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Abstract
A review is presented of the rescattering plateau in laser-induced above-threshold ionization and
its various features as they were discovered over time. Several theoretical explanations are
discussed, from simple momentum conservation to the quantum-mechanical improved strong-
field approximation and the inherent quantum orbits or, alternatively, entirely classical methods.
Applications of the plateau to the extraction of atomic or molecular potentials and to the
characterization of the driving laser pulse are also surveyed.
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(Some figures may appear in colour only in the online journal)

1. Introduction: looking back after 25 years

Much of the beauty of strong-field laser-atom physics origi-
nates in its three hallmark phenomena—non-sequential dou-
ble ionization (NSDI) [1, 2] and the plateaus of high-order
harmonic generation (HHG) [3–5] and above-threshold
ionization (ATI) [6]—along with their coherent explanation
in terms of classical or quantum orbits [7–10]. However, there
has been more than mere beauty: concurrently, attosecond
laser physics has developed by taking advantage of strong-
field laser physics for the generation and the metrology of
attosecond pulses and phenomena; for reviews, see [11–14].

From today’s perspective, it appears that at the beginning
of 1993 all pieces but one were in place allowing for a grand
view of strong-field laser-atom physics: the plateau in HHG and
its explanation by classical electron trajectories revisiting the
parent ion [15, 16] and the famous NSDI ‘knee’ in the intensity
dependence of the double ionization yield of rare gases [17],
along with the absence of these effects for a circularly polarized
laser field [18, 19]. The only missing piece, one might think
today, would have been some ‘plateau’ in high-order ATI
(HATI), analogous with the HHG plateau. In 1993, however,
the perception was completely different as is evident from the
report of an anonymous referee: ‘It has been admitted for by
now several years that ATI electron spectra do not exhibit the
plateau behavior that characterizes HHG.’ Moreover, the
recollision picture was highly controversial. With respect to
NSDI, the last sceptics were only convinced more than five
years later by the first reaction-microscope experiments [20, 21].
Accordingly, when the ATI plateau was finally discovered at
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the end of June 1993, rescattering was not at all everyone’s first
guess. This was in spite of the fact that slightly earlier ‘rings’ or
‘side lobes’ in the angle-dependent ATI spectrum had been
detected [22] and submitted to a classical rescattering descrip-
tion almost as readily as the plateau itself [23].

In figure 1 we present a by now historical plot of a
measured ATI spectrum, which illustrates why the geo-
graphical term ‘plateau’ was invoked to characterize the
pronounced annex at high energies. Note that this annex
would have completely escaped attention on a linear scale.
The nomenclature ‘plateau’ was also drawing the analogy to
HHG. The feature disappears for circular polarization, which
provided the essential clue to its origin: rescattering.

Looking back today with the hindsight of almost 25 years
at the data presented in [6], it is interesting to observe what
was discussed at the time and what was not. Spectra were
exhibited for all of the rare gases, and they were significantly
different (krypton barely shows a change of slope rather than
a plateau), but the universal validity of the rescattering picture
was the dominant lesson drawn from the data, and the very
obvious differences between the various rare gases were
played down. By now, the perspective has been reversed: ATI
and HATI are employed to extract atomic and molecular
information from the data [24–32]. Another eye-catching
feature of the spectra that received little attention is the
existence of a group or groups of particularly well developed
peaks in the middle of the plateau (above approx. U5 p, where
Up is the ponderomotive energy7), especially for argon, while
the peaks at lower and at higher energies are less well
developed and have much lower contrast. In this context, it

was remarked that ‘... the energy difference between a peak
on the plateau and one at lower energies ... does not corre-
spond to an integral number of photons’ [6]. As we will see in
section 3.1 this was a very important observation, which was
not followed up on at the time.

We will, in this paper, consider the plateau and the further
developments that it started. Today, it is clear that the plateau
will gradually disappear when the laser polarization turns from
linear to circular, but how fast will it go and how will its shape
be affected? The first observation of the plateau was carried
out for a fairly long pulse (40 fs). What is the effect of the
pulse length on the plateau? Not yet in 1993, but some time
later, pulses became so short that their specific shape started to
play a role, for the direct electrons as well as, especially, the
plateau. We will return to the early observation of the groups
of exceptionally well developed peaks in the middle of the
plateau and see that it provides the key to a much deeper
understanding of the plateau and the underlying mechanism.

The guiding principle in our interpretation will be
momentum conservation as it underlies the simple-man model
[33]. It is embedded in the quantum-mechanical improved
strong-field approximation (ISFA) from which it can be
extracted via the saddle-point evaluation. The resulting theory
has been called ‘quantum-orbit theory’ [7–10]. It will provide a
unified framework for the interpretation. Its shortcoming is
an incomplete consideration of the effects of the Coulomb
potential. Almost all the effects mentioned thus far are related to
backscattering of the revisiting electron. However, the returning
electron can rescatter in any direction including the forward
direction. This will lead to a new perspective of the so-called
low-energy structure (LES) and other recently observed features
of ATI for very low electron energy. As a very important
application of ATI, we will discuss the determination of the
carrier-envelope phase or absolute phase of a few-cycle laser
pulse. Finally, we will completely change the description and
reconsider ATI and the LES from an entirely classical point of
view that includes the Coulomb potential exactly.

Before concluding this introduction, in figure 2 we sche-
matically present the semiclassical three-step model, which
embodies the generally accepted physical picture of the HATI
process. When the field is close to an extremum, the electron, up
to this time t0 bound in the atom with the energy Ip- , can tunnel
through the potential barrier and is ‘born’ in the continuum with
zero velocity v(t0) (step 1). Thereafter, the electric field strength
decreases and goes through zero to its next maximum positive
value. Since the electric force at the time t¢ changes its sign
when the field does, the electron turns around at the time t″ and
starts returning to its parent ion. This is the second step of the
three-step model. The corresponding electron velocity, as we
will show in the next section, is related to the vector potential

tA( ), which is equal to zero at the times t0 and t″ since
E(t)=−dA(t)/dt and the field is extremal at these times. By
momentum conservation, the maximum electron kinetic energy
at the return is E v U2 3.17ret,max drift

2
p= = [15, 16]. In the

third step, the electron elastically scatters off its parent ion
and moves towards the detector. In the case of backscattering,
the maximum electron energy at the detector is Ebs,max =

U10.007 p [23] (for direct ionization, i.e. for ATI without

Figure 1. ATI spectra recorded in July 1993 using a femtosecond
laser system consisting of a dye colliding-pulse mode-locked
oscillator and a dye amplifier pumped by a copper-vapor laser. The
wavelength was 630 nm, the pulse duration 40 fs, and the intensity
corresponded to U 4.5 eVp = . Besides the ATI plateau and its
disappearance for circular polarization, also some of the effects
referred to in the main text are visible, in particular varying ATI peak
contrast and peak separations not equal to the photon energy.

7 An electron in a laser field cannot be at rest. At least, it has to wiggle
following the acceleration due to the laser field, with no additional directional
motion. The corresponding kinetic energy averaged over one cycle (of
duration T) of the laser field is called the ponderomotive
energy U e t mA 2Tp

2 2= á ñ( ) ( ).
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rescattering, we will show that E U2dir,max p= ). The probability
of the HATI process is approximately the same for all final
electron energies U E U2 10.007p bs p< < so that the corresp-
onding photoelectron spectrum forms a plateau. This is a simple
condensed explanation of the formation of the plateau. We will
return to this in more detail later in the paper.

The topics to be considered have been covered by many
more general review papers [34–41]. Some historical remarks
can be found in [39]. The current paper will focus on the ATI
plateau and its properties and applications as well as simple
interpretations ranging from momentum conservation in the
presence of only the laser field to the SFA and ISFA and
quantum orbits.

2. The kinematics of recollision and momentum
conservation

To a significant extent, the dynamics of strong-field ionization
in general and rescattering in particular can be understood by
the principle of momentum conservation. A fundamental
approximation in strong-field laser physics is the assumption
that ionization, i.e., the transition from the ground state to a
continuum state, occurs at some well-defined instant t0 (which
is weighted and integrated over to obtain spectra and rates).
Before ionization, for t<t0, the laser field is assumed to have
negligible effect on the electron, which is tightly bound. At
t=t0, horses are switched and the effect of the Coulomb field
is neglected such that the equation of motion of the electron in
the continuum is governed by the laser field alone. We will
restrict ourselves to the nonrelativistic regime and employ the
long-wavelength approximation for the laser field so that the
electric field of the laser is assumed only to depend on time,

t tE r E, ( ) ( ), and the magnetic field is ignored.
The equation of motion for t>t0 therefore reads

m t e tv E , 1= -˙ ( ) ( ) ( )

where v is the electron’s velocity and m and −e denote its
mass and charge. Whenever convenient, we will use atomic
units, i.e. m=e=1. Using t tE A= -( ) ˙ ( ), we obtain

d

dt
m t e tv A 0. 2- =( ( ) ( )) ( )

(If the field is described in length gauge, we use tA( ) as short-
hand for d E

t
ò t t- ( ). In velocity gauge, tA( ) is the vector

potential and the generalized or canonical momentum is pcan ≔
m t e tv A-( ) ( ).) In any case, the quantity m t e tv A-( ) ( )
is conserved. Assuming tunneling at the time t0, so that

tv 00 =( ) , we find e tp Acan 0= - ( ). We normalize the vector
potential by requiring that tA 0- ¥ =( ) . Any laser pulse
exerts a net force of zero on a free particle resulting in a net

transferred momentum of zero, i.e., t dtE Aò = -¥ -
-¥

¥
( ) ( )

A 0¥ =( ) [37], so that A 0+¥ =( ) as well. Evaluating the
conserved quantity pcan at infinity (after the end of the laser
pulse), we realize the physical meaning of the canonical
momentum as the electron’s drift velocity, which is measured at
a detector outside the field:

m e tp v A . 3can drift 0º = - ( ) ( )

This is often referred to as the simple-man model [33].

Before discussing recollisions, we demonstrate the pre-
dictive power of the conservation of the canonical momentum
(as well as its limitations) at the example of photoelectrons
that do not rescatter, the so-called direct electrons. A first,
rather trivial example of an application of equation (3) is the
prediction of the classical cutoff energy of direct electrons in
quasi-monochromatic laser fields [33, 42]. It is evident that
the maximum of tA∣ ( )∣ equals its amplitude A0. Recalling that
(for linear polarization) the ponderomotive energyUp is given
by U e A m4p

2
0
2= ( ), we reproduce the well-known cutoff

energy of m e A m Up 2 2 2can,max
2 2

0
2

p= =( ) ( ) . The drift
velocity is largest when A t0∣ ( )∣ reaches a maximum; but then
E t A t 00 0= - =( ) ˙ ( ) , which means that no electrons are
liberated at this time. In other words: the probability to detect
photoelectrons decreases with increasing energy—a very
familiar fact.

A less trivial example is the so-called attoclock [43–46],
i.e., the photoelectron momentum distribution created by
highly elliptically polarized laser fields. For a sufficiently long
pulse, the parametric plots of tE( ) (i.e. the polarization
ellipse) and tA( ) will be virtually identical. Therefore, con-
sidering equation (3), the instant of ionization within each
optical cycle can be read off the azimuth of the photoelec-
tron’s momentum distribution. An example of such a mea-
surement is displayed in figure 3 [47]. The remarkable feature

Figure 2. Graphical sketch of the three-step model as described in the text. The temporal evolution of a linearly polarized laser field E(t) is
represented by the red long-dashed line, the combined atom + laser field potential, V r tr E+( ) · ( ), is depicted in black, while the electron
and its velocity are in blue.
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of these distributions is that most events are recorded in the
direction of the minor axis, where the field strength is small.
Although at first sight counterintuitive, it makes perfect sense
considering equation (3): the phase of tA( ) is shifted by 90°
with respect to the phase of tE( ), at least for a monochromatic
wave; see [48] where the effect was called ‘dodging’—the
electron appears to dodge the strong force. However, it must
not be overlooked that the yield does not maximize exactly in
the direction of the minor polarization axis. This observation
gave rise to a still unsettled discussion about a finite tunneling
time [49, 50], but it should not be forgotten that a number of
approximations were made: (i) the Coulomb force has been
neglected; in its presence momentum conservation no longer
holds [51, 52]. (ii) The time-dependence of the amplitude has
been neglected. The shorter the pulse duration is, the less
accurate will be the statement that tE( ) and tA( ) are
perpendicular. (iii) Ground state depletion has been neglected.
But most experiments are performed close to saturation of
ionization. Therefore, if depletion of the ground state plays a
role, the ionization yield decreases from cycle to cycle and is
in the first half of each cycle slightly larger than in the second.
For a discussion of the contributions of these and other effects
to the tunneling time, see [53].

Momentum conservation can also be applied to explain
the kinematics of recollision. In fact, some of the approxima-
tions just mentioned are not very relevant for the corresp-
onding effects, i.e. the conclusions obtained can be expected to
be quite robust. Recollision implies that the electron returns
to the ion core at some time t1>t0, is scattered, and subse-
quently further accelerated by the laser field. The simplest but
arguably most prominent case is that the recolliding electron is
scattered backward. This means (we consider, for now, linear
polarization so that all vectors only have one component; we

also introduce the infinitesimally small positive time ε)

mv t t mv t t . 41 1e e= - = - = +( ) ( ) ( )

The momentum immediately before rescattering is the opposite
of the momentum immediately thereafter. Next, momentum
conservation is applied twice: p t p tcan 0 can 1 e= -( ) ( ), i.e.

mv t t eA t eA t , 51 1 0e= - = -( ) ( ) ( ) ( )

and p t p tcan 1 cane+ =  ¥( ) ( ), i.e.

mv t t eA t p . 61 1 drifte= + - =( ) ( ) ( )

Substitution of equations (4) and (5) in equation (6) then results
in the drift momentum of the backscattered photoelectron:

p eA t eA t2 . 7drift 1 0= - +( ) ( ) ( )

In order to make use of equation (7), the functional
dependence of t1 on t0 must be known. It can be derived
starting again with momentum conservation analogous to
equation (5), mv t eA t eA t0= -( ) ( ) ( ). Integration yields the
position, x t F t F t t t F t x t0 0 0 0= - - - +( ) ( ) ( ) ( ) ˙ ( ) ( ),
where F t A t dt

t
ò= ¢ ¢( ) ( ) . The condition of recollision,

x(t1)=x(t0), becomes

F t F t t t F t , 81 0 1 0 0= + -( ) ( ) ( ) ˙ ( ) ( )

which has an obvious and instructive graphical interpretation
[54], see figure 4. The ionization and recollision times, t0 and t1,
that result in the trajectory with the largest drift velocity pdrift after
rescattering are easily found by maximizing pdrift of equation (7)
with respect to t0 subject to the return condition (8). This yields
the trigonometric equation 1 cot 1 2 cot 2 2t t t t t- - =( )( )
for τ=ω(t1−t0)/2 as well as cot cot 1s t t= - for
σ=ω(t1+t0)/2. Numerically, for a cosine-shaped electric field
waveform, the result is ωt0=14.9° and ωt1=261.6° for the
first return. Using equation (7), one reproduces the well-known
ATI plateau cutoff energy of U10.007 p [23].

The cutoff energy marks the end of the rescattering pla-
teau. Figure 5 allows one to read off the travel time that cor-
responds to this and to other cutoff energies. The figure also
shows that for any energy E smaller than the U10.007 p cutoff
there are two different travel times, each corresponding to a
certain start time t0 and recollision time t1, that yield this
energy. These electrons form the plateau. Its height is primarily
determined by the magnitude of the electric field at the start
time t0. Generally, both in this model and in reality, the height
of the plateau varies rather smoothly with energy. An impor-
tant feature that also determines its height is the magnitude of
the rescattering matrix element, which occurs in the quantum
description [26–29]. Finally, quantum mechanics will carve a
very rugged structure into the plateau owing to interference of
the contributions of the various start times. However, due to
focal averaging this is rarely seen in experiments.

Figure 4 illustrates the possibility that the liberated
electron may return to its parent ion more than twice. Con-
sider, for example, the green straight line in figure 4, which is
tangent to F(t) at t=t0. It intersects the curve F(t) at t=t1,
t=t2, and t=t3. Hence, the crucial scattering event may
also take place at the second, the third or even at later revisits.

Figure 3. Ionization of Ne+ ions in an ion-beam apparatus by
elliptically polarized 30 fs laser pulses with an intensity of
≈1017 W cm−2 and ellipticity 0.74. The Ne2+-ions are detected on a
position- and time-resolving microchannel plate. The major
polarization axis is parallel to the y direction. Nevertheless, most
events are emitted to the x direction. However, the entire distribution
appears to be skewed counterclockwise. Reprinted figure with
permission from [47], copyright (2015) by the American Physical
Society.
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The same information is presented differently in figure 5,
where the final energy after backscattering is plotted versus
the ‘travel time,’ that is, the difference between the rescat-
tering time and the ionization time. (The figure also displays

the final energy after forward scattering, to be discussed
below and, for comparison, the energy at the time of return,
which is the relevant quantity for HHG.) As functions of the
travel time, the curves display maxima, which lead to sharply
defined cutoffs in the spectra. In quantum mechanics, these
cutoffs will be smoothed but still be very visible. Typically,
just before such a cutoff the yield rears up and, subsequently,
drops quickly after the cutoff.

For the second and third return, backscattering cutoff
energies of approximately U7 p and U8.7 p can be read off
from figure 5. For later and later returns, the cutoffs converge
to U8 p (see also figure 8 in [34]). The reason can be easily
seen in figure 4: in order to afford later and later returns, the
slope of the tangent must become smaller and smaller which
implies that F(t0) will become extremal and thus A(t0)→0.
The drift momentum (7) after rescattering can then only be
maximized by demanding F(tn)=0 and A(tn)→A0. So we
will have p A2drift 0 , which indeed corresponds to the
energy U8 p.

2.1. The LES

The discovery of the LES [56, 57] came as a surprise, because
the low-energy region was considered fully understood at the
time. The effect is in fact particularly pronounced at long
wavelengths, i.e. for parameters for which the established
models were believed to be particularly reliable. The experi-
ments exhibiting the LES were made possible by various

Figure 4. Graphical method for determining the recollision time t1 for an electron liberated at t0: a tangent (green) is aligned with F(t) at t=t0.
The instant where it intersects F(t) again defines the (first) recollision time t1. Depending on the value of t0, more than one recollision may
occur. In the example given, there are two additional intersections at t=t2 and t=t3. If t0 is slightly increased to t0̃, the times t2̃ and t3̃ merge,
i.e., the new tangent is a tangent also at t t t2 3= =˜ ˜ . This means that the electron returns with zero velocity, in a ‘soft recollision’. This
kinematical situation generates the LES. For start times later than this t0̃, there is only one recollision. Multiple recollisions (which give rise to
‘long orbits’) are responsible for intensity-dependent enhancements of groups of peaks in the rescattering plateau. Notice, that in the example
the value of t0 is just after a maximum of −E(t) so that ωt1 is very close to (but not identical with) 3π/2. All the interesting rescattering physics
that is due to multiple returns is generated by orbits that start very shortly after an extremum of F(t). It should be noted that F(t) is proportional
to E(t) for sufficiently long quasi-monochromatic laser pulses. However, equation (8) holds and the method can be used for arbitrary laser fields.

Figure 5. The return energy Eret (dotted–dashed (blue) line), five
times the forward scattering energy Efs (dashed (red) line) and the
backscattering energy Ebs (solid (green) line) as functions of the
travel time 2τ=ω(t1−t0). Conversely, for any fixed energy
E<10.007 Up the intersections of a horizontal line with the curve
Ebs afford the travel times such that the backscattered electron will
arrive at the detector with the energy E. This makes clear that the
contributions to any given energy E come in pairs, with the two
members of a pair merging at the respective cutoff energy. Adapted
from [55]. © IOP Publishing Ltd. All rights reserved.
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novel laser systems developed over many years [58]. Figure 6
exhibits an example showing unpublished spectra obtained
during the initial phase of work that eventually resulted in
[56]. The data are presented both on a linear scale and a
logarithmic scale. On the linear scale it becomes clear that the
LES is not a small effect at all. The log-scale data, especially
at the highest intensity, already suggest that this feature is
another plateau at low-energy; see below. On both scales, the
LES appears on top of a distribution as it would be expected
from pure tunneling.

It was immediately proposed that the LES might be related
to forward rescattering [59]. Indeed, figure 5 exhibits forward
scattering cutoffs at very low-energy. Figure 4 makes clear that
the cutoff corresponds to a return with zero velocity. For such a
soft recollision we have F t F t 0n 0= =˙ ( ) ˙ ( ) at the return time.
Figure 4 also shows that such a soft recollision is invariably
preceded by one (or several) ‘hard’ recollisions where the
electrons returns with substantial velocity. For an infinitely
long monochromatic laser field, say A t A tsin0 0w=( ) as it
underlies figure 4, symmetry implies that this occurs at

t n2 1 21w p= +( ) with n 1, 2 ,...= where F(t1)=0. The
corresponding start time t0 is determined by equation (8),
which yields n t t2 1 2 tan 10 0p w w+ - =(( ) ) . For ωt0=1,
this can be trivially solved to retrieve the well-known LES
energies [60, 55, 61, 62]

E
U

n
n

8

2 1
1, 2, ... . 9nLES

p

2 2p
=

+
=

( )
( ) ( )

The red dashed line in figure 5 makes clear that these are the
cutoff energies for forward scattering. As such, they should
give rise to pronounced cutoff features in the spectrum. The
LES energies (9) can be considered as cutoffs of low-energy
plateaus, in complete analogy with the high-energy plateau and
its cutoff. Of course, the lengths of the low-energy plateaus are
very short and only identifiable for midinfrared lasers. It is

interesting that low-energy plateaus, with the same cutoff
energy positions as for forward scattering, also exist for
backscattered electrons [63, 64].

The LES energies are very small and lie in an energy
region that should be dominated by the direct electrons. This
was the reason that until recently no one paid attention to
rescattering, especially forward scattering, into states with
low-energy. However, the liberated electron is subject to the
Coulomb potential, and its forward scattering cross section is
very large. This is why on the background of direct electrons
forward-rescattered electrons may actually not only be visible
but even be dominant [65]. This argument implies that LESs
should not be visible for photodetachment of negative ions
where the electron–ion potential is of short range and the
scattering cross section is small.

The LES has attracted a lot of interest and was examined
from various different angles and view points [61, 62, 66–70].
Following its discovery various additional spectral features at
comparatively low energies have been identified: a very low-
energy structure (VLES) significantly below the LES [71], a
zero-energy structure (ZES) [72, 73], a ‘V’ structure [74–76],
as well as other patterns in the velocity map at low-energy.
All but the VLES can be attributed to low-energy rescattering,
but other mechanisms have been discussed as well. Already
before the discovery of the LES, a double-hump structure in
the longitudinal momentum was observed [77, 78]. We will
not further dwell on these effects whose origin is not yet
entirely clear.

2.2. Rescattering in an arbitrary direction: laser-induced elastic
diffraction

Equation (7) can also be regarded as a vector equation and
thus describe not only the special cases of elastic backward or
forward scattering. Rather, the electron recolliding with
momentum tp 1 e-( ) may scatter in any direction. Figure 7
presents the angular-dependent cutoffs of a large number of
orbits, which can be calculated analytically [79–81]. We
anticipate that classical cutoffs tend to produce the most visible
features in quantum-mechanical quantum-orbit calculations,
which are in qualitative agreement with more exact simula-
tions such as solutions of the time-dependent Schrödinger
equation (TDSE) [82, 83]. Hence, the classical cutoffs can be
expected to manifest themselves in experimental data. The
figure exhibits an especially dense concentration of cutoffs
around the origin, including for zero transverse momentum the
series (9) of LESs. Some of the other afore-mentioned patterns
are visible here, such as the ‘fork’ and the ‘V’ structure
[74–76], which have indeed been observed in experiments.

The region of the velocity map for comparatively large
longitudinal momenta px and nonzero transverse momenta py
can be exploited to extract the electron–ion scattering cross
section from HATI data as the latter determine the angular
distribution of ionization events along the rescattering circles
[27–30, 84, 85]. For elastic scattering, the momenta of
the scattered electrons will form a circle of radius p t1 =( )
e A t A t1 0-∣ ( ) ( )∣, see equation (5). Invoking conservation of
momentum just as in the special case of backscattering, it is

Figure 6. Photoelectron spectra of xenon in dependence of the
intensity of 3.6 μm, 140 fs laser pulses. The laser intensity used to
generate the spectra shown in the main panel was varied in steps of
0.025·I0, where I0=0.65×1014 W cm−2 is the maximum laser
intensity. The spectra of both gases exhibit a spike-like enhancement
for E10 eV. The inset displays the xenon spectrum on a semi-
logarithmic scale.
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obvious that the scattering circles will be offset from the
origin by the vector e tA 1( ). The situation is depicted in
figure 8 for the recollision time (or rather phase) of 261.6°,
which has already been discussed for backscattering.

Figures 4 and 5 make clear that the electron has more
than one option to get from the initial bound state into a given
final state (with drift momentum p). Namely, it may go there
directly, or after having revisited its parent ion once or several
times. The question arises how to add the contributions of
these different scenarios. The answer requires quantum
mechanics, which specifies the phases of the various con-
tributions, which have to be superimposed coherently. The
result of adding many such paths may be anywhere between
constructive interference, which will strongly enhance the
ionization rate, or a more or less random superposition, which
will suppress it, or even complete destructive interference.

The backbone of a quantum-mechanical description of
strong-field ionization that allows for rescattering is the ISFA.
Next, we will briefly reproduce the most important results.

3. Quantum-mechanical SFA

The solution of the TDSE can be decomposed into two wave
packets (we use atomic units from here on so that ÿ=1,
m=1, and e=1)

t t i d U t H
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(see, e.g., [34]) of which the first incorporates no interaction
of the freed electron with the binding potentialV r( ), while the
second includes at least one. In equation (10), the state t0y ñ∣ ( )
denotes the initial bound state, H t tr EI =( ) · ( ) is the elec-
tron-field interaction, and U t t, ¢( ) and U t t,V ¢( ) represent the
exact and the Volkov time-evolution operators, respectively.
The latter can be expanded
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in terms of the Volkov states

t t
i

dk A k Aexp
2

. 12V

t

t

k
2

0
òy t tñ = + ñ - +

⎛
⎝⎜

⎞
⎠⎟∣ ( ) ∣ ( ) ( ( )) ( )

This way, we end up with an expansion of the final state
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which allows us to read off the amplitudes for direct ioniz-
ation (direct electrons, SFA) [86–89]
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and for ionization with at least one act of rescattering [8,
90–98]
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The fact that the direct term (14) is the lowest-order term of a
Born series was already mentioned in [89]. To make the
rescattering amplitude amenable to evaluation one usually
replaces the exact propagator U(t, τ) by the Volkov propa-
gator UV(t, τ) (equation (11)). The result incorporates pre-
cisely one act of rescattering and is sometimes referred to as
the ISFA. The amplitudes (14) and (15) are evaluated in the
limit of t  ¥.

Most of the theoretical results to be presented will be
based on the amplitudes (14) and (15). The integrals over the
ionization time τ in equation (14) and the ionization time τ′

and the rescattering time τ in equation (15) can be carried out
entirely numerically. However, the approximate evaluation
with the help of the saddle-point method is much quicker and,
moreover, affords a great deal of physical insight. We illus-
trate it in the case of the rescattering amplitude (15) (with
U→UV). Inserting the expansion (11) for the Volkov pro-
pagator we collect all the exponentials that contribute to the

Figure 7. Angle-dependent cutoffs of the electron drift energy
E p 2;kin

2q q=( ) ( ) see [79–81]. On the px axis, we see the cutoffs
corresponding to U10.01 p and then to U U8.77 , 8.48p p etc (blue
curves, labeled m 0, 1, 2, ...=+ ) above U8 p, and to U U7.03 , 7.45p p

etc (green curves, labeled m 1, 2, ...=- ) below U8 p. The two sets
converge to two ‘limit circles’, one for px>0 and the other for
px<0, which intersect the vertical axis at p U A2 8 2x p 0=  =·
and are represented by the dashed (red) curves. They are exact
circles and are tangential to the horizontal axis at the origin. Near the
origin, for py=0, we see the LES energies at U U0.094 , 0.033 , ...p p

marked by solid circles (orange). The two insets show several
longitudinal (x component) simple-man orbits. The orange ellipse at
the center of the figure identifies the region relevant for the ‘fork’
and the ‘V’ structure. Reprinted figure with permission from [55],
copyright (2014) by the American Physical Society.

7

J. Phys. B: At. Mol. Opt. Phys. 51 (2018) 162002 Topical Review



integrand. Requiring that the resulting exponential be sta-
tionary with respect to its variables τ, τ′, and k determines the
saddle points:

I ak A 2 , 162
pt+ ¢ = -( ( )) ( )

d bk A , 16òt t s s- ¢ = -
t

t

¢
( ) ( ) ( )

ck A p A . 162 2t t+ = +( ( )) ( ( )) ( )

The first equation describes energy conservation when the
electron tunnels from its initial state with ionization potential
Ip to a Volkov state with velocity k A t+ ¢( ). The second
equation enforces that this electron, which started its trajec-
tory at the time τ′ at the center of the binding potential V r( ),
return to this position at the time τ. Finally, the third equation
describes elastic scattering at the time τ (above, in
equation (4), we considered the special case of back-
scattering). Equations (16) are illustrated in figure 2.
Obviously, equation (16a) does not allow for real solutions
for τ′ and, in consequence, all saddle points k, ,t t¢( ) are
complex. The solutions of the saddle-point equations define
complex trajectories tx( ) in space as a function of time t,
which are called quantum orbits. Their real parts txRe ( ) are
closely related to the trajectories of the simple-man model,
but owing to the imaginary parts, the trajectories do not start
at the position of the ion but rather at the exit of the tunnel;
see the orbits depicted in figure 10. For I 0p = , the solutions
are real (for linear polarization and provided the final energy
is not too high). Equation (16a) then implies that the electron
start its orbit with velocity k A 0t+ ¢ =( ) , which determines
the tunnel exit time of the simple-man model. More details
can be found in [9, 34, 37].

In figure 5, the energies for backscattering and forward
scattering are plotted as a function of the time between return
and ionization [60, 79]. This figure makes it easy to find these

times for given drift energy while the preceding figure 4 tells
at which times an electron that started at a given ionization
time t0 t= ¢ will return. Especially, it becomes clear that for
energies smaller than U8 p there are infinitely many solutions
of the saddle-point equations (16). We denote them by

sk, , 1, 2, ...st t¢ =( )∣ ( ). Only a subset s̃ must be used to
construct the ionization amplitude. (This is related to the
deformation of the original contour of integration, which is
the real k, ,t t¢( ) hyperplane, into the pertinent complex
hyperplane. Only a subset of the saddle-point solutions will
come to lie on the deformed contour.) This yields the saddle-
point approximation

M M M M, . 17
s

s
s

sp p p p
0 0 1 1å å= =∣ ∣ ( )( )

˜

( )
˜

( )

˜

( )
˜

For the direct amplitude Mp
0( ), the set s̃ consists of only

two solutions per cycle (for a monochromatic field). For the
rescattering amplitude and large electron energies, figure 5
shows that the solutions s̃ also come in pairs. The orbits of the
pair that corresponds to the cutoff energies are commonly
called the long and the short orbit (this name was originally
introduced for HHG, which also can be treated using the
saddle-point method [7]). Coherent superposition of the direct
orbits yields a characteristic pattern in the velocity map,
which has been called the ‘carpet’ [99–101]. The interference
of direct and rescattered amplitudes yields features that are
related to the holographic structures [102, 103]. The decom-
position of the ionization amplitude in terms of quantum
orbits is closely analogous to Feynman’s path integral [82,
104–106].

The main problem of the ISFA is the fact that the
potential is only accounted for in first-order Born approx-
imation. While for pure Coulomb scattering the latter happens
to yield the exact scattering cross section, this is, of course,
not so in the presence of an external laser field. Many

Figure 8. Momentum conservation and scattering circles in ATI: the momenta of elastically scattered electrons recolliding with momentum
tp 1( ) will form a corresponding scattering circle. Since the laser field is nonzero after the scattering event, the electrons are further accelerated,

a process that can easily be described by conservation of canonical momentum. The left-hand panel displays the situation for ωt1=261.6°,
which corresponds to the ATI cutoff trajectory. The kinetic energy of these electrons at the instant of recollision is U3.11 p and thus

t eA Ap 3.11 2 1.2471 0 0= =∣ ( )∣ . The respective circle is displaced by A Asin 261.6 0.990 0 = -( ) . In case of backscattering, the total
momentum is −2.237A0 which corresponds to an energy of U10 p. For the subsequent half-cycle the same will take place in the opposite
direction. The mechanism is beautifully confirmed experimentally, as shown in the right-hand panel. Reprinted figure with permission from
[28], copyright (2008) by the American Physical Society.
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different attempts have been made to include the Coulomb
field into the phases of the quantum orbits or, starting from a
completely classical description, to augment the classical
orbits by suitable phases [66, 67, 107–116]. The exact relation
of these approaches to the ISFA is not known. In many
instances, they improve the agreement with numerical solu-
tions of the TDSE and experimental data. However, they do
not include large-angle scattering and its associated effects.

Originally, owing to the absence of the long-range
Coulomb force acting on the detached electron the SFA was
proposed to apply for photodetachment of negative ions
[86–89]; see also [117]. The same restriction should even
more so apply for the ISFA. Not with standing, both have
been employed mostly for atoms where they work surpris-
ingly well though the presence of the Coulomb potential does
cause substantial discrepancies. However, for negative ions
the (I)SFA should provide an excellent description. Indeed,
photodetachment experiments of F− [118] were generally
very well reproduced by the ISFA [119] and also by the time-
dependent effective-range theory [120]. The F− experiments
also recorded ‘energetic’ electrons whose origin, whether by
rescattering or by the slower dropoff of the direct-electron
spectrum for the p ground state of F−, remained unresolved.
The confirmation that negative ions do exhibit a rescattering
plateau in perfect agreement with the ISFA was accomplished
for Br− [121].

3.1. Intensity-dependent enhancements in the ATI plateau

For the rescattering amplitude Mp
1( ), figure 5 shows that there

are several solutions to the saddle-point equations (16) that
must be included in the sum (17), at least two for Ep just
below U10 p and infinitely many for E U8p p< . The
corresponding quantum orbits have been called the ‘longer
orbits’. Closer inspection has shown that for intensities such
that

I U n 18p p w+ = ( )

with integer n, the coherent superposition of many long orbits
is constructive for certain groups of HATI peaks in the pla-
teau; for a formal analytical proof, see [81, 122]. The con-
dition (18) means that the ponderomotively upshifted
continuum threshold is multiphoton resonant with the ground
state. This provides an explanation of one of the most con-
spicuous features of the ATI plateau, viz. the appearance of
groups of peaks with enhanced yield and increased contrast in
the spectrum [123–129]. Namely, in general, the ATI peaks
are located at the energies

E k U Ip 2 , 19p
2

p pwº = - - ( )

with integer k. Equations (18) and (19) imply that the peaks of
an enhanced group occur at

E ℓ 20p w= ( )

with integer ℓ. In the focus of a laser pulse, there is invariably
a distribution of intensities. The channel closing condition
(18) is not necessarily satisfied by the peak intensity but by
one (or several) lower intensities. Regardless, enhanced peaks

will be found at the energies (20). However, lower-order ATI
peaks will be centered at energies (19) corresponding to the
peak intensity. Hence, the energy difference between two
peaks, one from a group of enhanced peaks (satisfying
equation (20)) and the other one at much lower energy
(satisfying equation (19) with the peak intensity), will not
necessarily correspond to an integer multiple of ω. This was
already noticed in the first report of the plateau [6]. These
intensity-dependent resonances are one of the most intriguing
effects in ATI. An example is presented in figure 9. The
mechanism just advertised is only one of several explanations
that have been proposed. Others are based on multiphoton
resonance with intensity-dependent excited states [130–133]
or subsume the effect [134–136] under the general mech-
anism of threshold anomalies [137, 138]. The fact that so
many apparently different mechanisms have been success-
fully invoked is one of the fascinating aspects of the effect.
We notice finally that multiphoton resonance with intensity-
dependent upshifted states is not conceptually very different
from the mechanism that we have advanced. Namely, the
ISFA does not account for any excited bound states, so the
only analogous feature is the continuum threshold, which is,
of course, ponderomotively upshifted. In this sense, the ISFA
is a zero-range-potential theory in disguise, because this
potential does not support any excited bound states at
all [129].

It was shown that the intensity-dependent enhancements
fade away in the case where the driving pulse approaches a

Figure 9. ATI spectra in argon at 800 nm in the direction of the
linearly polarized laser field for the intensities 0.5, 0.6, 0.7, K, 1.0 I0
with I0=0.8×1014 W cm−2. The horizontal lines mark the
maxima of the plateaus for each intensity. Between the intensities
0.8I0 and 0.9I0 where the 12-photon channel closing moves into
resonance, the yield jumps up and the contrast increases. Reprinted
figure with permission from [129], copyright (2001) by the
American Physical Society.
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few-cycle pulse [139]. If the enhancements are due to con-
structive interference of the contributions of long quantum
orbits, this is completely evident, since long orbits cannot
unfold for short pulses. In the opposite case, for very long
pulses, ISFA simulations show that the spectral shape of the
enhancements develops extremely sharp, even divergent,
spikes [81, 140].

3.2. Elliptical polarization

Momentum conservation remains the governing principle
even when the laser field is elliptically polarized. We
exploited this already for the direct electrons in the analysis of
the attoclock. However, for rescattering, to make sure that the
electron return to the origin at the time t1 there are now two
conditions to satisfy rather than one, corresponding to the two
axes of the polarization ellipse; see equation (8). This is one
condition too many. In other words, the electron will, in
general, not return if it is released with zero velocity. Clas-
sically, for rescattering the electron does not have to return
exactly to the center of the potential. Quantum-mechanically,
the ISFA as described above remains perfectly applicable: the
solutions of the saddle-point equations (16) will automatically
do the job. One just has to find them, which may not be
straightforward.

To see this more clearly, we first note that for elliptical
rather than linear polarization the saddle-point equations (16)
no longer have real solutions when I 0p = (unless the
momentum p has special values to be discussed below). This
follows from equation (16b): if both components of the initial
velocity are zero, then, if the electron returns in one direction,
it cannot return in the other. However, it is clear that with a
suitable nonzero initial momentum the electron will always be
able exactly to return to its starting position. This initial
velocity is automatically provided by the solution of the
saddle-point equations (16). However, the larger it is, the
larger are the imaginary parts, which suppress the corresp-
onding partial ionization rate. Equation (16b) has the con-
sequence that this momentum can be smaller if the travel time
is large so that long orbits become more important compared
with linear polarization.

The consequences can be inspected in figure 10, which
shows an experimental electron spectrum at an angle of 30° to
the direction of the major component of the polarization
ellipse along with its quantum-orbit interpretation [104]. The
spectrum exhibits two plateaus (between 10 and 25 eV and
between 35 and 50 eV), which can be traced to different
quantum orbits as depicted in the figure. The plateau that is
highest in energy is generated by the shortest quantum orbits,
but its yield is low. Namely, in order to return, these orbits
require a large initial transverse momentum and, conse-
quently, their contributions are suppressed. The plateau that is
lower in energy is generated by longer orbits, which have a
lower cutoff energy (see above) and a higher yield. The
theory predicts a third plateau in between the former two,
which, however, is hardly visible in the data. More theoretical
details for HATI by an elliptically polarized laser field can be

found in [10, 141]. Another more recent experiment that
supports this quantum-orbit interpretation is reported in [142].

We should mention that for elliptical polarization and
special values of p, there are real solutions of the saddle-point
equations for Ip=0, namely those where p+A(t)=0 for
some time t. Actually, these are the most important solutions.
For example, they imply that the maximum of the ATI
spectrum for a long circularly polarized pulse occurs at
E=Up. For a circularly polarized few-cycle pulse, the
solutions of the condition p+A(t)=0 (whether there is one
or more than one) predict whether and in which direction the
ATI spectrum will display interference fringes [143].

4. Absolute phase measurement—an application of
the ATI plateau

For several years following its discovery in 1993, the ATI
plateau had been considered to be of academic interest only in
stark contrast to the related effect of HHG. Today, the ATI
plateau has become the backbone of a powerful method for
the measurement of the absolute phase, also known as the
carrier-envelope (CE) phase. The underlying conjecture is
that the spatial asymmetry of the electric field of few-cycle
pulses will entail asymmetries in the photoelectron angular
distributions. More precisely, the Curie symmetry principle
[144, 145] implies that photoelectron angular distributions
with no inversion symmetry must be caused by laser pulses
that also lack inversion symmetry, which is only possible for
few-cycle (or multi-color) laser pulses. In the following, we

Figure 10. ATI spectrum in xenon recorded at the angle of 30° to the
major axis of the polarization ellipse of an elliptically polarized laser
field (ξ=0.36), as depicted in the upper right corner. The
wavelength is 800 nm and the intensity 7.7×1013 W cm−2. Two
different plateaus can be recognized, which are shaded in different
colors, along with the quantum orbits that are responsible for them.
The position of the atom is indicated by a cross mark. Note that
the orbits start at the exit of the tunnel, not at the position of the
atom. (A third plateau in between the former two is predicted by
theory but hardly visible in the data.) From [104]. Reprinted with
permission from AAAS.
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will more descriptively speak of left-right asymmetries
instead of broken inversion symmetry.

At first glance, using plateau photoelectrons rather than
low-energy direct electrons seems counterproductive due to
their comparatively small number. Indeed, researchers did
initially consider low-energy electrons for phase measure-
ment. However, this did not turn out to be very successful. In
the perturbative regime, one would argue that continuum
states of opposite parity but comparable amplitude must be
superimposed in order to observe left-right asymmetries.
Obviously, this can only happen in between adjacent ATI
peaks—where the yield is low [146]. Nevertheless, the con-
cept can be applied for, e.g., coherent control by few-cycle
pulses [147]. In the strong-field regime, the situation is hardly
more favorable: the high nonlinearity of tunnel ionization can
certainly lead to strongly different ionization yield within
subsequent optical half-cycles with opposite field direction.
However, this asymmetry largely cancels out due to the fact
that the photoelectrons will fly in direction of the vector
potential tA 0( ) at the instant of ionization t0, as discussed
above (see figure 2 in [148]). The situation is more advan-
tageous for circular polarization [149] where the vector
potential does not change sign in the middle of each half-
cycle. Therefore, circular polarization was used in the first
detection of absolute phase effects [143, 150].

The phase dependence of plateau electrons, i.e. rescat-
tered electrons, is much stronger. Qualitatively, this is not
hard to see: in order to obtain a high yield of high-energy
photoelectrons, the field strength within the laser pulse needs
to be as high as possible (i) at the instant t0 of ionization—
otherwise the tunneling probability will be low and no pho-
toelectrons are created—and (ii) in the optical cycle following
the instant t1 of recollision—otherwise the photoelectron
cannot be accelerated to high energies. For few-cycle pulses,
these requirements are necessarily in conflict because t0 and t1
are separated by almost one optical cycle. Tuning the absolute
phase j can be used to find the best compromise, which will
be the worst compromise in the opposite emission direction.

Experimentally, a so-called stereo time-of-flight (stereo-
TOF) photoelectron spectrometer consisting of two opposing
TOF spectrometers is used (see figure 11). The laser polar-
ization is parallel to the spectrometer axis. The expectations
with regard to phase sensitivity of direct and rescattered
electrons are completely fulfilled. In order to quantify the
effects, the asymmetry A has been introduced. It is the dif-
ference of the numbers N of photoelectrons emitted in
opposite directions (‘left’ and ‘right’) normalized to their
sum: A N N N Nleft right left right- +≔ ( ) ( ). Alternatively, the
ratio can be used. For direct electrons, A is on the order of
10%, while it approaches 100% for plateau electrons [151].
Other phenomena that can be observed in such experiments
are a dependence on the Gouy phase [152, 153] and a phase
dependence of the ATI peak contrast [154], which has an
appealing interpretation as a double-slit experiment in time
[155]. The stereo-ATI phase meter can also be utilized to
reconstruct a few-cycle laser pulse with arbitrary polariza-
tion [156].

In order to turn the experiment into a measurement
device capable of measuring the absolute phase of each and
every laser pulse at multi-kHz pulse repetition rates [159], an
instrument optimized for photoelectron production and col-
lection efficiency as well as sophisticated but fast data
acquisition hard- and software were developed. An important
insight has been that the phase dependence of the asymmetry
depends on the electron energy. In fact, two energy intervals
‘low’ and ‘high’ can be found within the ATI plateau such
that the phase dependence of Alow and Ahigh differ by 90°.
Then, if Ahigh is plotted versus Alow for each laser pulse, this
parametric plot will be of an approximately circular shape.
The azimuthal angle for each data point represents an indi-
vidual laser pulse. It corresponds to the absolute phase of this
laser pulse modulo a certain offset that can be determined by
comparison with experiments and simulations with atomic
hydrogen [160]. A particularly useful side effect is the
dependence of the asymmetry, or, equivalently, the radius of
the parametric asymmetry plot, on the pulse duration: the
longer the pulse is, the smaller are the asymmetry and the
radius. This can be exploited to measure the duration of few-
cycle pulses [161]. In contrast to conventional laser pulse
metrology, this approach becomes more sensitive for shorter
pulses. In addition, the method is robust and fast. For a
review, see [162].

Single-shot phase measurement with inherent laser per-
formance monitoring has enabled a new class of experiments
on the phase dependence of the interaction of few-cycle
pulses with matter: phase stabilization is put aside. Rather the
phase of each pulse is measured and the data obtained con-
currently are ‘tagged’ with this phase [163]. Later, the data
can be sorted and the phase dependence of the effect under
investigation can be reconstructed. Phase-tagging has enabled
a number of experiments with low event rate and corre-
spondingly large data acquisition times, see, e.g., [153,
164–167].

5. A classical view of the LES

All theoretical simulations reported so far were based on the
quantum-mechanical SFA or ISFA, which implies that after
its liberation the electron experiences the Coulomb potential
either not at all or at most once (in the sense of quantum-
mechanical perturbation theory). For a completely different
point of view, we will turn to a description where the liberated
electron is treated entirely classically, by solving Newton’s
equation of motion. Hence, both fields—the laser field and the
Coulomb field—are on the same footing all of the time.
Models of this type have been frequently applied, mostly in
the context of nonsequential double ionization where the
trajectories of two electrons have to be followed; for a review,
see, e.g. [168]. The first electron may be injected into the
continuum according to a quantum-mechanical tunneling
formula [169] or the process in its entirety is treated classi-
cally starting from a microcanonical ensemble [170]. The
description to be outlined below differs from most others by
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taking advantage of the fact that for linear polarization the
motion of the liberated electron unfolds in a plane.

We proceed by starting classical trajectories at the exit of
the tunnel [171–173]. At the time t0 when the electron
becomes free, we fix its initial velocity, viz. the transverse
component vy(t0)=v0 and the longitudinal component,
which we set to zero, vx(t0)=0. As just mentioned, we take

advantage of the fact that the classical motion is confined to
the plane defined by the electric field and the initial transverse
velocity, and we follow the electron kinematics in this plane.
That is, we consider the mapping, mediated by the equations
of motion, of initial conditions (t0, v0) onto the plane of final
momenta (px, py) at the end of the laser pulse. Without the
Coulomb field, vy(t) is conserved, and the final longitudinal

Figure 11. (a) Stereo-ATI phase meter: few-cycle laser pulses of horizontal polarization ionize xenon atoms inside a vacuum apparatus. The
photoelectrons emitted to the left and the right are detected time-resolved with microchannel plate (MCP) detectors. (b) For any given
absolute phase (here j=0), the spectra detected on the left (red) and right (black) detector differ in a characteristic way, but always more for
rescattered (E>20 eV) than for direct (E<20 eV) electrons. ISFA calculations of such phase-dependent spectra can be found in
[157, 158]. (c) Asymmetry A(j, E) as a function of absolute phase and photoelectron energy. From spectra as displayed in (b), the asymmetry
A N N N Nleft right left right- +≔ ( ) ( ) is computed for all phases and plotted in false colors. Red (blue) shades indicate that more electrons are
emitted to the left (right). The white sine-like curves indicate the evolution of the asymmetry in the low- and high-energy part of the ATI
plateau. The low- and high-energy interval can be chosen such that A(Elow) and A(Ehigh) have a phase difference of 90°. (d) Therefore, if
A(Elow) and A(Ehigh) are determined for each laser pulse and used as coordinates, a more or less circular plot is produced. The azimuthal angle
θ is identical to the absolute phase j, apart from a constant offset angle. The radius r of the asymmetry plot can be used to determine the pulse
duration.
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momentum outside the laser field will be −A(t0) (we consider
linear polarization). In this way, a horizontal line (t0, v0) of
initial conditions, where t0 is from some interval and
v0=const, is mapped on a horizontal line in the plane of final
momenta, filling the inside of a rectangle as shown in
figure 12 [172]. With the Coulomb field, horizontal lines are
no longer mapped on horizontal lines. Therefore, figure 12
very clearly visualizes the effects of the Coulomb field.

We see that the larger the initial transverse momentum v0
is and the earlier (before a peak of the field) the electron starts,
the smaller is the effect of the Coulomb potential. On the
other hand, electrons that start close to a peak (close to
ωt0=90°) with small transverse momentum are completely
thrown off course by the Coulomb field. The dots scattered
over the plot reflect the fact that in a part of this region the
mapping is chaotic, in the sense of a sensitive dependence on
the initial conditions (see, e.g., [174]). Other electrons from
this region end up with negative energy at the end of the
pulse, i.e., they remain bound [171, 175]. The respective
points were eliminated from figure 12 giving rise to the empty
area around zero momentum. For trajectories with positive
final energy, the most eye-catching effect is that their trans-
verse velocity may even change its sign so that the fourth
quadrant becomes populated. It is these electrons that form
the LES discussed above (this was first observed in [67]). A
structure below px=0.59 a.u. is clearly visible, which cor-
responds to p 0.61 a.u.LES,1 = from equation (9). The next
LES at p 0.37 a.u.LES,2 = is also noticeable. With better
statistics, it becomes visible that the LES corresponds to a
caustic of the afore-mentioned mapping and its structure can
be classified in terms of catastrophe theory [173].

Conceptually, the two approaches—the simple-man pic-
ture and the quantum-mechanical ISFA versus the classical
equations of motion—could hardly be more different. In the
ISFA, in first-order Born approximation according to

equation (15), the wave packet of the liberated electron
interacts with the ion just once while the laser field is taken
care of exactly. Solving, on the other hand, the classical
equation of motion both fields are treated exactly and on the
same footing. Nonetheless, the phenomenology of the effects
produced is the same, and the agreement is even semi-
quantitative. Part of an explanation can be found in the fact
that for pure Coulomb scattering the quantum-mechanical
lowest-order Born approximation happens to yield the exact
scattering cross section, which, moreover, agrees with the
classical result. But, of course, Coulomb scattering on the
background of a laser field is a vastly more complex problem.

6. Conclusions

We have given a highly personal review of the history of the
above-threshold-ionization plateau and its various features.
The allure of the plateau and of intense-laser-atom physics in
general is their basic simplicity. Yet subtle and not so subtle
quantum-mechanical effects are never far below the surface.
No longer an effect of academic interest only, the plateau and
its properties are employed by current methods to determine
the laser intensity and the absolute phase and duration of a
few-cycle pulse. The plateau has also provided novel tools to
extract scattering potentials from atomic and molecular data
and may lend itself to further insightful analysis in the future.
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