
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5837

Article Received: 27 September 2022 Revised: 09 November 2022 Accepted: 28 November 2022

21

IJRITCC | December 2022, Available @ http://www.ijritcc.org

A Machine Learning Technique for Abstraction of

Modules in Legacy System and Assigning them on

Multicore Machines Using and Controlling p-threads

Vinay T R1, Ajeet A Chikkamannur2
1Dept. of Artificial Intelligence and Data Science, Ramaiah Institute of Technology,

 Bengaluru, India.

 e-mail: tr.vinay@gmail.com
2Dept. of Computer Science, Nagarjuna College of Engineering and Technology,

Bengaluru, India

Email: ac.ajeet@gmail.com

Abstract—Hardware and Software technology has undergone a sea-of-change in recent past. Hardware technology has moved from single-core

to multi-core machine, thus capable of executing multi-task at the same time. But traditional software’s (Legacy system) are still in use today in

business world. It is not easy to replace them with new software system as they carry loads of knowledge, business value with them. Also, to

build new software system by taking the requirements afresh involves lot of resources in terms of skilled human resources, time and financial

resources. At last the customer may not have confidence in this new software. Instead of building a new software, an attempt is made to develop

a semi-automated methodology by learning about the program itself (machine learning about the program) to abstract the independent modules

present in the same abstraction level (implementation level) and recode the legacy program (single threaded program) into multi-threaded

parallel program. A case study program is considered and execution time is noted and analyzed for both the original program and reengineered

program on a multi-core machine.

Keywords-Multicore Machines, Legacy Systems, Reverse Engineering, Multi-threads

I. INTRODUCTION

Legacy software’s are the software’s designed and

implemented in the last decade but still in use in the business

world. The software designers, architects, engineers and others

involved in building these systems would have designed as a

single threaded system executing all the tasks/modules

sequentially. The programming language used in yester years

would only support sequential execution on a single-core

machine. But software and hardware development has

undergone a sea change. It is very common now to have a

multi-core machines on hardware side and from software side,

programming languages supporting parallel executions doing

multi-tasking at the same time. Thus, accelerating the rate at

which programs will be executed.

The legacy software’s which are still in use today, would have

undergone many modifications, updating’s as per the business

requirements. Even though these software’s are slow

compared to modern software systems, they carry rich

knowledge throughout their life-cycle and may have very high

business value. In sense, customers/ clients using this legacy

software’s will not be ready to take risk in replacing them with

modern system because of the business value they are

associated with it. Also, if replaced by a modern system, these

systems cannot guarantee the correctness and completeness of

the legacy system and it may take time to get the confidence of

the users. In this scenario, the alternative option is to migrate

this legacy system onto modern hardware machines in the

same abstraction level (implementation level). Rather than

following forward engineering approach, Reverse engineering

approach should be employed as shown in figure 1.

Figure 1: Forward Engineering and Reverse Engineering

In figure 1, the abstraction of modules from legacy system is

done at the implementation level and re-coding it on to the

multi-core system, there by converting a single threaded

sequential program into multi-threaded parallel program [14].

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5837

Article Received: 27 September 2022 Revised: 09 November 2022 Accepted: 28 November 2022

22

IJRITCC | December 2022, Available @ http://www.ijritcc.org

To achieve this, the basis is to first understand the legacy

program which contains hidden knowledge, rich statistical

values as well [Hindle et al., 2012]. The present-day software

engineers will find it difficult to understand legacy software

implemented language. The programming language also has

undergone a tremendous change. The associated

documentation of legacy software’s will also be of little use, as

many modifications would have taken place in its life cycle

and little importance would have given to documentation.

Analyzing the program and representing it in intermediate

form [12] such as control flow graph, control flow table [11]

and Data flow table [8,9] is done. Many researchers designed

automated tools, machine learning algorithms to analyze the

properties of code for finding bugs or security vulnerabilities,

to design test-cases and compiler optimization. Here an

algorithm is presented to abstract the modules of legacy

system by analyzing the program and building aHypergraph

[14, 16] of the program. There by identifying any dependent or

independent modules present within the program. Thereafter

these independent modules can be executed in-parallel on a

multi-core machine using p-threads.

A standards-based thread API for C/C++ is provided by the

POSIX thread libraries [15]. One is able to start a fresh

concurrent process flow thanks to it. It works best on systems

with several processors or cores since the process flow may be

scheduled to occur on a different processor, resulting in faster

parallel or distributed processing. The POSIX thread library is

used in applications to accelerate program execution.The

detailed step-by-step methodology is explained in section 3.

II. REVIEW ON MIGRATION TECHNIQUES

[1] In this paper the author proposed to take risk analysis

before taking up migration project and proposed a framework

where the forward and reverse engineering are amalgamated as

per the requirement. For this framework, detailed software

requirement specification (SRS), associated documentation of

the legacy system is required. Here the migration team first

understands the legacy system through the study of SRS and

documentation of the software analyzes the risk involved and

plan accordingly for migration of tasks that has no risk. If any

tasks are having high risk, the author proposes to design and

build the task by following the forward engineering principle.

The main lacuna observed here is that the legacy system

should have proper well maintained, understandable

documentation.

The aim of [2] was to migrate a legacy software written in

obsolete programming language to modern newer

programming language environment. There by utilizing the

power of modern programming language paradigm. But for

this, the skilled software migration team has to have in-depth

knowledge of the older programming language and also

modern programming environment. They need to understand

the older programming constructs, what tasks it does, how it

affects the other statements. It is very cumbersome process.

So, it was carried on a Legacy test program only. Many

limitations, impediments were also noted down.

In paper [4], the author proposes a set of transformative rules

for migrating older languages to newer programming

language. The migration team has to understand line by line of

the legacy software by scanning each line, reading-

understanding the comment lines. For each sub-system, the

author analyzed the program through constructing Control

flow graph, data flow, its interfaces with rest of the system.

For each data type, structures, unions a mapping table was

developed and mapped all these to target languages program

constructs. Here a case study software was considered and

migrated into C/C++ code. The migration was carried out in

two phases. This process is time consuming and getting

skilled man power to work on this type of project poses a

challenging task. As many software engineers bend always

towards learning new technologies and working on them to

improve their skill set. Motivating them to learn obsolete

programming language and work on migration of legacy

system itself is a challenging task.

In paper [6], the migration study was carried out for large

scale software project. First data was migrated to new database

technology and then the software was migrated. During the

migration process, constant customer involvement was

necessitated so that the customer can test, verify the migrated

task. More time and resources were spent on testing and

satisfying the customer itself.

A number of research authors worked on source code

migration. In [17], a tool is designed to migrate Pascal

program to C. In [18], Fortran to C and C++ converted is

designed. In [20] a framework for translating smalltalk

program into C is proposed. A number of translators from

Ada-83 to Ada-91, CMS/Jovial/Fortran to Ada have been

developed by Xinotech[19].

III. METHODOLOGY

A. Selecting a Template (Heading 2)

The input to our methodology is a legacy program running as a

single threaded program. This program is pre-processed,

abstracting the modules, examining their dependences and

reengineer them into multi-threaded parallel program using p-

threads. Afterwards, scheduling them on a multi-core machine.

The entire process flow is depicted in the following figure 2.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5837

Article Received: 27 September 2022 Revised: 09 November 2022 Accepted: 28 November 2022

23

IJRITCC | December 2022, Available @ http://www.ijritcc.org

Figure 2: Process flow of proposed methodology

The methodology is expressed by means of an algorithm.

Algorithm: Conversion of Single to Multi-threaded parallel

program.

Input: Single threaded legacy program

Output:Multi-threaded parallel program

Step 1: Pre-processing the legacy program for analysis;

 The particular language semantics has to be understood

first and then can be readjusted conveniently for further

analysis. Different software programmers use different style of

writing programs. Such as writing multiple statements in one

line or writing single statement in more than one line. Here we

fix one statement in one-line order. The others are removing

blank lines and comment lines. Finally inserting the line

numbers.

Lex regular expressions for removing comment lines:

/*Identifying single line comment in the given program*/

\/\/(.*) ;

/* Identifying multi line comment in the given program and

removing them*/

{start}.*{end} ;

Step 2: Extract all variables set of the program. Naming the

set as Vu = { }

Step 3: Classify them into three categories as set of input

variables Vi = { }, set of output variables Vo = { } and set of

intermediate variables as Vim = { }.

Step 4: Extracting the signatures of a function. The signature

means the return variable of the function and function

arguments. It is extracted by constructing the abstract syntax

tree of the function call.

Step 5: Constructing table [14,16] of signatures of functions.

In each row, a function name, its return variable and the

arguments of the function is inserted.

TABLE 1: TABLE OF SIGNATURE-OF-FUNCTIONS.

Sl.No. Function

Name

Return

Variable

Arguments

list

Remarks

1. Function-1

 …

N Function-N

Step 6: Analyzing the Signature-of-functions table.

If any one of the arguments of one function matches with the

return variable of another function. Concluding that they are

dependent on each other and need to execute them in program

order by applying mutex on that variable.

 Else, if non-matches, functions are independent.

Step 7: Identifying and counting the number of independent

functions.

Step 8: Creating p-threads for all the independent functions

and scheduling them on to execute on a multi-core machine.

END.

IV. CASE STUDY PROGRAM: SORTING AND SEARCHING

PROGRAM

The following case-study program below will be treated using

the aforementioned methodology.

#include <stdio.h>

int * Sort(int a[])

int Search(int a[], int key, int *index)

int main()

{

 int a[size], int key1, key2,key3, index1= -1,index2= -1,

index3=-1;

 // assigning values for array a, key1,key2 and key3

 a = Sort(a);

Search(a,key1, &index1);

Search(a,key2, &index2);

Search(a,key3, &index3);

 // printing the values of index values from three Search

functions.

 return 0;

}

Figure 3: Sample case study program.

By observation, the above program runs as a single threaded

program executing Sort and Search function (calls Search

function three times) sequentially. By applying the above

methodology, the program can be sliced [2,3] and executed in-

parallel by creating parallel threads. Thus, improvement in

execution speed of the program can be noted.

Applying the methodology described in Section-3 onto the

program given in Figure 3, the following intermediate

outcomes are as follows:

// set of all variables

Vu = { a, key1, key2, key3, index1,index2, index3}

Vi = { a, key1,key2,key3} // set of input variables

Vo = { index1,index2, index3 } // set of output variables

TABLE-2: SIGNATURE-OF-FUNCTIONS FOR THE GIVEN PROGRAM

Sl.

No.

Function

Name

Return

Variable

Arguments

list

Remarks

1. Sort a a Independent function

2. Search index1 a, key1 Dependent on function

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5837

Article Received: 27 September 2022 Revised: 09 November 2022 Accepted: 28 November 2022

24

IJRITCC | December 2022, Available @ http://www.ijritcc.org

in row-1 and

Independent of functions

in row 3 and 4

3. Search index2 a, key2 Dependent on function

in row-1 and

Independent of functions

in row 1 and 4

4. Search index3 a, key3 Dependent on function

in row-1 and

Independent of functions

in row 2 and 3

From the above Table, the inference is that the sort function is

independent and Search function is dependent on Sort

function. The Search function which is called three times can

be executed in-parallel by creating three parallel threads after

the Sort function is executed.

The reengineered case study program is given below:

#include <stdio.h>

int * Sort(int a[])

int *Search(int a[], int key, index)

int main()

{

 int a[size], int key1, key2,key3, index1,index2, index3;

// assigning(reading) values for array a, key1,key2 and key3

pthread_t thread1, thread2, thread3;

int iret1, iret2;

 a = Sort(a);

iret1 = pthread_create(&thread1, NULL,Search(a,key1,&index1));

iret2 = pthread_create(&thread2, NULL, Search(a,key2,&index2));

iret3 = pthread_create(&thread2, NULL, Search(a,key3,&index3));

pthread_join(thread1, NULL);

pthread_join(thread2, NULL);

pthread_join(thread3, NULL);

 // printing the values of index values from three Search

functions.

 return 0;

}

Figure 4: The reengineering case study program of figure 3.

In the above program, first the Sort function is executed then,

the program is sliced and three threads starts executing in-

parallel, each one executes Search function independently and

in-parallel. After their completion of execution, they are

spliced again. The time taken to execute both the programs for

different array size is recorded.

V. EXECUTION TIME ANALYSIS

Both the original program and the reengineered program is

executed on Processor Intel(R) Core(TM) i7-10700 CPU

@ 2.90GHz, 2904 Mhz, 8 Core(s), 16 Logical Processor(s).

The size of the array is varied and the execution time in each

case is noted as given in the below Table 3 and graph is

plotted for the same and is seen below in figure-5.

TABLE 3: TIME TAKEN TO EXECUTE THE ORIGINAL PROGRAM AND THE

REENGINEERED PARALLEL PROGRAM

Array size (n)

is varied in

each iteration

Execution Time of

Original Program

in seconds

Execution time of

Reengineered parallel

threaded program in

seconds

1000 0.000323 0.27308

10000 0.005367 0.27581

20000 0.011803 0.27986

40000 0.023472 0.28263

60000 0.046380 0.28585

80000 0.102473 0.28934

100000 0.118250 0.31681

200000 0.478015 0.38903

300000 1.035308 0.80378

400000 1.792921 1.18351

500000 2.815044 1.90635

Figure 5: Execution time of the program by running it as a single thread and

multi-thread program for varying array size.

Observation:

Initially the multi-threaded parallel program is taking more

time to execute and as the size of the array increases more than

one lakh in this case, this reengineered program is taking less

time to execute compared to single threaded program. Ideally

when a greater number of parallel threads is created on a multi-

core machine, it should take less time proportionally to the

number of threads created. But according to the Amdahl’s law

observation, it depends on the program itself, as how much part

of the program can be made parallel. Thus, the performance of

reengineered parallel-program depends on the considered

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 10 Issue: 12

DOI: https://doi.org/10.17762/ijritcc.v10i12.5837

Article Received: 27 September 2022 Revised: 09 November 2022 Accepted: 28 November 2022

25

IJRITCC | December 2022, Available @ http://www.ijritcc.org

program itself, the machine configuration such as number of

cores, the synchronization required among the parallel threads,

memory bounds, correct reimplementation of code (creating p-

threads and assigning them to functions), time taken to create

and terminate the p-threads, seek time to access the array

elements (this comes into effect if array’s size becomes too

large) and the operating system itself.

VI. CONCLUSION

Legacy Software’s running as a single threaded sequential

program on a single-core machine is reengineered to run on

multi-core machine as multi-threaded parallel program. The

semi-automatic methodology employed above is carried out at

the corresponding abstraction-level itself(Implementation /

code), without modifying the design or following the forward

engineering principle. Ideally the speed-up achieved by

converting a single thread program into two-thread parallel

program should be 50% less than the original program, or if it

is converted into four threaded program, it should have taken

75% less time than the original program. But according to the

experimental result, the speedup achieved by running the same

program in-parallel is restricted by Amdahl’s law, because the

time taken for creation and termination of extra threads and

multi-core machine itself will take extra time. Nevertheless,

the process of migration [13] of legacy software’s is better

approach rather than discarding the legacy software and

building newer software in its place.

REFERENCES

[1] Hausi A Miller , “Reverse engineering Strategies for

Software Migration” ICSE , ACM Transaction.

[2] Paul R. Salopek, “Migration of Legacy Test Program to

modern programming environment” IEEE Transaction,

2000.

[3] Ying Zou, “ Incorporating Quality Requirements in

Software Migration Process” , 11th Annual STEP-04

[4] Kostas Kontogiannis et. al.,”Code Migration through

Transformations: An Experience Report”, IBM CASCON

1998.

[5] Louis Forite, Charlotte Hug[5], “FASSM: Fast and

Accessible Software Migration Method” Universite Paris,

IEEE Transaction 2014.

[6] Werner Teppe[6], “ARNO Project: Challenges and

Experiences in a Large-scale Industrial Software Migration

Project”, IEEE Transaction 2009.

[7] Andreas Menychtas[7] et al. “ARTIST Methodology and

Framework: A approach for the migration of legacy

software”, IEEE Transaction 2014.

[8] Dr.ShivanandM.Handigund. Reverse Engineering of Legacy

COBOL Systems. Doctoral dissertation, IIT, Bombay.

[9] Handigund S.M., Arunakumari B.N., Chikkamannur A.

(2018) Automated Methodology to Streamline Business

Information Flow Embedded in SRS. In: Sa P., Bakshi S.,

Hatzilygeroudis I., Sahoo M. (eds) Recent Findings in

Intelligent Computing Techniques. Advances in Intelligent

Systems and Computing, vol 709. Springer, Singapore.

https://doi.org/10.1007/978-981-10-8633-5_33

[10] Pankaj Jalote. An Integrated Approach to Software

Engineering, Third Edition, Narosa Publishing House.

[11] A. Chikkamannur and S. M. Handigund, "An ameliorated

methodology to design normalized relations," 2009

IEEE/ACS International Conference on Computer Systems

and Applications, Rabat, 2009, pp. 861-864, doi:

10.1109/AICCSA.2009.5069431.

[12] AAChikkamannur,SMHandigund,An ameliorated

methodology for ranking the tuple, International Journal of

Computers and Technology (IJCT) 14 (4), 5616-5620.

[13] Vinay T R and A. A. Chikkamannur, "A methodology for

migration of software from single-core to multi-core

machine," 2016 International Conference on Computation

System and Information Technology for Sustainable

Solutions (CSITSS), Bangalore, 2016, pp. 367-369, doi:

10.1109/CSITSS.2016.7779388.

[14] VinayT R and A.A.Chikkamannur, A semi automatic

transformational technique for transforming single threaded

program into multi threaded program ,

https://ijarcce.com/wpcontent/uploads/2022/01/IJARCCE.2

021.101251.pdf

[15] https://www.cs.cmu.edu/afs/cs/academic/class/15492-

f07/www/pthreads.html#:~:text=ThePOSIXthreadlibrariesar

e,throughparallelordistccributedprocessing.

[16] Vinay, T.R., Chikkamannur, A.A. (2022). A Novel

Methodology to Restructure Legacy Application onto

Micro-Service-Based Architecture System. In: Shetty, N.R.,

Patnaik, L.M., Nagaraj, H.C., Hamsavath, P.N., Nalini, N.

(eds) Emerging Research in Computing, Information,

Communication and Applications. Lecture Notes in

Electrical Engineering, vol 790. Springer, Singapore.

https://doi.org/10.1007/978-981-16-1342-5_39.

[17] Gillespie, D.,” A Pascal To C Converter", The HP-UX

Porting and Archive Center, http://hpux.u-

aizu.ac.jp/hppd/hpux/ Languages/p2c-1.20/readme.html

[18] Feldman, S., Gay, D., Maimone, M., Schryer, N., \A Fortran

to C Converter", AT&T Technical Report No. 149, 1993.

[19] Xinotech Inc. http://www.xinotech.com.

[20] Yasumatsu, K., Doi, N., \Spice: A System for Translating

SmallTalk Programs Into a C Environment" IEEE

Transactions on Software Engineering, vol. 21.

http://www.ijritcc.org/

