT+1)

]
, (3.3)

s.t. ut = πt(ξ[t−1]), ut ∈ Rmt and xt+1 = Ft(xt, ut, ξt), t = 1, ..., T. (3.4)

In order to maintain convexity of the value functions, we need to verify convexity in

(xt, ut) of the cost functions c̄t(xt, ut, ξt), i.e., to verify convexity of the indicator functions

ψt(xt, ut) := IUt(xt)(ut). Note that ψt(xt, ut) = 0 if ut ∈ Ut(xt), and ψt(xt, ut) = +∞

otherwise, i.e., ψt(·, ·) is the indicator function of the set At := {(xt, ut) : ut ∈ Ut(xt)}.

Therefore ψt(xt, ut) is convex iff the set At is a convex subset of Rnt × Rmt . In particular,

suppose that Ut(xt) := {ut : gti(xt, ut) ≤ 0, i = 1, ..., k} for given functions gti :

Rnt × Rmt → R. Then the set At is convex if the functions gti(·, ·) are convex. We also

should be able to compute a subgradient of ψt(xt, ut) with respect to xt. Assuming that the

set At is convex and closed, the subdifferential of ψt(xt, ut) at a point (x̄t, ūt) ∈ At is given

by the normal cone to At at the point (x̄t, ūt).

With some abuse of the notation we use the same notation for xt and ut, and later

for θt, when considered as functions of the random process ξt, and when considered as

vector variables, e.g., when writing the respective dynamic programming equations. The

particular meaning will be clear from the context.

It is said that the process ξt is stagewise independent if the probability distribution of ξt

does not depend on ξ[t−1] for t = 1, ..., T . We make the following basic assumption.

(A) The random data process ξ1, ..., ξT is stagewise independent, and its probability dis-

tribution does not depend on our decisions.

Since it is assumed that the data process is stagewise independent, it suffices to consider

policies of the form ut = ut(xt), t = 1, ..., T .

We can consider problem (3.1)-(3.2) in the framework of Stochastic Programming (SP)

if we view yt = (xt, ut) as decision variables. In various applications it is possible to

73

approach the same problem using either the SOC or SP formulations. For example, the

classical inventory model can be treated in both frameworks (e.g., [9, sections 1.2.3 and

7.6.3]). Another such example is discussed in Section 3.4 below.

However, there are essential differences between the SOC and SP modeling approaches.

In the SOC there is a clear separation between the state and control variables. At every stage

(time period) t the optimization is performed over feasible controls (also called actions) ut

and consequently the state at the next stage is determined by the state equation xt+1 =

Ft(xt, ut, ξt). This has important implications for the SDDP algorithm, especially in the

risk averse setting.

Quite often the same optimization problem can be alternatively formulated either in the

SOC or SP framework. In both cases the decision should be based on information available

at time of the decision, this is the so-called nonaticipativity principle. There are various

ways how the information available at time t can be represented. Here we assume that it is

defined by history of the random (data) process ξt. We label the available history at time t

as ξ[t−1] = (ξ0, ξ1, ..., ξt−1), with ξ0 being given (deterministic). Of course, shifting the time

label we can write this as ξ[t] = (ξ1, ..., ξt) with now ξ1 being deterministic representing the

initial conditions, which is more common in the SP formulations. What is important that

in both cases our decisions are functions of the observed realizations of the data process at

time of the decision. It also could be noted that we need to consider only policies which

are functions of the data process alone because of the basic assumption that the distribution

of the random process ξt does not depend on our decisions.

The dynamic programming equations can be written as follows. At the last stage, the

value function VT+1(xT+1) = cT+1(xT+1) and, going backward in time for t = T, ..., 1, the

value functions

Vt(xt) = inf
ut∈Ut

E
[
ct(xt, ut, ξt) + Vt+1

(
Ft(xt, ut, ξt)

)]
, (3.5)

74

where the expectation is taken with respect to the (marginal) distribution of ξt, The optimal

policy is defined by the optimal controls ūt(xt) ∈ U∗
t (xt), where

U∗
t (xt) := argmin

ut∈Ut

E
[
ct(xt, ut, ξt) + Vt+1

(
Ft(xt, ut, ξt)

)]
. (3.6)

The optimal value of the SOC problem (3.1)-(3.2) is given by the first stage value function

V1(x1), and can be viewed as a function of the initial conditions x1.

We assume that the sets U∗
t (xt), t = 1, ..., T , are nonempty for every possible realization

of state variables. This holds under standard regularity conditions, e.g., if the sets Ut are

compact and the objective function in the right hand side of (3.6) is continuous in ut ∈ Ut.

We consider the convex case, by making the following assumption.

(B) For t = 1, ..., T : (i) the sets Ut are closed, convex, (ii) the cost functions ct(xt, ut, ξt)

are convex in (xt, ut), and

Ft(xt, ut, ξt) := Atxt +Btut + bt, (3.7)

with matrices At = At(ξt), Bt = Bt(ξt) and vectors bt = bt(ξt) being functions of

ξt.

It follows that the value functions Vt(·) are convex.

Suppose further that random vector ξt has a finite number of realizations ξti with re-

spective probabilities pti, i = 1, ..., N , t = 1, ..., T (for the sake of simplicity assume

that the cardinality N is the same for every time t). Denote cti(xt, ut) := ct(xt, ut, ξti)

and Ati = At(ξti), Bti = Bt(ξti), bti = bt(ξti), i = 1, ..., N , the respective values of the

parameters. In that case, the dynamic programming equations (3.5) can be written as

Vt(xt) = inf
ut∈Ut

N∑
i=1

pti
[
cti(xt, ut) + Vt+1

(
Atixt +Btiut + bti

)]
︸ ︷︷ ︸

E[ct(xt, ut, ξt) + Vt+1(Atxt +Btut + bt)]

. (3.8)

75

The subdifferentials of the value functions are obtained from the dynamic programming

equations (3.8). That is, consider function

Qt(xt, ut) := E
[
ct(xt, ut, ξt) + Vt+1

(
Atxt +Btut + bt

)]
.

Since ct(xt, ut, ξt) is convex in (xt, ut) and Vt+1 is convex, Qt(xt, ut) is convex. By (3.8)

we have that

Vt(xt) = inf
ut∈Ut

Qt(xt, ut) = inf
ut∈Rmt

{Qt(xt, ut) + IUt(ut)} . (3.9)

Consequently we have the following formula for the subdifferential of Vt(·) (cf., [90, The-

orem 24(a)]):

∂Vt(xt) =
{
γt : (γt, 0) ∈ ∂[Qt(xt, ut) + IUt(ut)]

}
=
{
γt : (γt, 0) ∈ ∂Qt(xt, ūt)

}
, (3.10)

where1 ūt is any point of U∗
t (xt). Since the expectation here is a finite sum, we have that

N∑
i=1

pti
[
∂
(
cti(xt, ut) + Vt+1(Atixt +Btiut + bti)

)]
︸ ︷︷ ︸

E[∂(ct(xt, ut, ξt) + Vt+1(Atxt +Btut + bt))]

⊂ ∂Qt(xt, ūt). (3.11)

Actually under mild regularity conditions the equality in (3.11) holds, in particular the

equality holds if the value functions are real valued. Note that the subdifferentials in (3.11)

are taken jointly in xt and ut. It follows that any subgradient in the left side of (3.11) is also

a subgradient in the right side of (3.11). Consequently a subgradient∇Vt(·) is given by

∇Vt(xt) =
N∑
i=1

pti
[
∇cti(xt, ūt) + A⊤

ti∇Vt+1

(
Atixt +Btiūt + bti

)]
, (3.12)

for any ūt ∈ U∗
t (xt), where ∇ct(xt, ūt, ξt) is a subgradient of ct(·, ūt, ξt) at xt.

1The indicator function can be removed in the last term of (3.10) since the second component of (γt, 0) is
0.

76

Now suppose that value functions Vt(·) are approximated by (lower bounding) piece-

wise affine functions

V t(xt) = max
j=1,...,M

ℓtj(xt), (3.13)

where ℓtj(xt) = a⊤tjxt + htj , j = 1, ...,M . Then ∇V t(xt) = atν , where ν ∈ {1, ...,M} is

such that ν ∈ argmaxj=1,...,M ℓtj(xt). This suggests a way for computing a subgradient of

a current approximation of the value functions in a cutting planes type algorithm discussed

below. There is no need to solve dual problems as in the classical SDDP method.

A cutting planes (SDDP type) algorithm for the SOC problem can be described as fol-

lows. In the forward step at iteration k of the algorithm, for given convex piecewise affine

lower bounding approximations V k
t of the value functions and for a generated sample path

(scenario) ξ̂1, ..., ξ̂T of realizations of the random data process, starting with the initial value

x̂1 = x1, compute a minimizer in the right hand side of (3.8) for the current approximation

of the value function, that is

ût ∈ argmin
ut∈Ut

N∑
i=1

pti
[
cti(xt, ut) + V k

t+1

(
Atixt +Btiut + bti

)]
, (3.14)

for xt = x̂t, and set x̂t+1 = Ft(x̂t, ût, ξ̂t). If the set Ut is polyhedral, the cost functions

cti(xt, ut) are piecewise affine functions of ut, this minimization problem can be written

as a linear programming problem. In the next backward step of the algorithm, the cutting

planes approximation of the value functions are updated going backwards in time by adding

the cuts at the computed trial points x̂t. In computing the cuts use subgradients (at the trial

points) of the current approximations of the value functions.

77

3.3 Risk-averse Stochastic Optimal Control

3.3.1 Risk-averse Setting

Consider the risk averse setting in the nested form. That is, the expectation operator in the

risk neutral formulation (3.1) - (3.2) is replaced by the nested risk measure R, defined in

(1.9) under the assumption that the data process is stagewise independent with respect to

the reference distributions. Suppose further that the state equations are affine of the form

(3.7). This leads to the following risk averse problem2 (in the nested form)

min R1|ξ0

(
c1 +R2|ξ[1]

(
c2 + · · ·+RT |ξ[T−1]

(cT)
)
+ cT+1

)
, (3.15)

s.t. ut ∈ Ut and xt+1 = Atxt +Btut + bt, t = 1, ..., T, (3.16)

where we use notation ct := ct(xt, ut, ξt), t = 1, ..., T , and cT+1 := cT+1(xT+1). Recall

that the optimization (minimization) in (3.15) is over policies which are functions of the

data process and subject to the feasibility constraints (3.16). To alleviate notation, we will

use (xt, ut) instead of (xt(ξ[t−1]), ut(ξ[t−1])). The constraints in the above problem should

be satisfied with probability one with respect to the reference measures.

The risk averse counterpart of dynamic equations (3.8) can be written as VT+1(xT+1) =

cT+1(xT+1) and for t = T, ..., 1,

Vt(xt) = inf
ut∈Ut

Rt

(
ct(xt, ut, ξt) + Vt+1(Atxt +Btut + bt)

)
(3.17)

= inf
ut∈Ut, θt∈Θ

EPt

[
Ψ
(
ct(xt, ut, ξt) + Vt+1(Atxt +Btut + bt), θt

)]
, (3.18)

where formulation (3.18) is obtained by applying definition (1.8) of Rt. Note that it is

possible to write dynamic equations (3.17) in terms of the (static) risk measuresRt because

of the basic assumption of stagewise independence of the process ξt (with respect to the

reference measures) (e.g., [9, section 6.5.4, Remark 39]). The respective optimal policy is

2Recall thatR1|ξ0 = R.

78

defined by the optimal controls

ūt(xt) ∈ argmin
ut∈Ut

Rt

(
ct(xt, ut, ξt) + Vt+1(Atxt +Btut + bt)

)
. (3.19)

As in the risk neutral setting, we assume that the set of minimizers in the right hand side of

(3.19) is nonempty for all possible realizations of state variables.

The developments of Section 3.2 can be adapted to this risk-averse framework. Under

the convexity assumption (B), the value functions Vt(·) are convex in the risk averse setting

as well. There are explicit formulas how to compute a subgradient of the functional R :

Z → R for various examples of risk measures (cf., [9, section 6.3.2]).

Recall definition (1.8) of risk measure Rt. For xt and the optimal control ūt = ūt(xt),

determined by (3.19), consider a minimizer

θ̄t ∈ argmin
θt∈Θ

EPt

[
Ψ
(
ct(xt, ūt, ξt) + Vt+1(Atxt +Btūt + bt), θt

)]
. (3.20)

Then, similar to (3.12) and using the Chain rule, a subgradient∇Vt(xt) of the value function

Vt at xt can be computed as

∇Vt(xt) = EPt

[
Ψ′(yt, θ̄t)

(
∇ct(xt, ūt, ξt) + A⊤

t ∇Vt+1

(
Atxt +Btūt + bt

))]
, (3.21)

where Ψ′(yt, θ̄t) is a subgradient3 of Ψ(·, θ̄t) at yt,∇ct(xt, ūt, ξt) is a subgradient of ct(·, ūt, ξt)

at xt, ∇Vt+1(Atxt + Btūt + bt) is a subgradient of Vt+1 at Atxt + Btūt + bt, and yt :=

ct(xt, ūt, ξt) + Vt+1(Atxt +Btūt + bt).

As a special case, consider Example 1.1.1 of the Average Value-at-Risk measure. In

that case the minimizer θ̄ in the right hand side of (1.10) is given by the (1−α)-quantile of

the considered distribution. That is, suppose that the reference distribution Pt has a finite

number of N realizations with equal probabilities 1/N . Then θ̄t can be computed by ar-

3If Ψ(·, θ̄t) is differentiable at yt, then Ψ′(yt, θ̄t) is given by the derivative of Ψ(·, θ̄t) at yt.

79

ranging values cti(xt, ūt) + Vt+1(Atixt +Btiūt + bti), i = 1, . . . , N , in the increasing order

and taking the respective empirical (1− α)-quantile. Consequently, the required subgradi-

ent of the current approximation of the value function can be computed in a straightforward

way (cf., [91]).

One important difference between the SOC and SP modeling is that in the SOC ap-

proach there is a clear separation between the states and controls. Because of the stagewise

independence assumption, the value functions Vt(xt) are functions of the state variables

only. The controls ut and the corresponding values θt of the parameter vector are computed

(estimated) simultaneously based on equation (3.18). That is, the estimated values of θt are

functions of state xt and optimal controls ūt, based on a current approximation of the value

function (see eq. (3.20)). This makes the computed estimates of θt to be consistent for the

generated discretization (sample) of the marginal distribution of ξt. This is in contrast to

the SP approach where the bias of the corresponding estimates of θt explodes exponentially

with increase of the number of stages (cf., [89]).

3.3.2 Statistical Upper Bounds on the Value of the Policy

In this section, we discuss the construction of a statistical upper bound on the optimal

value of the risk averse problem. As before, all probabilistic statements and expectations

are taken with respect to the reference distributions. Let V t(xt), t = 1, ..., T , be current

approximations of the value functions. This defines the corresponding (approximate) policy

(x̂t, ût) with

ût ∈ argmin
ut∈Ut

Rt

(
ct(x̂t, ut, ξt) + V t+1(Atx̂t +Btut + bt)

)
, (3.22)

with value V 1(x1) giving a lower bound for the optimal value of the problem.

For a given realization (scenario) ξ1, ..., ξT of the data process, x̂t and ût are computed

in the forward step of the SDDP algorithm, and can be viewed as functions x̂t = x̂t(ξ[t−1])

80

and ût = ût(ξ[t−1]). When each reference probability distribution has a finite support (of N

points), i.e., for the discretized version of the problem, these values are computable.

Now let θ̂t ∈ Θ be a specified function of the data process, θ̂t = θ̂t(ξ[t−1]), t = 1, ..., T .

Note that θ̂t is non-anticipative in the sense that it does not depend on unobserved values

ξt, ..., ξT at time t. Denote ĉt := ct(x̂t, ût, ξt), t = 1, ..., T , and ĉT+1 := cT+1(x̂T+1). Con-

sider the following sequence of random variables (functions of the data process) defined

iteratively going backward in time: vT+1 := ĉT+1 and

vt := Ψ(ĉt + vt+1, θ̂t), t = T, . . . , 1. (3.23)

Of course, values vt depend on a choice of parameters θ̂t. We will discuss an appropriate

choice of θ̂t later. Our statistical upper bound on the value of a risk-averse approximate

policy is given in the following proposition.

Proposition 3.3.1. Consider the risk-averse problem (3.15) - (3.16). Let vt be the sequence

of random variables (defined iteratively by (3.23)) associated with current approximations

of the value functions. Then for t = 1, ..., T ,

Rt|ξ[t−1]

(
ĉt + . . .+RT |ξ[T−1]

(ĉT + ĉT+1)
)
≤ E|ξ[t−1]

[vt], w.p.1. (3.24)

In particular, E[v1] is greater than or equal to the value of the policy defined by the consid-

ered approximate value functions, and is an upper bound on the optimal value of the risk

averse problem.

Proof. For t = T , using the definition of ûT and since θ̂T ∈ Θ, we get

RT |ξ[T−1]
(ĉT + ĉT+1) = inf

uT∈UT

RT

(
cT (x̂T , uT , ξT) + V̂T+1(AT x̂T +BTuT + bT)

)
≤ E|ξ[T−1]

[
Ψ
(
cT (x̂T , ûT , ξT) + cT+1(AT x̂T +BT ûT + bT), θ̂T

)]
= E|ξ[T−1]

[vT].

81

We now use induction in t going backward in time. For t− 1 we have

Rt−1|ξ[t−2]

(
ĉt−1 +Rt|ξ[t−1]

(
ĉt + . . .+RT |ξ[T−1]

(ĉT + cT+1(x̂T+1))
))

≤ Rt−1|ξ[t−2]

(
ĉt−1 + E|ξ[t−1]

[vt]
)

(monotonicity and induction step)

≤ E|ξ[t−2]

[
Ψ
(
ĉt−1 + E|ξ[t−1]

[vt], θ̂t−1

)]
(because θ̂t−1 ∈ Θ)

= E|ξ[t−2]

[
Ψ
(
E|ξ[t−1]

[ĉt−1 + vt], θ̂t−1

)]
(since ĉt−1 is a function of ξ[t−1])

≤ E|ξ[t−2]
E|ξ[t−1]

[
Ψ
(
ĉt−1 + vt, θ̂t−1

)]
(by Jensen’s inequality)

= E|ξ[t−2]

[
Ψ
(
ĉt−1 + vt, θ̂t−1

)]
= E|ξ[t−2]

[vt−1].

(3.25)

This completes the induction step. □

Therefore, for a sample path (scenario) of the data process, an unbiased point estimate

of an upper bound on the corresponding policy value can be computed recursively starting

with vT+1 = cT+1(x̂T+1) and going backward in time using the iteration procedure (3.23).

Finally v1 gives a point estimate of an upper bound on the corresponding value of the policy.

Therefore by generating a sample of scenarios, of the random data process, and averaging

the corresponding point estimates it is possible to construct the respective statistical upper

bound for the optimal value of the risk averse problem.

The quality of such statistical bound depends on the choice of the parameter value

function θ̂t. It is natural to use the corresponding minimizer of the form (3.20). That is, to

take

θ̂t ∈ argmin
θt∈Θ

E
[
Ψ
(
ct(x̂t, ût, ξt) + V t+1(Atx̂t +Btût + bt), θt

)]
. (3.26)

The so defined θ̂t is a function of x̂t and ût, which in turn are functions of ξ[t−1]. For

example, as it was pointed at the end of Section 3.3.1, in case of the Average Value-at-Risk

measure such θ̂t can be easily computed by using the respective quantile. Note that even for

θ̂t of the form (3.26) the inequality (3.24) can be strict. This is because Jensen’s inequality

82

was used in derivations (3.25). Nevertheless, this approach performed well in the numerical

experiments discussed in the next section.

Remark 3.3.1. We would like to point to the important difference between the correspond-

ing SOC and SP approaches to construction of the statistical upper bound for the risk averse

problems. Computation of the parameter θ̂t in (3.26) is based on the distribution of random

vector ξt. When ξt has a finite number of realizations ξti, i = 1, ..., N , the parameter θ̂t is a

function of all corresponding costs ĉti andAti, Bti, bti, i = 1, ..., N , and therefore in a sense

is a consistent estimate of θ̄t defined in (3.20). On the other hand, in the SP setting it was

not possible to construct a computationally feasible consistent estimate of the respective

parameter of the risk measure. As a result a straightforward attempt for computation of

such statistical upper bound in the SP framework resulted in an exponential growth of the

involved bias with increase of the number of stages, which made it practically useless (cf.,

[89]).

We close this section by presenting Algorithm 2 for computing the statistical upper

bound for a T -stage SOC problem.

3.3.3 Q-factor Approach

When the function Ψ is not polyhedral, as for instance in the setting of ϕ-divergence ex-

ample, the procedure requires solving nonlinear optimization programs. This could be

inconvenient since nonlinear optimization solvers should be used, which are known to be

less efficient than linear solvers. In the considered example of KL-divergence, this requires

solving one-dimensional nonlinear programs, which does not pose a significant problem.

In general, in order to keep the procedure to linear programming solvers, the Q-factor ap-

proach, discussed below, can be used. Note however that the Q-factor approach involves

increasing the state space which could significantly slow down the convergence of the al-

gorithm.

83

Algorithm 2 SDDP-type Algorithm for SOC Problem

1: Inputs: stage-wise independent samples ξt := {ξtj}1≤j≤Nt , t = 1, · · · , T, initializa-
tions of Vt(·) : V 0

t (·), t = 1, · · · , T, initial point x̂1
2: for k = 1, 2, . . . , K do
3: V k−1

T+1(·) = VT+1

4: for t = 1, · · · , T do ▷ Forward Step
5: ût = argmin

ut∈Ut

Rt

(
ct(x̂t, ut, ξt) + V k−1

t+1 (Atx̂t +Btut + bt)
)

6: Draw a sample (Ât, B̂t, b̂t) from {ξt}
7: x̂t+1 = Âtx̂t + B̂tût + b̂t
8: end for
9: for t = T, · · · , 1 do ▷ Backward Step

10: θ̂t = argmin
θt∈Θ

1
Nt

Nt∑
j=1

Ψ
(
ct(x̂t, ût, ξtj) + V k−1

t+1 (Atjx̂t +Btjût + btj), θt
)

11: vt =
1
Nt

Nt∑
j=1

Ψ
(
ct(x̂t, ût, ξtj) + V k−1

t+1 (Atjx̂t +Btjût + btj), θ̂t

)
12: gt = 1

Nt

Nt∑
j=1

Ψ′(ytj, θ̂t)
(
∇ct(x̂t, ût, ξtj) + A⊤

tj∇V k−1
t+1 (Atjx̂t +Btjût + btj)

)
where

13: ytj := ct(x̂t, ût, ξtj) + V k−1
t+1 (Atjx̂t +Btjût + btj)

14: V k
t (xt) = max(V k−1

t (xt), g
T
t (xt − x̂t) + vt)

15: end for
16: Lower bound: Lk = V k

1(x̂1)
17: end for
18: Generate S sample paths ξ′j: {ξ′tj}1≤t≤T , j = 1, · · · , S, run forward step for each

sample path ξ′j, j = 1, · · · , S, obtain (ûtj, x̂tj)1≤t≤T and x̂T+1,j, j = 1, · · · , S ▷
Evaluation

19: Set vT+1,j = cT+1(x̂T+1,j), j = 1, · · · , S
20: for t = T, · · · , 1 do

21: θ̂t = argmin
θt∈Θ

1
S

S∑
j=1

Ψ
(
ct(x̂t, ût, ξ

′
tj) + V K

t+1(A
′
tjx̂t +B′

tjût + b′tj), θt
)

22: for j = 1, · · · , S do
23: vtj = Ψ(ct(x̂tj, ûtj, ξ

′
tj) + vt+1,j, θ̂t)

24: end for
25: end for
26: v̄1 =

1
S

S∑
j=1

v1j, σ
2 = 1

S−1

S∑
j=1

(v1j − v̄1)
2

27: Statistical upper bound: US = v̄1 + z1−ασ/
√
S, where P(Z ≥ z1−α) = α,Z ∼

N (0, 1).

84

The following is a counterpart of the Q-factor approach popular in the SOC applica-

tions. Consider the dynamic equations (3.18) and define

Qt(xt, ut, θt) := EPt

[
Ψ
(
ct(xt, ut, ξt) + Vt+1(Atxt +Btut + bt), θt

)]
. (3.27)

We have that

Vt(xt) = inf
ut∈Ut, θt∈Θ

Qt(xt, ut, θt),

and hence the dynamic equations (3.18) can be written in terms of Qt(xt, ut, θt) as

Qt(xt, ut, θt) = EPt

[
Ψ
(
ct(xt, ut, ξt) + inf

ut+1∈Ut+1, θt+1∈Θ
Qt+1

(
Atxt +Btut + bt, ut+1, θt+1

)
, θt

)]
.

(3.28)

The cutting planes, SDDP type, algorithm can be applied directly to functionsQt(xt, ut, θt)

rather than to the value functions Vt(xt). In the backward step of the algorithm, sub-

gradients with respect to xt, ut and θt, of the current approximations of the functions

Qt(xt, ut, θt), should be computed. An advantage of that approach is that the calcula-

tion of these subgradients does not require solving nonlinear optimization programs even

if the function Ψ is not polyhedral4. On the other hand, this Q-factor approach involves

increasing the state space from xt to (xt, ut, θt), which could make the convergence of the

algorithm considerably slower.

3.4 Numerical Experiments

In this section numerical experiments are performed on the Brazilian Inter-connected Power

System problem (we refer to [91] for more details on the problem description). All exper-

iments were run using Python 3.8.5 under Ubuntu 20.04.1 LTS operating system with a

4.20 GHz Intel Core i7 processor and 32Gb RAM. We extended the MSPPy solver5[92]

4The function Ψ is not polyhedral, for example, in the ϕ-divergence case. In that case the SDDP algorithm,
applied to the value functions Vt(xt), requires solving nonlinear programs of the form (1.11).

5https://github.com/lingquant/msppy

85

https://github.com/lingquant/msppy

for the SDDP algorithm solving for the SOC problem. We report numerical results of the

convergence guided by the deterministic lower bound and the statistical upper bound of the

risk averse stochastic optimal control problem.

The hydro-thermal planning problem is a large-scale problem with T = 120 plan-

ning horizon stages and four state variables related to the energy reservoirs in four inter-

connected regions. The monthly energy inflows define the stochastic data process in the

model. For the sake of simplicity, it is assumed in the experiments below that the random

inflow process is stagewise independent. The (discretization) samples are generated from

log-normal distributions (with 100 realizations at each stage) estimated from the historical

data. Previous attempts to define a statistical upper bound have shown some of the chal-

lenges of this task. For example, the numerical results in [89] show that by formulating the

problem as a risk-averse multistage stochastic program, the scale of the statistical upper

bounds starts to explode when the number of stages T is more than 10.

We aim to demonstrate via the hydro-thermal planning problem, the effectiveness of

the construction of the statistical upper bound proposed in Section 3.3. This suggests first

to formulate the problem as a risk-averse optimal control model, and then to solve it by a

variant of the SDDP algorithm, while preserving the number of stages, the states, and the

data process in the original problem. More specifically, we construct the upper bound as

explained in Section 3.3.2, detailed in Algorithm 2. We conduct experiments for risk mea-

sures of convex combination of expectation and AV@R and KL-divergence, as described

in Examples 1.1.2 and 1.1.3, respectively. We solve both problems, and compute the corre-

sponding statistical upper bounds, by an SDDP-type algorithm as described in Algorithm

2.

Implementation Details.

1. Convex combination of expectation and AV@R (Example 1.1.2): ((1 − λ)E[·] +

λAV@Rα(·)). For this risk measure, we perform tests with α = 0.05 and λ ∈

86

{0, 0.5, 1}. When λ = 0, the problem becomes risk neutral, while λ = 1 corre-

sponds to an extreme risk aversion.

In this setting, at each backward step and in the evaluation procedure (line 10 and

line 21 in Algorithm 2), θ̂t can be computed by arranging values ct(x̂t, ût, ξtj) +

V t+1(Atjx̂t + Btjût + btj), j = 1, · · · , Nt, in the increasing order and taking the

respective empirical (1−α)-quantile. Moreover, in order to obtain a fast converging

deterministic lower bound, we adopt the biased-sampling technique proposed in [93].

2. KL-divergence (Example 1.1.3). For this risk measure, we conduct experiments for

ϵ ∈ {10−1, 10−2, 10−3, 10−8, 10−12}, which corresponds to problems with different

levels of risk aversion. In particular, when ϵ = 10−12, the problem is essentially a

risk neutral problem, up to some numerical error.

In this case, at steps indicated by line 10 and line 21 in Algorithm 2, the following

(one-dimensional) convex program:

λ̂t = argmin
λt>0

{λtϵ+ λt lnEPt

[
eZt/λt

]
}, (3.29)

where Zt := {ct(x̂t, ût, ξtj) + V t+1(Atjx̂t + Btjût + btj)}1≤j≤Nt , was solved using

Scipy solver.

Results. For risk measure (1− λ)E[·] + λAV@Rα(·) , with λ = 0.5, in order to examine

the trend of the statistical upper bound, we compute the upper bound for the problem at

every 10 iterations with a sample of size S = 10, by running 10 forward passes in parallel.

Figure 3.1 displays the evolution of the deterministic lower bounds and the statistical upper

bounds for the hydro-thermal planning problem for 3000 iterations. We can see from the

figure that the statistical upper bound oscillates significantly for the first 500 iterations and

then gradually stabilizes within narrow fluctuations. Table 3.1 reports, for different choices

of λ, the statistical upper bounds obtained from Monte Carlo simulation using 3000 sam-

87

ples, along with the deterministic lower bounds and the relative gap (upper bound −lower bound
lower bound)

at iteration 3000. From the results, it seems that the relative gap of the problem is not very

sensitive to the level of risk aversion.

Figure 3.1: Evolution of lower and upper bounds for convex combination of expectation
and AV@R problem when λ = 0.5.

Table 3.1: Convergence of convex combination of expectation and AV@R problem for
different λ.

(1− λ)E[·] + λAV@Rα(·)

λ Deterministic lower bound Statistical upper bound Gap(%)
(×109) (×109)

0.0 0.345 0.348 0.97
0.5 1.640 1.672 1.93
1.0 6.669 7.003 5.02

Table 3.2 reports results for the KL-divergence problem. The statistical upper bounds

are computed by Monte Carlo simulation using S = 3000 samples, the lower bound and

88

the relative gap, are computed as well for difference values of ϵ. All results in the table

are obtained when the problems are solved for 3000 iterations. We observe that when ϵ

increases, the relative gap becomes larger.

Table 3.2: Convergence of KL-divergence problem for different ϵ.

KL-divergence

ϵ Deterministic lower bound Statistical upper bound Gap(%)
(×109) (×109)

10−1 4.894 5.959 21.76
10−2 4.202 4.659 10.89
10−3 3.991 4.306 7.88
10−8 3.246 3.324 2.42
10−12 0.339 0.342 1.03

There are two somewhat different reasons for the gap between the considered statistical

upper and deterministic lower bounds. One reason is the optimality gap similar to the risk

neutral case. The additional gap, as compared to the risk neutral setting, appears because

Jensen’s inequality is employed in derivations (3.25). This gap tends to increase as the

function Ψ(·, θ) becomes more “nonlinear”. This can be clearly seen in Table 3.2, the gap

increases with increase of ϵ, and also in Table 3.1 as the problem becomes more risk-averse.

89

CHAPTER 4

SAMPLE COMPLEXITY OF STATIONARY STOCHASTIC PROGRAMS

4.1 Overview

In this chapter we discuss the sample complexity of solving stationary stochastic programs

by the Sample Average Approximation (SAA) method. We investigate this in the frame-

work of Optimal Control (in discrete time) setting. In particular we derive a Central Limit

Theorem type asymptotics for the optimal values of the SAA problems. The main conclu-

sion is that the sample size, required to attain a given relative error of the SAA solution, is

not sensitive to the discount factor, even if the discount factor is very close to one.

We demonstrate that the standard error (standard deviation) of the distribution of the

optimal value of the SAA grows more or less at the same rateO((1−γ)−1) as the respective

optimal value. This supports the evidence of numerical experiments that variability of the

sample error of the optimal values, measured in terms of the relative error, is not sensitive

to the increase of the discount factor, even when the discount factor is very close to one.

This is somewhat surprising since as is well known, it is becoming more difficult to solve

the problem with increase of the discount factor. We investigate both the risk neutral and

risk averse settings. The presented numerical experiments confirm the theoretical analysis.

The chapter is organized as follows. We first introduce the concept of the stationary

stochastic programs in Section 4.2 and discuss the motivation therefrom. In Section 4.3

we present the theoretical analysis of sample complexity for risk neutral and risk averse

problems. In particular, we show how the statistical upper bound of the SDDP algorithm

can be constructed in the risk averse case. In Section 4.4 we discuss in detail the classical

inventory model. Finally in Section 4.5 we present results of numerical experiments.

We use the following notation throughout the chapter. For a point ξ we denote by δξ the

90

measure of mass one at ξ. For a ∈ R, [a]+ := max{0, a}.

4.2 Stationary Stochastic Programs

Consider the following optimal control (in discrete time) infinite horizon problem

min
ut∈U

EP

[∑∞
t=0 γ

tc(xt, ut, ξt)
]

s.t. xt+1 = F (xt, ut, ξt).

(4.1)

Variables xt ∈ Rn represent state of the system, ut ∈ Rm are controls, ξt ∈ Rd, t =

0, ..., is a sequence of independent identically distributed (i.i.d.) random vectors (random

noise or disturbances) with probability distribution P of ξt supported on set Ξ ⊂ Rd,

c : X ×Rm×Ξ→ R is the cost function, F : X ×Rm×Ξ→ X is a measurable mapping,

U ⊂ Rm andX ⊂ Rn are nonempty closed sets, and γ ∈ (0, 1) is the discount factor. Value

x0 is given (initial conditions). The notation EP emphasizes that the expectation is taken

with respect to the probability distribution P of ξt. In such setting, problem (4.1) is the

classical formulation of stationary optimal control (in discrete time) problem (e.g., [75]).

Problem (4.1) can be also considered in the framework of stochastic programming by

viewing yt = (xt, ut) as decision variables (e.g., [6]). In case the problem is convex, it

is possible to apply a Stochastic Dual Dynamic Programming (SDDP) cutting plane type

algorithm for a numerical solution. For periodical infinite horizon stochastic programming

problems such algorithms were discussed in [76], problem (4.1) can be viewed as a partic-

ular case of the periodical setting with the period of one. In order to solve (4.1) numerically

the (generally continuous) distribution of the random process ξt should be discretized. The

so-called Sample Average Approximation (SAA) method approaches this by generating a

random sample of the (marginal) distribution of ξt by using Monte Carlo sampling tech-

niques.

This raises the question of the involved sample complexity, i.e., how large should be

the sample size N in order for the SAA problem to give an accurate approximation of

91

the original problem. In some applications the discount factor γ is very close to one. It

is well known that as the discount factor approaches one, it becomes more difficult to

solve problem (4.1). For a given γ ∈ (0, 1), the sample complexity of the discretization

is discussed in [76], with the derived upper bound on the sample size N being of order

O((1− γ)−3ϵ−2) as a function of the discount factor γ and the error level ϵ > 0. Since the

optimal value of problem (4.1) increases at the rate ofO((1−γ)−1) as γ approaches one, in

terms of the relative error (1− γ)−1ϵ, this would imply the required sample size is of order

O((1− γ)−1) as a function of γ. This suggests that increasing γ from 0.99 to 0.999 would

require to increase the sample size by the factor of 10 in order to achieve more or less the

same relative accuracy of the SAA method. However, the above is just an upper bound

and some numerical experiments indicate that the relative error of the SAA approach is not

much sensitive to increase of the discount factor even when it is very close to one.

4.3 Sample Complexity Analysis

The (classical) Bellman equation for the value function, associated with problem (4.1), can

be written as

V (x) = inf
u∈U

EP

[
c(x, u, ξ) + γV (F (x, u, ξ))

]
, x ∈ X . (4.2)

Consider the following assumptions.

(A1) The cost function is bounded, i.e., there is a constant κ > 0 such that |c(x, u, ξ)| ≤ κ

for all (x, u, ξ) ∈ X × U × Ξ.

(A2) The function c(·, ·, ·) and the mapping F (·, ·, ·) are continuous on the set X ×U ×Ξ.

Let B(X) be the space of bounded functions g : X → R equipped with the sup-

norm ∥g∥∞ = supx∈X |g(x)|. Then, under the assumption (A1), V (·) is the fixed point of

mapping T : B(X)→ B(X) defined as

T (g)(x) := inf
u∈U

EP

[
c(x, u, ξ) + γg(F (x, u, ξ))

]
, g ∈ B(X). (4.3)

92

As is well known, the mapping T is a contraction mapping for γ < 1. Thus equations (4.2)

have unique solution V̄ (e.g., [75]). For x = x0, the corresponding optimal policy is given

by ūt = π(xt), t = 0, ..., with

π(x) ∈ argmin
u∈U

EP

[
c(x, u, ξ) + γV̄ (F (x, u, ξ))

]
. (4.4)

For a given x = x0 consider ϑ(P) := V̄ (x) viewed as a function of the probability

measure P . Given a sample ξj , j = 1, ..., N , of the random vector ξ, consider the corre-

sponding empirical measure P̂N = N−1
∑N

j=1 δξj . We are interested in the asymptotics of

the value function V̂N(x) = ϑ(P̂N) of the corresponding SAA problem. That is, we would

like to derive a Central Limit Theorem for N1/2(V̂N(x)− V̄ (x)) for a fixed point x ∈ X .

We can approach this problem in the following way. For a probability measure Q and

τ ∈ [0, 1], consider probability measure (1−τ)P+τQ = P+τ(Q−P), and the directional

derivative (if it exists)

ϑ′(P,Q− P) := lim
τ↓0

ϑ(P + τ(Q− P))− ϑ(P)
τ

. (4.5)

Then we can use the approximation

ϑ(P̂N)− ϑ(P) ≈ ϑ′(P, P̂N − P). (4.6)

This is the approach of Von Mises statistical functionals. It requires to compute the di-

rectional derivative (4.5), and consequently uses approximation (4.6) to derive the asymp-

totics. Even if this directional derivative does exist, the approximation (4.6) is a heuristic

(this approach is routinely used in Statistics). In order to justify the obtained asymptotics in

a rigorous way often the functional Delta Theorem is employed, we will discuss this later.

To compute the directional derivative (4.5) we proceed as follows. Consider the set of

93

optimal policies

S(x) := argmin
u∈U

EP

[
c(x, u, ξ) + γV̄ (F (x, u, ξ))

]
, (4.7)

where V̄ (·) is the solution of Bellman equation (4.2). Under the assumptions (A1) and

(A2) the value function V̄ (·) is continuous, and hence the set S(x) is nonempty, provided

the set U is compact.

Note that for any π(x) ∈ S(x), the value function of the true problem can be written as

V̄ (x) = EP [
∑∞

t=0 γ
tc(xt, π(xt), ξt)] , (4.8)

with xt+1 = Ft(xt, π(xt), ξt), x0 = x, t ≥ 0. Consider the following formula for the

directional derivative (4.5),

ϑ′(P,Q− P) = infπ(x)∈S(x) EQ−P [
∑∞

t=0 γ
tc(xt, π(xt), ξt)] , x = x0. (4.9)

We will give a proof of formula (4.9) in some cases and discuss difficulties associated with

a rigorous derivation of (4.9) for a general setting.

Since

ϑ(P) = EP [
∑∞

t=0 γ
tc(xt, π(xt), ξt)] , for π(x) ∈ S(x), (4.10)

by (4.6) this leads to the approximation

ϑ(P̂N)− ϑ(P) ≈ inf
π(x)∈S(x)

EP̂N−P

[
∞∑
t=0

γtc(xt, π(xt), ξt)

]
(4.11)

= inf
π(x)∈S(x)

EP̂N

[
∞∑
t=0

γtc(xt, π(xt), ξt)

]
− ϑ(P). (4.12)

• In particular if S(x) = {π̄(x)} is a singleton, then by the CLT the approxima-

tion (4.12) suggests that N1/2(ϑ(P̂N) − ϑ(P)) converges in distribution to normal

94

N (0, σ2(x0)) with

σ2(x) = Var (
∑∞

t=0 γ
tc(xt, π̄(xt), ξt)) . (4.13)

Note that in the approximation (4.12) the set of optimal policies π(x) is computed with

respect to the distribution P of ξt, and that the variance in (4.13) is taken with respect to

the distribution P as well.

Consider an optimal policy π(x) ∈ S(x) (for the true problem). Since this policy is

feasible we have that

ϑ(P + τ(Q− P)) ≤ EP+τ(Q−P) [
∑∞

t=0 γ
tc(xt, π(xt), ξt)] , τ ∈ [0, 1].

Together with (4.10) this implies

lim supτ↓0
ϑ(P+τ(Q−P))−ϑ(P)

τ
≤ infπ(x)∈S(x) EQ−P [

∑∞
t=0 γ

tc(xt, π(xt), ξt)] . (4.14)

This gives the upper bound for the directional derivative. In order to derive the respective

lower bound there is a need for some type of compactness condition.

Consider the set P of measurable mappings π : X → U . Equipped with the distance

d(π1, π2) := sup
x∈X
∥π1(x)− π2(x)∥,

the set P becomes a metric space. We can view any π ∈ P as a policy for the considered

infinite horizon problem. For a given distribution P , the optimal policy is obtained by

choosing π ∈ P which minimizes the right hand side of (4.4). Suppose that we can choose

a subset P∗ ⊂ P such that by restricting the optimization to π ∈ P∗ the corresponding

optimal value does not change for all probability measures of the form P + τ(Q − P),

τ ∈ [0, 1]. We refer to such set P∗ as the restricted set, and to the corresponding metric

95

space (P∗, d) as the restricted metric space. Of course choice of the restricted set P∗ is

associated with the probability measures P and Q. If we can choose the restricted the

metric space (P∗, d) to be compact, then we can proceed to the following proof.

Proposition 4.3.1. Suppose that the assumptions (A1) and (A2) are satisfied and there

exists the restricted compact metric space (P∗, d). Then formula (4.9) holds.

Proof. For τ ∈ [0, 1] and policy π ∈ P∗ consider function

h(τ, π) := EP+τ(Q−P) [
∑∞

t=0 γ
tc(xt, π(xt), ξt)] ,

with x = x0 and xt+1 = F (xt, π(xt), ξt) for t ≥ 0. We have that

∂h(τ,π)
∂τ

= EQ−P [
∑∞

t=0 γ
tc(xt, π(xt), ξt)] . (4.15)

By the Lebesgue dominated convergence theorem, the right hand side of (4.15) is contin-

uous with respect to π ∈ P∗. Formula (4.9) now follows by Danskin’s theorem (e.g., [70,

Theorem 4.13]) applied to the function h(τ, π).

The main technical difficulty in applying the above proposition is verification of exis-

tence of the restricted compact metric space (P∗, d). Note that the metric space (P, d) is

compact if either the set X is finite and the set U is compact, or the set U is finite. In such

cases we can take P∗ = P.

4.3.1 Risk Averse Case

Let U be a law invariant coherent risk measure (cf., [94]), and consider the corresponding

nested formulation of stationary inventory model. In that case Bellman equation can be

written, similar to (4.21), as (e.g., [76])

V (x) = inf
u∈U
U
[
c(x, u, ξ) + γV (F (x, u, ξ))

]
, x ∈ X . (4.16)

96

For example we can consider the Average Value-at-Risk measure (also called Conditional

Value-at-Risk, Expected Shortfall, Expected Tail Loss)

CVaRα(Z) = inf
η∈R

EP

{
η + α−1[Z − η]+

}
, α ∈ (0, 1).

Then equation (4.16) takes the form

V (x) = inf
u∈U , η∈R

EP

{
η + α−1[c(x, u, ξ) + γV (F (x, u, ξ))− η]+

}
. (4.17)

Let (π̄(x), η̄(x)) be an optimal solution of (4.17). Then the optimal value of the corre-

sponding nested infinite horizon problem is given by

EP

[∑∞
t=0 γ

t
(
η̄(xt) + α−1[c(xt, π̄(xt), ξt)− η̄(xt)]+

)]
. (4.18)

Suppose that the optimal solution (π̄(x), η̄(x)) is unique. By derivations similar to the

risk neutral (expected value) case, this suggests that N1/2(ϑ(P̂N) − ϑ(P)) converges in

distribution to normal N (0, σ2(x)) with

σ2(x) = Var
(∑∞

t=0 γ
t
(
η̄(xt) + α−1[c(xt, π̄(xt), ξt)− η̄(xt)]+

))
. (4.19)

4.4 Inventory Model

Consider the stationary inventory model (cf., [77])

min
ut≥0

E
[

∞∑
t=0

γt
(
cut + b[Dt − (xt + ut)]+ + h[xt + ut −Dt]+

)]
s.t. xt+1 = xt + ut −Dt,

(4.20)

where c, b, h ∈ R+ are the ordering cost, backorder penalty cost and holding cost per unit,

respectively (with b > c ≥ 0), xt is the current inventory level, ut is the order quantity,

97

and Dt ∈ R+ is the demand at time t which is a random iid process. Then the optimal

policy is myopic basestock policy π̄(x) = [x∗ − x]+, where x∗ = F−1
(

b−(1−γ)c
b+h

)
with

F (x) = P (D ≤ x) being the cdf of the demand (e.g., [77]). The optimal (basestock)

policy is ūt = [x∗ − xt]+, and xt+1 = xt + ūt −Dt. That is ūt = x∗ − xt if xt ≤ x∗, and

ūt = 0 if xt ≥ x∗. Consequently xt+1 = x∗−Dt if xt ≤ x∗, and xt+1 = xt−Dt if xt ≥ x∗.

The corresponding Bellman equation can be written as

V (x) = inf
u≥0

EP

[
cu+ ψ(x+ u,D) + γV (x+ u−D)

]
, x ∈ R, (4.21)

with D ∼ P and

ψ(x,D) := b[D − x]+ + h[x−D]+.

Substituting ū(x) = [x∗ − x]+ into the right hand side of (4.21) we obtain,

V (x) = −cx+ cx∗ + EP

[
ψ(x∗, D) + γV (x∗ −D)

]
, for x ≤ x∗, (4.22)

V (x) = EP

[
ψ(x,D) + γV (x−D)

]
, for x ≥ x∗. (4.23)

Since D is nonnegative we have that x∗ −D ≤ x∗, and hence by (4.22) that

V (x∗ −D) = cD + EP

[
ψ(x∗, D) + γV (x∗ −D)

]
.

It follows that for x ≤ x∗,

V (x) = −cx+ cx∗ + EP

[
γcD + ψ(x∗, D) + γψ(x∗, D) + γ2V (x∗ −D))

]
.

By continuing this process we obtain for x ≤ x∗,

V (x) = −cx+ (1− γ)−1EP

[
γcD + (1− γ)cx∗ + ψ(x∗, D)

]
. (4.24)

98

Note that x∗ ∈ V, where

V := argmin
x∈R

EP

[
(1− γ)cx+ ψ(x,D)

]
.

Then by [6, Theorem 5.7] we have the following result.

Theorem 4.4.1. For x ≤ x∗ it holds that

V̂N(x) = −cx+ (1− γ)−1 inf
x∈V

EP̂N

[
γcD + (1− γ)cx+ ψ(x,D)

]
+ op(N

−1/2). (4.25)

In particular if the set V is the singleton, i.e. the quantile x∗ is unique, then N1/2(V̂N(x)−

V (x)) converges in distribution to normal N (0, σ2) with

σ2 = (1− γ)−2Var
(
γcD + ψ(x∗, D)

)
. (4.26)

The variance in (4.26) is taken with respect to the distribution P of the demand. In the

present case it was possible to derive the corresponding asymptotics of the form (4.12) in

the rigorous way.

4.4.1 Risk Averse Case

Let R be a law invariant coherent risk measure and consider the corresponding nested

formulation of stationary inventory model. In that case Bellman equation can be written,

similar to (4.21), as

V (x) = inf
u≥0
R
[
ψ(x, u,D) + γV (x+ u−D)

]
, x ∈ R. (4.27)

99

For example we can consider the Average Value-at-Risk measure R(·) := CVaRα(·). The

base stock policy is optimal here as well with

x∗ ∈ argmin
x∈R
R
(
cx+ ψ(x,D) + γV (x−D)

)
. (4.28)

Counterparts of equations (4.22) and (4.23) follow here with the expectation EP replaced

by the risk measureR.

4.5 Numerical Illustration

In this section, we present numerical illustration of the relationship between standard devia-

tion of the optimal value functions and discount factors for the stationary control problems.

Numerical experiments are performed on the stationary inventory problem and the Brazil-

ian Inter-connected Power System problem with risk neutral and risk averse formulations.

The second test problem is reformulated to have stationary data structure.

4.5.1 Test Cases and Experimental Settings

Inventory Problem. The stationary inventory problem has stagewise independent uncer-

tain demands D and deterministic ordering cost c, holding cost h and backlogging cost b,

following the description in secion 4.4. For the numerical test, the first stage is set to be

deterministic with D1 = 5.5 and initial state x0 = 10.0. For the second stage and onwards,

the model is stationary with h = 0.2, b = 2.8, c = cos(π
3
)+1.5 and the demand is predicted

by

D = d+ ϕ · ξ, (4.29)

where d = 9.0, ϕ = 0.6 and ξ is uniformly distributed in the interval [0, 1].

Hydro-thermal Planning Problem. The hydro-thermal planning problem has larger scale

than the inventory problem. The original problem has total number of stages T = 120 and

100

4 state variables corresponding to the energy equivalent reservoirs of 4 interconnected re-

gions. The random data process is characterized by the underlying stochastic monthly

energy inflows. Specifically, the monthly inflows are sampled from a log-normal distribu-

tions trained from the historical data and is assumed to be stagewise independent. We refer

to [80] for more details of the problem. For illustration purpose, the model assumes that the

energy inflows have period 1, that is, the distribution of the inflows from the second stage

and onwards (first stage is deterministc) are the same. In this way, the model has stationary

data structure.

For each problem, we discretize the continous random variables at each stage into N

realizations, and approximate the true problem by its SAA counterpart. To illustrate the

sample complexity for the stationary programs, we consider different sample sizes for dis-

cretization: N = 10, 50, 100. Besides, we perform numerical tests with different discount

factors γ = 0.8, 0.9, 0.9906 and 0.999.

Note that each SAA problem is a function of a sample with size N . By randomizing

SAA problems for M times, we obtain M optimal values of the SAA problems corre-

sponding to different samples. If M is sufficiently large, these samples then approximately

follow normal distribution. Therefore, the variability of the optimal value functions can be

measured by the sample standard deviation.

To elaborate, let V̂ (r) denote the optimal value (up to some precision) of the SAA

problem related to the r-th sample, for 1 ≤ r ≤ M . Then the sample standard deviation is

computed by

σ̂ =

√√√√ 1

M − 1

M∑
r=1

[
V̄M − V̂ (r)

]2
, (4.30)

where V̄M = 1
M

M∑
r=1

V̂ (r).

In the numerical tests, we choose M = 100 in order to achieve high significance in the

normality test. We will present more details of how to compute V̂ (r) later in this section.

For each risk measure, a test instance is determined by selections of N and γ. We

101

conduct the numerical experiments for each test instance in the following three steps:

1. Run the Periodical SDDP type algorithm to solve M SAA problems and obtain pri-

mal bounds V̂ (r), r = 1, · · · ,M .

2. Construct upper bounds for the SAA problems and compare with V̂ (r) to check con-

vergence. For risk neutral formulations, dual bounds are accessible for all sample

sizes N and discount factors γ. The dual bounds were constructed accoring to [2]

with period equal to 1. For risk averse formulations, only statistical upper bounds are

available for discount factors γ = 0.8, 0.9 and all sample sizes N .

3. Compute sample standard deviation of the optimal values of all SAA problems ac-

cording to (4.30).

4. For inventory problem, compute theoretical standard deviation for risk neutral case

by (4.26) and risk averse case by (4.28). Compare the results with those from step 3.

All implementations were written in Python 3 using the MSPPy solver described in [22]

and the dualsddp described in [2].

4.5.2 Risk Neutral Case

In this section, we report numerical results for the risk neutral formulation of the stationary

inventory problem and the hydro-thermal planning problem.

In 4.1, we provide a summary of solving the SAA problem of the stationary invenotry

problem and the hydro-thermal planning problem for different test instances. The first

two columns represent the identity (discretized sample size and discount factor) of the test

case. Column 3 and 4 give the deterministic lower bounds (primal bounds) and upper

bounds (dual bounds) of the problems. The last column reports the relative gap calulated

by UB−LB
LB × 100%. Observe that for each sample size N , the gaps for different discount

factors remain in low level. This shows that increasing the discount factor from γ1 to γ2

102

does not require to increase the sample size by the factor of (1− γ2)−1/(1− γ1)−1 in order

to achieve similar convergence in solving the SAA analogue of the true problem.

Table 4.1: Risk neutral case: convergence of solving SAA problems.

Inventory problem

N γ LB UB Gap(%)

10

0.8 67.210 67.238 4.17×10−2

0.9 158.196 158.283 5.5 ×10−2

0.9906 1928.66 1933.93 0.27
0.999 18227.69 18408.19 0.993

50

0.8 67.941 67.98 5.74×10−2

0.9 159.84 159.93 5.63×10−2

0.9906 1947.93 1953.19 0.27
0.999 18409.09 18629.29 1.19

100

0.8 68.032 68.06 4.12×10−2

0.9 160.05 160.13 4.998×10−2

0.9906 1950.32 1956.33 0.31
0.999 18431.61 18675.72 1.32

Hydro-thermal planning problem

N γ LB (·106) UB (·106) Gap(%)

50
0.8 1.2259 1.2287 0.23
0.9 2.4518 2.4961 1.77

0.9906 26.0858 26.2726 1.03
0.999 243.5701 257.7629 5.5

100
0.8 1.2259 1.2276 0.14
0.9 2.4519 2.5591 4.19

0.9906 26.0863 26.3817 1.12
0.999 243.5745 257.3031 5.33

In 4.2, we present sample standard deviation computed from M = 100 optimal values

of the SAA problems. The first two columns of the table account for the identity of the test

instances. The third column displays the sample standard deviation of 100 optimal values

of the SAA problems for each test instance according to (4.30). The last column is the

result of multiplying the sample standard deviation and the value (1 − γ). Additionally

in table 4.3, we report for the inventory problem the theoretical standard devitation of the

103

optimal value functions for each discount factor, which is computed according to (4.26).

We make the following observations. First, the sample standard deviations of the optimal

values of the SAA problems almost proportional to the factor (1 − γ)−1. Evidence can

be found in the last column of 4.2, which demonstrates that for each N , the values of

σ̂N · (1− γ) resemble each other for different discount factors. This is also the case for the

theoretical standard deviations derived from the inventory model (see third column of 4.3).

Second, the sample standard deviations are close to the theoretical ones. For the inventory

problem, comparisos between σ̂N · (1 − γ) in 4.2 and σ · (1 − γ)/
√
N in 4.3 for each

N and γ supports such claim. For the hydro-thermal planning problem, the closed form

of standard deviation of the optimal value function is not known, thus we only report the

sample standard deviation. However, the closeness of the sample standard deviation and

the theoretical one of the inventory problem sheds some light on same conjecture for other

stationary problems.

As the empirical results suggest that the standard deviations of different discount values

are proportional to the factor (1 − γ)−1, it is not surprising to see that convergence of the

risk neutral SAA problems with different discount factors do not vary much.

4.5.3 Risk Averse Case

Numerical experiments for the risk averse case adopt the risk measure of weighted sum of

expectation and the Conditional Value-at-Risk (CVaRα(·)) with parameter λ (the weighted

sum parameter) and α (the confidence level). For the inventory problem, we choose λ =

0.2, α = 0.05; for the hydro-thermal planning problem, λ = 0.5, α = 0.05. For the

selected risk measure, the analogue of formula (4.18) is given by

EP

[
∞∑
t=0

γt
(
(1− λ)c(xt, π̄(xt), ξt) + λ

(
v̄(xt) + α−1[c(xt, π̄(xt), ξt)− v̄(xt)]+

))]
.

(4.31)

We apply the risk averse SDDP algorithm with biased sampling (see [95]) to solve the

104

Table 4.2: Risk neutral case: sample standard deviations of optimal values of M = 100
SAA problems.

Inventory problem

N γ σ̂N σ̂N · (1− γ)

10

0.8 0.52779 0.10556
0.9 1.05557 0.10556

0.9906 11.2296 0.10556
0.999 104.849 0.104849

50

0.8 0.25295 0.05059
0.9 0.50590 0.05059

0.9906 5.3819 0.05059
0.999 50.2507 0.05025

100

0.8 0.16361 0.03272
0.9 0.32722 0.03272

0.9906 3.48112 0.03272
11 0.999 32.5026 0.032503

Hydro-thermal planning problem

N γ σ̂N σ̂N · (1− γ)

50

0.8 30.9749 6.195
0.9 63.0804 6.3089

0.9906 701.624 6.5959
0.999 6552.6559 6.553

100

0.8 22.9013 4.5803
0.9 45.3019 4.5302

0.9906 516.5621 4.8557
0.999 4852.4276 4.8524

SAA problems. To construct the upper bounds, we compute the statistical upper bounds

for the expected policy value in (4.31). Specifically, we replace ∞ with a large value

of T in (4.31) to approxiamte the true policy value. Here, we choose T = 120 for the

numerical experiments. For discount factors very close to 1 (e.g. γ = 0.9906, 0.999), it is

very challenging to compute a valid statistical upper bound (see [2]). For this reason, we

only provide statistical upper bounds for SAA problems with discount factors γ = 0.8 and

γ = 0.9 in the risk averse case. When solving SAA problems with larger discounts (γ =

0.9906, 0.999), we adopt the stopping criteria as when the deterministic bounds (primal

105

Table 4.3: Risk neutral case: theoretical standard deviation of the optimal value function
for the inventory problem.

γ σ σ · (1− γ) σ · (1− γ)/
√
10 σ · (1− γ)/

√
50 σ · (1− γ)/

√
100

0.8 1.4596 0.2919 0.0923 0.0412 0.02919
0.9 3.1812 0.3181 0.1006 0.04499 0.03497

0.9906 36.9038 0.3469 0.1097 0.04906 0.03469
0.999 349.7119 0.3497 0.1106 0.04946 0.03497

lower bounds) become stablized.

4.4 presents the lower bounds and 95% confidence intervals for the SAA problems(if

applicable). The confidence intervals are computed based on the policy values evaluated

on the policy by generating 1000 sample paths. Gaps are computed via UB−LB
LB × 100%

where UB denotes the upper end of the confidence interval. Additionally, in the spirit of

understanding the evolution of the upper bounds and the lower bounds, we compute for

each iteration the lower bounds and confidence intervals based on the policy values ob-

tained from 6 forward passes. The results (for the SAA problems of the inventory problem

with γ = 0.8 and different sample sizes N) demonstrated in 4.3 show that the upper ends

of the confidence intervals are larger than the lower bounds. Besides, for both problems

with relatively small discount factors, the gaps are evident to show convergence.

Similar to 4.2, 4.5 reports the sample standard deviations of the optimal values collected

from solving M = 100 risk averse SAA problems for each test instance. Likewisely, by

solving M = 100 risk averse SAA problems for each test instance, we obtain the sample

standard deviations of the optimal values, denoted by σ̂, which are almost proportional to

the factor (1 − γ)−1, similar to the results displayed in 4.2. For the inventory problem,

following the formula in (4.28), we can also compute the closed form of the standard devi-

ation of the optimal value function under the risk measure mentioned above, where the base

stock policy is still optimal. 4.6 shows such theoretical standard deviation. By comparing

values of σ̂N · (1−γ) in 4.5 and σ · (1−γ)/
√
N for each (γ,N) for the inventory problem,

our numerical results suggest that such theoretical standard deviations are aligned with the

106

2 1 0 1 2
Theoretical Quantiles

2

1

0

1

2

Sa
m

pl
e

Q
ua

nt
ile

s

 = 0.8,N = 100

2 1 0 1 2
Theoretical Quantiles

2

1

0

1

2

Sa
m

pl
e

Q
ua

nt
ile

s

 = 0.9,N = 100

2 1 0 1 2
Theoretical Quantiles

2

1

0

1

2

Sa
m

pl
e

Q
ua

nt
ile

s

 = 0.9906,N = 100

2 1 0 1 2
Theoretical Quantiles

2

1

0

1

2

Sa
m

pl
e

Q
ua

nt
ile

s

 = 0.999,N = 100

Figure 4.1: Normal probability plot (Q-Q plot) for the risk neutral hydro-thermal problem

sampled ones by comparing σ̂N · (1− γ) and σ · (1− γ)/
√
N for each (γ,N). We come to

the same conclusion as in 4.5.2 that the standard deviations of the optimal value function

with discount γ are almost proportional to the factor (1− γ)−1.

107

Table 4.4: Risk averse case: convergence of solving SAA problems.

Inventory problem

N γ LB CI Gap(%)

10

0.8 67.599 [67.58,67.62] 0.023
0.9 158.995 [158.96,159.02] 0.014

0.9906 1938.91 - -
0.999 18324.308 - -

50

0.8 68.429 [68.41, 68.46] 0.045
0.9 160.843 [160.81,160.89] 0.029

0.9906 1962.44 - -
0.999 18529.947 - -

100

0.8 68.493 [68.47,68.51] 0.029
0.9 160.993 [160.95, 161.03] 0.023

0.9906 1950.32 - -
0.999 18545.915 - -

Hydro-thermal planning problem

N γ LB (·106) CI (·106) Gap(%)

50
0.8 1.2259 [1.2268,1.2269] 0.08
0.9 2.452 [2.453,2.454] 0.1

0.9906 26.0902 - -
0.999 243.6119 - -

100
0.8 1.226 [1.2272,1.2273] 0.11
0.9 2.452 [2.454,2.455] 0.1

0.9906 26.0926 - -
0.999 243.6346 - -

108

0 20 40 60 80 100 120 140 160 180
Iterations

30

35

40

45

50

55

60

65

70

Va
lu

es

Evolution of bounds

deterministic bounds
statistical bounds 95% C
expected policy values 95% CI

(a) γ = 0.8, N = 10

0 25 50 75 100 125 150 175
Iterations

30

40

50

60

70

Va
lu

es

Evolution of bounds

deterministic bounds
statistical bounds 95% C
expected policy values 95% CI

(b) γ = 0.8, N = 50

0 25 50 75 100 125 150 175
Iterations

30

40

50

60

70

Va
lu

es

Evolution of bounds

deterministic bounds
statistical bounds 95% C
expected policy values 95% CI

(c) γ = 0.8, N = 100

0 40 80 120 160 200 240 280 320
Iterations

60

80

100

120

140

160

Va
lu

es

Evolution of bounds

deterministic bounds
statistical bounds 95% C
expected policy values 95% CI

(d) γ = 0.9, N = 10

0 40 80 120 160 200 240 280 320 360
Iterations

60

80

100

120

140

160

Va
lu

es

Evolution of bounds

deterministic bounds
statistical bounds 95% C
expected policy values 95% CI

(e) γ = 0.9, N = 50

0 40 80 120 160 200 240 280 320 360
Iterations

60

80

100

120

140

160
Va

lu
es

Evolution of bounds

deterministic bounds
statistical bounds 95% C
expected policy values 95% CI

(f) γ = 0.9, N = 100

Figure 4.2: Risk averse case: bounds evolution of the SAA problems of the inventory
problem.

109

Table 4.5: Risk averse case: sample standard deviations of optimal values of M = 100
SAA problems.

Inventory problem

N γ σ̂N σ̂N · (1− γ)

10

0.8 0.512 0.1024
0.9 1.024 0.1024

0.9906 10.894 0.1024
0.999 101.721 0.1017

50

0.8 0.212 0.0424
0.9 0.424 0.0424

0.9906 4.508 0.0424
0.999 42.089 0.0421

100

0.8 0.1354 0.02707
0.9 0.2707 0.02707

0.9906 2.8802 0.02707
0.999 26.8921 0.0269

Hydro-thermal planning problem

N γ σ̂N σ̂N · (1− γ)

50

0.8 74.856 14.971
0.9 130.065 13.007

0.9906 1664.465 15.646
0.999 15542.136 15.542

100

0.8 50.097 10.019
0.9 106.75 10.675

0.9906 1145.777 10.77
0.999 10698.883 10.7

Table 4.6: Risk averse case: theoretical standard deviation of the optimal value function
for the inventory problem.

γ σ σ · (1− γ) σ · (1− γ)/
√
10 σ · (1− γ)/

√
50 σ · (1− γ)/

√
100

0.8 1.399 0.279 0.09 0.04 0.028
0.9 2.811 0.281 0.09 0.04 0.028

0.9906 36.122 0.339 0.107 0.048 0.034
0.999 340.041 0.34 0.107 0.048 0.034

110

2 1 0 1 2
Theoretical Quantiles

2

1

0

1

2

Sa
m

pl
e

Q
ua

nt
ile

s

 = 0.8,N = 100

2 1 0 1 2
Theoretical Quantiles

2

1

0

1

2

Sa
m

pl
e

Q
ua

nt
ile

s

 = 0.9,N = 100

2 1 0 1 2
Theoretical Quantiles

2

1

0

1

2

Sa
m

pl
e

Q
ua

nt
ile

s

 = 0.9906,N = 100

2 1 0 1 2
Theoretical Quantiles

2

1

0

1

2

Sa
m

pl
e

Q
ua

nt
ile

s

 = 0.999,N = 100

Figure 4.3: Normal probability plot (Q-Q plot) for the risk averse hydro-thermal problem

111

CHAPTER 5

PROJECTION-FREE METHODS FOR CONVEX FUNCTIONAL

CONSTRAINED OPTIMIZATION

5.1 Overview

In previous chapters, we have seen both theoretical and computational developments around

the risk-neutral multistage stochastic linear programs. Henceforth, we will focus on dis-

cussion of a class of risk averse convex problems under static-stage setting. In this chapter,

we primarily consider a class of convex functional constrained problems with requirement

of sparsity in solutions.

Indeed, making decisions from the point of view of risk aversion arises widely in many

important applications, such as financial engineering [96, 97, 98, 99], radiation therapy

treatment planning [100, 101], supply chain management [102] and power system opera-

tions [103]. Risk averse optimization provides a framework for managing fluctuations of

specific realizations of the underlying random process, which is critically important es-

pecially when tail-probability event relates to the failure or catastrophic disruption of the

system being optimized. For example, consider a portfolio selection problem of maximiz-

ing the expected return, the optimal strategy suggests directing all investment to the asset

with the highest expected return, which may result in losing all or a large amount of the

invested principal when the realized return of the asset is very low. Furthermore, in many

applications of risk averse optimization, solution sparsity is desirable. This happens, for

example, in portfolio selection when the number of selected assets is capped and in as-

sortment planning when number of items in the assortment is limited. In addition, sparse

solutions are often easier to store and actuate. For instance, in signal processing, sparse

approximate solutions are sought after as they can be processed, stored and transmitted in

112

an efficient fashion. As such, sparse optimization finds rich applications in compressed

sensing [104, 105, 106, 107], sparse learning [108, 109] and matrix completion [110, 111].

In risk averse optimization, risk aversion is often manifested by risk measures such as

Value-at-Risk (VaR) [94] and Conditional Value-at-Risk (CVaR) [112, 97]. To be specific,

given a probability level α ∈ (0, 1), VaR is defined as the left-side α-quantile of a random

variable while CVaR represents the expected value of the α-quantile distribution and is

a convex approximation of (VaR). Other widely adopted risk measures include entropic,

mean-variance and mean-upper-semideviation risk measure (see Section 6, [6]), to name

a few. In some applications (e.g. distributionally robust optimization), risk is also coined

by probabilistic form (e.g. chance constraints). Optimizing over the risk measure, either

as a constraint or an objective, is commonly used to construct risk averse policies. While

convex risk measures result in tractable formulations, nonconvex risk measures such as

Value-at-Risk or chance constraints are more appropriate to model and control the risk in

some situation.

In sparse optimization, a sparse formulation often aims to find an approximate min-

imizer (maximizer) that follows the cardinality constraint modeled by ℓ0-norm, i.e. the

number of nonzeros within the solution is less than a given level. As a convex surrogate

of the ℓ0-norm, ℓ1-norm is also shown to promote solution sparsity. In many scenarios

when solution structure can not be attained by the simple sparsity formulation as men-

tioned above, group sparsity (e.g., sum of a group of ℓp norm, p > 0) is used to select or

deselect the elements in the decision vector at the group level. On top of that, the nuclear

norm ∥X∥∗ (sum of singular values) is often exerted to induce low rank structure, such

as in matrix completion. Similar to risk aversion, these aforementioned sparsity require-

ments can be incorporated either as a regularization term in the objective or a constraint in

defining the feasible set.

Risk averse optimization and sparse optimization have been studied separately in most

existing literature. These requirements are sometimes conflicting, for example, a diversified

113

selection of portfolio can reduce the risk but may lead to the violation of the cardinality con-

straint on the number of assets. Therefore, joint consideration of risk aversion and sparsity

appears to be very important in a wide range of applications, e.g., cardinality-constrained

assortment planning, cardinality-constrained portfolio selection, power grid optimization

and radiation therapy planning. This motivate us to consider a class of functional con-

strained optimization problems that can be used to model jointly sparsity requirement and

risk aversion.

As mentioned earlier, one notable example that is carried out with risk aversion and

solution sparsity is portfolio selection with cardinality requirement. A set of risk efficient

portfolios constructed from all available assets (see e.g., [113]), however, raised the ques-

tion of whether such an ideal policy is attainable. Indeed, due to various kinds of market

friction such as transaction costs, taxes, regulations and asset indivisibility, common prac-

tice is to invest on a limited number of assets in a more realistic setting. To this end, car-

dinality requirement is imposed on the portfolio selection model with the goal to minimize

the risk induced by a loss function Ψ(·). One such formulation is give by

min CVaR [Ψ(x)]

s.t. ψ(x) ≤ c,

x ∈ X,

(5.1)

where ψ(·) is a certain convex surrogate of cardinality constraint and c is the desired num-

ber of selected assets. Moreover, the problem in (5.1) can also be formulated as a nonconvex

problem with convex constraint, by replacing CVaR with VaR in the objective. Alterna-

tively, the cardinality requirement can be modeled directly by the ℓ0-norm and participates

in the objective function. To meet the cardinality constraint while minimizing risk is a

long-standing challenge in the area. Models and methodologies for cardinality constrained

portfolio selection optimization have been developed in [114, 115, 116, 117, 118]. How-

114

ever, these integer programming oriented approaches are computationally inefficient when

dealing with large-scale problems, although they may return exact solutions for smaller

problems.

Another important application of risk averse sparse optimization can be found in inten-

sity modulated radiation therapy (IMRT) treatment plan in the area of healthcare analytics.

This problem can be cast as a jointly sparse and risk averse optimization. In particular, the

objective function of the optimization problem is formulated as a VaR, which represents a

set of clinical criteria to avoid overdose (resp. underdose) to healthy (resp. tumor) tissues.

In addition to a simplex constraint to induce a smaller number of apertures, it consists of a

functional constraint, namely, a group sparsity constraint to enforce sparse angle/aperture

selection in order to reduce the operation time and the radiation exposure to the patient (see

e.g., [100, 101, 31] for more details of the problem description). Due to the huge dimen-

sionality of the decision variable (e.g., the number of apertures), existing approaches sug-

gest to approximate the risk averse requirement by some convex surrogate functions (e.g.,

quadratic penalty or CVaR). However, these methods rarely return a solution that satisfies

all clinical criteria, and often require a lot of fine-tuning of problem formulation (e.g., the

penalty parameters). This motivates us to model the clinical criteria from a probabilistic

perspective by employing the VaR measure as it is closer to the original clinical criteria

(in terms of mathematical formula and interpretation) and to develop efficient algorithms

to deal with such nonconvex model.

In this chapter, we propose a novel projection-free method, referred to as Level Con-

ditional Gradient (LCG) method, for solving convex functional constrained optimization.

Different from the constraint-extrapolated conditional gradient type methods (CoexCG and

CoexDurCG) developed in [31], LCG, as a primal method, does not assume the existence

of an optimal dual solution, thus improving the convergence rate of CoexCG/CoexDurCG

by eliminating the dependence on the magnitude of the optimal dual solution. Similar

to existing level-set methods, LCG uses an approximate Newton method to solve a root-

115

finding problem. In each approximate Newton update, LCG calls a conditional gradient

oracle (CGO) to solve a saddle point subproblem. The CGO developed herein employs

easily computable lower and upper bounds on these saddle point problems. We establish

the iteration complexity of the CGO for solving a general class of saddle point optimiza-

tion. Using these results, we show that the overall iteration complexity of the proposed

LCG method is O
(

1
ϵ2
log(1

ϵ
)
)

for finding an ϵ-optimal and ϵ-feasible solution of problem

(5.2). To the best of our knowledge, LCG is the first primal conditional gradient method for

solving convex functional constrained optimization. For the subsequently developed non-

convex algorithms in this paper, LCG can also serve as a subroutine or provide high-quality

starting points that expedites the solution process.

The rest of the chapter is organized as follow. We first describe a class of convex func-

tional constraints problems and introduce the Level Conditional Gradient (LCG) method in

Section 5.2. Then in Section 5.3, we provide the design and analysis of the outer loop of

LCG. Next in Section 5.4, we present the Conditional Gradient Oracle (CGO), as an inner

oracle of LCG, or as a general oracle for convex saddle point problem, for solving both the

smooth and nonsmooth settings. Finally in Section 5.5, we summarize the overall itera-

tion complexity of the proposed LCG method. For modeling and numerical results of the

portfolio selection and IMRT planning problem, we will show them in 6 which covers the

methodology for the nonconvex problems, in order to achieve a more complete illustration

and comparison among the proposed algorithms for solving either convex and nonconvex

functional constrained problems.

The following notations will be used throughout the paper.

• Without specific mention, ∥ · ∥ denotes arbitrary norm (not necessarily associated

with the inner product) in the Euclidean space and ∥ · ∥∗ denotes its conjugate.

• For a closed convex set X ⊂ Rn, the set NX(x) denotes the normal cone at x ∈ X

and NX(x) := {g ∈ Rn|∀z ∈ X : g⊤(z − x) ≤ 0}.

116

• A function f : Rn → R is Lf -smooth if ∥∇f(x1) − ∇f(x2)∥∗ ≤ Lf∥x1 − x2∥,

∀x1, x2 ∈ X .

• A function f : Rn → R is Mf -Lipschitz continuous if |f(x1)− f(x2)| ≤ Mf∥x1 −

x2∥, ∀x1, x2 ∈ X .

• Suppose x∗ is an optimal solution of (5.2). x̄ is an ϵ-optimal and ϵ-feasible solution

(or ϵ-solution) of (5.2) if x̄ ∈ X , f(x̄)− f(x∗) ≤ ϵ and ∥[h(x̄)]+∥∞ ≤ ϵ.

5.2 Level Conditional Gradient Method

The main problem of interest in this chapter is given in the form of

f ∗ := min f(x)

s.t. hi(x) ≤ 0, i = 1, · · · ,m,

x ∈ X,

(5.2)

where f : X → R is proper lower semicontinuous function (not necessarily convex),

h := (h1; · · · ;hm), hi : X → R, i = 1, · · · ,m are proper lower semicontinuous and

convex functions, X ⊆ Rn is a nonempty compact convex set. We call problem (5.2)

either convex or nonconvex functional constrained optimization depending on whether f is

convex or not. For the convex case, the objective function f is not necessarily differentiable.

On the other hand, we assume f to be a differentiable function with Lipschitz continuous

gradients for the nonconvex setting. The functional constrained problem in (5.2) can be

used not only for the joint optimization of sparsity and risk aversion, but also for other

potential applications that require the trade-off of different requirements.

It is well-known that problem (5.2) can be reduced to a root finding problem. For a

117

given level estimate l ∈ R, let us define

ϕ(l) := min
x∈X

max {f(x)− l, h1(x), . . . , hm(x)}

= min
x∈X

max
(γ,z)∈Z

γ[f(x)− l] +
m∑
i=1

zihi(x). (5.3)

Here Z := {(γ, z) ∈ Rm+1 : γ +
∑m

i=1 zi = 1, γ, zi ≥ 0} denotes the standard simplex.

We can easily verify that: (a) ϕ(l) is monotonically non-increasing and convex w.r.t. l; (b)

ϕ(f ∗) = 0; (c) ϕ(l) ≥ 0 for any l ≤ f ∗ and ϕ(l) ≤ 0 for any l ≥ f ∗. Therefore, problem

(5.2) is equivalent to finding the root of ϕ(l) = 0.

We propose to solve (5.2) by LCG (see Algorithm 3), which consists of an outer loop

that updates the level estimate l (i.e., the estimation of f ∗), and an inner loop that calls a

specialized conditional gradient oracle (CGO) to solve the saddle point problem in (5.3)

given a level estimate l.

5.3 Outer Loop of LCG

The basic idea of the LCG method is to apply an approximate Newton’s method to solve

ϕ(l) = 0. Assume for the moment that problem (5.3) can be solved exactly for a given l

(l = lk). Then one can compute the function value ϕ(lk), a subgradient ϕ′(lk). Solving the

following linear equation

ϕ(lk) + ϕ′(lk)(l − lk) = 0

gives us an updated iterate lk+1 as

lk+1 = lk − ϕ(lk)
ϕ′(lk)

.

Since ϕ(lk) cannot be computed exactly, we suggest to use a computable lower bound

and an approximate subgradient in place of ϕ(lk) and ϕ′(lk) in the above equation, respec-

tively. Started with an initial level estimate l1 ≤ f ∗, we call CGO to compute a lower bound

118

Lk, an upper bound Uk of ϕ(lk) and an approximate pair of solutions (xk; (γk, zk)) ∈ X×Z

of problem(5.3) at the k-th iteration (see Algorithm 3). A gap defined by these bounds (i.e.

Uk −Lk) indicates how accurately problem (5.3) (with l = lk) is solved. Whenever the up-

per bound Uk ≤ ϵ, LCG terminates since an approximate root of ϕ(l) = 0 has been found

due to ϕ(lk) ≤ Uk ≤ ϵ and ϕ(lk) ≥ 0. Otherwise, the algorithm updates the level estimate

lk. More specifically, we define the following linear function as a lower approximation of

ϕ(l),∀l ∈ R:

Lk(l) := Lk − γk(l − lk). (5.4)

Intuitively, Lk(l) underestimates ϕ(l) since −γk and Lk respectively serve as an approx-

imate subgradient and a lower bound for ϕ(·) at l = lk. To perform the approximate

Newton’s step as mentioned earlier, we solve Lk(l) = 0 and obtain the following update of

the level estimate

lk+1 = lk +
1

γk
Lk. (5.5)

We note that the LCG method provides a general framework for solving the root finding

problem in (5.3) and is not restricted to a particular inner oracle, as long as the output

(γk, Lk, Uk) of the inner oracle (e.g., CGO) satisfies the following conditions:

γk > 0, (5.6)

Lk ≤ϕ(lk) ≤ Uk, (5.7)

Lk(l) ≤ ϕ(l),∀l. (5.8)

The following lemma states an important property of the sequence of the level esti-

mates (lk)k≥1 generated in the outer loop of the algorithm. Such property will be used in

establishing the number of outer loops required by the LCG method.

Lemma 5.3.1. At iteration k, if Algorithm 3 does not terminate, then Lk > 0. Moreover,

119

Algorithm 3 Level Conditional Gradient Method (LCG)

1: Inputs: ϵ > 0, µ ∈ (1
2
, 1).

2: Initialization: x0 ∈ X , l1 = {min f(x0) + ⟨∇f(x0), x− x0⟩ : x ∈ X}.
3: for k = 1, 2, . . . do
4: Call CGO with input lk and obtain approximate solutions (xk; (γk, zk)) ∈ X × Z,

lower bound Lk, upper bound Uk such that Uk − Lk ≤ (1− µ)ϵ.
5: if Uk ≤ ϵ then
6: Terminate and return xk.
7: end if
8: lk+1 = lk +

1
γk
Lk.

9: end for

the sequence of the level estimates satisfies l1 < · · · < lk < lk+1 < · · · ≤ f ∗, k ≥ 1.

Consequently, ϕ(lk+1) ≥ ϕ(lk) ≥ · · · ≥ ϕ(f ∗) = 0.

Proof. We first show that at iteration k, if the algorithm does not terminate, then Lk > 0.

Indeed, if, on the opposite, Lk ≤ 0, since CGO stops at Uk − Lk ≤ (1 − µ)ϵ, then Uk ≤

(1 − µ)ϵ + Lk ≤ (1 − µ)ϵ ≤ ϵ, leading to the termination of the algorithm. Therefore,

together by the requirement that γk > 0 returned by CGO, at each update of l, we have

lk+1 − lk ≥ 1
γk
Lk > 0. In addition, noting that Lk(lk+1) = 0 by the origin of lk+1 in (5.5),

and that ϕ(lk+1) ≥ Lk(lk+1) since L underestimates ϕ, we have ϕ(lk+1) ≥ Lk(lk+1) = 0 =

ϕ(f ∗), which, in view of the fact that ϕ is nonincreasing, implies that lk+1 ≤ f ∗, k ≥ 1. By

the definition of l1, we have l1 ≤ f ∗. Finally by the monotonicity non-increasing property

of ϕ and ϕ(f ∗), we have ϕ(lk+1) ≥ ϕ(lk) ≥ · · · ≥ ϕ(f ∗) = 0.

In the theorem below, we establish the iteration complexity of reaching “Uk ≤ ϵ”,

which is essentially the outer loop iteration complexity of solving (5.2) by Algorithm 3.

Theorem 5.3.1. For all k ≥ 1, we have

Uk ≤ (f ∗ − l1)
1

µ

(
1

2µ

)k

, (5.9)

where µ ∈ (1
2
, 1), l1 is the initial estimate of the optimal value of (5.2) such that l1 ≤ f ∗.

Moreover, given precision ϵ, at the termination of LCG when Uk ≤ ϵ, the algorithm yields

120

an ϵ-optimal and ϵ-feasible solution xk of problem (5.2).

Proof. By the linearity of Lk(·) and the relation that lk−1 < lk < lk+1 according to Lemma

5.3.1, we have
Lk(lk−1)− Lk(lk)

lk − lk−1

=
Lk(lk)− Lk(lk+1)

lk+1 − lk
,

which together with the fact Lk(lk+1) = 0 and the simple relation a+b ≥ 2
√
ab, a, b ∈ R+

imply that

(lk+1 − lk)Lk(lk−1) ≥ (lk+1 − lk + lk − lk−1)Lk(lk)

≥ 2
√
lk+1 − lk

√
lk − lk−1Lk(lk).

Rearranging the terms, we obtain

Lk(lk−1)√
lk − lk−1

≥ 2Lk(lk)√
lk+1 − lk

. (5.10)

Observe that Uk − Lk ≤ (1 − µ)ϵ and Uk > ϵ when the algorithm does not terminate

at iteration k. Therefore, we have Uk − Lk ≤ (1 − µ)Uk, and thus Lk/Uk ≥ µ. Using

this observation and the fact Lk(lk) = Lk, we obtain Lk(lk) ≥ µUk. Note also Uk−1 ≥

ϕ(lk−1) ≥ Lk(lk−1). Using this bound and the one in (5.10), we have

Uk−1√
lk − lk−1

≥ 2µUk√
lk+1 − lk

. (5.11)

Applying the above relation recursively and the facts that U1 ≤ 1
µ
L1, L1 ≤ ϕ(l1), lk+1 −

121

lk ≤ f ∗ − l1 yields

Uk ≤
1

2µ

√
lk+1 − lk
lk − lk−1

Uk−1

≤
(

1

2µ

)k−1
√
lk+1 − lk
l2 − l1

U1

≤ 1

µ

(
1

2µ

)k−1√
(f ∗ − l1)ϕ(l1)

√
L1

l2 − l1
.

(5.12)

Note also it can be easily verified that: ϕ(l)−ϕ(l+ δ) ≤ δ, l ∈ R, for any δ ≥ 0 (same for

L1(·)), which leads to ϕ(l1) ≤ f ∗ − l1 and L1(l1) ≤ l2 − l1 as L1(l2) = 0 and ϕ(f ∗) = 0.

Consequently, following from the relation in (5.12), we attain

Uk ≤
1

µ

(
1

2µ

)k−1

(f ∗ − l1).

At the termination of LCG when Uk ≤ ϵ, the algorithm yields an ϵ-optimal and ϵ-feasible

solution xk of problem (5.2) since f(xk)−f ∗ ≤ f(xk)−lk ≤ Uk ≤ ϵ and max
i=1,··· ,m

{hi(xk)} ≤

Uk ≤ ϵ.

5.4 Conditional Gradient Oracle

In this section, we introduce the Conditional Gradient Oracle (CGO) for solving the fol-

lowing saddle point problem

ϕ̄ := min
x∈X̄

max
z∈Z̄

f̄(x) +
m∑
i=1

zih̄i(x). (5.13)

Here, f̄ : X̄ → R and h̄ : X̄ → Rm̄ are proper lower semicontinuous convex functions,

X̄ ⊆ Rn̄ is a nonempty compact convex set, and Z̄ ⊆ Rm̄ is a general compact set. Under

these assumptions an optimal pair of solutions (x∗, z∗) ∈ X̄ × Z̄ of problem (5.13) must

exist. Clearly, the subproblem in (5.3) can be viewed as a special case of problem (5.13)

with f̄ = 0, X̄ = X , Z̄ = Z and h̄ = (f − l, h).

122

5.4.1 CGO for Smooth Functions

We assume in this subsection that f̄ is an Lf̄ -smooth, Mf̄ -Lipschitz continuous function

and h̄i is an Lh̄i
-smooth, Mh̄i

-Lipschitz continuous function, i = 1, · · · , m̄.

Let ν : Z̄ → R be a 1-strongly convex and Lν-smooth distance generating function and

define the proximal function at point z′ ∈ Z̄ as V (z′, z) := ν(z) − ν(z′) − ⟨∇ν(z′), z −

z′⟩, z ∈ Z̄. Further, denote the linear approximation of f̄ and h̄ at x′ as

ℓf̄ (x
′, x) := f̄(x′) + ⟨∇f̄(x′), x− x′⟩,

ℓh̄i
(x′, x) := h̄i(x

′) + ⟨∇h̄i(x′), x− x′⟩, i = 1, · · · , m̄.

The algorithmic scheme of CGO is stated in Algorithm 4. Through step (5.14) - (5.18),

it first extrapolates the linear approximation of the convex functions h̄ controlled by the

weight λt, then updates the dual variable rt based on the extrapolated value h̃t and the

proximal function V . En route, CGO computes the primal variable pt by minimizing the a

linear function over X̄ and determines the solution xt by taking the convex combination of

pt and xt−1. Then it recursively computes the lower bounding functions f
t
(·) and ht(·) of

f̄(·) and h̄(·), respectively in (5.19) and (5.20), with f
0
(·) and h0(·) respectively initialized

as lower linear approximation of f̄(·) and h̄(·) at the initial point (see Lemma 5.4.1 for a

formal proof). Finally in (5.21) and (5.22), CGO generates a lower bound Lt and an upper

bound Ut of (5.13) by solving simple linear programs.

It is worth mentioning the relationship between CGO and the CoexCG/CoexDurCG

algorithm in [31]. Both CoexCG and CGO share a similar routine of updating the primal

and dual variables from the perspective of applying projection-free technique. The main

differences of these two algorithms lie in the following several fronts. First, CGO computes

the lower and upper bounds of the saddle point problem and terminates when these two

bounds are close enough. CGO neither requires the knowledge of the total number of

iterations as it is the case for CoexCG, nor does it need to perform additional regularization

123

Algorithm 4 Conditional Gradient Oracle (CGO)

Parameters: λt ≥ 0, τt ≥ 0, αt ∈ [0, 1], α1 = 1, ϵ > 0, µ ∈ (12 , 1).
Initialization: x−2 = x−1 = x0 ∈ X̄ , p−1 = p0 ∈ X̄ , z0 = r0 ∈ Z̄, f

0
(x) ≤ f̄(x), h0(x) ≤

h̄(x).
for t = 1, 2, . . . do

Compute zt, xt, Lt and Ut according to

h̃t = ℓh̄(xt−2, pt−1) + λt[ℓh̄(xt−2, pt−1)− ℓh̄(xt−3, pt−2)], (5.14)

rt = argmin
z∈Z̄

⟨−h̃t, z⟩+ τtV (rt−1, z), (5.15)

zt = (1− αt)zt−1 + αtrt, (5.16)

pt = argmin
x∈X̄

ℓf̄ (xt−1, x) + ⟨ℓh̄(xt−1, x), rt⟩, (5.17)

xt = (1− αt)xt−1 + αtpt, (5.18)

f
t
(x) = (1− αt)f t−1

(x) + αtℓf̄ (xt−1, x), (5.19)

ht(x) = (1− αt)ht−1(x) + αt⟨ℓh̄(xt−1, x), rt⟩, (5.20)

Lt = min
x∈X̄

f
t
(x) + ht(x), (5.21)

Ut = max
z∈Z̄

f̄(xt) + ⟨h̄(xt), z⟩. (5.22)

if Ut − Lt ≤ (1− µ)ϵ then
Terminate and return xt, zt, Lt, Ut.

end if
end for

in the dual update, as it is the case for CoexDurCG. Second, CoexCG is designed to solve

the functional constrained problem while CGO aims for the saddle point problem. In the

special case of solving the subproblem (5.3), the dual space Z that CGO operates on is

a simplex so that its convergence rate is not affected by large Lagrangian multipliers, as

opposed to CoexCG. Third, as an inner oracle in solving the convex constrained problem,

CGO outputs the dual solution zt, which participates in the update of level estimate l in the

outer loop. In CoexCG, the dual variable is created merely as a tool for the convergence

analysis.

In the remaining part of this subsection, we discuss the convergence properties of CGO.

The following lemma shows that Lt and Ut, t = 1, 2, · · · , are valid lower bounds and

upper bounds of (5.13), respectively.

Lemma 5.4.1. Let ϕ̄, Lt and Ut be defined in (5.13), (5.21) and (5.22), respectively. Also

124

let zt be defined in (5.16). Then we have

f
t
(x) ≤ f̄(x), (5.23)

ht(x) ≤ ⟨h̄(x), zt⟩, (5.24)

Lt ≤ϕ̄ ≤ Ut, (5.25)

for any t ≥ 1.

Proof. The relation f
t
(x) ≤ f̄(x) immediately follows from the initial condition f

0
(x) ≤

f̄(x) and the fact that f
t
(x) is the convex combinations of two lower bounding functions

of f̄(x) by (5.19).

Let rt be defined in (5.15). Using the relation of 1− αt =
Γt

Γt−1
and dividing both sides

of (5.20) by Γt, we have

1

Γt

ht(x) =
1

Γt−1

ht−1(x) +
αt

Γt

⟨ℓh̄(xt−1, x), rt⟩

≤ 1

Γt−1

ht−1(x) +
αt

Γt

⟨h̄(x), rt⟩

=
t∑

j=1

αj

Γj

⟨h̄(x), rj⟩,

(5.26)

where the second inequality follows from ℓh̄(xt, x) ≤ h̄(x), the third inequality is due to

the recursive deduction. Multiplying both sides of (5.26) with Γt, along with the initial

condition that h0(x) ≤ h̄(x), we conclude that

ht(x) ≤ ⟨h̄(x),
t∑

j=1

θjrj⟩ = ⟨h̄(x), zt⟩,

where θj := Γt
αj

Γj
with

t∑
j=1

θj = 1 and zt =
t∑

j=1

θjrj . It then follows f
t
(x) + ht(x) ≤

f̄(x)+⟨h̄(x), zt⟩, ∀x ∈ X̄ . By the definition of Lt in (5.21), we have Lt ≤ min
x∈X̄

max
z∈Z̄

f̄(x)+

⟨h̄(x), z⟩, which shows that Lt is a valid lower bound of problem (5.13). Moreover, using

125

the fact that

∀x ∈ X̄, max
z∈Z̄

f̄(x) + ⟨h̄(x), z⟩ ≥ min
x∈X̄

max
z∈Z̄

f̄(x) + ⟨h̄(x), z⟩,

and the definition of Ut in (5.22) and xt−1, pt ∈ X̄ , we obtain

Ut = max
z∈Z̄

f̄(xt) + ⟨h̄(xt), z⟩ ≥ min
x∈X̄

max
z∈Z̄

f̄(x) + ⟨h̄(x), z⟩.

In view of Lemma 5.4.1, (f
t
+ht)(·) provides a lower bound for the objective of (5.13),

i.e., (f
t
+ ht)(·) ≤ f̄(xt) + ⟨h̄(xt), z⟩. This motivates us to define the gap function for

problem (5.13) as

Q̄t(wt, w) := f̄(xt) + ⟨h̄(xt), z⟩ − f t
(x)− ht(x), (5.27)

where wt := (xt, zt), w := (x, z). Also, by the definition of Lt and Ut, we can easily see

that

max
w∈X̄×Z̄

Q̄t(wt, w) = Ut − Lt.

It is worth mentioning here that the gap function in (5.27) is different from those used in

the existing literature, given by

Q̃t(wt, w) := f̄(xt) + ⟨h̄(xt), z⟩ − f̄(x)− ⟨h̄(x), zt⟩.

As a consequence, these algorithms require the solution of minx∈X̄(f̄(x) + ⟨h̄(x), zt⟩) to

compute a lower bound on ϕ̄, which can be computationally expensive unless both f̄ and

h̄ are simple enough (e.g., linear functions). On the other hand, the computation of the

lower bound Lt in CGO only requires one call to the linear optimization oracle. In addition,

since Q̄t(wt, w) ≥ Q̃t(wt, w), we obtain stronger convergence guarantees for the developed

126

algorithm by using Q̄t(wt, w) instead of Q̃t(wt, w) as the error measure.

The following proposition establishes the recursion of the gap function (5.27) for CGO,

which is an important intermediate step to the proof of the main theorem.

Proposition 5.4.1. At iteration t > 1, we have

Q̄t(wt, w) ≤ (1− αt)Q̄t−1(wt−1, w) +
(Lf̄ + z⊤Lh̄)α

2
t

2
D2

X̄ +
9αtλ

2
tM̄

2D2
X̄

2τt

+ αt [⟨ℓh̄(xt−1, pt)− ℓh̄(xt−2, pt−1), z − rt⟩ − λt⟨ℓh̄(xt−2, pt−1)− ℓh̄(xt−3, pt−2), z − rt−1⟩]

+ αt [τtV (rt−1, z)− τtV (rt, z)] .

Proof. Together by the definition of Q̄t(wt, w), f t
, ht respectively in (5.27), (5.19) and

(5.20) and Lemma 5.7.3, for any w ∈ X̄ × Z̄, we have

Q̄t(wt, w) ≤ (1− αt)f̄(xt−1) + αtℓf̄ (xt−1, pt) +
Lf̄α

2
t

2
∥pt − xt−1∥2

+ (1− αt)⟨h̄(xt−1), z⟩+ αt⟨ℓh̄(xt−1, pt), z⟩+
z⊤Lh̄α

2
t

2
∥pt − xt−1∥2

− (1− αt)f t−1
(x)− αtℓf̄ (xt−1, x)− (1− αt)ht−1(x)− αt⟨ℓh̄(xt−1, x), rt⟩

≤ (1− αt)
[
f̄(xt−1) + ⟨h̄(xt−1), z⟩ − f t−1

(x)− ht−1(x)
]
+

(Lf̄ + z⊤Lh̄)α
2
t

2
D2

X̄

+ αt

[
ℓf̄ (xt−1, pt) + ⟨ℓh̄(xt−1, pt), z⟩ − ℓf̄ (xt−1, x)− ⟨ℓh̄(xt−1, x), rt⟩

]
= (1− αt)Q̄t−1(wt−1, w) +

(Lf̄ + z⊤Lh̄)α
2
t

2
D2

X̄

+ αt

[
ℓf̄ (xt−1, pt) + ⟨ℓh̄(xt−1, pt), z⟩ − ℓf̄ (xt−1, x)− ⟨ℓh̄(xt−1, x), rt⟩

]
.

(5.28)

The primal update (5.17) implies that

ℓf̄ (xt−1, pt) + ⟨ℓh̄(xt−1, pt), rt⟩ ≤ ℓf̄ (xt−1, x) + ⟨ℓh̄(xt−1, x), rt⟩, ∀x ∈ X̄.

127

Rearranging the terms in the above inequality, we have

ℓf̄ (xt−1, pt) + ⟨ℓh̄(xt−1, pt), z⟩ − ℓf̄ (xt−1, x)− ⟨ℓh̄(xt−1, x), rt⟩ ≤ ⟨ℓh̄(xt−1, pt), z − rt⟩.

(5.29)

Meanwhile, by Lemma 5.7.1, we obtain

⟨ℓh̄(xt−1, pt), z−rt⟩ ≤ ⟨ℓh̄(xt−1, pt)−h̃t, z−rt⟩+τtV (rt−1, z)−τtV (rt, z)−τtV (rt−1, rt).

(5.30)

In addition,

⟨ℓh̄(xt−1, pt)− h̃t, z − rt⟩ − τtV (rt−1, rt)

= ⟨ℓh̄(xt−1, pt)− ℓh̄(xt−2, pt−1), z − rt⟩ − λt⟨ℓh̄(xt−2, pt−1)− ℓh̄(xt−3, pt−2), z − rt−1⟩

+ λt⟨ℓh̄(xt−2, pt−1)− ℓh̄(xt−3, pt−2), rt − rt−1⟩ − τtV (rt−1, rt)

≤ ⟨ℓh̄(xt−1, pt)− ℓh̄(xt−2, pt−1), z − rt⟩ − λt⟨ℓh̄(xt−2, pt−1)− ℓh̄(xt−3, pt−2), z − rt−1⟩

+
9λ2tM̄

2D2
X̄

2τt
,

(5.31)

where the first equality follows from the definition of h̃t in (5.14) and the last inequality is

due to

λt⟨ℓh̄(xt−2, pt−1)− ℓh̄(xt−3, pt−2), rt − rt−1⟩ − τtV (rt−1, rt)

≤ λ2t
2τt
∥ℓh̄(xt−2, pt−1)− ℓh̄(xt−3, pt−2)∥2

=
λ2t
2τt
∥h̄(xt−2)− h̄(xt−3) + ⟨∇h̄(xt−2), pt−1 − xt−2⟩+ ⟨∇h̄(xt−3), xt−3 − pt−2⟩∥2

≤ λ2t
2τt
∥h̄(xt−2)− h̄(xt−3) + h̄(pt−1)− h̄(xt−2) + h̄(pt−2)− h̄(xt−3)∥2

≤
9λ2tM̄

2D2
X̄

2τt
.

(5.32)

128

Plugging (5.29), (5.30) and (5.31) into (5.28), we prove the result.

Proposition 5.4.2. Suppose for t ≥ 2, parameters {αt}, {λt} and {τt} in Algorithm 4

satisfy

α1 = 1,
λtαt

Γt

=
αt−1

Γt−1

and
αtτt
Γt

≥ αt−1τt−1

Γt−1

. (5.33)

Then for the general saddle point problem (5.13), for T ≥ 1, we have

Q̄T (wT , w) ≤ ΓT

T∑
t=1

[
(Lf̄ + z⊤Lh̄)α

2
t

2Γt

D2
X̄ +

9αtλ
2
tM̄

2D2
X̄

2τtΓt

]
+

9αTM̄
2D2

X̄

2τT
+ αT τT V̄ ,

(5.34)

∀w ∈ X̄ × Z̄.

Proof. In view of Lemma 5.7.2 and Proposition 5.4.1 as well as 1− α1 = 0, we have

Q̄T (wT , w)

ΓT

≤
T∑
t=1

[
(Lf̄ + z⊤Lh̄)α

2
t

2Γt

D2
X̄ +

9αtλ
2
tM̄

2D2
X̄

2τtΓt

]

+
T∑
t=1

αt

Γt

[⟨ℓh̄(xt−1, pt)− ℓh̄(xt−2, pt−1), z − rt⟩ − λt⟨ℓh̄(xt−2, pt−1)− ℓh̄(xt−3, pt−2), z − rt−1⟩]

+
T∑
t=1

αtτt
Γt

[V (rt−1, z)− V (rt, z)] ,∀w ∈ X̄ × Z̄.

The second equation in (5.33) indicates that summing up the extrapolated linear function

values from 1 to T cancels out intermediate terms, such that

T∑
t=1

αt

Γt

[⟨ℓh̄(xt−1, pt)− ℓh̄(xt−2, pt−1), z − rt⟩ − λt⟨ℓh̄(xt−2, pt−1)− ℓh̄(xt−3, pt−2), z − rt−1⟩]

= αT ⟨ℓh̄(xT−1, pT)− ℓh̄(xT−2, pT−1), z − rT ⟩ − λ1⟨ℓh̄(x−1, p0)− ℓh̄(x−2, p−1), z − r0⟩.

129

Besides, the third inequality in (5.33) implies

T∑
t=1

αtτt
Γt

[V (rt−1, z)− V (rt, z)]

=
α1τ1
Γ1

V (r0, z) +
T∑
t=2

(
αtτt
Γt

− αt−1τt−1

Γt−1

)
V (rt−1, z)−

αT τT
ΓT

V (rT , z)

≤ α1τ1
Γ1

V̄ +
T∑
t=2

(
αtτt
Γt

− αt−1τt−1

Γt−1

)
V̄ − αT τT

ΓT

V (rT−1, z)

≤ αT τT
ΓT

V̄ − αT τT
ΓT

V (rT , z).

(5.35)

Using the above relations, together with the initial condition x−2 = x−1, p−1 = p0 which

gives ℓh̄(x−1, p0)− ℓh̄(x−2, p−1) = 0 and the relation that

αT ⟨ℓh̄(xT−1, pT)− ℓh̄(xT−2, pT−1), z − rT ⟩ − αT τTV (rT , z) ≤
9M̄2αTD

2
X̄

2τT
,

we conclude that ∀w ∈ X̄ × Z̄,

Q̄T (wT , w) ≤ ΓT

T∑
t=1

[
(Lf̄ + z⊤Lh̄)α

2
t

2Γt

D2
X̄ +

9αtλ
2
tM̄

2D2
X̄

2τtΓt

]
+ αT ⟨ℓh̄(xT−1, pT)− ℓh̄(xT−2, pT−1), z − rT ⟩ − αT τTV (rT , z)

− λ1⟨ℓh̄(x−1, p0)− ℓh̄(x−2, p−1), z − r0⟩+ αT τT V̄

≤ ΓT

T∑
t=1

[
(Lf̄ + z⊤Lh̄)α

2
t

2Γt

D2
X̄ +

9αtλ
2
tM̄

2D2
X̄

2τtΓt

]
+

9M̄2αTD
2
X̄

2τT
+ αT τT V̄ .

Theorem 5.4.1 below states the main convergence properties for CGO. We need to use

the following quantities for this result:

M̄ :=

(
m̄∑
i=1

M2
h̄i

)1/2

, DX̄ := max
x1,x2∈X̄

∥x1 − x2∥ and V := max
z1,z2∈Z̄

V (z1, z2).

130

Theorem 5.4.1. Suppose that the algorithmic parameters in CGO are set to

αt =
2

t+ 1
, λt =

t− 1

t
, τt = 9

√
tM̄DX̄ , t ≥ 1. (5.36)

Then for any t ≥ 1,

Q̄t(wt, w) ≤
2(Lf̄ + z⊤Lh̄)D

2
X̄

t+ 1
+
M̄DX̄√
t+ 1

[
18V̄ +

7

6

]
∀w ∈ (X̄, Z̄). (5.37)

Proof. It is easy to verify that the identities in (5.36) satisfy the conditions in (5.33). By

definition of {Γt} and (5.36), we have Γt =
2

t(t+1)
and αt/Γt = t , so that for any T ≥ 1

ΓT

T∑
t=1

α2
t

2Γt

= ΓT

T∑
t=1

t

t+ 1
≤ 2

T + 1
,

ΓT

T∑
t=1

9αtλ
2
t

2τtΓt

≤ 2
√
T

3(T + 1)M̄DX̄

.

Plugging the above relations in (5.34), we obtain

Q̄T (wT , w) ≤
2(Lf̄ + z⊤Lh̄)D

2
X̄

T + 1
+

2
√
TM̄DX̄

3(T + 1)
+

M̄DX̄√
T (T + 1)

+
18
√
TM̄DX̄ V̄

(T + 1)

=
2(Lf̄ + z⊤Lh̄)D

2
X̄

T + 1
+ M̄DX̄

[
2
√
T

3(T + 1)
+

1√
T (T + 1)

+
18
√
T V̄

T + 1

]

≤
2(Lf̄ + z⊤Lh̄)D

2
X̄

T + 1
+

M̄DX̄√
T + 1

[
18V̄ +

7

6

]
, ∀w ∈ (X̄, Z̄).

(5.38)

In this way, we show the conclusion in (5.37).

131

5.4.2 CGO for Structured Nonsmooth Functions

In this section, we focus on problem (5.13) where f̄(·) and h̄i(·), i = 1, · · · , m̄ are struc-

tured nonsmooth functions represented by the following form (see also [119]):

f̄(x) = max
y∈Y0

{⟨B0x, y⟩ − f̂(y)},

h̄i(x) = max
y∈Yi

{⟨Bix, y⟩ − ĥi(y)}, i = 1, · · · , m̄,

where Yi, i = 0, 1, · · · , m̄ are closed convex sets, f̂ and ĥi are simple (continuous and

differentiable) convex functions, possibly ωi-strongly convex i = 0, 1, · · · , m̄. Let ui :

Yi → R be a 1-strongly convex distance generating function. Define the proximal function

Ui as Ui(x) := ui(y)− ui(yui
)− ⟨∇ui(yui

), y − yui
⟩, y ∈ Yi, where yui

:= argmin
y∈Yi

ui(y).

Further let ηi, i = 0, · · · , m̄ be the smoothing parameters that can vary or stay static over

iterations.

To generalize CGO to solve problems with structured nonsmooth functions, we need

to leverage the Nesterov smoothing scheme [119] to approximate the possibly nonsmooth

functions f̄ and h̄i by f̄η0 and h̄i,ηi stated below:

f̄η0(x) := max
y∈Y0

{⟨B0x, y⟩ − f̂(y)− η0U0(y)}, (5.39)

h̄i,ηi(x) := max
y∈Yi

{⟨Bix, y⟩ − ĥi(y)− ηiUi(y)}, i = 1, · · · , m̄. (5.40)

It can be shown that (see [119]), f̄η0 and h̄i,ηi are differentiable with Lipschitz constants

Lf̄ ,η := ∥B0∥2
ω0+η0

and Lh̄i,η := ∥Bi∥2
ωi+ηi

. Suppose Yi, i = 1, · · · , m̄ are compact, then h̄i,ηi have

bounded gradients such as ∥∇h̄i,ηi(x)∥∞ ≤ M̄Bi,Ui
, where M̄Bi,Ui

:= ∥Bi∥
(
∥yui
∥+
√
2DUi

)
,

i = 1, · · · , m̄, DUi
:=

(
max
y∈Yi

Ui(y)

)1/2

. Moreover, the relation between the original func-

132

tions and the smoothing counterparts are characterized by

f̄η0(x) ≤ f̄(x) ≤ f̄η0(x) + η0D
2
U0
,

h̄i,ηi(x) ≤ h̄i(x) ≤ h̄i,ηi(x) + ηiD
2
Ui
, i = 1, · · · , m̄.

(5.41)

In this part, we focus on the case where the smoothing parameters ηi, i = 0, 1, · · · , m̄

are adapted over iterations such as

η0i ≥ η1i ≥ · · · ≥ ηti , i = 0, 1, · · · , m̄. (5.42)

In this case, at each iteration t, the approximations of f̄ and h̄ are f̄ηt0 and h̄ηti . Accordingly,

their Lipschitz constants are changed to Lt
f̄
≡ Lf̄ ,ηt :=

∥B0∥2
ω0+ηt0

and Lt
h̄i
≡ Lh̄i,ηti

:= ∥Bi∥2
ωi+ηti

.

Nevertheless, the relation in (5.41) still holds for each f̄ηt0 and h̄ηti at iteration t. Moreover,

similar to [31], it can be shown that the sequences {f̄ηt0}t and {h̄i,ηti}t satisfy:

f̄ηt−1
0
≤ f̄ηt0 ≤ f̄ηt−1

0
+
(
ηt−1
0 − ηt0

)
D2

U0
,

h̄i,ηt−1
i
≤ h̄i,ηti ≤ h̄i,ηt−1

i
+
(
ηt−1
i − ηti

)
D2

Ui
, i = 1, · · · , m̄.

(5.43)

The algorithm (see Algorithm 5) of solving the general structured nonsmooth problems

(with f̄ and h̄ respectively approximated by f̄ηt0 and h̄i,ηti) is similar to Algorithm 4, ex-

cept that the linear approximations of the objective function and constraint are replaced by

ℓf̄ηt (x
′, x) := f̄ηt0(x

′) + ⟨∇f̄ηt0(x
′), x− x′⟩ and ℓh̄

i,ηt
i

(x′, x) := h̄i,ηti (x
′) + ⟨∇h̄i,ηti (x

′), x−

x′⟩, i = 1, · · · , m̄, respectively. If the original functions are smooth, then the parameters ηti

simply reduces to constant zero.

133

Algorithm 5 CGO for Structured Nonsmooth Problems
The algorithm is modified from Algorithm 4 by replacing step (5.14) with

h̃t = ℓh̄ηt−1
(xt−2, pt−1) + λt[ℓh̄ηt−1

(xt−2, pt−1)− ℓh̄ηt−2
(xt−3, pt−2)], (5.44)

and primal update (5.17) with

pt = argmin
x∈X̄

ℓf̄ηt (xt−1, x) + ⟨ℓh̄ηt
(xt−1, x), rt⟩, (5.45)

and update of lower bound functionals (5.19) and (5.20) with

f
t
(x) = (1− αt)f t−1

(x) + αtℓf̄ηt (xt−1, x), (5.46)

ht(x) = (1− αt)ht−1(x) + αt⟨ℓh̄ηt
(xt−1, x), rt⟩. (5.47)

For the original nonsmooth problem, the gap function is defined by

Q̄t(wt, w) := f̄(xt) + ⟨h̄(xt), z⟩ − f̄(x)− ⟨h̄t(x), zt⟩,∀w ∈ X̄ × Z̄.

In view of Lemma 5.4.1, we can show that (f
t
+ ht)(·) computed from (5.46) and (5.47)

is a lower bounding function of both the original objective f̄(xt) + ⟨h̄)(xt), z⟩ and the

smoothing approximation f̄ηt0(xt) + ⟨h̄ηti)(xt), z⟩. The gap function of the approximated

problem is hereby defined as

Q̄η
t (wt, w) := f̄ηt0(xt) + ⟨h̄ηt(xt), z⟩ − f t

(x)− ht(x),∀w ∈ X̄ × Z̄, (5.48)

134

for wt := (xt, zt). Following from (5.41), it is easy to see that

Q̄t(wt, w) ≤ Q̄η
t (wt, w) + ηt0D

2
U0

+
m̄∑
i=1

ziη
t
iD

2
Ui
, k ≥ 1,∀w ∈ X̄ × Z̄. (5.49)

We will show in Theorem 5.4.2 the iteration complexity of solving the nonsmooth prob-

lem is bounded by O(1/ϵ2). To this end, we start by identifying an important recursion

relation of the gap function (5.48) in Proposition 5.4.3. Then in Proposition 5.4.4, we

state the convergence property under general parameter setup. In the subsequent analysis,

we use the following notations: M̄B,U :=

√
m̄∑
i=1

M2
Bi,Ui

, Lt
h̄
:=
(
Lh̄1,ηt , · · · , Lh̄m̄,ηt

)
and

h̄ηt :=
(
h̄1,ηt1 , · · · , h̄m̄,ηtm̄

)
.

Proposition 5.4.3. At iteration t > 1, we have

Q̄η
t (wt, w) ≤ (1− αt)Q̄

η
t−1(wt−1, w) +

(
Lt
f̄
+ z⊤Lt

h̄

)
α2
tD

2
X̄

2

+ (1− αt)

[
(ηt−1

0 − ηt0)D2
U0

+
m̄∑
i=1

zi(η
t−1
i − ηti)D2

Ui

]

+
6αtλ

2
tM

2
B,UD

2
X̄

τt
+

3αtλ
2
t

τt

m̄∑
i=1

(ηt−2
i − ηt−1

i)2D4
Ui

+ αt

[
⟨ℓh̄ηt

(xt−1, pt)− ℓh̄ηt−1
(xt−2, pt−1), z − rt⟩

− λt⟨ℓh̄ηt−1
(xt−2, pt−1)− ℓh̄ηt−2

(xt−3, pt−2), z − rt−1⟩

+τtV (rt−1, z)− τtV (rt, z)] , ∀w ∈ X̄ × Z̄.

(5.50)

Proof. Using the relation in (5.43), the updates in (5.46), (5.47) and applying Lemma 5.7.3

135

on f̄ηt0 , h̄i,ηti , we have

Q̄η
t (wt, w) ≤ (1− αt)

[
f̄ηt0(xt−1) + ⟨h̄ηt(xt−1), z⟩ − f t−1

(x)− ht−1(x)
]
+

(
Lt
f̄
+ z⊤Lh̄

)
α2
tD

2
X̄

2

+ αt

[
ℓf̄

ηt0

(xt−1, pt) + ⟨ℓh̄ηt
(xt−1, pt), z⟩ − ℓf̄

ηt0

(xt−1, x)− ⟨ℓh̄ηt
(xt−1, x), rt⟩

]
≤ (1− αt)

[
Q̄η

t−1(wt−1, w) + (ηt−1
0 − ηt0)D2

U0
+

m̄∑
i=1

zi(η
t−1
i − ηti)D2

Ui

]

+

(
Lt
f̄
+ z⊤Lh̄

)
α2
tD

2
X̄

2

+ αt

[
ℓf̄

ηt0

(xt−1, pt) + ⟨ℓh̄ηt
(xt−1, pt), z⟩ − ℓf̄

ηt0

(xt−1, x)− ⟨ℓh̄ηt
(xt−1, x), rt⟩

]
.

(5.51)

Note that the last line in (5.51) has the following relation:

ℓf̄
ηt0

(xt−1, pt) + ⟨ℓh̄ηt
(xt−1, pt), z⟩ − ℓf̄

ηt0

(xt−1, x)− ⟨ℓh̄ηt
(xt−1, x), rt⟩

≤ ⟨ℓh̄ηt
(xt−1, pt), z − rt⟩

≤ ⟨ℓh̄ηt
(xt−1, pt)− h̃t, z − rt⟩+ τtV (rt−1, z)− τtV (rt, z)− τtV (rt−1, rt)

= ⟨ℓh̄ηt
(xt−1, pt)− ℓh̄ηt−1

(xt−2, pt−1), z − rt⟩ − λt
(
⟨ℓh̄ηt−1

(xt−2, pt−1)− ℓh̄ηt−2
(xt−3, pt−2), z − rt−1⟩

)
+ τtV (rt−1, z)− τtV (rt, z)

− λt
(
⟨ℓh̄ηt−1

(xt−2, pt−1)− ℓh̄ηt−2
(xt−3, pt−2), rt−1 − rt⟩

)
− τtV (rt−1, rt),

(5.52)

where the first inequality follows from the primal update in (5.45), the second inequality is

the result of the dual update and Lemma 5.7.1 and the last equality is by the definition of

h̃t in (5.44).

136

Moreover, the last line in (5.52) can be bounded by

− λt
(
⟨ℓh̄ηt−1

(xt−2, pt−1)− ℓh̄ηt−2
(xt−3, pt−2), rt−1 − rt⟩

)
− τtV (rt−1, rt)

≤ λ2t
2τt

m̄∑
i=1

(
ℓh̄

i,ηt−1
i

(xt−2, pt−1)− ℓh̄
i,ηt−2

i

(xt−3, pt−2)

)2

=
λ2t
2τt

m̄∑
i=1

(
h̄i,ηt−1

i
(xt−2)− h̄i,ηt−2

i
(xt−3) + ⟨∇h̄i,ηt−1

i
(xt−2), pt−1 − xt−2⟩

+⟨∇h̄i,ηt−2
i

(xt−3), xt−3 − pt−2⟩
)2

≤ 3λ2t
2τt

m̄∑
i=1

[(
h̄i,ηt−1

i
(xt−2)− h̄i,ηt−2

i
(xt−3)

)2
+ 2M̄2

Bi,Ui
D2

X̄

]

≤ 3λ2t
2τt

m̄∑
i=1

[(
h̄i,ηt−2

i
(xt−2)− h̄i,ηt−2

i
(xt−3) + (ηt−2

i − ηt−1
i)D2

Ui

)2
+ 2M̄2

Bi,Ui
D2

X̄

]

≤ 3λ2t
2τt

m̄∑
i=1

[
2
(
⟨∇h̄i,ηt−2

i
(xt−2), xt−2 − xt−3)⟩

)2
+ 2(ηt−2

i − ηt−1
i)2D4

Ui
+ 2M̄2

Bi,Ui
D2

X̄

]

≤
6λ2tM

2
B,UD

2
X̄

τt
+

3λ2t
τt

m̄∑
i=1

(ηt−2
i − ηt−1

i)2D4
Ui
.

(5.53)

The result of (5.50) follows from plugging relations (5.52) and (5.53) into (5.51).

Proposition 5.4.4. Suppose that parameters αt, λt, τt in Algorithm 5 satisfy (5.33), the

smoothing parameters ηti satisfy the relation in (5.42). Then for any T ≥ 1,

Q̄T (wT , w) ≤ ΓT

T∑
t=1

αt

Γt

αt

(
Lt
f̄
+ z⊤Lt

h̄

)
D2

X̄

2
+ ηt0D

2
U0

+
m̄∑
i=1

ziη
t
iD

2
Ui

+
6λ2tM

2
B,UD

2
X̄

τt
+

3λ2t
τt

m̄∑
i=1

(ηt−2
i − ηt−1

i)2D4
Ui

]

+
6αTλ

2
TM

2
B,UD

2
X̄

τT
+

3αTλ
2
T

τT

m̄∑
i=1

(ηT−1
i − ηTi)2D4

Ui
+ αT τT V̄

+ ηT0D
2
U0

+
m̄∑
i=1

ziη
T
i D

2
Ui
,

(5.54)

137

∀w ∈ X̄ × Z̄.

Proof. Applying Lemma 5.7.2 and Proposition 5.4.3, we obtain

Q̄η
T (wT , w) ≤ ΓT

T∑
t=1

αt

Γt

αt

(
Lt
f̄
+ z⊤Lt

h̄
D2

X̄

)
2

+
6λ2tM

2
B,UD

2
X̄

τt
+

3λ2t
τt

m̄∑
i=1

(ηt−2
i − ηt−1

i)2D4
Ui

+

T∑
t=1

1− αt

Γt

(
(ηt−1

0 − ηt0)D2
U0

+
m̄∑
i=1

zi(η
t−1
i − ηti)D2

Ui

)

+ ΓT

T∑
t=1

αt

Γt

[
⟨ℓh̄ηt

(xt−1, pt)− ℓh̄ηt−1
(xt−2, pt−1), z − rt⟩

−λt⟨ℓh̄ηt−1
(xt−2, pt−1)− ℓh̄ηt−2

(xt−3, pt−2), z − rt−1⟩
]

+ ΓT

T∑
t=1

αtτt
Γt

(V (rt−1, z)− V (rt, z))

= ΓT

T∑
t=1

αt

Γt

αt

(
Lt
f̄
+ z⊤Lt

h̄
D2

X̄

)
2

+ ηt0D
2
U0

+
m̄∑
i=1

ziη
t
iD

2
Ui

+
6λ2tM

2
B,UD

2
X̄

τt
+

3λ2t
τt

m̄∑
i=1

(ηt−2
i − ηt−1

i)2D4
Ui

]

+ ΓT

T∑
t=1

αt

Γt

[
⟨ℓh̄ηt

(xt−1, pt)− ℓh̄ηt−1
(xt−2, pt−1), z − rt⟩

−λt⟨ℓh̄ηt−1
(xt−2, pt−1)− ℓh̄ηt−2

(xt−3, pt−2), z − rt−1⟩
]

+ ΓT

T∑
t=1

αtτt
Γt

(V (rt−1, z)− V (rt, z)) ,

(5.55)

where the second equality follows from

T∑
t=1

1− αt

Γt

(
(ηt−1

0 − ηt0)D2
U0

+
m̄∑
i=1

zi(η
t−1
i − ηti)D2

Ui

)
=

T∑
t=1

αt

Γt

(
ηt0D

2
U0

+
m̄∑
i=1

ziη
t
iD

2
Ui

)
.

138

Similar to the derivation in (5.35), the last line in (5.55) follows

ΓT

T∑
t=1

αtτt
Γt

(V (rt−1, z)− V (rt, z)) ≤ αT τT
(
V̄ − V (rT , z)

)
. (5.56)

Next, using the relation λtαt

Γt
= αt−1

Γt−1
and relation (5.56), we have

ΓT

T∑
t=1

αt

Γt

[
⟨ℓh̄ηt

(xt−1, pt)− ℓh̄ηt−1
(xt−2, pt−1), z − rt⟩

−λt⟨ℓh̄ηt−1
(xt−2, pt−1)− ℓh̄ηt−2

(xt−3, pt−2), z − rt−1⟩
]
− αT τTV (rT , z)

=
αT

ΓT

⟨ℓh̄
ηT
(xT−1, pT)− ℓh̄

ηT−1
(xT−2, pT−1), z − rT ⟩ − αT τTV (rT , z)

− λ1⟨ℓh̄η0
(x−1, p0)− ℓh̄η−1

(x−2, p−1), z − r0⟩

≤
6αTλ

2
TM

2
B,UD

2
X̄

τT
+

3αTλ
2
T

τT

m̄∑
i=1

(ηT−1
i − ηTi)2D4

Ui
,

(5.57)

where the last inequality follows from Young’s inequality and the initialization condition

x0 = x−1 = x−2, p0 = p−1.

Finally, by the inequality (5.49) with t = T and the results in (5.55), (5.56) and (5.57),

we reach the conclusion in (5.54).

Propostition 5.4.4 can be easily extended to the convex constrained problem (5.3). More

explicitly,

QT (wT , w) ≤ ΓT

T∑
t=1

αt

Γt

[
αtz

⊤Lt
HD

2
X

2
+

m∑
i=0

ziη
t
iD

2
Ui

+
6λ2tM

2
B,UD

2
X

τt
+

3λ2t
τt

m∑
i=0

(ηt−2
i − ηt−1

i)2D4
Ui

]

+
6αTλ

2
TM

2
B,UD

2
X

τT
+

3αTλ
2
T

τT

m∑
i=0

(ηT−1
i − ηTi)2D4

Ui
+ αT τTV

+ ηT0D
2
U0

+
m∑
i=0

ziη
T
i D

2
Ui
.

139

and

∥H(xT , f
∗)∥∞ ≤ ΓT

T∑
t=1

αt

Γt

αt max
i=1,··· ,m̄

Lt
Hi
D2

X

2
+ max

i=1,··· ,m̄
ηTi D

2
Ui

+
6λ2tM

2
B,UD

2
X

τt
+

3λ2t
τt

m∑
i=0

(ηt−2
i − ηt−1

i)2D4
Ui

]

+
6αTλ

2
TM

2
B,UD

2
X

τT
+

3αTλ
2
T

τT

m∑
i=0

(ηT−1
i − ηTi)2D4

Ui
+ αT τTV

+ ηT0D
2
U0

+ max
i=1,··· ,m̄

ηTi D
2
Ui
.

Theorem 5.4.2 below demonstrates convergence rate of Algorithm 5.

Theorem 5.4.2. Suppose parameters αt, λt and τt are specified according to (5.36), with

M̄ replaced M̄B,U and

ηti =
∥Bi∥DX̄√
tDUi

, i = 0, 1, · · · ,m,

then for t ≥ 1, we have

Q̄t(wt, w) ≤
8DX̄

(
∥B0∥DU0 +

m̄∑
i=1

zi∥Bi∥DUi

)
3
√
t+ 1

+

4DX̄

m̄∑
i=1

∥Bi∥2D2
Ui

3M̄B,U t(t+ 1)
+

8M̄B,UDX̄

9
√
t+ 1

+
4M̄B,UDX̄

3(t+ 1)
√
t
+

2DX̄

m̄∑
i=1

∥Bi∥2D2
Ui

3t2(t+ 1)
√
tM̄B,U

+
18M̄B,UDX̄ V̄√

t+ 1
+

DX̄

(
∥B0∥DU0 +

m̄∑
i=1

zi∥Bi∥DUi

)
√
t

.

(5.58)

Proof. Note first, since
√
t− 1 ≥

√
t− 2, then

(
ηt−2
i − ηt−1

i

)2
=
∥Bi∥2D2

X̄

D2
Ui

(
1√
t− 2

− 1√
t− 1

)2

≤
∥Bi∥2D2

X̄

D2
Ui

1

(t− 1)(t− 2)
.

140

Therefore,

T∑
t=3

3αtλ
2
t

Γtτt

m̄∑
i=1

(
ηt−2
i − ηt−1

i

)2
D4

Ui

≤ DX̄

3M̄B,U

m̄∑
i=1

∥Bi∥2D2
Ui

T∑
t=3

(t− 1)2√
tt(t− 1)(t− 2)

≤ 2DX̄

3M̄B,U

m̄∑
i=1

∥Bi∥2D2
Ui
,

(5.59)

where the last inequality follows from the relation

T∑
t=3

(t− 1)2√
tt(t− 1)(t− 2)

≤
T∑
t=3

1

(t− 2)3/2
≤
∫ T

3

1

(t− 2)3/2
≤ 2.

Besides,

T∑
t=1

αt

Γt

(
ηt0D

2
U0

+
m̄∑
i=1

ziη
t
iD

2
Ui

)

= DX̄

(
∥B0∥DU0 +

m̄∑
i=1

zi∥Bi∥DUi

)
T∑
t=1

√
t

≤
2DX̄

(
∥B0∥DU0 +

m̄∑
i=1

zi∥Bi∥DUi

)
3

T
√
T .

(5.60)

Moreover, since ωi ≥ 0, i = 0, 1, · · · , m̄, then Lt
f̄
= ∥B0∥2

ηt0+ω0
≤ ∥B0∥2

ηt0
, Lt

h̄
= ∥Bi∥2

ωi+ηti
≤

∥Bi∥2
ηti

, i = 1, · · · , m̄ and

T∑
t=1

α2
t

2Γt

(
Lt
f̄ + z⊤Lt

η

)
D2

X̄

≤ DX̄

(
∥B0∥DU0 +

m̄∑
i=1

zi∥Bi∥DUi

)
T∑
t=1

t
√
t

t+ 1

≤
2DX̄

(
∥B0∥DU0 +

m̄∑
i=1

zi∥Bi∥DUi

)
3

T
√
T ,

(5.61)

141

where the last inequality is due to
T∑
t=1

t
√
t

t+1
≤ 2

3
T
√
T .

Using the relations in (5.59), (5.60), (5.61), similar to (5.38), we can show that

Q̄η
T (wT , w) ≤

8DX̄

(
∥B0∥DU0 +

m̄∑
i=1

zi∥Bi∥DUi

)
3
√
T + 1

+

4DX̄

m̄∑
i=1

∥Bi∥2D2
Ui

3M̄B,UT (T + 1)
+

8M̄B,UDX̄

9
√
T + 1

+
4M̄B,UDX̄

3(T + 1)
√
T

+

2DX̄

m̄∑
i=1

∥Bi∥2D2
Ui

3T 2(T + 1)
√
TM̄B,U

+
18M̄B,UDX̄ V̄√

T + 1
.

We conclude the result in (5.58) by noting that ηT0D
2
U0

+
m̄∑
i=0

ziη
T
i D

2
Ui
≤ DX̄∥B0∥DU0√

T
+

DX̄

m̄∑
i=1

zi∥Bi∥DUi
√
T

.

Similarly, for problem (5.3) with structured nonsmooth functions, we conclude that,

Qt(wt, w) ≤
8DX

(
m+1∑
i=0

zi∥Bi∥DUi

)
3
√
t+ 1

+

4DX

m+1∑
i=0

∥Bi∥2D2
Ui

3MB,U t(t+ 1)
+

8MB,UDX

9
√
t+ 1

+
4MB,UDX

3(t+ 1)
√
t
+

2DX

m+1∑
i=0

∥Bi∥2D2
Ui

3t2(t+ 1)
√
tMB,U

+
18MB,UDXV√

t+ 1
+

DX

(
m+1∑
i=0

zi∥Bi∥DUi

)
√
t

,

∥h̄(xT , f ∗)∥∞ ≤
8DX

(
max

i=0,··· ,m+1
∥Bi∥DUi

)
3
√
t+ 1

+

4DX

m+1∑
i=0

∥Bi∥2D2
Ui

3MB,U t(t+ 1)
+

8MB,UDX

9
√
t+ 1

+
4MB,UDX

3(t+ 1)
√
t
+

2DX

m∑
i=0

∥Bi∥2D2
Ui

3t2(t+ 1)
√
tMB,U

+
18MB,UDXV

′
√
t+ 1

+

DX

(
max

i=0··· ,m+1
∥Bi∥DUi

)
√
t

.

5.5 Overall Complexity

In this section, we present the overall iteration complexity of the LCG method applied to

the convex functional constrained problem in (5.2) with subproblem (5.3) solved by CGO.

142

As mentioned in Section 5.4.1, when we apply CGO for solving subproblem (5.3), we

have f̄(x) = 0, h̄(x) ≡ h̄(x; l) = (f(x)− l, h(x)) for a given level estimate l, X̄ = X and

Z̄ = Z. In the following lemma we show that the output of CGO satisfies the conditions

(5.6)-(5.8) to guarantee the convergence of the outer loop of LCG.

Lemma 5.5.1. When LCG does not terminate at iteration k, the output (γk, Lk, Uk) of CGO

satisfies (5.6)-(5.8).

Proof. First define the sequence {βt}, across inner iteration (CGO iteration) t ≥ 1 as

follow: βt := (βt
1, · · · , βt

t), where βt
j =

αt, if j = t,

(1− αt)β
t−1
j , if j ̸= t,

with β1
1 = α1. Denote

rj := (rj,0, · · · , rj,m), where rj,i is the i-th element of vector rj at iteration j, j ≤ t.

According to Algorithm 4, ht(x; l) can be explicitly written as:

ht(x; l) = −γtl +
t∑

j=1

βt
j

[
rj,0ℓf (xj−1, x) +

m∑
i=1

rj,iℓhi
(xj−1, x)

]
, (5.62)

where γt =
t∑

j=1

βt
jrj,0 and we have zt,i =

t∑
j=1

βt
jrj,i, zt,i is the i-th element of vector zt at

iteration t.

At each CGO iteration under outer iteration k, by the definition in (5.4), we have

Lt(l) = Lt− γt(l− lk). Arranging the terms and using the relation in (5.21) and (5.62), for

each l ∈ R, we have

Lt(l) = −γtl + (Lt + γtlk)

= −γtl +min
x∈X

ht(x; lk) + γtlk

= min
x∈X

ht(x; l).

Moreover, according to Lemma 5.4.1, it can be shown that ht(x; l) ≤ γt[f(x) − l] +

⟨h(x), zt⟩,∀x ∈ X . Hence, Lt(l) = min
x∈X

ht(x; l) ≤ min
x∈X

γt[f(x) − l] + ⟨h(x), zt⟩ ≤

143

min
x∈X

max
(γ,z)∈Z

γ[f(x)− l] + ⟨h(x), z⟩ ≡ ϕ(l). Immediately, we obtain the relation in (5.8). In

view of Lemma 5.4.1 and the relation in (5.8), for a given level estimate l ∈ R, Lk, Uk are

the lower bound and upper bound of ϕ(l), respectively. Therefore, (5.7) is satisfied.

Now, we show (5.6). By (5.62), we have

Lt(l) = −γtl +min
x∈X

t∑
j=1

βt
j

[
rj,0ℓf (xj−1, x) +

m∑
i=1

rj,iℓhi
(xj−1, x)

]
.

In the case where LCG is not terminated at outer iteration k, suppose CGO runs t(k) it-

erations. According to Lemma 5.3.1, it produces a lower bound such that Lt(k) > 0.

Here γk ≡ γt(k), zk ≡ zt(k), Lk ≡ Lt(k) and Lk(lk) ≡ Lt(k)(lk). If γk = 0, recall that

γk =
t(k)∑
j=1

βt
jrj,0, then we must have rj,0 = 0,∀j ≤ t(k). This implies that Lk = Lk(lk) =

min
x∈X

t(k)∑
j=1

β
t(k)
j

[
m∑
i=1

rj,iℓhi
(xj−1, x)

]
≤ min

x∈X
⟨zk, h(x)⟩ ≤ 0, which leads to contradiction.

This shows that CGO returns γk such that γk > 0.

Corollary 5.5.1. Suppose the algorithmic parameters of CGO are set to (5.36). Then for

any t ≥ 1 and ∀w ∈ (X,Z),

Qt(wt, w) ≤
2z⊤Lh̄D

2
X

t+ 1
+
M̄DX√
t+ 1

[
18V̄ +

7

6

]
,

f(xt)− f ∗ ≤
2 max
i=1,··· ,m+1

Lh̄i
D2

X

t+ 1
+
M̄DX√
t+ 1

[
18V̄ +

7

6

]
,

∥h(xt)∥∞ ≤
2 max
i=1,··· ,m+1

Lh̄i
D2

X

t+ 1
+
M̄DX√
t+ 1

[
18V̄ +

7

6

]
.

Proof. The convergence analysis on the gap function Qt(wt, w) is similar to the one on the

general case when treating f̄(·) = 0 (see Theorem 5.4.1). We conclude that

Qt(wt, w) ≤
2z⊤Lh̄D

2
X

t+ 1
+
M̄DX√
t+ 1

[
18V̄ +

7

6

]
,∀w := (x, z) ∈ X × Z.

144

Now we analyze the bound of ∥h̄(xt; f ∗)∥∞, thus the bounds of f(xt) − f ∗ and of

∥h(xt)∥∗. Suppose there exists at least one element of h̄(xt; f ∗) is positive, otherwise, we

arrive trivially at ∥h̄(xt; f ∗)∥∗ ≤ 0. Define w′ := (x∗, z′), where x∗ is the optimal primal

solution. z′ is defined as follows: z′ ∈ Z, z′j = 1 if j is one of the indices such that

j ∈ arg max
i=1,··· ,m

h̄i(xt; f
∗) and z′i = 0 otherwise. By the definition of z′ and the relation

ht(x
∗; f ∗) ≤ ⟨h̄(x∗; f ∗), zt⟩ ≤ 0, we have

Qt(wt, w
′) = ⟨h̄(xt; f ∗), z′⟩ − ht(x∗; f ∗)

≥ ∥h̄(xt; f ∗)∥∞.
(5.63)

Note also,

∥h̄(xt; f ∗)∥∞ = max{f(xt)− f ∗, h(xt)}

Then we have ∀w ∈ (X,Z),

f(xt)− f ∗ ≤
2 max
i=1,··· ,m+1

Lh̄i
D2

X

t+ 1
+
M̄DX√
t+ 1

[
18V̄ +

7

6

]
,

∥h(xt)∥∞ ≤
2 max
i=1,··· ,m+1

Lh̄i
D2

X

t+ 1
+
M̄DX√
t+ 1

[
18V̄ +

7

6

]
.

We are now ready to establish the overall iteration complexity of the LCG method.

Theorem 5.5.1. Suppose that the algorithmic parameters of CGO are set to (5.36). Then

the total number of CGO iterations required to find an ϵ-solution x̄ ∈ X of (5.2) can be

bounded by O
(

1
ϵ2
log(1

ϵ
)
)
.

Proof. Using the result in Corollary 5.5.1 and the fact that Ut−Lt = max
w∈X×Z

Qt(wt, w), we

145

immediately obtain

Ut − Lt ≤
2 max
i=1,··· ,m+1

Lh̄i
D2

X

t+ 1
+
M̄DX√
t+ 1

[
18V̄ +

7

6

]
.

Consequently, given precision ϵ > 0, to attain Uk−Lk ≤ ϵ at each call of CGO, the number

of iterations is bounded by O
(

1
ϵ2

)
. Furthermore, in view of Theorem 5.3.1, the required

number of outer loop iterations to obtain Uk ≤ ϵ and thus f(xk) − f ∗ ≤ ϵ, ∥h(xk)∥∞ ≤ ϵ

is bounded by O
(
log 1

ϵ

)
. Combining these two results, the overall iteration complexity of

LCG solving the convex constrained problem (5.2) is O
(

1
ϵ2
log(1

ϵ
)
)
.

It is worth mentioning here that as the output solution xk may not be a feasible solution

such that h(xk) ≤ 0, we develop a lower bound for f(xk) − f ∗, which is presented in

Lemma 5.5.2 below.

Lemma 5.5.2. Let (x∗, y∗) ∈ Rn × Rm
+ be the saddle point of the convex constrained

problem (5.2). Let (γ∗, z∗) be the optimal dual solution of the root finding problem

min
x∈X

max
(γ,z)∈Z

L(x, (γ, z)) := γ[f(x)− f ∗] + ⟨h(x), z⟩ (5.64)

(i.e. problem (5.3) with l = f ∗). Denote [·]+ := max{0, ·}. Then ∀x ∈ X , f(x) − f ∗ is

lower bounded such that

f(x)− f ∗ ≥ −min{∥y∗∥, ∥z
∗∥
γ∗
}∥[h(x)]+∥. (5.65)

Proof. According to the result in [34, Corollary 2], we have

f(x)− f ∗ ≥ −∥y∗∥∥[h(x)]+∥. (5.66)

Since (x∗, (γ∗, z∗)) is a pair of saddle point of (5.64), thus by the saddle point theorem, we

146

have

L(x∗, (γ, z)) ≤ L(x∗, (γ∗, z∗)) ≤ L(x, (γ∗, z∗)), ∀x ∈ X, (γ, z) ∈ Z.

Using the above relation and the facts that L(x∗, (γ∗, z∗)) = 0, ⟨[h(x)]+ − h(x), z∗⟩ ≥ 0,

we have ∀x ∈ X:

γ∗[f(x)−f ∗] = L(x, (γ∗, z∗))−⟨h(x), z∗⟩ ≥ L(x∗, (γ∗, z∗))−⟨h(x), z∗⟩ ≥ −∥[h(x)]+∥∥z∗∥

(5.67)

Combining (5.66) and (5.67), we obtain ∀x ∈ X:

f(x)− f ∗ ≥ −min{∥y∗∥, ∥z
∗∥
γ∗
}∥[h(x)]+∥. (5.68)

5.6 Modified Level Conditional Gradient Method

In LCG, we require that the initial level estimate satisfies l1 ≤ f ∗. Otherwise, the algorithm

terminates at the first outer iteration. To see this, if l1 ≥ f ∗, then L1 ≤ ϕ(l1) ≤ ϕ(f ∗) = 0,

which holds because L1 is the lower bound of ϕ(l1) and ϕ is a non-increasing function.

Hence by the stopping criteria of CGO, U1 ≤ L1+(1−µ)ϵ ≤ ϵ, which results in the termi-

nation of the algorithm. It should be noted that, by slightly modifying the outer scheme of

LCG, it is also possible to approximate f ∗ from above starting with an initial level l1 ≥ f ∗.

In this section, we focus on the modified version of LCG (MLCG), which generates

a sequence of decreasing level estimates that approximate from above the optimal value

of the problem. More specifically, we present the algorithmic framework of the MLCG

method and convergence analysis of the outer loop. Remarkably, CGO requires no change

in MLCG and remains as what it is in LCG.

To approximate the optimal value f ∗ by a sequence of decreasing level estimate from

above, the original LCG (Algorithm 3, Section 5.3) mainly takes changes in the following

147

steps: (1) In the initialization step, l1 is required to overestimate f ∗. One plausible option is

letting l1 = f(x0), s.t. x0 ∈ X, hi(x0) ≤ 0, i = 1, · · · ,m; (2) The update rule of the level

estimate is changed to lk+1 = lk + Uk; (3) The algorithm terminal condition is changed to

Lk ≥ −ϵκ̃. Here κ̃ is a lower approximation of the condition number κ, where

κ := − ϕ(l1)

l1 − f ∗ .

It can be easily verified that κ ≤ 1. We can choose κ̃ = − U1

l1−f̃
, where f̃ := min{f(x0) +

⟨∇f(x0), x− x0⟩ : x ∈ X}. In this way, f̃ ≤ f ∗ and κ̃ ≤ κ. Similar to [46], the outer loop

iteration complexity relies on κ and we will demonstrate later how the terminal condition

Lk ≥ −ϵκ̃ implies the convergence of the outer loop. The MLCG method is summarized

in Algorithm 6.

Algorithm 6 Modified Level Conditional Gradient Method (MLCG)

1: Inputs: ϵ > 0, µ ∈ (0, 1).
2: Initialization: x0 ∈ X, hi(x0) ≤ 0, i = 1, · · · ,m, l1 = f(x0).
3: for k = 1, 2, . . . do
4: Call CGO with input lk and obtain approximate solutions (xk; (γk, zk)) ∈ X × Z,

lower bound Lk, upper bound Uk and if k = 1, obtain κ̃ = − U1

l1−f̃
such that Uk − Lk ≤

(1− µ)κ̃ϵ.
5: if Lk ≥ −ϵκ̃ then
6: Terminate and return xk.
7: end if
8: lk+1 = lk + Uk.
9: end for

Remark 5.6.1. There is one edge case such that l1 = f ∗ leading to termination of the

algorithm at iteration k = 1, thus we will not consider this situation in the convergence

analysis. In this case, U1 ≥ ϕ(l1) = ϕ(f ∗) = 0. Let κ̃ = ϵ (instead of − U1

l1−f̃
). In view of

CGO terminal condition, we have L1 ≥ U1 − (1 − µ)κ̃ϵ ≥ −(1 − µ)κ̃ϵ ≥ −κ̃ϵ and the

algorithm terminates. Since l1 = f ∗, the condition number κ does not exist. In fact, the

algorithm terminates at k = 1, thus the iteration complexity in this case will not be affected

by κ.

148

5.6.1 Outer Loop Iteration Complexity of MLCG

We start with several lemmas that are of important use in the outer loop convergence anal-

ysis.

Lemma 5.6.1. When MLCG is not terminated at iteration k (k ≥ 1), then Uk ≤ µLk.

Proof. We first demonstrate that Uk ≥ 0 then the algorithm terminates at iteration k. In-

deed, at k > 1, if Uk ≥ 0, then by the stopping criteria of CGO, Lk ≥ Uk − (1 − µ)κ̃ϵ ≥

−(1 − µ)κ̃ϵ ≥ −κ̃ϵ. Consequently, the algorithm terminates. At iteration k, since the

algorithm is not terminated, then Lk < −ϵκ̃. By the stopping criteria of CGO such as

Uk −Lk ≤ (1− µ)κ̃ϵ, we have Uk −Lk ≤ (1− µ)κ̃(−Lk/κ̃) = (1− µ)(−Lk). Rearrang-

ing the terms in the above inequality, we arrive at Uk ≤ µLk.

Lemma 5.6.2. l1 > · · · > lk > · · · ≥ f ∗.

Proof. We have discussed the case when l1 = f ∗ in Remark 5.6.1. We will focus on the

case where l1 > f ∗. We show lk+1 − f ∗ ≥ 0 by induction. Suppose lk − f ∗ ≥ 0, then

lk+1 − f ∗ = lk + Uk − f ∗

≥ lk + ϕ(lk)− f ∗

≥ lk − f ∗ − (lk − f ∗)

= 0.

where the last inequality is due to ϕ(f ∗) − ϕ(lk) ≤ lk − f ∗ with lk − f ∗ ≥ 0 (induction

assumption) and ϕ(f ∗) = 0. Next, we show that lk+1 < lk. By Lemma 5.6.1, we have

Uk ≤ µLk < 0 when the algorithm does not terminate, then lk+1 − lk = Uk < 0.

149

The theorem below shows the outer iteration complexity of MLCG and demonstrates

that when it terminates it outputs an ϵ-optimal and ϵ-feasible solution.

Theorem 5.6.1. For k ≥ 1, Algorithm 6 generates lk that satisfies

lk − f ∗ ≤ (1− κµ)k−1(l1 − f ∗),

where µ ∈ (0, 1), κ ∈ (0, 1] and l1 is the initial level estimate of f ∗ such that l1 > f ∗.

Moreover, at the termination of Algorithm 6, it returns an ϵ-optimal and ϵ-feasible solution.

Proof. We have the following relation

lk+1 − f ∗ = lk + Uk − f ∗

≤ lk − f ∗ + µLk

≤ lk − f ∗ + µϕ(lk)

≤ lk − f ∗ − µκ(lk − f ∗)

= (1− µκ)(lk − f ∗).

The first inequality follows from Lemma 5.6.1, the second inequality from Lk ≤ ϕ(lk),

the third is due to ϕ(lk)−ϕ(f∗)
lk−f∗ ≤ ϕ(l1)−ϕ(f∗)

l1−f∗ ≡ −κ, which holds because of the convexity

of ϕ(·) and the relation that lk ≤ l1, k ≥ 1. Using induction on k, we have lk+1 − f ∗ ≤

(1− κµ)k(l1 − f ∗).

Next, we will show that given precision ϵ, the terminal condition Lk ≥ −ϵκ̃ implies

lk − f ∗ ≤ ϵ. Note first −ϕ(lk) ≤ −Lk and −ϕ(lk) ≥ κ(lk − f ∗). Using these inequalities

and the relation that κ̃ ≤ κ, we obtain lk − f ∗ ≤ −Lk/κ ≤ κ̃
κ
ϵ ≤ ϵ. Moreover, in view of

Lemma 5.6.2, we have Lk ≤ ϕ(lk) ≤ ϕ(f ∗) = 0, then Uk ≤ Lk + (1− µ)κ̃ϵ ≤ (1− µ)κ̃ϵ.

This implies that f(xk) − f ∗ = (f(xk) − lk) + (lk − f ∗) ≤ Uk +
κ̃
κ
ϵ ≤

(
(1− µ)κ̃+ κ̃

κ

)
ϵ

and max
i=1,··· ,m

hi(xk) ≤ Uk ≤ (1− µ)κ̃ϵ ≤ ϵ.

150

5.7 Auxiliary Lemmas

To establish the convergence for CGO, we tap into the following three well-studied re-

sults. Throughout the analysis, we need to use the following notation: let αt be defined in

Algorithm 4, define the sequence {Γt} as Γt :=

1, if t = 1,

(1− αt)Γt−1, if t > 1,

t = 1, 2 · · · .

The first lemma is the so-called “three-point” lemma which characterizes the optimality

condition of the dual update in (5.15).

Lemma 5.7.1. [23, Lemma 3.1] Let rt be defined in (5.15). Then

⟨−h̃t, rt − z⟩+ τtV (rt−1, rt) ≤ τtV (rt−1, z)− τtV (rt, z),∀z ∈ Z̄.

The second lemma deals with telescoping sums.

Lemma 5.7.2. [23, Lemma 3.17] Let {Rt} be some given sequence. A sequence {St} such

that

St ≤ (1− αt)St−1 +Rt, t = 1, 2, · · · ,

satisfies
St

Γt

≤ (1− α1)S0 +
t∑

j=1

Rj

Γj

.

We utilize the following properties for smooth functions.

Lemma 5.7.3. [23, Lemma 3.2]: Let pt, xt be defined in Algorithm 4. If f̄ and h̄ are smooth

functions such that ∀x1, x2 ∈ X , ∥∇f̄(x1) − f̄(x2)∥ ≤ Lf̄∥x1 − x2∥ and ∥∇h̄i(x1) −

∇h̄i(x2)∥ ≤ Lh̄i
∥x1 − x2∥, i = 1, · · · , m̄, then the following conditions hold:

151

f̄(xt) ≤ (1− αt)f̄(xt−1) + αtℓf̄ (xt−1, pt) +
Lf̄α

2
t

2
∥pt − xt−1∥2,

h̄i(xt) ≤ (1− αt)h̄i(xt−1) + αtℓh̄i
(xt−1, pt) +

Lh̄i
α2
t

2
∥pt − xt−1∥2, i = 1, · · · , m̄.

152

CHAPTER 6

PROJECTION-FREE METHODS FOR NONCONVEX FUNCTIONAL

CONSTRAINED OPTIMIZATION

6.1 Overview

In the last chapter, we have developed a projection-free method guided by level-set update

for a class of convex constrained problems in the context of risk averse and sparsity. In

sparse optimization, nonconvex formulations have attracted much attentions due to its em-

pirical merits (see e.g. [53, 52]). In a substantial amount of literature (e.g. [44, 110]),

sparsity was modeled by ℓp-regularized problem (p > 0), where in some cases a Lasso

approach [108] is deployed. Alternatively, nonconvex approximations such as DC were

adopted (see, e.g. [52, 53, 118, 120]).

In this chapter, to cope with the nonconvex functional constrained optimization prob-

lems (when f is nonconvex in (5.2)), we develop three approaches: the Exact/Inexact Prox-

imal Point Level Conditional Gradient (EPP-LCG/IPP-LCG) methods and the Direct Non-

convex Conditional Gradient (DNCG) method. The proposed EPP-LCG/IPP-LCG meth-

ods utilize the proximal point framework and solve a series of convex subproblems. By

solving each subproblem, it leverages the proposed LCG method, thus averting the effect

from large Lagrangian multipliers. We show that the iteration complexity of the algorithms

is bounded by O
(

1
ϵ3
log(1

ϵ
)
)

in order to obtain an (approximate) KKT point. However, the

proximal-point type method has triple-layer structure and may not be easily implementable.

To alleviate the issue, we also propose the DNCG method, which is the first single-loop

projection-free algorithm for solving nonconvex functional constrained problem in the lit-

erature. This algorithm provides a drastically simpler framework as it only contains three

updates in one loop. We show that the iteration complexity to find an ϵ-Wolfe point is

153

bounded by O
(
1/ϵ4

)
. To the best of our knowledge, all these developments are new for

projection-free methods for nonconvex optimization.

Finally, we present novel convex and nonconvex functional constrained models that are

well-suited to risk averse sparse optimization problems in portfolio selection and IMRT

treatment planning. These models incorporate different types of risk aversion and sparsity

requirements and can be solved efficiently by our proposed algorithms. For the portfolio

selection problem with cardinality requirement, our numerical experiments show that all

algorithms (LCG, IPP-LCG, DNCG) are efficient in jointly minimizing risk while lowering

cardinality of the selected assets in a rather short computational time for real-world and

large-scale datasets. For the IMRT application, the proposed DNCG method, equipped

with initial points output from LCG, satisfies the requirement of meeting a set of very

challenging clinical criteria and selecting sparse angles in order to reduce the radiation

time and the treatment delivery time, which accounts for a desirable treatment plan. It

is worth mentioning that such requirements could not be satisfied by using any existing

methods developed in the literature (e.g., [100, 101, 31]).

The rest of the chapter is organized as follow. We first describe a class of nonconvex

functional constraints problems in 6.2. Then in 6.3, we introduce the proximal point meth-

ods targeted on a class of convex constrained problems with exact and inexact versions.

Next in 6.4, we present the Nonconvex Conditional Gradient method. Lastly, we apply

these methods to the portfolio selection problem and IMRT treatment planning problem

and report numerical results accordingly in 6.5. Importantly, we also display the results of

applying convex methods discussed in 5 for a more complete illustration and comparison

with the nonconvex algorithms.

6.2 Nonconvex Functional Constrained Optimization Problem

In this section, we focus on the nonconvex functional constrained problem (5.2), where f is

nonconvex and hi, i = 1, · · · ,m are convex. Due to the difficulty of solving the nonconvex

154

functional constrained optimization to global optimality (even to local optimality), we seek

an approximate stationary points of problem (5.2). We introduce two methods to solve

this problem: Inexact Proximal Point Level Conditional Gradient (IPP-LCG) and Direct

Nonconvex Conditional Gradient (DNCG).

Throughout the section, we make the following assumptions: (a) f is Lf -smooth and

Mf -Lipschitz continuous; (b) hi is Lhi
-smooth andMh-Lipschitz continuous; (c) f satisfies

a lower curvature condition such that

f(x)− f(y)− ⟨∇f(y), x− y⟩ ≥ −
Lf

2
∥x− y∥2,∀x, y ∈ X. (6.1)

Here we assume that ∥ · ∥ is an inner product norm in this section for the sake of simplicity.

6.3 Proximal Point Methods for Nonconvex Functional Constrained Problem

In this part, we present the exact proximal point method and an inexact variant for solving

the problem with nonconvex structure by extending the LCG method discussed in Chapter

5. Given the current iterate xj−1 ∈ X , we solve the following convex subproblem:

min f(x;xj−1) := f(x) + Lf∥x− xj−1∥2

s.t. hi(x) ≤ 0, i = 1, · · · ,m,

x ∈ X.

(6.2)

We assume that the Slater conditions holds for (6.2), i.e., ∃x̃ ∈ X such that hi(x̃) < 0, i =

1, · · · ,m, and use (x∗j , y
∗
j) to denote a pair of its primal and dual solutions.

6.3.1 Exact Proximal Point Method

The idea of the exact proximal point method is to solve the convex subproblems iteratively

as described in Algorithm 7.

155

Algorithm 7 Exact Proximal Point Algorithm
1: Parameter: precision ϵ.

2: Initialization: a feasible point x0.

3: for j = 1, 2, . . . , J do

4:

xj =argmin
x∈X

f(x;xj−1)

s.t. hi(x) ≤ 0, i = 1, 2, · · · ,m.
(6.3)

5: if ∥xj−1 − xj∥ ≤ ϵ then

6: Terminate and return xj .

7: end if

8: end for

We utilize the LCG method to solve the subproblems (6.3). We assume that for the

subproblem (6.3) for each j ≥ 1, there exists a strictly feasible x′j such that hi(x′j) < 0, i =

1, · · · ,m, respectively. Therefore, the existence of KKT points for each subproblem is

verified by this Slater condition.

The exact proximal point method aims to seek an ϵ-KKT points of problem (5.2) defined

below.

Definition 6.3.1. x ∈ X is an ϵ-KKT point of problem (5.2) if hi(x) ≤ 0, i = 1, · · · ,m

and there exists y such that y ≥ 0 and

m∑
i=1

|yihi(x)| ≤ ϵ,

d

(
∇f(x) +

m∑
i=1

yi∇hi(x),−NX(x)

)2

≤ ϵ.

(6.4)

Theorem 6.3.1. If the Slater condition holds for each subproblem in 7, then for j∗ :

156

arg min
1≤j≤J

∥xj − xj−1∥2, xj∗ is an ϵJ - KKT point with

ϵJ =
8LfLv

3

[f(x0)− f ∗]

J
. (6.5)

Proof. According to the strong convexity of f(·;xj−1), and optimality of xj for solving

subproblem (??) at the j-th iteration, we have for all feasible x that

f(x, xj−1) ≥ f(xj;xj−1) + ⟨∇f(xj;xj−1), x− xj⟩+
Lf

2
∥x− xj∥2

≥ f(xj;xj−1) +
Lf

2
∥x− xj∥2

(6.6)

and

hi(xj) ≤ 0. (6.7)

Replacing x in (6.6) with xj−1 and using the definition of f(·;xj−1), we obtain

∥xj−1 − xj∥2 ≤
2

3Lf

[f(xj−1)− f(xj)] . (6.8)

Summing up (6.8) by j = 1, 2, · · · J yields

J∑
j=1

∥xj−1 − xj∥2 ≤
2

3Lf

[f(x0)− f(xJ)] ≤
2

3Lf

[f(x0)− f ∗] . (6.9)

Finally, by the definition of j∗, we have J∥xj∗ − xj∗−1∥2 ≤
J∑

j=1

∥xj−1 − xj∥2. Therefore

∥xj∗ − xj∗−1∥2 ≤
2

3JLf

[f(x0)− f ∗] . (6.10)

Now let {yij∗} denote the dual solution corresponds to xj∗ , from the KKT condition for the

157

j∗-th subproblem we have

m∑
i=1

yij∗hi(xj∗) = 0, yij∗ ≥ 0, (6.11)

and

d

(
∇f(xj∗) +

m∑
i=1

yij∗∇hi(xj∗),−NX(xj∗)

)2

≤ 4L2
fLv∥xj∗ − xj∗−1∥2

≤
8LfLv

3J
[f(x0)− f ∗] .

(6.12)

Combining (6.7), (6.11) and (6.12), we conclude that xj∗ is an ϵJ -KKT point of problem

(5.2), where ϵJ is defined in (6.5).

Theorem 6.3.1 states that in order to achieve ϵ-KKT point of problem (5.2), the exact

proximal point method needs to perform O(1/ϵ) iterations.

6.3.2 Inexact Proximal Point Method

The main idea of the IPP-LCG method is to leverage the LCG method (see Section 5.3) to

inexactly solve a sequence of convex subproblems (6.2) that approximate the original non-

convex problem. As described in Algorithm 8, at the j-the iteration the IPP-LCG method

calls LCG to solve subproblem (6.2) to obtain a (δf , δh)-optimal solution xj s.t.

f(xj;xj−1)− f(x∗j ;xj−1) ≤ δf ; ∥[h(xj)]+∥ ≤ δh.

Among all the candidate solutions across iterations, the method picks xĵ such that ĵ ∈

argmin
j=1,··· ,J

{f(xj−1)− f(xj)} as the output solution.

We use the following criterion to measure the progress of the IPP-LCG method.

Definition 6.3.2. For problem (5.2),

(i) x′ is an (ϵ, δ)-KKT point if x′ ∈ X and there exists (x, y) such that hi(x) ≤ 0, x ∈

158

Algorithm 8 Inexact Proximal Point Level Conditional Gradient Method (IPP-LCG)
Initialization: x0 ∈ X .
for j = 1, 2, . . . , J do

Call LCG to solve (6.2) and return a (δf , δh)-optimal solution xj .
end for
Select ĵ such that ĵ ∈ argmin

j=1,··· ,J
{f(xj−1)− f(xj)}.

Terminate and return xĵ .

X, yi ≥ 0, i = 1, · · · ,m and

m∑
i=1

|yihi(x)| ≤ ϵ,[
d

(
∇f(x) +

m∑
i=1

yi∇hi(x),−NX(x)

)]2
≤ ϵ,

∥x′ − x∥2 ≤ δ,

(6.13)

where ϵ, δ > 0, d(·, ·) denotes the distance between two sets A and B such that

d(A,B) := min
a∈A,b∈B

∥a− b∥;

(ii) x is an ϵ-KKT point (paired with y) if it satisfies the first two criteria in (6.13) with

hi(x) ≤ 0, x ∈ X, yi ≥ 0, i = 1, · · · ,m.

The following two lemmas serve as building blocks for establishing the convergence

rate of IPP-LCG. In particular, Lemma 6.3.1 characterizes an important property of the

optimal solution of the subproblem (6.2) and Lemma 6.3.2 states that the Slater condition

enforces uniform boundness on y∗j .

Lemma 6.3.1. If x∗j is a KKT point (paired with y∗j) of the subproblem (6.2), then ∀x ∈ X ,

f(x;xj−1)− f(x∗j ;xj−1) + ⟨y∗j , h(x)⟩ ≥
Lf

2
∥x∗j − x∥2.

159

Proof. By (6.1), we have that that f(·;x′) is strongly convex. Together by the strong con-

vexity of f(·;xj−1) and convexity of hi(·) as well as the fact that y∗j ≥ 0, we have

f(x;xj−1) + ⟨y∗j , h(x)⟩ ≥ f(x∗j ;xj−1) + ⟨∇f(x∗j ;xj−1), x− x∗j⟩

+
Lf

2
∥x− x∗j∥2 +

m∑
i=1

y∗j,i
(
hi(x

∗
j) + ⟨∇hi(x∗j), x− x∗j⟩

)
≥ f(x∗j ;xj−1) +

Lf

2
∥x− x∗j∥2, ∀x ∈ X,

(6.14)

where the last inequality follows from properties of the KKT point that
m∑
i=1

y∗j,ihi(x
∗
j) = 0

and ∇f(x∗j ;xj−1) +
m∑
i=1

y∗j,i∇hi(x∗j) belongs to the normal cone of X .

Lemma 6.3.2. Suppose there exists x̃ ∈ X such that hi(x̃) < 0, i = 1, · · · ,m, then the

dual solution y∗j is uniformly bounded such that

∥y∗j∥1 ≤
f(x̃)− f ∗ + LfV

∥h(x̃)∥∞
, (6.15)

where ∥ · ∥1 denote the ℓ1 norm and V := max
x,y∈X

1
2
∥x− y∥2.

Proof. Using Lemma 6.3.1 and replacing x with x̃, we have

−⟨y∗j , h(x̃)⟩ ≤ f(x̃;xj−1)− f(x∗j ;xj−1)−
Lf

2
∥x̃− x∗j∥2

= f(x̃)− f(x∗j) + Lf

[
∥x̃− xj−1∥2 − ∥x∗j − xj−1∥2

]
−
Lf

2
∥x̃− x∗j∥2

≤ f(x̃)− f(x∗j) +
Lf

2
∥x̃− xj−1∥2

≤ f(x̃)− f(x∗j) + LfV .

(6.16)

Note that hi(x̃) ≤ −∥h(x̃)∥∞, i = 1, · · · ,m, then −⟨y∗j , h(x̃)⟩ ≥ ∥y∗j∥1∥h(x̃)∥∞.

We are now ready to present the convergence result for the IPP-LCG method.

160

Theorem 6.3.2. The total number of CGO iterations performed by the IPP-LCG method

to compute an (ϵ, ϵ)-KKT point of problem (5.2) is bounded by O
(

1
ϵ3
log(1

ϵ
)
)
.

Proof. From Algorithm 8, we have δf ≥ f(xj;xj−1) − f(x∗j ;xj−1) and δh ≥ ∥h(xj)∥∞.

Define B :=
f(x̃)−f∗+LfV

∥h(x̃)∥∞ , ϵJ := 2
Lf
(δf + Bδh), ϵ′J :=

8Lf

J
[f(x0)− f(xJ)] + δf + Bδh.

Note first, since (x∗
ĵ
, y∗

ĵ
) is a pair of optimal solution of subproblem (6.2), then the comple-

mentary slackness condition in (6.3.2) automatically holds, i.e.
m∑
i=1

|y∗
ĵ,i
hi(x

∗
ĵ
)| = 0, where

y∗
ĵ,i

is the i-th element of y∗
ĵ
.

By Lemma 6.3.1 (replace x with xĵ), we have

∥x∗
ĵ
− xĵ∥

2 ≤ 2

Lf

[
f(xĵ;xĵ−1)− f(x

∗
ĵ
;xĵ−1) + ⟨y

∗
ĵ
, h(xĵ)⟩

]
≤ 2

Lf

(δf +Bδh).

(6.17)

Replacing xwith xĵ−1 in Lemma 6.3.1 and using the relations that f(xĵ;xĵ−1)−f(x∗ĵ ;xĵ−1) ≤

δf as well as h(xĵ) ≤ δh, we obtain

Lf

2
∥x∗

ĵ
− xĵ−1∥

2 ≤ f(xĵ−1)− f(x
∗
ĵ
;xĵ−1) + ⟨y

∗
ĵ
, h(xĵ−1)⟩

= f(xĵ−1)− f(xĵ)− Lf∥xĵ − xĵ−1∥
2 + δf +Bδh

≤ f(xĵ−1)− f(xĵ) + δf +Bδh

≤ 1

J

∑
j=1,··· ,J

f(xj−1)− f(xj) + δf +Bδh

=
1

J
[f(x0)− f(xJ)] + δf +Bδh,

(6.18)

where the third inequality follows from the selection of ĵ in Algorithm 8. Using the above

161

equality, and the KKT condition applied for (6.2), we arrive at

[
d

(
∇f(x∗

ĵ
) +

m∑
i=1

y∗
ĵ
i∇hi(x∗ĵ),−NX(x

∗
ĵ
)

)]2
= 4L2

f∥x∗ĵ − xĵ−1∥
2

≤
8Lf

J
[f(x0)− f(xJ)] + δf +Bδh.

(6.19)

Combining (6.17) and (6.19), we reach the conclusion that xĵ is an (ϵ′J , ϵJ)-KKT point of

problem (5.2). Consequently, given precision ϵ, combining the result in Theorem 5.5.1,

the overall iteration complexity of IPP-LCG solving for an (ϵ, ϵ)-KKT point is bounded by

O
(

1
ϵ3
log(1

ϵ
)
)
.

Note that given a target accuracy ϵ > 0, δf and δh can be selected as in the order of

ϵ such that δf = O(ϵ) and δh = O(ϵ). Moreover, the iteration number J can be fixed to

O(1/ϵ).

It is worth noting that IPP-LCG can also be generalized to solve structured nonsmooth

problems by applying LCG on the nonsmooth convex subproblems. The convergence anal-

ysis in this case is more or less the same as that shown in Theorem 6.3.2.

Observe that IPP-LCG is a triple-layer algorithm as we add an extra proximal point

approximation loop on top of LCG, which already contains one inner oracle and an outer

loop. Hence, it is not very convenient to implement this algorithm. In the next subsection,

we present a more concise and easily implementable algorithm to solve problem (5.2) in

the nonconvex setting.

162

6.4 Direct Nonconvex Conditional Gradients Method

To tackle the nonconvex functional constrained optimization (5.2), one alternative is to

solve its Lagrangian dual given by

min
x∈X

max
y∈Rm

+

{F (x, y) := f(x) +
m∑
i=1

yihi(x)}. (6.20)

In general, F in (6.20) is nonsmooth in x and can be approximated by a smooth function

F̃ (x) := f(x) +
m∑
i=1

yi(x)hi(x)−
c

2
∥y(x)∥2, with y(x) := arg max

y(x)∈Rm
+

F̃ (x) (6.21)

as shown in Lemma 6.4.1 below.

Lemma 6.4.1. F̃ (·) is a smooth function such that ∥∇F̃ (x1) − ∇F̃ (x2)∥ ≤ Lc∥x1 −

x2∥,∀x1, x2 ∈ X , where Lc := Lf +
∥Mh∥∥Lh∥DX

c
+ ∥Mh∥2

c
, Lh := (Lh1 , · · · , Lhm), Mh :=

(Mh1 , · · · ,Mhm) and c > 0.

Proof. Applying the first order optimality on max
y∈Rm

+

f(x) + ⟨h(x), y⟩ − c
2
∥y∥2 at yk−1 and

yk, respectively, we obtain ∀y ∈ Rm
+ ,

⟨h(xk−1)− cyk−1, y − yk−1⟩ ≤ 0, (6.22)

⟨h(xk)− cyk, y − yk⟩ ≤ 0. (6.23)

Furthermore,

c∥yk−1 − yk∥2 ≤ ⟨h(xk−1)− h(xk), yk−1 − yk⟩

≤ ∥h(xk−1)− h(xk)∥∥yk−1 − yk∥

≤ ∥Mh∥∥xk−1 − xk∥∥yk−1 − yk∥,

where the first inequality is by summing up the two inequalities above with y replaced by

163

yk in (6.22) and yk−1 in (6.23); the second inequality follows from the Cauchy Schwarz

inequality; the third one follows by the Lipschitz continuity of h. This gives

∥yk−1 − yk∥ ≤
1

c
∥Mh∥∥xk−1 − xk∥.

Next, we derive a bound for ∥yk∥. Suppose x∗ is an optimal solution of (5.2), then h(x∗) ≤

0. By (6.27) and the Lipschitz continuity of h(·), we have

∥yk∥ ≤ ∥max

{
h(xk)− h(x∗)

c
, 0

}
∥ ≤ ∥h(xk)− h(x

∗)∥
c

≤ ∥Mh∥∥xk − x∗∥
c

≤ ∥Mh∥DX

c
.

Using the above inequality, the smoothness of f and h, we arrive at

∥∇F̃ (xk)−∇F̃ (xk−1)∥

=∥∇f(xk)−∇f(xk−1) + ⟨yk,∇h(xk)⟩ − ⟨yk,∇h(xk−1)⟩+ ⟨yk − yk−1,∇h(xk−1)⟩∥

≤
(
Lf + y⊤k Lh +

∥Mh∥2

c

)
∥xk−1 − xk∥

≤
(
Lf +

∥Mh∥∥Lh∥DX

c
+
∥Mh∥2

c

)
∥xk−1 − xk∥.

Note that, given x, we can obtain the closed form solution of y(x) in (6.21) such that

y(x) = max
{

h(x)
c
, 0
}

. The DNCG method (detailed in Algorithm 9) directly applies the

conditional gradient method on the following approximation problem:

min
x∈X

F̃ (x). (6.24)

More specifically, DNCG takes x0 as input and calculates y0 using the closed form. Then

in each iteration it computes the primal solution xk by calling the linear optimization oracle

in (6.25) and performing convex combination in (6.26). Finally it updates the dual solution

yk in (6.27).

164

Algorithm 9 Direct Nonconvex Conditional Gradient Method (DNCG)
Inputs: c > 0.
Initialization: x0 ∈ X , y0 = max

{
h(x0)

c
, 0
}

.
for k = 1, 2, . . . , K do

pk = argmin
x∈X

⟨∇F̃ (xk−1), x− xk−1⟩, (6.25)

xk = (1− αk)xk−1 + αkpk, (6.26)

yk = max

{
h(xk)

c
, 0

}
. (6.27)

end for

To evaluate the efficiency of the DNCG method applied on problem (5.2) at x̄ ∈ X , we

use the following error measures:

Definition 6.4.1. Given a target accuracy ϵ > 0, x̄ ∈ X is an ϵ-Wolfe point if

Q(x̄) := max
x∈X
⟨∇F̃ (x̄), x̄− x⟩ ≤ ϵ,

∥[h(x̄)]+∥2 ≤ ϵ.

(6.28)

The function Q(x̄) in (6.28), often referred to as the Wolfe gap in projection-free meth-

ods, corresponds to the first-order optimality condition of problem (6.24). This explains

why we call x̄ ∈ X satisfying (6.28) an ϵ-Wolfe point. By the definition of F̃ , we have

∇F̃ (x̄) = ∇f(x̄)+
m∑
i=1

yi(x̄)∇hi(x̄). Hence this first criterion in (6.28) also tells us how the

stationarity of the KKT condition of problem (5.2) is satisfied for a given pair of primal and

dual solution (x̄, y(x̄)) ∈ X×Rm
+ . The second criteria characterizes the constraint violation

at x̄. Note that the ϵ-Wolfe point defined above provides no guarantee of complementary

slackness for the KKT condition of (5.2).

It is worth pointing out here the relationship between the convergence criteria used by

DNCG (see (6.28)) and the one by IPP-LCG (see (6.13)). If x′ is an ϵ-KKT point (see

Definition 6.3.2 (ii).), then h(x′) ≤ 0, so that ∥[h(x′)]+∥2 ≤ 0, which implies the second

condition of the ϵ-Wolfe point. For some y ≥ 0, let r = ∇f(x′) +
m∑
i=1

yi∇hi(x′). Since

[d (r,−NX(x
′))]2 ≤ ϵ, then we can find some g ∈ −NX(x

′) such that ∥g − r∥2 = ϵ and

165

⟨g, x− x′⟩ ≥ 0,∀x ∈ X . Consequently, ∀x ∈ X ,

⟨g − r, x′ − x⟩+ ⟨r, x′ − x⟩ ≤ 0. (6.29)

Let z′ ∈ argmax
x∈X
⟨r, x′ − x⟩. From (6.29), we have

max
x∈X
⟨r, x′ − x⟩ ≤ ⟨g − r, z′ − x′⟩. (6.30)

Taking the square of both sides in (6.30), we obtain

(
max
x∈X
⟨r, x′ − x⟩

)2

≤ ∥g − r∥2∥z′ − x′∥2

≤ ϵD2
X .

(6.31)

The result in (6.31) implies that (Q(x′))2 ≤ ϵD2
X , and thus Q(x′) ≤

√
ϵDX .

Note that an ϵ-KKT point inherits complimentary slackness, which is not a condition

for an ϵ-constrained Wolfe point. However, such ϵ-KKT point is not explicitly computed

by IPP-LCG and it is only used to be measured against the output solution under some

distance, while an ϵ-Wolfe point directly associates with the computed solution of DNCG.

We are now ready to analyze the convergence rate of the DNCG algorithm based on the

criteria in (6.28).

Theorem 6.4.1. The total number of iterations required to compute an approximate solu-

tion x̄ such that Q(x̄) ≤ ϵ and ∥[h(x̄)]+∥2 ≤ ϵ is bounded by O (1/ϵ4).

Proof. Proof. Suppose {xk} is generated by Algorithm 9. Let F̃ ∗ := min
x∈X

F̃ (x), k̂ :=

argmin
0≤k≤K−1

Q(xk), c = 1
K1/4 and αk = 1√

K
, where K is a known priori. By Lemma 6.4.1, we

have

F̃ (xk)−F̃ (xk−1) ≤ ⟨∇F̃ (xk−1), xk−xk−1⟩+
(
Lf +

∥Mh∥∥Lh∥DX

c
+
∥Mh∥2

c

)
∥xk−1−xk∥2.

166

Since by the definition of Q(·) and (6.26),

⟨∇F̃ (xk−1), xk − xk−1⟩ = αk⟨∇F̃ (xk−1), pk − xk−1⟩ = −αkQ(xk−1),

then we have

αkQ(xk−1) ≤ −F̃ (xk) + F̃ (xk−1) +

(
Lf +

∥Mh∥∥Lh∥DX

c
+
∥Mh∥2

c

)
α2
k∥xk−1 − pk∥2.

Summing up the above inequality from k = 1 to K and using the fact that F̃ ∗ ≤ F̃ (xK)

result in

(
K∑
k=1

αk

)
min

1≤k≤K
Q(xk−1) ≤ F̃ (x0)− F̃ ∗ +

(
Lf +

∥Mh∥∥Lh∥DX

c
+
∥Mh∥2

c

)
D2

X

∑
1≤k≤K

α2
k.

(6.32)

Dividing both sides of (6.32) by
K∑
k=1

αk, we obtain

Q(xk̂) ≤
1√
K

[
F̃ (x0)− F̃ ∗ +

Lf

2
D2

X

]
+

1

K1/4

(
∥Mh∥2D2

X

2
+
∥Mh∥∥Lh∥D3

X

2

)
.

(6.33)

Next, we derive a bound for ∥[h(xk̂)]+∥2. Let yki be the i-th element of the vector

yk at iteration k = 1, · · · , K. Note first, if h(xk̂) ≤ 0, then ∥[h(xk̂)]+∥2 = 0. The

analysis below focuses on the case where h(xk̂) > 0. Consequently, by (6.27), we have

yk̂i =
h(xk̂)

c
, i = 1, · · · ,m and

m∑
i=1

yk̂ihi(xk̂) =
m∑
i=1

1

c
(hi(xk̂))

2 . (6.34)

Note also, using the Lipschitz continuity and the lower curvature property of f , it can be

167

easily verified that

⟨∇f(y), x− y⟩ ≤
Lf

2
D2

X +MfDX ,∀x, y ∈ X. (6.35)

Suppose x∗ is the optimal solution of (5.2), then h(x∗) ≤ 0. By convexity of h(·) and the

definition of Q(xk̂) in (6.28), we obtain

m∑
i=1

yk̂ihi(xk̂) ≤
m∑
i=1

yk̂i (hi(x
∗) + ⟨∇hi(xk̂), xk̂ − x

∗⟩)

≤
m∑
i=1

yk̂i⟨∇hi(xk̂), xk̂ − x
∗⟩

≤ Q(xk̂) + ⟨∇f(xk̂), x
∗ − xk̂⟩

≤ Q(xk̂) +
Lf

2
D2

X +MfDX ,

(6.36)

where the first inequality is because of the convexity of h(·), the second inequality is due

to h(x∗) ≤ 0 and yk̂ ≥ 0, the third inequality is by the definition of Q(xk̂) and the last

inequality follows from (6.35). Combining (6.34) and (6.36), we have

∥[h(xk̂)]+∥
2 ≤ c

(
Q(xk̂) +

Lf

2
∥x∗ − xk̂∥

2 + f(x∗)− f(xk̂)
)

≤ 1

K1/4

(
Q(xk̂) +

Lf

2
D2

X +MfDX

)
,

which implies

∥[h(xk̂)]+∥
2 ≤ 1

K3/4

[
F̃ (x0)− F̃ ∗ +

Lf

2
D2

X

]
+

1√
K

(
∥Mh∥2D2

X

2
+
∥Mh∥∥Lh∥D3

X

2

)
+

1

K1/4

Lf

2
D2

X .

(6.37)

Combining (6.33) and (6.37), given target accuracy ϵ > 0, the iteration complexity of

DNCG of solving for x̄ such that Q(x̄) ≤ ϵ and ∥[h(x̄)]+∥2 ≤ ϵ is bounded by O (1/ϵ4).

Remark 6.4.1. In establishing the convergence rate of the DNCG method, we assume that

168

h(·) is a smooth function. Consider now when h(·) is nonsmooth and inherits special struc-

ture as described in (5.40). Similar to Appendix 5.4.2, we can apply Nesterov smoothing

scheme and construct {hi,ηi} such as

hi,ηi(x) := max
z∈Zi

{
⟨Bix, z⟩ − ĥi(z)− ηiUi(z)

}
, i = 1, · · · , m̄. (6.38)

In this way, hi,ηi(x) is a Lhi,ηi-smooth function with Lhi,ηi =
∥Bi∥2
ωi+ηi

. We thereby define the

gap function as Qη(x̄) := max
x∈X
⟨∇F̃η(x̄), x̄ − x⟩, where F̃η(x) = f(x) +

m∑
i=1

yihi,ηi(x) −

c
2
∥y∥2. Let ηi =

∥Mh∥D3
X

K1/8 , ∀i = 1, · · · ,m. Then by Theorem 6.4.1, we have that Qη(x̄) is

upper bounded by O
(
1/K8

)
. By the second relation in (5.41) , we have that ∥[h(xk̂)]+∥2

is upper bounded by O
(
1/K4

)
.

We can also generalize DNCG to solve problems with nonsmooth h(·) by using the

Nesterov smoothing scheme.

6.5 Numerical Experiments

In this section, we demonstrate the efficiency of the proposed algorithms (LCG,IPP-LCG

and DNCG) in two important applications: portfolio selection and the intensity modulated

radiation therapy (IMRT) treatment planning. Numerical comparison with CoexDurCG are

also provided. All experiments are run using Python 3.8.5 under the Ubuntu 20.04.1 LTS

operating system with a 4.20 GHz Intel Core i7 processor and 32Gb RAM.

6.5.1 Portfolio Selection

In this section, we first introduce the portfolio selection problem with and without cardinal-

ity constraint, and then apply LCG, IPP-LCG and DNCG to solve the formulated convex

and nonconvex models using the real-world stock market dataset.

169

Models

Consider selecting portfolio amongN risky assets with random return ri, i = 1, · · · , N and

random target returnR (a.k.a. market index). Let xi be the decision variable that determines

the weight of the i-th asset to be chosen, i = 1, · · · , N , such that
N∑
i=1

xi ≤ 1. The goal is

to minimize the risk that the overall return is below the target return in expectation, i.e.,

E
[
1{R−

N∑
i=1

rixi > 0}
]

, or, equivalently, P
(
R−

N∑
i=1

rixi > 0

)
, where 1{x > 0} = 1 if

x > 0 and 0 otherwise. Given K samples of R and ri, i = 1, · · · , N , the sample average of

the risk can be written as

1

K

K∑
k=1

1{Rk −
N∑
i=1

rikxi > 0}. (6.39)

Cardinality-free Models. Let the function in (6.39) be the objective function. We can

formulate the following cardinality-free nonconvex model:

min
x

f(x) :=
1

K

K∑
k=1

1{Rk −
N∑
i=1

rikxi > 0}

s.t&
N∑
i=1

xi ≤ 1,

xi ≥ 0, i = 1, · · · , N.

(Card-Free-Nonconvex)

The objective function in model (Card-Free-Nonconvex) is a step function, which is

discontinuous and nonconvex. To implement the proposed algorithms solving the model

(Card-Free-Nonconvex), we employ a nonconvex smooth approximation of f(x) parame-

terized with θ such as f̃θ(x) = 1
K

K∑
k=1

1
1+exp{(−Rk+

∑
i∈I

rikzi)/θ}
. Clearly, f̃θ → f when θ → 0.

Now we discuss how to approximate the nonconvex model (Card-Free-Nonconvex)

using the convex formulation. Define ϕ(x) := [1 + x]+. Since for some t > 0, ϕ(tx) ≥ 1,

170

then for a random variable X , we have

inf
t>0

E[ϕ(tX)] ≥ E
[
1{X>0}

]
. (6.40)

Consequently, instead of minimizing E
[
1{X>0}

]
, we minimize its upper bound inf

t>0
E[ϕ(tX)],

which is equivalent to minimizing inf
t>0

E[ϕ(tX)]−α, where α can be regarded as some con-

fidence level such that α > 0. Note that

inf
t>0

E[ϕ(tX)]− α = inf
u∈R
{u+ α−1E[X − u]+}

and the minimum of the right-hand-side of the above inequality falls in [u, ū], where where

u and ū are the respective left and right side 1 − α quantile of the distribution of X . Co-

incidentally, inf
u∈R
{u + α−1E[X − u]+} is the Conditional-Value-at-Risk (CVaR) measure

that is convex. Leveraging such approximation, we arrive at the convex approximation of

the nonconvex model in (Card-Free-Convex).

Using the Conditional-Value-at-Risk approximation as described above, we can also

transform the above nonconvex model into a convex one:

min
u,x

f(x, u) :=u+
1

αK

K∑
k=1

[
−u+Rk −

N∑
i=1

rikxi

]
+

s.t
N∑
i=1

xi ≤ 1,

xi ≥ 0, i = 1, · · · , N,

u ≤ u ≤ ū.

(Card-Free-Convex)

Cardinality-constrained Models. In practice, decision makers intend to select only a

portion of the available assets due to restrictions arising from transaction costs, budget

constraints, etc. Such cardinality requirement can be included using the sparsity constraint
N∑
i=1

1{xi > 0}−Ψ ≤ 0, where Ψ is a given number of allowed selected assets. We can also

171

derive its convex approximation as

N∑
i=1

v +Ψ−1[xi − v]+ ≤ 0, v ≤ v ≤ v̄. (6.41)

For the cardinality-constrained portfolio selection problem, we develop the following

convex and nonconvex models:

1. Incorporate (6.41) in (Card-Free-Convex) (Card-Convex)

2. Incorporate constraint (6.41) in (Card-Free-Nonconvex) (Card-Nonconvex-1)

3. Add a weighted objective term
1

Ψ

N∑
i=1

1{xi > 0} in (Card-Free-Nonconvex)

(Card-Nonconvex-2)

In model (Card-Nonconvex-2), to make the objective function continuous, we use the

smooth approximation function 1
Ψ

N∑
i=1

1
1+exp{(−xi)/θ} to replace the step function in imple-

mentation.

Although the aforementioned convex and nonconvex models (with and without cardi-

nality constraint) have different objective functions, the true objective is the risk in (6.39).

Therefore, to evaluate the effectiveness and compare the performance of different algo-

rithms, we focus on the value of (6.39) and the number of selected assets (mainly for

cardinality-constrained models) computed by the algorithms.

Tests on Stock Market Dataset

To evaluate the proposed algorithms, we test the cardinality-free and cardinality-constrained

models from Section 6.5.1 using the historical stock data from six major stock markets

provided by Thomson Reuters Datastream and Fama & French Data Library. The dataset

contains weekly returns {rik} for N assets and market indices (target level) {Rk} across K

172

weeks. In the original dataset, the value of Ψ for the cardinality constraint is not available.

We construct it by the following rule: Ψ = ⌊0.2 ∗ N⌋ if N ≤ 100 and Ψ = ⌊0.05 ∗ N⌋ if

N > 100. Table 6.1 lists some key information about the six datasets and we refer to [121]

for more details.

Table 6.1: Features of the stock market dataset.

Instance Description # of assets (N) # of weeks (K) Cardinality (Ψ)

DJ Dow Jones Industrial Average (USA) 28 1363 5
FF49 Fama and French 49 Industry (USA) 49 2325 9
ND100 NASDAQ 100 (USA) 82 596 16
FTSE100 FTSE 100 (UK) 83 717 16
SP500 S&P 500 (USA) 442 595 22
NDComp NASDAQ Composite (USA) 1203 685 60

In all experiments, to implement the proposed algorithms, we employ a nonconvex

smooth approximation of the step functions in the objective of (Card-Free-Nonconvex) and

(Card-Nonconvex-2) (see Appendix ??). The initial values of xi are set to zero. In the

tables below, we use the following notations: (1) “f(xN)” stands for the objective value

and “∥h(xN)∥2” for the norm of the cardinality constraint violation (|
N∑
i=1

xi − Ψ|); (2)

“Risk” is the value in (6.39) (it is the same as f(xN) in the nonconvex models); (3) “# ass.”

represents the number of selected assets, i.e. the number of {xi} that are nonzero; (4) “Card

vio.” records the values of cardinality violation such that Card. vio. = max(# ass. −Ψ, 0);

(5) “Time(s)” is the CPU time in seconds.

Results of Cardinality-free Models. Table 6.2 and Table 6.3 report the computational

results of applying LCG, DNCG and IPP-LCG to solve the cardinality-free models. All

algorithms are terminated when the number of iteration reaches 100. In particular, for LCG

and IPP-LCG, the number of iterations is the total iterations to run CGO. To examine the

sparsity of the solutions, we record the values of cardinality violation, although no cardi-

nality control is imposed in this case. From these tables, we observe that LCG, DNCG and

IPP-LCG solve the models efficiently and yield relatively small risk. Without cardinality

173

control, however, the numbers of selected assets returned by all these algorithms are larger

the required cardinality Ψ.

Table 6.2: Results of solving model (Card-Free-Convex) by LCG.

Instance
LCG

f(xN) Risk # ass. Card. vio. Time (s)

DJ 0.0102 0.0168 28 23 0.0262
FF49 0.0021 0.0082 45 36 0.0485
ND100 0.0057 0.0184 51 35 0.023
FTSE100 0.0063 0.0181 46 30 0.025
SP500 0.0063 0.0185 66 44 0.0412
NDComp 0.0162 0.0292 83 23 0.141

Table 6.3: Results of solving model (Card-Free-Nonconvex) by DNCG and IPP-LCG.

Instance
DNCG IPP-LCG

Risk(f(xN)) # ass. Card. vio. Time (s) Risk(f(xN)) # ass. Card. vio. Time (s)

DJ 0.019 27 22 0.0159 0.0183 27 22 0.0383
FF49 0.0077 48 39 0.0367 0.0082 43 34 0.0588
ND100 0.0167 48 32 0.0179 0.0184 51 35 0.0165
FTSE100 0.0139 50 34 0.0161 0.0153 48 32 0.0255
SP500 0.0151 63 41 0.0322 0.0067 81 59 0.047
NDComp 0.0204 78 18 0.1557 0.0219 72 12 0.186

Results of Cardinality-constrained Models. For the developed cardinality-constrained

models in Section 6.5.1, we solve them by LCG, DNCG and IPP-LCG, respectively, and

report the numerical results in Table 6.4 - 6.6 accordingly. Intuitively, when restricting to

a small pool of assets, the risk of not reaching the market index increases. As shown in

Table 6.4 - 6.6, the risk (6.39) is higher than the one from the cardinality-free models (see

Table 6.2 - 6.3). Nevertheless, with the cardinality constraint, all algorithms select a much

smaller number of assets in a similarly efficient manner. Comparing all three algorithms,

the nonconvex methods meet the cardinality requirement more strictly than their convex

counterpart while the DNCG method applied on model (Card-Nonconvex-2) meet the car-

dinality requirement for all the instances and consumes the least CPU time for most of the

174

instances.

Table 6.4: Results of solving model (Card-Convex) by LCG.

Instance
LCG

f(xN) ∥h(xN)∥2 Risk # ass. Card. vio. Time (s)

DJ 0.0429 0.1029 0.1056 10 5 0.0467
FF49 0.0445 0.0717 0.248 13 4 0.0758
ND100 0.0306 0.0423 0.1208 22 6 0.0578
FTSE100 0.0223 0.0344 0.0586 22 6 0.0423
SP500 0.0253 0.0296 0.1076 28 6 0.0656
NDComp 0.0257 0 0.0175 60 0 0.266

Table 6.5: Results of solving model (Card-Nonconvex-1) by IPP-LCG.

Instance
IPP-LCG

Risk(f(xN)) ∥h(xN)∥2 # ass. Card. vio. Time (s)

DJ 0.1012 0.0844 8 3 0.0509
FF49 0.228 0.0559 12 3 0.0801
ND100 0.0586 0.0264 20 4 0.059
FTSE100 0.1158 0.0401 20 4 0.0443
SP500 0.1042 0.018 28 6 0.0777
NDComp 0.0146 0 59 0 0.349

Table 6.6: Results of solving model (Card-Nonconvex-2) by DNCG.

Instance
DNCG

Risk(f(xN)) # ass. Card. vio. Time (s)

DJ 0.1071 5 0 0.0293
FF49 0.206 8 0 0.0361
ND100 0.0872 15 0 0.0174
FTSE100 0.0516 16 0 0.0202
SP500 0.0756 21 0 0.0547
NDComp 0.0365 58 0 0.326

Finally, we apply the CoexDurCG algorithm proposed in [31] to solve model (Card-

Convex) and report the results in Table 6.7. Compared with LCG (see Table 6.4), for

instances with smaller asset pool such as “DJ”, “FF49” and “ND100”, CoexDurCG re-

turns higher risk and selects more assets than LCG; for instances with larger pool such as

175

“FTSE100” “SP500” and “NDComp”, CoexDurCG produces sparser solutions with less

cardinality violation but the computed risk is higher and consumes more CPU time.

Table 6.7: Results of solving model (Card-Convex) by CoexDurCG.

Instance
CoexDur CG

Iter. f(xN) ∥h(xN)∥2 Risk # ass. Card. vio. Time (s)

DJ 100 0.0569 0.0559 0.1079 13 8 0.0443

FF49 100 0.0483 0.0716 0.275 11 2 0.1189

ND100 100 0.0473 0.0295 0.1644 22 6 0.0444

FTSE100
100 0.0425 0.0198 0.1074 12 0 0.06658
150 0.0379 0.0159 0.09903 16 0 0.08253

SP500
100 0.0396 0.0088 0.1143 9 0 0.0693
500 0.027 0.0072 0.0891 17 0 0.4889

NDComp
100 0.0364 0.0017 0.0788 26 0 0.162
500 0.0211 0.0021 0.0365 43 0 0.6148

1000 0.0169 0.0018 0.0219 57 0 0.968

6.5.2 IMRT Treatment Planning

In this section, we first overview the IMRT treatment planning problem and formulate it

as convex or nonconvex models. We then test the performance of LCG and DNCG for

solving these models on four randomly generated data instances and one real-world dataset

obtained from the Prostate database (https://github.com/cerr/CERR/wiki).

Models

During the radiation therapy treatment, a patient receives prescribed radiation doses from a

linear accelerator (linac), which is comprised of a set of angles (a ∈ A) and in each angle,

different apertures (e ∈ Ea) can be formed to determine the doses intensity. The decisions

of the treatment planning problem consist of the selection of a set of angles and apertures

as well as the determination of the doses intensity, in an effort to deliver a certain level

of radiation to the tumor tissues and avoid overdoses on the healthy ones. To elaborate,

for each patients, the target body structures are discretized into small voxels v and the

176

https://github.com/cerr/CERR/wiki

collection of all voxels is denoted by V . In the linac, each angle a ∈ A contains rectangular

grids of beamlet (l, r), l = 1, · · · ,m, r = 1, · · · , n, which can stay active or blocked. An

aperture e ∈ Ea of an angle a is then determined by the status of the beamlets. A set

of binary variables {xa,el,r } are created to decide the shape of the aperture e from angle a.

Specifically, xa,el,r = 1 if beamlet (l, r) is active, and xa,el,r = 0 if beamlet (l, r) is blocked.

An additional set of variables {ya,e} are created to decide the intensity rate of the selected

aperture e, where e ∈ Ea. The unit intensity delivered to voxel v from beamlet (l, r) is

denoted by D(l,r)v in Gy. Then the total amount of radiation received by voxel v is

zv =
∑
a∈A

∑
e∈Ea

m∑
l=1

n∑
r=1

RD(l,r)vx
a,e
lr ya,e, ∀v ∈ V .

We use k to index the underdose/overdose clinical criteria, where k ∈ Ku(k ∈ Ko) denote

the underdose (overdose) criterion and Sk to denote the set of structures in criterion k,

where Sk ⊂ V , k ∈ Ku

⋃
Ko. Additionally, we denote the number of voxels in V by Nv,

the number of voxel in Sk by Nk and the required quantile of criterion k by pk.

A desirable treatment plan operates only on a small number of angles in order to reduce

the operation time. To serve the purpose, a group sparsity constraint (parameterized on

Φ > 0) is included as proposed in [31] in the optimization model:

∑
a∈A

max
e∈Ea

ya,e ≤ Φ, (6.42)

where ya,e are decision variables of intensity rate of the selected aperture e. Moreover, it is

crutial to satisfy the required clinical criteria on particular body structures (mathematically

discretized into small voxels). For instance, in the Prostate dataset,

• underdose criteria “PTV68: V68 ≥ 95%”: the percentage of voxels in structure

PTV68 that receive at least 68 Gy dose should be at least 95%;

• overdose criteria “PTV68: V74.8 ≤ 10%”: the percentage of voxels in structure

177

PTV68 that receive at least 74.8 Gy dose should not be over 10%.

A conventional way to model the clinical criteria is by risk averse constraints, in an at-

tempt to avoid underdose (resp. overdose) to tumor (resp. healthy) structures. To be more

precise, let X be the random variable that denotes the amount of radiation received by a

randomly selected voxel in certain structure. For some properly chosen right hand side b,

the underdose/overdose criteria can be modeled by

sup{τ : P (X < τ) ≤ α} ≥ b, (underdose) (6.43)

inf{τ : P (X > τ) ≤ α} ≤ b. (overdose) (6.44)

Convex Formulation. Note that the left hand side in both (6.43) and (6.44) are noncon-

vex and we use CVaR for approximation in the convex formulation stated below. Follow

the description in [31], the convex model is adapted as follow:

min f(z) :=
1

Nv

∑
v∈V

wv [T v − zv]
2
+ + w̄v

[
zv − T̄v

]2
+

(6.45)

s.t. − τk +
1

pkNk

∑
v∈Sk

[τk − zv]+ ≤ −bk, ∀k ∈ Ku, (6.46)

τk +
1

pkNk

∑
v∈Sk

[zv − τk]+ ≤ bk, ∀k ∈ Ko, (6.47)

zv =
∑
a∈A

∑
e∈Ea

m∑
l=1

n∑
r=1

RD(l,r)vx
a,e
lr ya,e, ∀v ∈ Sk, k ∈ Ku ∪Ko, (6.48)

∑
a∈A

max
e∈Ea

ya,e ≤ Φ, (6.49)

∑
a∈A

∑
e∈Ea

ya,e ≤ 1, (6.50)

ya,t ≥ 0, (6.51)

τk ≤ τ̄k, k ∈ Ku ∪Ko, (6.52)

τk ≥ τ k, k ∈ Ku ∪Ko. (6.53)

178

The objective function f(z) in (6.45), serving as a convex surrogate of the clinical crite-

ria, penalizes underage and overage dose of a voxel with pre-defined threshold Tv, T̄v and

weights wv, w̄v, where [·]+ denotes max(·, 0). To reinforce the clinical criteria, constraints

(6.46) and (6.47) are added. To solve the convex model by the LCG method, smoothing

scheme (with entropy distance generating function) is applied on all nonsmooth functionals

((6.46),(6.47) and (6.49)), which includes construction of {hi,ηi} as indicated in Algorithm

5 for nonsmooth underdose/overdose constraints and the group sparsity constraint.

However, in this formulation, more decision variables (e.g. τk) and parameters (e.g. bk)

are needed to refine the approximation, to which the solutions could be very sensitive.

Nonconvex Formulation. To alleviate the side effects caused by the convex approxi-

mation, we attempt to formulate the objective function using (6.43) and (6.44) directly.

Specifically, we minimize the weighted sample average of P (X > τ) for overdose criteria

and P (X < τ) for underdose criteria. The nonconvex model uses the original clinical

criteria in the objective while subjecting to the group sparse constraint (6.42). The exact

nonconvex formulation is described as follow.

min f(z) :=
∑
k∈Ku

wk

Nk

∑
v∈Sk

1{zv<τk} +
∑
k∈Ko

wk

Nk

∑
v∈Sk

1{zv>τk}

s.t. zv =
∑
a∈A

∑
e∈Ea

m∑
l=1

n∑
r=1

RD(l,r)vx
a,e
lr ya,e, ∀v ∈ Sk, k ∈ Ku ∪Ko,

∑
a∈A

max
e∈Ea

ya,e ≤ Φ,

∑
a∈A

∑
e∈Ea

ya,e ≤ 1,

ya,e ≥ 0.

(6.54)

Here {wk} is a set of weights for underdose and overdose objective terms; f(·) is a step

function which is nonconvex and discontinuous; {τk} are parameters given by the clini-

cal criteria, instead of decision variables to calibrate the approximation in the case of the

179

convex formulation. To solve the model by the proposed algorithm, we employ a sig-

moid function (parameterized on θ) to approximate the original function. Specifically, for

k ∈ Ku, the approximation reads

f̃k
θ (x) =

1

Nk

∑
v∈Sk

1

1 + exp{(zv − τk)/θ}
. (6.55)

Similarly, for k ∈ Ko,

f̃k
θ (x) =

1

Nk

∑
v∈Sk

1

1 + exp{(−zv + τk)/θ}
. (6.56)

Note that when θ → 0, f̃θ → f and f̃θ is nonconvex.

Tests on Synthetic Dataset

The synthetic dataset used in Section 6.5 mimics the IMRT dataset of a real patient, with

each containing information of (discretized) voxels, beamlet coodinates and corresponding

unit intensity (D matrix) received by each voxel. In particular, each angle pairs with a D

matrix with dimension of # of voxels × # of beamlets, and there are 180 D matrices in

total. In particular, the number of beamlets is determined by the discretization granularity

(beamlet unit length).

Table 6.8 describes main features of each dataset, where “Granularity” stands for beam-

let unit length. Instance 1 and 2 (resp. instance 3 and 4) are featured in lower (resp. higher)

beamlet granularity and have the same set of D matrices and voxels. Higher discretization

accuracy (e.g. 0.25) results in larger number of beamlets, thus in higher dimension of D

matrix. Therefore, instance 3 and 4 are in larger scale than instance 1 and 2. Among all

the voxels, we randomly select two sets of tumor tissues that require radiation therapy and

treat the rest as the healthy ones. For the tumor issues, we consider two underdose and one

overdose constraints.

We compare the performance of CoexDurCG and LCG applied on the convex formu-

180

Table 6.8: Features of the synthetic dataset

Instance # of angels # of voxels # of beamlets Accuracy bk pk

1 180 4096 100 1.0 [40, 50, 100] [0.01, 0.01, 0.05]
2 180 4096 100 1.0 [50, 60, 80] [0.01, 0.01, 0.01]
3 180 262144 2000 0.25 [40, 50, 100] [0.01, 0.01, 0.05]
4 180 262144 2000 0.25 [50, 60, 80] [0.01, 0.01, 0.01]

lation (Φ = 0.005 in (6.42)) using the aforementioned synthetic datasets and report the

results in Table 6.10. In this table, the primal variable is denoted by xN and the vector of

constraints by h(xN) = (hs;hc), including the CVaR constraints hc (for clinical criteria)

and the group sparsity constraint hs. We see that both algorithms consume similar CPU

time to run 1000 iterations. This is expected as they are projection-free type algorithms

and not required to compute full gradients of potentially high-dimensional decision vari-

ables. Besides, over all instances, both algorithms return similar objective values. However,

CoexDurCG returns a solution that results in larger constraint violation, especially in the

clinical constraints.

We also provide numerical results of running LCG on various Φ. Table 6.9 displays

the results of applying LCG to solve the convex formulation (6.45) - (6.53) with various

Φ. From the table, we observe that regardless of the large difference in scale among the

instances, the proposed algorithm LCG exhibits comparable performance in solving all

instances in view of the objective value and constraint violation at iteration 1000. By com-

paring instance 1 and instance 2 (namely, instance 3 and instance 4), we see that the values

of ∥h(xN)∥2 in instance 1 (resp. instance 3) remain lower than those in instance 2 (resp.

instance 4). Such results indicate that the satisfaction of the constraints are sensitive to

the choice of (bk, pk) thus to the decision variable τk, which jointly determine the CVaR

approximation. An additional observation is that when Φ decreases (i.e. sparsity require-

ment is more stringent), the violation of the group sparsity constraint increases, which is

an expected effect of Φ.

181

Table 6.9: Results of applying LCG on the synthetic dataset at iteration 1000.

Instance Φ
LCG

f(xN) ∥h(xN)∥2 ∥hs∥2 ∥hc∥2 Time (s)

1

1.0 0.0136 0.319 0 0.319 901
0.5 0.0142 0.326 0 0.326 914

0.05 0.0156 0.449 0.302 0.332 948
0.005 0.0193 0.528 0.421 0.319 924
0.0005 0.0174 0.576 0.499 0.288 938

2

1.0 0.0156 0.626 0 0.626 916
0.5 0.0161 0.628 0 0.628 923

0.05 0.0197 0.702 0.291 0.639 942
0.005 0.019 0.763 0.402 0.649 908
0.0005 0.0142 0.815 0.476 0.662 949

3

1.0 0.0479 0.434 0 0.434 4678
0.5 0.0466 0.436 0 0.436 4726

0.05 0.0514 0.451 0.087 0.442 4685
0.005 0.047 0.476 0.169 0.445 4834
0.0005 0.048 0.493 0.188 0.456 4842

4

1.0 0.0421 0.919 0 0.919 4766
0.5 0.0441 0.943 0 0.943 4762

0.05 0.0498 0.969 0.068 0.967 4813
0.005 0.0435 0.984 0.175 0.968 4871
0.0005 0.0433 0.975 0.201 0.954 4772

Tests on Prostate Dataset

In this part, we conduct numerical experiments on a publicly available dataset of a patient

with prostate cancer. The dataset has 3, 047, 040 voxels and 180 angles, with the gran-

ularity of beamlets grids (beamlet unit length) equal to 1.0 for each angle. The average

number of beamlets is 155. As such, the dimension of the data matrices reaches more than

3, 047, 040× 155× 180. More importantly, the dataset contains 10 clinical criteria for six

structures: PTV56: V56≥ 95%; PTV68: V68≥ 95%, V74.8≤ 10%; Rectum: V30≤ 80%,

V50≤ 50%, V65≤ 25%; Bladder V40≤ 70%, V65≤ 30%; Left femoral head: V50≤ 1%;

Right femoral head: V50≤ 1%. In our numerical study, the obtained solution is evaluated

by whether it satisfies all above the clinical criteria.

This IMRT problem with Prostate dataset is notoriously difficult for the following chal-

182

Table 6.10: Results of applying CoexDurCG on synthetic data with Φ = 0.005 at iteration
1000.

Instance CoexDurCG LCG
f(xN) ∥h(xN)∥2 ∥hs∥2 ∥hc∥2 Time (s) f(xN) ∥h(xN)∥2 ∥hs∥2 ∥hc∥2 Time (s)

1 0.0193 0.984 0.641 0.747 926 0.0193 0.528 0.421 0.319 924

2 0.0166 1.643 0.614 1.524 996 0.019 0.763 0.402 0.649 908

3 0.0467 1.043 0.205 1.023 4889 0.047 0.476 0.169 0.445 4834

4 0.0465 3.193 0.208 3.186 4867 0.0435 0.984 0.175 0.968 4871

lenges.

First, the aforementioned clinical criteria inherit potential contradiction. For example,

the tumor structure “PTV68” and the healthy structures “Bladder” and “Rectum” are very

close, but it is required that at least 95% of the tumor structure receives no less than 68 Gy

dose while strict percentage cap is placed on the dose received by the healthy ones.

Second, it is difficult to meet the underdose and overdose clinical criteria simultane-

ously for the “PTV68” structure. To see this, the difference between the upper dose limit

(74.8 Gy) and the lower dose limit (68 Gy) is very close, which implies that one necessary

condition to satisfy the underdose and overdose criteria is that at least 90% of the received

dose should fall in [68, 74.8].

Third, in order to shorten the operation time, we need to select small number of angles

with no more than 100 apertures in total. Such requirements are potentially conflicting with

accomplishing the target of dose delivery. Therefore, the model and algorithms should be

designed to make smart trade-offs.

Last, the dimension of the data matrices are over 3 million × 155 × 180, leading to

high dimensional decision space with potential size larger than 180 × 4510, which is quite

computationally cumbersome, and prevents any methods requiring full gradient computa-

tion.

Results of the Convex Formulation. We apply the LCG algorithm to solve the convex

formulation. In Table 6.11, we summarize the treatment plan (number of angles, number

183

of apertures) constructed by LCG and the number of iterations needed to deliver the plan.

From the table, we see that when Φ is smaller, the algorithm tends to select less angles,

which is an expected effect of the group sparsity constraint.

Table 6.11: Treatment plans constructed by LCG on Prostate dataset with different Φ.

Φ # of iter. # of angels # of apertures

1.0 100 27 99
0.5 85 17 84

0.005 63 6 62
0.0005 78 5 77

Table 6.12 details the fulfillment of the clinical criteria for different sparsity parameters

Φ. Here in the table, each column (starting from the second one) represents the clinical

criteria (criterion) of particular structure. For each of them (e.g. PTV68 / V68≥ 95%), the

first line (e.g. PTV68) indicates the treated structure; in the second line (and onwards), take

“V68≥ 95%” as an instance, it means that the percentage of voxels that receive at least 68

Gy dose (V68) should be no less than 95% (≥ 95%); in the instance of “V74.8≤10%”, it

means that the percentage of voxels that receive at least 74.8 Gy dose (V74.8) should be

no larger than 10% (≤ 10%). In each line at each cell of the table, we record such voxel

percentages correspondingly computed by the algorithm. In the case of “V68≥ 95%”,

when the recorded value is no less than 0.95, then the clinical criterion “PTV68 / V68≥

95%” is satisfied; in the case of “V74.8≤10%”, when the recorded value is no larger than

0.1, then the clinical criterion “PTV68 / V74.8≤10%” is satisfied.

From the displayed results in Table 6.12, when Φ = 0.005, the algorithm returns fairly

good solution in terms of satisfying all clinical criteria, except for the criterion PTV68:

V74.8 ≤ 10%. From the clinical perspective, when it is very difficult to satisfy all the

clinical criteria (e.g., trade-offs between angle sparsity and clinical criteria satisfaction),

priority is to given to the underdosing criteria of the tumor structures and the overdosing

ones of the healthy structures so as to guarantee the overall effectiveness of the treatment.

In our situation, the only restriction we can possibly relax is the overdose criterion of the

184

tumor structure PTV68: V74.8 ≤ 10%. According to the results in Table 6.12, when

Φ = 0.005, since the violation of this criterion does not affect the satisfaction of other

criteria, the output solution still accounts for a desirable treatment plan with respect to the

number of selected angles and the satisfaction of the clinical criteria when combining the

results in Table 6.11.

Table 6.12: Results of applying LCG on Prostate dataset.

Φ

PTV56 PTV68 Rectum Bladder Lft. fermoral head Rht. femoral head
V56≥ 95% V68≥ 95% V30≤ 80% V40≤ 70% V50≤ 1% V50≤ 1%

V74.8≤ 10% V50≤ 50% V65≤ 30%
V65≤ 25%

1.0
0.9997 0.9647 0.6825 0.5365 0.0011 0.001

0.1593 0.2188 0.2179
0.0601

0.5
0.9996 0.9536 0.7126 0.5239 0.01 0.0023

0.1423 0.2455 0.2115
0.0533

0.005
0.9987 0.9544 0.7778 0.552 0.0024 0.0

0.1263 0.3786 0.2287
0.0561

0.0005
0.9994 0.9056 0.7998 0.6198 0.0003 0.0022

0.1151 0.3804 0.2556
0.1071

Results of the Nonconvex Formulation. We apply the DNCG method to solve the non-

convex formulation. In this case, the sparsity parameter Φ is set to be 0.005 provided that

it demonstrates the best numerical performance in the convex case. We provide two types

of results:

1. DNCG: run the algorithm on a set of trivially generated initial points.

2. LCG initial + DNCG: run DNCG with a set of initial solutions computed by LCG.

For implementation of “LCG initial + DNCG”, the starting point is obtained by solving the

convex model with sparsity parameter Φ = 0.005 at iteration 63 (see Table 6.11 and 6.12).

185

In this way, the initial solution is feasible in terms of satisfying all clinical criteria except

for “PTV 68: V74.8 ≤ 10%”. Results of a treatment plan (selected angles/apertures) con-

structed by the proposed algorithms are shown in Table 6.13. In Table 6.14, we demonstrate

the fulfillment of the clinical criteria by applying DNCG with two different initialization

schemes as mentioned above. With the trivial initialization, the DNCG algorithm produces

a solution that meets all criteria, even for the hard criterion “PTV 68: V74.8 ≤ 10%”. One

downside is that it selects more angles and consumes more number of iterations, compared

to the LCG algorithm. With warm-up initialization, DNCG selects less number of angles

and requires less number of iterations while satisfying all clinical criteria.

Table 6.13: Treatment plans constructed by DNCG with different initial conditions on
Prostate dataset.

Type Φ # of iter. # of angels # of apertures

DNCG 0.005 96 14 83
LCG initial + DNCG 0.005 63(convex)+17(nonconvex) 9 75

Table 6.14: Results of applying DNCG and LCG initial+ DNCG on Prostate dataset.

Type Φ

PTV56 PTV68 Rectum Bladder Lft. fermoral head Rht. femoral head
V56≥ 95% V68≥ 95% V30≤ 80% V40≤ 70% V50≤ 1% V50≤ 1%

V74.8≤ 10% V50≤ 50% V65≤ 30%
V65≤ 25%

DNCG 0.005
0.9522 0.9549 0.7506 0.5299 0.0012 0.0

0.0104 0.2772 0.2405
0.0743

LCG initial
+ DNCG 0.005

0.9571 0.9503 0.7829 0.5411 0.00067 0.0
0.0126 0.3844 0.2204

0.0884

186

REFERENCES

[1] V. Guigues, A. Shapiro, and Y. Cheng, “Duality and sensitivity analysis of mul-
tistage linear stochastic programs,” European Journal of Operational Research,
2022.

[2] A. Shapiro and Y. Cheng, “Dual bounds for periodical stochastic programs,” Oper-
ations Research, 2022.

[3] A. Shapiro and Y. Cheng, “Central limit theorem and sample complexity of sta-
tionary stochastic programs,” Operations Research Letters, vol. 49, pp. 676–681,
2021.

[4] V. Guigues, A. Shapiro, and Y. Cheng, “Risk-averse stochastic optimal control: An
efficiently computable statistical upper bound,” Operations Research Letters, 2022.

[5] Y. Cheng, G. Lan, and H. E. Romeijn, “Functional constrained optimization for risk
aversion and sparsity control,” arXiv preprint arXiv:2210.05108, 2022.

[6] A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures on stochastic program-
ming: modeling and theory. SIAM, 2021.

[7] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, “Coherent measures of risk,”
Mathematical Finance, vol. 9, pp. 203–228, 1999.

[8] H. Föllmer and A. Schied, Stochastic Finance: An Introduction in Discrete Time,
2nd. Walter de Gruyter, Berlin, 2004.

[9] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on Stochastic Program-
ming: Modeling and Theory, third. Philadelphia: SIAM, 2021.

[10] V. Guigues and W. Römisch, “Sampling-based decomposition methods for mul-
tistage stochastic programs based on extended polyhedral risk measures,” SIAM
Journal on Optimization, vol. 22, pp. 286–312, 2 2012.

[11] M. Shaked and J. Shanthikumar, Stochastic Orders and their Applications. Proba-
bility and Mathematical Statistics. Academic Press Inc., Boston, MA, 1994.

[12] A. Muller and D. Stoyan, Comparison Methods for Stochastic Models and Risks.
Wiley Series in Probability and Statistics. John Wiley Sons Ltd., Chichester, 2002.

[13] G. Bayraksan and D. K. Love, “Data-driven stochastic programming using phi-
divergences,” Tutorials in Operations Research, INFORMS, pp. 1563–1581, 2015.

187

[14] A. Ben-Tal and M. Teboulle, “Penalty functions and duality in stochastic pro-
gramming via phi-divergence functionals,” Mathematics of Operations Research,
vol. 12, pp. 224–240, 1987.

[15] B.-T. A. and T. M., “An old-new concept of convex risk measures: The optimized
certainty equivalent,” Mathematical Finance, vol. 17, pp. 449–476, 3 2007.

[16] A. J. Kleywegt, A. Shapiro, and T. Homem-de-Mello, “The sample average ap-
proximation method for stochastic discrete optimization,” SIAM Journal on Opti-
mization, vol. 12, no. 2, pp. 479–502, 2002.

[17] A. Shapiro, “On complexity of multistage stochastic programs,” Operations Re-
search Letters, vol. 34, no. 1, pp. 1–8, 2006.

[18] M. V. Pereira and L. M. Pinto, “Multi-stage stochastic optimization applied to en-
ergy planning,” Mathematical programming, vol. 52, no. 1, pp. 359–375, 1991.

[19] J. R. Birge, “Decomposition and partitioning methods for multistage stochastic lin-
ear programs,” Operations research, vol. 33, no. 5, pp. 989–1007, 1985.

[20] G. Lan, “Complexity of stochastic dual dynamic programming,” Mathematical
Programming, pp. 1–38, 2020.

[21] A. Shapiro, “Analysis of stochastic dual dynamic programming method,” European
Journal of Operational Research, vol. 209, no. 1, pp. 63–72, 2011.

[22] L. Ding, S. Ahmed, and A. Shapiro, “A python package for multi-stage stochastic
programming,” Optimization online, pp. 1–41, 2019.

[23] G. Lan, First-order and Stochastic Optimization Methods for Machine Learning.
Springer.

[24] M. Frank and P. Wolfe, “An algorithm for quadratic programming,” Naval research
logistics quarterly, vol. 3, no. 1-2, pp. 95–110, 1956.

[25] M. Jaggi and M. Sulovskỳ, “A simple algorithm for nuclear norm regularized prob-
lems,” in ICML, 2010.

[26] Z. Harchaoui, A. Juditsky, and A. Nemirovski, “Conditional gradient algorithms
for machine learning,” in NIPS Workshop on Optimization for ML, Citeseer, vol. 3,
2012, pp. 3–2.

[27] M. Jaggi, “Revisiting frank-wolfe: Projection-free sparse convex optimization,” in
International Conference on Machine Learning, PMLR, 2013, pp. 427–435.

188

[28] G. Lan, “The complexity of large-scale convex programming under a linear opti-
mization oracle,” arXiv preprint arXiv:1309.5550, 2013.

[29] Z. Harchaoui, A. Juditsky, and A. Nemirovski, “Conditional gradient algorithms
for norm-regularized smooth convex optimization,” Mathematical Programming,
vol. 152, no. 1, pp. 75–112, 2015.

[30] R. M. Freund and P. Grigas, “New analysis and results for the frank–wolfe method,”
Mathematical Programming, vol. 155, no. 1, pp. 199–230, 2016.

[31] G. Lan, E. Romeijn, and Z. Zhou, “Conditional gradient methods for convex opti-
mization with function constraints,” arXiv preprint arXiv:2007.00153, 2020.

[32] M. R. Hestenes, “Multiplier and gradient methods,” Journal of optimization theory
and applications, vol. 4, no. 5, pp. 303–320, 1969.

[33] M. J. Powell, “A method for nonlinear constraints in minimization problems,” Op-
timization, pp. 283–298, 1969.

[34] G. Lan and R. D. Monteiro, “Iteration-complexity of first-order penalty methods
for convex programming,” Mathematical Programming, vol. 138, no. 1, pp. 115–
139, 2013.

[35] G. Lan and R. D. Monteiro, “Iteration-complexity of first-order augmented la-
grangian methods for convex programming,” Mathematical Programming, vol. 155,
no. 1-2, pp. 511–547, 2016.

[36] G. Korpelevich, “The extragradient method for finding saddle points and other
problems,” Ekon. Mat. Metody, vol. 12, no. 4, pp. 747–756, 1976.

[37] A. Nemirovski, “Prox-method with rate of convergence o (1/t) for variational in-
equalities with lipschitz continuous monotone operators and smooth convex-concave
saddle point problems,” SIAM Journal on Optimization, vol. 15, no. 1, pp. 229–251,
2004.

[38] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic approxima-
tion approach to stochastic programming,” SIAM Journal on Optimization, vol. 19,
no. 4, pp. 1574–1609, 2009.

[39] D. Boob, Q. Deng, and G. Lan, “Stochastic first-order methods for convex and
nonconvex functional constrained optimization,” arXiv preprint arXiv:1908.02734,
2019.

189

[40] E. Y. Hamedani and N. S. Aybat, “A primal-dual algorithm with line search for
general convex-concave saddle point problems,” SIAM Journal on Optimization,
vol. 31, no. 2, pp. 1299–1329, 2021.

[41] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov, “New variants of bundle meth-
ods,” Mathematical programming, vol. 69, no. 1, pp. 111–147, 1995.

[42] Y. Nesterov, Lectures on Convex Optimization (Springer Optimization and Its Ap-
plications). Springer International Publishing, 2018, ISBN: 9783319915777.

[43] E. Van Den Berg and M. P. Friedlander, “Probing the pareto frontier for basis pur-
suit solutions,” SIAM Journal on Scientific Computing, vol. 31, no. 2, pp. 890–912,
2009.

[44] E. Van den Berg and M. P. Friedlander, “Sparse optimization with least-squares
constraints,” SIAM Journal on Optimization, vol. 21, no. 4, pp. 1201–1229, 2011.

[45] A. Y. Aravkin, J. V. Burke, and M. P. Friedlander, “Variational properties of value
functions,” SIAM Journal on optimization, vol. 23, no. 3, pp. 1689–1717, 2013.

[46] Q. Lin, S. Nadarajah, and N. Soheili, “A level-set method for convex optimiza-
tion with a feasible solution path,” SIAM Journal on Optimization, vol. 28, no. 4,
pp. 3290–3311, 2018.

[47] A. Y. Aravkin, J. V. Burke, D. Drusvyatskiy, M. P. Friedlander, and S. Roy, “Level-
set methods for convex optimization,” Mathematical Programming, vol. 174, no. 1,
pp. 359–390, 2019.

[48] Y. Nesterov, “A method for solving the convex programming problem with con-
vergence rate O(1/k2),” Proceedings of the USSR Academy of Sciences, vol. 269,
pp. 543–547, 1983.

[49] C. Lemarechal, “An extension of davidon methods to non differentiable problems,”
in Nondifferentiable optimization, Springer, 1975, pp. 95–109.

[50] P. Wolfe, “A method of conjugate subgradients for minimizing nondifferentiable
functions,” in Nondifferentiable optimization, Springer, 1975, pp. 145–173.

[51] G. Lan, “Bundle-level type methods uniformly optimal for smooth and nonsmooth
convex optimization,” Mathematical Programming, vol. 149, no. 1, pp. 1–45, 2015.

[52] G. Scutari, F. Facchinei, L. Lampariello, S. Sardellitti, and P. Song, “Parallel and
distributed methods for constrained nonconvex optimization-part ii: Applications in
communications and machine learning,” IEEE Transactions on Signal Processing,
vol. 65, no. 8, pp. 1945–1960, 2016.

190

[53] D. Boob, Q. Deng, G. Lan, and Y. Wang, “A feasible level proximal point method
for nonconvex sparse constrained optimization,” arXiv preprint arXiv:2010.12169,
2020.

[54] O. Güler, “New proximal point algorithms for convex minimization,” SIAM Journal
on Optimization, vol. 2, no. 4, pp. 649–664, 1992.

[55] D. Bertsekas, Convex optimization algorithms. Athena Scientific, 2015.

[56] G. Lan and Y. Yang, “Accelerated stochastic algorithms for nonconvex finite-sum
and multiblock optimization,” SIAM Journal on Optimization, vol. 29, no. 4, pp. 2753–
2784, 2019.

[57] W. Kong, J. G. Melo, and R. D. Monteiro, “Complexity of a quadratic penalty ac-
celerated inexact proximal point method for solving linearly constrained noncon-
vex composite programs,” SIAM Journal on Optimization, vol. 29, no. 4, pp. 2566–
2593, 2019.

[58] R. Ma, Q. Lin, and T. Yang, “Proximally constrained methods for weakly convex
optimization with weakly convex constraints,” arXiv preprint arXiv:1908.01871,
2019.

[59] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for nonconvex
stochastic programming,” SIAM Journal on Optimization, vol. 23, no. 4, pp. 2341–
2368, 2013.

[60] S. Ghadimi and G. Lan, “Accelerated gradient methods for nonconvex nonlin-
ear and stochastic programming,” Mathematical Programming, vol. 156, no. 1-2,
pp. 59–99, 2016.

[61] Z. Allen-Zhu and E. Hazan, “Variance reduction for faster non-convex optimiza-
tion,” in International conference on machine learning, PMLR, 2016, pp. 699–
707.

[62] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola, “Stochastic variance reduc-
tion for nonconvex optimization,” in International conference on machine learning,
PMLR, 2016, pp. 314–323.

[63] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford, “Accelerated methods for non-
convex optimization,” SIAM Journal on Optimization, vol. 28, no. 2, pp. 1751–
1772, 2018.

[64] D. Boob, Q. Deng, and G. Lan, “Level constrained first order methods for function
constrained optimization,” arXiv preprint arXiv:2205.08011, 2022.

191

[65] B. Jiang, T. Lin, S. Ma, and S. Zhang, “Structured nonconvex and nonsmooth opti-
mization: Algorithms and iteration complexity analysis,” Computational Optimiza-
tion and Applications, vol. 72, no. 1, pp. 115–157, 2019.

[66] G. Lan and Y. Zhou, “Conditional gradient sliding for convex optimization,” SIAM
Journal on Optimization, vol. 26, no. 2, pp. 1379–1409, 2016.

[67] D. Garber, “Faster projection-free convex optimization over the spectrahedron,”
Advances in Neural Information Processing Systems, vol. 29, 2016.

[68] G. Lan, S. Pokutta, Y. Zhou, and D. Zink, “Conditional accelerated lazy stochastic
gradient descent,” in International Conference on Machine Learning, PMLR, 2017,
pp. 1965–1974.

[69] R. Rockafellar, “Duality and optimality in multistage stochastic programming,”
Annals of Operations Resarch, vol. 85, pp. 1–19, 1999.

[70] J. Bonnans, Z. Cen, and T. Christel, “Sensitivity analysis of energy contracts by
stochastic programming techniques,” in (Numerical Methods in Finance, Springer
Proceeding in Mathematics 12), R. Carmona, P. D. Moral, P. Hu, and N. Oud-
jane, Eds., Numerical Methods in Finance, Springer Proceeding in Mathematics
12. 2012, pp. 447–471.

[71] G. Terca and D. Wozabal, “Envelope theorems for multistage linear stochastic op-
timization,” Operations Research, 2020.

[72] J. F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems.
Springer Science & Business Media, 2013.

[73] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algo-
rithms I and II. Springer-Verlag, Berlin, 1993.

[74] V. Guigues, “SDDP for some interstage dependent risk-averse problems and appli-
cation to hydro-thermal planning,” Computational Optimization and Applications,
vol. 57, pp. 167–203, 2014.

[75] D. P. Bertsekas and S. E. Shreve, Stochastic optimal control: the discrete-time case.
Athena Scientific, 1996, vol. 5.

[76] A. Shapiro and L. Ding, “Periodical multistage stochastic programs,” SIAM Journal
on Optimization, vol. 30, no. 3, pp. 2083–2102, 2020.

[77] P. Zipkin, Foundations of Inventory Management. McGraw-Hill, Boston, 2000.

192

[78] A. Shapiro, W. Tekaya, J. da Costa, and M. Soares, “Risk neutral and risk averse
stochastic dual dynamic programming method,” European Journal of Operational
Research, vol. 224, no. 2, pp. 375–391, 2013.

[79] J. Doob, “The limiting distributions of certain statistics,” Annals of Mathematical
Statistics, vol. 6, pp. 160–169, 1935.

[80] A. Shapiro, W. Tekaya, J. P. da Costa, and M. P. Soares, “Risk neutral and risk
averse stochastic dual dynamic programming method,” European journal of oper-
ational research, vol. 224, no. 2, pp. 375–391, 2013.

[81] A. Shapiro, “Analysis of stochastic dual dynamic programming method,” European
Journal of Operational Research, vol. 209, pp. 63–72, 2011.

[82] A. B. Philpott and Z. Guan, “On the convergence of stochastic dual dynamic pro-
gramming and related methods,” Oper. Res. Lett., vol. 36, pp. 450–455, 2008.

[83] A. Philpott, V. de Matos, and E. Finardi, “On solving multistage stochastic pro-
grams with coherent risk measures,” Operations Research, vol. 61, no. 4, pp. 957–
970, 2013.

[84] J. Birge and F. Louveaux, Introduction to Stochastic Programming (Springer Series
in Operations Research). Springer, 2011.

[85] V. Leclere, P. Carpentier, J.-P. Chancelier, A. Lenoir, and F. Pacaud, “Exact con-
verging bounds for stochastic dual dynamic programming via fenchel duality,”
Siam Journal on Optimization, vol. 30, pp. 1223–1250, 2 2020.

[86] V. Guigues, A. Shapiro, and Y. Cheng, “Duality and sensitivity analysis of multi-
stage linear stochastic programs,” Optimization online, 2019.

[87] B. da Costa and V. Leclere, “Dual sddp for risk-averse multistage stochastic pro-
grams,” arXiv, 2021.

[88] D. Bertsekas and S. Shreve, Stochastic Optimal Control, The Discrete Time Case.
Academic Press, New York, 1978.

[89] A. Shapiro and L. Ding, “Upper bound for optimal value of risk averse multistage
problems,” Technical report, Georgia Tech, 2016.

[90] R. T. Rockafellar, Conjugate Duality and Optimization. Philadelphia: Society for
Industrial and Applied Mathematics, 1974.

193

[91] A. Shapiro, W. Tekaya, J. da Costa, and M. P. Soares, “Risk neutral and risk averse
stochastic dual dynamic programming method,” European Journal of Operational
Research, vol. 224, pp. 375–391, 2013.

[92] L. Ding, S. Ahmed, and A. Shapiro, “A python package for multi-stage stochastic
programming,” Optimization online, 2019.

[93] R. Liu and A. Shapiro, “Reformulation approach to risk averse stochastic program-
ming,” Risk Neutral Reformulation Approach to Risk Averse Stochastic Program-
ming, vol. 286, pp. 21–31, 2020.

[94] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, “Coherent measures of risk,”
Mathematical finance, vol. 9, no. 3, pp. 203–228, 1999.

[95] R. P. Liu and A. Shapiro, “Risk neutral reformulation approach to risk averse
stochastic programming,” European Journal of Operational Research, vol. 286,
no. 1, pp. 21–31, 2020.

[96] J. C. Hull, Options futures and other derivatives. Upper Saddle River, N.J. : Pear-
son/Prentice Hall, 2006.

[97] R. T. Rockafellar and S. Uryasev, “Conditional value-at-risk for general loss distri-
butions,” Journal of banking & finance, vol. 26, no. 7, pp. 1443–1471, 2002.

[98] H. Föllmer and A. Schied, “Convex measures of risk and trading constraints,” Fi-
nance and stochastics, vol. 6, no. 4, pp. 429–447, 2002.

[99] A. J. McNeil, R. Frey, and P. Embrechts, Quantitative risk management: concepts,
techniques and tools-revised edition. Princeton university press, 2015.

[100] H. E. Romeijn, R. K. Ahuja, J. F. Dempsey, and A. Kumar, “A column generation
approach to radiation therapy treatment planning using aperture modulation,” SIAM
Journal on Optimization, vol. 15, no. 3, pp. 838–862, 2005.

[101] H. E. Romeijn and J. F. Dempsey, “Intensity modulated radiation therapy treatment
plan optimization,” Top, vol. 16, no. 2, pp. 215–243, 2008.

[102] B. Tomlin, “On the value of mitigation and contingency strategies for managing
supply chain disruption risks,” Management science, vol. 52, no. 5, pp. 639–657,
2006.

[103] M. Carrión, A. B. Philpott, A. J. Conejo, and J. M. Arroyo, “A stochastic pro-
gramming approach to electric energy procurement for large consumers,” IEEE
Transactions on Power Systems, vol. 22, no. 2, pp. 744–754, 2007.

194

[104] D. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[105] E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE
signal processing magazine, vol. 25, no. 2, pp. 21–30, 2008.

[106] M. A. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse problems,”
IEEE Journal of selected topics in signal processing, vol. 1, no. 4, pp. 586–597,
2007.

[107] D. Goldfarb, S. Ma, and K. Scheinberg, “Fast alternating linearization methods
for minimizing the sum of two convex functions,” Mathematical Programming,
vol. 141, no. 1, pp. 349–382, 2013.

[108] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288,
1996.

[109] T. Blumensath and M. E. Davies, “Iterative thresholding for sparse approxima-
tions,” Journal of Fourier analysis and Applications, vol. 14, no. 5, pp. 629–654,
2008.

[110] E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted
l-1 minimization,” Journal of Fourier analysis and applications, vol. 14, no. 5,
pp. 877–905, 2008.

[111] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm for
matrix completion,” SIAM Journal on optimization, vol. 20, no. 4, pp. 1956–1982,
2010.

[112] R. T. Rockafellar, S. Uryasev, et al., “Optimization of conditional value-at-risk,”
Journal of risk, vol. 2, pp. 21–42, 2000.

[113] H. M. Markowitz, “Portfolio selection: E cient diversification of investments,” Cowles
Foundation Monograph, vol. 16, 1959.

[114] T.-J. Chang, N. Meade, J. E. Beasley, and Y. M. Sharaiha, “Heuristics for cardinal-
ity constrained portfolio optimisation,” Computers & Operations Research, vol. 27,
no. 13, pp. 1271–1302, 2000.

[115] D. Li, X. Sun, and J. Wang, “Optimal lot solution to cardinality constrained mean–
variance formulation for portfolio selection,” Mathematical Finance: An Interna-
tional Journal of Mathematics, Statistics and Financial Economics, vol. 16, no. 1,
pp. 83–101, 2006.

195

[116] D. Bertsimas and R. Shioda, “Algorithm for cardinality-constrained quadratic opti-
mization,” Computational Optimization and Applications, vol. 43, no. 1, pp. 1–22,
2009.

[117] J. Gao and D. Li, “Optimal cardinality constrained portfolio selection,” Operations
research, vol. 61, no. 3, pp. 745–761, 2013.

[118] X. Zheng, X. Sun, D. Li, and J. Sun, “Successive convex approximations to cardinality-
constrained convex programs: A piecewise-linear dc approach,” Computational
Optimization and Applications, vol. 59, no. 1-2, pp. 379–397, 2014.

[119] Y. Nesterov, “Smooth minimization of non-smooth functions,” Mathematical pro-
gramming, vol. 103, no. 1, pp. 127–152, 2005.

[120] J.-y. Gotoh, A. Takeda, and K. Tono, “Dc formulations and algorithms for sparse
optimization problems,” Mathematical Programming, vol. 169, no. 1, pp. 141–176,
2018.

[121] R. Bruni, F. Cesarone, A. Scozzari, and F. Tardella, “Real-world datasets for port-
folio selection and solutions of some stochastic dominance portfolio models,” Data
in brief, vol. 8, pp. 858–862, 2016.

196

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Multistage Stochastic Program
	Computational Methods for Solving Stochastic Program

	2 | Upper Bounds for Risk Neutral Multistage Stochastic Program
	Overview
	Dual Bounds for Finite-horizon Multistage Stochastic Program
	Dual SDDP
	Dual Bounds for Periodical Multistage Stochastic Program
	Periodical Dual SDDP
	Numerical Results
	Proofs of Auxiliary Results

	3 | Upper Bounds for Risk Averse Multistage Stochastic Program
	Overview
	Risk-neutral Stochastic Optimal Control
	Risk-averse Stochastic Optimal Control
	Numerical Experiments

	4 | Sample Complexity of Stationary Stochastic Programs
	Overview
	Stationary Stochastic Programs
	Sample Complexity Analysis
	Inventory Model
	Numerical Illustration

	5 | Projection-free Methods for Convex Functional Constrained Optimization
	Overview
	Level Conditional Gradient Method
	Outer Loop of LCG
	Conditional Gradient Oracle
	Overall Complexity
	Modified Level Conditional Gradient Method
	Auxiliary Lemmas

	6 | Projection-free Methods for Nonconvex Functional Constrained Optimization
	Overview
	Nonconvex Functional Constrained Optimization Problem
	Proximal Point Methods for Nonconvex Functional Constrained Problem
	Direct Nonconvex Conditional Gradients Method
	Numerical Experiments

	References

