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General time-dependent configuration-interaction singles. II. Atomic case
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We present a specialization of the grid-based implementation of the time-dependent configuration-interaction
singles described in the preceding paper [S. Carlström et al., preceding paper, Phys. Rev. A 106, 043104 (2022)]
to the case of spherical symmetry. We describe the intricate time propagator in detail and conclude with a few
example calculations. Among these, of note are high-resolution photoelectron spectra in the vicinity of the Fano
resonances in photoionization of neon and spin-polarized photoelectrons from xenon, in agreement with recent
experiments.
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I. INTRODUCTION

This article describes the specialization of the general
time-dependent configuration-interaction singles (TD-CIS)
presented in the preceding article [1] to the atomic case, taking
advantage of the spherical symmetry of the field-free Hamil-
tonian. Whereas previously the particle orbitals only had two
components, spin-up and spin-down (α, β ≡ ms = ± 1

2 ), re-
spectively, they are now expanded in spherical harmonics as
well (n�m�sms basis) or directly in two-component spinor
spherical harmonics (n� jm j basis) (see Sec. 7.2 of [2]). The
two-component formulation allows us to treat spin-dependent
effects ab initio, an important advance beyond previous
work [3–5]. Since the spin–angular algebra is fully analytic,
the numerics are reduced to coupled one-dimensional radial
problems, which although constituting a more compact basis
than the three-dimensional Cartesian grids used in the general
case, also leads to comparatively more involved expressions.
The spectral properties of the matrix representations of the
various terms of the Hamiltonian also change, which re-
quires additional care when designing the time propagation
scheme.

This article is arranged as follows. In Sec. II the atomic
structure problem is briefly surveyed. Section III, which con-
stitutes the bulk of the paper, describes the details of the time
propagation scheme. Section IV illustrates the implementa-
tion with some example calculations. Section V summarizes
the paper. The same notation and conventions are used as
detailed in Sec. I of [1]. The atomic unit of time is 1 jiffy ≈
24.2 as, as introduced by Harriman [6].
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II. ATOMIC STRUCTURE

In contrast to the general case I, in the atomic case the
Hartree–Fock (HF) problem is solved on the same grid used
to resolve the particle orbitals |k̃〉, |l̃〉, . . .. Furthermore, we
also require that the reference state is a solution to the HF
equations, instead of a general determinant. As a result, the
matrix representation of the f̂ operator is diagonal in the
space spanned by occupied orbitals, which simplifies the
equations of motion (EOMs).

The Hamiltonian we consider is

Ĥ (t ) = ĥi + ĝi j + V̂L;i(t )

= p2
i

2
+ �(� + 1)

2r2
i

+ VC (ri) + VCAP(ri) + 1

2ri j

+
{

F(t ) · ri (length gauge)
A(t ) · pi + 1̂i

A2(t )
2 (velocity gauge),

(1)

where ĥ is the one-body Hamiltonian, ĝ is the two-body
Coulomb electron–electron repulsion interaction [the term
(2rii )−1 is excluded from the summation], and V̂L(t ) is the
time-dependent interaction with an external field. Each term
will be described in more detail below. See Appendix A for a
brief description of the discretization of the radial problem.

A. Relativistic effective core potentials

Although the EOMs [Eqs. (5′′) in [1]] are not spin re-
stricted, they would yield the same result as a one-component
calculation, i.e., there would be no effect due to the spin of
the electrons. To implement spin–orbit coupling (and other
vector-relativistic effects), account for scalar-relativistic ef-
fects, and at the same time reduce the number of electrons
we need to explicitly treat in the calculation, we replace VC

in (1) by a relativistic effective-core potential (RECP), which
models the nucleus and the core electrons according to

V̂RECP(r) = −Q

r
+ Bk

� j exp
(−βk

� j r
2
)
P̂� j,
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where Q is the residual charge, P̂� j is a projector on the spin–
angular symmetry � j, and Bk

� j and βk
� j are numeric coefficients

found by fitting to excited spectra computed using multicon-
figurational Dirac–Fock all-electron (AE) calculations. (For a
thorough introduction to RECPs, see, e.g., the review by Dolg
and Cao [7].) The use of RECPs allows us to conveniently
and accurately introduce the relativistic corrections mentioned
above into a two-component Schrödinger equation, instead of
having to resort to the four-component Dirac equation [8],
which is more demanding computationally and not easily
amenable to a grid formulation [9–11]. In quantum chemistry
applications, methods employing RECPs are considered ab
initio, as they can be systematically improved [12–14]. It
should be noted that RECPs treat some of the relativistic
terms, most notably the electron–electron spin–orbit interac-
tion, only in the mean-field sense. Nonetheless, the errors
introduced by this approximation are generally small com-
pared to the errors introduced by the CIS ansatz [15,16]. In
contrast, previous work considering spin–orbit interaction on
the TD-CIS level [4,17] consists of rotating from the n�m�sms

basis to the n� jm j basis and by introducing the experimental
ionization potentials for the J = 1

2 and J = 3
2 (where J is

the total angular momentum of the residual ion) channels,
respectively.

III. TIME PROPAGATOR

The higher symmetry of the atomic case can be utilized
when designing the propagator, which is more efficient, but
somewhat involved. The chief reason for not using a poly-
nomial approximation to the matrix exponential, such as
fourth-order Runge–Kutta (RK4) or Krylov iterations, is the
spectral range of the Hamiltonian, which in spherical coordi-
nates is dominated by the centrifugal potential

V�(r) = �(� + 1)

2r2
, (2)

the highest eigenvalue of which is on the order of �2
max/r2

min.
This severely limits the largest time step that can be taken by
the propagator. Instead, we opt for a second-order palindromic
Strang splitting [18] (cf. the symmetric Baker–Campbell–
Hausdorff formula) of the propagator

exp

[
T

∫ τ

0
dt M(t )

]
= · · · eτC/2eτB/2eτAeτB/2eτC/2 · · · + O{τ 3([A, B] + [A, C] + [B, C] + · · · )},

where 1
τ

∫ τ

0 dt M(t ) = A + B + C + · · · is the matrix repre-
sentation of the Hamiltonian −iĤ (t ) integrated over the time
step τ and T is the time-ordering operator. This splitting lets
us tailor a propagator for each part of the Hamiltonian which
may have vastly different spectral and spatial properties, e.g.,
the centrifugal potential (2) can trivially be exponentiated ex-
actly, circumventing the issues of a large spectral radius which
is problematic for polynomial approximations. In contrast, a
simple RK4 propagator is used for the Coulomb interaction,
whose spectral radius is rather limited, but which is costly to
evaluate. The use of RK4 makes the propagator only con-
ditionally stable; however, this has not been found to be a
problem in practice. Finally, since the overall splitting is sec-

ond order in time, it is enough to integrate the time-dependent
terms of the Hamiltonian to the same order, for instance, via
evaluation at the center of the time step.

Which terms appear in the splitting depends on the partic-
ular system, but the general structure is

U = eτD/2eτAeτD/2 + O{τ 3[· · · ]},
where A contains the field-free Hamiltonian, D is the dipole
interaction, and eindicates that any possible subsplitting is
applied in reverse [to preserve unitarity to O{τ 3}]. In the most
complicated case, with dipole couplings between the occupied
orbitals (e.g., in neon) and spin–orbit interaction, the full
propagator reads

U = eτDkl /2 eτDk̃/2 eτDkk̃/2 eτA1b/2 eτAso/2eτA2beτAso/2eτA1b/2eτDkk̃/2eτDk̃/2eτDkl /2 + O{τ 3[· · · ]}, (3)

whereas in the nonrelativistic single-active electron (SAE)
case (e.g., hydrogen), the propagator reduces to

U = eτDk̃/2eτA1beτDk̃/2 + O{τ 3[A1b, Dk̃]}.
The various subterms will be enumerated and described in the
following sections.

We note that the above scheme is similar in spirit to those
of Sato et al. [19], Teramura et al. [20], but differs in details.
The latter has higher convergence order than the present work,
but relies on the ϕk matrix functions [21], which can be nu-
merically delicate to implement. Additionally, our scheme is
rather different from earlier atomic TD-CIS implementations
described in the literature: Rohringer et al. [3] used RK4

since they only considered one-dimensional (1D) systems
where the centrifugal potential does not appear; Rohringer and
Santra [4], Greenman et al. [5] instead represent their wave
functions in the basis of the singly excited Slater determinants
(which yields block-dense dipole and Coulomb matrices),
using a second-order differencing propagator. Compared to
these implementations, our scheme can handle comparatively
large time steps.

A. Propagation on a submanifold

When propagating the EOMs [Eqs. (5′′) in [1]], we are
solving a partial differential equation on a submanifold M ⊂
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H , due to the constraint that the particle orbitals must at all
times remain orthogonal to the occupied orbitals; in general,
Ĥ� �∈ M . This means that instead of computing the matrix
exponential U = exp(A), as we would ordinarily do if the
solution was allowed to occupy any part of the Hilbert space
H , we need to compute its projected counterpart

Up = exp(P̂AP̂), P̂ = 1̂ − Q̂, Q̂ = |i〉〈i|.
Normally, for a matrix A with a similarity transform S, we
have

exp(SAS−1) = S exp(A)S−1,

which is most easily proved using the kth term of the Taylor
expansion of the exponential function:

(SAS−1)k

k!
= S

Ak

k!
S−1.

We cannot use this relation in the present case since the
projectors are idempotent,

P̂2 = P̂ ⇒ exp(P̂AP̂) �= P̂ exp(A)P̂,

and making this approximation would reduce convergence of
the time propagator to first order.

Furthermore, since P̂ is spatially dense, any sparsity pattern
of A that we hoped to benefit from seems lost. However, we
can use the fact that the occupied orbitals |i〉 from which the
projectors are constructed are spatially confined to the extent
of the HF reference, together with the splitting:

P̂AP̂ = (1̂ − Q̂)A(1̂ − Q̂) = A + (−Q̂A − AQ̂ + Q̂AQ̂)︸ ︷︷ ︸
def=AQ̂

.

(4)
Since Q̂ is the projector onto the space of occupied orbitals, it
is limited in extent, i.e., it has compact support, which in turn
means that AQ̂ has compact support. This is crucial, because
it means we can precompute the exponential of AQ̂ via exact
diagonalization and we can approximate exp(τA) using any
method of our choosing.

Finally, P̂� projects � onto the submanifold M and con-
versely Q̂� is then the rejection. We thus term AQ̂ the rejector
of A. To illustrate the efficacy of the rejector splitting (4),
we consider the dipole interaction (see Sec. III D below);
in Fig. 1, the sparsity patterns of the dipole interaction D,
and its projectors and rejectors are shown. Since in finite
differences potentials are represented by diagonal matrices,
nonzero blocks of D only have entries on their diagonals.
The other matrices are, as labeled, the sparsity patterns of the
projection Q̂ onto the occupied orbitals, which is nonzero only
for those to particle orbitals that are in the same symmetries
as the two occupied orbitals of the HF reference; the rejector
DQ̂ = −Q̂D − DQ̂ + Q̂DQ̂, which is spatially compact since
it (i) only couples a few particle orbitals and (ii) radially
only encompasses the extents of the HF reference, thereby
not filling the whole matrix block; and the projected dipole
P̂DP̂, which is the operator we wish to approximate the ex-
ponential of, but whose sparsity pattern is unfavorable to any
approximations beyond polynomial methods. In this illustra-
tive example, the HF problem is solved on the radial interval
0–7 bohrs, whereas the dipole is computed on the interval
0–10 bohrs; in a more realistic scenario, the dipole operator

is required for r � 10 bohrs, increasing the numerical utility
of this operator splitting. When approximating exp(−iτ P̂DP̂)
by exp(−iτDQ̂/2)exp(−iτD)exp(−iτDQ̂/2), and varying the
time step τ , the local error is cubic in τ , which leads to a
second-order propagator overall (see Fig. 2).

B. One-body atomic Hamiltonian

The one-body part of the atomic Hamiltonian, labeled A1b

in (3), contains the kinetic energy and one-body potential
energy of the electron

ĥ
def= p2

2
+ �(� + 1)

2r2
+ VC (r) + VCAP(r), (5)

where the complex absorbing potential (CAP) VCAP(r) is usu-
ally taken to be that of Manolopoulos [22]. Since in finite
differences the matrix representation of (5) is a tridiagonal
matrix, we use the Crank–Nicolson method to approximate
the matrix exponential. The orbitally diagonal part of the
direct interaction Ĵii (see the next section), i.e., the Hartree po-
tential, is, although formally a two-body operator, effectively
a one-body potential and as such a diagonal matrix, which we
exponentiate together with ĥ.

Acting with ĥ on a particle orbital |k̃〉 can take us out of
the correct submanifold, as described in the preceding section.
We therefore precompute exp(−iτ ĥQ̂/2), where ĥQ̂ is defined
in (4), and place this on either side of the Crank–Nicolson
propagator for ĥ.

Even though adding a CAP may be seen as a pragmatic
approach to avoid unwanted reflections, they are systemati-
cally improvable to the point that they are formally equivalent
to exterior complex scaling [23–29]. The TD-CIS with the
addition of a CAP can thus still be considered ab initio [5].

C. Coulomb interaction

The Coulomb interaction, labeled A2b in (3), enters the TD-
CIS EOMs [Eqs. (5′′) in [1]] through the Fock operator f̂ =
ĥ + Ĵii − K̂ii which appears on the orbital diagonal, as well as
the configuration-interaction term Ĵlk − K̂lk which couples the
different particle–hole channels. Since the occupied orbitals
remain fixed in the TD-CIS ansatz, both Ĵ and K̂ remain for-
mally time independent. However, whereas Ĵ is only nonlocal
in the spin–angular coordinates (and thus radially diagonal), K̂
is also radially nonlocal, preventing its storage as a structured
matrix. On the other hand, K̂ has radially compact support. To
see this, we rewrite the Coulomb interaction [Eq. (1) in [1]] in
spherical coordinates [see Eq. (5.17.9) of 2]

[ab|cd] =
∑

k

Ck
abcd

∫ ∞

0
dr1P∗

a (r1)
Y k

bd (r1)

r1
Pc(r1),

where Ck
abcd are Clebsch–Gordan coefficients and the kth mul-

tipole of the repulsion potential formed by the orbitals χi and
χ j is given by

Y k
i j (r1)

def= r1

∫ ∞

0
dr2

rk
<

rk+1
>

P∗
i (r2)Pj (r2)

=
∫ r1

0
dr2

( r2

r1

)k
P∗

i (r2)Pj (r2)

+
∫ ∞

r1

dr2

( r1

r2

)k+1
P∗

i (r2)Pj (r2),
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FIG. 1. Sparsity pattern of dipole operator D, in the case of helium in the n� jmj basis (� ∈ {s, p, d}) and linear polarization (which implies
	mj = 0). Each block corresponds to coupling between a pair of particle orbitals, which are labeled by their particles �

m j
j , and their holes

a ⇐⇒ (1s−1/2
1/2 )−1 and b ⇐⇒ (1s1/2

1/2)−1. See the text for discussion.

with Pi(r) and Pj (r) the radial components of the or-
bitals. These potentials are found by solving Poisson’s
problem [30–33], with the mutual charge density ρi j (r) =
P∗

i (r)Pj (r) as the inhomogeneous source term. In the TD-CIS
ansatz, this charge density is formed from one (in the case
of K̂) or two (in the case of Ĵ) occupied orbitals, which
means we only have to solve Poisson’s problem on the radial
extent of the HF reference. However, we then need to add in
a homogeneous contribution as well, which accounts for the
long-range behavior; this is only trivial to do in the spherically
symmetric case and is an important optimization over the gen-

eral case, where instead Poisson’s problem has to be solved
over the entire domain (however, in that case an asymptotic
multipole solution may be used as the initial guess, speeding
up convergence of the solution).

From this argument we see that Y k
i j (r) for the direct inter-

action Ĵ will be formed from two occupied orbitals |i〉 and
| j〉 and will thus be time independent and radially diagonal
(i.e., represented by a diagonal matrix in finite differences);
however, it will extend over the whole computational domain.
In contrast, to compute the exchange interaction K̂ , the mutual
charge density is formed from an occupied orbital |i〉 and the
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FIG. 2. Performance of the Strang splitting of the projected
dipole illustrated in Fig. 1. The blue circles indicate the local
error ‖exp(−iτ P̂DP̂) − exp(−iτDQ̂/2)exp(−iτD)exp(−iτDQ̂/2)‖2

as a function of the time step τ . Here exp(−iτ P̂DP̂) is computed
exactly via diagonalization, exp(−iτD) via Givens rotations (see
Sec. III D below), and exp(−iτDQ̂/2) using RK4. The straight
lines show that the local error indeed is of O{τ 3}, as expected.
Another measure of the accuracy, shown as red diamonds, is
‖Q̂ exp(−iτDQ̂/2)exp(−iτD)exp(−iτDQ̂/2)P̂‖2, the norm of the
rejection of the split-propagator itself, i.e., how much the split
propagator populates ⊥M , i.e., the orthogonal complement of the
submanifold. This measure also behaves as O{τ 3}.

time-dependent particle orbital |l̃〉 which K̂ acts on, which
means the resulting potential is radially nonlocal. The mutual
charge density will have zero trace, and Y k

il̃
(r) for K̂ will decay

as at least r−2. Additionally, it is subsequently applied to an
occupied orbital, which decays as exp(−√

2|εi|r). Thus the
K̂ operator is radially localized to the HF reference. Acting
with Ĵ on the wave function thus amounts to multiplying
with precomputed radially diagonal matrices and acting with
K̂ amounts to solving a radially localized Poisson problem.
These operations are the limiting factors of the time propaga-
tor.

Since the Coulomb interaction is of limited spectral range,
a polynomial approximation to the matrix exponential that
has a fixed number of matrix–vector products per step (such
as RK4) is entirely satisfactory. Maintaining orthogonality of
the particle orbitals with respect to the occupied orbitals is
trivial by projecting out the latter after each RK4 stage. This
procedure is similar to the approach taken by Sato et al. [19].

D. Dipole interaction

The interaction with the external laser field is treated in the
dipole approximation, where the two most common choices
for the interaction operator are

V̂L(t ) =
{

F(t ) · r (length gauge)
A(t ) · p + A2(t )

2 (velocity gauge).

Although the TD-CIS ansatz with frozen-core orbitals is
gauge variant [34–36], we have implemented dipole interac-
tion for both gauges; all results presented in the present work
are however computed in the length gauge.

There are three terms we need to consider: the source–
virtual dipole interaction 〈k|V̂L|k̃〉, the virtual–virtual dipole
interaction 〈k̃|V̂L|k̃〉, and the source–source dipole interaction
〈k|V̂L|l〉 (which may be absent in some systems).

1. Source–virtual dipole interaction

This interaction, labeled Dkk̃ in (3), corresponds to the sub-
EOMs

i∂t c0 = 〈k|V̂L|k̃〉, i∂t |k̃〉 = c0V̂L|k〉 − λk̃i|i〉, (6)

which we call the source–virtual dipole interaction, since the
occupied orbital |k〉 constitutes a source term for the particle
orbital |k̃〉, which in turn is a linear combination of virtual
orbitals. We can rewrite the EOMs (6) in matrix form

i∂t q =
[

0 〈m|
|m〉 0

]
︸ ︷︷ ︸

def=A

q, q
def=

[
c0

|m̃〉
]
, (6′)

where the matrix A is nonzero only in the first column and
row, respectively, and

|m〉 def=

⎡
⎢⎢⎣

P̂V̂L|k〉
P̂V̂L|l〉

...

⎤
⎥⎥⎦, |m̃〉 def=

⎡
⎢⎢⎣

|k̃〉
|l̃〉
...

⎤
⎥⎥⎦.

The projector P̂ in |m〉 ensures orthogonality of the particle
orbitals to the occupied orbitals, after applying the source–
virtual dipole interaction. Since the laser interaction V̂L =
F(t ) · r is time dependent, |m〉 has to be recomputed every
time step. However, the projected polarized source orbitals⎡

⎢⎢⎣
P̂d̂|k〉
P̂d̂|l〉

...

⎤
⎥⎥⎦, d̂ = x̂, ŷ, ẑ,

can be precomputed and linearly combined with the time-
dependent field components Fd (t ).

Having formed the matrix EOM (6′), we can solve it ex-
actly, if we can form the singular-value decomposition (SVD)
of A = SÃS† (this choice is possible if A is Hermitian):

exp(μA)q = {S[exp(μÃ) − 1̂]S† + 1̂}q. (7)

For the A we have in TD-CIS, the SVD that decomposes A is
given by

Ã
def=

[
s 0
0 −s

]
, s

def= |〈m|m〉|

⇒ exp(μÃ) − 1̂ ≡
[

eμs − 1 0
0 e−μs − 1

]

and the left singular vectors are given by

S def= 1√
2s

[
s −s

|m〉 |m〉
]
.
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One time step with the source–virtual dipole interaction can
thus be accomplished by[

c0

|m̃〉
]

←
[

c0

|m̃〉
]

+ 1

2s2

[
s −s

|m〉 |m〉
][

eμs − 1 0
0 e−μs − 1

][
c0s + 〈m|m̃〉

−c0s + 〈m|m̃〉
]
.

(7′)

The advantage of this formulation is that the complexity of the
matrix exponential reduces to linear in the size of the compact
HF support. We note that although our EOMs [Eqs. (5′′) in [1]]
are non-Hermitian due to the presence of a CAP, we still have
that |m〉† ≡ 〈m|, since |m〉 is formed as a linear combination of
projected polarized source orbitals and thus of the same radial
extent as the HF reference, where the CAP is identically zero.

2. Virtual–virtual dipole interaction

This interaction, labeled Dk̃ in (3), is almost the same as in
the SAE case and therefore it is implemented analogously (see
Appendix B and, e.g., [37–39]), with added complication in
those partial waves which share spin–angular quantum num-
bers with the occupied orbitals of the HF reference; for those
we employ the ideas detailed in Sec. III A. Specifically, for
the propagation of the rejector of the dipole, DQ̂, we use RK4
to approximate the matrix exponential. For systems treated
in the n� jm j basis, we temporarily change to the n�m�sms

basis via a unitary transformation (built from Clebsch–Gordan
coefficients), since the dipole interaction is sparser in that
representation.

3. Source–source dipole interaction and spin–orbit interaction

For systems where there are dipole moments between
the occupied orbitals (e.g., neon), the dipole interaction can
trigger transitions between the channels; we call this source–
source dipole interaction and it is labeled Dkl in (3). For
each pair of orbitals |k〉 and |l〉 which have a nonzero dipole
moment, the corresponding pair of particle orbitals |k̃〉 and |l̃〉
is mixed using a Givens rotation (cf. Appendix B) where the

rotation angle is a = F(t ) · dkl and the dipole moment dkl
def=

〈χk|r|χl〉 is precomputed. Exactly the same approach is taken
in the case of spin–orbit interaction between occupied orbitals
[labeled Aso in (3), e.g., 4p and 5p in xenon], with the only
difference that the spin–orbit interaction is time independent.

4. General polarization

The Cartesian operators x, y, and z commute, however in
a truncated spherical basis only approximately so, e.g., the
commutator [z, x] is nonzero only in the highest considered
� channel. We can thus safely use the splitting exp(μF · r) =
exp(μFxx) exp(μFyy) exp(μFzz), as long as the population in
the highest � channel is negligible. We stay in the laboratory
frame, i.e., we do not rotate the wave function as done by
Muller [37], Patchkovskii and Muller [39], since although
that would potentially be more efficient, it would require the
rotation of the occupied orbitals |i〉 and | j〉 (and hence the
potentials Ĵi j and K̂i j), in addition to the particle orbitals
|ĩ〉 and | j̃〉 (which are the analogues of the wave functions

TABLE I. Radial grid parameters used for the example calcula-
tions.

Parameter H He Ne AE Ne RECP Xe RECP

ρmin (bohr) 0.3 0.15 0.1 0.125 3/26
α 0.1 0.1 0.1 0.3 0.3

in the SAE case). Although this is technically possible, the
numerical implementation is nontrivial and error prone.

IV. EXAMPLE CALCULATIONS

Unless otherwise specified, the calculations below use
truncated Gaussian pulse envelopes [39] for the vector poten-
tial,

A(t ) = A0 exp[−α f (t )] sin(ωt + φ),

f (t )
def=

⎧⎪⎨
⎪⎩

|t |2 for |t | � toff∣∣toff + 2tmo
π

tan
(

π
2

|t |−toff

tmo

)∣∣2
for toff < |t | � tmax

+∞ otherwise,
(8)

where the helper function f (t ) ensures a smooth turn-off of

the field starting at toff and finishing at tmax (tmo
def= tmax − toff).

The parameter α is determined such that the full width at half
maximum T of the intensity envelope is the desired pulse

duration; since F(t )
def= −∂t A(t ) the map from T to α is in

general dependent on the carrier angular frequency ω, but
in the long-pulse limit α → 2 ln 2/T 2. Typically, we choose
toff = 4σ and tmax = 6σ , where the standard deviation of the
intensity envelope is given by σ = T/2

√
2 ln 2. The main

benefit of this pulse shape is the suppression of side lobes
in the spectrum (which can lead to, e.g., overestimation of
one-photon cross sections) while still maintaining a minimal
time–bandwidth product. An example spectrum for a two-
color field with the envelope (8) is shown in Fig. 6(b).

For the example calculations presented below, the radial
grid employed is smoothly approaching a uniform grid ac-
cording to the formula [40]

r j = r j−1 + ρmin + (1 − e−αr j−1 )(ρmax − ρmin), (9)

with the first grid point at r1 = ρmin/2. This yields an approx-
imately log–lin behavior with a dense grid close to the origin
where the bound orbitals exhibit a very oscillatory behavior.
The asymptotic grid spacing should be chosen to fulfill the
Nyquist sampling theorem for the highest momentum desired
ρmax � (2kmax)−1 = (8Wk max)−1/2, where Wk max = 4 Ha, un-
less otherwise specified. The specific grid parameters are
given in Table I.

The number of partial waves scales quadratically with the
maximum orbital angular momentum �max and linearly with
number of channels nc,

np = 2(�max + 1)2nc, (10)

where the factor of 2 comes from the spin of the excited
electron. In the case of linear polarization along z, where
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bohr

bohr

bohr

bohr

FIG. 3. Static polarizability of (a) hydrogen, (b) helium, and (c) neon, as a function of static field strength F , for (a) tmax = 400 fs and
τ = 0.1 jiffies, (b) tmax = 400 fs and τ = 0.1 jiffies, and (c) tmax = 40 fs and τ = 0.05 jiffies. Also plotted are expansions in powers of F 2

with coefficients taken from theory (hydrogen) or experiment (helium and neon). For hydrogen, adding more terms to the expansion in F 2

approaches the results computed by SAE and TD-CIS. Also shown are exact calculations using the method of Kolosov [43], with which the
SAE and TD-CIS results are in excellent agreement. For helium and neon, we compare with experimental results (red dashed line) [44] and
perturbation theory results (gray dash-dotted line). The static polarizability of neon predicted by TD-CIS is slightly smaller (in magnitude)
than the experimental result; the deviation can be explained by the lack of correlation at the CIS level.

	m� = 0 (	mj = 0), this reduces to

np < κ (�max + 1)nc, κ =
{

1, n�m�sms

2, n� jm j,
(11)

where we can only give an upper bound since �min depends on
the ionization channel (i.e., � � |m�|).

A. Static polarizability

The static polarizability is equivalent to the Stark shift,
i.e., how much the ground state moves when applying a static
electric field of amplitude F :

E (I ) = E0 − α(0)

2
F 2 − β(0)

4
F 4 − γ (0)

6
F 6

− δ(0)

8
F 8 − · · · .

For hydrogen, the first few values are [41]

α(0) = 9
2 , β(0) = 3555

16 ,

γ (0) = 2512779×6
512 , δ(0) = 13012777803

2048 .

We compute the static polarizability in a dynamic fash-
ion (see Sec. 6.1 of [42]) by applying a static field over a
length of time (i.e., sudden approximation), starting from an

initial state �i that is a linear combination of a few low-lying
states

|�i〉 = cn|n〉.
At each time step, we compute the overlap of the wave func-
tion with the initial state

C(t ) = 〈�i|�(t )〉 = 〈�i|T exp

[
−i

∫ t

0
dτ Ĥ (τ )

]
|�i〉

= e−iEmt |〈m|�i〉|2,
where in the last step we have used the fact that the field
is static, the Hamiltonian is time independent, and hence we
can trivially rewrite the propagator in spectral form using the
eigenstates |m〉 of the full Hamiltonian. From this we see that,
as long as 〈m|�i〉 �= 0, the correlation trace C(t ) will contain
Fourier components at −Em; for moderate field strengths, the
field-free ground state is a large component of the ground state
of the full Hamiltonian and we choose simply |�i〉 = |�0〉. By
repeating the calculation for different field strengths F , we can
thus map 	Em(F ), which is shown for hydrogen, helium, and
neon in Fig. 3.

B. Dynamic polarizability

The polarizability of a system relates the induced polariza-
tion to the moments of the electric field

Pk (ω0; t ) = α(ω0)F k (t ) + βi j
k (ω0)F i(t )F j (t ) + · · · ,
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cw, CIS

cw, CIS
cw, LRCCSD

cw, CIS
cw, LRCCSD

FIG. 4. (a) Dynamic polarizability of the hydrogen ground state close to the adiabatic static-field limit. The number of cycles Nc = 2 and
�max = d . (b) Dynamic polarizability of the hydrogen ground state in the vicinity of the lowest resonances. The number of cycles Nc = 10 and
�max = f. (c) Dynamic polarization of the 1s2s 3S excited state of helium. The vertical lines indicate the positions of the CIS excited states.
The first resonance above 1 eV is the transition to 1s 2p 3P1,2. The number of cycles Nc = 4 and �max = g. (d) Neon ground state. The number
of cycles Nc = 4 and �max = g. The first resonance around 18 eV is the transition to 1s22s22p5(2P3/2)3s, which experimentally is found around
16 eV [46,47]; the discrepancy is due to the lack of correlation at the CIS level.

where ω0 is the fundamental frequency of the electric field
F(t ), α is the (dynamic) polarizability, and β is the hyperpo-
larizability tensor. To first order, we can compute α by driving
the system with a linearly polarized, nearly monochromatic
pulse and dividing the Fourier transform of the induced dipole
moment z(t ) at the driving frequency by the amplitude of the
driving field:

α(ω0) = Ẑ (ω0)

F̂ (ω0)
.

We instead use the more numerically stable Mukamel expres-
sion [cf., e.g., Eq. (4.85) of [45] for the closely related medium

absorption]

〈α〉(ω0)
def=

∫
dω′F̂ ∗

ω0
(ω′)Ẑω0 (ω′)∫

dω′F̂ ∗
ω0

(ω′)F̂ω0 (ω′)
,

which can be thought of as a weighted average, since the
Fourier transform of the driving field F̂ω0 (ω′) is peaked around
ω′ = ω0. For ω0 → 0, the dynamic polarizabilities approach
the static ones discussed in the preceding section.

Figure 4 presents dynamic polarizabilities for the ground
state of hydrogen, the triplet ground state of helium, and
the ground state of neon. In the vicinity of excited states
accessible via one-photon absorption from the initial state, the
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polarizabilities exhibit large resonances. For comparison, we
compute the dynamic polarizability of state i for the case of
a continuous wave (cw), using the sum-of-states formula that
involves the field-free energy differences and dipole moments
for excited states:

αi;z(ω) = 2
∑∫

k �=i
|〈i|z|k〉|2 Eki

E2
ki − ω2

, Eki
def= Ek − Ei. (12)

Additionally, for He 3S and Ne 1S, we compare with linear-
response coupled-cluster singles and doubles (LRCCSD)
calculations. For He LRCCSD is essentially exact, up to the
quality of the basis set employed, in this case aug-cc-pV6Z
augmented with Rydberg-like Kaufmann basis functions with
n � 8 [48]. For Ne the aug-cc-pV6Z basis set was used. Since
these reference calculations include more correlation than do
the CIS results, the peaks appear at slightly different energies.
To enable a more direct comparison, the curves have been
shifted to approximately align the first resonance; for He the
shift is 0.28 eV and for Ne it is 0.9 eV.

For all the dynamic polarizability calculations presented
in Fig. 4, the truncated Gaussian (8) pulse was used, with
a standard deviation σ = 2πNcω

−1, where ω is the driv-
ing pulse energy and Nc the number of cycles. In addition,
toff = 3σ , tmax = 5σ , and the intensity was I = 102 W/cm2.
The dynamic polarizabilities for finite pulses are in excellent
agreement with the perturbation theory predictions (12).

C. Laser-induced resonant hole coupling

In multichannel ionization, where there is coupling be-
tween the channels, it is vital that this coupling is properly
accounted for when solving the tSURFF equations of motion
[Eq. (10) in [1]]. An important example is the dipole coupling
between the holes in the residual ion, which has the ability
to move population from one channel to another, long after
the photoelectron has left the vicinity of the ion. If the photo-
electron wave packet has already escaped the computational
domain through the matching sphere at Rs, this effect must be
accounted for through Eq. (10) in [1]; otherwise there may be
information missing from an ion-state resolved spectrum. An
analogous problem was studied for 1D neon by You et al. [49].

As a simple illustration of this mechanism, we consider the
ionization scheme illustrated in Fig. 5, where two pulses with
photon energies � > ω are used. We label the photoelectron
peaks according to the ionization pathways that led to them,
e.g., �2

p corresponds to absorption of two photons of energy
�, leaving the ion in state 2p−1, whereas �pωs corresponds
to ionization into 2p−1 with one photon of energy � and then
channel coupling into 2s−1 via one photon of energy ω (the
label ordering indicates that � in this case arrives before ω).
In the complementary energy-sharing diagram (cf., e.g., [50]),
the neutral atom is at zero energy, i.e., the origin of the
coordinate system. Diagonal lines mark isolines of constant
total energy of the system. Purely vertical arrows indicate
absorption of a photon by the photoelectron and, similarly,
purely horizontal arrows indicate absorption of a photon by
the ion. Ionization requires imparting energy on both the
photoelectron and the ion, which is why the corresponding
arrows are diagonal. We have chosen ω = 	Ip, which is why
the photoelectron �pωs (diagonal, followed by a horizontal

(a)

(b)

FIG. 5. Multichannel, multiphoton ionization of neon; in the CIS
approximation, the 2p electron has an ionization potential of ap-
proximately 23 eV and the 2s electron approximately 53 eV. (a)
The sketch illustrates weak-field ionization of neon into these two
channels using a pump photon of energy � and a probe photon of
energy �. The horizontal thin lines indicate where we expect to
find photoelectron peaks, after absorbing various combinations of �

and ω. (b) Same process in an energy-sharing diagram, where the
abscissa shows energy of the ion and the ordinate the kinetic energy
of the photoelectron.

arrow) will appear at the same kinetic energy as �p and close
to ω3

s .
Figure 6 shows the corresponding spectrum, resolved on

the final ion state and kinetic energy of the photoelectron.
The probe pulse with photon energy ω is delayed enough with
respect to the pump pulse � such that any electron ejecta due
to the latter has had time to leave the computational domain
entirely. The spectrum is computed both including the hole
couplings and neglecting them, the most obvious effect of
which is the disappearance of the peak �pωs at approximately
40 eV in the 2s−1 channel. To confirm that this peak arises
mainly due to the proposed ionization pathway, i.e., �pωs,
and not the nearby possible pathways ω2

pωs and ω3
s (which

are both third order in terms of ω), we repeat the calculation
including the hole coupling, for a range of intensities and
observe the peak magnitude. Since the magnitude of this peak
varies linearly with the probe pulse intensity, we conclude that
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FIG. 6. Ion-resolved spectra for neon. The pump pulse has an energy of � = 2.3 Ha = 62.6 eV and an intensity of 3.51 × 1010 W/cm2.
The probe pulse has an energy matching the difference in ionization potential, i.e., ω ≈ 29.4 eV and an intensity of 1010 W/cm2. Both pulses
have a duration of 1 fs (FWHM) and they are separated by approximately 5 fs.

it is due to absorption of one probe photon, and the pathway
�pωs is the most likely one.

D. Spin–orbit-split Fano resonances in neon

To illustrate the power of iSURF [51] in resolving fine
spectral details, we consider the ionization of neon using a
broadband attosecond pulse and study the autoionization due
to the Rydberg series 2s2p6(2S)np 1P◦

1 that is embedded in the
2s22p5(2P◦

J )ks, d 1P◦
1 continuum (see Table II for all possible

pathways accessible from the ground state, through absorption
of one to three photons). The ionization is driven by a 100-

TABLE II. Ionization channels accessible from the ground state
of neon 1s2 2s2 2p6 1S, through the absorption of at least q photons.
The triplet terms are inaccessible in LS coupling, but spin–orbit
interaction breaks this selection rule.

Channel � q Terms

2s22p5(2P◦
J )k� s 1 1P◦, 3P◦

2s22p5(2P◦
J )k� p 2 1S, 1P, 1D, 3S, 3P, 3D

2s22p5(2P◦
J )k� d 1 1P◦, 1D◦, 1F ◦, 3P◦, 3D◦, 3F ◦

2s22p5(2P◦
J )k� f 2 1D, 1F, 1G, 3D, 3F, 3G

2s2p6(2S)n� s 2 1S, 3S
2s2p6(2S)n� p 1 1P◦, 3P◦

2s2p6(2S)n� d 2 1D, 3D
2s2p6(2S)n� f 3 1F ◦, 3F ◦

as pulse of 2 TW/cm2 centered at h̄ω = 1.124 Ha (slightly
above the 2p−1 threshold, but far below the 2s−1 threshold),
the short pulse duration corresponds to an energy bandwidth
of approximately 11 eV. We compare spectra from AE and
RECP calculations, where the RECP has been generated by
Nicklass et al. [52].

Due to the spin–orbit interaction, the two allowed values
of total angular momentum for the intermediate term are
J = 3

2 , 1
2 , which leads to a splitting of the autoionization

resonances by approximately 	Eso = 0.1 eV (see Table III).
The observed discrepancy between the orbital energies of the
AE calculation and the HF limit values reported by Froese
Fischer [30] is mostly due to the radial grid employed (9),
which is not dense enough close to the origin to accurately
represent the 1s orbital. This is also reflected in the total
energy. However, since the 1s orbital is the same in the initial
and final states, this error exactly cancels. The RECP results
also differ from the reference energies for the same reason;
the 1s orbital is represented using the RECP. We note that our
spin–orbit splitting (4.92 mHa ≈ 0.134 eV) is slightly closer
to the experimental value of 0.097 eV than what we are able
to achieve with the aug-cc-pVQZ basis set at the CIS level.
Our splitting is also close to the values computed using rel-
ativistic CIS (RCIS)[8], even if the absolute orbital energies
are slightly shifted.

An example photoelectron spectrum, calculated at var-
ious levels of theory, is illustrated in Fig. 7. The 	Eso

splitting of the lines is clearly resolved; the corresponding
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TABLE III. Energies (in hartrees) of the occupied orbitals of the neon ground state, in the HF (Dirac–Focka) approximation, for
nonrelativistic all-electron, scalar relativistic effective-core potential (SRECP), and RECP calculations. In all cases, the radial grid extends
to rmax = 400 bohrs, with a nonuniform spacing of grid points following (9).

Orbital AEb AEc AEa RECPd SRECPc RECPc

1s −32.7724455 −31.5391 −32.817475
2s −1.93039095 −1.9296 −1.935847 −1.931353 −1.9497 −1.9497
2p1/2 −0.85040965 −0.850289 −0.852829 −0.855553 −0.845115 −0.8484019
2p3/2 −0.85040965 −0.850289 −0.848267 −0.848056 −0.845115 −0.8434788
	Eso 0 0 4.563 ×10−3 7.497 ×10−3 0 4.9231 ×10−3

Total −128.54710 −126.283 −128.691990 −34.706149 −34.6807 −34.6807

aDirac–Fock values obtained from RCIS [8].
bHF limit [30].
cThis work.
dGenerated from the RECP by Nicklass et al. [52] using DIRAC19 [53] with a decontracted aug-cc-pVQZ basis set.

quantum beat period is TQB = 2π/	Eso ∼ 43 fs. A normal
photoelectron spectrum calculation using tSURFF only would
necessitate postpropagation of the wave function, after the
ionizing electric field has turned off, by at least TQB; in prac-

tice, postpropagation on much longer timescales is required.
In contrast, using iSURF we can compute the spectrum con-
verged to infinite time directly after the end of the pulse,
and for the ultrashort pulse considered here, it is hardly a

(a)

(b)

FIG. 7. Photoionization spectrum of neon at the magic angle θ = arctan
√

2 with respect to the polarization direction, in the vicinity of
the Fano resonances converging to the 2s−1 threshold, computed using various levels of theory: (a) nonrelativistic AE (1s frozen, only 2s, p
allowed to ionize) and (b) a relativistic effective core potential as a blue solid line and finally its scalar counterpart as a red dash-dotted line.
The panels have been aligned to the 2s−1 threshold (see the text for details).
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problem to keep the whole wave function in the box, which
enables us to use the iSURF method with Coulomb asymp-
totics (iSURFC), which yields essentially the exact spectrum,
within our ansatz [Eq. (2) in [1]].

The large resonances are due to the intermediate states
2s2p6(2S)np 1P◦

1 which decay into 2s22p5(2P◦
J )ks, d 1P◦

1 . The
precise location of these resonances differ between the AE
and RECP calculations, due to the difference in calculated
orbital energies (as seen in Table III); the experimental value
for the 3p resonance is approximately 24 eV [47,54]. The
center of mass of the resonance lines agree between the scalar
RECP and the RECP, since the former is derived from the
latter by averaging the spin–orbit part of the potential. The
splitting of the lines are approximately 0.1 eV, in agreement
with the spin–orbit splitting of the ion ground state. The J = 3

2
lines appears at the higher kinetic energy of the photoelectron,
since the associated ionization potential is lower. Its strengths
are approximately double that of the J = 1

2 line, due to the
double number of available channels (four vs two). The AE
results appear consistently ∼0.69 eV below the RECP results
throughout the Rydberg series, and the energy axis of Fig. 7(a)
has been shifted to reflect this. The location of the 2s−1

threshold has been computed in Koopman’s approximation,
i.e., as the difference of the 2p and 2s orbital energies; the
experimental value is 26.9 eV [55] and the large discrepancy
between theory and experiment is due to the lack of relaxation
of the remaining electrons at the CIS level.

Interspersed between the large resonances are two addi-
tional series, one broader (corresponding to shorter autoion-
izing lifetimes) and the other narrower (corresponding to
longer lifetimes). These result from the 2s2p6(2S)ns 1S and
2s2p6(2S)nd 1D series, respectively, which requires two pho-
tons to reach. The same symmetries are found in the direct
channel 2s22p5(2P◦

J )k�, for � = p, f , which also require two
photons, which explains why these peaks are comparatively
weaker. Although the 2s2p6(2S)ns series is unaffected by
spin–orbit interaction, the autoionization peaks are split due
to the splitting of the intermediate state 2s2p6(2S)n′ p.

E. Spin-polarized photoelectrons in strong fields

As a final example of the accuracy and power of the
TD-CIS method, we try to reproduce a recent experiment by
Trabert et al. [56], where spin-polarized photoelectrons were
produced by ionizing xenon using intense circularly polar-
ized light. In accordance with the predictions by Barth and
Smirnova [57], a strong connection between the final ion state
and the photoelectron spin is observed, leading to high spin
polarization of the above-threshold ionization (ATI) peaks.
Additionally, the spin polarization varies with the ATI peak
order, since the tunneling conditions leading to a certain peak
favor the co- and counterrotating spatial orbitals differently.

The radial grid of Eq. (9) used when solving the HF
problem consists of 40 points with the parameters given in Ta-
ble I, and Wk max = 1 Ha ⇒ ρmax = 0.354 bohr gives IJ=3/2

p =
0.446 Ha and IJ=1/2

p = 0.501 Ha. This results in a spin–orbit
splitting of 	Eso = 54.5 mHa = 1.48 eV, which is slightly
larger than the experimental value 	E expt

so ∼ 1.3 eV. The time
propagation is performed on a larger grid of 217 points, where
the spacing after the 40th point is constant at ρ = 0.341 bohr,

extending to rmax � 70 bohr. The t+iSURF matching radius
is at Rs = 41.86 bohrs. Restricting excitation and ionization
to only occur from the 5p electrons (i.e., six channels) and
including all orbital angular momenta up to �max = 15 results
in 3072 partial waves [see Eq. (10)].

The ionizing field is similar to the one used for the exper-
iment: a driving wavelength of λ = 395 nm, corresponding
to a pulse energy of h̄ω = 3.14 eV, an intensity of I =
60 TW/cm2, and (right-handed) circular polarization. The
plane of polarization is chosen to be the x–y plane such that
the spin polarization along z is nonzero. The pulse duration
was however chosen as T = 4 fs instead of the 40 fs of the
experiment, since converging the spin polarization for longer
pulse durations becomes prohibitively expensive; longer pulse
durations necessitate larger orbital angular momenta �max.
Additionally, a pulse duration of T = 40 fs would yield a
pulse bandwidth narrower than the typical error in transition
energies due to the CIS ansatz. A frequency scan would be re-
quired for comparison with the experiment. When the energy
errors are within the bandwidth of the shorter pulse, the phys-
ical effect can robustly be reproduced, without a parameter
scan.

Finally, the photoelectron spectrum was resolved on a
momentum grid, with 200 points linearly spaced in energy
from 0.01 to 15 eV, 20 points along θ ∈ [0, π ] and 41 points
along φ ∈ [0, 2π ]. Volkov scattering states (i.e., t+iSURFV)
was employed, since the whole wave function could not be
kept within the computational box. The results are shown in
Fig. 8, where the individual spectra for spin-up and spin-down
electrons (angularly integrated), respectively, as well as the
energy-resolved spin polarization, are computed as

S[%] = 100
Pα − Pβ

Pα + Pβ

.

Also shown are the experimental results by Trabert et al. [56],
with which the theoretical spin polarization seems to be in
satisfactory agreement.

V. CONCLUSION

We have described an efficient propagator for the time-
dependent configuration-interaction singles ansatz specialized
to the case of spherical symmetry and demonstrated its cor-
rectness with some simple examples as well as its ability to
compute fine spectral features such as the spin–orbit split-
ting of the Fano lines in photoionization of neon. We have
illustrated its capability to ab initio faithfully reproduce some
of the latest experimental results pertaining to the production
of spin-polarized photoelectrons in strong-field processes, an
exciting area of research that is only going to grow in the near
future.
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(a)

(b)

FIG. 8. Spin polarization of photoelectrons emitted during ionization of xenon using a circularly polarized field of I = 60 TW/cm2 of
λ = 395 nm. The ringing at low energies (Wk < 1 eV) is an artifact, due to the combination of a small computational box and a Volkov
continuum [51]. Here Rs ≈ 42 bohrs.
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APPENDIX A: QUASIMATRICES

As stated in the Introduction, the spin–angular degrees
of freedom are treated analytically using standard angular
momentum algebra. The radial degrees of freedom are de-
scribed in the language of quasimatrices [58], which are
objects where the first dimension is formally continuous on
the interval [a, b] and the second dimension discrete. Using
notation reminiscent of that of Dirac, a quasimatrix can be
written as

B = [|1} |2} · · · |n}],
where the columns |i} are functions on the interval [a, b], usu-
ally chosen to constitute a complete set on this interval in the

limit n → ∞. Any function may thus be expanded as | f } =
Bf , where f is the column vector of expansion coefficients.
Similarly, the one-dimensional time-independent Schrödinger
equation attains the familiar form of a generalized eigenvalue
equation

Ĥ |�} = E |�}
⇒ B†ĤBc = B†EBc ⇐⇒ Hc = ESc,

where the matrix representation of the Hamiltonian is given
by Hi j = {i|Ĥ | j} and the overlap matrix Si j = {i| j}. In the
case Si j = δi j , we recover the standard eigenvalue problem.
The dual vectors {i|, and hence the dual basis B†, are taken
to be the complex conjugates of |i} and B, respectively. In
non-Hermitian quantum mechanics, where the left and right
vectors in general do not coincide [29], this is strictly speaking
an approximation.
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The advantage of working with quasimatrices, instead of
the matrix representations of the operators directly, is that it
becomes easier to integrate different basis sets into the same
code base; to solve the HF problem, only the following oper-
ations need to be implemented: basis function overlap {i| j},
scalar functions (e.g., potentials) {i|V̂ | j}, derivatives {i|∂ (n)| j}
(for n = 1, 2), and mutual densities {k|i}| j} [corresponding to
the function product h(x) = f (x)g(x)].

The HF solver underpinning this TD-CIS implementation
has been implemented using quasimatrices [59] and thus sup-
ports finite differences of various kinds [40,60], as well as
the finite-element discrete-variable representation [61] and
B splines [62]. However, the time propagator component
presently requires diagonal overlap matrices Si j ∼ δi j , diag-
onal potential matrices, and tridiagonal derivative matrices,
for efficiency. An avenue of future improvement could be
the implementation of compact finite differences [37,39,63]
to increase the spatial accuracy and potentially lowering the
number of radial grid points required.

APPENDIX B: GIVENS ROTATIONS

A common theme in the dipole propagators described in
Sec. III D is the exponentiation of simple 2 × 2 systems,
which can be computed using Givens rotations

G(s, c)
def=

[
c s

−s∗ c

]
.

As an example, the complex-symmetric system

A = −i

[
0 a
a 0

]

can be exactly exponentiated as exp(A) = G(cos a,−i sin a),
but we instead opt for the Crank–Nicolson approximation [37]

exp(A) ≈ 1

1 + b2

[
1 − b2 −2ib
−2ib 1 − b2

]
≡ G(1 − b2,−2ib)

1 + b2

(b
def= a

2 ), which is quicker to compute than the trigonometric
functions while still being accurate enough for the small rota-
tion angles a considered.
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