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Abstract—High speed computation is the need of today’s generation of Processors.  To accomplish this major task,  many functions  are 

implemented  inside the hardware  of the processor rather than  having  software  computing  the  same  task. Majority of the operations which 

the processor executes are Arithmetic operations which are widely used in many applications that require heavy mathematical operations such as 

scientific calculations, image and signal processing. Especially in the field of signal processing, multiplication division operation is widely used 

in many applications. The major issue with these operations in hardware is that much iteration is required which results in slow operation while 

fast algorithms require complex computations within each cycle. The result of a Division operation results in a either  in Quotient  and  

Remainder  or a Floating  point  number  which is the  major reason  to  make it  more complex than  Multiplication  operation. 
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I.  INTRODUCTION 

Floating-point matrix computation is widely employed in 

the disciplines of image processing, deep learning system 

control, and digital signal processing. Its computational 

efficiency does have a direct influence on the overall 

performance of the system. Various systems for accelerating 

matrix calculations have arisen in recent times, such as FPGA 

CPU, GPGPU, and software libraries. (FPGAs) are perfect for 

speeding matrix calculations as a co-processing basis. FPGAs 

surpass general-purpose CPUs and GPGPU system in terms of 

the long productivity, according to several studies. Its fully 

programmable and substantial logic resources, notably the huge 

number of embedded DSPs and BRAMs (Block RAMs), lay 

the foundation for improved matrix computing performance. 

The fundamental purpose of many algorithms and associated 

hardware designs is to create a balance between resource 

demands and performance. Methods for multiplication of fixed-

point matrices, for example, have been presented. The 

designers created a full FPGA coprocessor for multiplications. 

Similar systolic array architectures were presented due of the 

large data flow and processing speed. The multiplications 

structure has also been studied by several scholars. Matrix 

computation still has a number of issues, despite all of the 

research that has been done. Older systems had limited 

processing power and could only handle fixed-point 

information and small or medium-sized matrix. We intend to 

create a matrix computation acceleration (MCA) unit capable 

of processing large matrices with high data accuracy. Second, 

dealing with matrix equations of varying sizes is difficult when 

employing a fixed structure. As a result, assessing the 

structure's flexibility is critical and helpful. Furthermore, most 

previous work can only do a single matrix operation. A 

specialized matrix operation, on the other hand, is typically 

sufficient in many technological applications nowadays. It 

needs a large variety of matrix processes, and also the ability to 

perform a series of matrix operations with the same structure. 

Now for about two decades, (Field Programmable Gate 

Arrays) have been around. Since then, they've increased in 

popularity and have become a standard way to build digital 

circuits. Because of advancements in processing technologies, 

the logic capacity of FPGAs has significantly risen, giving 

them a viable implementation choice for bigger and more 

complex designs. Additionally, the fully programmable of their 

logic and routing resources has a massive effect on the finished 

device's space, speed, and energy consumption. Because of its 

programming and routing interfaces, FPGAs are much more 

versatile more general-purpose that standard cell ASICs, but 

they are also bigger, and consume more energy. Improvements 

in processing technologies, on the other hand, have necessitated 

and enabled a number of alterations to the fundamental FPGA 

structure. These developments are aimed at increasing the 

overall efficiency of FPGAs in order to close the gap between 

them and ASICs. Programmable Logic Arrays (FPGAs) are 

pre-fabricated silicone devices that may be electronically 

programmable to create practically any form of digital 

schematic in the field. FPGAs provide such a cheaper option & 

speed to market for low and medium volume manufacturing 
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than Embedded Integrated Devices (ASICs), which frequently 

require a lot of resources of time and cash to get the first 

device. FPGAs, on either hand, may be set up in less than a 

moment and cost anywhere between a few hundreds to a few 

thousands of dollars. 

       

II. FLOATING-POINT UNIT (FPU) 

Wherever the computing unit's floating-point unit is an 

IEEE-754 compliant integrated unit with double resolution. 

Fixed to float conversions, float to float converting, floating-

point addition (64-bit), and floating-point multiplication is 

among the four floating-point processes it can execute (64-bit). 

FPU is given a 2-bit operation code to choose which operations 

can be performed. The enabled signal instructs the FPU to 

begin performing the needed operation. 

In the Xilinx-ISE tool, IP cores are provided to solve these 

essential floating-point calculations. However, because our 

computing unit is aimed towards ASIC creation, IP cores are 

not an option. To provide a comprehensive hardware 

descriptions of these processes, all four floating-point processes 

are implemented using an algorithmic state machine (ASM) in 

Verilog HDL. 

Each floating-point operation that the FPU performs 

requires many cycles to accomplish. As a result, a handshaking 

mechanism between the control module and the FPU is devised 

so that the control module can track the FPU busy state through 

using FPU ready signal. The floating-point multiplying is also 

done using a fixed-point multiplication. 

 

 
Figure: 1.1: Floating-Point Units 

 
Figure 1.2: Double-precision Floating-point Multiplication 

ASM is used to implement the floating-point added 

technique, which is a step-by-step operation. Figure 1.1 depicts 

the whole technique for adding two double-precision floating-

point values, such as ADBL and BDBL. There are several 

phases involved in floating-point multiplying, as shown in 

Figure 1.2. Figure 1.1 shows the procedures involved in 

converting a fixed-point value to its corresponding floating-

point number and depicts the whole technique for converting a 

floating-point value to a set amount. The data route of the 

computing unit is utilized with the floating-point unit described 

in this article to conduct the essential operations for polynomial 

solution. The following part describes the design and 

implementation of the data route and its peripherals. 

III. RELATED WORK  

Machupalli Lahari et.al. (2020) “Efficient Floating-Point 

HUB Adder For FPGA” An effective floating-point HUB 

adder for FPGA was designed and built. Both a single route 

and a double route approach are used to build and study the 

HUB adder. When compared to the single path technique, the 

power and latency of the double path strategy are bearable. 

Furthermore, spurious power suppression is described as a way 

for reducing Dynamic power consumption. The propose 

doubled path HUB floating point adder with SPST decreases 

power and latency by 15% and 13%, respectfully, when 

compared to the current double path HUB precision floating - 

point adder. 

D S Bormane et.al. (2020) “Acceleration Techniques using 

Reconfigurable Hardware for Implementation of Floating Point 

Multiplier” Two Algorithms for doing a 24*24 significant 

multiplying for IEEE single precision values are described. 

When it comes to LUTs, the first technique takes up less space 

than the second method. Furthermore, the computing time 

needed to do the multiplying is around one-third of that 

required by the second method. The suggested multiplier 

surpasses all prior techniques, and the power delay parameter 

has been shown to be quite useful. 

Alahari Radhika et.al. (2020) “Low Complexity Fused 

Floating Point FFT Using CSD Arithmetic for OMP CS 

System” The application-driven hardware fusing and Canonical 

sign digit-driven shift accumulation-based mantissa calculation 

approaches are used to minimize the computational complexity 

that occurs in floating point arithmetic-based complex FFT 

computing. Hardware sharing is accomplished by utilizing the 

FFT butterfly structure's inherent redundant computing 

features, which significantly minimises computational 

complexity overhead. It is also shown that during FPU 

multiplication, utilizing a multiplier-less mantissa calculation 

reduces complexity significantly. Finally, the metrics of these 

two numerical optimization are evaluated in a twiddle factors 

optimized FFT structure. The basic link among floating point 
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unit and performance measures of both hardware and twiddle 

factors optimization approaches has been carefully 

investigated, and FPGA hardware creation for qualitative and 

quantitative testing has been undertaken. 

V. Ramya et.al. (2020) “Low power single precision BCD 

floating–point Vedic multiplier” A low-power, delay-efficient 

BCD-floating point multiplication (BCD-FPM) for single 

precision is developed using the UT sutra. Methods I and 

Method II have been proposed for BCD-FPM, with BFPM 

being produced applying KSA to compare the findings. 

According to the statistics, the BCD-FPM Method II exceeds 

the BFPM by 73.41 percentage in terms of strength and 30.37 

percent in terms of delay, while the BCD-FPM Methods I out 

performs the BFPM by 59.48 percentage in terms of strength 

and 6.9 percent in terms of latency. To boost performance even 

more, BCD-FPM Method II is parallelized. When comparing to 

design without pipes, the power-delay result of innovation by 

43.44 percent as the size of a pipelined structure grows. As a 

consequence, the pipelined BCD-FPM System II is 

outperformed both the BCD-FPM Method I and the BFPM 

Methods. 

Mohamed Al-Ashrafy et.al. [2019] "An Efficient 

Implementation of Floating Point Multiplier" For the Virtex-5 

FPGA from Xilinx, the proposal outlines a quick 

implementation of an IEEE 754 decimal numbers floating point 

multiplication. VHDL is used to create a technology-

independent pipelined design. The multiplier implementation 

handles overflow and underflow circumstances. Rounding is 

not employed when using the multipliers in a Multiple and 

Accumulation (MAC) unit to improve accuracy. With a three-

clock-cycle delayed, the design provides 301 MFLOPs. The 

multiplier was compared to a Xilinx floating point 

multiplication core. 

Gokul Govindu et al.[2019] "Analysis of High-performance 

Floating-point Arithmetic on FPGAs"  Inside the high-

performance and experimental computational fields, the 

suggested FPGAs are rapidly being used to develop floating-

point based hardware accelerators. The floating-point 

multiplication and adder/subtractor units are investigated in this 

study using the numbers of pipeline stages as a parameter and 

throughput/area as a metric. The authors achieve throughput 

ratios of much more than 240Mhz (200Mhz) for singles 

(double) precision processes by substantially pipelining the 

devices. To demonstrate the influence of floating-point 

modules on kernels, the author develops a multiplications 

kernel based on our floating-point units & show that state-of-

the-art FPGA devices can reach roughly 15GFLOPS for single 

(double) precision floating-point based multiplications 

(8GFLOPS). The authors also show that FPGAs may 

outperform general-purpose CPUs by up to 6 times in terms of 

GFLOPS/W (performance per unit power) (for single 

precision). The authors then go into the effects of floating-point 

unit on the construction of energy-efficient matrices multiple 

kernels structure. 

Soner Yes et.al. (2018) “Experimental Analysis and FPGA 

Implementation of the Real Valued Time Delay Neural 

Network Based Digital Predistortion” RVTDNN-based Digital 

Predistortion has indeed been experimentally investigated on 

hardware, and an FPGA implementation with really resource - 

constrained use has been given. Effective usage of the DSP48 

basic blocks' dedicated instruction register, restricted learning, 

and contribute to creating linearly approximation artificial 

neurons are the underlying drivers of the difference in resource 

consumption and operating clock frequency. The proposed 

approaches allow for compact and adaptable FPGA 

implementations of complex neural networks with such a group 

of neurons and increased pulse bandwidths. 

 Junzhong Shen et.al. (2018) “Towards a Multi-array 

Architecture for Accelerating Large-scale Matrix 

Multiplication on FPGAs” The focuses are on the architectural 

expansion of the linear array structure for matrix multiplication 

on FPGA by providing a highly customizable and scalable 

multi-array architecture. We employ a work-stealing strategy to 

establish workload balancing among PE arrays. An effective 

analytical model is constructed to find the optimum design 

possibilities for the architectural expansion. According to 

testing data, our ideal extension of the linear array design may 

deliver the best performance and processing efficiency. 

Y. R. Annie Bessant et.al. (2018) “Analysis of Area and 

Delay for Floating Point Matrix Multiplication” The different 

floating point multiplications designs, each having a memory 

and velocity trade-off, are demonstrated. Matrices are the most 

essential part in terms of the size & delayed consumed for 

multiplications. The recommended design employs floating 

point multiplication and UrdhvaTiryagbhyam multipliers. 

According the findings of the performance monitoring, our 

method's performance improved in terms of delay and area. 

With a design frequency of 189.517 MHZ on the virtex-6 

xc6vlx240t FPGA, the algorithms can retain top performance. 

IV. PROPOSED METHDOLOGY 

To obtain the final outcome of Multiplying, a summing of 

these partial products is calculated using ADDER. The number 

of partial products created grows in proportion to the bit size of 

the Multiplication. The 256 partial products are created for a 16 

bit adder. Booth's Encode, a method for reducing the amount of 

partial products formed during multiplications, can help lower 

this quantity. 

Components and connectivity can be shared across several 

data routes using data path merging techniques, resulting in a 

shared data path. When space conservation is a top issue, such 

sharing is extremely vital. Resource sharing has always been 
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limited to components and bit widths of the same size. While 

this saves space, it does not allow for the full utilization of 

available shares. Because floating-point data routes are 

complicated and comprise many components with various bit 

widths, this is a significant hurdle to merging them. 

The exponent and mantissa components of a floating-point 

number, for example, are computed using floating-point 

arithmetic data pathways. The exponent and mantissa 

components for single-precision would typically be 8-bits and 

24-bits, respectively. Exponent and mantissa constituents for 

double-precision would typically be 11-bits and 53-bits, 

respectively. 8-bit, 24-bit, 11-bit, 53-bit, and 32-bit component 

will be used in converting operations between integer, single-

precision, and double-precision formats. This results in a large 

number of various bit-width components that might be shared, 

and limiting sharing to only similarly sized components would 

significantly limit the possibility for space savings. 

Sharing components with varied bit-widths is required to 

maximise resource sharing. Whenever the data paths of two 

distinct operations, also with a 24-bit adder and the other with a 

32-bit adder, are combined, the two adders should indeed be 

replace with a single shared 32-bit adder, as illustrated in 

Figure 1.3. 

 
Figure 1.3: Merging of 24-bit and 32-bit adders 

 

When a bigger component or interconnection is merged, the 

bit-alignment problem is solved by determining how a smaller 

component or interconnection should be aligned inside the 

larger component or connection. Some components require 

precise alignment to work effectively, whereas others can 

function successfully even if they are not aligned. When a 

chain of subsequent components and interconnects is 

maintained and must be aligned precisely in relation to one 

another, the problem becomes much more problematic. 

 

The data route merging approach allows resources available 

with mismatched bit widths to be combined, but it does not 

take into consideration alignment difficulties. Furthermore, 

there has been relatively little research on the bit-alignment 

problem in the literature. Many works presume a constant bit 

width throughout one design, or neglect the bit representation 

of signals entirely, or require the user to manually adjust the 

size of the data words to matching the hardware size. Bit-

alignment errors, on the other hand, had to be manually 

addressed, which was a time-consuming procedure. Because a 

pair of connections that are recognized as shared may turns out 

to be non-shareable owing to alignment concerns, ignoring bit-

alignment during data route merges may result in sub-optimal 

merger outcomes. As a result, a solution to this situation is 

urgently required. A unique technique was created to satisfy the 

demand for a bit-alignment method during data plane merging. 

The introduction of this unique solution is the major topic of 

this chapter. This new bit-alignment approach permits the 

merging of resource with non-matching bit-widths while 

addressing the bit-alignment problem, optimizing area savings 

and allowing for more sophisticated data path combining. 

Another drawback of the custom FPU generation process 

described in Chapter 4 is that it ignores the volume and 

throughput trade-off among hardware implementation and 

software emulation instruction. A selection of the floating-point 

instructions required for the applications is implemented in the 

hardware FPU, and the floating-point operations that are not 

implemented in the hardware FPU are emulated in software 

when developing a bespoke FPU. As a result, there are various 

trade-offs to consider as floating-point instructions are off-

loaded onto specialised floating-point hardware. In general, the 

more processes done in hardware, the more space is utilised, 

but the fewer cycles are required to finish the application's 

execution. More hardware, on the other hand, may cause the 

clock time to lengthen. This is especially the case in datapath 

merging, where adding multiplications to the crucial path might 

cause delays.  

As a result, a quick design space exploration was carried 

out in this chapter to study these trade-offs in the FPU 

generation methodology. 

Starting with a fixed alignments component, the 

consistency chart is traversed to promote the needed alignments 

all through the graph. An alignments tree is used to hold the 

traversal route and alignments data. In the compatibility graph, 

this is repeated for each fixed alignments components. After 

that, the alignments trees are integrated into a single alignments 

tree that is used to trim and annotation the compatibil graph. 

The maximum weight coterie may then be solved using the 

processed compatibility graph, as shown in. Data structures 

defining components and interactions are created from the 

datapath descriptions. Using a library of VHDL descriptors for 

each components, the components data structures are then 

utilised to construct VHDL constituent declarations and port 

mapping. All of the functional departments that were developed 

during the creation of the floating-point datapaths in VHDL 

were separated and grouped to create the library of VHDL 

description. To make signal assignment easier, each 

component's input and outputs ports are given a distinct 

signaling name in the port mappings. 
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The signal assignments are generated using the connecting 

data structures. The auxiliary information instructs the VHDL 

generation where processing elements are inserted and how to 

construct the datapath to complete each task. 

V. RESULTS 

The graphs depict the runtime as a function of the area. 

Each of the combinations that gave the quickest runtimes is 

shown by a circle. The higher the area and the shorter the 

runtime, as predicted, the more operations executed in 

hardware. Over a certain point, the majority of the graphs show 

declining re-turns. This because when more data pathways are 

integrated into the FPU, the clock period increase, and the 

amount of cycles saving by utilising hardware (rather than 

software emulation) decreases as lower-ranked operations are 

performed in hardware. With the exception of epic and 

mpeg2enc, the runtime gradually increases in all scenarios. The 

low-ranked commands were implemented so seldom in these 

circumstances that the cycles saved by employing hardware 

were insufficient to compensate for the increased delay. 

 
Figure 1.4: Power Analysis-I 

Figure 1.4 is showing power consumption of the proposed 

work and the previous author's work. The variety of Possible 

Floating Point Multipliers in the portion with Power (W) in 

diagram is 3.294. Iterative single/double-precision merging 

floating-point/multiplier on FPGA (2015) has an area and 

power efficiency of 1. And the answer is 3.294 in An Actual 

Integration of Floating Point/Multiplier. 

 

 
Figure 1.5: Number of DSP48Es 

 

Figure 1.5 shows the number of DSP48E used in the previous 

author's work and proposed work. 

VI. CONCLUSION 

The implementation is described in this dissertation. In a 

suggested technique, a process for automatically producing 

FPUs tailored at the instruction level was provided, which 

included datapath merging to reduce area. The merging of 

complicated floating-point datapaths was approached using a 

maximum weight clique technique. Customizable FPUs were 

created for several Mediabench application and compare 

against a reference FPU that supported all floating-point 

operations. Minimizing the floating-point instruction set 

resulted in significant space savings, while datapath merging 

resulted in even more savings. The FPU size was decreased by 

an average of 51% by reducing the floating-point instruction set 

to the bare minimum necessary for the application. The FPU 

area was lowered by an average of 65% by conducting 

instruction reduction and then merging the floating-point 

datapaths. The results demonstrated the efficacy of modifying 

FPUs at the instruction level, as well as the efficacy of datapath 

merging as a way of reducing area. 
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