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ÖZET 

 

FEATURE ENGINEERING IN BIOMEDICAL DATA PROCESSING-A CASE STUDY  

 

Burcu AKÇA  

 

Bilgisayar Mühendisliği Anabilim Dalı 

 

 

İzmir Bakırçay Üniversitesi, Lisansüstü Eğitim Enstitüsü, Ağus.2022  

Danışman: Doç. Dr. Orhan ER 

Günümüzde sağlık alanında yapılan yapay zekâ çalışmalarının en önemli girdisi 

sağlık verisidir. Sağlık verisinin alan bilgisi uzmanları ve hekimler tarafından 

toplanması ve makine öğrenme algoritmalarında eğitilmesi oldukça zahmetli bir iş olup 

bu verilerin doğru algoritma ve parametreler ile işlenmesi, çalışmaların başarısını ortaya 

koymaktadır. Bu nedenlerden ötürü sağlık verisini işlemek isteyen akademisyenlere yol 

gösterici olması arzusu ile bir biyomedikal veri seti üzerinde özellik mühendisliği pilot 

çalışması amaçlandı. Bu amaç doğrultusunda uluslararası bir veri tabanından kalp 

yetmezliği ile ilgili örnek bir veri seti kullanıldı. Bu tezin amacına uygun olarak 

belirlenen veriler üzerinde yapay zekâ yöntemleri ve parametre optimizasyonu için farklı 

modeller kurularak deneysel çalışmalar yapıldı. 

Yapılan bu çalışmada veri seti üzerinde tahmine dayalı öğrenme modelleri 

kullanılarak hangi yapay zekâ algoritmalarının hangi parametre setleri ile en doğru 

sonuca ulaşıldığı raporlandı. Sonuçlar incelendiğinde özellik mühendisliğinin veri seti 

üzerindeki olumlu-olumsuz performans değişimlerini kıyaslayarak karar destek sistemi 

oluşturmak isteyen akademisyenlere önerilerde bulunuldu. Gelecek çalışmalara zemin 

olacağı düşünülen bu çalışmanın farklı alanlardaki sağlık verileri için de örnek 

alınabileceği öngörülmektedir.  

 

Anahtar Sözcükler: Biyomedikal Veri İşleme; Özellik Mühendisliği; Kalp Yetmezliği.  
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SUMMARY 

 

FEATURE ENGINEERING IN BIOMEDICAL DATA PROCESSING-A CASE STUDY 

 

 

Burcu AKÇA 

 

Department of Computer Engineering 

 

Izmir Bakircay University, Graduate Education Institute, August 2022  

Supervisor: Assoc. Prof. Dr. Orhan ER 

 

Today, the most important input of artificial intelligence studies in the field of 

health is medical data. The collection of medical data by field specialists and physicians 

and training the machine learning algorithms is a very laborious task and processing 

these data with the right algorithms and parameters determines the success of the study. 

For these reasons, a dataset on heart failure from an international database was used as a 

model study by feature engineering on a biomedical dataset, with the desire to guide 

academics who want to process health data. For this thesis, experimental studies were 

carried out for parameter optimization with artificial intelligence methods. 

 

In this study, which artificial intelligence algorithm performs best is specified, by 

using predictive learning models on the data set. When the results were examined, 

suggestions were made to the academicians who wanted to create a decision support 

system by comparing the positive-negative performance changes on the feature 

engineering dataset. This study is believed to form a basis for future studies, which also 

may set an example for health data in different fields. 

 

Keywords: Biomedical Data Processing; Feature Engineering; Heart Failure.  
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ABSTRACT 

 

FEATURE ENGINEERING IN BIOMEDICAL DATA PROCESSING - A CASE STUDY 

 

 

Burcu AKÇA 

 

Department of Computer Engineering 

 

Izmir Bakircay University, Graduate Education Institute, August 2022  

Supervisor: Assoc. Prof. Dr. Orhan ER 

 

Cardiovascular diseases cause approximately 17.9 million deaths each year and 

32% of deaths worldwide. 85% of these deaths were due to heart attacks and strokes 

(URL 1, 2022). These diseases usually occur in the form of myocardial infarction and 

heart failure. 

 

The data set consisting of a total of 299 samples shows which method gives higher 

accuracy with many methods such as Artificial Neural Networks, Fine Gaussian SVM, 

Fine KNN, Weighted KNN, Subspace KNN, Boosted Trees, and Bagged Trees. 

 

As a result, it is seen that there are algorithms that can predict the diagnosis of 

heart failure with full accuracy (100%) according to the data obtained. This study shows 

that accurately predicting whether a heart failure patient will survive with which 

artificial intelligence algorithm will provide high accuracy. 

 

Keywords: Biomedical Data Processing; Feature Engineering; Heart Failure.  
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1. INTRODUCTION 

 

The most important input of artificial intelligence studies in today's health field is 

health data. Collecting health data by field experts and physicians and training the machine 

learning algorithms is a very laborious task and processing these data with the right algorithms 

and parameters reveals the success of the study. For these reasons, this study was planned with 

the desire to guide academicians who want to process health data. It is aimed to determine 

which artificial intelligence algorithm gives the most accurate result by using predictive 

learning models on the data set consisting of 299 heart failure patient samples by using 

artificial intelligence algorithms with MATLAB. The estimation method, in which the highest 

accuracy is determined with artificial intelligence algorithms on this data set, is realized for 

the first time. 

 

The continuity of human life depends on the smooth functioning of all organs. In 

addition, the heart, which is the most important vital organ in the human body after the brain, 

is responsible for pumping and distributing the blood that carries the oxygen and nutrients the 

body needs. 

 

Cardiovascular diseases defined as heart or vascular diseases include various medical 

conditions such as coronary heart disease, cerebrovascular diseases, stroke, heart failure, 

hypertensive, and rheumatic heart diseases. 32% of deaths worldwide are due to 

cardiovascular diseases. People with cardiovascular disease or who are at high cardiovascular 

risk due to the presence of one or more risk factors such as hypertension, diabetes, and 

hyperlipidemia need an accurate, effective, continuous treatment and monitoring program 

(Erdas, 2020, p. 6).  

 

Heart failure (HF), one of the cardiovascular diseases, is a clinical syndrome 

characterized by deterioration in body functions because of the decrease in the ability of the 

heart to pump blood or fill with blood. HF often occurs with an increase in left ventricular 

filling pressure, and risk factors such as hypertension, diabetes, obesity, high cholesterol level, 

stress, and smoking accelerate the progression to heart failure.  
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Chronic heart failure is a complex clinical condition that affects the quality of life of 

patients worldwide. The patient and death rate has been increasing over the years. Heart 

failure causes an increase in infections, increased treatment costs, prolonged hospital stay, and 

ultimately a decrease in the quality of life of heart failure patients and causes an excessive 

burden on family and society (Costa, 2020, p. 831). This causes an economic burden. There 

are some errors in the examination due to symptoms resembling other diseases, so when it 

comes to heart disease, these small mistakes can cost a life in the future (Ishaq et al. 2021, p. 

2). 

 

Predicting heart failure has become a priority for physicians. However, predicting HF-

related events in clinical practice has generally failed to achieve high accuracy to date (Pfeffer 

& Braunwald, 2016). For this reason, electronic records can be considered a useful source of 

information in revealing hidden and implicit correlations and relationships between patient 

data for clinical practice (Chicco, 2020, p. 16). 

 

Due to increasing medical data over time, healthcare professionals need to leverage 

machine learning algorithms to analyze data and assist in accurate and precise diagnoses. 

(Ishaq et. al, 2021, p. 4). Machine learning applied to medical records can be an effective tool 

both to predict the survival of each patient with heart failure symptoms and to identify the 

most important clinical risk factors to cause it. (Martinez-Amezcua et al., 2020, p. 10). Due to 

the successful prediction and classification results, shown in ready-made data sets, machine 

learning algorithms are frequently used in academic studies in recent years. (Chaturvedi et al., 

2016 p. 28). 

 

Some studies on the use of machine learning methods on heart failure in the literature 

can be summarized as follows: Patients with HF have a high mortality rate; thus, clinicians 

require reliable prognostic information to make wise decisions about how to use palliative 

care, medicine, devices, and grafts. (Wilstrup & Cave, 2021). Smith et al. aimed to develop a 

prognostic risk model that could distinguish vitally high and low-risk patients among HF 

patients and investigate the effect of EF and left ventricular wall thickness on the associated 

risk estimation (Nauta et al., 2018). They worked on developing and externally validating risk 

models to predict hospitalizations due to HF (Gianluigi & Lund, 2017, p. 7). Long-term 

survival after hospitalization for acute heart failure differences in the prognosis of acutely 

decompensated chronic and new-onset acute HF (Tan et al., 2010, p. 217) 
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A study conducted at the Faisalabad Institute of Cardiology and Faisalabad Allied 

Hospital, Pakistan, used time-dependent Cox regression and Kaplan Meier survival plots, a 

traditional biostatistics model that uses much fewer covariates than the Seattle Heart Failure 

Model, to estimate the mortality rate of 299 heart failure patients admitted to the hospital. 

(Ahmad et. al., 201, p. 7). The datasets, along with the analysis explanations and results of this 

study, were made publicly available online, making them freely accessible to the scientific 

community (Akgül et al., 2013, p. 425), (Voors et al., 2017, p. 627). In another study, they 

analyzed the same dataset to detail two different gender-based mortality prediction models. 

(Zahid et al.,2019). Although these studies, presented promising results, the problem was 

solved using standard bio-statistical methods (Oladimeji & Oladimeji, 2020, p. 90). Such 

methods were insufficient for large-scale data sets (Ishaq et. al. 2021, p. 2). Most researchers 

conducted their studies on HF patients using the linear mixed method. However, Seid et al. 

suggested that this linear mixed impact method applications and separate Weibull or 

semiparametric (Cox) proportional hazard model analysis for such data are not appropriate 

when associating the changeable patient health status (Moyehodie et al, 2021).   

 

Gürfidan et al. utilized 67% of the 299 information as preparing and 33% as test 

information and got the most noteworthy exactness esteem as 83% with the Back Vector 

Machine among diverse calculations. Rahayu connected Artificial Neural Network (ANN), 

Decision Trees (DT), K-Nearest Neighbour (KNN), Support Vector Machine (SVM), Naive 

Bayes (NB), and Romaroid Faktör (RF) calculations for once more the same information set 

with the Destroyed and resample strategy. As a result, he accomplished the leading precision 

of 94.31% with the RF calculation utilizing the resampling procedure. (Gürfidan R, Ersoy M., 

2021, p. 13). 

 

This study utilized the dataset of the medical records of 299 HF patients admitted to the 

Faisalabad Institute of Cardiology and Allied Hospital in Faisalabad (Punjab, Pakistan) from 

April-December 2015 and shared anonymously in the international database UCI-Irvine 

Machine Learning Repository.  

 

In the dataset, 105 were female and 194 were male, and the age of the patients ranged 

from 40 to 95. All 299 patients had left ventricular systolic dysfunction and were classified as 

New York Heart Association (NYHA) class III or IV as HF stage (Nunez et.al. 2017, p. 430).  
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This dataset (Wilstrup & Cave, 2021) includes the realization status information of 12 

features and targets, namely mortality, that can be used to predict HF-related deaths. The 

mentioned 13 attributes and their definitions are as follows: Year, Anemia, Creatinine, 

Diabetes, Ejection fraction, High blood pressure, Platelets, Serum creatinine, Serum sodium, 

Gender, Smoking, Time, and Death event.   

 

In this thesis, after introducing the definition of the problem, in the material method 

section, database definition, feature engineering and artificial intelligence methods are 

explained in the second chapter. Later, many models have been tried for experimental studies 

and are given in section 3. Finally, the 4th chapter of the thesis was completed with the 

interpretation of the experimental results and suggestions. 
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2. MATERIAL and METHODS 

 

2.1. Data Description 

 

Various factors affect the quality of life of heart failure patients. These are modifiable 

factors and non-modifiable factors. Among the modifiable factors, lifestyle habits such as 

diabetes mellitus, systolic blood pressure, cardiomyopathy, antihypertensive drug use, 

hyperlipidemia, lipid-lowering drug use, hormone replacement therapy, smoking status, 

physical inactivity, and alcohol consumption have been identified as critical factors. Gender, 

age, and heredity were defined as non-modifiable factors (Katz et al., 2017, p. 275). These 

uncontrollable factors cause complications such as pneumonia, pulmonary embolism, stroke, 

organ failure, sudden death, and disability (Costa, 2020, p. 831). 

 

In this study, (Ahmad et. al., 2017, p. 7) utilized the dataset of the medical records of 

299 HF patients admitted to the Faisalabad Institute of Cardiology and Allied Hospital in 

Faisalabad (Punjab, Pakistan) from April-December 2015 and shared anonymously in the 

international database UCI-Irvine Machine Learning Repository.  

 

Of the patients in the dataset, 105 were female and 194 were male, and the age of the 

patients ranged from 40 to 95. All 299 patients had left ventricular systolic dysfunction and 

were classified as New York Heart Association (NYHA) class III or IV as HF stage (Nunez 

et.al.  2017, p. 430). This dataset (Wilstrup & Cave, 2021) includes the realization status 

information of 12 features and targets, namely mortality, that can be used to predict HF-

related deaths. The mentioned 13 attributes and their definitions are as follows: 

 

1. Year; patient age in years, 

2. Anemia; decrease in red blood cells or hemoglobin, 

3. Creatinine; CPK enzyme levels in the blood (mcg/L), 

4. Diabetes, whether the patient has diabetes, 

5. Ejection fraction; percentage of blood leaving the heart with each contraction 

6. High blood pressure, whether the patient has hypertension 

7. Platelets; platelets in the blood (kilo platelets/mL) 

8. Serum creatinine; serum creatinine level in the blood (mg/dL) 
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9. Serum sodium; serum sodium level in the blood (mEq/L) 

10. Gender: female or male 

11. Smoking; whether the patient smokes or not 

12. Time; patient's follow-up period in days 

13. Death event; the patient's death status during the follow-up period 

 

The characteristics of age, serum creatinine, left ventricular dysfunction and pulmonary 

hypertension in the data set are numerical. In binary categorical (binary) features, “0” 

indicates that the risk factor is not present, and “1” indicates that the risk factor is present. Six 

of the features, including anemia, hypertension, diabetes, gender, smoking, and death event, 

were converted into binary to make the dataset used for the classification task. The registrar 

assumed that patients with hematocrit levels of less than 36% had anemia (Chen et. al. 2020, 

p. 1445). 

 

Creatinine phosphokinase (CPK) alludes to the level of the CPK chemical within the 

blood. When muscle tissue is harmed, CPK is discharged into the blood. Therefore, high CPK 

levels within the patient's blood may show HF or harm (Vistarini et. al. 2014, p. 238).  

phosphokinase (CPK) refers to the level of the CPK enzyme in the blood. When muscle tissue 

is damaged, CPK is released into the blood. Therefore, high CPK levels in the patient's blood 

may indicate HF or injury (Salim et. al. 2020, p.139) 

 

EF indicates how much blood the left ventricle pumps with each contraction. Serum 

creatinine is an organic waste formed by muscle metabolism (Erdas. C, 2020, p. 6). Sodium is 

a mineral that serves the proper functioning of muscles and nerves. The serum sodium test is a 

routine blood examination that shows whether the patient has normal levels of sodium in their 

blood.  

 

The abnormally low sodium level in the blood may be due to HF. The death or survival 

status used as a target in our classification study indicates that the patient died or survived 

before the end of a mean follow-up period of 130 days, ranging from 4 to 285 days (Chen et. 

al. 2020, s. 1445). The patient's survival (mortality =0) and death (mortality =1) were 

expressed in binary. Regarding the data set imbalance, the data set has an imbalance of 

approximately 2:1, since the number of patients who survived was 203 (67.89%) and the 

number of patients who died was 96 (32.11%)  
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Among these clinical features, the first twelve features are accepted as independent 

variables. A part of the data set is shown in Table 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8  
 

 

Table 2.1. Data Set Sampling 
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75 0 582 0 20 1 265000 1,9 130 1 0 4 1 

55 0 7861 0 38 0 263358 1,1 136 1 0 6 1 

65 0 146 0 20 0 162000 1,3 129 1 1 7 1 

50 1 111 0 20 0 210000 1,9 137 1 0 7 1 

65 1 160 1 20 0 327000 2,7 116 0 0 8 1 

90 1 47 0 40 1 204000 2,1 132 1 1 8 1 

75 1 246 0 15 0 127000 1,2 137 1 0 10 1 

60 1 315 1 60 0 454000 1,1 131 1 1 10 1 

65 0 157 0 65 0 263358 1,5 138 0 0 10 1 

80 1 123 0 35 1 388000 9,4 133 1 1 10 1 

75 1 81 0 38 1 368000 4 131 1 1 10 1 

62 0 231 0 25 1 253000 0,9 140 1 1 10 1 

45 1 981 0 30 0 136000 1,1 137 1 0 11 1 

50 1 168 0 38 1 276000 1,1 137 1 0 11 1 

49 1 80 0 30 1 427000 1 138 0 0 12 2 

82 1 379 0 50 0 47000 1,3 136 1 0 13 1 

87 1 149 0 38 0 262000 0,9 140 1 0 14 1 

45 0 582 0 14 0 166000 0,8 127 1 0 14 1 

70 1 125 0 25 1 237000 1 140 0 0 15 1 

48 1 582 1 55 0 87000 1,9 121 0 0 15 1 

65 1 52 0 25 1 276000 1,3 137 0 0 16 2 

65 1 128 1 30 1 297000 1,6 136 0 0 20 1 

68 1 220 0 35 1 289000 0,9 140 1 1 20 1 

53 0 63 1 60 0 368000 0,8 135 1 0 22 2 

75 0 582 1 30 1 263358 1,83 134 0 0 23 1 

80 0 148 1 38 0 149000 1,9 144 1 1 23 1 

95 1 112 0 40 1 196000 1 138 0 0 24 1 

70 0 122 1 45 1 284000 1,3 136 1 1 26 1 

58 1 60 0 38 0 153000 5,8 134 1 0 26 1 

82 0 70 1 30 0 200000 1,2 132 1 1 26 1 

94 0 582 1 38 1 263358 1,83 134 1 0 27 1 

85 0 23 0 45 0 360000 3 132 1 0 28 1 

50 1 249 1 35 1 319000 1 128 0 0 28 1 

50 1 159 1 30 0 302000 1,2 138 0 0 29 2 

65 0 94 1 50 1 188000 1 140 1 0 29 1 

69 0 582 1 35 0 228000 3,5 134 1 0 30 1 

90 1 60 1 50 0 226000 1 134 1 0 30 1 

82 1 855 1 50 1 321000 1 145 0 0 30 1 
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2.2. Feature Engineering 

 

Machine learning calculations learn from input information related to the area of the 

subject. It is exceptionally vital to nourish the calculation with the proper information for the 

arrangement of an indicated issue. Indeed, if the information is fundamental and collected 

carefully, significant features ought to be included within the framework in an indicated 

organize and affectability. To urge this noteworthy information format: 

 

1.Data selection  

2.Data pre-processing 

3.Data transformation 

 

In the scope of machine learning, a feature is a measurable variable that is used to 

explain some part of individual data objects. For example, sepal length and petal length are 

some of the features that are used to describe species of iris flower in the Iris Data Set (Dua & 

Graff, 2017). 

 

To design effective machine learning models, comprehensive and independent features 

that explain the underlying information on the target variable should be presented. Feature 

engineering is the process of transforming, pre-processing, and selecting features on the 

collected data sets. Even with the recent developments in the data analytics and machine 

learning area, most of the designed algorithms are not fully capable of understanding the 

reasoning behind the target variables only being applied to a collected data set. Machine 

learning experts are needed for generating features to extract useful information for machine 

learning models to work. 

 

Extracting meaningful features requires extensive domain knowledge. The process of 

feature engineering is not a simple line but rather a cycle of learning that goes back and forth 

between the feature engineering stage and model development stage. There are three broadly 

utilized’ ’data preprocessing ‘‘steps within the writing: cleaning, organizing, and examining. 

These exchanges are carried out, separately, as takes after: to begin with, the superfluous and 

lost information are cleaned from the information. At that point, a designing handle known as 

numerical values and normalization is performed on the cleaning information.  
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Machine learning procedures cannot work on substance data. Inputs given to the 

organization are changed over into numerical values. Sexual introduction can be given as a 

case for this alter (digitized as male = 1, female = 2). Thus, the normalization gets ready is 

carried out to expect the highlights associated with the inputs of the organization from having 

a one-sided effect on the organization. After ensuring that all inputs have a homogeneous 

effect on the organization, looking at trade is carried out. Two common techniques are utilized 

here: customary data division and k-fold cross validation.  

 

Exchanges are connected. Information change steps are moreover called include 

designing. By with scaling exchange at the point of classifying the highlights inside 

themselves and deciding their characteristics by selecting a particular subset from the whole 

existing information set, the ‘‘Data Selection’’ transaction is exhausted. common, there's a 

want to choose the whole information set that exists with the logic of’ ’much better ‘‘. This 

may not be genuine. It is essential to know which information influences the issue that should 

be unraveled. Information choice for vital information can be done on suspicions and within 

the way of affirming the presumption afterward. In this think, 70% of information was 

arbitrarily chosen for preparation and 30% of the information for test set traditionally. 

 

The final step is the’ ’data conversion’’ exchange which straightforwardly influences 

the issue region of the calculation utilized. Numerous information change exchanges may be 

required in numerous considers. There are three common information change strategies: 

scaling, breaking down, and combining. When the writing is inspected, it is seen that the 

exchanges of combining, breaking down, or scaling is done together within the preprocessing 

step of numerous problems. 

 

It is the exchange of exploring the impacts of highlights on the arrangement after 

starting. The vital component investigation (PCA) strategy is the essence of the foremost 

broadly utilized methods here. PCA strategy is additionally a measurement decrease and 

includes an extraction strategy that gives extensive results beneath the presumption that the 

information incorporates a regular conveyance. The combining exchange is based on the 

method of combining the passages including comparable characteristics amid the highlight. 

The algorithms such as profound learning perform these information transformation 

exchanges as a closed box inside themselves, but this exchange needs to be done by a master 

in machine learning calculations. 
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In this think, we utilized the essential operations in include building. No extra 

preparation was done after a test diminishment preparation made by the database proprietor. In 

expansion, we centered as it were on making strides in the execution of highlight building on this 

dataset. The data operations were performed on the whole information set. A while later, the 

information set was partitioned with distinctive procedures for preparing and testing. In this way, 

conceivable factual blunders are anticipated. 

 

2.2.1. Data selection   

 

Data Selection is done by selecting a specific subset from the entire existing dataset. 

There is usually a desire to select the entire existing dataset with the philosophy of much 

better. This may not be true. It is necessary to know which data influences the problem that 

needs to be solved. Data selection can be made on assumptions about the data that is important 

and in a way that can confirm the assumption afterward. 

 

2.2.2. Data pre-processing  

 

There are 3 commonly used "data pre-processing" steps: cleaning, formatting, and 

sampling. These operations are performed as follows: first, unnecessary and missing data is 

cleaned on the data. Then, numerical values and formatting, known as normalization, are 

performed on the cleaned data. Machine learning methods cannot work on text data. The 

inputs to the network are converted to numeric values. Then, the normalization process is 

performed to prevent the properties applied to the inputs of the network from having a biased 

effect on the network. After ensuring that all inputs have a homogeneous effect on the 

network, sampling is done. Two methods commonly used here are traditional data 

segmentation and k-fold cross validation. 

 

2.2.3 Data transforming  

 

Data transformation is a method that directly affects the problem area of the algorithm 

used. There are three general methods of data transformation: scaling, attribute parsing, and 

aggregation. It is often seen that merging, parsing, or scaling jobs for many problems are done 

together in the preprocessing step. 
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2.3. Artificial Intelligence Algorithms 

 

Artificial intelligence algorithms refer to software possibilities that bring real-world 

assets to the digital platform. AI algorithms are handled in three different categories: 

supervised learning, unsupervised learning, and reinforcement learning. 

 

Computers and computer-based systems that have the ability to learn and evaluate with 

artificial intelligence algorithms; It is used to process the data and increase the performance of 

the results. 

 

2.3.1. Support Vector Machine (SVM) 

 

Whereas the bolster vector machine was initially utilized to partition the two classes, it 

has been created over time and has been effectively utilized in relapse, classification, and 

exception discovery issues with nonlinear frameworks. It may be a directed parametric 

machine learning calculation based on measurable learning theory. To partition the two 

classes within the SVM calculation, a parallel line/hyperplane is drawn between the 

information that produces up the classes. The structure utilized to partitioned classes is spoken 

to as a line in two-dimensional space, and as a plane in three-dimensional space. The 

information closest to the hyperplane is called bolster vectors. The edge between the bolster 

vectors of inverse classes is maximized, in this way making it stronger. 

 

2.3.2. Artificial Neural Networks (ANN) 

 

Artificial neural systems (ANNs), one of the foremost common machine learning 

strategies, are frameworks shaped by the combination of straightforward data preparing units 

called neurons. ANNs are very competent of learning nonlinear connections between factors 

and recognizing high-order connections. The control of ANNs to demonstrate complex 

connections comprises not in complex scientific models, but the intuitively get together of 

expansive numbers of basic neurons. ANNs are models that can be fully applied to supervised, 

unsupervised, and reinforcement learning algorithms. 
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2.3.3. k-Nearest Neighbor Algorithm (KNN) 

 

K-NN is known as one of the best and most seasoned non-parametric directed 

classification approaches among machine learning calculations within the writing. By 

characterizing a extraordinary number k within the add up to information set, the mean/mode 

classes of the closest neighbors are gotten, and the modern protest is doled out to the course 

closest to its neighbors. The separations of the unused question to its neighbors can be 

calculated with capacities such as Euclid. It contains a vigorous structure against preparing 

information given the k-number is expansive sufficient. When the information set and k 

measure increment, the handling time increment significantly, and in this approach, all these 

remove calculations must be kept in memory. Hence, the choice of k esteem is greatly vital. 

 

2.3.4. Decision Tree Classifier Algorithm 
 

The choice tree calculation falls beneath the category of administered learning. They 

are utilized to illuminate both relapse and classification issues. The choice tree employments 

tree representation to illuminate the issue where each leaf hub compares to a course name and 

the qualities are spoken to at the inward hub of the tree. Measurements are one of the prescient 

modeling approaches utilized in information mining and machine learning.  

 

Tree models in which the target variable can take a discrete set of values are called 

classification trees; in these tree structures, clears out speak to lesson names and branches 

speak to combinations of properties that provide rise to these course names. Choice trees 

where the target variable can take ceaseless values are called relapse trees. In uncertainty 

investigation, a choice tree can be utilized to speak to choices outwardly and clearly. 

 

2.3.5. Accuracy 

 

The proportion of predictions that a classification model is correct. Accuracy in 

multiclass classification is defined as: 

 

Accuracy = Correct guesses / Total number of samples 

In binary classification, accuracy has the following definition: 
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Accuracy = True positives + True negatives / Total number of samples 

 

3. EXPERIMENTAL STUDIES  

 

In this part, we evaluate the artificial neural network results based on classification 

accuracy. For this purpose, a dataset containing 13 features (12 Inputs - 1 Output) and 299 

samples were used. The traditional validation approach is used to evaluate the performance of 

the proposed algorithms.  

 

Heart failure diagnostic data was tested with many different machine learning 

techniques to demonstrate the success of the study. For this purpose, Logistic Regression, 

Naive Bayes, Linear SVM, Cubic SVM, Fine Gauss SVM, Medium Gaussian SVM, Coarse 

Gaussian SVM, Fine KNN, Medium KNN, Coarse KNN, Cosine KNN, Cubic KNN, 

Weighted KNN, Subspace KNN, Boosted Trees, Bagged Trees, RUS Boosted Trees methods 

have been tested and the classification performance results obtained with different classifiers 

using all features are shown in Table 3.1. 

 

3.1. Experimental Studies with Dataset Unnormalized 
 

In this section, our data set is not normalized. Different models have been tested on raw 

data. The performance results of the models are given below: 
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Table 3.1.1. Machine learning techniques for comparison-no validation 

 

 

Machine Learning Algorithms 

 

No Validation (ACC-%) 

PCA  

Disable  

PCA  

Enable 

1 Tree (Fine Tree)   93% 84% 

2 Tree (Medium Tree) 92% 72% 

3 Tree (Coarse Tree)  86% 69% 

4 Linear Discriminant 85% 67% 

5 Quadratic Discriminant 79% 67% 

6 Logistic Regression  85% 67% 

7 Naive Bayes (Kernel) 76% 67% 

8 Naive Bayes (Gaussian) 84% 68% 

9 SVM (Linear Support Vector Machine) 84% 67% 

10 SVM (Quadratic) 90% 66% 

11 SVM (Cubic) 98% 32% 

12 SVM (Fine Gaussian) 100% 67% 

13 SVM (Medium Gaussian)  90% 67% 

14 SVM (Coarse Gaussian) 78% 67% 

15 KNN (Fine KNN)  100% 100% 

16 KNN (Medium KNN) 78% 69% 

17 KNN (Coarse KNN) 69% 67% 

18 KNN (Cosine KNN) 77% 32% 

19 KNN (Cubic KNN) 79% 69% 

20 KNN (Weighted KNN) 100% 100% 

21 Ensemble (Boosted Trees) 100% 73% 

22 Ensemble (Bagged Trees)  99% 98% 

23 Ensemble (Subspace Discriminant) 80% 67% 

24 Ensemble (Subspace KNN) 100% 100% 

25 Ensemble (RUSBoosted Trees) 97% 73% 

 Best Results 100% 100% 
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The dataset is divided by the no validation method and the model performance 

performances obtained in PCA Enable and PCA Disable states are given in Table 3.1.1. 

According to this table, SVM (Cubic), SVM (Fine Gaussian), KNN (Fine KNN), KNN 

(Weighted KNN), Ensemble (Boosted Trees), Ensemble (Bagged Trees), Ensemble (Subspace 

KNN), Ensemble (RUSboosted Trees) models have the highest accuracy rate. 

 

Quadratic Discriminant, Naive Bayes (Kernel), SVM (Coarse Gaussian), KNN (Fine 

KNN), KNN (Medium KNN), KNN (Coarse KNN), KNN (Cosine KNN), KNN (Cubic KNN) 

models have the lowest accuracy rate. 
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Table 3.1.2. Machine learning techniques for comparison-holdout validation-20-80% 

 

 

 

 

 

 

 

 

 

Machine Learning Algorithms 

 

Holdout Validation-20/80% (ACC-

%) 

PCA  

Disable  

PCA  

Enable 

1 Tree (Fine Tree)   78% 61% 

2 Tree (Medium Tree) 78% 55% 

3 Tree (Coarse Tree)  79% 67% 

4 Linear Discriminant  84% 67% 

5 Quadratic Discriminant 79% 67% 

6 Logistic Regression  83% 67% 

7 Naive Bayes (Kernel) 78% 67% 

8 Naive Bayes (Gaussian) 81% 67% 

9 SVM (Linear Support Vector Machine) 79% 67% 

10 SVM (Quadratic) 71% 66% 

11 SVM (Cubic) 61% 28% 

12 SVM (Fine Gaussian) 67% 67% 

13 SVM (Medium Gaussian)  78% 67% 

14 SVM (Coarse Gaussian) 79% 67% 

15 KNN (Fine KNN)  57% 49% 

16 KNN (Medium KNN) 69% 57% 

17 KNN (Coarse KNN) 67% 67% 

18 KNN (Cosine KNN) 76% 32% 

19 KNN (Cubic KNN) 71% 57% 

20 KNN (Weighted KNN) 72% 52% 

21 Ensemble (Boosted Trees) 79% 61% 

22 Ensemble (Bagged Trees)  81% 52% 

23 Ensemble (Subspace Discriminant) 83% 67% 

24 Ensemble (Subspace KNN) 61% 49% 

25 Ensemble (RUSBoosted Trees) 72% 47% 

 Best Results 84% 67% 
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The dataset is divided by the holdout validation (20-80%) method and the model 

performance performances obtained in PCA Enable and PCA Disable states are given in Table 

3.1.2. According to this table, Linear Discriminant, Logistic Regression, Naive Bayes 

(Gaussian), Ensemble (Bagged Trees), and Ensemble (Subspace Discriminant) models have 

the highest accuracy rate. Quadratic Discriminant SVM (Cubic), KNN (Fine KNN), and 

Ensemble (Subspace KNN) models have the lowest accuracy rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19  
 

Table 3.1.3. Machine learning techniques for comparison-holdout validation-15-85% 

 

 

 

 

 

 

 

 

 

 

Machine Learning Algorithms 

Holdout Validation-15/85% (ACC-%) 

PCA  

Disable  

PCA  

Enable 

1 Tree (Fine Tree)   70% 52% 

2 Tree (Medium Tree) 70% 59% 

3 Tree (Coarse Tree)  72% 70% 

4 Linear Discriminant 81% 68% 

5 Quadratic Discriminant 70% 68% 

6 Logistic Regression  79% 68% 

7 Naïve Bayes (Kernel) 70% 68% 

8 Naïve Bayes (Gaussian) 72% 68% 

9 SVM (Linear Support Vector Machine) 81% 68% 

10 SVM (Quadratic) 68% 36% 

11 SVM (Cubic) 77% 65% 

12 SVM (Fine Gaussian) 68% 68% 

13 SVM (Medium Gaussian)  77% 68% 

14 SVM (Coarse Gaussian) 72% 68% 

15 KNN (Fine KNN)  59% 50% 

16 KNN (Medium KNN) 70% 70% 

17 KNN (Coarse KNN) 70% 68% 

18 KNN (Cosine KNN) 72% 31% 

19 KNN (Cubic KNN) 72% 70% 

20 KNN (Weighted KNN) 72% 54% 

21 Ensemble (Boosted Trees) 77% 65% 

22 Ensemble (Bagged Trees)  81% 47% 

23 Ensemble (Subspace Discriminant) 77% 68% 

24 Ensemble (Subspace KNN) 65% 50% 

25 Ensemble (RUSBoosted Trees) 70% 50% 

 Best Results 81% 70% 
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The dataset is divided by the holdout validation (15-85%) method and the model 

performance performances obtained in PCA Enable and PCA Disable states are given in Table 

3.1.3. According to this table, Linear Discriminant, SVM (Linear Support Vector Machine), 

and Ensemble (Bagged Trees) models have the highest accuracy rate. 

 

Quadratic Discriminant, SVM (Quadratic), SVM (Fine Gaussian), KNN (Fine KNN), 

and Ensemble (Subspace KNN) models have the lowest accuracy rate.  
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Table 3.1.4. Machine learning techniques for comparison-k-fold-cross-validation (k=3) 

 
 

 

Machine Learning Algorithms 

k-fold-cross-validation (k=3) (ACC-%) 

 

PCA  

Disable  

PCA  

Enable 

1 Tree (Fine Tree)   77% 62% 

2 Tree (Medium Tree) 77% 62% 

3 Tree (Coarse Tree)  78% 64% 

4 Linear Discriminant 83% 67% 

5 Quadratic Discriminant 76% 66% 

6 Logistic Regression  82% 67% 

7 Naïve Bayes (Kernel) 75% 66% 

8 Naïve Bayes (Gaussian) 77% 66% 

9 SVM (Linear Support Vector Machine) 82% 67% 

10 SVM (Quadratic) 75% 63% 

11 SVM (Cubic) 73% 64% 

12 SVM (Fine Gaussian) 67% 67% 

13 SVM (Medium Gaussian)  80% 67% 

14 SVM (Coarse Gaussian) 74% 67% 

15 KNN (Fine KNN)  69% 57% 

16 KNN (Medium KNN) 76% 61% 

17 KNN (Coarse KNN) 67% 67% 

18 KNN (Cosine KNN) 76% 32% 

19 KNN (Cubic KNN) 75% 61% 

20 KNN (Weighted KNN) 75% 60% 

21 Ensemble (Boosted Trees) 75% 62% 

22 Ensemble (Bagged Trees)  81% 57% 

23 Ensemble (Subspace Discriminant) 78% 67% 

24 Ensemble (Subspace KNN) 63% 57% 

25 Ensemble (RUSBoosted Trees) 75% 54% 

 Best Results 83% 67% 
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The dataset is divided by the k-fold-cross-validation (k=3) method, and the model 

performance performances obtained in PCA Enable and PCA Disable states are given in Table 

3.1.4. According to this table, Linear Discriminant, Logistic Regression, SVM (Linear 

Support Vector Machine), SVM (Medium Gaussian), and Ensemble (Bagged Trees) models 

have the highest accuracy rate. 

 

Quadratic Discriminant SVM (Fine Gaussian), KNN (Coarse KNN), and Ensemble 

(Subspace KNN) models have the lowest accuracy rate.  
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Table 3.1.5. Machine learning techniques for comparison-k-fold-cross-validation (k=5) 

 
 

 

Machine Learning Algorithms 

k-fold-cross-validation (k=5) 

(ACC - %) 
PCA  

Disable  

PCA  

Enable 

1 Tree (Fine Tree)   78% 56% 

2 Tree (Medium Tree) 78% 61% 

3 Tree (Coarse Tree)  81% 67% 

4 Linear Discriminant 82% 67% 

5 Quadratic Discriminant 74% 67% 

6 Logistic Regression  82% 67% 

7 Naïve Bayes (Kernel) 76% 67% 

8 Naïve Bayes (Gaussian) 76% 67% 

9 SVM (Linear Support Vector Machine) 80% 67% 

10 SVM (Quadratic) 74% 62% 

11 SVM (Cubic) 72% 51% 

12 SVM (Fine Gaussian) 67% 67% 

13 SVM (Medium Gaussian)  78% 67% 

14 SVM (Coarse Gaussian) 73% 67% 

15 KNN (Fine KNN)  65% 52% 

16 KNN (Medium KNN) 75% 61% 

17 KNN (Coarse KNN) 68% 67% 

18 KNN (Cosine KNN) 74% 32% 

19 KNN (Cubic KNN) 75% 61% 

20 KNN (Weighted KNN) 73% 56% 

21 Ensemble (Boosted Trees) 77% 62% 

22 Ensemble (Bagged Trees)  81% 51% 

23 Ensemble (Subspace Discriminant) 78% 67% 

24 Ensemble (Subspace KNN) 64% 52% 

25 Ensemble (RUSBoosted Trees) 79% 46% 

 Best Results 82% 67% 
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The dataset is divided by the k-fold-cross-validation (k=5) method, and the model 

performance performances obtained in PCA Enable and Disable states are given in Table 

3.1.5. According to this table, Tree (Coarse Tree), Linear Discriminant, Logistic Regression, 

SVM (Linear Support Vector Machine), and SVM (Linear Support Vector Machine) models 

have the highest accuracy rate. 

 

Quadratic Discriminant, SVM (Fine Gaussian), KNN (Fine KNN), KNN (Coarse 

KNN), and Ensemble (Subspace KNN) models have the lowest accuracy rate. 
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Table 3.1.6. Machine learning techniques for comparison-k-fold-cross-validation (k=10) 

 

 

 

 

 

 

Machine Learning Algorithms 

 

k-fold-cross-validation (k=10) 

(ACC - %) 

PCA 

Disable  

PCA 

Enable 

1 Tree (Fine Tree) 77% 57% 

2 Tree (Medium Tree) 78% 59% 

3 Tree (Coarse Tree) 81% 64% 

4 Linear Discriminant 81% 67% 

5 Quadratic Discriminant 76% 66% 

6 Logistic Regression 81% 67% 

7 Naïve Bayes (Kernel) 76% 66% 

8 Naïve Bayes (Gaussian) 78% 66% 

9 SVM (Linear Support Vector Machine) 81% 67% 

10 SVM (Quadratic) 74% 58% 

11 SVM (Cubic) 72% 48% 

12 SVM (Fine Gaussian) 67% 67% 

13 SVM (Medium Gaussian) 79% 67% 

14 SVM (Coarse Gaussian) 74% 67% 

15 KNN (Fine KNN) 64% 55% 

16 KNN (Medium KNN) 72% 56% 

17 KNN (Coarse KNN) 69% 67% 

18 KNN (Cosine KNN) 72% 32% 

19 KNN (Cubic KNN) 73% 56% 

20 KNN (Weighted KNN) 72% 55% 

21 Ensemble (Boosted Trees) 80% 63% 

22 Ensemble (Bagged Trees) 84% 55% 

23 Ensemble (Subspace Discriminant) 78% 67% 

24 Ensemble (Subspace KNN) 60% 55% 

25 Ensemble (RUSBoosted Trees) 80% 48% 

 Best Results 84% 67% 
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The dataset is divided by the k-fold-cross-validation (k=10) method and the model 

performance performances obtained in PCA Enable and Disable states are given in Table 

3.1.6. According to this table, Tree (Coarse Tree), Linear Discriminant, Logistic Regression, 

SVM (Linear Support Vector Machine), Ensemble (Boosted Trees), Ensemble (Bagged 

Trees), and Ensemble (RUSBoosted Trees) models have the highest accuracy rate. 

 

SVM (Fine Gaussian), KNN (Fine KNN), KNN (Coarse KNN), and Ensemble 

(Subspace KNN) models have the lowest accuracy rate. 

 

3.2. Experimental Studies with Dataset Normalized 

 

 

The dataset is divided by the no validation method and the normalization of the model 

performances obtained in PCA Enable and PCA Disable states are given in Table 3.2.1. 
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Table 3.2.1. Machine learning techniques for comparison-no validation-normalization-I 

 

Normalized Dataset 

Machine Learning Algorithms 

No Validation 

(ACC - %) 

PCA Disable PCA Enable 

1   Tree (Fine Tree)   80% 80% 

2 Tree (Medium Tree) 70% 60% 

3 Tree (Coarse Tree)  60% 50% 

4 Linear Discriminant 50% 50% 

5 Quadratic Discriminant 30% 50% 

6 Logistic Regression  50% 50% 

7 Naïve Bayes (Kernel) 20% 50% 

8 Naïve Bayes (Gaussian) 50% 50% 

9 SVM (Linear Support Vector Machine) 50% 50% 

10 SVM (Quadratic) 70% 52% 

11 SVM (Cubic) 90% 50% 

12 SVM (Fine Gaussian) 100% 50% 

13 SVM (Medium Gaussian)  70% 50% 

14 SVM (Coarse Gaussian) 30% 52% 

15 KNN (Fine KNN)  100% 100% 

16 KNN (Medium KNN) 30% 50% 

17 KNN (Coarse KNN) 50% 50% 

18 KNN (Cosine KNN) 30% 30% 

19 KNN (Cubic KNN) 30% 50% 

20 KNN (Weighted KNN) 100% 100% 

21 Ensemble (Boosted Trees) 100% 60% 

22 Ensemble (Bagged Trees)  100% 100% 

23 Ensemble (Subspace Discriminant) 42% 50% 

24 Ensemble (Subspace KNN) 100% 100% 

25 Ensemble (RUSBoosted Trees) 90% 60% 

 Best Results 100% 100% 
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Table 3.2.2. Machine learning techniques for comparison-no validation-normalization-II 

Normalized 

Machine Learning Algorithms  

No Validation 

(ACC - %) 

PCA Disable PCA Enable 

1   Tree (Fine Tree) 28% 28% 

2   Tree (Medium Tree) 28% 28% 

3   Tree (Coarse Tree) 20% 20% 

4   Linear Discriminant Failed* Failed* 

5   Quadratic Discriminant Failed* Failed* 

6    Logistic Regression Failed* Failed* 

7    Naïve Bayes (Kernel) 88% 88% 

8    Naïve Bayes (Gaussian) Failed* Failed* 

9    SVM (Linear Support Vector Machine) 40% 60% 

10     SVM (Quadratic) 88% 88% 

11      SVM (Cubic) 88% 88% 

12     SVM (Fine Gaussian) 88% 88% 

13     SVM (Medium Gaussian) 88% 88% 

14     SVM (Coarse Gaussian) 40% 60% 

15     KNN (Fine KNN) 88% 88% 

16     KNN (Medium KNN) 8% 12% 

17     KNN (Coarse KNN) 4% 4% 

18     KNN (Cosine KNN) 8% 12% 

19     KNN (Cubic KNN) 8% 12% 

20     KNN (Weighted KNN) 88% 88% 

21 Ensemble (Boosted Trees) 88% 88% 

22   Ensemble (Bagged Trees)  88% 88% 

23   Ensemble (Subspace Discriminant) 4% 4% 

24   Ensemble (Subspace KNN) 52% 88% 

25   Ensemble (RUSBoosted Trees) 84% 84% 

 Best Results 88% 88% 

 

* Failed: Untested due to inappropriate inputs for the algorithm. 
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The dataset with normalized is divided by the no validation method and the model 

performances obtained in PCA Enable and Disable states are given in Table 3.2.2.  

 

According to this table, SVM (Quadratic), SVM (Cubic), SVM (Fine Gaussian), SVM 

(Medium Gaussian), KNN (Fine KNN), KNN (Weighted KNN), Ensemble (Boosted Trees), 

Ensemble (Bagged Trees), Ensemble (RUSBoosted Trees) models have the highest accuracy 

rate. 

 

KNN (Medium KNN), KNN (Coarse KNN), KNN (Cosine KNN), KNN (Cubic KNN) 

Ensemble (Subspace Discriminant) models have the lowest accuracy rate. 
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Table 3.2.3. Machine learning techniques for comparison-holdout validation-20-80%-

normalization-I 

 

Normalized Dataset 

Machine Learning Algorithms 

Holdout Validation 20/80% 

(ACC - %) 

PCA Disable  PCA Enable 

1   Tree (Fine Tree)   80% 80% 

2   Tree (Medium Tree) 80% 70% 

3   Tree (Coarse Tree)  80% 100% 

4   Linear Discriminant 10% 100% 

5   Quadratic Discriminant 80% 100% 

6   Logistic Regression  10% 100% 

7   Naïve Bayes (Kernel) 80% 100% 

8   Naïve Bayes (Gaussian) 90% 100% 

9   SVM (Linear Support Vector Machine) 80% 100% 

10    SVM (Quadratic) 50% 100% 

11    SVM (Cubic) 10% 0% 

12    SVM (Fine Gaussian) 40% 100% 

13    SVM (Medium Gaussian)  80% 100% 

14    SVM (Coarse Gaussian) 80% 100% 

15     KNN (Fine KNN)  0% 50% 

16    KNN (Medium KNN) 40% 70% 

17    KNN (Coarse KNN) 40% 100% 

18    KNN (Cosine KNN) 70% 10% 

19    KNN (Cubic KNN) 50% 70% 

20    KNN (Weighted KNN) 60% 60% 

21    Ensemble (Boosted Trees) 80% 80% 

22    Ensemble (Bagged Trees)  90% 60% 

23    Ensemble (Subspace Discriminant) 100% 100% 

24    Ensemble (Subspace KNN) 10% 50% 

25    Ensemble (RUSBoosted Trees) 60% 50% 

 Best Results 100% 100% 
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The dataset is divided by the no validation method and the normalization of the model 

performances obtained in PCA Enable and PCA Disable states are given in Table 3.2.3. 
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Table 3.2.4. Machine learning techniques for comparison-holdout validation-20-80%-

normalization-II 

 

Normalized Dataset 

Machine Learning Algorithms 

 

Holdout Validation 20/80% 

(ACC - %) 

PCA  

Disable  

PCA  

Enable 

1 Tree (Fine Tree)   0% 0% 

2 Tree (Medium Tree) 0% 0% 

3 Tree (Coarse Tree)  0% 0% 

4 Linear Discriminant Failed * 0% 

5 Quadratic Discriminant Failed* 0% 

6 Logistic Regression  Failed* 0% 

7 Naïve Bayes (Kernel) 0% 0% 

8 Naïve Bayes (Gaussian) Failed* 0% 

9 SVM (Linear Support Vector Machine) 83 83% 

10 SVM (Quadratic) 0% 83% 

11 SVM (Cubic) 0% 83% 

12 SVM (Fine Gaussian) 83% 83% 

13 SVM (Medium Gaussian)  83% 83% 

14 SVM (Coarse Gaussian) 83% 83% 

15 KNN (Fine KNN)  0% 0% 

16 KNN (Medium KNN) 0% 0% 

17 KNN (Coarse KNN) 0% 0% 

18 KNN (Cosine KNN) 0% 0% 

19 KNN (Cubic KNN) 0% 0% 

20 KNN (Weighted KNN) 0% 0% 

21 Ensemble (Boosted Trees) 0% 0% 

22 Ensemble (Bagged Trees)  0% 0% 

23 Ensemble (Subspace Discriminant) 0% 0% 

24 Ensemble (Subspace KNN) 0% 0% 

25 Ensemble (RUSBoosted Trees) 0% 0% 

 Best Results 83% 83% 

 

* Failed: Untested due to inappropriate inputs for the algorithm. 
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The dataset is divided by the normalization-holdout validation (80-20%) method and the 

model performance performances obtained in PCA Enable and Disable states are given in 

Table 3.2.4.  

 

According to this table, SVM (Linear Support Vector Machine), SVM (Fine Gaussian), 

SVM (Medium Gaussian), and SVM (Coarse Gaussian) models have the highest accuracy 

rate. 

 

 Tree (Fine Tree), Tree (Medium Tree), Tree (Coarse Tree), Naïve Bayes (Kernel), SVM 

(Quadratic), SVM (Cubic), KNN (Fine KNN), KNN (Medium KNN), KNN (Coarse KNN), 

KNN (Cosine KNN), KNN (Cubic KNN), KNN (Weighted KNN), Ensemble (Boosted Trees), 

Ensemble (Subspace Discriminant), Ensemble (Subspace KNN), Ensemble (RUSBoosted 

Trees) models have the lowest accuracy rate. 
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Table 3.2.5. Machine learning techniques for comparison-holdout validation-15-85%-

normalization-I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Normalized Dataset 

Machine Learning Algorithms 

 

Holdout Validation 

15/85% (ACC - %) 

PCA Disable  PCA Enable 

1   Tree (Fine Tree)   50% 50% 

2   Tree (Medium Tree) 50% 70% 

3   Tree (Coarse Tree)  60% 100% 

4   Linear Discriminant 100% 90% 

5   Quadratic Discriminant 50% 90% 

6    Logistic Regression  90% 90% 

7    Naïve Bayes (Kernel) 50% 90% 

8    Naïve Bayes (Gaussian) 60% 90% 

9    SVM (Linear Support Vector Machine) 100% 90% 

10    SVM (Quadratic) 40% 10% 

11    SVM (Cubic) 80% 90% 

12    SVM (Fine Gaussian) 40% 90% 

13    SVM (Medium Gaussian) 80% 90% 

14    SVM (Coarse Gaussian) 60% 90% 

15    KNN (Fine KNN)  50% 50% 

16    KNN (Medium KNN) 50% 100% 

17    KNN (Coarse KNN) 50% 90% 

18    KNN (Cosine KNN) 60% 60% 

19    KNN (Cubic KNN) 60% 100% 

20    KNN (Weighted KNN) 60% 60% 

21    Ensemble (Boosted Trees) 80% 90% 

22    Ensemble (Bagged Trees)  100% 40% 

23    Ensemble (Subspace Discriminant) 80% 90% 

24    Ensemble (Subspace KNN) 30% 50% 

25    Ensemble (RUSBoosted Trees) 50% 50% 

 Best Results 100% 100% 
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The dataset is divided by the holdout validation-15-85% method and the normalization 

of the model performance performances obtained in PCA Enable and PCA Disable states are 

given in Table 3.2.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36  
 

Table 3.2.6. Machine learning techniques for comparison-holdout validation-15-85%-

normalization-II 

 

* Failed: Untested due to inappropriate inputs for the algorithm. 

 

 

 

 

Normalized Dataset 

Machine Learning Algorithms 

 

Holdout Validation 

15/85% (ACC - %) 

PCA  

Disable  

PCA  

Enable 

1 Tree (Fine Tree)   50% 41% 

2 Tree (Medium Tree) 50% 41% 

3 Tree (Coarse Tree)  50% 41% 

4 Linear Discriminant Failed* Failed* 

5 Quadratic Discriminant Failed* Failed* 

6 Logistic Regression  Failed* Failed* 

7 Naïve Bayes (Kernel) 50% 41% 

8 Naïve Bayes (Gaussian) Failed* Failed* 

9 SVM (Linear Support Vector Machine) 50% 41% 

10 SVM (Quadratic) 41% 25% 

11 SVM (Cubic) 50% 25% 

12 SVM (Fine Gaussian) 16% 0% 

13 SVM (Medium Gaussian)  25% 41% 

14 SVM (Coarse Gaussian) 25% 41% 

15 KNN (Fine KNN)  41% 16% 

16 KNN (Medium KNN) 41% 41% 

17 KNN (Coarse KNN) 41% 41% 

18 KNN (Cosine KNN) 41% 41% 

19 KNN (Cubic KNN) 41% 41% 

20 KNN (Weighted KNN) 41% 25% 

21 Ensemble (Boosted Trees) 41% 25% 

22 Ensemble (Bagged Trees)  41% 25% 

23 Ensemble (Subspace Discriminant) 50% 50% 

24 Ensemble (Subspace KNN) 41% 16% 

25 Ensemble (RUSBoosted Trees) 16% 8% 

 Best Results 50% 50% 
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The dataset is divided by the normalization holdout validation (15-85%) method and the 

model performances obtained in PCA Enable and PCA Disable states are given in Table 3.2.6. 

According to this table, Tree (Fine Tree), Tree (Medium Tree), Tree (Coarse Tree), SVM 

(Linear Support Vector Machine), SVM (Cubic), and Ensemble (Subspace Discriminant) 

models have the highest accuracy rate. 

 

SVM (Fine Gaussian), SVM (Medium Gaussian), SVM (Coarse Gaussian) Ensemble 

(RUSBoosted), Trees) models have the lowest accuracy rate. 
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Table 3.2.7. Machine learning techniques for comparison- k-fold-cross-validation (k=3)-

normalization-I 

Normalized Dataset 

Machine Learning Algorithms 

 

k-fold-cross-validation (k=3) 

(ACC- %) 

PCA  

Disable  

PCA  

Enable 

1 Tree (Fine Tree) 70% 90% 

2 Tree (Medium Tree) 70% 90% 

3 Tree (Coarse Tree) 80% 90% 

4 Linear Discriminant 100% 100% 

5 Quadratic Discriminant 70% 100% 

6 Logistic Regression 100% 100% 

7 Naïve Bayes (Kernel) 60% 100% 

8 Naïve Bayes (Gaussian) 70% 100% 

9 SVM (Linear Support Vector Machine) 100% 100% 

10 SVM (Quadratic) 60% 90% 

11 SVM (Cubic) 50% 90% 

12 SVM (Fine Gaussian) 20% 100% 

13 SVM (Medium Gaussian) 90% 100% 

14 SVM (Coarse Gaussian) 60% 100% 

15 KNN (Fine KNN) 30% 70% 

16 KNN (Medium KNN) 70% 70% 

17 KNN (Coarse KNN) 20% 100% 

18 KNN (Cosine KNN) 70% 70% 

19 KNN (Cubic KNN) 60% 80% 

20 KNN (Weighted KNN) 60% 80% 

21 Ensemble (Boosted Trees) 60% 90% 

22 Ensemble (Bagged Trees) 90% 70% 

23 Ensemble (Subspace Discriminant) 80% 100% 

24 Ensemble (Subspace KNN) 70% 70% 

25 Ensemble (RUSBoosted Trees) 60% 60% 

 Best Results 100% 100% 
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The dataset is divided by the k-fold-cross-validation (k=3) method and the 

normalization of the model performance performances obtained in PCA Enable and PCA 

Disable states are given in Table 3.2.7. 
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Table 3.2.8. Machine learning techniques for comparison k-fold-cross-validation (k=3)-

normalization-II 

Normalized Dataset 

Machine Learning Algorithms 

 

k-fold-cross-validation (k=3) 

(ACC - %) 

PCA  

Disable  

PCA  

Enable 

1 Tree (Fine Tree)   28% 36% 

2 Tree (Medium Tree) 28% 36% 

3 Tree (Coarse Tree)  28% 36% 

4 Linear Discriminant Failed* Failed* 

5 Quadratic Discriminant Failed * Failed* 

6 Logistic Regression  Failed* Failed* 

7 Naïve Bayes (Kernel) 28% 24% 

8 Naïve Bayes (Gaussian) Failed* Failed* 

9 SVM (Linear Support Vector Machine) 24% 28% 

10 SVM (Quadratic) 24% 28% 

11 SVM (Cubic) 20% 28% 

12 SVM (Fine Gaussian) 20% 24% 

13 SVM (Medium Gaussian)  32% 24% 

14 SVM (Coarse Gaussian) 32% 32% 

15 KNN (Fine KNN)  20% 20% 

16 KNN (Medium KNN) 16% 16% 

17 KNN (Coarse KNN) 32% 32% 

18 KNN (Cosine KNN) 12% 16% 

19 KNN (Cubic KNN) 16% 16% 

20 KNN (Weighted KNN) 20% 28% 

21 Ensemble (Boosted Trees) 16% 20% 

22 Ensemble (Bagged Trees)  20% 20% 

23 Ensemble (Subspace Discriminant) 28% 28% 

24 Ensemble (Subspace KNN) 20% 20% 

25 Ensemble (RUSBoosted Trees) 20% 20% 

 Best Results 32% 36% 

 

* Failed: Untested due to inappropriate inputs for the algorithm. 
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The dataset is divided by the normalization k-fold-cross-validation (k=3) method and 

the model performances obtained in PCA Enable and PCA Disable states are given in Table 

3.2.8. According to this table, SVM (Medium Gaussian), SVM (Coarse Gaussian), and KNN 

(Coarse KNN) models have the highest accuracy rate. 

 

KNN (Medium KNN), KNN (Cosine KNN), KNN (Cubic KNN) Ensemble (Boosted 

Trees) models have the lowest accuracy rate. 
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Table 3.2.9. Machine learning techniques for comparison- k-fold-cross-validation (k=5)-

normalization-I 

 

 

 

 

Normalized Dataset 

Machine Learning Algorithms 

 

k-fold-cross-validation (k=5) 

(ACC - %) 

PCA  

Disable  

PCA  

Enable 

1 Tree (Fine Tree)   80% 70% 

2 Tree (Medium Tree) 80% 80% 

3 Tree (Coarse Tree)  90% 100% 

4 Linear Discriminant 100% 100% 

5 Quadratic Discriminant 60% 100% 

6 Logistic Regression  100% 100% 

7 Naïve Bayes (Kernel) 70% 100% 

8 Naïve Bayes (Gaussian) 70% 100% 

9 SVM (Linear Support Vector Machine) 90% 100% 

10 SVM (Quadratic) 60% 90% 

11 SVM (Cubic) 40% 50% 

12 SVM (Fine Gaussian) 20% 100% 

13 SVM (Medium Gaussian)  80% 100% 

14 SVM (Coarse Gaussian) 50% 100% 

15 KNN (Fine KNN)  50% 60% 

16 KNN (Medium KNN) 60% 80% 

17 KNN (Coarse KNN) 80% 100% 

18 KNN (Cosine KNN) 60% 50% 

19 KNN (Cubic KNN) 60% 80% 

20 KNN (Weighted KNN) 50% 70% 

21 Ensemble (Boosted Trees) 70% 90% 

22 Ensemble (Bagged Trees)  90% 50% 

23 Ensemble (Subspace Discriminant) 80% 100% 

24 Ensemble (Subspace KNN) 50% 60% 

25 Ensemble (RUSBoosted Trees) 80% 40% 

 Best Results 100% 100% 
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The dataset is divided by the k-fold-cross-validation (k=5) method and the 

normalization of the model performance performances obtained in PCA Enable and PCA 

Disable states are given in Table 3.2.9. 
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Table 3.2.10. Machine learning techniques for comparison- k-fold-cross-validation (k=5)-

normalization-II 

 

Normalized Dataset 

Machine Learning Algorithms 

 

k-fold-cross-validation (k=5) 

(ACC - %) 

PCA  

Disable  

PCA  

Enable 

1 Tree (Fine Tree)   52% 52% 

2 Tree (Medium Tree) 52% 52% 

3 Tree (Coarse Tree)  52% 52% 

4 Linear Discriminant Failed*  Failed* 

5 Quadratic Discriminant52 Failed* Failed* 

6 Logistic Regression  Failed* Failed* 

7 Naïve Bayes (Kernel) 48% 48% 

8 Naïve Bayes (Gaussian) Failed* Failed* 

9 SVM (Linear Support Vector Machine) 48% 48% 

10 SVM (Quadratic) 48% 52% 

11 SVM (Cubic) 52% 48% 

12 SVM (Fine Gaussian) 48% 48% 

13 SVM (Medium Gaussian)  48% 48% 

14 SVM (Coarse Gaussian) 48% 48% 

15 KNN (Fine KNN)  48% 40% 

16 KNN (Medium KNN) 48% 48% 

17 KNN (Coarse KNN) 48% 48% 

18 KNN (Cosine KNN) 40% 48% 

19 KNN (Cubic KNN) 48% 48% 

20 KNN (Weighted KNN) 48% 48% 

21 Ensemble (Boosted Trees) 44% 44% 

22 Ensemble (Bagged Trees)  48% 44% 

23 Ensemble (Subspace Discriminant) 48% 48% 

24 Ensemble (Subspace KNN) 48% 40% 

25 Ensemble (RUSBoosted Trees) 20% 12% 

 Best Results 52% 52% 

 

* Failed: Untested due to inappropriate inputs for the algorithm. 
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The dataset is divided by the normalization k-fold-cross-validation (k=5) method, and the 

model performance performances obtained in PCA Enable and Disable states are given in 

Table 3.2.10. According to this table, Tree (Coarse Tree), Tree (Medium Tree), Tree (Coarse 

Tree), and SVM (Cubic) models have the highest accuracy rate. 

 

Ensemble (RUSBoosted Trees) models have the lowest accuracy rate. 
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Table 3.2.11. Machine learning techniques for comparison- k-fold-cross-validation 

(k=10)-normalization-I 

 

Normalized Dataset 

Machine Learning Algorithms 

 

 

k-fold-cross-validation 

(k=10) (ACC - %) 

PCA 

Disable  

PCA 

Enable 

1 Tree (Fine Tree)   70% 70% 

2 Tree (Medium Tree) 80% 80% 

3 Tree (Coarse Tree)  90% 90% 

4 Linear Discriminant 90% 100% 

5 Quadratic Discriminant 70% 100% 

6 Logistic Regression  90% 100% 

7 Naïve Bayes (Kernel) 70% 100% 

8 Naïve Bayes (Gaussian) 80% 100% 

9 SVM (Linear Support Vector Machine) 90% 100% 

10 SVM (Quadratic) 60% 70% 

11 SVM (Cubic) 50% 50% 

12 SVM (Fine Gaussian) 30% 100% 

13 SVM (Medium Gaussian)  80% 100% 

14 SVM (Coarse Gaussian) 60% 100% 

15 KNN (Fine KNN)  20% 70% 

16 KNN (Medium KNN) 50% 70% 

17 KNN (Coarse KNN) 40% 100% 

18 KNN (Cosine KNN) 50% 0% 

19 KNN (Cubic KNN) 50% 70% 

20 KNN (Weighted KNN) 50% 70% 

21 Ensemble (Boosted Trees) 80% 90% 

22 Ensemble (Bagged Trees)  100% 70% 

23 Ensemble (Subspace Discriminant) 80% 100% 

24 Ensemble (Subspace KNN) 0% 70% 

25 Ensemble (RUSBoosted Trees) 80% 50% 

 Best Results 100% 100% 
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The dataset is divided by the k-fold-cross-validation (k=10) method and the normalization 

of the model performance performances obtained in PCA Enable and PCA Disable states are 

given in Table 3.2.11. 
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Table 3.2.12. Machine learning techniques for comparison-cross validation-10-normalization-

II 

 

* Failed: Untested due to inappropriate inputs for the algorithm. 

 

 

Normalized Dataset 

Machine Learning Algorithms 

 

k-fold-cross-validation (k=10) 

(ACC - %) 

PCA 

Disable  

PCA 

Enable 

1 Tree (Fine Tree)   24% 20% 

2 Tree (Medium Tree) 24% 20% 

3 Tree (Coarse Tree)  24% 20% 

4 Linear Discriminant Failed* Failed* 

5 Quadratic Discriminant Failed* Failed* 

6 Logistic Regression  Failed* Failed* 

7 Naïve Bayes (Kernel) 36% 40% 

8 Naïve Bayes (Gaussian) Failed* Failed* 

9 SVM (Linear Support Vector Machine) 28% 32% 

10 SVM (Quadratic) 40% 40% 

11 SVM (Cubic) 32% 28% 

12 SVM (Fine Gaussian) 28% 32% 

13 SVM (Medium Gaussian)  32% 36% 

14 SVM (Coarse Gaussian) 32% 32% 

15 KNN (Fine KNN)  20% 24% 

16 KNN (Medium KNN) 24% 16% 

17 KNN (Coarse KNN) 32% 32% 

18 KNN (Cosine KNN) 4% 4% 

19 KNN (Cubic KNN) 24% 16% 

20 KNN (Weighted KNN) 36% 40% 

21 Ensemble (Boosted Trees) 32% 36% 

22 Ensemble (Bagged Trees)  32% 36% 

23 Ensemble (Subspace Discriminant) 28% 32% 

24 Ensemble (Subspace KNN) 20% 24% 

25 Ensemble (RUSBoosted Trees) 12% 8% 

 Best Results 40% 40% 



49  
 

The dataset is divided by the normalization k-fold-cross-validation (k=10) method, and 

the model performance performances obtained in PCA Enable and Disable states are given in 

Table 3.2.12. According to this table, SVM (Quadratic), Naive Bayes (Kernel), and KNN 

(Weighted KNN) models have the highest accuracy rate. 

 

KNN (Cosine KNN), and Ensemble (RUSBoosted Trees) models have the lowest 

accuracy rate. 

 

3.3. Experimental Studies with Dataset Parameter Optimization 

 

We performed parameter optimization for the worst results we obtained in previous 

experiments in this section. 
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Table. 3.3.1. Machine learning techniques for comparison-no validation-advanced 

Parameter 

Optimization 

 

and  

      

No 

Validation 

 

 

Linear 

SVM 

 

Box 

Constra

int 

Level  

Kernel 

Scale 

Mode 

Multicl

ass 

Method 

 

 

% 

Kernel 

Scale 

Mode 

Manuel 

Kernel 

scale  

Multiclass 

Method  

 

 

% 

Linear  1 Auto 
One-vs-

one 
40 Manuel 1 One-vs-all 16 

Gaussian 1 Auto 
One-vs-

one 
88 Manuel 1 One-vs-all 80 

Quadratic  1 Auto 
One-vs-

one 
88 Manuel 1 One-vs-all 76 

Cubic  1 Auto 
One-vs-

one 
88 Manuel 1 One-vs-all 80 

Linear 

SVM 

Linear  2 Auto 
One-vs-

one 
88 Manuel 2 One-vs-all 20 

Gaussian 2 Auto 
One-vs-

one 
88 Manuel 2 One-vs-all 64 

Quadratic  2 Auto 
One-vs-

one 
88 Manuel 2 One-vs-all 64 

Cubic  2 Auto 
One-vs-

one 
88 Manuel 2 One-vs-all 72 



51  
 

In the No validation method, the values in Table 3.3.1 are obtained when linear SVM 

is run in linear, gaussian, quadratic, and cubic by taking box constraint levels 1 and 2. 

 

Similarly, when the kernel scale mode is manual in the no validation method, and the 

manual kernel scale is 1 and 2, the percentage values are given in Table 3.3.1 when multiclass 

method one-vs-all is taken. 
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Table 3.3.2. Machine learning techniques for comparison-holdout validation-20-80%-

advanced 

 

 

 

 

 

 

 

 

  

 

Parameter 

Optimization 

and 

Holdout       

Validation 

20-80% 

 

 

 

 

 

Linear 

SVM 

 

Box 

Const

raint 

Level  

Kernel 

Scale 

Mode 

Multiclass 

Method 

 

% 

Kernel 

Scale 

Mode 

Manuel 

Kernel 

scale  

Multiclas

s Method  

 

% 

Linear  1 Auto One-vs-one 8.3 Manuel  1 One-vs-all 8.3 

Gaussian 1 Auto  One-vs-one 8.3 Manuel  1 One-vs-all 16.7 

Quadratic  1 Auto One-vs-one 0 Manuel  1 One-vs-all 0 

Cubic  1 Auto  One-vs-one 0 Manuel  1 One-vs-all 0 

 

 

 

Linear 

SVM 

Linear  2 Auto One-vs-one 0 Manuel  2 One-vs-all 8.3 

Gaussian 2 Auto  One-vs-one 0 Manuel  2 One-vs-all 8.3 

Quadratic  2 Auto One-vs-one 0 Manuel  2 One-vs-all 8.3 

Cubic  2 Auto  One-vs-one 0 Manuel 2 One-vs-all 0 
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In the holdout validation (20-80%) method, the values in Table 3.3.2 are obtained 

when linear SVM is run in linear, gaussian, quadratic, and cubic by taking box constraint 

levels 1    and 2. 

Similarly, when the kernel scale mode is manual in the holdout validation (20-80%) 

method, and the manual kernel scale is 1 and 2, the percentage values are given in Table 3.3.2 

when multiclass method one-vs-all is taken. 
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Table. 3.3.3. Machine learning techniques for comparison- k-fold-cross-validation (k=3)-

advanced  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter 

Optimization 

      

 k-fold-cross-

validation 

(k=3) 

 

 

 

Linear 

SVM 

 

Box 

Constraint 

Level  

Kernel 

Scale 

Mode 

Multiclass 

Method 

 

% 

Kernel 

Scale 

Mode 

Manuel 

Kernel 

scale  

Multiclas

s Method  

 

% 

Linear  1 Auto One-vs-one 32 Manuel  1 One-vs-all 12 

Gaussian 

1 

Auto  One-vs-one 24 Manuel  1 One-vs-all 24 

Quadratic  1 Auto One-vs-one 24 Manuel  1 One-vs-all 32 

Cubic  1 Auto  One-vs-one 28 Manuel  1 One-vs-all 36 

Linear 

SVM 

Linear  2 Auto One-vs-one 12 Manuel  2 One-vs-all 28 

Gaussian 2 Auto  One-vs-one 12 Manuel  2 One-vs-all 24 

Quadratic  2 Auto One-vs-one 12 Manuel  2 One-vs-all 16 

Cubic  2 Auto  One-vs-one 12 Manuel 2 One-vs-all 28 
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In the k-fold-cross-validation (k=3) method, the values in Table 3.3.3 are obtained 

when linear SVM is run in linear, gaussian, quadratic, and cubic by taking box constraint 

levels 1 and 2. 

Similarly, when the kernel scale mode is manual in the k-fold-cross-validation (k=3) 

method, and the manual kernel scale is 1 and 2, the percentage values are given in Table 3.3.3 

when the multiclass method one-vs-all is taken. 
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4. RESULTS AND CONCLUSION  

 

  In this thesis, the accuracy of artificial intelligence algorithms is tested by using 

predictive learning models on the data set consisting of 299 heart failure patient samples. The 

main finding is as follows: 

 

The no validation performance obtained in PCA Enable and PCA Disable states are 

given in Table 3.1. According to this table, SVM (Cubic), SVM (Fine Gaussian), KNN (Fine 

KNN), KNN (Weighted KNN), Ensemble (Boosted Trees), Ensemble (Bagged Trees), 

Ensemble (Subspace KNN), Ensemble (RUSboosted Trees) models have the highest accuracy 

rate. 

 

Quadratic Discriminant, Naive Bayes (Kernel), SVM (Coarse Gaussian), KNN (Fine 

KNN), KNN (Medium KNN), KNN (Coarse KNN), KNN (Cosine KNN), KNN (Cubic KNN) 

models have the lowest accuracy rate. 

 

The holdout validation (20-80%) method and the model performances obtained in PCA 

Enable and PCA Disable states are given in Table 3.2. According to this table, Linear 

Discriminant, Logistic Regression, Naive Bayes (Gaussian), Ensemble (Bagged Trees), and 

Ensemble (Subspace Discriminant) models give the highest accuracy results. Quadratic 

Discriminant SVM (Cubic), KNN (Fine KNN), and Ensemble (Subspace KNN) models have 

the lowest accuracy rate. 

 

The holdout validation (15-85%) method and the model performances obtained in 

PCA Enable and PCA Disable states are given in Table 3.3. According to this table, Linear 

Discriminant, SVM (Linear Support Vector Machine), and Ensemble (Bagged Trees) models 

have the highest accuracy rate. Quadratic Discriminant, SVM (Quadratic), SVM (Fine 

Gaussian), KNN (Fine KNN), and Ensemble (Subspace KNN) models have the lowest 

accuracy rate. 

 

By the k-fold-cross-validation (k = 3) method, the model performances obtained in 

PCA Enable and PCA Disable states are given in Table 3.4. According to this table, Linear 

Discriminant, Logistic Regression, SVM (Linear Support Vector Machine), SVM (Medium 
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Gaussian), and Ensemble (Bagged Trees) models have the highest accuracy rate. Quadratic 

Discriminant SVM (Fine Gaussian), KNN (Coarse KNN), and Ensemble (Subspace KNN) 

models have the lowest accuracy rate. 

 

By the k-fold-cross-validation (k = 5) method, the model performances obtained in 

PCA Enable and Disable states are given in Table 3.5. According to this table, Tree (Coarse 

Tree), Linear Discriminant, Logistic Regression, SVM (Linear Support Vector Machine), and 

SVM (Linear Support Vector Machine) models have the highest accuracy rate. Quadratic 

Discriminant, SVM (Fine Gaussian), KNN (Fine KNN), KNN (Coarse KNN), and Ensemble 

(Subspace KNN) models have the lowest accuracy rate. 

 

By the k-fold-cross-validation (k =10) method and the model performance 

performances obtained in PCA Enable and PCA Disable states are given in Table 3.6. 

According to this table, Tree (Coarse Tree), Linear Discriminant, Logistic Regression, SVM 

(Linear Support Vector Machine), Ensemble (Boosted Trees), Ensemble (Bagged Trees), and 

Ensemble (RUSBoosted Trees) models have the highest accuracy rate. SVM (Fine Gaussian), 

KNN (Fine KNN), KNN (Coarse KNN), and Ensemble (Subspace KNN) models have the 

lowest accuracy rate. 

 

By the data normalization & no validation method and the model performances 

obtained in PCA Enable and Disable states are given in Table 3.7. According to this table, 

SVM (Quadratic), SVM (Cubic), SVM (Fine Gaussian), SVM (Medium Gaussian), KNN 

(Fine KNN), KNN (Weighted KNN), Ensemble (Boosted Trees), Ensemble (Bagged Trees), 

Ensemble (RUSBoosted Trees) models have the highest accuracy rate.  KNN (Medium KNN), 

KNN (Coarse KNN), KNN (Cosine KNN), KNN (Cubic KNN) Ensemble (Subspace 

Discriminant) models have the lowest accuracy rate. 

 

The data normalization-holdout validation (20-80%) method and the model 

performances obtained in PCA Enable and Disable states are given in Table 3.8. According to 

this table, SVM (Linear Support Vector Machine), SVM (Fine Gaussian), Trees), Ensemble 

(Subspace Discriminant), Ensemble (Subspace KNN), and Ensemble (RUSBoosted Trees) 

models have the lowest accuracy rate. 

 

By the data normalization & holdout validation (15-85%) method and the model 
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performances obtained in PCA Enable and PCA Disable states are given in Table 3.9. 

According to this table, Tree (Fine Tree), Tree (Medium Tree), Tree (Coarse Tree), SVM 

(Linear Support Vector Machine), SVM (Cubic), and Ensemble (Subspace Discriminant) 

models have the highest accuracy rate. SVM (Fine Gaussian), SVM (Medium Gaussian), 

SVM (Coarse Gaussian) Ensemble (RUSBoosted), Trees) models have the lowest accuracy 

rate. 

 

By the data normalization & k-fold-cross-validation (k = 3) method and the model 

performances obtained in PCA Enable and PCA, disable states are given in Table 3.10. 

According to this table, SVM (Medium Gaussian), SVM (Coarse Gaussian), and KNN 

(Coarse KNN) models have the highest accuracy rate. KNN (Medium KNN), KNN (Cosine 

KNN), KNN (Cubic KNN) Ensemble (Boosted Trees) models have the lowest accuracy rate. 

 

The dataset with normalization is divided by the k-fold-cross-validation (k = 5) 

method and the model performances obtained in PCA Enable and Disable states are given in 

Table 3.11. According to this table, Tree (Coarse Tree), Tree (Medium Tree), Tree (Coarse 

Tree), and SVM (Cubic) models have the highest accuracy rate. Ensemble (RUSBoosted 

Trees) models have the lowest accuracy rate. 

 

The dataset with normalization is divided by the k-fold-cross-validation (k = 10) 

method and the model performances obtained in PCA Enable and Disable states are given in 

Table 3.12. According to this table, SVM (Quadratic), Naive Bayes (Kernel), and KNN 

(Weighted KNN) models have the highest accuracy rate. KNN (Cosine KNN), and Ensemble 

(RUSBoosted Trees) models have the lowest accuracy rate. 

 

In the no validation method, the values in Table 3.13 are obtained when linear SVM is 

run in linear, gaussian, quadratic, and cubic by taking box constraint levels 1 and 2. Similarly, 

when the kernel scale mode is manual in the no validation method, and the manual kernel 

scale is 1 and 2, the percentage values are given in Table 3.13 when multiclass method one-vs-

all is taken. 

 

In the holdout validation (20-80%) method, the values in Table 3.14 are obtained when 

linear SVM is run in linear, gaussian, quadratic, and cubic by taking box constraint levels 1 

and 2. Similarly, when the kernel scale mode is manual in the holdout validation (20-80%) 
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method, and the manual kernel scale is 1 and 2, the percentage values are given in Table 3.14 

when multiclass method one-vs-all is taken. 

 

In the k-fold-cross-validation (k = 3) method, the values in Table 3.15 are obtained 

when linear SVM is run in linear, gaussian, quadratic, and cubic by taking box constraint 

levels 1 and 2. Similarly, when the kernel scale mode is manual in the k-fold-cross-validation 

(k = 3)  method, and the manual kernel scale is 1 and 2, the percentage values are given in 

Table 3.15 when the multiclass method one-vs-all is taken. 
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Table 4.1. Confusion matrix and ROC of highest and lowest accuracy performance of all 

models (No validation) 

 

MODEL 

NO 

 

CONFUSION MATRIX 

 

ROC 

 

Highest Accuracy Results  

1.11 

 

PCA 

Disable  

  

1.11 

 

PCA 

Enable 

 
 

1.12 

 

PCA 

Disable  
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1.12 

 

PCA 

Enable 

 

 

1.15 

 

PCA 

Disable  

  

1.15 

 

PCA 

Enable 
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1.20 

 

PCA 

Disable 

 
 

1.20 

 

PCA 

Enable 

 

 

1.21 

 

PCA 

Disable  

 
 



63  
 

 

1.21 

 

PCA 

Enable 

 
 

1.22 

 

PCA 

Disable  

 
 

1.22 

 

PCA 

Enable 
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1.24 

 

PCA 

Disable 

 
 

1.24 

 

PCA 

Enable 

  

1.25 

 

PCA 

Disable  
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1.25 

PCA 

Enable 

 

 

Lowest Accuracy Results 

1.5 

 

PCA 

Disable  

 
 

1.5 

 

PCA 

Enable 
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1.7 

 

PCA 

Disable  

 
 

1.7 

 

PCA 

Enable 

 

 

1.14 

 

PCA 

Disable  
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1.14 

 

PCA 

Enable 

 

 

1.16 

 

PCA 

Disable  

 

 

1.16 

 

PCA 

Enable 
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1.17 

 

PCA 

Disable 

  

1.17 

 

PCA 

Enable 

 
 

1.18 

 

PCA 

Disable  
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1.18 

 

PCA 

Enable 

 
 

1.19 

 

PCA 

Disable  

 

 

1.19 

 

PCA 

Enable 
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When all these results are examined; in the case of the PCA value of the no validation 

method is passive, SVM (Cubic), SVM (Fine Gaussian), KNN (Fine KNN), KNN (Weighted 

KNN), Ensemble (Boosted Trees), Ensemble (Bagged Trees), Ensemble (Subspace KNN)), 

Ensemble (RUSboosted Trees) models give the highest accuracy, and when PCA is active, 

KNN (Fine KNN) KNN (Weighted KNN) Ensemble (Subspace KNN) models give the most 

accurate results. By evaluating these results, confusion matrix and roc graft Table 4.1. has also 

been given. 

 

For this thesis, in which a dataset related to heart failure was used by feature engineering 

on the biomedical dataset, experimental studies were carried out for parameter optimization of 

the data with artificial intelligence methods. In this study, which artificial intelligence 

algorithm gave the most accurate results by using predictive learning models on the data set is 

demonstrated. When the results were examined, suggestions were made to the academicians 

who wanted to create a decision support system by comparing the positive-negative 

performance changes on the feature engineering dataset. It can be suggested that this study can 

a basis for future studies, it will also be an example for health data in different fields. 
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