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SUMMARY 

This work details the development of three technological pathways to accelerate 

paradigm shifts in the way carbon fibers are developed and manufactured. The first two, 

viz. hollow carbon fibers and small diameter carbon fibers, provide a comprehensive 

understanding of the process, structure, and property relationship for these continuous 

carbon fibers. The third pathway provides insights into the challenges and opportunities to 

employ machine learning models to predict carbon fiber properties by leveraging 

experimental data and accelerate the improvement in tensile properties in a cost-efficient 

manner.  

Multifilament continuous hollow carbon fiber tows with a honeycomb cross-section 

have been produced using a gel-spun bicomponent islands-in-a-sea precursor with 

polyacrylonitrile (PAN) as the sea component and polymethylmethacrylate (PMMA) as 

the sacrificial island component. Over 80% improvement in tensile strength has been 

achieved for these fibers compared to the previously reported batch processed hollow 

carbon fibers, along with a manufacturing scale up from single filament to 740 filament 

tow. The effect of precursor and carbon fiber manufacturing parameters on the structure 

and tensile properties of the hollow carbon fibers has been studied. Furthermore, 

mechanical properties of hollow carbon fiber-epoxy composites have been tested and 

compared with commercial aerospace grade carbon fiber composites. The effect of 

adhesion between the fiber and epoxy matrix, alignment of fibers in the composite along 

the testing direction, and various testing environments, on the composite mechanical 

properties has been explored. The properties of hollow carbon fibers and their composites 
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show great promise to replace conventional aerospace grade carbon fibers in the 

foreseeable future. 

Continuous multifilament carbon fiber tows with 2-3µm fiber diameter have been 

developed from a PAN (island) - PMMA (sea) bicomponent precursor. These small 

diameter carbon fibers have tensile strength as high as 5.1 GPa and tensile modulus as high 

as 434 GPa in different trials. The size of the defects in these fibers is estimated to be in 

the range of 35-70 nm. The role of smaller diameter in improving the tensile properties of 

these fibers is explored and the nano scale defects in these fibers have been characterized.  

Finally, the efficacy of four supervised machine learning techniques, in establishing 

a mathematical relationship to model the continuous stabilization and carbonization 

process and predicting the tensile strength and modulus of the fibers, based on the 

manufacturing process parameters, has been investigated. The data set consisted of 600 

data points with 31 features each. The results indicate that machine learning can be used to 

approximate the underlying function describing the effect of the manufacturing process 

parameters on the carbon fiber tensile properties 

This thesis develops a comprehensive understanding of the three technologies that can 

each accelerate the development high performance structural carbon fibers. Pursuing these 

studies separately or in conjunction with each other will likely bring about a paradigm shift 

in the way high performance carbon fibers and composites are developed.



 
1 

 

CHAPTER 1. INTRODUCTION 

Polyacrylonitrile (PAN) based carbon fibers are used in structural applications owing 

to their high tensile strength (3-7 GPa) and tensile modulus (230- 600 GPa). These 

applications include aerospace, sporting goods, energy harvesting (e.g. wind turbines), and 

automotive, to name a few. However, in the past three decades, the improvement in the 

carbon fiber tensile properties has been incremental. The commercially used high strength 

carbon fibers today, such as IM7 (tensile strength: 5.5 GPa, tensile modulus: 276 GPa) by 

Hexcel [1] and T800 (Tensile strength: 5.9 GPa, Tensile Modulus: 294 GPa) by Toray, 

were first produced more than three decades ago [2]. The recently developed T1100G 

carbon fiber has a tensile strength of 7 GPa and tensile modulus of 324 GPa [3], although, 

the strength is less than 10% of the theoretical strength of carbon fibers (~100 GPa) [4, 5] 

and the modulus is ~33% of the theoretical value for graphite (1060 GPa) [6]. There is 

room to further improve the tensile properties of carbon fibers.  

1.1 Accelerated development of high-performance structural carbon fibers: why 

does it matter? 

The aerospace industry was one of the early adopters of carbon fibers and today, 

carbon fibers are prevalent in lightweight structural components in aircrafts and space 

vehicles. Carbon fiber composites make up to 50% of the weight of modern aircrafts such 

as Boeing 787 and Airbus A350 [7, 8]. Every kilogram of jet fuel burnt contributes to 3.16 

kg of carbon dioxide (CO2) [9]. At 1 billion tons of CO2/year, the aviation industry today 

is responsible for 3% of global CO2 emissions. The United Nations’ Sustainable 
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Development Goals (SDG) have set a target to cut down global emissions by 50% from 

the 2010 levels by 2030 and achieve net zero emissions by 2050, to reverse the global 

warming trends [10]. For the aviation industry, this would mean cutting down emissions 

by 500 Mt by 2030. One of the ways to reduce carbon emissions would be to increase fuel 

efficiency in terms of payload, by making lighter and stronger aircraft structures that can 

carry the same payload. In other words, less fuel would be required to carry the same weight 

of passengers or freight. To put it in perspective, let us assume an improvement in carbon 

fiber tensile modulus by 40%. Assuming 60% fibers by volume in composites, this would 

result in a composite modulus improvement of 24%. For an aircraft with 50% carbon fiber 

composites by weight, this would mean a net increase of 12% in the payload capacity. In 

other words, ~10% less fuel would be required to carry the same payload as before. 

Assuming that all aircrafts in the future are made up of at least 50% carbon fiber composites 

by weight, this would reduce global aviation emissions by ~10% or 100M tons. We 

acknowledge that reducing aircraft structural weight alone will not achieve net zero carbon 

emissions until sustainable alternatives to jet fuel are used for propulsion. However, it can 

certainly help significantly reduce these emissions in the near future. Therefore, improving 

tensile properties of carbon fibers could have major implications in shaping the future of 

flight. 

Carbon fiber manufacturing is a cost and time intensive process. Extensive adoption 

of carbon fibers in other high volume structural applications (e.g. automotive) remains cost 

prohibitive. Therefore, accelerating the development of high-performance structural 

carbon fibers while reducing the cost of development is of great interest. To achieve these 
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goals, it is important to understand the fiber manufacturing process which is described in 

the following section. 

1.2 Carbon fiber manufacturing  

This section focuses on the different steps involved in the carbon fiber manufacturing 

process, from the development of precursor fibers to carbon fiber manufacturing via 

continuous stabilization and carbonization.  

1.2.1 Polyacrylonitrile  

PAN is a synthetic, semi-crystalline polymer that is predominantly used as a 

precursor in carbon fibers manufactured worldwide [11]. Figure 1.1 shows the chemical 

structure of PAN [12]. Although it is a thermoplastic, unlike most of the thermoplastic 

polymers, it degrades before melting unless heated at a very high rate [13]. PAN fibers 

were first spun in the 1940s when DuPont discovered the use of dimethyl formamide 

(DMF) as a possible solvent. Over the next 10 or so years, a wide range of organic solvents 

were found to be potentially useful for PAN fiber spinning. Some of the early reports can 

be found in the work published by Houtz et al. in the 1950s [2, 14]. PAN fibers were 

commercialized under the name “Orlon” by DuPont in 1950. The theoretical carbon yield 

of PAN is 68% but the experimental carbon yield is 50-55% [2, 15]. The continuous carbon 

backbone and the placement of the nitrile group in PAN is favorable for the cyclization 

reaction during stabilization and ultimately to produce continuous high-performance 

carbon fibers. This will be discussed in detail in the later section.  

 



 
4 

 

Acrylonitrile is made from propylene and ammonia, and therefore, the cost of 

propylene dictates the production cost of PAN. The chemicals used make up to 45% of the 

PAN production costs [2]. 

As stated earlier, PAN is the predominantly used precursor for making carbon 

fibers. However, the use of homopolymer PAN for commercial production of high-

performance carbon fibers has not been reported so far. The oxidation stage of carbon fiber 

production involves sudden and rapid evolution of heat and is difficult to control. This 

rapid evolution of heat can cause chain scission and therefore create defects in the resultant 

carbon fiber, resulting in poor tensile properties of the carbon fibers [16]. This exothermic 

reaction can be controlled by the use of comonomers such as itaconic acid (IA), methacrylic 

acid (MAA), methacrylate (MA), vinyl esters etc. The effect of comonomers will be further 

discussed in later section.  

1.2.2 PAN fiber spinning 

Broadly speaking, there are two main ways of fiber spinning viz. melt spinning, 

and solution spinning.  Solution spinning can be further classified as wet spinning, dry-jet 

wet spinning, dry spinning, electrospinning, and gel spinning [17-20]. Due to the difficulty 

in melting PAN under normal conditions, melt spinning is not commercially used to spin 

Figure 1.1 Chemical Structure of PAN [12]   
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PAN fibers. There are reports of plasticized PAN being melt-spun but this method is yet to 

become commercially feasible [13, 18]. Wet spinning is the widely used spinning process 

for PAN fibers, but dry-jet wet spinning has also been of interest. It is hypothesized that 

higher orientation of  molecular chains is achieved due to the air gap between the spinneret 

and the coagulation bath, prior to coagulation, in the dry-jet wet spinning process [2]. 

Schematic diagram of the dry-jet wet spinning process is shown in Figure 1.2 [21]. The 

polymer concentration used in the dope depends on the molecular weight of the polymer 

as well as the desired viscosity of the dope. Solvents such as DMF, dimethylsulfoxide 

(DMSO), dimethylacetamide (DMAc) have been used in solution spinning of PAN fibers.  

Gel spinning of ultra-high molecular weight polyethylene (UHMWPE) fibers was 

first reported by Smith et al. in 1980 [17]. It was reported that gel spinning can lead to high 

strength fibers. The formation of small crystals in the solution and higher level of 

entanglements leads to a physically cross-linked “gel” structure upon coagulation. There is 

a reduction in the number of molecular chain ends per unit length when an ultra-high 

molecular weight polymer is used. Chain end is a site for a defect, which ultimately limits 

the tensile strength of the carbon fibers [22]. However, due to the higher level of 

Figure 1.2 Schematic diagram of the typical dry-jet wet spinning process [24] 
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entanglements, a lower concentration of the dope, as compared to conventional solution 

spinning, has to be used in order to spin these fibers. This process requires more solvent 

and hence is more expensive than conventional solution spinning. At the same time, higher 

orientation, reduction in number of defects and the subsequent improvement in carbon fiber 

properties using gel spun PAN fibers can outweigh the higher costs associated with the 

solvents. Gel spinning is similar to dry-jet wet spinning. A high molecular weight, low 

concentration polymer solution is extruded through a spinneret in air, followed by 

coagulation in either a non-solvent or solvent/non-solvent coagulation bath. The as-spun 

fiber spools may be stored in the non-solvent bath until they are used for further drawing, 

depending on the polymer solution and spinning conditions. The as-spun fibers are drawn 

in either a single stage hot drawing or a multi-stage process with cold drawing followed by 

hot drawing.  

Different kinds of fiber geometries can be obtained. Depending on the application, 

bicomponent fibers with different geometries can be spun. Bicomponent geometries are 

particularly useful in producing multifunctional fibers combining properties of two 

different materials. Earlier reports on bicomponent fibers are found for melt spinning [23-

25]. However, more recently, bicomponent fibers have been spun using solution spinning 

as well. For example, bicomponent fibers with a sheath-core geometry (Figure 1.3b) were 

produced by Chien et al. [26]. The sheath component was PAN while PAN-carbon 

nanotubes (CNTs) constituted the core component. Using this geometry, fibers with 

enhanced thermal and electrical conductivities were produced. In another study, Chae et 

al. [27] produced PAN and PAN/CNT based carbon fibers with a diameter as small as 1 

µm. This was facilitated by the use of an islands-in-a-sea bicomponent geometry (Figure 
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1.3 c), where polymethylmethacrylate (PMMA) was used as the sacrificial “sea” 

component and the PAN or PAN/CNT formed the islands. PMMA leaves no carbon residue 

upon degrading [28] and therefore is sacrificed during the stabilization and carbonization 

process, leaving behind the small diameter PAN or PAN/CNT based carbon fibers. In 

another work, bicomponent precursor fibers, with a PAN sea and PMMA islands were 

formed [29]. The PMMA was sacrificed during carbonization to produce a hollow carbon 

fiber with a honeycomb cross section. This will be further discussed in the subsequent 

chapter. Some representative bicomponent fiber geometries are shown in Figure 1.3[30].  

Using a single component, for example PAN, alternative geometries such as a film 

with near rectangular cross-sectional shape can be extruded using solution spinning. 

Polymeric films are generally produced using blowing [31-33], melt processing [18], 

casting [34-38], electrospinning [39-41]etc. There are few reports of polymer solutions 

being extruded through a rectangular slit and then subjected to roll-to-roll processing in a 

Figure 1.3 Different geometries for bicomponent fibers (a) side by side, (b) core-sheath 
(c) islands-in-a-sea, (d) tipped trilobal, (e) tipped cross, and (f) segmented pie [29] 
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manner similar to solution spun fiber processing [42]. However, the roll-to-roll film 

processing method seems to be used more often while processing polymer melts. 

1.2.3 Carbon fibers – history of development and state of the art 

Carbon fibers were first produced from ordinary cotton threads by Thomas Edison 

in 1879 [43]. These carbon fibers were used as the filament in the first incandescent lamp. 

Carbon fiber research did not pick up pace until the 1950s when Houtz et al. produced 

oxidized PAN fibers [2, 14]. These fibers upon burning in a Bunsen burner flame lost ~30% 

of its weight but did not volatilize. At that time, it was not understood that the PAN fibers 

had carbonized under the flame. In 1960, Roger Bacon reported graphite whiskers with a 

tensile strength of 20 GPa and tensile modulus of 700 GPa [44]. These whiskers were 

grown in a dc arc under high pressure (92 atm) at a temperature of 3900 °K. In 1961, Shindo 

et al. produced the first PAN based carbon fiber at the Industrial Research Institute in Osaka 

[45]. Since then carbon fibers have emerged as a high performance material with unique 

combination of mechanical, thermal and electrical properties [6, 46].  

Carbon fibers can be produced from a range of precursors including PAN, 

mesophase pitch, cellulose etc. PAN and pitch are the mainly used precursors today. 

Almost 90% of the carbon fibers commercially produced carbon fibers are made from a 

PAN precursor, since the chemical structure of PAN, with a continuous carbon backbone 

and pendant nitrile groups, yield high strength and intermediate modulus carbon fibers. 

While pitch based carbon fibers can yield a tensile modulus as high as 900 GPa, which is 

almost 90% of the theoretical value, the tensile strength values are low at ~ 3 GPa. PAN 

based carbon fibers on the other hand can yield a good combination of tensile strength (3-
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7 GPa) and tensile modulus (230 – 600 GPa). However, the higher tensile modulus carbon 

fibers (400 - 600 GPa) have a tensile strength lower than 4 GPa [6, 46]. The following 

section focuses on the carbon fiber manufacturing process via stabilization and 

carbonization of the PAN precursor.  

1.2.4 Stabilization and carbonization of the PAN precursor 

Production of carbon fibers from PAN precursors involves two main steps: (i) 

Stabilization at 200 – 300 °C and (ii) carbonization at 500 – 2000 °C. The stabilization step 

involves oxidation of the PAN precursor, cyclization, and crosslinking to form a stabilized 

ladder polymer. The density of the fiber increases during this process. The stabilization of 

PAN is carried out in air. As stated earlier, the presence of comonomers such as IA [47-

50] , MA [51-53], MAA [49, 54-56] etc. aids the stabilization process by preventing 

localized heating of the polymer as well as broadening the temperature range over which 

oxidation takes place. This is believed to prevent chain scission that occurs in 

homopolymer PAN due to the sudden and rapid exothermic reaction. After decades of 

study, the exact mechanism of the stabilization process is still not known. In general, it is 

accepted that the following four reactions take place: cyclization, dehydrogenation, 

oxidation, and crosslinking. As the stabilization reaction proceeds, a color change from 

white to golden brown to black is observed in the PAN fibers. The cyclization can be 

distinguished from the rest of the reactions by running a sample in a differential scanning 

calorimeter (DSC) under a non-oxidative atmosphere. The generally accepted mechanism 

of PAN stabilization and carbonization is shown in Figure 1.4 [57]. Tension is applied 

during stabilization. During the oxidation process, oxygen diffusion plays an important 
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role. Ideally, it is desired that the oxygen diffusion throughout the fiber cross-section be 

uniform. However, in reality the outer part of the cross section is oxidized first and forms 

a barrier slowing down further oxygen diffusion. This causes formation of a skin-core 

structure in the fiber, which is a source of heterogeneity in the fiber cross-section. It is thus 

important to carefully control the stabilization temperature, as well as the residence time 

and tension in the fiber. It has been observed that the depth of the skin in the skin-core 

structure can be as high as ~ 1 µm. If a smaller diameter precursor was stabilized, the 

oxygen diffusion through the fiber would have a lower diffusion gradient, which would 

lead to a more uniform microstructure in the resultant carbon fiber. On the other hand, to 

achieve uniform heating of the fiber during stabilization, alternative approaches have been 

suggested. One such approach involves the use of PAN/CNT precursor and heating of these 

fibers by applying an electric current [58]. Other routes such as microwave heating [59] 

and  plasma-assisted thermal treatment [60-62] are being explored but are yet to be 

commercialized.  

The carbonization step involves dehydrogenation and denitrogenation as shown in 

Figure 1.4. The hydrogen and nitrogen are usually removed in the form of HCN, H2, N2, 

and NH3. The oxygen is removed in the form of CO and to some extent as H2O and CO2 

[2]. Carbonization is usually done in nitrogen atmosphere. There are two temperature 

ranges at which carbonization is carried out: the low temperature carbonization is carried 

out at 500-800 °C, and the high temperature carbonization is carried out above 1000 °C. 

The desired tensile properties of the carbon fiber dictate the choice of temperature for high 

temperature carbonization. Improvement in tensile strength is achieved by carbonizing at 

1300-1500 °C. In order to achieve a very high tensile modulus, carbonization temperature 
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is usually greater than 2000 °C. The degree of graphitization increases beyond 2000 °C 

and therefore yields a higher modulus [63]. It is important to note that the fibers are under 

tension during stabilization and carbonization and the applied tension plays an important 

role in the tensile modulus of the resultant carbon fiber. The tensile strength is limited by 

the size and number of defects that are present in the precursor or the ones that are 

introduced during the stabilization and carbonization process.  

1.2.5 Surface treatment and sizing 

Carbon fibers with a combination of high tensile strength and modulus cannot just 

be used by themselves in real life applications and are thus incorporated in a matrix material 

to form composites. If the adhesion between the fibers and the polymer matrix is not strong, 

the load transfer from the fibers to the matrix will not be effective. For this purpose, carbon 

fibers are surface treated and sized before they are used in composite manufacturing. 

Figure 1.4 Schematic of PAN stabilization (left) and carbonization (right) [4]  
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Oxidative surface treatments involve the passage of carbon fibers through an acidic bath 

e.g. HNO3 while an electric current is applied. This is known as anodic oxidation. The 

surface of the carbon fibers is treated with oxygen, and to some extent, nitrogen. This 

prepares the surface of the fibers to be treated with a sizing agent. The fibers are washed 

and dried after surface treatment to remove any unwanted ions from the carbon fiber 

surface. The fibers are then sized using a sizing agent which can be applied using a polymer 

solution, electrodeposition of a polymer, electropolymerization etc. The sizing agent is 

known to aid wetting out the fibers in resin matrices, and increase the ease of handling the 

fibers during subsequent processing [2]. Since the sizing agent is an important factor in the 

interphase between the fiber and the matrix, it is necessary to optimize the intake of sizing 

agent by the fibers.  

1.3 Thesis outline 

This thesis aims to provide detailed insights into two realms of carbon fiber 

development. The first explores the development of high strength and high modulus carbon 

fibers using bicomponent precursors. The second explores the use of machine learning 

techniques to understand the effect of manufacturing process parameters and predict carbon 

fiber mechanical properties in a cost and time effective manner. 

CHAPTER 2 details the development of continuous, multichannel, hollow carbon fibers 

with a high modulus from a PAN:PMMA bicomponent precursor. The effect of precursor 

and carbon fiber manufacturing parameters on the structure and tensile properties of the 

hollow carbon fibers has been studied. CHAPTER 3 describes the manufacturing of hollow 

carbon fiber composites with an epoxy matrix and the mechanical performance of these 
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composites compared to commercial aerospace grade carbon fiber composites. The 

development of 2-3µm diameter continuous carbon fibers from a PMMA:PAN 

bicomponent precursor is detailed in CHAPTER 4. The role of smaller diameter in 

improving the tensile properties of these fibers is explored and the nano scale defects in 

these fibers have been characterized.  

CHAPTER 5 describes an investigation into the efficacy of supervised machine learning 

techniques in establishing a mathematical relationship to model the continuous 

stabilization and carbonization process and prediction of the tensile strength and modulus 

of the fibers based on the manufacturing process parameters.  

In CHAPTER 6, the key takeaways of this thesis are summarized, and recommendations 

are provided to accelerate the development of carbon fibers.  
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CHAPTER 2. MULTICHANNEL HOLLOW CARBON FIBERS: 

PROCESSING, STRUCTURE, AND PORPERTIES 

This chapter is adapted from a publication in Carbon.  

Shirolkar et al., Multichannel hollow carbon fibers: Processing, structure, and properties. 

Carbon, 174 (2021): 730-740. 

2.1 Background 

As discussed in CHAPTER 1, the full extent of potential weight savings using carbon 

fiber composites is yet to be realized. One could take multiple different approaches to 

further improve the specific tensile properties of the composites. One approach is the use 

of stronger nano-fillers such as carbon nanotubes (CNTs), boron nitride nanotubes etc. in 

the fibers to improve their tensile properties [64, 65]. While CNTs have a tensile strength 

and modulus values closer to the theoretical values (~70 GPa and ~1000 GPa respectively), 

these are not translated to larger enough length scales to be used in place of carbon fibers. 

At the same time effective load transfer between the polymer-CNT interface continues to 

be a challenge [66, 67]. This along with the significantly higher production costs compared 

to carbon fibers currently limit the applications of CNT based composites. An alternative 

to this is to achieve structural enhancement in carbon fibers through the use of alternative 

geometries.  

The process of making a continuous, multicellular, hollow carbon fibers was 

patented by Tsotsis et al. in 2012 [68]. The development of hollow carbon fibers with a 
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honeycomb structure from a gel-spun bicomponent PAN-PMMA precursor with an 

islands-in-a-sea geometry has been reported earlier [29]. The specific tensile modulus 

reported for these hollow carbon fibers (~210 N/tex) was up to 30% higher than that of 

IM7 carbon fibers (155 N/tex). The higher tensile modulus was attributed to the increased 

molecular orientation at the outer surface as well as the additional surface of the hollow 

channels. Raman spectra of these fibers indicated a higher level of graphitic ordering near 

the hollow channels and the fiber surface, which resulted in a higher modulus. However, 

the tensile strength of these fibers was 1.6 GPa, significantly lower than that of IM7 fibers 

(5.6 GPa). These hollow carbon fibers were batch processed. The bicomponent precursor 

fiber was first stabilized in a batch furnace followed by batch carbonization. Tension was 

applied during stabilization and carbonization by suspending weights from either ends of 

the fibers. The strain therefore could not be controlled during stabilization and 

carbonization. Continuous processing of these hollow carbon fibers can overcome this 

limitation and improve their tensile strength.  

The schematic in Figure 2.1 shows the potential weight savings in composites 

manufactured using of low-density carbon fibers. A 20% reduction in composite density, 

from 1.55 g/cm3 to 1.19 g/cm3, could lead to significant fuel and costs savings for the 

aerospace industry. To put it into perspective, this could translate to over 20,000 lb weight 

reduction for the Boeing 787 Dreamliner. However, the tensile properties of the hollow 

carbon fibers need to be higher than conventional carbon fibers to realize the weight 

savings in composites without reducing their load-bearing capabilities.  In this chapter, we 

report over 80% improvement in the tensile strength of hollow carbon fibers, from 1.6 GPa 

to up to 3.0 GPa, with their tensile modulus in the range of 202-234 GPa. In addition, 
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multifilament continuous hollow carbon tows have been produced successfully with 

consistent tensile properties over different trials while maintaining microstructural 

attributes. Based on the tensile properties, the size of strength limiting defects present in 

the hollow carbon fibers has been calculated.  

 

Figure 2.1 Comparison of the hollow carbon fiber manufacturing process compared to 
conventional solid carbon fibers. The solid carbon fiber used for comparison is IM7 with a 
density of 1.78 g/cm3. The hollow carbon fiber density is calculated assuming 30% hollow 
fraction in the carbon fiber cross-section. The density of the hollow carbon fiber can be 
controlled by controlling the size of the hollow channels. The composite density is 
calculated using epoxy density of 1.21 g/cm3 and assuming 60% volume fiber loading. It 
is important to note that the tensile properties of the hollow carbon fibers need to be higher 
than that of solid carbon fibers to realize the target weight savings in composite materials 
while maintaining their load bearing capabilities.  

2.2 Materials 

Polyacrylonitrile-co-methacrylic acid (PAN-co-MAA) (96:4 by molecular weight) 

with a viscosity average molecular weight of 247,000 g/mol was obtained from Japan 
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Exlan Co. Ltd, Japan. Poly (methyl methacrylate) (PMMA) with a viscosity average 

molecular weight of 350,000 g/mol was obtained from Sigma Aldrich. Dimethylacetamide 

(DMAc) was used as the solvent for both PAN and PMMA polymers, and was obtained 

from Sigma Aldrich. Methanol was obtained from VWR. Spin finish SF-LUROL CF-

14676 from Goulston Technologies, North Carolina and sizing EP834 from Michelman 

Inc, Ohio was used. EPON Resin 862, and EPIKURE curing agent was obtained from 

Miller-Stephenson.  

2.3 Fiber Processing 

Bi-component fiber spinning system supplied by Hills Inc., Melbourne, FL, was used 

for the manufacture of precursor fibers. Fiber spinning equipment consisted of two 

reservoirs [65], one for the PAN solution to be fed as the sea component, and the other for 

the PMMA solution to be fed as the island component. The solids content for the PAN 

solution was in the range of 14-15 g/100 mL DMAc, and the solids content for the PMMA 

solution was in the range of 38-40 g/100 mL DMAc for different trials. Gel spinning of 

fibers was carried out using 20-hole and 74-hole spinnerets in different trials, with each 

hole having a diameter of 200 µm. The air gap between the spinneret and the coagulation 

bath was 19 mm. Two coagulation baths were used for gelation of the spun filaments, with 

the first bath containing 80/20 methanol/DMAc, followed by a second bath of 100 % 

methanol, both maintained at room temperature. The as-spun fiber tows were collected at 

a spin draw ratio (SDR) of 2.3. The as-spun fiber spools were drawn using a multistage 

drawing process depicted elsewhere (Figure A.1) [65], and the spin finish was applied 

during the process. Continuous stabilization and carbonization line (Figure A.2) built by 
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Harper International, Buffalo, NY, was used to stabilize and carbonize the precursor. 

Stabilization was carried out at temperatures between 180-250 oC and carbonization 

temperature was as high as 1450 oC. Stabilization and carbonization were carried out while 

maintaining the fiber tow under tension. In trials T3, T4, and T5, the hollow carbon fiber 

tow was surface treated using an electrolytic bath of nitric acid, and sized using an aqueous 

solution of the sizing agent. Solution preparation, spinning, drawing, and carbonization 

facilities are all housed in a class 1000 cleanroom environment.  

2.4 Characterization 

2.4.1 Precursor Characterization 

Tensile strength of the PAN-PMMA bicomponent precursor filaments was tested 

using a single filament testing machine (FAVIMAT+, Measured Solutions Inc.). The 

precursor fiber tensile testing protocol is described by Lyon et al. [69]. Optical micrographs 

of the bicomponent precursor fiber tow cross-section were captured using a Leica optical 

microscope.  

2.4.2 Hollow Carbon Fiber Characterization 

The bulk density of the fibers was measured using a Micromeritics AccuPyc II 1340 

gas pycnometer. The Scanning electron microscope (SEM) used to capture hollow carbon 

fiber cross sections was Hitachi SU8230 at an accelerating voltage of 5 kV. Individual fiber 

cross-sections were measured using ImageJ for every trial and at least 25 images were used 

to calculate the average diameter of the fibers. The “outer” diameter of the hollow carbon 

fiber was calculated using the area of the entire hollow carbon fiber cross-section, including 
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the hollow channels. The “effective” diameter of the hollow carbon fiber was calculated 

using the area of the solid cross section of the fiber. The solid cross-sectional area was 

calculated by subtracting the area of the seven hollow channels from the area of the entire 

fiber cross-section.  Individual hollow carbon fiber filaments were mounted on paper tabs 

and were tensile tested using an RSA III solids analyzer. Tests were conducted using four 

different gauge lengths viz. 50.8 mm, 25.4 mm, 12.7 mm, and 6.4 mm, and the strain rate 

used was 0.1%/s. 25 samples were tested for each measurement. The average tensile 

moduli values were plotted as a function of inverse gauge length (Figure A.3), to obtain 

the compliance corrected modulus. The tensile properties from the single filament tests 

were measured at a gauge length of 12.7 mm.  

Wide-Angle X-ray diffraction (WAXD) was used to characterize the structure of 

the bicomponent precursor and hollow carbon fibers. WAXD of the fibers was carried out 

using Rigaku Micromax– 007 (Cu Kα, λ = 1.542 A°, 65 mA, 45 kV). X-Ray exposure time 

was 30 min for each sample. The diffraction patterns were analyzed using AreaMax and 

MDI Jade 9.1 software. From the WAXD patterns of hollow carbon fibers, crystallite size 

L002 and L100 was calculated using Scherrer equation with K = 0.9 [70]. The orientation 

factor was determined from the (002) azimuthal scans at 2θ=17° for precursor, and 2θ=26° 

for carbon fibers using the procedure previously described by Sreekumar et al. [71]. Raman 

spectra were collected on a Horiba Scientific Xplora confocal micro-Raman system (laser 

wavelength = 785 nm).  

Surface treated and sized, 740-filament carbon fiber tows from trial T5 were 

impregnated in epoxy and cured at 180 °C for 3 hours. The composite strands were 
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mounted on a 6-inch paper tab to prepare samples for tensile testing. Composite strands 

mounted on paper tabs are shown in Figure A.5. Fiber loading of strands from each spool 

was calculated from the measured linear density of the fiber tow from each spool. The 

tensile specimens were tested using an INSTRON (Load cell: 500 N, Testing speed: 300 

mm/min). A total of 47 strands were tested as per ASTM D4018 [72].  

The high-resolution X-Ray computed tomography (nano-CT) of individual hollow 

carbon fiber filaments was conducted using ZEISS Xradia 810 Ultra (5.4 keV, quasi-

monochromatic) at the Air Force Research Laboratory, Dayton, OH. 701 projections were 

collected with high resolution field of view (16 μm), feature resolution of 50 nm, using 

Zernike phase contrast, and dwell time of 250 s. ORS Dragonfly was used to visualize the 

sample.  

For the transmission electron microscopy (TEM), samples were prepared using 

dual-beam Thermofisher Scientific Helios G4 UC FIB/SEM. Carbon fibers were fixed with 

diluted resin on the substrate and a 1µm thick Pt protection layer was deposited 

perpendicular to the fiber axis. Thin lamellae were in-situ lifted out using a manipulator 

and mounted on the TEM grid. Additional thinning was performed at 5 kV for TEM 

observation. High resolution TEM images were taken using the JEOL JEM-ARM200cF 

with an accelerating voltage of either 80 kV or 200 kV.  

Small-angle X-ray scattering (SAXS) measurements were conducted by using a 

Bruker NanoSTAR instrument with a sample-to-detector distance of 67.5 cm. Cu-Kα X-

ray with the wavelength (λ) of 1.5418 Å was used. This instrument setting covers a 

scattering vector, q (defined as 4𝜋𝜋
𝜆𝜆
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃

2
, where θ is the scattering angle), ranging from 0.014 
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to 0.35 Å-1. The 2-D intensity data were collected by a MikroGap VÅNTEC-2000 detector 

with a pixel size of 67 μm. Scattering and transmittance of all samples were measured 

under vacuum separately. The 2D raw data were corrected by the sample transmission, 

empty beam scattering and transmission. The corrected data were then sector averaged (as 

indicated in Figure A.6), yielding the 1-D profiles, which were best fitted using long 

rectangular prism with the constrained dimensions based on the analysis of graphite 

crystals. We also simulated the 2D scattering pattern using the form factor of a long 

rectangular prism with preferred orientation in space to mimic the experimental patterns 

(Figure A.7). The 2D scattering patterns were “simulated” (not “fitted”) results using 

SasView 4.2.2 software [73]. 

2.5 Results and Discussion 

An optical micrograph of the 20-filament as-spun bicomponent fiber tow is shown 

in Figure 2.2. 19 out of 20 filaments have an average diameter of 42 µm. As is evident 

from Figure 2.2, only one filament has a significantly smaller diameter than the rest of the 

tow. However, the distribution of the PMMA islands within the fibers is uniform 

throughout the tow, and the islands were contained within the PAN sea in every single 

fiber. The uniformity of island distribution is maintained in the carbonized fiber tow. SEM 

images of hollow carbon fiber cross-sections from the 100-filament tow is shown in 

Figure 2.3. 

The average diameter of carbon fibers from each trial was used to calculate the 

tensile strength and modulus of fibers from different trials. Table 2.1 lists the precursor 

fiber drawing conditions and tensile properties, and these properties are compared to that 
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of single component, gel spun control PAN precursor produced at Georgia Tech. The 

tensile modulus of the bicomponent precursor is lower than that of the solid PAN 

precursors produced using gel spinning [6, 74]. This is expected given that the total draw 

ratio for the bicomponent precursors was in the range of 18-22 compared to a TDR of 25 

in the case of control PAN precursor. The difference in drawability of PAN and PMMA 

limits the drawability of the bicomponent precursor. Additionally, PMMA has a 

significantly lower tensile modulus (2.9 GPa) compared to PAN (15-21 GPa) and therefore 

the reported tensile modulus for the PAN-PMMA bicomponent precursor is lower than that 

of the control PAN precursor. The structural parameters of the precursor fibers calculated 

from the WAXD patterns are listed in Table 2.2. The WAXD integrated pattern for 

precursor T5 is shown in Figure 2.4. 

Figure 2.2 Optical micrograph of the 20 filament bicomponent precursor tow cross-section. 

 

100 µm 
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Figure 2.3 (a) SEM micrograph of individual hollow carbon fiber filament cross-section, 
(b) SEM image of a part of the 100 filament hollow carbon fiber tow. 

Figure 2.4 WAXD integrated scans of bicomponent precursor fibers from trial T5. 
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Table 2.1 Precursor fiber drawing conditions and tensile properties 

 

The continuous stabilization and carbonization conditions for different trials are 

listed in Table 2.3. The strain in stabilization was varied between 9-12%. The range for 

low temperature (LT) carbonization strain was between 4-8%. During high temperature 

(HT) carbonization, the carbon fibers undergo shrinkage. Therefore, in the HT 

carbonization stage a negative strain in the range of -4.6% to -2 % can maintain tension in 

the fiber tow at 1450ºC. The stabilization residence time was between 200-305 min, and 

the carbonization residence time was in the range of 22-32 minutes for different trials. The 

740 filament hollow carbon spools produced in trial T5 are shown in Figure A.4. 

Trial # 
Spin Draw 

Ratio 
(SDR) 

Post Spin 
Draw Ratio 

(PSDR) 

Total 
Draw 
Ratio 
(TDR) 

Fiber 
Diameter 

(µm) 

Tensile 
Strength 

(GPa) 

Tensile 
Modulus 

(GPa) 

T1  2.3 6.1 14.0 16.3 ± 1.7 0.6 ± 0.07 14.0 ± 0.7 

T2  2.3 5.6 12.9 18.1 ± 1.9 0.6 ± 0.04 12.9 ± 0.5 

T3  2.3 8.2 18.9 16.6 ± 0.7 0.5 ± 0.1 12.2 ± 0.9 

T4  2.3 7.6 17.5 16.7 ± 0.7 0.6 ± 0.04 12.4 ± 0.5 

T5 2.3 6.2 14.3 16.9 ± 0.6 0.6 ± 0.05 12.0 ± 0.7 

GT 
control 

PAN [6] 
3.0 8.2 24.6 11.0 ± 0.8 1 ± 0.1 20.7 ± 1.1 
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Table 2.2 PAN Structural parameters of precursor fibers from WAXD 

Trial # L(200, 110) (nm) d17° /d30° 

(equatorial) f200, Azi 

T1 14.4 1.73 0.82 

T2 13.4 1.73 0.83 

T3 13.4 1.73 0.81 

T4 13.7 1.74 0.82 

T5 12.7 1.73 0.81 

 

Table 2.3 Summary of continuous stabilization and carbonization processing parameters 

 

Trial 
# 

Stabilization LT carbonization HT carbonization 

Total 
Carbonization 

Time (min) Residence 
Time 
(min) 

Strain 
(%) 

Temperature 
(°C) 

Strain 
(%) 

Temperature 
(°C) 

Strain 
(%) 

Temperature 
(°C) 

T1-1 305 12 180-250 8 500-675 -4.63 1450 33 

T1-2 290 9 180-250 6 500-675 -4.48 1400 33 

T2-1 261 9 180-250 6 500-675 -4.25 1450 29 

T3-1 261 9 200-250 6 500-675 -3.02 1400 29 

T4-1 200 9.9 200-250 4 500-675 -2.02 1400 22 

T5-1 291 9.9 180-250 8 500-675 -4.40 1400 32 
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The tensile properties corresponding to the stabilization and carbonization 

conditions for the carbonization trials are summarized in Table 2.4. The hollow channel 

volume fraction in different trials varied from 28% to 40%. This was due to the different 

solution processing conditions, PAN and PMMA solution concentrations, and the post spin 

draw ratio used in different trials. The desired hollow channel volume fraction in the hollow 

carbon fibers can be controlled by changing these parameters. The effective tensile strength 

is calculated using the area of the solid cross-section of the hollow carbon fibers. This area 

was calculated from the SEM micrographs of individual hollow carbon fibers from the 

multifilament tow. The tensile strength based on the outer diameter considers the hollow 

portion of the carbon fiber as well, and is therefore lower than the “effective” tensile 

strength. To be able to replace the conventional carbon fibers in structural components, it 

is important that both the specific tensile strength and specific tensile modulus of the 

hollow carbon fibers be higher than conventional carbon fibers.  

The tensile strength of the hollow carbon fibers is in the range of 2.3 – 3.0 GPa, 

and the tensile modulus is in the range of 202 - 234 GPa. The tensile modulus has been 

corrected for compliance. The tensile strength (trial T1-2) reported here is 80% higher than 

reported for batch carbonized hollow carbon fibers, with tensile modulus comparable to 

the batch carbonized hollow carbon fibers [29]. Table 2.5 compares the specific tensile 

properties of the hollow carbon fibers to that of commercial carbon fibers such as T300 

and IM7. The density of the solid cross section of the hollow carbon fibers was measured 

to be 1.8 g/cm3. The density of the hollow carbon fiber including the hollow channels was 

calculated to be 1.15 g/cm3 using the 36% hollow channel volume fraction for fibers in 

trial T1-2 (Table 2.4). The specific tensile modulus is over 40% higher than T300 and 20% 
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higher than IM7 carbon fibers. The specific tensile strength falls in between T300 and IM7 

carbon fibers, based on the current processing conditions. Therefore, the continuous hollow 

carbon fibers are superior to T300 in both tensile strength as well as modulus. 

Table 2.4 Summary of tensile properties of continuous hollow carbon fibers produced in 
different trials 

Trial 
# 

Tow Size 
#filaments 

Fiber Diameter 

(µm) 

Tensile Strength 

(GPa) 

Tensile Modulus 
(GPa) Strain 

to 
Failure 

(%) 

Hollow 
Channel 
Volume 
Fraction 

(%) 
Effective Outer Effective Outer Effective Outer 

T1-1 100 7.6 9.5 4.3 ± 1.0 2.8 339 ± 30 217 1.3 ± 0.3 36 

T1-2 100 7.9 9.7 4.6 ± 1.2 3.0 333 ± 22 221 1.2 ± 0.2 36 

T2-1 100 9.1 11.7 4.0 ± 0.8 2.5 370 ± 78 226 1.2 ± 0.2 39 

T3-1 222 8.2 9.8 4.1 ± 0.6 2.9 326 ± 27 228 1.3 ± 0.3 30 

T4-1 222 8.2 9.8 3.8 ± 1.3 2.7 335 ± 58 234 1.2 ± 0.4 28 

T5-1 740 9.2 11.2 3.5 ± 0.6 2.3 300 ± 30 202 1.2 ± 0.2 33 
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Table 2.5 Comparison of specific tensile properties of commercial and hollow carbon fibers 

 

T300 [75] GT Hollow Carbon Fibers 
(T1-2) IM7 [1] 

Density (g/cm3) 1.76 1.15 1.78 

Specific tensile strength (N/tex) 2.0 2.6 3.1 

Specific tensile modulus (N/tex) 131 192 155 

Hollow carbon fiber tows from trials T3-1, T4-1, and T5-1 were surface treated and 

sized. Fiber tows from trial T5-1 were impregnated with epoxy to prepare composite 

strands for tensile testing as detailed earlier. The tensile results from individual filament 

tests and the composite strand tests indicate that the 25 individual filaments tests are 

representative of the tensile properties of the entire tow. These results are summarized in 

Table A.1.  

WAXD and Raman analysis summarized in Table 2.6 provides insights into the 

structure of the hollow carbon fibers. The L002 crystallite size of the continuous hollow 

carbon fibers was higher than the batch carbonized hollow carbon fibers. The FWHM at 

2𝜃𝜃 ~ 26º for hollow carbon fibers in trial T1-2 is lower than the batch carbonized fibers 

and comparable to IM7 carbon fibers. The similarity of crystallite size as well as d-spacing 

in trials T1 and T5 seems to indicate that the scale up from 100-filament to 740 filament 

tow has not affected the structure of the hollow carbon fibers. The integrated WAXD 

patterns for hollow carbon fibers trials T5-1 is shown in Figure 2.5. 
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The Raman IG/ID ratio indicates a higher level of graphitic order at the surface of 

the hollow carbon fibers as compared to IM7 carbon fibers.  The difference between the 

IG/ID ratio in fibers from trial T1-2 and T5-1 is within the standard deviation observed from 

multiple measurements. These results indicate that the inherent structure of the hollow 

carbon fibers is similar or better than that of IM7 carbon fibers and has resulted in a higher 

tensile modulus. 

 

 

Figure 2.5 WAXD integrated scans of hollow carbon fibers produced from trial T5-1 (740 
filament tow) 

The tensile strength is limited by the size of the largest defect present in the carbon 

fibers. Using Griffith’s equation for brittle fracture (Equation 1) [76], the size of the largest 

defect in the fibers can be estimated. In Equation 1, 𝜎𝜎 is the tensile strength, 𝐸𝐸 is the tensile 

modulus, c is the size of the largest defect, and 𝛾𝛾𝑎𝑎 is the apparent surface energy (4.2 J/m2 

for graphite). Using this equation, we calculated the size of the largest defect in the hollow 

carbon fibers and listed in Table 2.7. It is important to note, to calculate the size of the 

largest defect in the solid cross section of the fiber we need to use the tensile strength and 

tensile moduli values based on the effective diameter. 
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Table 2.6 Structural parameters of hollow carbon fibers 

Trial # L002  
(nm) 

L10  
(nm) 

d (002)  
(Å) 

FWHMAzi, 002  
(°) f(002), azi 

Raman 
IG/ID 

Trial T1-2 1.8 2.6 3.48 30.7 0.83 0.49 

Trial T5-1 1.9 2.6 3.53 32.3 0.82 0.53 

Batch carbonized hollow 
carbon fiber [29] 1.3 2.1 3.52 33.2 0.80 N/A 

GT Control carbon fibers 
[6] 1.9 2.5 3.44 23.1 N/A 0.46 

IM7 [6] 1.6 2.1 3.48 30.3 0.83 0.43 

 

 

 

 

 

 
𝜎𝜎 = �2𝐸𝐸𝛾𝛾𝑎𝑎

𝜋𝜋𝜋𝜋
 (1) 
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Table 2.7 Hollow carbon fiber defect size calculation based on Griffith’s equation 

Trial # 

Tensile Strength  
(GPa) 

Tensile Modulus 
(GPa) Size of Largest 

Defect (nm) 
Effective Outer Effective Outer 

T1-1 4.3 2.8 339 217 49 

T1-2 4.6 3.0 333 221 42 

T2-1 4.0 2.5 370 226 62 

T3-1 4.1 2.9 326 228 52 

T4-1 3.8 2.7 335 234 62 

T5-1 3.5 2.3 300 202 66 

GT Control Carbon 
Fiber [6] 5.5 350 31 

IM7 [1] 5.5 276 24 

For hollow carbon fibers, with tensile strength of 3.5 – 4.7 GPa, and tensile modulus 

of 300 – 370 GPa, based on the effective diameter, the size of the largest defect can be 

estimated to be ~ 40 – 65 nm. Applying the same calculation, the estimated size of the 

defects in IM7 carbon fibers is ~ 24 nm, and that in GT control carbon fibers is ~31 nm. 

Therefore, in order to match or exceed the tensile strength of IM7 carbon fibers, the size of 

the defects in hollow carbon fibers needs to be restricted to less than 25 nm. These defects 

could arise due to multiple factors. The entanglements in the polymer will introduce 

inherently present defects with a minimum size of 2 nm [6]. Entanglement of more than 

two molecules will create defects larger than 2 nm. The defects near the surface are likely 

to be formed during fiber spinning, drawing, stabilization and carbonization. It is therefore 
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critical to understand the processing stage at which these defects are being introduced and 

modify that processing stage to prevent the formation of the defects.  

The TEM images at different locations on the hollow carbon fiber cross section are 

shown in Figure 2.6. The TEM images of a commercial high-performance PAN based 

carbon fiber, and GT control carbon fiber are included in Figure 2.7 for comparison. The 

TEM images of hollow carbon fiber cross sections from Figure 2.8 reveal defects near the 

surface of the hollow carbon fibers. These defects are present in the outer 160 nm region 

near the fiber edge and their size is in the range of 5-20 nm. The number of these surface 

defects are significantly higher compared to those seen on the surface of GT control carbon 

fibers in Figure 2.9. In the solid carbon fibers, the surface defects seem to be present in the 

first 40 nm region from the fiber surface, and the size of the largest defect is 10 nm. There 

are no large defects (>10 nm) visible in the inner cross section of the hollow carbon fiber 

specimen. The surface defects in the hollow carbon fibers are smaller than the calculated 

defect size from Table 2.7. It may be possible that the defects near the surface region being 

close to each other, may collectively act as a larger size defect in the range of 40-60 nm, 

and could be limiting the tensile strength. The surface defects in the GT control carbon 

fibers are smaller than the calculated value as well, however, these defects are more 

infrequent compared to that in hollow carbon fibers, and therefore these defects are less 

likely to collectively form a larger defect than in hollow carbon fibers. That may be one 

explanation for the higher tensile strength in the GT control carbon fibers than the hollow 

carbon fibers. There could be other strength limiting defects present elsewhere in the cross 

section as well. Therefore, it is important to analyze the fiber structure over a larger length 

scale (>10 µm). A representative image of a hollow carbon fiber filament captured using 
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X-Ray nano-CT is shown in Figure 2.10. The tomograms allow 3D visualization of hollow 

carbon fibers over significantly larger length scales (>10 µm), and allow imaging of 

thousands of cross sections in a much shorter time compared to SEM and TEM. Further 

characterization using this technique at a higher resolution could lead to a better 

understanding of the shape and size of defects present in carbon fibers. This could help in 

identifying and modifying the process in which the strength limiting defects are being 

introduced and reduce their size to increase the fiber tensile strength. 

 

Figure 2.6 Transmission electron micrographs of the hollow carbon fiber cross section at 
different locations on the fiber cross sections (b-e). (a) SEM image of hollow carbon fiber. 
TEM images of the fiber at (b) location 1 near the fiber edge, (c) location 2 between the 
hollow channels, (d) location 3 near the inner wall of the hollow channel, and (e) location 
4 between the hollow channels.  

Carbon 
Hollow 

channel 
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Figure 2.7 Comparison of the carbon fiber structure from TEM micrographs from (a) 
Hollow carbon fiber, (b) GT control carbon fiber, (c) Commercial high-performance PAN 
based carbon fiber. 
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Figure 2.8 (a) TEM image of the hollow carbon fiber surface indicates presence of defects 
or voids on the fiber surface. These defects are present in the first 160 nm from the fiber 
surface. There are no large (>10 nm) defects visible further inside the fiber cross-section. 
(b) The larger defects are in the close to 20 nm.  

 

Figure 2.9 (a) TEM image of the GT control carbon fiber surface. Fewer defects near the 
surface as compared to the hollow carbon fibers. The defects are only visible in the first 40 
nm from the fiber surface. (b) Largest defect size near the surface was measured to be 10 
nm. 
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Figure 2.10 (a) X-Ray nano-CT image of the hollow carbon fiber channels, and (b) the 
cross-section of the hollow carbon fiber. The gold line in (b) indicates the transverse plane 
which is shown in (a). 

SAXS measurements were performed to obtain the detailed orientation information 

of graphitic planes in the hollow carbon fibers. Figure A.6 shows the 2D scattering pattern 

for sample T5-1, T1-2 and GT control carbon fibers. All samples show a highly anisotropic 

butterfly-like scattering pattern with high intensity vertically (Y-axis), as the fiber axis was 

placed horizontal (X-axis), and perpendicular to the incident X-ray beam (Z-axis). 

According to Babnet's principle, the SAXS pattern can be contributed by either the graphite 

crystals or microvoids [77, 78]. In this study, we simulated the multi-layer graphite as a 

solid rectangular slab with an approximated cross-section of 2 nm x 2 nm based on the 

WAXD results (Table 2.6) with a length > 100 nm, which is an arbitrary value because the 

dimension is beyond the SAXS limit, as indicated in Figure A.7(b). It should be noted that 

the rectangles could represent elongated microvoids [77]; however, the uniform cross-

sectional dimension would not be expected. The internal structure of the rectangular slab 

is too small to be resolved by the maximal attainable high-q limit and its electron density 
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is, therefore, assumed to be uniform. The 2D simulation on the XY-plane was performed 

under the assumption that the slab’s long axis mainly aligned along the fiber axis (X-axis) 

with the other two short axes randomly oriented about X-axis, while the slab is allowed to 

rotate by ±10° about the incident beam (Z-axis) and Y axes, respectively, yielding the “fan” 

patterns along Y-axis in the 2D scattering pattern. The fact that the simulated 2D scattering 

pattern resembles the experimental data well (Figure A.6) confirms the morphology and 

the orientation of graphite or microvoids. We acknowledge that the 2-D simulation is based 

on scattering from dilute system, while the comparison of the orientation of the slab in 

different samples remains valid even under a concentrated condition. An azimuthal 

integration in the q range between 0.1 and 0.16 Å-1 from the 2D scattering pattern (Figure 

A.8) was performed. The outcome shows that sample C has the smallest full-width-half-

maximum (FWHM), indicating a narrower orientational distribution of the slabs among 

the three fibers. Another SAXS analysis is to focus on the intensity decay along the detector 

Y-axis (sector I in Figure A.6) which is mainly contributed from the scattering intensity 

along the radial direction (e.g., cross-section) of the elongated slab due to the preferred 

orientation. The reduced 1-D SAXS data from the sector average of this region (Figure 

2.11) exhibit a general feature of a power-law decay (0.014 Å-1 < q < 0.02 Å-1) followed 

by a smooth transition (0.02 Å-1 < q < 0.04 Å-1) and then another power law decay ( q > 

0.02 Å-1). Firstly, the fact that the three sets of SAXS data exhibit a similar pattern for q > 

0.07 Å-1, which can be best fitted using a long slab with a cross-sectional dimension of (1.0 

~ 1.2 nm) x (1.4 ~ 1.7 nm), agrees with the morphology suggested by 2D simulation results 

and the WAXD analysis. This outcome indicates that all three samples have similar 

dimensions of crystalline domains or microvoids.  
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Figure 2.11 SAXS 1D scattering pattern averaged in sector I for sample T1-2 (red), T5-1 
(orange) and GT control carbon fiber (green). The definition of the sector is presented in 
Figure A.6. 

The first (low-q) power-law decay stems from the tail of the scattering intensity 

from large objects whose dimension exceeds 2π/qmin with qmin being the attainable minimal 

q value. The power exponent of the decay reflects the interfacial scattering of the large 

objects. It is known that smooth and fractal surface (or interface) renders q-4 (Porod 

scattering) and from q-3 to q-4 intermediate decay, respectively [79]. The samples T5-1 and 

T1-2 reveal q-3.5 and q-4 decay, respectively, suggesting that T5-1 may contain more surface 

defects, yielding fractal surface scattering behavior in comparison with T1-2, consistent 

with the lower tensile properties observed in T5-1 (more surface defects). It should be noted 
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that the GT control carbon fibers exhibit a q-2 decay, which is likely attributed to the 

scattering from 2D (layer) objects with the lateral dimension larger than 2π/qmin (> 30 nm).  

One of the key differences in manufacturing of hollow carbon fibers and 

conventional single component carbon fibers, is the presence of PMMA and its subsequent 

degradation. PMMA is known to degrade in the range of 350 - 500 ºC [28, 80]. However, 

rapid degradation of PMMA could potentially cause the formation of the larger sized 

defects that are currently limiting the tensile strength. In the current process, the 

stabilization step concludes at 250 ºC and the LT carbonization oven is maintained at a 

temperature between 500-675 ºC. The stabilized fibers after passing through the 

stabilization process enters the LT carbonization stage with a temperature increase of 250 

ºC. PMMA does not degrade during the stabilization step but rapidly degrades as the tow 

is introduced to the LT carbonization stage at 500 ºC. This may be resulting in rapid 

degradation of PMMA thus forming the 40-65 nm sized defects in hollow carbon fibers 

thus limiting the tensile strength. The defect formation could be restricted if the rate of 

PMMA degradation was controlled. However, this is yet to be verified. At the same time, 

there could be other stages in the hollow carbon fiber manufacturing process that could be 

modified to further improve the tensile strength. The sacrificial PMMA component is 

expected to increase slightly the raw material and precursor fiber spinning costs. However, 

the rest of the manufacturing process, which includes fiber drawing, continuous 

stabilization and carbonization equipment does not require any modification, and therefore 

these processes will not cost more than conventional carbon fiber manufacturing. The 

nominally higher costs of hollow carbon fiber manufacturing are therefore outweighed by 
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the immediately realized potential composite weight savings and the long-term reduction 

in fuel consumption for aerospace vehicles.       

Increasing the tensile strength further while maintaining the superior tensile modulus 

of the hollow carbon fibers remains critical. One way to increase the strength of the hollow 

carbon fibers would be to reduce the effective diameter of carbon fibers. Currently, the 

effective diameter of the hollow carbon fibers is in the range of 7.6 - 9.2 µm, higher than 

T300 carbon fibers and significantly higher than IM7 carbon fibers. However, the current 

tensile strength falls between the T300 and IM7 carbon fiber values. The tensile strength 

of carbon fibers is reported to increase with a decrease in the fiber diameter, since the 

smaller diameters lead to smaller defect size in the fibers [64]. The diameter of the hollow 

carbon fiber can be reduced by changing the bicomponent precursor spinning conditions 

such as the spinneret hole diameter, PAN/PMMA ratio in the precursor fiber, draw ratio 

etc. Therefore, we believe that by reducing the effective diameter of the fiber while 

maintaining the hollow channel volume fraction, in combination with further optimization 

of stabilization and carbonization conditions, will lead to tensile strength values higher than 

the IM7 carbon fiber tensile strength. Further tensile strength increase in hollow carbon 

fibers will also lead to a higher strain to failure, which is important in manufacturing carbon 

fiber composites.  Additionally, hollow carbon fibers allow for a larger outer diameter 

while maintaining a smaller effective diameter. The higher outer diameter is expected to 

lead to higher resistance to buckling under compressive loading in hollow carbon fibers. 

Therefore, producing hollow carbon fibers with effective diameter comparable to IM7 

carbon fibers (~5 µm), is also expected to result in superior compressive strength as 

compared to IM7 carbon fibers [29]. The mechanical properties of hollow carbon fiber 
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composites are reported in Chapter 3. The hollow carbon fibers therefore hold significant 

potential for a paradigm shift in designing lightweight carbon fiber composites for 

aerospace applications.  

2.6 Conclusions  

 Continuous multifilament hollow carbon fiber tows were successfully 

manufactured with tow sizes ranging from 100 to 740 filaments. Over 80% improvement 

in tensile strength has been achieved compared to batch carbonized hollow carbon fibers 

reported before. The continuous hollow carbon fiber tensile properties are higher than T300 

carbon fibers. The specific tensile modulus is higher than IM7 carbon fibers however, the 

specific tensile strength needs further improvement. TEM images of hollow carbon fibers 

indicate surface defects, which could be potentially limiting the tensile strength of the 

fibers. Further characterization using synchrotron-based X-Ray nano-CT will help better 

characterize the defects at higher resolution. The size of the defects in hollow carbon fibers 

could be potentially reduced by to controlling the rate of the PMMA degradation by 

modifying the stabilization and carbonization process parameters. Based on the tensile 

properties achieved so far, the hollow carbon fibers show promise of being able to replace 

state of the art aerospace grade carbon fibers to significantly reduce the weight of 

composite materials. 
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CHAPTER 3. HOLLOW CARBON FIBER COMPOSITES 

3.1 Background 

Mechanical properties and advantages of using carbon fibers are realized when the 

fibers are used in composite materials as a reinforcement [81]. Tensile properties of 

unidirectional continuous carbon fiber composites are dependent on two key characteristics 

viz. the tensile strength and moduli of the carbon fibers and the interfacial adhesion 

between fiber and matrix which enables effective load transfer. Fibers are typically surface 

treated and sized to improve surface wetting characteristics and ensure interfacial adhesion 

between the fiber surface and the matrix. Based on the mechanical properties of the fiber, 

surface treatment and the type of matrix used (epoxy, thermoplastics etc.) there are 

different ways in which composite failure may occur under tension including but not 

limited to fiber pullout, fiber cracking and matrix cracking. In case of carbon fiber-epoxy 

composites, failure is brittle. The strain to failure is typically dictated by the strain taken 

by the reinforcement and therefore is typically 1-2% for carbon fiber composites. 

The most common modes of compressive failure in unidirectional composites are 

micro-buckling, kinking, fiber failure, and delamination failure [82]. Like tension, 

compressive properties of the composite are largely determined by the fiber compressive 

properties. The composite compressive strength is lower than the tensile strength [83]. For 

IM7 carbon fibers, the unidirectional composite compressive strength was reported to be 

1.7 GPa compared to the tensile strength of 2.7 GPa [1]. Thus, compressive strength was 

60% of the tensile strength. It has been previously hypothesized that larger diameter carbon 
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fibers (~ 10 µm) would be more stable under a compressive load and less prone to buckling 

and therefore the composites have higher compressive strength than the conventional 

carbon fiber composites (5-7 µm diameter) [29]. It is important to note that buckling 

behavior is not a strength property but indicates the stability of the material under load.  

With this thought, multichannel hollow carbon fibers (hollow CF) with diameters between 

9-11 µm were manufactured as described in CHAPTER 2. The hollow carbon fiber 

composites show an improvement in the compressive properties compared to reported IM7 

numbers. The compressive strength (0.9 GPa) of the hollow carbon fiber composites is 

over 80% of the tensile strength (1.1 GPa) compared to 60% for IM7 composites.  

3.2 Materials 

Continuous hollow carbon fibers were manufactured as described in CHAPTER 2 

(Specimen T5) and IM7 fibers were obtained from Hexcel. Gel-spun PAN-based carbon 

fibers, hereafter referred as GT control carbon fibers, were manufactured at Georgia Tech 

as described by Chae et al. [6]. The epoxy matrix used was CYCOM 977-3 from Solvay. 

Fiberglass tabbing material for tension tests was obtained from McMaster Carr Inc. 

Unidirectional carbon fiber epoxy composite tabs for compression testing were obtained 

from ACP Composites Inc. Tabs were bonded to the composite test specimen using 3M 

DP460NS Scotch Weld adhesive.  

3.3 Composite Manufacturing  

Hollow CF and IM7 prepregs (both 6-ply, unidirectional) were manufactured at the 

University of Southern Mississippi using a drum winding process. The fibers were pulled 

from spools over a drum whereupon they were impregnated with resin (via vacuum 
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bagging) to a specified areal weight to achieve ~60% fiber volume fraction. The laminates 

were manufactured by using six layers of prepreg followed by autoclave curing using 

publicly available processing information for CYCOM 977-3 by SOLVAY [84].  

GT control fiber composites were manufactured by Vuronyx Inc. Unidirectional 

prepregs were manufactured using drum winding followed by vacuum bagging. The matrix 

used was CYCOM 977-3, same as the one for hollow CF composites. The laminates were 

prepared by individually heating prepreg layers at 80 ºC for 30 min and stacking five layers. 

This was followed by autoclave curing with a 1-hour pre-cure at  

120 ºC followed by overnight curing at 180 ºC.  

3.4 Sample Preparation 

Composite panels and tabbing materials were cut to dimensions using a waterjet. 

Specimen and tabbing material dimensions are listed in Table 3.1.  

Table 3.1 Summary of composite tension and compression tests 

Test Specimen dimension  Tab dimension 

Tension 10” x 0.5” x 0.04” 2.5” x 0.5” x 0.04” 

Compression 3.18” x 0.5” x 0.04” 1.496” x 0.5” x 0.04” 

For compression tests to be conducted at 180 ℉ (82 °C), the tabbed (strength tests) 

and untabbed (modulus tests) specimens were preconditioned in water. First the specimens 

were dried at 200 ℉ (94 °C) in an oven for 48 hours. The weight of the untabbed specimen 

was recorded to the nearest 0.01g. The tabbed and untabbed specimens were then soaked 
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in deionized water at 160 ℉ (72 °C) for 336 hours. The weight of the untabbed specimens 

was recorded post-conditioning and the moisture pickup was calculated.  

3.5 Mechanical Testing Methods 

Tension and compression tests for hollow CF and IM7 composites were conducted 

at the Materials Processing Characterization Facility (MPCF) at Georgia Tech. A uniaxial 

servohydraulic test system was used in conjunction with the MTS 793 multipurpose 

testware (MPT) software. Tension and compression tests are summarized in Table 3.2. For 

tension tests conducted at -75 ℉ (-59 °C) and compression tests conducted at 180 ℉ (82 

°C), an environmental chamber was used. Five specimens were tested for each test and 

temperature condition.  

Table 3.2 Summary of composite tension and compression tests 

Composite  Test 

Hollow CF and 
IM7  

Tension (ASTM D3039): Room Temperature and -75 ℉ (-59 
°C) 

Compression Strength and Modulus (Modified ASTM D695): 
Room Temperature (27 °C) and 180 ℉ (82 °C) 

 

3.5.1 Tension testing 

Tension tests were performed at room temperature and -75 ℉ (-59 °C) per ASTM 

D3039 [85]. Testing speed was 5.12 mm/min and strain was measured using a an 
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extensometer as shown in Figure 3.1. For cold temperature tests, specimens were cooled 

down to -75 ℉ (-59 °C)  over a 20 min period and equilibrated for 3-4 min before starting 

the test. The tensile strength of the composite specimen was dividing the maximum force 

before failure by the cross-sectional area of the sample. For each sample the width and 

thickness were measured to calculate the cross-sectional area. The tensile modulus was 

calculated over the strain range of 0.1 - 0.3%.  

    

 

3.5.2 Compression testing 

Compression tests were performed at room temperature and 180 ℉ (82 °C) per 

modified ASTM D695 [86]. Testing speed was 1.3 mm/min. For high-temperature tests, 

specimens were heated to 180 ℉ (82 °C) over a 20 min period and equilibrated for 3-4 min 

Figure 3.1 Composite specimen with extensometer mounted for ASTM D3039 tension test 
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before starting the test.  For compression modulus tests, strain gauges were bonded to each 

specimen to accurately record the strain during compression. The support fixture used for 

the modified D695 test is shown in Figure 3.2. For each sample the width and thickness 

were measured to calculate the cross-sectional area. Compressive strength was calculated 

by dividing the maximum force before failure by the cross-sectional area. Compressive 

modulus was calculated by calculating the slope of the initial linear portion of the stress-

strain curve as described in ASTM D695.  

 

3.6 Composite Characterization  

3.6.1 Composite fracture characterization  

Composite fracture surfaces after tension and compression testing were 

characterized using a Hitachi SU8230 scanning electron microscope (SEM) at an 

Figure 3.2 Specimen support fixture for modified ASTM D695 compression test 
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accelerating voltage of 10 kV. For tension specimen, visual failure mode of the composite 

was also documented as prescribed in ASTM D3039.  

3.6.2 Fiber volume fraction 

Thermogravimetric analysis (TGA) was conducted to determine the fiber weight 

fraction in the composites. Composite specimens were heated in air atmosphere to 450ºC 

with a 10 ºC/min heating ramp and held at 450ºC for 5 hours to ensure complete 

degradation of the epoxy matrix. The fiber volume fraction was then calculated using the 

density of carbon fibers (reported in chapter 2) and epoxy [84].  

3.6.3 Fiber alignment  

Wide-Angle X-ray diffraction (WAXD) was used to measure the alignment of fibers 

in the composites. WAXD of the fibers was carried out using Rigaku Micromax– 007 (Cu 

Kα, λ = 1.542 A°, 0.65 mA, 45 kV). X-Ray exposure time was 30 min for each sample. The 

diffraction patterns were analyzed using AreaMax and MDI Jade 9.1 software. The 

orientation factor was determined from the (002) azimuthal scans at 2θ=26° for carbon 

fibers using the procedure previously described by Sreekumar et al. [71]. 

3.7 Results 

Results of the tension and compression tests are summarized Table 3.3 and Table 

3.4, respectively.  
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Table 3.3 Tensile properties of composite specimen 

Composite 

Room Temperature (27 °C) -75 ℉ (-59 °C) 

Tensile 
strength 
(MPa) 

Tensile 
Modulus 

(GPa) 

Strain to 
failure 

(%) 

Tensile 
strength 
(MPa) 

Tensile 
Modulus 

(GPa) 

Strain to 
failure (%) 

Hollow CF 1072 ± 49 99 ± 6 1.1± 0.1 959 ± 93 100 ± 5 1.0 ± 0.1 

IM7 
(measured) 1905 ± 106 142 ± 10 1.4 ± 0.2 1907 ± 52 159 ± 10 1.1 ± 0.1 

IM7 (reported) 
[1] 2723 164 1.6 N/A 

GT control CF 2950 ± 73 180 ± 5 N/A N/A 

 

Table 3.4 Compressive properties of composite specimen 

Composite 

Room Temperature (27 °C) 180 ℉ (82 °C) 

Compressive 
strength 
(MPa) 

Compressive 
Modulus 

(GPa) 

Compressive 
strength 
(MPa) 

Compressive 
Modulus 

(GPa) 

Hollow CF 867 ± 30 98 ± 4 564 ± 83* 105 ± 2 

IM7 
(measured) 969 ± 130* 136 ± 5 575 ± 100* 141 ± 4 

IM7 (reported) 
[1] 1689 150 N/A 

GT control CF 1655 ± 100 152 ± 8 N/A 

*Compressive strength of the samples is likely underestimated since the samples experienced end-crushing 

and did not fail in the intended gauge length region. 
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The results form TGA analysis combined with the composite moisture pickup are 

summarized in Table 3.5 Summary of fiber-epoxy composition and composite moisture 

pickup. The percentage moisture pickup for the hollow CF composite specimen (2.9%) is 

1.8% higher compared to IM7 composite (1.1%). The difference in moisture pickup for 

epoxy could be attributed to the higher percentage of epoxy in the hollow CF specimen 

compared to IM7 composite. The percentage moisture pick-up difference in the two 

specimen is due to the difference in the weight of the composite specimen i.e. hollow CF 

specimen (~1.35 g) are lighter than IM7 specimen (~1.73 g) of the same dimension. 

However, the 2.2% difference in epoxy moisture pickup is likely insignificant, if the 

absolute weight gain in the composite is considered, for the following reason: average (over 

5 specimen) moisture pickup for both IM7 and Hollow CF composites was same (~ 0.02 - 

0.04 g, appendix B - table B1 and B2). This means that even a 0.01g difference in weight 

reading, well within the range of error of the weighing balance, could change the 

percentage moisture pickup measurement by ~1%. In other words, a 0.01-0.02g error in 

the weighing balance leads to a standard deviation of 1-1.5%, which means the percentage 

moisture pickup by the epoxy matrix in hollow CF and IM7 composite are within the range 

of one standard deviation. Additionally, hollow channels make up to 36% volume in the 

hollow CF, translating to ~20% of the total composite volume. If there was any moisture 

pickup in the hollow channels, the weight gain would have been between 20-25%, 

significantly higher than the 2.9% weight gain that is currently observed. These facts 

combined suggest that the hollow channels in hollow CF composites are not picking up 

moisture.  
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Table 3.5 Summary of fiber-epoxy composition and composite moisture pickup 

Composite Fiber 
wt% 

Epoxy 
wt% 

Fiber 
density 

(g/cm3) 

Epoxy 
density 

(g/cm3) 

Fiber 
volume 

fraction (%) 

Composite 
moisture pickup 

(%) 

Epoxy 
moisture 

pickup (%) 

Hollow 
CF 56 44 1.15 

1.29 
58.8 2.9 6.7% 

IM7 62 38 1.78 54.2 1.1 4.5% 

The average tensile strength and moduli of Hollow CF composites at room 

temperature and -75 ℉ are nearly the same and within the standard deviation, which 

indicates that the composite performance under tension was not affected by the change in 

temperature. The same is observed for IM7 composites, where the tensile properties are 

not affected by lower temperature.  

Hollow CF composite tensile strength is lower than what is expected from the 

individual fiber tensile strength values and the volume fraction of fiber in the composite, 

based on the rule of mixtures. The expected tensile strength, based on the hollow carbon 

fiber strength of 2.3 GPa and 58.8% fiber volume, is ~1.35 GPa. However, the measured 

tensile strength for the hollow CF composites is 0.95 – 1.1 GPa. This indicates potentially 

ineffective load transfer between the epoxy and hollow carbon fibers. This likely the reason 

why the commercially reported value for IM7 unidirectional composite is 2.7 GPa 

compared to the 1.9 GPa measured in this study, which is ~30% lower.  

The low tensile strength of the hollow CF and IM7 composites can be attributed to 

poor adhesion between fiber and matrix in hollow carbon fiber composites compared to 

IM7 composites. It is evident from Figure 3.3 and Figure 3.4 that hollow CF composites 
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have poor adhesion between epoxy and fibers compared to that in the IM7 composites 

(Figure 3.5 and Figure 3.6), which indicates that the hollow fiber surface treatment and 

sizing processes need to be further optimized. Even in IM7 composites, the debonding 

between fiber and epoxy matrix is visible (Figure 6(b)), although it is significantly better 

compared to hollow CF composites. This is likely because the commercially produced IM7 

fibers have optimized surface treatment and sizing processes in place.  

The fiber orientation factor in both hollow CF and IM7 composite specimens is also 

lower than the inherent fiber structural orientation, which is contributing to lower tensile 

moduli in both hollow CF and IM7 composites. In hollow CF composites, the fiber tow 

had significantly higher number of broken fiber filaments, and there are significantly higher 

number of misaligned fibers in these composites compared to IM7 (Figures B.2 and B.3). 

The fiber orientation in the uniaxial direction could be improved by improving the prepreg 

manufacturing process. Although drum winding is convenient for small-scale prepreg 

manufacturing, but it could be potentially causing misalignment in adjacent fibers. 

Commercial prepreg manufacturing methods are likely to yield better control over fiber 

alignment in the composite. 

At room temperature, hollow CF composite compressive strength is 81% of the 

tensile strength. For IM7 composites, based on compression and tension values reported in 

the literature (Table 3.4), the compressive strength is only 60% of the tensile strength of 

the composite. For GT gel spun carbon fiber composites where the compressive strength 

was measured to be 55% of the tensile strength.  Additionally, the SEM image of fractured 

surface of the room temperature hollow CF specimen post compression shows no signs of 
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micro-buckling (Figure 3.7). Therefore, although the compressive strength of the hollow 

CF composites is currently lower than IM7 composites, it is likely to improve upon further 

improvement in hollow CF mechanical properties.   

It is important to note that the compressive strength values for IM7 composites at 

both room temperature and 180 ℉ are likely significantly underestimated because all the 

samples in these tests experienced end-crushing and did not fail in the intended gauge 

length. The same was observed for hollow CF composite tested at 180 ℉. This is caused 

due to potential misalignment of the tabs while being bonded to the composite, issues with 

flatness of the loading surface and the composite misalignment in the support fixture. Due 

to the limited composite material available, further tests could not be conducted to measure 

the true compressive strength of these specimen. 

Table 3.6 Fiber alignment in composites 

Composite 
Orientation factor (f) 

Individual fiber Composite 

Hollow CF 0.82 (Chapter 2) 0.7 

IM7  0.83 [6]  0.73 
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Figure 3.3 SEM of fractured hollow CF composite after tension test at room 
temperature (27 ºC) 
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Figure 3.4 SEM of fractured hollow CF specimen after tension test at -75 ºF (-59 ºC)  
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Figure 3.5 SEM of fractured IM7 composite specimen after tension test at room 
temperature (27 ºC) 
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Figure 3.6 SEM of fractured IM7 composite after tension test at -75 ºF (-59 ºC) 
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3.8 Summary 

Tension and compression properties of Hollow CF and IM7 composite specimen were 

measured. The lower tensile properties of the hollow carbon fiber composites compared to 

IM7 composites are attributed to the difference in fiber tensile properties, poor adhesion 

between fiber and epoxy matrix and the fiber alignment in the composites. The adhesion 

between epoxy and fiber is expected to improve upon optimizing the surface treatment and 

sizing conditions and improve the tensile strength of the composite by facilitating effective 

load transfer among fibers. Compression strength of the hollow CF composites being 81% 

of the tensile strength as well as the absence of moisture pickup in the hollow channels is 

Figure 3.7 SEM of fractured hollow CF specimen after compression at room 
temperature shows compressive failure with no signs of micro-buckling in the fibers 
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a very promising step towards advancing the technology readiness level. By comparison, 

compressive strength of IM7 composite is only 60% of the tensile strength.  
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CHAPTER 4. SMALL DIAMETER CARBON FIBERS 

4.1 Background 

Fiber diameter is known to affect the tensile strength and modulus of carbon fibers 

[46, 65, 87]. There are multiple theories as to the mechanism of this relationship [76, 87-

93]. It is generally understood that defects limit the tensile strength of carbon fibers. 

Reducing the fiber diameter is expected to limit the size and number of defects formed, 

and as a result improve the tensile strength of the fiber. The formation of a skin-core 

structure in carbon fibers has been discussed in CHAPTER 1. Carbon fibers with smaller 

diameters have a higher surface area to volume ratio which helps diminish the skin-core 

structure effect caused due to oxygen diffusion and heat transfer gradients during the 

oxidation and stabilization process [93]. It has been hypothesized that the diminishing skin-

core effect helps improve the graphitic ordering throughout the cross-section of the fiber 

and was believed to be the one of the reason behind the improvement in the tensile modulus 

of hollow carbon fibers by 20-30% compared to commercially produced IM7 carbon fibers 

[29]. Therefore, reducing the diameter could, potentially, further improve the tensile 

modulus of carbon fibers. 

Commercially produced PAN based carbon fiber diameter is in the range of 5 –7 

µm. The PAN precursor fibers are solution spun and the diameter of the as-spun and drawn 

precursor fiber largely determines the diameter of the carbon fiber. The as-spun PAN fiber 

diameter is dependent on the spinneret hole size. Although manufacturing spinnerets with 

hole sizes less than 100 µm with the desired L/D ratio is possible, it requires high level of 
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precision. Alternatively, small diameter fibers can be produced using a bicomponent 

islands in a sea system, with small diameter islands of the desired fiber material and a 

sacrificial sea component that can be eliminated in subsequent processing, producing a 

multifilament tow of small diameter fibers [94].  

Another method of producing small diameter PAN fibers is via electrospinning. 

Carbon fibers with diameter in the submicron range have been produced from electrospun 

PAN precursors. Arshad et al. [92] produced electrospun PAN based carbon fibers with 

diameter between 150-500 nm with a tensile strength of 3.5 GPa and tensile modulus of 

172 GPa. The PAN fibers were collected in the form of a unidirectional net and were 

stabilized and carbonized under tension. However, in the absence of further drawing of the 

electrospun fibers, and continuous and gradual application of tension as in case of 

continuous stabilization and carbonization, the tensile modulus of these fibers was limited 

to 172 GPa. In comparison, the commercially produced T300 fiber has a tensile strength of 

3.5 GPa and a tensile modulus of 230 GPa. Therefore, the tensile properties of the small 

diameter carbon fibers produced from electrospun PAN precursors would need to improve 

in order to scale up and manufacture aerospace grade carbon fibers using this method.   It 

is also challenging to produce continuous fibers with a uniform diameter using 

electrospinning, as observed in this case where the carbon fiber diameter was in the range 

of 150-500 nm.  

Bicomponent fiber spinning for manufacturing a variety of fibers has been used 

since the 1960s. Chae et al. [27] have demonstrated the use of the gel spun, bicomponent,  

islands in a sea precursor with PAN islands in a polymethylmethacrylate (PMMA) sea. 
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PMMA acts as the sacrificial component and burns out during carbonization, producing 

small diameter carbon fibers. The carbon fibers produced using this method had an 

effective diameter of 1 µm, tensile strength of 3.2 GPa, and tensile modulus of 337 GPa. 

Stabilization and carbonization was done in a batch process. 

Based on the reported tensile properties for PAN based carbon fibers and the 

corresponding fiber diameters, Chang et al. [65] predicted that reducing the diameter of the 

gel-spun PAN based carbon fibers to 1 µm could result in tensile strength as high as 12 

GPa and tensile modulus of up to 425 GPa. With this thought, multifilament bicomponent 

PAN:PMMA precursor fibers were produced. These precursor fibers were continuously 

stabilized and carbonized to produce a continuous 700 filament carbon fiber tow with 2.3 

µm carbon fiber diameter. This study focuses on the process, structure and properties of 

these small diameter carbon fibers and provides insights to further improve the tensile 

strength.  

4.2 Materials 

A poly(acrylonitrile-co-methacrylic acid) (PAN-co-MAA) copolymer with a 

viscosity average molecular weight of approximately 500,000 g/mol was used as the 

precursor polymer (Japan Exlan Company, Osaka, Japan). PMMA homopolymer with a 

molecular weight of approximately 350,000 g/mol was obtained from Sigma Aldrich. N,N 

dimethylformamide (DMF) (HPLC grade), obtained from Sigma Aldrich, was used as the 

solvent. Methanol used in the coagulation bath was obtained from VWR. SF-LUROL CF- 

14676 from Goulston Technologies, North Carolina was used as the spin finish. 
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4.3 Precursor and Carbon Fiber Processing 

The fiber spinning equipment, manufactured by Hills Inc, Melbourne, Florida, 

consisted of two solution tanks, one for the PAN solution that would form the islands 

component, and the other for the PMMA solution that would form the sea component in 

the fiber. The PAN solids content in the solution was 11g /100 mL of DMF, and the PMMA 

content was 29 g/dL. A 20-hole spinneret was used for gel spinning of the bicomponent 

fibers. Each hole had a diameter of 200 µm and an L/D ratio of 5. The air gap between the 

spinneret and the coagulation bath was maintained at 19 mm.  A single coagulation bath 

(100% methanol) at -50 °C was used for gelation. A spin draw ratio (SDR) of 2.3 was used 

to collect the as-spun fiber. Each filament of the as-spun fiber had seven PAN islands in a 

PMMA sea. Five such as-spun fiber spools were combined during the multistage drawing 

process to obtain a 100 filament bicomponent precursor tow. Spin finish was applied during 

the drawing process. The total draw ratio is defined as the total stretch ratio applied during 

fiber spinning and drawing. In this study, we report on two precursor trials viz. A1 and A2.  

The precursor fiber spool was then stabilized and carbonized using the continuous 

stabilization and carbonization line, built by Harper International, to obtain a carbon fiber 

tow with 700 filaments (7 PAN islands/precursor filament x 100 filament precursor). The 

stabilization and carbonization conditions are listed in Table 4.4 Summary of continuous 

stabilization and carbonization processing parameters All the facilities used for precursor 

and carbon fiber processing are housed in class 1000 clean rooms as depicted in Figure 

A.2. In total, over 20 carbonization trials were conducted and the results from eight of these 

trials are discussed in this chapter.  
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4.4 Characterization  

4.4.1 Precursor characterization 

Rheological behavior of the solutions was studied using a parallel plate viscometer 

(ARES, TA Instruments Inc.). Dynamic frequency sweep was carried out using 50 mm 

plates with a gap of 1 mm at room temperature at a strain of 1%. Tensile strength of the 

PAN-PMMA bicomponent precursor filaments was tested using a single filament testing 

machine (FAVIMAT+, Measured Solutions Inc.), using the testing protocol described by 

Lyon et al [69]. Optical micrographs of the bicomponent precursor fiber tow cross section 

were captured using a Leica optical microscope. The PAN island fibers were separated 

from the bicomponent precursor by removing PMMA using methylethylketone (MEK), 

and tested using the FAVIMAT to measure the tensile strength and modulus of the 

individual PAN island fibers. The strain rate and gauge length used for precursor tensile 

testing, for bicomponent as well as PAN island fiber, was 0.01/s and 25.4 mm, respectively. 

4.4.2 Carbon fiber characterization 

The Scanning electron microscope (SEM) used to capture carbon fiber cross 

sections was Hitachi SU8230 at an accelerating voltage of 5 kV. Individual fiber cross-

section areas were measured using ImageJ for every trial and at least 25 images were used 

to calculate the average diameter of the fibers. Individual carbon fiber filaments with 12.7 

mm gauge length were mounted on paper tabs and were tensile tested using an RSA III 

solids analyzer at a strain rate of 0.1%/s. The tensile moduli values were compliance 

corrected as described in 2.4.2, using the correction factor obtained from Figure A.3.  
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Wide-Angle X-ray diffraction (WAXD) was used to characterize the structure of 

the bicomponent precursor and carbon fibers. WAXD of the fibers was carried out using 

Rigaku Micromax– 007 (Cu Kα, λ = 1.542 A°, 0.65 mA, 45 kV). X-Ray exposure time was 

30 min for each sample. The diffraction patterns were analyzed using AreaMax and MDI 

Jade 9.1 software. From the WAXD patterns of carbon fibers, crystallite size L002 and L100 

was calculated using Scherrer equation with K = 0.9 [70]. The orientation factor was 

determined from the (002) azimuthal scans at 2θ=17° for precursor, and 2θ=26° for carbon 

fibers using the procedure previously described by Sreekumar et al. [71]. Raman 

spectra were collected on a Horiba Scientific Xplora confocal micro-Raman system (laser 

wavelength = 785 nm).  

For the transmission electron microscopy (TEM), samples were prepared using dual-

beam Thermofisher Scientific Helios G4 UC FIB/SEM. Carbon fibers were fixed with 

diluted resin on the substrate and a 1µm thick Pt protection layer was deposited 

perpendicular to the fiber axis. Thin lamellae were in-situ lifted out using a manipulator 

and mounted on the TEM grid. Additional thinning was performed at 5 kV for TEM 

observation. High resolution TEM images were taken using the JEOL JEM-ARM200cF 

with an accelerating voltage of either 80 kV or 200 kV.  The 3D internal microstructure of 

the carbon fiber was resolved using transmission x-ray microscopy (nano-CT) at beamline 

18-ID located at National Synchrotron Light Source II in Brookhaven National Laboratory. 

One fiber each from trial A1 and A2 was imaged at 8 keV to obtain an isotropic voxel size 

of 20 nm. Tomography scans were done in the fly scan mode in which a sample is 

continuously rotated, and the sample’s X-ray projection images are continuously acquired 

by a lens-coupled Andor Neo5.5 camera at the same time. The exposure time for a single 
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projection image was 0.05 sec, and the sample rotation velocity was 6 deg/sec. Sample 

images were acquired in 180º rotation range.  

4.5 Results and Discussion 

An optical micrograph of the as-spun bicomponent fiber tow from trial A1 is shown 

in Figure 4.1. A SEM image of the draw precursor is shown in Figure 4.2. These images 

show a non-uniform cross section for the PAN islands in the bicomponent precursor. From 

Figure 4.1, it is evident that the cross-sectional non-uniformity is introduced when the 

bicomponent fiber is being spun. The shape of the bicomponent solution-spun fiber cross-

section is affected by several factors including coagulation bath composition and 

temperature, the viscosities and composition of sea and island polymer solutions [95, 96]. 

As shown in CHAPTER 2, the hollow carbon fiber precursors (T1-T5) with PAN sea and 

PMMA islands had a circular cross-section. It is important to note the differences in the 

solution spinning parameters between the hollow carbon fiber and small diameter 

precursors. The solvent used for the hollow carbon fiber precursor was DMAc while the 

solvent used in the current study is DMF. For the hollow carbon fiber precursor, two 

coagulation baths were used (Methanol/DMAc and Methanol) and maintained at room 

temperature. In the current study, only a single methanol bath at -50 °C was used. As 

described earlier in this thesis, the coagulation conditions also play an important role in 

determining the fiber geometry. The coagulation bath composition and temperature is 

known to affect the fiber cross-sectional shape [74]. Let us consider the viscosity of the sea 

and island solutions in both cases. Solution viscosities of PAN and PMMA are summarized 

in Table 4.1. In trial A1 and A2, the PAN solution viscosity was 52 and 54 Pa.s, 
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respectively. The PMMA solution viscosity in trial A1 and A2 was 176 and 184 Pa.s, 

respectively. The PMMA solution viscosity is over three times higher compared to PAN 

solution viscosity. For the hollow carbon fiber precursors, the PAN solution viscosity was 

in the range of 50-65 Pa.s for different trials while the PMMA viscosity was between 350-

400 Pa.s It has been reported that in bicomponent spinning (both melt and solution 

spinning), the higher viscosity polymer tends to form the core component and the lower 

viscosity component tends to form the sheath component [97, 98]. The viscosity of the 

PAN and PMMA solutions could be changed by changing the solution concentration as 

well as polymer molecular weight. Overall, this suggests that the effect of PAN and PMMA 

Figure 4.1 Optical micrograph of 20-filament as-spun bicomponent precursor fiber from 
trial A1. PAN islands in the PMMA sea have a non-uniform cross-section. A 
representative bicomponent fiber has been highlighted with a white outline to provide 
readers with a better understanding of the cross-section.  
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solution spinning parameters on the bicomponent fiber geometry needs to be studied 

further to obtain a uniform circular island diameter.  

 

Table 4.1 Solution rheology – zero shear viscosity at room temperature  

Trial # 
Solution viscosity (Pa.s) 

PAN PMMA 

A1 54 176 

A2 52 184 

Figure 4.2 SEM images of (a) magnified part of the cross-section of the drawn precursor fiber 
from trial A1 shows non-uniform PAN island diameters, (b) precursor tow at a lower 
magnification showing majority of the precursor tow.       
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Tensile properties of the drawn precursor and that of a single component gel spun 

PAN precursor are summarized in Table 4.2. Structural parameters of the bicomponent 

precursors from WAXD are summarized in Table 4.3. The tensile modulus of the 

bicomponent precursor is lower than that of the control PAN precursor. This could be 

attributed to two factors: 1) the tensile modulus of PMMA is lower (2.9 GPa) compared to 

PAN fiber tensile modulus (10-21 GPa), and 2) the bicomponent precursor had a total draw 

ratio of 15.9 in trial A1 and 10.8 in trial A2, compared to a draw ratio of 24 for the control 

PAN precursor.  Even the PAN island fibers tested after removing PMMA had a tensile 

modulus of 14 GPa and 12 GPa in trial A1 and A2, respectively.  This means that the PAN 

fibers in the bicomponent precursor were drawn less compared to the control PAN 

precursor, resulting in lower polymer chain alignment in the fiber direction, and therefore, 

have a lower tensile modulus. The tensile modulus of PAN islands is similar to what was 

observed for hollow carbon fiber precursor in CHAPTER 2. The orientation factor of the 

precursor A1 (0.83) and A2 (0.82) from WAXD (Table 4.3) is also similar to what was 

observed for the hollow carbon fiber precursor (0.81-0.83). 

Table 4.2 Precursor fiber drawing conditions and tensile properties 

 

Trial # 

Spin 
Draw 
Ratio 

(SDR) 

Post Spin 
Draw Ratio 

(PSDR) 

Total Draw 
Ratio 
(TDR) 

Fiber 
Diameter 

(µm) 

Tensile 
Strength 

(GPa) 

Tensile 
Modulus 

(GPa) 

A1  4.3 3.7 15.9 17.6 ± 1.7 0.4 ± 0.19 9.5 ± 0.2 

A2 3.0 3.6 10.8 28.8 ± 4.6 0.4 ± 0.04 9.4 ± 1.1 

GT control 
PAN [6] 3.0 8.2 24.6 11.0 ± 0.8 1 ± 0.1 20.7 ± 1.1 
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Table 4.3 Precursor PAN fiber structural parameters from WAXD 

Trial # L(200, 110) (nm) d17° /d30° 

(equatorial) f200, Azi 

A1 11.82 1.74 0.83 

A2 11.95 1.73 0.82 

The continuous stabilization and carbonization parameters are summarized in Table 

4.4. The precursors from trials A1and A2 were each stabilized and carbonized under four 

different conditions. For A1 precursor, the stabilization temperature profile was in the 

range of 180-250 ºC, stabilization residence time was 118 min. Low temperature (LT) 

carbonization temperature profile was 500-675 ºC and the high temperature carbonization 

temperature was varied between 1200-1400 ºC. The LT carbonization strain was between 

10-20%, and the HT carbonization strain was maintained at -5%. For A2 precursor, the 

stabilization residence times were varied between 60-120 min, stabilization strain between 

6-28%. The LT carbonization temperature profile and strain were kept constant at 500-675 

ºC and 10%, respectively.  The HT carbonization temperature was maintained at 1400 ºC.  
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Table 4.4 Summary of continuous stabilization and carbonization processing parameters 

 

 

Trial 
# 

Stabilization LT carbonization HT carbonization 

Total 
Carbonization 

Time (min) Residence 
Time 
(min) 

Strain 

(%) 

Temperature 
(°C) 

Strain 

(%) 

Temperature 
(°C) 

Strain 

(%) 

Temperature 
(°C) 

A1-1 118 6 180-250 10 500-675 -5.0 1200 13 

A1-2 118 6.4 180-250 10 500-675 -5.0 1300 13 

A1-3 118 6 180-250 10 500-675 -5.0 1400 13 

A1-4 118 6 180-250 20 500-675 -5.0 1400 11 

A2-1 118 6.4 180-250 10 500-675 -5.0 1400 12 

A2-2 121 15.6 200-260 10 500-675 -4.1 1400 13 

A2-3 77 23.0 200-260 10 500-675 -4.1 1400 7 

A2-4 94 27.7 200-260 10 500-675 -4.1 1400 9 

Figure 4.3 Small diameter carbon fiber spools produced in trials A1 and A2. Over 20 
carbonization trials were conducted and spools from nine trials are shown in the image.  
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The 700 filament carbon fiber spools produced in trials A1 and A2 are shown in 

Figure 4.3. The carbon fiber diameter and tensile properties resulting from these 

stabilization and carbonization conditions are summarized in Table 4.5. The SEM images 

of the fiber cross section and fiber surface are shown in Figure 4.4.  The carbon fiber 

diameter is in the range of 2.2-2.6 µm. The highest tensile strength of 5.1 GPa was observed 

in trial A1-3 and the highest tensile modulus of 434 GPa was observed in trial A2-1. The 

tensile moduli values are in the range of 358 – 434 GPa for all but one trial. In trial A1-1 

the HT carbonization temperature was 1200 ºC. As the temperature was increased to 1300 

and 1400 ºC, a significant improvement in the tensile modulus is observed.  

Table 4.5 Summary of tensile properties of continuous small diameter carbon fibers 

Trial # Fiber diameter (µm) Tensile strength 
(GPa) 

Tensile modulus 
(GPa) 

Strain to failure 
(%) 

A1-1 2.2 4.0 ± 1.1 274 ± 34 1.4 ± 0.1 

A1-2 2.2 4.8 ± 1.5 383 ± 87 1.3 ± 0.1 

A1-3 2.2 5.1 ± 0.7 358 ± 29 1.4 ± 0.1 

A1-4 2.2 5.0 ± 0.9 363 ± 47 1.4 ± 0.1 

A2-1 2.6 4.2 ± 1.0 434 ± 75 1.1 ± 0.1 

A2-2 2.6 3.9 ± 1.0 417 ± 77 1.1 ± 0.1 

A2-3 2.5 4.1 ± 0.8 384 ± 59 1.1 ± 0.1 

A2-4 2.4 4.0 ± 1.0 376 ± 64 1.1 ± 0.1 

GT control CF 5.5 5.5 300-375 1.1-1.4  
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The tensile moduli values are 29-57% higher compared to the IM7 carbon fiber 

which has a tensile modulus of 276 GPa. It is important to note that the tensile modulus of 

the carbon fiber is comparable or higher than that reported for the control gel spun PAN 

based carbon fibers (300-375 GPa) despite having a precursor with lower tensile modulus 

than the control PAN precursor. This is attributed to the smaller diameter of the carbon 

fibers (2.2-2.6 µm) compared to the control carbon fibers (5.5 µm). It is important to note 

that PMMA does not degrade during the stabilization stage as shown in CHAPTER 2. 

However, the PAN island fibers have a smaller diameter compared to the control PAN 

precursor. The smaller diameter leads to a higher surface area to volume ratio. This likely 

Figure 4.4 SEM image of (a) Representative cross-section of the carbon fiber from trial 
A2-3 (b) part of the 700 filament carbon fiber tow from A2-3 (c) carbon fiber surface 
showing flake-like features (d) magnified image of a surface feature larger than 500 nm in 
size. 
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results in a diminishing skin-core effect due to better oxygen diffusion and heat transfer 

during stabilization. This could result in a more homogeneous structure throughout the 

fiber during stabilization and carbonization. The structural parameters of the carbon fibers 

are summarized in Table 4.6. Raman spectroscopy measurements show significantly higher 

IG/ID ratio in these small diameter carbon fibers (0.72) compared to the control carbon 

fibers (0.46) and IM7 carbon fiber (0.43) and hollow carbon fibers (0.49-0.53). Recent 

studies on characterizing carbon fibers using Raman spectroscopy have shown a  

correlation between a high IG/ID ratio and high tensile modulus of the carbon fibers [99, 

100]. WAXD analysis of the carbon fibers show that the FWHM for the continuous small 

diameter carbon fibers is lower than the batch processed carbon fibers and is higher than 

the control and IM7 carbon fibers. The fiber orientation factor for the small diameter carbon 

fibers is comparable to that of IM7 fibers but is higher than the batch processed carbon 

fibers. This is likely due to the fact that continuous processing allows better control over 

the application of strain during carbonization, leading to higher alignment of the graphitic 

planes in the carbon fiber. These factors could be contributing to the higher tensile modulus 

of the small diameter carbon fibers. 

The tensile strength of 5.1 GPa shows a 57% improvement compared to the batch 

processed small diameter carbon fiber strength of 3.2 GPa reported by Chae et al. [27]. The 

tensile strength of the carbon fibers is limited by the defect size. Using Griffith’s equation 

for brittle fracture, the defect size has been calculated for the corresponding tensile strength 

and moduli values, as shown in Table 4.7.  
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Table 4.6 Summary of structural parameters of continuous small diameter carbon fibers 

Trial # L002  
(nm) 

L10  
(nm) 

d (002)  
(Å) 

FWHMAzi, 002  
(°) f(002), azi 

Raman 
IG/ID 

Trial A1-3 1.6 2.1 3.42 31.9 0.81 0.72 

Trial A2-1 1.7 2.1 3.46 31.1 0.82 0.72 

Batch carbonized small 
diameter fiber [27] 1.3 1.8 3.57 37.3 0.73 N/A 

GT control carbon fibers [6] 1.9 2.5 3.44 23.1 N/A 0.46 

IM7 [6] 1.6 2.1 3.48 30.3 0.83 0.43 

Table 4.7 Carbon fiber defect size calculation from Griffith’s equation 

Trial # Tensile strength 
(GPa) 

Tensile modulus 
(GPa) 

Size of largest 
defect (nm) 

A1-1 4.0  274  45 

A1-2 4.8  383  44 

A1-3 5.1 358  37 

A1-4 5.0  363 39 

A2-1 4.2  434 66 

A2-2 3.9  417 73 

A2-3 4.1  384 61 

A2-4 4.0  376 63 
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Figure 4.5 TEM image of the carbon fiber cross-section near the fiber surface. There 
are no defects near the surface of the fiber. 
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The size of the largest defect is estimated to be in the range of 37-66 nm for these 

carbon fibers. Figure 2.9 shows the presence of defects 10-20 nm defects near the surface 

of the control carbon fibers. These defects are seen in the 40 nm region from the surface of 

the fiber into the cross section. In contrast, TEM images of the carbon fiber cross-section 

from trial A2-3, shown in Figure 4.5, do not show any defects near the surface of the fibers 

that were imaged. The nano-CT images shown in Figure 4.6, of fiber cross-sections at 

different points along the length of the fiber, with a 20 nm voxel size do not resolve any 

larger defects in the fiber. The minor shape changes near the surface of the fibers could be 

due to a non-uniform cross-section along the length of the fiber, however, this needs to be 

investigated further. SEM images of the surface of the carbon fiber (Figure 4.4c and 4.4d), 

reveal flake like features on the fiber surface. Some of these features are larger than 200 

Figure 4.6 Carbon fiber cross-sections imaged using nano-CT at four different locations 
along the length of a 10 µm carbon filament, each 1 µm apart. Minor changes in the cross-
sectional shape near the surface (circled red) are observed and need to be resolved further. 
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nm. However, these features were not observed in the nano-CT images. Further 

investigation using the combination of TEM and nano-CT is necessary to develop a better 

understanding of the defect size and shape in these small diameter fibers. 

4.6 Conclusion 

Continuous 700-filament carbon fiber tows were successfully manufactured using a 

bicomponent PAN:PMMA precursor. The diameter of the carbon fiber was in the range of 

2.2-2.6 µm. The cross section of the PAN islands could be made circular and more uniform 

by further studying the effect of PAN and PMMA solution spinning parameters, however, 

this is yet to be demonstrated. Tensile strength of the carbon fibers is up to 5.1 GPa, a 57% 

improvement compared to the corresponding batch processed carbon fibers. The tensile 

modulus of the carbon fibers is 29-57% higher compared to the IM7 carbon fibers. The 

higher tensile modulus is likely due to higher level of graphitic ordering throughout the 

fiber, evidenced by the higher IG/ID ratio in the small diameter fibers compared to IM7 and 

control carbon fibers. Limited carbon fiber TEM images do not show any defects near the 

surface of the fibers, however, larger surface features observed in the SEM images could 

be limiting the tensile strength of these fibers. Optimization of precursor processing and 

stabilization and carbonization parameters will likely improve the tensile strength further. 

The successful manufacturing of continuous small diameter carbon fiber tows is a 

promising step towards increasing the carbon fiber tensile strength beyond 7 GPa. 
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CHAPTER 5. MACHINE LEARNING IN CARBON FIBER 

MANUFACTURING         

This chapter is adapted from a publication in Carbon. 

Shirolkar et al., Investigating the efficacy of machine learning tools in modeling the 

continuous stabilization and carbonization process and predicting carbon fiber properties. 

Carbon, 174 (2021): 605-616. 

5.1 Background 

The full extent of mechanical performance, and hence implementation and potential 

weight savings, achieved by using carbon fiber composites is yet to be realized. Carbon 

fiber manufacturing is a time- and cost-intensive process with more than 70 processing 

variables at play. Machine learning (ML) techniques can be employed to understand the 

effect of manufacturing processing parameters on the structure and, in turn, the mechanical 

properties of the carbon fibers. The integration of these approaches with experimental trials 

can lead to significant time and cost savings while accelerating the development of next 

generation carbon fibers.  

ML based approaches have been demonstrated to be effective in accelerating 

materials design. For example, Liu et al. [101] proposed the use of ML to find optimal 

microstructures in Fe-Ga alloys to achieve target magnetoelastic properties. A dataset of 

145,000 samples was generated randomly. ML techniques were shown to provide a balance 

between accuracy, time efficiency, and solution completeness while outperforming the 
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traditional optimization algorithms and generalized pattern search methods. Fujimura et al. 

[102] used ML to predict the high temperature conductivity of Lithium superionic 

conductors with a wide range of compositions, by combining experimental and theoretical 

datasets. Wen et al. [103] successfully employed ML to search for optimal compositions 

for high entropy alloys with high hardness. The results from the ML models were 

successfully verified by synthesizing new alloys. The new alloys exhibited higher hardness 

than the best values in the training dataset. ML techniques also have been employed in both 

manufacturing of carbon fibers and carbon fiber reinforced composites.  Qi et al. [104] 

created a data set of 500 samples for single layer and multi-layer carbon fiber reinforced 

plastics (CFRP) using finite element method. These data were used to create a correlation 

model between CFRP, carbon fiber, and matrix properties. The four elastic properties of 

the carbon fibers were analyzed using a regression tree model. Xiao et al. [105, 106] 

employed a support vector machine (SVM) in conjunction with improved particle swarm 

optimization to create a model capable of predicting the carbon fiber properties based on 

the processing parameters and vice versa. The model was tested with PAN precursor 

spinning and drawing parameters with a total of 50 data points. Khayyam et al. [107, 108] 

and Golkarnarenji et al. [109-112] have studied different steps of carbon fiber 

manufacturing, viz. stabilization and high-temperature carbonization, using a multitude of 

techniques. These studies have focused on stabilization energy optimization, stabilized 

PAN fiber property prediction, and establishing a model connecting the processing 

parameters to the molecular and macroscale physical properties. The techniques used in 

these studies include support vector regression, artificial neural networks (ANN), genetic 

algorithms (GA), and traditional Design of Experiment (DOE) approaches. In one study, 
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support vector regression and ANN models were employed to predict the stabilized fiber 

tensile properties based on the stabilization parameters and the Fourier Transform Infrared 

(FTIR) spectra of the stabilized fibers. A total of 37 different conditions were used in the 

data set. In another study, a 16-sample data set was used to study just one zone of the 

stabilization process. The goal was to study the energy usage for different stabilization 

conditions and the resultant density of the oxidized PAN fiber. In another study, 50 samples 

with different high temperature (HT) carbonization conditions were analyzed using ML. 

Pruksawan et al. [113] studied the epoxy adhesive strength as a function of resin molecular 

weight, curing agent molecular weight, curing temperature, and the amine:epoxide ratio. 

A total of 32 samples were prepared under different conditions. Three supervised 

algorithms were employed, viz. random forests, elastic net, and gradient boosting. 

Bayesian optimization was used to determine the maximum adhesive strength for the epoxy 

from the ML predictions and was achieved experimentally as well. Zhao et al. [114] have 

employed an ANN and SVM to classify carbon fiber epoxy fabrics made with different 

fiber tow sizes as well as grams per square meter (gsm) values. A total of 229 experimental 

data samples were tested for tenacity, and breaking load. The ML algorithms were used to 

predict the mechanical properties based on the aforementioned parameters. These studies 

have not addressed the efficacy of ML in 1) modeling the entire carbon fiber manufacturing 

process, from precursor manufacturing to stabilization and carbonization, and 2) accurately 

predicting the tensile properties of the carbon fibers based on the process parameters.  

The motivation behind the current study is discussed in this paragraph. Chae et al. 

[6] conducted over 600 continuous stabilization and carbonization trials, and carbon fiber 

tensile strength and tensile modulus as high as 5.75GPa and 375 GPa, respectively, was 
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achieved during these trials. The tensile properties improved as modifications were made 

to the processing parameters in these trials. However, given the large number of processing 

parameters and the costs associated with manufacturing experiments, the processing 

parameter changes were driven by the goal of improving the tensile properties of the carbon 

fibers. The tensile strength is limited by the size of nano-scale defects present in the carbon 

fibers. These defects can occur due to the inherent polymer entanglements in the PAN 

precursor, and during manufacturing process. It was hypothesized that if the defects 

introduced during the fiber manufacturing process were to be eliminated, tensile strength 

of up to 20 GPa could be achieved for gel-spun PAN based carbon fibers. We, therefore, 

believe that there is further scope to optimize the processing parameters to close the gap 

between the current state of the art and the theoretical limit for the tensile properties of 

PAN based carbon fibers. A non-trivial step toward optimizing process parameters, 

however, is to construct some kind of mathematical model relating the process parameters 

to the mechanical properties. 

As stated earlier, the entire carbon fiber manufacturing process, starting from PAN 

precursor fiber manufacturing to stabilization and carbonization, consists of over 70 

processing variables. It is extremely time- and cost-intensive to optimize these variables 

solely using experimental results. In the present study, we leverage existing experimental 

data on carbon fiber processing and properties and assess the efficacy of different ML 

models in terms of tensile property prediction. The experimental data set consists of tensile 

strength and tensile modulus values collected from 600 carbon fiber manufacturing trials, 

and the 31 manufacturing processing parameters for each of these trials, presenting a 

unique opportunity to assess ML models using a relatively large and extensive set of data 
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from experiments. The current study assesses four different ML models in their efficacy in 

predicting the tensile strength and moduli of carbon fibers. The four types of models (viz., 

support vector regression, gradient boosted regression tree, multilayer perceptron and 

recurrent neural network) are commonly used supervised learning tools. As discussed 

earlier in this section, these models have also been employed for materials design and 

property prediction problems, and therefore, were chosen for this exploratory study. 

5.2 Experimental Methods and Data Acquisition 

5.2.1 Carbon Fiber Manufacturing 

PAN is the predominantly used precursor for the production of high strength and 

high modulus carbon fibers. There are two main steps in PAN based carbon fiber 

manufacturing: 1) PAN precursor fiber manufacturing, and 2) stabilization and 

carbonization. In the present study, the PAN and PAN-carbon nanotube (CNT) precursor 

fibers were produced at Georgia Tech using a gel-spinning process as described by 

Newcomb et al. [74]. The as-spun fibers were then drawn using a multistage drawing 

process. The PAN precursor fibers were stabilized and carbonized in a continuous process 

using the carbon fiber line at Georgia Tech. The schematic of the continuous stabilization 

and carbonization line is depicted in Figure 5.1. 
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Figure 5.1 Schematic of the continuous stabilization and carbonization line at Georgia Tech 

The setup involves six oxidation and stabilization ovens, followed by the low 

temperature (LT) and high temperature (HT) carbonization furnaces. In each oven or zone, 

there are three key processing variables: temperature, strain (%), and the residence time 

(RT). Stabilization takes place in air while the LT and HT carbonization furnace has a 

nitrogen atmosphere. The gas flow rates can be varied in each furnace. Being a continuous 

process, the residence times in different zones are not independent of each other and are 

largely dictated by the unwinding speed. The applied strain can be varied for each stage by 

changing the motor speed between different zones. The temperature in each furnace can be 

controlled independently. 

5.2.2 Data Acquisition 

In this study, the data set consists of 600 distinct carbonization trials that were 

conducted at Georgia Tech. For each trial, the data consist of the following PAN precursor 

processing parameters: PAN molecular weight, CNT content, spinning geometry, solution 

concentration, the number of coagulation baths used during fiber spinning, and the total 

draw ratio (i.e. the stretch ratio applied during spinning and fiber drawing). The 

stabilization and carbonization data include the RT, temperature, and applied strain for 
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each zone. The output properties that were measured for the resultant carbon fibers were 

the tensile strength and the tensile modulus. 

Each carbon fiber tow consisted of 100 filaments, and at least 50 filaments from 

each trial were individually tested using a FAVIMAT+ single fiber tester, and the average 

values of tensile strength and modulus were recorded. The data on carbonization processing 

parameters and resultant carbon fiber tensile properties have been reported by Chae et al. 

[6]. Tensile strength and modulus as high as 5.75 GPa and 375 GPa, respectively, were 

achieved during these trials. Over the 600 trials, tensile strength varies in the range of 2.0-

5.75 GPa, and the tensile modulus varies from 240-375 GPa. A snapshot of the 

experimental data is provided in Table 5.2. It is important to note that there are over 70 

processing variables that may have an impact on the resultant carbon fiber tensile 

properties. However, for the purpose of this exploratory study, we have limited the number 

of input processing parameters to the 31 listed in Table 5.1. The goal of this study is to 

explore whether ML techniques could be used to establish an underlying mathematical 

function that could relate the processing-property relationship for carbon fiber 

manufacturing. 
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Table 5.1 Experimental data set - processing parameters 

Precursor Manufacturing Stabilization (6 zones) Carbonization (LT, HT) 

Pan Mol. Wt.  

CNT content 

Solution concentration  

Spinning geometry 

Coagulation bath configuration 

Draw ratio 

Residence time (6) 

Temperature (6) 

Strain (6) 

Total stabilization time 

Residence time (2) 

Temperature (2) 

Strain (2) 

 

6 parameters 19 parameters 6 parameters 

Total processing parameters = 31 

Output: Tensile strength, Tensile modulus 
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Table 5.2 Snapshot of the carbon fiber manufacturing data, and range of values of the 
features used for the study. Feature values were varied within the stated range over 600 
experimental trials for which the tensile strength and modulus were values were measured 

Feature Range 

PAN molecular weight 400 kg/mol – 550 kg/mol 

CNT content 0 wt% – 2 wt% 

Spinning geometry Single component or core sheath 
(bicomponent) 

Coagulation bath 1 or 2 baths 

Draw ratio 15 - 28 

Cumulative oxidation strain 4% - 18% 

Oxidation residence time in each zone (Z1-Z6) 30 – 60 min 

Oxidation temperatures in zone Z1-Z6 150 – 350 °C 

LT carbonization temperature in zone 1 – zone 3 500 – 1000 °C 

LT carbonization strain 4% - 20% 

LT carbonization residence time 10 min – 25 min 

HT carbonization temperature 1300 – 1600 °C 

HT carbonization strain 0% to -6% 

HT carbonization residence time 10 min – 25 min 

Tensile Strength (output) 2.0 – 5.75 GPa 

Tensile modulus (output) 240 – 375 GPa 
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5.3 Machine Learning Models 

5.3.1 Feature Engineering 

5.3.1.1 Feature Pre-processing 

• Oxidation strain 

In the experimental data, there is a feature associated with the oxidation strain in each 

of the zones. This was replaced with the cumulative oxidation strain across all six zones 

using Equation 2. 

             𝜋𝜋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑠𝑠𝑜𝑜𝑐𝑐𝑐𝑐𝑠𝑠𝑜𝑜𝑠𝑠 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠 =  �𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑐𝑐𝑠𝑠𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑠𝑠𝑜𝑜𝑐𝑐𝑐𝑐𝑠𝑠𝑜𝑜𝑠𝑠 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠      (2) 

 

• Low Temperature Furnace 

The low temperature furnace (Temp LT) consists of three temperature zones. It was 

observed that there was a pattern in the values of Temp LT; there were only a few 

distinct values of the temperature values. Therefore, the features are transformed into 

a categorical variable with three values (1, 2 or 3) representing three temperature 

patterns. When feeding these values to the model, based on the numeric values assigned 

to each of the patterns, the model could assume that a particular pattern is thrice as 

important as another one. To avoid this, one-hot encoding was employed. In one-hot 

encoding, the numeric value assigned earlier is removed, and it is replaced with a new 

binary feature column for each numeric value. Thus, in this case, three new feature 

columns corresponding to each distinct pattern of Temp LT were created. 



 
89 

• High Temperature Furnace 

The high temperature furnace (Temp HT) either had one or two temperatures 

throughout the furnace. For consistency, we replaced these values with the mean 

temperature value. 

5.3.1.2 Dimensionality Reduction  

As the number of features in the dataset is increased, it leads to an exponential 

increase in the volume associated with the data in Euclidean space. The original data 

become sparse in this new, higher-dimensional space. For example, consider the case when 

the data lie completely within a unit square. When another feature is added, the dimension 

increases by 1. The data are now represented in a unit cube. These data that seemed 

adequate in the original space now seem sparse in the new dimensions. For the current 

model to achieve a similar performance with ML models, significant amount of data must 

be added (which is not always possible). This phenomenon is referred to as the curse of 

dimensionality [115]. In problems such as this study, where adding many more data points 

may not be feasible, the dimensionality of the data must be reduced by reducing the number 

of features. This process relies on both domain knowledge and mathematical analysis of 

the features. There are two main methods of dimensionality reduction - feature selection 

and feature transformation, detailed in the following sections. 

5.3.1.3 Feature Selection 

At the end of feature pre-processing, the dataset had approximately 600 data points 

with 26 features. The number of features were reduced from 31 to 26 by replacing the 

oxidation strains in each zone by the cumulative oxidation strain as described in section 
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3.1.1. To reduce the number of features further, the features to be kept were selected based 

on the Pearson correlation coefficient (PCC) [116] of each of the features. PCC is defined 

as the normalized covariance between two variables (Equation 3). 

 
 𝜌𝜌(𝑋𝑋,𝑌𝑌) =  

𝜋𝜋𝑜𝑜𝑐𝑐 (𝑋𝑋,𝑌𝑌))
𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌

  (3) 

The value of PCC ranges between -1 and +1. Values close to +1 and -1 indicate a 

strong linear correlation between the two variables; whereas, values around 0 indicate low 

correlation. PCC of each of the features was calculated with the target value. The features 

were then ordered according to the absolute values of their PCC and those above a certain 

threshold were selected. The PCC values of all 26 features for tensile strength and tensile 

modulus are shown in Figure 5.2(a) and 5.2(b), respectively. The top five features with the 

highest PCC for tensile strength and tensile modulus, are listed in Table 5.3. Based on the 

PCCs, it seems that furnace temperature in LT carbonization furnace, and certain zones in 

the stabilization process, as well as the strain applied during LT carbonization have the 

highest correlation with tensile strength and modulus. One limitation of this approach is 

that it assumes a linear relationship between the feature and the target value, which may 

not be the case. However, this approach of dimensionality reduction was found to work 

well with certain models. 
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Figure 5.2 PCC values of features for (a) tensile strength, and (b) tensile modulus 

Table 5.3 Top five features with the highest Pearson correlation coefficients for tensile 
strength and tensile modulus 

Tensile Strength Tensile Modulus 

LT carbonization strain 

Stabilization zone 2 temperature 

LT furnace zone 2 temperature 

Stabilization zone 3 temperature 

LT furnace zone 3 temperature 

LT furnace zone 3 temperature 

LT furnace zone 2 temperature 

Stabilization zone 3 temperature 

LT carbonization strain 

Stabilization zone 2 temperature 

 

5.3.1.4 Feature Transformation 

Feature transformation is a method that reduces dimensionality by transforming 

existing features, to set of new, lower-dimensional features. For this study, Principal 
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Component Analysis (PCA) [117] was used. PCA uses Singular Value Decomposition 

(SVD) to transform the features into orthogonal space (based on their eigen-vectors) 

represented by principal components. Based the variance explained by each of the 

components, a threshold can be set and the number of components to retain can be chosen. 

5.3.2 Details of Machine Learning Models Employed 

In the following sections, a brief overview of the theoretical aspects of each ML 

model is provided, followed by details of its implementation in this work. 

5.3.2.1 Support Vector Regression (SVR) 

1. SVR Overview 

SVMs were first introduced by Vapnik in [118] as models to solve binary 

classification problems. Since then, they have been expanded to handle both 

classification and regression problems. SVMs classify datasets by maximizing the 

margin between the target hyperplane and the training data points, while classifying as 

many training examples correctly as possible. SVRs [119, 120] expand on this by 

introducing an 𝜖𝜖-tube. An 𝜖𝜖-tube is the numerical range within which the value 

predicted by the model is allowed to deviate from the actual value. While training, the 

model is not penalized for any values that fall within 𝜖𝜖 of the actual value (𝜖𝜖-intensive). 

To represent the non-linearity of the data, the data are mapped into higher-dimensional 

space using kernel functions (represented by gram function G). SVR finds coefficients 

(𝛼𝛼𝑖𝑖,𝛼𝛼𝑖𝑖∗ ) that minimize Equation 4:  
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𝐿𝐿(𝛼𝛼) =  ��(𝛼𝛼𝑖𝑖 −  𝛼𝛼𝑖𝑖∗)�𝛼𝛼𝑗𝑗 −  𝛼𝛼𝑗𝑗∗�𝐺𝐺�𝑜𝑜𝑖𝑖 , 𝑜𝑜𝑗𝑗�

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

+  𝜖𝜖�(𝛼𝛼𝑖𝑖 +  𝛼𝛼𝑖𝑖∗)
𝑁𝑁

𝑖𝑖=1

−  �(𝛼𝛼𝑖𝑖 −  𝛼𝛼𝑖𝑖∗)
𝑁𝑁

𝑖𝑖=1

 

(4) 

with the constraints: 

�(𝛼𝛼𝑖𝑖 −  𝛼𝛼𝑖𝑖∗)
𝑁𝑁

𝑖𝑖=1

= 0 

∀𝑠𝑠, 0 ≤ 𝛼𝛼𝑖𝑖 ,𝛼𝛼𝑖𝑖∗  ≤ 𝐶𝐶 

where C a positive numeric constraint that controls the penalty assigned to a prediction 

outside the 𝜖𝜖 margin. In other words, by minimizing this equation, the error in prediction 

is being reduced. Once these optimal coefficients are found, the values for new points are 

calculated using Equation 5: 

 
 𝑓𝑓(𝑜𝑜) =  �(𝛼𝛼𝑖𝑖 −  𝛼𝛼𝑖𝑖∗)

𝑁𝑁

𝑖𝑖=1

𝐺𝐺(𝑜𝑜𝑖𝑖, 𝑜𝑜) + 𝑏𝑏 (5) 

 

2. Implementation 

For this study, the SVR function from the python package scikit-learn [121] was 

utilized. Rectified Linear Unit (ReLU) activation function was used. For the SVR model, 

various hyper-parameters such as the kernel function and the values of C, 𝜖𝜖 were varied 
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via exhaustive grid searches. The final tuned values of all relevant hyperparameters are 

reported in section 4.1.1. 

5.3.2.2 Gradient Boosted Regression Trees (GBRT) 

1. GBRT overview 

Regression trees are based on recursive partitioning of the dataset according to its 

features. They contain a prediction score on every leaf. To improve scalability and 

robustness, multiple trees (ensemble) are used instead of a single one. The final prediction 

will be the sum of the scores of all the leaves of each of the trees. While training an 

ensemble of trees, a method such as stochastic gradient descent cannot be applied since a 

continuous function is not being approximated. Instead, boosting is used for training and 

optimization. Initially, a constant value is predicted for the examples. At each iteration, the 

prediction of one tree is added and the ensemble is iteratively improved. At step t of 

training, 

 
   𝑦𝑦𝚤𝚤�

𝑡𝑡 = �𝑓𝑓𝑘𝑘(𝑜𝑜𝑖𝑖)
𝑡𝑡

𝑘𝑘=1

= 𝑦𝑦𝑖𝑖𝑡𝑡−1 + 𝑓𝑓𝑡𝑡(𝑜𝑜𝑖𝑖)  (6) 

where: 

𝑦𝑦𝚤𝚤�
0 = 0  

𝑦𝑦𝚤𝚤�
𝑡𝑡: refers to the prediction of the ith example during the tth step of training 

ft is chosen as the tree that minimizes the objective function described in Equation 7: 



 
95 

 
𝑜𝑜𝑏𝑏𝑗𝑗𝑡𝑡 = �𝐿𝐿�𝑦𝑦𝑖𝑖, 𝑦𝑦𝚤𝚤�

𝑡𝑡−1 + 𝑓𝑓𝑡𝑡(𝑜𝑜𝑖𝑖)�
𝑛𝑛

𝑖𝑖=1

+ Ω(𝑓𝑓𝑡𝑡) (7) 

where: 

L: is the loss function of the model 

Ω: is the regularization function that penalizes complexity in the model 

Once training is complete, the predictions of all the trees in the ensemble are used to obtain 

the final prediction. 

2. Implementation 

To implement GBRTs, we have used XGBoost [122]. XGBoost is a widely 

recognized open-source implementation of GBRTs. It has shown to achieve state of the art 

results for problems ranging from predicting store sales to motion detection. Part of its 

success is its scalability in distributed and memory-limited environments. Hyperparameters 

such as learning rate, maximum depth of the trees, number of trees, regularization term, 

and ratio of columns to use for each tree were varied via exhaustive grid searches. The final 

tuned values of all relevant hyperparameters are reported in section 5.4.1.1. 

5.3.2.3 Multi Layer Perceptron (MLP) 

1. MLP Overview 

MLPs are a type of feedforward artificial neural networks (ANN) [123]. They are 

widely used in computer science, engineering, and other applications to predict/estimate 
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non-linear functions. An MLP consists of three types of layers - one input layer, any 

number of hidden layers and a single output layer. Since a regression problem is being 

predicted, the output will be a single, continuous value. 

 

 

Figure 5.3 Structure of a single perceptron belonging to the (k+1)th layer of the MLP 

Figure 5.3 represents the structure of a single perceptron belonging to the (k + 1)th 

layer of the MLP. The value of the perceptron is obtained by applying a function (called 

the activation function) to the weighted sum of the nodes in the previous layer �kthlayer� 

represented by the Equation 8. 

 
ℎ𝑖𝑖𝑘𝑘+1 = 𝑓𝑓𝑎𝑎𝑎𝑎𝑡𝑡𝑖𝑖𝑎𝑎𝑎𝑎𝑡𝑡𝑖𝑖𝑎𝑎𝑛𝑛 ��𝑊𝑊𝑘𝑘,𝑖𝑖

𝑖𝑖

ℎ𝑖𝑖𝑘𝑘� (8) 

The final output of the model is calculated by applying this equation to the final 

hidden layer. The activation function is useful in adding non-linearity to the model. Some 

commonly used activation functions are sigmoid, ReLU, and tanh. ReLU has been used as 

the activation function in the current study. 
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The accuracy of the MLP is measured using a loss function that measures the 

difference between the predicted and the actual value. Typically, mean squared error is 

used for regression problems. 

 
𝑀𝑀𝑀𝑀𝐸𝐸 =

1
𝑁𝑁
�(𝑓𝑓𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 (9) 

where: 

N: number of training examples 

𝑓𝑓𝑖𝑖: output of the MLP at example i 

𝑦𝑦𝑖𝑖: actual value of example i 

The objective of training an MLP is to obtain the weights, W, that minimize this 

loss function and improve prediction accuracy. This is done by applying backpropagation 

to the MLP. Backpropagation [124] evaluates the derivative of the loss function as a 

product of the derivatives of each of the layers. It calculates the error of each layer in a 

backwards manner as described in Equation 10.  

 δ𝑘𝑘−1 = (𝑓𝑓𝑘𝑘−1)′(𝑊𝑊𝑘𝑘)𝑇𝑇δ𝑘𝑘 (10) 

The weights are then updated using these values. When the model finishes training, the 

weights are fixed, and these fixed weights are used to evaluate new examples. 
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2. Implementation 

The MLP was implemented using Keras [125], a deep learning library for Python. 

For this study, due to the size of the dataset, an MLP with two hidden layers has been used. 

Different numbers of hidden units in each of the layers, optimizers, activation functions, 

and batch sizes were varied during training by doing exhaustive grid searches. The final 

tuned values of all relevant hyperparameters are reported in section 5.4.1.1.   

5.3.2.4 Recurrent Neural Network (RNN) 

1. RNN overview 

Recurrent neural networks (RNNs) are neural networks that can accommodate 

temporal dependencies in data that are inherently transient or sequential, such as the carbon 

fiber manufacturing process where the stabilization process is followed by carbonization. 

RNNs achieve this by using feedback connections to `remember' information in previous 

time steps. In a typical RNN, the activation can be expressed as: 

 ℎ𝑚𝑚(𝑐𝑐) = 𝑤𝑤1ϕ[ℎ𝑚𝑚−1(𝑐𝑐)] + 𝑤𝑤2ϕ[ℎ𝑚𝑚(𝑐𝑐 − 1)] (11) 

In equation 10, hm(t) denotes the activation vector in layer m at timestep t, hm-1(t), 

denotes the activation in the layer below (i.e. layer m - 1) at the current timestep t and hm(t 

- 1), likewise corresponds to the previous timestep at layer m. ∅ is a non-linear function 

applied elementwise, and w1 and w2 are trainable weights. A key limitation of the basic 

RNN described above is that it cannot relay temporal information over an extended number 

of time steps, due to the vanishing gradient problem (as mathematically shown by 

Hochreiter and Schmidhuber [126]). Solutions such as long short-term memory (LSTM) 
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units and Gated Recurrent Units (GRUs) have been proposed to store and propagate 

information over a longer time interval. In this work, the GRU was used to model the 

activation hm(t), as it has fewer parameters compared to an LSTM. Details of the GRU and 

how it allows for modeling longer-term temporal dependencies are provided in other 

literature [127]. 

2. Proposed RNN model  

 

Figure 5.4 Schematic representation of the RNN model to predict tensile strength (TS) and 
tensile modulus (TM) of carbon fibers 

Figure 5.4 shows the schematic of a proposed RNN model. The underlying 

hypothesis behind the development of this RNN model in particular is that the RNN 

architecture can be potentially leveraged to mimic the manufacturing operations. The 

central idea is that each of the three processes (i.e. oxidation oven, LT furnace, and HT 

furnace) can be represented as layers in an RNN model. The oxidation oven and the LT 

furnace are represented as RNN layers (as these have multiple zones or “time steps"); 

whereas layer 3, which corresponds to the HT furnace, is simply a concatenation and input 

to the fully connected/dense layer. Each RNN layer shown in Figure 5.4 is a GRU 

activation generating an output of a fixed length, where the length of the output is a hyper-

parameter. 
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Gated Recurrent Units (GRU) with a small number of units (10 units in the RNN 

layers) have been used, as the dataset is relatively small in the context of a machine learning 

model. As mentioned previously in this section, GRU units have fewer parameters to fit 

compared to LSTM units, and using a small number of units ensures that the RNN model 

is not prone to overfitting. ReLU activation has been employed within the GRU units, as 

ReLU (and ReLU variants) have, in general, showed improved performance compared to 

other activation functions. ADAM has been used as the optimization algorithm, which is a 

state-of-the-art optimizer that has been shown to perform well compared to other 

algorithms.  

The implicit assumption here is that the set of operations in a given process can be 

represented as a sequence, such that weight parameters can be shared across multiple 

operations within a given process. In other words, RNN attempts to imitate the sequential 

nature of the carbon fiber manufacturing process where stabilization is followed by LT and 

HT carbonization. As such, due to the nature of the RNN model, feature selection or 

dimensionality reduction cannot be applied, and the RNN model is applied on the original 

set of features. 
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5.4 Results and Discussion 

5.4.1 Results 

For each of the models, we tuned the hyper-parameters to obtain the optimal values. 

The optimal parameters for predicting tensile strength and tensile modulus are 

described in Table 5.4 and Table 5.5, respectively. 

5.4.1.1 Optimal Hyper-parameters 

Table 5.4 Optimal hyper-parameters per model based on predictions of tensile strength 

Model Hyper-parameters 

SVR RBF kernel, C = 2, epsilon = 0.1 

GBRT Colsample = 1, learning rate = 0.97, max depth = 5, alpha 
= 3, num of estimators = 15 

MLP 

Architecture = 26-32-8-1, epochs = 1000, 

loss = mean squared error, val split = 0.1,  

optimizer = Adam 

RNN 

Architecture: described in Figure 5.4 

epochs = 100 

Number of GRU units in RNN layer 1 = 10 

Number of GRU units in RNN layer 2 = 10 

Number of units in dense/fully connected layer = 10 

optimizer = Adam 
Activation function in the RNN layer = ReLU 
Activation function in the fully connected layer = ReLU 
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Table 5.5 Optimal hyper-parameters per model based on predictions of tensile modulus 

Model Hyper-parameters 

SVR RBF kernel, C = 2, epsilon = 0.03 

GBRT Colsample = 0.8, learning rate = 0.99, max depth = 7, 
alpha = 0.5, num of estimators = 13 

MLP 

Architecture = 26-32-8-1, epochs = 1000, 

loss = mean squared error, val split = 0.1 

optimizer = Adam 

RNN 

Architecture: described in Figure 5.4 

epochs = 100 

Number of GRU units in RNN layer 1 = 10 

Number of GRU units in RNN layer 2 = 10 

Number of units in dense/fully connected layer = 10 

optimizer = Adam 
Activation function in the RNN layer = ReLU 
Activation function in the fully connected layer = ReLU 

 

5.4.1.2 Variation of R2 Score - Feature Selection and Feature Transformation 

Using the hyper-parameters given in Table 5.4 and Table 5.5 for each model, we 

investigated the effect of number of features on the model using feature selection or feature 

transformation. For tensile strength, the variation in the validation R2 score when using 

feature selection and feature transformation is given in Figure 5.5(a) and 5(b), respectively.  

For tensile modulus, the variation in the validation R2 score when using feature selection 

and feature transformation is given in Figure 5.6(a) and 6(b), respectively. These results 
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were used to guide the decision on whether to use feature selection or feature 

transformation to reduce dimensionality of the data while using the three ML models. 

 

Figure 5.5 Effect of number of features based on (a) feature selection, and (b) feature 
transformation, on ML model performance for predicting tensile strength 

 

 

Figure 5.6 Effect of number of features based on (a) feature selection, and (b) feature 
transformation, on ML model performance for predicting tensile modulus 
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5.4.1.3 Final R2 Scores 

We use the feature selection and transformation graphs to determine the optimal 

number of features and method of dimensionality reduction to use and to obtain the R2 

scores over our dataset, as shown in Table 5.6 and Table 5.7. The 600 data points were split 

using a train-test data split of 90-10, and a five-fold cross-validation was performed using 

10% of the training dataset. The results were averaged over five runs. The train-validation-

test split was consistent across all models. 

The R2 scores depict the relationship between the actual tensile strength and tensile 

modulus values and the predicted values. This relationship is highlighted by Figure 5.7 and 

Figure 5.8. The regression plots shown in these figures are for the test data, and the R2 

scores have been averaged over 5 runs. In a perfect model, all of the points would lie on 

the x=y line and correspond to an R2 value of 1. While optimizing the model, we try to 

minimize the maximum distance between a point and the x=y line. 

Table 5.6 R2 Scores (Averaged over 5 runs) - Tensile Strength 

Model Train R2 score Validation R2 score Test R2 score 

SVR 0.819 0.748 0.581 

GBRT 0.769 0.692 0.586 

MLP 0.945 0.804 0.532 

RNN 0.858 0.782 0.843 
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Table 5.7 R2 Scores (Averaged over 5 runs) - Tensile Modulus 

Model Train R2 score Validation R2 score Test R2 score 

SVR 0.512 0.490 0.352 

GBRT 0.833 0.707 0.370 

MLP 0.633 0.367 0.288 

RNN 0.699 0.665 0.670 

 

 

Figure 5.7 Regression plots showing the performance of (a) SVR, (b) GBRT, (c) MLP, and 
(d) RNN in predicting the tensile strength of the test data. The data were split using a train-
test data split of 90-10, and a five-fold cross-validation was performed using 10% of the 
training dataset. The results were averaged over five runs. The train-validation-test split 
was consistent across all models. 
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Figure 5.8 Regression plots showing the performance of (a) SVR, (b) GBRT, (c) MLP, and 
(d) RNN in predicting the tensile modulus of the test data. The data were split using a train-
test data split of 90-10, and a five-fold cross-validation was performed using 10% of the 
training dataset. The results were averaged over five runs. The train-validation-test split 
was consistent across all models. 

5.4.2 Discussion 

5.4.2.1 Pearson Correlation Coefficients 

The absolute values of PCCs of the 26 features for the tensile strength and tensile 

modulus are shown in Figure 5.2. The five features with the highest correlation are listed 

in Table 5.3. For tensile strength, the PCCs of 0.5 or above belong to the LT carbonization 

strain, temperature, and stabilization zone temperatures. For tensile modulus, the PCCs of 

0.5 or above belong to the stabilization and LT carbonization features as well. It is 

interesting, that the same five features have the highest PCCs for both tensile strength and 
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tensile modulus. This could be explained by the structural transitions that occur during the 

processes that these features belong to. The stabilization process involves conversion of 

PAN into stabilized PAN, through a combination of cyclization, oxidation, and cross-

linking reactions. The next major structural and chemical change occurs when the 

stabilized PAN fiber enters the LT carbonization furnace, where the stabilized PAN fiber 

is converted into carbon fiber. However, we acknowledge that the PCC approach assumes 

a linear relationship between the features and the tensile properties, which may not be the 

case. As correlation does not imply causation, these results solely should not be used to 

definitively narrow down the focus of experimental investigations to only the specific 

features with the highest correlation. Rather, the PCCs should be used to investigate the 

overall processing stage to which these top features belong to, which in this case are 

stabilization and LT carbonization. 

5.4.2.2 Feature Selection vs. Feature Transformation for Reducing Dimensionality 

We see in Figure 5.5 and Figure 5.6 that the effect of feature selection and 

transformation are different based on the model. We see that GBRT performs better with 

feature selection; whereas, the other models perform better using feature transformation. 

We can attribute this to the difference in the model structures. SVRs and MLPs try to find 

the best coefficients that represent the data in a mathematical function - thus, the orthogonal 

transformation of the features is helpful. On the other hand, GBRTs work by splitting the 

data on certain features. By transforming the features, we lose the insight given by the 

feature values. Therefore, feature selection is more useful than feature transformation when 

we are using GBRTs.   
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5.4.2.3 MLP Performance 

As compared to the other models, we observe that the performance of the MLP is 

inconsistent, attributed to the fact that even as we keep the hyper-parameters constant, each 

time we train the model the initial weights of the model have different results. Thus, the 

results will not remain consistent with every run. We can reduce this uncertainty by 

considering an ensemble of MLPs. The severe ups and downs seen in Figures 5.5 and 5.6 

could be because the structure of the network is not conducive to estimate a function for 

certain numbers of features. Overall, the fluctuating nature of the graphs for MLPs 

indicates that they may not be a reliable model to solve this problem.   

5.4.2.4 GBRT and SVR Performance 

GBRT seems to perform relatively better than MLP on the data. This can be 

attributed to the size and structure of the data. Since the amount of data is small, it becomes 

harder to approximate a mathematical function to model the data (due to high 

dimensionality). On the other hand, GBRTs function well with smaller data sets as they 

allow to limit the depth of the tree. While collecting the data, it is possible that certain 

features were modified more than others, or were only varied within a certain range. 

GBRTs have more flexibility to accommodate such factors within their branching 

conditions as compared to the other models tested.  

5.4.2.5 Success of RNN 

Table 5.6 and Table 5.7 show that the RNN model, in general, performs comparatively 

better than the other ML models, consistently across data splits. In predicting tensile 
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strength (Table 5.6), the RNN model achieves an R2 of 0.843 on the test data, 

corresponding to a relative error 14.6% with respect to the mean squared average of tensile 

strength in test data. In predicting tensile modulus (Table 5.7), the RNN model achieves an 

R2 of 0.670 with a relative error of 4.4%. While we cannot infer decisively why the RNN 

performs better than the other ML models, two possible reasons are described below: 

• As mentioned in Section 3.2.4, the proposed RNN attempts to closely model the 

manufacturing process workflow, which means that the RNN might be a better 

representation of the actual manufacturing process. 

• Since the RNN models account for the entire process as a sequence, the weights 

associated with each GRU unit are shared across timesteps. This means that the RNN 

model has considerably fewer parameters or weights, compared to, for instance, an 

MLP model which treats each operation in a process as a distinct feature. Therefore, 

the RNN model is less prone to overfitting. 

5.5 Conclusions 

In this study, we investigated the efficacy of four ML techniques, viz. SVR, MLP, 

GBRT, and RNN, in predicting the carbon fiber tensile properties based on input 

processing parameters. The data consisted of 600 distinct points with 31 features. We 

investigated feature selection and feature transformation as the dimensionality reduction 

techniques and their efficacy on the performance of SVR, MLP, and GBRT models. Based 

on the predictions of tensile strength and tensile modulus from these ML techniques, we 

draw the following conclusions:    
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• The features with the highest Pearson correlation coefficients for tensile strength and 

tensile modulus are associated with the LT carbonization temperature and strain, as 

well as the stabilization temperatures in certain zones. It is worth exploring the effect 

of the features associated with the stabilization and LT carbonization process, on the 

tensile strength and modulus of carbon fibers while performing future experiments. 

• Based on the results generated herein, RNNs seem to outperform, consistently across 

data splits, the other models, for the available dataset. The success of RNNs can be 

attributed to two factors - the RNN better represents the actual manufacturing process 

flow, and the model is less prone to overfitting as compared to other models in this 

case. 

• Results from this study demonstrate that machine learning models can serve as 

surrogates to map processing parameters to carbon fiber properties. 
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

6.1 Conclusions 

This work details the development of three technological pathways to accelerate 

paradigm shifts in the way carbon fibers are developed and manufactured. The first two, 

hollow carbon fibers and small diameter carbon fibers, provide a comprehensive 

understanding of the process, structure and property relationship of these continuous 

carbon fibers. The third pathway provides insights into the challenges and opportunities to 

employ machine learning models to predict the carbon fiber properties by leveraging 

experimental data and accelerate the improvement in tensile properties in a cost-efficient 

manner.  

CHAPTER 2 detailed the development of continuous hollow carbon fibers. An 80% 

improvement in tensile strength was achieved for these fibers compared to the previously 

reported batch processed hollow carbon fibers. The specific tensile properties of these 

fibers are superior to the T300 fibers, and the specific tensile modulus is 20% higher 

compared to the IM7 fibers. The tensile strength is limited by defects with size ranging 

from 40-70 nm. These defects could be caused due to the degradation of PMMA during 

the low temperature carbonization stage; however, this is yet to be verified.  

The surface treated and sized hollow carbon fibers from CHAPTER 2 were used to 

manufacture six-ply unidirectional composites in an epoxy matrix. The mechanical 

properties of these composites were tested and compared with IM7 composites. The lower 
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tensile strength in the hollow carbon fiber composites compared to IM7 composites is 

attributed to the lower strength of hollow carbon fibers, poor adhesion between the epoxy 

and matrix, as well as lower fiber alignment in the epoxy matrix. The poor fiber-matrix 

adhesion indicates need to optimize the surface treatment and sizing of the hollow carbon 

fibers. The compressive strength of the hollow carbon fibers is 81% of the tensile strength 

at room temperature. This is significantly higher compared to the compressive strength of 

IM7 composites, which is reported to be 60% of the tensile strength. The moisture pickup 

in hollow carbon fiber composites compared to IM7 composites suggests that the hollow 

channels are likely not picking up any significant moisture. Overall, the properties of 

hollow carbon fibers and their composites show great promise to replace conventional 

aerospace grade carbon fibers in the foreseeable future. 

In CHAPTER 4, the development of continuous carbon fibers with 2-3µm diameter 

has been described. These small diameter carbon fibers have tensile strengths as high as 

5.1 GPa and tensile moduli as high as 434 GPa in different trials. The tensile strength was 

improved by 57% compared to the previously reported 3.2 GPa for batch processed small 

diameter fibers. The size of the defects in these fibers is estimated to be in the range of 35-

70 nm. Compared to the hollow carbon fibers and IM7 fibers, no surface defects were 

observed in the TEM images, which could be attribute to the smaller diameter of the fiber 

suppressing the formation of these defects. The tensile strength could be limited due to 

non-uniformity of the fiber cross section, which may lead to larger defects that were not 

observed in the surface regions that were imaged using TEM. The non-uniformity in the 

PAN island cross-section is introduced during precursor manufacturing and this process 

needs to be further modified to obtain a uniform fiber cross section. The high tensile 
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modulus can be attributed to the higher level of graphitic ordering observed in these fibers 

compared to the IM7 and control carbon fibers. The higher graphitic ordering is likely due 

to the smaller diameter of the PAN island fibers which resulted in a diminishing skin-core 

effect due to better oxygen diffusion and heat transfer during stabilization.  

In CHAPTER 5, the efficacy of four ML techniques, SVR, MLP, GBRT, and RNN, 

in predicting the carbon fiber tensile properties based on input processing parameters was 

investigated. The data set consisted of 600 data points with 31 features each. The features 

with the highest Pearson correlation coefficients for tensile strength and tensile modulus 

are associated with the LT carbonization temperature and strain, as well as the stabilization 

temperatures in certain zones. RNNs seem to outperform, consistently across data splits, 

the other models, for the available dataset. The success of RNNs can be attributed to two 

factors: the RNN better represents the actual manufacturing process flow, and the model is 

less prone to overfitting as compared to other models in this case. This study demonstrates 

that the carbon fiber processing parameters can be mapped to fiber tensile properties using 

ML models.  

6.2 Recommendations for future work 

As a next step in bringing hollow carbon fibers closer to replacing conventional 

carbon fibers, the tensile strength of the hollow carbon fibers needs to be improved. Further 

modification and optimization of the carbon fiber manufacturing process – the effect of 

PMMA degradation on the formation of defects in hollow carbon fibers needs to be studied. 

This could be done by adding an additional furnace between the stabilization and low 

temperature carbonization furnace, which would allow control over PMMA degradation. 
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Currently the stabilization process takes place in air while carbonization takes place in an 

inert atmosphere. To better understand and control PMMA degradation the effect of 

temperature and atmosphere needs to be studied. The furnace used for this purpose should 

therefore have the ability to control both temperature and atmosphere. Reducing the 

effective diameter of the hollow carbon fiber to 5-6 µm, comparable to IM7 fiber diameter, 

will likely improve the tensile strength of the fiber even further and potentially even surpass 

the IM7 tensile strength. The effect of these processing changes in terms of the size of 

defects in the fiber needs to be further analyzed. A combination of TEM, TEM tomography, 

and synchrotron X-Ray CT needs to be employed to develop a comprehensive 

understanding of the size and shape of the defects with high confidence and over large 

length scales. In the current study, only one fiber from a single trial was characterized. A 

future study could focus on 3D characterization of the defects in the hollow carbon fibers 

and establishing a relationship between the processing parameters, observed defect size 

and the tensile properties of the hollow carbon fibers. 

Further characterization of mechanical properties of hollow carbon fiber composites 

is recommended. Due to the limited quantity of hollow carbon fibers produced to date, a 

limited number of composite panels have so far been manufactured. Manufacturing 

additional composite panels will allow further mechanical tests such as flexural strength, 

transverse property tests. Additionally, bidirectional or multidirectional laminates should 

be tested and the properties could be compared to IM7 composites. This would require 

production of hollow carbon fibers at a scale higher than what was achieved in the current 

study (740 filament tow). The eventual goal for advancing this technology should be to 

produce hollow carbon fibers in large enough quantity to test scale models of aircraft 
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components in a wind tunnel facility to assess the performance of these fibers in relevant 

environments, thereby advancing the technology readiness level to TRL 5 and beyond.   

To advance the small diameter carbon fiber technology, the future work could 

explore the optimization of the bicomponent precursor manufacturing to achieve a uniform, 

circular cross-section of the PAN islands. This could involve modifying process parameters 

including, but not limited to, polymer solids content in the solutions, polymer molecular 

weight, coagulation bath composition and temperature. Additionally, one could explore 

alternatives to PMMA as the sacrificial sea component. It might be worth exploring the use 

of a sacrificial polymer that could be removed during or after the drawing process and prior 

to stabilization and carbonization. Similar to hollow carbon fibers, further characterization 

of defects using TEM and other tomography tools is of great interest to improve the tensile 

strength of these fibers.  

  The experiments proposed in the work are expected to produce large experimental 

datasets which could be further incorporated into the ML models. Future work can focus 

on incorporating ML models as part of an optimization process that can suggest a more 

“informed” set of processing variables to maximize tensile strength or tensile modulus. 

Future work can also focus on developing methods to incorporate multimodal data (e.g. 

image data, X-Ray diffraction, and any other structural data) as part of the ML framework. 

Developing an ML model that can take into consideration the entire carbon fiber 

manufacturing process, and reasonably predict the tensile properties of the resultant carbon 

fibers, is expected to lead to significant time and cost savings, as well as accelerate the 

development of next-generation carbon fibers. 
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This thesis develops a comprehensive understanding of the three technologies that can 

each accelerate the development high performance structural carbon fibers. Pursuing these 

studies separately or in conjunction with each other will likely bring about a paradigm shift 

in the way high performance carbon fibers and composites are developed. 
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APPENDIX A  SUPPORTING INFORMATION FOR CHAPTER 2 

 

Figure A.1 Multifilament fiber spinning (left) and multistage drawing facility (right). 

 

 

Figure A.2 Continuous stabilization and carbonization facility. 
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Figure A.3 Plot of tensile modulus vs. inverse gauge length. Extrapolation of the tensile 
modulus of the hollow carbon fibers from trial T5 for infinite gauge length marks an 
intercept at 300 GPa. The tensile modulus at a 12.7 mm gauge length was measured to be 
280 GPa. This gives a compliance correction factor of 7% which was applied to all the 
tensile moduli values reported in table 3.  

 

 

Figure A.4 740 filament tow hollow carbon fiber spools. 

 

 

y = -159.01x + 299.75
R² = 0.7626

0

50

100

150

200

250

300

350

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Te
ns

ile
 M

od
ul

us
 (G

Pa
)

Inverse gauge length (1/mm)

Chart Title



 
119 

 

Figure A.5 Hollow carbon fiber epoxy composite strands mounted on paper tabs for tensile 
testing. 

 

 

Figure A.6 SAXS 2D scattering pattern from T1-2 (a), T5-1 (b) and GT control carbon 
fiber (c). The solid white line in (a) represent the sector average.  

 

 

  

 

 

 



 
120 

 

Figure A.7 SAXS Simulated 2D scattering pattern for T5-1 (a), with the length A = B = 2 
nm and C = 100 nm. (b)  The orientation of the graphite in the fiber. 

 

Figure A.8 Experimental (open symbols) and best fitted (solid lines) SAXS azimuthal 
scattering intensity. Red, orange and green circles represent T1-2, T5-1 and GT control 
carbon fiber, respectively. 
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Figure A.9 Raman spectra for hollow carbon fibers (T1-2 and T5-1) and GT control carbon 
fiber. 
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Table A.1 Comparison of tensile properties of hollow carbon fibers from trial T5-1 from 
single filament test and composite strand tests. 

 

Table A.2 Fitting parameters extracted from the SAXS azimuthal analysis 

 

 

 

 

Trial T5-1 
Gauge Length 

(mm) 

Tensile strength (GPa) 

Based on effective 

diameter 

Based on outer 

diameter 

Single filament test (25 

test average) 

12.7 
3.5 ± 0.6 2.3 

Composite strand test 

(ASTM D4018) 

152.4 
3.5 ± 0.1 2.3 

 Area 1 FWHM Peak 1 Area 2 Peak 2 BKG 

T1-2 1229 ± 
23 

47.2 ± 
0.42 

91.9 ± 
0.12 

1228 ± 
23 

273 ± 
0.12 

-0.08 ± 
0.01 

T5-1 4637 ± 
72 

48.6 ± 
0.36 

93.4 ± 
0.11 

4614 ± 
72 

273 ± 
0.11 

-0.58 ± 
0.02 

GT Control 
Carbon Fiber 

2433 ± 
34 

40.6 ± 
0.29 

94.6 ± 
0.09 

2406 ± 
34 

274 ± 
0.09 

-0.25 ± 
0.01 
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An azimuthal analysis is shown in Figure X. The data can be fitted by a double Lorentzian 

function as given in the following equation: 

𝐼𝐼(χ) =
𝐴𝐴𝑠𝑠𝑐𝑐𝑐𝑐1

𝑤𝑤2 + (χ − χ0)2 +
𝐴𝐴𝑠𝑠𝑐𝑐𝑐𝑐2

𝑤𝑤2 + (χ − χ1)2 + 𝐶𝐶, 

where 𝜒𝜒, 𝜒𝜒0 and 𝜒𝜒1 are the azimuthal angle and peak positions, respectively. Area1 and 

Area2 are constants related to peak areas, C is background, w is half of the peak width.  

The form factor of a rectangular slab is expressed as the following equation: 
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2 𝑞𝑞𝐴𝐴 cos𝛼𝛼

�

2

× �
sin(1

2𝑞𝑞𝑞𝑞 cos𝛽𝛽)
1
2 𝑞𝑞𝑞𝑞 cos𝛽𝛽

�

2

× �
sin(1

2 𝑞𝑞𝐶𝐶 cos 𝛾𝛾)
1
2 𝑞𝑞𝐶𝐶 cos 𝛾𝛾

�

2

 

cos𝛼𝛼 = �̂�𝐴 ∙ 𝑞𝑞�, cos𝛽𝛽 = 𝑞𝑞� ∙ 𝑞𝑞� 𝑐𝑐𝑠𝑠𝑜𝑜 cos 𝛾𝛾 = �̂�𝐶 ∙ 𝑞𝑞� 

 

The orientation of the particle is described using angles θ, φ and Ψ where θ and φ define 

the orientation of the director in the laboratory reference frame of the beam direction (z 

axis) and detector plane (x-y plane), while the angle Ψ is effectively the rotational angle 

around the particle C axis. 
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APPENDIX B SUPPORTING INFORMATION FOR CHAPTER 3 

 

 

 

 

 

 

 

 

Figure B.1 Drum winding apparatus used to transfer and align hollow CF and IM7 fibers 
on the epoxy impregnated sheet. 
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Figure B.3 6-ply unidirectional hollow CF composite panel manufactured at University of 
Southern Mississippi. The panel shows significantly higher number of misaligned fibers 
compared to the IM7 composite panel. This is due to the higher number of broken fibers in 
the hollow CF tow compares to the commercially produced IM7 fiber tow. 

Figure B.2 6-ply unidirectional IM7 composite panel manufactured at University of 
Southern Mississippi. 
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Figure B.4 Representative stress-strain plots for hollow CF specimen tension test at room 
temperature (left) and -75ºF. 

Figure B.5 Representative stress-strain plots for IM7 specimen tension test at room 
temperature (left) and -75ºF. 
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Figure B.6 Failed hollow CF composite specimen under tension at room temperature 
(left) and -75ºF (right). The failure mode per ASTM D3039 can be characterized as split-
gauge length – middle (SGM) for both temperatures. 

Figure B.7 Failed IM7 composite specimen under tension at room temperature (left) 
and -75ºF (right). The failure mode per ASTM D3039 can be characterized as split-
gauge length – middle (SGM) for both temperatures. 
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Figure B.8 Representative image of a failed hollow CF specimen under compression at 
room temperature. The specimen exhibits failure in the central gauge length region which 
is desirable. 

Figure B.9 TGA plots for fiber weight fraction measurement in hollow CF and IM7 
composites. 
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Table B.1 Weight-gain due to moisture pickup in IM7 composite specimen for compression 
testing after 14 days of hot-wet conditioning at 160 ºF. 

Specimen  Weight before (g) Weight after (g) Gain (%) 

1 1.73 1.75 1.2 

2 1.72 1.74 1.2 

3 1.73 1.75 1.2 

4 1.73 1.75 1.2 

5 1.72 1.74 1.2 

 

Figure B.10 SEM image of GT control carbon fiber composite fractured specimen after 
tension testing (a) The fracture can be characterized as explosive-gauge-middle (XGM) per 
ASTM D3039 (b) adhesion between the fibers and epoxy is better compared to the fiber-
epoxy adhesion in hollow CF composites. 
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Table B.2 Weight gain due to moisture pickup in hollow CF composite specimen for 
compression testing after 14 days of hot-wet conditioning at 160 ºF. 

Specimen Weight before (g) Weight after (g) Gain (%) 

1 1.36 1.4 2.9 

2 1.33 1.37 3.0 

3 1.36 1.4 2.9 

4 1.37 1.41 2.9 

5 1.39 1.43 2.9 
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APPENDIX C SUPPORTING INFORMATION FOR CHAPTER 5 

Table C.1 Carbon fiber manufacturing feature abbreviations 

Abbreviation Feature details  

PAN wt PAN molecular weight 

CNT CNT content in PAN fibers (wt%) 

Spinning Geometry Bicomponent or Single component geometry used 

for precursor fiber spinning 

Coagulation bath Number of coagulation baths used 

Draw ratio Total stretch ratio during precursor fiber 

manufacturing  

Z1, Z2, Z3, Z4, Z5, Z6 Oxidation oven zones  

LT Low temperature carbonization furnace 

HT High temperature carbonization furnace 

Time Residence time  

Temp Temperature 

Temp LT_1, Temp LT_2, Temp LT_3 Temperatures in LT carbonization furnace zone 1, 

zone 2, and zone 3 

Cumulative oxidation Strain Total applied strain in oxidation oven Z1 through Z6 
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Figure C.1 Results of principal component analysis. Number of principal components 
n=14. 
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