
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5889

Article Received: 16 October 2022 Revised: 05 November 2022 Accepted: 16 December 2022

83

IJRITCC | December 2022, Available @ http://www.ijritcc.org

Symbiotic Organisms Search Optimization to Predict

Optimal Thread Count for Multi-threaded

Applications

Sachin H Malave1, Subhash K Shinde2
1Reseach Scholar, Mumbai University

Lokmanya Tilak College of Engineering

New Mumbai, India

shmalave@apsit.edu.in

2Professor, Mumbai University

Lokmanya Tilak College of Engineering

New Mumbai, India

skshinde@ltce.in

Abstract— Multicore systems have emerged as a cost-effective option for the growing demands for high-performance, low-energy

computing. Thread management has long been a source of concern for developers, as overheads associated with it reduce the overall throughput

of the multicore processor systems. One of the most complex problems with multicore processors is determining the optimal number of threads

for the execution of multithreaded programs. To address this issue, this paper proposes a novel solution based on a modified symbiotic organism

search (MSOS) algorithm which is a bio-inspired algorithm used for optimization in various engineering domains. This technique uses

mutualism, commensalism and parasitism behaviours seen in organisms for searching the optimal solutions in the available search space. The

algorithm is simulated on the NVIDIA DGX Intel-Xeon E5-2698-v4 server with PARSEC 3.0 benchmark suit. The results show that keeping

the thread count equal to the number of processors available in the system is not necessarily the best strategy to get maximum speedup when

running multithreaded programs. It was also observed that when programs are run with the optimal thread count, the execution time is

substantially decreased, resulting in energy savings due to the use of fewer processors than are available in the system..

Keywords- optimization, threads, parallel programming, benchmarks.

I. INTRODUCTION

Many OS and hardware factors have been observed to

affect the thread performance, resulting in a direct detrimental

impact on computer system throughput. In order to complete

tasks efficiently in high-performance computing, parallel

programs must utilize all of the cores available on the machine.

Many times, the programmer's job is to select the optimal

number of threads before starting the execution on the target

machine. As a result, programmers devote a significant amount

of time to investigating parallel program issues and determining

the count of threads. Thus, rather than spending time analysing

the programs for the target machine, programmers can use

optimization algorithms based on bio-inspired optimization

techniques to quickly find optimal thread count [1]. The bio-

inspired algorithms are designed to identify the best answer in

a known search space by mimicking the nature of organisms.

These algorithms travel to various locations and attempt to

arrive at the required points as quickly as possible.

Multithreading is a parallel programming technique

used on a shared memory-multicore processor system.

Programmers find parallelism in the serial code or rewrite the

code to separate out the multiple sub-tasks to execute them

parallelly on multiple processors. Parallel execution requires

that work be partitioned [2], but partitioning requires great care.

Also, dividing the multithreaded applications unevenly can lead

to a single-threaded execution once the other running short

threads have finished their execution. A parallel program may

need to carry out synchronization in order to safely proceed with

such the processing [3]. After dividing the program into small

tasks, these tasks need to communicate with each other: after

all, if a given thread did not communicate at all, it would have

no effect and would thus not need to be executed [4]. However,

because communication involves overhead, poor partition

boundary selection can result in significant performance

deterioration. Because each simultaneous thread consumes

shared resources, such as space in processor caches, the number

of simultaneous threads must frequently be limited. The

processor caches will overload if too many threads run

simultaneously, resulting in a higher cache miss probability,

which will decrease performance [5]. On the other hand, when

programmers need more numbers of threads, they have to

overlap thread execution and I/O operations. Also, permitting

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5889

Article Received: 16 October 2022 Revised: 05 November 2022 Accepted: 16 December 2022

84

IJRITCC | December 2022, Available @ http://www.ijritcc.org

threads to execute concurrently greatly increases the program’s

complexity [6], which can make the program difficult to

understand, degrading productivity.

Many difficulties in parallel programming have been

observed by the researchers [7][8][9] in the last few years &

many attempts have been made to provide solutions for these

problems. It's difficult to write parallel programs without a

strong understanding of parallel programming techniques. The

researchers have developed many software tools to help

programmers correctly identify the problems in parallelism

[10][11]. The taxonomy for parallel processing performance

problems in multi-core systems is presented in [12]. The

problems can be classified into seven categories as Task

Granularity, Synchronization, Data Sharing, Load Balancing,

Data Locality, Resource Sharing and Input/Output. Task

granularity refers to the number of threads within a task [13]. In

parallel programs, it is challenging to find parallelism to fully

utilize the capacity of the machine. Under task granularity [14].

oversubscription is one of the issues which occurs when the

work of the application is divided into smaller tasks than

required to exploit the multicore or multiprocessor platforms.

When a machine synchronizes threads that don't do

enough work to justify the synchronization overhead, low work

to synchronization ratio issue arises [15][16]. The lock

contention and badly behaved spinlocks are the problems that

arise in synchronization. When a thread tries to acquire a lock

that is already acquired by some other thread, lock contention

happens [17][18]. In most cases where a thread attempts to

acquire a contended lock, the thread must wait for the lock to be

released before the thread can continue execution. Thus, when

locks contend, threads are blocked from executing until the lock

becomes free. When the thread is already locked by spinlock,

all other running threads that try to gain the same lock go into a

loop waiting for the lock to become free, which can result in

useless spinning around the loop [19][20].

II. LITERATURE REVIEW

AbdurRouf, et al [21] analyse the allocation of

multiple threads on multiple processors. The Open MP style

parallel programming API is being used to launch different

numbers of threads. The performance is checked in single as

well as multithreaded applications. Through various

experiments on different multicore architectures, they found

that the execution time of the program is reduced when the

number of threads increased proportionally. Similarly, their

studies suggest that when thread allocation is done correctly,

performance improves. The thread count should be determined

by the number of cores in the system, and it should be kept to

be equal to the number of cores available.

Lim, et al [22] proposed a thread evolution kit (TEK)

with a CPU mediator, stack tuner, and thread identifier for

CE/IoT devices. Using this kit software developers can identify

and correct the problems in parallel programs. When the

program codes are compiled, the enhanced Thread Identifier

inspects this information in order to properly manage each

thread. This kit was checked on a CE/IoT development platform

and compared to other approaches. However, because the APIs

are also not POSIX compatible, they are challenging to convert

to new CE/IoT systems.

Sethia et al [23] proposed an equaliser, which is a low-

overhead device execution system that tracks an application's

resource specifications and adjusts the on-chip parallel

processing, processor speed, and memory bandwidth to meet

the operating demands. It can save energy without sacrificing

efficiency by throttling underutilized resources. It can also

increase bottleneck resources to minimize contention and

improve efficiency without significantly increasing energy

consumption. Moreover, the performance of the proposed

equalizer is very close to the DynCTA.

Qin et al [24]. has presented a solution that delivers both fast

response time and throughput for programs with short threads.

Based on system’s load, each program decides how many cores

it requires. It always knows precisely the cores it has been

assigned, and it has complete control over the location of its

threads on those cores. A central core arbiter manages the

allocation of cores amongst programs.

Awatramani, et al [25] proposed a thread block

scheduler to perform kernel-to-core mapping as well as

scheduling thread blocks from active kernels on the mapped

cores. When a new kernel starts or a kernel stops, the

interleaved scheduler conducts an occupancy inspection. The

maximum block area of all kernels within each centre is

modified based on the results obtained.

Pusukuri, et al [26] developed a simple method called

thread reinforcer for proactively calculating the required

number of threads without resetting the program or changing

Operating System rules. Since calculating the proper number of

threads for a multithreaded program periodically is a difficult

task. Furthermore, architectural specifications such as memory

management issues are not considered here.

Sasaki et al. [27] created a complex scheduler that uses

hardware monitoring and evaluation units to dynamically

forecast application scalability and decides the best CPU cores

to allot for each program. Because each program has its own set

of characteristics different applications need different shared

resources like processor cores and memory systems. As a

result, it's apparent that OS thread scheduling becomes critical

in attaining high systems throughput.

Heirman, et al [28] extended CRUST (Cluster-aware

Undersubscribed Scheduling of Threads), a technique for

determining the best thread count for OpenMP applications

running on clustered cache architectures, for the Xeon Phi's

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5889

Article Received: 16 October 2022 Revised: 05 November 2022 Accepted: 16 December 2022

85

IJRITCC | December 2022, Available @ http://www.ijritcc.org

processor. By leveraging application phase behaviour at

OpenMP parallel section borders, CRUST can automatically

identify the optimal thread count at sub-application granularity.

It also uses hardware performance counter information to get

insight into the program's behaviour. This method controls the

threads inside the CPU hardware cores at the moment of

execution.

Kanemitsu, et al [29] proposed a task scheduling

approach based on clustering for minimising the scheduled time

in a large number of distinct processors. The number of

processors utilized for actual execution is controlled in order to

reduce the Worst Schedule Length (WSL). Real-time task

assignment and task clustering are used to decrease the

scheduling time until the total processing time in a task cluster

reaches the lower limit. It concentrates on the near-optimal

selection of processors without taking into account the impact

of the number of active threads on system performance.

Figure 1

Figure 2

III. MOTIVATION AND PROBLEM STATEMENT

Figure 1 shows the graphs of execution time vs the number of

threads on a 40 core Xeon processor system for streamcluster

(left), swaptions (middle), and ferret (right) of the PARSEC

benchmark. The X-axis represents the number of threads,

while the Y-axis represents the execution time. The execution

time lowers as the number of threads increases. We can see

that the execution time for a certain number of threads

reduced significantly at first but then fluctuated by a very

random amount. This occurred because of the number of OS-

level factors and their overheads interfering with and

affecting the program's execution. It can be said that the

streamcluster works well up to ten threads, but as the number

of threads exceeds forty, it becomes unpredictable. Both

swaptions and ferret operate excellently up to twenty and

twelve threads respectively and do not greatly improve after

that.

The areas in Figure 1 where these benchmarks ceased to

progress as the number of threads grew are depicted in Figure

2. In order to get the best performance on multicore

processing systems, the number of threads in multicore

processing applications should always equal the number of

cores. However, this is not the case with the benchmark

results presented here. Because the execution time varies

randomly as shown in Figure 2, no method or strategy can be

used to find the thread count to minimize execution time.

Thus, in this paper novel, searching optimization strategy for

estimating an optimum number of threads in multithreaded

programs is proposed to overcome this issue.

IV. PROPOSED METHODOLOGY

In [1], a population-based bio-inspired algorithm called

Symbiotic Organism Search (SOS) was developed for

addressing numerical optimization algorithms in the available

search space. An SOS is a simulation of three symbiotic

relationships between organisms: mutualism, commensalism,

and parasitism. Mutualism refers to a relationship between

two species in which both of them benefit from the

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5889

Article Received: 16 October 2022 Revised: 05 November 2022 Accepted: 16 December 2022

86

IJRITCC | December 2022, Available @ http://www.ijritcc.org

interaction. In a commensalism relationship, one organism

benefits and another is not affected. In a parasitism

relationship, one organism gets the benefits while the other

one is harmed intentionally. The possible solutions represent

the organism's positions in the search space, and these

organisms always travel through the three phases described

in SOS to reach new places. The fitness of these new positions

is examined, and the best among all is selected as the better

alternative. The user needs a fitness function that can assess

the present position and calculates how near the organism is

to reach the best solution. The user can choose a specific

number of iterations or set certain exit criteria to get the

desired results.

A. Phases in symbiotic organism search algorithm

 In order to generate new solutions, the SOS

optimization algorithm goes through three phases:

mutualism, commensalism, and parasitism. The

mathematical models for these phases are explained in this

section.

1) Initialisation

The Xbest is initialised to the number of cores

available in the system in this modified SOS (MSOS) method,

as it is typically considered that the number of threads should

match the number of processors available in multicore

systems. The search space is also constrained to the (Min,

Max) pair. Here Min & Max represent minimum & maximum

values allowed for organisms. The Max is set to two times the

number of processors available in the target computer system.

Eq. (1) is used to initialise the positions of organisms.

𝑋(𝑖) = 𝑟 ∗ (𝑀𝑎𝑥 − 𝑀𝑖𝑛) + 𝑀𝑖𝑛 (1)

Where r is a random number between [0,1], Xbest

represents the optimal solution. The X is an Organism Vector

and stores the current positions of the organisms inside the

search space.

2) Mutualism phase

The interactions between humans and dogs are an

example of mutualism, which directly benefits both

organisms involved. The dogs are cared for and fed by

humans and they guard humans against thievery and stranger

attacks. This phase in the SOS algorithm mimics organism

mutualism association. In this algorithm, X(i) is a number

given to an organism that corresponds to the ecosystem's ith

position. The ecosystem's another organism, X(j), is chosen

at random to associate with X(i). Both organisms have a

mutualistic interaction in order to increase their mutual

survival benefits in the system. The interaction between two

organisms X(i) and X(j) is used to generate new alternative

solutions called X(inew) and X(jnew). Following equations

eq. (2) and eq. (3) define mathematical model for this phase.

𝑋(𝑖𝑛𝑒𝑤) = 𝑋(𝑖) + 𝑟 ∗ (𝑋𝑏𝑒𝑠𝑡 − (𝑀𝑉 ∗ 𝐵𝐹1)) (2)

𝑋(𝑗𝑛𝑒𝑤) = 𝑋(𝑗) + 𝑟 ∗ (𝑋𝑏𝑒𝑠𝑡 − (𝑀𝑉 ∗ 𝐵𝐹2)) (3)

where,

𝑀𝑉 =
𝑋(𝑖) + 𝑋(𝑗)

2

Here, r is a random number between range [0,1].

When organism X(i) interacts with organism X(j), it may gain

a significant advantage from X(j). Meanwhile, while dealing

with organism X(j), it may only receive adequate or minimal

advantage. In this case, the values for both variables BF1 and

BF2 are decided at random as 1 or 2. These variables describe

the degree to which each creature benefits from the contact,

and whether an organism gains partially or totally. For

example, when organism X(i) interacts with organism X(j), it

may gain a significant advantage. However, when organism

X(j) interacts with organism X(i), it may only receive

adequate or marginal benefit.

Here, MV is a Mutual Vector, and it reflects the

association between the organisms X(i) and X(j). The Xbest

represents position of organism where best fitness value was

determined. As a result, we use Xbest to mimic the maximum

degree of profitability as the objective point for both

organisms. Finally, positions in Organism Vector are only

updated if fitness values of new positions are better than the

values before the interactions.

3) Commensalism phase

An arbitrary organism, X(j), is chosen from the

search space to interact with X(i), analogous to the mutualism

phase. In this case, organism X(i) tries to take advantage of

the situation. In this phase the interaction, does not make any

changes in other organism X(j). Following equations

represents mathematical model for commensalism between

two organisms.

𝑋(𝑖𝑛𝑒𝑤) = 𝑋(𝑖) + 𝑟 ∗ (𝑋𝑏𝑒𝑠𝑡 − 𝑋(𝑗)) (4)

Here, r is a random number and multiplies the

benefit of X(j) over X(i) with respect to Xbest.

4) Parasitism phase

Here, X(inew) is formed in the solution space by

replicating organism X(i) and then changing the randomly by

allowing it to interact with a parasite organism X(j). Both

X(i)and X(inew)have their fitness values examined, and if

X(inew) has a better fitness than X(i), then X(inew)

completely replaces X(i).

𝑋(𝑖𝑛𝑒𝑤) = 𝑋(𝑖) + 𝑟 ∗ 𝑋 (5)

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5889

Article Received: 16 October 2022 Revised: 05 November 2022 Accepted: 16 December 2022

87

IJRITCC | December 2022, Available @ http://www.ijritcc.org

B. Msos alogorithm

The steps in proposed algorithm to predict optimal threads

count are explained below.

1. Set the count of organisms (N) to a positive number.

2. Use Eq. (1) to determine the locations of all organisms

and put them into Organism Vector.

3. Set the initial best solution equal to the number of

compute cores available. (Xbest)

4. Repeat until the maximum number of iterations have

been completed or the desired answer has been obtained.

5. For each organism, i

6. Perform Mutualism using eq. (2) and eq. (3). If the newly

determined positions have fitness values less than the

prior positions, then update the Organism Vector with

new positions.

7. Perform Commensalism using eq. (4). If the newly

determined positions have fitness values less than the

prior positions, then update the Organism Vector with

new positions.

8. Perform parasitism using eq. (5 If the newly determined

positions have fitness values less than the prior positions,

then update the Organism Vector with new positions.

9. The optimal number of threads is determined by the best

position found in the preceding steps.

Above algorithm show the working of MSOS, which

includes all detailed information. All organisms are allowed

to go through all three steps mentioned in MSOS to determine

new positions, and the best position among all is chosen as

the current best solution. This process is repeated until the

maximum number of iterations have been performed or an

exit condition has been fulfilled. The fitness value here refers

to the time it takes for the program to run with the provided

number of threads. To calculate the fitness value for

organisms, following steps are performed.

1. Determine the Organism's current location.

2. Get the parallelized application and its sample input data

to determine the thread count.

3. Run the program with the number of threads equal to the

current position indicated by the organism.

4. The fitness value of an organism is the time it takes to

complete the task.

When compared to other conventional techniques like

machine learning (ML), the suggested MSOS-based thread

predictions model has various advantages, including being

modest, low overhead, and dynamic in forecasting thread

count (SR). Because ML-based techniques require greater

training time to achieve better prediction accuracy, they have

the higher overheads.

The proposed method is capable of achieving the best

combination of prediction accuracy and low overheads.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5889

Article Received: 16 October 2022 Revised: 05 November 2022 Accepted: 16 December 2022

88

IJRITCC | December 2022, Available @ http://www.ijritcc.org

Table 1 . Iteration wise positions and fitness calculations for streamcluster benchmark

V. RESULTS AND DISCUSSION

Table 2 Experimental Setup

Server NVIDIA DGX STATION

Number of Physical Cores 20

Number of Logical Cores 40

Main Memory 256 GB

Operating System Linux

The proposed MSOS technique is tested on

PARSEC, a set of well-known benchmark program. The

ferret, freqmine, streamcluster, swaptions, vips, and vorland

are among the six benchmarks taken from the PARSEC suite

for illustration here. Our experimental setup, which

comprises of an Intel Xeon-E5-2698-v4 2.2 GHz processor,

is shown in Table 2. This computer has 40 logical cores and

256 GB of main memory. We chose the Linux based

computer system for our study because it offers a wide variety

of tools (ps, top, vmstat, etc) for understanding and analyzing

application behaviors. Each experiment was repeated ten

Iteration:

i Phase

New Position of

ith Organism:

Fitness

New Position of jth

Organism: Fitness

Organism Vector

Index: [0 1 2 3 4]

Fitness Vector

Index: [0 1 2 3 4] 𝑿𝒃𝒆𝒔𝒕

0:0 M 41:06.4 38:1.526 [40,61,38,24,33] [1.819,12.196,1.526,1.041,1.644] 24

 C 53:10.485 [40,61,38,24,33] [1.819,12.196,1.526,1.041,1.644]

 P 69:17.444 [40,61,38,24,33] [1.819,12.196,1.526,1.041,1.644]

0:1 M 43:07.0 23:0.917 [23,43,38,24,33] [0.917,7.048,1.526,1.041,1.644] 23

 C 52:10.192 [23,43,38,24,33] [0.917,7.048,1.526,1.041,1.644]

 P 63:13.859 [23,43,38,24,33] [0.917,7.048,1.526,1.041,1.644]

0:2 M 31:01.2 17:0.809 [23,43,31,17,33] [0.917,7.048,1.230,0.809,1.644] 17

 C 37:1.464 [23,43,31,17,33] [0.917,7.048,1.230,0.809,1.644]

 P 46:8.352 [23,43,31,17,33] [0.917,7.048,1.230,0.809,1.644]

0:3 M 17:00.8 17:0.812 [23,43,31,17,33] [0.917,7.048,1.230,0.773,1.644]

 C 18:0.771 [23,43,31,18,33] [0.917,7.048,1.230,0.771,1.644] 18

 P 25:1.013 [23,43,31,18,33] [0.917,7.048,1.230,0.771,1.644]

0:4 M 31:01.2 15:0.815 [23,43,31,18,31] [0.917,7.048,1.230,0.771,1.227]

 C 41:6.325 [23,43,31,18,31] [0.917,7.048,1.230,0.771,1.227]

 P 51:9.968 [23,43,31,18,31] [0.917,7.048,1.230,0.771,1.227]

1:0 M 14:00.7 32:1.283 [14,32,31,18,31] [0.694,1.283,1.230,0.771,1.227] 14

 C 10:0.777 [14,32,31,18,31] [0.694,1.283,1.230,0.771,1.227]

 P 16:0.891 [14,32,31,18,31] [0.694,1.283,1.230,0.771,1.227]

1:1 M 25:01.0 29:1.107 [14,25,31,18,31] [0.694,1.014,1.230,0.771,1.227]

 C 24:1.025 [14,25,31,18,31] [0.694,1.014,1.230,0.771,1.227]

 P 34:1.701 [14,25,31,18,31] [0.694,1.014,1.230,0.771,1.227]

1:2 M 26:01.3 11:0.766 [14,25,31,18,31] [0.694,1.014,1.230,0.771,1.227]

 C 41:6.171 [14,25,31,18,31] [0.694,1.014,1.230,0.771,1.227]

 P 35:1.806 [14,25,31,18,31] [0.694,1.014,1.230,0.771,1.227]

1:3 M 17:00.8 22:0.966 [14,25,22,17,31] [0.694,1.014,0.966,0.756,1.227]

 C 30:1.462 [14,25,22,17,31] [0.694,1.014,0.966,0.756,1.227]

 P 20:0.921 [14,20,22,17,31] [0.694,0.921,0.966,0.756,1.227]

1:4 M 29:01.4 19:0.834 [14,19,22,17,31] [0.694,0.834,0.966,0.756,1.227]

 C 33:1.643 [14,19,22,17,31] [0.694,0.834,0.966,0.756,1.227]

 P 58:11.377 [14,19,22,17,31] [0.694,0.834,0.966,0.756,1.227]

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5889

Article Received: 16 October 2022 Revised: 05 November 2022 Accepted: 16 December 2022

89

IJRITCC | December 2022, Available @ http://www.ijritcc.org

times and the findings were averaged. For each program, the

PARSEC benchmark specifies six input data sets. The

"simlarge" input dataset is used in MSOS's fitness function to

determine the execution time.

Table 1 shows the results obtained using MSOS up

to two iterations. The Iteration column in this table shows the

iteration numbers as well as the indices of organisms selected

from Organism Vector. The types of interactions applied on

organisms are listed in “Phase” column. Here, Mutualism,

Commensalism, and Parasitism phases are represented by

letters M, C and P respectively. The positions obtained after

interacting with the other organisms are shown in column

“New Position of ith Organism: Fitness”. This column also

shows the fitness values of the new positions. The column

"New Location of jth Organism: Fitness" indicates new

positions determined for the randomly selected jth organisms

from the Organism Vector. This is done during the Mutualism

phase. The fitness values are also shown in the same column.

The values in Organism Vector after applying the chosen

interaction types are shown in “Organism Vector" column. In

this example, Organism Vector contains five organisms. The

"Fitness vector" column displays fitness values of organisms

in Organism Vector. Finally, “Xbest" the last column displays

the best solution found after applying MSOS phases.

 Figure 3 shows graphically all the places visited by

organisms during the execution of MSOS & Figure 4 depicts

their fitness values. It is apparent that the places where the

fitness values were close to the required solution (low in this

case) were visited more frequently. This also demonstrates

that MSOS tries to explore areas frequently where good

solutions exist. The algorithm has jumped to high positions

from time to time to avoid getting trapped in local minima.

The MSOS examined the relevant space 36 times out of 45

visits, accounting for 80 per cent of all efforts.

In parallel programs, speedup is a great way to

evaluate performance. If a sequential program on a single

core takes T(1) seconds and a parallel program on N

processors takes T(N) seconds, then Speedup, S(N), is

defined as

𝑆(𝑁) = 𝑇(1)/𝑇(𝑁) (6)

The speedup is calculated for the same benchmark programs

to determine the prediction accuracy of the proposed MSOS

based forecasting model. Table 3 shows the speedup gained

after running the benchmark programs with the optimum &

40 number of threads. The column N shows optimum thread

count determined by MSOS. The improvement in speedups

obtained using MSOS and traditional method is defined as

follows:

𝛿 = (𝑆(𝑁) − 𝑆(𝑛𝑢𝑚_𝑐𝑜𝑟𝑒𝑠))/𝑆(𝑛𝑢𝑚_𝑐𝑜𝑟𝑒𝑠) (7)

Figure 3 Streamcluster: Positions obtained for organisms

Figure 4 Streamcluster: Fitness values obtained for organisms

The results produced with MSOS are better compared to

those obtained by keeping the thread count equal to the core

count of the machine. The comparison between S(40) & S(N)

is shown graphically in figure 5. The X-axis in this graph

represents the names of benchmark programs while the Y-

axis represents speedups. The ferret, streamcluster, freqmine,

swaptions, and vips work much better when the thread count

is less than 40. The vorland outperformed the others with a

thread count of 57. When compared to running with 40

threads, streamcluster enhanced by 127 percent. The

streamcluster, swaptions and vorland have all seen significant

improvements in speedups. Figure 6 depicts graphically the

comparison between the execution time required for optimal

thread count & single thread (T(1) vs T(N)). The X-axis in

this graph represents the names of benchmark programs while

the Y-axis represents execution time in seconds. The

vorland's execution time has been adjusted down to

accommodate correctly in the graph. All of the benchmarks

show an increase in performance.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5889

Article Received: 16 October 2022 Revised: 05 November 2022 Accepted: 16 December 2022

90

IJRITCC | December 2022, Available @ http://www.ijritcc.org

Figure 5 S(40) vs S(N)

Figure 6 T(1) vs T(N)

Table 3 Performance analysis of PARSEC benchmarks

VI. CONCLUSION

In this paper, an efficient and unique threads

prediction model is developed based on the MSOS algorithm.

The prediction model determines the optimal number of

threads for maximum speedups with ease. The simulation

findings demonstrate that the proposed algorithm can

efficiently find the available search space and swiftly

converges to an optimal solution. The method described in

this paper is straightforward, but it has some downsides as the

user must run the program with a small quantity of data before

running it with the actual input data. These overheads become

minor if the actual input data is extremely large. Therefore,

while using MSOS to evaluate an application, it's critical to

choose the right amount of data.

REFERENCES

[1] Min-Yuan Cheng, Doddy Prayogo. “Symbiotic Organisms

Search: A new metaheuristic optimization algorithm.”

Computers and Structures, vol. 139, pp 98-112, July 2014.

[2] Yan, Chenggang, et al. "A highly parallel framework for

HEVC coding unit partitioning tree decision on many-core

processors." IEEE Signal Processing Letters 21.5 (2014):

573-576.

[3] Lim, Amy W., and Monica S. Lam. "Maximizing parallelism

and minimizing synchronization with affine

transforms." Proceedings of the 24th ACM SIGPLAN-

SIGACT symposium on Principles of programming

languages. 1997.

[4] Grant, Ryan E., et al. "Finepoints: Partitioned multithreaded

mpi communication." International Conference on High

Performance Computing. Springer, Cham, 2019.

[5] Martinez, Jose F., and Josep Torrellas. "Speculative

synchronization: Applying thread-level speculation to

explicitly parallel applications." ACM SIGOPS Operating

Systems Review 36.5 (2002): 18-29.

[6] P. E. McKenney, M. Gupta, M. Michael, P. Howard, J.

Triplett, and J. Walpole, “Is parallel programming hard, and

if so, why?” Portland State University, Computer Science

Department, Tech. Rep., TR-09-02, Feb. 2009.

[7] R. Atachiants, D. Gregg, K. Jarvis, and G. Doherty, “Design

considerations for parallel performance tools,” in Proc.

SIGCHI Conf. Human Factors Compute. Syst., 2014, pp.

2501–2510.

[8] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J.

Whitehead Jr., “Does bug prediction support human

developers? Findings from a Google case study,” in Proc. Int.

Conf. Softw. Eng., 2013, pp. 372–381.

[9] Ko and B. Myers, “An exploratory study of how developers

seek, relate, and collect relevant information during software

maintenance tasks,” IEEE Trans. Softw. Eng., vol. 32, no. 12,

pp. 971–987, Dec. 2006

[10] Anderson, Thomas E., and Edward D. Lazowska. "Quartz: A

tool for tuning parallel program performance." ACM

SIGMETRICS Performance Evaluation Review 18.1 (1990):

115-125.

[11] Navarro, Cristobal A., Nancy Hitschfeld-Kahler, and Luis

Mateu. "A survey on parallel computing and its applications

in data-parallel problems using GPU

Benchmarks T(1) T(40) S(40) N T(N) S(N) 𝜹

Ferret(ft) 3.231 0.543 5.950 37 0.523 6.177 3.82%

Streamcluster(sc) 5.007 1.573 3.183 14 0.694 7.246 127.64%

Freqmine(fq) 5.785 1.084 5.336 28 1.05 5.509 3.24%

Swaptions(sp) 4.619 0.387 11.935 38 0.244 18.930 58.61%

Vips(vp) 3.946 0.312 12.647 38 0.292 13.513 6.85%

Vorland(vr) 120.44 11.192 10.761 57 9.08 13.265 23.26%

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5889

Article Received: 16 October 2022 Revised: 05 November 2022 Accepted: 16 December 2022

91

IJRITCC | December 2022, Available @ http://www.ijritcc.org

architectures." Communications in Computational

Physics 15.2 (2014): 285-329.

[12] Roman Atachiants, Gavin Doherty, and David Gregg.,

“Parallel performance problems on shared-memory

multicore systems: taxonomy and observations,” IEEE Trans.

Softw. Eng., vol. 42, no. 8, pp. 764–785, Aug. 2016.

[13] Muthuvelu, Nithiapidary, et al. "On-line task granularity

adaptation for dynamic grid applications." International

Conference on Algorithms and Architectures for Parallel

Processing. Springer, Berlin, Heidelberg, 2010.

[14] Iancu, Costin, et al. "Oversubscription on multicore

processors." 2010 IEEE International Symposium on Parallel

& Distributed Processing (IPDPS). IEEE, 2010.

[15] Li, Jian, Jose F. Martinez, and Michael C. Huang. "The thrifty

barrier: Energy-aware synchronization in shared-memory

multiprocessors." 10th International Symposium on High

Performance Computer Architecture (HPCA'04). IEEE,

2004.

[16] Sridharan, Srinivas, Arun Rodrigues, and Peter Kogge.

"Evaluating synchronization techniques for light-weight

multithreaded/ multicore architectures. " Proceedings of the

nineteenth annual ACM symposium on Parallel algorithms

and architectures. 2007.

[17] N. Tallent, J. Mellor-Crummey and A. Porterfield,

“Analyzing lock contention in multithreaded applications,” in

Proc. 15th ACM SIGPLAN Symp. Principles Practice

Parallel Program., 2010, pp. 269–280.

[18] Amer, Abdelhalim, et al. "Lock contention management in

multithreaded mpi." ACM Transactions on Parallel

Computing (TOPC) 5.3 (2019): 1-21.

[19] Cui, Yan, et al. "Lock-contention-aware scheduler: A

scalable and energy-efficient method for addressing

scalability collapse on multicore systems." ACM

Transactions on Architecture and Code Optimization

(TACO) 9.4 (2013): 1-25.

[20] Venugopal, Srikumar, Rajkumar Buyya, and Kotagiri

Ramamohanarao. "A taxonomy of data grids for distributed

data sharing, management, and processing." ACM

Computing Surveys (CSUR) 38.1 (2006): 3-es.

[21] AbdurRouf, Mohammad, et al. "Performance Improvement

using Optimal Thread Allocation Algorithm in Multicore

Processor." (2018)

[22] Lim, Geunsik, Donghyun Kang, and Young Ik Eom. "Thread

Evolution Kit for Optimizing Thread Operations on CE/IoT

Devices." IEEE Transactions on Consumer Electronics 66.4

(2020): 289-298.

[23] Sethia, Ankit, and Scott Mahlke. "Equalizer: Dynamic tuning

of gpu resources for efficient execution." 2014 47th Annual

IEEE/ACM International Symposium on Microarchitecture.

IEEE, 2014.

[24] Qin, Henry, et al. "Arachne: Core-aware thread

management." 13th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 18). 2018.

[25] Awatramani, Mihir, Joseph Zambreno, and Diane Rover.

"Increasing gpu throughput using kernel interleaved thread

block scheduling." 2013 IEEE 31st International Conference

on Computer Design (ICCD). IEEE, 2013.

[26] Pusukuri, Kishore Kumar, Rajiv Gupta, and Laxmi N.

Bhuyan. "Thread reinforcer: Dynamically determining

number of threads via os level monitoring." 2011 IEEE

International Symposium on Workload Characterization

(IISWC). IEEE, 2011.

[27] Sasaki, Hiroshi, et al. "Scalability-based manycore

partitioning." Proceedings of the 21st international

conference on Parallel architectures and compilation

techniques. 2012.

[28] Heirman, Wim, et al. "Automatic SMT threading for

OpenMP applications on the Intel Xeon Phi co-

processor." Proceedings of the 4th international workshop on

runtime and operating systems for supercomputers. 2014.

[29] Kanemitsu, Hidehiro, Masaki Hanada, and Hidenori

Nakazato. "Clustering-based task scheduling in a large

number of heterogeneous processors." IEEE Transactions on

Parallel and Distributed Systems 27.11 (2016): 3144-3157.

[30] Birhanu, Thomas Mezmur, et al. "Efficient thread mapping

for heterogeneous multicore iot systems." Mobile

Information Systems 2017 (2017).

http://www.ijritcc.org/

