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Abstract

Tunnel ionization of noble gas atoms driven by a strong circularly polarized laser field in combination
with a counter-rotating second harmonic generates spin-polarized electrons correlated to the spin-
polarized ionic core. Crucially, such two-color field can bring the spin-polarized electrons back to the
parent ion, enabling the scattering of the spin-polarized electron on the spin-polarized parent ion.
Here we show how one can control the degree of spin polarization as a function of electron energy and
recollision time by tuning the laser parameters, such as the relative intensities of the counter-rotating
fields. The attosecond precision of the control over the degree of spin polarization opens the door for
attosecond control and spectroscopy of spin-resolved dynamics.

1. Introduction

Electron spin governs the behavior of matter, arranging the electronic shells of the elements in the periodic table
through the Pauli exclusion principle [1], in particular giving rise to magnetism [2]. Not surprisingly, the
generation of spin-polarized electrons [3] has been an important research topic for many decades. One well-
established method [4], suggested by Fano, relies on single-photon ionization of atoms, with the photon energy
tuned to the Cooper minimum in photoionization. This scheme [4] has been extended to the case of few-photon
ionization in the perturbative light-atom interaction regime in [5-7], with special attention paid to the role of
intermediate resonances.

The study of spin polarization during strong-field ionization in the highly non-perturbative regime of laser-
atom interaction [8—10] demonstrated that careful tuning of the laser photon energy in resonance with a specific
intermediate state, or into the Cooper minimum, becomes completely unnecessary for sufficiently high laser
intensities. In intense circularly polarized laser fields, spin-polarized electrons are generated almost by default, as
long as there is sufficient spin-orbit splitting in the ionic ground state and the electron is removed from an orbital
with angular momentum I > 1.

This effect results from the interplay of several factors. The first is the unusual propensity rule in strong-field
ionization [8]: electrons that counter-rotate with the field ionize more easily than the co-rotating electrons [11].
This means different ionization rates for p_ (I, = m = —1)and p, (I, = m = +1)electrons in noble gases
[11-16] and diatomic molecules [17] and a preference for the orientation of the orbital angular momentum in
the created ion. The second is the spin-orbit interaction (and splitting) in the ionic ground state. It couples
angular-momentum sensitivity of strong-field ionization to the spin, and it also ensures that the continuum
electrons correlated to the different final ionic states can be distinguished. The third is the correlation between
the spin of the continuum electron and the spin of the hole left in the parent atom. For example, if the ion of a
noble gas atom such as xenon is created in the 2P, , state, the spin of the hole must be anti-parallel to its angular
momentum. Both are equal to the initial values for the liberated electron. Hence, if the liberated electron had its
original I, = m = —1 (which is preferred), the hole will have L, = —1, its spin must then be +1/2, and hence
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the spin of the liberated electron will have the positive projection on the quantization axis. The case of [, = +1
is, of course, also possible, but less likely.

Strictly speaking, the correlation between the continuum electron and the hole, i.e. the state of the ion, is
beyond classical: the generated wavefunction describes the entangled electron-hole state. Even for a given ionic
state, e.g. 2P| /5, the ion can be left with the spin of the hole both parallel and anti-parallel to the quantization
axis, yielding |%,,) = all., T ) + blle> ln ). Here a, bare the complex amplitudes defining the phase between
the different components of the entangled electron—ion wavefunction. However, the calculation of the spin-
polarized currents correlated to different final states of the ion shows that this phase drops out from the result
[8], unless transitions in the ion are induced. The quantum aspect of electron—ion correlation will manifest,
however, in the case of spin-changing and/or inelastic recollisions, which will leave the ion in the same final state
after the recollision but will have different intermediate spin-polarized electron—ion states before it. It will also
matter for radiative electron—hole recombination—the process responsible for high harmonic generation—
which will bring the two parts of the full wavefunction to the same final state. The quantum nature of electron—
ion correlation also manifests in the anti-symmetrization of the full wavefunction, which affects exchange
contribution to re-scattering and significantly impacts such processes as recollision-driven non-sequential
double ionization [18].

The possibility of inducing recollision of spin-polarized electrons with the parent ion can open new
directions in attosecond spectroscopy [9, 10]. A numerical analysis indicating the possibility of producing
electron—ion recollision with spin-polarized electrons using elliptically polarized single-color laser fields was
presented in [10]. Not surprisingly, the degree of spin polarization is higher for higher ellipticity of the ionizing
field. The flip side of the coin, however, is that high ellipticity of the ionizing field reduces the chance of electron
return to the parent ion. In this context, the use of an intense circularly polarized laser field in combination with
its counter-rotating second harmonic, known as a bi-circular field, constitutes a powerful tool for introducing
the spin degree of freedom into attosecond science, due to the opportunity to combine circular polarization with
efficient recollision offered by these fields [9, 19-23, 44, 45]. The application of bi-circular fields can lead to the
production of ultrashort circularly and elliptically polarized laser pulses in the XUV domain [22-28]. Their
chiral nature offers unique possibilities for probing molecular chirality [29] or symmetry breaking [30] at their
natural time scales via high harmonic generation spectroscopy.

Recent theoretical work [9] has shown that bi-circular fields can produce spin-polarized electrons. An
analysis of ATI spectra of xenon atoms revealed that both direct and re-scattered electrons are spin-polarized,
with polarization changing as a function of the final electron momentum. Several key questions, however,
remained unanswered. Why does spin polarization change for different final electron momenta in the high-
energy region of the spectrum, and what determines this change? Is it possible to control spin polarization, in
particular its rapid oscillations across the spectrum? How do the parameters of the bi-circular field affect spin
polarization at the moment of recollision? What about the temporal dimension? How does the spin polarization
of the recolliding current change as a function of time? Answering these questions is essential if we aim to bring
the spin dimension into time-resolved collisions. The generation of recolliding electron currents with tunable
degree of spin polarization on the sub-femtosecond time-scale will bring new opportunities for probing spin or
chiral dynamics in matter.

Here we present a detailed theoretical study of spin polarization in electron—core recollision driven by bi-
circular fields, emphasizing the possibilities for, and the physical mechanisms of controlling the degree of spin-
polarization by changing the parameters of the bi-circular field. The paper provides answers for the questions
posed in the previous paragraph and is organized as follows. Section 2 describes the theoretical approach.
Section 3 describes our results, focusing on the analytical analysis of how the properties of the quantum electron
trajectories define the spin polarization. This allows us to establish the origin of spin polarization in bi-circular
fields (section 3.1) and show how to achieve its attosecond control by tailoring the laser fields (section 3.2).
Section 4 concludes the paper.

2. Method

Consider ionization, followed by electron—parent ion recollision, of xenon atoms driven by a strong right
circularly polarized field in combination with the counter-rotating second harmonic. The resulting electric field
can be written, in the dipole approximation, as:

F(t) = [Fo,,cos(wt) + Fya,cosRuwt)]X + [Fy sin(wt) — Fy,sin(Rwt)]y, (D)

where Fy , and F,,, are the amplitudes of the right and left circularly polarized fields, respectively, with
frequencies wand 2w. Within the strong-field approximation, the continuum electron wavefunction at time ¢ is
givenby [31]:




10P Publishing

NewJ. Phys. 19 (2017) 073007 D Ayuso et al

) =i [ aret o) [dpdp+ AW Ip -+ AO), @

where IP is the ionization potential, p is the drift (canonical) momentum, related to the the kinetic momentum
k(t)by k(t) = p + A(t), d(p + A(¥)) = (p + A(¥) |&|\I/0> is the transition dipole matrix element from the
initial ground state |¥;) (the system is assumed to be in the ground state at t = #) toa Volkov state [p + A(¢))v,
given by

1

lp+A@®)y = R e~ iSv(tt',p)eilp+AM] T (3)
where Sy (¢, t/, p) is the Volkov phase:
1 t
Sv(e, ) = [ drlp + AGP. @
t/

Equation (2) can be used to calculate different observables, such as photoelectron yields, induced polarization
and harmonic spectra [31]. Here we are interested in analyzing the degree of spin polarization of the electrons
thatare driven back to the ionic core. This requires a measure of the recollision probability, resolved on the state
of theion and on the spin of the returning electron. The latter is determined by the initial magnetic quantum
number of the state from which the electron tunnels and the state of the ion that has been created upon
ionization, as described in [8]. As for the recollision probability, given that the size of the returning wave packet
far exceeds the size of the atom, an excellent measure of the recollision amplitude is the projection of the
continuum wavefunction (equation (2)) |¥(¢)) on any compact object at the origin; the recollision current will
scale with the object area. To obtain the required recollision probability density at the origin, we simply project
|¥(#)) on the delta-function at the origin, yielding

Arec(t) = an )3/2 f dt’F(t") fdp d(p + A(t)) e iSv(tt P +IP(=1)] (5)

The degree of spin polarization of the recolliding electrons as a function of the recollision time ¢ is given by
the normalized difference between the recollision probability densities for electrons recolliding with spin up
(w1 (1) = |a() 1) and spin down (w|(t) = |a (t)]*) [8]:

wy(t) — wi(f)

SP(t) = . 6)
WT(t) + Wl(t)
The densities w1 (t) and w) (¢) are obtained from the recollision densities WII; s, 1/2( ) = |a 213/2 1/2( P
correlated to ionization from the p_and p_orbitals, resolved on the ionic states 2P; /, and P1 /2>and the
corresponding Clebsch—Gordan coefficients [8]:
wh 2
W) = Wl (0 Twh, 0 +1 Sl (0, %)
1
w0 = whs, (1) + 3w (D + =W (@), ®)

3 2572

The contribution of the p, orbital is negligible [11, 13]. The key quantities in these expressions are the recollision
densities resolved on the initial orbital and the final ionic state, WI%ZP1 = IQI%ZPI/Z [2, etc. Application of the
saddle point method (see e.g. [31]) to the integral equation (5) allows us to perform the semi-classical analysis of
this expression in terms of electron trajectories, getting insight into the physical origin of spin polarization
during recollision. The saddle points are calculated by solving the following set of equations [31]:

12
D AGE  pp ©

t,
ft' drip + A(M] =0, (10)
where IP is the ionization potential, #; and t, are the complex ionization and recollision times, respectively.
Equation (9) describes tunneling and equation (10) requires that the electron returns to the core.

Figure 1 shows a schematic representation of the process on the complex time plane. The electron enters the
barrier at complex time t; = ¢ + it,”. The motion in the classically forbidden region occurs along the imaginary
time axis and the electron is born in the continuum at real time ti/. As aresult, the recollision time ¢, and the
canonical momentum p are, in general, complex. To further simplify the analysis, we can take into account that
for most of the relevant trajectories the imaginary part of their recollision time is rather small. This allows one to
keep the recollision time on the real time axis, also simplifying the treatment of the usual divergences near the
cutoff region, see [31]. Setting ¢, then defines p and #; from equations (9) and (10).

3
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Figure 1. Schematic representation of the contour time integration of the action. Ionization starts at a complex time ¢; = #, + it!", the
electron tunnels out of the potential barrier at the real time ¢, and returns to the ionic core at t, = ¢, + it” (left panel). If the
imaginary part of the recollision time is sufficiently small, one can keep the recollision time on the real time axis (right panel),
simplifying the treatment of the cutoff region.

The recollision densities correlated to ionization from p,_and p_orbitals are proportional to:

WI%" o |efilSv(tr,ti,p)ﬂP(trt;)]+im¢k([i)|2 ~ 23{Sy(t,t,p)} —21PH! o—2mT{y )} (11)

In this expression, the first key quantity that determines the magnitude of w{¥ is the imaginary part of action.
Itis mostly accumulated between the times t; = #, + it and ¢/, i.e. in the classically forbidden region. The
second key quantity, which depends on the projection m of the angular momentum, is the complex-valued
ionization angle ¢, . Itis given by the following expression:

HOI ke (1)
_ —= + i atanh| = 12
Py = atan k;(ti) 1 atan ky”(ti) (12)

with k. (t;) = k(t) + ik] () and k, (t;) = ky/ (t;) + iky (1;) being the complex velocities along x and y
directions, respectively.

Note that the difference between the recollision densities from p_and p_orbitals depends solely on the
imaginary part of the ionization angle, since the action is the same in both cases. The ratio of these recollision
densities, which fully determines the spin polarization of the recollision current, is therefore given by a very
simple analytical expression

wh [wiy = e, (13)

Note also that this expression is not limited to the case of two circular counter-rotating fields, but applies to any
combination of light frequencies and polarizations, i.e. to an arbitrary vector potential A (). It allows one to
easily evaluate how tailoring the laser field controls spin polarization at the moment of recollision. Here, we
focus on the bi-circular case of the counter-rotating w, 2w fields.
Finally, the electron recollision energy is calculated as
[p + A(t)P
Epee = —————. (14)
2
For approximate analysis which keeps the return time on the real axis, we neglect the small imaginary
contribution to E,...

3. Results

The Lissajous curves of the electric field considered here (see equation (1)) and of the corresponding vector
potential A(t), givenby F(t) = —dA(¢) /dt, are shown in figure 2, as well as the ionization and the recollision
time windows (the field parameters are given in the figure 2 caption). The resulting electric field has a three-fold
symmetry, with 3 peaks per cycle oriented at angles 0, 27 /3 and 47 /3 rad in the xy plane. Ionization is more
likely to occur near the maxima of the electric field, where the tunneling barrier is thinner. Electrons liberated
just before these maxima are unlikely to return to the core, those released after the maximum can recollide.
Consider strong-field ionization of a xenon atom from the outermost 5p shell. The spin-orbit interaction
splits the energy levels of the ion into 2P; /, and 2P, /,, with ionization potentials [P7/2 = 12.13 eV and
PPz = 13.43 eV . Our calculations considered both ionic states, as needed for calculating spin polarization.
The saddle point equations (equations (9) and (10)) have been solved numerically, allowing the ionization and
return times to be complex (exact solutions), and also by keeping the return time on the real time axis
(approximate solutions), as represented in figure 1. The real and imaginary parts of the ionization time, the

4
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and intensity I = 10'* W cm~2 with a LCP field of frequency 2w and equal intensity. The ionization and recollision time-windows
are indicated in the figures for short (green) and long (yellow) trajectories for one of the three ionization bursts.

Figure 2. Electric field (left panel) and vector potential (right panel) resulting from combining a RCP field of frequency w = 0.05 a.u.
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Figure 3. Saddle point solutions for the bi-circular field represented in figure 2 as functions of the real part of the recollision time: real
(A) and imaginary (B) parts of the ionization time, imaginary part of the recollision time (C), and recollision energy (D). Full saddle
points (dashed lines) have been calculated allowing both ionization and recollision times to be complex, whereas approximate
solutions (full lines) have been obtained by keeping the time of return on the real time axis (see figure 1). Results are shown for the
Lo . . e e . 2 2
ionic states of xenon 2P; , (red lines) and 2Py /; (blue lines), with ionization potentials IP73/2 = 12.13 eV and IP71/2 = 13.43 eV.

complex part of the recollision time and the recollision energy (evaluated using equation (14)) are shown in

figure 3, as functions of the real part of the return time. Our exact solutions agree with those reported previously
in [21] and the approximate solutions agree well with the exact ones. We can see that the imaginary part of the
recollision time (figure 3(c)) is rather small, except near the cutoff, where the saddle point method diverges. The
main advantage of using approximate solutions and keeping the recollision time on the real time axis is that the
ionization time and the recollision energy behave smoothly in the vicinity of the cutoff, while being very similar
to the exact solutions outside this region.
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(dashed lines) saddle points solutions shown in figure 3.
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Figure 5. Total spin polarization (black lines) and spin polarization resolved in the 2Ps /; (red lines) and in the 2P, /; (blue lines) states
of the core as a function of the recollision energy for short (left panel) and long (right panel) trajectories. Spin polarization has been
calculated using the exact (full lines) and the approximate (dashed lines) saddle points solutions shown in figure 3.

Let us compare now the results for the states 2P; /, and *P; / of the ion. As expected, the real part of the
ionization time (figure 3(a)) and the recollision energy (figure 3(c)) are almost identical in both cases. The
imaginary part of the ionization time, however (figure 3(b)), is slightly smaller for the P; /, state, with the lower
IP, resulting in higher ionization amplitudes.

We have evaluated the degree of spin polarization in recollision (equation (6)) using the saddle point
solutions shown in figure 3 and equation (13). Total spin polarization is shown in figure 4 as a function of the
recollision time, together with the degree of polarization resolved in the *P; /, and 2P; ), states of the core. Itis
clear from the figure that recolliding electrons are spin-polarized and that their degree of polarization depends
strongly on the recollision time. Electrons that return to the core at earlier (later) times are more likely to have
spin up (down). Note also that spin polarization resolved in the ionic states 2P, /, and 2P; , has opposite sign.
Both spin polarization resolved on the states of the ion and the total spin polarization change sign at the
recollision phase (time) of 0.77 rad (1.11 fsec). Each return time is associated with a given recollision energy,
which is the well-known time—energy mapping [31] (see figure 3(d)). Figure 5 shows spin polarization as a
function of the recollision energy for short and long trajectories. Whereas for the short trajectories spin
polarization changes dramatically as a function of the recollision energy, for the long trajectories the variation is
rather smooth.

The results presented in this section are consistent with those reported in [9] and [10]. We note that the
values of spin polarization predicted in [9] by analyzing ATI spectra of xenon atoms seem to be much lower that
the ones shown here. This apparent discrepancy is due to the different definition of the asymmetry parameter
employed in [9] to quantify spin polarization.




IOP Publishing NewJ. Phys. 19 (2017) 073007 D Ayuso et al

Recollision time (asec)
800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
T T T T T T T T T T T

| short trajectories long trajectories |

e o 9
N @ o

e
>

0.5
0.4

0.3

Recollision density (arb. units)

0.2

0.1 e

.
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
Recollision phase (units of m)

Figure 6. Recollision densities for p_and p_electrons correlated to the states of the ion P37, and 2Py /, as a function of the recollision
time (thin lines) and total recollision densities for electrons with spin up and spin down (thick lines), calculated using the approximate
quantum orbits resulting from keeping the time of return on the real time axis.

Real recollision time (asec) Real recollision time (asec) Real recollision time (asec)
0.0 B0 1000 1200 1400 1600 1800 0.7 800 1000 1200 1400 1600 1800 , 800 1000 1200 1400 1600 1800
— Real part — Real part
06w Imaginary part 2 e Imaginary part
o — B 08
long trajectories - short trajectories
02 7 04
87 06
5 o5 =
04 g
£ 02

long trajectories

2 Pl/ﬂ

short trajectories

=)

2

pm———

ky () (atomic units)

gt
e

lonization angle (units of .
°
=

2
0.1 By
Ll —
— Real part 0.2 short trajectories long trajectories { ™™
wwee Imaginary part
1.2 -0.3 -0.2
05 06 0.7 08 09 1 1t 05 086 07 08 0.8 1 1.1 12 05 06 0.7 08 0.8 1 1.1 12
Real recollision phase (units of m) Real recollision phase (units of ) Real recollision phase (units of m)
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a function of the recollision time.

3.1. Origin of spin polarization

To better understand the physical origin of spin polarization in recollision, let us analyze the recollision densities
for different ionic channels. These are presented in figure 6 as a function of the recollision time, as well as the
total recollision densities corresponding to electrons with spin up and spin down (equations (7) and (8)). There
are three important things worth noting here. First, the recollision densities correlated to the 2P; /, state of the
core («WI"I’?PS/2 and wlﬁzpm) are higher than those for the 2P, /2 State (WII;:ZPI/Z and WI‘EZPI/Z) because the lower
ionization potential of this ionic state leads to smaller imaginary ionization times (see figure 3(b))—the
tunneling barrier is thinner. Second, all recollision densities exhibit a maximum value that arises at lower

recollision times in the case of the p,_ orbital (w p*zp and w sz ). Third, the densities resolved on the 2P; /,
P32 2

and 2P, /, states of the core cross at ¢, = 0.697 rad (¢, = 1044 asec)and ¢, = 0.70 rad (t, = 1061 asec),
respectively, leading to changes of sign in spin polarization (see figure 4). In order to understand these features,
we have examined the saddle point solutions at t = #;, when the electron enters the classically forbidden region.
The ionization velocity and the ionization angle are shown in figure 7 as a function of the recollision time. We
can see that, for a recollision phase (time) of 0.77 rad (1.11 fsec), the real part of the ionization angle presents a
jump of 7 and its imaginary component becomes zero. A purely real ionization angle leads to equal tunneling
probabilities for p, and p_orbitals (see equation equation (13)) and thus no spin polarization.

The time-dependent sensitivity of the recollision densities to the sense of rotation of the electron in its initial
state can be understood by examining different quantum trajectories. Figure 8 contains a representation of the
values of the electric field and the ionization velocity at t = f; of three quantum orbits that recollide with the
%P5 ), state of the ion at different times: ¢, = 0.657 rad (positive spin polarization), ¢, = 0.697 rad (no spin
polarization) and ¢, = 0.757 rad (negative spin polarization), calculated by keeping the time of return on the
real time axis. We will refer to them as trajectories A, B, and C, respectively. The three trajectories have similar
values of k”(#;) and F(t;). However, their values of K'(t;) are very different.

Let us analyze the motion of the electron through the classically forbidden region, which occurs in imaginary
time (see figure 1) and along the complex plane of spatial coordinates (r = r’ + ir”). The real part of the trajectory
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Figure 8. Real and imaginary parts of the kinetic momentum k(#;) and the electric field F(#,) at the saddle point of ionization ¢t = t;
for the quantum orbits that recollide with the core at ¢, = 0.65 rad (traj. A, red lines), ¢, = 0.697 (traj. B, black lines) and

¢, = 0.757 (traj. C, greenlines); k(#;) = K'(#;) + ik”(#;) and F(t;) = F'(1;) + iF"(;). Solutions are shown for one ionization burst.
The electric field considered here, resulting from combining a RCP field of frequency w = 0.05 a.u. and intensity I = 10" W cm~—2
with a counter-rotating second harmonic of equal intensity, is represented in the figure.
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Figure 9. Real (left panel) and imaginary (right panel) components of the quantum orbits that recollide with the core at

¢, = 0.657 rad (traj. A, red lines), 0.697 rad (traj. B, black lines) and 0.757 rad (traj. C, green lines). Full lines: under-the-barrier
motion, that is, electron motion in the classically forbidden region (see figure 1); dashed lines: excursion in the continuum. The
corresponding recollision times (f, = ¢, /w) are t, = 314, 334 and 363 asec. For illustration purposes, the sense of rotation of
electronsin p,_and p_orbitals is depicted in the right panel.

depends on k” and F' accordingto k” = dr//dr and F' = dk”/dr, with 7 being the complex time variable. Under
the barrier, dT = —dt” (see figure 1). Equivalently, the motion in the plane of imaginary coordinates is dictated by
k' = —dr”/drand F" = —dk’/dr. Trajectories A, B and Care depicted in figure 9. Their real parts in the
classically forbidden region are almost identical because they present similar values of k” (#;) and F/(¢;). The motion
in the imaginary plane, however, is different due to the very distinct values of k”(#,). Trajectory B presents

K'(#;) = 0 and thus its motion in the complex plane is solely dictated by the imaginary value of the electric field,
which barely changes its direction during tunneling. Thus, the motion in the imaginary plane occurs along a straight
line. The initial values of k’ for trajectories A and C are non zero and point in opposite directions (see figure 8).
During tunneling, they are modified by F”, giving rise to clockwise motion in trajectory A and to anti-clockwise
motion in trajectory B along the plane of imaginary coordinates (see figure 9). Because of its initial angular
momentum, p, (p_) electrons can be driven more easily along trajectory A (B) than p_ (p, ) electrons, which leads to
different recollision densities and leads to the time-dependent spin polarization in recollision.

3.2. Attosecond control of spin polarization
In this section we discuss how modifying the parameters of the driving fields can affect the degree of spin
polarization of the recolliding electrons. In particular, we analyze the effect of varying the relative intensities of

8
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Figure 10. Attosecond control of spin polarization. Upper figures: Lissajous curves representing the electric fields resulting from
combining a RCP field with frequency w = 0.05 a.u. and a LCP field with frequency 2w with different relative intensities: I, = I, /2
(left column), b, = I,, (central column) and b, = 2I, (right column). The values of I, and L, considered in each case are indicated
in the figure. Middle panels: recollision energy as a function of the recollision time. Lower panels: spin polarization as a function of the
recollision time. Results have been calculated by keeping the time of return on the real time axis.

the two counter-rotating fields. Figure 10 contains a representation of the electric fields resulting from making
the intensity of the second harmonic half and twice the intensity of the fundamental field (see parameters of the
fields in figure 10 and in its footnote). Increasing the relative intensity of the fundamental field shrinks the width
of the field lobes. Enhancing the relative intensity of the second harmonic has the opposite effect. The
corresponding recollision energy and spin polarization, obtained with these fields, are shown in 10, as a function
of the recollision time, for one optical cycle of the fundamental field. For comparison purposes, the results
obtained for equal intensities of the counter-rotating fields (already discussed in the previous section), are
included in figure 10.

Spin polarization is presented in figure 10 (lower panels), also as a function of the recollision time. We can
see that relatively small modifications of the fields intensities lead to dramatic changes in the degree of
polarization, allowing to achieve a high degree of control. In particular, by tuning the relative intensities of the
fields, it is possible to select the instant at which spin polarization changes it sign: increasing the intensity of the
fundamental field shifts the change of sign towards earlier times, whereas increasing the intensity of its second
harmonic has the opposite effect.

4, Conclusions

The possibility of inducing recollision with spin-polarized electrons opens new directions in attosecond
spectroscopy. Electron spin and orbital angular momentum will play an important role in well-established
recollision-driven techniques such as photoelectron diffraction and holography [32—-37] or high harmonic
generation [21, 23, 26, 29, 38—42]. We have shown that the use of intense two-color counter-rotating bi-circular
fields can drive electron—core recollision with a degree of spin polarization that depends on the recollision time
and therefore on the recollision energy.
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Electron spin polarization upon tunnel ionization is intrinsically related to the generation of spin-polarized
currents in the ionic core [43]. In this context, the potential of inducing recollision within one optical cycle of the
driving field can allow for probing spin-polarized currents in atoms and molecules with sub-femtosecond and sub-
Angstrom resolution. The time-dependence of spin polarization could be exploited to reconstruct information of the
recollision process itself from spin-resolved measurements of diffracted electrons. A recolliding spin-up electron will
interact differently with the ionic core if the core has spin up or spin down. Therefore, measurements of the spin of
recolliding currents can provide ‘snapshots’ of spin-resolved dynamics in the ion between ionization and recollision.

Our work shows that the degree of spin polarization can be modified as desired by tailoring the driving fields.
Changing the relative intensities of the counter-rotating fields can smoothly change the level of spin polarization
of the recolliding currents, controlling its magnitude and sign as a function of recollision time and recollision
energy. In particular, we have shown that one can keep the sign of spin polarization constant across the whole
recollision window, or shift the point at which spin polarization changes its sign, with attosecond precision.
These results open the way for attosecond control of spin-resolved dynamics in atoms and molecules.
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