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The work is concerned with the Transfer Matrix Method for solving the steady-state
Schrödinger equation applied for a unified evaluation of the emission current density
from non-refractory cathodes. The method is applicable to arbitrary shapes of the
potential barrier and its transmission probability is obtained without any analytical
approximations. The Fermi-Dirac distribution for the free electrons in the metal is
considered as a supply function. The results, obtained for a work function of the
cathode material of 4.5 eV over a wide range of values of the surface temperature and
the electric field strength, clearly show a growing deviation from those obtained by the
classical Jeffreys-Wentzel-Kramers-Brillouin approximation with the increase of the
electric field strength. Preliminary results are obtained to demonstrate the applicability
of the Transfer Matrix method to the evaluation of the ion-assisted electron emission. A
significant local enhancement of the emission current density is obtained as a result of
the presence of an ion at a fixed position near the metal surface. The effect becomes very
strongly pronounced at an appropriate value of the electric field strength, for which a
resonant ion contribution appears. © 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5041314

I. INTRODUCTION

The interaction between an electric arc and its electrodes has become a basic feature of up-to-
date arc plasma models due to the need for understanding and describing the arc attachment to the
electrodes. Various aspects of the arc attachment to refractory cathodes and non-refractory anodes
has been presented in review articles during the last decade (see e.g. Refs. 1–4). Refractory cathodes
withstand temperatures above the melting point of non-refractory materials and the emission current
from them is chiefly due to thermionic emission. Non-refractory cathodes, as used e.g. in gas-metal
welding arcs, circuit breakers, and plasma torches, have been considered to produce electron emission
due to the high electric field near the cathode surface.5 Although it was also proposed that instead
of field emission, electrons may be produced as a result of photoionization of neutral atoms by
radiation from the arc6 or impact of excited atoms at the cathode,7 the dominant emission mechanism
has not been clearly established. It has been shown by Ecker et al.8 that the thermo-field emission
current can be significantly enhanced by the field of ions coming from the plasma without having
to enhance the temperature or the electric field at the cathode surface. Coulombe et al.9 presented a
numerical model of the arc attachment on a non-refractory cathode considering the pressure build up
in the cathode region due to vaporization of the cathode material and the ion-enhanced thermo-field
emission of electrons. The physically justified and numerically accurate evaluation of the electron
emission current is of central importance to the modelling of the arc attachment on non-refractory
cathodes.

Thermionic and field emission have been the subject of separate studies for a long time (see
Ref. 10 and the references therein) and are generally well understood in the frame of relatively
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simple models.11,12 Thermo-field emission from a metallic surface has been considered by Paulini
et al.13 for a wide range of temperatures, field strengths and work function values of the emitter. The
authors have given the ranges of validity of known approximations and have shown that simplified
formulae of the Fowler-Nordheim approximation may give incorrect results to several orders of
magnitude. The authors proposed easy-to-use formulae for numerical modelling of arc cathode spots.
A method of a computationally efficient evaluation of the emission current density in the range of
validity of the Murphy-Good theory has been presented by Benilov et al.14 These methods, however,
do not take into account the ion contribution.

Numerical calculations of the electron emission current using the Numerov integration of the
Schrödinger eigenvalue equation are presented by Teste et al. and Gayet et al.15,16 Spataru et al.17

extended the study16 to a three-dimensional one. These calculations eliminate the Jeffreys-Wentzel-
Kramers-Brillouin (JWKB) approximation (which is an expansion at zeroth order of the wavefunction
argument) and gives the corrections that have to be applied to the Richardson,18 Fowler-Nordheim19

or Murphy and Good11 results. This approach also allows one to consider the ion-enhanced thermo-
field emission of electrons. The calculated amplification coefficients for an electric field strength of
109 V/m by Gayet et al.16 are used by Coulombe et al.,9 and a comparison of the electron-emission
equations is given. Furthermore, Coulombe et al.9 report the important role of the ion enhancement
in particular at temperatures above 2000 K and electric field above 109 V/m.

An alternative to the Numerov method suggests the Transferred Matrix Method (TMM) with
which the present work is concerned. The TMM has been applied to the case of a combined field and
thermionic emission20 from a copper knife-edge cathode at a temperature of 330 ◦C in an ultrahigh
vacuum chamber. The results showed a very significant nonzero temperature contributions leading to a
strong deviations from the predictions based on the Fowler-Nordheim equation. To the best of author’s
knowledge, the TMM has not been yet applied to obtain the electron emission current density from
non-refractory arc cathodes in account for ion enhancement. In this work, the TMM is considered in
order to explore its capability of predicting the current density of electron emission under conditions
relevant to arc discharges. An arbitrary potential barrier, which implies the contributions from the
applied electric field, perturbations induced by the image charge of the released electron and the
presence of an ion as a first approximation. Furthermore, in comparison to work,20 special care has
been taken to describe the electron-surface interaction21 and a more efficient numerical algorithm22

has been implemented. The paper is organized as follows. The section II presents theory basics and
the evaluation procedure, selected results are shown in the section III, and concluding remarks are
given in the section IV.

II. THEORETICAL BACKGROUND

The current density of electrons emitted from a metal surface at a temperature T c at the presence
of electric field F can be expressed as10

Jem = e

∞∫
−∞

E∫
Wa

T (F, W )N(Tc, φ, E)dWdE, (1)

where

N(Tc, φ, E)=
4πme

h3

(
exp

(
E+φ
kBTc

)
+ 1

)−1
(2)

is the electron supply function, which is expressed by the Fermi-Dirac distribution for the free
electrons in the metal according to the Sommerfeld theory, φ is the work function of the material, W
is the electron energy corresponding to the motion normal to the surface, and E is the total energy.
The quantity T (F, W ) is the transmission probability that an electron incident on the surface potential
barrier emerges the metal.

Figure 1 shows a schematic representation of an emitted electron, a singly charged ion at some
distance from the metal surface, and their image charges at given instant. The metal surface is
assumed to be smooth and plane. The cylindrical system of reference is chosen so that the Z-axis is
going through the ion and its image. The emitted electron lies off-side the Z-axis by a distance ρ.
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FIG. 1. Schematic of the metal surface with an escaped electron and its image, an ion at some distance from the surface and
its image charge.

The effective position of the metal surface, i.e. the shift of the image plane, is denoted as Z I . The
z-dependence of the problem is followed as a first approximation. Such consideration is physically
reasonable and unambiguous for the purpose followed in this work. This purpose is a preliminary
study in regard to a model of the space-charge sheath of a non-refractory cathode, which in general
is one-dimensional and considers the direction perpendicular to the cathode.

The potential that the emitted electron experiences is considered in units of SI in account for the
contributions of

• the external electric field F

V1(z)=−Fz, if z ≥ 0, (3)

• the force of the electron image on the electron

V2(z)=




−
V0/e

A exp[B(z − ZI )] + 1
, if z ≤ ZI

−
e

4πε0

1 − exp[−λ(z − ZI )]
4(z − ZI )

, if z > ZI

(4)

• the force of the ion on the electron

V3(ρ, z)=−
e

4πε0

1√
ρ2 + [z − (R + ZI )]2

, if z > ZI (5)

• the force of the ion image on the electron

V4(ρ, z)=
e

4πε0

1√
ρ2 + [z + (R − ZI )]2

, if z > ZI . (6)

With account of equations (3)–(6), the potential V (ρ, z) is given by

V (ρ, z)=V1(z) + V2(z) + V3(ρ, z) + V4(ρ, z). (7)

The term V2(z) in Eq. (4) is written in a way which avoids the singularity at z = Z I and matches
the constant potential Wa = −V0 inside the metal according to the jellium description.16,21 Notice
that such treatment has not been done in the work.20 As further parameters, Z I ∼ a0 is the shift of
the image plane, a0 is the Bohr radius, R is the distance of the ion from the image plane, λ is a
characteristic of the metal (e.g. V0=11.2 eV, λ=1.05/a0 for copper), A= 4πε0

e2
4V0
λ − 1, B= 4πε0

e2
2V0
A .

For a long distance z from the metal surface, the potential energy is dominated by the electric
field contribution V1 (line 1 in Fig. 2). The addition of the contribution of the electron image leads
to the ”Schottky-Nordheim” barrier (curve 2 in Fig. 2), while the full expression of V (ρ, z) in
Eq. (7) results in a complex barrier structure (curve 3 in Fig. 2). The calculation of the transmission



085322-4 M. Baeva AIP Advances 8, 085322 (2018)

FIG. 2. Potential barrier for an emitted electron near the surface with account for the terms 1) V1, 2) V1 + V2, 3) V1 + V2
+ V3 + V4, and parameters of the potential barrier: F=109 V/m, V0=11.2 eV, ρ=1a0, R=20a0.

probability is described below following the computational algorithm by Gilmore.22 The stationary
one-dimensional Schrödinger equation

d2ψ(z)

dz2
=−

2me

~2
(W − V (z))ψ(z) (8)

for the wavefunction of an electron with energy W in a potential V (z) is employed. For an electron
incident at the boundary at z = a between region 1 and region 2 (see Fig. 3), the solution can be
expressed as a linear superposition of the two particular solutions ψ1(z), ψ2(z), which depend on
whether the term − 2me

~2 (W − V (z)) is negative, zero or positive:

ψ1 = exp (+ikz), ψ2 = exp (−ikz), if − 2me

~2 (W − V (z))=−k2 < 0,

ψ1 = 1, ψ2 = z, if − 2me

~2 (W − V (z))= 0,

ψ1 = exp (−kz), ψ2 = exp (+kz), if − 2me

~2 (W − V (z))= k2 > 0,

(9)

and

ψ(z)=



A1ψ1(z) + B1ψ2(z), if z ≤ a

A2ψ1(z) + B2ψ2(z), if z ≥ a.
(10)

The first derivative of the wavefunction can be expressed similarly so that the matrix relation
between the wavefunction, its first derivative, and the coefficients Aj, Bj (j = 1, 2) for region 1 and
region 2 can be introduced (

ψ(z)
ψ ′(z)

)
=

(
ψ1(z) ψ2(z)
ψ ′1(z) ψ ′2(z)

) (
Aj

Bj

)
. (11)

FIG. 3. Schematic of the step structure. The wavefunction and its first derivative are matched at the boundary z = a.
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Matching the wavefunction and its first derivative at the boundary z = a (Fig. 3), we can write the
following matrix equation without any assumptions about the relative values of the particle energy
W and the heights of the potential barrier V1 and V2(

A1

B1

)
= T12

(
A2

B2

)
, (12)

where T12 = E−1(V1, a)K−1(V1)K(V2)E(V2, a) is the 2x2 transfer matrix and K, E are 2x2 matrices
(K−1, E−1 are their inverses), which can be easily expressed for the three cases given in Eqs. (9). For
a piecewise constant potential energy with N − 1 breakpoints, the relationship between (A1, B1) and
(AN , BN ) reads (

A1

B1

)
= T12T23 . . . TN−1,N

(
AN

BN

)
= T

(
AN

BN

)
(13)

The computation of the transferred matrix involves the product of N − 2 matrices according to Eq. (13)
and 2× 2 matrices on the two boundaries resulting in N + 2 matrices. Notice that the present approach
is computationally more efficient and it differs from that by He et al.,20 where the potential barrier
was divided into a number of finite square barriers and the plain matrix treatment involves the product
of at least 3N matrices. Taking into account that a particle is incident from the left (A1,0) but not
from the right (BN = 0), and the conservation of momentum22

~k1

(
|A1 |

2 − |B1 |
2
)
= ~kN

(
|AN |

2 − |BN |
2
)
, (14)

the following relation can be derived

�����
B1

A1

�����

2

+
kN

k1

�����
AN

A1

�����

2

= 1. (15)

The first term on the left-hand side of Eq. (15) has the meaning of reflection probability, while the
second represents the transition probability. The latter can be expressed by means of the corresponding
element t11 of the transfer matrix T

T =
kN

k1

�����
1

t11

�����

2

. (16)

The emission current density is finally obtained from Eq. (1), the supply function N from Eq. (2),
and the transition probability is obtained by the TMM from Eq. (16).

III. RESULTS AND DISCUSSION

The number of breakpoints of the potential barrier used in the computation varies from
2 × 104 up to 1 × 106 and depends on the electric field strength. A larger number of breakpoints
is needed at a weaker electric field for which the potential barrier is thicker. The code is realized
in MATLAB. Calculations have been carried out at conditions reported by Gayet et al.16 in order
to compare the results of the TMM with that based on the Numerov integration of the Schrödinger
eigenvalue equation. The results obtained showed that the TMM can reproduce the results by Gayet
et al.16

The transmission probability calculated according to the JWKB approximation, applied by
Murphy and Good,11 and the TMM is shown in Figure 4 for two values of the electric field strength.

For electron energies larger than Wl =−

√
e3F

8πε0
, the transition probability in the approach by Murphy

and Good is set to one, while the TMM predicts a smooth increase to one. For an electric field of
109 V/m, the TMM and JWKB transition probabilities are almost equal below electron energy of
approximately W l '-0.84 eV. The difference is more pronounced for an electric field of 1010 V/m,
for which W l '-2.7 eV.

Figure 5 shows the change of the potential barrier with the field strength and the influence of
an ion located at some distance from a clean and smooth copper surface (R=20a0, V0=11.2 eV,
λ = a−1

0 ). The increase in the electric field leads to a lowering and narrowing of the potential bar-
rier. In the presence of an ion, the electron will feel two successive potential barriers. We notice the
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FIG. 4. Transmission probability for electron emission without ion contribution at electric field of 109 and 1010 V/m obtained
by means of the TMM and the JWKB approximation. V0=11.2 eV, ρ=1a0.

different height especially of the right wing of the second part of the potential barrier depending on
the electric field strength. While the height of the right wing is even higher than the left one for
F=107 V/m or comparable with the left one for F=108 V/m, it becomes slightly lower for
F=109 V/m and significantly lower for F=1010 V/m. This effect is highly important for the
transmission probability of an electron through the potential barrier as it is shown below.

From the theoretical background of the TMM given above in the framework of the one-
dimensional treatment, it is clear that the method avoids any analytical approximation in the
calculation of the transmission probability. Therefore, the emission current density is obtained in
a unified way no matter whether the emission is of thermionic, thermo-field or field nature. At zero
and low electric field strengths, the thermionic and the thermo-field emission current density is well
predicted by the Richardson-Dushmann-Schottky equation

JR = e
4πmek2

BT2
c

h3
exp

(
−

e(φ − ∆φ)
kBTc

)
. (17)

FIG. 5. Potential barrier for an electron near the surface for various values of the electric field. V0=11.2 eV, ρ=1a0, R=20a0.
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In Eq. (17), ∆φ=
√

eF
4πε0

is the lowering of the work function due to the Schottky effect. The Schottky

correction∆φ has to be small compared to the work function in order to consider Eq. (17) as still valid.
The electron emission described with Eq. (17) is usually referred to as the field-enhanced thermionic
emission.

Figure 6 shows the ratio between the emission current densities JTMM and JJWKB obtained by
means of the TMM-approach and the JWKB-approximation, respectively, and the value JR for electric
field strengths F= 107, 108, 109, and 1010 V/m and surface temperatures from 1000 K up to 6000 K.
In these results, the ion contribution to the change of the potential barrier is not taken into account
in JTMM for the sake of the comparison with JJWKB. The ratios JTMM /JR (line with squares) and
JJWKB/JR (line with circles) are close to one for temperatures from 1000 K up to 6000 K and electric
field strength 107 and 108 V/m. For electric field of 109 V/m, the values of JTMM and JJWKB are close
to each other as it can be expected from the almost equal transmission probabilities (Fig. 4). However,
the ratios JTMM /JR and JJWKB/JR considerably increase in particular for temperatures between 1000 K
and 2000 K. This shows that Eq. (17) significantly underestimates the emission current density for

FIG. 6. Ratios between the emission current obtained by means of the TMM without ion contribution and the JWKB approx-
imation and the emission current from the Richardson-Schottky theory. JTMM /JR - line with square symbols, JJWKB/JR - line
with circles.
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such conditions. For electric field of 1010 V/m and above, the difference between JTMM and JJWKB

becomes more pronounced.
It is clear from Eq. (7) with account of equations (3)–(6), that the shape of the potential barrier

changes for variations of the ion position. That is, the ions are moving towards the cathode so that
the distances R and ρ in general change. The elementary volume occupied by an ion at given ion
density ni can be estimated as V = 1

ni
∼ ρ2

max × Rmax. The one-dimensional potential barrier at fixed
ρ and R certainly differs from the real one. Nevertheless, it allows one to prove the applicability of
the TMM and to study the effect of the ion assistance before going to a multidimensional treatment.
In what follows, we discuss the impact of the ion presence at a given position from the metal on
the transmission probability and the emission current density for various electric field strengths. The
parameters of the study (ρ=1a0, R=20a0, V0=11.2 eV, F=107 −1010 V/m) are the same used in Fig. 5.
As shown in Fig. 4, the ion presence, on the one hand, lowers the potential barrier. On the other hand,
the potential barrier is split into two tinner parts. The transmission probability, T, calculated with and
without the ion contribution is shown in Fig. 7 for several values of the electric field strength. The
region of transmission probability values T=0.95-1 is enlarged in order to show the nonmonotonic,
weakly oscillating behaviour at high electron energy, which appears due to the wavelike reflection of
electrons. The transmission probability increases with the increase of the electric field strength both
with and without the presence of the ion. This is due to the lowering of the potential barrier. While
the increase is progressive in the case without ion, it is slowed down beyond F=109 V/m when an ion
is present. This effect can be explained with the change of the potential barrier shown in Fig. 5. The
potential barrier changes dramatically for F=1010 V/m in comparison with F=109 V/m. In particular,
the height of the second part of the barrier is significantly lower than that of the first one. As a result,
the transmission probability is mainly due to the tunnelling through the first barrier. The latter is
tinner in the case an ion is present. The transmission probability increases due to the ion presence
but this increase is moderate in comparison with that at F=109 V/m.

At an electric field F=109 V/m, a further effect occurs. A sharp peak in the transition probability
is obtained at the energy of about -3.46 eV. This effect is attributed to the resonance contribution16,17

which corresponds to the formation of quasi-stationary states of the neutral species. The latter are
built due to the trapping of the emitted electron in the potential well of the ion. The neutralization
of the ion is followed by ionization in the macroscopic electric field. The success of the process
chain A+ + e→ A∗→FA+ + e depends on the availability of atomic states near the Fermi-level of the
metal. As an example, excited states of argon, which is frequently used in arc discharges, lie in the

FIG. 7. Transmission probability of the potential barrier for various electric field strength with (solid curves) and without
(dash curves) ion contribution.
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energy range with a width of about 4.3 eV (the difference between the ionization energy of ∼15.8 eV
and the energy of the first excited state ∼11.5 eV). The excited states of the atom can therefore be
easily ionized, which enables the tunnelling effect for energies below the top of the second part of
the potential barrier. The electron emission can be considered as a sequence of an electron tunnelling
through the first part of the barrier followed by the trapping in the potential well with a formation of
an excited atom, which in the row becomes ionized, followed by the tunnelling of the electron through
the second part of the potential barrier. In this context, the atomic states are ”pumping” electrons into
the plasma.

In order to demonstrate the impact of the ion contribution on the current density of the emitted
electrons, the dimensionless part of the integrand in Eq. (1) is plotted in Fig. 8. It represents the product

of the transmission probability T and the temperature-dependent multiplier Ñ=
[
exp

(
E+φ
kBTc

)
+ 1

]−1

in the supply function in Eq. (2). The results are obtained for electric field strength F=109 V/m and
surface temperatures T c=1000 K, 2000 K, and 3000 K. The TÑ-values increase rapidly with the
increase of the surface temperature. In particular, in the absence of an ion, the increase is of many
orders of magnitude when the temperature is increased from 1000 K to 2000 K. In the presence of
an ion, the maximum TÑ-values are shifted to lower values of the electron energy. The sharp peaks
correspond to the resonant part of the ion contribution. Notice the logarithmic scale of the graph
which visualizes the weaker second peak of the resonant ion contribution at electron energy slightly
above -4.5 eV (not evident in Fig. 8).

In consideration of the above, the presence of an ion close to the metal surface leads to an
enhancement of the emission current density. The local enhancement factor denotes the ratio between
the emission current density in the presence of an ion and the emission current density obtained with
no account of an ion for the given values of ρ and R. This factor is presented in Fig. 9 for the parameters
used in the present work, i.e. ρ=1a0 and R=20a0. The local enhancement factor is in particular large
at lower surface temperatures. This agrees with the results in Figs. 7 and 8. Indeed, in the presence of
an ion, the transmission probability increases with the increase of the electric field strength, and the
TÑ-values increase with the increase of the surface temperature even if no resonant ion contribution
appears. The local enhancement factor becomes extremely large at low surface temperatures and
electric field strengths, at which the resonant contribution appears. This is for example the case
T c=1000 K and F=109 V/m under the conditions ρ=1a0 and R=20a0. The local enhancement factor
decreases with the increase of the surface temperature since the difference between the TÑ-values
progressively decreases. It is worth noting that a non-refractory cathode cannot withstand surface
temperatures above say 2000 K.

FIG. 8. The product TÑ as a function of the electron energy for F=109 V/m and various temperatures of the metal surface
with and without ion contribution.
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FIG. 9. The local enhancement factor of the thermo-field emission current due to the ion contribution versus the surface
temperature for various electric field strengths. The results are obtained by means of the TMM with ρ=1a0, R=20a0.

The present results demonstrate the effect of the ion-assisted electron emission for fixed param-
eters ρ and R. In order to obtain an average enhancement factor, appropriate averaging over ρ and R
is further needed (e.g. as it has been done in Ref. 16). Future activities will consider this aspect in
regard to a model of the space-charge sheath of non-refractory cathodes.

IV. CONCLUSION

In the present work, we demonstrated the applicability of the TMM for the accurate calculation
of the transmission probability of an electron through an one-dimensional potential barrier of an
arbitrary shape. The TMM enables a unified evaluation of the thermo-field and ion-assisted electron
emission from a clean and smooth copper surface. The approach does not make use of any analytical
approximations concerning the shape of the barrier. The evaluation predicts an emission current
density at low electric field in agreement with the approach by Murphy and Good. It is applicable
to cases of high electric field and in the presence of an ion near the cathode surface. The presence
of an ion close to the metal surface leads to a significant local enhancement of the emission current
especially at low temperatures. For a fixed position of the ion, a resonant ion contribution appears
at a given electric field strength and leads to an increase of the local enhancement factor in several
orders of magnitude. Future works related to the space-charge sheath of non-refractory cathodes will
use this evaluation procedure.
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